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Testosterone (T) has a strong anabolic effect on skeletal muscle and is believed to 

exert its local effects via the androgen receptor (AR).  The AR harbors a polymorphic 

stretch of glutamine repeats demonstrated to inversely affect receptor transcriptional 

activity in prostate and kidney cells.  However, longer AR glutamine repeat lengths are 

associated with greater lean body mass and higher serum T in humans.  The effects of AR 

glutamine repeat length on skeletal muscle are unknown.  Purpose: To determine the 

effects of AR glutamine repeat length on AR function in skeletal muscle cells.  Methods: 

AR expression vectors carrying 14, 24, and 33 glutamine repeats, respectively, were 



constructed and AR transcriptional activity was determined in transfected C2C12 

myoblasts using an AR sensor plasmid. Each vector was subsequently stably transfected 

into C2C12 cells to create 3 independent cell lines: C2C12AR14, C2C12AR24, and 

C2C12AR33.  Cellular proliferation and creatine kinase (CK) activity were determined. 

Gene expression was assessed via RT-PCR. Myosin expression, myotube formation, and 

myonuclear fusion index were examined immunohistochemically. Results: 

Transcriptional activity increased with increasing repeat length (3.91±0.26 vs. 

25.21±1.72 vs. 36.08±3.22 relative light units in AR14, AR24, and AR33, respectively; 

p<0.001), in response to T.  Ligand activation ratio indicated significant ligand-

independent AR transcriptional activity. Significant AR protein expression was only 

detected in AR14 myoblasts. In contrast, AR mRNA expression was elevated in each 

stable line in the myoblast stage and throughout differentiation.  The proliferation of 

AR33 cells was significantly decreased vs. AR14 (20512.3±1024.0 vs. 27604.17±1425.3, 

p<0.001) after 3 days.  The CK activity of AR14 cells was decreased in comparison to 

AR24 and AR33 cells (54.9±2.9 vs. 68.3±2.2 and 70.8±8.1 units/ug protein, respectively; 

p<0.05) after 5 days of differentiation. The myonuclear fusion index was lower for both 

AR14 (15.21±3.24%, p<0.001) and AR33 (9.97±3.14%, p<0.001) in comparison to WT 

C2C12 cells (35.07±5.60%).  Both AR14 and AR33 cells displayed atypical myotube 

morphology. RT-PCR revealed differences in the expression of genes involved in 

differentiation, cell fusion, and cell cycle progression. Conclusion: AR polyglutamine 

repeat length affects receptor activity and alters the growth and development of C2C12 

cells.  This polymorphism may explain some of the heritability of muscle mass in 

humans. 
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Introduction: 

Androgens play an essential role in a number of physiological processes including 

muscle and bone development and the development and maintenance of secondary sexual 

characteristics.  Testosterone (T) administration in otherwise healthy hypogonadal men 

increases fat-free muscle mass and decreases fat mass (1;2), increases fat-free mass in 

hypogonadal HIV-infected men (3), increases muscle cross-sectional area in healthy 

elderly men (4), and induces an improvement in self-perceived quality of life and mood 

(5).  Supraphysiologic doses in healthy young men  increase fat-free mass in a dose 

dependent manner (6), while muscle mass is increased even further when combined with 

resistance exercise (7).  T administration also increases both bone density and bone 

mineral content in hypo-androgenic men (8) and women (9).  As a result, testosterone 

therapy is becoming a more commonly accepted treatment for aging and disease-related 

muscle and bone wasting conditions.  Moreover, there is evidence suggesting that serum 

androgen level is a largely heritable trait (10), and that there is significant variation in the 

inter-individual response to exogenous androgen administration (11).  The mechanism(s) 

driving heritable differences in androgen levels and sensitivity are unknown, but could 

significantly affect the success of androgen replacement therapy. 

Though the mechanisms behind T’s anabolic effects in muscle are still relatively 

poorly understood, significant data exist supporting an anabolic action of T on skeletal 

muscle.  T has been demonstrated to have a positive effect on muscle fractional protein 

synthesis (12;13), antagonizes the catabolic effects of glucocorticoids (14), and acts as an 

antagonist to the glucocorticoid receptor (15).  Though the effect of T on muscle protein 
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breakdown is less clear, evidence suggests that T reduces protein breakdown in vivo but 

not in vitro (16-18).  Another possible avenue by which T exerts its anabolic effects in 

muscle is the control of myonuclear addition via satellite cell activation.  Adult skeletal 

muscle is post-mitotic and is largely dependent on satellite cell activity for growth and 

repair.  T induces a dose-dependent increase in satellite cell number in the quadriceps 

muscle of elderly men (4) and increases in both satellite cell number and myonuclear 

count in the quadriceps of young men (19). T and its endogenous metabolite 

dihydrotestosterone (DHT) also increase in vitro C2C12 myoblast proliferation (20;21).  

Though the direct mechanism(s) responsible for these effects is unclear, it is believed that 

the majority of the anabolic effects of T are mediated via its interaction with the 

androgen-receptor (AR).   

The AR is a ligand-activated nuclear hormone receptor that acts as a transcription 

factor to regulate expression of androgen responsive genes.  Structurally, the AR consists 

of 3 functional domains; an amino-terminal transactivation domain (NTD), a central 

DNA binding domain, and a carboxy-terminal ligand binding domain (LBD).  Located 

within the NTD and LBD are two short motifs known as activation function 1 and 2 (AF1 

and AF2), respectively.  Upon binding ligand the NTD and LBD fold over to allow 

contact between AF1 and AF2, a process that appears to be critical for co-factor 

recruitment, receptor stabilization and efficient gene transcription of certain target gene 

promoters (22).  Variations within these motifs can result in altered receptor function 

(23;24).  The NTD also harbors binding sites for a variety of additional cofactors (25-27) 

and mutational deletions demonstrate that the region is required for full receptor 

transcriptional activation (28), hence its designation as the transactivation domain.  
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Consequently mutations or polymorphisms within the region can be postulated to have an 

effect on AR activity. 

The NTD harbors a polyglutamine repeat polymorphism that has been 

demonstrated to affect AR transcriptional activity, and has been associated with a number 

of androgen-related maladies including prostate cancer (29), prostate hypertrophy (30), 

and spinal bulbar muscular atrophy (31).  AR transcriptional activity decreases with 

increasing polyglutamine repeat length in the prostate carcinoma LNCaP cell line (32), as 

well as the African green monkey kidney CV-1 cell line (33).  Though well characterized 

in respect to prostate, the effect of AR polyglutamine length on skeletal muscle 

physiology is less clear; the only available data stemming from a handful of gene 

association studies.   Walsh et al. (34) examined AR CAG repeat length in relation to 

skeletal muscle, demonstrating that longer repeat length is correlated with greater fat-free 

mass in men.  Campbell et al. (35) reported that AR CAG repeat length was positively 

associated with fat-free mass in a subgroup of Kenyan men .  The data of Lapauw et al. 

(36) suggest that AR CAG repeat length modulates the effect of T on body composition 

in elderly men. However, taking into account data from previous studies where AR 

activity is inversely correlated with repeat length, one could hypothesize that AR repeat 

length would be inversely related to fat-free mass in human subjects.  Additionally, and 

in contrast to prior data where no association between serum testosterone and repeat 

length was found (37), Walsh et al. (34) reported that longer repeat length was associated 

with greater serum testosterone levels.  Given these conflicting data, further clarification 

on the role of AR polyglutamine repeat polymorphism in skeletal muscle physiology is 

required.   
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Purpose of the Study 

Testosterone has been demonstrated to be critical for the normal development and 

growth of skeletal muscle in human male subjects.  Testosterone is believed to exert its 

anabolic effects on skeletal muscle via the AR, as deletion of the AR results in severe 

disruption of skeletal muscle development in male rodents.  However, the mechanism by 

which testosterone signaling through the androgen receptor induces increases in muscle 

mass and strength are still largely unknown.  Additionally, evidence suggests that the 

response to androgen signaling is a heritable trait (38).  The AR polyglutamine repeat 

polymorphism has been demonstrated to influence AR transcriptional activity in non-

muscle tissue (32;33;39;40).  Though the effect of polyglutamine repeat length on AR 

transcriptional activity in skeletal muscle has not been addressed, a direct association of 

AR repeat length and lean body mass in humans has been demonstrated (34;35).   

Therefore, the purpose of this study was to elucidate the mechanisms by which AR repeat 

length may affect skeletal muscle mass in humans by: 

1) Determining the effect of polyglutamine repeat length on AR transcriptional 

activity in skeletal muscle myoblasts. 

2) Evaluating the effect of AR harboring short, medium, and long polyglutamine 

repeat lengths on the growth and differentiation of skeletal muscle myoblasts. 

3) Determining if AR repeat length affects the expression of select gene targets 

involved in normal skeletal muscle growth and development. 
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Specific Aims 

Our central hypothesis is that AR harboring a shorter polyglutamine repeat length 

will be more transcriptionally active in skeletal muscle cells, and will induce effects in 

these cells that are consistent with skeletal muscle hypertrophy in vivo, in comparison to 

AR harboring a longer polyglutamine repeat length. 

Specific Aim 1:  To determine if polyglutamine repeat length alters AR transcriptional 

activity in skeletal muscle cells in vitro. 

 H1:  Androgen receptor harboring 14 glutamine repeats (AR14) will be more 

transcriptionally active than AR harboring 24 glutamine repeats (AR24), which will be 

more transcriptionally active than AR harboring 33 glutamine repeats (AR33) when 

expressed in C2C12 myoblasts. 

 H2:  AR protein and mRNA expression will not differ between C2C12 cells 

expressing AR14, AR24 and AR33. 

Specific Aim 2:  To determine if the transcriptional differences determined in Specific 

Aim 1 are accompanied by differences in nuclear translocation. 

 H3:  AR14 will translocate to the nucleus to a greater extent than AR24 and AR33 

when treated with testosterone. 

Specific Aim 3:  To determine if AR polyglutamine repeat length affects the proliferation 

and differentiation of stably transfected C2C12 cells. 
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 H4:   AR14 cells will have a greater rate of proliferation thanAR24 and AR33 

cells when incubated in growth medium. 

 H5:  Once induced into differentiation, AR14 cells will have higher creatine 

kinase activity than AR24 and AR33 cells after 5 days of differentiation. 

Specific Aim 4:  To determine if the expression patterns of genes involved in myoblast 

determination, proliferation, and differentiation is altered by AR polyglutamine repeat 

length. 

 H6:  AR14 cells will display increased expression of myogenic genes in 

comparison to AR24 and AR33 cells. 

 H7:  AR14 will drive gene expression from selected myogenic gene promoters to 

a greater extent than AR24 and AR33. 
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Results 

AR Transcriptional Activity in C2C12 cells  

C2C12 murine myoblasts were transiently transfected with AR expression vectors 

harboring 14, 24, and 33 glutamine repeats, respectively.  Additionally, a firefly 

luciferase reporter vector driven by the probasin gene promoter and a Renilla luciferase 

normalization vector driven by the viral thymidine kinase promoter were transfected.  

Cells were treated with 100nM testosterone (T) or ethanol control for 24 hours before 

being assayed for luciferase activity.  In contrast to previous studies (32;33;39;40), we 

observed a positive relationship between AR repeat length and transcriptional activity in 

skeletal muscle tissue (figure 1a).  With T treatment AR33 had 43% greater 

transcriptional activity than AR24 (P<0.001), while AR14 had transcriptional activity 

more than 5-fold lower than AR24 (P<0.001).  Transcriptional activity of AR33 was 

more than 9-fold greater than AR14 (P<0.001).  AR33 and AR24 were significantly more 

active than AR14 even in the absence of testosterone, but were not significantly different 

from each other (P=0.201). Mock transfections carried out with a promoter-less reporter 

vector displayed minimal luciferase activity (data not shown).  A similar experiment was 

carried out in fully differentiated myotubes, where the data were similar apart from a 

lower ratio in AR24 cells (see Appendix, figure 15).  Interestingly, the ligand activation 

percentage (i.e. firefly/Renilla luciferase activity ratio in testosterone treated cells vs. the 

firefly/Renilla luciferase activity ratio in ethanol vehicle treated cells) was considerably 

higher for AR33 in comparison to AR14 and AR24, which were relatively similar (110% 

vs. 53.9% and 57.3%, respectively).  These data are supportive of a ligand-independent 



 

effect of glutamine repeat length on AR transcriptional activity

AR33 responds to testosterone to a greater degree than either AR14 or AR24

Figure 1: Effects of repeat length on AR transcriptional activity in C2C12 myoblasts.  
C2C12 cells were transiently 
24, and 33 CAG repeats, respectively, along with pPR
normalization vector and were treated with 100nM T or ethano
are expressed as the mean luciferase ratio
separate experiments (*p<0.001)
the average firefly/Renilla
luciferase ratio of ethanol treated cells.  (* p<0.001)
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: Effects of repeat length on AR transcriptional activity in C2C12 myoblasts.  
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ts, respectively, along with pPR-Luc reporter vector and pRL
normalization vector and were treated with 100nM T or ethanol vehicle for 24 hours.  Data 

the mean luciferase ratio, and bars represent the SE of 3 replicate
(*p<0.001).  (B) Ligand activation ratio was determined by dividing 

Renilla luciferase ratio of T treated cells by the average firefly/
luciferase ratio of ethanol treated cells.  (* p<0.001) 

, but also demonstrate that 
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: Effects of repeat length on AR transcriptional activity in C2C12 myoblasts.  (A) 
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AR Expression  

We investigated AR protein and AR mRNA expression in wild type (WT) and 

stably transfected C2C12 myoblasts (see Appendix, figure 14, for verification of 

transgene expression) and fully differentiated myotubes (5 days cultured in differentiation 

medium (DM)) with and without T to determine if the transcriptional differences 

observed were due to variable AR expression, as current data are not in agreement on this 

issue.  The data of Choong et al. (41) demonstrate a decrease in AR protein content with 

increasing repeat length, though in this case the repeat length was expanded into a range 

known to induce a pathological state of neurological degeneration (65 GLN residues) 

(42).  In contrast, neither Beilin et al. (32) nor Tut et al. (40) observed any significant 

differences in AR protein content with variable repeat lengths spanning 15-31 GLN 

residues, well within the normal physiological range (43).  Interestingly, both Beilin et al. 

and Tut et al. demonstrated a decrease in AR transcriptional activity with increasing 

length, while Choong et al. (41) did not observe such an effect.   

AR protein content was assayed using anti-AR PG-21 (Millipore) and standard 

Western Blot techniques (figure 2, A) as well as in situ immunostaining.  Nuclear and 

cytoplasmic protein fractions were isolated to determine AR nuclear localization.  Whole 

LNCaP cell protein extract was used as a positive control. Appreciable AR protein was 

only detected in the nuclear fraction of T treated AR14 myoblasts, with slight indications 

of AR protein in the nuclear fraction of WT C2C12 myoblasts, and in the nuclear fraction 

of T-treated AR14 myotubes.  Despite higher transcriptional activity, appreciable AR 

protein was not detected in AR24 nor AR33 cells under any conditions tested. In situ 

immunostaining did not reveal detectable AR protein in any of the cell lines (data not 
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shown). In contrast, AR mRNA expression in the stably transfected lines was readily 

detectable in myoblasts and throughout the differentiation process (figure 2, B and C), 

while AR mRNA expression was only apparent in WT cells 24 hours after switching to 

DM.  

AR mRNA (MT)B.

AR mRNA (MB)

- +

AR33

C2C12

AR14

AR24

AR33

GAPDH

GAPDH

GAPDH

GAPDH

Day 1

- + - + - +

Day 3 Day 5

GAPDH

AR

- + - +- +

AR24AR14C2C12

C.

- + - +- + - +

C N NC LNCaP

C2C12 AR14

MT

MB

MT

MB

AR33AR24

A. AR Protein

AR 

(110KD)

 

Figure 2 : (A) AR expression in WT and stably transfected C2C12 cells.  AR protein content 
was determined simultaneously in nuclear (n) and cytosolic (c) protein fractions of fully 
differentiated myotubes and proliferating myoblasts, respectively, via Western blot  
using anti-AR PG-21.  30µg of total protein was loaded into each well.   RT-PCR was 
performed on RNA extracted from myotubes after 24, 72, and 120 hours in DM (B) and 
from proliferating myoblasts (C). Cells were treated with ethanol (-) or 100nM T (+).  All 
images are representative of at least 3 independent experiments 
 

Rate of Proliferation 

Qualitative differences in proliferation rate between the lines stably transfected 

with AR were observed during normal culturing.  In order to better characterize these 



 

differences a colorimetric cellular pr

analysis revealed that there was no significant 

among any of the lines; testosterone treatment was therefor

analyses (see Appendix, figure 1

interaction of time and repeat length on cell 

there were greater numbers of both AR14 and 

No difference was observed between 

Likewise, no differences were apparent betwe

there were fewer AR33 cells in comparison to both AR14 and 

(P=0.001) and 20.3% (P<0.05)

Figure 3: AR repeat length influences C2C12 cell 
transfected and WT C2C12
Cell number was calculated by measuring formazan abso
were plotted on a standard curve derived from
of triplicates from 3 separate 
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a colorimetric cellular proliferation assay was performed (figure 3

here was no significant effect of testosterone on cell number

; testosterone treatment was therefore dropped in subsequent 

figure 17, for data with T included).  We observed

interaction of time and repeat length on cell number (P<0.001).  24 hours after plating

there were greater numbers of both AR14 and AR33 cells in comparison to WT (P<0.05)

nce was observed between AR24 cells and any of the other lines

Likewise, no differences were apparent between any of the lines on day 2.

there were fewer AR33 cells in comparison to both AR14 and AR24 cells, 25.7% 

(P=0.001) and 20.3% (P<0.05) fewer cells, respectively.   

: AR repeat length influences C2C12 cell proliferation.  Cell growth of the
transfected and WT C2C12 lines was measured using a colorimetric proliferation assay.  
Cell number was calculated by measuring formazan absorbance at 490nm and the data 

plotted on a standard curve derived from known cell densities.  Bars represent the SE 
3 separate experiments. 

 

figure 3). Initial 

osterone on cell number 

e dropped in subsequent 

We observed a significant 

0.001).  24 hours after plating 

in comparison to WT (P<0.05).  

AR24 cells and any of the other lines on day 1.  

en any of the lines on day 2.  By day 3 

AR24 cells, 25.7% 

 

proliferation.  Cell growth of the stably 
was measured using a colorimetric proliferation assay.  

rbance at 490nm and the data 
Bars represent the SE 
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Creatine Kinase Activity  

To determine if the altered AR transcriptional activity has an effect on myoblast 

differentiation, the CK activity of each cell line was assessed over 5 days of incubation in 

DM (figure 4).  Initial statistical analysis revealed a significant 3-way interaction of 

repeat length, length of incubation, and presence of testosterone (p<0.001).  However, 

due to the obvious impact of length of incubation (Day) on CK activity this main effect 

was removed from subsequent analysis and multiple 2-way ANOVAs were performed 

with drug and repeat length as main effects.  The overall effect of T was significant, 

increasing the CK activity in all lines by an average 4.46 units/µg protein across all 

conditions (p<0.001), which is in contrast to the previous assay where T had no effect on 

rate of proliferation.  After 24-hours of incubation CK activity was greatest in the AR33 

line; 30.9±1.2units/µg protein vs. 27.9±1.1, 26.1±1.4, and 22.8±1.7 in AR14, WT C2C12, 

and AR24 lines, respectively (p<0.05).  After 72 hours of incubation an interesting 

reversal occurred, with both AR24 and WT lines (50.3±1.0 and 47.4±1.0 units/µg protein; 

respectively) having significantly greater CK activity than AR33 and AR14 (39.6±1.4 

and 38.3±1.7; respectively), p<0.001.  After 120 hours of incubation the CK activity of 

the AR14 line was decreased vs. all other lines; 54.9±1.2 vs. 70.8±3.3, 68.3±0.9, and 

66.1±1.2 units/µg protein in AR33, AR24, and WT lines, respectively (p<0.001), whereas 

the AR33, AR24, and WT lines were not different from each other. 



 

Figure 4: Influence of AR repeat length on CK activity.  CK activity was assessed 
from whole cell lysates of each stably
 incubated in DM for up to 5 days in the presence of 100nM T
ethanol vehicle (-).  Bars represent the SE of duplicates from 3 independent experiments. 
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clustered nuclei.  Interestingly, the morphology of the AR14 line mimics tha

line of NFATC2-/- murine myoblasts
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clustered nuclei.  Interestingly, the morphology of the AR14 line mimics that seen in a 

.  A pattern similar to that at 72 hours was 



 

noted after 120 hours; however the AR33 line displayed an increased number of

myosin-positive cells with condensed nuclei and a round morphology in comparison to 

the 3 other lines. 

Figure 5: Representative image series from AR14 cells after 120 hours incubation 
in DM.  A) bright- field B) DAPI nuclear stain C) sarcomeric myosin
overlay of B+C 
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noted after 120 hours; however the AR33 line displayed an increased number of

positive cells with condensed nuclei and a round morphology in comparison to 

: Representative image series from AR14 cells after 120 hours incubation 
field B) DAPI nuclear stain C) sarcomeric myosin-FITC D) 

noted after 120 hours; however the AR33 line displayed an increased number of small, 

positive cells with condensed nuclei and a round morphology in comparison to 

 

: Representative image series from AR14 cells after 120 hours incubation  
FITC D)  



 

 

Figure 6: Immunohistochemical staining revealing differences in myotube development 
between the lines.  Green = sarcomeric myosin protein.  Blue = DAPI stained nuclei.  
Criteria for classification as a myotube included a myosin
of 3 myonuclei.  The above images are representative of a minimum of 5 fields per 
condition.  All images were captured using the 20x objective
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: Immunohistochemical staining revealing differences in myotube development 
between the lines.  Green = sarcomeric myosin protein.  Blue = DAPI stained nuclei.  
Criteria for classification as a myotube included a myosin-positive stain and a minimum 

yonuclei.  The above images are representative of a minimum of 5 fields per 
condition.  All images were captured using the 20x objective 

 

 

: Immunohistochemical staining revealing differences in myotube development 
between the lines.  Green = sarcomeric myosin protein.  Blue = DAPI stained nuclei.  

positive stain and a minimum  
yonuclei.  The above images are representative of a minimum of 5 fields per 



 

 Significant differences in protein content between the lines were also observed 

(figure 7).  After 1 day of differe

stable lines in comparison to WT

significantly greater protein content

differentiation significantly m

the WT line (p<0.001), while the AR33 line contained significantly less total protein than 

the WT line (p<0.001).  This data is in accordance with our proliferation data, where after 

3 days of incubation a significantly lower cell number was observed for the AR33 line in 

comparison to WT cells. 

treatment did not increase total protein 

Figure 7:  Total protein content in differentiating myotubes
difference from WT C2C12 
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Significant differences in protein content between the lines were also observed 

.  After 1 day of differentiation, total protein content was elevated in all three 

table lines in comparison to WT cells (p<0.001).  By the 3rd day only the AR14 line had 

significantly greater protein content in comparison to WT.  By the 5th day of 

differentiation significantly more protein was present in the AR14 line in comparison to 

the WT line (p<0.001), while the AR33 line contained significantly less total protein than 

This data is in accordance with our proliferation data, where after 

ation a significantly lower cell number was observed for the AR33 line in 

comparison to WT cells. Interestingly, and in contrast to the data of Chen et al. 

treatment did not increase total protein content under any condition tested.

rotein content in differentiating myotubes.  (*) indicates significant 
C2C12 at each respective time point (p<0.001) 

Significant differences in protein content between the lines were also observed 

ntiation, total protein content was elevated in all three 

day only the AR14 line had 

day of 

ore protein was present in the AR14 line in comparison to 
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This data is in accordance with our proliferation data, where after 

ation a significantly lower cell number was observed for the AR33 line in 

Interestingly, and in contrast to the data of Chen et al. (45), T 

content under any condition tested. 

 

indicates significant 
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Myonuclear Number and Myotube Fusion Index 

Fusion index (FI) is a relative estimate of the efficiency of myoblast fusion by 

determining the percentage of intra-myotube nuclei within a given field. The images 

captured above suggest that fusion in both AR14 and AR33 lines is impaired, and FI 

analysis supports this finding (figure 8a).  By 72 hours the FI of the AR24 line was 

highest at 42.8±3.8%, followed by WT at 31±2.5%.  FI of both the AR14 and AR33 lines 

was far lower; 11.8±2.3% and 13.1±3.8%, respectively (p<0.05). At 120 hours FI of the 

WT line was highest at 35.1±4.0%, followed by AR24 at 28.0±2.5, AR14 at 15.2±2.3, 

and AR33 at 9.8±2.2 (p<0.05).  

Very few myonuclei were present after 24 hours in any field examined (figure 

8b).  After 72 hours the average number of myonuclei per field was significantly reduced 

in both AR14 and AR33 cells: 6.5±1.3 and 6.2±1.6, respectively, vs. 23±3.1 and 28.3±2.7 

in WT and AR24 cells, respectively (p<0.001).  AR14 and AR33 lines were not different 

from each other. The same results were observed at 120 hours: 10.7±1.9 and 7.6±1.5 

myonuclei/field for AR14 and AR33 cells respectively, vs. 35.3±4.2 and 20.3±1.9 in WT 

and AR24 cells, respectively (p<0.001).   



 

Figure 8: Myotube fusion index
in AR14 and AR33 lines.  Myonuclei were identified as nuclei within cells that 
positive for myosin expression
mean ± SE of 10 fields (*p<0.05).
each respective time point
  

These quantitative differences were accompanied by qualitative differences as

well.  While the WT and AR24 lin

very distinct despite having similar fusion indices and average myonuclei number per 

field.  The low myonuclei

cells with sparse nuclei (see 
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yotube fusion index (a) and average myonuclei number per field
in AR14 and AR33 lines.  Myonuclei were identified as nuclei within cells that 
positive for myosin expression, and 2) contained at least 3 nuclei.  Data are expressed as 
mean ± SE of 10 fields (*p<0.05). (*) indicates significant difference from WT 
each respective time point. 

These quantitative differences were accompanied by qualitative differences as

and AR24 lines appeared similar, the AR14 and AR33 lines were 

having similar fusion indices and average myonuclei number per 

myonuclei numbers for the AR14 line were due to the highly elongated 

cells with sparse nuclei (see figures 5 and 6).  In contrast, the low myonuclei

 

per field (b) are reduced 
in AR14 and AR33 lines.  Myonuclei were identified as nuclei within cells that 1) stained 

contained at least 3 nuclei.  Data are expressed as 
WT C2C12 line at 

These quantitative differences were accompanied by qualitative differences as 

the AR14 and AR33 lines were 

having similar fusion indices and average myonuclei number per 

for the AR14 line were due to the highly elongated 

myonuclei numbers of 



 

the AR33 line appear to be largely due to the small size of the myotubes formed (

6), as unlike the AR14 line, AR33 myotubes 

seen in WT myotubes. 

Gene Expression 

RT-PCR analysis 

and in differentiating myotubes 

cDNA was used to analyze the gene expression patterns of AR14, AR24, 

as well as WT cells.  Qua

were found in differentiating myotubes

myoblasts (figure 10).  Of note is the delayed 

stably transfected lines, delayed myogenin 

altered NFATC2 expression

Figure 9: Myotube mRNA gene expression.  RT
from each line 24, 72, and 120 hours after switching to DM supplemented with either 
ethanol (-) or 100nM testosterone (+).  GAPDH was included as a reference gene.
images are representative of 
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pear to be largely due to the small size of the myotubes formed (

), as unlike the AR14 line, AR33 myotubes displayed the typical clustering of nuclei 

analysis was performed on RNA extracted from proliferating myoblasts 

myotubes 1, 3, and 5 days after switching to DM.  The resulting 

cDNA was used to analyze the gene expression patterns of AR14, AR24, 

cells.  Qualitative differences in the expression of several gene targets 

in differentiating myotubes (figure 9 and table 1) and in proliferating 

).  Of note is the delayed onset of myostatin expression

lines, delayed myogenin expression in AR24 and AR33 lines, and 

altered NFATC2 expression in the stable lines during the myoblast stage.

: Myotube mRNA gene expression.  RT-PCR was performed on RNA extracted 
line 24, 72, and 120 hours after switching to DM supplemented with either 

) or 100nM testosterone (+).  GAPDH was included as a reference gene.
images are representative of 3 separate experiments. 

pear to be largely due to the small size of the myotubes formed (figure 

clustering of nuclei 

was performed on RNA extracted from proliferating myoblasts 

after switching to DM.  The resulting 

cDNA was used to analyze the gene expression patterns of AR14, AR24, and AR33 lines 

differences in the expression of several gene targets 

) and in proliferating 

expression in all of the 

in AR24 and AR33 lines, and 

in the stable lines during the myoblast stage.   

 

PCR was performed on RNA extracted 
line 24, 72, and 120 hours after switching to DM supplemented with either 

) or 100nM testosterone (+).  GAPDH was included as a reference gene.  All 



 

Figure 10: Myoblast mRNA gene expression.  RT
extracted from cells harvested at ~75% confluency and after a 24 hour incubation 
with either ethanol (-) or 100nM testosterone (+).  GAPDH is included as a reference 
gene.  All images are representa
 

 

Table 1:  Summary of data collected from myotubes. (
increased in relation to WT C2C12
relation to WT line; (↔) indicates 
CK=creatine kinase activity
ACTA1=skeletal alpha actin, AR=androgen receptor, FI=fusion index 
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ast mRNA gene expression.  RT-PCR was performed on RNA 
extracted from cells harvested at ~75% confluency and after a 24 hour incubation 

) or 100nM testosterone (+).  GAPDH is included as a reference 
All images are representative of 3 separate experiments. 

:  Summary of data collected from myotubes. (↑) indicates characteristic is 
sed in relation to WT C2C12 line; (↓) indicates characteristic is decreased in 

↔) indicates no change in relation to WT line.   
activity , MYOG=myogenin, MSTN=myostatin,  

ACTA1=skeletal alpha actin, AR=androgen receptor, FI=fusion index  

PCR was performed on RNA  
extracted from cells harvested at ~75% confluency and after a 24 hour incubation  

) or 100nM testosterone (+).  GAPDH is included as a reference  

 

) indicates characteristic is  
decreased in  
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Discussion 

A key finding of our work is that AR transcriptional activity increases with 

increasing polyglutamine repeat length in C2C12 skeletal muscle myoblasts.  This 

contrasts with previous data demonstrating a decrease in AR transcriptional activity with 

increasing repeat length in prostate and kidney cells.  Our results were not due to greater 

AR protein content in cells transfected with AR harboring 33 repeats, as appreciable AR 

protein was observed only in cells transfected with AR harboring 14 repeats. However, 

AR mRNA expression was elevated in all of the transfected lines in comparison to WT 

C2C12 cells.  Another key finding of our work is that AR polyglutamine repeat length 

affects C2C12 myoblast proliferation and the development and morphology of myotubes.  

Striking morphological differences between the lines were apparent during 

differentiation, with the AR14 line developing into long, thin, sparsely nucleated 

myotubes and the AR33 line developing into truncated tubes with clustered nuclei.  Both 

lines displayed decreased myonuclear number and fusion index in comparison to WT 

C2C12 and AR24 cells.  Gene expression analysis indicates that these differences were 

accompanied by alterations in the expression profile of myogenin, myostatin, and 

NFATC2.  Overall our data indicate that AR polyglutamine length is directly associated 

with AR transcriptional activity in skeletal muscle, and induces alterations in the growth 

and development of skeletal muscle myoblasts. These factors may explain some of the 

heritability of skeletal muscle mass in human subjects. 
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Glutamine Repeat Length Alters AR Transcriptional Activity in C2C12 

Myoblasts 

This is the first study to examine the relationship of AR glutamine repeat length 

and transcriptional activity in skeletal muscle cells.   Previous studies have demonstrated 

that AR polyglutamine repeat length is inversely related to AR transcriptional activity in 

LNCaP cells, a highly differentiated prostate cancer line (32) and COS kidneys cells 

(32;40).  Another study demonstrated a 3-fold increase in transcriptional activity of both 

human and rat AR in kidney cells upon removal of the entire repeat region, as well as 

decreased transcriptional activity of AR with 49 and 77 repeats in comparison to AR with 

both 25 and 35 repeats. (33).  In contrast, repeat length did not have any effect on AR 

transcriptional activity in PC3 prostate cells,  MCF-7 breast adenocarcinoma cells, CV-1 

kidney cells or COS-1 kidney cells (32;41;46).   Nenonen et al. (39) reported that when 

corrected for AR protein content, AR harboring 22 repeats had higher transcriptional 

activity than AR harboring 16 and 28 repeats, respectively, in COS-1 cells. We have 

demonstrated that increasing the number of glutamine repeats within the AR increases 

transcriptional activity in C2C12 myoblasts.  Several factors may be contributing to these 

differing results.   

First, the AR repeat length variations in previous studies were not identical.  In 

the work of Beilin et al. (32), Nenonen et al. (39) and Tut et al. (40), repeat length varied 

from 15 to 31 residues, whereas our data was collected from AR vectors harboring 14, 

24, and 33 repeats, respectively.  These lengths are within the physiological range of 11-

31 in healthy individuals (43), whereas Choong et al. (41) used AR vectors harboring 0, 
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14, 23, 43, and 65 repeats, and Chamberlain et al. (33) used AR vectors harboring 0, 25, 

35, 49, and 77 repeats.  Expansion of the repeat beyond 40 residues has been 

demonstrated to induce the formation of AR protein aggregates and is also the range for 

the onset of symptoms of Spinal Bulbar Muscular Atrophy (SBMA) (47).  The formation 

of aggregates with expanded repeat lengths retards the translocation of receptor to the 

nucleus (48), effectively preventing or significantly reducing transcriptional activity, 

which could account for the decreased transcriptional activity reported by Chamberlain et 

al. with AR expression vectors harboring 49 and 77 repeats (33).  It is also worth 

mentioning that the authors reported no differences in transcriptional activity between the 

25 and 35 repeat vectors. Neuschmidt-Kaspar et al. (46) reported no differences in 

reporter gene activity between CV-1 cells transfected with WT AR and AR harboring 45 

repeats.  Choong et al. (41) did not report any differences in transcriptional activity 

between their AR constructs, but did report a significant decline in AR mRNA and AR 

protein content with increasing repeat length.  In contrast, our data is not indicative of a 

decline in AR mRNA with increasing repeat. Additionally, both Beilin et al. and Tut et 

al. reported no changes in AR protein with increasing repeat length.  The data of Choong 

et al. may be due to the fact that their “long” vectors contained far longer repeat lengths 

than our vectors or those of Beilin et al. and Tut et al, and the extended repeat length 

induced greater AR degradation and/or aggregate formation. 

The second potential major source of variation between the studies is the choice 

of reporter and normalization vectors. Both Chamberlain et al. (33) and Nenonen et al. 

(39) reported inter-assay differences in transcriptional activity when the reporter and 

normalization vectors, respectively, were changed.  The mouse mammary tumor virus 
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promoter (MMTV) (33;40;41), a HRE-triplet TATA minimal promoter (33), several 

ARE-TATA driven reporter constructs (46), PSA promoter ((39) and the probasin 

promoter (32), have all been used in similar studies.  The MMTV promoter is androgen 

responsive, but is also responsive to other nuclear hormone receptors, including 

glucocorticoid, mineralcorticoid, and progesterone receptors (49), making findings 

utilizing this promoter difficult to interpret.  Likewise, the minimal TATA promoter 

utilized by Chamberlain et al. uses 3-tandem general hormone response elements that are 

recognized by any of the class 1 nuclear hormone receptors.  The strength of a minimal 

promoter such as this can be far lower in comparison; in fact Chamberlain et al. reported 

significantly different reporter gene activity from the HRE/TATA promoter in contrast to 

the MMTV promoter.  Neuschmid-Kaspar et al. (46) used several promoter constructs 

driven by tandem AREs in conjunction with a TATA box sequence or the TK promoter.  

These constructs are relatively AR specific but also somewhat weaker than the MMTV 

promoter.  On the other hand, the probasin promoter is both highly androgen responsive 

and displays preferential activation by AR (50).  Though probasin is only expressed in 

prostate tissue, the promoter has been used effectively in studies of AR activity in a 

number of non-prostate tissues (22;32;51-54), indicating that the basal conditions 

required for activation of the probasin promoter are met in those tissues.  While no 

studies were found using the probasin promoter in the study of AR function in skeletal 

muscle, the AR specific co-activator four and a half LIM domain protein 2 (FHL2) has 

been demonstrated to be a strong co-activator of the probasin promoter in yeast (55), and 

FHL2 is expressed in C2C12 myoblasts (56).  Moreover, our results indicate that 

transcription from the probasin promoter can occur in skeletal muscle myoblasts.  The 
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relative AR specificity of the probasin promoter also has the benefit of reducing the 

potential for co-activation of the reporter construct by other nuclear hormone receptors.  

Given the differences in strength and specificity of these promoter constructs, the inter-

study transcriptional differences are not surprising.   

 Though data regarding AR repeat length and transcriptional activity are 

conflicting, ours is the first study to demonstrate a direct relationship between repeat 

length and transcriptional activity, and is also the first to examine AR repeat length in 

skeletal muscle tissue.  The mechanism by which AR transcriptional activity is positively 

affected by repeat length in skeletal muscle while the opposite appears to be true in 

prostate and kidney cells is unclear.  It is possible that alterations of the repeat length 

induce conformational changes in the AR NTD that enhance/suppress interactions with 

tissue-specific cofactors, leading to tissue-specific differences in transcriptional activity.  

For example, NTD-LBD interaction is required for the exposure of cofactor docking 

sites, and it is possible that the increased repeat length provides a stronger docking 

surface for cofactors specific to skeletal muscle.  There is also the potential that nuclear 

localization is increased with expanded repeat lengths.  NTD-LBD interaction is required 

for receptor activation in WT AR by allowing interaction of AF1 and AF2, stabilizing the 

ligand-binding pocket and exposing the nuclear localization signal (NLS) found in the 

hinge region (57).  Expansion of the glutamine repeat may result in increased exposure of 

the NLS, facilitated by muscle specific cofactor interactions, and induce nuclear 

translocation and transcriptional activation in skeletal muscle cells but not in non-muscle 

tissues.   



 

Figure 11:  Possible mechanism of ligand

activation. (A) AR with normal polyglutami

of events dimerizes, dissociates from binding proteins, receives post

modifications including phosphorylation, acetylation, and sumoylation, translocates to the 

nucleus, and binds to co-activators before initiating transcription of gene targets. (B)

Increased polyglutamine repeat length facilitates greater NTD

subsequent activation steps and transcriptional activity even in the absence of ligand.  Figure 

is modified from (58). 

Although we were unable to determine AR cellular localization 

immunohistochemically, t

and AR24 lines even in the absence of testosterone indicates ligand
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:  Possible mechanism of ligand-dependent vs. ligand independent AR transcriptional 

activation. (A) AR with normal polyglutamine repeat length  binds testosterone and in a series 

ciates from binding proteins, receives post-translational 

modifications including phosphorylation, acetylation, and sumoylation, translocates to the 

activators before initiating transcription of gene targets. (B)

amine repeat length facilitates greater NTD-LBD interaction enabling 

subsequent activation steps and transcriptional activity even in the absence of ligand.  Figure 

hough we were unable to determine AR cellular localization 

immunohistochemically, the fact that luciferase activity was elevated in both the AR33 

in the absence of testosterone indicates ligand-independent AR 

 

dependent vs. ligand independent AR transcriptional 

ne repeat length  binds testosterone and in a series 

translational 
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activators before initiating transcription of gene targets. (B) 

LBD interaction enabling 

subsequent activation steps and transcriptional activity even in the absence of ligand.  Figure 

elevated in both the AR33 

independent AR 
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translocation.  Our data also demonstrate that the differences in transcriptional activity 

between AR14 and AR24 are largely ligand-independent (though AR33 is activated by 

testosterone to a greater degree than AR14 or AR24; 110% vs. 53.9% and 57.3%, 

respectively), further supporting the possibility of increased ligand-independent nuclear 

localization with increased repeat length.  Again, it is unlikely that the difference in 

transcriptional activity we observed was due to increased AR protein content in the AR33 

and AR24 lines, as appreciable AR protein was only detectable in the AR14 line.   

Additionally, the data of Siriett et al. (59) indicate that myostatin may negatively 

regulate AR transcriptional activity.  Myostatin was demonstrated to suppress expression 

of the AR co-activator ARA70, which could effectively lower AR transcriptional activity.  

Though we did not assess ARA70 expression, our data revealed that the onset of 

myostatin expression in the stably transfected myotubes was delayed in a repeat length-

dependent manner. The delayed myostatin expression in AR24 and AR33 myotubes may 

allow for greater ARA70 expression and hence contribute to the higher AR 

transcriptional activity of these lines.  However, we were unable to detect any myostatin 

expression in myoblasts, so it is unlikely that the effects of myostatin were a contributing 

factor to the transcriptional differences between the lines while in a myoblast stage. 

Moreover, we did not examine the expression of other AR co-activators, so we cannot 

preclude the possibility that the absence/presence of such factors influenced our results.   

Clearly more work is required to further determine the mechanism driving these 

differences.  Though we have demonstrated a significant effect of AR repeat length on 

AR transcriptional activity, our data also indicate that AR repeat length affects the growth 

and differentiation of myoblasts in culture.  Discovering the mechanism(s) of these in 
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vitro differences is important if we hope to elucidate the impact of AR repeat length on 

skeletal muscle mass and strength in vivo. 

AR Protein Expression in Stably Transfected and Wild-Type C2C12 Cells 

Despite the significant differences in AR activity, we were only able to detect 

appreciable AR protein in testosterone-treated AR14 myoblasts.  All other cell lines and 

conditions tested displayed AR protein levels far below that of the AR-positive LNCaP 

cells, if in fact AR protein was detectable at all.  Our results are not atypical, as the 

results of studies investigating AR protein content in skeletal muscle cell culture have 

been equivocal.  Wannenes et al. (60) were able to detect AR protein in both proliferating 

C2C12 myoblasts and differentiating myotubes, and expression increased dose-

dependently with testosterone administration.  Lee et al. (61) detected AR protein in 

C2C12 myoblasts, and reported significant increases in AR protein when the cells were 

subjected to radial stretch.  In contrast, both Chen et al. (45) and Lee (62) were unable to 

detect any AR protein in C2C12 myoblasts. Altuwaijri et al. (63)  did not detect any AR 

protein in C2C12 myoblasts stably transfected with AR, though reported a slight increase 

AR protein in differentiating myotubes. However, all but one of these studies reported 

detectable AR mRNA in myoblasts with increased AR mRNA expression during 

differentiation.  We observed very low AR protein content in all but the nuclear fraction 

of testosterone-treated AR14 cells, with AR protein nearly undetectable in fully 

differentiated myotubes.  AR mRNA expression was low in WT C2C12 myoblasts, but 

increased after 24 hours of differentiation before dropping down again by 72 hours.  In 

contrast, AR mRNA expression was observed in each of the stably transfected lines while 



29 

 

in rapid proliferation and throughout differentiation.  Testosterone appeared to have little 

effect on AR mRNA expression in differentiating myotubes.   

It is curious that though both the AR and AR33 lines displayed increased 

transcriptional activity in comparison to AR14, AR protein content was undetectable in 

either line.  Several factors could potentially account for this discrepancy.  First, the 

antibody used (rabbit polyclonal PG-21) is raised against residues 1-21 of the human AR.  

The glutamine repeat region begins at residue 58, so it is possible that the extended length 

of the repeat region affects antibody binding, and that AR protein was actually higher 

than what we were able to detect.  It is also possible that the PG-21 antibody is just 

ineffective and that we did not get an accurate depiction of AR protein content. Secondly, 

though the 33 repeats present in our “long” AR construct are far fewer than the number 

known to induce aggregate formation and disease symptoms in vivo, it is not clear if this 

range is sufficient to induce aggregates or cytotoxic effects in skeletal muscle cells in 

vitro. If the AR33 protein is capable of inducing aggregate formation it is possible that 

antibody interactions would be disrupted, though AR protein aggregates would also likely 

reduce transcriptional activity, which our data does not support.   

An unaddressed issue is the effect of glutamine repeat length on AR translation.  

Protein folding can be affected by the rate of translation, and it is possible that repeat 

length has an effect on translation efficiency that induces AR protein misfolding, leading 

to increased degradation via the proteasome.  Our observation of increased AR mRNA in 

all of the stably transfected lines despite very low or undetectable AR protein content 

supports the possibility of reduced AR translation in C2C12 cells, regardless of repeat 

length.  
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Another possibility is the upregulation of an AR degradation mechanism, as 

several studies have demonstrated the presence of specific AR degradation complexes 

involving ubiquitination.  Ubiquitin polymers are attached to misfolded and/or defective 

proteins via a three-part enzyme complex which targets them to the 26S proteasome for 

degradation (64).  He et al. (65) demonstrated that the heat-shock protein 70 binding 

protein CHIP E3 ligase induces AR protein degradation in yeast by targeting ubiquitin 

polymers to the AR.  Likewise, Lin et al. (66) report that AR protein is targeted for 

degradation via ubiquitination in a phosphorylation-dependant manner by an AKT-Mdm2 

E3 ligase complex in prostate and kidney cells.  Rodriguez-Gonzalez et al. (67) reported 

similar ubiquitin-mediated AR degradation in prostate cells.   These studies demonstrate 

that a mechanism for degrading altered AR protein is functional in a number of cell types.  

Though we did not conduct any experiments intended to investigate this scenario, 

Lieberman et al. (68) reported that AR harboring 65 repeats was degraded via the 

ubiquitin-proteasome pathway to a far greater extent than WT AR in neuroblastoma cells. 

If the altered repeat length of our AR variants induced protein misfolding it is likely that 

ubiquitin-mediated AR degradation was also increased in our stable lines. 

  

AR Glutamine Repeat Length and C2C12 Cell Proliferation 

 To our knowledge no studies have addressed the effect of AR repeat length on the 

growth and proliferation of cells in vitro, though numerous studies have examined the 

effects of AR and androgen administration on skeletal muscle cell proliferation and the 

results have once again been equivocal.  We report that testosterone had no effect on cell 
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proliferation in any of the lines, indicating that the in vivo anabolic effect of androgens is 

not mediated by an increase in myoblast proliferation. This finding is consistent of the 

work of Chen et al. (45), where the treatment of C2C12 cells overexpressing the WT 

mouse AR with either DHT or testosterone had no effect on myoblast proliferation, and 

by Doumit et al. (69), where testosterone in doses up to 1uM had no effect on the 

proliferation of porcine myoblasts. In contrast,  Benjamin et al. reported increased  

proliferation of C2C12 myoblasts overexpressing WT AR when treated with 10nM 

testosterone (21). In addition, Diel et al. (20) reported a slight increase in the percentage 

of C2C12 myoblasts in S-phase when treated with 10nM DHT , and Kamanga-Solio et al. 

reported increased H3-thymidine incorporation in bovine myoblasts treated with up to 

10nM of the synthetic androgen trenbolone (70). Finally, Lee (62) actually reported a 

decrease in proliferation of C2C12 cells stably expressing WT AR when treated with 

10nM testosterone.   These conflicting data can be attributed to a number of factors such 

as intra-assay variability, sensitivity of the measurements, quality of the culture serum, 

cell line, level of transgene expression, and the inherent variability of cell culture 

experiments.  Our data demonstrating a lack of effect of testosterone on C2C12 cell 

proliferation is not particularly surprising considering that we were unable to detect 

significant AR protein content in all of our lines, and though limited, our gene expression 

analysis did not reveal testosterone-induced alterations that would indicate increased 

proliferation. Clearly work remains to be done in elucidating the effects of androgen 

signaling on skeletal muscle myoblast proliferation.   

Results from our cell proliferation experiments demonstrate that there were 

significantly fewer cells of the AR33 line than all of the other lines after 3 days of growth 
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(figure 3).  Morphologically, no differences between any of the lines were observed at 

any point during the proliferation phase (data not shown).  RT-PCR did not reveal any 

significant differences in the expression of p53, a cell cycle regulator and initiator of 

apoptosis, the contractile protein skeletal alpha-actin, the adhesion molecule m-cadherin, 

nor the myogenic regulatory factor myoD (figure 10).  Myostatin, a negative regulator of 

muscle growth, and the myogenic determination factor myogenin, were undetectable in 

any of the lines during proliferation.  However expression of the calcium-sensitive 

transcription factor NFATC2, a protein demonstrated to be important for the growth of 

nascent myotubes by regulating myoblast-myotube fusion (71), was significantly 

decreased in both AR14 and AR33 lines, indicating potential differences in myoblast 

fusion and/or myotube formation.  This conclusion was verified by immunohistochemical 

analysis. 
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AR Glutamine Repeat Length and C2C12 Cell Differentiation 

As was the case with cell proliferation, differences in rate of differentiation 

among cell lines were apparent.  In general, testosterone increased CK activity in all 

lines.  This finding is in agreement with the work of Benjamin et al. (21) and Diel et al. 

(20), where testosterone and DHT, respectively, increased CK activity over ethanol 

vehicle during myoblast differentiation, though conflicts with Chen et al. (45) where 

testosterone had no effect on CK activity in AR stably transfected C2C12 cells, and 

Doumit et al. (69) where testosterone had a suppressive effect on porcine myoblast 

differentiation.  In regards to our stably transfected lines, CK activity in the AR14 cells 

was significantly lower after 3 days and 5 days in comparison to C2C12 and AR24 cells.  

CK activity in the AR33 line was lower than both C2C12 and AR24 lines at 3 days, but 

was not significantly different at 5 days.  These data indicate that shorter AR repeat 

lengths attenuate the differentiation process.  The mechanism(s) behind these effects are 

partially elucidated by an examination of the expression patterns of genes involved in, or 

indicative of, the differentiation process, such as myogenin and myostatin. 

The secondary myogenic regulatory factor myogenin is only expressed in 

differentiating myotubes.  Not surprisingly myogenin expression increased in all lines 

with increasing time of incubation in differentiation media.  However, distinct myogenin 

expression profiles were apparent between the stably transfected lines.  Myogenin 

expression was detected in all lines after 24 hours in differentiation media, although 

expression was lower with increasing repeat length; C2C12>AR14>AR24>AR33.  At 72 

and 120 hours this difference had largely vanished; only AR24 cells at 72 hours 

expressed slightly ower levels of myogenin. However, the comparatively lower myogenin 
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expression in AR24 cells at 72 hours is not in accordance with comparatively higher CK 

activity at the same time point.   Despite decreased CK activity in both AR14 and AR33 

cells at 72 hours, myogenin expression at this time point was not different from C2C12 

control cells. Testosterone had a slight stimulatory effect on myogenin expression in 

AR24 and AR33 lines at 24 hours and in AR24 cells at 120 hours, though appeared to 

otherwise have little effect on myogenin expression.  Although no previously published 

data were found regarding  myogenin expression and AR repeat length, Wannenes et al. 

(60) demonstrated an increase in myogenin expression in differentiating C2C12 cells 

with the addition of 10nM testosterone.  This effect was abolished by the selective AR 

antagonist bicalutamide, indicating that the increase in myogenin was mediated via AR 

signaling.  Accordingly, Lee (62) demonstrated a modest increase in myogenin 

expression in C2C12 cells overexpressing AR when treated with 10nM testosterone, 

though this effect was not observed in WT C2C12 cells.   Though our data demonstrate 

only a very slight increase in myogenin with testosterone treatment at specific time points 

and in specific cell lines, the increased AR transcriptional activity of the AR24 and AR33 

lines appeared to delay the onset of myogenin expression in differentiating cells. 

Myostatin is a well know inhibitor of muscle cell proliferation and differentiation 

(72).  Interestingly, after 1 day of differentiation myostatin was only detected in WT 

C2C12 cells; none of the 3 stably transfected lines had appreciable myostatin expression 

(figure 9).   After 3 days of differentiation myostatin was detected in AR14 cells, but was 

still undetectable in AR24 and AR33 lines.  Only after 5 days in DM was myostatin 

mRNA observed in all lines.  These data suggest that transcriptionally active AR may 

delay the onset of myostatin expression in C2C12 cells.  However, the effect of 
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testosterone was conflicting.  There was a slight stimulation of myostatin at 3 and 5 days 

in C2C12 cells, and as well as in AR14 cells at 3 days.  In contrast, testosterone 

suppressed myostatin in AR33 cells at 5 days.  Once again, available literature on 

androgen regulation of myostatin expression in skeletal muscle is inconclusive.  Diel et 

al. (20) reported a biphasic effect of DHT on myostatin expression in C2C12.  Another 

paper by the same group reported increased myostatin in testosterone-treated rat 

gastrocnemius muscle (73). On the other hand, Mendler et al. (74) describe decreased 

myostatin protein expression in rat LA muscle after testosterone treatment.   Interestingly, 

the data of Siriett et al. (59) suggests myostatin negatively regulates AR transcriptional 

activity by inhibiting expression of the AR co-activator ARA70.  However, from our data 

it is not clear if transcriptionally active AR inhibits myostatin expression or if the reduced 

myostatin expression seen in AR24 and AR33 myotubes enables a more transcriptionally 

active AR.  The data of Diel et al. (20) demonstrate that myostatin expression in 

differentiating C2C12 cells follows a complex biphasic expression pattern.  We only 

tested samples from 1, 3 and 5 days post-switching to differentiation media and it is 

possible we may have detected more subtleties in the relationship between AR and 

myostatin with a more thorough data set. We did not evaluate the expression of ARA70, 

though a thorough comparison of ARA70 expression with that of AR and myostatin 

during differentiation may elucidate the relationship with more certainty. 
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AR Glutamine Repeat Length and C2C12 Myotube Development and 

Morphology 

The representative images in figure 6 highlight the striking morphological 

differences observed between each line during the differentiation process.  Though each 

line appeared very similar during the proliferation phase, both AR14 and AR33 cells 

adopted a highly irregular morphology soon after differentiation was initiated.  Both WT 

and AR24 lines formed very large, thick myotubes with large clusters of nuclei.  The thin, 

elongated, sparsely nucleated appearance of the AR14 line is very similar to that of 

NFATC2-/- cells described by Horsley et al. (44).  Though NFATC2 expression in the 

AR14 line was only slightly lower than WT cells during differentiation it was nearly 

undetectable during proliferation.  In addition, the AR14 line displayed a large number of 

myosin positive cells with fewer than 3 myonuclei (data not shown).  Both CK activity 

and myotube fusion index in AR14 cells were also significantly lower than WT and 

AR24 cells at 72 and 120 hours.   Myogenin expression was not significantly different 

from WT cells, though the onset of myostatin expression was delayed.  Collectively these 

data indicate that AR14 myoblasts proliferate more rapidly and begin the differentiation 

process sooner than either the AR24 or AR33 line.  Our conclusion is that the initial 

myoblast-myoblast fusion process occurs normally, but subsequent myonuclear addition 

is retarded.  As described by Pavlath and Horsley (71), NFATC2 appears to have a vital 

role in myotube-myoblast fusion as cells lacking functional NFATC2 display impaired 

myonuclear addition. Moreover, our AR14 myoblasts displayed markedly lower 

NFATC2 expression in comparison to both WT and AR24 lines, though the difference 

was very slight in myotubes. The mechanism by which NFATC2 alters myoblast fusion 
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has been hypothesized to occur downstream via the cytokine IL-4 (75), with NFATC2 

itself stimulated upstream by the prostaglandin PGF2α (76).  Though an examination 

with the program TFSEARCH did not reveal any ARE’s in the NFATC2 or IL-4 

promoters, we did not examine the expression or production of either IL4 or PGF2α and 

we cannot preclude a significant effect of transcriptionally active AR on their expression.  

Analysis of NFATC2 protein content and its phosphorylation status in each of the lines 

may provide additional information regarding the effect of AR transcriptional activity on 

NFATC2 expression and activation.  

In contrast to the AR14 line, the AR33 line formed very short, cylinder-like 

myotubes with clustered nuclei.  Incubation in DM also resulted in a large number of 

myosin-positive, mono-nucleated cells, and the number of dead and detached cells was 

far greater by day 5 than that of any other line (data not shown).  Like the AR14 line, 

both the average number of myonuclei per field and myotube fusion index were 

significantly lower in the AR33 line than either WT or AR24 lines.  NFATC2 expression 

was also drastically reduced in AR33 myoblasts in comparison to WT myoblasts, though 

like the AR14 line this difference was largely abolished in myotubes.  It is unclear if 

reduced NFATC2 expression in the AR33 line is responsible for the decreased FI and 

average myonuclei number per field  in differentiating myotubes, as the morphology of 

the AR33 line was not similar to the myotubes described by Horsley et al. (44), nor to 

that of the AR14 line.  On day 1 of differentiation expression of myogenin and myostatin 

was decreased in comparison to WT cells.  These data, in addition to significantly lower 

CK activity after 3 days in DM, indicate a decreased rate of differentiation in the AR33 

line, though differentiation of the AR33 line seems to have “caught up” to that of WT 



38 

 

cells after 5 days in DM.  CK activity of the AR33 line was not significantly lower than 

the WT line by day 5, though total protein content was significantly lower in comparison 

to all other lines. Though we did not conduct an extensive examination of cytotoxic or 

apoptotic mechanisms, the presence of comparatively larger numbers of “floaters” in the 

AR33 line as well as what can only be described as an unhealthy appearance during 

differentiation may be indicative of a toxic condition.  In addition, our proliferation data 

indicate that fewer cells of the AR33 line were present after 3 days incubation in GM, in 

comparison to WT cells.  Total protein content of the AR33 line was significantly lower 

after 5 days of differentiation in comparison to WT cells and immunohistochemical 

analysis indicates that fewer myosin-expressing AR33 cells are present after 5 days in 

DM, yet CK activity normalized to protein was not different from WT and markers of 

differentiation were not different after 5 days in DM.  These data suggest that despite the 

unusual appearance of the AR33 myoblasts, they are differentiating properly (if more 

slowly), yet fewer of them are present after 5 days.  It is possible that 33 glutamine 

repeats, though lower than the number known to induce cytotoxic effects in vivo, is 

sufficient to induce an apoptotic response in C2C12 cells when exposed to the low serum 

environment of differentiation media.   

Conclusions 

If we consider AR signaling to induce an anabolic effect in tissues where it is 

expressed, our data are supportive of the work of Walsh et al. (34), where a positive 

association between AR repeat length and lean body mass were found in 2 independent 

human cohorts.  In this case, the lower transcriptional activity demonstrated by our AR14 

variant in comparison to both the AR24 and AR33 lines could result in lower skeletal 
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muscle mass in vivo.  In addition, it has been reported that serum testosterone levels are 

significantly higher in men with longer AR glutamine repeat lengths (34;77).  Whether 

the increased lean body mass in men with longer repeat lengths reported by Walsh et al. 

and Campbell et al. (35) are due to higher transcriptional activity, as our in vitro data 

would suggest, or simply due to higher circulating androgen levels has not yet been 

determined.  However, our data also demonstrate that skeletal muscle myoblast gene 

expression is altered by AR repeat length is cells stably transfected with AR.  We 

observed that the onset of myostatin expression is delayed by AR with longer glutamine 

repeat length, indicating that myoblasts in human skeletal muscle harboring longer AR 

repeat lengths may take longer to exit the cell cycle, leading to greater numbers of 

skeletal muscle fibers in these individuals. Additionally, the decrease in NFATC2 

expression observed in our AR14 line provides a possible mechanism driving the 

formation of numerous thin, elongated myotubes with few myonuclei.  Decreased 

expression of NFATC2 in developing skeletal muscle harboring shorter AR repeat 

lengths may result in larger numbers of activated satellite cells that are defective in 

contributing additional myonuclei, leading to smaller myofibers with a more limited 

potential for hypertrophy.   

Overall, our data suggest several possible mechanisms that could lead to greater 

skeletal muscle mass in humans with longer AR glutamine repeats.  However, despite 

significant differences in AR transcriptional activity, we were unable to demonstrate 

appreciable AR protein in WT or stably transfected C2C12 myoblasts.  This inability is 

not uncommon in studies of AR action in skeletal muscle, and it is hard to argue that the 

anabolic effects of T in skeletal muscle are directly mediated via AR signaling when AR 
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protein cannot be detected. Though data exists supporting a direct effect of T on skeletal 

muscle cells in vitro, evidence that these effects are mediated via AR signaling in skeletal 

muscle is weak or largely non-existent.  Additionally, though the anabolic effects of T on 

skeletal muscle mass and strength in animal and human subjects are very well 

documented, large increases in mass and strength are generally dependent upon the 

combination of exogenous T and muscular overload.  Anecdotal reports from athletes 

suggest that exogenous T administration results in very rapid increases in force 

production, far more quickly that what could be expected from significant tissue 

remodeling.  As the AR is highly expressed in motor neurons and in the central nervous 

system (78;79) the possibility exists that the main action of T may in fact occur via AR 

signaling in neural tissue. An increase in AR-mediated neurotransmitter release, for 

example, could result in an increase in force production potential, thereby overloading the 

muscle and stimulating increased protein synthesis and remodeling via traditional 

mechanisms.  
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Future Experiments 

 

Given the results of our current data, several follow-up experiments would address some 

of our unanswered questions. 

1) Assess the relationship between AR glutamine repeat length and myofiber 

number/cross sectional area (CSA) in human skeletal muscle.  Our data suggest 

that NFATC2 expression is differentially regulated by AR repeat length, and that 

subsequent alterations to myofiber number and myofiber size may be observable 

in human skeletal muscle tissue.  Quadriceps muscle biopsies would be obtained 

from male subjects (AR is X-linked and male subjects remove the difficulty of 

accounting for X-chromosome silencing) with AR glutamine repeat lengths near 

the min/max of normal physiological range.  Samples would be fixed and stained 

with an anti-myosin heavy chain antibody and visualized using 

immunofluorescence.   Myofiber number per field would be determined by direct 

counting and fiber-CSA determined using the appropriate software. 

2) Conduct a comprehensive gene expression analysis using an Affymetrix and/or 

microarray approach on the biopsies obtained above. While we observed 

significant differences in several genes, our scope was very limited and it is likely 

differences in the expression of other genes involved in AR signaling and 

regulation were missed. 

3) Perform the same AR transcriptional activity experiments in additional non-

muscle cell lines. Though available data indicates a tissue-specific effect of 

glutamine repeat length on AR transcriptional activity, no single study has 
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demonstrated an opposite effect of long and short glutamine repeat lengths on AR 

transcriptional activity in different tissues.  We propose repeating our luciferase 

experiments in prostate (LNCaP, PC3), kidney (COS-1), cardiac muscle (HL-1), 

and breast (MCF-7) cell lines in addition to our C2C12 lines, and comparing the 

results among lines.  This experiment would provide powerful evidence for a 

tissue-specific regulation of AR transcriptional activity, if in fact such a 

mechanism exists. 

4) Assess the ability of the different AR constructs to drive luciferase expression 

from the NFATC2 and myostatin promoters.  These experiments would further 

strengthen our data suggesting that NFATC2 and myostatin expression are 

differentially regulated by AR with variable glutamine repeat length. 
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 Limitations 

1) Our study relied upon the use of cultured myoblasts.  While C2C12 cells are a 

very commonly used cell type in the study of muscle physiology, they are 

certainly not a perfect model.  While they do not accurately represent the 

characteristics of quiescent human satellite cells, they are a reasonable model of 

activated satellite cells in vivo. Access to human skeletal muscle tissue would 

have provided interesting options but was not feasible during the conduct of the 

present dissertation.   

2) Our study was limited to the use of AR constructs harboring repeat lengths within 

the typical physiological range.  While this range is certainly the most 

physiologically relevant, several studies have included repeat lengths far outside 

the normal range, and inclusion of these ranges in our study would have allowed 

us to compare our results to the previously published literature. 

3) We were unable to confirm our luciferase data from C2C12 cells in the LNCaP 

prostate cell line, for which the effect of AR repeat length on transcriptional 

activity has previously been reported, due to technical problems.  Demonstration 

of a tissue-specific effect of AR repeat length on transcriptional activity would 

have been very powerful. 

4) We were unable to test our hypothesis that AR nuclear translocation efficiency 

would be altered by glutamine repeat length.  We hypothesized that a greater 

affinity for nuclear import/reduced affinity for nuclear export could account for 

the transcriptional activity differences reported in previous studies, but we were 

unable to detect AR protein immunohistochemically.   
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5) Though we observed interesting differences between the lines in the expression of 

several genes, our analysis was limited in scope.  Microarray analysis may have 

uncovered additional differences that we missed with our experiments.    
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Review of Relevant Literature 

Introduction 

 The documented history of the use of testosterone as an ergogenic aid goes back 

to the late 1800’s, where extracts from dog testicles were used as a “rejuvenating” elixir 

(80).  It has also been suggested that Nazi Germany began administering the newly 

identified testosterone to soldiers in the 1930’s as a performance enhancer (81).  The 

muscle mass and strength enhancing effects of testosterone have been known to athletes 

for many years, though not until recent decades has the same consensus reached scientific 

circles.  What is also apparent is the fact that the individual response to androgen 

administration, even in tightly regulated clinical studies, is highly variable, suggesting 

that there is a genetic component involved (38).  This review will discuss in depth recent 

clinical studies demonstrating the anabolic effects of androgens in vivo.  In addition, 

though the anabolic potential of androgens is now well know, the mechanism by which 

these physiological effects are manifested is still a matter of great interest and 

uncertainty.  Included in this review is a look at the effects of androgens at the cellular 

level, including effects on protein balance and cellular growth and development.  It is 

believed that the majority of these physiological effects of androgens are mediated via the 

androgen receptor.  We will discuss data supporting this view, including an analysis of 

the structure and function of the androgen receptor itself, and possible interactions with 

other hormone systems.  Finally, this review will discuss the impact of genetic variation 

within the androgen receptor, and whether these variations could account for some of the 

heritability of skeletal muscle mass.  
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Clinical Effects of Androgen Administration  

 In recent years testosterone (T) administration has become a more accepted 

treatment for a variety of conditions affecting both young and aged men alike.  Though 

historically prescribed primarily for the treatment of anemia, hypoandrogenemia, and 

severe wasting conditions such as burn trauma and AIDS, T has gained favor as a 

treatment for muscle wasting and “anti-aging” (82;83). Due to the fact that T and its 

synthetic derivates have androgenic effects in addition to anabolic effects, that men have 

endogenous androgen levels in excess of 10-fold greater than those of women (84;85), 

and that women do not experience the steady decline in serum T seen in men (86), 

treatment of these conditions with T has been largely limited to men.  Following is a 

review of the current literature regarding androgen administration and its effects on 

skeletal muscle mass.  Until relatively recently the anabolic action of T on skeletal 

muscle mass was controversial.  Though athletes and bodybuilders in particular have 

been using T and its synthetic derivates since the 1960’s in order to increase their muscle 

mass and strength (81), many studies up until the mid 1990’s demonstrated little effect of 

T on fat-free mass. The disconnect between athletes, whom were keenly aware of the 

anabolic properties of androgens, and the scientific community can be attributed to study 

design. Variables such as nutritional status, daily activity, resistance training, androgen 

doses, baseline hormonal status, etc., that are not properly controlled can greatly 

influence results from studies designed to tease out potential anabolic effects of 

androgens. 
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Effect of Testosterone Replacement in Males with Hypogonadism     

Normal healthy males secrete between 4mg and 10mg of T/day, equating to 300-

1200ng/dL, though production begins to decline in the 5th decade of life, so that by the 

age of 65 the average man secretes ~4mg/day (87).  This decline is such that 20% of men 

aged 60 are considered hypogonadal (<10nM serum T), 30% by age 70, and 50% by age 

80 (88).  Interestingly this decrease in serum T closely mirrors the onset and progression 

of sarcopenia, or the loss of muscle mass and strength that occurs with aging (89). 

Hypogonadism is also associated with increased fat mass, decreased fat-free mass and 

decreased bone mineral density in comparison to aged-matched eugonadal men (8).  

Artificial suppression of endogenous T production in healthy young men via a 

gonadotropin releasing hormone agonist results in a condition similar to normal 

hypogonadism, including increases in fat mass and decreases in lean mass (90).  

Katznelson et al. (8) treated hypogonadal men with weekly 100mg intramuscular 

injections of the long-acting T enanthate for 18 months.  Using quantitative computed 

tomography, dual-energy X-ray absorptiometry and bioelectrical impedance, these men 

demonstrated a 14% decrease in total body fat, 13% decrease in subcutaneous fat, 7% 

increase in fat-free muscle mass, and 14% increase in trabecular bone mineral density.  

Another study administered 200mg T enanthate injections bi-weekly for 3 months to 

hypogonadal men, mean age 76, and though there was no measurable decrease in  body 

fat percentage, significant increases in total T and free T, as well as grip strength, were 

noted (91).  Bhasin et al. (92) also administered 100mg weekly T enanthate injections to 

hypogonadal men aged 19-47 years. These subjects gained an average 5kg of lean body 

mass measured by underwater weighing over a 10 week period and increased arm and leg 
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circumference measured by MRI.  Another method of T treatment involves the use of 

topical gel and transdermal patches.  Wang et al. (93) treated hypogonadal men aged 19-

68 with unesterified T via topical gel, designed to deliver 50mg or 100mg/day, 

respectively, as well as with transdermal T patches delivering 5mg T/day.  All subjects 

gained lean body mass, though the 100mg/day gel group had the greatest gains, 2.7kg vs. 

1.3kg and 1.2 in the 50mg/day gel and 5mg/day patch groups, respectively.  All subjects 

experienced increases in hematocrit levels, hemoglobin levels, and upper and lower body 

muscle strength, though only the 100mg/day gel group decreased body fat. These gains in 

muscle strength were achieved without any resistance training.   

Thus, and despite the absence of resistance training and/or dietary intervention, a 

100mg/week injection of a long-acting T preparation appears sufficient to stimulate 

changes in body composition in hypogonadal men.  A 100mg T enanthate injection in 

hypogonadal men increases serum T to ~1400ng/dL within 2 days, and serum levels 

decline to ~800ng/dL 7 days after administration (94).  This varies from slightly above, to 

right in the middle of the normal range.   Though effective,  T concentrations with patch 

treatment tend to be more variable than with injections, ranging from >250ng/dL to 

1000ng/dL with a patch designed to deliver 6mg T/day (95).  

Testosterone Administration in Men with HIV 

Severe weight loss and muscle wasting is a common occurrence in subjects 

afflicted with AIDS.  Approximately half of men with advanced stage AIDS are also 

hypogonadal (96) and those afflicted by AIDS lose a proportionally greater amount of 

lean body mass (97), therefore T replacement has become common among AIDS 
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patients. In one randomized, double-blind study men (mean age 42 years) afflicted with 

HIV-induced muscle wasting whom were also androgen-deficient were treated with 

300mg T enanthate injections every 3 weeks for 6 months (98).  Compared to age-

matched placebo control subjects, men treated with T gained lean body mass (2.0kg vs. -

0.6kg) and reported feeling better with a higher quality of life.  In another double-blind 

randomized study, 49 HIV-infected men with significant weight loss were assigned to 4 

treatment groups; placebo, T alone, resistance training alone (RE), or T plus exercise 

(TRE) (3).  T treatment groups received 100mg weekly T injections for 16 weeks, while 

the RE and TRE groups underwent a resistance training program for 16 weeks. The 

placebo subjects did not change in any measures, but T, RE, and TRE groups 

demonstrated improvements in muscle strength in all 5 exercises tested (17-28%, 29-

36%, and 10-32%, respectively), though the TRE group was not significantly different 

than either single intervention.  T, RE, and TRE groups all increased lean body mass 

(2.9kg, 2.0kg, 1.6kg, respectively), though the TRE group did not differ significantly than 

either single intervention.  All three treatment groups experienced increases in thigh 

muscle volume (40cm3, 62cm3, and 44cm3, respectively) though again the TRE group did 

not show gains greater than either treatment alone.    

Effects of Supraphysiological Testosterone Doses on Healthy Subjects 

The goal of T replacement therapy for hypogonadal men is simply to return serum 

T levels to the 300-1200ng/dL range.  Though returning hypogonadal men to the normal 

range of serum T levels does induce changes in body composition, it does not result in 

lean mass gains exceeding the level seen in normal, healthy, eugonadal subjects.  Athletes 

and bodybuilders using exogenous T or other synthetic androgens generally administer 
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doses in great excess of those required to return hypogonadal men to the normal range.  

In one survey 50% of androgen users reported administering 500mg of T per week or 

more (99), and in another survey of competitive athletes 25% reported administering 

1000mg of T per week or more (100).  Though these subjects are likely to be an extreme 

example, it is also likely that “recreational” users will administer more than simply 

replacement doses of T.  It is therefore important to understand the effects of 

supraphysiological doses of T on otherwise healthy subjects.  Additionally, many studies 

examining the effects of T on lean body mass fail to mimic the dietary regimens or 

resistance training protocols followed by athletes.  Likewise, in order to accurately assess 

the effects of T on body mass in human subjects, studies must provide the appropriate 

dietary and training conditions. 

One of the first and to date most comprehensive studies to examine the effects of 

supraphysiological amounts of T on healthy human subjects was done by Bhasin et al. (7) 

in 1996.  Forty men aged 19-40 were assigned to one of 4 treatment groups and evaluated 

over 10 weeks: placebo, testosterone (T), exercise (E), and testosterone plus exercise 

(TE).   T treatment consisted of 600mg intramuscular injection per week, and exercise 

consisted of a free-weight program of semi-progressive overload.  Dietary intake was 

monitored for total calories, protein, and vitamin/mineral content.  Fat-free mass 

(underwater weighing), muscle size (MRI), and muscle strength (1-rep max) were 

assessed, as well as hormone levels and full blood chemistry at various time points.  The 

T, E, and TE groups increased fat-free mass by 3.2kg, 1.9kg, and 6.1kg, respectively, 

while body fat did not increase significantly in any group.  Muscle size of the triceps and 

quadriceps increased significantly in both T and TE groups, and bench press and squat 
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strength increased in T, E, and TE groups (figure 11).  LH, FSH, and SHBG were all 

suppressed in T and TE groups.  Total cholesterol and LDL did not change in any of the 

groups, though interesting HDL did decrease in the E group.  PSA levels did not change 

in any group, and digital prostate examination did not reveal any abnormalities. 

 

Figure 12: Changes in Fat-free mass, muscle area, squat strength, and bench press 
strength.  Adapted from (7) 

 

Despite the lack of a true progressive overload exercise program and a diet 

providing relatively low levels of protein and calories, T induced significant changes in 
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muscle area, lean mass and muscle strength, and these effects were greatly enhanced by 

exercise training.   

In another study of 39 healthy men aged 18-35 (101), subjects were administered 

from 25mg to 600mg of T in weekly intramuscular injections for 20 weeks, in 

conjunction with a GnRH agonist to suppress endogenous T production. No other 

interventions were performed. Muscle volume (MRI) changes ranged from -4ml in the 

group receiving 25mg injections, to +48ml in the group receiving 600mg injections.  

Significant changes in muscle fiber type size (distinguished immunohistochemically via 

MHCII antibody) occurred in the subjects receiving 300mg and 600mg injections.  Type I 

fiber size increased ~1000um2 and ~1650um2 in the 300mg and 600mg groups, 

respectively.  Type II fibers increased ~1470um2 in the 600mg group.  Fiber type 

proportion did not change significantly for either group.  Type I fiber myonuclear number 

increased in 300mg and 600mg groups (+0.7 and +0.8myonuclei/fiber, respectively), and 

type II fiber myonuclear number increased only in the 600mg group (+1.3 

myonuclei/fiber). Measurements of body weight or lean mass were not made, yet despite 

a lack of resistance training clear improvements in muscle volume and individual muscle 

fiber size were demonstrated with a minimum 300mg weekly intramuscular injection. 

In another set of experiments conducted by the same research group, young (6) 

and aged (11) men, aged 19-35 and 60-75 years respectively, with normal T levels were 

treated with graded, supraphysiological doses of T ranging from 25mg to 600mg for 20 

weeks in order to determine any differences in T responsiveness between the young and 

the aged.  Subjects were prohibited from engaging in any intensive resistance or 

endurance training and were instructed to follow a diet standardized for total calorie and 
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protein content.  Body composition and muscle volume were determined as in (7) , 

muscle strength via 1-rep maximum leg press, and T, free T, LH, FSH, and hemoglobin 

via radioimmunoassay (RIA).  T, free T and hemoglobin increased to a greater extent in 

the elderly in comparison to the young at doses of 125, 300, and 600mg, likely due to 

reduced T clearance in the elderly.  Fat-free mass increased similarly in both young and 

elderly, was correlated with T dose and was not significantly different between groups.  

Fat mass decreased in the young and elderly, and the decrements were inversely 

correlated with T dose.  Leg press strength increased in direct correlation to T dose, but 

did not differ between young and elderly.  Both young and elderly men experienced 

increases in PSA level and decreases in HDL, though there was no significant effect of 

age for either.  Older men did experience greater incidence of high hematocrit values 

(greater than 54%). 

The above experiments demonstrate that testosterone is capable of inducing 

increases in lean mass and muscle strength as well as simultaneous decreases in fat mass 

in both young and aged subjects.  These effects are observable without resistance 

training, but are enhanced by the combination of T and resistance exercise.  Detrimental 

side effects include decreases in HDL levels and increases in PSA values. Elderly 

subjects run the risk, at doses in excess of 300mg/week, of hematocrit values exceeding 

the recommended range (>54%).  Though none of these studies address the mechanism 

by which T induces increases in lean body mass and strength, the anabolic actions of T 

on skeletal muscle have become widely accepted.   
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Heritability of Serum Androgen Levels and the Response to Exogenous 

Administration 

 From a clinical perspective serum androgen levels are a concern not only for the 

aging male, but also for young men and women.  As discussed above, the decline in T 

that occurs with aging is associated with decreased bone mineral density, increased fat 

mass, and decreased muscle mass.  Low serum T is also associated with an increased risk 

of beta amyloid formation and Alzheimer’s Disease-like neuropathology (102).  In 

contrast, elevated androgen levels and androgen replacement are associated with an 

increased libido in both men and women (103-105).  It is also of clinical relevance that 

serum androgen/T level appears to be a largely heritable trait.  In analysis of 532 subjects 

from the National Heart, Lung, and Blood Institute Twin Study, genetic factors accounted 

for ~57% of the variation in T levels (10) in male twins.  Another study by Meikle and 

Bishop (106) found that of 75 monozygotic and 88 dizygotic male twins, genetic factors 

accounted for 63% of the variation in serum T levels.   Similar results were reported by 

Hong et al. (107) and by Bogaert et al. (108), whom found genetic factors accounted for 

69% and 65% of variability in serum T levels .   

Though the heritability of serum hormone levels is well characterized there is also 

evidence, albeit not as concrete, suggesting that the magnitude of response to exogenous 

androgen treatment may be a heritable trait.  In a survey of competitive athletes and 

bodybuilders, Evans (99) reported the exogenous androgen regimes utilized during 

different phases of competition. Despite similar experiences and competitive aspirations, 
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subjects reported highly variable doses and drug combinations, suggesting a variable 

individual response to exogenous androgens. In a study of the responsiveness of older vs. 

young men to T administration, Bhasin et al. (11) report high standard deviations in 

respect to changes in muscle mass, though the authors do not address this variability in 

discussion. Another study by the same group investigating the T dose-response 

relationships in young men demonstrated high standard deviations in a number of 

variables, including fat-free mass, leg strength, and muscle volume (6).  Choi et al. 

administered T to HIV-infected women and demonstrated a high standard deviation with 

regard to changes in lean mass (0.7kg±0.4kg) or fat mass (0.3kg±0.7kg) in the T treated 

groups (109).   In 262 HIV-infected men treated with the synthetic androgen 

oxandrolone,  changes in body weight were highly variable (1.1 +/- 2.7, 1.8 +/- 3.9, 2.8 

+/- 3.3) in men receiving 20, 40, and 80mg daily, respectively (110).   A longitudinal 

study by Krithivas et al. (111) found that the decline in serum testosterone that occurs 

with aging is correlated with CAG repeat length within the androgen receptor, a finding 

supported by Walsh et al (34) where cross-sectional analysis revealed a positive 

association of serum testosterone and increasing CAG repeat length. 

It is difficult to discern the inter-individual differences in the response to 

androgen administration from the literature as most studies do not provide data from each 

individual subject, leaving standard deviation/standard error as the only available 

measure.  Only one study was found that acknowledged inter-individual differences in 

androgen responsiveness and attempted to directly identify predictors of response to 

androgen administration.  Woodhouse et al. (38) review and highlight these inter-study 

differences, and conducted their own study with 54 healthy men receiving graded doses 
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of T over 20 weeks.  A wide range of independent variables such as subject age, height, 

weight, BMI, lean mass, leg strength, leg fatigue resistance, fiber type, fiber area, serum 

and free T, SHBG, LH, FSH, IGF-1, IGFBP-3, lipid profile, PSA, and T dose were 

examined.  Univariate and multivariate analysis revealed that testosterone dose was most 

highly correlated with changes in fat-free mass, and that a 3-way interaction of dose, 

subject age, and PSA level could explain 67% of the variability in response to T.  

Androgen receptor polymorphisms were also examined, including the polyglutamine 

repeat in exon 1, but found only weak correlations between AR polyglutamine repeat 

length and changes in lean body mass. This is in contrast to the data of Walsh et al. (34), 

where statistically significant, though perhaps physiologically minor, associations were 

found between polyglutamine repeat length and lean body mass as well as in serum T 

levels.  Woodhouse et al. (38) do not explain how subjects were grouped in regards to 

polyglutamine repeat length nor do they provide mean repeat numbers, but they do 

acknowledge that genetic variation could account for a significant percentage of the 

difference in androgen responsiveness.  Nonetheless, the above studies provide support to 

reports from athletes that significant differences exist in the inter-individual response to 

exogenous androgen treatment.  

Mechanisms of the Anabolic Actions of Testosterone on Skeletal Muscle 

 Though the clinical effects of T have been well established, the cellular and 

molecular mechanism(s) by which T exerts its anabolic effect on skeletal muscle tissue 

are less clear.  Skeletal muscle adapts to overload and other damaging stimuli primarily 

by increasing the size of existing muscle fibers, or in more rare cases (such as severe 

injury) by the formation of additional muscle fibers.  Evidence suggests that T affects 
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both of these processes.  However, many early studies of T action in animal models used 

the very highly androgen responsive levator ani muscle.  Though a skeletal muscle, this 

tissue is abnormal in that it expresses much higher levels of the androgen receptor (AR) 

than other skeletal muscle (112) , and is more sensitive to the actions of testosterone and 

synthetic androgens than other skeletal muscle (113;114).  It is also constructive to 

highlight differences in gene expression between the LA and other skeletal muscle.  For 

instance, the synthetic androgen fluoxymesterone greatly increased skeletal alpha actin 

mRNA expression in rat LA muscle but had no effect on skeletal alpha actin mRNA 

expression in gastrocnemius muscle (115).  It is therefore important to consider the data 

from studies using the levator ani muscle carefully, as these results may not be entirely 

applicable to other skeletal muscles.  

Influences of Testosterone on Skeletal Muscle Protein Balance 

 Evidence of T’s positive effects on protein synthesis has been apparent for some 

time.  In animal studies, Grigsby et al. (116) demonstrated increased uptake of H3-leucine 

into myofibrillar proteins of the semitendinosus muscle of rabbits treated with T implants 

for 15 days, when compared to untreated control animals.  Rogozkin (117) determined 

that male rats treated with the synthetic androgen methandrostanolone had increased 

levels of myofibrillar and sarcoplasmic protein, via C14-leucine incorporation.  In 

humans, Griggs et al. (118) administered 3mg/kg of T to healthy men for 12 weeks.  

Protein synthesis measured by C13-leucine incorporation in quadriceps muscle increased a 

mean 27%, where total body protein synthesis did not change significantly.  In elderly 

hypogondal men T replacement increased fractional protein synthesis a mean 57%, 

measured by C13-leucine infusion (2).  Similar increases were seen in elderly men with 
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low-normal serum T levels (119).  On the short term, Ferrando et al. (13) using a rather 

complex method of quadriceps muscle biopsy and arteriovenous sampling measuring 

labeled, mixed amino acid uptake, demonstrated that a single 200mg T injection to 

healthy men increased fractional protein synthetic rate from 1.6%/day to 3.35%/day after 

5 days, while fractional protein breakdown was unchanged.  Using similar methodology, 

Sheffield-Moore et al. (120)  administered 15mg/day of the synthetic androgen 

oxandrolone to healthy men for 5 days and found that fractional protein synthesis 

increased from 1.38%/day to 1.96%/day, with no change in the rate of protein 

breakdown.  In both cases (13;120) it was calculated that androgen treatment 

significantly increased the rate of intracellular amino acid reutilization.  On the other 

hand, suppression of endogenous T production has the opposite effect. Though skeletal 

muscle protein synthesis was not measured, healthy young men treated with a GnRH 

agonist demonstrated near complete suppression of serum T (mean 535ng/dL to 31ng/dL 

after 10 weeks), and a concomitant 13% decrease in whole body protein synthesis 

measured via C13-leucine disposal (90).  Though the effects of T on muscle protein 

degradation are less clear, Ferrando et al. (121) administered T at 200mg/wk to severe 

burn victims, a condition characterized by extreme tissue wasting. Though protein 

synthesis was unchanged (likely due to an already very high rate of protein synthesis in 

compensation for the severe tissue damage), protein breakdown was decreased nearly 

200%.  At the cellular level, Zhao et al. (122) determined that in C2C12 myoblasts 

expression of the proteolytic muscle atrophy factor MAFbx is heavily suppressed by T.  

Although in two distinct studies T and synthetic androgens do not appear sufficient to 

suppress the proteolytic and catabolic conditions induced by dexamethasone treatment in 



59 

 

C2C12 myoblasts (123) nor L6 myoblasts (124), these results may be attributed to the 

doses of dexamethasone and testosterone (10:1 ratio) used, and the fact that protein was 

isolated without the expressed use of protease inhibitors. 

Effects of Testosterone on Myogenic Cell Activity 

In recent years T has been demonstrated to have an effect on adult skeletal muscle 

satellite cells in vivo as well as cultured myoblasts in vitro. The satellite cell, first 

described by Mauro (125), is a mononucleated cell that lies under or within the basal 

lamina of a mature myofiber.  These cells are normally held in a quiescent state with 

minimal levels of protein synthesis or expression of myogenic genes.  They become 

activated in the presence of stimuli resulting from muscle damage or mechanical stress 

(126), move outside the basal lamina and begin to co-express the myogenic determination 

factor MyoD and paired-box transcription factor Pax7 (127).  The activated satellite cells, 

now myoblasts, can then be followed into two separate factions.  Most commence 

multiple rounds of cell division, lose Pax7 expression, initiate expression of contractile 

and other muscle proteins, differentiate,  and either fuse to existing myofibers or fuse 

together with other myoblasts to form new myofibers.  A small percentage of the 

activated satellite cell population will continue to proliferate and express Pax7, but will 

down regulate MyoD expression and return to a quiescent state, repopulating the satellite 

cell pool (128).   

Recent evidence has demonstrated that T has an effect on satellite cell activation 

and cycling.  In a series of experiments, Joubert and Tobin (129-131) demonstrated that T 

induces an increase in satellite cell number and myonuclei number, detectible by 
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morphological observation, within 3 days of treatment.  All of these experiments were 

conducted on the LA muscle however, so the results must be interpreted with caution.  

Nnodim (132) determined that satellite cell number in the denervated LA muscle of 

castrated rats was increased 2-fold in animals treated with T, suggesting that T has a 

powerful effect on satellite cell proliferation in response to denervation.  Doumit et al. 

(69) determined that the proliferation of porcine myoblasts was not affected by T, but that 

differentiation was slowed ~20% by T after 4 days of treatment.  Kadi et al. (133) 

acquired biopsies from the trapezius and quadriceps muscles of 17 elite-level 

powerlifters, 9 or whom had a history of anabolic steroid use, and 6 untrained subjects.  

Those with a history of steroid use had a significantly higher myonuclear number in both 

muscles in comparison to non-user powerlifters and the untrained subjects.  In addition, 

Powers and Florini (134) reported a ~25% increase in H3-thymidine labeling in the nuclei 

of rat L6 myoblasts treated with T, indicating a stimulation of DNA replication.  

Interestingly, this effect was not apparent in cells treated with dihydrotestosterone, 

indicating a that testosterone alone may be responsible for the actions of androgens on 

skeletal muscle. In a clinical study of healthy young men, T induced a dose-dependent 

increase in satellite cell number and myonuclear number in quadriceps muscle after 20 

weeks of treatment with 300mg and 600mg/week of T enanthate (19).  In another similar 

study by the same group (4), 300mg/week of T for 20 weeks increased satellite cell 

number in quadriceps muscle of elderly men.  Interestingly, T at 300mg/week (the only 

dose where gene expression was tested) increased the number of satellite cells expressing 

Notch, and the number of satellite cells expressing myogenin. This indicates that T may 

increase both proliferation and differentiation of satellite cells in vivo. This is in 
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agreement with the findings of Diel et al. (20), whom demonstrated via cell flow 

cytometry and creatine kinase activity that androgens (T, DHT, or tetrahydragestrinone 

(THG)) significantly increase the rate of proliferation and differentiation of mouse 

C2C12 myoblasts.  There were also accompanying changes in gene expression; 

androgens increased the Pax7 and myostatin expression in a time-dependant manner 

during differentiation.  Lee (62) examined the effects of T on C2C12 cells transfected 

with an AR expression plasmid.  In normal C2C12 cells, treatment with 10nM 

testosterone had no effect on proliferation, determined via formazan production. However 

proliferation in AR-transfected cells was decreased ~50% by T in comparison to control 

cells when grown in low serum media (3% FBS).  T did not affect proliferation of AR-

transfected cells when grown in high serum media (15% FBS).  Myogenin expression 

was also slightly increased in AR-transfected cells when treated with T, and 

morphological examination revealed increased fusion in T-treated cells grown in 

differentiation conditions.  In contrast, Chen et al. (45) examined the effect of T on 

normal C2C12 cells and those transfected with an AR expression vector.  They reported 

no change in proliferation or differentiation for either cell line when treated with 100nM 

DHT, but did report a ~20% increase in protein content of differentiated myotubes. 

These conflicting results can be attributed to a number of factors.  First, studies 

looking at the effects of androgens using the LA muscle must be interpreted carefully, as 

the LA muscle is abnormally androgen responsive and may not adequately model the 

response of other skeletal muscles to androgens.  Secondly, in human studies one must be 

aware of the subject’s history both in terms of training and potential androgen use, both 

of which may skew the muscular responses to androgen treatment.  Third, cultured 
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myoblasts studied in vitro are not a true representation of satellite cells in vivo.  Though 

they are the activated descendants of satellite cells, differences in the culture environment 

and in gene expression make inferring results from studies of myoblasts to satellite cells 

in vivo difficult at best.  Inter-batch differences in the growth serum (which contains 

androgens) could significantly affect the results of such studies. Lastly, the use of 

different androgens and doses may contribute to the observed differences.  Skeletal 

muscle does not express detectable levels of 5-alpha reductase (135), the enzyme that 

converts T into DHT.  In vivo exposure of skeletal muscle to DHT is likely very low; 

therefore stimulation of muscle cells with DHT in culture likely does not represent a 

physiological situation.  

There is also evidence suggesting that androgens may influence the fate of 

another type of myogenic precursor cell, the pluripotent mesenchymal stem cell.   C3H 

10T1/2 cells are mouse pluripotent fibroblasts that have the capacity to differentiate into 

muscle, fat, bone, and cartilage tissue when exposed to the proper stimuli (136;137).  

Singh et al. (138) treated C3H10T1/2 cells with increasing doses of T and DHT (3-

300nM and 1-30nM, respectively) in order to assess the ability of androgens to drive the 

fibroblasts into the myogenic lineage and inhibit adipogenic differentiation.  Under basal 

conditions 10T1/2 fibroblasts expressed undetectable levels of AR, but expression was 

increased dose dependently in response to androgen treatment. Both T and DHT 

increased the expression of myosin heavy chain slow and MyoD in a dose dependent 

manner (measured via Western blot and RT-PCR), and the number of MHC+ cells after 

12 days of incubation (immunohistochemistry).  Both compounds also reduced the 

number of adipocytes formed (determined via oil-red-O) and the expression of 
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transcription factors required for adipogenic differentiation, PPARγ2 and C/EBPα (via 

Western Blot and RT-PCR).  All of the effects of T and DHT were blocked by the AR 

antagonist bicalutamide, suggesting the pro-myogenic and anti-adipogenic effects are 

mediated via the AR.   Though T did appear to induce a greater proportion of 10T1/2 

cells into the myogenic lineage, differentiation of CH310T1/2 fibroblasts into the 

myogenic lineage has so far only been achieved in vitro when the cells are pre-treated 

with the demethylating agent 5-azacytidine or when transfected with MyoD.  It is 

undetermined if T is capable of inducing pluripontent fibroblasts to enter the myogenic 

lineage in vivo, though the above study does provide an intriguing potential mechanism 

for the effects of T on body composition.   

Structure and Function of the Androgen Receptor 

 T and its reduced metabolite DHT are the main endogenous ligands for the 

androgen receptor (AR).  The AR is a nuclear hormone receptor that functions as a 

transcription factor to initiate transcription of certain target genes.  The majority of the 

effects of T are thought to be mediated via its interaction with the AR, though there is 

evidence that non-AR mediated pathways may contribute to the physiological actions of 

T. The AR-mediated effects of T are initiated upon binding to cytoplasmic AR, which in 

turn initiates a cascade of events resulting in transcription of AR responsive gene targets.  

Unbound AR resides primarily within the cytoplasm where it is associated with several 

molecular chaperones including heat shock proteins 40, 70 and 90 (139;140), that help 

keep the AR in an inactive state.  Upon binding of androgen, the chaperone proteins 

disassociate and the receptor changes conformation to allow contact between 2 receptor 

domains and to expose surfaces containing signals for nuclear localization (141).  The 
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AR receives further post-translational modifications (142) and co-factor recruitment 

including the p160 family, p300-CBP family, AR associated co-activator 70 (ARA70) , 

steroid receptor co-activator 1 (SRC), and transcription initiation factor 2 (TIF2) (27;143-

145) to name a few.  The AR is then recruited to specific DNA sequences known as 

androgen response elements (AREs) where, when complexed with cellular transcriptional 

machinery, it initiates transcription of androgen responsive gene targets.  The AR is a 

protein of 920 residues with 3 main functional domains; an amino-terminal domain 

(NTD, residues 1-555) that contains sequences vital for transcriptional activation and 

cofactor binding, a DNA-binding domain (DBD, residues 556-624) that regulates the 

binding of the AR to specific sequences in the promoters of target genes, a small hinge 

region (residues 625-670), and a ligand-binding domain (LBD, residues 671-919) that is 

responsible for interaction with free androgens (140).    

AR Amino-Terminal Domain and Transcriptional Activation 

Though nuclear hormone receptors display a high level of conservation in their 

DBDs, this is certainly not the case for the NTDs, which displays only ~15% sequence 

homology (146) between the AR, glucocorticoid receptor (GR), mineralcorticoid (MR) 

and progesterone (PR) receptors.  The NTD is also referred to as the transactivation 

domain due to the presence of 2 regions (the first being highly conserved) required for 

full receptor activation. These sites serve as binding sites for additional cofactors that 

facilitate interaction of sequences in the LBD with the NTD in an androgen dependant 

fashion.   
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The NTD activation functions were identified when Jenster et al. (147) created a 

series of deletion mutants from wild-type human AR and a constitutively active human 

AR.  The researchers showed that a large portion of the NTD is required (residues 1-485) 

for transcriptional activity in wild-type AR, though the constitutively active form only 

required a 168-bp segment designated transcription activation unit 1 (TAU1).  

Chamberlain et al. (28) inserted a series of point mutations/deletions into the rat AR and 

determined that deletion of a 14-bp segment (part of the larger TAU1 segment) 

designated AF1a, resulted in loss of ~60% of AR transcriptional activity.  Simultaneous 

deletion of a 65-bp segment, designated AF1b, resulted in loss of >90% of AR 

transcriptional activity.  Callewaert et al. (148) later identified several overlapping 

functional motifs (residues 177-203) within TAU1 that serve as recognition sequences of 

a number of co-activators.  A highly conserved 13-bp sequence (residues 234-247) 

downstream of the TAU1 core region was shown by He et al. (149) to form the binding 

site for the E3 ligase CHIP, which has the effect of increasing AR protein degradation.  

Alen et al. (27) determined that the AF1a region interacts with the co-activator p160, 

which in turn interacts with sequences in AF2 within the LBD.  Bevan et al. (144) 

confirmed these data by demonstrating that the co-activator SRC1 interacts with AF1a 

motifs and recruits the NTD to AF2 in the LBD in an androgen dependant manner. 

Meanwhile deletion of a glutamine rich region of SRC1 that interacts with AF1a 

abolished AR transcriptional activity, while deletion of the LXXLL motif within SRC1 

had no effect on AR activity.  He et al (150) later demonstrated that AF2 forms 

overlapping binding sites for the FXXLF and  LXXLL motifs common in p160 co-

activators.  Though interaction of AF1a and AF2 induced at least in part via p160 co-
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activator binding appears to be required for AR transcriptional activity, additional factors 

appear to be important, as deletion of the FXXLF motifs within the p160 co-activators 

ARA70 and ARA55 prevents AF2 binding but does not significantly reduce AR 

transcriptional activity (151).  This may be due to effects of beta-catenin, which has 

multiple binding sites for the p160 co-activators TIF2 and GRIP1 as well as binding sites 

for AF2.  Data from Song and Gelmann (152) indicates that beta-catenin forms a 3-way 

complex with AR AF2 and TIF2 in CV-1 cells, such that over-expression of beta-catenin 

was capable of partially rescuing transcriptional activity of a mutant AR lacking almost 

the entire NTD.  Incidentally, beta-catenin expression is increased in cases of prostate 

cancer (153). 

Because the FXXLF and LXXLL binding motifs in AF2 are so weak, yet p160-

coactivator binding is essential for full AR activity, another transcription activation unit, 

TAU5 (residues 361-490) residing within the NTD is thought to be the main p160 

interacting domain (144).  TAU5 also harbors a WXXLF motif that itself was 

demonstrated by Dehm et al. (154) to alter AR transcriptional activity.  In LNCaP cells 

grown in the presence of androgens the motif has the function of repressing AR activity, 

though the motif enhances ligand-independent AR activity in ADI cells, suggesting a 

possible tissue-specific regulatory role of this motif.  As with TAU1,  deletional mutants 

show that TAU5 is required for full AR transcriptional activity in COS-7 monkey kidney 

cells (155).  Finally, a recently discovered endogenous variant lacking the entire NTD 

was demonstrated to have greatly reduced transcriptional activity, and when expressed 

simultaneously with wildtype AR was demonstrated to reduce AR transcriptional activity 

by forming a heterodimer with the WT receptor (156).  This indicates that while the 
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various motifs and sub-domains of the NTD are important, full AR activity is generally 

only possible in vivo when the entire NTD is present. 

 Given the poor level of sequence conservation, the presence of numerous cofactor 

binding sites, and core motifs demonstrated to be required for NTD-LBD interaction, the 

AR NTD is considered to be the primary regulatory site of AR function.  Mutations or 

alterations within this region, such as the NTD polyglutamine repeat which we will 

discuss shortly, are likely to have a considerable impact on AR function. 

AR DNA Binding Domain and Androgen Response Elements 

 The AR DBD in approximately 80 residues in length and comprises all of exons 2 

and 3.  There is a high degree of evolutionary conservation in the DBD of AR, GR, PR, 

and MR, such that each consists of 2 zinc-finger domains where each zinc atom stabilizes 

4 cysteine residues (157).  In dimerized receptors these motifs recognize and bind to 

inverted repeats of the sequence TGTTCT, known as a steroid hormone response element 

(HRE), with each repeat separated by 3 nucleotides (49).  The exception to the TGTTCT 

motif is the estrogen receptor, which instead recognizes a TGACCT motif, and has so far 

shown minimal interaction with the other HREs (158).  These inverted repeats are very 

sensitive, such that a single point mutation within the sequence severely reduces binding 

affinity (159), and several natural mutations to the sequence result in complete clinical 

androgen insensitivity syndrome in humans (160).  Though the TGTTCT sequence is 

recognized by AR, GR, PR, MR, and is found within the promoters of genes know to be 

responsive to each respective hormone, there are slight variations of the consensus 

sequence that are AR specific.  Rennie et al. (50) identified 2 regions within the rat 
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probasin gene which were selective for AR and which induced reporter gene activation in 

PC3 cells to a far greater degree in the presence of AR rather than GR or PR.  Cleutjens 

et al. (161) discovered an AR specific response element in an enhancer region upstream 

of the PSA promoter, and deletion of this element completely abolished PSA promoter 

activity in LNCaP cells.  Zhou et al. (162) conducted random binding assays using an AR 

DNA-binding domain fusion protein and identified an overlapping direct repeat of the 

TGTTCT core motif with high AR specificity in CV-1 cells.  Most selective AREs have 

been identified as imperfect direct repeats of the TGTTCT core motif, rather than the 

inverted repeat sequence common to non-selective HREs (163) (figure 12). 

 

Figure 13: Image adapted from (163) demonstrating a HRE sequence recognized by all class 

I nuclear hormone receptors (clARE) and an androgen receptor-selective ARE (selARE). 
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The selective AREs are also very sensitive to sequence variation.   Verrijdt et al 

(164) introduced point mutations within the core ARE of the mouse sex-limited protein 

enhancer, and demonstrated that an A to T switch completely abolished AR selectivity of 

the enhancer.  Though the HREs and specific AREs are helpful tools to aid in the 

identification of potential androgen responsive genes, there are cases where genes can be 

responsive to androgen treatment despite a lack of general or specific AREs.  Using a 

luciferase expression vector driven by the skeletal alpha-actin (ACTA1) gene promoter, 

Vlahopoulos et al. (165) demonstrated that androgen treatment increased gene expression 

~90 fold in C2C12 cells transfected with human AR.  They also demonstrated that AR 

was associating with the ACTA1 promoter via an interface with serum response factor 

(SRF), a ubiquitous transcription factor that recognizes DNA binding elements known as 

serum response elements and acts like a docking protein for a variety of proteins and 

transcription factors (166).  This data precludes one from thinking only of AREs when 

considering the possibility of androgen regulation of target genes, and provides an 

additional layer of complexity in determining AR function. 

 

AR Ligand Binding Domain 

 The main function of the AR LBD is, of course, the binding of ligand.  Among 

nuclear hormone receptors the LBD is partially conserved, with some regions being 

nearly identical while others are highly variable (167).  Though structures vary, the 

process of ligand activation is similar among receptors.  In the case of AR, upon binding 
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to androgen the ligand binding pocket closes to expose the previously mentioned 

activation function 2 (AF2) (168).  AF2 forms a docking interface for a number of co-

activators including the p160 family and CBP/p300 family, and the ability of AF2 to 

interact with AF1 within the NTD, either directly or via interfacing with p160 co-

activators, is essential for stabilizing the ligand binding pocket (169).  Surprisingly given 

current crystallography techniques there appears to be little difference in the 

conformational shifts induced by ligands despite their variable structures (170). However, 

Askew et al. (171) demonstrated that DHT stabilizes the ligand binding pocket to a 

greater extent than T, which could account for the increased potency of DHT in prostate 

tissue.  Despite the designation of AF2 and the LBD hydrophobic cleft as important 

domains for ligand interaction, there is evidence of other LBD surface motifs affecting 

AR activation.  Estebanez-Perpin et al. (172) in an attempt to identify novel AR 

antagonists, identified a surface motif dubbed BF3 that when bound by the novel 

inhibitors abolished the recruitment of co-activators to AF2.  Mutations to BF3 had the 

ability to block AF2 activity and AR activation.  This is the first evidence suggesting a 

strong regulatory region within the LBD and independent of AF2, that can affect AR 

activity. Surprisingly, differences in the physiological effects of various AR 

agonists/antagonists have not been directly studied to any degree, but they likely result 

from differential pharmacokinetics, co-factor recruitment, metabolism, and potentially 

non-AR mediated effects. 

 The LBD may also harbor a novel nuclear exportation signal domain.  Saporita et 

al. (173) identified a region (residues 742-817, approximately) of the LBD that is 

responsible for AR nuclear export in PC3 cells.  The nuclear export signal (NES) is 
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repressed in the presence of ligand, but overwhelms the nuclear import signal located in 

the DBD in the absence of ligand.  This is a significant finding as cellular localization 

plays an important role in the transcriptional activity of most nuclear hormone receptors.  

Kesler et al. (174) demonstrated that AR localization is highly transient in PC3 and COS-

7 cells even in the presence of androgen, but that forced localization of AR to the 

cytoplasm or nucleus by the fusion of localization motifs was sufficient to initiate or 

repress AR transcriptional activity independently of the presence of androgens .  The 

work of Farla et al. (175) also indicates that the NES identified by Saporita et al. may be 

involved in the “turning off” of the AR, as mutant AR lacking the entire LBD 

demonstrated increased nuclear localization and higher transcriptional activity when 

expressed in Hep3B hepatoma cells.      

Another notable characteristic of the AR LBD is the high number of point 

mutations identified that severely disrupt or completely abolish AR transcriptional 

activity.  The majority of clinically identified point mutations in the region result in 

complete or partially androgen insensitivity syndrome, a condition where despite normal 

levels of androgen receptor and elevated levels of serum androgens, subjects have 

severely reduced or abolished AR transcriptional activity.  Another interesting and 

particularly well studied mutation is the T→A shift at residue 877.  This site is interesting 

as it alters the normal pharmacodynamics of many AR agonists/antagonists.  Ligand 

binding and disassociation, as well as transactivation studies, conducted by Ozers et al. 

(176) determined that the potency of most AR agonists was increased by the T→A shift, 

however the ability of several well-known antagonists such as hydroxyflutamide to block 

co-factor recruitment and AR transcriptional activity was disrupted.  In fact the T877A 
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mutation resulted in hydroxyflutamide as well as cyproterone acetate increasing AR 

transcriptional activity.  Southwell et al. (153) found that the T877A mutation induced 

greater sensitivity of AF2 for the LXXLL and FXXLF motifs found in the p160 co-

activators.  Consequently this mutation is very common in cases of androgen-independent 

prostate cancer.  Many individuals with prostate cancer are placed on androgen-

deprivation therapy, including treatment with AR antagonists such as flutamide.  The 

T877A mutation not only removes the oppressive effect of flutamide on AR activity, it 

actually induces flutamide and other AR antagonists to stimulate AR activity, which can 

have disastrous consequences for prostate cancer.  

AR Hinge Region 

 The final major domain of the AR is the so-called hinge region, as small flexible 

linker sequence that connects the DBD to the LBD.  Its primary feature is the nuclear 

import signal (NIS) motif (residues 617-633) identified by Zhou et al. (57).  Though the 

hinge region is poorly conserved among nuclear hormone receptors, it contains the NIS 

for GR, PR, MR, and AR.  Deletion of this region abolishes nuclear import while deletion 

of either the NTD or LBD, respectively, induces the receptor to be preferentially located 

in the nucleus independent of the presence of androgens.  Interestingly, though it would 

appear that elimination of the NIS would negatively affect AR transcriptional activity; 

this does not appear to be the case. Haelens et al. (177) tested the functional significance 

of 2 point mutations (R629Q, and K630T) located within the AR NIS and reported to be 

found in cases of human prostate cancer (178).  The researchers deleted residues 628-646 

of the hinge region and found that transcriptional activity was increased in the mutant AR 

in comparison to WT AR.  Other than the presence of the NIS, comparatively little is 
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known of the function of the hinge region.  Additionally, little is known of the transport 

proteins and/or co-activators that are involved in mediating the nuclear localization 

signaled by the NIS.  More work is required to elucidate the mechanisms of AR nuclear 

import and export. 
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AR Signaling and the Anabolic Effects of Testosterone on Skeletal 
Muscle 

 It is widely accepted that T administration results in increases in skeletal muscle 

mass and strength, especially in conjunction with resistance training and/or mechanical 

stress.  What is not known is how these effects are mediated. 

AR Expression in Skeletal Muscle   

Expression levels of the AR in select tissues could be perceived as an indicator of 

its relative importance to the normal growth and maintenance of those tissues.  

Surprisingly, available data on AR expression in skeletal muscle is somewhat equivocal. 

Several studies have examined AR expression in muscle cell culture.  Doumit et al. (69) 

identified the presence of AR protein via Western Blot using anti-AR PG-21 in cultured 

porcine myoblasts.  In proliferating C2C12 myoblasts, Wannenes et al. (60) were able to 

detect low levels of AR mRNA, with levels increasing significantly over 5 days of 

differentiation in low serum media.  AR protein, measured by Western Blot using anti-

AR N-20 was also detectable in both myoblasts and myotubes, increased dose-

dependently by T.  In contrast, Lee (62) was unable to detect any AR protein in C2C12 

myoblasts, and contrary to data in vivo, treatment with T did not increase AR expression 

and no AR transcriptional activity was detected. Chen et al. (45) reported similar results 

from another study of C2C12 cells.  RT-PCR detected low levels of AR mRNA in C2C12 

myoblasts (<0.1% of that found in gastrocnemius lysate), with slightly increased AR 

mRNA in differentiated myotubes.  AR protein expression, determined via Western Blot 

using anti-AR PG-21, was undetectable in C2C12 cells.  Ruizveld de Winter et al. (179) 

conducted an immunohistochemical analysis of AR expression in a variety of human 
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tissues using a mouse monoclonal antibody targeted against residues 301-320 of the 

human AR.  AR protein was not detected in the skeletal muscle tissue, though the authors 

do not specify which skeletal muscle was examined.  In contrast, Ferrando et al. (180) 

were able to detect AR protein in quadriceps muscle lysate from healthy men using an 

unspecified anti-human AR antibody.  Maclean et al. (181) found that AR mRNA 

expression was variable within the skeletal muscles of male mice, with gastrocnemius 

levels being significantly higher than TA or EDL, and much higher than the slow-twitch 

soleus.  However, all hind limb muscles expressed far less AR mRNA than the LA 

muscle, further evidence that studies of AR function using the LA muscle must be 

interpreted with caution.   Lee et al. (61) examined AR protein expression in rat plantaris 

muscle subjected to functional overload and/or the synthetic androgen nandrolone.  

Baseline AR protein, determined via Western Blot using the N20 anti-AR antibody, was 

low but detectable.  However, expression increased significantly in response to both 

overload and androgen treatment.  This increased mRNA expression in response to 

overload was also demonstrated by Willoughby et al. (182), where AR mRNA and 

protein increased in the quadriceps after 3 bouts of resistance training.  Finally, Sinha-

Hikim et al. (183) et al examined AR expression in the quadriceps muscle of healthy 

young men at baseline and after treatment with 600mg of T for 20 weeks.  Muscle 

sections were stained with anti-CD34 antibody, anti-syndecan-4 (stains myogenic cells) 

and anti-AR N-20.  The authors claim that AR staining was localized to the satellite cells 

and largely to the nuclei of mature muscle fibers, but that T increased nuclear AR 

staining ~25%.  “Enriched” cultures of human satellite cells (obtained commercially) 

were also examined for AR protein expression, and all cells that stained positive for C-
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met (satellite cell marker) also stained strongly for AR.  This work by the laboratory of 

Shalender Bhasin is the first to show apparently strong AR protein expression in satellite 

cells.  It is somewhat curious that quiescent cells would demonstrate such high levels of 

AR expression, and certainly warrants further study into AR expression in skeletal 

muscle. 

Again data supporting AR expression in skeletal muscle is not completely in 

agreement.  This may be due to differences in study design.  First, the use of satellite cells 

is problematic due to their highly transient nature (i.e. transition into myoblasts) in vitro.  

The use of myoblasts in culture, while considered an appropriate method of studying 

skeletal muscle in vitro, does not approximate the conditions of mature skeletal muscle in 

vivo, and may not accurately reflect conditions of the androgen system in vivo.  Second, 

the presence of AR mRNA does not necessarily mean AR protein is being expressed. In 

fact many studies do demonstrate the presence of AR mRNA in skeletal muscle under 

basal conditions, but AR protein appears to be expressed in comparatively smaller 

amounts.  This could be partially due to available AR antibodies, as 

immunohistochemical and immunoblotting techniques are limited by the quality of the 

antibodies in use.    

Another point to consider regarding AR expression in muscle is that fact that 

androgen treatment results in significantly increased AR protein content.  This effect is 

almost universally demonstrated in studies of androgen action where AR protein is in fact 

detectable (20;60;61;69;120;133;183;184), and is likely due to the strong AREs within 

the AR gene promoter (159).   It also provides a mechanism for the effects of 

supraphysiological effects of T.  Work by the Bhasin group, as well as anecdotal 
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evidence from athletes, has demonstrated that exogenous doses of T far exceeding 

saturation of the AR continue to increase gains in muscle mass and strength.  This 

suggests that T can potentiate its own effects on muscle by positively regulating AR 

protein expression in a feed-forward mechanism. 

 

AR Knockout, Genetic Mutation, and Pharmacological Repression 

Another factor to consider is the data available from cases of pharmacological AR 

repression or genetic defects in AR expression.  Maclean et al. (181) studied the effects 

of AR deficiency on a line of transgenic AR-knockout (ARKO) mice.  Male ARKO mice 

had ~12% reduced bodyweight in comparison to WT males.  The mass of all hind limb 

muscles was significantly reduced in ARKO males, ~20% in all muscles.  ARKO males 

also had significantly lower tetanic force in the fast-twitch EDL muscle, though no 

change in specific force, indicating loss of force was due to a loss in mass.  No 

differences in tetanic force were observed in the soleus muscle.   Hormone analysis 

revealed ARKO males had lowered T levels, but no changes in IGF-1.  Incidentally, 

similar effects to those seen in the ARKO males were observed in orchidectomized male 

mice in a previous study by the same group (185), and in that study T replacement 

abolished the decreases in muscle size and force.  Additionally, ARKO females displayed 

no apparent physiological differences from WT females, indicating that while androgen 

signaling is important in males, it is either redundant or not required for normal muscle 

development in females.   
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There are a rather large number of known mutations within the AR gene that 

severely affect the normal function of the AR and result a number of symptoms.  Most of 

these mutations result in an inhibited response to androgens and are broadly defined as 

androgen insensitivity syndrome (AIS).  Most men with AIS (which is largely limited to 

males due the fact that the AR gene is located on the X-chromosome) have non-functional 

AR protein or lack it altogether, though generally have greater than normal serum T 

levels (186).  The most obviously and common effects of AIS are hypovirilization, or 

underdeveloped urogenital organs and secondary sexual characteristics, infertility, and 

decreased muscle and bone mass.   

 Lastly but importantly, many studies examining T and skeletal muscle report that 

co-treatment with an AR antagonist such as flutamide or bicalutamide largely repress any 

effects induced by T or other synthetic androgens (20;32;138), as well as muscle mass 

and strength gains induced by resistance training (187).  Such compounds are AR-

specific and block AR transcriptional activity.  The ability of selective AR antagonists to 

suppress the physiological effects of T indicates that the AR plays an important role in 

mediating the function/s of T. 

Androgen Interaction with other Nuclear Hormone Systems 

 While evidence suggests that many of the effects androgens have on skeletal 

muscle is mediated via the AR, there are distinct mechanisms by which androgens can 

affect skeletal muscle that do not involve traditional AR signaling. 

 As discussed previously, nuclear hormone receptors share a certain degree of 

homology in their recognition of hormone response elements.  Early studies of AR 
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binding before the discovery of specific AREs often focused on GREs due to the 

sequence similarity.  This sequence similarity between AR and GR response elements 

suggests a degree of interaction between AR and GR signaling.  Though other nuclear 

hormone receptors have not been shown to bind to specific AREs, a mechanism 

hypothesized to be due to the imperfect direct repeat nature of the core TCTTGT 

sequence present in selective AREs (188), AR can interact with other HREs.  Takai et al. 

(189) demonstrated this interaction in ROS17/2.8 osteosarcoma cells.  AR overexpression 

increased transcription of bone sialoprotein, a marker of osteoblast differentiation, via 

binding to cAMP and glucocorticoid response elements in the BSP promoter.   Holterhus 

et al. (190) demonstrated that a variety of endogenous and synthetic androgens induced 

strong activation of a GRE-driven reporter gene hamster ovary cells when co-transfected 

with AR.  Conversely, Zhao et al. (191), co-transfecting AR and GR into CV-1 cells, 

demonstrated that AR activated by the synthetic androgen oxandrolone strongly 

suppressed GR-mediated activation of a GRE-driven reporter construct.  Repression was 

not apparent where AR was lacking, indicating the effects were not due to competitive 

inhibition of the GR by oxandrolone but due to another AR-mediated mechanism.  These 

data indicate that an interaction exists between the androgen and glucocorticoid signaling 

systems. 

Although sequence similarity between androgen and estrogen response elements 

is relatively small, evidence suggests that some of the effects of testosterone in males are 

potentially due to a direct effect of testosterone on the estrogen receptor and/or 

conversion of testosterone to estradiol and signaling through the ER.   
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Androgens have a reputation for increasing aggressiveness in males (192).  

However, evidence suggests that while AR is highly expressed in most brain tissue (193), 

signaling through the ER is responsible for this so-called aggressive behavior. Schlinger 

and Callard (194) demonstrated that T-induced aggressive behavior in male quails is 

suppressed by an aromatase inhibitor, while an AR antagonist had no effect on 

aggression. In contrast, aggressiveness was reduced by an ER antagonist, and DHT, 

which is not a substrate for aromatase, did not induce aggressive behavior.  Additionally, 

Wersinger et al. (195) observed that T-induced aggressive behavior in WT mice was 

abolished in mice lacking functional ER.  Finally, the data of Vagell et al. (196) indicate 

that both testosterone stimulated AR and functional aromatase are required for normal 

sexual drive in male mice.  These data highlight the functional interplay of androgen and 

estrogen signaling in the male brain.  At a molecular level, Crostan et al. (197) co-

transfected AR and ER into HepG2 hepatocytes and assessed activation of the LDL 

receptor promoter.  While ER overexpression stimulated transcription from an LDL 

receptor promoter reporter, AR overexpression alone had no effect on reporter activity, 

but suppressed ER-stimulated reporter gene activity when co-transfected.  This apparent 

AR-mediated repression of reporter activity was confirmed by the fact that repression 

was independent of ligand concentration, and that the addition of the AR-antagonist 

casodex removed repression of reporter gene activity.  This indicates that androgen and 

estrogen signaling may act in an antagonistic manner on certain gene targets.  In an in 

vivo model using ERβ-null mice, Glenmark et al. (198) demonstrated that male mice 

lacking ERβ had lower levels of fatigue and a faster return of force production after 

exercise than did WT males, indicating that estrogen receptor signaling does play an 
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important role in the skeletal muscle physiology of male animals.  On the other hand, and 

unlike testosterone suppression, direct suppression of estrogen levels in men seems to 

have little effect on body composition or muscle strength.  Mauras et al. (199) 

administered the powerful aromatase inhibitor anastrozole to men for 10 weeks and 

measured lean body mass, hormone profiles, bone density, muscle strength, and protein 

synthesis. Aromatase converts testosterone to estradiol and accounts for a large 

proportion of total estrogen production in men, and both aromatase mRNA and 

enzymatic activity are present in skeletal muscle (200;201).  There was no significant 

change in lean body mass, body fat, bone calcium levels, or muscle strength in any of the 

subjects.  Though estrogen levels dropped by ~50%, T increased by a mean of 58% while 

SHBG levels did not change.  LH and FSH levels both significantly increased, likely due 

to the decline in estrogen and the fact that serum estrogen in a negative regulator of LH 

release from the pituitary.  Together the above data indicate that estrogen itself is either 

not critical for skeletal muscle function in males, or that there is sufficient excess that a 

50% decrease in serum levels does not adversely affect normal function in males.  

However, signaling through the ER does appear to play some part in male skeletal muscle 

function, and the ability of AR to affect ER function further confirms a significant 

interaction between nuclear hormone systems. 
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Genetic Variation within the Androgen Receptor 

As stated previously, there are several known mutations that have been 

demonstrated to alter AR functionality.  The majority of these are point mutations that 

result in a dysfunctional receptor or a completely non-functional, truncated receptor.   In 

most cases there is no treatment, and subjects are afflicted with androgen insensitivity 

syndrome.  The most widely studied AR polymorphism that does not entirely ablate AR 

function is a polyglutamine repeat sequence that resides within the NTD.  The repeat 

begins around residue 58 in humans with a mean repeat number of 22.  The repeat is also 

present in rodents, though it begins around residue 174 with a mean repeat number of 17.  

The repeat in rodents is also not perfect, containing 2-3 histidine residues, and its impact 

on receptor function has not been extensively studied.  The repeat is of significant interest 

in humans however, as it has been associated with certain forms of prostate cancer  

(29;202;203), and it appears to be the primary determinant of Spinal Bulbar Muscular 

Atrophy (SBMA), a neuromuscular degenerative disorder that typically manifests with 

repeat lengths in excess of 40 (204;205).   

The development and progression of prostate cancer is highly dependent on the 

action of androgens, such that the primary pharmacological treatment involves AR 

blockade or suppression of endogenous testosterone production.  Consequently, a 

mutation common to prostate cancer is the AR T877A point mutation, which abrogates 

AR-antagonist suppression, and enables AR transcriptional activity even in the presence 

of antagonists (176). Studies associating polyglutamine repeat length with prostate cancer 

have found an inverse relationship, with shorter repeat lengths being more common in 

those displaying early onset and more aggressive forms.  Beilin et al. (32) examined the 
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impact of repeat length on AR transcriptional activity in several transiently transfected 

cell types using a luciferase reporter assay.  Both LNCaP prostate carcinoma cells and 

COS-7 kidney cells demonstrated higher transcriptional activity with decreasing repeat 

length, while PC3 prostate cells and MCF7 breast cancer cells did not display any 

differences in AR transcriptional activity with variable repeat length.  This is the first 

study to demonstrate tissue-specific differences in the effect of repeat length on AR 

activity.  Tut et al. (40) and Chamberlain et al. (33) reported similar findings, with AR 

transcriptional activity being inversely related to glutamine repeat length in COS and CV-

1 cells, respectively. Interestingly, another AR mutation found in human prostate tumors 

included 2-leucine residues within the polyglutamine tract (206).  This mutation disrupts 

NTD-LBD interaction, but significantly increases transcriptional activity.  In contrast, 

Neuschmidt-Kaspar et al. (46) reported no difference in transcriptional activity between 

WT AR and AR harboring 45 glutamine residues when expressed in CV-1 cells. Another 

study by Choong et al. (41)  did not find any differences in transcriptional activity with 

variable repeat length, but reported that AR mRNA and protein expression is inversely 

related to repeat length.  Lieberman et al. (68) also reported decreased AR protein 

expression with highly expanded repeat length (65gln) in MN-1 neuroblastoma cells.  In 

addition, aberrant gene expression profiles were observed.  AR65 was hyper 

phosphorylated and acetylated on several sites, and Affymetrix analysis revealed 

different expression profiles of 11 genes in comparison to AR24. These data indicate that 

AR polyglutamine repeat length can have a significant effect on receptor activity in 

certain tissues.   
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SBMA results from a toxic gain-of-function effect via misfolded, expanded 

polyglutamine repeat AR.  The condition is largely limited to males as females are 

typically asymptomatic due to low endogenous androgen levels and the low likelihood of 

possessing two high repeat number copies of the AR gene.  Stenoien et al. (207) reported 

that electron microscopy revealed AR aggregates in HELA cells transfected with a 48 

repeat-containing AR.  The aggregates were dependent on the presence of androgen and 

included a number of heat shock proteins and demonstrated defects in proteolytic 

processing.  This defect in proteolysis could contribute to increased apoptotic signaling as 

demonstrated by Ellerby et al. (208).  Here it was demonstrated that increased repeat 

length enhanced AR cleavage by caspase 3, a potent protease involved in apoptosis, and 

enhanced apoptosis.  SBMA pathology does not appear due solely to toxic gain of 

function however, but also due to loss of normal AR function. Thomas et al. (209) 

generated transgenic mice expressing 100 and 20 repeats respectively, in AR-null and 

WT strains.  Neurodegeneration and impaired muscle function was greater in AR-null 

mice transfected with AR100 in comparison to WT mice transfected with AR100, 

indicating that a lack of normal AR signaling in addition to expanded repeat toxicity 

contributes to the SMBA progression and pathology.  Finally, though loss of endogenous 

AR function with highly expanded repeat length may to contribute to SBMA, neurotoxity 

appears to be the prime mechanism.  Overexpression of the ubiquitin-ligase CHIP 

selectively degraded expanded repeat AR and greatly decreased aggregate formation and 

toxicity in neural cells (210).  Similar methods involving up regulation of AR-selective 

ubiquitin ligases are currently being developed as promising treatments for SBMA. 
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 Though well studied in respect to prostate cancer and SBMA, the impact of AR 

polyglutamine repeat length on AR function in skeletal muscle has not been clearly 

addressed.  Walsh et al. (34) found an association between lean body mass and increased 

repeat length in men from two independent cohorts.  Men aged 19-93 from two 

independent cohorts cohorts carrying >22 polyglutamine repeats demonstrated 1.2kg and 

3.4kg greater lean mass measured by DEXA, respectively, than men carrying <22 

repeats.  No differences were observed in women.  Men with >22 repeats also has 

significantly higher serum T levels than men with <22 repeats.  These results appear to be 

counter to the results of previous studies demonstrating greater transcriptional activity 

with shorter repeat length, if we assume that a transcriptionally active AR contributes an 

anabolic effect in muscle tissue. 

The mechanism by which AR repeat length affects transcriptional activity has not 

been thoroughly addressed, particularly in skeletal muscle.  As discussed previously, AR 

activation requires a series of events involving ligand binding, NTD-LBD interaction, 

exposing transcription factor docking sites, etc.  Davies et al. (211) performed an 

extensive series of experiments to determine the effect of repeat length on AR protein 

structure.  They determined that increased repeat length (AR45) enhanced NTD alpha-

helix formation, while complete removal of the repeat reduced it. In addition the ligand 

binding pocket of AR45 demonstrated a more hydrophobic nature, and the protein in 

general was more susceptible to unfolding.  Because the primary purpose of ligand 

binding is believed to be the stabilization of NTD-LBD interaction and to provide a 

docking site for cofactors required for nuclear import, any alteration to the ligand binding 

pocket or changes to NTD structure could seriously alter AR function.  The alpha-helix 



86 

 

structures demonstrated to be affected by repeat length also harbor AF1, a primary site of 

protein-protein interaction and cofactor recruitment.  The previously discussed data of 

Lieberman et al. (68) suggests the possibility that these folding changes may in fact alter 

ligand-induced gene expression.  Here, ligand-activated AR65 induced changes in 11 

genes, where ligand-activated AR24 induced changes in 54 genes.  This could indicate 

that increased repeat length eliminated ARs ability to induce transcription of 43 genes, or 

that the expanded repeat length resulted in partial constitutive activity, such that some 

transcriptional activity remained even in the absence of ligand.  The data of Davies et al. 

would suggest that this is a possibility. Finally, Becker et al. (48) demonstrated that AR 

with an expanded repeat length formed cytoplasmic aggregates to a far greater extent that 

WT AR when exposed to androgens.  Since nuclear translocation is required for AR 

transcriptional activity, the inability of AR with extended repeat length to penetrate the 

nucleus, due to aggregate formation, could largely explain the decreased transcriptional 

activity of AR with extended repeat length (32;40). 

Summary 

There is overwhelming evidence the androgens induce an increase in skeletal 

muscle mass and strength in humans, especially when combined with resistance training.  

This effect appears to have a genetic component, as the magnitude of each individual 

response to exogenous androgens can vary considerably.  Androgens have a positive 

effect on protein accretion in skeletal muscle, and have been demonstrated to alter the 

proliferation and activity of satellite cells in vivo, though the mechanisms are not 

completely understood.  It is believed that most of the clinical effects of androgens are 

mediated via the AR, as AR blockade or knockout ameliorate many, if not all, of the 
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physiological effects of androgens.  Data regarding AR expression in skeletal muscle is 

not entirely in agreement, though significant data exist demonstrating an increase in AR 

expression in skeletal muscle in response to training and/or exogenous androgen 

administration.  The AR protein is relatively complex, with 4 primary domains, each 

known to have a unique and important function.  Variation within these domains can 

have a significant impact on AR function.  The polyglutamine repeat polymorphism 

within the NTD is of interest as it has been demonstrated to alter AR transcriptional 

activity in certain cell types.  The relevance of this polymorphism to skeletal muscle 

function is unknown, but presents a potential mechanism to explain differences in 

individual response to androgens. 
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Experimental Procedures 

Cell Culture 

The murine myoblast line C2C12, first subcloned by Blau et al. (212) from the C2 

line developed by Yaffe (213) was selected as the experimental cell line.  These cells are 

very proliferative, with a doubling time of roughly 16 hours, and differentiate rapidly 

when exposed to low serum culture conditions.  Cultured myoblasts are the activated 

decendants of satellite cells, and though they certainly do not mirror the physiology and 

gene expression of whole muscle in vivo, when differentiated they generally reestablish 

the phenotype of the muscle from which they were derived.  C2C12 myoblasts have an 

advantage over the MM14 cell line developed by Linkhart et al. (214) in that they do not 

require fibroblast growth factor (FBF) for propagation.  They were also chosen over the 

rat L6 line derived by Yaffe (213) as the L6 line proliferates and differentiates more 

slowly and does not express local IGFs, making them dependent on the presence of IGF 

in serum (215).  The L6 line was also avoided due to it being demonstrated to have 5-

alpha reductase activity (216), which has not been shown in any other muscle cell type or 

even in skeletal muscle in vivo. The disadvantage of the C2C12 line is a decline in the 

rate of differentiation after multiple passages.  C2C12 cells experience inhibition of 

growth upon contact with nearby cells and must be passaged at 50-70% confluency to 

ensure a lack of contact inhibition and early differentiation.  In addition, a subpopulation 

of rapidly differentiating cells is gradually lost with repetitive passaging, and for this 

reason only populations with passage number of 5-20 were used for all experiments.  
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Cells were kept in exponential growth by maintaining them in growth medium (GM) 

consisting of Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS) and 1% penicillin/streptomycin solution.  Cells were seeded at 

~105 cells per 100mm dish and kept undisturbed at 37oC and 5% CO2 for ~48 hours 

before subsequent passaging.  Differentiation was initiated once the cells had reached 

~90-100% confluency by switching to differentiation medium (DM) consisting of 

DMEM supplemented with 2% horse serum (HS) and antibiotics as above.  Where 

applicable, cells were treated with 100nM testosterone in ethanol vehicle or an equal 

volume of ethanol control. Ethanol concentration did not exceed 0.1% of total volume.  

Stably transfected cell lines were maintained as above with the addition of 500µg/ml of 

G418 sulfate (GIBCO).  Excess cells were frozen down in 95% growth medium 

supplemented with 5% DMSO at -80oC overnight before transfer to liquid N2 for long 

term storage. 

 

AR Vector Creation 

The human AR expression vector pCMV5-hAR was a generous gift from Dr. Elizabeth 

Wilson (University of North Carolina).  This vector was sequenced (Applied Biosystems 

3730 DNA Sequencer) upon receipt and found to harbor 24 CAG repeats.  The human 

AR gene is under control of the constitutively active cytomegalovirus promoter and 

supports robust expression in eukaryotic cells even in minimal growth factor 

environments (217).  DNA previously isolated from human subjects involved in the 

Baltimore Longitudinal Study of Aging was isolated and sequenced for AR CAG repeat 
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length, and DNA harboring 14 and 33 CAG repeats, respectively, was selected for 

amplification via PCR (conditions described below).  The genomic DNA was amplified 

using primer set (F primer 5’-tgcacctacttcagtggacac-3’; R primer 5’-

gtatcttcagtgctcttgcctgcg-3’) and reaction conditions to include  95oC for 2 minutes, 

followed by 40 cycles of 95oC for 30 seconds, 60oC for 30 seconds, and 72oC for 75 

seconds, and a final 5 minute incubation at 72oC.  The ~1220-1280bp fragment was 

resolved and purified from 1% agarose gels using the PureLink quick gel extraction kit 

(Invitrogen) according to manufacturer instructions, and then subjected to phenol-

chloroform extraction. This step was necessary to remove residually active polymerase 

from the reaction mixture prior to restriction enzyme digestion.  Purified PCR products 

and pCMV5hAR backbone were subsequently serially restriction enzyme digested with 

BglII and BsmI (New England Biolabs) at 37oC overnight and at 65oC for 2 hours, 

respectively, using NEB buffer 2.  The digested genomic inserts and vector backbone 

were again resolved and purified from agarose gels.  The purified products were treated 

with shrimp alkaline phosphatase (SAP, Fermentas) at 37oC for 1 hour to remove the 5’ 

phosphate groups from DNA ends and prevent undesired re-ligation.  SAP was 

inactivated by incubation at 65oC for 15 minutes.  Insert and vector fragments were 

combined in a 10:1 ratio (calculated via moles of DNA ends) and ligated together using 

T4 DNA ligase (Invitrogen) and incubated overnight at room temperature.  Resulting 

products were transformed into DH5α competent E.coli bacteria (Invitrogen) according to 

manufacturer instructions.  Bacterial suspensions were spread onto 100mm agar plates 

supplemented with 100µg/mL ampicillin and grown overnight at 37oC. The pCMV5 

vector contains the ampicillin-resistance gene; cells successfully incorporating a 
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functional vector will hydrolyze ampicillin on the agar plates and form viable colonies, 

while cells lacking an intact vector will not grow.  After overnight incubation all resulting 

colonies were removed by picking with a pipet tip and transferring to 15mL tubes filled 

with 5mL LB broth, and expanded by overnight incubation at 37oC with vigorous 

shaking.  Resulting bacterial suspensions were collected, and plasmid DNA was isolated 

using Qiagen Plasmid Mini Kit (Qiagen) according to manufacturer instructions.  The 

isolated plasmid DNA was amplified via PCR and a primer set designed around the AR 

CAG repeat (see table 2) and sequenced to verify the presence of the appropriate number 

of repeats. The successfully cloned vectors as well as the original are designated pCMV5-

hAR14, pCMV5-hAR33, and pCMV5-hAR24, respectively. 

 

Stable Line Creation 

The above cloned AR expression vectors were used to create stably transfected 

C2C12 lines expressing the human AR.  The benefit of using stably transfected lines is a 

much higher expression level of the transfected gene in comparison to transiently 

transfected lines; where only a small, variable percentage of cells in the culture vessel can 

be expected to take up the vector of interest in a transient transfection, stably transfected 

cell lines should be close to 100% gene expression of the target gene.  A stable line is 

created by co-transfecting the vector of interest along with an antibiotic resistance gene 

and culturing the line in the presence of said antibiotic.  The assumption is that all 

transfected vectors are taken up equally, so any cell in the culture vessel that has survived 
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antibiotic selection is assumed to have taken up the vector of interest as well as the vector 

carrying the antibiotic resistance gene.   

C2C12 cells were seeded into 6-well tissue culture plates at ~104 cells per well 

and incubated in GM overnight.  Cell confluency was kept low to avoid cell-cell contact 

over the several days following transfection.  The three AR expression vectors were 

transfected into low passage number cells using Lipofectamine and Plus Reagent 

(Invitrogen) according to manufactures instructions.  Cells were co-transfected with a 

vector carrying the neomycin resistance gene, pCI-neo (Promega), which also conveys 

resistance to the aminoglycoside antibiotic G418 sulfate.  G418 blocks protein synthesis 

in both prokaryotic and eukaryotic cells by interfering with peptide elongation (218).  

Each well received 1.5µg of each vector suspended in 1mL of Lipofectamine/PLUS 

reagent mixture in serum/antibiotic-free DMEM.  Following a three-hour incubation with 

the transfection mixture, each well received 1ml of GM for an overnight incubation.  The 

transfection medium was removed the following morning and was replaced with fresh 

GM supplemented with 1000µg/mL of G418.  This concentration was previously 

determined to result in the death of >95% of non-resistant C2C12 cells within 7 days 

(data not shown).  The cells were observed closely for several days for the appearance of 

small, proliferating clusters of cells.  C2C12 cells do not form the tight colonies common 

to other cell types, but instead form a monolayer across the culture vessel surface.  This 

characteristic makes it problematic to select a clonal colony derived from a single cell, as 

the cells do not grow well if spaced too far apart.  Accordingly, small clusters of healthy 

cells were selected at first appearance as candidates for subcloning. Once these clusters 

reached a number of cells deemed sufficient for removal, sterile cloning rings were used 
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to remove the clusters for subculturing.  A thin layer of sterile silicone grease was applied 

to each cloning ring, and the rings were carefully placed around each cluster until a seal 

was formed.  Media within the ring was aspirated, the cluster rinsed with PBS, and 

covered with 100µL of 0.05% trypsin solution. The cells were detached and mixed with 

gentle pipetting and transferred to fresh 24 well plates.  The subcultured cells were 

incubated in GM with G418 until the cells approached 70% confluency or until cell-cell 

contact was imminent, at which point they were passaged to ~15-20% confluency and the 

incubation was continued.  This process was repeated for approximately 14 days, or until 

the no additional dead/detached cells were observed in the medium, an indication that all 

non-stably transfected cells had been selected out by G418.  At this point aliquots of each 

line were removed for RNA extraction and cDNA generation (described below). The 

presence of the appropriate cloned AR transcript was verified via RT-PCR (primers and 

conditions listed in table 2) and sequencing (see appendix, figure 14). Once verified each 

line was expanded until a sufficient number of cells were obtained for freezing and long 

term storage in liquid N2.  

Nucleic Acid Isolation, Quantification, and RT-PCR 

RNA was extracted from cells using the guanidinium thiocyanate-phenol-

chloroform method described by Chomczynski and Sacchi (219).  Myoblasts and or 

myotubes were aspirated and rinsed with PBS to remove traces of medium.  TRIzol 

(Invitrogen) reagent was added to the culture plates (2ml for 100mm dishes and 1ml for 

35mm dishes) for 3 minutes before homogenizing the cell mixture with vigorous 

pipetting for several minutes.  The mixture was transferred to centrifuge tubes and set to 

gentle rotation for 15 minutes at room temperature.  0.2ml of chloroform was added per 
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1ml of TRIzol, and the tubes were again set to gentle rotation for 10 minutes at room 

temperature. The mixture was then centrifuged at 13,000g for 12 minutes at 4oC.  The top 

80% of the aqueous layer (containing the RNA) was carefully transferred to a fresh 

centrifuge tube along with 5ul of glycogen solution to assist in subsequent precipitation.  

2x volume of isopropanol was added and the tubes were set to gentle rotation for 10 

minutes at room temperature.  Tubes were centrifuged at 13,000g for 10 minutes at 4oC, 

and the supernatant was removed.  0.5ml of 70% ethanol was added for 5 minutes, and 

the tubes centrifuged at 7000g for 5 minutes.  The supernatant was carefully removed and 

the remaining RNA pellet was air-dried until slightly transparent.  The pellet was 

resuspended in 50µl of TE buffer and stored at -80oC until further use.  Aliquots from 

each sample were removed and diluted 1:25 in TE buffer and quantified via 

spectrophotometry by measuring absorbance at 260nm.  To isolate DNA, cells were 

rinsed with PBS and treated with 0.05% trypsin for 3-5 minutes.  The cells were mixed 

by repetitive pipetting, the trypsin neutralized by an 2x volume of GM, and transferred to 

a 15ml tube before spinning a 150g for 5 minutes.  The supernatant was poured off, and 

the cell pellet resuspended in 0.5ml cell lysis solution.  The cells were set to gentle 

rotation for 20 minutes at room temperature.  0.25ml of protein precipitation solution was 

added and the samples were vortexed vigorously for 30 seconds before centrifuging at 

13000g for 10 minutes at 4oC.  The supernatant was poured into 2x volumes of 100% 

isopropanol and set to rotation for 10 minutes at room temperature.  The remainder of the 

procedure was the same as that for RNA isolation described above.   

The isolated RNA was used to generate cDNA for gene expression analysis.  

Before reverse transcription each sample was treated with DNAase1 (Fermentas) for 30 
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minutes at 37oC to degrade any trace remaining DNA. cDNA was generated using the 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to 

instructions and 2µg of RNA per 40µl reaction.  Cycling consisted of 10 minutes at 25oC, 

120 minutes at 37oC, and a final 85oC for 5 seconds.  The cDNA was collected and stored 

at -20oC for future analysis.   

AR Transcriptional Activity 

A common method to assess that activity of a transcription factor, such as nuclear 

hormone receptors, is to measure the appearance of an easily quantifiable reporter gene 

whose expression is known to be driven by a promoter that is sensitive to the 

transcription factor of interest.  Reporter genes such as luciferase, chloramphenicol 

acetyltransferase, GFP, and β-galactosidase are introduced into the cell via transfection, 

and when stimulated via the addition of an enzymatic substrate produce a signal that can 

be quantified.  Luciferase, an enzyme that catalyzes the conversion of the pigment 

luciferin into oxyluciferin + light (220), is a very common reporter gene in molecular 

biology.  One benefit of the luciferase system is that neither the firefly, nor Renilla 

luciferase proteins require any post-translational modifications, meaning that both 

proteins are fully active immediately following translation and in most cell types (221). 

The Dual-Luciferase Reporter Assay System (Promega) uses a double luciferase substrate 

system that allows for the quantification of reporter gene activity while “normalizing” the 

reporter gene of interest to another reporter gene that should remain unaffected by the 

treatments of the experiment.  In this case, the LARII solution includes beetle luciferin, a 

substrate for the firefly (Photinus pyralis) luciferase enzyme.  Luciferin is converted into 

oxyluciferin and emits light that can be measured in a luminometer and reported as 
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relative light units (RLUs).  The Stop&Glo reagent is then added which quenches the 

firefly luciferase signal, and provides the substrate for sea pansy (Renilla reniformis) 

luciferase.  Renilla luciferase converts coelenterazine into coelenteramide + light. 

 

Figure 14: Luciferase reactions.  Taken from Dual-Luciferase Reporter Assay System 
Technical Manual (Promega). 

 

Both luciferase enzymes must be introduced into the experimental cell type.  For 

the assay to work effectively, the firefly luciferase vector must be driven by a promoter 

that is sensitive to the treatment in question, while the renilla luciferase vector is driven 

by a promoter that is insensitive to the treatment in question. This system allows one to 

account for differences in transfection efficiency, cell number, quantity of lysate, etc.  

The luminescence obtained from the firefly luciferase is normalized to the luminescence 

obtained from the renilla luciferase, and that resulting ratio is considered to be 

normalized RLU’s. 

In this experiment, a firefly luciferase vector driven by the highly androgen 

responsive rat Probasin gene promoter was utilized to measure AR transcriptional 
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activity (preliminary experiments using a minimal promoter containing a dual-ARE 

sequence were unsuccessful, see appendix).  Probasin, also known as prostatic basic 

protein, is a prostate-specific secretory protein with heparin-binding capacity (222;223) 

that has been heavily studied as a model for androgen specific regulation of gene 

expression.  The basic probasin promoter covers positions (-426/+28) upstream of the 

transcription start site and contains 2 regions termed androgen receptor binding site 1 and 

2 (ARBS1/ARBS2) (50).  Both sites are protected by AR during DNAase footprinting 

assays and are required and sufficient for AR induced gene expression in PC3 cells (224), 

though another upstream enhancer region (-705/-426) containing 2 additional sites, 

ARBS3 and ARBS4, has been shown to further enhance AR-mediated gene expression in 

LNCaP and MCF-7 cells (225).  Though very androgen responsive in a number of 

prostate cell lines (32;226), the probasin promoter has also been shown to be AR 

responsive in liver (54), kidney (22;32;51), fibroblast (52), and breast (32;53;225) cell 

lines.  Though not addressed in muscle, the fact that the probasin promoter is activated by 

AR in a number of tissues with certainly variable transcription factor profiles suggests 

that the same may be true for skeletal muscle.  Many of the known AR cofactors and 

associated proteins shown to be involved in AR signaling in prostate, such as the p160 

family, CBP/p300 family, SRC-1, TIF2, heat shock proteins, etc., are ubiquitously 

expressed and would be expected to fulfill a similar role in skeletal muscle. Another 

major benefit of the probasin promoter is AR specificity; no other nuclear hormone 

receptor has shown the ability to initiate significant transcription, unlike the mouse 

mammary tumor virus (MMTV) promoter, which though AR responsive is also 

responsive to progesterone, glucocorticoid and mineralcorticoid receptor-mediated 
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transcription (49).  Consequently, the p159pPr-luc vector (Addgene plasmid 8392) 

developed by the laboratory of Jeffery Green (227) was used as the luciferase reporter 

vector, driven by the basic rat probasin gene promoter.  A Renilla luciferase 

normalization vector driven by the herpes simplex virus thymidine kinase promoter, pRL-

TK (Promega), was used because of its stable, low to moderate levels of luciferase 

expression and because it displayed little to no response to AR or androgen treatment in 

preliminary experiments.  Initially a simian virus-40 driven vector was chosen, pRL-

SV40 (Promega), but this construct proved to be overly active in C2C12 cells and 

provided a level of Renilla luciferase expression many orders of magnitude greater than 

the firefly luciferase vector, in addition to showing a response to T administration. 

Transient transfections were carried out in C2C12 cells seeded at 4000 cells/well 

in 24-well culture plates and cultured until ~75% confluent.  The transfection reagents of 

choice were Lipofectamine enhanced with Plus Reagent (Invitrogen), and the transfection 

procedure was carried out according to manufacturer instructions.  400ng of the each 

respective AR vector in addition to 400ng of pPr-luc were added to each well, as well as 

50ng of pRL-TK normalization vector.  A control transfection was also performed 

consisting of a promoter-less firefly luciferase construct in a pGL3-basic vector (the 

parent backbone of the pPR-luc reporter plasmid), 400ng of pCMV5-hAR24 vector, and 

50ng of pRL-TK.  Each transfection mixture was diluted in serum-free/antibiotic free 

medium and added to each respective well for 3 hours at 37oC, after which an equal 

volume of GM was added and the cells were incubated overnight.  The following 

morning the transfection mixture was removed and replaced with fresh GM 

supplemented with 100nM T or ethanol vehicle and incubated for 24 hours.  A 100nM T 
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concentration was chosen as preliminary dose-response luciferase experiments 

demonstrated this dose to drive luciferase activity to peak levels (see appendix, figure 

17). Total ethanol volume did not exceed 0.1%.  The following morning all media was 

removed and the cells were washed 2x with PBS.  Passive lysis buffer was added for 20 

minutes with gentle rocking at room temperature, and the plates were then spun at 3000g 

for 10 minutes.  20µL of the supernatant was removed and added to 100µL of LARII 

reagent, mixed by repetitive pipetting until homogenous, and luminescence was measured 

in a Modus Fluorometer for 5 seconds with a 2 second delay.  The reaction (firefly 

luciferase) was then quenched with the addition of 100µL of Stop&Glo reagent (mixed 

until homogenous) and luminescence (Renilla luciferase) was again read for 5 seconds 

with a 2 second delay.  All data is expressed as the ratio of firefly/Renilla luminescence.  

Each experimental condition was performed in triplicate, and in three separate 

experiments.  The exact procedure was carried out in the cell lines stably expressing each 

AR construct, with the exception that only pPR-luc and pRL-TK vectors were transiently 

transfected.  

 

 

 

Western Blot 

Western blot approach was used to determine AR protein expression and assess 

potential differences in AR nuclear translocation efficiency.  The 3 lines stably 
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transfected with hAR and standard C2C12 controls were grown to ~75% confluency in 

100mm dishes in GM.  Cytoplasmic and nuclear protein fractions were isolated by 

scraping the cells into cell lysis buffer (20mM HEPES pH7.5, 10mM NaCl, 1.5mM 

MgCl2, 0.1% Triton-X100, 10% glycerol, 1mM DTT, protease inhibitor cocktail) using a 

sterile plastic cell scraper, incubated at 4oC for 30 minutes with gentle rotation, and spun 

at 5000g for 10 minutes.  The supernatant (cytosolic fraction) was removed from the 

pelleted nuclei, which was then lysed in cell lysis buffer + 500mM NaCl at 4oC for 1 

hour with gentle rotation.  The lysate was then spun at 15000g for 10 minutes, and the 

supernatant containing the nuclear fraction was removed.  Protein content in the cytosolic 

and nuclear fractions from each sample was quantified via the bicinchoninic acid protein 

(BCA) assay (Pierce) according to manufacturer instructions.   Samples were prepared by 

diluting 30µL of protein from each sample in sample buffer (250mM Tris-HCL, 2% SDS, 

2.5% 2-ME) and water to 25µL and boiling for 5 minutes. A positive control sample 

consisted of 30µg of LNCaP whole cell lysate.  LNCaP cells, as mentioned previously, 

are a highly differentiated prostate carcinoma cell line with high endogenous AR 

expression. Samples were cooled and loaded onto 7.5% polyacrylamide gels and resolved 

for approximately 1 hr at 150V.  The gels were carefully removed from the gel assembly 

and transferred to polyvinylidene fluoride (PVDF) membranes in ice-cold transfer buffer 

(25mM Tris Base, 192mM glycine) for ~1 hour at 60V.  The membranes were removed 

from the transfer apparatus and rinsed several times with Tris-buffered saline with 0.05% 

Tween (TBS-T).  The membranes were blocked with 3% non-fat dry milk (NFDM) 

dissolved in TBST for 1 hour at room temperature, to prevent non-specific antibody 

interactions.  The anti-AR antibody PG-21 (Millipore) was selected as the primary 



101 

 

antibody.  PG-21 recognizes residues 1-21 of the human AR, and is commonly used in 

studies of the AR in various cell lines and tissues (32;45).  PG-21 was diluted 1:300 in 

3% NFDM-TBST and the membranes were incubated overnight at 4oC.  The membranes 

were then washed 3X for 5 minutes with TBST and a horse-radish peroxidase (HRP) 

conjugated goat anti-rabbit IgG secondary antibody diluted 1:2000 in 3% NFDM-TBST 

was applied to the membranes for 1 hour at room temperature.  The HRP conjugated 

secondary antibody is used to detect the presence of AR-bound primary antibody by 

producing an easily quantifiable luminescent signal.  HRP catalyzes the conversion of 

luminol to 3-aminophthalate in the presence of intermediate substrates, producing light 

(228).  The SuperSignal West Pico Chemiluminescent Substrate (Pierce) kit provides the 

necessary substrates to greatly enhance the HRP reaction and enable detection of 

picograms of antigen.  The secondary antibody solution was washed from the membranes 

3X for 5 minutes with TBST, and the Supersignal West Pico solution was applied to the 

membranes for ~ 3 minutes at room temperature in darkness.  The membranes were 

visualized using a GeneGnome Bioimager (Syngene). 

Cell Proliferation 

As discussed previously, evidence suggests that androgens may alter the 

proliferation and differentiation of both satellite cells and myogenic precursor cells in 

vivo.  We therefore hypothesized that the greater lean body mass observed in humans 

with increased AR repeat length (34) could be partially due to altered rates of myogenic 

cell proliferation and differentiation.  Consequently, the proliferative rate of each of the 

C2C12 lines stably transfected with AR was assessed to determine if AR repeat length, 

and subsequent differences in AR transcriptional activity, might affect the growth and 
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proliferation of myoblasts in culture.  The CellTiter 96 Aqueous Non-Radioactive Cell 

Proliferation Assay kit was used to determine cell numbers.  The basis of the kit is a 

colorimetric substrate that can be measured by assessing absorbance of light at 490nm.  

The solutions in the kit provide a tetrazolium salt, MTS, and an electron-coupling reagent 

(phenazine methosulfate, PMS).  Dehydrogenase and reductase enzymes from living cells 

catalyze the conversion of MTS to formazan, a chromogenic dye that is soluble in cell 

culture media.  The rate of reduction of tetrazolium salt to formazan is directly 

proportional to the number of living cells in a sample (229).  The advantage to this 

particular kit is the inclusion of MTS rather than other tetrazolium salts such as XTT or 

MTT, which unlike MTS are either not stable in solution or require additional processing 

steps due to product insolubility (230;231).   

This experiment was designed to measure the proliferation of myoblasts over a 3-

day period.  Each cell line was passaged normally and the concentration of suspended 

cells in the passage medium was carefully determined using a hemocytometer (Fisher).  

Cell number was obtained by loading 10µL of cell suspension into the device, counting 6 

entire squares, averaging the number obtained and multiplying the result by 10,000 to 

arrive at # of cells/mL.  This was the most critical step in the experiment, as results were 

dependant on the assumption that all plates started with an identical number of cells per 

well.  The experiment was initially performed by seeding 250 cells/well into 96-well 

plates.  However, the low volume, low cell number, and small well size resulted in the 

initial runs having drastic intra-assay variability between replicates of the same cell line.  

Consequently, the experiment was switched to a 24-well format seeding 1000 cells/well 

in triplicate with either 100nM T or ethanol vehicle, on 3 separate plates (one for each 
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day).  At 24 hour intervals, 80µL of MTS solution was added to 400µL of fresh GM and 

the cells were incubated at 37oC for 3 hours.  The plates were read at 490nm using a 

Wallac 1420 Multiplate Reader (Perkin Elmer) and the absorbance values were recorded.  

Cell number per well was calculated by plugging each absorbance value into an equation 

derived from a standard curve of a known number of cells from control wells.  The 

control curve was obtained by counting out and plating C2C12 cells ranging 1000-30,000 

cells/well (on the same plate to be assayed), between 6 and 8 hours before the assay was 

performed.  This 6-8 hour delay was chosen to allow the cells time to adhere to the plate 

surface, but not to allow enough time for cell division to occur, which is approximately 

16 hours (212).  Each experimental condition was observed in triplicate over 3 separate 

experiments. 

Cell Differentiation 

Rate of differentiation of the stably transfected lines was investigated by assessing 

the activity of the enzyme creatine kinase (CK), one of the commonly used methods to 

identify myoblast differentiation along with visual verification of myotube formation, and 

the appearance of contractile proteins such as sarcomeric myosin and sarcomeric actin 

(232).  CK catalyzes the conversion of the high energy substrate creatine phosphate + 

ADP into creatine and ATP, and the reverse reaction, as shown: 
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The subsequent reactions catalyzed by hexokinase and glucose-6-phosphate 

dehydrogenase produce NADPH, the production of which is directly proportional to the 

activity of CK and can be read via spectrophotometry at 340nm (233).  CK is highly 

expressed in tissues which rapidly consume ATP, including skeletal muscle (234), 

however CK is detectible only upon the initiation of differentiation, not in proliferating 

myoblasts (235).  The EnzyChrom Creatine Kinase Assay Kit (BioAssay Systems) was 

used to measure CK activity in each of the cell lines.  An assay buffer, substrate solution 

and enzyme mixture were combined immediately before testing and added to cell lysate 

as a single working solution. 

The 3 stably transfected cell lines as well as C2C12 control cells were seeded into 

35mm plates at ~ 25,000 cells per well.  Cells were incubated in GM until ~90% 

confluent, at which point the medium was changed to DM and either 100nM T or ethanol 

vehicle was added and the cells were incubated for up to 5 days with fresh media applied 

every 24 hours.  At the indicated time points, the cells were washed 2X in PBS, gently 

removed via a sterile plastic cell scraper and spun for 5 minutes at 150g and 4oC.  The 

supernatant was removed and the cell pellet was resuspended in 50µL lysis buffer (20mM 

HEPES pH7.5, 10mM NaCl, 1.5mM MgCl2, 0.1% Triton-X100, 10% glycerol, 1mM 

DTT, protease inhibitor cocktail) for 30 minutes at 4oC with gentle rotation.  The lysate 

was spun at 5000g for 10 minutes at 4oC and the supernatant was transferred to fresh 

microcentrifuge tubes.  10µL of supernatant from each sample was diluted 1:5 in PBS 

(this step was necessary in order to not exceed the threshold for kit accuracy) transferred 

to 96-well plates and 100µL of assay working solution was added.  Each sample plate 

included a set of calibrator samples consisting of 110µL of water, and 10µL calibrator 
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solution + 100µL water, respectively.  The sample plates were transferred to an incubator 

at 37oC for 10 minutes before being read at 340nM using a Wallac 1420 Multiplate 

Reader (Perkin Elmer).  The values were recorded and the plates were immediately 

returned to the incubator.  After an additional 30 minute incubation, the plates were read 

again and the values recorded.  CK activity was calculated via the following formula: 

CK (U/L) = OD 40min-OD10min/ODcalibrator40min-ODH2O40min X 100 

(equivalent activity of the calibrator) X 5 (dilution factor )  

This equation provides CK activity in units/liter.  These values were normalized to 

protein content of each sample (which was determined using the BCA assay as described 

previously), and the final results are expressed as CK units/µg of protein.  Each 

experimental condition was performed in duplicate over 3 independent experiments. 

AR in situ localization 

The relative proximity of the polyglutamine repeat to activation function-1 of the 

AR-NTD, the importance of AF-1 in AR stabilization and NTD-LBD interaction (144), 

and the presence of a mutation of the polyglutamine tract that inversely alters NTD-LBD 

interaction and AR transcriptional activity (206) indicate that polyglutamine repeat length 

variations may alter AR nuclear translocation efficiency.  Additionally, our preliminary 

transcriptional activity data demonstrating higher activity with longer repeat length even 

in the absence of ligand could potentially be explained by an increased rate of AR nuclear 

translocation with increased repeat length.  We used in situ immunohistochemical 

staining of AR in each stably transfected cell line to test this hypothesis.  
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Cells were seeded onto 35mm plates in GM with 100nM T or ethanol vehicle and 

were grown until ~80% confluent.  The medium was removed, the cells were washed 2X 

in PBS, and were fixed with ice-cold methanol for 10 minutes at -20oC.  After another 

rinse in PBS, 8% NFDM in PBS was added for 1 hour at room temperature to block non-

specific binding.  Cells were again rinsed in PBS, and the anti-AR primary antibody (PG-

21, Millipore) diluted 1:50 in 1%BSA in PBS was applied to the cells and incubated 

overnight at 4oC.  The following morning the primary antibody solution was removed and 

the cells were again rinsed in PBS.  An Alexa Fluor 430 fluorescent conjugated goat anti-

rabbit IgG secondary antibody (Invitrogen) diluted 1:500 in PBS was applied for 2 hours 

at room temperature in darkness.  Cells were then washed 2x in PBS and visualized using 

a Nikon TI-U inverted fluorescent microscope (Nikon) using the appropriate filters.   

Unfortunately this procedure ultimately proved unsuccessful in detecting any appreciable 

AR protein, so a series of alterations to the procedure were made including switching 

blocking solutions, incubation times, fixing agent, antibody dilutions, etc.  None of these 

conditions proved successful and AR protein was not detectible in any of the samples 

tested. 

 

 

 

Myotube Development and Morphology 
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 The formation of mature muscle fibers is a complex series of events involving the 

expression of myogenic genes, differentiation of myoblasts into myotubes, and the fusion 

of 2 myotubes to each other or to existing myofibers.  However, evidence suggests that 

myoblast-myoblast fusion and myoblast-myofiber fusion are in fact different processes, 

and that different signaling molecules are involved (reviewed by Pavlath and Horsley 

(71;236)). Myoblast-myofiber fusion is the more common process in human skeletal 

muscle, as this type of fusion occurs throughout life as part of normal maintenance, 

where the myoblast-myoblast fusion typically only occurs in embryonic development or 

in response to severe muscle injury that requires the creation of new muscle fibers (237).  

As a post-mitotic tissue, mature skeletal muscle appears to be reliant upon the fusion of 

activated satellite cells (myoblasts) for growth and repair (238). Myoblast fusion 

contributes additional nuclei to growing or repairing myofibers, and the growth of 

myofibers is tightly associated with changes in myonuclear number (239).   

During the culturing of the C2C12 stable lines, significant differences were 

observed in the rate of differentiation and in the morphology of the resulting myotubes.  

To determine if variable AR transcriptional activity was responsible for these observed 

differences, an attempt was made to characterize and quantify the differences using 

immunohistochemical staining techniques.  Of particular interest were the identification 

of differences in the appearance of contractile proteins, myotube fusion, and myonuclear 

number.  Sarcomeric myosin was used as the contractile protein of choice, as it is a 

marker of myotube formation and has been shown to be expressed in differentiated 

C2C12 cells (240).  Cells expressing sarcomeric myosin were identified 

immunohistochemically using the MF20 sarcomeric myosin antibody (Iowa Hybridoma).  



108 

 

Myonuclear number was determined by staining nuclei with 4’, 6-diamidino-2-

phenylindole (DAPI), a commonly used fluorescent stain that binds double-stranded 

DNA.  In conjunction with MF20 staining, myonuclei present in myotubes were counted 

separately from nuclei outside of myotubes.  Myotube fusion index is often used as a 

relative estimate of fusion efficiency, and was determined by comparing myotube nuclei 

to total nuclei within a given field.  The inclusion criteria for designation as a myotube 

were a positive staining for sarcomeric myosin, and a minimum of 3 nuclei per fiber.   

Cells from each stable line as well as C2C12 controls were seeded onto 35mm 

plates in GM and grown until ~90-95% confluent, at which point the culture media was 

switched to DM supplemented with 100nM T or ethanol vehicle.  Cells were incubated 

for 24, 72, or 120 hours in DM, respectively, before being fixed in ice-cold methanol for 

10 minutes at -20oC.  Cells were rinsed 3X for 5 minutes in 3% NFDM in TBST to block 

non-specific interactions.  The MF20 anti-sarcomeric myosin antibody was applied 

diluted 1:50 in PBS for 1 hour at room temperature.  Cells were washed 3X in PBS, and a 

fluoroscein-isothiocyanate (FITC) conjugated anti-mouse IgG secondary antibody was 

applied diluted 1:500 in PBS for 1 hour at room temperature.  Cells were washed 3X in 

PBS and DAPI was applied at 500ng/mL for 5 minutes at room temperature in darkness.  

The cells were again washed in PBS, and visualized using a TI-U inverted fluorescent 

microscope (Nikon) using the appropriate filters.  Each plate was analyzed from a 

minimum of 5 fields. 
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Gene Expression 

Table 2. Primer sets and PCR conditions for each gene target  

Gene F primer (5’-3’) R primer (5’-3’) Anneal 
Temp. 
(C) 

Cycle # Expected 
Size (bp) 

AR accgaggagctttccagaat cagctgagtcatcctcgtccg 55 30 420 
(21CAGs) 

Myogenin tccctgtccaccttcagggcttcg taaggagtcagctaaattccctcg 59 30 804 
Myostatin taaccttcccaggaccagga cactctccagagcagtaatt 55 30 225 
MyoD gtggcagaaagttaagacga agtcgaaacacgggtcatca 50  25 170 
ACTA1 gcgcaagtactcagtgtgga cacgattgtcgattgtggtc 55 22 182 
P53 gggacagccaactctgttatgtgc ctgtcttccagatactcgggatac 62 25 300 
M-cadherin agccctgagttcttcagcat ccttcaaggatggtgaacct 55 22 320 
NFATC2 cgacgccttctactctggac cttggttggctctttgaagc 50 30 427 
GAPDH gtgtccgtcgtggatctg cctgcttcaccaccttcttg 55 25 90 
 

The AR primer set was designed to amply the region of exon 1 containing the 

CAG repeat of the human AR, though PCR performed on murine DNA also resulted in a 

band slightly smaller than that observed in human DNA, indicating a high degree of 

sequence homology between the two species.  Myogenin was selected as a molecular 

marker of differentiation, as myogenin is typically not observed in rapidly proliferating 

myoblasts but its expression is both necessary and sufficient to induce myotube formation 

(241).  In contrast, MyoD is expressed during myoblast proliferation and has been 

demonstrated to be vital for myogenic determination (242), and primary myoblasts 

derived from MyoD-/- mouse satellite cells are differentiation deficient (243).  Skeletal 

alpha-actin was chosen because of its status as a contractile protein whose expression is 

known to be sensitive to androgen administration and which has an AR-responsive region 

in its promoter (115).  Myostatin is a negative regulator of skeletal muscle development, 

and its expression has been shown to be modulated by androgen treatment (20;73).  M-
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cadherin is a muscle specific, calcium dependent cell-cell adhesion molecule that plays a 

role in both the proliferation and differentiation of embryonic and adult skeletal 

muscle(244), and was selected due to apparent differences in fusion between the stably 

transfected C2C12 lines.  NFATC2 was investigated due to the similarities in 

morphology between the AR14 stable line and a line of NFATC2-/- primary murine 

hindlimb myoblasts (44), both of which display a long, thin myotube with sparse nuclei, 

indicating a possible effect of AR on NFATC2 or its downstream signaling.  Due to 

apparent differences in cell survival between lines upon initiation of differentiation, an 

investigation of p53 expression was performed.  p53 is a cell cycle mediating protein that 

is a strong initiator of apoptosis if DNA damage becomes severe (245).  GAPDH was 

selected as a normalization gene due to its constitutive, stable expression as a 

“housekeeping” gene.      

Statistical Analysis 

Pair-wise comparisons of means were performed by two-tailed Student’s t-test.  

Two-way ANOVA was used for multiple comparisons in dose-response experiments (i.e. 

luciferase activity) with drug and cell line as main effects.  Three-way ANOVA with 

repeated measures was used for time course experiments with drug, cell line, and day as 

main effects, and Tukey’s post-hoc for comparison of means.  All experiments were 

performed in triplicate and were repeated on 3 separate occasions, unless otherwise 

noted.  All comparisons were carried out using the SPSS software package (SPSS Inc.). 

 



 

Figure 15:  A) Chromatograms of sequencing analysis of AR constructs showing 14, 24, and 
33 CAG repeats, respectively.
demonstrating AR size differences.

 

Figure 14, panel A

vectors.  After cloning and expansion (see experimental procedures, AR vector creation), 

the glutamine repeat region was amplified via PCR, resolved via agarose gel 

electrophoresis (figure 14

Samples were resuspended in dH
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Appendix 

Chromatograms of sequencing analysis of AR constructs showing 14, 24, and 
33 CAG repeats, respectively. B) RT-PCR performed on RNA from stably transfected lines 
demonstrating AR size differences. 

, panel A displays the sequencing chromatograms for each of the AR 

vectors.  After cloning and expansion (see experimental procedures, AR vector creation), 

he glutamine repeat region was amplified via PCR, resolved via agarose gel 

4b) and purified via PureLink Gel Extraction Kit (Invitrogen).  

Samples were resuspended in dH2O and sequenced with a 3730 Applied Biosystems 

 

Chromatograms of sequencing analysis of AR constructs showing 14, 24, and 
PCR performed on RNA from stably transfected lines 

displays the sequencing chromatograms for each of the AR 

vectors.  After cloning and expansion (see experimental procedures, AR vector creation), 

he glutamine repeat region was amplified via PCR, resolved via agarose gel 

) and purified via PureLink Gel Extraction Kit (Invitrogen).  

plied Biosystems 



 

DNA Sequencer with the forward AR primer listed in 

extracted from stably transfected C2C12 cells and the AR repeat region was amplified via 

RT-PCR and resolved on a 1.5% agarose gel.

Figure 16: Relative luciferase
grown to ~75% confluency before being transfected 
reporter vector, and pRL-
incubated for 72 hours in D
24 hours before being assayed for luciferase activity.

 

Because myoblasts and differentiating myotubes have divergent gene expression 

profiles, the effect of glutamine repeat length on AR

examined in myotubes (Figure 15

experimental procedures) with the exception that myoblasts were grown to ~75% 

confluency before transfection, and were subsequently incub

allow for differentiation before the luciferase assay was carried out.
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with the forward AR primer listed in table 2.  In panel B, 

extracted from stably transfected C2C12 cells and the AR repeat region was amplified via 

PCR and resolved on a 1.5% agarose gel. 

: Relative luciferase activity of transiently transfected myotubes.  Cells were 
grown to ~75% confluency before being transfected with the respective AR vector, pPR

-TK normalization vectors as described.  Cells were then 
incubated for 72 hours in DM.  DM was supplemented with ethanol or 100nM testosterone 

assayed for luciferase activity. (*p<0.05) 

Because myoblasts and differentiating myotubes have divergent gene expression 

profiles, the effect of glutamine repeat length on AR transcriptional activity was also 

Figure 15).  The experiment was carried out as described (see 

experimental procedures) with the exception that myoblasts were grown to ~75% 

confluency before transfection, and were subsequently incubated in DM for 72 hours to 

allow for differentiation before the luciferase assay was carried out. 

panel B, RNA was 

extracted from stably transfected C2C12 cells and the AR repeat region was amplified via 

 

activity of transiently transfected myotubes.  Cells were 
with the respective AR vector, pPR-Luc 

described.  Cells were then 
M.  DM was supplemented with ethanol or 100nM testosterone 

Because myoblasts and differentiating myotubes have divergent gene expression 

transcriptional activity was also 

The experiment was carried out as described (see 

experimental procedures) with the exception that myoblasts were grown to ~75% 

ated in DM for 72 hours to 



 

Figure 17:  Relative luciferase activity of stably transfected myoblasts.  

 

Figure 16 displays the results from the luciferase 

transfected myoblasts.  The assay was conducted as described (see experimental 

procedures) with the exception that only pPR

transfected.  Unlike the results from transiently transfected my

significant differences in transcriptional activity were observed between AR24 and 

AR33, though AR14 transcriptional activity was still significantly lower (p<0.001). 
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:  Relative luciferase activity of stably transfected myoblasts.   

displays the results from the luciferase assay carried out in stably 

The assay was conducted as described (see experimental 

procedures) with the exception that only pPR-luc and pRL-TK vectors were transiently 

transfected.  Unlike the results from transiently transfected myoblasts and myotubes, no 

significant differences in transcriptional activity were observed between AR24 and 

AR33, though AR14 transcriptional activity was still significantly lower (p<0.001). 

 

assay carried out in stably 

The assay was conducted as described (see experimental 

TK vectors were transiently 

oblasts and myotubes, no 

significant differences in transcriptional activity were observed between AR24 and 

AR33, though AR14 transcriptional activity was still significantly lower (p<0.001).  



 

Figure 18: Influence of AR repeat 

included in the analysis. 

Figure 17 represents the data from the cell proliferation experiments with 

testosterone included in the analysis.  Statistical analysis indicated that testosterone did 

not have a significant effect on the proliferation of any of the lines, nor at any time point, 

and was subsequently removed from the final analysis for simplification. 
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: Influence of AR repeat length on C2C12 cell proliferation with testosterone 

represents the data from the cell proliferation experiments with 

testosterone included in the analysis.  Statistical analysis indicated that testosterone did 

a significant effect on the proliferation of any of the lines, nor at any time point, 

and was subsequently removed from the final analysis for simplification. 

 

length on C2C12 cell proliferation with testosterone 

represents the data from the cell proliferation experiments with 

testosterone included in the analysis.  Statistical analysis indicated that testosterone did 

a significant effect on the proliferation of any of the lines, nor at any time point, 

and was subsequently removed from the final analysis for simplification.  



 

Figure 19: Testosterone dose
confluency and were transi
and incubated in the presence of the indicated amount of testosterone or ethanol vehicle for 
24 hours before being assayed for luciferase activity.  The 100uM do

 

We applied testosterone at 100nM in all of our experiments based on the results 

from a preliminary dose-response curve.  Unlike the subsequent luciferase experiments, 

the normalization plasmid used here, pRL

cells, and resulted in firefly:

as shown in figure 17, luciferase activity of AR24 transfected cells continued to rise with 

testosterone doses increasing up t

hence the assay was not perfo

10-30nM in health human males, we selected the 100nM as the experimental dose as 

luciferase activity at this dose was significantly h

values were only slightly greater at the 1uM dose.  
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: Testosterone dose-response curve.  C2C12 cells were grown to ~50
confluency and were transiently transfected with AR24, pPR-Luc and pRL
and incubated in the presence of the indicated amount of testosterone or ethanol vehicle for 
24 hours before being assayed for luciferase activity.  The 100uM dose was 100% fatal.

We applied testosterone at 100nM in all of our experiments based on the results 

response curve.  Unlike the subsequent luciferase experiments, 

the normalization plasmid used here, pRL-SV40, was extraordinarily active in C2C12 

cells, and resulted in firefly:Renilla luciferase ratios that were much smaller.  However, 

, luciferase activity of AR24 transfected cells continued to rise with 

testosterone doses increasing up to 1uM.  The 100uM dose resulted in 100% cell 

assay was not performed at this dose. Though serum testosterone ranges from 

30nM in health human males, we selected the 100nM as the experimental dose as 

luciferase activity at this dose was significantly higher than the 10nM dose, but

values were only slightly greater at the 1uM dose.   

 

to ~50-60% 
uc and pRL-SV40 vectors 

and incubated in the presence of the indicated amount of testosterone or ethanol vehicle for 
se was 100% fatal. 

We applied testosterone at 100nM in all of our experiments based on the results 

response curve.  Unlike the subsequent luciferase experiments, 

tive in C2C12 

luciferase ratios that were much smaller.  However, 

, luciferase activity of AR24 transfected cells continued to rise with 

n 100% cell fatality; 

rmed at this dose. Though serum testosterone ranges from 

30nM in health human males, we selected the 100nM as the experimental dose as 

than the 10nM dose, but luciferase 
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