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1 IntroductionAt regional scales, satellite-based sensors are the primary source of information tostudy the earth's system science, as they provide the needed dynamic temporal viewof the earth's surface. Surface re
ectance measurements from satellite data have beenwidely used to detect land cover change [1], surface albedo and energy budget [2], sea-sonal and inter-annual vegetation dynamics [3], and to derive biophysical parameters[4, 5] . However, the spectral measurements taken by most of the existing sensor sys-tems (e.g. Advanced Very High Resolution Radiometer (AVHRR)) are directional.Because most land cover types are \anisotropic", these observations (e.g. re
ectance)are valid only for a particular sensor-illumination geometry. Land surface anisotropycauses variations in surface re
ectances when measured under di�erent illuminationand view angles. The Bidirectional Re
ectance Distribution Function (BRDF) of thesurface (fr(�v; �s; �v; �s; �)) speci�es the behavior of the surface scattering as a func-tion of illumination and viewing angles at particular wavelengths, and can be writtenas: fr(�v; �s; �v; �s; �) = @Lv(�v; �s; �v; �s; �;Ei)@E(�s; �s; �) (1)where �, �, and � are the zenith and azimuth angles, and wavelength respectively[6]. The subscript v denotes sensor and s denotes the sun respectively. \Lv" isthe re
ected radiance in the view direction measured by the sensor and \E" is theparallel beam irradiance from the illumination direction in the wave band. Note thatfr(�v; �s; �v; �s; �) has the unit sr�1(sr means steradian). To make BRDF directlycomparable to bidirectional surface re
ectance and hemispherical re
ectance, we referto BRDF as � = fr�. [7]1.1 Why is it important to understand BRDF?For several radiative transfer and energy balance studies of the land surface we needthe surface re
ectance that is integrated over all viewing angles in the upward hemi-sphere (\hemispherical re
ectance"), and over the visible and near-infrared wave-length, which is called as the \broad band albedo". The albedo of a surface describesthe ratio of radiant energy scattered upward and away from the surface in all direc-tions to the down-welling irradiance incident upon the surface. The hemisphericalspectral re
ectance (�h(�s; �)) is described by:�h(�s; �) = 1� Z 2�0 Z �20 �(�s; �v; �; �) cos �v sin �vd�vd� (2)where �(�s; �v; �; �) is the surface BRDF, and � is the relative azimuth angle (� =�v � �s). When the equation is integrated over all possible solar zenith angles (�s),it is known as the bi-hemispherical re
ectance.2



Another important reason for understanding the surface BRDF is due to the factthat vegetation indices (e.g. Normalized Di�erence Vegetation Index (NDVI)) whichare derived from a combination of spectral bands are also e�ected by the surfaceBRDF. Thus, understanding the surface BRDF will allow us [7]� To correct multi-date images taken at di�erent view angles for BRDF e�ects(e.g. in creation of temporal composites).� To retrieve surface structural attributes (e.g. leaf area index and biomass) andland cover information from the scattering behavior of the surface.� To accurately retrieve broad band albedo required for energy balance and ra-diative transfer studies.The BRDF of land surface at the top of the atmosphere is di�erent from the BRDFmeasured at the surface because of atmospheric e�ects. However studies [8, 9] haveshown that the net shortwave energy balance retrieved at the top of the atmosphere(TOA) is linear and directly proportional to the net shortwave 
uxes measured onthe ground. Thus, the albedo and BRDF retrieved at the top of atmosphere couldstill be used in energy balance studies.1.2 How to compute BRDF?The BRDF models can be broadly classi�ed into physically based models, empiri-cal models and semi-empirical models. Physically based models include geometric-optical models [10], turbid mediummodels [11, 12], hybrid models [13] and computersimulation models [14, 15, 16]. The physical models are complex, computationallydemanding and, thus far, these models have only been developed for speci�c landcover types, with no known universal models for di�erent cover types. These modelsare dependent upon the structural and state attributes of the land surface such asthe leaf angle distribution on plant canopies, photo-synthetic activity, shape and sizeof plants (e.g. cylindrical, spherical, conical) etc. The development and applicationof these physical based models have been limited to BRDF modeling activities.The empirical models are simple to use and have been applied fairly widely, al-though the model coe�cients may not have a physical meaning. One of the mostwidely used empirical model is that of Modi�ed Walthall model [17], expressed as:�(�s; �v; �; �) = a0(�2v + �2s) + a1�2v�2s + a2�v�s cos �+ a3 (3)where a0�3 are the parameters of the model.Semi-empirical models try to provide the balance between the physically providingempirical coe�cients that have a physical meaning. One of the models that has been3



successfully tested is that of Rahman et al. [18], which describes the surface BRDFas: �(�s; �v; �; �) = �0(cos �v cos �s(cos �v + cos �s))k�1F (g)[1 +R(G)] (4)where F (g) = 1 ��2[1 + �2 � 2� cos(� � g)] 32cos g = cos �s cos �v + sin �s sin �v cos�1 +R(G) = 1 + 1 � �01 +GG = [tan2 �v + tan2 �s � 2 tan �v tan �s cos �] 12In the above set of equations there are three unknown parameters �0, k and � whichhave to be determined by model inversion and numerical iteration.The above models assume that the variations in surface re
ectance are causedby changes in viewing and illumination geometry only. When we �t angular modelsto multitemporal observations, we hope to get longer records in order to get enoughangular sampling. It is assumed that the target does not change signi�cantly overthe period of the measurements. However, many cover types have seasonal or annualchanges. For example, pixel of an agricultural land could correspond to a densecanopy in the growing season and a bare soil in the winter season. Canopies havequite di�erent angular behavior from soils.The long term record of AVHRR observations provides an excellent opportunity toexplore the angular signatures based on the multitemporal data assembly approach.The long time series are su�cient to link bidirectional re
ectance with surface char-acteristics through di�erent modeling approaches. However, almost all empirical orsemi-empirical models do not take account of temporal variations. In this study, atemporal angular model is developed in which a temporal component is approximatedby a Fourier series and an angular component is expressed by the modi�ed Walthallmodel. It describes surface BRDF as follows:�(�s; �v; �; �) = a0(�2v + �2s) + a1�2v�2s + a2�v�s cos �+ a3+a4 cos(2�tN ) + a5 sin(2�tN ) + a6 cos(4�tN ) + a7 sin(4�tN ) (5)where N is the number of data points for each year, and t varies from 0 to N � 1.This model has been compared with some other empirical models and gives the best�t to all data points from PAL data set [19].2 Global BRDF Retrieval Computational ApproachWe use Path�nder AVHRR Land (PAL) data set and the three models describedabove to derive the global BRDF. Our overall Computational approach is outlined4
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ags QC (data valid ornot) and CLAVR (pixel clear, mixed or cloudy).� Temporal and geometric information based on the values in the layers DOY,Sensor Scan Angle, Solar Zenith Angle, Relative Azimuth Angle and the re-
ectance values in channels 1 and 2.� Validation information: The PAL data set also contains the NDVI which isderived from channel 1(�ch1) and 2(�ch2) re
ectance measurements of AVHRR:NDV I = �ch2 � �ch1�ch2 + �ch1 (6)We recompute the NDVI for each pixel from �ch1, �ch2 estimated by each ofthe BRDF models, and compare it with the NDVI value reported in the PALdata set for validation. Spatial and temporal variations in NDVI from AVHRRhave been shown to be correlated with phenology of land cover [21]. The meanand standard deviation of NDVI for each pixel are used to determine how thesurface is changing over the curve �tting period.5



For each pixel, we derive the coe�cients required to describe the surface BRDFby linear least squares �t for the linear BRDF models, and by model inversion anditeration for the non-linear model. For every pixel, the coe�cients ai (i from 1 toNc) for channels 1 and 2 are generated for each model. In addition, some statisticalinformation on the model �t will be provided to allow a more in-depth analysis. Inparticular, we compute the following quantities:� The standard error of channel 1 and 2, which provides a quantitative measureon the goodness of the model �t.� For the linear models, the regression analysis coe�cient R2, which is the ratioof the variance of the predicted data and the variance of the given data. Thecoe�cient R2 shows how well the model �t the given data and indicates theproportion of the variation \explained" by the regression line [22].� The standard error between NDVI in the PAL data set and the NDVI estimatedby each BRDF model.� The mean and standard deviation of NDVI in the PAL data set to study thechanges on the land surface over the time period.3 Pixel ComputationIn this section, we describe the computation that takes place at each pixel, and includean estimate of the number of operations required per pixel. In the following analysis,Nd represents the number of data points used for the model �tting and k representsthe number of 
oating point operations needed to evaluate a trigonometric functionsuch as sin, cos or arcsin. In practice k � 25, and we assume that the time requiredto perform the 
oating point multiplication and addition/subtraction are the same.3.1 Input Data ConditioningWhen the PAL data set was generated, the physical values were scaled to an ap-propriate 8-bit (unsigned) or 16-bit (unsigned) integer value (Figure 1) as detailedin [23]. We need to re-scale the PAL input data back to 
oating point data for ourapplication, convert solar zenith angle (from degree to radian), and sensor scan angle(to the view zenith angle). To condition the input, we need Nd(27+3k) 
oating pointoperations per pixel. 6



3.2 Linear BRDF ModelAs we have seen in Section 1, the linear BRDF model can be expressed as follows:�(�s; �v; �; �) = NcXi=1 aifi(�s; �v; �; �) (7)whereNc is the number of coe�cients for the model, the ai's are the model coe�cients,�s; �v; � are the solar zenith angle, view zenith angle, and relative azimuth anglerespectively. Taking channel 1 as an example, the BRDF model �tting problem canbe expressed as follows:Given a set of data values (�js; �jv; �j; �j1); j = 1; 2; : : : Nd and the BRDF modelequation(7), choose the linear model coe�cients that best describe the functionrelationship between �1 and the independent variables �s, �v and �For the least squares method [24, 25], the \best" coe�cients ai (i from 1 to Nc) arechosen to minimize the cumulative error between the given value �j1 and the modelpredicated value �̂1j . The cumulative error is de�ned as follows:NdXj=1(�j1 � �̂1j)2 = NdXj=1(�j1 � NcXi=1 aifi(�js; �jv; �j))2 (8)Clearly, the function of Eqn.(7) has continuous partial derivatives in terms of themodel coe�cients ai, so we can get a necessary condition for the the \best" coe�cientsai (i from 1 to Nc) as follows:@@ai NdXj=1(�j1 � NcXi=1 aifi(�js; �jv; �j))2 = 0 i = 1; 2; : : : ; Nc (9)Simplifying, we obtain the following normal equations:NcXk=1 ak NdXj=1 fi(�js; �jv; �j)fk(�js; �jv; �j) = NdXj=1 �j1fi(�js; �jv; �j) i = 1; 2; : : : Nc (10)Similarly, we can get the normal equations for channel 2 as follows:NcXk=1 ak NdXj=1 fi(�js; �jv; �j)fk(�js; �jv; �j) = NdXj=1 �j2fi(�js; �jv; �j) i = 1; 2; : : : Nc (11)The normal equations(10) and (11) can be expressed as a linear systemATAa = ATy (12)7



where A = 266664 f1(�1s ; �1v; �1) f2(�1s ; �1v; �1) : : : fNc(�1s ; �1v; �1)f1(�2s ; �2v; �2) f2(�2s ; �2v; �2) : : : fNc(�2s ; �2v; �2)... ... ...f1(�Nds ; �Ndv ; �Nd) f2(�Nds ; �Ndv ; �Nd) : : : fNc(�Nds ; �Ndv ; �Nd) 377775a = 266664 a11 a21a12 a22... ...a1Nc a2Nc 377775 y = 266664 �11 �12�21 �22... ...�Nd1 �Nd2 377775(�js; �jv; �j; �j1; �j2) (j = 1; 2; : : : Nd) are the data points. �1; �2 are re
ectances of chan-nel 1 and 2 respectively. a1j and a2j (j from 1 to Nc) are the coe�cients for channel 1and 2 respectively. We can solve this linear system by Gaussian elimination followedby a backward substitution.To form the normal equations, we need to evaluate the functions fi(�s; �v; �; �)for the given points. The number of 
oating point operations needed to determinethese functions depends on the model used. Suppose the evaluation of the fi's ata single point requires Ff FLOPs. Then to form the normal equations we needNd(Ff + N2c + 5Nc) operations using the symmetric properties of the left hand sideATA of Eqn.(12).Gaussian elimination followed by a backward substitution for the linear system inEqn.(12) will require about 2N3c3 + 5N2c2 + 11Nc6 FLOPs. Hence, we need 2N3c3 + 5N2c2 +11Nc6 +Nd(Ff +N2c + 5Nc) FLOPs per pixel.3.3 Non-linear BRDF ModelFor Rahman's model, we need a non-linear least squares �t. The non-linear modelcan be written as � = f(a; �v; �s; �; �), where a is the model coe�cient vector. Inparticular, a = [�o; k;�]T for Rahman's model. As in the case of linear least squares�t, we aim at minimizing the cumulative squared error for each channel. Takingchannel 1 for example, the cumulative error is:J(a) = NdXj=1(�j � f(a; �jv; �js; �j))2 (13)We can minimize this error using the Powell's method [26, 27]. The basic idea hereis to change the multidimensional minimization problem to a sequence of line min-imizations, which minimizes the function J(a) along some vector direction n usingone dimensional methods. Powell's algorithm can be described as follows [26]:Let a0 be an initial guess of the coe�cients and let ui (i from 1 to Nc) be theNc-dimensional basis vector, i.e. ui = ei. Then repeat the following steps untilthe function J(a) stops decreasing: 8



� Save starting point as a0� For i = 1; 2; : : : Nc, compute �i which minimizes J(ai�1 + �iui) and callthis point ai� For i = 1; 2; : : : Nc � 1, replace ui by ui+1� Replace uNc by aNc � a0� Compute � that minimize J(a0 + �uNc) and call this point a0.The line minimization problem can be expressed as follows [27]:Given the input vector a, the direction vector n and the function J(a), �nd thescalar � that minimizes J(a+ �n). Replace a by a+ �n, and n by �n.We can change the multi-dimensional function J(a) along the line going through ain the direction n to a one dimensional function J1(�) [27]. That is, we �rst evaluate(a+�n), and then compute the function value of the original function. Hence we canthink of J1 as a function of �.To solve such a one dimensional line minimization problem, we �rst bracket theminimum along this line. We know that a minimum is bracketed only when there isa triplet of points, a < b < c, such that J1(b) is less than both J1(a) and J1(c). Inthis case, we know that the function J1(�) has a minimum in the interval (a; c). Wecan start with some initial guess as left point of the bracketing triplet and then stepdownhill to �nd the middle point of the bracketing triplet. The middle point can befound by increasing the step size either by a constant factor, or else by the result ofa parabolic extrapolation to the preceding points that is designed to take us to theextrapolated turning point [27]. Then we just need to take a big enough step to stopthe downhill trend and get a high third point.We can then solve the the line minimization problem using Brent's method [26].The basic idea is to use parabolic interpolation. Given three points (a; J1(a)), (b; J1(b)),(c; J1(c)), the formula for the abscissa x that is the minimum of a parabola throughthese three points isx = b� 12 (b� a)2[J1(b)� J1(c)]� (b� c)2[J1(b)� J1(a)](b� a)[J1(b)� J1(c)]� (b� c)[J1(b)� J1(a)]But using this formula solely is not likely to succeed in practice. Brent's methodkeeps track of 6 function points and can solve the task in all the cases. For a detaileddiscussions, see [26, 27].Operation Counts for Rahman's Model: Let I1 be the number of iterations tobracket the minimum in the line minimization part, I2 be the number of iterationsrequired in Brent's method and I3 be the number of iterations needed by Powell'smethod. For each iteration in Powell's method, we need to do (Nc + 1) line mini-mizations and evaluate the error function J(a) once, plus some other memory and9



bookkeeping operations. In our case, we have that Nd = 25, Nc = 3, I1 = 3, I2 = 18and I3 = 22 on average. Hence, we need 3:9 MFLOPs per pixel to do the non-linearleast squares �t for the Rahman's model.3.4 Model Veri�cation Information GenerationUsing the model coe�cients generated, we compute the re
ectances for channels 1and 2, and then the NDVI values as stated in Eqn.(6). Here we need to computethe channel re
ectance, NDVI mean and standard error, channel 1 and 2 standarderror, R2. Overall, we will need Nd(2Nc + 22) FLOPs per pixel to perform thesecomputations.4 High Performance Algorithms for Global BRDFRetrieval4.1 Initial Data LayoutGiven the large amounts of data involved (about 27 GBytes) and the large compu-tational requirements per pixel, we develop an implementation on a multi-processorsystem, where each node has a su�ciently large storage subsystem. The implementa-tion on other multiprocessor con�gurations is similar. For global BRDF retrieval, themain goal is to develop a general strategy that makes an optimal use of the availableresources. We start by discussing I/O requirements and later address the issue ofallocating pixel computations among the nodes.The retrieval of global BRDF requires extensive handling of large amounts ofdata residing in external storage (about 27 GBytes). We seek to achieve an e�cientlayout of the input imagery on the available disks and an e�cient mapping of thecomputation across the available processors in such a way that (1) the total I/O timeis minimized and (2) the computational loads are balanced among the nodes.As stated earlier, the input consists of four years of PAL 10-day composite data,1983 through 1986. The initial collection of input �les is illustrated in Figure 2.Our input can be viewed as an array Data[Year][Month][Period][Layer][Row][Column],where we have 4 years, 12 months per year, 3 periods per month, 9 layers per periodand the global pixels given by 2168 rows and 5004 columns. The 9 layers account for17 bytes for each pixel. For example, on our multiprocessor platform that consists of16-processor IBM SP2, the disk array on a node will hold 9 10-day composites andwill have 81 images �les, as shown in Figure 3. The image �les can be accessed bygiving the index[Year][Month][Period][Layer].If we use one index \Time" to refer to (Year, Month, Period), we can view ourinput as a 4-dimensional array, Data[Time][Layer][Row][Column]. The time will varyfrom 1 to 144 in our case. There are totally 1296 input image �les and 27 GBytes of10
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data (= 5004�2168�17�144). This 4-dimensional array Data[Time][Layer][Row][Column]is distributed over the node according to the Time index. That is, if we havep nodes and the Time index ranges from 1 to T (assuming T is a multiple of pwithout loss of generality), then Data[1 : Tp ][Layer][Row][Column] lies on the disksof node 1, Data[Tp + 1 : 2Tp ][Layer][Row][Column] lies on the disks of node 2,...Data[ (n�1)Tp + 1 : nTp ][Layer][Row][Column] lies on the disks of node p.In addition to the data, we also need the classmap information to classify a pixeleither as a land pixel or as a water pixel as well as to give the class type of the surface.This information consists of a global image with one byte per pixel, and hence thesize of the classmap is about 11Mbytes. ClassMap[Row][Column] is stored on onenode.We will generate all the model coe�cients, the standard error and the R2 coe�-cient for each channel, as well as the mean NDVI, the NDVI standard deviation andthe NDVI standard error. Each of the output generated will be a 32-bit 
oating pointnumber for each pixel. Let Nc denote the number of coe�cients in the model. Thenwe will produce NumCoef = 2(Nc + 2) + 3 
oating images (44Mbytes each) andone unsigned short image output for number of points used in model �tting, whichamounts to approximately 670 MBytes for modi�ed Walthall's model, 1:0GBytes forLiang's temporal model and 590 MBytes for Rahman's non-linear model. We canview these outputs as a 3-dimensional array Out[NumCoef][Row]Column] and oneNum[Row][Column] unsigned short image.4.2 Data Redistribution and Computation MappingsGiven a p-processor platform, we implement our algorithm as follows. Using theclassmap, we generate a land sea mask that describes the relative land position in theoriginal image. This land sea map is then broadcast to all the nodes.We then extract the land pixel data at each node using an intermediate data struc-ture DateInter[Year][Month][LandPixel][Period][Layer]. That is, we start by eliminat-ing the non-land pixels in the data, followed by saving the remaining pixels as shownin Figure 4. This phase is refered to as the preprocessing phase.Next, we redistribute the land data evenly among the nodes. This results inapproximately 380 MBytes of data per node for p = 16. Given the size of the data,we perform the redistribution iteratively as follows. We process c�p consecutive landpixels during each iteration such that the �rst c land pixels are shipped to the �rstnode, the second c land pixels are shipped to the second node, and so on, where c isthe maximumnumber of pixels that can �t into the main memory of each node. Henceeach node will get all the [Year][Month][Period][Layer] information for its c land pixels,as illustrated in Figure 5. Here we use Massage Passing Interface (MPI) [28] collectivecommunication primitive (MPI Alltoall) to do the interprocessor communication inthe land pixel redistribution. MPI is a library speci�cation for message-passing, which12
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is a paradigm used widely on distributed memory parallel machines. It is a standardproposed by a broadly based committee of vendors, implementors, and users [28].We are now ready to perform the BRDF model �tting, for all the pixels on eachnode concurrently. We start by selecting the clear day data to form the curve �ttingdata set according to the CLAVR layer. We then compute the model coe�cients,generate the model veri�cation information and save it locally. After all the landpixels have been processed, we read back these coe�cients from the temporary �leone by one and collect them into one node by using MPI Gather communicationprimitive. We reinsert the non-land information to make the output map back to theoriginal globe image using land sea map generated in the �rst step.4.3 Implementation and Performance ResultsAfter preprocessing the input data and setting up the appropriate data structure forthe land pixels, our algorithms consists of: (1) reading the land pixel data in chunks,(2) redistributing the land pixels among the multiprocessor nodes, (3) conditioningthe land data, computing the model coe�cients, and generating the model veri�cationinformation, and (4) collecting all the coe�cients to one node, remapping back to theoriginal image, and generating the output. The time required to read the land pixeldata (step (1)) is denoted by Tinput. Interprocessor communication is required for theredistribution step (step (2)), whose corresponding time is denoted by Tcomm. Thetime required to perform step (3) is denoted by Tcomp (computation time). Finally,Toutput refers to the time it takes to execute the fourth step for generating the outputimages on a single node.Given that the loads are distributed equally among the processors, we expectTcomp, Tinput to scale linearly with increased number of processors. We expect Tcomm toscale almost linearly with increased number of processors since we are using balancedMPI collective communication primitives. We expect Toutput to stay constant withincreased number of nodes since all the output data is collected on one node.Our testbed consists of a 16-node IBM SP2, each node is identically con�gured withone POWER2 processor, a 40MB/s bi-directional link for each processor to a multi-stage high performance switch, two fast-wide SCSI buses. Each SCSI bus has three2:2 GB SCSI disks as shown in Figure 6.A summary of the performance of our algorithms using this testbed is shown inFigure 7. Clearly the computation time (Tcomp) and the land data input time (Tinput)scale linearly with the number of processors. Also, the communication time Tcommscales almost linearly with the number of processors. On the other hand, Toutputremains fairly constant relative to the number of nodes as we had expected. Weshould note that the preprocessing phase achieves a linear speedup over the numberof processors. 14
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Figure 6: SP2 system con�guration: Each node is an IBM POWER2 processor con-nected to a multistage high performance switch by a 40 MB/s bi-directional link.Each node has six 2:2 GB SCSI disks.Regarding raw performance, on the 16-node SP2, the least squares �t computationachieves around 0:89 GFLOPS for the modi�ed Walthall's model, and 0:91 GFLOPSfor Liang's temporal mode. The nonlinear least squares �t achieves around 1:18GFLOPS for Rahman's model. These numbers represent approximately 25% of thepeak performance on our machine. The input bandwidth achieved is about 6:7 MB/s,the output bandwith achieved is about 6:0 MB/s, with the peak of either being 8MB/s for each disk. The interprocessor communication bandwidth achieved is about25 MB/s with a theoretical peak of 40 MB/s. These numbers clearly indicate thee�ciency of our code in utilizing the available resources.5 Comparison of Results from Di�erent BRDFModelsAs mentioned in Section 2, we generate the coe�cients for each of the modelscorresponding to channels 1 and 2 of AVHRR, and standard errors between modelpredicted and actual re
ectances. The coe�cients describe the general shape of theBRDF for each pixel and could be potentially used to discriminate between di�erentlandcover types [18].Consider for example, the coe�cient a3 for channels 1 and 2 respectively fromthe modi�ed Walthall model for the third quarter (July-September) during 1983�86shown in Figure 8. The quantity a3 is the nadir re
ectance value in the individualAVHRR bands for this model. To our knowledge, this is the �rst time the coe�cientsof any BRDF model have been determined at a global scale. The spatial patterns ofvisible and near IR re
ectances shown here are consistent with di�erent land coverclasses (e.g. [21]). Densely vegetated areas (e.g. central Africa, Brazil, Temperate15
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Coe�cient a3 for AVHRR channel 1 (modi�ed Walthall's model)
Coe�cient a3 for AVHRR channel 2 (modi�ed Walthall's model)

Figure 8: Coe�cient a3 from the modi�ed Walthall's model for channels 1 and 2 ofAVHRR for the time period July to September (1983 � 1986). It represents nadirre
ectance values for this model. 17



Coe�cient k for AVHRR channel 1 (Rahman et al's model)
Coe�cient k for AVHRR channel 2 (Rahman et al's model)

Figure 9: Coe�cient k from the Rahman et al's model for channels 1 and 2 ofAVHRR for the time period July to September (1983 � 1986). It describes the levelof anisotropy of the surface. Lower values of k represent regions of high anisotropy.18
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Figure 10: Comparison of standard errors in AVHRR channels 1 and 2 re
ectancesfrom the modi�ed Walthall model and from Rahman et al's model during the thirdquarter (July to September) for the time period 1983-1986.and Boreal forests in Asia and Europe) and agricultural regions (e.g. central USA)show high re
ectances in channel 2 and very low re
ectances in channel 1. Desertson the other hand show high re
ectances in both the bands (e.g. Sahara, centralAustralia, Kalahari). Insu�cient data across the snow covered Himalayas, over thepolar regions, and along the west coast of South America resulted in NULL values inthese areas, which is due to the rejection of these pixels by CLAVR.Figure 9 shows the parameter k for channels 1 and 2 of AVHRR for the Rahmanet al's model. This parameter describes the variations in re
ectance with view andillumination angles. Thus, it indicates the level of anisotropy of the surface [18]. Itcan be clearly seen from Figure 9 that the spatial variations of this parameter areclosely related to the variations in landcover types. Lower values of k mean higheranisotropy. Vegetated areas show higher anisotropy in band 1 compared to band 2.Deserts, on the other hand, are less anisotropic in both bands compared to vegetatedareas. Among the vegetated areas, high latitude deciduous forests have higher values19



of k compared to tropical areas.Comparison of the standard errors in channel 1 and 2 re
ectances from the modi-�ed Walthall model and Rahman et al's iterative model shows that the magnitude ofthese errors is very similar in both models (Figure 10). However, the iterative modelis computationally more expensive (150 minutes on a 16-node IBM SP2) than themodi�ed Walthall model (15 minutes on a 16-node IBM SP2). Examination of thestandard errors in re
ectances from the other three quarters indicated that in general,both the models had higher errors in areas where there are pronounced variations inphenology during the time of observations.Standard errors in channel 1 and 2 re
ectances from the temporal model werelarger in temperate regions of Asia, Europe and N. America, and also across theSahel in Africa compared to other regions of the world (Figure 11). These errorscould be due to large inter annual variations in surface conditions in these areascaused by changes in snow cover and rain fall in the higher latitudes and in the Sahelrespectively.6 ConclusionWe have demonstrated the feasibility of implementing both simple as well as complexalgorithms to retrieve BRDF at global scales using high performance computing. Ane�cient method is presented here to handle the large data set involved. Our imple-mentation optimizes I/O access time and e�ciently balances computations across thenodes, which is achieved by redistributing the land pixels evenly across all the nodes.Although the iterative model of Rahman et al. [18] was computationally moreintensive compared to the modi�ed Walthall model, results from the two algorithmswere similar. The input data for these two models had to be partitioned into discretetime intervals to minimize the e�ects of surface phenology on BRDF retrieval. How-ever, the temporal model negates the partitioning of input data based on variations insurface phenology. Errors from the temporal BRDF model were higher in temperatelatitudes, and across the Sahel region in Africa compared to other locations, and thiscould be caused due to strong interannual variations in surface conditions in these twoareas. The results from this study are unique, and are expected to provide valuableinputs into BRDF retrieval algorithms proposed for future Earth Observation Sys-tem (EOS) instruments such as the Moderate Resolution Imaging Spectroradiometer(MODIS), and the Multiangle Imaging Spectroradiometer (MISR).AcknowledgmentWe would like to thank Anurag Acharya for the helpful discussion on the I/O con�g-uration of SP-2 system. We would also like to thank UMIACS parallel system sta�,20



Channel 1 re
ectance standard error (Liang's temporal model)
Channel 2 re
ectance standard error (Liang's temporal model)

Figure 11: AVHRR Channels 1 and 2 re
ectance standard error for Liang's temporalmodel for the time period July to September (1983 � 1986)21
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