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A bioterrorist attack, or natural disaster, would prompt an immediate government
response in order to efficiently address the possible health effects of the population. Such
a scenario would create a logistics problem of delivering medication (or other supplies)
to makeshift dispensing centers in a short period of time and in high quantities while
operating. These makeshift centers, or Points of Dispensing, require schedules of delivery
that are robust against uncertainty. This inventory slack routing problem is a novel vehicle
routing problem. The objective function is to maximize the slack in the schedule.

This thesis presents heuristic approaches that separate the problem into routing and
scheduling. The routing problem is solved using a route first-cluster second method. The
scheduling problem is solved using a heuristic and an improvement approach.

This thesis also presents a search approach that uses heuristics to search various
neighborhoods in the solution space. These heuristics are chosen randomly based on
probabilities that adapt during the search according to their performance.

The inventory slack routing problem is also formulated as a mixed-integer program
and solved using a column generation procedure that utilizes simulated annealing to gen-

erate new vehicle schedules.
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desirable vehicle schedules and therefore was not productive in solving the problem.
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Chapter 1
Introduction

1.1 Background

Events in the last ten years have highlighted the increased need for emergency
preparedness by government officials. Events such as the terrorist attacks on September 11,
2001, Hurricane Katrina, the 2008 earthquake in Chengdu, China, and the 2010 earthquake
in Haiti have provided real world examples of communities that were ill-prepared for major
disasters [7]. Thus, it is important for government officials to anticipate disasters and
plan accordingly. Mathematical models and decision support tools can be used to support
planning activities.

Some scenarios could require the quick and efficient distribution of medication to
a large number of people. For instance, the widespread release of anthrax without gov-
ernment response in a metropolitan area could result in casualties equivalent to that of
a small nuclear explosion [21]. In this scenario (and others involving mass vaccination
against communicable diseases such as smallpox and influenza), it is logical to create
Points of Dispensing (PODs) such that large populations can be given medication with-
out having to travel to one central location. PODs may be setup in schools, recreation
centers, churches, and other non-medical facilities. The medication to be distributed at
these PODs must be delivered quickly from a central depot as soon as it arrives.

The proposed research is motivated by work with public health officials in the state
of Maryland who must plan the logistics for distributing medication to the PODs from a

central location. We consider the problem at the state and local levels (not the national



level). After the decision for mass dispensing is made, county public health departments
will begin preparing to open multiple PODs simultaneously at a designated time. The
state will request medication from the federal government, who will deliver an initial but
limited supply of medication to a state receipt, storage, and stage (RSS) facility (which we
call the “depot”). Contractors will deliver more medication to the depot, but the state will
begin shipping medication from the depot to the PODs before all inventory arrives from
the contractors. The deliveries to the depot arrive in batches that we call “waves.” Time
will be needed to prepare the PODs. This will delay the opening of PODs for distribution
until after the first wave has been delivered to the depot.

Poor medication distribution plans will delay the time that some PODs receive
medication. This can delay the opening of these PODs, and some residents may not get
their medication in a timely manner, which increases their risk of death or illness. Clearly,
there are many uncertainties in medication distribution, including the timing of shipments
to the depot, the time needed to load and unload vehicles, travel times, and the demand
for medication at each POD. For this reason, planners need a robust plan. In particular,
it is better if the plan calls for delivering medication to PODs much earlier than it is
needed. This improves the likelihood that the PODs will open on-time, will not run out
of medication during operations, and will dispense medication to the largest number of
people in a timely manner.

Specifically, the problem addressed has some features of the inventory routing prob-
lem but also has some unique assumptions, constraints, and objectives. In this case, a set
of PODs are served by a given set of vehicles delivering a quantity of one item during a
short time span. Thus, the objective is not to minimize the cost or maximize the profit.

Instead, the objective is to increase the time between a POD running out of supplies for



each delivery made from the depot. This value will be known as the slack.

Much research has been done to develop models to improve emergency preparedness
planning. Hupert et al. [21] have presented a model to predict the hospital surge after a
large-scale anthrax attack. The researchers emphasize the importance of timely antibiotic
distribution, making logistics of delivery equally important. Similarly, much work has been
done to create simulation methods and planning tools for PODS in makeshift locations
such as school gymnasiums [1, 2, 22].

The operations of firefighters, emergency medical services, and police departments
have motivated research into location models [4, 10, 14] and dynamic vehicle routing
models [18, 25, 29]. However, these models are not relevant to the medication distribution
problem, which is more closely related to the inventory routing problem [3, 8, 15, 24]
and the production-distribution scheduling problem [11]. Still, the models used for those
problem are also not directly relevant.

Planning humanitarian logistics is related to the Vehicle Routing Problem (VRP)
and Inventory Routing Problem (IRP). These problems have been applied to a variety of
commercial, military, and government applications. The following description of the VRP
is by Toth and Vigo [27].

The VRP details the delivery of a set of goods to a set of customers by a set of
vehicles. These goods are stored at a depot, or a set of depots, and are delivered by a
road network. This road network is usually detailed using a graph with arcs representing
roads and vertices as the sites and depots. The solution to the VRP specifies a route for
each vehicle that begins and ends at the depot. Typical VRP problems have the following
characteristics: customer locations, demands for the customers, time windows for the

customers, loading/unloading times, and a set of available vehicles that can be used.



In many cases, it may not be possible to fully satisfy all of the customer demand,
and priorities or penalty functions must be employed. With this, it is possible to for-
mulate various objective functions to obtain a solution, including minimization of global
transportation cost, minimization of vehicles used, balancing routes for travel times and
load, and minimization of penalties. The VRP is a well-researched problem with many
heuristics, mathematical programming, and search techniques available.

The VRP has many variations including the Inventory Routing Problem (IRP). The
following description of the IRP is by Campbell et al. [9]. The IRP differs from the VRP
because the the delivery company decides when and what quantity to deliver to customers,
as long as they do not run out. The objective is minimization of cost over the planning
horizon while preventing customers from running out of product. A single product is
delivered from a single depot to a set of n customers over a specified time period. These
customers are served by a homogenous fleet of V' vehicles with a capacity of Q). A problem
solution should answer three questions: when to serve a customer, how much to deliver,
and which routes to follow?

Most solutions detailed in literature focus on short-term scenarios solved by math-
ematical programming techniques. There is a lack of basic heuristics for solving IRPs.
The Inventory Slack Routing Problem (ISRP) that we present is similar to an IRP but
has some unique assumptions. The main concern is to supply medication as quickly as
possible, not to minimize cost. As Hupert et al. [21] emphasize, delaying the start of
POD operations will significantly increase the number of people hospitalized. In addition,
the limited availability of medication at the depot adds an additional constraint to the
problem. Finally, because there is uncertainty in loading/unloading, travel times, and de-

mand, it is necessary to have overall maximum slack to hedge against these uncertainties.



The objective of the ISRP is to maximize the minimum slack in order to develop a more

robust plan.

1.2 ISRP Problem Formulation

In the ISRP, a set of vehicles must deliver material from a depot to a set of sites
that will consume this material. Not all of the material is available at the depot at the
beginning of the time frame. Instead, material will become available in waves, which
are deliveries to the depot at different points in time. The sites will start operating at
a designated time. Each site consumes material at a given rate, and this demand may
vary from site to site. We consider deterministic opening times and dispensing rates.
The vehicles must deliver enough material from the depot to the sites to satisfy the total
demand over the time horizon. The following section details the notation to be used. Note
than an example is provided in Appendix A.

Although, in theory, a vehicle could follow a different route each time it leaves
the depot, and a site could be served by multiple vehicles, this makes supervising and
performing the deliveries more complex in practice. We therefore assume that each and
every site is assigned to exactly one vehicle, and each vehicle always follows the same route

to visit the sites assigned to it.

1.2.1 Notation

t - Time in minutes
T7 - Time, in minutes, that sites will begin dispensing
T5 - Time, in minutes, that sites will end dispensing

I(t) - Cumulative amount of material delivered to the depot between time 0 and ¢



V' - Number of vehicles

C' - Vehicle capacity in units of material

o, - Route assigned to vehicle v, v =1,...,V

o - Routes for all vehicles

n - Number of sites

Ly, - Demand in units per minute for sites k =1,...,n
pr. - Load (unload) time, in minutes, at sites k =1,...,n + 1
¢ij - Time, in minutes, to travel from site i to j

1y - Number of trips vehicle v makes

tyj - Time of trip j for vehicle v

Qujk - Amount delivered to site k by vehicle v on trip j

Yy - Total duration of a trip by vehicle v

1.2.2 Formulation

In the ISRP, t = 0 refers to the first instant that material is available at the depot,
t = T is the time that the sites begin operating, and ¢ = T5 is the time that the sites
stop operating. There are n sites denoted by k = 1,...,n. The demand rate for sites is
denoted as L; material per time unit, which in this paper is minutes. Thus, site k£ has a
total demand of (7% — T1)Lj units of material.

The depot, denoted by & = n—+1, receives material in multiple “waves” that arrive at
different times. The times and quantities are known in advance and are used to determine
the discontinuous, non-decreasing cumulative function I(¢). In our example, there are
three waves. At t = 0, 48,000 units are delivered; at ¢t = 180, 98,000 units are delivered;

and at ¢ = 360, 73,000 units are delivered. Figure 1.1 shows I(t).
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Figure 1.1: Cumulative delivery function from R1

The time to load or unload a vehicle at site k is given by pi. The time to travel
from site 4 to site j is ¢;;. An instance will have V' vehicles at the depot where vehicle v
has a capacity of C units.

A solution specifies, for each vehicle, a route, the number of trips that it makes, the
time to start each trip, and the quantity to deliver to each site on each trip. The following
constraints must be satisfied for a solution to be feasible.

The quantity shipped from the depot cannot exceed the amount delivered to the

depot:

Z Z dabk SI(t’U]) vzla"'av;j:la"‘vrv (11)
(a,b):tabftvj k€oq

A vehicle cannot begin a new route until it returns to the depot:



loj 2 toj—1+ye v=1,..,Vi7=2,..m (1.2)

All delivery quantities are non-negative. Each vehicle has a fixed capacity and can
carry a maximum of C' units, that is Z Qujk < Cforallv=1,..,Vandj=1,..7, Al
]CGO"U
route start times are non-negative such that t,; > 0 forallv =1,...,V and j = 1,...,7,.
Ty
Each site must receive all required medication, that is Z Qujk = (Ip=T1)Ly forv=1,...,V
j=1
and k € o,.
A feasible solution for our example is shown in Table 1.1. To evaluate a solution,

we need to calculate its minimum slack. Let w,; be the duration until vehicle v visits site

k after it begins a trip. This is calculated as follows, where [a] is the a-th site in route o,:

Wyk = Pnt+1 + Cpgrn) + P + ) + - + P (1.3)

For a site k € oy, let Q,;r be the quantity delivered to site k£ by vehicle v on trips

before trip j:

j—1
Qujk = Y Quik (1.4)
=1

Note that Q,1x = 0. If, on trip j, the vehicle’s delivery at site k were delayed, then
the site would run out of inventory at time 7 + Qujr/Ly.

The slack for site k on trip j can be found as follows:

ijk
Ly,

Spjk = T1 + — (tvj + wor) (1.5)

The evaluation of a solution is the minimum slack over all vehicles, sites, and trips:



Table 1.1: Schedule for example.
Schedule for Vehicle 1

Site/Time 0 180 360
5 10,521 21,479 16,000
4 7,800 16,110 12,000

Schedule for Vehicle 2
Site/Time 0 180 360
3 13,151 26,849 20,000

Schedule for Vehicle 3

Site/Time 0 180 360
2 9,863 20,137 15,000
1 6,575 13,425 10,000

Table 1.2: Slack calculations for example.
Slack

Vehicle v Site & wjr  Sy1k Sv2k  Su3k

1 b} 45 555 507 595

4 73 527 479 567
2 3 46 540 492 580
3 2 45 555 507 595
1 74 526 478 566

S = min{s,;x}. Slack values for the example are given in Table 1.2.



Chapter 2
Heuristic Approach

The ISRP, like other versions of the VRP and IRP, is NP-hard, which makes it
computationally expensive to obtain an exact solution. Therefore, it is of benefit to develop
simple heuristics that can construct good feasible solutions. A solution is a schedule for
each vehicle with a starting time to begin loading for each trip, specified sites to visit, and
a quantity to bring to each site on that trip.

The overall approach can be seen in Figure 2.1. This approach constructs a solution
by separating the ISRP into two subproblems: routing and scheduling. A combination
of different routing techniques will be discussed in the following section. The scheduling
subproblem is further separated into scheduling for each vehicle by using the routes that

have been found.

2.1 Routing

The routing subproblem creates routes for each vehicle by assigning sites to each
vehicle and determining the order in which they are visited. The ISRP differs from tra-
ditional VRP because the objective is not to minimize total travel time. Instead, it is
desirable to create routes that are nearly the same duration so that the minimum slack is
not too small.

Bramel and Simchi-Levi [6] present two categories for this type of routing: (1) route
first-cluster second methods and (2) cluster first-route second methods. With a route
first-cluster second method, a tour is created through all of the sites, and then the sites
(and the route) are divided into a desired number of partitions. Gillett and Miller’s [17]

sweep algorithm is a popular example of the route first-cluster second approach [6]. One

10
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major drawback for these methods is that vehicles may be poorly utilized since the routing
is done first. Algorithms have also been developed for cluster first-route second methods.
These methods devote more priority to the clustering phase. Because these methods tend
to require more computational effort and we are interested in heuristic approaches at this

time, we will consider a route first-cluster second method.

2.1.1 Route First

When routing, it is first necessary to create a “big route” that visits all of the sites.
We consider two different methods that do not use X-Y coordinates. In many real world
situations, the X-Y coordinates are not as important as the travel times between sites,

and, in some situations, the X-Y coordinates may be unavailable.

2.1.1.1 Nearest Neighbor

The nearest neighbor (NN) technique generates a tour through all of the sites. The
tour starts at the depot. The next site selected for the tour is the site that has the shortest
travel time from the current site and has not already been visited. This is repeated until

no sites remain. Once all of the sites have been visited, the tour ends with the depot.

2.1.1.2 2-opt Exchange

Given an initial tour, the 2-opt exchange systematically removes two edges in the
tour and reconnects the vertices to obtain a tour of shorter length. This algorithm finds all
pairs of edges that will decrease the tour length. Of all these pairs, the pair chosen is the
one that will make the greatest decrease in travel time of the tour. The 2-opt algorithm is
continued until no more improving pairs can be found [23]. Although many pairwise, or 2-
opt, exchange implementations start with a randomly generated trip through the sites, we
use the nearest neighbor algorithm to first generate a route because it is computationally

inexpensive.

12



2.1.2 Cluster Second

Once a big route has been obtained, it is necessary to divide the sites among all of
the vehicles available. The sites are first divided between vehicles as equally as possible.
In the example, there are five sites, three vehicles, and the big route using NN is

found to be 6,5,4,3,2,1,6. The initial clusters will be as follows:

Vehicle 1: 6,5,4,6
Vehicle 2: 6,3,2,6
Vehicle 3: 6,1,6

It is important to note that this initial cluster ignores both the demand and the
travel times. Thus, the durations (and demands) of the routes may vary widely, which
can reduce the slack of any solution constructed from these clusters. Thus, we use an
improvement algorithm to reduce the variation. We tested an improvement algorithm

that considers the travel time and one that considers the total demand.

2.1.2.1 TImprovement by Route Duration

Each cluster is assigned to a vehicle. The vehicles are sequenced by the position
of their cluster in the big route. This improvement algorithm method strives to make
the route durations as similar as possible by minimizing the range of route durations.
This method begins by calculating each vehicle’s route duration. In each iteration, the
algorithm examines the vehicles with maximum and minimum travel times and considers
moving sites at the beginning (or end) of one route to the previous (or next) vehicle’s
route. If the potential move decreases the range of route durations, then the routes are
updated to reflect this change. This continues until no further improvement can be made.

Of course, this type of local search may not find the smallest possible range. The
pseudocode can be seen in Appendix B. This pseudocode, and formulation is subsequent
sections, require the following notation.

Yy is the route duration for vehicle v, which can be calculated by the following
equation, where 7, denotes the number of sites on route o, and [a] denotes the a-th site

on route oy,.

13
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This cluster improvement algorithm will be applied to the example introduced in
the previous section. The durations of the initial clusters are 90, 124, and 64 minutes.
The initial range of durations is 60 minutes. The following clusters are the result, and the

range of route durations is 1 minute.

Vehicle 1: 6, 5,4, 6; route duration: 90 minutes
Vehicle 2: 6, 3, 6; route duration: 90 minutes

Vehicle 3: 6,2, 1, 6; route duration: 91 minutes

2.1.2.2 Improvement by Total Demand

This improvement algorithm attempts to reduce the range of total demand of the
sites on the routes but searches in the same way as the previous algorithm. That is,
we replace y by D, where the total demand, D,, can be calculated for vehicle v by the
following equation.

Dy= (T, —T1) Y Ly

keo'v

2.2 Scheduling

After constructing routes for the vehicles, it is necessary to schedule their deliveries.
A schedule specifies the quantity to be delivered to each site as well as the time for the
vehicle to begin loading for departure. Because we are interested in developing heuristics
for the ISRP, we will allocate material to vehicles and schedule the deliveries of each
vehicle using the following policies.

Let fi be the relative demand of site k:

__ Ly
fk Zi:l L;
For each vehicle, we create a cumulative material function J,(¢) that describes the

material available to be delivered by vehicle v at time ¢. Recall that I(t) describes the

total material received at the depot by time t.

14



Then, if o, is the route that vehicle v visits, J,(t) = I(t) Z fr-

Once J,(t) has been established for vehicle v, it is then ggfsvsible to determine how
many trips the vehicle will take to service the sites assigned to it, what time each trip will
start, and how much quantity to deliver each trip. Let y, be the route duration for vehicle
v to complete its route.

Vehicle v will begin loading for its first route as soon as the depot has stock. Vehicle
v will carry as much material as it can at the first instance the depot has material,
which is J,(0), without surpassing its capacity. When the vehicle returns at time y,, if
there is material still available for that vehicle, the vehicle will start loading at this time.
Otherwise, the vehicle will wait until the next wave of deliveries to the depot. Once again,
the vehicle will either carry all of the material allotted to it or the maximum capacity
of the vehicle. This will continue until no more material is available for that vehicle. It
is important to note that this method does not require the vehicle to be full to begin a
trip. To do so would lead to vehicles sitting at the depot while material is available, which
would reduce slack (unless the quantity available is small and the delay until the next
wave is short).

The material on a vehicle will be divided between the sites that the vehicle visits
using their respective proportions of the total demand.

The pseudocode for the scheduling algorithm is as follows. The following notation
is used.
ty;: The time, in minutes, at which vehicle v begins trip j
fx: Relative demand of site k
g Relative proportion of vehicle delivery allocated to site k
R,;: Quantity delivered on trip j by vehicle v
Qujk: Quantity delivered to site k assigned by v on trip j

C'": Vehicle capacity (units of material)

schedule(o)
1 CALCULATE fi,..., fa
2 CALCULATE y1,...,yv
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3
4FORv=1:V

5 Jo (t) = I(t) Zkeav fk
6 tv1 =0

7 Ry1 = min{J,(0),C}
8
9

0=2
10
11 REPEAT
12 typ = tv,971 + Yo
13
14 IF J,(twg) — 391 Ruj == 0
15 ty,p = mint such that J,(t) — Z?;% R,; >0
16 END
17
18 Ryp = min{C, Jy(tw) — X9-1 Ruj}
19
20 0=0+1
21
22 UNTIL Y921 Ry j == (T = T1) Y, Ly
93 k€oy

24 Ty =0—1
25 FOR j=1:r,

26 FOR £k € o, ;

— k
27 gk N Zieav fz
28 Qujk = grByj
29 END
30 END
31 END

This scheduling algorithm produces the schedules in Table 1.1 for our example. The
first column denotes the sites visited by that vehicle and each remaining column denotes
a trip taken by that vehicle. The first row denotes the starting time in minutes for each

trip. The solution is evaluated in Table 1.2 with a minimum slack of 478 minutes.

2.3 Improvement

After a solution has been found, it may be possible to manipulate the quantities
carried on each trip to increase the slack. Note that, as shown in Table 1.2, the slack at
sites 2 and 1 in the second trip of Vehicle 3 are different. The slack at site 2 is larger than

the slack at site 1 because Vehicle 3 visits that site before it visits site 1. If, in its first
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trip, Vehicle 3 delivered more material to site 1 (and less to site 2), the slacks could be
the same, which would increase the minimum slack.

Because the slack for a delivery depends upon the material delivered to that site on
previous trips, the goal of the Delivery Volume Improvement (DVI) algorithm is to adjust
the delivery quantities on one route in such a way that the slacks for all sites on the next
route are the same. The algorithm starts by setting the delivery quantities for the first
trip and then proceeds to the next trip. Note that the trip start times and site delivery
times are given and not changed by this algorithm.

Consider a vehicle v making a delivery to site k at in second trip (so j = 2). Let
D, ;i be the time that this delivery occurs. We would like the slack of every delivery on

this trip to be equal to K, which determines the delivery quantity during the first trip:

K =T+ 4% — Dyj
Qoik = (K + Dyjp — T1) Ly,

We want to find the largest possible K that is feasible with respect to the total
material that the vehicle delivers on that trip. Let R,; be the total material that vehicle
v delivers on trip j. This is given and is not changed by the algorithm. Because the total
of the delivery quantities in the first trip must equal R,; and the delivery times equal wy,

then we can determine K and the delivery quantities as follows:

Z. w; L;
K — T + Rv1 _ 1€E0y
! Ziéov L; ZiEOU L;
L
Qik = 5~ A (Ror — Yo, wili) + wi Ly,
i€oy ¢

For subsequent trips, it easy to show that letting the delivery quantities be propor-
tional to the site demands will suffice. Of course, it is important not to deliver more that
a site needs, which affects the delivery quantities of the last trips.

It is important to note that if the minimum slack occurs in the first trip for any
vehicle, then the procedure will not be able to increase the minimum slack. However, the
procedure may increase the slack for deliveries on subsequent trips.

In the DVT algorithm, let ¢’ be the desired amount to deliver, and let DRy be the
remaining material needed at site k. Let s, be the number of sites on route o, and let [i]

be the i-th site on route oy,.
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DVI(o

~—

1FORv=1:V

2 FOR k € o,

3 DRy = Li(Ty — T1)

4 END

5 FOR j=1:7,

6 FOR k = 54,5, — 1,...,1

7 IF Rvj < Zle DR[Z]

8 IF j ==

9 q = If[k]L['] (Ruj — Xty wi L) + wigg Ly

10 ELSE

11 ¢ = <R,
iz1 L1

12 END

13 IF ¢ < DRy

14 Qujlk] = q

15 DR[k] = DR[k] —q

16 ELSE

17 Guji) = DRy

18 DRyg =0

19 END

20 Ryj = Ryj — Qujix)

21 ELSE

22 Dojik] = Dy

23 Ryy =0

24 Ryj = Roj — Qujik)

25 END

26 END

27 END

28 END

29 END

It is important to note that if there is not sufficient inventory to make the slacks
of sites equal on the second trip, it is necessary to deliver zero quantity to sites at the
beginning of the sequence and then performing the DVI procedure. This occurs when
there is a site very close to the depot early in the sequence and sites very far away later
in the sequence.

In the example previously introduced, the DVI algorithm updates the quantities
and the slacks as shown in Tables 2.1 and 2.2. Note that, in the second and third trips,
the slacks for sites 5 and 4 are the same and that the slacks for sites 2 and 1 are the same.

(The agreement between vehicles 1 and 3 is a coincidence that reflects the similarity in
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delivery times.) The new minimum slack is 492 minutes.

If the vehicle trips are coordinated (for example, if every vehicle makes one trip for
each wave), then we can apply a different type of DVI algorithm to all of the vehicles
simultaneously and shift material from one vehicle to another to make all of the slacks the
same [20].

Because the approach in this paper schedules each vehicle separately, it may yield
a solution in which the number of trips per vehicle varies. Therefore, the DVI algorithm
used here considers only one vehicle at a time.

Table 2.1: Schedule for example with DVI.
Schedule for Vehicle 1

Site/Time 0 180 360
5 9,561 21,479 16,960
4 8,850 16,110 11,040

Schedule for Vehicle 2
Site/Time 0 180 360

3 13,151 26,849 20,000

Schedule for Vehicle 3

Site/Time 0 180 360
2 8,093 20,137 15,870
1 7445 13,425 9,130

Table 2.2: Slack calculations for example with DVI.
Slack

Vehicle v Site & wjir  Sy1k Sv2k  Suk

1 5 45 555 495 583

4 73 527 495 583
2 3 46 540 492 580
3 2 45 555 495 583
1 74 526 495 583

19



Chapter 3
Adaptive Large Neighborhood Search Approach

This chapter introduces the approach of an Adaptive Large Neighborhood Search
(ALNS). We will adapt the procedure used by Pisinger and Ropke [28] to solve vehicle
routing problems to assign sites to vehicles and sequence those routes. We will then use the
previously introduced scheduling algorithm to determine the trip start times and delivery
quantities.

The ALNS begins with an initial solution and iteratively destroys and rebuilds the
solution by randomly choosing and applying a number of quick heuristics which define
neighborhoods of the search. Associated with each heuristic is a weight that determines
its selection probability. With each iteration, the new solution is either accepted or rejected

and the heuristic weights are updated according to their performance.

3.1 Removal Heuristics

Our ALNS uses four removal heuristics that are appropriate for the ISRP and have
the ability to diversify the search. These removal heuristics take a complete sequence of

sites for each vehicle, remove a specified number of sites, and output a partial solution.

3.1.1 Random Removal

One of the goals of the ALNS is to avoid exclusively searching around local critical
points in favor of searching for a global best solution. This heuristic removes a fixed

number of randomly selected sites.

3.1.2 Worst Removal

This heuristic removes sites that have the smallest slack on one or more of their
trips. The minimum slack is calculated for each site over all visits, the sites are reordered

from worst to best, and a site to remove is chosen based on a random number and a
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Figure 3.1: ALNS procedure.
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parameter. A random number 7 is drawn from the uniform distribution over (0,1] and
the site relaxed is [rPn] ranked of worst to best slacks. The larger p is, the probability is
higher that sites with the smallest slack will be chosen. This is done in order to avoid the
same sites being removed repeatedly. This selection is repeated until a desired number of

sites are removed.

3.1.3 Related Removal

The related removal heuristic was proposed by Shaw [26] as the sole heuristic for
a large neighborhood search. The motivation for removing sites that are related to one
another is that, when the removed sites are drastically different, often they are inserted
in the same place. Removing similar sites provides better opportunities to generate a
new solution. Sites are considered related if they are geographically close and have similar

dispensing rates (in magnitude). The relatedness between sites i and j is defined as follows:

R(i,j) = acij + 0| Li — Ly| (3.1)

The constants a and § depend on the magnitudes of the travel times and dispensing
rates, as well as their importance relative to the other. When R is smaller, the two sites
are more related. This heuristic operates by first randomly selecting a site to remove.
Then it randomly chooses another site, where the more related sites are more likely to
be selected (the procedure is similar to that used in the Worst Removal heuristic). This

continues until the desired number of sites have been removed.

3.1.4 Longest Travel Time Removal

Sites with large travel times tend to have smaller slacks. Thus, this heuristic aims
to remove sites that have a long trip to deliver inventory. The heuristic is the similar
to the Worst Removal heuristic but ranks the sites by their travel time before randomly

selecting them.
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3.2 Insertion Heuristics

The insertion heuristics take a partial solution and insert the removed sites to form
a complete solution. When a partial solution is presented to an insertion heuristic, the
first step is to ensure that each vehicle has at least one site to service. This rule could be
implemented in the removal heuristics to prohibit removing a site if it is the only site on

a vehicle’s route.

3.2.1 Random Insertion

Similar to the random removal heuristic, this heuristic serves the purpose of di-
versifying the search. This heuristic iteratively places a removed site randomly within a

vehicle’s sequence on each pass until all sites have been placed.

3.2.2 Best Position of Vehicle with Lowest Travel Time Insertion

For each removed site, this heuristic identifies the vehicle with the smallest travel
time, considers each possible position in its route, and inserts the site in the position that
yields the highest minimum slack. Two different procedures are used to sequence the sites
for consideration. In the first procedure, the sites first inserted were those to be first
removed, which, with the worst and longest travel removal heuristics, entails inserting the
“worst” sites first. The second procedure inserts the sites backwards such that the “worst”
sites are inserted last. The motivation for this is that it may sometimes be of benefit to

place difficult sites first while other times it may be best to insert them last.

3.2.3 Best Position of Vehicle with Lowest Total Demand Insertion

This method is similar to the previous insertion technique. It selects the vehicle with
the lowest total demand. This method also has two different procedures for the order in

which sites are inserted into the solution.
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3.2.4 Nearest Neighbor Insertion

Upon each iteration for this heuristic, the relaxed site is placed before or after the
site geographically closest already in the partial solution according to which yields the
higher minimum slack for the vehicle. This move operation is motivated by influencing

vehicles to visit sites closely located.

3.3 Scheduling and Calculating Slack

Scheduling is performed as discussed in the Sections 2.2 and 2.3. Upon each itera-
tion, a schedule is assigned to the vehicle for the newly created route. Whenever a change
to the route is performed and a slack measurement is needed, the scheduling procedure is
performed on any temporary routes.

When a heuristic identifies a vehicle schedule to insert a site, it will decide placement
by attempting all possible points in the route sequence, creating schedules for each possible

placement, and choosing the one with the greatest minimum slack.

3.4  Selecting Heuristics and Accepting Solutions

Similar to Pisinger and Ropke’s [28] approach, our ALNS selects a removal heuristic
and an insertion heuristic each iteration. A heuristic’s selection probability is proportional
to its weight. Both selected heuristics are rewarded in three cases: (1) a new global best
solution is found, (2) the new solution is better than the previous one and has not been
accepted before, and (3) the new solution is not better than the previous one and it has
not been accepted before. If rewarded, the heuristics’ observed weights are increased by 5
(in case 1), 3 (in case 2), or 1 (in case 3). The search process is divided into segments of
50 iterations. At the beginning of the segment, each heuristic has an observed weight of
zero. At the end of any segment, the ALNS calculates new weights based on the weights
from the previous segment and the observed weights.

Our ALNS uses a simulated annealing procedure to determine if a new solution is
accepted. The probability to accept a solution 2’ (given a current solution x) is given

f)—f(x)
by min{l,e™ 7  } where T' > 0 is the temperature, which is updated according to a
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cooling rate such that T = T¢, where 0 < ¢ < 1. An ALNS can be adapted to utilize
various acceptance methods such as simple rejection of poorer solutions or Tabu searches.
We have chosen to use simulated annealing since it allows for further exploration of the
solution space by allowing poorer solutions to be accepted. These poorer solutions can be
intermediate steps in finding better solutions. This is a strategy for only focusing a search
near a local optimum.

As introduced previously, a reward is given to a chosen heuristic based on its per-
formance. Thus, it is necessary to store all accepted solutions to evaluate if a solution has

not been found before.

3.5 Parameter Selection

The number of sites removed in each iteration was kept small because moving a
small number of sites can significantly affect the minimum slack. We set the selection
parameter as p = 5 for the Worst Removal and Longest Travel Time Removal heuristics
in order to focus on the “worst” sites. The a and § parameters of the Related Removal
heuristic were chosen as 1 and 0.75 respectively to scale the magnitudes of the values and
put more weight on travel time. The number of sites removed in each iteration was 4.

The starting temperature of the simulated annealing procedure was selected as 600
by observing the objective value of an initial solution and choosing by a desired probability
for a relatively lesser value. The cooling rate was then tuned to have reasonable acceptance
probabilities towards the end of the search. Two different cooling rates were used and will

be discussed in the results.
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Chapter 4
Column Generation with Simulated Annealing

With the heuristic and search approaches, the problem was separated into simpler
optimization problems. It is necessary to attempt to solve the problem without separation
to attain higher quality solutions. A column generation approach is appropriate since it
makes it possible to dynamically create candidate schedules that can lead to a higher

objective value.

4.1 MIP Formulation

The problem as described in the general formulation is not suitable to be solved as
a Mixed-Integer Program (MIP). To reduce the number of variables, the operation period
is transformed into 7" discrete time intervals of length A. Although time has been divided
into intervals, slack is still calculated in time units. With the heuristic approach, a slack
was calculated upon each delivery. With the MIP formulation, a slack value is assigned
to each site at the end of a portion () of the time intervals where A < T'.

A vehicle schedule is defined as w within the set of all feasible schedules €2. As
stated before, a vehicle schedule contains a sequence of sites to visit, times to start each
trip, as well as when to visit the sites, and the amount to deliver at each site. The same
feasibility constraints apply to this problem. With a schedule w, the following parameters
are present.
ay - Amount of inventory taken from the depot in interval ¢

< - Amount of inventory delivered to site 4 in interval ¢
The decision variables for the formulation are as follows.
x,, - Binary variable for inclusion of schedule w
y;t - Total amount of inventory delivered to site ¢ in interval ¢
Q;t - Total amount of inventory delivered to site 4 in intervals 1 to ¢

z - Total amount of inventory taken from depot in interval ¢
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S - Minimum slack for all sites in intervals 1 to A

The MIP problem can be represented as follows.

max S

Zafxw—zt =0fort=1,..,T
we

Z bjixw —yir =0fori=1...nt=1..,T
weN

wagv

weN

t
Qit— Y yiy=0fori=1,.,nt=1,..T
=1

t
sz < I(At) fort=1,..,T
j=1

T
Zy] = LZ(TQ — Tl) for 1 = 1,...,71,
j=1

Qi

S——+At-T1<0fori=1,..,nt=1,..., A

L;

2, €{0,1} VweQ
yie > 0fori=1,...n;t=1,....,T

zz>0fort=1,..T

(4.7)

(4.8)
(4.9)
(4.10)

(4.11)

Equation 4.1 refers to the objective function of maximizing the minimum slack.

Constraint 4.2 defines the value of z;. Similarly, 4.3 defines the value of y;; and 4.5 defines

Q;+. Constraint 4.4 ensures that no more than the available number of vehicles is used. The

amount taken from the depot does not exceed that available as guaranteed by constraint

4.6. Constraint 4.7 guarantees that all sites receive the required amount of inventory. The

minimum slack is defined by constraint 4.8 which eliminates the need to define a slack

value for each site and time interval. Standard bounds for all decision variables (positivity

and binary qualities) are defined by 4.9, 4.10, and 4.11.
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Figure 4.1: CG Procedure.
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4.2 Solution Approach

Column generation (CG) approaches can be effective in solving a variety of Oper-
ations Research problems [12, 13] where the number of variables in a problem are very
large or unknown. The set of all feasible schedules 2 is very large, thus it is necessary to
add these at each step of the procedure.

The outline of this approach can be seen in Figure 4.1. Initial columns are created
for the MIP by the heuristics introduced in Chapter 2. A linear programming relaxation
of this master problem is solved. Dual variables are attained from the solution which are
passed to a subproblem for generation of new schedules that will improve the solution of
the master problem. This process is repeated until no schedules can be found that will
improve the master problem. Then the master problem is solved as a MIP.

Solving the Master Problem involves relaxing the MIP such that 0 < z,, < 1. Solving
this Master Problem yield the dual variables m; for constraint 4.2 and p;; for constraint
4.3. By using these dual variables, it is possible to add new schedules that will provide a
better slack. By utilizing a subproblem and adding new columns to the Master Problem,
the problem is iteratively resolved to add new columns until new ones can not be found.
Once the column generation procedure has completed, the schedules that are not a part of
the optimal solution with the linear programming relaxation are removed and the problem
is solved as a MIP with a branch-and-bound procedure.

The subproblem of the column generation procedure finds schedules, which will
become columns in the MIP, that have a positive value of 37, ma¥ + S0 S5 pirhs.
This research will utilize simulated annealing in order to generate schedules with a positive
objective value. Any such schedules will be placed into the Master Problem as they will
increase the slack value.

Since simulated annealing focuses on finding a satisfactory solution in a limited
amount of time [16], it will be necessary to investigate techniques (such as dynamic pro-
gramming) that find optimal schedules upon each iteration in the future. When the
subproblem is called, it is repeated a number of times with the same dual variables in

order to add multiple schedules.
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4.3 Solving the Subproblem

Upon initialization of the subproblem, a site is added at random to the candidate
solution. With each iteration of the search, a site is either added at random, removed
from the candidate route at random, or two sites are swapped in the sequence visited by
the vehicle. These procedures are picked with equal probability at random. In the case of

a route with only one site, a site will be added.

4.3.1 Scheduling Times and Quantities

With each iteration of the simulated annealing procedure, a route is found and a
delivery schedule must be assigned to it. A decision is made randomly to decide the
behavior of the vehicle of when it leaves from the depot. The two behaviors are 1) leaving
for the depot as soon as the vehicle returns from a delivery and reload inventory and 2)
following the wave structure of the deliveries to the depot. If the behavior is the second,
then a vehicle may wait at the depot until the next wave occurs or immediately start
loading for the next trip if it has missed the beginning of a wave.

The LP for setting quantities for a given route is as follows. Let J be the number of
times that the vehicle completes its route in the solution. Let o be the set of sites visited
in the route. Let t(j, k) be the time interval in which the j-th delivery is made to site k,
for j=1,...,J and k € 0. Let bj; be amount delivered during the j-th delivery to site k,
for j =1,....,J and k € 0. Let t(j,n + 1) be the time interval in which the j-th loading
occurs at the depot, for j = 1,...,J. Let I; = I(At(j,n + 1)), which is the cumulative
available at the depot at t(j,n + 1). Let a; be the amount loaded when the j-th loading

is made at the depot.

J J
max Z Ti(jnt1)@j + Z Z pkt(j,k)bjk (4.12)
7j=1 j=1kEo
J
S bip=Ly(T,—-T1)Vkeo (4.13)
j=1
j
doai<Iiforj=1,..J (4.14)
=1
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> bjp=ajforj=1,..,J (4.15)
keo

bjrp>0forj=1,...,J; Vkeco (4.16)
a; >0forj=1,...J (4.17)

This LP is solved in order to maximize the objective sum with the dual variables
from the Master Problem. With the attempt to find diverse schedules, two behaviors
can be chosen for the scheduling of quantities, which are to 1) completely satisfy the
demands of the sites assigned to a vehicle (Constraint 4.13) or 2) schedule deliveries only
to maximize the objective and not exceed the quantities demanded by the sites (Constraint
4.13 as an equality).

The linear program solved to scheduled quantities has constraints to not exceed
inventory available at the depot and to not exceed or to equal demand constraints of the
sites, depending on the behavior chosen (Constraint 4.14). Also, a constraint is present to
ensure that a vehicle delivers all quantity loaded before returning to the depot (Constraint

4.15).

4.4 Implementation

CPLEX was called from Matlab to solve the linear programs and mixed-integer
programs. The linear programming and mixed-integer programming solvers were used
with default parameters with the exception of probing for the mixed-integer procedure

changed to very aggressive.

4.4.1 Formulation Changes

In order for CPLEX to find better dual variables, constraints 4.2 and 4.3 were
changed from equality constraints to inequality constraints as < and >, respectively. Also,
the upper bound in constraint 4.9 is removed. This is because a generalized upper bound
(GUB) can affect the method in which the LP is solved in order to gain computation

efficiency. Doing so can reduce the accuracy of the dual variables.
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4.4.2 Parameter Selection

The number of iterations for each subproblem call, as well as the number of times
the subproblem is tried, is chosen to quickly search the solution space for new columns.
These values are set at 40 and 5, respectively. The starting temperature and cooling rate
were set at 100 and .9, respectively.

For each instance, the number of time intervals was chosen so that A, the duration
of a time interval, equals 40 minutes. A, the number of time intervals used to evaluate the
slack, was set at various levels, as described in the computational results. The difficulty
here is to pick A so that the procedure is productive. If A = T, then S will always be zero
because the end of the last time interval corresponds to the end of the dispensing, when
there is no inventory left. However, if A is too small, the evaluation of the minimum slack

will become to inaccurate.
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Chapter 5
Computational Analysis

We tested the solution approaches on a set of instances in order to determine which
techniques generated the best solutions and evaluate their computational cost. All coding

and testing was performed in Matlab, with use of functions from Matlog and CPLEX.

5.1 Creating Instances for Testing

To create the instances, 16 baseline instances were varied systematically to create 27
instances for each baseline for a total of 432 instances. As shown in Table 5.1, the number
of sites ranged from 5 to 199. The data for site location, site demand, depot location,
and vehicle capacities were obtained from three sources: mass dispensing plans from
Montgomery County, Maryland; California PODs from an example provided in the online
routing software Toursolver; and the classical vehicle routing problems from Christofides
[5]. For the Maryland and California sites, which had street addresses, Toursolver and
Google Maps were used to calculate travel times between the sites. We invented demand
and wave delivery information to be similar to real world mass dispensing plans from
Maryland. All of the instances have loading times of 15 minutes.

For a baseline instance, the parameters varied were the number of vehicles, the
average travel time, and the average demand. (Changes to the average demand also
required corresponding changes to the amount delivered to the depot in each wave, though
we did not change the timing of the waves.) Other times were not modified because varying
the travel times changes the loading/unloading times and the wave intervals relative to
the travel times.

For each baseline instance, three values were set for the number of vehicles: the
initial number V' (shown in Table 5.1), V' — 0.2V, and V + 0.2V. The last two values
were rounded to the nearest integer. Large-demand instances were created by multiplying

every site’s demand by 3, and small-demand sites were created by dividing every site’s
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Baseline instance Number of sites Number of vehicles Number of waves

R1 5 3 3
F1 9 ) 4
C1 9 5 5
M1 10 ) )
R3 10 ) 4
M2 15 8 3
C2 20 10 4
M3 50 25 5
V1 50 25 3
V2 75 38 5
V3 100 50 6
V4 150 75 7
V5 199 100 7
V11 120 60 5
V12 100 50 6
M4 189 71 4

Table 5.1: Summary of Baseline Instances

demand by 3.

Likewise, in the large-travel-time instances, all of the travel times were multiplied
by 2; in the small-travel-time instances, all of the travel times were divided by 2.

Thus, for each baseline instance, we generated 27 instances by combining the three
values for the number of vehicles, the three sets of demands, and the three sets of travel

times.

5.2 Upper Bound

To find an upper bound on the optimal minimum slack, we relax the problem by
ignoring the vehicle capacity and assuming that each site has a vehicle available to deliver
material to that site at each wave. Thus, each site is visited once each wave, and the
delivery at site k occurs p,41 + ¢pt1,1 + pi time units after the wave is delivered to the
depot.

We use a version of the DVI algorithm to assign delivery quantities to each site so
that the slacks of the deliveries in the same wave are equal. The pseudocode for setting

the delivery quantities is given in Appendix B. The slacks are calculated based on these
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delivery quantities and times.

5.3 Heuristic Testing

The routing and scheduling heuristics were tested on all 432 instances. This section

will present solution quality and computational effort.

5.3.1 Heuristic Computational Effort

As shown in Figure 5.1, the time required to generate solutions increased as the
number of sites increased and when the 2-opt routing heuristic was used. Other charac-
teristics of the instances did not affect the computational effort. The choice of clustering
objective did not affect the computational effort.

Running the 2-opt heuristic generally added 10 to 20 percent to the computational
effort. The notable exception to this was the problem set M4 (which is not included in
Figure 5.1). For these instances, with the 2-opt heuristic, the average time required was
nearly 23 seconds. In all of the other problem sets, the sites surround a central depot. In
the problem set M4, however, the depot is located outside of the region in which the sites
lie. Thus, it appears that the nearest neighbor heuristic generates a poor route, for the

2-opt procedure spends a great deal of effort to improve the route.

5.3.2 Heuristic Performance

The minimum slack in the best solutions found varied by problem set. Within a
problem set, some combinations of number of vehicles, travel times, and demands had only
solutions with low slack, while other combinations had solutions with much more slack.

To compare the routing and clustering heuristics, we determined the average mini-
mum slack of the solutions within a problem set and counted the number of times that each
routing and clustering combination generated the best solution found. The results, shown
in Table 5.2, show that clustering by duration, in general, generated better solutions.

The nearest neighbor procedure and the 2-opt procedure perform equally well. Ta-

ble 5.3 shows that, when used with the cluster by duration objective, using the nearest
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Figure 5.1: Computational time for finding initial routes.

neighbor procedure was slightly more likely to generate a better solution. In many cases,
however, they generated equally good solutions. The performance of these heuristics was
not affected by the relative length of the wave intervals. Changes in the demand often
made no change in the quality of the solution, because the vehicles had sufficient capac-
ity to carry the increase material. In some cases, increasing the site demands generated
instances in which the vehicles needed more trips to deliver the material; this naturally
reduced the slack and led to poor-quality solutions. The relative performance of the

heuristics did not change however.

5.3.3 DVI Performance

The same body of instances were used to test the DVI procedure. The solutions im-
proved were those from the heuristics previously introduced. Table 5.4 shows the number
of instances that are candidates for DVI. These are the instances in which the minimum
slack does not occur on the first trip of a vehicle. By only looking at DVI results for these
instances, we can find the average improvement seen in Table 5.5. This table also shows

the average over the problem sets. The two cluster by demand heuristics, which gave the
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Baseline Instance Nearest neighbor Same 2-Opt

R1 24 3
F1 11 16
C1 27
M1 27
R3 12 9 6
R2 27
M2 24 3
C2 3 18 6
M3 12 12 3
Vi1 6 21
V2 15 12
V3 15 3 9
V4 27
V5 9 18
V11 27
V12 9 3 15
M4 13 14
Total 156 123 153
Percent 36.1% 28.5%  35.4%

Table 5.3: Number of instances in each problem set that the nearest neighbor and 2-opt
routing procedures generated the better solution.
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Routing Heuristic Nearest neighbor 2-opt

Clustering objective Duration Demand Duration Demand

R1 27 27 27 27
F1 6 6 3 3
C1 9 9 9 9
M1 3 3 3 3
R3 27 27 27 27
M2

C2 1 1 1 1
M3 27 27 27 27
V1 0 0 0 0
V2 0 0 0 0
V3 0 0 0 0
V4 0 9 0 0
V5 0 0 0 0
V11 0 0 0 0
V12 3 3 3 3
M4 3 3 3 3

Table 5.4: Number of instances in which minimum slack does not occur on first wave.

worst results without DVI, showed the greatest improvement.

To analyze the overall solution quality for the four heuristics with DVI, we consider
the solutions for all 432 instances, including those where the minimum slack occurs in
a first trip and DVI was not used. Table 5.6 shows the average minimum slack for all
heuristics. The two cluster by duration heuristics were similar and outperformed the
cluster by demand heuristics. The same is true for the number of best solutions found.

Neither routing heuristic dominated the other.

5.3.4 Upper Bound Analysis

We determined the upper bound for each instance and compared to the objective
function values of the solutions found by the four heuristics with DVI. Table 5.7 compares
the upper bounds to the results obtained from the Route by Nearest Neighbor and Cluster
by Duration heuristic. This table presents the difference between the upper bound and
heuristic solution for different groups of instances, classified by number of vehicles and
travel times between sites and the depot. As the number of vehicles increases, the differ-

ence between the heuristic solution and the upper bound decreases. Also, as the travel
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Routing Heuristic Nearest neighbor 2-opt

Clustering objective Duration Demand Duration Demand Problem Set Averages

R1 20.30 24.67 22.63 20.15 21.94
F1 18.00 49.50 36.00 65.67 39.44
C1 28.78 37.11 28.78 37.11 32.94
M1 51.33 63.67 51.33 63.67 57.50
R3 21.11 27.00 17.78 22.89 22.19
M2 0.00 0.00 4.00 0.00 1.00
C2 52.00 52.00 92.00 92.00 72.00
M3 21.11 57.22 21.00 03.11 38.11
V1 - - - - -
V2 - - - - -
V3 - - - - -
V4 - 27.33 - - 27.33
V5 - - - - -
Vi1 - - - - -
Vi2 2.00 26.00 2.00 26.00 14.00
M4 24.67 18.33 27.33 21.33 22.92
Average 23.93 34.80 30.29 40.19 31.76

Table 5.5: Average improvement for each heuristic.

times decrease, the difference decreases. From the results, it can be seen that, in many
cases, the heuristics generate near-optimal solutions. For some instances, the gap between
the upper bound and the heuristic solution is much larger because the heuristic generated

a poor solution or the quality of the upper bound is poor.

5.4 ALNS Testing

The ALNS procedure was tested on all of the instances and compared to the heuristic
solutions. All parameters for the search were defined in the ALNS section. All tests had
a cooling rate of 0.8, with the exception of the specified column in Table 5.8 which had a
cooling rate of 0.6. For purpose of succinct reporting, all instance solutions were divided
by the upper bound objective value and averaged over an instance set as reported in Table
5.8. Each column in this table refers to a separate run of the ALNS (or heuristic alone)
with various characteristics.

The column for the heuristic solution refers to the solution with the maximum
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Nearest neighbor 2-opt

Number of Vehicles Travel Time Size Duration Demand Duration Demand

Many Large 37.81 44.81 41.63 46.31
Many Average 18.19 28.00 20.75 27.00
Many Small 15.63 20.44 16.44 19.44
Average Large 51.94 65.88 47.50 57.31
Average Average 28.31 39.88 24.44 36.44
Average Small 22.13 27.19 19.50 26.38
Few Large 147.52 167.77 165.83 153.90
Few Average 62.54 80.75 57.75 71.39
Few Small 48.50 56.88 46.63 55.19

Table 5.7: Average difference between upper bound and minimum slack for different sets
of instances classified by number of vehicles and travel times.

objective value from the four variants of the routing and scheduling heuristic. For the
ALNS searches, with the exception of the last one referenced in the table, a NN route was
built and clustered by dividing the sites evenly among the vehicles. The last search, with
a heuristic starting point, used the route with the best objective value from the routing
and scheduling heuristics as the starting point.

For the search results with sufficient time to search the solution space, which can be
seen by the ALNS with 2000 iterations, the heuristic solution is outperformed consistently.
When performing the search with a short number of iterations and a faster cooling rate,
it was possible to outperform the heuristic in all cases, with the exception of V2 and V12.
A visual representation of one search with sufficient time to explore the solution space can
be seen in Figure 5.2.

By starting with a heuristic solution, the ALNS was able to improve all solution
values. However, many of the improvements appear to be subtle, while others make
significant improvements (most notably with C2). With that being said, it is worth noting
that if a heuristic is being used, given sufficient computational time is available, it would
be of value to execute the ALNS to improve the route.

The most interesting trend in the results is that the best solution overall is found
from the longest search. There are two possible reasons for this result: 1) the search

performs best when starting with a poor solution since it may be a better starting point
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Figure 5.2: ALNS procedure with 2,000 iterations.
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Figure 5.3: Average computational time in seconds per iteration for one complete run of
the ALNS with 500 iterations.

for searching the solution space, or 2) even with a heuristic starting point, it is necessary
to have a longer search until a good route has been found.

In Appendix C, extensive results are included for each instance set with the average
solution value over 5 runs of the ALNS procedure, along with the confidence interval half-
width. With smaller instances, much variation did not exist, which indicates that the
optimal route was found. Generally, shorter searches resulted in more variation between
final solution objective values.

The interval half-widths seem to be reasonably small (less than 10 minutes) in most
cases. Some results present much variance which is most likely a result of a search not
finding a good route due to the simulated annealing behavior.

Computation was performed on three different computers in parallel. Thus, to
compare computational effort, the running time of the first search with 500 iterations were
recorded. The average computational time per iteration and instance set are presented in
Figure 5.3. The computational effort is presented as a function of the number of PODs,

since this most greatly affected the time. As expected, the time increases with the number

of PODs.
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5.5 CG Testing

A smaller set of 16 instances (corresponding to the baseline instances) were used to
test the CG procedure. As seen in Table 5.9, the results were not as productive as the
heuristics or the search procedure. This procedure was not possible for instances with
more than 20 PODs due to insufficient memory. All values are for one procedure attempt
except for R1 and R3 which were attempted three times.

For instances F1, C1, and C2, by attempting the procedure with all possible number
of examined intervals, no improvement could be found. Thus, the default number of exam-
ined intervals was chosen as the last interval that receives inventory in the initial heuristic
columns. As seen by the computation time, the initial LP was solved, the subproblem was
attempted, and no columns were found. With these instances, the dual information was
not helpful in generating new columns to add to the master problem.

Two possible explanations for this behavior are that the solver did not accurately
calculate the dual variables or the subproblem failed in finding new columns because no
feasible columns exist that would improve the solution.

For instances M1 and M2, the CG procedure was successful in finding new columns,
but they provided extremely small improvements to the objective value. For M1, the
procedure had a long running time of nearly half an hour. For M2, it iterated a small
number of times (as seen by the computation time of less than 1 minute). The number
of examination intervals (A) for the instances was chosen by attempting the procedure
on all possibilities and selecting the value such that the procedure did not immediately
terminate.

Further examination is required for R1 and R3 which showed improvement. The
number of examined intervals was chosen such that an improvement to the objective value
was reported. For R1, as seen in Table 5.10, the CG procedure was attempted three times.
The first attempt did not find any columns and terminated naturally. The second and
third attempt were terminated prematurely when no significant improvement was made
to the objective value after 3,000 iterations. This can be seen by the long run times for

these two attempts.
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Columns in  Final IP Computation
CG Attempt Final Basis Objective Time (minutes)

1 14 491.5 8.34
2 13 491.5 84.67
3 14 491.5 84.46

Table 5.10: CG attempts for R1.

Columns in  Final IP Computation
CG Attempt Final Basis Objective Time (minutes)
1 36 1072.2 45.72
2 38 723.0 45.68
3 32 1072.2 45.87

Table 5.11: CG attempts for R3.

Although improvement for the LP occurred, when the procedure finished and all
columns not in the optimal basis were removed, the resulting IP solution was worse than
the original IP solution. This indicates that the original heuristic columns were removed
and that it was not possible to find a feasible set of columns among those generated with
a better objective function value.

Similarly, the attempts for R3, seen in Table 5.11, yielded similar results. All three
attempts were ended prematurely at 1,000 iterations with no significant improvement
to the objective function value. Both R1 and R3 achieved the maximum LP relaxation
objective within the first 5 minutes of the procedure.

The columns in the initial master problem were created using all of the heuristics
with and without the DVI procedure. To test the impact of starting with a fewer number of
initial columns with poorer quality, the study was repeated using only schedules generated
by the routing by nearest neighbor, cluster by duration, and no DVI as seen below.

Similar behavior occurred in this scenario with the CG procedure increasing the
objective value of the LP to that seen in Table 5.14 for R1 and R3, but not F1 and C1.
In Table 5.13, we can see specific information for three replications of the procedure. (All
other instances were attempted once.) For R1, two attempts (1 and 2) were terminated

prematurely at 3,000 iterations without improvement of the objective function. R3 was
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Columns in  Final IP Computation
CG Attempt Final Basis Objective Time (minutes)

1 20 491.5 96.44
2 20 491.5 66.12
3 36 491.5 16.86

Table 5.13: CG attempts for R1 with poorer starting columns.

attempted three times, but output is only available for one attempt. During the other
two attempts, the procedure terminated because the constraint matrix grew too large and
exceeded the memory.

The above results utilized time intervals of 40 minutes. It is necessary to select time
interval length such that a pickup or delivery can not occur in the same interval to provide
adequate precision with quantity allocation. To analyze the effect of smaller time intervals
than 40 minutes, the study was repeated as shown below with 20 minute intervals. All
heuristics are utilized for the initial columns.

Attempting the CG procedure on C2 exceeded the memory upon building the initial
constraint matrix. The CG procedure terminated for R3 because the constraint matrix
grew too large. Three replications were attempted for R1 with replications 1 and 2 ter-
minating prematurely at 3,000 iterations with no change in the objective function. Using
finer time intervals resulted in a large increase in computational time.

This CG procedure generated undesirable results. In some cases, no improvements
were seen because the dual variables from the initial LP were not productive for the
subproblem. In the cases where improvement was seen, the procedure required long run
and made only infinitesimal improvements following the initial improvement. When the
procedure terminated, the IP solution was worse than the initial solution.

These two issues with instances that can be improved give insight into future work.
A subproblem is needed that can produce columns that are compatible with other columns
such that they are an improvement and are suitable for the IP constraints (most notably

with respect to available inventory in each interval).
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Columns in  Final IP Computation
CG Attempt Final Basis Objective Time (minutes)

1 28 491.5 115.43
2 23 491.5 119.07
3 26 491.5 77.46

Table 5.15: CG attempts for R1 with 20 minute intervals.
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Chapter 6
Conclusions

This thesis presented a novel vehicle routing problem can be used for planning
medication (or other inventory) distribution in case of an emergency. Three solution
techniques were developed and tested on a large set of instances. Contributions from this

project are seen below.

e The formulation of the inventory slack routing problem, a novel vehicle routing
problem in which the objective is to maximize the slack in the delivery schedule.
Such a problem can be used for responding to emergencies because it emphasizes

building plans that are robust against uncertainty.

A routing and scheduling heuristic was introduced as a quick and computationally
efficient method for constructing solutions to this problem. The results of the heuris-

tics were compared to an upper bound to see the quality of solutions generated.

A search technique was introduced as an extension to the routing and scheduling

heuristics to improve the routes in which the schedules are built.

A framework for an integer programming approach to this problem was introduced.

A body of instances similar to real-world emergency situations have been created

for use by researchers interested in studying the ISRP.

In an overall comparison of the three techniques, the ALNS approach provided the
best solutions and is executed with reasonable computational effort. Thus, this technique
is currently the most valuable approach for solving the ISRP.

Future work includes implementing and extending this work. The routing and
scheduling heuristics, as well as the search technique, should be implemented in a stand-
alone program that can be used freely by public health emergency preparedness planners.
This is important to distribute the work for the purpose of gaining feedback on perfor-

mance of the heuristics, as well as promoting awareness of this vehicle routing problem.
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It is necessary to further investigate the column generation approach and make im-
provements. With the current approach, examining the LP solely and relying on fractional
schedules to make improvements towards a better IP solution is insufficient. Thus, a more
sophisticated technique is needed to make improvements towards integral solutions upon
each iteration. A branch-and-price approach should be first investigated towards this goal.
It is also necessary to investigate the effects of discretization the problem.

Further techniques should be investigated, including simulation, to study the effects

of uncertainty on solutions, as well as to find optimal solutions.
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Appendix A
Example Instance
The following data is used for the examples described in the introduction. Note that
there are three waves (deliveries to the depot), as shown in the following table.
T7 = 600 minutes, T> = 1200 minutes
I(0) = 48,000 units, 1(180) = 146,000 units, 1(360) = 219,000 units
V' = 3 vehicles
C = 112,000 units per vehicle
n =15 PODs
L= (50 75 100 60 80) units per minute

p = 15 minutes

0 14 39 29 26 17
14 0 34 24 21 15
39 34 0 17 16 30
c= with all times in minutes

29 24 17 0 13 17
26 21 16 13 0 15

17 15 30 17 15 O

Wave 1 2 3
Time (minutes) 0 180 360
Quantity 48,000 | 98,000 | 73,000

Table A.1: Deliveries to the depot.
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Appendix B
Pseudocode

The pseudocode for improvement by duration algorithm is as follows. During im-
plementation, with one iteration it is important to examine all maximum and minimum
vehicles instead of the first encountered. In this code, the following notation is necessary:
l, denotes the first site assigned to vehicle v, and m, denotes the last site assigned to

vehicle v.

improvebyduration(o)
1 REPEAT
2 CALCULATE v, ...yy

3 F =max{yp,....,yv} —min{y1, ..., yv }
4

5 Umaz = argmax{yi, ..., yv}

6 Umin = argmin{yy, ..., yv }

7

8 Tmar—1 = Ovmaz—1 U {lopas }

9 Tomar = Tvmaz \{lvmas }

10

11 CALCULATE ¢}, ..., yy

12

13 IF max{y, ...,y } — min{y, ..., yy, } < max{yi,...,yy} — min{yi,...,yy }
14 Ovmaz—1 = Ovpaws—1

15 Otmaz = Ovyun

16 Yomae—1 = y:)mmfl

17 Yomaz = y:)mal

18 END

19

20 Tmant1 = {Mvmas } U Ovaat

21 T tmaz = Tvmas \{ M }

22

93 CALCULATE y¢|,....4,

24

25 IF max{y}, ...,y } — min{y], ..., v, } < max{yi,...,yy} —min{y,...,yv}
26 Ovmas = T

27 Ovmag+1 = U;mazﬂ

28 Yomaz = y:)mal

29 Yomaz+1 = yzmaerl

30 END

31

32 U;mm = {mvmm—l} U 0vniy,
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33 O—i)mznfl = O-'Umin_l\{mvmin_l}

34

35 ~ CALCULATE ¢, ...y,

36

37 IF max{y},...,yy } —min{y, ..., v, } < max{yi,...,yv} —min{y,...,yv}
38 Ovmin—1 = ;mm—l

39 Tvmin = Ovpin

40 Yomin—1 = yi;mm—l

41 Yomin = y;;min

42 END

43

44 T tmmin = Tvmin I {lopin+1}

45 O vomin+1 = Uvmin+1\{lvmin+1}

46

47 CALCULATE y,, ...y,

48

49 IF max{y}, ...,y } — min{y}, ..., v}, } < max{yi,...,yy} —min{y1,...,yv}
50 Cvmin = T o0

51 Tvpmin+1 = O 41

02 Yomin = y;mm

53 Yomin+1 = y;)merl

54 END

55

56 F' = max{y1,...,yv } — min{yi, ..., yv'}
57

58 UNTIL F == F'

To determine the upper bound for an instance, we use the following pseudocode to
determine delivery quantities. In this code, Y and m are introduced as values used to find
the desired slack. These values are calculated in lines 1-13 of the pseudocode. W; refers
to the amount of inventory made available to the depot in wave j. The value ¢; refers to
the time that the wave delivery j is made to the depot. Lines 15-37 of the pseudocode
calculate the quantities, ¢, for each vehicle. After determining these delivery quantities

we determine the minimum slack of the deliveries.

upperbound
1 Renumber the sites so that wy > ... > wy,
2
3Yy=0
4FOR Ah=1,...n—1
5 mp = Z?:1 L;
6 Yh = Yp-1 + (Wp — wpi1)my
7 END
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9Y, =Y, 1+ (T —wy — T +wyp)my,
I0FOR h=n+1,...2n -1

11 My =D ip ni1 Li

12 Y =Yho1 + (When — Wheng1)my
13 END

14

I5FOR j=1,..,r—1

16 Q=Wi+..+W;

17 FIND h such that Y,_1 < Q <Y}
18 IF h<n

19 Kj:Tl—tj_H—wh-i-%;H

20 FOR k=1,...h |
21 gik = (Kj — Ty + tjr1 +wp) Ly — 021 gk
22 END

23 FOR k=h+1,...,n

24 qjk = 0

25 END

26 ELSE

27 Kj:TQ—thrl—’wh_n‘i'Q%;H

28 FORLk=1,...h—n |

29 gk = Li(To — T1) — X121 qin

30 END

31 FORk=h—n+1,..n |
32 i = (Kj — T1 +tjp1 +wy) Ly — Y1)
33 END

34 END

34 END

35FOR k=1,...,n
36 gk = Li(To — T1) — X072 qie
37 END
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Appendix C
ALNS Results

The data provided is for ALNS testing with varied parameters. All parameters are
as described in the computation section that are not varied in the tables. The instance
within a set is specified by a three letter code where the first entry is Many, Average, or
Few in regard to the number of vehicle, Large, Average, or Small in regard to the travel
times between the depot and PODs, and Large, Average, or Small in regard to the size of
demands.

For each search, an average of the maximum minimum slack over the 5 replications
was taken and reported along with its 95% confidence half-width. Blank entries correspond

to test runs that had no variance over the 5 replications.
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