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This dissertation consists of three separate research topics: 

First, the effect of laser noise on the propagation of high-power and high-

intensity short pulse lasers in dispersive and nonlinear media is studied. We consider 

the coupling of laser intensity noise and phase noise to the spatial and temporal 

evolution of laser radiation. We show that laser noise can have important effects on 

the propagation of high-power as well as high-intensity lasers in a dispersive and 

nonlinear medium such as air. We present atmospheric propagation examples of the 

spatial and temporal evolution of intensity and frequency fluctuations due to noise for 

laser wavelengths of 0.85 μm , 1 μm , and 10.6 μm.  

Next, a concept for all-optical remote detection of radioactive materials is 

presented and analyzed. The presence of excess radioactivity increases the level of 



  

negative ions in the surrounding air region. This can act as a source of seed electrons 

for a laser-induced avalanche ionization breakdown process. We model irradiated air 

to estimate the density of negative ions and use a set of coupled rate equations to 

simulate a subsequent laser-induced avalanche ionization. We find that ion-seeded 

avalanche breakdown can be a viable signature for the detection of radioactivity, a 

conclusion which has been experimentally tested and verified. 

Finally, we propose and analyze a mechanism to accelerate protons from close 

to rest in a laser-excited plasma wave. The beating of two counter-propagating laser 

pulses in a plasma shock-excites a slow forward-propagating wakefield. The trapping 

and acceleration of protons is accomplished by tapering both the plasma density and 

the amplitude of the backward-propagating pulse. We present an example in which 

protons are accelerated from 10 keV to 10 MeV in a distance of approximately 1 cm. 
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Introduction 

This dissertation is composed of three chapters, each of which has been separately 

published in a peer-reviewed journal. They deal broadly with the topic of intense laser 

matter interactions, from the perspective of basic physics, but with real-world 

applicability firmly in mind. The chapters are, in the order in which they appear in this 

dissertation:  

1. The effect of laser noise on the propagation of laser radiation in dispersive and 

nonlinear media (published in the Journal of the Optical Society, B, in 2019 

[1]), 

2. Remote detection of radioactive material using optically induced air breakdown 

ionization (published in Physics of Plasmas in 2016 [2], with experimental 

proof-of-concept published in Science Advances in 2019 [3]), and  

3. Proton acceleration in a slow wakefield (published in Applied Physics letters in 

2017 [4]).  

In the first chapter, the effect of laser noise on the atmospheric propagation of 

high-power CW lasers and high-intensity short pulse lasers in dispersive and nonlinear 

media is studied. We consider the coupling of laser intensity noise and phase noise to the 

spatial and temporal evolution of laser radiation. High-power CW laser systems have 

relatively large fractional levels of intensity noise and frequency noise. We show that 
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laser noise can have important effects on the propagation of high-power as well as high-

intensity lasers in a dispersive and nonlinear medium such as air. A paraxial wave 

equation, containing dispersion and nonlinear effects, is expanded in terms of fluctuations 

in the intensity and phase. Longitudinal and transverse intensity noise and frequency 

noise are considered. The laser propagation model includes group velocity dispersion, 

Kerr, delayed Raman response, and optical self-steepening effects. A set of coupled 

linearized equations are derived for the evolution of the laser intensity and frequency 

fluctuations. In certain limits these equations can be solved analytically. We find, for 

example, that in a dispersive medium, frequency noise can couple to, and induce, 

intensity noise (fluctuations), and vice versa. At high intensities the Kerr effect can 

suppress this intensity noise. In addition, significant spectral modification can occur if the 

initial intensity noise level is sufficiently high. Finally, our model is used to study the 

transverse and longitudinal modulational instabilities. We present atmospheric 

propagation examples of the spatial and temporal evolution of intensity and frequency 

fluctuations due to noise for laser wavelengths of 0.85 μm , 1 μm , and 10.6 μm.  

In the second chapter, a concept for all-optical remote detection of radioactive 

materials is presented and analyzed. The presence of excess radioactivity increases the 

level of negative ions in the surrounding air region. This can act as a source of seed 

electrons for a laser-induced avalanche ionization breakdown process. We model 

irradiated air to estimate the density of negative ions and use a set of coupled rate 

equations to simulate a subsequent laser-induced avalanche ionization. We examine 

avalanche ionization behavior in several laser parameter regimes, and determine the time 
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required for saturation of the breakdown for both a single seed ion, as well as for a 

population of ions present in the focused volume of a high-intensity laser pulse. These 

correspond to two methods of remotely measuring the ion density, which is a signature of 

radioactive materials. 

Finally, in the third chapter, we propose and analyze a mechanism to accelerate 

protons in a low-phase-velocity wakefield, a type of plasma wave. The wakefield is 

shock-excited by the interaction of two counter-propagating laser pulses in a plasma 

density gradient. The laser pulses consist of a forward-propagating short pulse (less than 

a plasma period) and a counter-propagating long pulse. The beating of these pulses 

generates a slow forward-propagating wakefield that can trap and accelerate protons. The 

trapping and acceleration is accomplished by appropriately tapering both the plasma 

density and the amplitude of the backward-propagating pulse. An example is presented in 

which the trapping and accelerating wakefield has a phase velocity varying from 0phV   

to 0.15 (~ 10 MeV  proton energy)c  over a distance of ~ 1 cm. The required laser 

intensities, pulse durations, pulse energies and plasma densities are relatively modest. 

Instabilities such as the Raman instability are mitigated due to the large plasma density 

gradients. Numerical solutions of the wakefield equation and simulations using 

turboWAVE are carried out to support our model. 
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Chapter 1.  The effect of laser noise on the propagation of laser 

radiation in dispersive and nonlinear media 

1.1. Introduction 

High average power CW (greater than 10 kW) and high-intensity ( up to 

1 2TW/cm  ) short pulse lasers (with pulse lengths ranging from hundreds of 

femtoseconds to greater than a nanosecond) play important roles in a number of areas 

such as active and passive remote sensing [2], [5–9], power beaming [10], 

communications, directed energy [10], [11], electronic counter measures and induced 

electric discharges (artificial lighting) [12], [13]. In addition, high-intensity short pulse 

lasers are employed for fundamental high-intensity laser matter interaction and nonlinear 

optics studies. These applications include Raman amplification [14], laser driven particle 

acceleration [4], ultra-high frequency radiation generation and beacon beam (guide stars) 

generation  [15], [16].  

Common to many of these applications is the requirement to propagate the laser 

radiation over distances of many Rayleigh lengths, either through the atmosphere or in a 

nonlinear medium. In general, laser noise can play an important role on the propagation 

characteristics of the radiation. The laser noise considered here consists of phase noise, as 

well as temporal and spatial intensity noise. For example, high average power CW lasers, 
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which have directed energy applications, have large line-widths due to frequency noise. 

When these laser pulses propagate in the atmosphere, the relatively large frequency 

spreads induce intensity fluctuations due to atmospheric dispersion. Additionally, 

atmospheric nonlinearities and dispersion play important roles in the long range 

propagation of high-intensity, short laser pulses. The nonlinearities in the atmosphere can 

couple the various components of laser noise and lead to disruptive instabilities.  

In this analysis, we carry out computational examples for two classes of laser 

systems. These are the high-intensity, short pulse lasers having wavelengths 

0 0.85 μm   and 0 10.6 μm,   for which nonlinear and dispersion effects are 

important, and high-average power lasers having wavelengths 0 1 μm   for which 

nonlinear effects may be neglected but dispersion can play an important role. 

1.2. Formulation of Laser Noise 

In this analysis, a paraxial wave equation, containing dispersion and nonlinear 

effects, is expanded in terms of fluctuations in the intensity and phase due to noise. We 

model the laser field as a CW beam with longitudinal and transverse intensity noise and 

frequency noise. Our laser propagation model includes Kerr nonlinearities, group velocity 

dispersion, delayed Raman response, and optical self-steeping. Ionization effects are not 

included. 

The laser electric field satisfies the wave equation [17], [18], 

 
22

2
2 2 2 2 2

2 ( , )( , )1 ( , ) 4
( , )  NLL P tP tE t

E t
c t c t t

  
       

rrr
r  (1.1) 
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where 0 0
ˆ( , ) Re[ ( , ) exp( ( ))]E t E t i k z t r r , ˆ ( , )E tr is the complex amplitude, 0  is the 

carrier frequency, 0 0 0 0( ) /k n c   is the carrier wavenumber, 0 ( )n   is the frequency 

dependent linear refractive index, and 0 0
ˆ( , ) Re[ ( , ) exp( ( ))]L LP t P t i k z t r r  and 

0 0
ˆ( , ) Re[ ( , ) exp( ( ))]NL NLP t P t i k z t r r  are, respectively, the linear and nonlinear 

polarization fields. Free charges and currents are neglected, and the electric field is taken 

to be linearly polarized. Figure 1.1 shows a pulse in this coordinate system, with intensity 

and phase noise, propagating in a nonlinear medium.  

Substituting this field representation into the wave equation and transforming to 

the group velocity frame leads to a paraxial wave equation for the complex laser 

amplitude. The paraxial wave equation for ˆ ( , )E tr  is  

 

z

x

y

0 0
1 ˆˆ (( , ) . ., )
2

ik z i tE t et c c
 er rE

0 2

Nonlinear medium,

n n n I 

vg

 

Figure 1.1.  Diagram of a pulse with intensity and frequency noise, 
propagating in a medium with a nonlinear contribution to the total index of 
refraction. 
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where 2 2 2 2 2/ /x y       , 2  is the group-velocity dispersion (GVD) coefficient, 

3  is the third order dispersion coefficient and the group velocity is 

1
0 0 0v ( ( ) / ) /g c n k      .  The GVD parameter can be defined as 

0
2 ) /(1/ vg  

 


  .  In obtaining Eq. 1.2 it was convenient to transform the wave 

equation to the group velocity frame, / vgt z    and z  . The propagation distance 

variable   has been replaced with the more conventional notation z and the amplitude Ê  

was assumed to vary slowly in space and time compared with the rapidly varying carrier 

term, 0 0 ))exp( (i k z t . Neglecting higher order derivatives in z and  , i.e., 

2 2 3 3 2/ , / , /z          and higher, and setting the group velocity equal to the phase 

velocity 0 0v /g k , Eq. 1.2 reduces to  
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 (1.3) 

The nonlinear polarization field for the Kerr effect is proportional to the 

convolution of the intensity with a response function [17], [19], 

0

0

ˆ ˆ ( , ) ( ) ( , ) ,
2
NL

NL

n c
P E z R I z d

     
 

    where 0 2 /NL cn   characterizes the Kerr 
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nonlinearity, 2n  is the nonlinear Kerr refractive index, 
2

0
ˆI E  is the intensity, and 

0 0 0 / 2n c   . For an instantaneous nonlinear response, ( ) ( )R    , equivalent to the 

susceptibility (3)  being constant with respect to the frequency. In general, the nonlinear 

polarization is composed of an instantaneous electronic response and a delayed Raman 

response, ( ) ( )(1 ) ( )R R RR hf f      , where Rf  is the fraction of the nonlinear 

response due to Raman effects and ( )Rh   is the Raman response function. 

In the limit of the linearized Raman response, the Fourier transform of the Raman 

response function is approximated as ) 1(Rh i B   , where B is a slope parameter [19]. 

In this limit, the nonlinear polarization field amplitude is 

   0 0
ˆ ˆ/ (2 ) /NL NL RP n c I I E        , [17], [18],  and Eq. 1.3 becomes 

 
2

0
2

0 2 02
0

ˆ ˆ ˆ )ˆ ˆ ˆ2 2 0.
(

NL R

E E i I E
E i

I
k k E

z
k I E  

   

 


   
   






  

 (1.4) 

The term proportional to )( ˆ /I E    is responsible for optical shock formation, and 

R Rf B   is a time characterizing the delayed Raman response [17], [18].  For 800 nm 

pulse in air, this time is ~ 100 fs [20]. In the absence of the Raman response and optical 

shock terms, the total refractive index is given by 0 2n n n I  .   

We now represent the complex field amplitude as exp( )ˆ AE i , where the 

amplitude A  and phase   are real and functions of , , ,x y z  . Substituting the complex 
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amplitude representation into Eq. 4 and equating real and imaginary parts yield a set of 

coupled equations for A  and  ,  
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 (1.5a) 
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



  

 
     

 

 (1.5b) 

1.2.1. Linearization of propagation equation 

The amplitude and frequency spread are expanded (linearized) about a plane wave 

solution of the coupled equations in Eq. 1.5a,b. The amplitude and phase are expressed as 

a zeroth-order and a perturbed part, i.e., 0 ( , , , )A A A x y z   , 0 ( ) ( , , , )z x y z     , 

where the amplitude and normalized frequency perturbations, i.e., A  and 

1
0 /       , are assumed to be small, i.e., 0A A   and 1  . Note that the 

phase   is not considered a small quantity. However, the perturbed frequency spread is 

indeed small compared with the carrier frequency 0.  The normalized perturbed 

wavenumber is 1 1
0 ( / v / )gk k z          and is small compared to unity, i.e., 

1k  . The perturbed frequency and wavenumber are normalized to 0  and 0k , 
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respectively. Under these conditions the perturbed amplitude and phase are given by the 

following coupled equations, 

 
2

202
02

0 0

3
1

2 2NLk
AA A

A
z k

   
   

  
  

  
, (1.6a) 
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 
  






 


 (1.6b) 

where 0NL NLk I , 2
0 0 0I A  is the equilibrium intensity and the zeroth-order phase is 

found from Eq. 1.5b to be 0 0NL zI  . It is convenient to rewrite Eqs. 1.6 in terms of the 

normalized perturbed intensity 0 0( , ) ( , ) / 1 2 /I I I A A     r r ,  

 
2

2
2 2

0 0

1 1
3 NL

I I
k

z k

   
   

  
   

  
, (1.7a) 

 
2

22
2

0 0

1 1

4 4NL NL R

I I
k k I I

z k

     
    

               
. (1.7b) 

We now transform into frequency space, with the tilde denoting the Fourier 

transform in   , x , and ,y  

( , , , ) = ( , , , ) exp( ( ))x y x yQ z k k Q z x y i k x k y d dx dy   




   . 
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Taking the Fourier transforms of Eqs. 1.7a,b in  , x and y, the normalized intensity and 

frequency perturbations are given by, 

 0
0

0

3 NL

I
i K i k I

z

  
 


  



  , (1.8a) 

  0
0 0

4 (1 )
4 NL R NL

i
K k i I i k

z

     
 


    


   , (1.8b) 

where 0( / )i      , 2 2
0 2 0/K k k    , 2 2 2

x yk k k    and 0  . 

Combining Eqs. 1.8a,b gives  
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NL
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I I
i k

z z

IK
K k i k

 
 

 
 

    
        

  
     

  

 
 




 (1.9) 

Equation 1.9 can be solved for the Fourier transforms I   and   as a function of the 

propagation distance z .  

Before proceeding with a full numerical treatment of Eq. 1.9 it is useful to 

consider some limiting cases analytically. Neglecting the small terms of order 0/NLk    

and Raman effects, i.e., 0R  , Eq. 1.9 reduces to 2 2 2( / ) ( , ) 0z K I      , with 

solutions 

 0 0( , , ) (0, , ) cos( ) (0, , )sin( ),
K

I z k I k K z i k K z
K

     
       (1.10a) 
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0 0

( , , ) (0, , ) cos( ) (0, , ) sin( ),
K

z k k K z i I k K z
K

     
       (1.10b) 

where 2 2
0 0/ 4 NLK K K k   and initial conditions have been applied using Eqs. 1.8a,b. 

Equations 1.10a,b clearly show the coupling between intensity and frequency noise. 

1.2.2. Dispersion relation 

It is useful to consider the various regions of instability by examining the 

dispersion relation for the perturbation system described by Eqs. 1.10a,b. To obtain the 

dispersion relation, we take I   and   to vary like exp( )i k z , and Eq. 1.9 then yields 

the dispersion relation,  

 2 2 2 2
0 0 0 04 / ( / 4 (1 )) 3 / 0.NL NL R NLk k k K K k i k             (1.11) 

A more accurate dispersion relation may be found in Appendix 1.A, which includes terms 

that go like 2 2/ z  , 2 / z    , etc.  For parameters relevant to this analysis, however, 

most additional terms in the dispersion relation are small. 

The dispersion relation in Eq. 1.11 has a number of regions of instability. For 

example, in the case where 0/NLk k    and 0R  , the dispersion relation reduces 

to  

 2 2 2 2
0 2 0 2 0 0(1/ 2 ) ( ) ( 4 )NL Kk k k k k k k k          . (1.12) 
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( )a

 

 

( )b

 

Figure 1.2.  Growth rate of modulational instability, Im[ ]k  , as a 

function of  k  and   (Eq. 1.12), for  (a) anomalous and (b) normal 

group-velocity dispersion.  The maximum growth rate is 

0max 20( / )NL ck n I   . 
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Both the intensity and frequency perturbations are unstable when Im[ ] 0k  , which 

requires that the nonlinear term NLk  be nonzero. For positive NLk  ( 2 0n  ), the optical 

beam is unstable when 2 2
2 0 00 4 .NLk k k k     The maximum growth rate occurs 

for 2 2
0 2 02 NLk k k k     and has the value 0max m 0ax 2( / )Im[ ] NLk k c n I    . 

Figure 1.2 shows the growth rate as a function of k  and   for positive and negative 2 . 

The white areas indicate regions of stability, while the colored regions have Im[ 0]k  , 

with black indicating the maximum. The axes are normalized to values of k  and   

( 2 0  ) for which 0k  . 

In the absence of transverse variations, 0k  , the optical beam is unstable when 

the group velocity coefficient 2  is negative and the frequency of the instability satisfies 

the condition 2
20 4 NLk   . In the case where 2 0   and 2 0k   instability 

occurs for 2
00 4 NLk k k  . These are, respectively, the longitudinal and transverse 

modulation instabilities [17], [21]. 

The Kerr nonlinear focusing power 2
0 0 2/ (2 )KerrP n n  , [11], [18], [22], can be 

estimated from knowledge of the transverse modulational instability’s growth rate. For a 

laser beam having a spot size sR  and for 2 0  , the maximum growth rate occurs for 

2 2
2 0 0 0 0 2 0 01/ 2 ( / ) 2 ( / )sR n c I k n n c I   , where we have set 02 NLk k k   ~ 2 / sR . 

For a Gaussian beam profile the radiation power is 2
0 ( / 2)sP I R . Setting 

2 2
0 2 0 01/ (2 ( / ) )sR n n c I  we find that the maximum growth rate occurs for a beam 
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power of 2
0 0 2/ (4 )P n n  . Apart from a numerical factor this is just the nonlinear 

focusing power KerrP  which is responsible for laser filamentation.  

A similar analysis may be performed in the longitudinal 1-D case ( 0k  ). For a 

pulse of duration L , instabilities cannot be seeded at frequencies below  ~ (2 / )min L  . 

In this case, the longitudinal instability, which occurs for 2
2 4 NLk   , requires an 

intensity 2
0 2 /NL LI     in order for growth to occur. 

An analysis of pulses which are finite in both spot size and duration can be found 

in Appendix 1.B. We find that for 2 0  , there are parameters which can lead to pulses 

which do not change in duration or spot size when they propagate in a nonlinear medium.  

1.2.3. Saturation of the longitudinal instability 

For the transverse modulational instability, under most circumstances, the 

instability grows until the peak intensity is sufficient for ionization to arrest the process. 

For the longitudinal modulational instability, however, ionization is not necessary – 

saturation of the instability occurs for the nonlinear Schrodinger equation (Eq. 1.4) 

without the inclusion of additional effects. 

The maximum growth rate for the longitudinal modulational instability occurs for 

2max 2 /NLk  . The instability will then grow with the period 

max max2 /   2 0 2 02 / (2 )c n I   .  As the instability progresses into the non-

perturbative regime, it forms a periodic train of micro-pulses [23], each separated by the 
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duration max , with width ( )T z  and a constant total energy per unit area 0max0J I . 

These micro-pulses have a broad spectrum, with much of the power spectrum lying 

outside the spectral region of the growth rate. This will substantially reduce the growth of 

the instability. 

 The dynamics of the width ( )T z  of each micro-pulse may be approximated 

(Appendix 1.B) as  

 
0

3

22
02

2
2

4
1

2 Kerr

T

kz

J
T

T P




  
       

  (1.13) 

where the substitution 2
0 0/ / 2E JR   has been used and the spot size has been 

assumed to be constant. If there is no initial chirp, the micro-pulse duration has a steady-

state solution 2 0m0 ax2 /Ksat errT kP I   , with max
2 1/ 5/ 2 /satT    . The ratio of 

the FWHM of the micro-pulse power spectrum at saturation to the frequency of 

maximum growth rate is therefore max/ 2sat   , hence much of the power is outside 

of the growth rate spectrum. 

A stability analysis using satT T      gives the equation 

2 2 2
2

4// 4 )( satz T      , so Eq. 1.13 is stable for perturbations around satT . In other 

words, the duration of the individual micro-pulses reaches a stable value, saturating the 

instability.  

Simulations of this instability and its saturation are shown in the next section. 
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1.3. Simulation of laser propagation in air 

In this section, we present some computational examples of noise in laser systems 

and its effect on atmospheric propagation. The computational examples of Eqs. 1.10a,b 

are carried out for two classes of laser systems. These are the high-intensity, short pulse 

lasers having a wavelength 0 0.85 μm   and . 0 10.6 μm  ., for which nonlinear and 

dispersion effects are important, and for high-average power lasers having wavelength 

0 1 μm  , for which nonlinear effects are less important but dispersion can play an 

important role. We demonstrate coupling of frequency and intensity noise at several 

values of the average intensity. For sufficient levels of initial intensity noise when the 

peak intensity is very high, we show significant spectral broadening. Finally, we use our 

model to demonstrate the effect of various types of noise on the transverse and 

longitudinal modulational instabilities for a high-intensity pulse.  

Some of the typical parameters used in the computations in this section are shown 

in Table 1.1. The parameters in Table 1.1 correspond to the values associated with laser 

propagation in the atmosphere. 

1.3.1. Initial laser noise 

In our examples, we model the frequency noise input at 0z   as band-limited 

white noise, expressed as  

    
/2

, ,
0

(0, ) cos
N

n B n n n
n

R


       


    , (1.14) 
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where 2 /n n T  , ,nR   are a set of normal random numbers with zero mean, and .n   

are uniform random numbers on the interval [0, 2 ] . The full frequency noise bandwidth 

is 2 B , and   denotes the Heaviside step function. The total measurement time is 

T N t  , where N  is the number of temporal grid points and t  is the temporal grid 

spacing. The instantaneous frequency is normalized so that its standard deviation is 

 1/2

0( ) / /B       , where   is the frequency noise level, and is also the 

linewidth if B   . The phase fluctuation can be calculated using the definition of the 

normalized frequency fluctuation, 1
0 /       , and, depending on the value of 

B  , can be a 1-D Brownian walk. An example of the numerically generated frequency 

and phase fluctuations is shown in Fig. 1.3. 

The normalized input intensity noise at 0z   is represented as Lorentzian noise, 

 19 2
2 [10 cm /W]n  (a) 2

2  [fs / cm]  [GW]KerrP (b) 

0.85 4, [18] 0.21 , [22] 3 

1 4, [18] 0.17 , [22] 4 

10.6 4, [23] 0.3 , [24], [25] (c) 450 

Table 1.1:  The laser wavelengths and parameters used in the examples. 
(a) The long-pulse limit (> 150 fs) is used for the nonlinear index 2n , 

which includes rotational effects. (b) The expression for the nonlinear 
focusing power used in our analysis is 2

0 2/ (2 )Kerr oP n n  . (c) The 

GVD parameter 2  for 0 10.6 μm   has been calculated for 50% relative 

humidity. 
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  
/2

, ,
0

(0, ) ( cos)
N

n I n n n I
n

I R L


     


  , (1.15) 

where the parameters are analogous to the parameters in the frequency noise expression, 

Eq. 1.14, and 2 2( ) 1/ IL      denotes the intensity spectral function and I  is the 

intensity spectral width. 

These representations for the frequency and intensity fluctuations are equivalent 

to directly specifying the discrete Fourier transform of these quantities. The analytical 

solutions to the propagation system, Eqs. 1.10a,b, can also be expressed in this 

  

Figure 1.3.  Shows a) frequency and b) corresponding phase fluctuations 
as described in Eq. 1.14. Parameters are 0 1 μm  , 

3
0 0/ / 10       , 1

02 / 10B   , 0 19.2t   , and 162N  . For 

these parameters, the condition 1   is satisfied. 
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formulation. For example, in 1-D, if there is only initial intensity noise, Eq. 1.15, and the 

frequency noise at 0z   is (0, ) 0   , the final intensity noise is  

    
/2

, ,
0

c) os( , ) ( cos
N

n I n n n I n
n

I z R L K


     


  , (1.16a) 

and the final frequency noise is 

    
/2

, ,
0 2 0

( , ) ( ) sc sino
N

n n
n I n n n I n

n

R
K

z L K
      

 

  ,  (1.16b) 

where 2
2

2 2
2( ) / 4 NLn n nK k    . This shows that in a dispersive medium such as 

air, initial intensity noise leads to frequency noise. The reverse process also occurs, as we 

will demonstrate in a later section. 

The power spectrum for a random function ( )F t  with Fourier transform ( )F   is 

defined as 
2

) 1/ ) (( ( )P T F    , where T  is the measurement time period and    

denotes an average over many realizations of ( )F t . The normalized frequency, Eq. 1.14, 

has spectrum 2
0(0, ) /P   , and the spectrum of the intensity is 

 2 2 2(0, () ) 1/I IP L       . 

The instantaneous frequency, i.e. /   , is important in that its spectrum can 

help characterize a particular laser system. The distribution of instantaneous frequencies 

does not, however, represent the photonic frequency content of a laser beam. A more 

physically relevant measure of the beam’s spectral content is the power spectrum 
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( , )LP z   of the normalized total field envelope, i.e. 0( ( , ) / exp( ( , )) )A z A i z   , where 

the equilibrium phase 0 ( )z  is time-independent. For the frequency noise described in 

Eq. 1.14 and a fixed noise level  , the spectral lineshape may be Gaussian, Lorentzian, 

or some intermediary function, depending on the frequency noise cutoff B , [24]. For 

B   , the laser line is Lorentzian with a linewidth    . For B   , the line 

is a Gaussian with linewidth  1/222ln(2) /B     . In either case, the phase 

undergoes a random wander of order 2  on a time scale equal to the coherence time 

  

Figure 1.4.  Average normalized laser field power spectrum (0, )LP   for 

an ensemble of ens 1000N   samples. Each sample was generated with 

frequency fluctuations described in Eq. 1.14, and no intensity fluctuations. 
Parameters are those used in Fig. 1.2. 
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2 /c    . Figure 1.4 shows the average spectral line for parameters given in Fig. 1.3, 

which yield a Lorentzian shape. The ensemble is composed of ens 1000N   samples. 

1.3.2. Transfer of frequency noise to intensity noise in a dispersive medium 

This example considers the 1-D case of no initial intensity noise, (0, ) 0I   , 

and frequency noise at 0z   as given in Eq. 1.14. The power spectrum for the intensity 

( , )I z   in the high-average power, low-intensity regime can be found using Eq. 1.10a, 

and is given by      2 2 2
24 / 2( , ) 1/ sinI BP zz          . This can be seen as 

a transfer of frequency noise to intensity noise, a process which has been analyzed in the 

absence of nonlinear effects and demonstrated experimentally [25–27]. Depending on the 

value of B  , the intensity after propagation can fluctuate chaotically on scales much 

faster than the coherence time. One example of this is the system in Fig. 1.3 and 1.4, 

shown in Fig. 1.5 after 100 m  propagation in air. At the wavelength 0 1 μm  , the air 

exhibits normal group-velocity dispersion, i.e. 2 0  . This example corresponds to 

existing CW fiber laser systems in the kW-average power regime operating at 0 1 μm  , 

[10], [28], [29]. For such systems, linewidths are due solely to noise, and depending on 

the power, may be as high as, 2
0 ~ 0/ 1   . 
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This result agrees quantitatively with solution of the NLSE using a split-step 

Fourier method with the same input parameters and field.  

1.3.3. Transfer of frequency noise to intensity noise in a nonlinear dispersive 

medium 

For an arbitrary average intensity in 1-D, the spectrum of the intensity noise due 

to transfer of frequency noise, Eq. 1.14, can be found using Eq. 1.10a, and is 

  

Figure 1.5.  Intensity noise after propagation in air for 100 m, calculated 
using Eqs. (1.10a,b). The group velocity dispersion parameter has the 
value 2

2 0.17 fs /cm  . At 0z   there was no intensity noise and the 

frequency noise was as described in Eq. 1.14. The numerical parameters 
are 0 1 μm  , 3

0 0/ / 10       , 1
02 / 10B   , 0 19.2t   , and 

162N  . The average intensity is 21 kW/cm . Included are times 

0 / 2c   , where the coherence time is 3 psc  . The intensity RMS 

value is 2 1/2( )I I     = 0.22 after propagation. 
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    2

22
22( , sin) (

(
)

)I B zP z K
K 
    


    . (1.17) 

As the beam intensity 0I  becomes large, so too does the value of 2 2
0 0/ 4 NLK K K k  . 

As a result, the RMS value of the intensity noise which results from the transfer of noise 

from the frequency, due to dispersive propagation (Fig. 1.5), decreases with increasing 

intensity.  

Through the Wiener-Khinchin theorem, [30], the power spectrum ( )FP   of a 

function F  is related to its RMS value, ( )F , by an integral over frequency space, 

  

Figure 1.6.  RMS value of the intensity noise ( )I   as a function of 
propagation distance for three values of laser intensity. Propagation 
parameters as in Table 1.1. Numerical parameters are 0 1 μm  , 

3
0 0/ / 10       , 1

02 / 10B   . 
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   Figure 1.6 shows the RMS intensity noise, ( )I  , as a 

function of the propagation distance z  for several values of the average intensity and 

wavelength 0 1 μm  . From Fig. 1.6, we see that as the intensity increases into the short-

pulse regime, ( )I   decreases, as the transfer of noise from the frequency to the 

intensity is suppressed. 

1.3.4. Spectral modification due to noise in a nonlinear dispersive medium 

In the previous examples, the input intensity noise was (0, ) 0I   . If, however, 

the input intensity noise is described by Eq. 1.15 (Lorentzian noise), spectral broadening 

can occur for the case of a short pulse, high-intensity laser. This broadening is due to self-

phase modulation, but is purely a noise-induced effect, and is independent of the 

frequency spread/chirp due to the laser envelope. Figure 1.7 shows the laser spectral line 

of a 0 0.85 μm  , 2
0 0.2 TW/cmI   pulse after 3 km propagation through the 

atmosphere.  

In the example shown in Fig. 1.7, the initial beam is monochromatic, while the 

fractional linewidth after propagating 3 km is 3
0/ 0.~ 6 10    . As a comparison, the 

transform-limited linewidth of a 500 ps pulse (corresponding to the numerical parameters 

in Fig. 1.7) is 6
0 ~ 5/ 10    . For the same pulse and paramters, an estimate of the 

fractional (envelope-induced) frequency shift due to propagation in a Kerr medium is 

3
0 0 2 0 0/ / 10Kerr Ln k zI      , where the pulse duration is 500 psL  . This suggests 
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that for the parameters in this example, the effects of nonlinear spectral broadening due to 

noise and due to a pulse’s finite envelope may be comparable.  

1.3.5. Longitudinal modulational instability 

For 1-D longitudinal noise, if the group-velocity dispersion parameter 2  is 

negative, the system in Eq. 1.10a,b is unstable, i.e., 2 0K  , for 2
2 4 NLk   . In the 

presence of intensity noise, as per Eq. 1.15, and in the absence of initial frequency noise, 

  

Figure 1.7.  Laser spectral line ( )LP   of a 0 0.85 μm  , 
2

0 0.2 TW/cmI   laser beam after 3 km propagation through the 

atmosphere, with only initial intensity noise as given in Eq. 1.15. 
Propagation parameters are given in Table 1.1. Numerical parameters are 

0 19.2t    and 162N  . The initial intensity noise had spectral width 
3

0/ 10I     and 2( ) 10I   . 
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the final intensity noise spectrum is 2( , ) (0, ) cos ( )I IP z P K z  , where 

2 2
2 2(1/ 2) 4( ) NLK k      may be purely real or purely imaginary. Figure 

1.8 shows the instability for a 10.6 μm  beam at 2
0 5 GW/cmI   in configuration space 

before and after 3 km propagation in atmosphere. 

Carbon dioxide laser pulses in the 10 μm  regime have been produced with pulse 

lengths of ~ 3 ps and peak intensities in the multi-Terawatt regime, and have been 

proposed as candidates for directed energy applications [31], [32]. By comparison, the 

  

Figure 1.8.  Shows the longitudinal modulational instability before (black) 
and after (red) 3 km propagation in atmosphere, with no input frequency 
noise. In this example, 0 10.6 μm   and the average laser intensity is 

2
0 5 GW/cmI  . Propagation parameters are 19 2

2 4 10 /Wcmn    and 
2

2  =  - 0.3 fs / cm . Numerical parameters are 0 0.719t    and 182N  . 

The intensity noise before propagation was Lorentzian, with spectral width 
2

0/ 10I     and RMS value 3( ) 10I   . 
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intensity in our example is relatively modest. This is a strong indication that the 

interaction of dispersion and nonlinearity will be of great relevance to atmospheric 

propagation of laser pulses at these wavelengths, and that depending on noise levels in 

the individual pulses, disruptive instabilities may be seeded. 

1.3.6. Saturation of the longitudinal modulational instability 

Because saturation necessarily takes place in the non-perturbative regime, it 

cannot be simulated using Eqs. 1.10a,b. Instead, it is possible to use a split-step Fourier 

algorithm to solve the nonlinear Schrodinger equation, Eq. 1.4.  

For our initial 0 10.6 μm  pulse, we use a 100 ps 2sin  envelope, peak intensity 

10 GW/cm2, modulating Lorentzian intensity noise with spectral width 3
0/ 10I     and 

RMS value 2( ) 10I   . This pulse at z = 0 is then propagated through atmosphere 

using a split-step Fourier code solving Eq. 1.4, with the self-steepening and delayed 

Raman terms dropped. Atmospheric parameters are those given in Table 1.1. Figure 1.9a 

shows a 5 ps section of the pulse’s peak at z = 0 km, z = 1 km and z = 2 km, while Figure 

1.9b shows the same section at z = 3 km. 
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( )a

 

 

( )b

 

Figure 1.9.  Shows intensity for a 5 ps section of a 100 ps, 0 10.6 μm  , 

sin2 pulse, normalized to the peak intensity 10 GW/cm2, after propagation 
through atmosphere, parameters in Table 1.1. NLSE solved using split-
step Fourier algorithm. Intensity given for (a) z = 0 km, 1 km, 2 km and 
(b) z = 3 km.  
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1.3.7. Transverse modulational instability 

As an illustration of the effect of transverse noise in the initial intensity, we show 

growth of the transverse modulational instability. We represent the initial transverse 

intensity fluctuations as white noise, 

  
/2, /2

, , , ,
, 0

(0, , ) cos
x yN N

j l x j y l j l
j l

I x y R k x k y 


   , (1.18) 

  

Figure 1.10.  Shows growth of the modulational instability for the 
transverse intensity noise (given initially by Eq. 1.18) at z = 200 m. 

128x yN N  , max max 5 cmx y  , 19 2
2 4 10 /Wcmn   , 

10 2
0 W1  m0 /cI  , 3( 10)I   , 0 m0.8 μ5   . The e-folding length 

1/ Im( )eL k  at the maximum growth rate is 30 meL  . 
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where , /2x j x xk j N  , , /2y l y yk l N  , ,j lR  are a set of normal random numbers 

with zero mean, and ,j l  are uniform random numbers on the interval [0, 2 ] . The 

dimensions of the simulation window are maxy  and maxx , separated into an x yN N  grid, 

with grid point spacing x  and y . Figure 1.10 shows the transverse modulational 

instability, where the intensity after propagation has been calculated using Eqs. 1.10a,b. 

This instability is the cause of the filamentation process which occurs when the laser 

power exceeds the critical focusing power KerrP . The number of filaments formed is 

roughly equal to the laser power divided by KerrP , as discussed in Section 1.2.2. 

1.4. Discussion 

In this chapter, we have studied the effect of laser noise on the propagation of 

laser radiation in dispersive and nonlinear media. We used a laser propagation equation 

which includes nonlinear Kerr effects, group velocity dispersion, the delayed Raman 

response, and optical self-steepening. The laser beams under consideration have noise 

components in the intensity and frequency. Our propagation equations are first-order in 

the intensity and frequency fluctuations. We also analyzed the saturation of the 

longitudinal modulational instability and found that saturation occurs without requiring 

ionization to arrest growth. 

We chose a few examples to study analytically and numerically. Computational 

examples were carried out both for high-intensity, short pulse lasers having a wavelength 

0 0.85 μm   and 0 10.6 μm  , for which nonlinear and dispersion effects are 
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important, and for high-average power lasers having wavelength 0 1 μm  , for which 

nonlinear effects can be neglected but dispersion can play an important role.  

The examples include simulations of the transverse and longitudinal modulational 

instabilities (for which a more complete dispersion relation is derived in Appendix 1.A). 

For media with anomalous group-velocity dispersion (e.g. 10.6 μm radiation in humid 

air) pulse parameters exist which may result in soliton behavior, allowing a pulse to 

propagate long distances without significant reduction in intensity (Appendix 1.B). In 

addition, we examined the conversion of frequency noise into intensity noise for lasers 

propagating in the atmosphere. We found that the transverse and longitudinal noise can 

be transferred between the phase and intensity fluctuations, an effect which may have 

important implications for adaptive optics applications. For example, if a beam initially 

has no intensity fluctuations, but has a nonzero linewidth due to phase noise, after 

propagation, intensity fluctuations may grow to be of order unity (Fig. 1.5). We also 

showed that when the Kerr nonlinearity is included, this conversion effect can be 

mitigated for high intensity lasers. Finally, we demonstrated noise-induced spectral 

broadening for a short laser pulse. 

Appendix 1.A:   Full dispersion relation 

In deriving our pulse propagation equation, several assumptions were made.  

First, the group velocity was assumed to be approximately equal to the phase velocity, 

allowing some cancellations to be made.  In addition, a second derivative term in z  was 

dropped.  For the parameters in our examples, these approximations proved to be valid. 
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However, a more complete dispersion relation can be derived without some of these 

approximations. 

Beginning with Eq. 1.2, and keeping only the second-order dispersion term, 

proportional to 2 , the pulse propagation equation is 
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  (1.A.1) 

where the nonlinear polarization is defined in Section 1.2. The electric field is perturbed 

about a steady-state solution, 0
ˆ ( ) ( , )E E z E   r , where 0 ( )E z  is defined by the 

equation 2 2
0 0 0 0 0 0/ 2 / 2 NLE z ik E z k k E      , which has the solution 

 0 0 exp NLE A ik z , where    0 0 01 ...1 2 / 1 / 2NL NL NL NLk k k k k kk       for a 

forward-propagating wave. Keeping first-order terms in the perturbation, and dropping 

the small 2
0( / )    term, the equation for E  is  

 

2
2

02
0

2
*

0 2 0 0 0 0 02
0

2 1
v

2
2 1 (2 ) 0

g

NL

E i E
E i k

z k z

E i
k k I E E E E

 


    
  



   
        

  
       

  (1.A.2) 

Setting ( , ) ( , ) exp( )NLE r A r zik    , we obtain 
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Defining ,R IA A i A     where ˆRe[ exp( ( ))],R RA A i    k r  

ˆRe[ exp( ( ))],I IA A i    k r  and x y zy kk x k z k r  leads to a system of 

equations for ˆ
RA  and ˆ

IA , 
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Combining Eqs. 1.A.4 gives the dispersion relation, 
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Appendix 1.B:   Laser envelope 

The envelope )( ,ˆ ,rE z   of a laser pulse may be approximated as Gaussian both 

transversely and longitudinally, i.e.  

 
2 2 2 2( ) [1 ( )] / ( ) [1 ( )] / ( )ˆ , , ()( ) i z i z r R z i z T zAr z z e e eE         . (1.B.1) 

and the peak intensity is 
2

0
ˆ( )I z E . By substituting this into the propagation equation, 

Eq. 1.4, and expanding to second-order in r  and  , the dynamics of the pulse duration T  

and spot size R , as well as the curvature   and  , which is proportional to the chirp, 

can be shown to be given by [11] 
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where the conserved pulse energy is 2
0 / 2RE T I , and the critical power is 

2
0 0 2/ 8Kerr n nP   .  From this, we can find conditions for the pulse to be a soliton, i.e. 

( ) / 0, / 0( )zR z z T z      ,  
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where the group-velocity dispersion must be anomalous, i.e. 2 0  . 

These conditions can also be arrived at by analysis of the dispersion relation in 

Eq. 1.12. First, we recognize that a pulse which is finite in the longitudinal and transverse 

directions cannot seed an instability at frequencies smaller than min ~ 2 / T  and 

transverse wavenumbers smaller than ,min ~ 2 /k R .  For stability (no self focusing) the 

growth rate [ ]Im k   must be zero for all ,mink k   and min  , a condition which 

can only be satisfied for 2 0  . Additionally, for soliton behavior, the minima min  and 

,mink  should be situated at the edge of the region of stability, leading to the condition 

2 2
,min 2 min 0 04 NLk k k k    .  After substitution, we find 

 2 2
0 2 02 / 0s Kerr s sT E P T k R   , where 2

0 0 2/ 4Kerr n nP    . From this, and the 

assumption that the soliton spot size and pulse length should be defined unambiguously, 

we recover the previous conditions, Eqs. 1.B.3. 

The soliton solution can be analyzed for envelope stability by perturbing the 

equations for ( )T z  and ( )R z  about the soliton conditions sT  and sR , and assuming the 

perturbations go like ~ exp( )ikz . In this case, the wavenumber k  follows the equation  
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with stable roots 2
2 08 / Tk   and unstable root 2

2 02 /k i T . 

The presence and dynamics of solitons in air at 0 10.6 μm   ( 450 GWKerrP  ) 

have been analyzed numerically in detail elsewhere [33], however some basic estimates 

of their characteristics can be calculated from the analysis in this appendix. For a 1 ps 

pulse, the pulse energy should be 0 0.45 JE  , and the spot size should be 0 ~ 0.2 mR . At 

these parameters, the e-folding length for perturbations to the spot size and pulse length is 

~ 10 kmeL . 
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Chapter 2.  Remote detection of radioactive material using 

optically induced air breakdown ionization 

2.1. Introduction 

Sources of radioactivity range from terrestrial, to cosmogenic and man-made [34]. 

In general, radioactive material emits ionizing radiation, for example gamma rays, which 

ionize the surrounding air, producing high-energy electrons which cascade down to low 

energy, thermal electrons [35]. These low energy electrons rapidly attach to oxygen 

molecules forming 2O  ions. At ambient levels of radiation, the density of free electrons 

is much less than the density of molecular oxygen ions [36].  

Remote radiation detection concepts have been proposed based on high-power 

terahertz (THz) radiation pulses that induce avalanche (collisional) air breakdown in the 

vicinity of the radioactive material [37], [38]. Here, a THz pulse is focused near the 

radioactive material. In order to initiate avalanche breakdown at least one electron needs 

to be in the optical volume for many ionization times. At ambient levels of radioactivity 

the free (seed) electron density in the optical volume will be small so that the probability 

of avalanche breakdown is small, i.e., the average breakdown time is long, or breakdown 

does not occur, depending on the duration of the THz pulse. However, in the presence of 

radioactive material the probability of breakdown occurring is higher because the density 
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of free electrons available to seed the avalanche process is higher, i.e., the average 

breakdown time is shorter. A variation in spark breakdown probability and therefore 

average time delay is an indication of a difference in surrounding radioactivity.  

Another proposed concept for the remote detection of radioactivity consists of 

photo-detaching electrons from the 2O  ions in order to enhance the level of seed 

electrons in the optical volume for the avalanche breakdown process [39]. In this concept, 

a single, high-power IR laser beam is used for both the photo-ionizing and avalanche 

ionizing beams (Fig. 2.1). In this bistatic detection concept the electromagnetic signature 

for the presence of radioactive material is a frequency modulation on a probe beam 

caused by the temporally increasing electron density [40]. A previous paper [2] analyzed 

a specific example of remote detection, using a low-intensity photo-detaching laser pulse 

 

Radioactive
material

Ionizing
gamma 

radiation
Backscattered light

High-intensity pulse
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Breakdown 
region
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levels

-
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Figure 2.1.  Schematic of the detection mechanism. 



 

 40 
 

( 1 μm  ) to produce seed electrons, and a CO2
  laser ( 10.6 μm  ) to induce 

avalanche air breakdown in the vicinity of radioactive materials.  

In the present analysis, in addition to calculating the increase in the density of 

negative ions due to the presence of radioactivity, we will perform a more general 

analysis of detection through ion-seeded avalanche breakdown. Using a system of 

coupled rate equations, we derive the avalanche breakdown threshold intensity for a 

range of laser frequencies, as well as the breakdown equilibrium temperature and 

ionization rate for several specific frequencies. We also analyze the ion density and laser 

pulse parameter requirements both for detection by breakdown time delay statistics and 

by single-pulse breakdown time delay measurement.  

2.2. Ion-seeded avalanche breakdown 

2.2.1. Radioactive electron generation and negative ion formation 

Upon disintegration, many types of radioactive nuclei emit ionizing radiation 

which, through a Compton scattering process (gammas), generate high-energy electrons 

that cascade down in energy. Due to its high electron affinity the majority of these ions 

are oxygen molecules, and at sea level are predominantly O2
- rather than O-. An example 

of this process is the disintegration of Cobalt-60 ( 60 Co ). Upon each disintegration of a 

60 Co  nucleus, two gammas are emitted, each with an energy of 1MeV . The MeV 

gammas have a mean-free-path in air of ~130 m. Each of these gammas produce ~30,000 

electrons which eventually recombine and/or form negative oxygen ions [35]. 
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As a result of cosmic rays, radioactive substances in the ground and air, the 

ambient ionization rate is 3 110 30 cm sradQ     [34]. The presence of additional 

radioactive material can significantly increase the radioactive ionization rate to 

(1 )rad radQ  where 1rad   is the enhancement factor resulting from the additional 

radioactive material. For example, 50 cm from 10 mg of 60 Co  (a dirty bomb may contain 

many hundreds of mg), the enhancement factor in air can be as high as 6~ 10rad  [39]. 

In general, for an unshielded, localized source of gammas, the radioactivity enhancement 

factor falls off like 2exp( / ) /R L R , where R is the distance from the source and L  is 

the effective range of the gammas. 

2.2.2. Electron, ion, and electron energy density rate equations 

The electron density, ion density and electron temperature are modeled using the 

following rate equations [2], 
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(2.1a – 2.1c) 

where en  is the electron density, n  is the negative ion density (taken to be 2O  at sea 

level), en n n    is the positive ion density, 0n nn n n n     is the neutral density 

(the ambient density is taken to be 19 3
0 12.7 m0 cnn  ), photo  is the photo-detachment 
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rate, coll  is the collisional ionization rate,   is the electron attachment rate, e   is the 

electron-ion dissociative recombination rate, n  is the negative ion detachment rate due 

to collisions with molecular nitrogen,   is the ion-ion recombination (mutual 

neutralization) rate, eT  is the electron temperature in eV ( o[eV] [ K]e B eT k T ), J E  is 

the Ohmic (inverse Bremsstrahlung) heating rate, and loss  is the electron energy loss rate 

in air. These air chemistry rates and collisional ionization rates are discussed in 

Appendices 2.A and 2.B and are in general functions of electron temperature. This model 

assumes a continuum of electrons and ions, an assumption which will be explored in a 

later section. 

2.2.3. Ion density elevation due to radioactivity 

In the absence of laser radiation, the background densities of electrons and 

negative ions reach a steady state, determined by the surrounding level of radioactivity, 

which is contained in the first term on the right-hand side of Eq.(2.1a), i.e.,  1 rad radQ . 

The steady state electron and negative ion densities can be estimated to be given by 

1/2
0( / ) ((1 ) / )e n n rad r da an n Q    and 1/2((1 ) / )rad radn Q     [39]. In steady state, 

the negative ion density is solely determined by the ion-ion recombination rate and the 

level of radioactivity. The ratio of the electron to ion density in the steady state is 

6/ / ~ 10e n nn n n  
  . For typical atmospheric parameters, the ion density in the 
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presence of a radioactive material is 1/23 310  cm (1 )i radn   . This is consistent with 

experimental measurements of the ion background, with 0rad  [36]. 

2.2.4. Single- and two-photon detachment of O2
- 

The electron affinity (ionization potential) for O2
- has been measured to be 

approximately 0.45 eV [41]. For laser photon energies greater than this, 2.7 μm  , 

photo-detachment occurs via a single-photon absorption process. The detachment rate is 

0 /photo pd I    , where pd  is the cross-section for photo-detachment, 0I  is the 

incident laser intensity, and   is the photon energy. The cross-section pd  has been 

measured experimentally for photon energies greater than 0.5 eV, and the data points fit 

to a theoretical curve [42], 

    3/2

0 0 1 0 ...pd AE A E            , (2.2) 

where the fitting parameters are 0  0.15 eVE  , 18 2 5/2
0 0.370  c e0 m1  VA    , and 

18 2 7/2
1 0.071  c e10 m  VA     . For 1.06 μm  , the photo-detachment rate is 

1 2
0[s ] 1.9  [W/cm ]photo I   . 

The cross-section for two-photon detachment of O2
- has not been measured 

experimentally, and the details of the process are not well-understood, however an 

approximate theoretical formula has been calculated for the specific case of 5.5 μm  , 

with 1 12 2 2
010 c[s ]   [W/ m ]photo I   [43]. 
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2.2.5. Laser-induced avalanche breakdown 

The basic theory of the avalanche breakdown of air in a laser field is well 

documented [44]. When a population of electrons is illuminated by a laser pulse which 

has an intensity greater than a threshold intensity thI , free electrons are accelerated and 

collisionally ionize molecules at a rate greater than the rate of attachment. The 

breakdown threshold intensity can vary greatly depending on atmospheric conditions, 

laser pulse parameters, etc. [45], but can be approximated by finding the conditions in Eq. 

2.1 for which ionization overcomes electron losses due to attachment, 

/ 0e coll e a enn t n     . Because the collisional ionization rate and attachment rate 

are functions of the electron temperature, this equation and Eq. 2.1c must be solved self-

consistently.  

In the presence of a laser field, the electron energy density, 3 / 2e en T , increases 

due to resistive heating at an average rate J E  and decreases due to various inelastic 

cooling processes, including ionization, at a rate se lo sn   (Appendix 2.A). If we assume 

weak ionization, 19 3
0 2.7  m0 c1n nn n    , and that the electron density is an exponential 

function of time, i.e., )( ) (0)exp(e e ionn tt n   [45], with ion coll a    , then the electron 

temperature (from substituting our expression for ( )en t into Eq. 2.1c) can be shown to 

reach a steady-state, with  

   0
2

/
3

e
e is ons elo

T
n T

t
 

   


J E . (2.3) 
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It should be noted that the expression / enJ E  does not depend on the electron density. 

From this model, we can derive a theoretical breakdown threshold intensity in 

clean air for CW, 1-D laser pulses. For the rates given in Appendices 2.A and 2.B, the net 

ionization rate ( )ion eT  has a zero at 1.47 eVthT  . For the electron density to increase, 

the steady-state temperature for a given intensity and wavelength must be greater than 

thT . From Eq. 2.3, this is equivalent to stating that the intensity must be greater than  

 2 11 2[W/cm ] 3 0.69 1thI   , (2.4) 

  

Figure 2.2.  Steady-state breakdown temperature as a function of laser 
intensity for several laser wavelengths. These were calculated from Eq. 
2.3, using the rates in Appendices 2.A and 2.B. The dotted line shows the 
breakdown threshold temperature 1.47 eVthT  .  
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where the wavelength is in μm . This expression is in good agreement with previous 

theoretical and experimental determinations of the air breakdown threshold intensity.  

The steady state breakdown temperature 0 )( ,ssT I   calculated numerically from 

Eq. 2.3 is shown in Fig. 2.2 as a function of intensity for several values of the laser 

wavelength. These temperatures can be used to calculate the rate of ionization for the 

majority of the breakdown process,  0 )( ,ssion T I  , shown in Fig. 2.3.  

  

Figure 2.3.  Ionization rate as a function of laser intensity, evaluated at the 
steady-state temperature during breakdown, shown for several values of 
the laser wavelength. 
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( )a

 

 

( )b

 

Figure 2.4.  Electron temperature (a) during avalanche breakdown for a 
laser pulse,  3.9 μm  , which is Gaussian in time (b). The red, dashed 
curve shows the calculated steady-state breakdown temperature for the 
given wavelength and intensity profile, while the solid curve shows the 
full numerical solution of Eq. 2.1a-c. The initial electron density was 104 
cm-3. 
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2.2.6. Breakdown temperature for time-dependent intensities 

If the laser intensity is not constant, the assumptions made in deriving the steady-

state avalanche breakdown temperature are not valid. However, if the intensity changes 

slowly compared to the time required for the temperature to equilibrate, then the 

calculated intensity-dependent temperature and ionization rate, Figs. 2.2 and 2.3, may be 

used. An example of avalanche breakdown driven by a Gaussian pulse,  3.9 μm  , is 

shown in Fig. 2.4a. The time-dependent laser intensity is shown in Fig. 2.4b.  

It can be seen from Fig. 2.4 that the difference between the temperatures 

calculated by the two methods is very small for these parameters, after an initial 

equilibration time of a few picoseconds. 

2.2.7. Breakdown delay time in the continuum model 

We now make the assumption that our initial electron density (0)en  is due to the 

complete photo-detachment of the negative ions, so that  1/2

0 1(0)e i radn n  , where 

the ambient background ion density is taken to be 3 3
0 ~  10  cmin  .  If a low-intensity 

laser pulse is used to detach the electrons before a subsequent high-intensity pulse drives 

an avalanche breakdown [2], the second pulse may be of any wavelength. If, instead, the 

high-intensity heating pulse is also photo-detaching, this requires the photo-detachment 

term in Eq. 2.1a to be much greater than the collisional ionization term, which may place 

constraints on the wavelength, intensity and pulse duration. 
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For an exponential electron density with a constant rate, )( ) (0)exp(e e ionn tt n  , 

the time required to reach the electron density bdn  is  ln ( ) // 0bd bd e ionnn  .  The total 

ionization rate is a function of the steady-state breakdown temperature, Figs. 2.2 and 2.3. 

For a fixed intensity and wavelength, the breakdown time is only a function of the 

radioactivity enhancement factor rad , and can therefore be used as a signature for the 

presence of radioactivity. This can be accomplished by comparing measurements at two 

nearby locations, one of which is the location in question. 

  

Figure 2.5.  Electron density during breakdown, with 9 2
0 5  10 W/cmI   

and  10.6 μm  . The black curve had an initial electron density of 
3

1
6(0) 10  cmn   while the red curve had 38

2 (0) 10  cmn  . 
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As an example, consider a 50 ns,  10.6 μm   square laser pulse of intensity 

9 2
0 5  10 W/cmI   focused on an area 3 22. 105  cm  (pulse energy ~ 0.5 J). The steady-

state breakdown electron temperature for this intensity is 2.42 eV, and the corresponding 

total ionization rate is 186.5  s10ion   . We will assume that all ions have been photo-

detached by a previous pulse, so that a seed electron population with 3
1

6(0) 10  cmn  is 

present in one remote location, and another with 38
2 (0) 10  cmn   is present in a second 

location near enough to the first so that all atmospheric variables are identical. The 

difference in breakdown times is  11 22 ln 7 ns/ / ionnn    , which is readily 

measureable (Fig. 2.5).  

2.2.8. Breakdown from one seed electron 

If an avalanche breakdown ionization is seeded by a single electron, by the time 

the electron density reaches a detectable level, the plasma will occupy a finite volume 

due to electron diffusion surrounding the original location of the seed electron. When 

there are multiple seed electrons in the focal volume of the laser pulse, if the distance 

between seed electrons is too large (i.e. the density is too small), the breakdown plasma 

volumes will not overlap, and the time required for the plasma to reach a detectable level 

will not be a function of seed electron density and, in turn, level of radioactivity.  

So far, our model has assumed a continuum of ions and electrons, in which the 

density of seed electrons is high enough that the electron density becomes continuous 

early in the avalanche breakdown ionization process. In this case, the breakdown time 
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can be used as a signature of radioactive ionization, as discussed in the previous section’s 

example. The continuum assumption for ions and electrons may reasonably be used to 

model this detection method if the radius   of the plasma volume, 3 / 34V   , 

resulting from an avalanche breakdown seeded by a single electron is much greater than 

the mean distance between seed electrons, i.e., 1/3(0)en  .  

To approximate the dynamics of an avalanche breakdown ionization seeded by a 

single electron, we model the total electron number as exp( )( )e ionN tt  , so that the 

density of electrons is 33e( x )p( ( )( ) ( ) / ) / 4e e ionn t tN t V t t  . While the plasma radius 

( )t  is smaller than the Debye length, it is assumed to be the mean radius of a 3D 

random walk process, ( 3 /) e c e m eNL T mt t   , where 1 3 /e m e emTL    is the 

electron mean-free-path in air and c mN t  is the number of collisions. The electron 

momentum-loss collision rate m  is given in Appendix 2.B. After the plasma radius 

reaches the Debye length 2
0 /D e eT n e  , the diffusion process is assumed to be 

ambipolar [46], and the plasma radius effectively stops increasing. The temperature is 

assumed to be the steady-state temperature derived in a previous section, 0 )( ,e ssT T I  . 

The breakdown time se for a single electron-seeded avalanche ionization is shown in Fig. 

2.6a as a function of CW laser intensity for several values of the laser wavelength, using 

a breakdown density of 18 310  cmbdn  . Figure 2.6b shows the maximum plasma radius 

max  reached during the breakdown ionization. 
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( )a

 

 

( )b

 

Figure 2.6.  (a) CW breakdown time (time to reach 18 310  cmbdn  ) and 

(b) maximum plasma radius for avalanche seeded by one electron. Shown 
for several values of laser wavelength as a function of laser intensity. 
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The example in the previous section considered a 50 ns,  10.6 μm   square 

pulse of intensity 9 2
0 5  10 W/cmI   and focused area 3 22. 105  cm . In this case, the 

single-electron breakdown time, with  18 310  cmbdn  , is 43 ns and the plasma reaches a 

maximum radius of 74 μm   before the transition to ambipolar diffusion. For initial 

electron densities greater than 6 3(0) ~ 10  cmen  , the continuum approximation can be 

employed, and the breakdown time can be used as a signature of the presence of excess 

radioactivity. If, however, this pulse is used to initiate breakdown seeded by electron 

densities below 6 310  cm , including the background ion density of 3 3 10 cm~  , 

determination between regions of different ion density cannot be made based on 

differential single-shot measurements of the breakdown time. In this case, a laser pulse 

with different parameters should be used, or a statistical method should be employed [3], 

[37]. 

2.3. Proof-of-concept experiments 

Experiments performed at the University of Maryland have demonstrated that 

photo-detachment of negative ions can seed avalanche ionization, and that this can be 

used to detect radioactive materials [3]. These experiments were performed in a 

parameter regime where a continuum of ions and electrons could not be assumed, 

however the basic physics of the experiment is the same as that presented in this chapter. 

The experiment used a Polonium-210 alpha source to irradiate air, producing an elevated 

negative ion density. A ~ 50 ps (FWHM), chirped,  3.9 μm   laser pulse, with intensity 
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from 0.6 TW/cm2 to 1.3 TW/cm2, was used to both photo-detach negative ions and drive 

breakdown.  Breakdown was measured by observing a chirped probe beam, 1.45 μm  , 

co-propagating with the pump, as well as by measuring pump radiation back-scattered 

from the breakdown plasma. The chirped probe allowed measurement of the breakdown 

time advance, or the amount of time between the saturation of the breakdown process and 

the end of the pump pulse. 

As the radioactive source was covered and uncovered, on-off behavior was 

observed in both the backscatter signal as well as in measurement of the breakdown time 

advance (Fig. 2.7).  

  

Figure 2.7.  (from [3]) “On-off response of breakdowns to a modulated 
external source of radioactivity. A series of shots measured the pump 
backscatter (left) and breakdown time advance (right) as the   irradiation 
was periodically switched on and off using a mechanical shutter.” 
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2.4. Conclusion 

We have presented and analyzed a concept for the remote detection of 

radioactivity by active observation of electromagnetic signatures. The presence of 

ionizing radiation results in an elevated density of negative ions. These ions may be 

photo-detached by an incident laser beam, producing a population of seed electrons for a 

subsequent laser-induced avalanche ionization air breakdown. In the appropriate laser 

parameter regimes, differences in the initial seed electron density can be correlated with 

differences in the time required for avalanche breakdown to occur, providing a signature 

for the presence of radioactive materials. We have analyzed a theoretical detection 

example, in which a 50 ns,  10.6 μm   square laser pulse of intensity 

9 2
0 5  10 W/cmI   is used along with a  1 μm   photo-detaching pre-pulse to 

differentiate between a region of high radioactivity ( 3810  cmin  ) and moderate 

radioactivity ( 3610  cmin  ). We found that the time delay difference between the two 

cases is ~ 7 ns, which is readily measureable. 

Experiments have demonstrated that photo-detachment of negative ions can seed 

avalanche ionization, and that this can be used to detect radioactive materials [3]. These 

experiments were performed in a regime where a continuum of ions and electrons could 

not be assumed, however the basic physics of the experiment is the same as that 

presented in this chapter.  
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Appendix 2.A:   Air chemistry rates 

In this appendix the various air chemistry rates, ionization rates and other 

functions used in this analysis are discussed and expressed as functions of electron 

temperature.  It should be noted that these are approximate expressions. However, they 

should be able to capture the general behavior of the mechanism. 

2.A.1. Electron and ion loss terms 

For a weakly ionized plasma, electrons are depleted mainly through three-body 

attachment to O2.  Free electrons can also recombine with positive ions, a rate which 

becomes important at large electron densities.  The electron attachment rate to neutral 

oxygen (in air with temperature 300 K) is [47] 
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where eT  is the electron temperature in eV and nn  is the neutral density in cm-3.  For 

1 eVeT   and weak ionization, 174.8 1  0 sa
  .   

The electron-positive ion recombination rate coefficient is [48] 
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This rate is important when the plasma is nearly fully ionized, however it has not been 

used in our simulations, which mainly model weak ionization, e nn n . Additionally, the 

recombination rate is an important factor in determining the plasma decay time.   

The rate coefficient for mutual neutralization of positive and negative ions is a 

function only of the gas temperature, taken to be 300 K, and has the value 

7 3 1m101.56  c  s  
   for 2 2O N   and 7 3 1m104.12  c  s  

   for 2 2O O   [48].  

The rate coefficient for detachment of O2
- by collision with N2 is likewise a 

function only of the gas temperature, and is 20 3 119.97  cm  s0n
   for 300 K air [48].  

2.A.2. Collisional ionization rate 

The rate of collisional ionization used in our model is [49] 
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for ionization of N2 and 
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for ionization of O2. The rate of dissociative ionization at these temperatures is much 

smaller, and is not considered here. The total rate of collisional ionization in air is then 

 
2 2O

1
N[s ] 0.8 0.2coll nn     . 

Appendix 2.B:   Electron heating and cooling 

2.B.1. Resistive (inverse Bremsstrahlung) heating 

Electrons in the presence of a laser field gain energy at an average rate 

 2 2/ 8 /p eff eE  J E . (in cgs units), where p  is the plasma frequency, and the 

effective electric field effE  is defined as  /2 2 1 2
0 0)(1 / /e mff mE E E      .  This is 

the result of solving the electron momentum equation with a simple collision rate of 

momentum transfer, m , and then taking a time average [45]. Expressed in more 

convenient units and variables, the rate of electron energy density increase is 
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  (2.A4) 

where   and   are the wavelength in μm  and the angular frequency of the laser field in 

rad/s, respectively, and 0I  is the peak intensity in W/cm2. The electron-neutral 

momentum-transfer collision rate m  in weakly ionized air is given by 

  1 710 exp( 0.02 , [s ] 1.86 ) exp( 0.64 )m n e en T T        (2.A5) 
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which is a function fitted to tabulated data [50], calculated for electron temperatures from 

0.1 eV to 30 eV. 

2.B.2. Inelastic cooling of electrons 

The plasma electrons lose energy through several inelastic processes, including 

impact excitation of vibrational and rotational modes in air molecules, collisional 

dissociation and ionization, as well as attachment and recombination. Energy is also lost 

through elastic scattering with air molecules. The exact energy-dependent cross-sections 

for momentum transfer, recombination and attachment are not well-known, so the energy 

loss rates have been approximated by multiplying the rate of each process by the average 

  

Figure 2.A1.  Cooling rate coefficient as a function of electron 
temperature. Solid curve is interpolated from tabulated data. 
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energy of an electron, 3 / 2eT .  The total rate of electron energy loss can then be 

expressed as 
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  (2.A7) 

 where loss  is the total rate coefficient for cooling due to rotational and vibrational 

excitation, ionization, and dissociation. Values for loss  were interpolated from tabulated 

data [51], and have been plotted in Fig. 2.A1. For weak ionization and 0.2 eVeT  , the 

term n lossn   is much larger than all other cooling terms.  



 

 61 
 

Chapter 3.  Proton acceleration in a slow wakefield 

3.1. Introduction 

Laser wakefield acceleration of electrons has proven to be a promising avenue of 

investigation for the production of high-energy electrons over short distances [15], [52], 

[53], with maximum energies up to several GeV having been demonstrated 

experimentally [54]. A single-pulse laser wakefield in a plasma has a phase velocity of ~ 

c, and is not suitable for the acceleration of ions, because the initial ion velocity is much 

less than c and must increase by several orders of magnitude. 

Current mechanisms for acceleration of ions, in particular protons, require either 

large acceleration distances of multiple meters in the case of conventional RF linacs or 

synchrotrons [55], or multi-TW to PW laser systems [56], [57]. Some proposed 

alternatives include vacuum acceleration in a laser beat wave [58] (a method also 

proposed for acceleration of electrons [15][59]) or in a plasma wave produced by 

backward Raman scattering [60]. However, these require laser pulse characteristics which 

are currently challenging.  
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We propose a mechanism for proton acceleration from close to rest up to and 

beyond ~ 10 MeV (~0.15 c) in a slow wakefield (Fig. 3.1). The slow wakefield is shock-

excited by the beat wave generated in a plasma by two counter-propagating laser pulses. 

  

Figure 3.1.  Two counter-propagating laser pulses, one short and one 
long, interact in a region with a spatially varying plasma density (dotted 
line).  A slow wakefield (green) is shock-excited in the interaction region, 
with an initial wave-number equal to the sum of those of the two laser 
pulses.  The frequency of the wakefield is the plasma frequency and the 
group velocity (envelope) is zero. (not to scale) 
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The phase velocity and amplitude of the wakefield can be appropriately controlled to 

permit proton trapping and acceleration. The slow wakefield has been analyzed 

theoretically, and modeled numerically.  We present and discuss an example of proton 

acceleration to 10 MeV in a distance of  ~ 1 cm.  In addition, a fluid simulation is 

performed (turboWAVE) showing the excitation of the slow wakefield which would 

allow acceleration up to 1 MeV (proof of concept).  Full simulation of the acceleration 

process was deemed to be computationally unfeasible at this time. 

3.2. Acceleration model 

3.2.1. Slow wakefield 

It can be shown that the equation for the wakefield’s electric field PWE  in a 

variable-density plasma with frequency ( )p z  driven by a ponderomotive force is [61] 
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zE m c z t
z E
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

  
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 
a a

 , (3.1) 

where m  and q  are the electron mass and charge.  The effects of electron collisions have 

not been included in Eq. 3.1, but will be discussed later.  The total normalized vector 

potential of the laser field is 2
0 1/ , /eq m c c t     a A E Aa a  , where the forward-

propagating laser pulse is  

 0 0 0 0 0ˆ ( / ) sin( )a t z c k z t    a  , (3.2a) 
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and the backward-propagating laser pulse is  

  1 1 1 1 1ˆ ( / ) cosa t z c k z t    a  . (3.2b) 

The wavenumbers of the pulses are 0k  and 1k , the frequencies are 0  and 1 , and 0  

and 1  are the initial phases at 0z  .  The pulse amplitude envelopes are 0â  and 1â .  

Written as a function of the laser pulse parameters, the normalized vector potential is 

10 1/2 210 [μ ] 8.6 [Wm] /cma I . 

The cross term in the product a a  in Eq. 3.1 contains the slow-phase-velocity 

beat wave and excites the slow wakefield, i.e., 

0 1 0 1ˆ ˆ2 ... ( / ) ( / ) sin ( , ) ...a t z c a t z c z t        a a a a  , where the phase of the beat 

wave is  

 01 01( , ) ,z t K z t        (3.3) 

where 0 1K k k  , 01 0 1     , and 01 0 1    .  The forward going pulse, 0 1a , is 

short compared to a plasma period, hence the amplitude of the excited fast wakefield is 

small. 

The forward-propagating short pulse with duration   can be represented by 

0 0ˆ ( / )a a t z c    . Equation 3.1 has the forward-propagating solution 

0 0
ˆ( , ) ( ( ) / ) sin ( , )( )W pFE z t z E z z t    , where 
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and 

 .( , / )( ( )( /, )) pt z z cz z t z c      (3.4b) 

The delta-function representation for 0â  is valid as long as 01( ) 1p z     . 

The phase velocity of the slow wakefield is 
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where  01 / ( ) / / ( / )( , )p p p tK t Kz c z c z z c         and 01 1/ 2K c k  . The 

phase velocity depends only on the characteristics of the backward-propagating laser 

pulse and the plasma density gradient.  In a positive density gradient, the phase velocity 

increases as a function of time. 

3.2.2. Proton acceleration 

The equation of motion for a proton at position ( )z t  is 
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where the first term on the right-hand side is the force due to the wakefield, the second 

term is the vacuum ponderomotive force of the laser fields, and M is the proton mass.  

The vacuum term provides no net gain of energy in the absence of the short pulse. 

The phase ( ( ), )z t t  (Eq. 3.4b) of a resonant proton will oscillate about a 

resonant phase R  .  If the wave’s phase velocity is changing, the acceleration /zdV dt  

of the proton must be equal to the acceleration of the wave, evaluated at the position of 

the proton: / / / /z ph ph z phdV dV V zdt d t V Vt       .  The resonant phase is given by 

 0
2

0

( ( ))2
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ˆ( ( ), ) ( ( ))
R

p

p

z t M

K z t t z q E z t

 
 


 . (3.7) 

Since sin 1R  , Eq. 3.7 places requirements on the plasma density gradient and 

wakefield amplitude.  

When the proton is close to resonance, its phase can be expressed as a small 

deviation about the resonant phase, ( ) ( )Rt t     .  The pendulum-like equation for 

this phase deviation is 
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.  For the 

proton to remain trapped (resonant) and accelerated, the amplitude of the oscillations 

( )t  should remain small.  From Eq. 3.8, this implies 2 2
0 1( ( ), ) ( ( ), ) / 4z t t z t t   , 
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0
ˆ 0E  , sin 0R   and cos 0R  , assuming the parameters (frequencies) 0  and 1  

vary slowly in time. 

3.2.3. Wave breaking and acceleration conditions 

The stability conditions implied by Eq. 3.8 introduce a lower bound on the 

amplitude of the wakefield.  A conservative upper bound is the wave-breaking field [62],  
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 , (3.9) 

which is the wave-breaking field of a fast, single-pulse laser wakefield [52] reduced by 

the factor /phV c .  This upper bound in the wakefield amplitude translates into a limit on 

the acceleration of the proton, and therefore places a constraint on the plasma density 

profile.  The limit is represented by the inequality 1( ( ), ) / ( ( )) /p ez t t z t m M  . 

3.2.4. Collision damping and Raman instabilities 

The electron-ion collision frequency is 1 5 3 3 2
0

/  [ s  ] 10 [cm ] / [eV]ei en T    , where 

eT  is the effective temperature of the electrons [63].  For electrons in a laser field with 

normalized amplitude a, the effective electron temperature is due to the electron quiver 

velocity.  The effective temperature is 2 2 [eV]e eT a m c , and the characteristic collision 

time, which can be treated as a characteristic time for the damping of the wakefield, is 

13 3 3
0[s] 1 / 3. [ cm ]64 10 /ei ei a n      .  If collisions are included in Eq. 3.1, a term 
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04 ei zq n    appears on the right-hand-side, where z  is the axial electron fluid 

velocity. This term can be neglected if ( )ei p z  , a condition that is satisfied in our 

example.  In the absence of an external laser field, once the long backward-going pulse 

has propagated out of the interaction region, the wakefield will be damped.  In this case, 

it may be necessary to include a third laser pulse to extend the damping time. 

Instabilities such as the Raman instability can be driven in the acceleration region.  

This can amplify the forward-propagating short pulse (Backward-Raman-Amplification 

[64]). The three-wave instability can also grow from noise via the interaction of the long 

backward-propagating pulse with the plasma.  The growth rate and the condition for 

suppression for both of these is the same. The stimulated Raman scattering instability will 

be suppressed in an inhomogeneous plasma if the e-folding length of the instability is 

longer than the characteristic gradient of the plasma density.  The approximate condition 

for suppression of the instability is [65] 
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 , (3.10) 

where the growth rate is  1

1/2

0 1( / ) )ˆ ( / 4pt z c za     [66].  In the examples 

presented in the next section, this condition is easily satisfied in regions where the 

wakefield has already been excited. It is, however, only marginally satisfied elsewhere.  

It may be necessary to include a chirp on the long pulse to further suppress growth of the 

instability from noise, and/or to modify the ratio of pulse amplitudes.  Similarly,  
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( )a

 

 

( )b

 

Figure 3.2.  (a) Energy and (b) displacement of an accelerated proton in 
the analytically derived wakefield.  The short pulse has wavelength 800 
nm and the long pulse is 828 nm.  The long pulse has a duration of ~ 80 
ps, with peak normalized amplitude product 3

0 1 1.3 10aa   . 
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amplification of the short pulse was observed in simulation in the region where the 

frequency-matching condition was approximately satisfied, but may be suppressed or 

amplified depending on the chirp on the backward-propagating pulse.  The chirp may 

also provide an additional control on the phase velocity of the slow wakefield. 

3.3. Simulation results 

3.3.1. 10 MeV acceleration example 

To illustrate the acceleration mechanism, a proton test charge can be placed in the 

analytically derived forward-going slow wakefield.  Figures 3.2a and 3.2b show the 

proton energy and distance for an accelerated test charge with an initial energy of 10 keV.  

This energy would require injection of protons rather than trapping from resonant 

background protons.  Injection might be accomplished by direct ponderomotive 

acceleration by a laser beat wave, for example[15], [58], [59]. 

The laser parameters for this example correspond to a 5 GW long pulse (828 nm 

for ~ 80 ps) and 1 TW short pulse (800 nm for 20 fs).  Both beams are assumed to have a 

50 μm spot size, with a Rayleigh length longer than the acceleration distance.  For these 

parameters, the long pulse energy is ~ 400 mJ and the short pulse is ~ 30 mJ.  The laser 

and plasma density profiles in this example were chosen so that the accelerating field 

does not significantly exceed wavebreaking, but has an amplitude sufficient to trap 

protons.  The plasma density was chosen to increase quadratically from ~ 1017 cm-3 to  ~ 

5 x 1018 cm-3 over a distance of ~ 1 cm.  Trapping and acceleration of resonant protons 

occurs over many hundreds of wavelengths of the slow wakefield, and in a large fraction  
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Figure 3.3.  Accelerating electric field of a slow wakefield. The short 
800 nm   pulse has 0 0.12a   and 20 fs  .  The long 828 nm   

pulse has 1 0.004a   and duration ~ 50 ps.  Grid spacing is 8.5 nmz   

and timestep is 14 ast  .  Plasma density is negligible at 0z   and 
increases to 18 3

0 4  1 cm0n    at 0.75 cmz  . 
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of each wavelength.  The final energy of the protons depends on the particular 

wavelength in which they are trapped. 

3.3.2. Proof-of-concept simulation of accelerating wakefield 

A full-scale PIC simulation of the acceleration of protons to ~ MeV energies in a 

slow wakefield was deemed computationally unfeasible.  As a preliminary proof-of-

concept, simulation in a fluid model of the excitation of a slow wakefield in a density 

gradient has been performed, with parameters shown by analysis to be suitable for proton 

acceleration from 50 keV at 0.33 cmz   to ~ 1 MeV at 0.75 cmz  .  The electric field 

of the wakefield is shown in Fig. 3.3. PIC protons were not placed in the wakefield, as 

acceleration would take much longer than excitation of the accelerating field. 

3.4. Discussion 

A mechanism for the acceleration of protons in a laser wakefield has been 

proposed, which could allow energies up to 10 MeV in a short distance ~ 1 cm.  The 

analysis presented here is performed in a one-dimensional limit.  This mechanism has the 

potential to produce high-quality quasi-monoenergetic proton bunches of low emittance.  

This is because in the linear regime protons can undergo transverse focusing [52].  The 

controlled production of high-density gas jets has also been demonstrated experimentally 

[67].  One potential application for protons at this energy is the generation of short-lived 

radioisotopes for use in Positron Emission Tomography (PET).  Current production of 

these radio-pharmaceuticals is limited and expensive.  The approximate requirement for 
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this is an average flux 1012 protons/sec, with energy greater than 5 MeV [68][69].  For the 

example given in this chapter of acceleration up to 10 MeV, an estimation assuming a 

50 μm  laser spot size gives a required repetition rate in the kHz range. 

There are several issues and challenges which might impact the proposed 

mechanism.  One of these is the collisional damping of the slow wakefield.  Damping can 

be mitigated by the introduction of a long third laser pulse such that the characteristic 

collision time is on the ns time scale.  For a plasma density 18 3  5 10 cm , this requires 

a normalized pulse amplitude 0.05a  , equivalent to, for example, a 1 J pulse of a TEA 

CO2 laser. 

Another issue to consider is the possible presence of Raman instabilities in the 

laser plasma.  One such instability can be excited by the long backward-going pulse.  

Raman instabilities can also amplify the forward-going pulse, via Backward Raman 

Amplification.  This will increase the amplitude of the wakefield, which could result in 

loss of trapping and/or extreme wavebreaking.  While this effect is difficult to analyze, it 

can be corrected for in experiments by the appropriate choice of pulse amplitude profile 

on the backward-going wave.  The increase in pulse amplitude may also prove useful for 

exciting the slow wakefield with a lower-intensity pulse than might otherwise be 

required. 
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