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Abstract

Most Land cover types are “anisotropic”, that is, the solar radiation re-
flected by the surface is not uniform in all directions. Characterizing the Bidi-
rectional Reflectance Distribution Function (BRDF) of the earth’s surface is
critical in understanding surface anisotropy. Though there are several methods
to retrieve the BRDF of various land cover types, most of them have been ap-
plied over small data sets collected either on ground or from aircraft at limited
spatial and temporal scales.

In this paper, we use multi-angular, multi-temporal and multi-band Pathfinder
AVHRR Land (PAL) data set to retrieve the global BRDF in the red and near
infrared wavelengths. The PAL data set used in our study has a spatial res-
olution of 8-km and 10-day composite data for four years (1983 to 1986). In
particular, we develop high performance algorithms to retrieve global BRDF
using three widely different models. Given the volume of data involved (about
27 GBytes), we attempt to optimize the I/O time as well as minimize the
overall computational complexity. Our algorithms access the global data once,
followed by a redistribution of land pixel data to balance the computational
loads among the different nodes of a multiprocessor system. This strategy re-
sults in an optimized I/O access time with efficiently balanced computations
across the nodes. Experimental data on a 16-node IBM SP2 is used to support
these claims and to illustrate the scalability of our algorithms.
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1 Introduction

At regional scales, satellite-based sensors are the primary source of information to
study the earth’s system science, as they provide the needed dynamic temporal view
of the earth’s surface. Surface reflectance measurements from satellite data have been
widely used to detect land cover change [1], surface albedo and energy budget [2], sea-
sonal and inter-annual vegetation dynamics [3], and to derive biophysical parameters
[4, 5] . However, the spectral measurements taken by most of the existing sensor sys-
tems (e.g. Advanced Very High Resolution Radiometer (AVHRR)) are directional.
Because most land cover types are “anisotropic”, these observations (e.g. reflectance)
are valid only for a particular sensor-illumination geometry. Land surface anisotropy
causes variations in surface reflectances when measured under different illumination
and view angles. The Bidirectional Reflectance Distribution Function (BRDF) of the
surface (f(0y, 05, ¢, 05, X)) specifies the behavior of the surface scattering as a func-
tion of illumination and viewing angles at particular wavelengths, and can be written

as:
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where 8, ¢, and A are the zenith and azimuth angles, and wavelength respectively
[6]. The subscript v denotes sensor and s denotes the sun respectively. “L,” is
the reflected radiance in the view direction measured by the sensor and “E” is the
parallel beam irradiance from the illumination direction in the wave band. Note that
fr(0,,05, 6y, ds, A) has the unit sr~!(sr means steradian). To make BRDF directly
comparable to bidirectional surface reflectance and hemispherical reflectance, we refer

to BRDF as p = f,#. [7]

1.1 Why is it important to understand BRDF?

For several radiative transfer and energy balance studies of the land surface we need
the surface reflectance that is integrated over all viewing angles in the upward hemi-
sphere (“hemispherical reflectance”), and over the visible and near-infrared wave-
length, which is called as the “broad band albedo”. The albedo of a surface describes
the ratio of radiant energy scattered upward and away from the surface in all direc-
tions to the down-welling irradiance incident upon the surface. The hemispherical

spectral reflectance (pp, (05, 1)) is described by:
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where p(0;,0,, ¢, A) is the surface BRDF, and ¢ is the relative azimuth angle (¢ =
¢y — ¢s). When the equation is integrated over all possible solar zenith angles (;),

it is known as the bi-hemispherical reflectance.



Another important reason for understanding the surface BRDF is due to the fact
that vegetation indices (e.g. Normalized Difference Vegetation Index (NDVI)) which
are derived from a combination of spectral bands are also effected by the surface

BRDF. Thus, understanding the surface BRDF will allow us [7]

o To correct multi-date images taken at different view angles for BRDFE effects

(e.g. in creation of temporal composites).

e To retrieve surface structural attributes (e.g. leaf area index and biomass) and

land cover information from the scattering behavior of the surface.

e To accurately retrieve broad band albedo required for energy balance and ra-

diative transfer studies.

The BRDF of land surface at the top of the atmosphere is different from the BRDF
measured at the surface because of atmospheric effects. However studies [8, 9] have
shown that the net shortwave energy balance retrieved at the top of the atmosphere
(TOA) is linear and directly proportional to the net shortwave fluxes measured on
the ground. Thus, the albedo and BRDF retrieved at the top of atmosphere could

still be used in energy balance studies.

1.2 How to compute BRDF?

The BRDF models can be broadly classified into physically based models, empiri-
cal models and semi-empirical models. Physically based models include geometric-
optical models [10], turbid medium models [11, 12], hybrid models [13] and computer
simulation models [14, 15, 16]. The physical models are complex, computationally
demanding and, thus far, these models have only been developed for specific land
cover types, with no known universal models for different cover types. These models
are dependent upon the structural and state attributes of the land surface such as
the leaf angle distribution on plant canopies, photo-synthetic activity, shape and size
of plants (e.g. cylindrical, spherical, conical) etc. The development and application
of these physical based models have been limited to BRDF modeling activities.

The empirical models are simple to use and have been applied fairly widely, al-
though the model coefficients may not have a physical meaning. One of the most
widely used empirical model is that of Modified Walthall model [17], expressed as:

p(0s,0,, 0, A) = ao(0? + 0%) + a,020% + a20,0, cos ¢ + a3 (3)

where ag_3 are the parameters of the model.
Semi-empirical models try to provide the balance between the physically providing

empirical coefficients that have a physical meaning. One of the models that has been



successfully tested is that of Rahman et al. [18], which describes the surface BRDF

as:

p(0s,0,, 0, X) = polcos b, cos(cos b, + cos 05))k_1F(g)[1 + R(G)] (4)
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In the above set of equations there are three unknown parameters pg, £ and © which
have to be determined by model inversion and numerical iteration.

The above models assume that the variations in surface reflectance are caused
by changes in viewing and illumination geometry only. When we fit angular models
to multitemporal observations, we hope to get longer records in order to get enough
angular sampling. It is assumed that the target does not change significantly over
the period of the measurements. However, many cover types have seasonal or annual
changes. For example, pixel of an agricultural land could correspond to a dense
canopy in the growing season and a bare soil in the winter season. Canopies have
quite different angular behavior from soils.

The long term record of AVHRR observations provides an excellent opportunity to
explore the angular signatures based on the multitemporal data assembly approach.
The long time series are sufficient to link bidirectional reflectance with surface char-
acteristics through different modeling approaches. However, almost all empirical or
semi-empirical models do not take account of temporal variations. In this study, a
temporal angular model is developed in which a temporal component is approximated
by a Fourier series and an angular component is expressed by the modified Walthall
model. It describes surface BRDF as follows:

p(05,0,,0,0) = ao(0? + 0%) + a1020% + a30,0, cos ¢ + a3
+ay COS(Q—;\T;) + as sin(Q—;\Tft) + ag cos(%) + a- sin(4—;\rft) (5)
where N is the number of data points for each year, and t varies from 0 to N — 1.

This model has been compared with some other empirical models and gives the best
fit to all data points from PAL data set [19].

2 Global BRDF Retrieval Computational Approach

We use Pathfinder AVHRR Land (PAL) data set and the three models described
above to derive the global BRDF. Our overall Computational approach is outlined
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Day of Year(DOY) (2 Bytes/ pixel)
Channel 2 Reflectance (2 Bytes/ pixel)
Channel 1 Reflectance (2 Bytes/ pixel)
Relative Azimuth Angle (2 Bytes/ pixel)

Sloar Zenith Angle (4 Bytes/pixel)
Scan Angle (2 Bytes/ pixel)

Quality Control Flags(QC) (1 Byte/ pixel)

CLAVR Flags (1 Byte/ pixel)

NDVI (1 Byte/ pixel)
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Figure 1: Layout of the Pathfinder AVHRR Land 10-day composite data set that was
used as input to derive the BRDF parameters (11 million pixels/image, 9 layers)

next.

The input consists of four years (1983 — 1986) of PAL data set that has a spatial
resolution of 8-km with a 10-day composite [20]. Although PAL data set spans from
1981 to 1994, we only choose these 4 years of data because the data from the other
years has processing errors. There are 36 10-day composite data for each year, and
we use 9 data layers out of 12 layers from each composite, as shown in Figure 1. For
our application, we make use of three types of information available for each pixel of

the composite images:

e Pixel selection information based on the values of the flags QC (data valid or
not) and CLAVR (pixel clear, mixed or cloudy).

e Temporal and geometric information based on the values in the layers DOY,
Sensor Scan Angle, Solar Zenith Angle, Relative Azimuth Angle and the re-

flectance values in channels 1 and 2.

o Validation information: The PAL data set also contains the NDVI which is
derived from channel 1(p.n1) and 2(pen2) reflectance measurements of AVHRR:

NDVI = Pch2 — Pchl (6)

Pch2 + Pcha
We recompute the NDVI for each pixel from p.p1, pers estimated by each of
the BRDF models, and compare it with the NDVI value reported in the PAL
data set for validation. Spatial and temporal variations in NDVI from AVHRR
have been shown to be correlated with phenology of land cover [21]. The mean
and standard deviation of NDVI for each pixel are used to determine how the

surface is changing over the curve fitting period.



For each pixel, we derive the coefficients required to describe the surface BRDF
by linear least squares fit for the linear BRDF models, and by model inversion and
iteration for the non-linear model. For every pixel, the coefficients a; (¢ from 1 to
N.) for channels 1 and 2 are generated for each model. In addition, some statistical
information on the model fit will be provided to allow a more in-depth analysis. In

particular, we compute the following quantities:

e The standard error of channel 1 and 2, which provides a quantitative measure
on the goodness of the model fit.

e For the linear models, the regression analysis coefficient R?, which is the ratio
of the variance of the predicted data and the variance of the given data. The
coefficient R? shows how well the model fit the given data and indicates the

proportion of the variation “explained” by the regression line [22].

o The standard error between NDVIin the PAL data set and the NDVI estimated
by each BRDF model.

e The mean and standard deviation of NDVI in the PAL data set to study the

changes on the land surface over the time period.

3 Pixel Computation

In this section, we describe the computation that takes place at each pixel, and include
an estimate of the number of operations required per pixel. In the following analysis,
Ny represents the number of data points used for the model fitting and & represents
the number of floating point operations needed to evaluate a trigonometric function
such as sin, cos or arcsin. In practice k£ &~ 25, and we assume that the time required

to perform the floating point multiplication and addition/subtraction are the same.

3.1 Input Data Conditioning

When the PAL data set was generated, the physical values were scaled to an ap-
propriate 8-bit (unsigned) or 16-bit (unsigned) integer value (Figure 1) as detailed
in [23]. We need to re-scale the PAL input data back to floating point data for our
application, convert solar zenith angle (from degree to radian), and sensor scan angle
(to the view zenith angle). To condition the input, we need Ny(27+ 3k) floating point

operations per pixel.



3.2 Linear BRDF Model

As we have seen in Section 1, the linear BRDF model can be expressed as follows:

Ne
p(0570v7¢7 )‘) = Zaifi(0570vv¢v )‘) (7)

where N, is the number of coefficients for the model, the «;’s are the model coefficients,
0s,0,,6 are the solar zenith angle, view zenith angle, and relative azimuth angle
respectively. Taking channel 1 as an example, the BRDF model fitting problem can

be expressed as follows:

Given a set of data values (07, Gf,qb],pl) j=1,2,... Ny and the BRDF model
equation(7), choose the linear model coefficients that best describe the function
relationship between py and the independent variables 05, 6, and ¢

For the least squares method [24, 25], the “best” coefficients a; (i from 1 to N,.) are
chosen to minimize the cumulative error between the given value p; and the model

predicated value py?. The cumulative error is defined as follows:

Na . . Na . Ne
IRV UMED DD WA UN NI, ()

Clearly, the function of Eqn.(7) has continuous partial derivatives in terms of the
model coefficients a;, so we can get a necessary condition for the the “best” coefficients
a; (¢ from 1 to N.) as follows:

9 Na N o
aa,Z(p{—Zaifi(eg,eg,qsf))?:o i=1,2,....N, (9)
v =1 =1

Simplifying, we obtain the following normal equations:
iaka 09,00, 69 fu(09,09, &) Zpl 09,09, 6))  i=1,2,...N. (10)
Similarly, we can get the normal equations for channel 2 as follows:
iaka 09,07, ) (09,09, ) Zpr 0,09,6))  i=1,2,...N. (1)
=

The normal equations(10) and (11) can be expressed as a linear system

ATAa= ATy (12)
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(07,07, ¢, ol p2) (j =1,2,... Ny) are the data points. py, ps are reflectances of chan-
nel 1 and 2 respectively. ay; and ag; (7 from 1 to N.) are the coefficients for channel 1
and 2 respectively. We can solve this linear system by Gaussian elimination followed
by a backward substitution.

To form the normal equations, we need to evaluate the functions fi(0s,0,,¢,\)
for the given points. The number of floating point operations needed to determine
these functions depends on the model used. Suppose the evaluation of the f;’s at
a single point requires [y FLOPs. Then to form the normal equations we need
Ny(Fy + N? + 5N,) operations using the symmetric properties of the left hand side
ATA of Eqn.(12).

Gaussian elimination followed by a backward substitution for the linear system in
Eqn.(12) will require about 2];3 + 5]2V°2 + 116& FLOPs. Hence, we need 2];3 + 5]2V°2 +
URe + Ny(Fy 4+ N2 4 5N.) FLOPs per pixel.

3.3 Non-linear BRDF Model

For Rahman’s model, we need a non-linear least squares fit. The non-linear model
can be written as p = f(a,0,,0s,¢,A), where a is the model coefficient vector. In
particular, a = [p,, k, ©]7 for Rahman’s model. As in the case of linear least squares
fit, we aim at minimizing the cumulative squared error for each channel. Taking

channel 1 for example, the cumulative error is:

Nd . . . .
J(a) =D (' — [(a,0,,0;,¢"))* (13)
J=1
We can minimize this error using the Powell’s method [26, 27]. The basic idea here
is to change the multidimensional minimization problem to a sequence of line min-
imizations, which minimizes the function .J(a) along some vector direction n using

one dimensional methods. Powell’s algorithm can be described as follows [26]:

Let ap be an initial guess of the coefficients and let u; (¢ from 1 to N.) be the
N.-dimensional basis vector, i.e. u; = e;. Then repeat the following steps until

the function J(a) stops decreasing:



Save starting point as ag

For ¢ = 1,2,... N, compute \; which minimizes J(a;_1 + A\;u;) and call
this point a;

o Fore=1,2,... N.— 1, replace u; by u;14

Replace uy, by ay, — ag

Compute A that minimize J(ag + Auy,) and call this point ag.

The line minimization problem can be expressed as follows [27]:

Gliven the input vector a, the direction vector n and the function J(a), find the
scalar X that minimizes J(a+ An). Replace a by a+ An, and n by An.

We can change the multi-dimensional function .J(a) along the line going through a
in the direction n to a one dimensional function J1(A) [27]. That is, we first evaluate
(a4 An), and then compute the function value of the original function. Hence we can
think of J; as a function of A.

To solve such a one dimensional line minimization problem, we first bracket the
minimum along this line. We know that a minimum is bracketed only when there is
a triplet of points, a < b < ¢, such that Ji(b) is less than both Ji(a) and Ji(c). In
this case, we know that the function J;(A) has a minimum in the interval (a,¢). We
can start with some initial guess as left point of the bracketing triplet and then step
downhill to find the middle point of the bracketing triplet. The middle point can be
found by increasing the step size either by a constant factor, or else by the result of
a parabolic extrapolation to the preceding points that is designed to take us to the
extrapolated turning point [27]. Then we just need to take a big enough step to stop
the downhill trend and get a high third point.

We can then solve the the line minimization problem using Brent’s method [26].
The basic idea is to use parabolic interpolation. Given three points («, J1(a)), (b, J1(b)),
(¢, Ji(¢c)), the formula for the abscissa x that is the minimum of a parabola through
these three points is
L(b—a)*[Ji(b) — Ji(c)] = (b — ¢)*[J1(b) — Ji(a)]

T TS T alAG) (@)~ (b eb(b) — ila)]

But using this formula solely is not likely to succeed in practice. Brent’s method

keeps track of 6 function points and can solve the task in all the cases. For a detailed

discussions, see [26, 27].

Operation Counts for Rahman’s Model: Let I; be the number of iterations to
bracket the minimum in the line minimization part, I, be the number of iterations
required in Brent’s method and I3 be the number of iterations needed by Powell’s
method. For each iteration in Powell’s method, we need to do (N. + 1) line mini-

mizations and evaluate the error function .J(a) once, plus some other memory and
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bookkeeping operations. In our case, we have that Ny =25, N. =3, I =3, [, =18
and I3 = 22 on average. Hence, we need 3.9 MFLOPs per pixel to do the non-linear

least squares fit for the Rahman’s model.

3.4 Model Verification Information Generation

Using the model coefficients generated, we compute the reflectances for channels 1
and 2, and then the NDVI values as stated in Eqn.(6). Here we need to compute
the channel reflectance, NDVI mean and standard error, channel 1 and 2 standard
error, R*. Overall, we will need Ny(2N, 4 22) FLOPs per pixel to perform these

computations.

4 High Performance Algorithms for Global BRDF
Retrieval

4.1 Initial Data Layout

Given the large amounts of data involved (about 27 GBytes) and the large compu-
tational requirements per pixel, we develop an implementation on a multi-processor
system, where each node has a sufficiently large storage subsystem. The implementa-
tion on other multiprocessor configurations is similar. For global BRDF retrieval, the
main goal is to develop a general strategy that makes an optimal use of the available
resources. We start by discussing 1/O requirements and later address the issue of
allocating pixel computations among the nodes.

The retrieval of global BRDF requires extensive handling of large amounts of
data residing in external storage (about 27 GBytes). We seek to achieve an efficient
layout of the input imagery on the available disks and an efficient mapping of the
computation across the available processors in such a way that (1) the total I/O time
is minimized and (2) the computational loads are balanced among the nodes.

As stated earlier, the input consists of four years of PAL 10-day composite data,
1983 through 1986. The initial collection of input files is illustrated in Figure 2.
Our input can be viewed as an array Data[Year][Month][Period][Layer][Row][Column],
where we have 4 years, 12 months per year, 3 periods per month, 9 layers per period
and the global pixels given by 2168 rows and 5004 columns. The 9 layers account for
17 bytes for each pixel. For example, on our multiprocessor platform that consists of
16-processor IBM SP2, the disk array on a node will hold 9 10-day composites and
will have 81 images files, as shown in Figure 3. The image files can be accessed by
giving the index|Year|[Month][Period][Layer].

If we use one index “Time” to refer to (Year, Month, Period), we can view our
input as a 4-dimensional array, Data[Time][Layer][Row][Column]. The time will vary

from 1 to 144 in our case. There are totally 1296 input image files and 27 GBytes of

10



Input File System Structure

A

1983 1985 1986
January February December January November December
10-day 10-day 10-day 10-day 10-day 10-day
composte composite composte composite composte composte
A A ° ° ° A A
NDVI QC DOY NDVI QC DO NDVI QC DOY NDVI QC DO
layer layer layer layer layer Iayer layer layer layer layer layer Iayer

Figure 2: Structure of the input file system. Each year has 12 months, each month
has 3 10-day composite, each 10-day composite has 9 layers and each layer is stored
in a file

‘ Network Connection ‘
[ [
‘ NODEl‘ ‘ NODEZ‘ e o o

910-day Composites 910-day Composites

Figure 3: Initial distribution scheme of the input data among different nodes on a mul-
tiprocessor system. In this example, there are 16 nodes, and nine 10-day composite
images are stored on the local disk of each node.
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data (= 5004 x2168x17x144). This 4-dimensional array Data|Time][Layer][Row][Column]
is distributed over the node according to the Time index. That is, if we have
p nodes and the Time index ranges from 1 to T (assuming T is a multiple of p
without loss of generality), then Data[l : %][Layer] [Row][Column] lies on the disks
of node 1, Data[% +1: %][Layer][Row][Column] lies on the disks of node 2,...

Data[ﬁn—_plE +1: %][Layer] [Row][Column] lies on the disks of node p.

In addition to the data, we also need the classmap information to classify a pixel
either as a land pixel or as a water pixel as well as to give the class type of the surface.
This information consists of a global image with one byte per pixel, and hence the
size of the classmap is about 11Mbytes. ClassMap[Row][Column] is stored on one
node.

We will generate all the model coefficients, the standard error and the R* coeffi-
cient for each channel, as well as the mean NDVI, the NDVI standard deviation and
the NDVI standard error. Each of the output generated will be a 32-bit floating point
number for each pixel. Let N. denote the number of coefficients in the model. Then
we will produce NumCoef = 2(N, + 2) + 3 floating images (44Mbytes each) and
one unsigned short image output for number of points used in model fitting, which
amounts to approximately 670 MBytes for modified Walthall’s model, 1.0GBytes for
Liang’s temporal model and 590 MBytes for Rahman’s non-linear model. We can
view these outputs as a 3-dimensional array Out[NumCoef][Row|Column] and one

Num[Row][Column] unsigned short image.

4.2 Data Redistribution and Computation Mappings

Given a p-processor platform, we implement our algorithm as follows. Using the
classmap, we generate a land sea mask that describes the relative land position in the
original image. This land sea map is then broadcast to all the nodes.

We then extract the land pixel data at each node using an intermediate data struc-
ture Datelnter[Year][Month]|[LandPixel][Period][Layer]. That is, we start by eliminat-
ing the non-land pixels in the data, followed by saving the remaining pixels as shown
in Figure 4. This phase is refered to as the preprocessing phase.

Next, we redistribute the land data evenly among the nodes. This results in
approximately 380 MBytes of data per node for p = 16. Given the size of the data,
we perform the redistribution iteratively as follows. We process ¢ x p consecutive land
pixels during each iteration such that the first ¢ land pixels are shipped to the first
node, the second ¢ land pixels are shipped to the second node, and so on, where ¢ is
the maximum number of pixels that can fit into the main memory of each node. Hence
each node will get all the [Year][Month|[Period][Layer| information for its ¢ land pixels,
as illustrated in Figure 5. Here we use Massage Passing Interface (MPI) [28] collective
communication primitive (MPI_Alltoall) to do the interprocessor communication in

the land pixel redistribution. MPI is a library specification for message-passing, which
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Period 1 Period 2 Period 3

0| NDVI QC ® @ eDOY | NDVI QC ® ® e DOY | NDVI QC ® @ eDOY
1
22
T
©
[ ] [ ] [ ]
g : : :
[ ] [ ] [ ]
One Month

Figure 4: Data structure used for land pixels after preprocessing on each node

\ High Performance Switch |

Node 16

Month1 Month2 Month 3

Month1 Month2 Month 3

Figure 5: After redistribution the top chunks of ¢ land pixels will reside on node 1,
the second ¢ land pixels will reside on node 2, and so on.
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is a paradigm used widely on distributed memory parallel machines. It is a standard
proposed by a broadly based committee of vendors, implementors, and users [28].
We are now ready to perform the BRDF model fitting, for all the pixels on each
node concurrently. We start by selecting the clear day data to form the curve fitting
data set according to the CLAVR layer. We then compute the model coefficients,
generate the model verification information and save it locally. After all the land
pixels have been processed, we read back these coefficients from the temporary file
one by one and collect them into one node by using MPI_Gather communication
primitive. We reinsert the non-land information to make the output map back to the

original globe image using land sea map generated in the first step.

4.3 Implementation and Performance Results

After preprocessing the input data and setting up the appropriate data structure for
the land pixels, our algorithms consists of: (1) reading the land pixel data in chunks,
(2) redistributing the land pixels among the multiprocessor nodes, (3) conditioning
the land data, computing the model coefficients, and generating the model verification
information, and (4) collecting all the coefficients to one node, remapping back to the
original image, and generating the output. The time required to read the land pixel
data (step (1)) is denoted by Tj,pue. Interprocessor communication is required for the
redistribution step (step (2)), whose corresponding time is denoted by Tepmm. The
time required to perform step (3) is denoted by Tiomp (computation time). Finally,
Toutput refers to the time it takes to execute the fourth step for generating the output
images on a single node.

Given that the loads are distributed equally among the processors, we expect
Teomp, Linputr to scale linearly with increased number of processors. We expect Tty to
scale almost linearly with increased number of processors since we are using balanced
MPI collective communication primitives. We expect Thypue to stay constant with

increased number of nodes since all the output data is collected on one node.

Our testbed consists of a 16-node IBM SP2, each node is identically configured with
one POWER2 processor, a 40MB/s bi-directional link for each processor to a multi-
stage high performance switch, two fast-wide SCSI buses. Fach SCSI bus has three
2.2 GB SCSI disks as shown in Figure 6.

A summary of the performance of our algorithms using this testbed is shown in
Figure 7. Clearly the computation time (7.om,) and the land data input time (75,,u:)
scale linearly with the number of processors. Also, the communication time 1.,
scales almost linearly with the number of processors. On the other hand, T,,iu
remains fairly constant relative to the number of nodes as we had expected. We
should note that the preprocessing phase achieves a linear speedup over the number

of processors.
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\ High Performance Switch
[
‘NODEl‘ ‘NODEZ‘ e o o NODE16

home2 home2

home3 home3

home4 home4

Disks are 2.2GB each Disks are 2.2GB each

Figure 6: SP2 system configuration: Each node is an IBM POWER2 processor con-

nected to a multistage high performance switch by a 40 MB/s bi-directional link.
Each node has six 2.2 GB SCSI disks.

Regarding raw performance, on the 16-node SP2, the least squares fit computation
achieves around 0.89 GFLOPS for the modified Walthall’s model, and 0.91 GFLOPS
for Liang’s temporal mode. The nonlinear least squares fit achieves around 1.18
GFLOPS for Rahman’s model. These numbers represent approximately 25% of the
peak performance on our machine. The input bandwidth achieved is about 6.7 MB/s,
the output bandwith achieved is about 6.0 MB/s, with the peak of either being 8
MB/s for each disk. The interprocessor communication bandwidth achieved is about
25 MB/s with a theoretical peak of 40 MB/s. These numbers clearly indicate the

efficiency of our code in utilizing the available resources.

5 Comparison of Results from Different BRDF
Models

As mentioned in Section 2, we generate the coefficients for each of the models
corresponding to channels 1 and 2 of AVHRR, and standard errors between model
predicted and actual reflectances. The coefficients describe the general shape of the
BRDF for each pixel and could be potentially used to discriminate between different
landcover types [18].

Consider for example, the coefficient az for channels 1 and 2 respectively from
the modified Walthall model for the third quarter (July-September) during 1983 — 86
shown in Figure 8. The quantity a3 is the nadir reflectance value in the individual
AVHRR bands for this model. To our knowledge, this is the first time the coefficients
of any BRDF model have been determined at a global scale. The spatial patterns of
visible and near IR reflectances shown here are consistent with different land cover

classes (e.g. [21]). Densely vegetated areas (e.g. central Africa, Brazil, Temperate

15



60

Output
50 Comp 4
Comm
Input

401 E

Time (Minute)
w
o

20

10

1 2 4 8 16 1 2 4 8 16
Modified Walthall's Model Liang's temporal Model
20
1-node
18 2-node 7
4-node
16 8-node i
16-node
14 b
_12 B
[)
5
£
210 B
o
£
[
8 i
6 i
4 i
2 Il_. ]
! H [
Input Comp Comm Output

Modified Walthall's Model

Figure 7: Timing of global BRDF retrieval from the four year PAL data set on a SP2
machine. The time spent on input, output, communication, and computation are
shown seperately. Results are shown for different numbers of processors. The total
time taken to run the Rahman’s model is 150 minutes on 16 nodes, and is not shown

here.
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Coefficient a3 for AVHRR channel 1 (modified Walthall’s model)
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Coefficient a3 for AVHRR channel 2 (modified Walthall’s model)
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Figure 8: Coefficient a3 from the modified Walthall’s model for channels 1 and 2 of
AVHRR for the time period July to September (1983 — 1986). It represents nadir
reflectance values for this model.

17



Coefficient k& for AVHRR channel 1 (Rahman et al’s model)

Coefficient k& for AVHRR channel 2 (Rahman et al’s model)

-1.0 0.0 1.0

Figure 9: Coefficient k£ from the Rahman et al’s model for channels 1 and 2 of
AVHRR for the time period July to September (1983 — 1986). It describes the level

of anisotropy of the surface. Lower values of k represent regions of high anisotropy.
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Figure 10: Comparison of standard errors in AVHRR channels 1 and 2 reflectances
from the modified Walthall model and from Rahman et al’s model during the third
quarter (July to September) for the time period 1983-1986.

and Boreal forests in Asia and Europe) and agricultural regions (e.g. central USA)
show high reflectances in channel 2 and very low reflectances in channel 1. Deserts
on the other hand show high reflectances in both the bands (e.g. Sahara, central
Australia, Kalahari). Insufficient data across the snow covered Himalayas, over the
polar regions, and along the west coast of South America resulted in NULL values in
these areas, which is due to the rejection of these pixels by CLAVR.

Figure 9 shows the parameter k for channels 1 and 2 of AVHRR for the Rahman
et al’s model. This parameter describes the variations in reflectance with view and
illumination angles. Thus, it indicates the level of anisotropy of the surface [18]. It
can be clearly seen from Figure 9 that the spatial variations of this parameter are
closely related to the variations in landcover types. Lower values of k£ mean higher
anisotropy. Vegetated areas show higher anisotropy in band 1 compared to band 2.
Deserts, on the other hand, are less anisotropic in both bands compared to vegetated

areas. Among the vegetated areas, high latitude deciduous forests have higher values
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of k compared to tropical areas.

Comparison of the standard errors in channel 1 and 2 reflectances from the modi-
fied Walthall model and Rahman et al’s iterative model shows that the magnitude of
these errors is very similar in both models (Figure 10). However, the iterative model
is computationally more expensive (150 minutes on a 16-node IBM SP2) than the
modified Walthall model (15 minutes on a 16-node IBM SP2). Examination of the
standard errors in reflectances from the other three quarters indicated that in general,
both the models had higher errors in areas where there are pronounced variations in
phenology during the time of observations.

Standard errors in channel 1 and 2 reflectances from the temporal model were
larger in temperate regions of Asia, Furope and N. America, and also across the
Sahel in Africa compared to other regions of the world (Figure 11). These errors
could be due to large inter annual variations in surface conditions in these areas
caused by changes in snow cover and rain fall in the higher latitudes and in the Sahel

respectively.

6 Conclusion

We have demonstrated the feasibility of implementing both simple as well as complex
algorithms to retrieve BRDF at global scales using high performance computing. An
efficient method is presented here to handle the large data set involved. Our imple-
mentation optimizes [/O access time and efficiently balances computations across the
nodes, which is achieved by redistributing the land pixels evenly across all the nodes.

Although the iterative model of Rahman et al. [18] was computationally more
intensive compared to the modified Walthall model, results from the two algorithms
were similar. The input data for these two models had to be partitioned into discrete
time intervals to minimize the effects of surface phenology on BRDF retrieval. How-
ever, the temporal model negates the partitioning of input data based on variations in
surface phenology. Errors from the temporal BRDF model were higher in temperate
latitudes, and across the Sahel region in Africa compared to other locations, and this
could be caused due to strong interannual variations in surface conditions in these two
areas. The results from this study are unique, and are expected to provide valuable
inputs into BRDF retrieval algorithms proposed for future Earth Observation Sys-
tem (EOS) instruments such as the Moderate Resolution Imaging Spectroradiometer

(MODIS), and the Multiangle Imaging Spectroradiometer (MISR).
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Figure 11: AVHRR Channels 1 and 2 reflectance standard error for Liang’s temporal
model for the time period July to September (1983 — 1986)
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