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Oscillating heat pipes (OHPs) represent a promising passive mechanism for the removal or 

spreading of heat. While simple to construct, the fluid and thermodynamics of these devices 

are still poorly understood. There is debate over whether the primary heat transfer 

mechanism is due to sensible heating of the liquid phase or due to latent heat transfer 

through phase change. To provide experimental data answering this question, an 

experimental apparatus was constructed to provide local temperature and heat transfer data 

across the face of an OHP during operation. This experiment utilized temperature sensitive 

paint alongside visual recording of the fluid motion in order to determine the relative latent 

and sensible contribution to the overall heat transfer. The OHP was tested with input 

powers ranging from 2.6 W to 10.1 W. It found that latent heat transfer was dominant, 

representing between 65% and 85% of the total heat transferred in all cases.  
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1. Introduction 

The rise of semiconductor based electronics has led to an increased demand for compact, 

passive devices able to effectively remove concentrated sources of heat. Oscillating heat 

pipes (OHPs), alternately called pulsating heat pipes (PHPs), offer a promising thermal 

solution for such problems. These devices are mechanically simple and easy to 

manufacture, and have experimentally demonstrated effective thermal conductivities in 

excess of two orders of magnitude above that of copper [1]–[3]. They have been tested at 

temperatures down to 17 K [4], and in gravitational conditions ranging from microgravity 

to hypergravity [2], [5], [6]. Their simple structure additionally lends itself well to 

miniaturization. Several examples of heat pipes constructed from etched silicon exist [6]–

[11], with flat profiles of 10 cm2 or less.  

Oscillating heat pipes represent a comparatively recent innovation within the field 

of heat transfer, being first introduced in the 1990s by Akachi [12]. These devices are 

similar to conventional heat pipes in that they utilize the evaporation and condensation of 

a contained fluid in order to passively transfer heat. Unlike traditional heat pipes, however, 

oscillating heat pipes do not use a wick to return condensed liquid to the evaporator section 

of the heat pipe. Instead, the pipe forming the heat pipe is wound back and forth several 

times between the evaporator and condenser as seen in Figure 1. These tubes are sized near 

or below the capillary length of the working fluid, leading to a mixed distribution of liquid 

and vapor slugs within the heat pipe. As heat is applied to the evaporator, vapor plugs form 

or grow, increasing the local pressure. Simultaneously, condensation within the cooled 

section of the heat pipe reduces the pressure within this section. The resulting pressure 

differential drives liquid slugs from the evaporator to the condenser. The inclusion of 
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several turns within the heat pipe results in local pressure minima and maxima that vary 

with time and location within the heat pipe, leading to chaotic, oscillating motion of the 

fluid slugs.  

 

Figure 1: Schematic of a closed loop OHP [13].  

 Oscillating heat pipes are often further classified as being open or closed loop. In 

the former, the meandering tube comprising the heat pipe is terminated at either end. In the 

latter, the two ends of the tube are connected in order to form a continuous liquid channel 

as is shown in Figure 1. Most studies comparing these two designs have found that the 

circulating flow allowed by the closed loop design leads to an increase in heat transfer [13], 

[14]. However, comparisons made by Jun and Kim have indicated that for micro-OHPs 

open loop heat pipes can provide better performance in disadvantageous orientations while 

retaining comparable performance to closed loop heat pipes in normal conditions [7]. 

Additional experiments focused solely on closed loop OHPs have indicated that the thermal 

resistance of these devices is minimized when the flow is circulating [15], which would 

support the theory that a design allowing such flow would serve to improve heat transfer.   
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1.1. OHP Principle of Operation and Important Parameters 

While OHPs are structurally more simple than conventional heat pipes, the fluid dynamics 

and thermodynamics controlling their performance are in general quite complex. As 

mentioned above, oscillating heat pipes consist of a meandering tube with a cross section 

near to, or lower than, the capillary length of the working fluid. Due to the size of the tube, 

capillary forces dominate gravitational ones locally and the fluid distributes into alternating 

liquid and vapor sections. Evaporation within the heated section and condensation within 

the cooled cause pressure variations between adjacent slugs, driving movement within the 

fluid. The inclusion of multiple connected turns between the evaporator and condenser 

results in multiple pressure perturbations within the heat pipe, which serves to prevent fluid 

motion from stagnating within a driven heat pipe [16]. The current consensus on the effect 

of various parameters on OHP performance is summarized within the following sections.  

1.1.1. Fluid Properties 

While there is not yet a widely accepted figure of merit for oscillating heat pipes, the fluid 

properties most commonly considered relevant for OHPS are surface tension, latent heat, 

specific heat, viscosity, and rate of change of saturation pressure with temperature, dPsat/dT 

[17]. Some sources expand this list to include the contact angle hysteresis for the fluid/wall 

combination [18].  

Surface tension serves to retard fluid flow as the added capillary forces tends to 

dampen fluid movement. However, a higher capillary limit allows the heat pipe to be 

constructed with a larger channel diameter. This in turn allows more fluid transfer and a 

decrease in the effect of viscous losses, increasing the overall heat transfer. Overall, the 
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effect of surface tension is to provide an effective minimum and maximum channel 

diameter. This may be expressed as [18] 

 

0.7√
𝜎

𝑔(𝜌𝑙 − 𝜌𝑣)
≤ 𝐷 ≤ 1.84√

𝜎

𝑔(𝜌𝑙 − 𝜌𝑣)
, 

 (1) 

where σ represents surface tension, 𝑔 gravitational acceleration, 𝐷 the channel diameter of 

the heat pipe, and 𝜌𝑙 and 𝜌𝑣 the density of the liquid and vapor, respectively. It should be 

noted that the coefficient on the right side of equation (1) is alternately provided as 2 rather 

than 1.84 [19]. Heat pipes with a channel diameter larger than this will not maintain the 

single-phase fluid and vapor slugs characteristic of OHPs, producing a device that is in 

effect several inter-linked thermosyphons. Conversely, it has been observed 

experimentally that heat pipes with a channel diameter too small for the working fluid will 

not operate [13], [19]. It should be noted that the maximum and minimum diameters 

suggested by this equation vary with temperature. The diameter should therefore be 

verified at the extremes of the expected operational temperatures for the heat pipe.  

While latent heat is generally agreed upon as an important parameter in fluid 

selection, its reported effect on heat pipe performance is inconsistent. As phase change 

drives fluid motion within an OHP a lower latent heat value allows more vigorous motion 

for a given heat flux. However, it also results in less heat being absorbed or released per 

unit mass of working fluid, reducing the effectiveness of latent heat transfer. 

Experimentally, both Ma and Faghri report that a lower latent heat results in more vigorous 

oscillations, aiding heat transfer [17], [20]. In an experimental study comparing the 

performance of several fluids Zhang additionally found that a lower latent heat aided heat 

pipe startup, allowing operation at lower heat fluxes [14]. This complements the result by 
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Taft that indicates that a higher latent heat results in a lower required wall superheat to 

induce boiling, and so aids heat pipe startup [18]. However, Han found that a lower latent 

heat resulted in dry-out at lower heat flux values [21], while Khandekar indicates that both 

very high and very low latent heats may degrade heat pipe performance [22]. This would 

suggest the existence of an optimal value, though no relation describing such is provided.  

The force that drives fluid flow within an OHP is the pressure differential between 

the evaporator and condenser. As this pressure difference is directly tied to the saturation 

pressures at each end of the device, a higher dPsat/dT results in a larger driving force for a 

given temperature difference between the evaporator and condenser. This larger driving 

force results in more vigorous fluid motion and heat transfer, resulting in a lower device 

thermal resistance.  

A higher fluid specific heat allows more energy to be stored within each liquid slug 

for a given temperature difference, which aids sensible heating. A higher thermal 

conductivity aids heat penetration into the fluid, and so serves to aid in the overall heat 

transfer of the OHP. Fluid viscosity is primarily important to OHPs in that it retards fluid 

flow. As this value is decreased, fluid motion within the heat pipe becomes more vigorous, 

leading to an increase in heat transfer.  

1.1.2. Effect of Geometry and Number of Turns 

As mentioned previously, the capillary length of the working fluid serves to bound the 

channel diameter. Within this bound it has been reported that increasing the channel 

diameter leads to a decrease in the thermal resistance of the heat pipe [11], [13], [23], as 

well as its critical heat flux [11], [15]. This decrease in thermal resistance results both from 
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the larger fluid inventory allowed by the larger diameter as well as a decrease in viscous 

losses.  

 It has been noted in several papers that decreasing the length of the evaporator leads 

to increased thermal performance [15]. A modeling effort by Jiansheng et al. additionally 

found that applying the heat load to only a fraction of the OHP’s tubes led to startup times 

50-75% of those for heat pipes with a uniform heat load, though this concentrated load did 

lead to an increase in thermal resistance [24].   

Increasing the number of turns within an OHP has been found to improve overall 

performance. In particular, early experiments by Charosensawan et al. [13] revealed that 

the effect of gravity was reduced as the number of turns was increased, eventually reaching 

a state where the OHP operation was independent of orientation.  Moreover, when the 

number of turns was below a critical value Ncrit the heat pipe was not able to operate without 

the assistance of gravity; i.e., without the evaporator placed below the condenser. For the 

studied heat pipes this Ncrit was found to be 16, though no generalizable correlation was 

developed for this value. Jun and Kim have corroborated this decreasing influence of 

gravity as the number of turns in the heat pipe is increased, and additionally found that 

increasing the number of turns decreased the difference in performance between open loop 

and closed loop pulsating heat pipes [7]. Kammuang-Lue et al. have reported an increase 

in the maximum heat flux as the number of turns is increased, though the magnitude of the 

increase was not consistent between the heat pipes measured [15].  

There has additionally been some research done into the effect of non-circular 

channel geometry. Yang et al. provided experimental results for two heat pipes with 

rectangular channels, as well as a comprehensive overview of the theoretical considerations 
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for the use of rectangular and triangular channels [23]. They noted that the sharp corners 

present within these shapes aided fluid wetting and increase capillary forces, allowing slug 

and annular flow to be sustained up to higher input powers. Additionally, they noted that 

this difference in capillary force makes equation (1) inappropriate to use with rectangular 

cross sections, though they did not provide a substitute. While direct comparisons between 

rectangular and circular channel cross-sections are rare, experiments by Lee and Kim have 

indicated that rectangular channels increase the critical heat flux of the heat pipe by up to 

70% when compared with circular channels of the same hydraulic diameter [11].  

1.1.3. Fill Ratio 

It is generally reported that most of the heat transferred within an OHP is due to sensible 

heat transfer. As such, an increase in the amount of liquid provides more thermal mass with 

which to transfer heat. However, as phase change is the primary contributor to driving 

force, increasing the liquid fill percentage too far will serve to retard flow, decreasing 

overall heat transfer. It therefore follows that there is an optimal liquid fill ratio for a given 

oscillating heat pipe. There have been a number of experiments performed attempting to 

determine this optimum value, typically testing fill ratios ranging from 30% to 70% by 

liquid volume fill fraction. The majority of these studies report that the optimum fill is near 

50% [19], [25].  Yang et al further reported that a fill ratio of 50% provided the highest 

critical heat flux out of all the values they tested [25], indicating that this fill ratio provides 

the greatest possible heat transfer as well the lowest thermal resistance.  

1.1.4. Other Considerations 

Several attempts have been made to improve the thermal performance of oscillating heat 

pipes by adding additional features. One of the most popular of these has been the inclusion 
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of a feature promoting one-directional flow within sections of the heat pipe. As mentioned 

above, it has generally been found that circulating flow leads to improved heat transfer 

performance. The inclusion of these devices serves to promote flow in one direction, and 

so lower the heat flux threshold required to obtain circulating flow. The most commonly 

used devices for this are tesla valves or check valves [17], [20], [26]. Kwon and Kim have 

additionally experimented with a dual-diameter design [6]. In this design the OHP was 

fabricated with channels of two diameters, alternating between adjacent channels. This 

provided a preferential capillary force in one direction, promoting circulating flow. In 

addition to decreasing the thermal resistance of the heat pipe when compared to a single 

diameter design, the authors found that the dual-diameter design’s operation was not 

affected by heat pipe orientation.  

 Another common variation on the OHP design is the inclusion of features to 

promote boiling. Kim and Kim experimented with the inclusion of re-entrant cavities and 

found them both to reduce the power required for startup and the overall thermal resistance 

of the heat pipe [27]. They noted that larger cavities had a greater impact on startup 

performance, while smaller ones more were more effective at reducing thermal resistance 

at high heat fluxes. They further found that these two effects could be combined by the 

inclusion of cavities spanning a range of sizes. Qu et al. experimented with a similar design, 

utilizing helical micro-grooves in place of re-entrant cavities [28]. As with the re-entrant 

design, these micro-grooves both aided startup and reduced the thermal resistance of the 

heat pipe. In addition, they served as a rudimentary wick, promoting the return of liquid 

from the condenser to the evaporator.  
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 Other researchers have experimented with the use of nanofluids in order to increase 

heat transfer [29]–[32]. The theoretical advantage conferred by these fluids is an increase 

in effective fluid thermal conductivity and a lower superheat required for boiling, as the 

nanoparticles provide additional nucleation sites. Experiments to date have shown 

reductions in thermal resistance of 25-60% when compared to the unaltered working fluid 

[31], [32]. Qu and Wu, however, have found that certain types of nanoparticles (SiO2 in 

their experiment) instead decrease heat pipe performance [30].  

1.2. Flow Regimes and Startup 

OHP operation is characterized by several operating modes, which is dependent upon the 

heat flux applied. There are several studies detailing flow regimes and transitions within 

the literature [10], [15], [16], [33], [34], with Khandekar et al.’s analysis being perhaps the 

most thorough [16]. While the exact distinction made between flow regimes differs 

between authors, the generally described behavior is as follows, in order of increasing heat 

flux:  

1. Startup: From rest, fluid slugs will begin to oscillate intermittently between the 

evaporator and condenser. Fluid motion within this regime is not constant, and there 

is no overall flow direction. As fluid slugs move from the evaporator to the 

condenser they decrease the overall temperature difference between the two. This 

decreased temperature difference leads to a lower pressure difference, leading to 

slowed or stopped flow. Once the flow has stopped the evaporator begins to climb 

in temperature once again, and the process is repeated.  

2. Full Flow: As the heat flux or temperature difference is further increased, fluid flow 

becomes continuous. At this stage an overall flow direction is often noted.  
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3. Annular Flow: As the heat flux is further increased the flow within the heat pipe 

transitions to annular flow. Several authors have noted an intermediate step, where 

flow from the evaporator to the condenser is annular with slug flow returning fluid 

from the condenser back to the evaporator.  

4. Dry-Out: As with conventional pipes, the heat transfer limit of the OHP is imposed 

by a dry-out condition, in which liquid is evaporated from the heated section more 

quickly than it may be returned. As with conventional heat pipes, this stage is 

accompanied by a sharp increase in the thermal resistance of the OHP [11], [25].  

Heat pipe startup is typically defined as the point at which oscillations begin. For this 

to occur the pressure differential between the evaporator and condenser must be large 

enough to overcome the capillary forces holding the fluid slugs in place. During this startup 

phase the thermal resistance of the heat pipe is quite large, as heat is only removed by 

conduction through the support structure and heating of the liquid. Once a critical 

evaporator temperature is reached fluid motion begins, and the overall resistance of the 

device drops precipitously. This drop in resistance is often accompanied by rapid drop in 

evaporator temperature [19]. Of further note, the evaporator temperature typically 

increases nearly linearly with heat flux prior to heat pipe startup. Once the heat pipe is 

operating, however, the temperature difference between the evaporator and condensor is 

nearly constant with heat flux [33].  

There is currently no reliable correlation for the prediction of the time and heat flux 

required for startup. This is due primarily to the large number of factors affecting startup, 

several difficult to predict, and the uncertainty in their relative importance. Khandekar et 

al., for example, observed that even for the same heat pipe oscillations may begin nearly 
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instantaneously upon applying heat or may require in excess of 15 minutes to appear [16]. 

It is thought that this variability is due to the impact of the initial fluid distribution within 

the heat pipe, which is effectively random.  

1.3. Heat Transfer Mechanism 

There are two mechanisms responsible for transferring heat within an oscillating heat pipe. 

The first of these, latent heat transfer, refers to the energy absorbed and released by the 

fluid as it evaporates and condenses and is the primary method by which traditional heat 

pipes transfer heat. The second mechanism, generally referred to as sensible heat, involves 

the transfer of heat by warming and sub-cooling of the single-phase liquid slugs as they 

move from the evaporator to the condenser.  

One of the outstanding questions concerning OHPs is the relative contribution of 

these two mechanisms. To date, OHP modeling attempts have generally indicated that 

sensible heat dominates the overall heat transfer through the heat pipe, typically listed as 

accounting for greater than 80% of the overall heat transfer [9], [35]–[39]. Following this 

view, the purpose of phase change within the heat pipe is primarily to drive flow. Mehta 

and Khandekar have indicated that the turbulence caused by the moving vapor bubbles 

increases convection in their wake, suggesting that the vapor also aids sensible heat transfer 

[40]. However, at least one modeling attempt has instead reported that heat transfer is 

dominated by latent heat [41]. Additionally, at the time of this writing the sole experimental 

attempt to determine the dominant heat transfer method indicated that roughly 74% of heat 

transferred within the evaporator and 66% of the heat transferred within the condenser of 

the heat pipe studied was due to evaporation and condensation [42].  
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2. Experimental Overview 

The primary purpose of this experiment was to provide a better understanding of the heat 

transfer mechanism within an oscillating heat pipe. This was done using an optical 

technique pioneered by Al Hashimi et al [43] utilizing temperature sensitive paint (TSP). 

This paint is excited by ultraviolet light and re-radiates in the visible spectrum with an 

intensity dependent upon the temperature of the TSP. Applying this paint over an area 

allowed continuous heat transfer and temperature measurements across the entire face of 

the OHP.  

2.1. Experimental Theory and Setup 

The OHP system was set up as shown in Figure 2. Here, TSP was spread onto a 12.7 µm 

thick stainless steel shim and attached to the bottom of a sapphire plate using a 50 µm layer 

of adhesive. Additional dots of TSP, each 1 mm in diameter, were applied directly to the 

back of the sapphire in a 10 mm x 10 mm grid, with a 200 nm layer of germanium 

underneath these dots to provide an optically opaque barrier. The thickness of the TSP 

layers was found to be 1-2 μm by Al Hashimi et al. [43], whose technique was copied here. 

It was therefore assumed that the thicknesses of the TSP layers created here were the same, 

though this was not verified. After application of these dots, the combined assembly was 

placed onto a transparent acrylic block with heat pipe channels cut into its surface. A gasket 

placed in between the heat pipe channels provided the seal between the acrylic and TSP 

stackup.  The TSP stackup thus served as the top surface of OHP’s channels, with the 

stainless steel shim in direct contact with the working fluid. Heat was applied and removed 

at the top surface of the sapphire to ensure that all heat transferred into or out of the heat 

pipe was transferred through TSP and adhesive. UV light was shone on the UV transparent 
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sapphire covered side of the heat pipe and the resulting visual re-radiation of light was 

recorded by a visual camera. Simultaneously, the acrylic side of the heat pipe was 

illuminated using white LEDs and the fluid motion captured using a second camera.   

 

Figure 2: Heat pipe cross section and camera configuration (not to scale) 

The TSP applied to the stainless steel shim was in good thermal contact with the 

working fluid of the OHP, and so its temperature could be taken to be the same as that of 

the working fluid where it contacts the wall of the channel. The TSP dots were used to 

measure the temperature of the sapphire/adhesive interface and interpolated to provide an 

estimate of the temperature distribution across the entire surface of the high conductivity 

sapphire. The heat flux was then calculated as a simple one-dimensional heat transfer 

problem using the known thickness and thermal conductivity of the 50 μm adhesive. This 

method did not account for heat transfer between the working fluid and the acrylic, which 

was assumed to be negligible in comparison to heat transferred to the sapphire. This 

assumption is examined in more detail in section 3.3. 

Heat was applied to the top of the sapphire using a transparent vapor-deposited ITO 

heater approximately 11 mm in height by 36 mm wide. This ITO layer, 200 nm in 

thickness, was deposited directly onto the sapphire using an AJA ATC 1800 sputtering 

TSP

Stainless Steel 
(1 .7   )

TSP

Germanium (200 nm)

Sapphire (    )

Adhesive ( 0   )

Heat Pipe ChannelsGasket (EPDM)

Transparent Base (Acrylic)

TSP Camera

Visual Camera

UV LEDs

White LEDs

Long-pass filter
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unit. Copper wires were attached to this heater using silver paint and routed to the Tenma 

72-2715 power supply used for heating. A water-cooled condenser block was placed at the 

top of sapphire, slightly offset from the channels to prevent it from obscuring the camera’s 

view of the TSP. The condenser inlet temperature was measured using a T-type 

thermocouple. Six UV (410 nm wavelength) LEDs were used to illuminate the TSP, while 

four white (CCT of 3700 to 3900 K) LEDs illuminated the fluid motion. TSP visualization 

was performed using a Photometrics Prime monochrome camera with 16 bit depth per 

pixel. Visual data was recorded with a Sentech STC-MBCM200U3V monochrome camera 

using a bit depth of 8 bits per pixel. Both cameras were connected to a Velleman 

PCSGU250 oscilloscope and function generator to allow simultaneous triggering. 

Triggering was performed using a square wave at 200 Hz, providing a time resolution of 5 

ms. Exposure time was set to 0.5 ms for the visual data, and 4 ms for the TSP.  

Three crosses were inscribed on the stainless steel on the underside of the TSP 

stackup in order to allow locations to be calibrated between the two cameras. These crosses 

may be seen in the raw captured images shown in Figure 3. Note that here the visual image 

has been flipped from left to right so that the positive x axis is consistent between images. 

For a given coordinate in the visual image, (xvisual, yvisual) the corresponding location on the 

TSP image was determined using the equations 

 𝑥𝑇𝑆𝑃 = (𝑥𝑣 − 𝑥𝑣,0)
𝑥𝑇𝑆𝑃,1 − 𝑥𝑇𝑆𝑃,0
𝑥𝑣,1 − 𝑥𝑣,0

+ 𝑥𝑇𝑆𝑃,0, 

 

 (2) 

 𝑦𝑇𝑆𝑃 = (𝑥𝑣 − 𝑥𝑣,0)
𝑦𝑇𝑆𝑃,1 − 𝑦𝑇𝑆𝑃,0
𝑦𝑣,1 − 𝑦𝑣,0

+ 𝑦𝑇𝑆𝑃,0, 

 

 (3) 
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where the v subscript refers to a coordinate on the visual data (Sentech) and TSP a point on 

the TSP image (Prime). Points 0 and 1 are common locations between the two images. For 

the x direction point 0 was taken as the leftmost point in the left cross in  Figure 3, while 

point 0 was taken as the rightmost point in the top right cross. For the y direction the 

topmost point in the top right cross was used for point 0, while the topmost point of the 

lower right cross was used for point 1. The vertical length of the largest cross was used to 

ensure the two images were rotationally aligned. In both images the x coordinate for the 

top-most point on the large cross was the same as the x coordinate of the bottom-most point 

on the same cross, and so it was assumed that the images were not rotated relative to one 

another.  

     

Figure 3: Visual (left) and TSP (right) images. Crosses used for coordination may be seen 

at left and at top right. Visual image is flipped left to right in order to coordinate 

locations.  

2.1.1. TSP Production, Application, and Calibration 

The TSP used for this study was composed of Ruthenium tris (1, 10-phenan-throline) 

dichloride mixed with polyacrylic acid. Following the formula used by Al Hashimi et al 
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[43] the TSP mixture was created from 40 mg of Ruthenium compound combined with 100 

mg of polyacrylic acid. This was then suspended within 0.5 mL of isopropyl alcohol and 

spread across the desired surface using a size 2 Mayer rod. 

The intensity response of the TSP must be converted to a temperature prior to 

analysis. To determine the relation between temperature and measured intensity the heat 

pipe was brought to a fixed temperature, illuminated, and then the TSP facing camera set 

to record 1000 images. These images were then averaged and the resulting intensity at each 

pixel used as the value representing the calibration temperature. This was performed for 

five temperatures spanning the expected operational range of the heat pipe. The intensity 

of the light emitted from the TSP decreased monotonically with increasing temperature as 

illustrated in Figure 4 for a few representative pixels. Previous experiments using this TSP 

compound have found that a quadratic function adequately fits the data [44], and so a 

second order fit was applied to these data points. Individual coefficients were calculated 

for each pixel in the image to account for differences in lighting, TSP thickness, and other 

factors that might cause variations in the intensity from pixel to pixel. Figure 4 shows the 

measured data alongside the fit curves for five representative pixels.  
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Figure 4: Fit function for five representative pixels  

 TSP calibration was performed in earlier experiments by varying the temperature 

of the working fluid in order to control the temperature of the TSP [43], [44]. This was not 

possible for the oscillating heat pipe apparatus. Instead, the heat pipe was placed within an 

insulated enclosure along with a finned aluminum block to which several heaters were 

attached (Figure 5). A fan was placed immediately underneath this block to bring the air 

within the enclosure to a uniform temperature, and the combined assembly stood off 

approximately 5 cm from the table to allow airflow from underneath. Finally, a foam pad 

was placed underneath the entire assembly both to reduce gaps at the base of the enclosure 

and to dampen vibration caused by the fan. Acrylic windows were placed within the 

enclosure, sealed to its walls using silicone adhesive, to provide the cameras a view of the 

heat pipe. The heater block was warmed to a temperature 20°C to 30°C above the intended 

calibration point, and the entire enclosed system was allowed to warm until thermal 
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equilibrium was achieved. Once at thermal equilibrium the heat pipe was illuminated and 

a calibration point recorded.  

 

Figure 5: Heat Pipe within heated enclosure. 

 Temperatures were measured throughout the enclosure using five type T 

thermocouples. The mean temperatures for each calibration may be found in Table 1 along 

with the standard deviation between each of the five thermometers.  

Fan and Heater Block

Condenser and 

Coolant Lines

Heat Pipe 

(TSP-side shown)

UV Lights



19 

 

Table 1: Calibration Temperatures 

Calibration Temperature (°C) Standard Deviation in Temperature (°C) 

22.6 0.12 

35.8 0.17 

42.2 0.31 

53.3 0.44 

63.1 0.71 

 

2.1.2. TSP Response Time 

The time-response of the TSP temperature measurement was dependent upon the time-

response of the 12.7 μm stainless steel shim in contact with the working fluid. As this time 

response is important to the subsequent analysis, it is considered briefly here. The 

following equation was used to provide an approximate thermal time constant:  

 
τ0 =

δ0
2

α
, 

 (4) 

where τ0 represents the thickness of the material and α its thermal diffusivity. For this 

measurement a value of 4.05 mm2/s was used for the thermal diffusivity of the stainless 

steel. This provided a thermal time constant 40 μs. As this is two orders of magnitude 

smaller than the camera time resolution of 5 ms it was assumed that the temperature time 

resolution of the data was the same as that of the camera.  

 The heat transfer calculation assumed a linear temperature distribution within the 

acrylic adhesive layer. As such, the time resolution of the heat transfer data was dependent 

upon the characteristic time required for this layer to reach steady state. The adhesive 

manufacturer, 3M, does not provide density, thermal conductivity, or specific heat data for 
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this material. The thermal conductivity was measured to be 0.12 W/m-K (as detailed in 

section 2.2) while the density and specific heat of PMMA were used to provide an 

approximate time constant. Using this thermal conductivity value with a density value of 

1190 kg/m3
 and a specific heat of 1460 J/kg-K provided a thermal diffusivity of 0.08 mm2/s 

for the adhesive. Placing this value of α within equation (4) provided a thermal time 

constant of 45 ms, which served as the approximate time response of the heat transfer data. 

While this value could have been decreased by using a thinner or higher conductance 

adhesive, both changes would have served to decrease the temperature difference across 

the adhesive and thus the accuracy of the heat transfer measurement. The 50 μm adhesive 

used here was deemed to provide an acceptable trade-off between these two factors.  

2.1.3. Heat Pipe Geometry 

The heat pipe channels were semi-circular with a short rectangular section at the interface 

with the stainless steel. The channel width and diameter of the semi-circular section were 

both 1.6 mm, and the channel depth was 1.0 mm, resulting in a hydraulic diameter of 1.2 

mm. Across the expected heat pipe operational range of 20 to 80°C equation (1) would 

indicate allowable minimum and maximum hydraulic diameter limits of 0.7 mm and 1.4 

mm, respectively. The heat pipe had six channels, each with a straight length of 31.9 mm. 

The heat pipes primary dimensions are given in Figure 6. An EPDM gasket, laser cut to 

match the heat pipe’s profile, was used to provide a seal between the stainless steel shim 

and the acrylic base. To provide pressure for the seal, an acrylic clamp was placed on top 

of the sapphire and bolted to the base with twelve 4-40 screws. These screws were 

lubricated and torqued to 2 in-lbs with a calibrated torque wrench, providing a theoretical 

clamping force of 1200 lbf across the gasket.  
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Figure 6: Heat pipe channel geometry. All measurements are in mm. 

2.1.4. Working Fluid 

HFE 7000 (C4F9OCH3) was chosen as the working fluid. The room temperature values of 

the relevant properties for this fluid are shown in comparison to other common working 

fluids in Table 2. HFE 7000 has a relatively large (dP/dT)Sat across the operational 

temperature range used here, as may be seen in Figure 7. The values used for (dP/dT)Sat in 

this figure have been derived from the 3M provided saturation curves for HFE 7000 and 

7100 [45], [46], and the Antoine equation for the remaining three, the parameters for which 

were taken from the NIST Chemistry Webbook [47]–[49]. In comparison to the other 

considered fluids HFE 7000 additionally has the advantage of low viscosity, low latent heat 

of vaporization, and high density but has comparatively low thermal conductivity and 
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specific heat. This fluid was also chosen due to its near room-temperature boiling point, 

inertness, and low toxicity.  

 

Figure 7: Comparison of saturation pressure gradient with temperature for several fluids  

[45]–[49]. 

Table 2: Room temperature thermodynamic properties of commonly used working fluids 

Fluid Liquid 

Density 

(kg/m3) 

Liquid 

Specific Heat 

(kJ/kg-K) 

Liquid 

Thermal 

Conductivity 

(W/m-K) 

Surface 

Tension 

(mN/m) 

 

Liquid 

Viscosity 

(µPa-s) 

Latent 

Heat 

(kJ/kg) 

HFE 7000 [45], [50] 1418 1.30 0.075 12.3 467 142 

HFE 7100 [50], [51] 1529 1.18 0.069 13.8 580 112 

Acetone [20], [52] 790 2.16 0.181 23.7 323 552 

Ethanol [20], [52] 800 2.40 0.179 22.8 1020 1,030 

Water [20], [52] 999 4.18 0.602 72.9 1000 2,454 

 

2.1.5. Filling Procedure 

The plumbing schematic used to fill the heat pipe is shown in Figure 8. Prior to filling the 

working fluid must be degassed, a process performed here in three steps. Beginning with 

all valves closed, the pump was turned on and V1 cracked to pull gas from the top of the 
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reservoir. This was continued for several minutes until P1 registered a pressure near the 

vapor pressure of the working fluid at room temperature, equal to 65 kPa for HFE 7000. 

Second, V1 was closed and the reservoir heated until the internal pressure was above 

atmospheric pressure, typically to a value between 70 and 100 kPa gauge. Finally, V2 was 

cracked and the pressure allowed to fall to roughly 35 kPa gauge before closing V2.  This 

heating, pressurization, and venting was then repeated several times prior to fill.  

 

Figure 8: Plumbing schematic for heat pipe fill 

 The heat pipe fill was performed immediately following degassing. Beginning with 

all valves shut, the filling procedure was as follows:  

1. Open V4 and V5. Turn on the pump and evacuate the heat pipe.  

2. Warm the fluid reservoir until P1 registers a temperature between 70 and 100 kPa 

gauge.  

3. Close V4.  
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4. Crack V3 while monitoring the fill level of the heat pipe. Allow the heat pipe to fill 

to the desired level and close V3. 

5. Allow the fluid within the heat pipe to come to thermal equilibrium.  

6. Crack V3 to allow more fluid into the heat pipe if level has fallen below the desired 

value.  

7. Repeat steps 4 and 5 until fluid level is at desired value at room temperature.  

8. Close all valves.  

Pumping of the heat pipe in step 1 was performed for a period of at least 30 minutes to 

ensure complete evacuation. The heat pipe was filled to approximately 50% liquid by 

volume during the filling procedure using simple visual estimation from the camera feed. 

This was later confirmed to be 52% using the visual data obtained during testing.  

2.2. Adhesive Thermal Conductivity Measurement 

The thermal conductivity of the acrylic adhesive was required for the heat pipe heat transfer 

measurement, as detailed in the experimental procedure section. As 3M does not provide 

this property of the adhesive it was measured by creating a heat flow across a sample of 

the adhesive and measuring the temperature difference across it (Figure 9). Four layers of 

50 μm adhesive were stacked upon one another in order to increase the overall temperature 

difference for a given heat flux. Heat flux was measured using a FluxTeq PHFS-09e sensor 

with a resolution of 0.2 W/m2. Temperature measurement was performed using two type E 

thermocouples, each 5 μm thick. Approximately 100 W of heat was applied to the top 

copper interface plate and was removed by a heat exchanger connected to a chiller at the 

base. Foam was placed around the outside of the adhesive to reduce heat loss to convection.  
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Figure 9: Thermal conductivity measurement schematic 

The thermocouples were calibrated at 0°C, 100°C, and 23°C. The calibration at the 

first two of these points were performed by placing the thermocouples within a deionized 

water bath, filling it with ice, and then bringing the system to boiling. In order to calibrate 

at a third point a platinum resistance thermometer (PRT) (Lakeshore part number PT-102) 

was placed in the bath with the thermocouples and calibrated at 0°C and 100°C. This PRT 

was then used to determine the temperature of the third, room temperature calibration point. 

A linear fit of these three data points was then used to determine the emf-temperature 

relationship for each of the thermocouples. An example is shown in Figure 10. 

 

Figure 10: Thermocouple calibration 
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 The test was performed with a heat flux of 6.58 kW/m2 through the adhesive, 

resulting in a temperature gradient of 11.6°C across the 214 μm sample. From this the 

thermal conductivity was determined using the equation 

 
𝑘 =

𝑞′′𝐿𝑎𝑑ℎ𝑒𝑠𝑖𝑣𝑒
Δ𝑇

 
 (5) 

where k is the thermal conductivity, q’’ the measured heat flux, Ladhesive the thickness of the 

adhesive, and ΔT the temperature difference between the two sides of the adhesive. Using 

this equation, the experimentally determined thermal conductivity used for analysis was 

0.12 ± 0.01 W/m-K.  

2.3. Heat Transfer Uncertainty Analysis 

The uncertainty of a given parameter may be estimated using the equation  

 

 

 𝜎 = √∑(
δσ

δϵi
 𝜖𝑖)

2

i

 

 (6) 

where µ represents the error in the subscripted term, σ is the parameter whose error is to 

be calculated, and ϵ is a parameter that affects the evaluation of σ. For temperature, the 

parameters affecting the error were determined to be the thermocouple error, the camera 

noise, and the resolution error.  

Camera noise and its effect on temperature was analyzed using the calibration data. 

For each calibration run, 1000 images were taken over several seconds with the heat pipe 

held at a fixed temperature. Each set of 1000 images may therefore be used to determine 

the noise at each pixel independent of changes due to temperature variation. To perform 

noise analysis the temperature-intensity function described in the calibration section was 
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applied to each of the calibration data-sets to obtain the predicted temperature for each 

pixel for each of the 1000 images.  

The variation in predicted temperature for a single pixel may be seen in Figure 11 

with a normal fit superimposed. The predicted temperature follows a normal distribution 

with its center at the calibration temperature. The median standard deviation for the pixels 

covering the heat pipe channels is summarized in Table 3 at each of the calibration 

temperatures. The standard deviation does not appear to have any temperature dependence, 

and has a maximum value calculated at 0.6°C. As 95% of all points are expected to fall 

within two standard deviations of the mean, the error due to camera noise was taken to be 

equal to ± 2σ, or ± 1.20°C.  

 

Figure 11: Histogram of temperatures predicted by intensity-temperature fit for one pixel 

for 1000 images taken at 22.6°C and 42.2°C.  
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Table 3: Standard deviation in predicted temperature at each calibration point 

Calibration Temperature, °C Standard Deviation, °C 

22.6 1.01 

35.8 1.17 

42.2 1.20 

53.3 1.19 

63.1 1.15 

 

 The extension grade T-type thermocouples used here have a standard error of 

0.5°C. The camera used for acquisition has a resolution of 16 bits per pixel, which provides 

a resolution of ±0.0035°C at the maximum and minimum calibration temperature. Using 

equation (6) these values provide an overall error in temperature at each pixel of ±1.3°C.  

Analysis of the heat flux error required a value for the error in the thermal 

conductivity. As indicated by equation (5) the values contributing to this value were the 

heat flux, adhesive thickness, and temperature difference. Per the calibration from FluxTeq 

the accuracy of the PHFS-09e heat flux sensor was 5% of reading. The thickness of each 

of the four pieces of adhesive used to create the overall stack were measured independently, 

each using a differential measurement. The thickness of the adhesive and its plastic backing 

were measured, then the adhesive removed and the thickness of the backing measured by 

itself. As the accuracy of the micrometer used for measurement was 1 μm, the RMS error 

for the eight individual measurements used to determine the total thickness was 2.8 μm.  

The standard deviation in the calibration readings was used to determine the 

thermocouple accuracy for the conductivity measurement. At freezing and boiling the 



29 

 

standard deviations were 0.05°C and 0.23°C, respectively, for the thermocouple with the 

largest variance in signal. The temperature accuracy was thus taken to be twice the largest 

standard deviation, or 0.46°C. This resulted in an overall error in thermal conductivity of 

0.01 W/m/K using equation (6).  

 The heat flux was calculated using the equation   

 
𝑞′′ =

𝑘(𝑇𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒 − 𝑇𝑇𝑆𝑃)

𝐿
 

 (7) 

for heat flux q’’, adhesive thermal conductivity k, and thickness L. Tsapphire and TTSP 

represent the local temperatures of the sapphire and TSP touching the working fluid, 

respectively.  Thus, errors in the adhesive thermal conductivity and thickness, as well as 

the temperatures of the sapphire and TSP, all contributed to the error in q’’. However, errors 

that affected both temperatures equally, such as the thermocouple error in calibration, 

cancel within equation (7) and so did not contribute to µq’’.  The error was difficult to 

calculate in advance, however, as the derivative terms in equation (6) depend on the 

temperature difference between the sapphire and the working fluid.  In order to provide a 

bounding estimate, the largest observed value was used here. With 10 W of power applied 

to the heat pipe a temperature difference of up to 6.5°C was observed between the sapphire 

and TSP layer. As detailed above, the thickness was determined using a differential 

measurement with a micrometer of resolution 1 μm. As only one 50 μm sheet was used for 

the heat pipe test there were two thickness measurements made, giving an overall error in 

thickness of 1.4 μm. This provided a bounding error in q” of ±4.1 kW/m2.  
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2.4. Experimental Procedure 

The heat pipe was filled immediately prior to data acquisition. In preparation for testing 

the chiller temperature was set to 25°C, with the value at the condenser block inlet typically 

within 1°C of this value. Once the chiller stabilized, a power of 2.5 W was applied to the 

heat pipe and the system allowed to dwell for at least 15 minutes to allow the heat pipe to 

reach-quasi steady state. Once at quasi-steady state two acquisition runs were taken, each 

of 1000 frames at a speed of 200 Hz. Following acquisition, the applied power was 

increased to a setpoint of 5 W, the heat pipe allowed to dwell for an additional 15 minutes 

at this new power, and four additional acquisition videos taken. This process was then 

repeated for heater setpoints of 7.5 W and 10 W. Following the measurement at 10 W, the 

heater power was stepped down in 2.5 W increments to a final value of 2.5 W, with 2 

videos taken at each setpoint resulting in a total of 14 videos. The actual applied powers 

were 2.8, 5.1, 7.6, and 10.1 W as power was increased, and 7.6, 5.2, and 2.6 W as it was 

decreased. Applied powers greater than these were attempted with previous iterations of 

the heat pipe, but frequently led to burnout of the heater.  

 The camera triggering circuit was prepared prior to heat pipe startup but was left 

unpowered. For each video the Photometrics and Sentech cameras were programmed to 

take 1000 images, one on each rising edge registered on the triggering circuit. Once both 

cameras were watching for triggers, the triggering circuit was powered and acquisition 

begun. The white light LEDs were left on throughout testing. The UV LEDs, however, 

were only powered immediately prior to each acquisition run and turned off following to 

limit photo-bleaching of the TSP.  
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3. Data Conversion and Post-Processing   

3.1. Image Processing 

Each frame provided by the Photometrics Prime was 666 x 837 pixels in size, each pixel 

with a bit depth of 16. As mentioned above, calibration was performed on a per-pixel basis. 

Following acquisition this calibration was applied to each pixel in each frame to provide 

an overall temperature map. The temperature of each TSP dot was then averaged to provide 

a representative sapphire temperature at its center. A 2D linear interpolation was then used 

between these points to provide the sapphire temperature map, as shown in Figure 12. With 

the adhesive properties known, the heat flux at each pixel was then calculated from this 

temperature difference.  

 
Figure 12: Sample sapphire temperature interpolation (right). Temperature image used 

for interpolation shown at left with dots (used for interpolation) highlighted in red. 

3.2. Bias Adjustment 

Examination of the heat flux data revealed an apparent cold bias – the areas of the heat pipe 

that should have been adiabatic (such as the locations overtop the gasket) showed an 
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apparent value of -1 to -3 kW/m2, which was interpreted to represent a bias error within  

the heat transfer data. In order to determine the magnitude of this bias, an analysis was 

performed to estimate the mean heat transfer value over a known adiabatic section of the 

heat pipe. The area covered by the gasket was chosen as the adiabatic section as it 

represents an easily identifiable zone spread across the entire viewed face in which no heat 

transfer should theoretically take place.  

This analysis was performed by creating a bitmask of the regions of the heat pipe 

covered by the gasket. This mask was then applied to the heat flux data, averaged along 

the time dimension, and the mean resulting value used as the heat flux bias. Areas in which 

the TSP was obscured, such as by the condenser block and the acrylic clamp, were removed 

from the mask prior to its application. Areas covered by TSP dots or in which the TSP was 

damaged were likewise removed. The area used for this analysis, along an example of the 

heat flux map used for the bias measurement are shown in Figure 13. 

 

Figure 13: Areas used for bias measurement, highlighted in red at left. An example of the 

heat flux used for bias measurement is shown at right.  
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 The bias values for each of the 14 videos may be seen in Figure 14 plotted against 

the power applied to the heater. As seen, the bias varies from -0.1 to -3.2 kW/m2, and from 

-0.1 to -1.7 kW/m2 for the subset of videos in which the heat pipe was operating. While the 

bias value varied between videos, it did not appear to correlate with applied heat flux.  The 

values shown in Figure 14 were subtracted from the heat flux values for the corresponding 

videos. All figures showing a heat flux map within this paper have had this bias subtracted 

except for Figure 13. 

 

Figure 14: Bias values used for each video, plotted again power applied to heat pipe. 

3.3. Additional Heat Transfer Mechanisms 

In order to create a full account of the heat transfer within the heat pipe several additional 

sources of heat transfer were examined. In order of increasing effect, these were natural 

convection from the face of the heat pipe, radiation, and conduction through the sapphire. 

Finally, conduction through the acrylic was considered in order to validate the assumption 

that its contribution to the overall heat flow was negligible.  
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 A correlation for natural convection was used in order to estimate an upper limit on 

the possible heat loss to natural convection [53]: 

 
𝐶𝑡
𝑉 =

0.13 𝑃𝑟0.22

(1 + 0.61 𝑃𝑟0.81)0.42
 , 

(8a) 

 
𝐶𝑙̅ =

0.671

[1 + (
0.49 
𝑃𝑟 )

9
16
]

4
9

, 
(8b) 

 
𝑁𝑢𝑙 =

 

𝑙𝑛 (1 +
 

𝐶𝑙̅𝑅𝑎
1
4

)

, 
(8c) 

 

𝑁𝑢𝑡 =
𝐶𝑡
𝑉𝑅𝑎

1
3

1 + 1.4 ∗
109𝑃𝑟
𝑅𝑎

, 

(8d) 

 
𝑁𝑢 = (𝑁𝑢𝑙

6 + 𝑁𝑢𝑡
6)

1
6, 

(8e) 

where Pr represents the Prandtl number, Ra the Rayleigh number, 𝐶𝑡
𝑉 and 𝐶𝑙̅ intermediate 

coefficients, and Nul, Nut, and Nu the laminar, turbulent, and overall Nusselt numbers, 

respectively. The heat transfer area was assumed to be that of a square with a side length 

of the same length as the diameter of the sapphire and the entire face was assumed to be at 

70°C, the warmest temperature observed on the heater for any of the data runs. Assuming 

an air temperature of 25°C resulted in a total heat transfer of 0.83 W, which was much 

smaller than the total heat transferred. 

An upper limit to the radiation heat transfer was also estimated. Assuming that the 

TSP was black in the IR spectrum and that the entire surface was radiating to a 25°C 

environment, the heat lost to radiation was calculated at 0.87 W, which was also negligible.
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Conduction through the sapphire was the largest contributor to the overall heat 

outside of the heat transferred through the fluid. The range of possible values of the thermal 

conductivity, typically reported as between 25 and 50 W/m-K throughout the literature, 

make it difficult to provide an accurate estimate, however. Additionally, the effective width 

to use for heat transfer was not easy to define due to the circular shape and limited heat 

transfer region. The width of the heater and condenser block was used in the calculations 

here to provide a rough estimate. The TSP dots at two locations within the adiabatic section 

of the heat pipe were used to estimate the temperature of the sapphire at these locations. 

As these dots were roughly 14 mm apart in the vertical direction, this allowed the 

calculation of heat transfer through the sapphire using a simple one-dimensional 

conduction equation. Using a conductivity of 50 W/m-K provided conductive heat transfer 

ranging from 2.2 W with 2.6 W of applied power to 3.7 W with 10.1 W of applied power. 

Thus, while the conducted heat increased with the applied power, it did not do so linearly; 

the percentage of heat transferred through the sapphire steadily fell as the applied heat was 

increased, as shown in Figure 15. 

 

Figure 15: Percentage of applied heat transferred through the sapphire. 
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 An upper bound on the possible conduction through the acrylic base was calculated 

in a similar manner to that of the sapphire. To provide an upper bound on the potential heat 

transfer the entire thickness of the acrylic underneath the sapphire, 16.8 mm, was used 

along with the width spanned by the heat pipe channels, 32.3mm, to calculate the heat 

transfer area. This was used with the largest temperature difference measured from the 

sapphire calculation along with an assumed thermal conductivity of 0.2 W/m-K for the 

acrylic to provide a maximum possible heat flow of 50 mW through the base. As this was 

two orders of magnitude less than the smallest applied power in which the heat pipe was 

operational, heat transfer through the acrylic was assumed to be negligible.   

4. Performance and General Observations 

Nucleate boiling and slight fluid motion were observed at 2.5 W of applied power. Liquid 

and vapor locations were largely static. Small bubbles were observed to form within the 

liquid in the evaporator, which would then move towards and join large static bubbles 

within the condenser, which would then shrink to their original size. These small bubbles 

and perturbations at the edges of the fluid and vapor slugs constituted the only movement 

observed within the heat pipe; no bulk motion was seen, even intermittently.  At an applied 

power of 5 W, bulk fluid motion and oscillation was observed. Vapor bubbles became 

smaller and more interspersed within the heat pipe when compared to the concentration 

into two or three bubbles observed at 2.5 W. Motion was interrupted by pauses on the order 

of a few seconds. While these pauses retarded motion throughout the heat pipe, complete 

stoppage of fluid motion was only observed locally. As applied power was increased to 7.5 

and then 10 W these pauses became less frequent before dying out entirely. Nucleate 

boiling was maintained throughout the operation. An overall circulating flow was observed 
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intermittently at 10 W of applied power, though was not maintained.  Powers in excess of 

10 W were attempted with previous iterations on the heat pipe design but resulted in 

burnout of the heater and so were not attempted here.  

 Oscillating heat pipe performance is often expressed in terms of the thermal 

resistance R, defined as  

 
𝑅 =

𝑇𝑒 − 𝑇𝑐
𝑄

. 
 (9) 

Here Te refers to the temperature of the evaporator, Tc the temperature of the condenser, 

and Q the heat transferred by the heat pipe. For the purposes of this calculation the average 

temperature of the heater was used for Te, while the temperature of the 10 mm section 

immediately below the condenser block was taken as Tc. The resulting resistance values 

for each data run are shown in Figure 16. It should be noted that these values use the power 

applied to the heater, and so include the additional heat transfer mechanisms noted in the 

previous section. As is typical for OHPs, thermal resistance was seen to fall with increasing 

power from a maximum value of roughly 2.3 K/W to a minimum of 1 K/W.  
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Figure 16: Heat pipe thermal resistance variation with applied power.  

An example of the converted heat pipe temperature and calculated heat flux is 

shown in Figure 17 alongside the corresponding visual recording. The top of this image 

corresponds to the evaporator section, while the bottom comprises the heater. Positive heat 

flux values indicate heat flow from the sapphire into the working fluid.  

Wall heat flux was highest when vapor bubbles passed over the surface in both the 

evaporator and condenser, and was typically around 5 W/m2
 greater in magnitude when 

vapor was present. Furthermore, the wall temperature when vapor bubbles were present 

was nearly uniform. Standard deviation in the wall temperature under vapor bubbles, even 

those spanning the entire heat pipe, was typically under 2°C. This compares to the 15 to 

25°C temperature difference between the heater and condenser regions. Vapor bubbles that 

dwelled in the evaporator were often seen to develop the heat flux pattern shown in Figure 

17, in which heat transfer remained high near the edges of the bubble but fell to near zero 

at its center. This was interpreted as indicating the presence of a liquid film around the 
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bubble that had achieved dry-out at its location closest to the heater. Combined, these 

observations led to the conclusion that the vapor bubbles were surrounded by a liquid film 

at saturation conditions. This conclusion is examined in more detail in the following 

sections.  

 

Figure 17: Comparison of visual data (left), temperature data (right), and calculated heat 

flux (center). Heat transfer is reaches its largest magnitude along the vapor bubbles. Note 

the dryout of the bubble in the center channel shown here.  

5. Analysis of Heat Transfer Mechanism 

The dominant heat transfer mechanism within the heat pipe is examined in detail below. It 

was assumed that the liquid film surrounding the vapor bubbles was at saturation 

conditions, so that the dominant mechanism of heat transfer around the vapor slugs was 

evaporation or condensation from or to this liquid film. This led to the further assumption 

that heat transfer over vapor bubbles as due primarily to latent heat transfer, while heat 
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transfer within the liquid slugs was due to sensible heating. As this assumption was critical 

to the analysis following a verification of it was performed using two methods. 

5.1. Latent Heat Transfer Verification 

It must be verified that the heat transfer overtop of the bubbles was not due to convection, 

i.e., that heat was not transferred by subcooling the liquid film in the condenser and 

warming it in the evaporator. Important to this analysis was an estimate of the film 

thickness around the vapor bubbles, as this allowed the calculation of both an overall heat 

capacity and a time constant for the liquid film. Han and Shikazono performed a thorough 

analysis of liquid film thickness around vapor bubbles during slug flow for channel 

dimensions, flow conditions, and working fluids similar to the ones used here [54]. As 

such, their experimental correlation was used here to estimate the liquid film thickness:  

 
𝛿0
𝐷

=
0.670𝐶𝑎

2
3

1 + 3.13𝐶𝑎
2
3 + 0. 04𝐶𝑎0.672𝑅𝑒0.589 − 0.3  𝑊𝑒0.629

. 

 (10) 

Here δ0 represents the liquid film thickness, D the diameter of the channel, here taken to 

be the hydraulic diameter, Ca the capillary number, Re the Reynold’s number, and We the 

Weber number. This correlation uses the liquid properties for the density, viscosity, and 

heat capacity terms. The equation further assumes a Reynold’s number less than 2000. 

While liquid velocity was held constant for the derivation of equation (10) it varied 

continuously during operation of the heat pipe. In order to provide a conservative estimate 

the highest observed liquid velocity within the heat pipe was used for calculation as this 

results in the largest film thickness as calculated using equation (10). This velocity of 210 

mm/s resulted in a calculated Reynold’s number of 1140 and a film thickness of 35 μm. 

This film thickness could then be used to calculate a thermal time constant for the liquid 
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film using equation (4), where τ0 represents the liquid film thermal time constant and α the 

thermal diffusivity of the liquid HFE-7000. For a film thickness of 35 μm this time constant 

was calculated as 28 ms. As will be discussed in in the next section, a transition period of 

2-4 times this time was seen in the heat flux data when a liquid slug was replaced by a 

vapor bubble. Further, this time period is considerably shorter than the hundreds of 

milliseconds to seconds in which a given vapor bubble typically covered one point on the 

heat pipe. This analysis indicated the liquid film rapidly reached the saturation temperature, 

and that heat transferred due to sensible heating and cooling of the liquid film could be 

neglected.  

A second verification was performed using the visual data. The mass of a bubble 

within the condenser could be estimated at each time stamp as it shrank based upon its size 

as seen in the visual footage. This mass loss could then be used to estimate the latent heat 

transfer required to affect this shrinkage, and this latent estimate compared to the TSP 

measured heat transfer overtop the bubble. A close match between this visual estimate and 

the TSP data would then serve to confirm latent heat transfer as being the main method by 

which heat was transferred overtop bubbles.  

 The 35 μm maximum film thickness estimated above is small compared to the 1.6 

mm channel width. The cross-sectional area of vapor within a bubble was therefore 

estimated as the cross sectional area of the entire channel. The mass of the vapor in the slug 

was then be taken to be  

  

  𝑣 = 𝜌𝑣𝐴𝑐𝐿𝑠,  (11) 
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where mv is the mass of the vapor in the slug, ρv the density of the vapor, and Ls the length 

of the slug. The density was taken to be the density of vapor at saturation at the average 

TSP measured temperature over the face of the bubble. Ls was measured by taking the 

number of pixels between the top and bottom of the slug, then converting from pixel length 

to actual length by comparing the pixel distance of two points on the image with a known 

actual distance. For each selected bubble this mass was calculated at each frame to provide 

a time history. This was then be converted into an estimated latent heat transfer using the 

equation  

 
𝑄𝑙𝑎𝑡𝑒𝑛𝑡 = ℎ𝑓𝑔

𝑑 𝑣

𝑑𝑡
, 

 (12) 

where Qlatent indicates the visually estimated latent heat transfer and hfg the latent heat of 

vaporization. As with the vapor density, this latter parameter was taken to be the saturation 

value at the TSP measured average temperature of the slug.  

 The most straightforward way to estimate the 𝑑 𝑣/𝑑𝑡 term in equation (12) would 

have been to perform a finite difference calculation on the calculated mass. However, the 

manually determined endpoints of the vapor bubbles had some inherent error, functionally 

similar to noise in the data. This was small when taken over the entire timescale, but 

significant when comparing immediately adjacent points, as is done with a finite difference 

estimation. To avoid this error the change in mass with time was instead estimated by fitting 

a fifth order polynomial to the calculated mass. The derivative of this polynomial was then 

used to estimate 𝑑 𝑣/𝑑𝑡. An example of the calculated mass with time and its 

corresponding polynomial fit is shown in Figure 18. This estimated latent heat transfer was 

then compared with the heat transfer estimated from the TSP measurements. Two such 

comparisons are shown in Figure 19. 
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Figure 18: Calculated mass loss alongside polynomial fit used to determine its derivative. 

The values shown here correspond to the 5.13 W case shown in Figure 19. 

  

Figure 19: TSP and visually estimated heat transfer for two vapor slugs within the heat 

pipe condenser.  

To determine an overall error the two power estimates were integrated over time to 

provide a total energy transfer. The difference in energy between the two estimations was 

then divided by the TSP measured energy to provide a relative error. Ten bubbles were 

examined, one from each video in which the heat pipe was operating. The resulting errors 

are plotted against applied power in Figure 20. In seven out of the ten cases examined the 
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relative error was less than 45%, with half of the cases showing an error of less than 20%.  

Of the remaining three cases two had errors between 65% and 75%, with the largest error 

at 121%. As the median and mean errors were 23.5% and 39%, respectively, these larger 

errors were treated as outliers. This 39% average error was taken to indicate confirmation 

of the validity latent heat transfer assumption. This assumption, corroborated by both this 

and the liquid film time constant analysis above, was therefore used for all subsequent 

analysis.  

 

Figure 20: Estimated relative error in latent heat transfer assumption.  

 

5.2. Latent vs Sensible Selection 

As detailed above, it was assumed that wall heat transfer when vapor bubbles were present 

was due to latent heat transfer, while heat transfer overtop the liquid slugs was due to 

sensible heat transfer. It was further assumed that heat transfer with the acrylic (the heat 

pipe substrate) was negligible, as was conductive heat transfer between the vapor bubble 
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and adjacent liquid slugs. With these assumptions, the relative latent and sensible 

contributions to the overall heat transfer could be estimated by comparing the heat transfer 

at a point when it was covered by vapor or liquid, respectively. For each of the 10 videos 

in which the heat pipe was operating (input powers from 5 to 10 W) 10 points were 

examined. These points were positioned at constant intervals vertically going from the 

center of the top loop of the selected channel to the center of its bottom loop, as is shown 

in Figure 21. Intermediate points were placed in the center of the heat pipe channel 

horizontally. At each point the mode of heat transfer, latent or sensible, was selected for 

each of the 1000 frames in the video was based upon whether the location was covered by 

vapor or liquid.  

   

Figure 21: Points used for sensible/latent heat transfer comparison. Visual data shown at 

left, with heat flux data at right.  



46 

 

 This selection was performed using a Matlab script examining the pixel intensity at 

the given point. It was found that the mean pixel intensity for liquid coverage was roughly 

40 points higher than that for vapor, allowing the program to select the phase type by 

whether the intensity was above or below the overall data mean. When compared with 

manually chosen values this automated selection was found to produce the correct result 

for greater than 85% of all points. Examination of the improperly selected points revealed 

that they all occurred at transitions between the two phases or at values far from the mean 

liquid and vapor intensities. Moreover, the incorrect points were all identified as liquid. 

That is, in no case did the program incorrectly mark a point as being covered by vapor 

when it was covered by liquid; all mistakes were instances in which vapor coverage was 

identified as liquid coverage. To correct these selections the program was set to flag points 

that were identified as liquid and either more than one standard deviation from the mean 

liquid value or which were preceded or followed by a change in intensity of more than a 

set threshold. These flagged points were then presented to the user of the program for 

verification or correction. Typically, between 250 and 300 frames of each 1000 frame video 

were flagged in this manner. When compared against a video in which the points had been 

manually selected only two points were selected incorrectly and not flagged. A 0.2% error 

in selection was deemed acceptable, and this selection program was therefore run on the 

remainder of the data. An example showing the intensity over time at a point with the 

corresponding selections may be seen in Figure 22 with the flagged locations circled in 

red.  
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Figure 22: Example phase selection showing points flagged for verification. The data 

mean, used to distinguish the phases, is shown by a dashed line.  

5.3. Results 

Two examples of the selected heat transfer types and the corresponding heat flux values 

are shown in Figure 23. In this figure traces are shown for the top and bottom-most points 

shown in Figure 21. As may be seen, heat transfer was consistently higher in magnitude 

when the point was covered by vapor, and transitions from a liquid slug to a vapor bubble 

corresponded to a rapid increase in heat flux in all cases. This is consistent with a heat 

transfer dominated by condensation through or evaporation of the liquid film surrounding 

each bubble. Moreover, the time required for this transition was typically between 40 and 

140 ms, which agrees well with the calculated liquid film time constant derived above.  
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Figure 23: Sensible and latent contributions to the overall heat flux for two different 

videos. Two traces are shown – the top (positive) from the evaporator and the bottom 

from the condenser.   

The analysis above further allowed the calculation of the relative contribution of 

sensible and latent heat transfer to the overall heat flux. To do this the sum of the heat flux 

values in which the channel was covered by a vapor bubble was divided by the sum of all 

1000 heat flux values at that location to provide the latent percentage, and likewise with 

liquid coverage for sensible heating and cooling. This summation was performed on the 

absolute value of the heat flux in order to prevent data points from canceling one another 

within the regions near the center of the heat pipe where heat transfer was not universally 

in one direction. An example of this analysis may be seen in Figure 24. As shown, the 

latent contribution was consistently between 70% and 90% at all locations within the heat 

pipe. Performing this heat transfer analysis for all operational videos, as is done in Figure 

25, revealed a latent contribution of between 68% and 85% for all data runs, with a mean 
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contribution of 78%. This result is consistent with the 66 to 74% latent contribution 

reported by Jo et al. [42].  

 

Figure 24: Relative contribution of sensible and latent heat transfer to overall heat 

transfer. Positions listed relative to the lowermost edge of heat pipe channels.  

 

Figure 25: Latent heat transfer contribution for all data sets in which the heat pipe was 

operational.  

 It was additionally possible to perform an instantaneous calculation of the relative 

contributions of latent and sensible heat by dividing an individual frame into latent and 

sensible sections and calculating the contributions of each to the total heat transfer. While 

the greater user involvement required to select regions prohibited this method from being 
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used at each of the 1000 frames for each video, its use on selected frames provided a 

confirmation of the results detailed above, specifically that the selection of points was not 

contributing to a bias in the results. For each video in which the heat pipe was operating 

10 frames, equally spaced in time, were chosen for this analysis. For each frame thus 

selected the heat pipe was manually sectioned into sections of liquid and vapor, an example 

of which is shown in Figure 26. Here red regions indicate liquid (sensible heat transfer), 

while blue indicates vapor (latent heat transfer). The left and right-most channels were 

excluded from the analysis due to significant damage to the TSP overtop these channels.  

 

Figure 26: Identified locations of vapor and liquid slugs within the heat pipe. Red is used 

to indicate liquid while blue indicates vapor.   

When compared with the point examination the analysis performed in this manner 

attributed a lower, though still dominant, percentage of the heat transfer to latent heating 

and cooling. Of the 10 videos analyzed, the minimum latent contribution was 65%, the 

C
o

n
d

e
n

se
r

E
v

a
p

o
ra

to
r



51 

 

maximum 78%, and the average 72%. Latent heating within the evaporator was in-line 

with, though slightly below, these values, with minimum, maximum, and mean latent 

contributions of 62%, 78%, and 70%, respectively. The contribution within the condenser 

was higher, with respective values of 68%, 83%, and 72%. These results may be seen 

summarized in Figure 27.   

 

Figure 27: Summary of calculated latent contribution.  
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6. Conclusion and Future Work 

6.1. Conclusion 

A visual measurement technique utilizing temperature sensitive paints was used in order 

to measure temperature and heat transfer across the face of an oscillating heat pipe. This 

was done by recording the response of a layup using temperature sensitive paint placed on 

one side of the heat pipe. Visual data of the heat pipe flow mechanics were recorded using 

a second camera placed on the other side of the heat pipe. The mechanism and experimental 

setup are described in detail in chapter 2. Analysis of the acquired data, described in detail 

in chapter 3, indicated a thermal resistance of 1 K/W to 2.3 K/W for this design. Further, 

in chapter 4 heat flux was shown to concentrate around the vapor bubbles both within the 

evaporator and condenser. In chapter 5 it was shown that the heat transfer when vapor 

bubbles were present as dominated by latent heat transfer, and that the contribution of latent 

heat transfer to the overall OHP heat transfer was between 65% and 85% for the design 

considered here. 

6.2. Suggested Changes to Design and Future Work 

Initial work should focus on improving the quality of the measurement taken. While the 

work performed here proves the viability of this method, the apparatus used has several 

shortcomings. First, the sapphire used as the front plate for the TSP layer provided a 

conductive path with thermal resistance on the same order as the heat pipe itself. A better 

measurement could be taken by breaking this additional thermal path, either by using a 

thinner piece of sapphire or creating the adiabatic section out of a different material with a 

lower thermal conductivity. This latter option would also provide a more distinct adiabatic 
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section within the heat pipe. Alternately, the performance of the heat pipe could be 

improved enough to make the sapphire conduction contribution small in comparison. 

Additionally, the dots of TSP used for the sapphire temperature produced 

depressions within the acrylic adhesive layer. These led to trapped air bubbles underneath 

the dots, which were spread when force was applied to the sapphire to seal the gasket and 

damaged the TSP around the dots. This could be solved either by better controlling the 

thickness of the TSP used for these dots, or by utilizing an adhesive less sensitive to the 

increased thickness. A transparent epoxy would likely work quite well and would 

additionally be less likely to deform around the gaskets.   

Third, the uncertainty in the heat flux measurement was of the same order as the 

data itself, and so efforts should be taken to reduce this in future measurements. Increasing 

the performance of the heat pipe, and so the measured heat flux values, would be one viable 

approach. Reducing uncertainty would likely require reducing the camera noise, as this 

was the primary contributor to the error in the heat flux. Increasing exposure time to reduce 

noise would reduce the quality of the measurement, and the Photometrics Prime camera 

used for the TSP measurement has a very low inherent noise. As such, noise reduction 

through spatial binning would be the most promising approach.   

The heat flux data from this work showed a consistent negative bias. The cause was 

not discovered here, but future experiments should take steps to remove this error. 

Bleaching of the TSP or warmup transients in the UV LEDs, turned on just prior to 

measurement to reduce the risk of bleaching, could be contributors. A shutter placed in 

front of the TSP would allow shorter, more controlled exposure to UV light while also 

allowing the UV LEDs to be left on, so would likely produce more consistent results.  
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Finally, the design used here had the horizontal connecting channel of the heat pipe 

covered by the condenser. As a result, data could not be taken over this section. This was 

done to improve the performance of the heat pipe, but future experiments should attempt 

to move the condenser block fully off the heat pipe or remove heat in another manner.  

With these improvements made and problems fixed, the measurement technique 

used here is well suited to a parametric heat pipe study. The gasket design used here would 

allow the TSP stackup to be quickly changed between designs, and the use of acrylic as the 

base material allows inexpensive construction of new designs.  



55 

 

7. References 

[1] T. Mito et al., “Achievement of high heat removal characteristics of 

superconducting magnets with imbedded oscillating heat pipes,” IEEE Trans. Appl. 

Supercond., vol. 21, no. 3 PART 2, pp. 2470–2473, 2011. 

[2] D. Mangini, M. Mameli, A. Georgoulas, L. Araneo, S. Filippeschi, and M. Marengo, 

“A pulsating heat pipe for space applications: Ground and microgravity 

experiments,” Int. J. Therm. Sci., vol. 95, pp. 53–63, 2015. 

[3] S. M. Thompson, P. Cheng, and H. B. Ma, “An experimental investigation of a 

three-dimensional flat-plate oscillating heat pipe with staggered microchannels,” 

Int. J. Heat Mass Transf., vol. 54, no. 17–18, pp. 3951–3959, 2011. 

[4] K. Natsume et al., “Development of cryogenic oscillating heat pipe as a new device 

for indirect/conduction cooled superconducting magnets,” IEEE Trans. Appl. 

Supercond., vol. 22, no. 3, p. 4703904, 2012. 

[5] J. Gu, M. Kawaji, and R. Futamata, “Effects of Gravity on the Performance of 

Pulsating Heat Pipes,” J. Thermophys. HEAT Transf., vol. 18, no. 3. 

[6] G. H. Kwon and S. J. Kim, “Experimental investigation on the thermal performance 

of a micro pulsating heat pipe with a dual-diameter channel,” Int. J. Heat Mass 

Transf., vol. 89, pp. 817–828, 2015. 

[7] S. Jun and S. J. Kim, “Comparison of the thermal performances and flow 

characteristics between closed-loop and closed-end micro pulsating heat pipes,” Int. 

J. Heat Mass Transf., vol. 95, pp. 890–901, 2016. 

[8] A. Yoon and S. J. Kim, “Characteristics of oscillating flow in a micro pulsating heat 

pipe: Fundamental-mode oscillation,” Int. J. Heat Mass Transf., vol. 109, pp. 242–



56 

 

253, 2017. 

[9] Y. J. Youn and S. J. Kim, “Fabrication and evaluation of a slicon-based micro 

pulsating heat spreader,” Sensors Actuators, A Phys., vol. 174, no. 1, pp. 189–197, 

2012. 

[10] A. Yoon and S. J. Kim, “Understanding of the thermo-hydrodynamic coupling in a 

micro pulsating heat pipe,” Int. J. Heat Mass Transf., vol. 127, pp. 1004–1013, Dec. 

2018. 

[11] J. Lee and S. J. Kim, “Effect of channel geometry on the operating limit of micro 

pulsating heat pipes,” Int. J. Heat Mass Transf., vol. 107, pp. 204–212, 2017. 

[12] H. Akachi, “Structure of a Heat Pipe,” 1990. 

[13] P. Charoensawan, S. Khandekar, M. Groll, and P. Terdtoon, “Closed loop pulsating 

heat pipes - Part A: Parametric experimental investigations,” Appl. Therm. Eng., vol. 

23, no. 16, pp. 2009–2020, 2003. 

[14] X. M. Zhang, J. L. Xu, and Z. Q. Zhou, “Experimental study of a pulsating heat pipe 

using fc-72, ethanol, and water as working fluids,” Exp. Heat Transf., vol. 17, no. 1, 

pp. 47–67, 2004. 

[15] N. Kammuang-Lue, P. Sakulchangsatjatai, P. Terdtoon, D. J. Mook, & D. J. Mook, 

and D. J. Mook, “Correlation to Predict the Maximum Heat Flux of a Vertical 

Closed-Loop Pulsating Heat Pipe,” Heat Transf. Eng., vol. 30, no. 12, pp. 961–972, 

Oct. 2010. 

[16] S. Khandekar, A. P. Gautam, and P. K. Sharma, “Multiple quasi-steady states in a 

closed loop pulsating heat pipe,” Int. J. Therm. Sci., vol. 48, no. 3, pp. 535–546, 

2009. 



57 

 

[17] Y. Zhang and A. Faghri, “Advances and Unsolved Issues in Pulsating Heat Pipes,” 

Heat Transf. Eng., vol. 29, no. 1, pp. 20–44, 2008. 

[18] B. S. Taft, A. D. Williams, and B. L. Drolen, “Review of Pulsating Heat Pipe 

Working Fluid Selection,” J. Thermophys. Heat Transf., vol. 26, no. 4, pp. 651–656, 

2012. 

[19] J. Qu, H. Wu, and P. Cheng, “Start-up, heat transfer and flow characteristics of 

silicon-based micro pulsating heat pipes,” Int. J. Heat Mass Transf., vol. 55, no. 21–

22, pp. 6109–6120, 2012. 

[20] H. Ma, Oscillating Heat Pipes. New York: Springer, 2015. 

[21] H. Han, X. Cui, Y. Zhu, and S. Sun, “A comparative study of the behavior of 

working fluids and their properties on the performance of pulsating heat pipes 

(PHP),” Int. J. Therm. Sci., vol. 82, pp. 138–147, 2014. 

[22] S. Khandekar, M. Schneider, R. Schafer, R. Kulenovic, and M. Groll, “Thermofluid 

Dynamic Study of Flat-Plate Closed-Loop Pulsating Heat Pipes,” Microscale 

Thermophys. Eng., vol. 6, pp. 303–317, 2002. 

[23] H. Yang, S. Khandekar, and M. Groll, “Performance characteristics of pulsating heat 

pipes as integral thermal spreaders,” Int. J. Therm. Sci., vol. 48, pp. 815–824, 2009. 

[24] W. Jiansheng, W. Zhenchuan, and L. Meijun, “Thermal performance of pulsating 

heat pipes with different heating patterns,” Appl. Therm. Eng., vol. 64, no. 1–2, pp. 

201–212, 2014. 

[25] H. Yang, S. Khandekar, and M. Groll, “Operational limit of closed loop pulsating 

heat pipes,” Appl. Therm. Eng., vol. 28, no. 1, pp. 49–59, 2008. 

[26] S. M. Thompson and H. B. Ma, “A STATISTICAL ANALYSIS OF 



58 

 

TEMPERATURE OSCILLATIONS ON A FLAT-PLATE OSCILLATING HEAT 

PIPE WITH TESLA-TYPE CHECK VALVES,” vol. 2, p. 33002, 2011. 

[27] W. Kim and S. J. Kim, “Effect of reentrant cavities on the thermal performance of a 

pulsating heat pipe,” Appl. Therm. Eng., vol. 133, pp. 61–69, 2018. 

[28] J. Qu, X. Li, Q. Xu, and Q. Wang, “Thermal performance comparison of oscillating 

heat pipes with and without helical micro-grooves,” Heat Mass Transf., vol. 53, no. 

11, pp. 3383–3390, 2017. 

[29] H. B. Ma, A. M. A. Hanlon, and A. C. L. Chen, “An investigation of oscillating 

motions in a miniature pulsating heat pipe,” Microfluid. Nanofluidics, vol. 2, no. 2, 

pp. 171–179, 2006. 

[30] J. Qu and H. Wu, “Thermal performance comparison of oscillating heat pipes with 

SiO 2 /water and Al 2 O 3 /water nanofluids,” Int. J. Therm. Sci., vol. 50, no. 10, pp. 

1954–1962, 2011. 

[31] R. R. Riehl and N. dos Santos, “Water-copper nanofluid application in an open loop 

pulsating heat pipe,” Appl. Therm. Eng., vol. 42, pp. 6–10, 2012. 

[32] H. B. Ma et al., “Effect of nanofluid on the heat transport capability in an oscillating 

heat pipe,” Appl. Phys. Lett., vol. 88, no. 14, 2006. 

[33] V. K. Karthikeyan, S. Khandekar, B. C. Pillai, and P. K. Sharma, “Infrared 

thermography of a pulsating heat pipe: Flow regimes and multiple steady states,” 

Appl. Therm. Eng., vol. 62, no. 2, pp. 470–480, 2014. 

[34] W. Qu and H. B. Ma, “Theoretical analysis of startup of a pulsating heat pipe,” Int. 

J. Heat Mass Transf., vol. 50, no. 11–12, pp. 2309–2316, 2007. 

[35] H. B. Ma, B. Borgmeyer, P. Cheng, and Y. Zhang, “Heat Transport Capability in an 



59 

 

Oscillating Heat Pipe,” J. Heat Transfer, vol. 130, no. 8, p. 081501, 2008. 

[36] Y. Zhang and A. Faghri, “Heat transfer in a pulsating heat pipe with open end,” Int. 

J. Heat Mass Transf., vol. 45, no. 4, pp. 755–764, Feb. 2002. 

[37] W. Shao and Y. Zhang, “Effects of Film Evaporation and Condensation on 

Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe,” J. Heat Transfer, 

vol. 133, no. 4, p. 042901, 2011. 

[38] M. B. Shafii, A. Faghri, Y. Zhang, and M. Asme, “Thermal Modeling of Unlooped 

and Looped Pulsating Heat Pipes,” J. Heat Transfer, vol. 123, pp. 1159–1172, 2001. 

[39] S. Khandekar and M. Groll, “An insight into thermo-hydrodynamic coupling in 

closed loop pulsating heat pipes,” Int. J. Therm. Sci., vol. 43, no. 1, pp. 13–20, 2004. 

[40] B. Mehta and S. Khandekar, “Taylor bubble-train flows and heat transfer in the 

context of Pulsating Heat Pipes,” Int. J. Heat Mass Transf., vol. 79, pp. 279–290, 

2014. 

[41] V. S. Nikolayev, “A Dynamic Film Model of the Pulsating Heat Pipe,” J. Heat 

Transfer, vol. 133, no. 8, p. 081504, 2011. 

[42] J. Jo, J. Kim, and S. J. Kim, “Experimental investigations of heat transfer 

mechanisms of a pulsating heat pipe,” Energy Conserv. Manag., vol. 181, pp. 331–

341, 2019. 

[43] H. Al Hashimi, C. F. Hammer, M. T. Lebon, D. Zhang, and J. Kim, “Phase-Change 

Heat Transfer Measurements Using Temperature-Sensitive Paints,” J. Heat 

Transfer, vol. 140, no. 3, p. 031601, 2017. 

[44] M. T. Lebon, C. F. Hammer, and J. Kim, “Gravity effects on subcooled flow boiling 

heat transfer,” Int. J. Heat Mass Transf., vol. 128, pp. 700–714, 2019. 



60 

 

[45] 3M Novec, “3M Novec 7000 Engineered Fluid.” 2009. 

[46] 3M Novec, “3M Novec 7100 Engineered Fluid,” Design-basis Accident Analysis 

Methods For Light-water Nuclear Power Plants. 2009. 

[47] NIST, “Water,” NIST Chemistry WebBook, 2018. [Online]. Available: 

https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Mask=4#Thermo-Phase. 

[48] NIST, “Ethanol,” NIST Chemistry WebBook, 2018. [Online]. Available: 

https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Mask=4#Thermo-Phase. 

[49] NIST, “Acetone,” NIST Chemistry WebBook, 2018. [Online]. Available: 

https://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Mask=4#Thermo-Phase. 

[50] M. H. Rausch, L. Kretschmer, S. Will, A. Leipertz, and A. P. Fröba, “Density, 

surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-

7100, HFE-7200, HFE-7300, and HFE-7500,” J. Chem. Eng. Data, vol. 60, no. 12, 

pp. 3759–3765, 2015. 

[51] 3M, “3M Thermal Management Fluids: Cool Under Fire - Dielectric heat transfer 

fluid solutions for military and aerospace applications.” 2009. 

[52] G. P. Peterson, An Introduction to Heat Pipes Modeling, Testing, and Applications. 

New York: John Wiley & Sons, Inc., 1994. 

[53] G. D. Raithby and K. G. . Hollands, “Chapter 4. Natural Convection,” in Handbook 

of Heat Transfer, 3rd ed., W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Eds. New 

York: McGraw-Hill, 1998, pp. 4.1-4.99. 

[54] Y. Han and N. Shikazono, “Measurement of the liquid film thickness in micro tube 

slug flow,” Int. J. Heat Fluid Flow, vol. 30, pp. 842–853, 2009. 

 


