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A bioterrorist attack, or natural disaster, would prompt an immediate government

response in order to efficiently address the possible health effects of the population. Such

a scenario would create a logistics problem of delivering medication (or other supplies)

to makeshift dispensing centers in a short period of time and in high quantities while

operating. These makeshift centers, or Points of Dispensing, require schedules of delivery

that are robust against uncertainty. This inventory slack routing problem is a novel vehicle

routing problem. The objective function is to maximize the slack in the schedule.

This thesis presents heuristic approaches that separate the problem into routing and

scheduling. The routing problem is solved using a route first-cluster second method. The

scheduling problem is solved using a heuristic and an improvement approach.

This thesis also presents a search approach that uses heuristics to search various

neighborhoods in the solution space. These heuristics are chosen randomly based on

probabilities that adapt during the search according to their performance.

The inventory slack routing problem is also formulated as a mixed-integer program

and solved using a column generation procedure that utilizes simulated annealing to gen-

erate new vehicle schedules.



This thesis presents the results of testing these three approaches on a set of 432

instances that were generated from real-world data to evaluate solution quality and com-

putational effort. The search approach outperformed the heuristic approach with a reason-

able amount of computational effort. The column generation approach did not generate

desirable vehicle schedules and therefore was not productive in solving the problem.
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Chapter 1

Introduction

1.1 Background

Events in the last ten years have highlighted the increased need for emergency

preparedness by government officials. Events such as the terrorist attacks on September 11,

2001, Hurricane Katrina, the 2008 earthquake in Chengdu, China, and the 2010 earthquake

in Haiti have provided real world examples of communities that were ill-prepared for major

disasters [7]. Thus, it is important for government officials to anticipate disasters and

plan accordingly. Mathematical models and decision support tools can be used to support

planning activities.

Some scenarios could require the quick and efficient distribution of medication to

a large number of people. For instance, the widespread release of anthrax without gov-

ernment response in a metropolitan area could result in casualties equivalent to that of

a small nuclear explosion [21]. In this scenario (and others involving mass vaccination

against communicable diseases such as smallpox and influenza), it is logical to create

Points of Dispensing (PODs) such that large populations can be given medication with-

out having to travel to one central location. PODs may be setup in schools, recreation

centers, churches, and other non-medical facilities. The medication to be distributed at

these PODs must be delivered quickly from a central depot as soon as it arrives.

The proposed research is motivated by work with public health officials in the state

of Maryland who must plan the logistics for distributing medication to the PODs from a

central location. We consider the problem at the state and local levels (not the national

1



level). After the decision for mass dispensing is made, county public health departments

will begin preparing to open multiple PODs simultaneously at a designated time. The

state will request medication from the federal government, who will deliver an initial but

limited supply of medication to a state receipt, storage, and stage (RSS) facility (which we

call the “depot”). Contractors will deliver more medication to the depot, but the state will

begin shipping medication from the depot to the PODs before all inventory arrives from

the contractors. The deliveries to the depot arrive in batches that we call “waves.” Time

will be needed to prepare the PODs. This will delay the opening of PODs for distribution

until after the first wave has been delivered to the depot.

Poor medication distribution plans will delay the time that some PODs receive

medication. This can delay the opening of these PODs, and some residents may not get

their medication in a timely manner, which increases their risk of death or illness. Clearly,

there are many uncertainties in medication distribution, including the timing of shipments

to the depot, the time needed to load and unload vehicles, travel times, and the demand

for medication at each POD. For this reason, planners need a robust plan. In particular,

it is better if the plan calls for delivering medication to PODs much earlier than it is

needed. This improves the likelihood that the PODs will open on-time, will not run out

of medication during operations, and will dispense medication to the largest number of

people in a timely manner.

Specifically, the problem addressed has some features of the inventory routing prob-

lem but also has some unique assumptions, constraints, and objectives. In this case, a set

of PODs are served by a given set of vehicles delivering a quantity of one item during a

short time span. Thus, the objective is not to minimize the cost or maximize the profit.

Instead, the objective is to increase the time between a POD running out of supplies for
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each delivery made from the depot. This value will be known as the slack.

Much research has been done to develop models to improve emergency preparedness

planning. Hupert et al. [21] have presented a model to predict the hospital surge after a

large-scale anthrax attack. The researchers emphasize the importance of timely antibiotic

distribution, making logistics of delivery equally important. Similarly, much work has been

done to create simulation methods and planning tools for PODS in makeshift locations

such as school gymnasiums [1, 2, 22].

The operations of firefighters, emergency medical services, and police departments

have motivated research into location models [4, 10, 14] and dynamic vehicle routing

models [18, 25, 29]. However, these models are not relevant to the medication distribution

problem, which is more closely related to the inventory routing problem [3, 8, 15, 24]

and the production-distribution scheduling problem [11]. Still, the models used for those

problem are also not directly relevant.

Planning humanitarian logistics is related to the Vehicle Routing Problem (VRP)

and Inventory Routing Problem (IRP). These problems have been applied to a variety of

commercial, military, and government applications. The following description of the VRP

is by Toth and Vigo [27].

The VRP details the delivery of a set of goods to a set of customers by a set of

vehicles. These goods are stored at a depot, or a set of depots, and are delivered by a

road network. This road network is usually detailed using a graph with arcs representing

roads and vertices as the sites and depots. The solution to the VRP specifies a route for

each vehicle that begins and ends at the depot. Typical VRP problems have the following

characteristics: customer locations, demands for the customers, time windows for the

customers, loading/unloading times, and a set of available vehicles that can be used.
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In many cases, it may not be possible to fully satisfy all of the customer demand,

and priorities or penalty functions must be employed. With this, it is possible to for-

mulate various objective functions to obtain a solution, including minimization of global

transportation cost, minimization of vehicles used, balancing routes for travel times and

load, and minimization of penalties. The VRP is a well-researched problem with many

heuristics, mathematical programming, and search techniques available.

The VRP has many variations including the Inventory Routing Problem (IRP). The

following description of the IRP is by Campbell et al. [9]. The IRP differs from the VRP

because the the delivery company decides when and what quantity to deliver to customers,

as long as they do not run out. The objective is minimization of cost over the planning

horizon while preventing customers from running out of product. A single product is

delivered from a single depot to a set of n customers over a specified time period. These

customers are served by a homogenous fleet of V vehicles with a capacity of Q. A problem

solution should answer three questions: when to serve a customer, how much to deliver,

and which routes to follow?

Most solutions detailed in literature focus on short-term scenarios solved by math-

ematical programming techniques. There is a lack of basic heuristics for solving IRPs.

The Inventory Slack Routing Problem (ISRP) that we present is similar to an IRP but

has some unique assumptions. The main concern is to supply medication as quickly as

possible, not to minimize cost. As Hupert et al. [21] emphasize, delaying the start of

POD operations will significantly increase the number of people hospitalized. In addition,

the limited availability of medication at the depot adds an additional constraint to the

problem. Finally, because there is uncertainty in loading/unloading, travel times, and de-

mand, it is necessary to have overall maximum slack to hedge against these uncertainties.
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The objective of the ISRP is to maximize the minimum slack in order to develop a more

robust plan.

1.2 ISRP Problem Formulation

In the ISRP, a set of vehicles must deliver material from a depot to a set of sites

that will consume this material. Not all of the material is available at the depot at the

beginning of the time frame. Instead, material will become available in waves, which

are deliveries to the depot at different points in time. The sites will start operating at

a designated time. Each site consumes material at a given rate, and this demand may

vary from site to site. We consider deterministic opening times and dispensing rates.

The vehicles must deliver enough material from the depot to the sites to satisfy the total

demand over the time horizon. The following section details the notation to be used. Note

than an example is provided in Appendix A.

Although, in theory, a vehicle could follow a different route each time it leaves

the depot, and a site could be served by multiple vehicles, this makes supervising and

performing the deliveries more complex in practice. We therefore assume that each and

every site is assigned to exactly one vehicle, and each vehicle always follows the same route

to visit the sites assigned to it.

1.2.1 Notation

t - Time in minutes

T1 - Time, in minutes, that sites will begin dispensing

T2 - Time, in minutes, that sites will end dispensing

I(t) - Cumulative amount of material delivered to the depot between time 0 and t
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V - Number of vehicles

C - Vehicle capacity in units of material

σv - Route assigned to vehicle v, v = 1, ..., V

σ - Routes for all vehicles

n - Number of sites

Lk - Demand in units per minute for sites k = 1, ..., n

pk - Load (unload) time, in minutes, at sites k = 1, ..., n+ 1

cij - Time, in minutes, to travel from site i to j

rv - Number of trips vehicle v makes

tvj - Time of trip j for vehicle v

qvjk - Amount delivered to site k by vehicle v on trip j

yv - Total duration of a trip by vehicle v

1.2.2 Formulation

In the ISRP, t = 0 refers to the first instant that material is available at the depot,

t = T1 is the time that the sites begin operating, and t = T2 is the time that the sites

stop operating. There are n sites denoted by k = 1, ..., n. The demand rate for sites is

denoted as Lk material per time unit, which in this paper is minutes. Thus, site k has a

total demand of (T2 − T1)Lk units of material.

The depot, denoted by k = n+1, receives material in multiple “waves” that arrive at

different times. The times and quantities are known in advance and are used to determine

the discontinuous, non-decreasing cumulative function I(t). In our example, there are

three waves. At t = 0, 48,000 units are delivered; at t = 180, 98,000 units are delivered;

and at t = 360, 73,000 units are delivered. Figure 1.1 shows I(t).
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Figure 1.1: Cumulative delivery function from R1

The time to load or unload a vehicle at site k is given by pk. The time to travel

from site i to site j is cij . An instance will have V vehicles at the depot where vehicle v

has a capacity of C units.

A solution specifies, for each vehicle, a route, the number of trips that it makes, the

time to start each trip, and the quantity to deliver to each site on each trip. The following

constraints must be satisfied for a solution to be feasible.

The quantity shipped from the depot cannot exceed the amount delivered to the

depot:

∑
(a,b):tab≤tvj

∑
k∈σa

qabk ≤ I(tvj) v = 1, ..., V ; j = 1, ..., rv (1.1)

A vehicle cannot begin a new route until it returns to the depot:

7



tvj ≥ tv,j−1 + yv v = 1, ..., V ; j = 2, ..., rv (1.2)

All delivery quantities are non-negative. Each vehicle has a fixed capacity and can

carry a maximum of C units, that is
∑
k∈σv

qvjk ≤ C for all v = 1, ..., V and j = 1, ..., rv. All

route start times are non-negative such that tvj ≥ 0 for all v = 1, ..., V and j = 1, ..., rv.

Each site must receive all required medication, that is
rv∑
j=1

qvjk = (T2−T1)Lk for v = 1, ..., V

and k ∈ σv.

A feasible solution for our example is shown in Table 1.1. To evaluate a solution,

we need to calculate its minimum slack. Let wvk be the duration until vehicle v visits site

k after it begins a trip. This is calculated as follows, where [a] is the a-th site in route σv:

wvk = pn+1 + cn+1,[1] + p[1] + c[1],[2] + ...+ pk (1.3)

For a site k ∈ σv, let Qvjk be the quantity delivered to site k by vehicle v on trips

before trip j:

Qvjk =
j−1∑
i=1

qvik (1.4)

Note that Qv1k = 0. If, on trip j, the vehicle’s delivery at site k were delayed, then

the site would run out of inventory at time T1 +Qvjk/Lk.

The slack for site k on trip j can be found as follows:

svjk = T1 +
Qvjk
Lk
− (tvj + wvk) (1.5)

The evaluation of a solution is the minimum slack over all vehicles, sites, and trips:
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Table 1.1: Schedule for example.
Schedule for Vehicle 1

Site/Time 0 180 360

5 10,521 21,479 16,000
4 7,890 16,110 12,000

Schedule for Vehicle 2

Site/Time 0 180 360

3 13,151 26,849 20,000

Schedule for Vehicle 3

Site/Time 0 180 360

2 9,863 20,137 15,000
1 6,575 13,425 10,000

Table 1.2: Slack calculations for example.
Slack

Vehicle v Site k wjk sv1k sv2k sv3k

1 5 45 555 507 595
4 73 527 479 567

2 3 46 540 492 580

3 2 45 555 507 595
1 74 526 478 566

S = min{svjk}. Slack values for the example are given in Table 1.2.
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Chapter 2

Heuristic Approach

The ISRP, like other versions of the VRP and IRP, is NP-hard, which makes it

computationally expensive to obtain an exact solution. Therefore, it is of benefit to develop

simple heuristics that can construct good feasible solutions. A solution is a schedule for

each vehicle with a starting time to begin loading for each trip, specified sites to visit, and

a quantity to bring to each site on that trip.

The overall approach can be seen in Figure 2.1. This approach constructs a solution

by separating the ISRP into two subproblems: routing and scheduling. A combination

of different routing techniques will be discussed in the following section. The scheduling

subproblem is further separated into scheduling for each vehicle by using the routes that

have been found.

2.1 Routing

The routing subproblem creates routes for each vehicle by assigning sites to each

vehicle and determining the order in which they are visited. The ISRP differs from tra-

ditional VRP because the objective is not to minimize total travel time. Instead, it is

desirable to create routes that are nearly the same duration so that the minimum slack is

not too small.

Bramel and Simchi-Levi [6] present two categories for this type of routing: (1) route

first-cluster second methods and (2) cluster first-route second methods. With a route

first-cluster second method, a tour is created through all of the sites, and then the sites

(and the route) are divided into a desired number of partitions. Gillett and Miller’s [17]

sweep algorithm is a popular example of the route first-cluster second approach [6]. One
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major drawback for these methods is that vehicles may be poorly utilized since the routing

is done first. Algorithms have also been developed for cluster first-route second methods.

These methods devote more priority to the clustering phase. Because these methods tend

to require more computational effort and we are interested in heuristic approaches at this

time, we will consider a route first-cluster second method.

2.1.1 Route First

When routing, it is first necessary to create a “big route” that visits all of the sites.

We consider two different methods that do not use X-Y coordinates. In many real world

situations, the X-Y coordinates are not as important as the travel times between sites,

and, in some situations, the X-Y coordinates may be unavailable.

2.1.1.1 Nearest Neighbor

The nearest neighbor (NN) technique generates a tour through all of the sites. The

tour starts at the depot. The next site selected for the tour is the site that has the shortest

travel time from the current site and has not already been visited. This is repeated until

no sites remain. Once all of the sites have been visited, the tour ends with the depot.

2.1.1.2 2-opt Exchange

Given an initial tour, the 2-opt exchange systematically removes two edges in the

tour and reconnects the vertices to obtain a tour of shorter length. This algorithm finds all

pairs of edges that will decrease the tour length. Of all these pairs, the pair chosen is the

one that will make the greatest decrease in travel time of the tour. The 2-opt algorithm is

continued until no more improving pairs can be found [23]. Although many pairwise, or 2-

opt, exchange implementations start with a randomly generated trip through the sites, we

use the nearest neighbor algorithm to first generate a route because it is computationally

inexpensive.
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2.1.2 Cluster Second

Once a big route has been obtained, it is necessary to divide the sites among all of

the vehicles available. The sites are first divided between vehicles as equally as possible.

In the example, there are five sites, three vehicles, and the big route using NN is

found to be 6, 5, 4, 3, 2, 1, 6. The initial clusters will be as follows:

Vehicle 1: 6, 5, 4, 6

Vehicle 2: 6, 3, 2, 6

Vehicle 3: 6, 1, 6

It is important to note that this initial cluster ignores both the demand and the

travel times. Thus, the durations (and demands) of the routes may vary widely, which

can reduce the slack of any solution constructed from these clusters. Thus, we use an

improvement algorithm to reduce the variation. We tested an improvement algorithm

that considers the travel time and one that considers the total demand.

2.1.2.1 Improvement by Route Duration

Each cluster is assigned to a vehicle. The vehicles are sequenced by the position

of their cluster in the big route. This improvement algorithm method strives to make

the route durations as similar as possible by minimizing the range of route durations.

This method begins by calculating each vehicle’s route duration. In each iteration, the

algorithm examines the vehicles with maximum and minimum travel times and considers

moving sites at the beginning (or end) of one route to the previous (or next) vehicle’s

route. If the potential move decreases the range of route durations, then the routes are

updated to reflect this change. This continues until no further improvement can be made.

Of course, this type of local search may not find the smallest possible range. The

pseudocode can be seen in Appendix B. This pseudocode, and formulation is subsequent

sections, require the following notation.

yv is the route duration for vehicle v, which can be calculated by the following

equation, where rv denotes the number of sites on route σv and [a] denotes the a-th site

on route σv.
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yv = pn+1 + cn+1,[1] + p[1] + c[1],[2] + ...+ p[rv ] + c[rv ],n+1

This cluster improvement algorithm will be applied to the example introduced in

the previous section. The durations of the initial clusters are 90, 124, and 64 minutes.

The initial range of durations is 60 minutes. The following clusters are the result, and the

range of route durations is 1 minute.

Vehicle 1: 6, 5, 4, 6; route duration: 90 minutes

Vehicle 2: 6, 3, 6; route duration: 90 minutes

Vehicle 3: 6, 2, 1, 6; route duration: 91 minutes

2.1.2.2 Improvement by Total Demand

This improvement algorithm attempts to reduce the range of total demand of the

sites on the routes but searches in the same way as the previous algorithm. That is,

we replace y by D, where the total demand, Dv, can be calculated for vehicle v by the

following equation.

Dv = (T2 − T1)
∑
k∈σv

Lk

2.2 Scheduling

After constructing routes for the vehicles, it is necessary to schedule their deliveries.

A schedule specifies the quantity to be delivered to each site as well as the time for the

vehicle to begin loading for departure. Because we are interested in developing heuristics

for the ISRP, we will allocate material to vehicles and schedule the deliveries of each

vehicle using the following policies.

Let fk be the relative demand of site k:

fk =
Lk∑n
i=1 Li

For each vehicle, we create a cumulative material function Jv(t) that describes the

material available to be delivered by vehicle v at time t. Recall that I(t) describes the

total material received at the depot by time t.
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Then, if σv is the route that vehicle v visits, Jv(t) = I(t)
∑
kεσv

fk.

Once Jv(t) has been established for vehicle v, it is then possible to determine how

many trips the vehicle will take to service the sites assigned to it, what time each trip will

start, and how much quantity to deliver each trip. Let yv be the route duration for vehicle

v to complete its route.

Vehicle v will begin loading for its first route as soon as the depot has stock. Vehicle

v will carry as much material as it can at the first instance the depot has material,

which is Jv(0), without surpassing its capacity. When the vehicle returns at time yv, if

there is material still available for that vehicle, the vehicle will start loading at this time.

Otherwise, the vehicle will wait until the next wave of deliveries to the depot. Once again,

the vehicle will either carry all of the material allotted to it or the maximum capacity

of the vehicle. This will continue until no more material is available for that vehicle. It

is important to note that this method does not require the vehicle to be full to begin a

trip. To do so would lead to vehicles sitting at the depot while material is available, which

would reduce slack (unless the quantity available is small and the delay until the next

wave is short).

The material on a vehicle will be divided between the sites that the vehicle visits

using their respective proportions of the total demand.

The pseudocode for the scheduling algorithm is as follows. The following notation

is used.

tvj : The time, in minutes, at which vehicle v begins trip j

fk: Relative demand of site k

gk: Relative proportion of vehicle delivery allocated to site k

Rvj : Quantity delivered on trip j by vehicle v

qvjk: Quantity delivered to site k assigned by v on trip j

C: Vehicle capacity (units of material)

schedule(σ)
1 CALCULATE f1, ..., fn
2 CALCULATE y1, ..., yV
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3
4 FOR v = 1 : V
5 Jv(t) = I(t)

∑
kεσv fk

6 tv1 = 0
7 Rv1 = min{Jv(0), C}
8
9 θ = 2
10
11 REPEAT
12 tvθ = tv,θ−1 + yv
13
14 IF Jv(tvθ)−

∑θ−1
j=1 Rvj == 0

15 tv,θ = min t such that Jv(t)−
∑θ−1
j=1 Rvj > 0

16 END
17
18 Rvθ = min{C, Jv(tvθ)−

∑θ−1
j=1 Rvj}

19
20 θ = θ + 1
21
22 UNTIL

∑θ−1
j=1 Rv,j == (T2 − T1)

∑
k∈σv

Lk

23
24 rv = θ − 1
25 FOR j = 1 : rv
26 FOR k ∈ σv
27 gk = fk∑

i∈σv
fi

28 qvjk = gkRvj
29 END
30 END
31 END

This scheduling algorithm produces the schedules in Table 1.1 for our example. The

first column denotes the sites visited by that vehicle and each remaining column denotes

a trip taken by that vehicle. The first row denotes the starting time in minutes for each

trip. The solution is evaluated in Table 1.2 with a minimum slack of 478 minutes.

2.3 Improvement

After a solution has been found, it may be possible to manipulate the quantities

carried on each trip to increase the slack. Note that, as shown in Table 1.2, the slack at

sites 2 and 1 in the second trip of Vehicle 3 are different. The slack at site 2 is larger than

the slack at site 1 because Vehicle 3 visits that site before it visits site 1. If, in its first
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trip, Vehicle 3 delivered more material to site 1 (and less to site 2), the slacks could be

the same, which would increase the minimum slack.

Because the slack for a delivery depends upon the material delivered to that site on

previous trips, the goal of the Delivery Volume Improvement (DVI) algorithm is to adjust

the delivery quantities on one route in such a way that the slacks for all sites on the next

route are the same. The algorithm starts by setting the delivery quantities for the first

trip and then proceeds to the next trip. Note that the trip start times and site delivery

times are given and not changed by this algorithm.

Consider a vehicle v making a delivery to site k at in second trip (so j = 2). Let

Dvjk be the time that this delivery occurs. We would like the slack of every delivery on

this trip to be equal to K, which determines the delivery quantity during the first trip:

K = T1 + qv1k
Lk
−Dvjk

qv1k = (K +Dvjk − T1)Lk

We want to find the largest possible K that is feasible with respect to the total

material that the vehicle delivers on that trip. Let Rvj be the total material that vehicle

v delivers on trip j. This is given and is not changed by the algorithm. Because the total

of the delivery quantities in the first trip must equal Rv1 and the delivery times equal wk,

then we can determine K and the delivery quantities as follows:

K = T1 + Rv1∑
i∈σv

Li
−

∑
i∈σv

wiLi∑
i∈σv

Li

qv1k = Lk∑
i∈σv

Li
(Rv1 −

∑
i∈σv wiLi) + wkLk

For subsequent trips, it easy to show that letting the delivery quantities be propor-

tional to the site demands will suffice. Of course, it is important not to deliver more that

a site needs, which affects the delivery quantities of the last trips.

It is important to note that if the minimum slack occurs in the first trip for any

vehicle, then the procedure will not be able to increase the minimum slack. However, the

procedure may increase the slack for deliveries on subsequent trips.

In the DVI algorithm, let q′ be the desired amount to deliver, and let DRk be the

remaining material needed at site k. Let sv be the number of sites on route σv, and let [i]

be the i-th site on route σv.
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DVI(σ)
1 FOR v = 1 : V
2 FOR k ∈ σv
3 DRk = Lk(T2 − T1)
4 END
5 FOR j = 1 : rv
6 FOR k = sv, sv − 1, ..., 1
7 IF Rvj <

∑k
i=1DR[i]

8 IF j == 1

9 q′ =
L[k]∑k

i=1
L[i]

(Rvj −
∑k
i=1w[i]L[i]) + w[k]L[k]

10 ELSE
11 q′ =

L[k]∑k

i=1
L[i]

Rvj

12 END
13 IF q′ < DR[k]

14 qvj[k] = q′

15 DR[k] = DR[k] − q′
16 ELSE
17 qvj[k] = DR[k]

18 DR[k] = 0
19 END
20 Rvj = Rvj − qvj[k]

21 ELSE
22 qvj[k] = DR[k]

23 DR[k] = 0
24 Rvj = Rvj − qvj[k]

25 END
26 END
27 END
28 END
29 END

It is important to note that if there is not sufficient inventory to make the slacks

of sites equal on the second trip, it is necessary to deliver zero quantity to sites at the

beginning of the sequence and then performing the DVI procedure. This occurs when

there is a site very close to the depot early in the sequence and sites very far away later

in the sequence.

In the example previously introduced, the DVI algorithm updates the quantities

and the slacks as shown in Tables 2.1 and 2.2. Note that, in the second and third trips,

the slacks for sites 5 and 4 are the same and that the slacks for sites 2 and 1 are the same.

(The agreement between vehicles 1 and 3 is a coincidence that reflects the similarity in
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delivery times.) The new minimum slack is 492 minutes.

If the vehicle trips are coordinated (for example, if every vehicle makes one trip for

each wave), then we can apply a different type of DVI algorithm to all of the vehicles

simultaneously and shift material from one vehicle to another to make all of the slacks the

same [20].

Because the approach in this paper schedules each vehicle separately, it may yield

a solution in which the number of trips per vehicle varies. Therefore, the DVI algorithm

used here considers only one vehicle at a time.

Table 2.1: Schedule for example with DVI.
Schedule for Vehicle 1

Site/Time 0 180 360

5 9,561 21,479 16,960
4 8,850 16,110 11,040

Schedule for Vehicle 2

Site/Time 0 180 360

3 13,151 26,849 20,000

Schedule for Vehicle 3

Site/Time 0 180 360

2 8,993 20,137 15,870
1 7,445 13,425 9,130

Table 2.2: Slack calculations for example with DVI.
Slack

Vehicle v Site k wjk sv1k sv2k sv3k

1 5 45 555 495 583
4 73 527 495 583

2 3 46 540 492 580

3 2 45 555 495 583
1 74 526 495 583

19



Chapter 3

Adaptive Large Neighborhood Search Approach

This chapter introduces the approach of an Adaptive Large Neighborhood Search

(ALNS). We will adapt the procedure used by Pisinger and Ropke [28] to solve vehicle

routing problems to assign sites to vehicles and sequence those routes. We will then use the

previously introduced scheduling algorithm to determine the trip start times and delivery

quantities.

The ALNS begins with an initial solution and iteratively destroys and rebuilds the

solution by randomly choosing and applying a number of quick heuristics which define

neighborhoods of the search. Associated with each heuristic is a weight that determines

its selection probability. With each iteration, the new solution is either accepted or rejected

and the heuristic weights are updated according to their performance.

3.1 Removal Heuristics

Our ALNS uses four removal heuristics that are appropriate for the ISRP and have

the ability to diversify the search. These removal heuristics take a complete sequence of

sites for each vehicle, remove a specified number of sites, and output a partial solution.

3.1.1 Random Removal

One of the goals of the ALNS is to avoid exclusively searching around local critical

points in favor of searching for a global best solution. This heuristic removes a fixed

number of randomly selected sites.

3.1.2 Worst Removal

This heuristic removes sites that have the smallest slack on one or more of their

trips. The minimum slack is calculated for each site over all visits, the sites are reordered

from worst to best, and a site to remove is chosen based on a random number and a
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Figure 3.1: ALNS procedure.
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parameter. A random number r is drawn from the uniform distribution over (0,1] and

the site relaxed is drpne ranked of worst to best slacks. The larger p is, the probability is

higher that sites with the smallest slack will be chosen. This is done in order to avoid the

same sites being removed repeatedly. This selection is repeated until a desired number of

sites are removed.

3.1.3 Related Removal

The related removal heuristic was proposed by Shaw [26] as the sole heuristic for

a large neighborhood search. The motivation for removing sites that are related to one

another is that, when the removed sites are drastically different, often they are inserted

in the same place. Removing similar sites provides better opportunities to generate a

new solution. Sites are considered related if they are geographically close and have similar

dispensing rates (in magnitude). The relatedness between sites i and j is defined as follows:

R(i, j) = αcij + δ|Li − Lj | (3.1)

The constants α and δ depend on the magnitudes of the travel times and dispensing

rates, as well as their importance relative to the other. When R is smaller, the two sites

are more related. This heuristic operates by first randomly selecting a site to remove.

Then it randomly chooses another site, where the more related sites are more likely to

be selected (the procedure is similar to that used in the Worst Removal heuristic). This

continues until the desired number of sites have been removed.

3.1.4 Longest Travel Time Removal

Sites with large travel times tend to have smaller slacks. Thus, this heuristic aims

to remove sites that have a long trip to deliver inventory. The heuristic is the similar

to the Worst Removal heuristic but ranks the sites by their travel time before randomly

selecting them.
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3.2 Insertion Heuristics

The insertion heuristics take a partial solution and insert the removed sites to form

a complete solution. When a partial solution is presented to an insertion heuristic, the

first step is to ensure that each vehicle has at least one site to service. This rule could be

implemented in the removal heuristics to prohibit removing a site if it is the only site on

a vehicle’s route.

3.2.1 Random Insertion

Similar to the random removal heuristic, this heuristic serves the purpose of di-

versifying the search. This heuristic iteratively places a removed site randomly within a

vehicle’s sequence on each pass until all sites have been placed.

3.2.2 Best Position of Vehicle with Lowest Travel Time Insertion

For each removed site, this heuristic identifies the vehicle with the smallest travel

time, considers each possible position in its route, and inserts the site in the position that

yields the highest minimum slack. Two different procedures are used to sequence the sites

for consideration. In the first procedure, the sites first inserted were those to be first

removed, which, with the worst and longest travel removal heuristics, entails inserting the

“worst” sites first. The second procedure inserts the sites backwards such that the “worst”

sites are inserted last. The motivation for this is that it may sometimes be of benefit to

place difficult sites first while other times it may be best to insert them last.

3.2.3 Best Position of Vehicle with Lowest Total Demand Insertion

This method is similar to the previous insertion technique. It selects the vehicle with

the lowest total demand. This method also has two different procedures for the order in

which sites are inserted into the solution.
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3.2.4 Nearest Neighbor Insertion

Upon each iteration for this heuristic, the relaxed site is placed before or after the

site geographically closest already in the partial solution according to which yields the

higher minimum slack for the vehicle. This move operation is motivated by influencing

vehicles to visit sites closely located.

3.3 Scheduling and Calculating Slack

Scheduling is performed as discussed in the Sections 2.2 and 2.3. Upon each itera-

tion, a schedule is assigned to the vehicle for the newly created route. Whenever a change

to the route is performed and a slack measurement is needed, the scheduling procedure is

performed on any temporary routes.

When a heuristic identifies a vehicle schedule to insert a site, it will decide placement

by attempting all possible points in the route sequence, creating schedules for each possible

placement, and choosing the one with the greatest minimum slack.

3.4 Selecting Heuristics and Accepting Solutions

Similar to Pisinger and Ropke’s [28] approach, our ALNS selects a removal heuristic

and an insertion heuristic each iteration. A heuristic’s selection probability is proportional

to its weight. Both selected heuristics are rewarded in three cases: (1) a new global best

solution is found, (2) the new solution is better than the previous one and has not been

accepted before, and (3) the new solution is not better than the previous one and it has

not been accepted before. If rewarded, the heuristics’ observed weights are increased by 5

(in case 1), 3 (in case 2), or 1 (in case 3). The search process is divided into segments of

50 iterations. At the beginning of the segment, each heuristic has an observed weight of

zero. At the end of any segment, the ALNS calculates new weights based on the weights

from the previous segment and the observed weights.

Our ALNS uses a simulated annealing procedure to determine if a new solution is

accepted. The probability to accept a solution x′ (given a current solution x) is given

by min{1, e
f(x′)−f(x)

T } where T > 0 is the temperature, which is updated according to a
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cooling rate such that T = Tc, where 0 < c < 1. An ALNS can be adapted to utilize

various acceptance methods such as simple rejection of poorer solutions or Tabu searches.

We have chosen to use simulated annealing since it allows for further exploration of the

solution space by allowing poorer solutions to be accepted. These poorer solutions can be

intermediate steps in finding better solutions. This is a strategy for only focusing a search

near a local optimum.

As introduced previously, a reward is given to a chosen heuristic based on its per-

formance. Thus, it is necessary to store all accepted solutions to evaluate if a solution has

not been found before.

3.5 Parameter Selection

The number of sites removed in each iteration was kept small because moving a

small number of sites can significantly affect the minimum slack. We set the selection

parameter as p = 5 for the Worst Removal and Longest Travel Time Removal heuristics

in order to focus on the “worst” sites. The α and δ parameters of the Related Removal

heuristic were chosen as 1 and 0.75 respectively to scale the magnitudes of the values and

put more weight on travel time. The number of sites removed in each iteration was 4.

The starting temperature of the simulated annealing procedure was selected as 600

by observing the objective value of an initial solution and choosing by a desired probability

for a relatively lesser value. The cooling rate was then tuned to have reasonable acceptance

probabilities towards the end of the search. Two different cooling rates were used and will

be discussed in the results.
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Chapter 4

Column Generation with Simulated Annealing

With the heuristic and search approaches, the problem was separated into simpler

optimization problems. It is necessary to attempt to solve the problem without separation

to attain higher quality solutions. A column generation approach is appropriate since it

makes it possible to dynamically create candidate schedules that can lead to a higher

objective value.

4.1 MIP Formulation

The problem as described in the general formulation is not suitable to be solved as

a Mixed-Integer Program (MIP). To reduce the number of variables, the operation period

is transformed into T discrete time intervals of length ∆. Although time has been divided

into intervals, slack is still calculated in time units. With the heuristic approach, a slack

was calculated upon each delivery. With the MIP formulation, a slack value is assigned

to each site at the end of a portion (λ) of the time intervals where λ < T .

A vehicle schedule is defined as ω within the set of all feasible schedules Ω. As

stated before, a vehicle schedule contains a sequence of sites to visit, times to start each

trip, as well as when to visit the sites, and the amount to deliver at each site. The same

feasibility constraints apply to this problem. With a schedule ω, the following parameters

are present.

aωt - Amount of inventory taken from the depot in interval t

bωit - Amount of inventory delivered to site i in interval t

The decision variables for the formulation are as follows.

xω - Binary variable for inclusion of schedule ω

yit - Total amount of inventory delivered to site i in interval t

Qit - Total amount of inventory delivered to site i in intervals 1 to t

zt - Total amount of inventory taken from depot in interval t
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S - Minimum slack for all sites in intervals 1 to λ

The MIP problem can be represented as follows.

maxS (4.1)

∑
ω∈Ω

aωt xω − zt = 0 for t = 1, ..., T (4.2)

∑
ω∈Ω

bωitxω − yit = 0 for i = 1, ..., n; t = 1, ..., T (4.3)

∑
ω∈Ω

xω ≤ V (4.4)

Qit −
t∑

j=1

yij = 0 for i = 1, ..., n; t = 1, ..., T (4.5)

t∑
j=1

zj ≤ I(∆t) for t = 1, ..., T (4.6)

T∑
j=1

yj = Li(T2 − T1) for i = 1, ..., n (4.7)

S − Qit
Li

+ ∆t− T1 ≤ 0 for i = 1, ..., n; t = 1, ..., λ (4.8)

xω ∈ {0, 1} ∀ ω ∈ Ω (4.9)

yit ≥ 0 for i = 1, ..., n; t = 1, ..., T (4.10)

zt ≥ 0 for t = 1, ..., T (4.11)

Equation 4.1 refers to the objective function of maximizing the minimum slack.

Constraint 4.2 defines the value of zt. Similarly, 4.3 defines the value of yit and 4.5 defines

Qit. Constraint 4.4 ensures that no more than the available number of vehicles is used. The

amount taken from the depot does not exceed that available as guaranteed by constraint

4.6. Constraint 4.7 guarantees that all sites receive the required amount of inventory. The

minimum slack is defined by constraint 4.8 which eliminates the need to define a slack

value for each site and time interval. Standard bounds for all decision variables (positivity

and binary qualities) are defined by 4.9, 4.10, and 4.11.
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4.2 Solution Approach

Column generation (CG) approaches can be effective in solving a variety of Oper-

ations Research problems [12, 13] where the number of variables in a problem are very

large or unknown. The set of all feasible schedules Ω is very large, thus it is necessary to

add these at each step of the procedure.

The outline of this approach can be seen in Figure 4.1. Initial columns are created

for the MIP by the heuristics introduced in Chapter 2. A linear programming relaxation

of this master problem is solved. Dual variables are attained from the solution which are

passed to a subproblem for generation of new schedules that will improve the solution of

the master problem. This process is repeated until no schedules can be found that will

improve the master problem. Then the master problem is solved as a MIP.

Solving the Master Problem involves relaxing the MIP such that 0 ≤ xω ≤ 1. Solving

this Master Problem yield the dual variables πt for constraint 4.2 and ρit for constraint

4.3. By using these dual variables, it is possible to add new schedules that will provide a

better slack. By utilizing a subproblem and adding new columns to the Master Problem,

the problem is iteratively resolved to add new columns until new ones can not be found.

Once the column generation procedure has completed, the schedules that are not a part of

the optimal solution with the linear programming relaxation are removed and the problem

is solved as a MIP with a branch-and-bound procedure.

The subproblem of the column generation procedure finds schedules, which will

become columns in the MIP, that have a positive value of
∑T
t=1 πta

ω
t +

∑n
i=1

∑T
t=1 ρitb

ω
it.

This research will utilize simulated annealing in order to generate schedules with a positive

objective value. Any such schedules will be placed into the Master Problem as they will

increase the slack value.

Since simulated annealing focuses on finding a satisfactory solution in a limited

amount of time [16], it will be necessary to investigate techniques (such as dynamic pro-

gramming) that find optimal schedules upon each iteration in the future. When the

subproblem is called, it is repeated a number of times with the same dual variables in

order to add multiple schedules.
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4.3 Solving the Subproblem

Upon initialization of the subproblem, a site is added at random to the candidate

solution. With each iteration of the search, a site is either added at random, removed

from the candidate route at random, or two sites are swapped in the sequence visited by

the vehicle. These procedures are picked with equal probability at random. In the case of

a route with only one site, a site will be added.

4.3.1 Scheduling Times and Quantities

With each iteration of the simulated annealing procedure, a route is found and a

delivery schedule must be assigned to it. A decision is made randomly to decide the

behavior of the vehicle of when it leaves from the depot. The two behaviors are 1) leaving

for the depot as soon as the vehicle returns from a delivery and reload inventory and 2)

following the wave structure of the deliveries to the depot. If the behavior is the second,

then a vehicle may wait at the depot until the next wave occurs or immediately start

loading for the next trip if it has missed the beginning of a wave.

The LP for setting quantities for a given route is as follows. Let J be the number of

times that the vehicle completes its route in the solution. Let σ be the set of sites visited

in the route. Let t(j, k) be the time interval in which the j-th delivery is made to site k,

for j = 1, ..., J and k ∈ σ. Let bjk be amount delivered during the j-th delivery to site k,

for j = 1, ..., J and k ∈ σ. Let t(j, n + 1) be the time interval in which the j-th loading

occurs at the depot, for j = 1, ..., J . Let Ij = I(∆t(j, n + 1)), which is the cumulative

available at the depot at t(j, n + 1). Let aj be the amount loaded when the j-th loading

is made at the depot.

max
J∑
j=1

πt(j,n+1)aj +
J∑
j=1

∑
k∈σ

ρkt(j,k)bjk (4.12)

J∑
j=1

bjk = Lk(T2 − T1) ∀ k ∈ σ (4.13)

j∑
i=1

ai ≤ Ij for j = 1, ..., J (4.14)
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∑
k∈σ

bjk = aj for j = 1, ..., J (4.15)

bjk ≥ 0 for j = 1, ..., J ; ∀ k ∈ σ (4.16)

aj ≥ 0 for j = 1, ..., J (4.17)

This LP is solved in order to maximize the objective sum with the dual variables

from the Master Problem. With the attempt to find diverse schedules, two behaviors

can be chosen for the scheduling of quantities, which are to 1) completely satisfy the

demands of the sites assigned to a vehicle (Constraint 4.13) or 2) schedule deliveries only

to maximize the objective and not exceed the quantities demanded by the sites (Constraint

4.13 as an equality).

The linear program solved to scheduled quantities has constraints to not exceed

inventory available at the depot and to not exceed or to equal demand constraints of the

sites, depending on the behavior chosen (Constraint 4.14). Also, a constraint is present to

ensure that a vehicle delivers all quantity loaded before returning to the depot (Constraint

4.15).

4.4 Implementation

CPLEX was called from Matlab to solve the linear programs and mixed-integer

programs. The linear programming and mixed-integer programming solvers were used

with default parameters with the exception of probing for the mixed-integer procedure

changed to very aggressive.

4.4.1 Formulation Changes

In order for CPLEX to find better dual variables, constraints 4.2 and 4.3 were

changed from equality constraints to inequality constraints as ≤ and ≥, respectively. Also,

the upper bound in constraint 4.9 is removed. This is because a generalized upper bound

(GUB) can affect the method in which the LP is solved in order to gain computation

efficiency. Doing so can reduce the accuracy of the dual variables.
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4.4.2 Parameter Selection

The number of iterations for each subproblem call, as well as the number of times

the subproblem is tried, is chosen to quickly search the solution space for new columns.

These values are set at 40 and 5, respectively. The starting temperature and cooling rate

were set at 100 and .9, respectively.

For each instance, the number of time intervals was chosen so that ∆, the duration

of a time interval, equals 40 minutes. λ, the number of time intervals used to evaluate the

slack, was set at various levels, as described in the computational results. The difficulty

here is to pick λ so that the procedure is productive. If λ = T , then S will always be zero

because the end of the last time interval corresponds to the end of the dispensing, when

there is no inventory left. However, if λ is too small, the evaluation of the minimum slack

will become to inaccurate.
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Chapter 5

Computational Analysis

We tested the solution approaches on a set of instances in order to determine which

techniques generated the best solutions and evaluate their computational cost. All coding

and testing was performed in Matlab, with use of functions from Matlog and CPLEX.

5.1 Creating Instances for Testing

To create the instances, 16 baseline instances were varied systematically to create 27

instances for each baseline for a total of 432 instances. As shown in Table 5.1, the number

of sites ranged from 5 to 199. The data for site location, site demand, depot location,

and vehicle capacities were obtained from three sources: mass dispensing plans from

Montgomery County, Maryland; California PODs from an example provided in the online

routing software Toursolver; and the classical vehicle routing problems from Christofides

[5]. For the Maryland and California sites, which had street addresses, Toursolver and

Google Maps were used to calculate travel times between the sites. We invented demand

and wave delivery information to be similar to real world mass dispensing plans from

Maryland. All of the instances have loading times of 15 minutes.

For a baseline instance, the parameters varied were the number of vehicles, the

average travel time, and the average demand. (Changes to the average demand also

required corresponding changes to the amount delivered to the depot in each wave, though

we did not change the timing of the waves.) Other times were not modified because varying

the travel times changes the loading/unloading times and the wave intervals relative to

the travel times.

For each baseline instance, three values were set for the number of vehicles: the

initial number V (shown in Table 5.1), V − 0.2V , and V + 0.2V . The last two values

were rounded to the nearest integer. Large-demand instances were created by multiplying

every site’s demand by 3, and small-demand sites were created by dividing every site’s
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Baseline instance Number of sites Number of vehicles Number of waves

R1 5 3 3
F1 9 5 4
C1 9 5 5
M1 10 5 5
R3 10 5 4
M2 15 8 3
C2 20 10 4
M3 50 25 5
V1 50 25 3
V2 75 38 5
V3 100 50 6
V4 150 75 7
V5 199 100 7
V11 120 60 5
V12 100 50 6
M4 189 71 4

Table 5.1: Summary of Baseline Instances

demand by 3.

Likewise, in the large-travel-time instances, all of the travel times were multiplied

by 2; in the small-travel-time instances, all of the travel times were divided by 2.

Thus, for each baseline instance, we generated 27 instances by combining the three

values for the number of vehicles, the three sets of demands, and the three sets of travel

times.

5.2 Upper Bound

To find an upper bound on the optimal minimum slack, we relax the problem by

ignoring the vehicle capacity and assuming that each site has a vehicle available to deliver

material to that site at each wave. Thus, each site is visited once each wave, and the

delivery at site k occurs pn+1 + cn+1,k + pk time units after the wave is delivered to the

depot.

We use a version of the DVI algorithm to assign delivery quantities to each site so

that the slacks of the deliveries in the same wave are equal. The pseudocode for setting

the delivery quantities is given in Appendix B. The slacks are calculated based on these
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delivery quantities and times.

5.3 Heuristic Testing

The routing and scheduling heuristics were tested on all 432 instances. This section

will present solution quality and computational effort.

5.3.1 Heuristic Computational Effort

As shown in Figure 5.1, the time required to generate solutions increased as the

number of sites increased and when the 2-opt routing heuristic was used. Other charac-

teristics of the instances did not affect the computational effort. The choice of clustering

objective did not affect the computational effort.

Running the 2-opt heuristic generally added 10 to 20 percent to the computational

effort. The notable exception to this was the problem set M4 (which is not included in

Figure 5.1). For these instances, with the 2-opt heuristic, the average time required was

nearly 23 seconds. In all of the other problem sets, the sites surround a central depot. In

the problem set M4, however, the depot is located outside of the region in which the sites

lie. Thus, it appears that the nearest neighbor heuristic generates a poor route, for the

2-opt procedure spends a great deal of effort to improve the route.

5.3.2 Heuristic Performance

The minimum slack in the best solutions found varied by problem set. Within a

problem set, some combinations of number of vehicles, travel times, and demands had only

solutions with low slack, while other combinations had solutions with much more slack.

To compare the routing and clustering heuristics, we determined the average mini-

mum slack of the solutions within a problem set and counted the number of times that each

routing and clustering combination generated the best solution found. The results, shown

in Table 5.2, show that clustering by duration, in general, generated better solutions.

The nearest neighbor procedure and the 2-opt procedure perform equally well. Ta-

ble 5.3 shows that, when used with the cluster by duration objective, using the nearest
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Figure 5.1: Computational time for finding initial routes.

neighbor procedure was slightly more likely to generate a better solution. In many cases,

however, they generated equally good solutions. The performance of these heuristics was

not affected by the relative length of the wave intervals. Changes in the demand often

made no change in the quality of the solution, because the vehicles had sufficient capac-

ity to carry the increase material. In some cases, increasing the site demands generated

instances in which the vehicles needed more trips to deliver the material; this naturally

reduced the slack and led to poor-quality solutions. The relative performance of the

heuristics did not change however.

5.3.3 DVI Performance

The same body of instances were used to test the DVI procedure. The solutions im-

proved were those from the heuristics previously introduced. Table 5.4 shows the number

of instances that are candidates for DVI. These are the instances in which the minimum

slack does not occur on the first trip of a vehicle. By only looking at DVI results for these

instances, we can find the average improvement seen in Table 5.5. This table also shows

the average over the problem sets. The two cluster by demand heuristics, which gave the
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Baseline Instance Nearest neighbor Same 2-Opt

R1 24 3
F1 11 16
C1 27
M1 27
R3 12 9 6
R2 27
M2 24 3
C2 3 18 6
M3 12 12 3
V1 6 21
V2 15 12
V3 15 3 9
V4 27
V5 9 18
V11 27
V12 9 3 15
M4 13 14

Total 156 123 153
Percent 36.1% 28.5% 35.4%

Table 5.3: Number of instances in each problem set that the nearest neighbor and 2-opt
routing procedures generated the better solution.
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Routing Heuristic Nearest neighbor 2-opt

Clustering objective Duration Demand Duration Demand

R1 27 27 27 27
F1 6 6 3 3
C1 9 9 9 9
M1 3 3 3 3
R3 27 27 27 27
M2 4 4 4 4
C2 1 1 1 1
M3 27 27 27 27
V1 0 0 0 0
V2 0 0 0 0
V3 0 0 0 0
V4 0 9 0 0
V5 0 0 0 0
V11 0 0 0 0
V12 3 3 3 3
M4 3 3 3 3

Table 5.4: Number of instances in which minimum slack does not occur on first wave.

worst results without DVI, showed the greatest improvement.

To analyze the overall solution quality for the four heuristics with DVI, we consider

the solutions for all 432 instances, including those where the minimum slack occurs in

a first trip and DVI was not used. Table 5.6 shows the average minimum slack for all

heuristics. The two cluster by duration heuristics were similar and outperformed the

cluster by demand heuristics. The same is true for the number of best solutions found.

Neither routing heuristic dominated the other.

5.3.4 Upper Bound Analysis

We determined the upper bound for each instance and compared to the objective

function values of the solutions found by the four heuristics with DVI. Table 5.7 compares

the upper bounds to the results obtained from the Route by Nearest Neighbor and Cluster

by Duration heuristic. This table presents the difference between the upper bound and

heuristic solution for different groups of instances, classified by number of vehicles and

travel times between sites and the depot. As the number of vehicles increases, the differ-

ence between the heuristic solution and the upper bound decreases. Also, as the travel
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Routing Heuristic Nearest neighbor 2-opt

Clustering objective Duration Demand Duration Demand Problem Set Averages

R1 20.30 24.67 22.63 20.15 21.94
F1 18.00 49.50 36.00 65.67 39.44
C1 28.78 37.11 28.78 37.11 32.94
M1 51.33 63.67 51.33 63.67 57.50
R3 21.11 27.00 17.78 22.89 22.19
M2 0.00 0.00 4.00 0.00 1.00
C2 52.00 52.00 92.00 92.00 72.00
M3 21.11 57.22 21.00 53.11 38.11
V1 - - - - -
V2 - - - - -
V3 - - - - -
V4 - 27.33 - - 27.33
V5 - - - - -
V11 - - - - -
V12 2.00 26.00 2.00 26.00 14.00
M4 24.67 18.33 27.33 21.33 22.92

Average 23.93 34.80 30.29 40.19 31.76

Table 5.5: Average improvement for each heuristic.

times decrease, the difference decreases. From the results, it can be seen that, in many

cases, the heuristics generate near-optimal solutions. For some instances, the gap between

the upper bound and the heuristic solution is much larger because the heuristic generated

a poor solution or the quality of the upper bound is poor.

5.4 ALNS Testing

The ALNS procedure was tested on all of the instances and compared to the heuristic

solutions. All parameters for the search were defined in the ALNS section. All tests had

a cooling rate of 0.8, with the exception of the specified column in Table 5.8 which had a

cooling rate of 0.6. For purpose of succinct reporting, all instance solutions were divided

by the upper bound objective value and averaged over an instance set as reported in Table

5.8. Each column in this table refers to a separate run of the ALNS (or heuristic alone)

with various characteristics.

The column for the heuristic solution refers to the solution with the maximum
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Nearest neighbor 2-opt

Number of Vehicles Travel Time Size Duration Demand Duration Demand

Many Large 37.81 44.81 41.63 46.31
Many Average 18.19 28.00 20.75 27.00
Many Small 15.63 20.44 16.44 19.44
Average Large 51.94 65.88 47.50 57.31
Average Average 28.31 39.88 24.44 36.44
Average Small 22.13 27.19 19.50 26.38
Few Large 147.52 167.77 165.83 153.90
Few Average 62.54 80.75 57.75 71.39
Few Small 48.50 56.88 46.63 55.19

Table 5.7: Average difference between upper bound and minimum slack for different sets
of instances classified by number of vehicles and travel times.

objective value from the four variants of the routing and scheduling heuristic. For the

ALNS searches, with the exception of the last one referenced in the table, a NN route was

built and clustered by dividing the sites evenly among the vehicles. The last search, with

a heuristic starting point, used the route with the best objective value from the routing

and scheduling heuristics as the starting point.

For the search results with sufficient time to search the solution space, which can be

seen by the ALNS with 2000 iterations, the heuristic solution is outperformed consistently.

When performing the search with a short number of iterations and a faster cooling rate,

it was possible to outperform the heuristic in all cases, with the exception of V2 and V12.

A visual representation of one search with sufficient time to explore the solution space can

be seen in Figure 5.2.

By starting with a heuristic solution, the ALNS was able to improve all solution

values. However, many of the improvements appear to be subtle, while others make

significant improvements (most notably with C2). With that being said, it is worth noting

that if a heuristic is being used, given sufficient computational time is available, it would

be of value to execute the ALNS to improve the route.

The most interesting trend in the results is that the best solution overall is found

from the longest search. There are two possible reasons for this result: 1) the search

performs best when starting with a poor solution since it may be a better starting point
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Figure 5.2: ALNS procedure with 2,000 iterations.
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Figure 5.3: Average computational time in seconds per iteration for one complete run of
the ALNS with 500 iterations.

for searching the solution space, or 2) even with a heuristic starting point, it is necessary

to have a longer search until a good route has been found.

In Appendix C, extensive results are included for each instance set with the average

solution value over 5 runs of the ALNS procedure, along with the confidence interval half-

width. With smaller instances, much variation did not exist, which indicates that the

optimal route was found. Generally, shorter searches resulted in more variation between

final solution objective values.

The interval half-widths seem to be reasonably small (less than 10 minutes) in most

cases. Some results present much variance which is most likely a result of a search not

finding a good route due to the simulated annealing behavior.

Computation was performed on three different computers in parallel. Thus, to

compare computational effort, the running time of the first search with 500 iterations were

recorded. The average computational time per iteration and instance set are presented in

Figure 5.3. The computational effort is presented as a function of the number of PODs,

since this most greatly affected the time. As expected, the time increases with the number

of PODs.
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5.5 CG Testing

A smaller set of 16 instances (corresponding to the baseline instances) were used to

test the CG procedure. As seen in Table 5.9, the results were not as productive as the

heuristics or the search procedure. This procedure was not possible for instances with

more than 20 PODs due to insufficient memory. All values are for one procedure attempt

except for R1 and R3 which were attempted three times.

For instances F1, C1, and C2, by attempting the procedure with all possible number

of examined intervals, no improvement could be found. Thus, the default number of exam-

ined intervals was chosen as the last interval that receives inventory in the initial heuristic

columns. As seen by the computation time, the initial LP was solved, the subproblem was

attempted, and no columns were found. With these instances, the dual information was

not helpful in generating new columns to add to the master problem.

Two possible explanations for this behavior are that the solver did not accurately

calculate the dual variables or the subproblem failed in finding new columns because no

feasible columns exist that would improve the solution.

For instances M1 and M2, the CG procedure was successful in finding new columns,

but they provided extremely small improvements to the objective value. For M1, the

procedure had a long running time of nearly half an hour. For M2, it iterated a small

number of times (as seen by the computation time of less than 1 minute). The number

of examination intervals (λ) for the instances was chosen by attempting the procedure

on all possibilities and selecting the value such that the procedure did not immediately

terminate.

Further examination is required for R1 and R3 which showed improvement. The

number of examined intervals was chosen such that an improvement to the objective value

was reported. For R1, as seen in Table 5.10, the CG procedure was attempted three times.

The first attempt did not find any columns and terminated naturally. The second and

third attempt were terminated prematurely when no significant improvement was made

to the objective value after 3,000 iterations. This can be seen by the long run times for

these two attempts.
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Columns in Final IP Computation
CG Attempt Final Basis Objective Time (minutes)

1 14 491.5 8.34
2 13 491.5 84.67
3 14 491.5 84.46

Table 5.10: CG attempts for R1.

Columns in Final IP Computation
CG Attempt Final Basis Objective Time (minutes)

1 36 1072.2 45.72
2 38 723.0 45.68
3 32 1072.2 45.87

Table 5.11: CG attempts for R3.

Although improvement for the LP occurred, when the procedure finished and all

columns not in the optimal basis were removed, the resulting IP solution was worse than

the original IP solution. This indicates that the original heuristic columns were removed

and that it was not possible to find a feasible set of columns among those generated with

a better objective function value.

Similarly, the attempts for R3, seen in Table 5.11, yielded similar results. All three

attempts were ended prematurely at 1,000 iterations with no significant improvement

to the objective function value. Both R1 and R3 achieved the maximum LP relaxation

objective within the first 5 minutes of the procedure.

The columns in the initial master problem were created using all of the heuristics

with and without the DVI procedure. To test the impact of starting with a fewer number of

initial columns with poorer quality, the study was repeated using only schedules generated

by the routing by nearest neighbor, cluster by duration, and no DVI as seen below.

Similar behavior occurred in this scenario with the CG procedure increasing the

objective value of the LP to that seen in Table 5.14 for R1 and R3, but not F1 and C1.

In Table 5.13, we can see specific information for three replications of the procedure. (All

other instances were attempted once.) For R1, two attempts (1 and 2) were terminated

prematurely at 3,000 iterations without improvement of the objective function. R3 was
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Columns in Final IP Computation
CG Attempt Final Basis Objective Time (minutes)

1 20 491.5 96.44
2 20 491.5 66.12
3 36 491.5 16.86

Table 5.13: CG attempts for R1 with poorer starting columns.

attempted three times, but output is only available for one attempt. During the other

two attempts, the procedure terminated because the constraint matrix grew too large and

exceeded the memory.

The above results utilized time intervals of 40 minutes. It is necessary to select time

interval length such that a pickup or delivery can not occur in the same interval to provide

adequate precision with quantity allocation. To analyze the effect of smaller time intervals

than 40 minutes, the study was repeated as shown below with 20 minute intervals. All

heuristics are utilized for the initial columns.

Attempting the CG procedure on C2 exceeded the memory upon building the initial

constraint matrix. The CG procedure terminated for R3 because the constraint matrix

grew too large. Three replications were attempted for R1 with replications 1 and 2 ter-

minating prematurely at 3,000 iterations with no change in the objective function. Using

finer time intervals resulted in a large increase in computational time.

This CG procedure generated undesirable results. In some cases, no improvements

were seen because the dual variables from the initial LP were not productive for the

subproblem. In the cases where improvement was seen, the procedure required long run

and made only infinitesimal improvements following the initial improvement. When the

procedure terminated, the IP solution was worse than the initial solution.

These two issues with instances that can be improved give insight into future work.

A subproblem is needed that can produce columns that are compatible with other columns

such that they are an improvement and are suitable for the IP constraints (most notably

with respect to available inventory in each interval).
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Columns in Final IP Computation
CG Attempt Final Basis Objective Time (minutes)

1 28 491.5 115.43
2 23 491.5 119.07
3 26 491.5 77.46

Table 5.15: CG attempts for R1 with 20 minute intervals.
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Chapter 6

Conclusions

This thesis presented a novel vehicle routing problem can be used for planning

medication (or other inventory) distribution in case of an emergency. Three solution

techniques were developed and tested on a large set of instances. Contributions from this

project are seen below.

• The formulation of the inventory slack routing problem, a novel vehicle routing

problem in which the objective is to maximize the slack in the delivery schedule.

Such a problem can be used for responding to emergencies because it emphasizes

building plans that are robust against uncertainty.

• A routing and scheduling heuristic was introduced as a quick and computationally

efficient method for constructing solutions to this problem. The results of the heuris-

tics were compared to an upper bound to see the quality of solutions generated.

• A search technique was introduced as an extension to the routing and scheduling

heuristics to improve the routes in which the schedules are built.

• A framework for an integer programming approach to this problem was introduced.

• A body of instances similar to real-world emergency situations have been created

for use by researchers interested in studying the ISRP.

In an overall comparison of the three techniques, the ALNS approach provided the

best solutions and is executed with reasonable computational effort. Thus, this technique

is currently the most valuable approach for solving the ISRP.

Future work includes implementing and extending this work. The routing and

scheduling heuristics, as well as the search technique, should be implemented in a stand-

alone program that can be used freely by public health emergency preparedness planners.

This is important to distribute the work for the purpose of gaining feedback on perfor-

mance of the heuristics, as well as promoting awareness of this vehicle routing problem.
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It is necessary to further investigate the column generation approach and make im-

provements. With the current approach, examining the LP solely and relying on fractional

schedules to make improvements towards a better IP solution is insufficient. Thus, a more

sophisticated technique is needed to make improvements towards integral solutions upon

each iteration. A branch-and-price approach should be first investigated towards this goal.

It is also necessary to investigate the effects of discretization the problem.

Further techniques should be investigated, including simulation, to study the effects

of uncertainty on solutions, as well as to find optimal solutions.
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Appendix A

Example Instance

The following data is used for the examples described in the introduction. Note that

there are three waves (deliveries to the depot), as shown in the following table.

T1 = 600 minutes, T2 = 1200 minutes

I(0) = 48, 000 units, I(180) = 146, 000 units, I(360) = 219, 000 units

V = 3 vehicles

C = 112, 000 units per vehicle

n = 5 PODs

L = (50 75 100 60 80) units per minute

p = 15 minutes

c =



0 14 39 29 26 17

14 0 34 24 21 15

39 34 0 17 16 30

29 24 17 0 13 17

26 21 16 13 0 15

17 15 30 17 15 0


with all times in minutes

Wave 1 2 3

Time (minutes) 0 180 360

Quantity 48,000 98,000 73,000

Table A.1: Deliveries to the depot.
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Appendix B

Pseudocode

The pseudocode for improvement by duration algorithm is as follows. During im-

plementation, with one iteration it is important to examine all maximum and minimum

vehicles instead of the first encountered. In this code, the following notation is necessary:

lv denotes the first site assigned to vehicle v, and mv denotes the last site assigned to

vehicle v.

improvebyduration(σ)
1 REPEAT
2 CALCULATE y1, ...yV
3 F = max{y1, ..., yV } −min{y1, ..., yV }
4
5 vmax = argmax{y1, ..., yV }
6 vmin = argmin{y1, ..., yV }
7
8 σ′vmax−1 = σvmax−1 ∪ {lvmax}
9 σ′vmax = σvmax\{lvmax}
10
11 CALCULATE y′1, ..., y

′
V

12
13 IF max{y′1, ..., y′V } −min{y′1, ..., y′V } < max{y1, ..., yV } −min{y1, ..., yV }
14 σvmax−1 = σ′vmax−1

15 σvmax = σ′vmax
16 yvmax−1 = y′vmax−1

17 yvmax = y′vmax
18 END
19
20 σ′vmax+1 = {mvmax} ∪ σvmax+1

21 σ′vmax = σvmax\{mvmax}
22
23 CALCULATE y′1, ..., y

′
V

24
25 IF max{y′1, ..., y′V } −min{y′1, ..., y′V } < max{y1, ..., yV } −min{y1, ..., yV }
26 σvmax = σ′vmax
27 σvmax+1 = σ′vmax+1

28 yvmax = y′vmax
29 yvmax+1 = y′vmax+1

30 END
31
32 σ′vmin = {mvmin−1} ∪ σvmin
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33 σ′vmin−1 = σvmin−1\{mvmin−1}
34
35 CALCULATE y′1, ..., y

′
V

36
37 IF max{y′1, ..., y′V } −min{y′1, ..., y′V } < max{y1, ..., yV } −min{y1, ..., yV }
38 σvmin−1 = σ′vmin−1

39 σvmin = σ′vmin
40 yvmin−1 = y′vmin−1

41 yvmin = y′vmin
42 END
43
44 σ′vmin = σvmin ∪ {lvmin+1}
45 σ′vmin+1 = σvmin+1\{lvmin+1}
46
47 CALCULATE y′1, ..., y

′
V

48
49 IF max{y′1, ..., y′V } −min{y′1, ..., y′V } < max{y1, ..., yV } −min{y1, ..., yV }
50 σvmin = σ′vmin
51 σvmin+1 = σ′vmin+1

52 yvmin = y′vmin
53 yvmin+1 = y′vmin+1

54 END
55
56 F ′ = max{y1, ..., yV } −min{y1, ..., yV }
57
58 UNTIL F == F ′

To determine the upper bound for an instance, we use the following pseudocode to

determine delivery quantities. In this code, Y and m are introduced as values used to find

the desired slack. These values are calculated in lines 1-13 of the pseudocode. Wj refers

to the amount of inventory made available to the depot in wave j. The value tj refers to

the time that the wave delivery j is made to the depot. Lines 15-37 of the pseudocode

calculate the quantities, q, for each vehicle. After determining these delivery quantities

we determine the minimum slack of the deliveries.

upperbound
1 Renumber the sites so that w1 ≥ ... ≥ wn
2
3 Y0 = 0
4 FOR h = 1, ..., n− 1
5 mh =

∑h
i=1 Li

6 Yh = Yh−1 + (wh − wh+1)mh

7 END
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8 mn =
∑n
i=1 Li

9 Yn = Yn−1 + (T2 − w1 − T2 + wn)mn

10 FOR h = n+ 1, ..., 2n− 1
11 mh =

∑n
i=h−n+1 Li

12 Yh = Yh−1 + (wh−n − wh−n+1)mh

13 END
14
15 FOR j = 1, ..., r − 1
16 Q = W1 + ...+Wj

17 FIND h such that Yh−1 ≤ Q < Yh
18 IF h ≤ n
19 Kj = T1 − tj+1 − wh +

Q−Yh−1

mh
20 FOR k = 1, ..., h
21 qjk = (Kj − T1 + tj+1 + wk)Lk −

∑j−1
i=1 qik

22 END
23 FOR k = h+ 1, ..., n
24 qjk = 0
25 END
26 ELSE
27 Kj = T2 − tj+1 − wh−n +

Q−Yh−1

mh
28 FOR k = 1, ..., h− n
29 qjk = Lk(T2 − T1)−

∑j−1
i=1 qik

30 END
31 FOR k = h− n+ 1, ..., n
32 qjk = (Kj − T1 + tj+1 + wk)Lk −

∑j−1
i=1

33 END
34 END
34 END
35 FOR k = 1, ..., n
36 qrk = Lk(T2 − T1)−

∑r−1
i=1 qik

37 END
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Appendix C

ALNS Results

The data provided is for ALNS testing with varied parameters. All parameters are

as described in the computation section that are not varied in the tables. The instance

within a set is specified by a three letter code where the first entry is Many, Average, or

Few in regard to the number of vehicle, Large, Average, or Small in regard to the travel

times between the depot and PODs, and Large, Average, or Small in regard to the size of

demands.

For each search, an average of the maximum minimum slack over the 5 replications

was taken and reported along with its 95% confidence half-width. Blank entries correspond

to test runs that had no variance over the 5 replications.
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