
ABSTRACT

Title of dissertation: HUMAN-IN-THE-LOOP QUESTION
ANSWERING WITH NATURAL
LANGUAGE INTERACTION

Ahmed Elgohary Ghoneim
Doctor of Philosophy, 2021

Dissertation directed by: Associate Professor, Jordan Boyd-Graber
Department of Computer Science

Generalizing beyond the training examples is the primary goal of machine

learning. In natural language processing (nlp), impressive models struggle to gen-

eralize when faced with test examples that differ from the training examples: e.g.,

in genre, domain, or language. I study interactive methods that overcome such lim-

itations by seeking feedback from human users to successfully complete the task at

hand and improve over time while on the job. Unlike previous work that adopts

simple forms of feedback (e.g., labeling predictions as correct/wrong or answering

yes/no clarification questions), I focus on using free-form natural language as the

communication interface for providing feedback which can convey richer information

and offer a more flexible interaction.

An essential skill that language-based interactive systems should have is to un-

derstand user utterances in conversational contexts. I study conversational question

answering (cqa) in which humans interact with a question answering qa system by

asking a sequence of related questions. cqa requires models to link questions to-

gether to resolve the conversational dependencies between them such as coreference

and ellipsis. I introduce question-in-context rewriting to reduce context-dependent

conversational questions to independent stand-alone questions that can be answered

with existing qa models. I collect a large dataset of human rewrites and I use it to

evaluate a set of models for the question rewriting task.

Next, I study semantic parsing in interactive settings in which users correct

parsing errors using natural language feedback. Most existing work frames seman-

tic parsing as a one-shot mapping task. I establish that the majority of parsing

mistakes that recent neural text-to-SQL parsers make are minor. Hence, it is often

feasible for humans to detect and suggest corrections for such mistakes if they have

the opportunity to provide precise feedback. I describe an interactive text-to-SQL

parsing system that enables users to inspect the inferred parses and correct any

errors they find by providing feedback in free-form natural language. I construct

SPLASH: a large dataset of SQL correction instances paired with a diverse set of

human-authored natural language feedback utterances. Using SPLASH, I posed a

new task: given a question paired with an initial erroneous SQL parse, to what

extent can we correct the parse based on a provided natural language feedback?

Then, I present NL-EDIT: a neural model for the correction task. NL-EDIT

combines two key ideas: 1) interpreting the feedback in the context of the other

elements of the interaction and, 2) explicitly generating edit operations to correct

the initial query instead of re-generating the full query from scratch. I create a

simple SQL editing language whose basic units are add/delete operations applied

to different SQL clauses. I discuss evaluation methods that help understand the

usefulness and limitations of semantic parse correction models.

I conclude this thesis by identifying three broad research directions for further

advancing collaborative human–computer nlp: (1) developing user-centered expla-

nations , (2) designing and evaluating interaction mechanisms, and (3) learning from

interactions.

HUMAN-IN-THE-LOOP QUESTION ANSWERING WITH
NATURAL LANGUAGE INTERACTION

by

Ahmed Elgohary Ghoneim

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Jordan Boyd-Graber, Chair/Advisor
Professor Douglas W. Oard, Dean’s Representative
Professor Robert S. Patro
Professor Dragomir R. Radev
Professor Rachel Rudinger

© Copyright by
Ahmed Elgohary Ghoneim

2021

Dedication

To my parents, Eman and Ali.

ii

Acknowledgments

During the past seven years, I have been very fortunate to know and work

with great people to whom I owe a lot of gratitude for their support.

Foremost, I would like to thank my advisor, Jordan Boyd-Graber for his tireless

guidance, patience, and support. Jordan took me as his advisee when I was starting

my fourth year. Not all advisors would do that. He was always available to meet

with me, discuss my initial research ideas and provide a lot of feedback and key

pointers to resources that shaped my interest in human-in-the-loop nlp. I have

been always amazed by how keen he is on training his student on all aspects of

research and academia, from formulating ambitious and creative research problems

to the very details of writing papers and preparing posters/talks. I am also very

thankful to Jordan for his advice throughout my job search process, starting from

preparing my research statement to deciding between the offers. It was totally worth

it to wait until Jordan joined UMD at the beginning of my fourth year.

I also would like to thank my other committee members: Rachel Rudinger,

Rob Patro, Dragomir Radev, and Doug Oard for their valuable feedback on my work

and the great discussions during the defense. Doug Oard, in particular, has been

very supportive to me on several occasions during my time at UMD.

During my internships at Microsoft Research, AI2, and IBM Research, I col-

laborated with very inspiring people, not just at the technical level but also at the

personal level. Ahmed Hassan Awadallah introduced me to the interactive semantic

parsing line of work that ended up being the central focus of my thesis. That work

iii

would not have been completed without his continuous mentorship and feedback. I

am really grateful to Ahmed for beliving in me and offering me the opportunity to

do two internships at Microsoft Research. I am also very grateful to my mentors,

collaborators, and colleagues: Matthias Boehm, Fred Reiss, Peter Haas, Waleed Am-

mar, Matt Peters, Saghar Hosseini, Chris Meek, Matt Richardson, Adam Fourney,

Gonzalo Ramos, Xiang Deng, Alex Polozov, Tao Yu, and Guoqing Zheng.

At UMD, I learned a lot from (and enjoyed interacting with) my colleagues and

friends at the CLIP lab over the years. I was lucky to know and work closely with

Allyson Ettinger early in my Ph.D. I am grateful to Yogarshi Vyas, Xing Niu, Hadi

Amiri, Mossaab Bagdouri, Mahmoud Sayed, Amr Sharaf, Weiwei Yang, Chen Zhao,

Denis Peskov, Khanh Nguyen, Mohit Iyyer, Sudha Rao, Joe Barrow, Jo Shoemaker,

Michelle Yuan, Alison Smith, Shi Feng, Pedro Rodriguez, and Fenfei Guo.

Also from UMD, Tom Hurst and Pedram Sadeghian were among the most

supportive and accommodating people to me. Tom wrote me several letters to get

internship and program extension approvals. I worked as a TA with Pedram for

three semesters. I am very grateful for his flexibility in accomodating my paper

deadlines and job interviews.

I deeply thank IBM for funding me through a Ph.D. fellowship during 2017/2018.

The fellowship greatly helped me focus on catching up with question answering and

human-in-the-loop nlp research, which ended up being the topic for my thesis.

Indeed, there have been a lot of challenging times during the past seven years.

Certainly, I would not have reached this point without the support of my family

and friends in Egypt and the US. Thank you, All.

iv

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contributions . 5

1.2.1 Learning Representations from Naturally-Occurring Translation 6
1.2.2 Task and Baselines for Sequential Question Answering 6
1.2.3 Task, Dataset and Models for Question-in-Context Rewriting . 7
1.2.4 Framework for Interactive Semantic Parsing with Natural Lan-

guage Feedback . 8

2 Background and Related Work 12
2.1 Deep Learning for nlp . 12

2.1.1 Representations for nlp . 12
2.1.2 Recurrent Neural Networks 13
2.1.3 Transformers . 15
2.1.4 Relation-Aware Transformer 16
2.1.5 Sequence-to-Sequence Models 17
2.1.6 Pre-Trained Transformers . 19

2.2 Question Answering over Raw Text 20
2.2.1 Machine Reading Comprehension 22
2.2.2 Conversational Reading Comprehension 23

2.3 Question Answering over Structured Databases 27
2.3.1 Semantic Parsing Models . 27
2.3.2 Semantic Parsing with Synthetic Data 28
2.3.3 Semantic Parsing in Conversational Context 29
2.3.4 Text-to-SQL Parsing . 30

v

2.4 Human-in-the-Loop nlp . 33
2.4.1 Humans as Annotators . 33
2.4.2 Humans as Teachers . 34
2.4.3 Humans as Collaborators . 35

2.4.3.1 Interactive Semantic Parsing 36

3 Learning Paraphrastic Representations with Bilingual Supervision 38
3.1 Models . 39

3.1.1 Learning Objective . 40
3.1.2 Three Views of Semantic Equivalence 40

3.2 Experiments . 43
3.2.1 Evaluating Sentence Representations 43
3.2.2 Baselines and Reference Models 43
3.2.3 Training and Hyper-parameters Tuning 44

3.3 Results . 46
3.3.1 Bilingual phrases yield the best models in controlled settings . 46
3.3.2 Bilingual sentences vs. bilingual phrases 46
3.3.3 Monolingual versus bilingual phrases 49

3.4 Conclusion . 49

4 Sequential Question Answering and Question-in-Context Rewriting 51
4.1 Sequential Open-Domain qa . 52

4.1.1 Dataset and setup . 52
4.1.2 Models . 53
4.1.3 Experiments . 56
4.1.4 Results . 57

4.2 Question-in-Context Rewriting . 58
4.2.1 Defining Question-In-Context Rewrites 59
4.2.2 Dataset Construction . 59
4.2.3 Models . 64
4.2.4 Dataset and Model Analysis 67

4.3 Conclusion . 75

5 Semantic Parsing with Natural Language Feedback 76
5.1 Task Definition . 78
5.2 splash Construction . 79

5.2.1 Generating Questions and Incorrect SQL Pairs 80
5.2.2 Explaining SQL . 81
5.2.3 Crowdsourcing Feedback . 84
5.2.4 splash Summary . 87

5.3 splash Analysis . 88
5.3.1 Error Characteristics . 89
5.3.2 Feedback Characteristics . 90

5.4 Experiments . 94
5.4.1 Baselines . 95

vi

5.4.2 Main Results . 96
5.4.3 Analysis . 97

5.5 Conclusion . 98

6 Edit-Based Model for Interactive Semantic Parsing 100
6.1 SQL Edits . 101
6.2 Model . 104

6.2.1 Intuitions . 104
6.2.2 Encoder . 105
6.2.3 Decoder . 107

6.3 Synthetic Feedback . 109
6.4 Experiments . 111

6.4.1 Setup . 112
6.4.2 Evaluation . 113
6.4.3 Results . 114

6.5 Analysis . 114
6.5.1 Ablations . 114
6.5.2 Error Analysis . 116
6.5.3 Cross-Parser Generalization 119

6.6 Conclusions . 123

7 Conclusions and Future Work 124
7.1 Summary of Contributions . 125
7.2 Limitations . 127
7.3 Future Research on Collaborative Human–Computer nlp 128

7.3.1 User-Centered Explanations 128
7.3.2 Designing and Evaluating Interaction Mechanisms 130
7.3.3 Learning from Interactions . 132
7.3.4 Testbed for Human-in-the-Loop Adaptation 133

7.4 Other Future Research on Interactive Semantic Parsing 134

vii

List of Tables

3.1 Positive and negative examples for each of the three types of supervision 41
3.2 Sources of the three types of semantic equivalence. 42
3.3 Pearson correlation scores obtained on the sts sets and semantic-

relatedness task sick . 45
3.4 Undertrained word ratios (ratio of tokens seen fewer than 100 times

during training) are uncorrelated with performance in Table 3.3. . . 47
3.5 Impact of memorization on the semantic relatedness accuracy 48
3.6 Impact of training set size on the semantic similarity and relatedness

accuracy . 48

4.1 Incorporating sequence information in the retrieval and the reading
step slightly improves overall accuracy compared to answering ques-
tions in isolation. 56

4.2 Summary of manual quality assessment of canard 64
4.3 Example erroneous rewrites collected with crowdsourcing 65
4.4 bleu scores of the baselines on development and test data. 66
4.5 An example that had over ten flagged proper nouns in the history.

Rewriting requires resolving challenging coreferences. 67
4.6 Summary of manually comparing the outputs of the seq2seq model

to the reference rewrites. 69
4.7 Examples on each of the rewrite correctness categories of the seq2seq

model. 70
4.8 Example erroneous rewrites generated by the Seq2Seq models and

their corresponding reference rewrites. 74

5.1 splash summary . 87
5.2 Examples (question, predicted SQL and feedback) of complete, par-

tial and paraphrase feedback . 91
5.3 Examples of feedback annotators provided for different types 92
5.4 Correction and end-to-end accuracies of baseline models. 97

6.1 Example SQL Editors with corresponding feedback templates. 110
6.2 Comparing nl-edit to baselines in (Section 5.4). 111

viii

6.3 Correction accuracy on splash Test of nl-edit versus variants with
one ablated component each. 115

6.4 Example long feedback that nl-edit struggles with. 119
6.5 Example failure cases of nl-edit. 120
6.6 Evaluating the zero-shot generalization of nl-edit to different parsers.121

ix

List of Figures

1.1 Example minor test-time error of a question answering system. 2
1.2 End-to-end interaction with the nl-edit system. 3
1.3 Example questions in conversation context with corresponding rewrites. 7

2.1 Transformer Sequence-to-Sequence Architecture 18
2.2 A reading comprehension examples. The answer is extracted as a

span from the document (underlined). 21
2.3 Conversational Reading Comprehension Example from QuAC 24
2.4 An example sequence of questions from QBLink. The lead-in and

question 1 are asking about the same object/answer. The subject of
question 2 is the same as the object of question 1. All questions are
about a narrow topic, Bitcoin. 26

2.5 A text-to-SQL example from spider. Primary keys are underlined . . 31

4.1 An overview of the relation-augmented reading model for sequential
qa. 54

4.2 Modeling the relation between President Ronald Reagan and John
Hinckley Jr. expressed by relation span helps the reader select the
correct answer entity. 57

4.3 canard collection interface . 60
4.4 Instructions for crowdsourcing question-in-context rewrites. 61
4.5 Comparing characteristics of human rewrites to automatically gener-

ated rewrites . 68

5.1 An example of human interaction with a text-to-SQL system to cor-
rect the interpretation of an input utterance. 77

5.2 An example from my SQL parse correction task. 79
5.3 An example of a SQL query, the corresponding template and the

generated explanation. 81
5.4 Examples of how different SQL components can be explained in nat-

ural language . 83
5.5 Crowd-sourcing instructions . 85
5.6 An example of the data collection interface. 86

x

5.7 A histogram of the distance between the gold and the predicted SQL. 88
5.8 A histogram of different SQL keywords appearing in edits (between

the gold and predicted SQL) and their distribution across edit types
(replace, insert or delete). 90

5.9 Patterns of feedback covered in our dataset. 93

6.1 Example SQL Edit . 102
6.2 The structure of nl-edit encoder. 106
6.3 nl-edit with a transformer decoder that splits the attention to the

encoder. 108
6.4 Breakdown of the correction accuracy on splash test set by the feed-

back length. The number of examples in each group is shown on top
of the bars. 116

6.5 Breakdown of the correction accuracy on splash test set by the ex-
planation length. The number of examples in each group is shown on
top of the bars. 117

6.6 Breakdown of the correction accuracy on splash test set by the size
of the reference edit (number of add or remove operations). The
number of examples in each group is shown on top of the bars. . . . 118

6.7 Transitions in edit size after correction. For each edit size of the initial
parse (rows), we show the distribution of the edit size after correction. 118

6.8 Distribution of Edit Size per example in splash compared to the
generalization test sets constructed based on editsql, tabert, and
rat-sql. 122

7.1 Multiple interaction mechanisms that a text-to-SQL system supports. 131
7.2 Example interaction with a text-to-SQL system in which the feedback

is used to correct a mistake with the initial parse. 132

xi

Chapter 1: Introduction

1.1 Motivation

The recent successes and impressive results in natural language processing

(nlp) come from the following evaluation scenario: a system learns a pre-defined

task (e.g., categorizing product reviews based on their sentiment) using a given

set of training examples. The system is then evaluated on similar examples from

the same task, domain, and language. When such systems are evaluated on slightly

different examples or tasks (e.g., categorizing movie reviews based on their sentiment

or categorizing reviews as spam or ham), their accuracy drops significantly and

restoring a system’s accuracy on a different evaluation setup requires collecting a

large enough amount of training examples from that setup and adapting the system

on them.

With more evaluation setups, that adaptation process (including training data

collection) becomes slow, expensive, and hard to manage. Take question answering

(qa) as an example: most of the research progress in the past five years has been

centered around constructing datasets, each focuses on a reasoning process, a do-

main, a genre or a linguistics phenomenon. Examples include datasets that focus on

multi-hop reasoning (Yang et al., 2018), coreference resolution (Dasigi et al., 2019),

1

Find all locations whose name contains the word film

Location_Name Address Num_Visits
Cave of the winds 24 Buffalo Ave 9572

Film Castle 1024 Tulane Drive 4324
Music Festival 14034 Kohler Drive 229

I just found "1024 Tulane Drive"

SQL: SELECT Address FROM Locations
WHERE Location_Name LIKE "%film%"

Locations

Figure 1.1: Example minor test-time error of a question answering system.

conversational question answering (Choi et al., 2018; Reddy et al., 2019), qa over

research papers (Dasigi et al., 2021), etc.

At test time, even the strongest existing neural network models are not perfect.

For a given input, a minor mistake with the operations performed by the model can

result in a wrong output or an output that does not fully satisfy the user needs.

Furthermore, it is impractical to assume that users will always be able to provide

precise and unambiguous inputs to the model. Figure 1.1 demonstrates an example

on that behaviour. The input “Find all locations whose name contains the word

film” does not really specify whether to output the names of those locations “Loca-

tion_Name” or their “Addresses”. The deployed qa system makes an assumption

that the user is interested in the “Address” and generate a sql query whose exe-

cution result is “1024 Tulane Drive”. What if the user was interested in the names

of those locations rather than their addresses? Although it can be frustrating to

2

Semantic Parsing:

What is the full name of the candidate with the most votes?

Vote_ID State Candidate_ID
4235 NC 1
2355 CA 2
1894 PA 2

Candidate_ID First_Name Last_Name
1 Donald Trump
2 Joe Biden

Votes Candidates

Answer: Donald
Explanation:
1. For each vote_id, find the number of rows in Votes
2. Find first_name with the largest value in the result of step 1

SQL: SELECT first_name FROM candidates
JOIN votes ON candidates.candidate_id =
votes.candidate_id GROUP BY voter_Id
ORDER BY COUNT(*) DESC LIMIT 1

Correction:
It should be candidate id in step 1. Also find last name in step 2.

Answer: Joe Biden
Explanation:
1. For each candidate_id, find the number of rows in Votes
2. Find first_name, last_name with the largest value in the result of step 1

SQL: SELECT first_name, last_name
FROM candidates JOIN votes ON
candidates.candidate_id =
votes.candidate_id GROUP BY
candidate_Id ORDER BY COUNT(*)
DESC LIMIT 1

 Edit:
GROUP-BY: remove vote_id
GROUP-BY: add candidate_id
SELECT: add last_name

Figure 1.2: End-to-end interaction with the nl-edit system.

the user, by looking at the output the user can potentially realize the assumption

the system made and repeat the whole question in a more specific way as “Find the

names of the locations that contain the word film in their name”. In other scenarios,

it might even be impossible for users to notice if the system made a mistake or

operated under a certain assumption. Take for example the question “How many

hotels are in Cairo?”: How can the user verify an answer like “7501”?

3

This thesis studies how we can build interactive nlp systems that enable users

to inspect and provide feedback on the operations performed by the underlying mod-

els. By adopting and counting on interaction components within nlp systems, we

will be able to quickly deploy models that are trained on the available data at-hand

and learn over time from user interactions about any missing skills (e.g., linguistic

phenomena, reasoning operations) while the models are on the job. Also, providing

users with a means to interact with the system allows them to guide (collaborate

with) the system to correct for test-time errors. Figure 1.2 show an example user in-

teraction with a question answering system that I present in Chapter 6. The system

answers user questions about a votes database by automatically translating them

into SQL queries that produce the answer when executed against the database (Sec-

tion 2.3.4). In the first attempt, the system generates a SQL query that contains

two mistakes hence, gives the wrong answer “Donald”. The user then further inter-

acts with the system and provides feedback that the system uses to revise the initial

query and produce the correct answer “Joe Biden”.

Existing research considers constrained interaction mechanisms such as asking

users to label system outputs as correct or wrong, rating the overall quality of the

output with a numeric score, or answering yes/no clarification questions posed by

the system. Humans have the ability to learn new concepts or correct others based

on natural language description or feedback. A few previous studies have explored

how machines can learn from language in tasks such as playing games (Branavan

et al., 2012), robot navigation (Karamcheti et al., 2017), and concept learning (e.g.,

shape, size, etc.) (Srivastava et al., 2018). Also, with the increasing popularity

4

of of personal assistants that use natural language as their primary user interface

(e.g., Alexa, Cortana, Siri), the potential of natural language based interaction is

becoming more and more evident. I focus this work on using free-form natural

language as the means for providing feedback which can convey richer information

and offer a more flexible user interaction.

Question answering is a central problem in nlp. In order for a system to

answer questions, it should be able to implicitly perform a wide range of language

understanding and reasoning tasks. In this thesis, I use question answering to study

interactive human-in-the-loop nlp systems. An essential skill that language-based

interactive systems should have is to understand user utterances in conversational

contexts. I develop tasks and models for conversational qa and question-in-context

rewriting. Then, I switch gears to cross-domain qa over structured databases. I

create a framework, datasets, and models through which users can collaborate with

the qa system to answer questions by providing free-form natural language feedback.

1.2 Thesis Contributions

I outline the contributions I make in this thesis. First, I use natural language

as a source of supervision to learn vector representations of sentences (Section 1.2.1).

Then in the context of question answering, I study tasks and methods that enable

machines to understand conversational natural language (Sections 1.2.2 and 1.2.3).

Finally, I build a system and models for question answering with natural language

feedback from users (Section 1.2.4).

5

1.2.1 Learning Representations from Naturally-Occurring Translation

The recent progress and impressive results in nlp are primarily attributed to

pre-trained representations (Mikolov et al., 2013b; Pennington et al., 2014; Wieting

et al., 2016) and architectures (Peters et al., 2018; Devlin et al., 2019). Several

approaches have been developed and evaluated for pre-training text representa-

tions (Section 2.1). In the first contribution of this thesis, I demonstrate the richness

and effectiveness of using natural language supervision to learn general-purpose vec-

tor representations of sentences (Chapter 3). In particular, I use naturally-occurring

translations (bilingual text) as meaning annotations for the text in the language of

interest. Using the semantic textual similarity task, I show that such representations

outperform representations learned using raw text and monolingual paraphrases.

1.2.2 Task and Baselines for Sequential Question Answering

Previous research has made ample progress on answering stand-alone ques-

tions using a given textual evidence (machine reading comprehension) (Seo et al.,

2017; Devlin et al., 2019; Lan et al., 2019). New neural models are continuously

pushing the state-of-the-art results of popular benchmark datasets. In information-

seeking dialogs, e.g., personal assistants, users interact with a qa system by asking

a sequence of related questions, where questions share the same predicate, entities,

or at least a topic. Answering each question in isolation is sub-optimal as infor-

mation from previously asked questions and previously obtained answers can help

better answer the current question. I study answering sequences of interrelated

6

What happened to Anna
Vissi in 1983?What happened in 1983?

A1: In May 1983, she marries Nikos Karvelas, a composer

Did they have any
children?

A2: In November, she gave birth to her daughter Sofia

Did she have any other
children?

Question Rewriting

Did Anna Vissi have any
other children than her

daughter Sofia?

Did Anna Vissi and
Nikos Karvelas have any

children together?

A3: I don’t know

Q1:

Q2:

Q3:

Figure 1.3: Example questions in conversation context with corresponding rewrites.

questions where for each question, the qa system has to retrieve the evidence docu-

ment from Wikipedia before starting the reading comprehension step. In that work,

I present and evaluate models that incorporate connections between questions in

the same sequence to improve both the retrieval and the reading steps of the qa

process (Chapter 4).

1.2.3 Task, Dataset and Models for Question-in-Context Rewriting

In the more naturally conversational settings, individual questions cannot be

understood without resolving conversational dependencies. For example, the ques-

tion “What was he like in that episode?” cannot be understood without knowing

what “he” and “that episode” refer to. Instead of implicitly reasoning about the con-

7

versational dependencies between questions (as in Section 1.2.2), I introduce the task

of question-in-context rewriting as a means to reducing context-dependent conver-

sational questions to independent stand-alone questions that can be answered with

existing qa models (Chapter 4). I create canard: a dataset of 40,000 questions

asked in conversational contexts paired with corresponding human-authored (crowd-

sourced) stand-alone paraphrases. Example question-rewriting pairs are given in

Figure 1.3. I show that the task and dataset do not only challenge the ability of

models to resolve coreferences, but also resolve ellipses. A question such as “Why?”

is expected to be written as “Why did the publicity of Jerry Lee Lewis’ personal life

cause an uproar?”. Using canard, I develop and analyze models for the rewriting

tasks. Follow-up work has shown that answering conversational questions through

rewriting with models trained on canard improves the end-to-end qa accuracy

and sets new state-of-the-art results on the passage retrieval setup of qa (Vakulenko

et al., 2021) and on conversational semantic parsing (Chen et al., 2021).

1.2.4 Framework for Interactive Semantic Parsing with Natural Lan-

guage Feedback

Major progress in natural language processing has been made towards fully

automating challenging tasks such as question answering, translation, and summa-

rization. On the other hand, several studies have argued that machine learning

systems that can explain their own predictions (Doshi-Velez and Kim, 2017) and

learn interactively from their end-users (Amershi et al., 2014) can result in better

8

user experiences and more effective learning systems. I develop an interactive se-

mantic parsing framework that employs both explanations and interaction in order

to boost the end-to-end accuracy of text-to-SQL systems.

A large fraction of the data of interest in various domains are maintained

in structured formats (e.g., relational databases) that support performing complex

analytics and data manipulation operations through specialized query languages

(e.g., SQL). Natural language interfaces (nlis) make structured data accessible to users

with no/limited knowledge of such query languages by employing a semantic parser that

maps natural language utterances to the target query language. For example, in Figure 1.2

instead of expecting users to write complex SQL queries such as

SELECT first_name, last_name FROM candidates JOIN votes ON

candidates.candidate_id = votes.candidate_id GROUP BY candidate_Id

ORDER BY COUNT(*) DESC LIMIT 1

the user expresses the information they need in natural language as “What is the full name

of the candidate with the most votes?”, and the system generates the corresponding SQL

query automatically.

nlis have been the “holy grail” of natural language understating and human–

computer interaction for decades (Woods et al., 1972; Codd, 1974; Hendrix et al., 1978;

Zettlemoyer and Collins, 2005). However, early attempts in building nlis to databases

did not achieve the expected success due to limitations in language understanding capa-

bility (Androutsopoulos et al., 1995; Jones and Galliers, 1995). nlis have been receiving

increasing attention recently motivated by interest in developing virtual assistants, dialogue

systems, and semantic parsing systems. nlis to databases were at the forefront of this

wave with several studies focusing on parsing natural language utterances into executable

9

SQL queries (text-to-SQL parsing).

Most of the existing work on semantic parsing aims at directly translating the full

natural language input into a query at the first attempt (one-shot mapping). I show that

the majority of the mistakes made by recent neural text-to-SQL parsers are minor (e.g.,

“SELECT first_name” instead of “SELECT last_name”). As such, it is often feasible for

users to detect and suggest corrections for such mistakes if they are afforded a means of

providing precise feedback.

I introduce a framework for interactive semantic parsing in which users interact

with the parser through natural language feedback (Chapter 5). Additionally, to enable

users with no SQL knowledge to inspect the inferred queries, I develop a template-based

approach for explaining SQL queries in the form of intuitive natural language steps. With

those components put together, I create a crowdsourcing pipeline to construct splash:

a large dataset of SQL correction instances paired with a diverse set of human-authored

natural language feedback utterances.

Using splash, I pose a new nlp task: given a question paired with an initial er-

roneous SQL parse, to what extent can we correct the parse based on a provided natural

language feedback? I develop and evaluate a series of handcrafted and deep neural mod-

els for that task. nl-edit (Chapter 6)—the state-of-the-art model—-combines two key

ideas: (1) interpreting the feedback in the context of the other elements of the interaction

(database schema, question, and explanation of the initial query). (2) Explicitly generat-

ing edit operations to correct the initial query instead of re-generating the full query from

scratch. To do that, I design a simple SQL editing language (see Edit in Figure 1.2) whose

basic units are add/delete operations applied to different SQL clauses e.g.,

<SELECT> add last_name </SELECT>

10

which add the column last_name to the SELECT clause. I show that with only one turn of

feedback, nl-edit is able to fully correct up to 40% of the erroneous queries, boosting the

end-to-end parsing accuracy by more than 20%. Figure 1.2 demonstrates the end-to-end

operation of the framework.

Starting from Chapter 3, I present the details of the contributions I outline in this

chapter. In the next chapter, I provide background and review previous work relevant

to the contributions I present. I discuss relevant deep learning modules that I use to

develop my methods, and I discuss different paradigms/formats for question answering

including semantic parsing and text-to-SQL. As this thesis is centred around collaborative

human–computer question answering, I review previous work on human-in-the-loop nlp.

11

Chapter 2: Background and Related Work

In this Chapter, I provide essential background that I build on in the following chap-

ters. I start by introducing neural network architectures and models for nlp. qa methods

can be categorized according to the knowledge source used to find the answer as: qa over

raw text and qa over structured knowledge base. I review relevant details about each

category. As I aim at improving qa with human feedback, I also review related work on

human-in-the-loop nlp.

2.1 Deep Learning for nlp

Among other application domains, nlp has benefited from the recent advancements

in deep neural networks. It is hard to think of an nlp task whose state-of-the-art model is

something other than a neural network model. Throughout my thesis, I use neural models

for all the tasks I study. In this section, I introduce relevant deep learning components

and models that I build on.

2.1.1 Representations for nlp

Deep learning is based on computing vector representations (embeddings) of the

input data and using such representations for making predictions. In nlp, deep learning

methods aim to learn representations for words, sentences, documents, etc. For individual

12

words, vector representations are typically learned from raw text with various objective

functions including language modeling (Bengio et al., 2003), word prediction within a

short context window of surrounding words e.g., word2vec (Mikolov et al., 2013a), and

factorization of word co-occurrence matrices e.g., glove (Pennington et al., 2014).

For tasks that require operating on sequences of multiple words (e.g., sentences), the

embeddings of individual words are composed together to form a representation for each

sequence. Such representation can either be one vector that summarizes information about

the entire sequence or contextualized vector representations of the individual tokens that

are “aware of” the entire sequence.

A significant body of research has focused on developing (Mitchell and Lapata, 2008;

Socher et al., 2013; Kim, 2014; Iyyer et al., 2015, inter alia) and evaluating (Ettinger et al.,

2016, 2018, inter alia) composition functions. Besides simply averaging the embeddings of

individual words, the two other commonly used composition functions in nlp are recurrent

neural networks and transformers. I cover both of them in the following two sections.

2.1.2 Recurrent Neural Networks

Given a sequence of tokens,1 each is encoded individually as a vector (e.g., a glove word

embedding) a recurrent neural network (rnn) computes contextualized representations of

the input tokens as follows: Suppose the corresponding word embedidings of the tokens

in the sequence are x1, x2, . . . , xm. An rnn computes a hidden representation zi of each

token i as a function of the hidden representation of its previous token zi−1 and the word

1Recurrent networks and Transformers are general models for various data types. For simplicity,

I limit the discussion in this and the following section to natural language inputs (each is a sequence

of tokens).

13

embedding of xi

zi = σz(Wzzi−1 +Wxxi + bz) (2.1)

The hidden representations are then used to compute the contextualized output represen-

tations as

yi = σy(Wyzi + by) (2.2)

whereWz,Wx,Wy, bz, by, z0 are learned parameters and σz and σy are non-linear activation

function. The output vectors y1, y2, . . . , ym can be used directly as a representation of

the input sequence of combined (pooled) in a single vector by e.g., averaging them or

computing their element-wise maximum.

That formulation makes each yi aware of all tokens in the sequence up to token i,

but unaware of the following tokens in the sequence. In a bidirectional rnn the input

sequence is processed once from left to right (as in the formulation above) and once from

right to left, i.e.,

−→zi = σz(
−→
Wz
−−→zi−1 +

−→
Wxxi +

−→
bz)

−→yi = σy(
−→
Wy
−→zi +

−→
by)

←−zi = σz(
←−
Wz
←−−zi−1 +

←−
Wxxi +

←−
bz)

←−yi = σy(
←−
Wy
←−zi +

←−
by)

to produce two output embeddings for each token that are concatenated to form the final

representation yi = [−→yi ;←−yi] that is aware of the full sequence. Also, multiple layers of rnn

can be stacked on top of each other where the outputs of each layer y1, y2, . . . , ym are fed

as the inputs to the layer on top of it.

In Chapter 4, I use variants of rnn and bidirectional-rnn namely, long short-term

memory networks (lstm) and bilstm (Hochreiter and Schmidhuber, 1997). LSTMs follow

14

the same formulation as in Equations 2.1 and 2.2, but they apply additional transforma-

tions to the inputs and hidden representations to ease the training.

2.1.3 Transformers

rnns propagate information about token i sequentially to token j by updating the

hidden representations starting from zi to zj . In the Transformer model (Vaswani et al.,

2017), each token i directly accesses information about every other token in the input

through self-attention. Suppose the input tokens are initially represented with vectors x1,

x2, . . . , xm. A contextualized representation zi of the i-th token is computed as a weighted

sum of the value-encoding vj of all tokens in the sequence

zi =
m∑
j=1

αijvj (2.3)

where the weights αij = softmax(ei1, ei2, . . . , eim) and the unnormalized scores eij are

computed as

eij =
qTi kj√
dk

(2.4)

In the two equations above, qi, ki and vi are the query-encoding, key-encoding and value-

encoding of the i-th token, respectively, and they are computed with linear transformations

of xi as qi = xiWQ, ki = xiWK , and vi = xiWV , where WQ, WK , and WV are learnable

parameters. dk is the dimensionality is the key (and query)-encodings.

Instead of computing one version of zi, Vaswani et al. (2017) proposed the idea of

multi-head attention in which H copies of zi are computed, each with a different set of

the learned parameters WQ, WK and WV . The H copies z1
i . . . zHi are then concatenated

to form the final vector zi which is then passed through a non-linear function (ReLU). To

ease the training process, the outputs are further passed through a residual connection (He

15

et al., 2016a) and a layer normalization (Ba et al., 2016). The final output yi is used as the

contextualized representation of each token i. Typically, multiple such layers are stacked

on top of each other where the output of one layer is fed as the input to the layer on top

of it, and the final yi is the output of the last layer.

2.1.4 Relation-Aware Transformer

The self-attention scores αij in Equation 2.3 can be viewed as scores of the related-

ness (syntactic, semantic, etc) between the token i and the token j. The types of those

relations and the interpretation of the assigned score are implicit in the model. That is

still useful as a well-trained model is expected to learn the relevant relations to the task at

hand. However, in some scenarios (Chapter 6 and Section 2.3.4), we might be interested

in incorporating preexisting relations in the transformer model besides the automatical-

ly/implicitly discovered relations via self-attention. For example, Shaw et al. (2018) show

that the relative position between token i and token j can be a useful information for some

tasks.

The relation-aware transformer (rat) (Shaw et al., 2018; Wang et al., 2020) is an

extension of the transformer model that allows for hard encoding preexisting relations be-

tween different tokens in the self-attention computation. Suppose for a particular task,

we have R types of relations that can hold between input tokens. rat learns a vector

representation (embedding) rt for each relation type t. For example, to add relative po-

sition information, we can define 12 relations for the relative positions {-5, -4, . . . , 0, 1,

. . . 5, Other}, and learn an embedding for each of them. The relation embeddings are

incorporated in Equations 2.3 and 2.4 as follows

16

zi =
m∑
j=1

αij(vj + rtype(i,j)) (2.5)

eij =
qTi (kj + rtype(i,j))√

dk
(2.6)

where type(i, j) returns the index of the relation type that holds between i and j. The

general framework presented in (Wang et al., 2020) learns a set of relation embeddings that

are used for Equation 2.5 and a different set for Equation 2.6. Throughout this thesis, I use

the same set of embeddings in both equations (following Wang et al. (2020)’s application

of rat to text-to-SQL parsing).

2.1.5 Sequence-to-Sequence Models

Many tasks in nlp involve generating an output sequence using an input sequence

such as machine translation, abstractive summarization, and dialog response generation.

The input and output sequences are often sequences of tokens, but they can also be mul-

tiple dialog utterances (Serban et al., 2016), grammar production rules (Yin and Neubig,

2017), waveforms (van den Oord et al., 2016), etc. Sequence-to-sequence (seq2seq) mod-

els (Sutskever et al., 2014) are a general class of neural models for such tasks.

A basic seq2seq model operates by encoding the input sequence and then generate

the output sequence (decoding) one item (token) at a time by conditioning on the input

encoding and the previously generated output tokens. To mitigate the potential degener-

ation of the output sequence as a result of the greedy decoding approach (the most likely

token is selected at each step), a beam search decoder is used in which multiple partial

outputs (a beam) are maintained and scored throughout the generation process.

17

s1

Transformer Encoder

s2 sm....

....

T1 T2 T3
Decoder Layer

Self-Attention

Source:

Target Prefix:

Encoder-Attention

Decoder State

Figure 2.1: Transformer Sequence-to-Sequence Architecture

LSTMs (Section 2.1.2) and transformer networks (Section 2.1.3) are the typical

choices for encoding the input and the partial output sequences. Also, attending on the

encoding of the relevant individual input tokens (Bahdanau et al., 2015) while generating

each output token is often employed. To enable copying tokens from the input in certain

decoding steps, a copy mechanism (Vinyals et al., 2015; See et al., 2017) that alternates

between copying and generating tokens is used.

Figure 2.1 explains how the transformer model is extended to the seq2seq setup.

The input (source) is encoded with a multi-layer transformer exactly the same way as

explained in Section 2.1.3. The target output is generated one token at a time. With

a decoded prefix (a special start token in the first step), each decoder layer applies the

self-attention computations in Equation 2.5 and 2.6. The obtained representation of the

last token is used to do an encoder-decoder attention: Using Equation 2.5 and 2.6, key and

value-encodings are computed with linear transformations of the source representations and

a query-encoding is computed for the decoder representation. The resulting representation

of that process is the decoder state that is used to decide the next word in the target.

seq2seq models are typically trained with teacher-forcing: At training time, the

gold (rather than the inferred) prefix of the target is what is used to compute the decoder

18

state. In some seq2seq tasks (e.g. summarization, grammatical error correction, sentence

splitting, etc.), there could be a large overlap between the input and the output. Recent

models (Malmi et al., 2019; Panthaplackel et al., 2020; Stahlberg and Kumar, 2020) cast

text generation as a text editing task where target texts are reconstructed from inputs

using several edit operations.

2.1.6 Pre-Trained Transformers

Neural architectures that are pre-trained with language modeling objectives are

steadily pushing the state-of-the-art results on several nlp tasks (Devlin et al., 2019; Rad-

ford et al., 2019; Rogers et al., 2021). The basic idea of pre-trained architectures is that

the inputs to many nlp tasks can be cast as a sequence of tokens that is encoded with one

network whose parameters are pre-trained on a large amount of raw text with a language

modeling objective. A pre-trained architecture is then incorporated for a particular task

(e.g., sentiment analysis) by using the task training data to train a lightweight task-specific

prediction layer that sits on top of the pre-trained architecture. The pre-trained param-

eters can also be fine-tuned on the task-specific training set. The most commonly used

pre-trained architecture is the transformer model (Section 2.1.3).

One example of such architectures is bert (Devlin et al., 2019). bert is a trans-

former model that is trained on raw text jointly with a masked language modeling objective

(predict a masked word within a span) and a next-sentence prediction objective. To com-

pute bert representations for an input text (e.g., a movie review in a sentiment analysis

task), it should be tokenized with WordPiece tokenization (Wu et al., 2016) and a special

token [CLS] is prepended to it. In addition to the contextualized vector representations

that bert produces for each token, the corresponding representation to the [CLS] to-

19

ken can be used as a summary of the whole input text. bert is also used for encoding

multiple sequences (e.g., two sentences in a paraphrase detection task) by simply concate-

nating them together with a special separator token ([sep]) in between to distinguish the

boundaries of each sequence. bert comes in two sizes: bert-base which has 12 layers,

12 attention heads, and hidden representations of size 768, and bert-large which has 24

layers, 16 attention heads, and hidden representations of size 1024.

Improving the pre-training approach (e.g., by training on a different corpus or using

different objectives) is an active research topic. roberta (Liu et al., 2019b) is an improved

variant of bert that is trained for more iterations. Other variants included domain specific

models, e.g., scibert (Beltagy et al., 2019), models for languges other than English (An-

toun et al., 2020; Martin et al., 2020), and multilingual models (Lample and Conneau,

2019). Task-specific pre-training has also been explored, e.g., for dialogue response gener-

ation (Zhang et al., 2020), semantic parsing (Yu et al., 2021a,b; Deng et al., 2021), and

seq2seq tasks (Lewis et al., 2020).

2.2 Question Answering over Raw Text

Given a question q and a a set of potential evidence documents D, the general

structure of an open-domain qa system consists of three components:

1. A retrieval component that decides a narrow subset D′ of D given q.

2. A reading comprehension component that jointly analyzes q and each document

in D′ and explicitly produces relevant spans (e.g., answer candidates) or implicitly

encodes spans relevance to q in an intermediate representation.

3. An answer generation component that aggregates the outputs of the reading com-

20

Document: Anna Vissi

In May 1983, she married Nikos Karvelas, a composer, with whom she collabo-

rated in 1975 and in November she gave birth to her daughter Sofia. After their

marriage, she started a close collaboration with Karvelas. Since 1975, all her

releases ...

Question What happened in 1983?

Figure 2.2: A reading comprehension examples. The answer is extracted as a span

from the document (underlined).

ponent to synthesize the final answer.

Existing work has explored several variations for each component and different strate-

gies for training them jointly and separately (Chen et al., 2017; Wang et al., 2018b; Das

et al., 2019; Clark and Gardner, 2018; Swayamdipta et al., 2018, inter alia).

For example, the drqa system (Chen et al., 2017) adopts a pipeline approach in

which the retrieval component ranks Wikipedia articles according to their TF-IDF (Salton

and Buckley, 1987) matching with the question. The paragraphs of the top-5 ranked

documents construct D′. The reading components is a neural network model (detailed

below) that assigns a score to each span in the given paragraph. The span with highest

score over all paragraphs in D′ is outputted as the answer.

21

2.2.1 Machine Reading Comprehension

Ample research has focused on extractive machine reading comprehension (mrc).

Several large datasets (Rajpurkar et al., 2016; Joshi et al., 2017; Yang et al., 2018; Dua

et al., 2019; Rodriguez et al., 2019) and neural models (Seo et al., 2017; Yu et al., 2018a;

Devlin et al., 2019) have been proposed.

In the mrc setup, a question q ofm tokens q1, q2, . . . , qm together with a document d

of n tokens t1, t2, . . . , tn are given as input to a model that output a span of the paragraph

tokens as the answer (Figure 2.2). qa accuracy is often measured using two metrics that

compare the predicted answer span and the gold span—(1) exact match (em) and (2)

unigram overlap measured by the macro-averaged F1 score (Rajpurkar et al., 2016).

One intuitive model for mrc is DocumentReader of the drqa system (Chen et al.,

2017) in which an answer start/end score is estimated for each token in d. The span with

largest start and end scores is produced as the answer. The model starts by encoding each

token i in d as a vector t̃i that is constructed by concatenating its pre-trained glove (Pen-

nington et al., 2014) word embedding and indicator features of its part-of-speech tag,

named-entity tag and whether the token has a matching token in the question. The to-

ken encodings t̃1, t̃2, . . . t̃n are fed to a multi-layer bidirectional long short-term memory

network (bilstm) (Section 2.1.2) whose output representations t1, t2, . . . tn are used as

contextualized embeddings of the document tokens. Question tokens are encoded using

their corresponding glove embeddings and fed through another bilstm whose output

representations are averaged to compute a vector encoding of the question q.

To estimate a score for each span in d, each token i is assigned a score for being a

22

start/end of the answer span as

Start(i) = exp(ti
TWstartq);

End(i) = exp(ti
TWendq), (2.7)

where Wstart and Wend are trained parameters. The span t[i,j] with the largest Start(i)×

End(j) is predicted as the answer. The model is trained by maximizing the log likelihood

of the gold spans.

Pre-trained transformers (Section 2.1.6) have introduced significant accuracy boosts

on several mrc benchmarks (Devlin et al., 2019; Alberti et al., 2019; Beltagy et al., 2020).

For example, bert is used for mrc by simply appending the document tokens to the

question tokens and feeding them through the pre-trained network. The network produces

a vector ti encoding of each token ti in the document conditioned on the other tokens and

the question. A span t[i,j] in the document is assigned a score Start(i)× End(j), where

Start(i) = exp(ti
Twstart);

End(i) = exp(ti
Twend), (2.8)

and wstart and wend are the only parameters trained from scratch on mrc-specific datasets.

2.2.2 Conversational Reading Comprehension

In information-seeking dialogs, e.g., personal assistants, users interact with a qa

system by asking a sequence of related questions. The qa system needs to link questions

together to resolve the conversational dependencies between them: each question needs to

be understood in the conversation context. For example, the system cannot answer the

question ‘Did she have any other children?’ without context that tells what ‘she’ refers to

and ‘which child’ is already mentioned.

23

Document: Anna Vissi

In May 1983, she married Nikos Karvelas, a composer, with whom she collabo-

rated in 1975 and in November she gave birth to her daughter Sofia. After their

marriage, she started a close collaboration with Karvelas. Since 1975, all her

releases ...

Question 1: What happened in 1983?

Answer 1: she married Nikos Karvelas

Question 2: Did they have any children?

Answer 2: In November she gave birth to her daughter Sofia

Question 3: Did she have any other children?

Answer 3: Cannot answer.

Figure 2.3: Conversational Reading Comprehension Example from QuAC

Existing research introduces datasets and models for conversational qa under various

setups including retrieval-only (Dalton et al., 2019), reading-only (Choi et al., 2018; Reddy

et al., 2019; Qu et al., 2019b; Huang et al., 2019), open-domain (Elgohary et al., 2018) and

qa over structured knowledge base (Saha et al., 2018; Guo et al., 2018; Yu et al., 2019b,a).

In conversational reading comprehension, a single pre-specified document is used to answer

all questions with potentially unanswerable questions that models need to identify as part

of the task.

Models for conversational reading comprehension are typically trained on a large

dataset of questions, each is paired with its gold answer, an evidence document, and a con-

24

versation context (previous questions and their answers). For instance, Reddy et al. (2019)

tweaked the DocumentReader model (described in Section 2.2.1) by simply prepending

the conversation context to the question. Alternatively, Huang et al. (2019) and Qu et al.

(2019a) explicitly model the interaction between the conversation history, the question and

reference documents.

In this thesis, I use two datasets for conversational qa, quac (Choi et al., 2018)

and qblink (Elgohary et al., 2018)2. The construction of quac involves using a pair of

workers—a “student” and a “teacher”—to ask and respond to questions. The “student” asks

questions about a topic based on only the title of the Wikpedia article and the title of the

target section. The “teacher” has access to the full Wikipedia section and provides answers

by selecting text that answers the question. With this methodology, quac gathers 98k

questions across 13,594 conversations. Figure 2.3 shows an example on such setup from

quac.

QBLink is a conversational qa dataset for the open-domain setup in which questions

in the same conversation are linked by shared entities and relations that connect those

entities. For example a question whose answer is ‘Bitcoin’ is followed by a question that

asks about the ‘inventor of Bitcoin’. A full example in shown in Figure 2.4. In that setup,

qa systems need to model entities and relations in both their retrieval and the reading

components. QBLink consists of 18,000 question sequences, each sequence consists of three

naturally occurring human-authored questions (totaling around 56,000 unique questions)

collected from previously asked questions in Quiz Bowl tournaments.

In Chapter 4, I approach cqa by rewriting questions in stand-alone form. Both Ras-

2Elgohary et al. (2018) present two contributions: (1) The dataset (work done by Chen Zhao)

and (2) Models (my contributions) which I present in Chapter 4.

25

Lead-in: Only twenty-one million units in this system will ever be created. For

10 points each:

Question 1: Name this digital payment system whose transactions are

recorded on a “block chain”.

Answer: Bitcoin

Question 2: Bitcoin was invented by this person, who, according to a dubious

Newsweek cover story, is a 64-year-old Japanese-American man who lives in

California.

Answer: Satoshi Nakamoto

Question 3: This online drugs marketplace, Chris Borglum’s one-time favorite,

used bitcoins to conduct all of its transactions. It was started in 2011 by Ross

Ulbricht using the pseudonym Dread Pirate Roberts.

Answer: Silk Road

Figure 2.4: An example sequence of questions from QBLink. The lead-in and ques-

tion 1 are asking about the same object/answer. The subject of question 2 is the

same as the object of question 1. All questions are about a narrow topic, Bitcoin.

togi et al. (2019) and Su et al. (2019) introduce utterance rewriting datasets for dialog state

tracking. Rastogi et al. cover a narrow set of domains and the rewrites of Su et al. are

based on Chinese dialog with two-turn fixed histories. In contrast, the conversational ques-

tion rewriting dataset I introduce in Chapter 4 has histories of variable turn lengths and

26

covers more topics. Training question rewriting using reinforcement learning with the task

accuracy as a reward signal is explored in retrieval-based qa (Liu et al., 2019a) and in

mrc (Buck et al., 2018). A natural question is whether reinforcement learning could learn

to retain the necessary context to rewrite questions in cqa. My dataset could be used to

pre-train a question rewriter that can further be refined using reinforcement learning.

2.3 Question Answering over Structured Databases

Data can already exist in a structured format, e.g., as relational tables or in the

form of entities (‘Anna Vissi’, ‘Nikos Karvelas’, ‘1983’) linked with relations (‘spouse’,

‘marriage_date’). Such structures often have their own formal query languages (a query is

also referred to as an executable logical form) that are able to perform complex processing

over the data and compute/retrieve an output result (e.g., SQL, SPARQL) .

qa systems over structured data either generate a logical form (semantic parsing)

whose execution result answers the question (Berant et al., 2013; Zhong et al., 2017) or use

information extraction methods that link each input question to a set of knowledge base

entities and score their related entities based on their relevance to the relations mentioned

in the question (Yao and Van Durme, 2014; Dong et al., 2015; Xu et al., 2016). In this

work, I focus on the former and review recent neural models for logical form generation

then, I provide specific details for parsing questions into SQL queries.

2.3.1 Semantic Parsing Models

seq2seq models (Section 2.1.5) are used for semantic parsing where the question is

used as the input sequence and the (linearized) logical form the the output to be gener-

27

ated (Dong and Lapata, 2016; Iyer et al., 2017; Zhong et al., 2017). A copy mechanism is

often employed as values in the question such as ‘Anna Vissi’ and ‘1983’ in ‘who did Anna

Vissi marry in 1983?’ also appear in the logical form, e.g.,

λx : marrige_date(x, “Anna Vissi”, 1983)

Token-level seq2seq models struggle as the logical forms to be generated become

more complex. Since, by definition, logical forms adhere to specific syntax, existing research

considers augmenting the generation process with syntactic knowledge (Rabinovich et al.,

2017; Yin and Neubig, 2017; Su et al., 2017; Yu et al., 2018b). For example, Yin and

Neubig (2017) develop a general syntax-guided generation scheme is which logical forms are

replaced with their corresponding abstract syntax trees which are linearized to a sequence

of production rules each either comes from the underlying grammar of the target logical

forms or a terminal generation. Their model is then trained to generate such production

rules instead of individual tokens which guarantees that the outputs are syntactically-valid

and simplifies the generation process as much less decoding steps are needed to reach the

final output. Other work (Su et al., 2017; Yu et al., 2018b) decompose the generation

process into multiple components that are pre-defined based on the syntax of the target

logical forms.

2.3.2 Semantic Parsing with Synthetic Data

Semantic parsing systems have frequently used synthesized data to alleviate the chal-

lenge of labeled data scarcity. In their semantic parser overnight work, Wang et al. (2015)

proposed a method for training semantic parsers quickly in a new domain using synthetic

data. They generate logical forms and canonical utterances and then paraphrase the canon-

28

ical utterances via crowd-sourcing. Several other works have demonstrated the benefit of

adopting this approach to train semantic parsers in low-resource settings (Su et al., 2017;

Zhong et al., 2017; Cheng et al., 2018; Shah et al., 2018; Xu et al., 2020). Another line

of work has proposed using synthesized data to adapt semantic parsing (Jia and Liang,

2016; Yoo et al., 2019; Campagna et al., 2019) and task-oriented dialogues (Campagna

et al., 2020) models to new domains. Most recently, synthetic data was used to continue

pre-training language models (Section 2.1.6) for semantic parsing tasks (Herzig et al., 2020;

Yu et al., 2021a,b). In Chapter 6, I build on this line work and generate synthetic data

automatically without human involvement to simulate user feedback on erroneous semantic

parses. I use that synthetic data to improve the accuracy on my semantic parse correction

models.

2.3.3 Semantic Parsing in Conversational Context

Semantic parsing often backs conversational agents in which related questions are

asked sequentially. Existing work study the problem of inducing semantic parses for utter-

ances in conversational contexts (Zettlemoyer and Collins, 2009; Iyyer et al., 2017; Suhr

et al., 2018; Yu et al., 2019b,a; Zhang et al., 2019; Andreas et al., 2020). Two modeling

aspects are studied in that task: (1) how to interpret an utterance in a given context

and (2) how to reuse generated parses for previous utterances as utterances in the same

conversations are often highly related. For example, Zhang et al. (2019) add a copy from

the previous parse mechanism to a seq2seq parsing model.

In Chapter 5, I introduce the task of semantic parse correction with natural language

feedback. While conversational semantic parsing focuses on modeling conversational de-

pendencies between questions, the task I introduce evaluates the extent to which models

29

can interpret and apply feedback on the generated parses. In Section 5.4, I empirically

confirm the distinction between the two tasks.

2.3.4 Text-to-SQL Parsing

In Chapters 5 and 6, I focus on one form of structured data, namely relational

databases where the logical form to be generated is SQL (also referred to as text-to-SQL

and natural language interfaces to databases (Androutsopoulos et al., 1995)).

Several datasets of natural language utterances (questions) with corresponding SQL

annotations are presented. Unlike other datasets that are small scale (e.g., GeoQuery (Popescu

et al., 2003), domain specific (e.g., ATIS (Iyer et al., 2017)) and limited to only simple

SQL (e.g., WikiSQL (Zhong et al., 2017)), Yu et al. (2018c) construct spider—a large

dataset of more than 10,000 utterance-SQL pairs covering 200 databases in 138 domain.

spider contains SQL queries of varying complexities including nested queries, group by

and join operations. A single sample from spider is a triplet of utterance, database

schema structure (table/column names and primary/foreign keys) and the corresponding

SQL annotation. An example is shown in figure 2.5. Large-scale conversational text-to-

SQL datasets, namely sparc and Cosql, based on spider are introduced in (Yu et al.,

2019b) and (Yu et al., 2019a).

spider adopts a splitting by database scheme (Finegan-Dollak et al., 2018) where

there are no shared databases between its training, development and testing splits. Hence,

models not only need to generalize to unseen utterances, but also need to generalize to

unseen databases (cross-domain generalization). The primary evaluation metric used in

spider is the exact match accuracy between the predicted and gold parses. Instead of

string matching the parses, Yu et al. provide a script that ignores the ordering infor-

30

Table 1: instructor – Columns: id, name, department_id, salary, ...

Table 2: department – Columns: id, name, building, budget, ...

Foreign keys: (instructor.department_id, department.id)

Question: What are the name and budget of the departments with average instructor

salary greater than the overall average?

SQL: SELECT T2.name, T2.budget FROM instructor as T1 JOIN department

as T2 ON T1.department_id = T2.id GROUP BY T1.department_id HAVING

avg(T1.salary) > (SELECT avg(salary) FROM instructor)

Figure 2.5: A text-to-SQL example from spider. Primary keys are underlined

mation (e.g., ‘SELECT first_name, last_name’ is the same as ‘SELECT last_name and

first_name’) that does not affect the correctness of the generated parses.

It is worth noting that the exact match measure can introduce false negatives as

it does not really compare the semantics of the queries. For instance, it fails to match

SELECT name FROM people WHERE age > 30 and SELECT name FROM people WHERE age

>= 31. Alternatively (or additionally), existing work (Suhr et al., 2020; Deng et al., 2021)

also compares the denotations (execution results) of two queries to decide if they are

semantically equivalent or not. However, the execution accuracy can also be misleading as

it can introduce false positives—two semantically different queries can produce the same

result on a particular database. Most recently, Zhong et al. (2020) proposed to address

the false positives problem by automatically generating multiple different databases (a test

suite) that would distinguish semantically different queries when executed against at least

31

one of them.

Suhr et al. (2020) pointed out limitations with spider and proposed more realistic

evaluation setups. Most of the time, spider utterances explicitly mention the colum-

n/table names that should appear in the inferred query. Also, the queries and databases

used for training and testing are of similar structures and complexities. Suhr et al. (2020)

proposed a cross-dataset evaluation setup in which models are trained on spider and

evaluated on other datasets (e.g., ATIS and GeoQuery). More recently, Deng et al. (2021)

created a modified test set in which they avoid mentioning the exact form of the colum-

n/table names in the input utterance to be parsed.

Both token-level seq2seq (Dong and Lapata, 2016; Zhong et al., 2017; Zhang et al.,

2019) and syntax-guided models have been applied to text-to-SQL (Yu et al., 2018b; Dong

and Lapata, 2018; Shin et al., 2019). Another line of modeling has focused on better

encoding the input schema (Bogin et al., 2019) and linking schema items to the given

utterance (Guo et al., 2019; Wang et al., 2020). Also, Yin et al. (2020); Yu et al. (2021a);

Deng et al. (2021) introduced customized approaches for better pre-training transformer

models as a means to improve the text-to-SQL parsing accuracy.

In Chapters 5 and 6, I use four text-to-SQL parsers for my experiments: seq2struct (Shin,

2019) encodes the schema and the input utterance as a graph and employs a variant of

self-attention that encodes preexisting relations between columns, tables and the tokens

on the input utterance. For the decoder, they use the syntax-guided decoder of Yin and

Neubig (2017). editsql (Zhang et al., 2019) computes an initial encoding of the utter-

ance and the schema using bert , then it computes updated representations by passing the

output of bert through bilstms (Section 2.1.2) combined with self-attention. They use

an lstm-based decoder that generates a SQL query one token at a time (autoregressive).

32

tabert (Yin et al., 2020) is a pre-trained transformer that computes a joint encoding of an

utterance and a set of tables. For text-to-SQL, it is paired with the syntax-guided decoder

of Yin and Neubig (2017). RAT-SQL (Wang et al., 2020) encodes the utterance and

the schema first with bert then, it passes the output of bert through a relation-aware-

transformer (Section 2.1.3) to hard-code relations between tables, columns and tokens of

the input utterance. It also uses the syntax-guided decoder of Yin and Neubig (2017).

2.4 Human-in-the-Loop nlp

The standard machine learning pipeline consists of three steps: (1) annotators con-

struct a training dataset, (2) a model is trained, and (3) the model is deployed to make

predictions. Previous work in nlp study how to best leverage human abilities/collective

intelligence in each of those steps.

2.4.1 Humans as Annotators

Active learning (Settles, 2010) is applied for iteratively selecting useful examples

to provide to human annotators in various nlp tasks (Tang et al., 2002; Olsson, 2009;

Ambati et al., 2010). To enable crowdsourcing complex annotations for semantic role

labeling, FitzGerald et al. (2018) study simplifying the annotation process by posing simple

question to the workers (e.g., “who proposed something?” whose answer is the agent of

the predict “proposed”). Another line of related work is avoiding artifacts in datasets

(that often encourage models to learn undesirable shortcuts rather than the intended task)

by having human annotators play the role of an adversary against a baseline model that

detects/exploits artifacts they produce while generating training examples (Zellers et al.,

33

2018; Wallace et al., 2019; Dasigi et al., 2019; Dua et al., 2019).

2.4.2 Humans as Teachers

Previous work study having humans as teachers who provide implicit or explicit feed-

back to improve models over time. Agichtein et al. (2006) use clickthrough and browsing

information to improve search engine ranking. Werling et al. (2015) study deploying an

untrained system and keep querying realtime crowdworkers about uncertain parts of the

output (e.g., the name-entity tag of a word) until the system is confident about the out-

put. Crowdworkers’ responses are used to improve the model over time, and hence reduce

the reliance on the crowdworkers. Iyer et al. (2017) consider the the task of text-to-SQL

parsing. In their setup, for an input question the model’s generated SQL is executed and

a human judges the results as correct/wrong. SQLs corresponding to correct judgments

are added as new examples to the training data and correct SQLs are crowdsourced for

the mispredicted examples and also added to the training data. The model is retrained

peroidically.

Reinforcement learning is a natural framework for incorporating human feedback to

improve an initial model over time. Nguyen et al. (2017) study improving machine trans-

lation systems with human rating feedback (e.g., star rating). Liu et al. (2018) improve

task-oriented dialog systems by having humans provide the correct dialog actions to the

model or provide rating feedback (e.g., thumb up on successful task completion). Ling

and Fidler (2017) consider the task of caption generation for images. They take natural

language feedback on the generated caption and use it to improve the model with rein-

forcement learning. Their model learns to turn the natural language feedback into numeric

rewards assigned to the phrases of generated captions. Li et al. (2017a) consider learn-

34

ing a qa model over textual assertions from numeric reward and/or textual feedback in

a synthetic setup where the questions, assertions and the possible textual feedbacks are

automatically generated. Further, the feedback provider (human teacher) is assumed to

know the correct answer and the provided feedback is limited to indicating whether the

predicted answer matches the gold answer or not. In a similar synthetic environment in

which a qa model would need assistance with predefined scenarios (e.g., the input question

contains misspelled words), Li et al. (2017b) use reinforcement learning to learn a policy

that decides when to ask for assistance (e.g., ask for a rephrasing of a misspelled ques-

tion). The policy is optimized using positive rewards received when providing a correct

answer and a negative reward (cost) received when asking for assistance. Lawrence and

Riezler (2018) improve a text to Overpass (query language for OpenStreetMap) semantic

parser using historic logs of human feedback on generated parses. The feedback is col-

lected using a graphical user interface that maps an Overpass query to predefined blocks.

Humans provide feedback by marking each block as correct/incorrect which is translated

into token-level positive/negative reward and used afterwards to refine an initial parser.

2.4.3 Humans as Collaborators

At prediction time, humans are involved as collaborators who work with a model

to improve the output result. One form of human involvement at prediction time is an-

swering followup clarification questions about an underspecified/ambiguous question in qa

settings (Rao and Daumé III, 2018; Saeidi et al., 2018; Xu et al., 2019; Yao et al., 2019a).

The challenge addressed in that line of work is deciding what information is missing, how

to ask about it and how to use the provided answers to make the final prediction.

35

2.4.3.1 Interactive Semantic Parsing

More related to this thesis, humans are also involved at prediction time to refine

the initial outputs of semantic parsing models. A growing body of recent work demon-

strates that semantic parsing systems can be improved by including users in the parsing

loop—giving them the affordance to examine the parses, judge their correctness, and pro-

vide feedback accordingly. He et al. (2016b) ask simplified questions about uncertain

dependencies in CCG parsing and use the answers as soft constraints to regenerate the

parse. Both Li and Jagadish (2014) and Narechania et al. (2021) generate SQL queries

and present them in graphical user interfaces that humans can control to edit the initial

logical forms. Similarly, Su et al. (2018) enable users to edit inferred RESTful API calls

through a graphical user interfaces. Gur et al. (2018) ask specific predefined multiple

choice questions about a narrow set of predefined parsing errors. This interaction model

together with the synthetically generated erroneous parses that are used for training can

be appropriate for simple text-to-SQL parsing instance as in WikiSQL, which was the only

dataset used for evaluation. Yao et al. (2019b) ask yes/no and multiple-choice grammar-

based questions (e.g., “Does the system need to return average of values in temperature?”)

about SQL components (e.g., “SELECT avg temperature”) while generating a SQL parse

one component at a time for an input utterance. Labutov et al. (2018) study correcting

semantic parses with natural language feedback, but they consider only the domains of

email and biographical research.

The work I present in Chapters 5 and 6 falls under the category of collaborative

human–machine nlp. A distinct characteristic of my work is that it aims at a more

realistic and natural involvement of humans. I do not assume that humans know the

36

execution results of the predicted parses, but rather humans engage in a conversation with

the machine until the correct result is obtained. Another unique characteristic to my work

is the reliance on natural language as the interface between the human and the machine.

While processing the natural language interactions of humans is by itself a challenging

language understanding problem, natural language gives humans more flexibility, richness

and naturalness in their interactions with machines.

In the following fours chapters, I present the details of the contributions of this thesis.

I start in next chapter with demonstrating the effectiveness of using natural language as

a source of learning. I use naturally occurring Spanish translation of English text to train

general-purpose sentence representations.

37

Chapter 3: Learning Paraphrastic Representations with Bilingual Su-

pervision

The effectiveness of new representation learning (Section 2.1.1) methods for distri-

butional word representations (Baroni et al., 2014) has brought renewed interest to the

question of how to compose semantic representations of words to capture the semantics

of phrases and sentences. These representations offer the promise of capturing phrasal or

sentential semantics in a general fashion, and could in principle benefit any nlp appli-

cations that analyze text beyond the word level, and improve their ability to generalize

beyond contexts seen in training. As this thesis studies human–computer communication

(interaction) through natural language, in this chapter I demonstrate the richness and

cost-effectiveness of using naturally-occurring natural language supervision to learn vector

representations of sentences and phrases.

Wieting et al. (2016) recently showed that a simple composition architecture (vector

averaging) can yield sentence models that consistently perform well in semantic textual

similarity tasks in a wide range of domains, and outperform more complex sequence models

The work in this chapter is published as “Ahmed Elgohary and Marine Carpuat. 2016. Learn-

ing monolingual compositional representations via bilingual supervision. In Proceedings of the

Association for Computational Linguistics” (Elgohary and Carpuat, 2016).

38

(Tai et al., 2015; Kiros et al., 2015). Interestingly, these models are trained using ppdb, the

paraphrase database (Ganitkevitch et al., 2013), which was learned from bilingual parallel

corpora. In bilingual settings, models that capture the semantics of sentences are typically

only evaluated on cross-lingual transfer tasks such as cross-lingual document categorization

or machine translation (Hermann and Blunsom, 2014), which do not directly evaluate the

quality of the sentence-level semantic representations learned.

In this chapter, I directly evaluate the usefulness of modeling semantic equivalence

using compositional models of translated texts for detecting semantic textual similarity in

a single language. For instance, in addition to using translated texts to model cross-lingual

transfer from English to a foreign language, we can view text in the foreign language as

a semantic annotation of the English text, and evaluate the usefulness of the resulting

English representations. Compared to (Wieting et al., 2016), I avoid the intermediate

step of learning monolingual paraphrases, and train my models directly on the naturally-

occurring parallel text. I show that learning from bilingual supervision yields sentence

representations that outperform those learning with monolingual supervision on several

semantic textual similarity tasks.

3.1 Models

Following the bilingual model of Hermann and Blunsom (2014), and paraphrase

model of Wieting et al. (2016), representations for multi-word segments are built with

a simple bag-of-word additive combination of word representations, which are trained to

minimize the distance between semantically equivalent segments.

39

3.1.1 Learning Objective

I use the same learning objective of the bilingual composition model (bicvm) (Her-

mann and Blunsom, 2014). The goal is to learn a word embedding matrix W from a

training set of aligned (i.e., assumed to be semantically equivalent) pairs of multi-word

segments 〈x1, x2〉. Each of x1 and x2 is represented as a bag-of-words, i.e., a set of column

indices in W . Each aligned pair 〈x1, x2〉 is augmented with k randomly selected segments

that are not aligned to x1, and another k that are not aligned to x2. Given that augmented

example 〈x1, x2, x̄
1
1, ..., x̄

k
1, x̄

1
2, ..., x̄

k
2〉, the training objective is defined as follows:

Jbicvm(W) =
λ

2
||W ||2F +

∑
〈x1,x2,x̄1,x̄2〉

k∑
i=1

[δ + ||g(x1)− g(x2)||2 − ||g(x1)− g(x̄i2)||2]h+

[δ + ||g(x1)− g(x2)||2 − ||g(x2)− g(x̄i1)||2]h (3.1)

where g(x) =
∑

i∈xW:i, [.]h is the hinge function (i.e., [v]h = max(0, v)) whose

margin is δ, and λ is a regularization parameter.

3.1.2 Three Views of Semantic Equivalence

I compare three views of semantic equivalence (examples in Table 3.1):

Monolingual paraphrases are invaluable resources, but rarely occur naturally, and

creating paraphrase resources requires considerable effort (Ganitkevitch et al., 2013).

Parallel (Bilingual) sentences occur naturally and provide training examples that

are more consistent with downstream applications. However, they can be noisy due to

40

+

thus, in fact, we might say

that he hurried ahead of the

decision by our fellow member

as que podemos decir, de

hecho, que se adelanta la

decisión de nuestro colega

Bilingual

Sentences -

thus, in fact, we might say

that he hurried ahead of the

decision by our fellow member

señor presidente, la votación

sobre sellafield ha sido una

novedad en el parlamento europeo

+ by our fellow member by our colleague

- by our fellow member of the committee’s work
English

Paraphrases
+ slowly than anticipated slowly than expected

+ by our fellow member de nuestro colega diputado

- by our fellow member miles de personas de todo

+ book and buy airline tickets reserva y adquisición de billetes

+
the air fare advertised should

show

el precio del billete anunciado

deberá indicar

Bilingual

Paraphrases

+
a book by the american

writer noam

un libro del escritor norteamericano

noam

Table 3.1: Positive and negative examples for each of the three types of supervision

41

Condition # Examples Avg. Length Provenance

Bilingual Sentences 1.9M 28 Europarl-v7

Bilingual phrases 3M 5 + Moses phrase extraction

Monolingual phrases 3M 3 PPDB XL

Table 3.2: Sources of the three types of semantic equivalence.

automatic sentence alignment, and bag-of-word representations of sentence meaning are

likely to be increasingly noisier as segments get longer.

Bilingual phrases (phrasal translations) might provide a tighter definition of

semantic equivalence than longer sentence pairs, but phrase pairs have to be extracted

automatically based on word alignments, an automatic and noisy process.

For bilingual sentences, I use the English-Spanish corpus from Europarl-v7 (Koehn,

2005) and for the monolingual paraphrases I use the XL distribution of ppdb which con-

tains three million pairs. To extract bilingual phrases, I run the phrase extraction imple-

mentation of Moses (Koehn et al., 2007) on the same English-Spanish corpus I use as the

bilingual sentences. Moses produces phrase pairs ranked by confidence. I limit the phrase

pairs I train with to the first three million. Table 3.2 summarizes the three sources of

training data.

42

3.2 Experiments

3.2.1 Evaluating Sentence Representations

Following Wieting et al. (2016), the models above are evaluated on four semantic

textual similarity (sts) benchmarks (Agirre et al., 2012, 2013, 2014, 2015), which provide

pairs of English sentences from different domains (e.g., tweets, news, web forums, image

captions) annotated with human judgments of similarity on a one to five scale. Addi-

tionally, the Sentences Involving Compositional Knowledge (sick) test set (Marelli et al.,

2014) provides a complementary evaluation. It consists of sentence pairs annotated with

semantic relatedness scores. While sts examples were simply drawn from existing nlp

datasets, sick examples were constructed to avoid non-compositional phenomena such as

multiword expressions, named entities and world knowledge.

For each test set, systems have to output a similarity score for each sentence pair.

I construct sentence-level embeddings by averaging the representations of words in each

sentence, and compute cosine similarity to capture the similarity between the two sentences

of each pair. Systems are then evaluated using the Pearson correlation between gold and

predicted scores.

3.2.2 Baselines and Reference Models

The paragram objective of Wieting et al. (2016) shares the same structure as the

bicvm objective I use (Equation 3.1), but differs in the nature of segments used to de-

fine semantic equivalence (monolingual paraphrases), the distance function used (cosine

distance rather than the Euclidean distance), the negative sampling strategies, and word

43

embeddings initialization and regularization. As reference points, I report evaluation re-

sults for the paragram embeddings as well as the glove embeddings (Pennington et al.,

2014) in which word embeddings were trained with a non-composition objective.

The paragram embeddings were initialized with high-quality but resource intensive

embeddings, and were regularized to penalize deviations from glove embeddings. For a

fair comparison with the bicvm objective (in which the embeddings are initialized ran-

domly), I use a simplified variant of paragraph objective, Jparagram in which the learned

embeddings are initialized randomly and are regularized with the frobenius norm (||W ||2F

in Equation 3.1).

3.2.3 Training and Hyper-parameters Tuning

At training time, I learn word embeddings for each combination of objective (Jbicvm

and Jparagram) and type of training examples (Table 3.2), using modified versions of the

open-source implementations provided by the authors of bicvm1 and paragram2. This

results in six model configurations. Each was trained for 10 epochs using tuned hyper-

parameters.

I use the SMT-europarl subset of STS-2012 as the development set. I consider mini-

batches of size {25, 50, 100}, δ ∈ {1, 10, 100} for Euclidean distance, δ ∈ {0.4, 0.6, 0.8} for

cosine distance, λ ∈ {1, 10−3, 10−5, 10−7, 10−9}, and k ∈ {1, 5, 10, 15}. To speed up the

tuning of Jparagram, I follow (Wieting et al., 2016) and limit the training to five epochs on

100k examples.

1https://github.com/karlmoritz/bicvm
2https://github.com/jwieting/iclr2016

44

Monolingual Phrases Bilingual Phrases Bilingual Sentences Reference Results

Jbicvm Jparagram Jbicvm Jparagram Jbicvm Jparagram Paragram GloVe

MSRpar 0.28 0.42 0.54 0.38 0.54 0.36 0.44 0.47

MSRvid 0.33 0.55 0.71 0.38 0.71 0.19 0.77 0.64

SMT-eur 0.39 0.41 0.49 0.46 0.47 0.47 0.48 0.46

SMT-news 0.40 0.50 0.59 0.40 0.58 0.38 0.63 0.50

OnWN 0.52 0.57 0.64 0.62 0.46 0.62 0.71 0.55

2012 Avg 0.39 0.49 0.59 0.45 0.54 0.41 0.61 0.53

headline 0.56 0.66 0.70 0.58 0.66 0.61 0.74 0.64

OnWN 0.55 0.53 0.75 0.34 0.48 0.25 0.72 0.63

FNWN 0.35 0.29 0.41 0.32 0.25 0.16 0.47 0.34

2013 Avg 0.49 0.49 0.62 0.41 0.46 0.34 0.58 0.42

deft forum 0.35 0.47 0.51 0.36 0.36 0.33 0.53 0.27

deft news 0.59 0.68 0.77 0.59 0.76 0.58 0.75 0.68

headline 0.56 0.63 0.73 0.58 0.67 0.58 0.72 0.60

images 0.58 0.73 0.73 0.59 0.66 0.49 0.80 0.61

OnWN 0.65 0.62 0.80 0.55 0.55 0.47 0.81 0.58

tweet news 0.59 0.66 0.73 0.64 0.56 0.69 0.77 0.51

2014 Avg 0.55 0.63 0.71 0.55 0.59 0.52 0.73 0.54

forums 0.35 0.42 0.55 0.48 0.50 0.45 0.66 0.31

students 0.66 0.66 0.73 0.73 0.65 0.69 0.77 0.63

headline 0.64 0.60 0.79 0.64 0.73 0.66 0.76 0.62

belief 0.46 0.71 0.68 0.67 0.48 0.61 0.77 0.41

images 0.52 0.71 0.75 0.62 0.67 0.56 0.82 0.68

2015 Avg 0.53 0.63 0.70 0.63 0.59 0.60 0.76 0.53

SICK 0.53 0.62 0.66 0.57 0.63 0.54 0.72 0.66

Table 3.3: Pearson correlation scores obtained on the English sts sets (with per year

averages) and on semantic-relatedness task sick. The left columns report results

based on new representations learned in this work, while the two rightmost columns

report reference results from prior work (Wieting et al., 2016).

45

3.3 Results

Table 3.3 reports the Pearson correlation for each approach and dataset.

3.3.1 Bilingual phrases yield the best models in controlled settings

Overall, the best representations are obtained using bilingual phrase pairs and the

Jbicvm objective. They produce the highest correlation score among all compositional

models for all tasks, except for one subset of STS-2015.

The best objective for a given type of training example varies: Jparagram generally

yields higher correlation scores with monolingual phrases, while Jbicvm performs better

with bilingual examples. Bilingual phrases seem to benefit from larger number of randomly

selected negative samples and from using the Euclidean distance rather than cosine dis-

tance. The best bilingual compositional representations are better than non-compositional

glove , but worse than compositional paragram. However, paragram initialization

requires large amounts of text and human word similarity judgments for tuning (Wieting

et al., 2015), while our models were initialized randomly.

3.3.2 Bilingual sentences vs. bilingual phrases

Why do bilingual phrases outperform the bilingual sentences they are extracted

from? In this section, I verify that this is not explained by systematic biases in the

distribution of training examples.

First, Table 3.4 shows that bilingual sentences have the smallest ratios of under-

trained words, and are therefore not penalized by rare words more than bilingual phrases.

Further, more than 80% of the words that appear in both bilingual sentences and bilingual

46

Dataset
Monolingual

Phrases

Bilingual

Phrases

Bilingual

Sentences

2012 Avg 0.15 0.17 0.09

2013 Avg 0.16 0.17 0.11

2014 Avg 0.19 0.22 0.11

2015 Avg 0.15 0.19 0.11

SICK 0.2 0.25 0.15

Table 3.4: Undertrained word ratios (ratio of tokens seen fewer than 100 times

during training) are uncorrelated with performance in Table 3.3.

phrases occur in 460 (on average) more bilingual sentences than in bilingual phrases. The

remaining 20% were found to be the rare words (e.g. zazvorkova, woldesmayat, yellow-

bellies) that hardly occur in test sets.

Second, Table 3.5 confirms that the ranking of the three training sets is not biased

due to memorization of the phrases seen during training. The ranking does not change

when testing on unseen word sequences, as shown by sick results with models trained

using Jbicvm on a filtered training set that contains none of the bigrams observed at test

time.

Third, the advantage of bilingual phrases over bilingual sentences is not due to the

larger number of training examples. 1.9M (and even 1M) bilingual phrase pairs still

outperform the 1.9M bilingual sentence pairs on all subsets (Table 3.6).

Taken together, these additional results support my initial intuition that the main

advantage of bilingual phrases over bilingual sentences is that phrase pairs have stronger

47

Not Filtered Filtered

Pairs Score # Pairs Score

Monolingual Phrases 3M 0.52 2.3M 0.54

Bilingual Phrases 3M 0.67 2.1M 0.65

Bilingual Sentences 1.9M 0.66 0.47M 0.58

Table 3.5: Impact of memorization: Pearson correlation scores on sick with training

sets with and without filtering out segment pairs that contain any bigrams that

appear in sick. Number of training pairs (# Pairs) is shown in millions.

Bilingual Phrases Bilingual Sentences glove

0.5M 1M 1.9M 3M 1.9M

2012 0.55 0.58 0.59 0.59 0.54 0.53

2013 0.59 0.61 0.61 0.62 0.46 0.42

2014 0.69 0.71 0.71 0.71 0.59 0.54

2016 0.68 0.69 0.70 0.70 0.61 0.53

SICK 0.62 0.64 0.65 0.66 0.63 0.66

Table 3.6: Impact of training set size: Average Pearson correlation per test set with

different numbers (in millions) of bilingual phrase pairs, compared to the full set of

bilingual sentences and monolingually pretrained glove.

48

semantic equivalence than sentence pairs, since phrase pairs are shorter and are constructed

by identifying strongly aligned subsets of sentence pairs.

3.3.3 Monolingual versus bilingual phrases

Based on the analysis thus far, I hypothesize that paraphrase pairs with overlapping

tokens make the compositional training objective less useful. Around 40% of the mono-

lingual paraphrase training pairs differ only by one token. With Euclidean distance in the

training objective, overlapping tokens cancel each other out of the composition term. For

example, the pair 〈healthy and stable, healthy and steady〉 yields the compositional term

||(healthy + and+ stable)− (healthy + and+ steady)||2

= ||stable− steady||2

In contrast, overlap cannot occur in the bilingual setting, and all words within bilin-

gual phrases contribute to the compositional objective.

3.4 Conclusion

I conducted the first evaluation of compositional representations learned using bilin-

gual supervision on monolingual textual similarity tasks. Phrase and sentence represen-

tations are constructed by composing word representations using a simple additive com-

position function. The resulting English sentence representations consistently outperform

compositional models trained to detect monolingual paraphrases on five different English

semantic textual similarity benchmarks.

Bilingual phrase pairs are consistently the best evidence of semantic equivalence in

my experiments. They yield better results than the sentence pairs they are extracted from,

49

despite the noise introduced by the automatic extraction process. Furthermore the com-

posed representations outperform non-compositional word representations derived from

monolingual co-occurrence statistics (glove). While sizes of monolingual and bilingual

corpora are not directly comparable, it is remarkable that representations learned with

only 500k bilingual phrase pairs outperform glove embeddings trained on 840B tokens.

Having demonstrated the effectiveness of learning from natural language (bilingual)

supervision for learning sentence representations, in the next chapter I switch to studying

how humans can engage in a conversation (again, entirely natural language-based) with

machines. I conduct that research in the context of conversational question answering:

I present models for conversational open-domain qa that focus on reasoning about the

connections between different questions in the same conversation. Then, I present a more

explicit task that focuses on understanding questions in conversational contexts.

50

Chapter 4: Sequential Question Answering and Question-in-Context

Rewriting

The high level goal of this thesis is to create tools, systems, and models for collabo-

rative human–computer question answering and nlp in general. In particular, I focus on

human–computer interaction via natural language. A natural language-based interactive

system should be able to understand human utterances in conversational contexts. In this

chapter, I study conversational question answering and create models and a dataset that

focus on implicitly (Section 4.1) and explicitly (Section 4.2) interpreting questions in the

context of previously asked questions and their answers.

First, I study the task of sequential open-domain qa (Section 4.1). I ask how a

standard open-domain qa system can incorporate connections between question-answer

The work in this chapter is published as “Ahmed Elgohary, Chen Zhao, and Jordan Boyd-

Graber. 2018. Dataset and baslines for sequential open-domain question answering. In Proceedings

of Empirical Methods in Natural Language Processing” (Elgohary et al., 2018) and “Ahmed Elgo-

hary, Denis Peskov, and Jordan Boyd-Graber. 2019. Can you unpack that? Learning to rewrite

questions-in-context. In Proceedings of Empirical Methods in Natural Language Processing” (El-

gohary et al., 2019). Elgohary et al. (2018) presents two contributions: (1) The construction of the

qblink dataset (Section 2.2.2) which is work done by Chen Zhao, and (2) Baseline models which

are my contributions that I present in Section 4.1 of this chapter.

51

pairs in the same sequence. I introduce context-aware models models for the retrieval

and reading components, and demonstrate that context information can improve the qa

accuracy.

Next, I switch to more naturally conversational settings, in which individual ques-

tions cannot be understood without resolving conversational dependencies. I study rewrit-

ing such questions in independent stand-alone forms (Section 4.2) which enables solv-

ing conversational qa with stand-alone mrc models (Section 2.2.1). I create canard—

Context Abstraction: Necessary Additional Rewritten Discourse—a new dataset that

rewrites quac (Choi et al., 2018) (Section 2.2.2) questions given conversational context

(previous questions and answers). I present and evaluate models for the rewriting task.

4.1 Sequential Open-Domain qa

4.1.1 Dataset and setup

Given a document collectionD and questions grouped into sequences {Si | i = 1 . . . n}

where each Si is an ordered sequence of question-answer pairs, and a subset of documents

Si = ((qji , a
j
i , D

j
i) | j = 1 . . .m), the task is to answer questions qĵi with document evidences

Dĵ
i given access to previously asked questions in the same sequence and their corresponding

answers {(qji , a
j
i) | j < ĵ}. To study that task, I use the QBLink dataset (Section 2.2.2)

in which each sequence consists of three questions that start with a lead-in which sets the

stage for the rest of the question.

I build my models on the drqa framework (Section 2.2.1) that uses Wikipedia as

the document collection. Following that framework, I split the task into two separate

steps—a retrieval step and a reading step. In the retrieval step the current question qĵi

52

and previous questions and answers {(qji , a
j
i) | j < ĵ} are used to retrieve a ranked list of

paragraphs Dĵ
i from D that are likely to contain the correct answer to the current question

qĵi . The retrieved paragraphs Dĵ
i are the input to the reading step that selects a span from

Dĵ
i as the answer to qĵi . The reading step has access to previous questions and answers

{(qji , a
j
i) | j < ĵ} as well.

4.1.2 Models

Answering Questions in Isolation:

I experiment with three baselines that ignore the sequential connections between

questions and answer each question in isolation. My first model is a simple information re-

trieval (ir) baseline that only uses the retrieval component: the title of the top-1 Wikipedia

article is predicted as the answer. My second baseline is the full drqa model whose reader

is trained/tuned on the qblink training/development questions. To assign paragraphs to

each of the training questions, I follow a similar distant-supervision approach to (Chen

et al., 2017). I retrieve the top twenty Wikipedia articles for each question, exclude the

paragraphs that do not contain the gold answer, and then rank the remaining paragraphs

using tf-idf. Each of the top ten paragraphs is paired with the question to form a data

instance for training the reader. Finally, I tweak the drqa reader to limit the candidate

answer spans to entity mentions that are linked to Wikipedia. I set the start and end

scores (Equations 2.7) of spans that are not detected mentions to zero.

53

Ronald Reagan In March of 1981, this man shot President Reagan in order to impress the actress Jodie Foster ...

During her freshman year at Yale in 1980–1981, Foster was stalked by John W. Hinckley, Jr., who had

developed an obsession with her after watching Taxi Driver. He moved to New Haven and tried to contact her,

both through letters and by phone. On March 30, 1981, he attempted to assassinate U.S. President Ronald

Reagan, wounding him and three other people, claiming that his motive was to impress Foster...

He is best known for defending President Ronald Reagan during the

assassination attempt by John Hinckley Jr. Append

Candidate
Answers

Explicit Relation Embedding
Relation embedding

r
Question embedding

q

Q2 A1

Context

Relation span

Figure 4.1: An overview of the relation-augmented reading model for sequential qa.

Incorporating Context in Retrieval:

To incorporate the sequential connections between questions in the retrieval phase, I

append the previously asked questions to the current question. I also compare appending

the predicted answers (top-1 span) to each of the previous questions as well as the gold

answers to the current question.

Incorporating Context in Reader:

In addition to encoding which entities have appeared in previous questions, it might

be useful to provide the models with relationship information. However, pre-defined rela-

tionships from knowledge bases tend to be brittle. Instead, I use a continuous representa-

tion of relationships (Iyyer et al., 2016). Suppose we want to encode the relationships for

an entity (answer candidate) that starts at token i and ends at token j. I summarize the

relationships of that entity from k possible relation-spans. A relation-span is a sequence

54

of tokens from Wikipedia that contains both the answer candidate and an answer to a

previous question. For example, the correct answer ‘John W. Hinckley Jr.’ in Figure 4.1

has a relation-span “He is best known for defending President Ronald Reagan during the

assassination attempt by John Hinckley Jr.” with the previous answer “Ronald Reagan”.

I compare two methods for incorporating such relation spans. In the first method, I

append relation spans to the document and rely on the reading network to implicitly infer

the relation encoded by the span and use it to score the answers. Alternatively, I merge

all k relation-spans in a single span that is then fed through a bilstm (Section 2.1.2) whose

hidden states are combined as a weighted sum with self-attention (Lin et al., 2017) to form

an explicit vector encoding of the relation rij .

The stronger the similarity between the relation that the question is asking about and

the relation-spans, the higher the score of the candidate answer should be. I estimate the

similarity r by concatenating the elementwise absolute difference and Hadamard product

between rij and the question embedding q. I then use a trainable weight vector wrel to

combine the components of the concatenation and produce a single similarity score

r = wrel
T [|q − rij |; q ◦ rij].

This influences the final selection of the answer span by adding the relation similarity

score r to the start and end scores of the candidate answer (Equation 2.7),

Start(i) = exp(ti
TWstartq + r)

End(j) = exp(tj
TWendq + r). (4.1)

The relation embedding module is trained jointly with the reader.

55

Method EM

Baselines: Questions in Isolation

IR 15.6

DrQA 39.3

DrQA + limiting to entities 39.7

DrQA + Retrieval with context

Previous questions 36.4

Previous predicted answers 39.8

Previous gold answers 40.1

DrQA + Reading with context

Append relation descriptions w/ predicted answers 40.2

Append relation descriptions w/ gold answers 40.7

Explicit relation embedding w/ predicted answers 38.3

Explicit relation embedding w/ gold answers 39.5

IR w/ Previous gold answers + Reading w/ Append relation

descriptions w/ gold answers
40.7

Table 4.1: Incorporating sequence information in the retrieval and the reading step

slightly improves overall accuracy compared to answering questions in isolation.

4.1.3 Experiments

I use the Wikipedia dump of 2017–09–20. I set the maximum number of retrieved

documents to ten, and split each document into paragraphs of 400 tokens each. At test

56

Question: This man attempted to impress Jodie Foster by shooting Ronald Reagan,

but he failed to kill the President. At trial, he was found not guilty by reason of

insanity.

Gold answer to previous question: Ronald Reagan

Predict without relation span: George H. W. Bush

Correct answer: John Hinckley Jr.

Relation span: He is best known for defending President Ronald Reagan during the

assassination attempt by John Hinckley Jr.

Figure 4.2: Modeling the relation between President Ronald Reagan and John

Hinckley Jr. expressed by relation span helps the reader select the correct answer

entity.

time, I merge the top ten ranked such paragraphs and feed them to the reader (follow-

ing Clark and Gardner (2018)). I use the reader network of drqa, and I limit the number

of relation description spans for each entity pair to five. I use an lstm of one hidden layer

and 128 hidden units for the paragraph, question, and relation description encoders. Each

reader is trained for twenty epochs.

4.1.4 Results

Table 4.1 summarizes the results. Question-answering accuracy is exact-match ac-

curacy since I limit the answer spans to entity mentions whose boundaries are fixed for all

models.

Incorporating the previous answer in the retrieval and the reading components

57

slightly improves the overall question answering accuracy The accuracy drops by more

than 3% when using the entire text of previous questions in the retrieval phase. Modeling

relations reduces the accuracy slightly compared to augmenting paragraphs with relation

spans. One possible explanation is that my relation embedding model is under-trained

because many questions lack relevant relation-spans. Replacing Wikipedia with a larger

corpus (e.g., ClueWeb) or improving reference detection might improve relation embedding

model. Unsurprisingly, gold answers to previous questions are more useful than the pre-

dicted answers, which highlights a need for models that take into account the uncertainty

about previous answers when gold previous answers are not available.

Figure 4.2 gives an example of how explicit relation embedding helps reader get a

correct prediction. Without the relation span, the model predicts George H. W. Bush

(vice president at that time) as correct answer. Including the direct relation span between

Reagan and John Hinckley Jr., the model gets the correct answer.

4.2 Question-in-Context Rewriting

In this section, I study reducing challenging, interconnected conversational question

answering in reading comprehension setup (cqa) examples to independent, stand-alone

questions. I start by formally defining the rewriting task. Then, I describe the construction

of canard in which I crowdsource context-independent paraphrases of quac questions

and use the paraphrases to train and evaluate question-in-context rewriting.

58

4.2.1 Defining Question-In-Context Rewrites

I formally define the task of question-in-context rewriting (de-contextualization).

Given a conversation topic t and a history H of m− 1 turns, each turn k is a question qi

and an answer ai; the task is to generate a rewrite q′m for the next question qm based on

H. Since qm is part of the conversation, its meaning often involves references to parts of

its preceding history. A valid rewrite q′m should be self-contained: a correct answer to q′m

by itself is a correct answer to qm combined with the question’s preceding history H.

Figure 1.3 shows the assumptions of cqa and how they are made explicit in rewrites.

The first question omits the title of the page (Anna Vissi), the second question omits the

answer to the first question (replacing both Anna Vissi and her husband with the pronoun

“they”), and the last question adds a scalar implicature that must be resolved.

4.2.2 Dataset Construction

I elicit paraphrases from human crowdworkers to make previously context-dependent

questions unambiguously answerable. Through this process, I resolve difficult coreference

linkages and create a pair-wise mapping between ambiguous and context-enriched ques-

tions. I take the entire dev set of quac and a sample of the train set and create a

custom JavaScript task in Mechanical Turk that allows workers to rewrite these questions.

JavaScript hints help train the users and provides automated, real-time feedback.

I provide workers with a comprehensive set of instructions (Figure 4.4) and task

examples. I ask them to rewrite the questions in natural sounding English while preserving

the sentence structure of the original question. I discourage workers from introducing new

words that are unmentioned in the previous utterances and ask them to copy phrases when

59

Figure 4.3: canard collection interface. The conversation has eight questions in

total. I show one question at a time to encourage crowdworkers only use the pre-

vious utterances for the rewriting. After the eight questions are rewritten, I enable

submitting the hit. We show question-specific instructions as in question three to

remind crowdworkers about relevant instructions. A compact set of the full instruc-

tions are shown on the right. Detailed instructions can be displayed by clicking on

the “view instructions” button.

appropriate from the original question. These instructions ensure that the rewrites only

resolve conversation-dependent ambiguities. Thus, I encourage workers to create minimal

edits; in Section 4.2.3, I take advantage of this to use bleu (Papineni et al., 2002) for

evaluating model-generated rewrites.

I display (Figure 4.3) the questions in the conversation one at a time, since the

rewrites should include only the previous utterance. After a rewrite to the question is

submitted, the answer to the question is displayed. The next question is then displayed.

This repeats until the end of the conversation.

60

Figure 4.4: Instructions for crowdsourcing question-in-context rewrites.

Rewrite each question in a dialogue so it can be understood by itself without looking at

the rest of the dialogue.

1. In the given conversation between a student who asks questions about a topic of a Wikipedia

article and a teacher who is answering the questions, each question can be understood as part of

the ongoing dialogue. Edit each question so that it makes sense by itself without looking at the rest

of the dialogue. Think how you would ask the same question to someone who has no idea about

what the dialogue is about and has never seen any of the previous utterances and still get the same

answer. For example, the question ‘What was he like in that episode?’ cannot be understood without

knowing what ‘he’ and ‘that episode’ refer to. Both can be figured out by looking at the dialogue.

If we edited the question to ‘What was Daffy Duck like in Porky’s Duck Hunt?’, it would then make

sense by itself.

2. Reading and understanding all previous utterances is very important. Do not just look for things

like ‘she’ and ‘that’ and replace them. For example, the question Who was the star? is still unclear.

We need to specify ‘star in what movie, series, episode, ..etc.?’ as in Who was the star in Porky’s

Duck Hunt?. To make sure the edits are based on understanding the conversations rather than naive

replacements, we will manually review a random group of the edits before accepting the work. We

also run pretty mild checks on the edits before allowing the HIT to be submitted. The checks are

meant to help you make valid edits, but they still can miss some invalid edits (rather than being too

strict). So, do not count only on passing the checks and make sure that each edit makes sense by

itself.

61

3. Questions should stay in a natural-sounding english after editing. Do not use new words other

than those in the conversation unless it is necessary. Copy from previous questions, answers and

conversation topic as often as possible. Never use any information provided after a question is asked.

Only use what was provided up to the question you are editing. When editing a question, keep its

original structure whenever possible. For example, do not change ‘Did they arrest him?’ to ‘Was

Alex arrested?’, but rather keep the original structure and do ‘Did they arrest Alex?’. Do not come

up with a different or better question. Stick to the given wording. It is okay to have pronouns in

an edit as long as the edit has enough information about what the pronouns refer to. For example

‘Where was Carroll when she joined the american party?’ is a perfectly fine edit.

4. Pay special attention to questions that ask if there is anything/anyone else or asking for telling

more about something. It is important to mention in your edit “anything/anyone else besides what/

whom”. For example, ‘Are there any other interesting aspects about this article?’ should be edited

to something like ‘Besides Death of a Ladies Man and End of the Century, are there any other

interesting aspects about this article?’ as in example 2 below. Notice that it is okay to keep ‘this

article’ without replacing it with something else.

5. If a question can be understood without looking at the rest of the conversation, mark it as Under-

standable alone. Do not make unnecessary edits. Try to keep the edits short as long as they make

sense each by itself. Although typos are quite rare, please fix any typos you encounter.

6. Never look up additional information on the web. Only use the given conversations.

7. We show one question at a time. After editing or marking a question as Understandable alone,

we show its following question. After all questions are edited, we allow you to submit the HIT and

optionally provide any feedback you have on the HIT.

62

I apply quality control throughout my collection process. During the task, JavaScript

checks automatically monitor and warn about common errors: submissions that are abnor-

mally short (e.g., ‘why’), rewrites that still have pronouns (e.g., ‘he wrote this album’), or

ambiguous words (e.g., ‘this article’, ‘that’). Many quac questions ask about ‘what/who

else’ or ask for ‘other’ or ‘another’ entity. For that class of questions, I ask workers to use

a phrase such as ‘other than’, ‘in addition to’, ‘aside from’, ‘besides’, ‘together with’ or

‘along with’ with the appropriate context in their rewrite.

I gather and review the data in batches to screen potentially compromised data or

low quality workers. A post-processing script flags suspicious rewrites and workers who

take and abnormally long or short time. I flag about 15% of the data. Every flagged

question is manually reviewed and an entire hit is discarded if one is deemed inadequate.

I reject 19.9% of submissions and the rest comprise canard. Additionally, I filter out

under-performing workers based on these rejections from subsequent batches. To minimize

risk, I limit the initial pool of workers to those that have completed 500 hits with over

90% accuracy and offer competitive payment of $0.50 per hit.

I verify the efficacy of my quality control through manual review. A random sample

of fifty questions sampled from the final dataset is reviewed for desirable characteristics by

a native English speaker in Table 4.2. Each of the positive traits occurs in 90% or more of

the questions. Based on the sample, the collected rewrites retain grammaticality, leave the

question meaning unchanged, and use pronouns unambiguously. There are rare occasions

where workers use a part of the answer to the question being rewritten or where some of

the context is left ambiguous. These infrequent mistakes should not affect my models. I

provide examples of failures in Table 4.3.

I use the rewrites of quac’s development set as my test set (5,571 question-in-context

63

Characteristic Ratio

Answer Not Referenced 0.98

Question Meaning Unchanged 0.95

Correct Coreferences 1.0

Grammatical English 1.0

Understandable without Context 0.90

Table 4.2: Manual inspection of 50 rewritten context-independent questions from

canard suggests that the new questions have enough context to be independently

understandable.

and corresponding rewrite pairs) and use a 10% sample of quac’s training set rewrites as

the development set (3,418); the rest are training data (31,538).

4.2.3 Models

I compare three baseline models for the question-in-context rewriting task. In the

Copy baseline, the rewrite q′m is set to be the same as the input question qm without

making any changes. I also try a Pronoun Substitution baseline in which the first

pronoun in qm is replaced with the topic entity of the conversation. I use the title of the

corresponding Wikipedia article to the original quac conversation as the topic entity.

Unlike the previous baselines which do not use the rewrites as training data, the

third baseline is a neural seq2seq model (Section 2.1.5) with a copy mechanism (Bahdanau

et al., 2015; See et al., 2017). I construct the input sequence by concatenating all utterances

in the history H, prepending them to qm, and adding a special separator token between

64

ORIGINAL: Was this an honest mistake by the media?

REWRITE: Was the claim of media regarding Leblanc’s room come

to true?

ORIGINAL: What was a single from their album?

REWRITE: What was a single from horslips’ album?

ORIGINAL: Did they marry?

REWRITE: Did Hannah Arendt and Heidegger marry?

Table 4.3: Not all rewrites correctly encode the context required to answer a ques-

tion. We take two failures to provide examples of the two common issues: Changed

Meaning (top) and Needs Context (middle). We provide an example with no issues

(bottom) for comparison.

utterances.

I use a bidirectional lstm (Section 2.1.2) encoder-decoder model with shared the

word embeddings between the encoder and the decoder (the OpenNMT (Klein et al.,

2018) implementation). I initialize the embeddings with glove (Pennington et al., 2014)

and train with a batch-size of 16 for 200000 steps.

Since questions are written by humans, human rewrites are the upper-bound for this

task. However, annotators (especially crowdworkers) can be inconsistent or disagree. To

estimate the human accuracy, I collect 100 pairs of rewritten questions; each pair has two

rewrites of the same question (in its given context) by two different workers. I manually

verify that all rewrites are valid and then use the pair of rewrites as a hypothesis and a

reference.

65

Dev Test

Copy 33.84 36.25

Pronoun Sub 47.72 47.44

Seq2Seq 51.37 49.67

Human Rewrites* 59.92

Table 4.4: bleu scores of the baselines on development and test data. seq2seq

improves up to four (statistically significant) points over naive baselines but still well

(statistically significant) below human accuracy. Human accuracy (*) is computed

with a small subset of the development set.

Table 4.4 shows the bleu scores produced by the baselines and humans over both

the validation and the test sets.1 Although a well-trained standard neural seq2seq model

improves 2–4 bleu points over naive baselines, it is still 9 bleu points below human-

accuracy. Using paired bootstrap resampling (Efron and Tibshirani, 1994; Koehn, 2004)

with 1000 samples from the test set, seq2seq outperforms the Copy and Pronoun Sub

baselines with 95% statistical significance. Also, using bootstrap resampling I found that

human rewrites outperforms the seq2seq baseline with 95% statistical significance. Since

human accuracy is estimated with a different test set (100 examples) than the canard

test set (5,571 examples), I repeated the following procedure 1000 times: 1) Sample with

replacement 100 examples from the human rewrites, 2) Sample with replacement 5,571

examples from the seq2seq outputs for the canard test set, 3) Compare the bleu scores

of the two samples. In more than 95% of such comparisons, the bleu score of the human

1I use multi-bleu-detok.perl (Sennrich et al., 2017).

66

Label Text

QUESTION How long did he stay there?

REWRITE How long did Cito Gaston stay at the Jays?

HISTORY

Cito Gaston

Q: What did Gaston do after the world series?

. . .

Q: Where did he go in 2001?

A: In 2002, he was hired by the Jays as special assistant to

president and chief executive officer Paul Godfrey.

Table 4.5: An example that had over ten flagged proper nouns in the history. Rewrit-

ing requires resolving challenging coreferences.

rewrites was larger than that of the seq2seq output. I analyze sources of errors in the

following section.

4.2.4 Dataset and Model Analysis

I analyze canard with automatic metrics after validating the reliability of the data

collection pipeline. I compare canard to the original quac questions and to automatically

generated questions by my models. Then, I manually inspect the sources of rewriting errors

in the seq2seq baseline.

67

0

2.5

5

7.5

10 Average Length

0
0.1
0.2
0.3
0.4
0.5 Pronoun Ratio

Original Pronoun Sub Reference Seq2Seq
0

0.5
1

1.5
2

2.5 Proper Noun Ratio

Figure 4.5: Human rewrites are longer, have fewer pronouns, and have more proper

nouns than the original quac questions. Rewrites are longer and contain more

proper nouns than the Pronoun Sub baseline and trained seq2seq model.

Data Analysis:

canard rewrites are longer, contain more nouns and less pronouns, and have more

word types than the original data. Machine output lies in between the two human-

generated corpora (original question and reference rewrite), but quality is difficult to assess.

Figure 4.5 shows these statistics.

I motivate canard rewrites by exploring linguistic properties of the rewrites. Coref-

erence resolution is a core nlp task applicable to this dataset in addition to the downstream

tasks evaluated in Section 4.2.3. Pronouns occur in 53.9% of quac questions. Questions

68

Correctness Category %

Correct: Slightly different from reference 42

Correct: Significantly different from reference 16

Incomplete rewrite 16

Incorrect rewrite 26

Table 4.6: Summary of manually comparing the outputs of the seq2seq model to

the reference rewrites. In 58% of the cases, the model produces correct rewrites that

are sometimes (16%) significantly different from the reference. Examples on each

category are in Table 4.7.

with pronouns are more likely to be ambiguous than those without any. Only 0.9% of these

have pronouns that span more than one category (e.g., ‘she’ and ‘his’). Hence, pronouns

within a single sentence are likely unambiguous. However, 75.0% of the aggregate history

has pronouns and the percentage of mixed category pronouns increase to 27.8% of the

data. Therefore, pronoun disambiguation potentially becomes a problem for a quarter of

the original data. An example is provided in Table 4.5. Approximately one-third of the

questions generated by my pronoun-replacement baseline are within 85% string similarity

to the golden rewritten questions. That leaves two-thirds of the data that cannot be solved

with pronoun resolution alone.

Model Analysis:

By manually examining the seq2seq rewrites of a sample of 100 test examples and

comparing them to the reference rewrites, I find (Table 4.6) that 58% of the generated

69

rewrites are correct (fully independent and have the same meaning as the in-context ques-

tion). In 42% of the sample, the generated rewrite exactly matches the reference with

possibly slight differences (e.g., using the last name of person rather than the full name).

In 16% of the sample, the generated rewrite is still correct but significantly different from

the reference in e.g., structure or the used lexical items. I also notice that 16% of the

rewrites are not fully independent (e.g., with an unresolved coreference) and 26% of the

rewrite are fully independent but still incorrect as they do not have the same meaning as

the in-context questions (e.g., because of a wrong coreference resolution). Examples on

each category are listed in Table 4.7.

Table 4.7: Examples on each of the rewrite correctness categories of the seq2seq

model.

History Seq2Seq Rewrite Reference Rewrite

Correct: Slightly different from reference

Wallace Shawn ||| Acting ||| What is he

famous for acting in ?

What is Wallace Shawn

famous for acting in ?

What is Shawn famous

for acting in ?

Marc Chagall ||| France (1923-1941) |||

What was Marc doing in France in

1923 ? ||| In 1923 , Chagall left Moscow

to return to France . ||| What was he

looking to do once he returned ? |||

On his way he stopped in Berlin to

recover the many pictures he had

left there on exhibit ten years earlier,

before the war began, ||| What kind of

pictures he was into or did ?

What kind of pictures

Marc Chagall was

into or did ?

What kind of pictures

was Marc into or did ?

70

Correct: Significantly different from reference

Mario Winans ||| Story of My Heart

(1995-97) ||| Were any other popular

artists featured on the album ? ||| I

don’t know . ||| What were some

singles off of the album ? ||| the song

"Don’t Know ||| Was this his first

album? ||| his debut album Story of

My Heart on ||| Did he win any

awards for the album ?

Did Mario Winans

win any awards for

Story of My Heart?

Did Mario Winans

win any awards for

Story of My Heart?

Zenyatta ||| Retirement ||| When was

retirement? ||| On November 17, 2010,

Zenyatta was slated to be retired. |||

Was she injured ? ||| I do n’t know. |||

Did she retire at that time ? ||| On

February 23 , 2011 , she traveled by

van to Darley Stud , where she was

bred to Bernardini . ||| Are there any

other interesting aspects about this

article ?

Aside from retirement

are there any other

interesting aspects

about this article ?

Aside from retirement

are there any other

interesting aspects

about this article ?

Incomplete rewrite

71

James Baldwin ||| Religion ||| Did

Baldwin come from a religious

family? ||| During his teenage years,

Baldwin followed his stepfather’s

shadow into the religious life. |||

Was he happy with his feelings on

religion? ||| However , he became

dissatisfied with ministry, considering

it hypocritical and racist, and

ultimately left the church ||| What

steps did he take after leaving the

church? ||| At the age of 14 he attended

meetings of the Pentecostal Church

and , during a euphoric prayer meeting

||| Did he like that church ?

Did James Baldwin like

that church?

Did James Baldwin like

the Pentecostal church ?

Charles Lindbergh ||| Flight ||| When

did Lindbergh start flying ? ||| In the

early morning of Friday, May 20,

1927 , Lindbergh took off from

Roosevelt Field across the Atlantic

Ocean for Paris , France . ||| Did he

make any stops along the flight ?

Did Lindbergh make any

stops along the flight

from Roosevelt Field ?

Did Charles Lindbergh

make any stops along

the flight ?

Incorrect rewrite

72

Anna Politkovskaya ||| The murder

remains unsolved , 2016 ||| Did they

have any clues? ||| probably FSB) are

known to have targeted the webmail

account of the murdered Russian

journalist Anna Politkovskaya. |||

How did they target her email? |||

On 5 December 2005, RFIS initiated

an attack against the account

annapolitovskaya@US Provider1,

by deploying malicious software |||

Did they get into trouble for that ?

Did Anna Politkovskaya

get into trouble for?

Did FSB get into

trouble for attacking

the email account of

Anna Politkovskaya’s?

David Vitter ||| Opposition to

Franken amendment ||| What is

the Franken amendment ? ||| bill

that would forbid federal contractors

from forcing victims of sexual

assault , battery and discrimination

to submit to binding arbitration |||

How did it proceed ?

How did forbid federal

contractors proceed?

How did Franken

amendment proceed?

Also, I notice that the main source of errors of the seq2seq model is that it tends to

find a short path to completing the rewrites. That often results in under-specified questions

as in Example 1 in Table 4.8, question meaning change as in Example 2 or meaningless

questions as in Example 3. Another source of errors is having related entities mentioned

in the context as Example 4 in Table 4.8, where the model confused “Copa America” with

73

seq2seq output Reference

1 What did Chamberlain’s men do? What did Chamberlain’s men do

during the Battle of Gettysburg?

2 How many games did Ozzie Smith

win?

How many games did the Cardinals

win while Ozzie Smith played?

3 Did 108th get to the finals? Did the US Women’s Soccer Team

get to the finals in the 1999 World

Cup?

4 Did Gabriel Batistuta reside in any

other countries, besides touring in

the Copa America?

Besides Argentina, did Gabriel

Batistuta reside in any other coun-

tries?

5 Did La Comedia have any more

works than La Comedia 3?

Did Giannina Braschi have any more

works than United States of Banana,

La Comedia and Asalto al tiempo?

Table 4.8: Example erroneous rewrites generated by the Seq2Seq models and their

corresponding reference rewrites. The dominant source of error is the model ten-

dency to produce short rewrites (Examples 1–3). Related entities (Copa America

and Argentina in Example 4) distract the model. The model struggles with listing

multiple entities mentioned in different parts of the context (Example 5).

“Argentina”. The model also struggles with listing multiple entities mentioned in different

parts of the context. Example 5 in Table 4.8 show the output and the reference rewrites

of the question “Did she have any more works than those 3?”, where two of the three

74

entities—“United States of Banana”, “La Comedia” and “Asalto al tiempo”—are lost in the

rewrite.

4.3 Conclusion

I evaluated baselines for sequential open-domain qa using the qblink dataset. I

showed that incorporating sequential information helps improve qa accuracy. Then, I

introduced a new task and a dataset for question-in-context rewriting. I compared and

analyzed baselines for the rewriting task, and show that there is still a gap between out

top-performing model and human performance.

Overall, I demonstrated in this chapter that humans can conduct natural language

conversations with machine and explored avenues for improving the ability of machines to

understand context-dependent human utterances. In the next two chapters, I introduce

an interactive system for text-to-SQL parsing. The system collaborates with human users

to reach the correct SQL parse of a user provided utterance. All communication between

the user and the system is conducted in natural language.

75

Chapter 5: Semantic Parsing with Natural Language Feedback

In the previous two chapters, I demonstrate the effectiveness of learning with natural

language and I create and evaluate models for understanding natural language inputs in

conversational contexts. In this and the following chapter, I present a system that puts

all such components together to improve question answering accuracy through interacting

with users who provide natural language feedback to the system in the context of their

conversation with the system. In particular, the system answers natural language questions

about structured data in a relational (SQL) database by parsing questions into SQL queries

(Section 2.3.4).

Most of the work addressing the text-to-SQL problem and semantic parsing (Sec-

tion 2.3) in general frames it as a one-shot mapping task. I establish (Section 5.3.1) that

the majority of parsing mistakes that recent neural text-to-SQL parsers make are minor.

Hence, it is often feasible for humans to detect and suggest fixes for such mistakes. Su

et al. (2018) make a similar observation about parsing text to API calls and show that

parsing mistakes could be easily corrected if humans have the opportunity to provide pre-

cise feedback. Likewise, an input utterance might be under- or mis-specified, thus extra

The work in this chapter is published as “Ahmed Elgohary, Saghar Hosseini, and Ahmed Hassan

Awadallah. 2020. Speak to your parser: Interactive text-to-SQL with natural language feedback.

In Proceedings of the Association for Computational Linguistics” (Elgohary et al., 2020).

76

Find all the locations whose names contain the

word "film"

Address

770 Edd Lane Apt. 098

14034 Kohler Drive

finding the Address of Locations table for which

Location_Name contains "film"

Address is wrong. I want the name of the

locations

Location_Name

Film Festival

Film Castle

finding the Location_Name of Locations table for

which Location_Name contains "film"

…

…

Figure 5.1: An example of human interaction with a text-to-SQL system to correct

the interpretation of an input utterance. The system generates an initial SQL parse,

explains it in natural language, and displays the execution result. Then, the system

uses the human-provided natural language feedback to correct the initial parse.

interactions may be required to generate the desired output as in query refinements in

information retrieval systems (Dang and Croft, 2010).

This chapter studies the task of SQL parse correction with natural language feedback

to enable text-to-SQL systems to seek and leverage human feedback to further improve

the overall performance and user experience. Figure 5.1 shows an example of a text-to-

SQL system that collects feedback in natural language when the system misinterprets an

input utterance. To enable this type of interactions, the system needs to: (1) provide an

explanation of the underlying generated SQL, (2) support a means for humans to provide

feedback, and (3) use the feedback along with the original question, to come up with a

more accurate interpretation.

77

Towards that goal, I make the following contributions: (1) I define the task of SQL

parse correction with natural language feedback (Section 5.1); (2) I create a framework

for explaining SQL parses in natural language to allow text-to-SQL users (who may have

a good idea of what kind of information resides on their databases but are not proficient

in SQL (Hendrix et al., 1978)) to provide feedback to correct inaccurate SQL parses (Sec-

tion 5.2.2); (3) I construct splash—Semantic Parsing with Language Assistance from

Humans—a new dataset of natural language questions that a recent neural text-to-SQL

parser failed to generate correct interpretations for together with corresponding human-

provided natural language feedback describing how the interpretation should be corrected

(Sections 5.2 and 5.3) ; and (4) I establish several baseline models for the correction task

and show that the task is challenging for state-of-the-art semantic parsing models (Sec-

tion 5.4).

5.1 Task Definition

I formally define the task of SQL parse correction with natural language feedback.

Given a question q, a database schema s, a mispredicted parse p′, a natural language

feedback f on p′, the task is to generate a corrected parse p (Figure 5.2). Following Yu

et al. (2018c), s is defined as the set of tables, columns in each table and the primary and

foreign keys of each table.

Models are trained with tuples q, s, p′, f and gold parse p. At evaluation time,

a model takes as input tuples in the form q, s, p′, f and hypothesizes a corrected parse

p̂. I compare p̂ and the gold parse p in terms of their exact set match (Yu et al., 2018c)

(Section 2.3.4) and report the average matching accuracy across the testing examples as

the model’s correction accuracy.

78

Question:

Find all the locations whose names contain the

word "film"

SELECT Address FROM LOCATIONS WHERE

Location_Name LIKE '%film%'

Predicted Parse:

Feedback:

Address is wrong. I want the name of the locations

SELECT Location_Name FROMLOCATIONS

WHERE Location_Name LIKE '%film%'

Gold Parse:

Location_ID Location_Name Address Other_Details

Schema:

Figure 5.2: An example from my SQL parse correction task (DB Name:

cre_Theme_park and Table Name: Locations). Given a question, initial predicted

parse and natural language feedback on the predicted parse, the task is to predict

a corrected parse that matches the gold parse.

5.2 splash Construction

In this section, I describe my approach for collecting training data for the SQL parse

correction task. I first generate pairs of natural language questions and the correspond-

ing erroneous SQL parses (Section 5.2.1). Then, I employ crowd workers (with no SQL

knowledge) to provide feedback, in natural language, to correct the erroneous SQL (Sec-

tion 5.2.3). To enable such workers to provide feedback, I show them an explanation of

the generated SQL in natural language (Section 5.2.2). Finally, to improve the diversity

of the natural language feedback, I ask a different set of annotators to paraphrase each

feedback. I describe the process in detail in the remainder of this section.

79

5.2.1 Generating Questions and Incorrect SQL Pairs

I use the spider dataset (Section 2.3.4) as my source of questions. spider has

several advantages over other datasets. Compared to ATIS and GeoQuery, spider is

much larger in scale (200 databases vs. one database, and thousands vs. hundreds of SQL

parses). Compared to WikiSQL, spider questions require inducing parses of complex

structures (requiring multiple tables, joining, nesting, etc.). spider also adopts a cross-

domain evaluation setup in which databases used at testing time are never seen at training

time.

To generate erroneous SQL interpretations of questions in spider, I opt for using the

output of a text-to-SQL parser to ensure that the dataset reflects the actual distribution

of errors that contemporary parsers make. This is a more realistic setup than artificially

infusing errors in the gold SQL. I use the seq2struct parser (Section 2.3.4) 1 to generate

erroneous SQL interpretations. When I started the dataset construction at the beginning

of June 2019, I was able to achieve a parsing accuracy of 41.30% with seq2struct on

spider’s development set which was the state-of-the-art accuracy at the time. Unlike

current state-of-the-art models, seq2struct does not use pre-trained language models.

It was further developed into thee rat-sql model (Section 2.3.4) which achieved a new

state-of-the-art accuracy as of April 2020. Also, I note that I make no explicit assumptions

on the model used for this step and hence other models could be used as well.

I train seq2struct on 80% of spider’s training set and apply it to the remaining

20%, keeping only cases where the generated parses do not match the gold parse (according

to the exact set match). Following the by-database splitting scheme of spider, I repeat

1https://github.com/rshin/seq2struct

80

https://github.com/rshin/seq2struct

Step 1: Find the number of rows of each value

of id in browser table.

Step 2: Find id, name of browser table with
largest value in the results of step 1.

SQL:

SELECT id, name from browser GROUP

BY id ORDER BY COUNT(*) DESC

SELECT _cols_ from _table_ Group

BY_col_ ORDER BY _aggr_ _col_

Template:

Explanation:

Figure 5.3: An example of a SQL query, the corresponding template and the gener-

ated explanation.

the 80-20 training and evaluation process for three times with different examples in the

evaluation set at each run. This results in 3,183 pairs of questions and an erroneous SQL

interpretation. To further increase the size of the dataset, I also ignore the top prediction

in the decoder beam (I use a beam of size 20) and use the following predictions. I only

include cases where the difference in probability between the top and second to last SQLs

is below a threshold of 0.2. The intuition here is that those are predictions that the model

was about to make and hence represent errors that the model could have made. That adds

1,192 pairs to the dataset.

5.2.2 Explaining SQL

In one of the earliest work on natural language interfaces to databases, Hendrix

et al. (1978) note that many business executives, government official and other decision

81

makers have a good idea of what kind of information residing on their databases. Yet to

obtain an answer to a particular question, they cannot use the database themselves and

instead need to employ the help of someone who can. As such, in order to support an

interactive text-to-SQL system, we need to be able to explain the incorrect generated SQL

in a way that humans who are not proficient in SQL can understand.

I take a template-based approach to explain SQL queries in natural language. I

define a template as follows: Given a SQL query, I replace literals, table and columns

names and aggregation and comparison operations with generic placeholders. I also assume

that all joins are inner joins (true for all spider queries) whose join conditions are based

on primary and foreign key equivalence (true for more than 96% of Spider queries). A

query that consists of two subqueries combined with an intersection, union or except

operations is split into two templates that are processed independently and I add an

intersection/union/except part to the explanation at the end. I apply the same process

to the limit operation—generate an explanation of the query without limit, then add a

limit-related step at the end.

I select the most frequent 57 templates used in spider training set which cover 85%

of spider queries. For each SQL template, I wrote down a corresponding explanation

template in the form of steps (e.g., join step, aggregation step, selection step) that I pop-

ulate for each query. Figure 5.4 shows several examples of how different SQL components

can be explained in natural language. I also implemented a set of rules for compressing the

steps based on SQL semantics. For instance, an ordering step following by a “LIMIT 1” is

replaced with “find largest/smallest” where “largest” or “smallest” is decided according to

the ordering direction. Figure 5.3 shows an example of a SQL queries, its corresponding

template and generated explanations. I note that understanding the explanations still re-

82

SQL Component Explanation

INTERSECT show the rows that are in both the results of step 1 and step 2

UNION show the rows that are in any of the results of step 1 and step 2

EXCEPT show the rows that are in the results of step 1 but not in the

results of step 2

LIMIT n only keep the first n rows of the results in step 1

JOIN for each row in Table 1, find corresponding rows in Table 2

SELECT find Column of Table

AGGREGATION find each value of {Column1} in Table along with the {OPERA-

TION} of {Column2} of the corresponding rows to each value

ORDERING order {Direction} by {Column}

CONDITION whose {Column} {Operation} {Value}

DISTINCT without repetition

Figure 5.4: Examples of how different SQL components can be explained in natural

language

83

quires some awareness of the schema and a general idea about the operations of executing

SQL queries which restricts the kinds of user who can interact with the system. In Chap-

ter 7, I discuss future work on improving and evaluating explanations of text-to-SQL and

question answering systems in general.

5.2.3 Crowdsourcing Feedback

I use a Microsoft-internal crowd-sourcing platform similar to Amazon Mechanical

Turk to recruit annotators. Annotators are only selected based on their performance

on other crowd-sourcing tasks and command of English. Before working on the task,

annotators go through a brief set of guidelines explaining the task (Figure 5.5). I collect

the dataset in batches of around 500 examples each. After each batch is completed, I

manually review a sample of the examples submitted by each annotator and exclude those

who do not provide accurate inputs from the annotators pool and redo all their annotations.

Annotators are shown (Figure 5.6) the original question, the explanation of the gen-

erated SQL and asked to: (1) decide whether the generated SQL satisfies the information

need in the question and (2) if not, then provide feedback in natural language. The first

step is necessary since it helps identifying false negative parses (e.g., another correct parse

that does not match the gold parse provided in spider). I also use the annotations of

that step to assess the extent to which my interface enables target users to interact with

the underlying system. As per my assumption that target users are familiar with the kind

of information that is in the database (Hendrix et al., 1978), I show the annotators an

overview of the tables in the database corresponding to the question that includes the

table and column names together with examples (first 2 rows) of the content. I limit the

maximum feedback length to 15 tokens to encourage annotators to provide a correcting

84

Correcting Steps for Answering Questions.

1. We have some information stored in tables; each row is a record that consists of one or more columns.

Using the given tables, we can answer questions by doing simple systematic processing steps over the tables.

Notice that the answer to the question is always the result of the last step. Also, notice that the steps might

not be in perfect English as they were generated automatically. Each step, generates a table of some form.

2. For each question, we have generated steps to answer it, but it turned out that something is wrong with

the steps. Your task is write down in English a short (one sentence most of the time) description of the

mistakes and how it can be correct. Note that we are not looking for rewritings of steps, but rather we

want to get short natural English commands (15 words at most) that describes the correction to be made

to get the correct answer.

3. Use proper and fluent English. Don’t use math symbols.

4. Don’t rewrite the steps after correcting them. Just describe the change that needs to be made.

5. We show only two example values from each table to help you understand the contents of each table.

Tables typically contain several rows. Never use the shown values to write your input.

6. There could be more than one wrong piece in the steps. make sure to mention all of them.

7. If the steps are correct, just check the “All steps are correct” box.

8. Some of the mistakes are due to additional steps or parts of steps. Your feedback can suggest removing

those parts.

9. Do not just copy parts of the questions. Be precise in your input.

10. If in doubt about how to correct a mistake, just mention what is wrong.

11. You do not have to mention which steps contain mistakes. If in doubt, do not refer to a any steps.

12. The generated steps might not sound like the smartest way for answering the question. But it is the

most systematic way that works for all kinds of questions and all kinds of tables. Please, do not try to

propose smarter steps.

Figure 5.5: Crowd-sourcing instructions

85

Figure 5.6: An example of the data collection interface. The Pre-

dicted SQL is: ’SELECT name, salary FROM instructor WHERE dept_name

LIKE "%math%"’. Note that neither the gold nor the predicted SQL are shown

to the annotator.

feedback based on the initial parse that focuses on the edit to be made rather than de-

scribing how the question should be answered. A total of 10 annotators participated in

this task. They were compensated based on an hourly rate (as opposed to per annotation)

to encourage them to optimize for quality and not quantity. They took an average of 6

minutes per annotation.

To improve the diversity of the feedback I collect, I ask a separate set of annotators

to generate a paraphrase of each feedback utterance. I follow the same annotators quality

86

Number of Train Dev Test

Number of Examples 7,481 871 962

Number of Databases 111 9 20

Number of Unique Questions 2,775 290 506

Number of Unique Wrong Parses 2,840 383 325

Number of Unique Gold Parses 1,781 305 194

Number of Unique Feedback Utterances 7,350 860 948

Average Feedback Length (Number of tokens) 13.9 13.8 13.1

Table 5.1: splash summary

control measures as in the feedback collection task. An example instance from the dataset

is shown in Figure 5.2.

5.2.4 splash Summary

Overall, I asked the annotators to annotate 5409 example (427 of which had the

correct SQL parse and the remaining had an incorrect SQL parse). Examples with correct

parse are included to test whether the annotators are able to identify correct SQL parses

given their explanation and the question. Annotators are able to identify the correct parses

as correct 96.4% of the time. For the examples whose predicted SQL did not match the

gold SQL, annotators still marked 279 of them as correct. Upon manual examinations, I

found that annotators were indeed correct in doing so 95.5% of the time. Even though

the predicted and gold SQLs did not match exactly, they were equivalent (e.g., ‘price

BETWEEN 10 and 20’ vs. ‘price ≥ 10 and price ≤ 20)’.

87

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8 9 10

F
re

qu
e

nc
y

(%
)

Distance between Gold and Predicted SQL

Figure 5.7: A histogram of the distance between the gold and the predicted SQL.

After paraphrasing, I ended up with 9,314 question-feedback pairs, 8352 of which

correspond to questions in the spider training split and 962 from the spider development

split. I use all the data from the spider development split as my test data. I hold out

10% of the remaining data (split by database) to use as my development set and use the

rest as the training set. Table 5.1 provides a summary of the final dataset.

5.3 splash Analysis

I conduct a more thorough analysis of splash in this section. I study the character-

istics of the mistakes made by the parser as well as characteristics of the natural language

feedback.

88

5.3.1 Error Characteristics

I start by characterizing the nature of errors usually made by the models in parsing

the original utterance to SQL. To understand the relation between the gold and the pre-

dicted SQL, I measure the edit distance between them for all cases for which the model

made a mistake in the SQL prediction. I measure the edit distance by the number of

edit segments (delete, insert, replace) between both parses. I find the minimal sequence

of token-level edits using the levenshtein distance algorithm. Then, I combine edits of the

same type (delete, insert, replace) applied to consecutive positions in the predicted parse

in one segment. Figure 5.7 shows a frequency histogram of different values of edit distance.

I observe that most inaccurate predictions lie within a short distance from the correct SQL

(78%+ within a distance of 3 or less).

In addition to the number of edits, I also characterize the types of edits needed to

convert the predicted SQL to the gold one. My edit distance calculations support three

operations replace, insert and delete. Those correspond to 58%, 31% and 11% of the edit

operations respectively. Most of the edits are rather simple and require replacing, inserting

or deleting a single token (68.1% of the edits). The vast majority of those correspond to

editing a schema item (table or column name): 89.2%, a SQL keyword (e.g., order direction,

aggregation, count, distinct, etc.): 7.4%, an operator (greater than, less than, etc.): 2.2%

or a number (e.g. for a limit operator): 1.2%.

The edits between the predicted and generated SQL span multiple SQL keywords.

The distribution of different SQL keywords appearing in edits and their distribution across

edit types (replace, insert or delete) is shown in Figure 5.8. Note that a single edit could in-

volve multiple keywords (e.g., multiple joins, a join and a where clause, etc.). Interestingly,

89

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

F
re

q
u

e
n

cy
 (

%
)

SQL Keywords

INSERT
REPLACE
DELETE

Figure 5.8: A histogram of different SQL keywords appearing in edits (between the

gold and predicted SQL) and their distribution across edit types (replace, insert or

delete).

many of the edits involve a JOIN highlighting that handling utterances that require a join

is harder and more error prone. Following JOIN, most edits involve WHERE clauses (making

the query more or less specific), aggregation operators, counting and selecting unique val-

ues. The error analysis demonstrates that many of the errors made by the model are in

fact not significant and hence it is reasonable to seek human feedback to correct them.

5.3.2 Feedback Characteristics

To better understand the different types of feedback our annotators provided, I

sample 200 examples from the dataset, and annotate them with the type of the feedback. I

start by assigning the feedback to one of three categories: (1) Complete: the feedback fully

describes how the predicted SQL can be corrected , (2) Partial: the feedback describes a

90

Complete Feedback: [81.5%]

Question: Show the types of schools that have two schools.

Pred. SQL: SELECT TYPE FROM school GROUP BY TYPE HAVING count(*) >= 2

Feedback: You should not use greater than.

Partial Feedback: [13.5%]

Question: What are the names of all races held between 2009 and 2011?

Pred. SQL: SELECT country FROM circuits WHERE lat BETWEEN 2009 AND 2011

Feedback: You should use races table.

Paraphrase Feedback: [5.0%]

Question: What zip codes have a station with a max temperature greater than

or equal to 80 and when did it reach that temperature?

Pred. SQL: SELECT zip_code FROM weather WHERE min_temperature_f

> 80 OR min_sea_level_pressure_inches > 80

Feedback: Find date , zip code whose max temperature f greater than or equals 80.

Table 5.2: Examples (question, predicted SQL and feedback) of complete, partial

and paraphrase feedback

way to correct the predicted SQL but only partially, and (3) Paraphrase: the feedback

is a paraphrase of the original question. The sample had 81.5% for Complete, 13.5% for

Partial and 5.0% for Paraphrase feedback. Examples of each type of feedback are shown

in Table 5.2. Upon further inspection of the partial and paraphrase feedback, I observe

that they mostly happen when the distance between the predicted and gold SQL is high

(major parsing errors). As such, annotators opt for providing partial feedback (that would

91

Feedback Type % Example

Information

- Missing 13% I also need the number of different services

- Wrong 36% Return capacity in place of height

- Unnecessary 4% No need to return email address

Conditions

- Missing 10% ensure they are FDA approved

- Wrong 19% need to filter on open year not register year

- Unnecessary 7% return results for all majors

Aggregation 6% I wanted the smallest ones not the largest

Order/Unique 5% only return unique values

Table 5.3: Examples of feedback annotators provided for different types

at least correct some of the mistakes) or decide to rewrite the question in a different way.

I also annotate and present the types of feedback, in terms of changes the feedback

is suggesting, in Table 5.3. Note that the same feedback may suggest multiple changes

at the same time. The table shows that the feedback covers a broad range of types,

which matches my initial analysis of error types. I find that a majority of feedback is

referencing the retrieved information. In many such cases, the correct information has not

been retrieved because the corresponding table was not used in the query. This typically

corresponds to a missing inner one-to-one join operation and agrees with my earlier analysis

on edit distance between the gold and predicted SQL. The second most popular category is

incorrect conditions or filters followed by aggregation and ordering errors. I split the first

92

Figure 5.9: Patterns of feedback covered in our dataset. Patterns are extracted

heuristically using predicates and arguments extracted from the feedback sentence.

The figure shows the top 60 frequent patterns. Feedback utterances in splash are

expressed in diverse ways.

two categories by whether the information/conditions are missing, need to be replaced or

need to be removed. I observe that most of the time the information or condition needs

to be replaced. This is followed by missing information that needs to be inserted and then

unnecessary ones that need to be removed.

I heuristically identify feedback patterns for each collected feedback. To identify

the feedback pattern, I first locate the central predicate in the feedback sentence using

93

a semantic role labeler (He et al., 2015). Since some feedback sentences can be broken

into multiple sentence fragments, a single feedback may contain more than one central

predicate. For each predicate, I identify its main arguments. I represent each argument

with its first non stopword token. To reduce the vocabulary, I heuristically identify column

mentions and replace them with the token ‘item’.

I visualize the distribution of feedback patterns for the top 60 most frequent pat-

terns in Figure 5.9, and label the ones shared among multiple patterns. As is shown,

splash covers a diverse variety of feedback patterns centered around key operations to

edit the predicted SQL that reference operations, column names and values.

5.4 Experiments

I present and evaluate a set of baseline models for the correction task (Section 5.1) in

which I use splash for training and testing (unless otherwise stated). My main evaluation

measure is the correction accuracy—the percentage of the testing set examples that are

corrected—in which I follow Yu et al. (2018c) and compare the corrected parse to the gold

parse using exact set match (Section 2.3.4). I also report on spider development set (which

I use to construct our testing set) the end-to-end accuracy of the two turn interaction

scenario: first seq2struct attempts to parse the input question. If it produced a wrong

parse, the question together with that parse and the corresponding feedback are attempted

using the correction model. An example is considered “correct” if any of the two attempts

produces the correct parse. I note that seq2struct produces correct parses for 427/1034

of spider Dev. 511 of the remaining examples are supported by my SQL explanation

patterns (Section 5.2.2). I estimate the end-to-end accuracy as (427 + 511 ∗X/100)/1034,

where X is the correction accuracy.

94

5.4.1 Baselines

Methods that ignore the feedback: One approach for parse correction is re-

ranking the decoder beam (top-n predictions (Section 2.1.5)) (Yin and Neubig, 2019).

Here, I simply discard the top-1 candidate and sample uniformly and with probabilities

proportional to the parser score of each candidate. I also report the accuracy of determin-

istically choosing the second candidate.

Handcrafted re-ranking with feedback: By definition, the feedback f describes

how to edit the initial parse p′ to reach the correct parse. I represent the “diff” between p′

and each candidate parse in the beam pi as the set of schema items that appear only in one

of them. For example, the diff between SELECT first_name, last_name FROM students

and SELECT first_name FROM teachers is {last_name, students, teachers}. I assign a

score to pi equals to the number of matched schema items in the diff with f . A schema

item (e.g., “first_name”) is considered to be mentioned in f is all the individual tokens

(“first” and “name”) are tokens in f .

seq2struct+Feedback: The seq2struct model I use to generate erroneous

parses for data collection (Section 5.2.1) reaches an accuracy of 41.3% on spider’s devel-

opment set when trained on the full spider training set for 40,000 steps. After that initial

training phase, I adapt the model to incorporate the feedback by appending the feedback

to the question for each training example in splash, and I continue training the model to

predict the gold parse for another 40,000 steps. I note that seq2struct+Feedback does

not use the mispredicted parses.

EditSQL+Feedback: EditSQL (Section 2.3.4) is among the top-performing

models for conversational text-to-SQL (Zhang et al., 2019). It generates a parse for an

95

utterance at a conversation turn i by copying from (i.e., editing) the parse generated at

turn i− 1 while condition on all previous utterances as well as the schema. I adapt Edit-

SQL for the correction task by providing the question and the feedback as the utterances

at turn one and two respectively, and I force it to use the mispredicted parse as the pre-

diction of turn one (rather than predicting it). I train the model on the combination of

the training sets of splash and spider (which is viewed as single turn conversations).

I exclude turn one predictions from the training loss when processing splash examples

otherwise, the model would be optimized to produce the mispredicted parses. I use the

default hyper-parameters provided by the authors2 together with the development set of

splash for early stopping.

To provide an estimate of human performance, I report the percentage of feedback

instances labeled as Complete as described in Section 5.3.2. I also report the re-ranking

upper bound (the percentage of test examples whose gold parses exist in seq2struct

beam).

5.4.2 Main Results

The results in Table 5.4 suggest that: (1) the feedback I collect is indeed useful for

correcting erroneous parses; (2) incorporating the mispredicted parse helps the correction

process (even a simple handcrafted baseline that uses the mispredicted parases outperforms

a strong trained neural model); and (3) the conversational EditSQL model equipped with

bert achieves the best performance, yet it still struggles with the task, leaving a large

gap for improvement.

2https://github.com/ryanzhumich/editsql

96

Exact Match Accuracy (%)

Baseline Correction End-to-End

Without Feedback

⇒ Seq2Struct N/A 41.30

⇒ Re-ranking: Uniform 2.39 42.48

⇒ Re-ranking: Parser score 11.26 46.86

⇒ Re-ranking: Second Best 11.85 47.15

With Feedback

⇒ Re-ranking: Handcrafted 16.63 49.51

⇒ Seq2Struct+Feedback 13.72 48.08

⇒ EditSQL+Feedback 25.16 53.73

Re-ranking Upper Bound 36.38 59.27

Estimated Human Accuracy 81.50 81.57

Table 5.4: Correction and end-to-end accuracies of baseline models.

5.4.3 Analysis

Does EditSQL+Feedback use the feedback? To confirm that EditSQL+Feedback

does not learn to ignore the feedback, I create a test set of random feedback by shuffling

the feedback of splash test examples. The accuracy on the randomized test set drops to

5.6%.

Is splash just another conversational text-to-SQL dataset? I evaluate the

trained EditSQL models on sparc and Cosql, on splash test set, and I get accuracies of

97

3.4% and 3.2%, respectively. In comparision, EditSQL achieves 47.9% accuracy on sparc

and 40.8% on Cosql. That confirms that splash targets different modeling aspects as we

discuss in Section 2.3.3.

Is splash only useful for correcting Seq2Struct errors? EditSQL is also

shown to achieve strong results on spider (57.6% on the development set) when used as

a single-turn mode. I collect feedback for a sample of 179 mispredicted parses produces

by EditSQL. I started with 200, but 21 of them turned out to have alternative correct

parses (false negatives). Using the EditSQL+Feedback model trained on splash I get

a correction accuracy of 14.6% for EditSQL errors which confirms that splash is also

useful for correcting mistakes of other parsers, but with some degradation in the correction

accuracy. I study that aspect in more depths in the next chapter.

5.5 Conclusion

In this chapter, I introduced the task of SQL parse correction. The task aims to

correct inaccurate SQL parses using natural language feedback provided by the user. I

created a large-scale dataset, splash, of text-to-SQL with natural language feedback sub-

mitted by crowdworkers to correct inaccurate SQL interpretations of natural language

utterances. splash features a diverse set of natural language feedback utterances aiming

to correct a diverse set of text-to-SQL parsing mistakes. Further analysis showed that a

large percentage of errors made by a recent neural text-to-SQL system are not far off from

the correct interpretation. It also showed that collecting natural language feedback from

humans is feasible and useful for addressing many of these errors. I experimented with

multiple simple baselines that try to re-rank parses from the beam of the original model

or re-generate a new SQL given the question, the feedback and the incorrect predicted

98

SQL. The evaluation showed that such methods have potential for improving the overall

accuracy and hence, can create a better user experience. It also shows that the model

accuracy still leaves significant room for improvement, suggesting the importance of better

models for collecting and leveraging feedback from users to further improve performance.

In the next chapter, I present nl-edit, an improved model for the correction task.

nl-edit combines two key ideas: (1) interpreting the feedback in the context of the other

elements of the interaction (database schema, question, and explanation of the initial

query), and (2) explicitly generate edit operations to correct the initial query instead of

re-generating the full query from scratch. I design a simple SQL editing language whose

basic units are add/delete operations applied to different SQL clauses. With that, I boost

the correction accuracy to 41%.

99

Chapter 6: Edit-Based Model for Interactive Semantic Parsing

In the previous chapter, I introduced a framework for interactive text-to-SQL in

which induced SQL queries are fully explained in natural language to users, who in turn,

can correct such parses through natural language feedback. I described the construction

of the splash dataset and used it to evaluate baselines for the task of semantic parse

correction with natural language feedback that I introduced.

In this chapter, I present a detailed analysis of the feedback and the differences

between the initial (incorrect) and the correct parse. I argue that a correction model

should be able to interpret the feedback in the context of other elements of the interaction

(the original question, the schema, and the explanation of the initial parse). I observe from

splash that most feedback utterances tend to describe a few edits that the user desires

to apply to the initial parse. As such, I pose the correction task as a semantic parsing

problem that aims to convert natural language feedback to a sequence of edits that can

be deterministically applied to the initial parse to correct it. Figure 1.2 demonstrates

the operation of nl-edit. I use that edit-based modeling framework to show that we

The work in this chapter is published as “Ahmed Elgohary, Christopher Meek, Matthew

Richardson, Adam Fourney, Gonzalo Ramos, and Ahmed Hassan Awadallah. 2021. NL-EDIT:

Correcting semantic parse errors through natural language interaction. In Conference of the North

American Chapter of the Association for Computational Linguistics” (Elgohary et al., 2021).

100

can effectively generate synthetic data to pre-train the correction model leading to clear

performance gains.

Specifically, I present a scheme for representing SQL query Edits that benefits both

the modeling and the analysis of the correction task (Section 6.1), (2) I present nl-

edit (Section 6.2), an edit-based model for interactive text-to-SQL with natural language

feedback. I show (Section 6.4) that nl-edit outperforms baselines presented in Chapter 5

by more than 16% in correction accuracy (Section 5.4), (3) I demonstrate that we can

generate synthetic data through the edit-based framing and that the model can effectively

use this data to improve its accuracy (Section 6.3) and (4) I present a detailed analy-

sis of the model performance including studying the effect of different components, and

generalization to errors of state-of-the-art parsers (Section 6.5).

6.1 SQL Edits

I define a scheme for representing the edits required to transform one SQL query

to another. I use that scheme both in my model and analysis. My goal is to balance the

granularity of the edits—too fine-grained edits result in complex structures that are chal-

lenging for models to learn, and too coarse-grained edits result in less compact structures

that are harder for models to generate.

I view a SQL query as a set of clauses (e.g, SELECT, FROM, WHERE), each clause has

a sequence of arguments (Figure 6.1). I mirror the SQL clauses SELECT, FROM, WHERE,

GROUP-BY, ORDER-BY, HAVING, and LIMIT. For subqueries, I define a clause SUBS whose

arguments are recursively defined as sets of clauses. Subqueries can be linked to the main

query in two ways: either through an IEU clause (mirrors SQL INTERSECT/EXCEPT/UNION)

whose first argument is one of the keywords INTERSECT, EXCEPT, UNION and its second

101

SELECT: arg1:"id", arg2:"MAX(grade)"
FROM: arg1:"assignments"
GROUP-BY: arg1:"id"

SUBS: arg1:

WHERE: arg1:"grade > 20",
 arg2: "id NOT IN SUBS1"

SELECT: arg1: "id"
FROM: arg1: "graduates"

SELECT: arg1:"id", arg2:"AVG(grade)"
FROM: arg1:"assignments"
GROUP-BY: arg1:"id"

ORDER-BY: arg1:"id"
WHERE: arg1:"grade > 20"

SELECT: remove: "MAX(grade)", add: "AVG(grade)"
WHERE: remove: "id NOT IN SUBS1"
ORDER-BY: add: "id"

Source

Target

Edit

<select> remove maximum grade </select> <select> add
average grade </select> <where> remove id not one of
</where> <orderby> add id </orderby>

Linearized
Edit

Figure 6.1: Edit for transforming the source query “SELECT id, MAX(grade) FROM

assignments WHERE grade > 20 AND id NOT IN (SELECT id from graduates)

GROUP BY id” to the target “SELECT id, AVG(grade) FROM assignment WHERE

grade > 20 GROUP BY id ORDER BY id”. The source and target are represented

as sets of clauses (left and middle). The set of edits and its linearized form (Sec-

tion 6.2) are shown on the right. Removing the condition “id NOT IN SUBS1”

makes the subquery unreferenced, hence pruned from the edit.

argument is a pointer to a subquery in SUBS. The second is through nested queries where

the arguments of some of the clauses (e.g., WHERE) can point at subqueries in SUBS (e.g.,

102

“id NOT IN SUBS1”).

With such view of two queries Psource and Ptarget, I define their edit Dsource→target as

the set of clause-level edits {Dc
source→target} for all types of clauses c that appear in Psource

or Ptarget (Figure 6.1). To compare two clauses of type c, I simply exact-match their

arguments: unmatched arguments in the source (e.g., MAX(grade) in SELECT) are added as

to-remove arguments to the corresponding edit clause, and unmatched arguments in the

target (e.g., “id” in the ORDER-BY) are added as to-add arguments.

My current implementation follows spider’s assumption (Section 2.3.4) that the

number of subqueries is at most one which implies that computing edits for different

clauses can be done independently even for the clauses that reference a subquery (e.g.,

WHERE in Figure 6.1). The edit of the SUBS clause is recursively computed as the edit

between two queries (any of them can be empty); the subquery of source and the subquery

of target, i.e., DSUBS
source→target = Dsource:SUBS1→target:SUBS1 . I keep track of the edits to the

arguments that reference the subquery. After all edit clauses are computed, I prune the

edits of the SUBS clause if the subquery will no longer be referenced (SUBS1 in Figure 6.1).

I follow the spider evaluation and discard the values in WHERE/HAVING clauses.

Figure 6.1 shows an example edit that transforms a source query into a target query.

Starting from the SELECT clause, the argument id is matching in both source and target.

The second argument in source is MAX(grade) while the second argument in target is

AVG(grade). To transformer the SELECT arguments of source to those in target, the edit

removes MAX(grade) and adds AVG(grade). The arguments of the FROM and GROUP-BY

clauses are matching in both the source and target. So, the edit does not include any

add/remove operations for both clauses. Source has an extra condition (id NOT IN SUBS1)

in its WHERE clause so, the edit of the WHERE clauses just removes that condition. Finally,

103

source is missing an ORDER-BY clause with the argument id which is then added by the

edit.

I refer to the number of add/remove operations in an edit as the Edit Size, and I

denote it as |Dsource→target|. For example, the edit in Figure 6.1 is of size four.

6.2 Model

I follow the task description in Section 5.1: the inputs to the model are the elements

of the interaction—question, schema, an initial parse P̃, and feedback. The model predicts

a corrected P̄. The gold parse P̂ is available for training. The model (nl-edit) is based

on integrating two key ideas in an encoder-decoder architecture (Section 2.1.5). I start

with a discussion of the intuitions behind the two ideas followed by the model details.

6.2.1 Intuitions

Interpreting feedback in context: The feedback is expected to link to all the

other elements of the interaction (Figure 1.2). The feedback is provided in the context of

the explanation of the initial parse, as a proxy to the parse itself. As such, the feedback

tends to use the same terminology as the explanation. For example, the SQL explana-

tions (Section 5.2.2) express “GROUP BY” in simple language “for each vote_id, find ...”.

As a result, human-provided feedback never uses “GROUP BY”. I also notice that in several

splash examples, the feedback refers to particular steps in the explanation as in the ex-

amples in Figure 1.2. Unlike the models I discussed in Chapter 5, I replace the initial

parse with its natural language explanation. Additionally, the feedback usually refers to

columns/tables in the schema, and could often be ambiguous when examined in isolation.

104

Such ambiguities can be usually resolved by relying on the context provided by the ques-

tion. For example, “find last name” in Figure 1.2 is interpreted as “find last name besides

first name” rather than “replace first name with last name” because the question asks for

the “full name”. My first key idea is based on grounding the elements of the interaction

by combining self-learned relations by transformer models (Section 2.1.4) and hard-coded

relations that we define according to the possible ways different elements can link to each

other.

Feedback describes a set of edits: The difference between the erroneous parse

and the correct one can mostly be described as a few edits that need to be applied to

the initial parse to correct its errors (Section 6.5). Also, the feedback often only describes

the edits to be made. As such, we can pose the task of correction with nl feedback as

a semantic parsing task where we convert a natural language deception of the edits to a

canonical form that can be applied deterministically to the initial parse to generate the

corrected one. I train nl-edit to generate SQL Edits (Section 6.1) rather than SQL

queries.

6.2.2 Encoder

My encoder (Figure 6.2) starts with passing the concatenation of the feedback, expla-

nation, question, and schema through bert (Section 2.1.6). Following Wang et al. (2020);

Suhr et al. (2018); Scholak et al. (2020), I tokenize the column (table) names and concate-

nate them in one sequence (Schema) starting with the tokens of the tables followed by the

tokens of the columns. Then, I average the bert embeddings of the tokens corresponding

to each column (table) to obtain one representation for the column (table). Each expla-

nation is provided as a list of steps (Section 5.2.2). I concatenate the tokens of all steps

105

in one sequence and separate the tokens of each step with a special token [STEP-SEP].

I also add special tokens [SUB-QUERY-START] and [SUB-QUERY-END] before and

after the steps corresponding to each subquery (if exists).

[CLS] Feedback [SEP] Explanation [SEP] Question [SEP] Schema
BERT

...

Relation-Aware Transformer

Token MatchingSchema Linking Same Step

...

Figure 6.2: The Encoder of nl-edit grounds the feedback into the explanation, the

question, and the schema by (1) passing the concatenation of their tokens through

bert, then (2) combining self-learned and hard-coded relations in a relation-aware

transformer. Three types of relations (Interaction Relations) link the individual

tokens of the inputs. Question-Schema and Schema-Schema relations are not shown.

The rat-sql model (Section 2.3.4) shows the benefit of injecting preexisting re-

lations within the schema (column exists in a table, primary-foreign key), and between

the question and schema items (column and table names) by: (1) name linking: link a

question token to a column/table if the token and the item name match and (2) value

linking: link a question token to a column if the token appears as a value under that col-

umn. To incorporate such relations in their model, they use the relation-aware transformer

model (Section 2.1.3).

In addition to those relations, I define a new set of relations that aim at contex-

106

tualizing the feedback with respect to the other elements of the interaction in our setup:

(1) [Feedback-Schema] I link the feedback to the schema the same way the question

is linked to the schema via both name and value linking, (2) [Explanation-Schema]

Columns and tables are mentioned with their exact names in the explanation. I link the

explanation to the schema only through exact name matching, (3) [Feedback-Question]

I use partial (at the lemma level) and exact matching to link tokens in the feedback and

the question, (4) [Feedback-Explanation] I link tokens in the feedback to tokens in the

explanation through partial and exact token matching. Since the feedback often refers to

particular steps, I link the feedback tokens to explanation tokens that occur in steps that

are referred to in the feedback with a separate relation type that indicates step reference in

the feedback, and (5) [Explanation-Explanation] I link explanation tokens that occur

within the same step. I use the same relation-aware transformer formulation as in the

rat-sql model and add the relation-aware layers on top of bert to integrate all relations

into the model (Figure 6.2).

6.2.3 Decoder

Using a standard teacher-forced cross-entropy loss (Section 2.1.5), I train nl-edit to

generate linearized SQL Edits (Figure 6.1). At training time, I compute the reference SQL

Edit DP̃→P̂ of the initial parse P̃ and the gold parse P̂ (Section 6.1). Then I linearize

DP̃→P̂ by listing the clause edits in a fixed order (FROM, WHERE, GROUP-BY, ... etc.). The

argument of each clause—representing one add or remove operation—is formatted as

<CLAUSE> ADD/REMOVE ARG </CLAUSE>.

I express SQL operators in ARG with natural language explanation as in Section 5.2.2.

107

For example, the argument “AVG(grade)” is expressed as “average grade”. At inference

time, I generate a corrected parse P̄ by applying the produced edit to the initial parse P̃.

[CLS] Feedback [SEP] Explanation [SEP] Question [SEP] Schema

Encoder: BERT + RAT

....

T1 T2 T3
Decoder Layer

Self-Attention

Target Prefix:

Feedback-Attention

Decoder State

....

Encoder-Attention

Figure 6.3: nl-edit with a transformer decoder that splits the attention to the

encoder: First it attends to the feedback then uses the updated decoder state to

attend to the other parts of the input. Figure 2.1 shows the standard encoder-

decoder attention.

I use a standard transformer decoder (Figure 2.1) that either generates tokens from

the output vocab or copies columns and tables from the encoder output. Since all editing

operations should be directed by the feedback, I tried splitting the attention to the encoder

into two phases (Figure 6.3): First, I attend to the feedback only and update the decoder

state accordingly. Then, I use the updated decoder state to attend to the other inputs.

With that, I only observed a marginal improvement of 0.5% in the accuracy. I conduct all

my experiments in the rest of this chapter with standard decoder-encoder attention and

leave the investigation of other attention patterns for future work.

108

6.3 Synthetic Feedback

Algorithm 1 Training Data Synthesis
1: for seed in spider training set do

2: for p in CLONE(seed, N) do

3: feedback = []

4: for i = 1 : RAND-NUM-EDITS() do

5: e← RAND-FEASIBLE-EDIT(p)

6: p.APPLY-EDIT(e)

7: feedback.ADD(e.FEEDBACK())

8: end for

9: output: seed.DB, seed.Question, p,

10: feedback, seed.Gold-SQL

11: end for

12: end for

In this section, I describe the process for automatically synthesizing additional ex-

amples for training the correction model. Recall that each example consists of a question

about a given schema paired with a gold parse, an initial erroneous parse, and feedback.

Starting with a seed of questions and their corresponding gold parses from spider’s train-

ing set (8,099 pairs) (I ensure there is no overlap between examples in the seed and the

dev set of splash), my synthesis process applies a sequence of SQL editing operations to

the gold parse to reach an altered parse that I use as the initial parse (Algorithm 1).

By manually inspecting the edits (Section 6.1) I induce for the initial and gold

109

Replace-Select-Column:

- replace {NEW-COL} with {OLD-COL}

- you should find {OLD-COL} instead

Add-Where-Condition:

- delete {COL} {OPERATOR} {VALUE}

Remove-Limit:

- only top {LIMIT-VALUE} rows are needed

Table 6.1: Example SQL Editors with corresponding feedback templates. The syn-

thesized feedback is reversing the edit applied to a correct SQL as our synthesis

process starts with the gold SQL and reaches an initial SQL after applying the edit.

parses in splash training set, I define 26 SQL editors and pair each editor with their most

frequent corresponding feedback template(s) (Examples in Table 6.1). I also associate each

editor with a set of constraints that determines whether it can be applied to a given SQL

query e.g., the “Remove-Limit” editor can only be applied to a query that has a limit

clause.

Algorithm 1 summarizes the synthesis process. I start by creatingN (controls the size

of the dataset) clones of each seed example. The analysis of splash (Section 5.3) shows

that multiple mistakes might be present in the initial SQL, hence I allow my synthesis

process to introduce up to four edits (randomly decided in line:4) to each clone p. For

each editing step, I sample a feasible edit for the current parse (line:5) with manually set

probabilities for each edit to balance the number of times each editor is applied in the final

dataset. A feasible edit meets all constrains defined with the editor and a set sequence-

110

dependent constraints to avoid applying editors that cancel each other out. Applying an

edit (line:6) involves sampling columns/tables from the current parse and/or the schema,

sampling operators and values for altering conditions, and populating the corresponding

feedback template. I combine the feedback of all the applied editors into one string and

use it as the feedback of the synthesized example.

6.4 Experiments

Correction

Acc. (%)
Edit ↓ (%) Edit ↑ (%) Progress (%)

Rule-based Re-ranking 16.63 38.35 32.81 -15.67

EditSQL+Feedback 25.16 47.44 23.51 7.71

nl-edit 41.17 72.41 16.93 36.99

Oracle Re-ranking 36.38 34.69 1.04 31.22

Table 6.2: Comparing nl-edit to baselines in (Section 5.4): Rule-based

Re-ranking and EditSQL+Feedback and to the beam re-ranking upper-bound.

Edit ↓ (Edit ↑) is the percentage of examples on which the number of edits/errors

strictly decreased (increased). Progress is the average relative reduction in the

number of edits (Section 6.4). nl-edit outperforms both baselines on all measures

(with 95% statistical significance on the Correction Accuracy) and outperforms the

oracle re-ranking on all measures except Edit ↑. The upper-bound on the correction

accuracy is estimated as 81.5% (Section 5.4).

111

6.4.1 Setup

I conduct my experiments using splash (Section 5.2.3) whose train, dev, and test

sets are of sizes 7481, 871, and 962, respectively. Using the feedback synthesis process (Sec-

tion 6.3), I generate 50,000 additional synthetic training examples. In preliminary exper-

iments, I found that training the model on the synthetic dataset first then continuing on

splash outperforms mixing the synthetic and real examples and training on both of them

simultaneously. I train the model on the synthetic examples for 20,000 steps and continue

training on the real examples until reaching 100,000 steps in total. I choose the best check-

point based on the development set accuracy. I varied the number of training steps on the

synthetic examples and 20,000 steps achieved the highest accuracy on the dev set.

I use bert-base-uncased (Section 2.1.6) in all my experiments. I set the number

of layers in the relational-aware transformer to eight (Following Wang et al. (2020)) and

the number of decoder layers to two. I train with batches of size 24. I use the Adam

optimizer (Kingma and Ba, 2015) for training. I freeze bert parameters during the first

5,000 warm-up steps and update the rest of the parameters with a linearly increasing

learning rate from zero to 5 × 10−4. Then, I linearly decrease the learning rates from

5 × 10−5 for bert and 5 × 10−4 for the other parameters to zero. The learning rate

schedule is only dependent on the step number regardless of whether we are training on

the synthetic data or splash. I tried resetting the learning rates back to their maximum

values after switching to splash, but did not observe any improvement in accuracy. I use

beam search (Section 2.1.5) with a beam of size 20 and take the top-ranked beam that

results in a valid SQL after applying the inferred edit.

112

6.4.2 Evaluation

As in Chapter 5, I use the correction accuracy as the main evaluation measure:

each example in splash test set contains an initial parse P̃ and a gold parse P̂. With a

predicted (corrected) parse by a correction model P̄, the correction accuracy is computed

using the exact-set-match (Section 2.3.4) between P̄ and P̂ averaged over all test examples.

While useful, correction accuracy also has limitations. It expects models to be able to fully

correct an erroneous parse with only one utterance of feedback as such, it is defined in terms

of the exact match between the corrected and the gold parse. I find (Table 6.2) that in

several cases, models were still able to make progress by reducing the number of errors

as measured by the edit size (Section 6.1) after correction. As such, I define another set

of measures to estimate partial progress. I report (Edit ↓ and Edit ↑ in Table 6.2) the

percentage of examples on which the size of the edit set strictly decreased/increased. To

combine Edit ↓ and Edit ↑ in one measure and account for the relative reduction (increase)

in the number of edits, I define

Progress(S) =
1

|S|
∑

P̃,P̄,P̂∈S

|DP̃→P̂ | − |DP̄→P̂ |
|DP̃→P̂ |

.

Given a test set S, the Progress of a correction model is computed as the average relative

edit reduction between the initial parse P̃ and the gold parse P̂ by predicting a correction

P̄ of P̃. A perfect model that can fully correct all errors in the initial parse would achieve

a 100% progress. A model can have a negative progress (e.g., Rule-based re-ranking in Ta-

ble 6.2) when it frequently predicts corrections with more errors than those in the initial

parse. Unlike correction accuracy, Progress is more aligned with user experience in an

interactive environment (Su et al., 2018) as it assigns partial credit for fixing a subset of

the errors and also, it penalizes models that predict an even more erroneous parse after

113

receiving feedback.

6.4.3 Results

I compare (Table 6.2) nl-edit to the two top-performing baselines and also to the

beam re-ranking upper-bound (Chapter 5). nl-edit significantly (based on McNemar

tests (McNemar, 1947; Dror et al., 2018) with significance level of 0.05) increases the

correction accuracy over the top baseline (EditSQL+Feedback) by more than 16% and

it also outperforms oracle re-ranking by around 5%. I also note that in 72.4% of the

test examples, nl-edit was able to strictly reduce the number of errors in the initial

parse (Edit ↓) which potentially indicates a more positive user experience than the other

models. nl-edit achieves 37% Progress which indicates faster convergence to the fully

corrected parse than all the other models.

6.5 Analysis

6.5.1 Ablations

Following the same experimental setup in Section 6.4, I compare nl-edit to other

variants with one ablated component at a time (Table 6.3). I ablate the feedback, the

explanation, and the question from the encoder input. I also ablate the interaction

relations (Section 6.2.2) that I incorporate in the relation-aware transformer module. I

only ablate the new relations I introduce to model the interaction (shown in Figure 6.2),

but I keep the Question-Schema and Schema-Schema relations introduced in (Wang et al.,

2020). For each such variant, I train for 20,000 steps on the synthetic dataset then continue

training on splash until step 100,000. I also train an ablated variant that does not use

114

Model Correction Accuracy (%)

nl-edit 41.17

− Feedback 19.81

− Explanation 26.80

− Question 38.27

− Interaction Relations 35.35

− Synthetic Feedback 35.01

Table 6.3: Correction accuracy on splash Test of nl-edit versus variants with one

ablated component each. Each component of nl-edit helps boosting the accuracy

of the full model with 95% statistical significance.

the synthetic feedback where I train for 100,000 steps only on splash. For all variants,

I choose the checkpoint with the largest correction accuracy on the dev set and report the

accuracy on the splash test set.

The results in Table 6.3 confirm the effectiveness of each component in my model.

Ablating any of the components significantly reduces the accuracy of the full model accord-

ing to McNemar tests with significance level of 0.05. The model is able to correct 19.8%

of the examples without the feedback. I noticed that the ablated-feedback model almost

reaches that accuracy only after training on the synthetic data with very minor improve-

ment (< 1%) after training on splash. Only using the question and the explanation, the

model is able to learn about a set of systematic errors that parsers make and how they

can be corrected (Gupta et al., 2017; Yin and Neubig, 2019).

115

[1-8] [9-16] [17-24] > 24
Feedback Length (Num. Tokens)

0

10

20

30

40

50

Co
rr

ec
ti

on
 A

cc
ur

ac
y

(%
)

(259)

(501)

(146)

(56)

Figure 6.4: Breakdown of the correction accuracy on splash test set by the feedback

length. The number of examples in each group is shown on top of the bars.

6.5.2 Error Analysis

In Figures 6.4, 6.5 and 6.6, I breakdown the correction accuracy by the feedback

and explanation lengths (in number of tokens) and by the reference edit size (number of

required edit operations to fully correct the initial parse). The accuracy drops significantly

when the reference edit size exceeds two (Figure 6.6), while it declines more gradually

as the feedback and explanation increase in length. I manually (Examples in Table 6.4)

inspected the examples with longer feedback than 24, and found that 8% of them the

feedback is long because it describes how to rewrite the whole query rather than being

limited to only the edits to be made. In the remaining 92%, the initial query had several

errors (edit size of 5.5 on average) with the corresponding feedback enumerating all of

them.

116

[1-15] [16-30] [31-45] > 45
Explanation Length (Num. Tokens)

0

10

20

30

40

50

60

Co
rr

ec
ti

on
 A

cc
ur

ac
y

(%
)

(382)

(168)

(259)

(153)

Figure 6.5: Breakdown of the correction accuracy on splash test set by the ex-

planation length. The number of examples in each group is shown on top of the

bars.

Figure 6.7 shows how the number of errors (measured in edit size) changes after

correction. The figure shows that even for examples with a large number of errors (four

and five), the model is still able to reduce the number of errors in most cases. I manually

inspected the examples with only one error that the model failed to correct. I found 15% of

them have either wrong or non-editing feedback and in 29% the model produced the correct

edit but with additional irrelevant ones. The dominant source of error in the remaining

examples is because of failures with linking the feedback to the schema (Examples in

Table 6.5).

117

1 2 3 4 5 > 5
Edit Size (Num. Add/Remove Operations)

0

10

20

30

40

50

60

70

Co
rr

ec
ti

on
 A

cc
ur

ac
y

(%
) (135)

(302)

(158)

(164)

(95) (108)

Figure 6.6: Breakdown of the correction accuracy on splash test set by the size of

the reference edit (number of add or remove operations). The number of examples

in each group is shown on top of the bars.

0 1 2 3 4 5 > 5
Edit Size After Correction

5

4

3

2

1

Ed
it

 S
iz

e
Be

fo
re

 C
or

re
ct

io
n

0.05 0.13 0.16 0.19 0.23 0.13 0.11

0.22 0.13 0.23 0.18 0.06 0.13 0.05

0.34 0.17 0.16 0.21 0.06 0.05 0.01

0.68 0.05 0.08 0.11 0.08 0.0 0.0

0.63 0.07 0.14 0.12 0.02 0.02 0.0

Figure 6.7: Transitions in edit size after correction. For each edit size of the initial

parse (rows), we show the distribution of the edit size after correction.

118

Long Feedback Not Describing an Edit:

“you should determine the major record format from the orchestra

table and make sure it is arranged in ascending order of number of

rows that appear for each major record format.”

Long Feedback Describing an Edit:

“replace course id (both) with degree program id, first courses with

student enrolment, course description with degree summary name,

second courses with degree programs.”

Table 6.4: Example long feedback that nl-edit struggles with. Top: The feedback

describes a rewriting of the query rather than how to edit it. Bottom: The initial

query has several errors and the feedback enumerates how to edit all of them.

6.5.3 Cross-Parser Generalization

So far, I have been using splash for both training and testing. The erroneous

parses (and corresponding feedback) in splash are based on the seq2struct parser (Sec-

tion 2.3.4). Recent progress in model architectures (Wang et al., 2020) and pre-training (Yin

et al., 2020; Yu et al., 2021a) has led to parsers that already outperform seq2struct by

more than 30% in parsing accuracy.1 Here, I ask whether nl-edit that I train on splash

(and synthetic feedback) can generalize to parsing errors made by more recent parsers

without additional parser-specific training data.

I follow the same crowdsourcing process used to construct splash (Section 5.2.3) to

1https://yale-lily.github.io/spider

119

Adding extra edits:

Ques.: Which city and country is the Alton airport at?

Initial: SELECT City, Country FROM airports WHERE AirportName

= ’Alton’ AND Country = ’USA’

Feedback: remove “and country equals USA” phrase.

Predicted: <where> remove Country equals </where> <where>

remove AirportName equals </where>

Gold: <where> remove Country equals </where>

Failing to link feedback and schema:

Ques.: What are the full names of all left handed players, in order of

birth date?

Initial: SELECT first_name, last_name FROM players ORDER BY

birth_date Asc

Feedback: make sure that player are left handed.

Predicted: <where> add birth_date equals </where>

Gold: <where> add hand equals </where>

Table 6.5: Example failure cases of nl-edit.

120

seq2struct editsql tabert rat-sql

Correction Test Sets Summary

Number of Examples 962 330 267 208

Average Feedback Length 13.1 13.5 12.9 12.2

Average Explanation Length 26.4 28.3 32.2.9 34.0

Semantic Parsing Accuracy (%)

Error Correction 41.1 28.0 22.7 21.3

No Interaction 41.3 57.6 65.2 69.7

End-to-End 61.6 66.6 71.1 74.0

∆ w/ Interaction +20.3 +8.9 +5.9 +4.3

Table 6.6: Evaluating the zero-shot generalization of nl-edit to different parsers

(editsql, tabert, and rat-sql) after training on splash that is constructed

based on the seq2struct parser. Top: Summary of the dataset constructed based

on each parser. Feedback and explanation length is the number of tokens. Bottom:

The Error Correction accuracy on each test set and the end-to-end accuracy of

each parser on the full spider dev set with and without interaction. ∆ w/ Inter-

action is the gain in end-to-end accuracy with the interaction added. All such gains

are statistically significant with a significance level of 0.05.

collect three new test sets based on three recent text-to-SQL parsers: editsql, tabert,

and rat-sql (see Section 2.3.4 for an overview for each parser). Following the same

process for constructing splash test set, I run each parser on spider dev set and only

121

1 2 3 4 5 6 > 6
Edit Size (Num. Add/Remove Operations)

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge

SPLASH
EditSQL
TaBERT
RAT-SQL

Figure 6.8: Distribution of Edit Size per example in splash compared to the gener-

alization test sets constructed based on editsql, tabert, and rat-sql. The black

bars are 95% confidence intervals estimated with the percentile method using 10,000

bootstrap samples (Efron and Tibshirani, 1994).

collect feedback for the examples with incorrect parses that can be explained using their

SQL explanation framework. Table 6.6 (Top) summarizes the three new test sets and

compares them to splash test set. I note that the four datasets are based on the same set

of questions and databases (spider dev).

Table 6.6 (Bottom) compares the parsing accuracy (measure by exact query match (Sec-

tion 2.3.4) of each parser when used by itself (No Interaction) to integrating it with nl-

edit. I report both the accuracy on the examples provided to nl-edit (Error Correc-

tion) and the End-to-End accuracy on the full spider dev set. nl-edit significantly

(according to McNemar tests with significance level of 0.05) boosts the accuracy of all

122

parsers, but with a notable drop in the gains as the accuracy of the parser improves. To

explain that, in Figure 6.8 I compare the distribution of reference edit size across the four

datasets. The figure does not show any significant differences in the distributions that

would lead to such a drop in accuracy gain. Likewise, the distributions of the feedback

lengths are very similar (the mean is shown in Table 6.6). As parsers improve in accuracy,

they tend to make most of their errors on complex SQL queries. Although the number

of errors with each query does not significantly change (Figure 6.8), I hypothesize that

localizing the errors in a complex initial parse, with a long explanation (Table 6.6), is the

main generalization bottleneck that future work needs to address.

6.6 Conclusions

In this chapter, I introduced the nl-edit model, a data augmentation method, and

analysis tools for correcting semantic parse errors in text-to-SQL through natural language

feedback. Compared to the strong baselines I introduced in Chapter 5, nl-edit improves

the correction accuracy by 16% and boosts the end-to-end parsing accuracy by up to 20%

with only one turn of feedback. Still there is a significant gap between nl-edit (the

state-of-the-art model for the correction task) and the estimated upper-bound. Also, my

analysis showed that there is also a generalization bottleneck that limits nl-edit’s ability

to correct parsing mistakes made by more recent parsers.

Overall, this chapter together with the previous chapter clearly demonstrate the

potential of improving semantic parsers (hence, question answering) by enabling users to

interact with machines through natural language. In the next chapter, I summarize the

outcome and results of this thesis that I also use to draw a research agenda for further

advancing collaborative human–computer nlp.

123

Chapter 7: Conclusions and Future Work

Artificial intelligence (ai) is currently at the stage of wide deployment in real life ap-

plications. Crucially, users need to trust the ai systems they are using and stay in-control.

Moreover, ai models are not perfect and occasionally struggle or make mistakes. When

we team up users with ai, they will verify the correctness of ai outputs and, if they are

in-control, interact with the ai to provide corrective feedback when needed. Collaborative

human–computer ai is the realistic setup for a wide deployment of ai systems.

The goal of this thesis is to create systems, methods and tools that help advance

collaborative human–computer nlp. In particular, I focus on collaborations done through

natural language interactions. With natural language, users can express their feedback

with much flexibility and richness without being limited to the interaction capabilities

that systems support (e.g., options in a graphical interface). With only one turn of natural

language feedback, I show that the accuracy of question answering systems can be boosted

by up to 20%. In this chapter, I summarize the contributions this thesis makes (Sec-

tion 7.1), discuss limitations of the work I presented in the previous chapters (Section 7.2),

then I outline future research directions based on the findings of the thesis (Sections 7.3

and 7.4).

124

7.1 Summary of Contributions

Natural language can convey rich information and when it is naturally occurring it

can be a valuable source for training various machine learning models. In Chapter 3, I

showed that the naturally occurring bilingual text can be very useful for learning general

purpose vector representations of sentences. I compare three forms of natural language

supervision for that goal: 1) bilingual sentences, 2) bilingual phrases that are automati-

cally extracted from bilingual sentences, and 3) monolingual paraphrases which are also

extracted from bilingual text, but require an order of magnitude larger corpus to learn

reliable paraphrases. On English semantic textual similarity benchmarks that span several

domains and genres, I show that learning with bilingual paraphrases is superior to the

two others forms. That finding 1) demonstrates the effectiveness of learning from natural

language supervision, and 2) offers a much resource-efficient approach for learning vector

representations of sentences.

To enable human–computer interaction through natural language, machines should

be equipped with methods for understanding user utterances in conversational contexts.

In Chapter 4, I study conversational question answering. I present baseline methods for

incorporating previously asked questions and their answers to improve the accuracy of

answering interrelated questions in the open-domain qa setup (Section 2.2). Then, I in-

troduce question-in-context rewriting to reduce context-dependent questions to stand-alone

questions that can be answered by existing qa models. I create canard: a benchmark

dataset that can be used for evaluating and analyzing rewriting models. Recent work has

shown that the rewriting task and canard are useful for various setups of conversational

qa (Vakulenko et al., 2020, 2021; Chen et al., 2021).

125

In Chapter 5, I create an interactive semantic parsing system that answers questions

about data stored in relational databases by translating questions into SQL queries. In that

system, users inspect the SQL queries produced by the system and interact with the system

by provide feedback in free-form natural language that describes any mistakes with the

queries and possibly how they can be corrected. To enable laypeople to inspect a SQL parse,

I develop an approach for explaining SQL queries in simple natural language steps. Then,

I construct splash: a benchmark dataset that consists of erroneous SQL queries paired

with human-authored natural language feedback. Using splash, I introduce the task of

semantic parse correction with natural language feedback, and present results of a set of

baseline models. splash will help the development and evaluation of improved models

for the correction task. Also, the SQL explanation module will inspire the development of

explainable semantic parsing systems e.g., (Narechania et al., 2021; Xu et al., 2021, inter

alia).

In Chapter 6, I present nl-edit: an improved model for the correction task. I use the

inputs to the correction task (question, initial parse, schema and feedback) to construct a

graph that I encode with the relation-aware transformer model (Section 2.1.4). I also create

a SQL editing language that I parse the feedback into rather than parsing the feedback

in full SQL queries. Then, I introduce an approach for automatically generating synthetic

feedback examples that I train nl-edit on (in addition to splash) to further improve its

correction accuracy. Then, I switch to creating analysis tools for better understanding the

behaviour of correction models in general. I present fine-grained evaluation measures that

take into account partial corrections. I also extend splash and create new tests sets that

evaluate the generalization of correction models to parsing errors made by more recent

parsers.

126

7.2 Limitations

In Chapter 3, I evaluate bilingual supervision models and compare them to mono-

lingual paraphrases with only a word averaging composition function. While previous

work on using monolingual paraphrases (Wieting et al., 2016) show that word averaging

outperforms other composition functions (e.g., lstms) in similar evaluation settings, it

is not really clear whether the same result holds when using bilingual supervision. Also,

while the models I evaluate can be trained on any language pair, all my experiments are

limited to using Spanish as supervision to learn English representations. It is not clear

how switching to a different supervision language improves or degrades the results. It

is also not clear whether learning representations for languages other than English can

benefit from bilingual supervision or not. Finally, I only show that bilingual supervision

outperforms monolingual paraphrases when both are initialized randomly. It is not clear

whether the same conclusion holds when both supervisions are used to train well-initialized

representations.

In Chapter 4, I use qblink (Elgohary et al., 2018) to evaluate models for open-

domain conversational qa. While information about previously asked questions and their

answers can still be useful for answering questions, the individual qblink questions are

fully specified (Figure 2.4), and can be answered without information about previous ques-

tions. So far, qblink is the only available dataset for entity-centric conversational qa.

In Section 4.2, I study question in-context rewriting. My experiments only evaluate the

output of the rewriting models in comparison to the reference rewrites. I do not evaluate

the extent to which question rewriting helps qa.

In Chapters 5 and 6, I follow the assumptions of spider (Yu et al., 2018c) about

127

the complexity of SQL queries. In particular, spider queries contains at most one sub-

query. My SQL Edit scheme (Section 6.1) is based on that assumption. I also use exact

set match (spider’s official measure) to compare inferred SQL queries to the reference

queries. As discussed in Section 2.3.4, exact set match introduces false negatives and

recent work (Zhong et al., 2020) has introduced alternative measures.

Also, I note that my SQL explanations are not supported for all queries in spider.

The explanation templates that I implemented only covers 85% of spider’s queries. I

evaluated the usefulness of those explanations based on the correctness of the crowdsourced

feedback. Still, an explicit user study that focuses on the quality and understandability of

the explanations can provide more insights that guide future revisions of such explanations.

Finally, the nl-edit model I present in Chapter 6 assumes that the feedback always

describes an edit. As shown in the analyses in Sections 5.3 and 6.5, that assumption does

not always hold in splash (See the first example in Table 6.4). Ideally, the correct model

should also be able to process non-editing feedback (e.g., a corrected explanation) as well

as feedback that describes edits to be made to the initial explanation.

7.3 Future Research on Collaborative Human–Computer nlp

Drawing from the conclusions and outcomes of this thesis, In the following sections

I outline broad research directions for further advancing human–computer nlp in general.

7.3.1 User-Centered Explanations

The ability of users to provide useful feedback on the output of a given model is

largely determined by how well the model communicates its reasoning process to users. It

128

is hard to imagine what useful feedback a user would provide when they ask a qa system

“How many hotels are in Arlington?” and only get “Ten” without any explanation of how

the system reached that answer. An essential component for building collaborative nlp

(and Artificial Intelligence in general) is explainable models.

Studying the interpretability of nlp and machine learning models has received a lot

of attention in the past few years (Belinkov et al., 2020). Such efforts have mainly focused

on understanding what models learn (Ettinger et al., 2018; Feng et al., 2018), how they

operate internally (Wiegreffe and Pinter, 2019), and what their limitations are (Ribeiro

et al., 2020). While very useful for model developers, it is not clear whether such methods

can be useful for end users or not. For collaborative nlp, we need to design and evaluate

explanation methods based on their usefulness to end users.

An important insight about the explanations I used for my semantic parsing work

(Chapters 5 and 6) is that since the models produce a logical form that is executed to

deterministically produce the answer, I only had to explain the logical forms and that is

enough for users to verify the correctness of the produced answer. I did not need to explain

how the black-box neural model produced the logical forms.

I envision a general framework for producing user-centered explanations while still

retaining the accuracy of neural models. In that framework the task is split into two steps:

1) Infer a logical form (executable steps), 2) Deterministically execute the inferred logical

forms to produce the result. Under that framework, we only need to explain the logical

forms to users and have them interact with (e.g., provide feedback on) the explanations.

Also, deep neural (black-box) models can still be used to infer the logical forms.

Besides semantic parsing (which directly fits in the envisioned framework), there are

several other nlp tasks that can benefit from user interaction e.g., summarizing, machine

129

translation, and information extraction. Future work needs to explore how to explain

the outputs of models for such tasks to users. Following the framework I propose, we

need to cast each task of interest as parsing into a logical form. For example, abstractive

summarizing can be cast in a logical form that consists of two operations: EXTRACTing key

sentences and COMPRESSing them. Similarly, the qed formalism for explainable question

answering (Lamm et al., 2020) helps place machine reading comprehension within that

framework.

Finally, in my interactive semantic parsing work, I chose to explain the inferred SQL

queries in the form of natural language steps. The effectiveness of such explanations was

only evaluated based on their usefulness to crowdworkers who were paid to make effort

to understand the explanations and assess their correctness. Future work still needs to

conduct more realistic user studies to judge whether natural language explanations are the

most convenient to users of text-to-SQL systems and whether queries can be explained in

other forms than (or in addition to) natural language steps.

7.3.2 Designing and Evaluating Interaction Mechanisms

The interaction mechanism I adopt in Chapters 5 and 6 is based on generating a

full initial parse that users inspect and correct with natural language feedback. A comple-

mentary mechanism is to enable parsers to ask clarification questions while generating the

parse (Figure 7.1). The parser can ask users to clarify ambiguous questions as “Do you

mean Arlington, Virginia or Arlington Texas?” or ask for assistance with language under-

standing, e.g., resolving coreferences and ellipsis encountered in conversational questions

as “What do you mean by ‘those’ ?”. In Chapter 6, I found that even when the correction

model was not able to fully fix the initial parse, it was still able to fix at least a subset of

130

How many hotels are in Arlington?

Answer: 52
Explanation: Found the number of rows in hotels table
whose city equals Arlington and state equals VA

Do you mean Arlington, Virginia or Arlington, Texas?

Virginia

Ok. Seems Correct!

How many of those are 5-star?

What do you mean by those?

I mean the hotels in Arlington.

Answer: 8
Explanation: Found the number of rows in hotels table
whose city equals Arlington and state equals VA and
stars equals 5

Name State City Stars
The Hotel MD College Park 4

Ritz Carlton VA Arlington 5

Hotels

Asking a
Clarification
Question

Explaining
Predictions

Natural
Language
Feedback

Seeking Help
with Language
Understanding

Figure 7.1: Multiple interaction mechanisms that a text-to-SQL system supports.

The system is able to decide the best mechanism to use in each situation. Fu-

ture work needs to develop and evaluate such mechanisms and develop methods for

combining them in one system.

the errors in more than 72% of cases. Enabling users to provide multiple turns of feedback

can significantly improve the overall end-to-end semantic parsing accuracy. Future work

needs to study the effectiveness of different interaction mechanisms and explore methods

for potentially employing multiple mechanisms for the same task in ways that lead to the

best overall user experience (Figure 7.1).

131

How many hotels are in Arlington?

Answer: 0
Explanation: Found the number of rows in hotels table
whose state equals Arlington

Name State City Stars
The Hotel MD College Park 4

Ritz Carlton VA Arlington 5

Hotels

It should be city equals Arlington

Answer: 52
Explanation: Found the number of rows in hotels table
whose state equals VA and city equals Arlington

Figure 7.2: Example interaction with a text-to-SQL system in which the feedback is

used to correct a mistake with the initial parse. The underlying parser itself needs

to be updated and learn from the given feedback that Arlington is a state not a city.

7.3.3 Learning from Interactions

In the interactive semantic parsing framework I introduce, I only focused on correct-

ing the parse of a given question (the task-at-hand). But the collected interaction logs that

consist of triplets of a question, an initial parse, and natural language feedback can be used

to improve the parser itself over time hence, reduce the errors it makes. In Figure 7.2, the

work I presented in Chapters 5 and 6 uses the provided feedback “It should be city equals

Arlington” to revise the initial parse. But the base parser does not really benefit from

that feedback—it will keep making the same mistake over and over again. Future work

132

is needed to develop methods that improve semantic parsers with logs of natural

language feedback. A very promising direction is to employ and extend recent meta-

learning algorithms for training and fine-tuning models with noisy supervision (Shu et al.,

2019). The methods to be developed will potentially have a broader impact as natural

language becomes widely used for providing feedback in other nlp tasks. More generally,

any development of an interaction mechanism should be accompanied with corresponding

methods for improving the base model (that produces initial predictions) over time through

such form of interaction.

7.3.4 Testbed for Human-in-the-Loop Adaptation

To further encourage more research efforts on interactive language learning, future

work can create a testbed and evaluation measures in the same spirit of popular

benchmarks for nlp such as glue (Wang et al., 2018a). For a given task, it is impractical

to assume that we can construct a large training set for each domain, language, and set of

relevant linguistic phenomena. While a large body of work studies automatically reusing

existing datasets for different settings (through e.g., domain adaptation methods or mul-

tilingual representations), future work can also explore human-in-the-loop adaptation

methods. Such methods start with initial models trained on existing datasets and occa-

sionally ask for human assistance with unseen test examples that they struggle with and,

over time, incorporate the provided assistance to improve the initial model. For example,

a conversational QA system (Section 2.2.2) can start with a model trained only to answer

stand-alone questions, ask for stand-alone rewrites (Section 4.2) of questions it cannot

understand in context, and use the provided rewrites to improve its ability to answer fu-

ture conversational questions. The same idea applies to generalizing to new languages and

133

domains: the system can ask for paraphrases or translation (even if non-fluent) as mean-

ing annotation (Chapter 3) for words or phrases it struggles to understand. The testbed

I envision defines a set of adaptation scenarios and provides methods under evaluation

with simulated user responses to the questions they ask while monitoring the improvement

in accuracy that each method achieves as a function of the number of user interactions.

That testbed will significantly encourage and speed up the development of methods that

continuously acquire language skills through human interaction.

7.4 Other Future Research on Interactive Semantic Parsing

So far, my work on interactive semantic parsing has been focused on answering

individual questions. Future work can focus on integrating the natural language feedback

mechanism inside conversational semantic parsing settings (Section 2.3.3). In that case,

the system needs to distinguish and process differently new context-dependent questions

from feedback utterances on the inferred parses. Conversational semantic parsing can also

benefit from the SQL editing language that I introduce in Section 6.1: Instead of generating

a SQL query after each user utterance, the system can generate an edit to a previously

generated query.

The correction accuracy of the nl-edit model I present in Chapter 6 reaches up

to 41% which is still too far from the estimated upper-bound of 81% (Section 5.4). More

research still needs to be conducted to improve correction models. Possible avenues for

improving are 1) better modeling the interaction between the inputs, 2) exploring different

patterns for encoder-decoder attention, and 3) considering different methods for training

with synthetic data, e.g., curriculum learning (Bengio et al., 2009).

Finally, recall that splash is based on spider (Section 5.2.3). As I point out in

134

Section 2.3.4, spider does not provide the most realistic evaluation of text-to-SQL systems.

Recent efforts (Suhr et al., 2020; Deng et al., 2021) propose more challenging/realistic

evaluation setups (see Section 2.3.4 for details). Future work can study the effectiveness

of the interaction framework and models I present in this thesis on other evaluation setups

and datasets than spider.

135

Bibliography

Eugene Agichtein, Eric Brill, and Susan Dumais. 2006. Improving web search rank-
ing by incorporating user behavior. In Proceedings of the ACM SIGIR Conference
on Research and Development in Information Retrieval.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor
Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpioa, Montse Maritxalar, Rada
Mihalcea, et al. 2015. Semeval-2015 task 2: Semantic textual similarity, english,
spanish and pilot on interpretability. In Proceedings of the International Workshop
on Semantic Evaluation.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor
Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. Semeval-2014 task 10: Multilingual semantic textual similarity. In
Proceedings of the International Workshop on Semantic Evaluation.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo.
2013. sem 2013 shared task: Semantic textual similarity, including a pilot on
typed-similarity. In Proceedings of the International Workshop on Semantic
Evaluation.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor Gonzalez-Agirre. 2012. Semeval-
2012 task 6: A pilot on semantic textual similarity. In Proceedings of the
International Workshop on Semantic Evaluation.

C. Alberti, Kenton Lee, and Michael Collins. 2019. A BERT baseline for the natural
questions. ArXiv, abs/1901.08634.

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. 2010. Active learning and
crowd-sourcing for machine translation. In Proceedings of the Language Resources
and Evaluation Conference.

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the people: The role of humans in interactive machine learning. AI
Magazine, 35.

136

Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausman, Jean
Crawford, Kate Crim, Jordan DeLoach, Leah Dorner, Jason Eisner, Hao Fang,
Alan Guo, David Hall, Kristin Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Sm-
riti Jha, Dan Klein, Jayant Krishnamurthy, Theo Lanman, Percy Liang, Christo-
pher H. Lin, Ilya Lintsbakh, Andy McGovern, Aleksandr Nisnevich, Adam Pauls,
Dmitrij Petters, Brent Read, Dan Roth, Subhro Roy, Jesse Rusak, Beth Short, Div
Slomin, Ben Snyder, Stephon Striplin, Yu Su, Zachary Tellman, Sam Thomson,
Andrei Vorobev, Izabela Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang, and
Alexander Zotov. 2020. Task-oriented dialogue as dataflow synthesis. Transactions
of the Association for Computational Linguistics.

Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. 1995. Natural lan-
guage interfaces to databases–an introduction. Natural language engineering, 1.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020. AraBERT: Transformer-based
model for Arabic language understanding. In Proceedings of the 4th Workshop
on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on
Offensive Language Detection.

Jimmy Ba, J. Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. ArXiv,
abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. In Proceedings of the
International Conference on Learning Representations.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count, pre-
dict! a systematic comparison of context-counting vs. context-predicting semantic
vectors. In Proceedings of the Association for Computational Linguistics.

Yonatan Belinkov, Sebastian Gehrmann, and Ellie Pavlick. 2020. Interpretability
and analysis in neural NLP. In Proceedings of the Association for Computational
Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert: A pretrained language model
for scientific text. In Proceedings of Empirical Methods in Natural Language
Processing.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. ArXiv, abs/2004.05150.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A
neural probabilistic language model. The journal of machine learning research, 3.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Cur-
riculum learning. In Proceedings of the International Conference of Machine
Learning.

137

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
parsing on Freebase from question-answer pairs. In Proceedings of Empirical
Methods in Natural Language Processing.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing schema struc-
ture with graph neural networks for text-to-SQL parsing. In Proceedings of the
Association for Computational Linguistics.

SRK Branavan, David Silver, and Regina Barzilay. 2012. Learning to win by reading
manuals in a monte-carlo framework. Journal of Artificial Intelligence Research,
43.

Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, An-
drea Gesmundo, Neil Houlsby, and Wei Wang. 2018. Ask the right questions:
Active question reformulation with reinforcement learning. In Proceedings of the
International Conference on Learning Representations.

Giovanni Campagna, Agata Foryciarz, Mehrad Moradshahi, and Monica S. Lam.
2020. Zero-shot transfer learning with synthesized data for multi-domain dialogue
state tracking. In Proceedings of the Association for Computational Linguistics.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher, and Monica S.
Lam. 2019. Genie: A generator of natural language semantic parsers for vir-
tual assistant commands. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading
Wikipedia to answer open-domain questions. In Association for Computational
Linguistics.

Zhi Chen, Lu Chen Hanqi Li, Ruisheng Cao, Dan Ma, Mengyue Wu, and Kai Yu.
2021. Decoupled dialogue modeling and semantic parsing for multi-turn text-to-
sql. ArXiv, abs/2106.02282.

Jianpeng Cheng, Siva Reddy, and Mirella Lapata. 2018. Building a neural semantic
parser from a domain ontology. ArXiv, abs/1812.10037.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen tau Yih, Yejin Choi, Percy
Liang, and Luke Zettlemoyer. 2018. QuAC: Question answering in context. In
Proceedings of Empirical Methods in Natural Language Processing.

Christopher Clark and Matt Gardner. 2018. Simple and effective multi-paragraph
reading comprehension. In Association for Computational Linguistics.

Edgar F Codd. 1974. Seven steps to rendezvous with the casual user. IBM Corpo-
ration.

138

Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. 2019. Cast 2019: The con-
versational assistance track overview. In In Proceedings of the Text Retrieval
Conference.

Van Dang and Bruce W Croft. 2010. Query reformulation using anchor text. In
Proceedings of ACM International Conference on Web Search and Data Mining.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. 2019.
Multi-step retriever-reader interaction for scalable open-domain question answer-
ing. In Proceedings of the International Conference on Learning Representations.

Pradeep Dasigi, Nelson F. Liu, Ana Marasovic, Noah A. Smith, and Matt Gard-
ner. 2019. QUOREF: A reading comprehension dataset with questions requiring
coreferential reasoning. In Proceedings of Empirical Methods in Natural Language
Processing.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gard-
ner. 2021. A dataset of information-seeking questions and answers anchored in
research papers. In Conference of the North American Chapter of the Association
for Computational Linguistics.

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2021. Structure-grounded pretraining for
text-to-SQL. In Conference of the North American Chapter of the Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention.
In Proceedings of the Association for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine decoding for neural semantic
parsing. In Proceedings of the Association for Computational Linguistics.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over
freebase with multi-column convolutional neural networks. In Association for
Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. 2018. The hitch-
hiker’s guide to testing statistical significance in natural language processing. In
Proceedings of the Association for Computational Linguistics.

139

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh,
and Matt Gardner. 2019. DROP: A reading comprehension benchmark requiring
discrete reasoning over paragraphs. In Conference of the North American Chapter
of the Association for Computational Linguistics.

Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap.
CRC press.

Ahmed Elgohary and Marine Carpuat. 2016. Learning monolingual compositional
representations via bilingual supervision. In Proceedings of the Association for
Computational Linguistics.

Ahmed Elgohary, Saghar Hosseini, and Ahmed Hassan Awadallah. 2020. Speak
to your parser: Interactive text-to-SQL with natural language feedback. In
Proceedings of the Association for Computational Linguistics.

Ahmed Elgohary, Christopher Meek, Matthew Richardson, Adam Fourney, Gonzalo
Ramos, and Ahmed Hassan Awadallah. 2021. NL-EDIT: Correcting semantic
parse errors through natural language interaction. In Conference of the North
American Chapter of the Association for Computational Linguistics.

Ahmed Elgohary, Denis Peskov, and Jordan Boyd-Graber. 2019. Can you un-
pack that? learning to rewrite questions-in-context. In Proceedings of Empirical
Methods in Natural Language Processing.

Ahmed Elgohary, Chen Zhao, and Jordan Boyd-Graber. 2018. Dataset and base-
lines for sequential open-domain question answering. In Proceedings of Empirical
Methods in Natural Language Processing.

Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and Philip Resnik. 2018. Assess-
ing composition in sentence vector representations. In Proceedings of International
Conference on Computational Linguistics.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik. 2016. Probing for semantic
evidence of composition by means of simple classification tasks. In Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for NLP.

Shi Feng, Eric Wallace, Alvin Grissom II, Pedro Rodriguez, Mohit Iyyer, and Jordan
Boyd-Graber. 2018. Pathologies of neural models make interpretation difficult. In
Proceedings of Empirical Methods in Natural Language Processing.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improv-
ing text-to-SQL evaluation methodology. In Proceedings of the Association for
Computational Linguistics.

Nicholas FitzGerald, Julian Michael, Luheng He, and Luke Zettlemoyer. 2018.
Large-scale QA-SRL parsing. In Proceedings of the Association for Computational
Linguistics.

140

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. PPDB:
The paraphrase database. In Conference of the North American Chapter of the
Association for Computational Linguistics.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian Yin. 2018. Dialog-to-
Action: Conversational question answering over a large-scale knowledge base. In
Proceedings of Advances in Neural Information Processing Systems.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dong-
mei Zhang. 2019. Towards complex text-to-SQL in cross-domain database with
intermediate representation. In Proceedings of the Association for Computational
Linguistics.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deep-
fix: Fixing common c language errors by deep learning. In Association for the
Advancement of Artificial Intelligence.

Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan. 2018. DialSQL: Dialogue based
structured query generation. In Proceedings of the Association for Computational
Linguistics.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016a. Deep residual learning
for image recognition. In Computer Vision and Pattern Recognition.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015. Question-answer driven se-
mantic role labeling: Using natural language to annotate natural language. In
Proceedings of Empirical Methods in Natural Language Processing.

Luheng He, Julian Michael, Mike Lewis, and Luke Zettlemoyer. 2016b. Human-
in-the-loop parsing. In Proceedings of Empirical Methods in Natural Language
Processing.

Gary G Hendrix, Earl D Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. 1978.
Developing a natural language interface to complex data. ACM Transactions on
Database Systems, 3.

Karl Moritz Hermann and Phil Blunsom. 2014. Multilingual models for composi-
tional distributed semantics. In Proceedings of the Association for Computational
Linguistics.

Jonathan Herzig, P. Nowak, Thomas Müller, Francesco Piccinno, and Julian Martin
Eisenschlos. 2020. TAPAS: Weakly supervised table parsing via pre-training. In
Proceedings of the Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation, 9.

141

Hsin-Yuan Huang, Eunsol Choi, and Wen tau Yih. 2019. FlowQA: Grasping flow
in history for conversational machine comprehension. In Proceedings of the
International Conference on Learning Representations.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a neural semantic parser from user feedback. In
Proceedings of the Association for Computational Linguistics.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan Boyd-Graber, and Hal
Daumé III. 2016. Feuding families and former friends: Unsupervised learning for
dynamic fictional relationships. In North American Association for Computational
Linguistics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015.
Deep unordered composition rivals syntactic methods for text classification. In
Proceedings of the Association for Computational Linguistics.

Mohit Iyyer, Wen tau Yih, and Ming-Wei Chang. 2017. Search-based neural struc-
tured learning for sequential question answering. In Proceedings of the Association
for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination for neural semantic parsing.
In Proceedings of the Association for Computational Linguistics.

Karen Sparck Jones and Julia R Galliers. 1995. Evaluating natural language
processing systems: An analysis and review, volume 1083.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. 2017. TriviaQA:
A large scale distantly supervised challenge dataset for reading comprehension.
In Proceedings of the Association for Computational Linguistics.

Siddharth Karamcheti, Edward ClemWilliams, Dilip Arumugam, Mina Rhee, Nakul
Gopalan, Lawson L.S. Wong, and Stefanie Tellex. 2017. A tale of two DRAGGNs:
A hybrid approach for interpreting action-oriented and goal-oriented instructions.
In Proceedings of the First Workshop on Language Grounding for Robotics.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In
Proceedings of Empirical Methods in Natural Language Processing.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In Proceedings of the International Conference on Learning Representations.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent Nguyen, Jean Senellart, and
Alexander Rush. 2018. OpenNMT: Neural machine translation toolkit. In
Proceedings of Association for Machine Translation in the Americas.

142

Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation.
In Proceedings of Empirical Methods in Natural Language Processing.

Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine translation.
In MT summit.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-
erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,
et al. 2007. Moses: Open source toolkit for statistical machine translation. In
Proceedings of the Association for Computational Linguistics.

Igor Labutov, Bishan Yang, and Tom Mitchell. 2018. Learning to learn semantic
parsers from natural language supervision. In Proceedings of Empirical Methods
in Natural Language Processing.

Matthew Lamm, Jennimaria Palomaki, C. Alberti, D. Andor, Eunsol Choi,
Livio Baldini Soares, and Michael Collins. 2020. Qed: A framework and dataset
for explanations in question answering. ArXiv, abs/2009.06354.

Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model pre-
training.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning of language
representations. arXiv preprint arXiv:1909.11942.

Carolin Lawrence and Stefan Riezler. 2018. Improving a neural semantic parser
by counterfactual learning from human bandit feedback. In Proceedings of the
Association for Computational Linguistics.

M. Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang,
and Luke Zettlemoyer. 2020. Pre-training via paraphrasing.

Fei Li and HV Jagadish. 2014. Constructing an interactive natural language interface
for relational databases. In Proceedings of the VLDB Endowment.

Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason
Weston. 2017a. Dialogue learning with human-in-the-loop. In Proceedings of the
International Conference on Learning Representations.

Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason
Weston. 2017b. Learning through dialogue interactions by asking questions. In
Proceedings of the International Conference on Learning Representations.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. 2017. A structured self-attentive sentence embedding.
In Proceedings of the International Conference on Learning Representations.

143

Huan Ling and Sanja Fidler. 2017. Teaching machines to describe images via natural
language feedback. In Proceedings of Advances in Neural Information Processing
Systems.

Bing Liu, Gokhan Tür, Dilek Hakkani-Tür, Pararth Shah, and Larry Heck. 2018.
Dialogue learning with human teaching and feedback in end-to-end trainable task-
oriented dialogue systems. In Conference of the North American Chapter of the
Association for Computational Linguistics.

Ye Liu, Chenwei Zhang, Xiaohui Yan, Yi Chang, and Philip S Yu. 2019a. Genera-
tive question refinement with deep reinforcement learning in retrieval-based QA
system. In Proceedings of the ACM International Conference on Information and
Knowledge Management.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A
robustly optimized bert pretraining approach. ArXiv, abs/1907.11692.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Aliaksei Sev-
eryn. 2019. Encode, tag, realize: High-precision text editing. In Proceedings of
Empirical Methods in Natural Language Processing.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini,
and Roberto Zamparelli. 2014. Semeval-2014 task 1: Evaluation of compositional
distributional semantic models on full sentences through semantic relatedness
and textual entailment. Proceedings of the International Workshop on Semantic
Evaluation.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent
Romary, Éric de la Clergerie, Djamé Seddah, and Benoît Sagot. 2020. Camem-
BERT: a tasty French language model. In Proceedings of the Association for
Computational Linguistics.

Quinn McNemar. 1947. Note on the sampling error of the difference between corre-
lated proportions or percentages. Psychometrika, 12.

Tomas Mikolov, Kai Chen, G. Corrado, and J. Dean. 2013a. Efficient estima-
tion of word representations in vector space. In Proceedings of the International
Conference on Learning Representations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b.
Distributed representations of words and phrases and their compositionality. In
Proceedings of Advances in Neural Information Processing Systems.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based models of semantic composi-
tion. In Proceedings of the Association for Computational Linguistics.

144

Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos. 2021. DIY:
Assessing the correctness of natural language to sql systems. In International
Conference on Intelligent User Interfaces.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. 2017. Reinforcement
learning for bandit neural machine translation with simulated human feedback.
In Proceedings of Empirical Methods in Natural Language Processing.

Fredrik Olsson. 2009. A literature survey of active machine learning in the context
of natural language processing.

Aäron van den Oord, S. Dieleman, H. Zen, K. Simonyan, Oriol Vinyals, A. Graves,
Nal Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. WaveNet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499.

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond
Mooney. 2020. Learning to update natural language comments based on code
changes. In Proceedings of the Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global
vectors for word representation. In Proceedings of Empirical Methods in Natural
Language Processing.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word represen-
tations. In Conference of the North American Chapter of the Association for
Computational Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory of nat-
ural language interfaces to databases. In International Conference on Intelligent
User Interfaces.

Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft, Yongfeng Zhang, and Mohit
Iyyer. 2019a. BERT with history modeling for conversational question answering.
In Proceedings of the ACM SIGIR Conference on Research and Development in
Information Retrieval.

Chen Qu, Liu Yang, Minghui Qiu, Yongfeng Zhang, Cen Chen, W. Bruce Croft,
and Mohit Iyyer. 2019b. Attentive history selection for conversational question
answering. In Proceedings of the ACM International Conference on Information
and Knowledge Management.

Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract syntax networks
for code generation and semantic parsing. In Proceedings of the Association for
Computational Linguistics.

145

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
Blog, 1.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings
of Empirical Methods in Natural Language Processing.

Sudha Rao and Hal Daumé III. 2018. Learning to ask good questions: Rank-
ing clarification questions using neural expected value of perfect information. In
Proceedings of the Association for Computational Linguistics.

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and Lambert Mathias. 2019. Scal-
ing multi-domain dialogue state tracking via query reformulation. In Conference
of the North American Chapter of the Association for Computational Linguistics.

Siva Reddy, Danqi Chen, and Christopher D Manning. 2019. CoQA: A con-
versational question answering challenge. Transactions of the Association for
Computational Linguistics.

Marco Túlio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.
Beyond accuracy: Behavioral testing of nlp models with checklist. In Proceedings
of the Association for Computational Linguistics.

Pedro Rodriguez, Shi Feng, Mohit Iyyer, He He, and Jordan Boyd-Graber. 2019.
Quizbowl: The case for incremental question answering. ArXiv.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2021. A primer in bertol-
ogy: What we know about how bert works. Transactions of the Association for
Computational Linguistics, 8.

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer Singh, Tim Rocktaschel, Mike
Sheldon, Guillaume Bouchard, and Sebastian Riedel. 2018. Interpretation of natu-
ral language rules in conversational machine reading. In Proceedings of Empirical
Methods in Natural Language Processing.

Amrita Saha, Vardaan Pahuja, Mitesh M Khapra, Karthik Sankaranarayanan, and
Sarath Chandar. 2018. Complex sequential question answering: Towards learning
to converse over linked question answer pairs with a knowledge graph. In AAAI
Conference on Artificial Intelligence.

Gerard Salton and Chris Buckley. 1987. Term weighting approaches in automatic
text retrieval. Technical report, Cornell University.

Torsten Scholak, Raymond Li, Dzmitry Bahdanau, Harm de Vries, and Chris
Pal. 2020. DuoRAT: Towards simpler text-to-SQL models. ArXiv preprint
arXiv:2010.11119.

146

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Sum-
marization with pointer-generator networks. In Proceedings of the Association for
Computational Linguistics.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow,
Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde. 2017. Nematus: a toolkit for
neural machine translation. In Proceedings of the Software Demonstrations of
the Conference of the European Chapter of the Association for Computational
Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017.
Bidirectional attention flow for machine comprehension. In Proceedings of the
International Conference on Learning Representations.

Iulian Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle
Pineau. 2016. Building end-to-end dialogue systems using generative hierarchi-
cal neural network models. In Association for the Advancement of Artificial
Intelligence.

Burr Settles. 2010. Active learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav Rastogi, Ankur Bapna,
Neha Nayak, and Larry Heck. 2018. Building a conversational agent overnight
with dialogue self-play. ArXiv preprint., 1801.04871/1801.04871.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative
position representations. In Conference of the North American Chapter of the
Association for Computational Linguistics.

Richard Shin. 2019. Encoding database schemas with relation-aware self-attention
for text-to-SQL parsers. arXiv preprint arXiv:1906.11790.

Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and Oleksandr Polozov.
2019. Program synthesis and semantic parsing with learned code idioms. In
Proceedings of Advances in Neural Information Processing Systems.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu
Meng. 2019. Meta-Weight-Net: Learning an explicit mapping for sample weight-
ing.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
A. Ng, and Christopher Potts. 2013. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings of Empirical Methods in
Natural Language Processing.

147

Shashank Srivastava, Igor Labutov, and Tom Mitchell. 2018. Zero-shot learning of
classifiers from natural language quantification. In Proceedings of the Association
for Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits: Sequence transduction us-
ing span-level edit operations. In Proceedings of Empirical Methods in Natural
Language Processing.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei Hu, Cheng Niu, and Jie
Zhou. 2019. Improving multi-turn dialogue modelling with utterance ReWriter.
In Proceedings of the Association for Computational Linguistics.

Yu Su, Ahmed Hassan Awadallah, Madian Khabsa, Patrick Pantel, and Michael
Gamon. 2017. Building natural language interfaces to web APIs. In Proceedings of
the ACM International Conference on Information and Knowledge Management.

Yu Su, Ahmed Hassan Awadallah, MiaosenWang, and RyenWWhite. 2018. Natural
language interfaces with fine-grained user interaction: A case study on web APIs.
In Proceedings of the ACM SIGIR Conference on Research and Development in
Information Retrieval.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Kenton Lee. 2020. Exploring
unexplored generalization challenges for cross-database semantic parsing. In
Proceedings of the Association for Computational Linguistics.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018. Learning to map context-
dependent sentences to executable formal queries. In Conference of the North
American Chapter of the Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learn-
ing with neural networks. In Proceedings of Advances in Neural Information
Processing Systems.

Swabha Swayamdipta, Ankur P Parikh, and Tom Kwiatkowski. 2018. Multi-
mention learning for reading comprehension with neural cascades. In International
Conference on Learning Representations.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
semantic representations from tree-structured long short-term memory networks.
In Proceedings of the Association for Computational Linguistics.

Min Tang, Xiaoqiang Luo, and Salim Roukos. 2002. Active learning for statistical
natural language parsing. In Proceedings of the Association for Computational
Linguistics.

Svitlana Vakulenko, S. Longpre, Zhucheng Tu, and R. Anantha. 2020. A wrong
answer or a wrong question? an intricate relationship between question reformu-
lation and answer selection in conversational question answering. In International
Workshop on Search-Oriented Conversational AI (SCAI).

148

Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu, and Raviteja Anantha. 2021.
Question rewriting for conversational question answering. In Proceedings of ACM
International Conference on Web Search and Data Mining.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Proceedings of Advances in Neural Information Processing Systems.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Proceedings of Advances in Neural Information Processing Systems.

Eric Wallace, Pedro Rodriguez, Shi Feng, Ikuya Yamada, and Jordan Boyd-Graber.
2019. Trick me if you can: Human-in-the-loop generation of adversarial ques-
tion answering examples. In Transactions of the Association for Computational
Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2018a. Glue: A multi-task benchmark and analysis platform for natural
language understanding. In BlackboxNLP@EMNLP.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the Association for Computational
Linguistics.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang,
Zhiguo Wang, Tim Klinger, Gerald Tesauro, and Murray Campbell. 2018b. Evi-
dence aggregation for answer re-ranking in open-domain question answering. In
International Conference on Learning Representations.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a semantic parser
overnight. In Proceedings of the Association for Computational Linguistics.

Keenon Werling, Arun Tejasvi Chaganty, Percy S Liang, and Christopher D Man-
ning. 2015. On-the-job learning with bayesian decision theory. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Proceedings
of Advances in Neural Information Processing Systems, pages 3465–3473. Curran
Associates, Inc.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not explanation. In
Proceedings of Empirical Methods in Natural Language Processing.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2015. From para-
phrase database to compositional paraphrase model and back. Transactions of
the Association for Computational Linguistics.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Towards
universal paraphrastic sentence embeddings. In Proceedings of the International
Conference on Learning Representations.

149

W. A. Woods, Ronald M Kaplan, and Bonnie L. Webber. 1972. The lunar sciences
natural language information system: Final report. BBN Report 2378.

Y. Wu, M. Schuster, Z. Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
M. Krikun, Yuan Cao, Q. Gao, Klaus Macherey, J. Klingner, Apurva Shah,
M. Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Y. Kato, Taku Kudo,
H. Kazawa, K. Stevens, George Kurian, Nishant Patil, W. Wang, C. Young,
J. Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, G. Corrado, Macduff Hughes,
and J. Dean. 2016. Google’s neural machine translation system: Bridging the gap
between human and machine translation. ArXiv, abs/1609.08144.

Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan, Pengcheng Yang, Qi Zeng,
Ming Zhou, and Xu SUN. 2019. Asking clarification questions in knowledge-based
question answering. In Proceedings of Empirical Methods in Natural Language
Processing.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, and Dongyan Zhao. 2016.
Question answering on freebase via relation extraction and textual evidence. In
Association for Computational Linguistics.

Peng Xu, Wenjie Zi, H. Shahidi, ’Akos K’ad’ar, Keyi Tang, Wei Yang, Jawad Ateeq,
Harsh V. Barot, Meidan Alon, and Yanshuai Cao. 2021. Turing: an accurate and
interpretable multi-hypothesis cross-domain natural language database interface.
In Proceedings of the Association for Computational Linguistics.

Silei Xu, Sina Semnani, Giovanni Campagna, and Monica Lam. 2020. AutoQA:
From databases to QA semantic parsers with only synthetic training data. In
Proceedings of Empirical Methods in Natural Language Processing.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering. In Proceedings of Empirical
Methods in Natural Language Processing.

Xuchen Yao and Benjamin Van Durme. 2014. Information extraction over structured
data: Question answering with freebase. In Proceedings of the Association for
Computational Linguistics.

Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian Sadler, and Huan Sun. 2019a. Interactive
semantic parsing for if-then recipes via hierarchical reinforcement learning. In
Association for the Advancement of Artificial Intelligence.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019b. Model-based interactive se-
mantic parsing: A unified framework and a text-to-SQL case study. In Proceedings
of Empirical Methods in Natural Language Processing.

Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-
purpose code generation. In Proceedings of the Association for Computational
Linguistics.

150

Pengcheng Yin and Graham Neubig. 2019. Reranking for neural semantic parsing.
In Proceedings of the Association for Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for joint understanding of textual and tabular data. In
Proceedings of the Association for Computational Linguistics.

Kang Min Yoo, Youhyun Shin, and Sang goo Lee. 2019. Data augmentation for
spoken language understanding via joint variational generation. In Association
for the Advancement of Artificial Intelligence.

Adams Wei Yu, David Dohan, Quoc Le, Thang Luong, Rui Zhao, and Kai Chen.
2018a. Fast and accurate reading comprehension by combining self-attention
and convolution. In Proceedings of the International Conference on Learning
Representations.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi
Yang, Dragomir Radev, Richard Socher, and Caiming Xiong. 2021a. GraPPa:
Grammar-augmented pre-training for table semantic parsing. In Proceedings of
the International Conference on Learning Representations.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and
Dragomir Radev. 2018b. SyntaxSQLNet: Syntax tree networks for complex and
cross-domain text-to-SQL task. In Proceedings of Empirical Methods in Natural
Language Processing.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin,
Yi Chern Tan, Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sun-
grok Shim, Tao Chen, Alexander Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang,
Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter Lasecki,
and Dragomir Radev. 2019a. CoSQL: A conversational text-to-SQL challenge to-
wards cross-domain natural language interfaces to databases. In Proceedings of
Empirical Methods in Natural Language Processing.

Tao Yu, Rui Zhang, Alex Polozov, Christopher Meek, and Ahmed Hassan Awadal-
lah. 2021b. SCoRe: Pre-training for context representation in conversational
semantic parsing. In Proceedings of the International Conference on Learning
Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
2018c. Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In Proceedings of Empirical Methods in
Natural Language Processing.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li,
Irene Li Heyang Er, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor,
Sungrok Shim, Vincent Zhang Jonathan Kraft, Caiming Xiong, Richard Socher,

151

and Dragomir Radev. 2019b. Sparc: Cross-domain semantic parsing in context.
In Proceedings of the Association for Computational Linguistics.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. 2018. Swag: A large-
scale adversarial dataset for grounded commonsense inference. In Proceedings of
Empirical Methods in Natural Language Processing.

Luke Zettlemoyer and Michael Collins. 2005. Learning to map sentences to log-
ical form: Structured classiication with probabilistic categorial grammars. In
Proceedings of Uncertainty in Artificial Intelligence.

Luke S Zettlemoyer and Michael Collins. 2009. Learning context-dependent map-
pings from sentences to logical form. In Proceedings of the Association for
Computational Linguistics.

Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze
Shi, Caiming Xiong, Richard Socher, and Dragomir Radev. 2019. Editing-
based sql query generation for cross-domain context-dependent questions. In
Proceedings of Empirical Methods in Natural Language Processing.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,
Jianfeng Gao, Jingjing Liu, and W. Dolan. 2020. Dialogpt: Large-scale gener-
ative pre-training for conversational response generation. In Proceedings of the
Association for Computational Linguistics.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic evaluation for text-to-
SQL with distilled test suites. In Proceedings of Empirical Methods in Natural
Language Processing.

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
structured queries from natural language using reinforcement learning. arxiv
preprint, arxiv/1709.00103.

152

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis Contributions
	Learning Representations from Naturally-Occurring Translation
	Task and Baselines for Sequential Question Answering
	Task, Dataset and Models for Question-in-Context Rewriting
	Framework for Interactive Semantic Parsing with Natural Language Feedback

	Background and Related Work
	Deep Learning for nlp
	Representations for nlp
	Recurrent Neural Networks
	Transformers
	Relation-Aware Transformer
	Sequence-to-Sequence Models
	Pre-Trained Transformers

	Question Answering over Raw Text
	Machine Reading Comprehension
	Conversational Reading Comprehension

	Question Answering over Structured Databases
	Semantic Parsing Models
	Semantic Parsing with Synthetic Data
	Semantic Parsing in Conversational Context
	Text-to-SQL Parsing

	Human-in-the-Loop nlp
	Humans as Annotators
	Humans as Teachers
	Humans as Collaborators

	Learning Paraphrastic Representations with Bilingual Supervision
	Models
	Learning Objective
	Three Views of Semantic Equivalence

	Experiments
	Evaluating Sentence Representations
	Baselines and Reference Models
	Training and Hyper-parameters Tuning

	Results
	Bilingual phrases yield the best models in controlled settings
	Bilingual sentences vs. bilingual phrases
	Monolingual versus bilingual phrases

	Conclusion

	Sequential Question Answering and Question-in-Context Rewriting
	Sequential Open-Domain qa
	Dataset and setup
	Models
	Experiments
	Results

	Question-in-Context Rewriting
	Defining Question-In-Context Rewrites
	Dataset Construction
	Models
	Dataset and Model Analysis

	Conclusion

	Semantic Parsing with Natural Language Feedback
	Task Definition
	splash Construction
	Generating Questions and Incorrect SQL Pairs
	Explaining SQL
	Crowdsourcing Feedback
	splash Summary

	splash Analysis
	Error Characteristics
	Feedback Characteristics

	Experiments
	Baselines
	Main Results
	Analysis

	Conclusion

	Edit-Based Model for Interactive Semantic Parsing
	SQL Edits
	Model
	Intuitions
	Encoder
	Decoder

	Synthetic Feedback
	Experiments
	Setup
	Evaluation
	Results

	Analysis
	Ablations
	Error Analysis
	Cross-Parser Generalization

	Conclusions

	Conclusions and Future Work
	Summary of Contributions
	Limitations
	Future Research on Collaborative Human–Computer nlp
	User-Centered Explanations
	Designing and Evaluating Interaction Mechanisms
	Learning from Interactions
	Testbed for Human-in-the-Loop Adaptation

	Other Future Research on Interactive Semantic Parsing

