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We examine the problem of designing an auction-based market mechanism for

dynamic spectrum sharing when there are multiple sellers and multiple buyers. We

assume that the sellers are selfish players and focus on an optimal auction mechanism

that maximizes the expected payoff or profit of the seller. First, we study the

interaction among homogeneous buyers of the spectrum as a noncooperative game

and show the existence of a symmetric mixed strategy Nash equilibrium (SMSNE).

We investigate the uniqueness of the SMSNE in some special cases and discuss the

convergence to the unique SMSNE. Second, we prove that there exists an incentive

for risk neutral sellers of the spectrum to cooperate in order to maximize their

expected profits at the SMSNEs of buyers’ noncooperative game. This is done by

modeling the interaction among the sellers as a cooperative game and demonstrating

that the core of the cooperative game is nonempty. We show that there exists a way

for the sellers to share the profits in a such manner that no subset of sellers will have

an incentive to deviate or power to increase their expected profits by deviating. We

also introduce the algorithms for achieving any profit sharing in the core. Finally, we



introduce an optimal auction mechanism in which the spectrum bands in multiple

regions are sold simultaneously and the buyers are simple-minded in the sense that

each buyer wants to buy the same number of frequency bands only the regions where

they operate.
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Chapter 1

Introduction

A conventional way of managing available frequency spectrum is a static allo-

cation to a set of users, where each user receives dedicated spectrum. In many coun-

tries, a government agency (e.g., the Federal Communications Commission (FCC)

in the U.S. [1]) bears the responsibility to plan, allocate, and manage the spectrum.

Unfortunately, this static assignment of available spectrum leads to several draw-

backs. First, it hampers the entrance of a new service provider. Secondly, recent

studies [2, 23, 24, 46, 63] suggest that much of the assigned spectrum is under-utilized

in many places. Thus, a natural question that arises is: “How can we increase the

frequency usage efficiency?”

There are several new approaches put forth to address this issue. One approach

to increasing the spectrum utilization in cellular frequency bands introduces a new

class of service providers called Mobile Virtual Network Operators (MVNOs). An

MVNO is an operator that provides mobile communication services without its own

licensed spectrum and necessary infrastructure. In order to provide the services,

they have business agreements with Mobile Network Operators (MNOs) to use the

frequency spectrum and some of infrastructure owned by the MNOs. In the U.S.,

Virgin Mobile has successfully launched its service with Sprint Nextel as its MNO.

Another approach to more flexible use of spectrum is based on Cognitive Radio
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(CR) [49], which is being considered as a candidate for a new frequency management

scheme by the FCC [3]. The CR is based on software-defined radio technology; it

allows a CR user to switch its radio access (RA) technology based on the availability

and/or performance of available networks. As a result, in principle a CR user can

utilize any frequency band by adopting a suitable RA technology. CR users, however,

should not interfere with licensed users, also called primary users, that paid for the

spectrum.

Several solutions are proposed for ensuring that CR users do not interfere

with licensed users: Under a spectrum rental protocol [50] the owner advertises the

frequency bands for rent, and a renter (i.e., a CR user) may express interest. Another

solution is spectrum sensing; CR users continually scan the spectrum to find an idle

frequency band, called spectrum hole. The CR users can utilize the idle frequency

band until an activity by a primary user is detected, at which point the CR users

must relinquish the band. In [14], a framework is proposed to use unlicensed band

under the assumption that the physical layer has the capability to detect primary

users’ activities. Mishra et al. [48] showed that a cooperative sensing could reduce

the sensitivity requirements on an individual CR. A third approach is based on an

interference metric called interference temperature [2]. Under the proposed solution,

a CR user can make use of a frequency band as long as the interference level at every

primary user’s receiver remains below a certain threshold. In [16], new physical and

MAC layer protocols are proposed for CR using the interference temperature model.

Instead of the interference temperature model, the maximum rate of collisions can

also be used as a constraint [60].
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There are several existing studies on dynamic spectrum sharing between pri-

mary users and unlicensed secondary users: Mutlu et al. [51] investigated an efficient

pricing policy of an MNO for secondary spectrum usage of MVNOs in the presence

of both primary and secondary users. Wang et al. [64] proposed a novel joint

power/channel allocation scheme to improve the network’s performance by mod-

eling the spectrum allocation problem as a noncooperative game among the CR

users. Etkin et al. suggested a repeated game approach to enforce an efficient and

fair outcome and incentive compatible spectrum sharing [25]. In [53] the channel

allocation problem in a CR network was formulated as a potential game that has

provable convergence to a Nash equilibrium. The interference temperature model

is applied in an auction-based spectrum sharing mechanism in [34]. Bae et al. [9]

proposed a sequential auction mechanism for sharing spectrum and power among

competing transmitters.

These recently proposed solutions have the potential to improve the spectrum

usage by filling spectrum holes without interfering with the services of primary users.

However, they also suffer from several drawbacks that have not been addressed ef-

fectively. First, since the MVNOs share the infrastructure with the MNOs, MVNOs

are often forced to employ the same RA technologies. This subordinate relationship

limits the set of services the MVNOs can provide to their customers.1

Second, most of existing studies on CR focus primarily on the resource alloca-

tion among the secondary users and often assume that the secondary users can use

1For instance, MVNOs may not provide a different set of data rates since it is mandatory to

follow a specifications the MNO employs.
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the spectrum free of charge. This may be reasonable if the owner or licensee is a

government agency that is interested in maximizing social welfare or if the spectrum

is set aside for research purposes. However, in many cases, the frequency spectrum is

allocated for commercial use and primary service providers (PSPs) have paid for the

exclusive right to the spectrum. In such a scenario, it may be unrealistic to assume

that the PSPs will share their spectrum without charging for the use, even when

the secondary users do not interfere with the services to their customers. Hence, it

is more reasonable to assume that the unlicensed users will have to pay for access

to licensed spectrum in this case.

Third, when there is no centralized authority, individual unlicensed users may

access under-utilized frequency bands in a distributed, unorganized manner. The

gain in spectrum utilization from such unorganized access, however, may be limited.

We suspect that introducing secondary service providers (SSPs) that can grant access

to under-utilized spectrum in a more organized manner, by leveraging, for instance,

CR users, may present a better recourse.

A well designed spectrum sharing and pricing scheme between PSPs and SSPs

will encourage and facilitate sharing of spectrum in a more dynamic and flexible

fashion. This is the scenario we consider in this dissertation. We assume that there

are (i) SSPs whose infrastructure and customers’ equipments have the capability for

dynamic spectrum access (e.g., CR) and (ii) PSPs that wish to lend their surplus

frequency spectrum according to a contract with the SSPs. This is shown in Figure

1.1. Our setting is also applicable to the spectrum trading between PSPs (e.g., [12]).

Realizing dynamic sharing of under-utilized spectrum between PSPs and SSPs
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Figure 1.1: Dynamic spectrum sharing market.

calls for a new spectrum trading mechanism. To share or trade the goods, i.e., the

under-utilized spectrum, a (virtual) market is formed and transactions take place in

the market.

The mechanism design theory provides a coherent framework for analyzing var-

ious types of allocation mechanisms, with a focus on the problems associated with

incentives and private information [4]. Thus, the mechanism design deals with how

the participants’ information is presented and how decisions are made with consider-

ation of individual preferences so that the outcome is acceptable to all self-interested

participants. Even though the application of the mechanism design theory is not

limited to auction mechanisms, we focus on auction mechanisms in this dissertation.2

2Reference [4] gives a few possible applications such as regulation, auditing, and social choice

problem.
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There are many examples in which mechanism design is used in practice, especially

in allocation of radio spectrum. For instance, the FCC auctioned thousands of the

Personal Communication Services (PCS) licenses and other licenses each of which

grants the exclusive right to use particular radio spectrum over a geographic area

from July 1994 to May 1996. The employed mechanism was designed between Au-

gust 1993 and March 1994, and the final mechanism adopted was a simultaneous

multiple-round auction. The mechanism was similar to an ascending-bid English

auction. However, in each round of the auction, buyers could bid on any of the

offered licenses simultaneously. A detailed analysis of the six auctions conducted by

the FCC is given in [19]. Similarly, the licenses for radio spectrum in many countries

have been sold by auction mechanisms. For example, in April 2000, the licenses for

Turkish GSM 1800 MHz bands were awarded by using a sequential first price sealed

bid auction.3 In many European countries, e.g., UK, Netherlands, Italy, Germany,

Switzerland, and Austria, a spectrum for the third generation system (Universal

Mobile Telecommunications System, UMTS) was auctioned in 2000. Except for

Germany and Austria, they employed the same simultaneous multiple-round auc-

tion mechanism which was used in the U.S. [30].

In the system we consider, both PSPs who have goods for sale, i.e., surplus

frequency bands, and SSPs who want to buy the goods and are willing to pay for

them participate in a trading market. In order to trade the surplus spectrum between

PSPs and SSPs, they need a means of exchanging the information and defining

allocation and payment schemes. To ensure desirable outcomes, we need to analyze

3The auction mechanism and results are analyzed in [22].
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the strategies of participating PSPs and SSPs. The mechanism design provides

a suitable tool. In this dissertation, we propose an auction-based framework for

devising such a mechanism with PSPs and SSPs as sellers and buyers, respectively.

PSPs hold auction(s) to lend their exclusive rights for surplus frequency bands to

SSPs for specified time, e.g., 30 minutes. The SSPs pay for this period and the PSPs

do not use the bands during the period. The allocation and payment mechanism is

chosen or defined by PSPs. PSPs are free to form any coalition among themselves

and the members of a coalition share their information and hold a single auction.

Each SSP participates in one of the auctions and submits its bids. The items,

i.e., frequency bands, are allocated based on the submitted bids, and payments

are determined according to the predefined rule. More details will be provided in

Chapter 4.

There exists much work available in the literature on auction theory (a brief

summary is provided in Chapter 2). However, most of it focuses on efficient alloca-

tion of items, i.e., maximization of social welfare. Throughout the dissertation, we

take the viewpoint that PSPs are private entities that are interested in their own

profits or revenue (rather than social welfare). Hence, we focus on optimal auction

mechanisms that maximize sellers’ profits.

The rest of the dissertation is organized as follows: Chapter 2 presents the

basic auction mechanisms and some important concepts in the auction mechanism

design. Several existing auction-based dynamic spectrum sharing schemes are dis-

cussed in Chapter 3. Chapter 4 introduces the model and the proposed problems

with the summary of results. The optimal mechanism we assume the sellers adopt
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for allocating and pricing the spectrum bands is developed in Chapter 5. The nonco-

operative game among the buyers is studied in Chapter 6. Chapter 7 demonstrates

the existence of an incentive for cooperation among the sellers (section 7.1) and the

nonempty core (section 7.2), followed by our proposed profit sharing mechanisms.

Chapter 8 introduces an optimal auction mechanism that maximizes the auction-

eer’s expected payoff when the frequency bands in multiple areas are sold in the

same auction. Finally, concluding remarks are provided in Chapter 9.

Note on notations: Throughout the dissertation, we denote the expectation

with respect to a random variable X by EX [·]. Similarly, the expectation with

respect to a random vector X is denoted by EX [·]. We denote the set of real

numbers (resp. nonnegative real numbers) by IR (resp. IR+). Similarly, the set of

nonnegative integer is given by Z+ := {0, 1, 2, . . .}. In this dissertation, since PSPs

may form any coalition among themselves and hold a single auction, we need to

distinguish between seller(s) of the frequency bands and seller of the auction. We

will use seller(s) to denote PSP(s), and auctioneer refers to the seller of an auction.

Hence, when a PSP holds a separate auction it is a seller and also an auctioneer.

When some PSPs form a coalition and hold a single auction, however, they have one

auctioneer that represents all the sellers in the coalition and conducts the auction.
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Chapter 2

Literature survey of auction mechanisms

In this chapter, we briefly introduce some of basic concepts and existing auction

mechanisms in the literature and explain their limitations. For this chapter we define

S = {1, 2, . . . , N} to be the set of buyers and assume that there are m, m ≥ 1, items

for sale. For example, in a single unit auction, m = 1.

2.1 Values and bids

In general the auctioneer or the seller at an auction may not know how much

the buyers are willing to pay for the item(s), which are decided by what are called

the values of the buyers. In an auction mechanism, there is a process through which

each buyer communicates its willingness to pay for the item(s), called bids. From

the received bids, the auctioneer attempts to estimate the buyers’ value(s) for the

item(s).

In the mechanisms we will deal with, (assuming multiple items for sale) the

values of the buyers are determined by buyers’ types, denoted by {tj; j ∈ S}. In

general cases, buyer j’s values may depend not only on its type tj, but also on those

of other buyers. However, we assume that the values of buyer j is determined only

by tj throughout this dissertation, unless stated otherwise.1

1Inter-dependent values are considered only in section 2.3.2.
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Each buyer j’s type is modeled using a continuous random variable Tj with

some support Tj.
2 In general, the type of each buyer is assumed to be private

information. Hence, each buyer’s values for the items are known only to the buyer

at the beginning.

Since each buyer’s willingness to pay depends on how much it values the items,

we describe the willingness to pay or bids of each buyer as a function of its type. For

each j ∈ S, define B̂j to be a set of possible bids of buyer j. Let B̂ = (B̂j; j ∈ S).

Then, we can define the bidding function β̂j : Tj → B̂j for each buyer j.3 Here,

β̂j represents a strategy of buyer j in the auction and determines its bids given its

type. Auction mechanism design deals with the strategies of the buyers, i.e., bidding

strategies, and the allocation and pricing schemes.

2.2 Direct mechanism and revelation principle

Definition 1. A mechanism is called a direct mechanism if the bid of every buyer

is its type.

It is clear from the definition that the only action required of each buyer in a direct

mechanism is to report its type. However, the reported type is not necessarily its

true type. If there is an equilibrium in which every buyer reveals its true type, then

2In a multiple item auction, tj may be either a scalar or a vector. In the first case, the buyer’s

value for each item will be given by some function of tj . In the latter case, the vector may contain

the values themselves. We adopt the first case in this dissertation.
3Again, in more general cases where the values of buyer j depend on the types of other buyers

as well, the bidding function β̂j will be a mapping from T to B̂j .
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the direct mechanism is said to have a truthful equilibrium. Let Uj(t
∗
j ; tj) be the

(expected) payoff of buyer j when its reported type is t∗j and its true type is tj.

Definition 2. (Incentive compatibility) A direct mechanism is said to be incentive

compatible if

Uj(tj; tj) ≥ Uj(t
∗
j ; tj) for all j ∈ S and tj, t

∗
j ∈ Tj.

By employing an incentive compatible mechanism in an auction, an auctioneer can

encourage all buyers to report their true types.

The following theorem shows that the allocation and payments from any equi-

librium of any mechanism can be replicated by a truthful equilibrium of some direct

mechanism.

Theorem 2.1. [38, p.63] (Revelation principle) Given a mechanism and an equi-

librium for that mechanism, there exists a direct mechanism in which (i) it is an

equilibrium for each buyer to report its value truthfully and (ii) the outcomes are the

same as in the given equilibrium of the original mechanism.

Even though the direct mechanisms comprise only a small subclass of mechanisms

in real world, due to the revelation principle, any mechanism can be translated to a

direct mechanism that has simple structure and is easier to design and analyze. For

this reason, we restrict our attention only to direct mechanisms.

Since a buyer can guarantee itself zero payoff by not participating in an auc-

tion, the expected payoff of a buyer participating in an auction should not be smaller

zero.
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Definition 3. (Individual rationality) A direct mechanism is said to be individually

rational if

Uj(tj; tj) ≥ 0 for all j ∈ S and tj ∈ Tj.

2.3 Efficient and optimal mechanisms

Auction mechanisms can be categorized in various ways according to charac-

teristics of goods or buyers, process of the auction, payment rule of the auction,

goal of the auction, and so on. For instance, an auction can be classified into ei-

ther a single item auction or a multiple item auction, depending on the number of

items for sale. Similarly, an auction can be conducted in an open manner (e.g., oral

bids) or through sealed bids. In the first case, the bids are known to all participants,

whereas in the latter case the bids remain unknown unless the auctioneer announces

them. First price auction, second price auction, discriminatory auction, and uniform

price auction are well known auction mechanisms classified based on the payment

rule. Here, we introduce two classes of auction mechanisms based on the goal of the

auctioneer – efficient mechanisms and optimal mechanisms.

2.3.1 Efficient mechanisms

In mechanism design, an auction mechanism that assigns items or objects

to buyers with the highest values is said to be an efficient mechanism [38]. In

other words, efficient auction mechanisms maximize ‘social welfare’. If we denote

auctioneer’s payoff and buyer j’s payoff by u0 and uj, respectively, the social welfare
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is given by u0+
∑

j∈S uj: Given that buyer j’s type is tj, let vj,k(tj) be buyer j’s value

for the k-th item it receives and cj(tj) buyer j’s payment. Here, we assume that the

buyer j’s values for the items depend only on its type tj and vj,k(tj) ≥ vj,k+1(tj) for

all tj ∈ Tj and k = 1, 2, . . . ,m− 1. Define the indicator function

Ij,k =


1 if the buyer j wins at least k items ,

0 otherwise .

Note that
∑

j∈S
∑m

k=1 Ij,k ≤ m. Then, assuming the auctioneer has zero values for

the items, the buyer’s and auctioneer’s payoffs are given by

uj =
m∑
k=1

vj,k(tj)× Ij,k − cj(tj) , and

u0 =
∑
j∈S

cj(tj) .

Since the social welfare u0 +
∑

j∈S uj =
∑

j∈S
∑m

k=1 vj,k(tj) × Ij,k, the auctioneer

should allocate m items to the buyers who have the m highest positive values in an

efficient auction mechanism.

An efficient auction mechanism is often selected when the object is a public

asset and the auctioneer wants to assign the object to the buyer with the high-

est value, even though the revenue from the auction may be less than that from

some other auction mechanisms. Efficient auction mechanisms may be adopted, for

instance, in government auctions.

2.3.1.1 Single unit efficient mechanism

An efficient allocation in an auction with a single item to sell assigns the item

to the buyer who values the item the most. Some of well-known single-item auctions,
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such as Dutch auction, English auction, first price auction, and second price auction,

are efficient [38].

The Dutch auction is an open descending auction. In this auction the first

price is called high enough so that no buyer will buy at that price. Then, the price

is gradually lowered until a buyer accepts the price. The item is sold at the given

price to this buyer. In the English auction, in an opposite way to Dutch auction, the

auctioneer initially calls a low price and buyers indicate their interests. The price

is then gradually increased until only one of the buyers shows interest. This buyer

wins the item and pays the price at which the second to last buyer drops out.

First price auction and second price auction are the sealed bid counterparts of

the Dutch and English auctions. In the first price auction, each buyer submits a bid

in a sealed envelope so that the bid is not known to each other. The item goes to

the buyer submitting the highest bid and payment is set to the winner’s bid. In the

second price auction, buyers’ sealed bids are collected and the item is sold to the

buyer who submitted the highest bid in the same way as in the first price auction.

However, the winner pays the second highest bid. The second price auction is also

called Vickey auction [61].

2.3.1.2 Multiple unit efficient mechanism

When more than one homogeneous item is available for sale, a discriminatory

auction, a uniform price auction, or a Vickrey-Clarke-Groves (VCG) mechanism can

be used. In these auctions, buyers are allowed to put in a bid for more than one
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item. When m units are available for sale, the m highest bids will win the m items.

The discriminatory auction is a multi-unit extension of the first price auction;

in the discriminatory auction each buyer submits m bids and auctioneer chooses the

m highest bids. Each buyer pays the sum of its winning bids. The uniform price

auction is the multi-unit extension of the second price auction; in the uniform price

auction all units are sold at a market-clearing price which is the highest losing bid.

A buyer that wins mw units in a VCG mechanism pays the sum of the mw highest

losing bids of the other buyers. When there is only one unit, the VCG mechanism

is also equivalent to the second price auction. An example is provided in Tables 2.1

and 2.2.

Table 2.1: Example with three buyers and 5 units for sale.

Buyer submitted bids

Buyer 1 60, 57, 42, 35, 10

Buyer 2 51, 43, 32, 23, 15

Buyer 3 53, 39, 28, 24, 9

Winning bids 60, 57, 53, 51, 43

The multi-item auctions described above are examples of simultaneous auc-

tions; the assignment is made simultaneously for all the items. An auctioneer with

multiple items for sale can also employ a sequential auction in which the items are

sold in multiple rounds of auctions. In each round a single item is made available

for auction [38]. The auction used in each round is allowed to be different. For
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Table 2.2: Prices paid by the buyers

Buyer Discriminatory Uniform price VCG

Buyer 1 60+57 = 117 42+42 = 84 32+39 = 71

Buyer 2 51+43 = 94 42+42 = 84 39+42 = 81

Buyer 3 53 42 42

example, when two items are available, a first price auction may be used in the first

round, and a second price auction may be employed in the second round.

The resulting allocations, the buyers’ strategies, and the prices paid by the

winners in these efficient auctions are well studied in earlier years (1960s and 1970s).

However, efficient mechanisms do not necessarily maximize the revenues or profits

of the sellers.

2.3.2 Optimal mechanisms

An optimal auction mechanism maximizes the seller’s expected revenue or

profit, subject to the incentive compatibility and individual rationality constraints.

In this subsection we discuss two optimal mechanisms related to our work – one by

Myerson [52] and the other by Branco [10]. As we will see in Myerson’s and Branco’s

auction mechanisms, in an optimal auction mechanism, the buyer who values the

item most may not be the winner for the item.
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2.3.2.1 Myerson’s optimal mechanism

In [52], Myerson proposed a general framework for studying auction mecha-

nisms for a single item. Recall that each buyer j’s type is modeled using a con-

tinuous random variable Tj. The distribution (resp. density) of Tj is denoted by

Gj (resp. gj). In Myerson’s framework, the distribution and density functions are

common knowledge. In addition, the type of buyer j, Tj, represents buyer j’s value

for the item and is assumed to lie in a compact interval Tj := [tj,min, tj,max]. Let

T = (Tj; j ∈ S) be the random vector of the types of the buyers and

T := T1 × T2 × · · · × TN .

For each j ∈ S, define T−j =
∏

j∗∈S,j∗ ̸=j Tj∗ . The auctioneer’s type, which is its

value of the item, is given by a continuous random variable T0 and lies in T0 :=

[t0,min, t0,max].

An auction mechanism is described by a pair of functions (p, c) such that, if

t ∈ T is the vector of the types of the buyers,

• pj(t) denotes the probability that buyer j wins the item, and

• cj(t) is the payment of buyer j.

A broad set of mechanisms can be considered using his framework, including the

case of asymmetric buyers with different distributions Gj, j ∈ S. Making use of

these extensions, Myerson investigated the problem of designing an optimal auction

mechanism.4

4He restricted his attention to the direct mechanisms in which each buyer reports its type.
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Suppose that the auctioneer’s type T0 = t0 and buyer j’s type Tj = tj for

all j ∈ S. If the types or values of the buyers are mutually independent, the joint

density function evaluated at t ∈ T is given by g(t) =
∏

j∈S gj(tj). Similarly, the

joint density function of the types of all other buyers at t−j = (tj∗ ; j
∗ ∈ S, j∗ ̸= j)

is given by g−j(t−j) =
∏

j∗∈S,j∗ ̸=j gj∗(tj∗). The problem is said to be regular if the

function, which is called the virtual value and is given by

θj(tj) = tj −
1− Gj(tj)

gj(tj)
,

is a monotone strictly increasing function of tj for every j ∈ S.

With the regularity assumption in place, Myerson proposed a deterministic

optimal mechanism: For any vector t−j, let

zj(t−j) = inf{t̃j | θj(t̃j) ≥ t0 and θj(t̃j) ≥ θj∗(tj∗), ∀j∗ ̸= j} . (2.1)

Myerson’s proposed optimal allocation rule is given by

pj(tj, t−j) =


1 if tj > zj(t−j) ,

0 otherwise ,

(2.2)

and the payment is

cj(t) =


zj(t−j) if pj(t) = 1 ,

0 otherwise .

(2.3)

In the Myerson’s mechanism, a buyer pays only if it gets the item and the price

is the smallest value that would make it a winner. The auctioneer keeps the item

if the highest virtual value is smaller than auctioneer’s value of the item, t0, i.e.,

tj < θ−1
j (t0) (equivalently θj(tj) < t0) for all j ∈ S.

18



In the case of independent and identically distributed values of the buyers,

Myerson’s mechanism becomes a modified Vickey auction [61] in which the auction-

eer submits a bid equal to θ−1
j (t0) (or sets the reserve price of θ−1

j (t0))
5 and then

sells the item to the highest buyer at the second highest bid (or the reserve price if

the second highest bid is below the reserve price). Since Myerson considered only

single item cases, his work is not directly applicable to our problem with multiple

items.

Following Myerson’s work, there have been many studies on the design of

optimal auction mechanisms (including multi-unit cases). A nice summary of these

studies is provided in a survey paper by Zhan [67]. Unfortunately, most of these

studies deal only with the case in which each buyer has a unit demand, i.e., wishes

to purchase only one item.

2.3.2.2 Branco’s optimal mechanism

Branco generalized Myerson’s optimal auction mechanism to multi-unit auc-

tions with multi-unit demands [10]. He used the generalized framework due to

Myerson, and considered asymmetric buyers as well. In Branco’s work, the auction

mechanism is given by a pair (p, c), where

• pj,k(t) is the probability that buyer j wins at least k items, and

• cj(tj) is the expected payment of buyer j.6

5In this symmetric case, all θj , j ∈ S, are the same and the regularity assumption guarantees

that θj is invertible.
6Unlike the Myerson’s payment rule, cj(tj) denotes the expected payment with respect to both
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Suppose that the auctioneer has m units of homogeneous item. The values of

each buyer j is determined by its type, denoted by Tj, which is private information.

As defined in subsection 2.3.2.1, the distribution (resp. density) of Tj is denoted

by Gj (resp. gj). The type of buyer j, Tj, is assumed to lie in a compact interval

Tj := [tj,min, tj,max]. Let T = (Tj; j ∈ S) be the random vector of the types of the

buyers and

T :=
∏
j∈S

Tj .

For each j ∈ S, define T−j :=
∏

j∗∈S,j∗ ̸=j Tj∗ .

For each k ∈ {1, 2, . . . ,m}, let Vj,k : T → IR+ be the function that determines

buyer j’s value for the k-th item it wins (i.e., Vj,k(t) is the value buyer j has for

the k-th item it receives when buyers’ type vector is t ∈ T ). The functions Vj,k are

increasing and differentiable with respect to Tj.

As a counterpart to virtual values in the Myerson’s mechanism, so-called con-

tributions are computed for the buyers: The contribution of buyer j for the k-th

unit is given by

πj,k(t) = Vj,k(t)−
∂Vj,k(t)

∂Tj

1− Gj(tj)

gj(tj)
.

After receiving the buyers’ types, the auctioneer computes the contributions, orders

them, and allocates the m units to the buyers who have the m highest positive

contributions.7 If fewer than m contributions are positive, the auctioneer keeps the

remaining units.

the other buyers’ types and the probability of winning a varying number of items.
7Although Branco assumed t0 = 0 in his paper, one can easily apply non-zero auctioneer’s

values as will be shown later in Chapter 5.
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The problem is said to be regular when following two conditions are satisfied.

For all j ∈ S, k = 1, 2, . . . ,m, and any given t−j ∈ T−j,

• (i) (tj − t̃j)(πj,k(tj, t−j)− πj,k(t̃j, t−j)) ≥ 0 for all tj, t̃j ∈ Tj, and

• (ii) if πj,k+1(tj, t−j) ≥ 0, then πj,k(tj, t−j) ≥ πj,k+1(tj, t−j) for all tj ∈ Tj.

The regularity assumption implies that (i) the contribution is non-decreasing in its

type and (ii) the nonnegative contribution is non-increasing in the number of units it

receives. Thus, if we order the contributions of a certain buyer by decreasing value,

the second condition guarantees that the k-th contribution precedes the (k + 1)-th

contribution. Since the auctioneer allocates the items by going down the list of

ordered contributions, in the case with symmetric buyers,8 the buyer with larger

type has a higher probability of winning at least k items than another buyer with

smaller type.

Denote the l-th highest contribution among all contributions from all buyers

by π(l)(t). In the regular case, Branco’s mechanism can be summarized as follows:

For any type vector t−j ∈ T−j, let

T ∗
j,k(t−j) = inf{t̃j ∈ Tj | πj,k(t̃j, t−j) ≥ max{0, π(m+1)(t̃j, t−j)}} .

Branco’s optimal allocation rule is

pj,k(tj, t−j) =


1 if tj > T ∗

j,k(t−j) ,

0 otherwise ,

(2.4)

8Buyers with the identical distribution Gj and the same valuation functions are said to be

symmetric or homogeneous.
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and the expected payment is

cj(tj) = ET−j

[
m∑
k=1

Vj,k(T
∗
j,k(T−j), T−j) pj,k(tj, T−j)

]
. (2.5)

Let ĉj,k(t) be buyer j’s payment for the k-th unit given the type vector t. Although

Branco showed only the expected payment given by (2.5), the payment ĉj,k(t) can

be shown to be

ĉj,k(t) =


Vj,k(T

∗
j,k(t−j), t−j) if pj,k(t) = 1 ,

0 otherwise .

(2.6)

In other words, for the k-th unit, the winner pays the smallest value that would win

the k-th unit.

We compare the revenue9 of the VCG mechanism and Branco’s mechanism for

an example. The expected revenues are given in Table 2.3, and the parameters used

in the example are given in Table 2.4. As we expect, the optimal auction mechanism

generates a higher expected revenue than the VCG mechanism.

Table 2.3: Expected revenue

Setting VCG BM

1 2.4651 2.7667

2 483.7636 524.7744

Even though Branco’s work can provide a framework for designing new multi-

unit auction mechanisms, it still considers only single seller cases. Since our problem

may deal with multiple sellers, Branco’s optimal mechanism is not directly applicable

9The revenue equals the sum of received payments from the buyers.

22



Table 2.4: Setting for average revenue computation

Setting 1 Setting 2

Parameter Value Parameter Value

# of units 5 # of units 5

Auctioneer’s value for item 0 for all units Auctioneer’s value for item 0 for all units

# of buyers 10 # of buyers 10

Tj (∀j) [0,1] Tj (∀j) [0,∞)

Gj(tj) (∀j) tj Gj(tj) (∀j) 1− 1
λ
e−λtj

λ N/A λ 1
100

Vj,k(tj) (∀j) 1
k
tj Vj,k(tj) (∀j) 1

k
tj

# of iterations 10000 # of iterations 10000

without assuming that the sellers agree to cooperate and hold a single auction to

sell all their items. Moreover, in Branco’s optimal mechanism, sellers are assumed

to have zero values of all units for sale. However, since the PSPs paid for their

spectrum, even when some of their spectrum is underutilized, they may not be

willing to lend it to SSPs without a compensation in order to recover a part of their

price. Secondly, the underutilized spectrum may be needed in the future when the

demand from their customers increases. Hence, when they lease out their spectrum,

they run the risk of not being able to serve some of their customers resulting in

a loss of revenue. For these reasons, the sellers may have positive values for the

frequency bands made available for sale.
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Therefore, in order to analyze proposed frequency spectrum trading system,

an optimal multi-unit auction mechanism that can handle multi-unit demands of the

buyers and positive reserve prices of the seller is needed. This new optimal mech-

anism can be designed by generalizing/extending the original Branco’s mechanism,

and we will describe it in Chapter 5.
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Chapter 3

Related work

Recently many auction-based mechanisms for dynamic spectrum access have

been proposed. In this chapter, we introduce some of them and discuss their limi-

tations and differences with the system we propose in this dissertation.

3.1 Power allocation

When spread spectrum radio access technologies, e.g., Code Division Multiple

Access (CDMA), Wideband Code Division Multiple Access (W-CDMA), or Ultra-

WideBand (UWB), are employed in a system, users share the same frequency band

simultaneously. In this case, a user’s Quality of Service (QoS) is affected not only

by received signal power and noise at its receiver but also by the interference from

other users. Thus, in this system, each user may try to achieve higher Signal-to-

Interference plus Noise Ratio (SINR) to receive high QoS as much as possible and,

hence, each user’s SINR can be viewed as its utility. As we mentioned in Chapter 1,

one of solutions for ensuring that CR users do not interfere with licensed users is

applying an interference temperature constraint so that CR users can use certain

spectrum bands as long as the interference level remains under a specified threshold

at the primary users. When the interference temperature constraint is employed

in a dynamic spectrum sharing system, power needs to be adjusted at CR users
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in such a way that the total interference level at the primary users remains under

the threshold. Here, the power allocation can be performed using an auction-based

mechanism.

Huang et al. [34] proposed and analyzed an auction-based spectrum sharing

mechanism with the interference temperature as the constraint. In order to deal

with frequent arrivals and departures of users, this power allocation auction needs

to be performed often. Thus, periods between auctions may be very short in this

system. In their work, the primary goal of the mechanism design is to allocate

power to users in a way that maximizes the sum of users’ SINRs with the constraint

that total interference at measured point remains below a threshold. In order to

compute the SINR of each user, the seller needs to receive information of all channel

gains between users, which can introduce large signaling overhead. To deal with

this issue of large overhead, they developed an auction mechanism that requires less

information exchange and computation. Although the proposed power allocation

auction does not lead to the optimal allocation, it provides the seller with a means

of achieving sub-optimal result.

Bae et al. [9] analyzed a sequential auction mechanism for sharing power

among competing transmitters. Even though they did not explicitly mention, their

work can be applied to power sharing among CR users. In a sequential mechanism,

at each round, one unit of power, which is predefined, is sold by a second price

auction. The winning buyer then increases its transmission power by one unit.

Thus, if a seller has m units of power, the second price auction is executed m times.

Each buyer’s value for each unit available for sale is determined by a function that
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depends on the (current) SINR. Since a buyer’s SINR depends not only on its

power but also on other buyers’ power, the values are interdependent. Under the

assumption that every buyer’s utility is known to each other, Bae et al. analyzed

the auction and showed that the sequential auction may lose efficiency, i.e., a buyer

who values some unit the most may not win it. It can happen, for example, in a

two rounds sequential auction where a buyer who cannot win the unit in the second

round may bid more aggressively in the first round than a buyer who can win the

unit in the second round.

Since the buyers are end-users (usually mobile users) in the proposed power

allocation mechanism for dynamic spectrum sharing, when the SINR of the users

varies quickly, the auction may need to be performed very frequently (at the same

timescale as the variation in the SINRs). In addition, the inter-dependency between

buyers’ utilities1 tends to increase the complexity of the algorithm. Since this line

of research focuses on the efficient mechanisms that maximize the social welfare, the

power sharing model may not be suitable for a private and selfish seller interested

in maximizing its revenue (or payoff).2

3.2 Spectrum allocation

In a dynamic spectrum sharing system, if underutilized spectrum bands are

allocated to unlicensed users exclusively, each unlicensed user can use the allocated

1SINR depends on the other users’ power as well.
2The power sharing mechanisms may be more applicable to power control in a spread spectrum

system.
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band(s) for an agreed time period. Thus, if the allocation is conducted by an auction,

unlike power allocation, the auction can be performed less often. Additionally, the

value for an item (i.e., frequency band) is not expected to depend on the other users’

value. Therefore, the users’ utilities are relatively easier to compute.

In [12], Buddhikot et al. introduced a conceptual model we adopt as a basic

model in this dissertation. They proposed that a contiguous block of spectrum

which is designated for dynamic use, called Coordinated Access Band (CAB), is

managed by a spectrum broker. The spectrum broker divides the CAB into several

sub-bands and allocates the sub-bands to the service providers who do not own any

spectrum during an agreed time duration. These networks, i.e., service providers

and customers, are capable of using leased spectrum by employing CR.

Based on Buddhikot’s model, several studies examined how spectrum broker

should allocate its spectrum to service providers. Here, we introduce some of them

that are auction-based mechanisms: Gandhi et al. proposed a framework for spec-

trum auction with an interference constraint that a same frequency band is not

allocated in adjacent areas to avoid conflict [27]. In the framework, a seller divides

its spectrum into a large number of homogeneous channels with equal bandwidth

and holds a multi-unit auction. Since the interference constraint is considered, the

auction mechanism is designed for frequency bands in multiple areas. In the auc-

tion, however, each buyer can bid for only one area and a buyer who requests the

frequency bands in multiple area is regarded as a different buyer in the auction.

Let mj be the number of units buyer j obtains. The per-unit price charged by the

seller, denoted by pj(mj), is given by buyer j’s willingness to pay (per-unit) for mj

28



units (i.e., the average per-unit value of buyer j). This implies that buyer j’s total

payment for received units is equal to mj × pj(mj). In the study, pj(mj) is assumed

to be a continuous, concave demand curve, e.g., pj(mj) = −ajmj+bj, aj ≥ 0, bj > 0

for 0 ≤ mj ≤ bj
aj
. Assuming that each buyer reports its demand curve truthfully, the

seller computes the optimal price and the number of winning units for each buyer

such that the total revenue of the seller is maximized subject to the interference

constraint.

Similar research has also been done in [59]. Rather than dividing spectrum

equally, in their model a seller can divide the available spectrum into some finite

number of bands for each type of buyers’ networks, e.g., 1.25 MHz for CDMA,

200 KHz for GSM, and 5 MHz for W-CDMA. The division is made after receiving

buyers’ requests, i.e., each buyer reports the type of its network and the price it

is willing to pay, in a way that maximizes the total revenue under the interference

constraint. In other words, the seller manages available spectrum as a whole and

divides it according to the buyers’ demands.

Although the VCG mechanism guarantees incentive compatibility, there is

known shortcoming [7]. For instance, consider an auction of two identical items to

three buyers [7]. Buyer 1 has a value of 2 for the pair of items and no value for a

single item. Each buyer 2 and 3 has zero value for the pair and a value of 0.5 for a

single item. In the VCG mechanism, buyer 1 should win both items, for a payment

of 1, and buyer 2 and 3 should win nothing. However, suppose that buyer 2 and 3

raise their bids to 2. Then, each of buyers 2 and 3 becomes a winner and pays zero

price. In [66], Wu et al. developed an auction-based mechanism that addresses the
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vulnerability of the VCG mechanism (e.g., the collusion between buyers 2 and 3 in

the example) by sacrificing the incentive compatibility. The proposed mechanism

allocates the items to the buyers who value the items most, i.e., efficient mechanism,

with an interference constraint. Even though they considered multiple sellers and

multiple buyers, they limited their study to a scenario where each buyer demands

only one unit of frequency band and each seller has at most one frequency band

for sale. They also assumed that all frequency bands of the sellers are auctioned

altogether.

A mechanism that allows buyers to request frequency bands in multiple geo-

graphical areas was introduced in [36] with the constraint that the same frequency

band cannot be allocated in neighboring regions. The mechanism is designed to

cover the case that there is one seller who has unused frequency bands and each

buyer is interested in purchasing a certain number of bands in each of a fixed set

of regions. However, unless a buyer obtains the same number of frequency bands

it requested in its desired areas, it receives no value for the allocated items. In the

mechanism, since a partial allocation is not permitted, each buyer has a scalar value

for a bundle of items, i.e., the required number of frequency bands in each of the

desired regions. With the assumption that the seller knows the distribution of each

buyer’s value, an optimal auction mechanism that maximizes the expected revenue

is devised. The proposed mechanism is based on Myerson’s optimal mechanism and,

as a result, incentive compatibility is guaranteed.

When multiple units of spectrum are available for sale and at most one unit

is granted to each buyer, Sengupta and Chatterjee analyzed the bidding strategies
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in a sequential auction and a simultaneous auction in [58]. In each round of the

sequential auction they studied, a seller employs the first price sealed bid auction

and announces the lowest bid after awarding a unit of frequency band to the buyer

who submitted the highest bid. The simultaneous auction is conducted by a first

price sealed bid auction. With the assumption that the buyers’ bids are uniformly

distributed, they showed that the sequential auction provides more revenue for the

seller than the simultaneous auction.

In [58], a new simultaneous auction mechanism was also proposed for multi-

unit demand case. In the proposed auction, each buyer requests a bundle of items

and a partial allocation is not permitted.3 Authors considered two scenarios, an

asynchronous auction and a synchronous auction. In the asynchronous auction,

buyers can have different leasing periods from each other and request the spectrum

at any time. In the synchronous auction, however, a seller restricts the buyers to

have the same leasing periods and executes the auction at the beginning of each

period. Through simulations, it was found that the synchronous auction is more

beneficial to the seller.

In the auction mechanism design, we implicitly assume that buyers know their

own value(s) for the item(s). Based on this assumption, we can analyze buyers’

strategies in any auction mechanisms, e.g., first price auction and second price auc-

tion. However, one may wonder how a buyer knows its true value(s) for the item(s).

Especially, when the buyers are also wireless service providers and are seeking extra

frequency bands, the buyers need to compute or estimate the benefits that they can

3This situation is directly mapped to a well known 0-1 knapsack problem [18].
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earn from providing more services to their own customers using the frequency bands

that they wish to buy in an auction. Rodriguez et al. [56] studied this problem for

the buyers who operate CDMA based-systems in which terminals, e.g., end users or

customers, are serviced at different data rates.

3.3 Discussion

As we illustrated, most of previous studies that are based on auction mecha-

nisms for dynamic spectrum access focused on single seller cases.4 However, when

there are multiple sellers in the market, the sellers have two options: (i) Each seller

holds a separate auction or (ii) a subset of sellers form a coalition and sell their

items together. As a special case of the second case, all sellers may cooperate to

form a grand coalition and hold a single auction. Thus, when designing the spectrum

sharing market mechanism, we need to investigate buyers’ and sellers’ behaviors.

As explained earlier, when sellers are private entities, it is likely that they

would be interested in maximizing the (expected) profit (or payoff). Regardless of

coalitions that emerge, we assume that each coalition employs an optimal auction

mechanism in order to maximize the overall expected profit (or payoff). For the

purpose of analyzing more realistic scenarios, unlike the previous studies, we inves-

tigate the cases where each seller may have positive values for the items and each

buyer may acquire any number of units i.e., the buyer does not request a particular

4Multiple sellers cases are covered in [66]. However, authors assumed that each seller has a

single unit and all sellers sell their units together in a single auction. Thus, there is no difference

from the cases where a single seller has multiple units.

32



number of units.

In most studies with multiple regions, the constraint that the same frequency

band (or channel) should not be allocated in neighboring areas was adopted.5 How-

ever, when a buyer employing a spread spectrum technology, e.g, CDMA,W-CDMA,

has the same frequency band(s) in neighboring areas, it can provide soft-handover

feature to its customers. For this reason, we allow the mechanism to allocate the

same frequency band in every region. However, since we do not assume that the

same frequency band in adjacent areas must be allocated to the same buyer who

demands the frequency band(s) in both areas, this can introduce interference from

neighboring regions. We do not explicitly address this issue; instead we assume that

the buyers can handle it using, for example, interference cancellation techniques.

5Except for [36], [27, 59, 66] assumed that each buyer requests the frequency band(s) in a single

region. Even in [36], the buyer cannot obtains the same frequency band(s) in adjacent region.
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Chapter 4

Setup and research problems

4.1 Overview

In this dissertation, we are interested in designing a new spectrum trading

mechanism for PSPs and SSPs. We study the setting where there are multiple

PSPs with surplus frequency bands and multiple SSPs interested in leasing them.

We assume that spectrum trading is performed periodically, for instance, by an

electronic system with participating service providers. The PSPs are the sellers and

the SSPs are the buyers or bidders. Sellers are interested in lending their surplus

frequency bands which are the goods or items to be sold. In order to make progress,

we assume that the frequency spectrum is traded in an agreed unit (e.g., 100 kHz).

For example, as shown in Figure 4.1, a seller that wants to sell 3 MHz spectrum

will have 30 units of 100 kHz frequency bands. In general, a buyer may prefer to

win a block of contiguous frequency bands. However, we assume that the buyers do

not differentiate the frequency bands, i.e, frequency bands are homogeneous, and

the total value a buyer receives from winning one or more frequency bands depends

only on the total number of frequency bands it receives.
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Equally divided items for sale

100kHz

Figure 4.1: Example: Frequency bands for sale.

4.2 Model

Let P = {1, 2, . . . ,M} be the set of sellers and S = {1, 2, . . . , N} the set

of buyers. The sellers are assumed risk neutral and interested in maximizing their

expected payoffs or profits. In a general setting, the area over which a seller operates

(e.g., the United States) is partitioned into regions or markets (e.g., Washington D.C.

metropolitan area). This partition is given by R. However, except for in Chapter 8,

we consider a simpler setting with only one region. The setting we explain here is

for a single region case. We will describe the setting for multiple regions case in

Chapter 8. For a single region case, the spectrum is divided into a set of frequency

bands, denoted by F . We assume that buyers are also risk neutral and interested

in maximizing their expected payoff.1

1The buyer’s payoff is defined to be the total value of the items the buyer wins minus the

payment.
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1) Sellers: Each seller owns a set of frequency bands. We denote the

set of frequency bands owned by a seller i ∈ P by F i, and the set of frequency

bands assigned to the sellers is given by ∪i∈PF i ⊂ F . Moreover, we assume that

a frequency band f ∈ F is owned by at most one seller, i.e., F i ∩ F ĩ = ∅ for all

i, ĩ ∈ P (i ̸= ĩ).

Sellers with under-utilized or extra frequency band(s) may participate in spec-

trum trading. When a seller partakes in the trading, it provides a list of frequency

bands it wishes to lend to buyers (over an agreed period). Let Ki be the number

of frequency bands seller i wants to sell, and KT =
∑

i∈P Ki the total number of

frequency bands available for lease.

We denote seller i’s value for the ℓ-th item it wants to sell by V i
ℓ , ℓ =

1, 2, . . . , Ki. In other words, seller i would prefer not to sell the ℓ-th frequency

band if it cannot receive at least V i
ℓ for it. The set of all sellers’ values is given by

V := {V i
ℓ ; i ∈ P and ℓ ∈ {1, 2, . . . , Ki}}. Without loss of generality, we assume

that the seller’s items are ordered by increasing value, i.e., V i
1 ≤ · · · ≤ V i

Ki .

We assume that sellers can form arbitrary coalitions among themselves. The

members of each coalition are assumed to share their information, e.g., the frequency

bands for sale and received bids from buyers, and hold one auction to sell their

spectrum together.

2) Buyers: Each buyer j ∈ S has private information, namely its type,

which is denoted by Tj. We assume that Tj, j ∈ S, are mutually independent contin-

uous random variables. The distribution of Tj is Gj with support Tj := [tj,min, tj,max].

Moreover, we assume that Gj yields a density function gj. The value of Tj is revealed
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only to buyer j at the beginning. Let T = (Tj; j ∈ S) be the random vector of the

types of the buyers and T :=
∏

j∈S Tj.

The type of a buyer determines its values for the items it wins: For each

k ∈ {1, 2, . . . , KT}, let Vj,k : Tj → IR+ be the function that determines buyer j’s

value for the k-th item it wins, i.e., Vj,k(tj) is the value buyer j has for the k-th

item it receives when its type is tj. In general, the values of a buyer may depend on

the types of other buyers as well. However, in this dissertation, we assume that the

values of a buyer depend only on its own type, but not on those of other buyers. The

functions Vj,k are increasing and differentiable. We define the maximum number of

frequency bands buyer j would like to lease from the sellers to be buyer j’s demand

and denote it by Dj. When Dj is strictly less than KT , Vj,k(tj) = 0 for all tj ∈ Tj

and k = Dj + 1, . . . , KT . However, we assume that Vj,k(tj) > 0 for all tj ∈ Tj and

k = 1, 2, . . . , KT , although they can be arbitrarily close to zero. This implies that

the demand of buyer j is at least KT regardless of its type. As we will see, in an

optimal auction mechanism sellers employ, each buyer may acquire the items less

than Dj. In order to reflect the law of diminishing return, we also assume that

Vj,1(tj) ≥ Vj,2(tj) ≥ · · · ≥ Vj,KT
(tj) ≥ 0 for all tj ∈ Tj.

2

2This valuation model is originally introduced in [47]. In [10], Branco proposes an optimal

multi-unit auction with this model. Given these valuation function, the auctioneer can compute the

values the buyers receive from the items they wins, using buyers’ types. This simplifies modeling of

buyers’ values and reduces the complexity of the auction mechanism. To the best of our knowledge,

there is no known mechanism that deals with multiple units for sale, multi-unit demands of buyers

and multi-dimensional values reported by the buyers.
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Figure 4.2: Valuation model.

4.3 Problems and the summary of results

In this dissertation, under the settings we described, we are interested in an-

swering the following questions.

1. How do we model the interaction among the buyers that compete for the

frequency bands available for lease?

2. Given the behavior of the buyers, is there an incentive for the sellers to coop-

erate to raise their expected profit?

3. If the answer to the second question is positive, how should they share the

revenue or profit so that no subset of sellers will have an incentive to deviate

from cooperation?

In addition to answering the above questions, we are also interested in designing an

optimal auction mechanism for a seller who has surplus frequency bands in multiple

regions.
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Branco’s mechanism can be used when a seller or a coalition (i.e., subsets of

sellers) with multiple units of item pursues revenue maximization and buyers have

multi-unit demands. However, it assumes that the seller has zero values for the

items. As mentioned earlier, it is likely that the sellers, i.e., PSPs, have nonzero

values for the items. Thus, we generalize Branco’s optimal mechanism so that it

can be applied to the cases where the sellers have positive values for the items while

maintaining desired properties, such as incentive compatibility and individual ratio-

nality. We call the proposed mechanism generalized Branco’s mechanism (GBM),

which is explained in Chapter 5.

The GBM also follows the same valuation model of Branco’s mechanism and

the values a buyer has for the frequency bands it wins are determined by a function of

the type of the buyer. We assume that the buyers are homogeneous and independent

(i.e., their types are independent and identically distributed (i.i.d.) and the valuation

functions are the same).

Since sellers are free to form any coalition, it is necessary to investigate how

the sellers form or join the coalitions.3 In order to examine the sellers behaviors,

we have to compare the (expected) payoff (or profit) between possible coalitions

the sellers can form. However, the coalitions formed by the sellers may depend on

buyers’ strategies in the spectrum trading market. As a simple example, suppose

that there are only two sellers 1 and 2. If each of them holds a separate auction

and all buyers choose to participate in seller 1’s auction with probability one, then

3Each seller may prefer a coalition under which it can earn a higher payoff (or profit) than the

other coalitions.
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seller 1 has no reason to form a coalition with seller 2. Therefore, we study the

buyers’ strategies first. In order to make progress, we assume that the probability

that a given coalition will form is known to the buyers (i.e., the SSPs) initially.

This probability can be interpreted as an initial belief buyers have when they do

not know for sure which coalitions emerge.

We begin by modeling the interaction among the buyers as a noncooperative

game under the assumption that each coalition of sellers employs the GBM. A

bidding strategy for a buyer can be divided into two steps: First, each buyer, at

the beginning, selects a seller whose auction it will participate in. After choosing a

seller, each buyer reports its type to the seller. However, as we will show, because of

the incentive compatibility of the GBM, the optimal strategy of a buyer is to report

its true type. Consequently, the only decision a buyer needs to make is the selection

of a seller.

We show that there exists a symmetric mixed strategy Nash equilibrium (SM-

SNE). The Nash equilibrium is, however, not necessarily unique in general, except

for in some special cases. For example, if (i) each seller holds its separate auction

with probability 1 or (ii) there are at most five sellers and the probability that each

seller holds its own auction is strictly positive, there is a unique SMSNE. In such

cases, we also investigate whether or not the buyers’ mixed strategies converge to

the unique SMSNE. In general cases with more than one SMSNE, we assume that

the buyers can agree on one of the SMSNEs.

In order to answer the second question stated at the beginning of the section,

we demonstrate that, if C1 and C2 are two disjoint coalitions of the sellers, the sum
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of the expected payoffs of these two coalitions is not larger than the expected payoff

of the coalition C1 ∪ C2. This implies that, assuming that they can find a suitable

way of sharing the payoff, risk neutral sellers will have an incentive to cooperate

and form a single coalition that includes all the sellers, in order to maximize their

expected payoffs.

To determine whether equitable sharing of payoff is feasible or not, we model

the interaction among the sellers as a cooperative game. We prove that its core4 is

not empty. This tells us that there exists a way for the sellers to share the payoff

so that no subset of sellers would deviate from the grand coalition to increase its

expected payoff. We propose a payoff sharing scheme that can achieve any payoff

sharing vector in the core.5 Thus, from this finding, we expect that the sellers would

form the grand coalition and hold a single auction in the spectrum trading market.

Finally, we turn our attention to more general cases where a seller wishes to

sell frequency bands in several service regions (e.g., Washington D.C., Baltimore,

and Philadelphia) and buyers operate in multiple regions and want to lease spectrum

in those regions. We introduce an auction mechanism in which the spectrum bands

in different service areas are sold simultaneously to the buyers who request the

frequency bands in different (or multiple) areas. We show that the proposed auction

mechanism is optimal in that it maximizes the seller’s expected payoff.

4The core of our cooperative game is a set of the expected payoff sharing vectors among the

sellers such that no subset of the sellers can increase its expected payoff by deviating from the

cooperation. A formal definition and a characterization of the core are given in section 7.2.
5As we will show, since there is only constant difference between the payoff and profit, a desired

expected payoff vector can be attained by the profit sharing scheme.
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4.4 Challenges and contributions

In the case where there is one unit available for sale at the auction or each

buyer requires only one unit of item in a multi-unit auction, each buyer has one

dimensional information, i.e., value or type. Hence, if the distributions of buyers’

types are known, by looking at the order statistics, we can compute the distribution

of other quantities of interest, such as the winning bids, prices paid by the winners

and the revenue of the auctioneer. This is the conventional way of computing these

quantities. However, when each buyer requires multiple units and may acquire any

number of units, computation of such quantities becomes more challenging. As a

result, calculation of the expected payoff or profit of the auctioneer also becomes

difficult. In order to skirt these difficulties and to analyze the cooperative games

among the sellers, we take an alternative approach based on the framework used by

Branco.

In order to investigate the buyers’ strategies in our setting, it is necessary

to formulate and calculate a buyer’s expected payoff. However, the allocation rule

in an optimal mechanism for multi-unit supply and multi-unit demands is rather

complicated. For instance, as we can see the allocation rule (2.4) in Chapter 2, the

contribution of each buyer and unit is computed and compared given buyers’ types.

This complexity in computing a buyer’s expected payoff arises also in the GBM that

we will describe in Chapter 5. Thus, this difficulty in computing a buyer’s expected

payoff limits analyzable cases. Under this limitation, we investigate the properties

of the buyer’s expected payoff and examine the buyers’ strategy in some cases.
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We expect that the GBM we introduce can be used for more realistic multi-

unit auctions in which a seller has its own values for the items and can allocate the

items in a more flexible manner. The approach taken in this dissertation and the

findings may provide a guideline for designing a practical mechanism for a spec-

trum trading market where there are multiple sellers. Also, the proposed profit

sharing mechanism can help sellers maintain cooperation. Finally, we hope that

the developed optimal auction mechanism for multiple-region cases will servce as

a reference and promote design/development of other sub-optimal mechanism with

lower computational complexity.
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Chapter 5

Generalized Branco’s mechanism (GBM)

In this chapter, we introduce the GBM. Since sellers may have nonzero val-

ues for their items, as we mentioned in Chapter 2, Branco’s original mechanism

cannot be applied without any modification. We follow the same steps used in the

development of Branco’s original mechanism to show that the GBM is optimal in

the sense that it maximizes the auctioneer’s expected payoff and satisfies incentive

compatibility and individual rationality.

5.1 Setup

Assume that a total of m items are available for sale from a seller or a coalition

of sellers that are interested in selling their frequency bands together. Without loss

of generality, we assume that the m items are ordered by increasing value of the

item, i.e., 0 ≤ V
(1)
0 ≤ V

(2)
0 ≤ · · · ≤ V

(m)
0 , where V

(k)
0 is the value of the auctioneer

for the k-th item in an auction. Here, we denote the ordered value of the auctioneer

(either a single seller or a coalition of sellers of frequency bands) by V
(k)
0 instead

of V i
l (i ∈ P , l ∈ Ki) introduced in section 4.2 for notational convenience; in the

auction mechanism, items in a coalition are not distinguished according to their

owners. For each buyer j ∈ S, the valuation functions Vj,k, k ∈ {1, 2, . . . ,m}, are

as defined in section 4.2, and T =
∏

j∈S Tj. The auctioneer is assumed to know the
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valuation functions Vj,k, j ∈ S and k ∈ {1, 2, . . . ,m}, the distributions Gj, j ∈ S,

and the density functions gj, j ∈ S, of buyers’ types, but not their realizations.

Recall that, in Branco’s framework, the auction mechanism is given by a pair (p, c),

where

• pj,k : T → [0, 1], j ∈ S and k ∈ {1, 2, . . . ,m}, where pj,k(t) is the probability

that buyer j wins at least k items given that the buyers’ type vector T is equal

to t, and

• cj : Tj → IR+, j ∈ S, where cj(tj) is the expected payment of buyer j of type

tj.
1

Following Branco’s framework, we are interested in a mechanism with the

allocation rule with the property pj,k(t) ∈ {0, 1} for all j ∈ S, k ∈ {1, 2, . . . ,m},

and t ∈ T . Given the buyers’ type vector t ∈ T , denote the number of sold units by

m⋆(t) =
∑

j∈S
∑m

k=1 pj,k(t). Then, the auctioneer’s expected payoff, denoted by U0,

is defined as the expected payment it receives for the items sold plus the expected

value of the unsold items:

U0 =
∑
j∈S

ETj
[cj(Tj)] + ET

 m∑
k=m⋆(T)+1

V
(k)
0

 (5.1)

=
∑
j∈S

ETj
[cj(Tj)] +

m∑
k=1

V
(k)
0 − ET

m⋆(T)∑
k=1

V
(k)
0

 (5.2)

In the GBM, each buyer reports its type t∗j ∈ Tj to the auctioneer. The

reported type t∗j is not necessarily its true type tj.

1This is the expected payment with respect to both the other buyers’ types and the probability

of winning a varying number of items. The payment rule will be provided in section 5.3.

45



5.2 Conditions for the GBM

We are interested in an allocation rule pj,k(t) that satisfies following conditions:

∑
j∈S
∑m

k=1 pj,k(t) ≤ m , (5.3)

pj,k(t) ≥ pj,k+1(t) , and (5.4)

pj,k(t) ∈ {0, 1} . (5.5)

The first condition (5.3) ensures that the total number of allocated items does not

exceed the number of available items for sale. Conditions (5.4) and (5.5) follow from

the definition of p and our restriction on p, respectively.

When the buyer j’s reported type is t∗j and its true type is tj, assuming every

other buyer report its true type, since the buyer is assumed risk neutral, its utility

can be written as

Uj(t
∗
j ; tj) = ET−j

[
m∑
k=1

Vj,k(tj)pj,k(t
∗
j ,T−j)

]
− cj(t

∗
j) . (5.6)

Since our goal is to design an optimal auction mechanism which is both incentive

compatible and individually rational, we impose the following requirements for all

j ∈ S and tj, t
∗
j ∈ Tj:

Uj(tj; tj) ≥ Uj(t
∗
j ; tj) and (5.7)

Uj(tj; tj) ≥ 0 . (5.8)

Substituting the right hand side of (5.6) for Uj(t
∗
j ; tj) in (5.7), we obtain

Uj(tj; tj) ≥ Uj(t
∗
j ; t

∗
j) +

(
Uj(t

∗
j ; tj)− Uj(t

∗
j ; t

∗
j)
)

= Uj(t
∗
j ; t

∗
j) + ET−j

[
m∑
k=1

(
Vj,k(tj)− Vj,k(t

∗
j)
)
pj,k(t

∗
j ,T−j)

]
. (5.9)
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Using (5.9) twice, we get

ET−j

[
m∑
k=1

(
Vj,k(tj)− Vj,k(t

∗
j)
)
pj,k(t

∗
j ,T−j)

]

≤ Uj(tj; tj)− Uj(t
∗
j ; t

∗
j) ≤ ET−j

[
m∑
k=1

(
Vj,k(tj)− Vj,k(t

∗
j)
)
pj,k(tj,T−j)

]
.(5.10)

By dividing all terms by tj − t∗j and taking the limit as t∗j → tj, we see that both

bounds converge to the same limit. Therefore, Uj(tj; tj)−Uj(t
∗
j ; t

∗
j) can be obtained

by integrating the limit of the upper bound in (5.10) (from t∗j to tj).

Uj(tj; tj) = Uj(t
∗
j ; t

∗
j) + ET−j

[
m∑
k=1

∫ tj

t∗j

dVj,k(x)

dx
pj,k(x,T−j)dx

]
. (5.11)

From (5.11) and the first part of (5.10),

ET−j

[
m∑
k=1

∫ tj

t∗j

dVj,k(x)

dx
pj,k(x,T−j)dx

]

≥ ET−j

[
m∑
k=1

(
Vj,k(tj)− Vj,k(t

∗
j)
)
pj,k(t

∗
j ,T−j)

]
. (5.12)

Since (5.9) follows from (5.11) and (5.12), we can replace condition (5.7) with (5.11)

and (5.12).

Suppose that condition (5.8) holds.2 Then,

Uj(tj,min; tj,min) ≥ 0 . (5.13)

If (5.11) and (5.13) hold, since Vj,k is an increasing function, condition (5.8) also

holds. Therefore, we can drop conditions (5.7) and (5.8) and use conditions (5.11),

(5.12), and (5.13) in their place.

2Incentive compatibility holds.
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5.3 Allocation and payment schemes

In this section, we design the allocation and payment rules of the GBM so

that the expected payoff U0 is maximized under conditions (5.3), (5.4), (5.5), (5.11),

(5.12), and (5.13). Since the GBM is designed to be incentive compatible, from now

on, we assume that buyers report their types truthfully. In the following theorem,

we first formulate an optimization problem with object function (5.1) and derive

the expected payment of the buyers.

Theorem 5.1. Suppose that the allocation rule p⋆ solves the following optimization

problem:

maximizep(·) ET

[∑
j∈S

m∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
pj,k(T)

+
m∑

k=m⋆(T)+1

V
(k)
0

 (5.14)

subject to (5.3), (5.4), (5.5), (5.11), (5.12), and (5.13) ,

and that the expected payment c⋆ is given by

c⋆j(tj) = ET−j

[
m∑
k=1

(
Vj,k(tj)p

⋆
j,k(tj,T−j)−

∫ tj

tj min

dVj,k(x)

dx
p⋆j,k(x,T−j)dx

)]
.(5.15)

Then (p⋆, c⋆) is an optimal mechanism.

Proof. The first term in (5.1), i.e., expected payment the auctioneer receives, can
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be manipulated as

∑
j∈S

ETj
[cj(Tj)]

=
∑
j∈S

ETj

[
ET−j

[
m∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)

]]

−
∑
j∈S

ETj

[
ET−j

[
m∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)

]
− cj(Tj)

]

=
∑
j∈S

ETj

[
ET−j

[
m∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)

]]
−
∑
j∈S

ETj
[Uj(Tj;Tj)]

=
∑
j∈S

ETj

[
ET−j

[
m∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)

]]

−
∑
j∈S

ETj

[
Uj(tj,min; tj,min) + ET−j

[
m∑
k=1

∫ Tj

tj,min

dVj,k(x)

dx
pj,k(x,T−j)dx

]]
,

(5.16)

where the second equality follows from (5.6) and the last equality is a consequence

of (5.11). Since

ETj

[∫ Tj

tj,min

dVj,k(x)

dx
pj,k(x,T−j)dx

]

=

∫ tj,max

tj,min

(∫ y

tj,min

dVj,k(x)

dx
pj,k(x,T−j)dx

)
gj(y)dy

=

∫ tj,max

tj,min

(∫ tj,max

x

gj(y)dy

)
dVj,k(x)

dx
pj,k(x,T−j)dx

=

∫ tj,max

tj,min

(1− Gj(x))
dVj,k(x)

dx
pj,k(x,T−j)dx

= ETj

[
dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)
pj,k(Tj,T−j)

]
, (5.17)
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using (5.16) and (5.17), we can rewrite (5.1) as

U0 =
∑
j∈S

ETj

[
ET−j

[
m∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
pj,k(Tj,T−j)

]]

−
∑
j∈S

Uj(tj,min; tj,min) + ET

 m∑
k=m⋆(T)+1

V
(k)
0


= ET

∑
j∈S

m∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
pj,k(T) +

m∑
k=m⋆(T)+1

V
(k)
0


−
∑
j∈S

Uj(tj,min; tj,min) . (5.18)

In (5.18), buyer j’s expected payment, cj, appears only in Uj(tj,min; tj,min). Thus,

in order to maximize the auctioneer’s expected payoff, cj needs to be selected such

that Uj(tj,min; tj,min) is minimized. From (5.6) and (5.11),

Uj(tj,min; tj,min)

= Uj(tj; tj)− ET−j

[
m∑
k=1

∫ tj

tj,min

dVj,k(x)

dx
pj,k(x,T−j)dx

]

= ET−j

[
m∑
k=1

(
Vj,k(tj)pj,k(tj,T−j)−

∫ tj

tj min

dVj,k(x)

dx
pj,k(x,T−j)dx

)]
−cj(tj) . (5.19)

Since Uj(tj,min; tj,min) ≥ 0, cj(tj) should be selected so that Uj(tj,min; tj,min) = 0.

Therefore, the optimal expected payment should be (5.15)3 and, from (5.18), the

allocation rule should maximize (5.14).

Given the types of the buyers, the contribution of buyer j for the k-th item

(k = 1, 2, . . . ,m) is a mapping πj,k : Tj → IR,4 where

πj,k(tj) = Vj,k(tj)−
dVj,k(Tj)

dTj

∣∣∣∣
Tj=tj

1− Gj(tj)

gj(tj)
.

3This expected payment satisfies (5.11) and (5.13).
4Note that, in the original Branco’s mechanism, the contribution is the mapping πj,k : T → IR.
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We order the contributions of all buyers by decreasing value and denote the ℓ-th

highest contribution (ℓ = 1, 2, . . . , N ·m) by π(ℓ)(t).
5

Throughout the dissertation, we assume that the following regularity condi-

tions hold: For all j ∈ S and k = 1, 2, . . . ,m,

• (i) (tj − t̃j)(πj,k(tj)− πj,k(t̃j)) ≥ 0 for all tj, t̃j ∈ Tj, and

• (ii) if πj,k+1(tj) ≥ 0, then πj,k(tj) ≥ πj,k+1(tj) for all tj ∈ Tj.

When these conditions are satisfied, the problem is said to be regular.6 The reg-

ularity assumption implies that (i) the contribution is non-decreasing in its type

and (ii) the nonnegative contribution is non-increasing in the number of units it

receives. Thus, if we order the contributions of a certain buyer by decreasing value,

the second condition guarantees that the k-th contribution precedes the (k + 1)-th

contribution.7 Since the auctioneer allocates the items by going down the list of

the ordered contributions, in the case with symmetric buyers, the buyer with larger

type has a higher probability of winning at least k items than another buyer with

smaller type.

The following theorem provides a sufficient condition for regularity conditions.

Theorem 5.2. [10, p.87] For all j ∈ S and k ∈ {1, 2, . . . ,m}, suppose that
1−Gj(Tj)

gj(Tj)

is an non-increasing function in Tj, Vj,k(Tj) is concave, and

dVj,k(Tj)/dTj|Tj=tj

Vj,k(tj)
≤

dVj,k+1(Tj)/dTj|Tj=tj

Vj,k+1(tj)
for all tj ∈ Tj .

5In the event of measure zero that there are ties in the contributions, we break the ties randomly.
6Again, note that the contribution πj,k(·) depends only on its type tj in the GBM.
7This ensures that (5.4) holds.
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Then, the regularity conditions (i) and (ii) are satisfied.

Now we define two functions:

(1) For each ℓ = 1, 2, . . . ,m,

ηℓ(t) := max{V (ℓ)
0 , π(ℓ+1)(t)} .

(2) For each j ∈ S and k = 1, 2, . . . ,m,

ςj,k(t−j) := inf{t̂j ∈ Tj | πj,k(t̂j) > min{ηℓ(t̂j, t−j); ℓ = 1, 2, . . . ,m}}, (5.20)

where t−j = {tj∗ ; j∗ ∈ S \ {j}}.

Theorem 5.3. If the problem is regular, an optimal mechanism (p⋆, c⋆) satisfies

p⋆j,k(t) =


1 if tj > ςj,k(t−j) ,

0 otherwise,

(5.21)

and

c⋆j(tj) = ET−j

[
m∑
k=1

Vj,k(ςj,k(T−j)) p
⋆
j,k(tj,T−j)

]
. (5.22)

Proof. The objective function in problem (5.14) can be written as

ET

∑
j∈S

m∑
k=1

πj,k(Tj)pj,k(T)−
m⋆(T)∑
k=1

V
(k)
0

+
m∑
k=1

V
(k)
0 .

In order to maximize the payoff, an auctioneer would collect the m-highest contri-

butions, i.e., π(1)(t), π(2)(t), . . ., π(m)(t). However, at the same time, the auctioneer

loses the values for sold items. Therefore, the auctioneer should allocate k-th unit

only if π(k)(t) > V
(k)
0 . By the regularity assumption, ςj,k(t−j) returns the highest los-

ing type given t−j. Thus, the item should be sold only if tj is greater than ςj,k(t−j),
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and the optimal allocation rule p⋆ is given by (5.21). Since p⋆j,k(t) is nondecreasing

in tj and the value Vj,k(tj), for any j ∈ S and k ∈ {1, 2, . . . ,m}, is increasing in tj,

the condition (5.12) is satisfied. The other conditions (5.3), (5.4), and (5.5) follow

from the allocation rule p⋆.8 By substituting (5.21) in (5.15) we obtain the expected

payment is (5.22).

From the expected payment given by (5.22), the following payment rule can

be used.

ĉj,k(t) =


Vj,k(ςj,k(t−j)) if pj,k(t) = 1,

0 otherwise.

(5.23)

In other words, the price buyer j pays for the k-th unit it wins is equal to the

smallest value for the k-th unit that would win the unit.

From the allocation and payment rules of our GBM in (5.21) and (5.23), it is

clear that m⋆(t) items are awarded to the buyers with the m⋆(t) highest contribu-

tions, where

m⋆(t) := max{ℓ ∈ {1, 2, . . . ,m} | π(ℓ)(t) > V
(ℓ)
0 } . (5.24)

When the set on the right-hand side is empty, the maximum is defined to be zero.

For example, suppose that an auctioneer has three items for sale. The values

of the auctioneer are V
(1)
0 = 0.2, V

(2)
0 = 0.24, and V

(3)
0 = 0.26. We assume that

there are three homogeneous buyers. The buyers’ types are uniformly distributed

over the interval [0,1], and the valuation function Vj,k(tj) = 1
k
tj, j ∈ {1, 2, 3} and

8Note that while we find the optimal expected payment (5.15), conditions (5.11) and (5.13) are

satisfied.
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k ∈ {1, 2, 3}, for all tj ∈ Tj = [0, 1]. Suppose that the reported buyers’ types are

t∗ = (0.85, 0.75, 0.65). Then, buyer’s contributions are given by πj,k(t
∗
j) =

2
k
t∗j − 1

k

for j ∈ {1, 2, 3} and k ∈ {1, 2, 3}. Hence, we have

• π1,1(0.85) =
7
10
, π1,2(0.85) =

7
20
, and π1,3(0.85) =

7
30
.

• π2,1(0.75) =
5
10
, π2,2(0.75) =

5
20
, and π2,3(0.75) =

5
30
.

• π3,1(0.65) =
3
10
, π3,2(0.65) =

3
20
, and π3,3(0.65) =

3
30
.

The ordered contributions are π(1)(t
∗) = π1,1(t

∗
1), π(2)(t

∗) = π2,1(t
∗
2), π(3)(t

∗) =

π1,2(t
∗
1), π(4)(t

∗) = π3,1(t
∗
3), π(5)(t

∗) = π2,2(t
∗
2), π(6)(t

∗) = π1,3(t
∗
1), π(7)(t

∗) = π2,3(t
∗
2),

π(8)(t
∗) = π3,2(t

∗
3), and π(9)(t

∗) = π3,3(t
∗
3). From (5.24), we can see that buyer 1

wins two items and buyer 2 wins one item. From (5.20), ς1,1(t
∗
−1) = 0.63. Hence,

for the first item buyer 1 wins, buyer 1 pays V1,1(ς1,1(t
∗
−1)) = 0.63. In the same way,

since ς1,2(t
∗
−1) = 0.53 and ς2,1(t

∗
−2) = 0.65, buyer 1 pays V1,2(ς1,2(t

∗
−1)) = 0.265 for

the second item it wins and buyer 2 pays V2,1(ς2,1(t
∗
−2)) = 0.65 for the item it wins.

5.4 Properties of the GBM

From the previous sections, we can state following lemma.

Lemma 1. The generalized Branco’s mechanism is both incentive compatible and

individually rational.

We define the expected profit of an auctioneer as the expected payment it

receives from the buyers minus the expected values of the sold items;

Ŭ0 =
∑
j∈S

ETj
[cj(Tj)]− ET

m⋆(T)∑
k=1

V
(k)
0

 . (5.25)
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Lemma 2. The generalized Branco’s mechanism is optimal in the sense that it

maximizes the expected profit of the auctioneer.

Proof. From (5.2) and (5.25), it is obvious,

Ŭ0 = U0 −
m∑
k=1

V
(k)
0 . (5.26)

In other words, since the values of items
∑m

k=1 V
(k)
0 is constant, the expected payoff

and expected profit differ only by a fixed constant
∑m

k=1 V
(k)
0 . Thus, since the GBM

maximizes the expected payoff of the auctioneer,9 the GBM also maximizes the

expected profit of the auctioneer.

9See Theorems 5.1 and 5.3.
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Chapter 6

Noncooperative game among the buyers

6.1 Bidding strategy

There are many different ways in which the sellers can sell their available

frequency bands to the buyers. For example, individual sellers can hold separate

individual auctions, or a group of sellers can form a coalition to sell their available

frequency bands together. In the latter case, each coalition will hold one auction by

sharing their information (e.g., the received bids, the number of frequency bands,

and the reserved value for each frequency band) and the profit according to an

agreement between its members. As we showed in Chapter 5, the payoff and the

profit of a seller differ only by a fixed amount that equals the total value of the

items it has for sale. Hence, we can compute one from the other. For this reason,

maximizing the payoff is equivalent to maximizing the profit.

In order for a coalition of sellers to emerge, the sellers in the coalition must

find it advantageous to cooperate and a proper profit sharing scheme must be in

place. In general, it would require that (i) the expected profit of the coalition from a

single auction be no smaller than the total expected profit the members can achieve

by forming a set of smaller coalitions and (ii) there exist a suitable profit sharing

scheme that allocates the profits in a way no subset of members finds it beneficial

to leave the coalition. It is obvious that the expected profit of every seller i should
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be at least its expected profit from holding an individual auction.

Before we can understand how the sellers would behave, we must first examine

buyers’ behavior. To this end we model the interaction among the buyers as a

noncooperative game [29]: At the beginning of the game each buyer first chooses a

seller whose auction it will participate in1 and then reports its type to the selected

seller. We assume that either a buyer’s selection of the seller takes place before the

type is revealed to the buyer or the selection does not depend on the revealed type.

Sellers are free to form any coalition(s) among themselves. They do not an-

nounce the coalitions they form to the buyers before the buyers select sellers. In

other words, buyers choose the sellers without the knowledge of the coalitions formed

by the sellers; instead they only know the probabilities that different coalitions will

emerge. Sellers in a coalition share the reported types of the buyers that choose a

member of the coalition and decide on the set of frequency bands to be allocated

and the prices to be charged according to the GBM. The buyers are then informed of

the number of frequency bands they have won and the prices to pay. In Figure 6.1,

an example is given: Sellers 1 and 2 form a coalition and sell their items together

and seller 3 holds a separate auction. Each buyer selects a seller and reports its

type before sellers announce the coalitions they form.

Let us first examine the actions to be taken by the buyers. As mentioned

earlier, each buyer must first choose one of the M sellers and report its type to

the seller. However, since the GBM is incentive compatible, once a buyer chooses a

1Here, we assume that each buyer joins only one auction. However, we will show later that this

does not impose any restrictions on our findings.
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Auctioneer

Seller 1's 

window

Seller 2's 

window
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window

Seller 1's items Seller 2's items Seller 3's items

Auctioneer

Buyer 1 Buyer 2 Buyer 3 Buyer N

Figure 6.1: Example of coalition.

seller, the optimal strategy of a buyer in the GBM is to report its true type. Hence,

the only action required of a buyer is the selection of a seller. We formulate this

problem as a noncooperative game among the buyers.

Let ΩP be the set of all possible partitions of the set of sellers P and µ a

distribution over the set ΩP . The probability that coalitions in a partition ω ∈ ΩP

will form is given by µ(ω). For example, suppose that P = {1, 2} and ΩP =

{ω1, ω2} = {{{1}, {2}}, {{1, 2}}}. Then, µ(ω1) is the probability that the coalitions

{1} and {2} will form (i.e., two sellers do not cooperate) and µ(ω2) is the probability

that coalition {1, 2} will form (i.e., they will cooperate with each other). We assume

that the distribution µ is common knowledge, and buyers know the probability a
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coalition C ⊂ P will form, which is given by

Pr [coalition C forms] =
∑

ω∈ΩP :C∈ω

µ(ω).

Since each buyer must choose a seller, the pure strategy space Bj of buyer

j ∈ S is given by the set of sellers P . The (expected) payoff of buyer j given a

strategy profile b := (b1, b2, . . . , bN), where bj ∈ Bj for all j ∈ S, is given by uj(b).

Then, the noncooperative game among the buyers is presented by Γ = {S, (Bj; j ∈

S), (uj; j ∈ S)}. The goal of each buyer is to maximize its expected payoff.

A mixed strategy of a buyer j is simply a distribution ξ̄ := (ξi; i ∈ P) over

Bj = P , where ξi, i ∈ P , is the probability that buyer j will choose seller i. A

mixed strategy Nash equilibrium (MSNE), Ξ = (ξ̄1, ξ̄2, . . . , ξ̄N), is a set of mixed

strategies, one for each buyer, such that no buyer can increase its expected payoff

by unilaterally deviating from the equilibrium strategy. An MSNE, Ξ, is called a

symmetric MSNE if ξ̄1 = ξ̄2 = · · · = ξ̄N .

In the rest of the dissertation we consider independent homogeneous buyers:

The types of the buyers tj, j ∈ S, are independent and identically distributed, and

the valuation functions Vj,k are identical for all j ∈ S.

Definition 4. A game Γ is symmetric if the players have identical strategy spaces,

i.e., B1 = B2 = · · · = BN , and uj(bj,b−j) = ul(bl,b−l) if bj = bl and b−j = b−l for

all j, l ∈ S, where b−j = (bm;m ̸= j) is the strategy profile of the other players.

Theorem 6.1. [15, p.25] A finite symmetric game has a symmetric mixed strategy

Nash equilibrium.
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Theorem 6.2. There always exists a symmetric mixed strategy Nash equilibrium in

our game Γ.

Proof. In our game Γ, the buyers have a common finite strategy space P (i.e., Bj =

P , for all j ∈ S) and have the identical payoff function because of the homogeneity

assumption. Thus, Γ is a finite symmetric game, and by Theorem 6.1, there exists

a symmetric mixed strategy Nash equilibrium.

In general a symmetric MSNE is not guaranteed to be unique. However,

when no seller cooperates with any other seller(s) with probability 1 (w.p. 1), i.e.,

µ({{1}, {2}, {3}, . . . , {M}}) = 1, the symmetric MSNE is unique if the valuation

functions Vj,k satisfy the following condition:

πj,⌈(Ki+1)/2⌉(tj,max) > V i
1 for all i ∈ P (6.1)

The condition (6.1) guarantees that (i) the possible highest contribution, i.e.,

πj,1(tj,max), is larger than the minimum value of every seller V i
1 , i ∈ P , and (ii)

assuming each seller has the identical value for every item, i.e., V i
1 = V i

2 = · · · = V i
Ki ,

when there are more than two buyers participating in seller i’s auction, the number

of contributions larger than the value of the items exceeds the supply of the seller

with strictly positive probability. This implies that the expected payoff of a buyer

partaking in seller i’s auction will be strictly decreasing in the number of other

buyers that join the auction. Note that the condition in (6.1) is the same for all

buyers from the homogeneity assumption. Throughout the dissertation, we assume

that the condition (6.1) holds.
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Theorem 6.3. Suppose that condition (6.1) holds. If every seller holds a sepa-

rate auction with probability 1, there is a unique symmetric mixed strategy Nash

equilibrium.

Before we prove the theorem, we introduce a lemma that will be used in the

proof. We denote the set of buyers that choose seller i by Si. Let Ũ
(i)
j (n) be the

conditional expected payoff of buyer j given that (i) buyer j chooses seller i ∈ P

and (ii) |Si| = n+ 1, i.e., exactly n other buyers choose seller i as well.

Lemma 3. Suppose that buyer j chooses seller i. Then, Ũ
(i)
j (n − 1) > Ũ

(i)
j (n) for

all n ∈ {1, 2, ..., N − 1}.

Proof. Since the buyers are homogeneous, without loss of generality, assume that

j = 1 and Si = {1, 2, . . . , n + 1}. Define T
(n)
−1 = (Tl; l = 2, . . . , n + 1) and t

(n)
−1 =

(tl; l = 2, . . . , n+1). From the allocation rule in (5.21), for fixed t
(n)
−1 , the probability

p1,k(t1, t
(n)
−1 ) is nondecreasing in t1.

2 In particular, p1,k(t1, t
(n)
−1 ) = 0 if t1,min ≤ t1 ≤

ς1,k(t
(n)
−1 ) and p1,k(t1, t

(n)
−1 ) = 1 if ς1,k(t

(n)
−1 ) < t1.

From the payment rule in (5.23), we can show that the expected payoff of

buyer 1 that participates in seller i’s auction when there are n other buyers is given

2Here, for different values of n, we have different auctions. However, with some abuse of

notation, we do not explicitly indicate the dependence of p1,k(t1, t
(n)
−1 ), ς1,k(t

(n)
−1 ), and ĉ1,k(T1,T

(n)
−1 )

on n (or more precisely, on the set Si).
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by

Ũ
(i)
1 (n) = ET(i)

 Ki∑
k=1

(
V1,k(T1) p1,k(T1,T

(n)
−1 )− ĉ1,k(T1,T

(n)
−1 )
)

= ET(i)

 Ki∑
k=1

(∫ T1

t1,min

dV1,k(x)

dx
p1,k(x,T

(n)
−1 ) dx

) , (6.2)

where T(i) = {Tj; j ∈ Si}, and the expectation is taken over the types T(i). From

the allocation rule (5.21), for any t1 and t−1, we have

p1,k(t1, t
(n−1)
−1 ) ≥ p1,k(t1, t

(n)
−1 ). (6.3)

The lemma now follows from (6.1) - (6.3).

Proof of Theorem 6.3. As mentioned earlier, the existence of a symmetric MSNE

follows from Theorem 6.1. Suppose that there are two symmetric MSNEs, Ξ1 =

(ξ̄1, . . . , ξ̄1) and Ξ2 = (ξ̄2, . . . , ξ̄2), where ξ̄k = (ξk1 , . . . , ξ
k
M), k = 1, 2, such that

ξ̄1 ̸= ξ̄2. We will show that this leads to a contradiction, thus proving the uniqueness

of a symmetric MSNE.

Let U
(i)
j (ξ̄) denote the conditional expected payoff of buyer j, given that buyer

j selects seller i, when all buyers employ the same mixed strategy ξ̄. The buyer j’s

expected payoff is equal to

Uj(ξ̄) =
∑
i∈P

ξi · U (i)
j (ξ̄) . (6.4)

One can easily show that, at any symmetric MSNE Ξ⋆ = (ξ̄⋆, . . . , ξ̄⋆), we must have

U
(1)
j (ξ̄⋆) = · · · = U

(M)
j (ξ̄⋆) for all j ∈ S. (6.5)
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Since the buyers are assumed to select sellers independently of each other, for

each i ∈ P,

U
(i)
j (ξ̄⋆) =

N−1∑
n=0

(
N − 1

n

)
(ξ⋆i )

n (1− ξ⋆i )
N−1−n Ũ

(i)
j (n).

We can compute the derivative of U
(i)
j (ξ̄).

∂U
(i)
j (ξ̄)

∂ξi

=
N−1∑
n=0

(
N − 1

n

)
Ũ

(i)
j (n)

[
n(ξi)

n−1(1− ξi)
(N−1−n) − (N − 1− n)(ξi)

n(1− ξi)
(N−2−n)

]
= −

(
N − 1

1

)
(1− ξi)

(N−2)(Ũ
(i)
j (0)− Ũ

(i)
j (1))

−
(
N − 1

1

)
(N − 2)(ξi)(1− ξi)

(N−3)(Ũ
(i)
j (1)− Ũ

(i)
j (2))

−
(
N − 1

2

)
(N − 3)(ξi)

2(1− ξi)
(N−4)(Ũ

(i)
j (2)− Ũ

(i)
j (3))

− · · ·

−
(
N − 1

N − 2

)
(ξi)

N−2(Ũ
(i)
j (N − 2)− Ũ

(i)
j (N − 1)) (6.6)

and, from Lemma 3, ∂U
(i)
j (ξ̄)/∂ξi < 0.

If ξ̄1 ̸= ξ̄2, there must exist i+ and i∗ such that (i) ξ1i+ < ξ2i+ and (ii) ξ1i∗ >

ξ2i∗ . Our finding that U
(i)
j (ξ̄) is strictly decreasing in ξi implies that U

(i+)
j (ξ̄1) >

U
(i+)
j (ξ̄2) = U

(i∗)
j (ξ̄2) > U

(i∗)
j (ξ̄1), which contradicts (6.5).

Theorem 6.4. Suppose that there are at most five sellers and the probability that

each seller holds its own auction is strictly positive. Then, there is a unique sym-

metric mixed strategy Nash equilibrium.

Proof. A proof is given in Appendix A.
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In the proofs of Theorems 6.3 and 6.4 (in Appendix A), we make use of only

the properties of the buyer’s conditional expected payoff, e.g., U
(i)
j (ξ̄) is strictly

decreasing in ξi for all i ∈ P. In order to verify whether or not there is a unique

symmetric MSNE when there are more than five sellers and the probability that

each seller holds its own auction is strictly positive, we may need to calculate each

buyer’s expected payoff. As can be seen from equations (5.6) and (5.22),3 in order

to compute buyers’ expected payoffs, we need to know the allocation for every

realization, which is difficult for general cases. In addition, when there are more than

five sellers, the approach employed in the proof of Theorem 6.4 becomes impractical

as the number of cases we need to consider gets large. As a result, proving the

uniqueness of the symmetric MSNE by contradiction becomes harder. For this

reason, we leave the question of the uniqueness of the symmetric MSNE in general

cases as an open problem.

When the probability that each seller holds its own auction is not strictly

positive, one can easily find examples where symmetric MSNE is not unique. For

example, suppose that M ≥ 3 and µ({{1, 2}, {3}, {4}, . . . , {M}}) = 1. Since sellers

1 and 2 always cooperate, this does not satisfy the assumption that each seller holds

its own auction with strictly positive probability in Theorem 6.4 (when M ≤ 5).

Note that this implies that the assumption in Theorem 6.3 is not satisfied, either.

Consider a new game Γ⋆ with M − 1 sellers, where the new seller 1 combines both

sellers 1 and 2 in the original game Γ. Then, from Theorem 6.3, there is a unique

symmetric MSNE, Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆), in this new game Γ⋆. One can easily verify

3Buyer’s expected payoff and expected payment.
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that any strategy profile Ξ† = (ξ̄†, . . . , ξ̄†), where ξ†1 + ξ†2 = ξ⋆1 and ξ†l = ξ⋆l for all

l = 3, . . . ,M , is a symmetric MSNE of Γ. Thus, if ξ⋆1 > 0, there are uncountably

many symmetric MSNEs of Γ.

When there are more than one symmetric MSNEs, we assume that the buyers

can agree on or reach one of the symmetric MSNEs and behave according to the

chosen symmetric MSNE. For example, the buyers may choose the symmetric MSNE

that yields the largest expected payoff. In addition, we suspect that, although there

may be many symmetric MSNEs, the expected payoffs of the buyer are the same

under all symmetric MSNEs.

Conjecture 1. Suppose that Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆) and Ξ† = (ξ̄†, . . . , ξ̄†) are two

symmetric MSNEs. Then, Uj(ξ
⋆) = Uj(ξ

†) for all j ∈ S.

A sufficient condition for Conjecture 1 is given in Lemma 4.

Lemma 4. Suppose Ξ⋆ = (ξ̄⋆, . . . , ξ̄⋆) and Ξ† = (ξ̄†, . . . , ξ̄†) are two symmetric

MSNEs and
∑

i∈C ξ⋆i =
∑

i∈C ξ†i for every C ⊂ P for which Pr [coalition C forms] >

0. Then, Uj(ξ
⋆) = Uj(ξ

†) for all j ∈ S.

Proof. Let µ̃(C) be the probability that a coalition C ⊂ P forms and Û
(i)
j (C, ξ̄) be

the conditional expected payoff of buyer j choosing seller i in the coalition C, given

that the coalition C forms and all buyers employ the same mixed strategy ξ̄.4 Recall

that U
(i)
j (ξ̄) denotes the conditional expected payoff of buyer j, given that buyer j

selects seller i and all buyers adopt the same mixed strategy ξ̄. Then,

U
(i)
j (ξ̄) =

∑
C⊂P\{i}

µ̃(C ∪ {i})× Û
(i)
j (C ∪ {i}, ξ̄) . (6.7)

4These are the same definitions introduced in Appendix A.
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From the proof of Theorem 6.3, we can see that Û
(i)
j (C, ξ̄) depends on ξ̄ only

through
∑

l∈C ξl. Thus, if
∑

i∈C ξ⋆i =
∑

i∈C ξ†i for every C ⊂ P with µ̃(C) > 0, we

have U
(i)
j (ξ̄⋆) = U

(i)
j (ξ̄†) for every i ∈ P . Therefore, from (6.4), we have Uj(ξ̄

⋆) =

Uj(ξ̄
†).

A main obstacle to proving Conjecture 1 is the difficulty in computing the

buyers’ expected payoffs. It also hampers the studies of other interesting questions

such as the convergence and stability of symmetric MSNEs. Even though some of

our analysis on buyers’ symmetric MSNE is carried out for limited cases in this

dissertation, in practice, we expect that the number of sellers in the same region to

be small and exceeds five only infrequently.

6.2 Convergence of buyers’ strategies

In this section, we investigate whether or not the buyers’ symmetric mixed

strategy converges to a symmetric MSNE under a certain strategy update scheme.

As we mentioned in the previous section, due to the difficulty in calculation of

the expected payoff of buyers, the analyzable cases are limited. We illustrate the

difficulty and discuss the case in which the convergence of the buyers’ symmetric

mixed strategy can be established.

Since we assume that the buyers are selfish and do not communicate/cooperate

among themselves, i.e., noncooperative game among buyers, the information each

buyer can use is limited to the received payoff in the past auctions. Thus, we assume

that a buyer’s strategy updating scheme depends only on the past payoffs. To make
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progress, we make several simplifying assumptions:

1. A buyer’s mixed strategy is updated periodically, e.g, every 50 auctions (dis-

crete time update). Between two consecutive updates, the buyers can estimate

the expected payoffs (reasonably accurately).

2. Every buyer updates the strategy at the same time (synchronous update).

3. All buyers use the same initial mixed strategy.

4. No buyer stops participating in the auctions.

5. Buyers’ valuation functions Vj,k, j ∈ S, k ∈ {1, 2, . . . , KT}, remain the same.

6. The number of items available from each seller remains the same.

Let ξ̄(0) be the initial mixed strategy of the buyers. Denote, by ξ̄(n) :=

(ξ1(n), ξ2(n), . . . , ξM(n)), the buyers’ mixed strategy at update step n ∈ Z+. Re-

call that U
(i)
j (ξ̄(n)) denotes the conditional expected payoff of buyer j, given that

buyer j selects seller i, when all buyers employ the same mixed strategy ξ̄(n), and

the buyer j’s expected payoff is denoted by Uj(ξ̄(n)). Note that since we assume

homogeneous buyers and a synchronous update scheme, if all buyers apply the same

update scheme, all buyers have same mixed strategy ξ̄(n) for all n. This implies that

all buyers have the same expected payoff U1(ξ̄(n)) = U2(ξ̄(n)) = · · · = UM(ξ̄(n)).

Thus, for notational convenience, we omit the subscript j in the expected payoff.
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Assume that buyers adopt the following update rule for every i ∈ P .5

ξi(n+ 1) = ξi(n) + α(n) ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
, (6.8)

where U(ξ̄(n)) =
∑

i∈P ξi(n) · U (i)(ξ̄(n)), and α(n) > 0 for all n ∈ Z+. Since∑
i∈P ξi(n) = 1 and

∑
i∈P ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

)
= 0, it is clear that

∑
i∈P ξi(n+

1) = 1.

Suppose that there is a mapping T̂ : X 7→ X , where X = {ξ̄ ∈ IRM | 0 < ξi <

1 for all i ∈ P and
∑

i∈P ξi = 1} ⊂ IRM .

Definition 5. The vector x∗ ⊂ X is called a fixed point of T̂ if x∗ = T̂ (x∗).

Definition 6. A mapping T̂ : X 7→ X is called a pseudocontraction if the mapping

T̂ has a fixed point x∗ and the following property holds:

∥T̂ (x)− x∗∥ ≤ β∥x− x∗∥, ∀ x ∈ X , (6.9)

where β, called the modulus of T̂ , is a constant in [0, 1).

Theorem 6.5. [11, p.183] Suppose that the mapping T̂ : X 7→ X is a pseudocon-

traction with a fixed point x∗ ∈ X and modulus β ∈ [0, 1). Then, T̂ has no other

fixed points and the sequence {x(n)} generated by x(n + 1) = T̂ (x(n)) converges to

x∗ as n → ∞.

Suppose that there is a unique symmetric MSNE Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆). At

equilibrium ξ̄⋆, we have U (1)(ξ̄⋆) = U (2)(ξ̄⋆) = · · · = U (M)(ξ̄⋆) = U(ξ̄⋆). If ξ̄(n) = ξ̄⋆,

5Updating rule (6.8) is motivated by the replicator dynamic model which is introduced in

evolutionary game theory [65].

68



from (6.8), ξ̄(n + 1) = ξ̄(n) = ξ̄⋆. Thus, if the update rule (6.8) gives rise to a

pseudocontraction with some modulus β ∈ [0, 1), the mixed strategy sequence ξ̄(n)

converges to ξ̄⋆ by Theorem 6.5. Note that, since a pseudocontraction with modulus

β = 0 is unlikely, we assume that β ∈ (0, 1). In order to examine whether or not

the update rule (6.8) yields a pseudocontraction with some modulus β ∈ (0, 1), we

will investigate the conditions the update rule (6.8) has to satisfy.

Let ∥·∥ be the L1 norm, i.e., ∥x∥ =
∑

i∈P |xi| for x ∈ IRM . For a given n ∈ Z+,

define the following index sets:

Θ1(n) := {k ∈ P | ξk(n) > ξ⋆k}

Θ2(n) := P \Θ1(n)

Θ3(n) := Θ1(n) ∩Θ1(n+ 1)

Θ4(n) := Θ1(n) ∩Θ2(n+ 1)

Θ5(n) := Θ2(n) ∩Θ2(n+ 1)

Θ6(n) := Θ2(n) ∩Θ1(n+ 1)

Θ7(n) := {k ∈ P|U (k)(ξ̄(n)) > U(ξ̄(n))}

Θ8(n) := {k ∈ P|U (k)(ξ̄(n)) = U(ξ̄(n))}

Θ9(n) := {k ∈ P|U (k)(ξ̄(n)) < U(ξ̄(n))}

Suppose that ξ̄(n) ∈ X . In order for the update rule (6.8) to be a mapping

from X to X , we must ensure that ξ̄(n + 1) lies in X . In other words, for every

i ∈ P,

0 < ξi(n) + α(n) ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
< 1 . (6.10)
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Let

α∗
1(n) = min

{
1− ξk(n)

ξk(n)
(
U (k)(ξ̄(n))− U(ξ̄(n))

) ; k ∈ Θ7(n)

}

α∗
2(n) = min

{
1(

U(ξ̄(n))− U (k)(ξ̄(n))
) ; k ∈ Θ9(n)

}
.

Then, in order to ensure that (6.10) holds, the step size in the update rule must

satisfy

0 < α(n) < min{α∗
1(n), α

∗
2(n)} . (6.11)

Now we examine the conditions for the update rule (6.8) to yield a pseudo-

contraction. Since

∥ξ̄(n+ 1)− ξ̄⋆∥ =
∑

i∈Θ3(n)

ξi(n) + α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
− ξ⋆i

+
∑

i∈Θ6(n)

ξi(n) + α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
− ξ⋆i

+
∑

i∈Θ4(n)

ξ⋆i − ξi(n)− α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
+
∑

i∈Θ5(n)

ξ⋆i − ξi(n)− α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
and

∥ξ̄(n)− ξ̄⋆∥ =
∑

i∈Θ3(n)

ξi(n)− ξ⋆i +
∑

i∈Θ4(n)

ξi(n)− ξ⋆i

+
∑

i∈Θ5(n)

ξ⋆i − ξi(n) +
∑

i∈Θ6(n)

ξ⋆i − ξi(n) ,
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the condition (6.9) can be rewritten as

∑
i∈Θ3(n)∪Θ6(n)

α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
−

∑
i∈Θ4(n)∪Θ5(n)

α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)

≤ (β − 1)

 ∑
i∈Θ3(n)

ξi(n)− ξ⋆i +
∑

i∈Θ5(n)

ξ⋆i − ξi(n)


+(β + 1)

 ∑
i∈Θ4(n)

ξi(n)− ξ⋆i +
∑

i∈Θ6(n)

ξ⋆i − ξi(n)

 . (6.12)

Note that
∑

i∈Θ3(n)∪Θ4(n)∪Θ5(n)∪Θ6(n)
α(n)ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

)
= 0. Thus,

the left hand side of (6.12) is equal to

∑
i∈Θ3(n)∪Θ6(n)

α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
−

∑
i∈Θ4(n)∪Θ5(n)

α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
=

∑
i∈Θ3(n)∪Θ6(n)

2α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
=

∑
i∈Θ4(n)∪Θ5(n)

−2α(n)ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

)
. (6.13)

Define

A(n) :=

 ∑
i∈Θ3(n)

ξi(n)− ξ⋆i +
∑

i∈Θ5(n)

ξ⋆i − ξi(n)

 , and

B(n) :=

 ∑
i∈Θ4(n)

ξi(n)− ξ⋆i +
∑

i∈Θ6(n)

ξ⋆i − ξi(n)

 .

Note that A(n) ≥ 0 and B(n) ≥ 0 for every n ∈ Z+.

Case (i): Given n ∈ Z+, if right hand side of (6.12) is positive, i.e., (β −

1)A(n) + (β + 1)B(n) > 0, and −
∑

i∈Θ4(n)∪Θ5(n)
2ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

)
≤ 0,

the property (6.12) holds for all positive α(n) > 0. Case (ii): If (β − 1)A(n) + (β +
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1)B(n) > 0 and −
∑

i∈Θ4(n)∪Θ5(n)
2ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

)
> 0, the property

(6.12) is satisfied with every

α(n) ∈

(
0,

((β − 1)A(n) + (β + 1)B(n))

−
∑

i∈Θ4(n)∪Θ5(n)
2ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

)] .
Case (iii): If (β − 1)A(n) + (β + 1)B(n) ≤ 0, however, the left hand side of (6.12)

must be non-positive.

Consider the case that B(n) > 0. If A(n)−B(n) ≤ 0, then (β−1)A(n)+(β+

1)B(n) > 0 for any β ∈ (0, 1).6 If A(n)−B(n) > 0, then (β−1)A(n)+(β+1)B(n) >

0 for any β ∈ (A(n)−B(n)
A(n)+B(n)

, 1). We assume that the modulus β is selected so that

(β − 1)A(n) + (β + 1)B(n) > 0 for n ∈ Z+ with B(n) > 0. Define

α∗
3(n) :=

(β − 1)A(n) + (β + 1)B(n)

−
∑

i∈Θ4(n)∪Θ5(n)
2ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

) .

Then, choosing α(n) so that

α(n) <


min{α∗

1(n), α
∗
2(n), α

∗
3(n)}

if −
∑

i∈Θ4(n)∪Θ5(n)
ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

)
> 0

min{α∗
1(n), α

∗
2(n)} otherwise

(6.14)

guarantees that the property (6.12) holds when B(n) > 0.

Note that B(n) = 0 and A(n) = 0 if and only if ξ̄(n) = ξ̄⋆. Thus, we focus on

the case with B(n) = 0 and A(n) > 0. In this case, the right hand side of (6.12),

i.e., (β − 1)A(n) + (β + 1)B(n), is negative. Here, we must show two things. First,

we need to show that the left hand side of (6.12) is negative when B(n) = 0 and

A(n) > 0. Suppose that we can show that the left hand side of (6.12) is negative.

6(β − 1)A(n) + (β + 1)B(n) = β(A(n) +B(n))−A(n) +B(n)
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Then, in order for the update rule (6.8) to satisfy condition (6.12),

α(n) ≥ (β − 1)A(n)∑
i∈Θ3(n)∪Θ6(n)

2ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

) (6.15)

or

α(n) ≥ (β − 1)A(n)

−
∑

i∈Θ4(n)∪Θ5(n)
2ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

) . (6.16)

In addition, we must satisfy the condition (6.11). Thus, the second requirement we

need to meet is that either

(β − 1)A(n)∑
i∈Θ3(n)∪Θ6(n)

2ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

) < min{α∗
1(n), α

∗
2(n)} (6.17)

or

(β − 1)A(n)

−
∑

i∈Θ4(n)∪Θ5(n)
2ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

) < min{α∗
1(n), α

∗
2(n)} (6.18)

when B(n) = 0 and A(n) > 0. However, due to the aforementioned difficulty in

calculating the conditional expected payoff U (i)(ξ̄(n)) for any i ∈ P , proving that

these two conditions hold in general settings is challenging, if possible at all.

Theorem 6.6. Suppose that there is a unique symmetric mixed strategy Nash equi-

librium in noncooperative game among buyers and there are two sellers in the mar-

ket. Then, the mixed strategy ξ̄(n) converges to the unique symmetric mixed strategy

under the update rule in (6.8).

Proof. For any n ∈ Z+, since there exists α(n) > 0 such that (6.12) holds if B(n) >

0,7 we need to show only that, when B(n) = 0 and A(n) > 0,8 (i) the left hand side

of (6.12) is negative and (ii) either (6.17) or (6.18) holds.

7We can choose α(n) so that (6.14) holds.
8Recall that A(n) = 0 and B(n) = 0 if and only if ξ̄(n) = ξ̄⋆.
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Recall that µ̃(C) is the probability that a coalition C ⊂ P forms and Û (i)(C, ξ̄(n))

is the conditional expected payoff of a buyer choosing seller i in the coalition C, as-

suming the coalition C forms and all buyers employ the same mixed strategy ξ̄(n).

Then, for a mixed strategy ξ̄(n), n ∈ Z+, we have

U (1)(ξ̄(n)) = µ̃({1})Û (1)({1}, ξ̄(n)) + µ̃({1, 2})Û (1)({1, 2}, ξ̄(n)) and

U (2)(ξ̄(n)) = µ̃({2})Û (2)({2}, ξ̄(n)) + µ̃({1, 2})Û (2)({1, 2}, ξ̄(n)) .

Suppose Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆), where ξ̄⋆ = (ξ⋆1 , ξ
⋆
2), is the unique symmetric

MSNE. Since Û (i)(C, ξ̄(n)) is determined by
∑

k∈C ξk(n),

Û (1)({1, 2}, ξ̄(n)) = Û (2)({1, 2}, ξ̄(n)) = Û (1)({1, 2}, ξ̄⋆) = Û (2)({1, 2}, ξ̄⋆) . (6.19)

When ξ1(n) > ξ⋆1 and ξ2(n) < ξ⋆2 ,

Û (1)({1}, ξ̄(n)) < Û (1)({1}, ξ̄⋆) and

Û (2)({2}, ξ̄(n)) > Û (2)({2}, ξ̄⋆) .

Thus, this yields

Û (1)({1}, ξ̄(n)) < Û (1)({1}, ξ̄⋆) = Û (2)({2}, ξ̄⋆) < Û (2)({2}, ξ̄(n)) . (6.20)

Similarly, when ξ1(n) < ξ⋆1 and ξ2(n) > ξ⋆2 , we can show that

Û (1)({1}, ξ̄(n)) > Û (1)({1}, ξ̄⋆) = Û (2)({2}, ξ̄⋆) > Û (2)({2}, ξ̄(n)) . (6.21)

Note that B(n) = 0 if Θ4(n) = ∅ and Θ6(n) = ∅.9 From (6.19), (6.20), and

(6.21), we can see that, for every l ∈ Θ3(n) and k ∈ Θ5(n),

U (k)(ξ̄(n)) > U (k)(ξ̄⋆) = U (l)(ξ̄⋆) > U (l)(ξ̄(n)) .

9In this case, if ξ1(n) > ξ⋆1 and ξ2(n) < ξ⋆2 , Θ3(n) = {1} and Θ5(n) = {2}. Similarly, if

ξ1(n) < ξ⋆1 and ξ2(n) > ξ⋆2 , Θ3(n) = {2} and Θ5(n) = {1}.
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Thus,
∑

i∈Θ5(n)
ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

)
> 0. By (6.13), this implies that the

left hand side of (6.12) is negative and there exists α(n) > 0 such that (6.12) holds.

Now we need to ensure that either (6.17) or (6.18) holds

From (6.20) and (6.21), we can see that Θ7(n) = Θ5(n) and Θ9(n) = Θ3(n).

Since there are only two sellers,

α∗
1(n) =

1− ξk(n)

ξk(n)
(
U (k)(ξ̄(n))− U(ξ̄(n))

) and

α∗
2(n) =

1(
U(ξ̄(n))− U (l)(ξ̄(n))

) ,

where l ∈ Θ3(n) and k ∈ Θ5(n). From the definition of Θ3(n) and Θ5(n),

A(n) =
∑

i∈Θ3(n)

2 (ξi(n)− ξ⋆i )

=
∑

i∈Θ5(n)

2 (ξ⋆i − ξi(n)) .

Suppose that min{α∗
1(n), α

∗
2(n)} = α∗

1(n). The condition (6.18) can be rewrit-

ten as

(β − 1)A(n)

−
∑

i∈Θ5(n)
2ξi(n)

(
U (i)(ξ̄(n))− U(ξ̄(n))

) =
(β − 1) (ξk(n)− ξ⋆k)

ξk(n)
(
U (k)(ξ̄(n))− U(ξ̄(n))

)
<

1− ξk(n)

ξk(n)
(
U (k)(ξ̄(n))− U(ξ̄(n))

) , (6.22)

where k ∈ Θ5(n). Since β ∈ (0, 1) and ξk(n) ≤ ξ⋆k < 1 for k ∈ Θ5(n), the condition

(6.22) holds.

Suppose that min{α∗
1(n), α

∗
2(n)} = α∗

2(n). The condition (6.17) can be rewrit-

ten as

(β − 1)A(n)∑
i∈Θ3(n)

2ξi(n)
(
U (i)(ξ̄(n))− U(ξ̄(n))

) =
(β − 1) (ξl(n)− ξ⋆l )

ξl(n)
(
U (l)(ξ̄(n))− U(ξ̄(n))

)
<

−1(
U (l)(ξ̄(n))− U(ξ̄(n))

) , (6.23)
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where l ∈ Θ3(n). Since ξl(n) > ξ⋆l for l ∈ Θ3(n), the condition (6.23) holds.

When there are three or more sellers, as we did in the proof of Theorem 6.6,

we need to show that (6.17) or (6.18) holds. However, without explicitly computing

the buyers’ expected payoffs, it becomes hard to prove in general.

Simulation results: Figures 6.2 and 6.3 show the simulation results when buyers’

types are uniformly and exponentially distributed, respectively. The parameters

used in simulation are given in Table 6.1. In the simulation, each buyer estimates

the expected payoff U (i)(ξ(n)) for all i ∈ P and compute U(ξ(n)) after 500 rounds of

the auction. From the figures, it is clear that the buyers’ strategy converges under

the update rule (6.8). But, due to the difficulty of calculating the buyer’s expected

payoff, we leave the analysis on the convergence of the buyers’ strategy in general

cases as an open problem.
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Figure 6.2: The buyer’s mixed strategy with setting 1.
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Figure 6.3: The buyer’s mixed strategy with setting 2.
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Table 6.1: Convergence check simulation setting

Setting 1 Setting 2

Parameter Value Parameter Value

# of sellers 4 # of sellers 4

# of units (seller 1) 2 # of units (seller 1) 2

# of units (seller 2) 3 # of units (seller 2) 3

# of units (seller 3) 5 # of units (seller 3) 5

# of units (seller 4) 7 # of units (seller 4) 7

Seller’s value for item 0 for all units Seller’s value for item 0 for all units

# of buyers 10 # of buyers 10

Tj (∀j) [0,1] Tj (∀j) [0,∞)

Gj(tj) (∀j) tj Gj(tj) (∀j) 1− 1
λ
e−λtj

λ N/A λ 1
100

Vj,k(tj) (∀j) 1
k
tj Vj,k(tj) (∀j) 1

k
tj

µ(ω) 1/|ΩP | µ(ω) 1/|ΩP |

α(n) 0.1 α(n) 0.01

# of iterations 3000 # of iterations 500
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Chapter 7

Cooperative game among the sellers

7.1 Existence of an incentive for cooperation among the sellers

As mentioned earlier, a coalition of sellers will emerge only if its members find

it beneficial to cooperate in that they can earn higher expected payoffs (or profits).

In order to examine the existence of such an incentive for some or all of the sellers

to cooperate, we compare the expected payoffs of different coalitions at a symmetric

MSNE of the noncooperative game Γ. As we mentioned in the proof of Lemma 2,

since there is only a fixed constant difference between the profit and the payoff of

the seller, even though we examine the existence of incentive using the expected

payoff, the result is also applicable to the expected profit term.

In the GBM with n buyers andm items to be sold, we can see that the expected

payoff of an auctioneer is equal to1

U0 =
n∑

j=1

ETj
[cj(Tj)] + ET

 m∑
k=m⋆(T)+1

V
(k)
0


=

n∑
j=1

ET

[
m∑
k=1

πj,k(Tj) pj,k(T)

]
+ ET

 m∑
k=m⋆(T)+1

V
(k)
0

 , (7.1)

where T is the random vector of buyers’ types, and m⋆(T) is the number of items

sold. From (7.1) and the allocation rule (5.21) under the GBM, we can see that the

expected payoff of the seller is equal to the expected values of the contributions that

1Details are provided in Chapter 5.

79



are selected by the allocation rule plus the unsold items. This implies that when

we compute the expected payoff of the seller we can use the contributions instead

of the payments.

Recall that the total number of frequency bands for sale in the market is KT .

Define a random vector B := (Bj; j ∈ S), where Bj is the seller chosen by buyer j

(using the selected symmetric MSNE strategy), and Si(B) = {j ∈ S | Bj = i} ⊂ S.

Given fixed types of the buyers, t ∈ T ,

• πj·(tj) = {πj,k(tj); k = 1, 2, . . . , KT} is the set of the contributions of buyer j,

• Π̃t := {πj·(tj); j ∈ S},

• Πt := (π(k)(t); k = 1, 2, . . . , DT ) is the vector of the contributions in Π̃t ordered

by decreasing value, where DT := N ·KT ,

• for every i ∈ P, Π̃i
t(B) := {πj·(tj); j ∈ Si(B)}, and

• Πi
t(B), i ∈ P , is the order statistics of Π̃i

t(B).

The variables and functions which are used in this chapter are listed in Appendix

B.

For every t ∈ T , define a mapping Πt : B → H(t), where B = PN , Πt(b) =

{Πi
t(b); i ∈ P}, and H(t) := {Πt(b); b ∈ B}. For each π ∈ H(t), πi denotes the

ordered contributions of the buyers that choose seller i when the types of the buyers

are given by t.

Let bt : H(t) → B, where bt(π), π ∈ H(t), is the vector that tells us the

selected sellers of the buyers under π. Suppose that νt is a distribution over the set
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H(t), where νt(π), π ∈ H(t), is the probability Pr [B = bt(π)] determined by the

symmetric MSNE.

As we mentioned in Chapter 5, from (5.24), for given buyers’ types t ∈ T ,

the GBM allocates m⋆(t) items, i.e., frequency bands, to the buyers with the m⋆(t)

highest contributions such that m⋆(t) contributions are larger than m⋆(t) smallest

values of the seller(s). We call these selected contributions winning contributions.

For a given π ∈ H(t), denote the set of winning contributions in a coalition C ⊂ P

by Ψπ(C) ⊂ Π̃t and the sum of the winning contributions of coalition C by ζ(C, π).

Similarly, define Φπ(C) to be the set of sellers’ values of the unsold frequency bands

in the coalition C, and λ(C, π) :=
∑

x∈Φπ(C) x the total value of the unsold items in

coalition C.

For example, suppose that there are two sellers with a unit supply (i.e.,

one frequency band to sell) and that {π(1)(t), π(2)(t), π(3)(t)} ⊂ Π1
t(B) and

{π(4)(t), π(5)(t)} ⊂ Π2
t(B), where π(4)(t) < π(3)(t). Also, sellers’ values satisfy

V 1
1 ≤ π(5)(t) and V 2

1 ≤ π(5)(t). Then, the winning contributions of the coalition

C = {1, 2} are π(1)(t) and π(2)(t), whereas the winning contribution of C1 = {1}

and C2 = {2} is π(1)(t) and π(4)(t), respectively.

Let m⋆
C = |Ψπ(C)| be the number of items sold by the coalition C and p(C)(t)

the allocation rule of the coalition C according to the GBM. Then, we have

ζ(C, π) =

K(C)∑
k=1

( ∑
j∈S: bt,j(π)∈C

πj,k(tj) p
(C)
j,k (t)

)
=

∑
κ∈ Ψπ(C)

κ , (7.2)
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where K(C) =
∑

i∈C Ki, and

p
(C)
j,k (t) =


1 if buyer j is awarded at least k items

0 otherwise.

When each coalition holds a separate auction using the GBM, from the alloca-

tion rule (5.21), the coalition C awards m⋆
C items to the buyers with the m⋆

C highest

contributions in
∪

i∈C πi. Further, each unsold item’s value is larger than or equal

to that of every allocated item and every losing contribution. Therefore, it is clear

that, for every disjoint coalitions C1, C2 ⊂ P ,

ζ(C1, π) + λ(C1, π) + ζ(C2, π) + λ(C2, π)

≤ ζ(C1 ∪ C2, π) + λ(C1 ∪ C2, π). (7.3)

A strict inequality holds (i) if the smallest winning contribution in coalition C1 is less

than the largest losing contribution in coalition C2 or vice versa or (ii) if the smallest

value of unsold items in coalition C1 is less than the largest losing contribution in

coalition C2 or vice versa.

For another example, as shown in Figure 7.1, suppose that there are three

sellers; seller 1 has two frequency bands to sell and sellers 2 and 3 have a unit

supply. Given t ∈ T , we assume that {π(1)(t), π(3)(t), π(4)(t), π(6)(t)} ⊂ Π1
t(B),

{π(2)(t), π(5)(t)} ⊂ Π2
t(B), and {π(7)(t), π(8)(t)} ⊂ Π3

t(B), where π(5)(t) < π(4)(t).

Also, sellers’ values are assumed to satisfy V 1
1 ≤ V 1

2 < π(4)(t), V
2
1 < π(4)(t), and

π(5)(t) ≤ V 3
1 < π(4)(t). Then, for every C ⊂ {1, 2, 3}, the sum of the winning

contributions and the values of the unsold items in coalition C, ζ(C, π) + λ(C, π),

can be listed as follows:
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• ζ({1}, π) + λ({1}, π) = π(1)(t) + π(3)(t),

• ζ({2}, π) + λ({2}, π) = π(2)(t),

• ζ({3}, π) + λ({3}, π) = V 3
1 ,

• ζ({1, 2}, π) + λ({1, 2}, π) = π(1)(t) + π(2)(t) + π(3)(t),

• ζ({1, 3}, π) + λ({1, 3}, π) = π(1)(t) + π(3)(t) + π(4)(t),

• ζ({2, 3}, π) + λ({2, 3}, π) = π(2)(t) + V 3
1 ,

• ζ({1, 2, 3}, π) + λ({1, 2, 3}, π) = π(1)(t) + π(2)(t) + π(3)(t) + π(4)(t).

One can easily verify that (7.3) holds for every disjoint coalitions in the example.

V1
2

V1
3

V1
1

V2
1

Figure 7.1: Example: Received contributions.

83



Let us first define, for each t ∈ T ,

v(C; t) :=
∑

π∈H(t)

(ζ(C, π) + λ(C, π)) νt(π). (7.4)

Then, the expected payoff of a coalition C is given by ET [v(C;T)]. We can prove

the following theorem from (7.3) and (7.4).

Theorem 7.1. For every two disjoint coalitions C1 and C2,

v(C1) + v(C2) ≤ v(C1 ∪ C2). (7.5)

Theorem 7.1 tells us that the expected payoff function v satisfies the super-

additivity property. In addition, it implies that risk neutral sellers will have an

incentive to cooperate among themselves in order to increase their expected payoffs

(resp. profits), assuming that they can find an equitable way of sharing the payoff

(resp. profit).

7.2 Profit sharing and a cooperative game among the sellers

Our finding in the previous section indicates that the sellers will find it ad-

vantageous to cooperate with each other and form a grand coalition that includes

all sellers if they want to maximize their expected payoffs (or profits). However,

in order for the sellers to maintain such cooperation, they must be able to find an

acceptable way of sharing the payoffs (or profits). In light of this, a natural question

that arises is how the sellers should share the payoff (or profit) among themselves

when they decide to cooperate. In order to answer this question we turn to coopera-

tive game theory, and we model the interaction between the sellers as a cooperative
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game.

A cooperative game is often given by a characteristic function v : 2P → IR.

The characteristic function v assigns to each coalition C ⊂ P a value that is the

total payoff of the members in the coalition they can guarantee themselves against

the other players. The characteristic function of the cooperative game among the

sellers in our problem is defined through the expected payoff of the coalitions at the

assumed symmetric MSNE of the noncooperative game among the buyers. In other

words, for every C ⊂ P , v(C) denotes the expected payoff the sellers in the coalition

C can achieve without the help of the remaining sellers.

We first introduce following definitions [55].

Definition 7. An imputation for an M -player cooperative game is a vector x =

(x1, ..., xM) that satisfies

(1)
∑
i∈P

xi = v(P), and

(2) xi ≥ v({i}) for all i ∈ P .

Definition 8. Let x and y be two imputations. (i) Let C ⊂ P be a coalition. We

say that x dominates y through C if

(1) xi > yi for all i ∈ C, and

(2)
∑
i∈C

xi ≤ v(C) .

(ii) We say that x dominates y if there exists some coalition C⋆ ⊂ P such that x

dominates y through C⋆.
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Definition 9. The set of all undominated imputations is called the core of the

cooperative game.

The following theorem gives an alternate characterization of the core of a

cooperative game and a means of finding it.

Theorem 7.2. [55, p.219] The core is the set of all M-vectors x satisfying

(1)
∑
i∈C

xi ≥ v(C) for all C ⊂ P, and

(2)
∑
i∈P

xi = v(P) .

The conditions in Theorem 7.2 imply that no subset of the sellers (i.e., a

coalition) has the power to increase its expected payoff by deviating from the grand

coalition. Therefore, a payoff vector in the core can be viewed as a stable equilibrium

and a candidate for fair sharing of the payoffs among the sellers.2

Unfortunately, the core of a cooperative game is in general not guaranteed

to be nonempty, and proving the existence of a nonempty core can be nontrivial.

However, we can show that the core of the cooperative game among the sellers under

consideration is nonempty. This implies that indeed there exists a way for the sellers

to share the payoffs (or profits) in such a way that no subset of the sellers will be

able to leave the grand coalition and increase their expected payoffs (or profits).

Theorem 7.3. The cooperative game v among the sellers has a nonempty core.

In order to prove the theorem, we use the following well known result for the

existence of a nonempty core: Let y = (yC ;C ⊂ P) be a nonnegative vector that

2Note that fair sharing of the payoffs represents fair sharing of the profits.
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satisfies the condition

∑
C⊂P:i∈C

yC = 1 for all i ∈ P . (7.6)

Theorem 7.4. [55, p.225] A necessary and sufficient condition for the game to have

a nonempty core is that, for every nonnegative vector (yC ;C ⊂ P) satisfying (7.6),

we have

∑
C⊂P

yC · v(C) ≤ v(P) .

We first introduce following notation. Suppose that y = (yC ;C ⊂ P) is a

nonnegative vector that satisfies (7.6). Then, for every t ∈ T and b ∈ B, we have

∑
C⊂P:π(k)(t)∈Ψπ(C)

(
yC · π(k)(t)

)
≤ π(k)(t) , (7.7)

where π = Πt(b). Define ik(t,b) to be the seller i whose Πi
t(b) contains π(k)(t), i.e.,

π(k)(t) ∈ Π
ik(t,b)
t (b). The equality in (7.7) holds if and only if π(k)(t) is a winning

contribution in every coalition C that contains the seller ik(t,b) and yC > 0. With

a little abuse of notation, for each C ⊂ P , define

a
(k)
C =


yC if π(k)(t) ∈ Ψπ(C) ,

0 otherwise.

Here, we denote the k-th smallest value of the item in the set of all sellers’

values V by V
(k)
0 . Recall that Φπ(C) is the set of sellers’ values of the unsold

frequency bands in the coalition C. It is clear

∑
C⊂P:V

(k)
0 ∈ Φπ(C)

(
yC · V (k)

0

)
≤ V

(k)
0 . (7.8)
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Let īvk be the seller that has the value V
(k)
0 for one of its frequency bands. The

equality in (7.8) holds if and only if the frequency band with the k-th smallest value

is unsold in every coalition C that includes the seller īvk and yC > 0. The left hand

side of (7.8) is equal to zero if the frequency band is allocated in every coalition C.

For each C ⊂ P, define

b
(k)
C =


yC if V

(k)
0 ∈ Φπ(C) ,

0 otherwise.

We denote the number of items sold when all sellers cooperate by

k⋆ := max{ℓ ∈ {1, 2, . . . , KT} | π(ℓ)(t) > V
(ℓ)
0 }.

The maximum is equal to zero if the set on the right hand side is empty. Let

K⋆ := {1, 2, . . . , k⋆}.

We partition the set of items available for sale as follows:

Θ1 := {k ∈ K⋆ | equality in (7.7) holds}

= {k ∈ K⋆ | π(k)(t) ∈ Ψπ(C) for all C ⊂ P such that ik(t,b) ∈ C}

Θ2 := K⋆ \Θ1

Θ3 := {k ∈ {k⋆ + 1, . . . , DT} | ∃ C ⊂ P such that π(k)(t) ∈ Ψπ(C)}

Θ4 := {k ∈ Θ2 | π(k)(t) ∈ Ψπ({ik(t,b)})}

Θ5 := {k ∈ Θ3 | π(k)(t) ∈ Ψπ({ik(t,b)})}

Θ6 := Θ2 \Θ4

Θ7 := Θ3 \Θ5

Θ8 := {k ∈ {k⋆ + 1, . . . , KT} | equality in (7.8) holds}
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Θ9 := {k ∈ K⋆ | strict inequality in (7.8) holds }

Θ10 := {k ∈ {k⋆ + 1, . . . , KT} | ∃ C ⊂ P such that V
(k)
0 ̸∈ Φπ(C)}

Θ11 := {k ∈ Θ9 | V (k)
0 ∈ Φπ({̄ivk})}

Θ12 := {k ∈ Θ10 | V (k)
0 ∈ Φπ({̄ivk})}

Θ13 := Θ9 \Θ11

Θ14 := Θ10 \Θ12

Note from the definition of the sets

Θ2 = Θ4 ∪Θ6, Θ3 = Θ5 ∪Θ7, (7.9)

Θ9 = Θ11 ∪Θ13, and Θ10 = Θ12 ∪Θ14.

Lemma 5.

∑
C⊂P

(∑
k∈Θ2

a
(k)
C +

∑
k∈Θ3

a
(k)
C

)
+
∑
C⊂P

(∑
k∈Θ9

b
(k)
C +

∑
k∈Θ10

b
(k)
C

)
= |Θ2|+ |Θ10|. (7.10)

Proof. For any given C ⊂ P , define

ΘLc
C := {k ∈ Θ4 ∪Θ5 | ik(t,b) ∈ C and a

(k)
C = 0},

ΘWc
C := {k ∈ Θ6 ∪Θ7 | ik(t,b) ∈ C and a

(k)
C = yC},

ΘLv
C := {k ∈ Θ11 ∪Θ12 | īvk ∈ C and b

(k)
C = 0}, and

ΘWv
C := {k ∈ Θ13 ∪Θ14 | īvk ∈ C and b

(k)
C = yC}.

From the definition of the sets Θn, n = 1, 2, . . . , 14, the following observations

can be made.
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O1. Suppose that there exist k1 ∈ Θ6 (resp. k1 ∈ Θ7) and a coalition C ⊂ P such

that π(k1)(t) is a winning contribution in the coalition C. This implies that either

(i) there exists k2 ∈ Θ4 ∪ Θ5 (resp. k2 ∈ Θ5), where k2 > k1, such that the seller

ik2(t,b) ∈ C and a
(k2)
C = 0, or (ii) there exists k2 ∈ Θ11 ∪ Θ12 such that the seller

īvk2 ∈ C, π(k1)(t) > V
(k2)
0 and b

(k2)
C = 0.

O2. Suppose that the item with seller’s value V
(k1)
0 is unsold in a coalition C ⊂ P

for some k1 ∈ Θ13 (resp. k1 ∈ Θ14). Then, either (i) there exists k2 ∈ Θ5 (resp.

k2 ∈ Θ4∪Θ5) such that the seller ik2(t,b) ∈ C, V
(k1)
0 > π(k2)(t) and a

(k2)
C = 0, or (ii)

there exists k2 ∈ Θ11 (resp. k2 ∈ Θ11 ∪ Θ12), k1 > k2, such that the seller īvk2 ∈ C

and b
(k2)
C = 0.

O3. Suppose that there exist k1 ∈ Θ4 (resp. k1 ∈ Θ5) and a coalition C ⊂ P such

that π(k1)(t) is not a winning contribution in the coalition C. This implies that

either (i) there exists k2 ∈ Θ6 (resp. k2 ∈ Θ6 ∪ Θ7), where k1 > k2, such that the

seller ik2(t,b) ∈ C and a
(k2)
C = yC , or (ii) there exists k2 ∈ Θ14 (resp. Θ13 ∪ Θ14)

such that the seller īvk2 ∈ C, V
(k2)
0 > π(k1)(t) and b

(k2)
C = yC .

O4. Suppose that the item with seller’s value V
(k1)
0 is sold in a coalition C ⊂ P for

some k1 ∈ Θ11 (resp. k1 ∈ Θ12). Then, either (i) there exists k2 ∈ Θ6 ∪ Θ7 (resp.

k2 ∈ Θ6) such that the seller ik2(t,b) ∈ C, π(k2)(t) > V
(k1)
0 and a

(k2)
C = yC , or (ii)

there exists k2 ∈ Θ13 ∪ Θ14 (resp. k2 ∈ Θ14), k2 > k1, such that the seller īvk2 ∈ C

and b
(k2)
C = yC .

O5. From observations O1, O2, O3, and O4, |ΘLc
C |+ |ΘLv

C | = |ΘWc
C |+ |ΘWv

C |.

O6. One can show that Θ1 ∪ Θ4 ∪ Θ5 is the set of winning contributions and Θ8 ∪

Θ11 ∪Θ12 is the set of unsold items when sellers hold separate individual auctions.

90



Hence, the cardinality of their union is the number of available items KT . Further,

it is clear from their definitions that Θ1∪Θ2 = K⋆ and Θ8∪Θ10 = {k⋆+1, . . . , KT}.

Thus, we have |Θ4|+ |Θ5|+ |Θ11|+ |Θ12| = |Θ2|+ |Θ10|.

From (7.9), we get

∑
C⊂P

(∑
k∈Θ2

a
(k)
C +

∑
k∈Θ3

a
(k)
C +

∑
k∈Θ9

b
(k)
C +

∑
k∈Θ10

b
(k)
C

)

=
∑
C⊂P

( ∑
k∈Θ4∪Θ5

a
(k)
C +

∑
k∈Θ6∪Θ7

a
(k)
C

)

+
∑
C⊂P

( ∑
k∈Θ11∪Θ12

b
(k)
C +

∑
k∈Θ13∪Θ14

b
(k)
C

)
(7.11)

Using the definitions of a
(k)
C and b

(k)
C , we can rewrite terms in (7.11).

(7.11)

= Υ1 = Υ2

=

︷ ︸︸ ︷∑
k∈Θ4∪Θ5

( ∑
C⊂P: ik(t,b)∈C

a
(k)
C

)
+

︷ ︸︸ ︷∑
C⊂P

( ∑
k∈Θ6∪Θ7

a
(k)
C

)
+

∑
k∈Θ11∪Θ12

( ∑
C⊂P: īvk∈C

b
(k)
C

)
︸ ︷︷ ︸

+
∑
C⊂P

( ∑
k∈Θ13∪Θ14

b
(k)
C

)
︸ ︷︷ ︸ .

= Υ3 = Υ4

From observations O1 through O5, for every k ∈ Θ6 ∪ Θ7 and C ⊂ P such

that a
(k)
C = yC , we can find either (i) k1 ∈ Θ4 ∪ Θ5 such that ik1(t,b) ∈ C and

a
(k1)
C = 0 or (ii) k2 ∈ Θ11 ∪Θ12 such that īvk2 ∈ C and b

(k2)
C = 0. Similarly, for every

k̃ ∈ Θ13 ∪ Θ14 and C ⊂ P such that b
(k̃)
C = yC , we can find either (i) k3 ∈ Θ4 ∪ Θ5

such that ik3(t,b) ∈ C and a
(k3)
C = 0 or (ii) k4 ∈ Θ11 ∪ Θ12 such that īvk4 ∈ C

and b
(k4)
C = 0. Therefore, we can swap the nonnegative a

(k)
C or b

(k)
C in Υ2 and Υ4,
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respectively, with the zero terms in Υ1 and Υ3. This swapping of the terms gives us

∑
C⊂P

( ∑
k∈Θ2

a
(k)
C +

∑
k∈Θ3

a
(k)
C +

∑
k∈Θ9

b
(k)
C +

∑
k∈Θ10

b
(k)
C

)
=
∑
k∈Θ4

( ∑
C⊂P: ik(t,b)∈C

yC

)
+
∑
k∈Θ5

( ∑
C⊂P: ik(t,b)∈C

yC

)
+
∑
k∈Θ11

( ∑
C⊂P: īvk∈C

yC

)
+
∑
k∈Θ12

( ∑
C⊂P: īvk∈C

yC

)
= |Θ4|+ |Θ5|+ |Θ11|+ |Θ12|

= |Θ2|+ |Θ10|, (7.12)

where the last equality follows from observation O6. This proves the lemma.

Proof of Theorem 7.3. First, define φ
(k)
(2) := 1 −

∑
C⊂P a

(k)
C for k ∈ Θ2 and φ

(k)
(10) :=

1−
∑

C⊂P b
(k)
C for k ∈ Θ10. From (7.12) we obtain

∑
k∈Θ2

φ
(k)
(2) +

∑
k∈Θ10

φ
(k)
(10)

= |Θ2| −
∑
C⊂P

( ∑
k∈Θ2

a
(k)
C

)
+ |Θ10| −

∑
C⊂P

( ∑
k∈Θ10

b
(k)
C

)
=
∑
C⊂P

(∑
k∈Θ3

a
(k)
C +

∑
k∈Θ9

b
(k)
C

)
(7.13)

Let π⋆ := inf{π(k)(t); k ∈ Θ2} and V⋆ := inf{V (k)
0 ; k ∈ Θ10}. Then, we have

the following inequality.

∑
k∈Θ2

π(k)(t) +
∑
k∈Θ10

V
(k)
0

=
∑
k∈Θ2

π(k)(t)
(
φ
(k)
(2) +

∑
C⊂P

a
(k)
C

)
+
∑
k∈Θ10

V
(k)
0

(
φ
(k)
(10) +

∑
C⊂P

b
(k)
C

)
≥
∑
k∈Θ2

(
π⋆ φ

(k)
(2) +

∑
C⊂P

π(k)(t) a
(k)
C

)
+
∑
k∈Θ10

(
V⋆ φ

(k)
(10) +

∑
C⊂P

V
(k)
0 b

(k)
C

)
≥
∑
k∈Θ2

(∑
C⊂P

π(k)(t) a
(k)
C

)
+
∑
k∈Θ10

(∑
C⊂P

V
(k)
0 b

(k)
C

)
+min{π⋆, V⋆}

( ∑
k∈Θ2

φ
(k)
(2) +

∑
k∈Θ10

φ
(k)
(10)

)
(7.14)
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By interchanging the order of summations and from (7.13)

(7.14) =
∑
C⊂P

( ∑
k∈Θ2

π(k)(t) a
(k)
C +

∑
k∈Θ10

V
(k)
0 b

(k)
C

)
+
∑
C⊂P

( ∑
k∈Θ3

min {π⋆, V⋆}a(k)C

)
+
∑
C⊂P

( ∑
k∈Θ9

min {π⋆, V⋆}b(k)C

)
. (7.15)

Note that π(k)(t) ≤ min {π⋆, V⋆} for all k ∈ Θ3 and V
(k)
0 ≤ min{π⋆, V⋆} for

all k ∈ Θ9. Thus, from (7.14) - (7.15) and these inequalities, we get

∑
k∈Θ2

π(k)(t) +
∑
k∈Θ10

V
(k)
0 ≥

∑
C⊂P

( ∑
k∈Θ2

π(k)(t) a
(k)
C +

∑
k∈Θ3

π(k)(t) a
(k)
C

)
+
∑
C⊂P

( ∑
k∈Θ9

V
(k)
0 b

(k)
C +

∑
k∈Θ10

V
(k)
0 b

(k)
C

)
. (7.16)

Finally, from (7.16) and the definition of Θ1 and Θ8,

∑
C⊂P

( ∑
k∈Θ1

a
(k)
C π(k)(t) +

∑
k∈Θ2

a
(k)
C π(k)(t) +

∑
k∈Θ3

a
(k)
C π(k)(t)

)
+
∑
C⊂P

( ∑
k∈Θ9

b
(k)
C V

(k)
0 +

∑
k∈Θ10

b
(k)
C V

(k)
0 +

∑
k∈Θ8

b
(k)
C V

(k)
0

)
=
∑
C⊂P

(
yC (ζ(C, π) + λ(C, π))

)
≤

∑
k∈Θ1∪Θ2

π(k)(t) +
∑
k∈Θ10

V
(k)
0 +

∑
k∈Θ8

V
(k)
0 .

Since
∑

k∈Θ1∪Θ2 π(k)(t) +
∑

k∈Θ8∪Θ10 V
(k)
0 = ζ(P , π) + λ(P , π), we can conclude

∑
C⊂P

yC v(C) ≤ v(P) . (7.17)

7.3 Profit sharing mechanisms

Since the core exists, i.e., is nonempty, in the cooperative game among the

sellers, assuming that sellers can achieve some imputation, i.e., a vector of sellers’
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expected payoffs, in the core, they are likely to cooperate. Hence, the next natural

question is how the sellers should reach such an imputation in the core. In this sec-

tion we introduce a family of profit sharing schemes that can realize any imputation

in the core.

Assume that we know the core. Let x⋆ = (x⋆
1, ..., x

⋆
M) be an imputation in the

core the sellers agree on. Recall (i) T =
∏

j∈S Tj, where Tj = [tj,min, tj,max], (ii) the

random vector B = (Bj; j ∈ S), where Bj is the seller chosen by buyer j (using

the selected symmetric MSNE strategy), and (iii) B = PN . Define W := T × B.

Suppose that νW is a distribution over the set W .

For each realization w ∈ W , let r
(g)
t (w) be the total profit of the grand coali-

tion, r
(g)
i (w) the received profit of seller i ∈ P in the grand coalition, and r

(s)
i (w) the

profit seller i can make in a separate auction by itself. Denote by v̄i(w) seller i’s to-

tal value of the sold items under the grand coalition, and V̄ i the seller i’s total value

of all items it has. Then, the revenue (i.e., total received payment) and the payoff

of seller i in the grand coalition are r
(g)
i (w) + v̄i(w) and r

(g)
i (w) + V̄ i, respectively.

Also, we can find the vector of sellers’ expected profits, x̃⋆ = (x̃⋆
1, . . . , x̃

⋆
M) from the

relation x̃⋆
i = x⋆

i − V̄ i for all i ∈ P . We assume that the sellers have different positive

value for each unit of item. The allocation is determined by the GBM. Hence, if k⋆

units are sold, k⋆ units with the smallest values are allocated.

We first introduce two simple profit sharing mechanisms under which sellers’

expected payoff vector lies in the core. As we will explain later, while they are

simple, they have some undesirable properties.
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7.3.1 Simple profit sharing schemes

Proportional sharing: One of the simplest way is dividing the profit proportion-

ally according to the selected expected profit vector x̃⋆ in any realization w ∈ W .

Mechanism 1. (Proportional sharing)

r
(g)
i (w) =

x̃⋆
i∑

l∈P x̃⋆
l

× r
(g)
t (w) .

Define random vector W := (T,B). Then, the total expected profit of the

grand coalition

EW

[
r
(g)
t (W)

]
=

∫
w∈W

r
(g)
t (w) dνW(w)

=
∑
l∈P

x̃⋆
l .

Hence, the expected profit of seller i, EW

[
r
(g)
i (W)

]
, equals x̃⋆

i . Note that, in the

proportional sharing mechanism, each seller receives some profit even when it does

not provide any item that is sold or any winning contributions in the grand coalition.

Surplus sharing: If the sellers’ expected payoffs are in the core, by Theorem 7.2

[55, p.219], each seller’s expected payoff is larger than or equal to the expected

payoff the seller can obtain in a separate auction. Bearing this in mind, one may

consider employing a mechanism which reflects the payoff that each seller can receive

in separate individual auctions.

Mechanism 2. (Surplus sharing)

r
(g)
i (w) = r

(s)
i (w) + αi ×

(
r
(g)
t (w)−

∑
l∈P

r
(s)
l (w)

)
,

where
∑

i∈P αi = 1 and αi ≥ 0 for all i ∈ P.
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From Theorem 7.2, if the expected payoff vector x is in the core, for all i ∈ P ,

∑
i∈P

x⋆
i = EW

[
r
(g)
t (W)

]
+
∑
i∈P

V̄ i and

x⋆
i ≥ EW

[
r
(s)
i (W) + V̄ i

]
= EW

[
r
(s)
i (W)

]
+ V̄ i .

Similarly, for all i ∈ P,

∑
i∈P

x̃⋆
i = EW

[
r
(g)
t (W)

]
and x̃⋆

i ≥ EW

[
r
(s)
i (W)

]
.

Then, one can find αi > 0 such that

x̃⋆
i = EW

[
r
(s)
i (W)

]
+ αi ×

(
EW

[
r
(g)
t (W)

]
−
∑
l∈P

EW

[
r
(s)
l (W)

])

for all i ∈ P and
∑

i∈P αi = 1.

It is clear that this mechanism reflects the profit of each seller in separate

individual auctions. However, when
∑

l∈P r
(s)
l (w) > r

(g)
t (w) for some realization

w ∈ W , some sellers may have negative profit (r
(g)
i (w) < 0) which may not be

acceptable to some sellers.3

7.3.2 Proposed profit sharing scheme

Even though the shared expected payoffs of the sellers under Mechanisms 1 and

2 lie in the core, they may not be attractive because either some sellers should share

their payoffs or profits with other sellers who do not have any winning contributions

or allocated items (mechanism 1) or some sellers are asked to give up their items

for a payment less than their values of the items or even pay for joining the grand

3Those sellers should either receive the revenue less than the values of sold items or pay some

‘fee’.
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coalition (mechanism 2). In order to find a more attractive mechanism, we introduce

following two constraints:

1. A seller who does not contribute anything, i.e., neither winning contributions

nor items, receives no profit.

2. Sellers shall have non-negative profit for every realization, i.e., each seller

receives at least the total value of sold items.

First, we divide the set W into 2M subsets according to the set of sellers

providing winning contributions or allocated items. For example, in a two seller

case (M = 2), there are four sub-cases: (1) Both sellers 1 and 2 provide items

or winning contributions, (2) only seller 1 has winning contributions and allocated

items, (3) only seller 2 brings winning contributions and allocated items, and (4) no

item is sold in the auction. We number these sets (from 1 to 2M). Here, we always

number the subset that none of items is sold 2M .

We denote the subset of W that is numbered k by W(k) so that
∪2M

k=1 W(k) =

W . Define Λk to be the set of sellers who receive a share of the revenue because

they provide either winning contributions or allocated items in W(k). Note that,

since W(2M ) is the subset where none of items is sold, Λ2M = ∅. For each i ∈ P , let

Ψ
(i)
1 := {k ∈ {1, 2, . . . , 2M} | i /∈ Λk} ,

Ψ
(i)
2 := {k ∈ {1, 2, . . . , 2M} | Λk = {i}} , and

Ψ
(i)
3 := {1, 2, . . . , 2M} \

(
Ψ

(i)
1 ∪Ψ

(i)
2

)
.
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From the definitions, when k ∈ Ψ
(i)
1 and w ∈ W(k), seller i shall not receive any

revenue. If k ∈ Ψ
(i)
2 and w ∈ W(k), seller i takes all the revenue from the auction.

We propose the following profit sharing mechanism,

Mechanism 3. For every w ∈ W, seller i’s profit is given by

r
(g)
i (w) = αi(w)× r

(g)
t (w) ,

where
∑

i∈P αi(w) = 1 and αi(w) ≥ 0. When k ∈ Ψ
(i)
1 and w ∈ W(k), αi(w) = 0.

In order to complete the proposed mechanism, we need to specify how the

coefficients αi(w), i ∈ P and w ∈ W , are computed. We focus on the case where

αi(w) is the same for all w ∈ W(k), i.e., it does not depend on w in W(k). In order

to see whether or not there exist such sharing coefficients, we introduce following

notation. Define a function ~ : 2P → {1, 2, . . . , 2M} such that, given a subset

of sellers S, Λ~(S) = S. In other words, ~(S) refers to the case where only the

sellers in S share the profit. Denote the expected profit over the subset W(k) by

Rk :=
∫
w∈W(k) r

(g)
t (w)dνW(w).4 For any given nonempty set of sellers S ( P and

another seller j ∈ P \ S, define following sets:

Θ1 := {k ∈ {1, 2, . . . , 2M} | ∃ a nonempty set Ss ⊂ S s.t. Ss ∪ {j} = Λk}

Θ2 :=
∪

Ss⊂S;Ss ̸=∅{~(Ss)}

Θ3 := Ψ
(j)
2

Θ4 := Θ2 ∪Θ3

Θ5 :=
∪

i∈S Ψ
(i)
3 \ (Θ1 ∪Θ2)

Θ6 := Ψ
(j)
3 \ (Θ1 ∪Θ3)

4Note that R2M = 0.
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Θ7 := Θ5 ∪Θ6

Θ8 := {1, 2, . . . , 2M} \ (Θ1 ∪Θ4 ∪Θ7)

For S = ∅, we set Θ1 = Θ2 = Θ5 = ∅. Note that Θ1∪Θ4∪Θ7∪Θ8 = {1, 2, . . . , 2M}.

Under these definitions, the following holds.

1. If k ∈ Θ1, only some sellers in S and seller j share all the profit.

2. If k ∈ Θ2, only some sellers in S share all the profit.

3. If k ∈ Θ3, seller j takes all the profit.

4. If k ∈ Θ5, sellers in S share the profit with other sellers in P \ (S∪{j}). Seller

j may receive some profit in this case.

5. If k ∈ Θ6, seller j share the profit with other sellers in P \ (S ∪ {j}). Sellers

in S may receive some profit in this case.

6. If k ∈ Θ8, sellers in S ∪ {j} cannot receive any profit, i.e., only the seller in

P \ (S ∪ {j}) share the profit.

Note that Θ5 ∩Θ6 may not be empty.

Proposition 1. For any S ( P and j ∈ P \ S,

∑
i∈(S∪{j})

x̃⋆
i ≥

∑
k∈Θ1

Rk +
∑
k∈Θ4

Rk.

Proof. Since x⋆ lies in the core, from the definition of x̃⋆, the sum of the expected

profits of the sellers in S∪{j},
∑

i∈(S∪{j}) x̃
⋆
i , is larger than or equal to the expected

profit of the coalition S ∪ {j}. For k ∈ Θ1 ∪Θ4, only the sellers in S ∪ {j} provide
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either the winning contributions or the items. Thus, if the sellers in S ∪ {j} form

a coalition and hold their joint auction, they can guarantee the profit of at least∑
k∈Θ1

Rk +
∑

k∈Θ4
Rk.

By the same argument in the proof of Proposition 1, we have

∑
i∈(P\(S∪{j}))

x̃⋆
i ≥

∑
k∈Θ8

Rk. (7.18)

Since
∑

i∈P x̃⋆
i =

∑
k∈Θ1∪Θ4∪Θ7∪Θ8

Rk, by subtracting (7.18), we can get the following

proposition.

Proposition 2. For any nonempty S ( P and j ∈ P \ S,

∑
i∈(S∪{j})

x̃⋆
i ≤

∑
k∈Θ1

Rk +
∑
k∈Θ4

Rk +
∑
k∈Θ7

Rk.

Theorem 7.5. For any desired expected profits profile x̃⋆ = (x̃⋆
1, x̃

⋆
2, . . . , x̃

⋆
M), where

the associated imputation x⋆ = (x⋆
1, x

⋆
2, . . . , x

⋆
M) lies in the core, there exist con-

stants β
(i)
k , k ∈ {1, 2, . . . , 2M} and i ∈ P, for mechanism 3 such that the following

conditions hold: For all i ∈ P and k ∈ {1, 2, . . . , 2M},

β
(i)
k ≥ 0 , (7.19)∑

i∈P

β
(i)
k = 1 , (7.20)

x̃⋆
i =

2M∑
k=1

β
(i)
k Rk , (7.21)

β
(i)
k = 0, if k ∈ Ψ

(i)
1 . (7.22)

The sharing coefficients in the mechanism 3 can now be set to αi(w) = β
(i)
k for all

w ∈ W(k).
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Proof. Our goal is to show the existence of β
(i)
k , i ∈ P and k ∈ {1, 2, . . . , 2M}, such

that (7.19), (7.20), (7.21), and (7.22) hold. Note that if conditions (7.19), (7.20),

(7.21), and (7.22) hold, β
(i)
k = 1 for k ∈ Ψ

(i)
2 and

∑
i∈P x̃⋆

i =
∑2M

k=1 Rk.

In order to prove the existence of such sharing coefficients, we will first show

that there exists adequate sharing rule for sellers 1 and 2. Then, the sharing coef-

ficients for seller 3 can be found without breaking validity of sharing coefficients of

sellers 1 and 2.5 Repeating this induction argument, our proof will illustrate that

valid sharing coefficient can be found for sellers 1, 2, . . . ,M − 1. Finally, we will

show that the sharing coefficients of seller M automatically satisfy the constraints.

◃ Step 1 : Without loss of generality, start with S = {1} and j = 2. We denote

by k⋆ the case where only sellers 1 and 2 provide either winning contributions or

allocated items. In this case, we can set Θ1 = {k⋆}. Then, we need to show that

there are β
(1)
k and β

(2)
k , k ∈ {1, 2, . . . , 2M}, such that

1. β
(1)
k , β

(2)
k ∈ [0, 1] and β

(1)
k + β

(2)
k ≤ 1,

2. β
(1)
k⋆ + β

(2)
k⋆ = 1,

3. β
(1)
k = 0 for k ∈ Ψ

(1)
1 and β

(2)
k = 0 for k ∈ Ψ

(2)
1 ,

4. β
(1)
k = 1 for k ∈ Ψ

(1)
2 and β

(2)
k = 1 for k ∈ Ψ

(2)
2 ,

5. x̃⋆
1 =

∑2M

k=1 β
(1)
k Rk and x̃⋆

2 =
∑2M

k=1 β
(2)
k Rk.

5The values of sharing coefficients of seller 1 and 2 can be changed. However, they still satisfy

the constraints (7.19), (7.20), (7.21), and (7.22).
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From Proposition 1, we have

x̃⋆
1 ≥ R~({1}) ,

x̃⋆
2 ≥ R~({2}) ,

x̃⋆
1 + x̃⋆

2 ≥ Rk⋆ +R~({1}) +R~({2}) .

From Proposition 2,

x̃⋆
1 + x̃⋆

2 ≤ Rk⋆ +R~({1}) +R~({2}) +
∑
k∈Θ7

Rk . (7.23)

Thus, we can always find β
(1)
k⋆ and β

(2)
k⋆ such that

x̃⋆
1 ≥ β

(1)
k⋆ Rk⋆ +R~({1}) ,

x̃⋆
2 ≥ β

(2)
k⋆ Rk⋆ +R~({2}) ,

β
(1)
k⋆ + β

(2)
k⋆ = 1, β

(1)
k⋆ ≥ 0, and β

(2)
k⋆ ≥ 0 .

At the same time, from (7.23), there exist β
(1)
k and β

(2)
k such that

x̃⋆
1 =

∑
k∈Θ5

β
(1)
k Rk + β

(1)
k⋆ Rk⋆ +R~({1}) ,

x̃⋆
2 =

∑
k∈Θ6

β
(2)
k Rk + β

(2)
k⋆ Rk⋆ +R~({2}) ,

β
(1)
k + β

(2)
k ≤ 1, β

(1)
k ≥ 0, and β

(2)
k ≥ 0 for k ∈ Θ7 .

We can verify the existence of such β
(1)
k and β

(2)
k as follows. Suppose that there

is k̂ ∈ Θ7 such that β
(1)

k̂
+ β

(2)

k̂
> 1. Then, we can adjust β

(1)

k̂
and β

(2)

k̂
to satisfy

β
(1)

k̂
+ β

(2)

k̂
= 1 and, in the process, increase other β

(1)
k and β

(2)
k . In this operation, it

is always possible to satisfy β
(1)
k + β

(2)
k ≤ 1 for all k ∈ Θ7 due to (7.23).
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◃ Step 2 : Assume that, for given S = {1, 2, . . . , η}, 2 ≤ η ≤ M − 2, β
(i)
k ≥ 0,∑

i∈S β
(i)
k ≤ 1, and x̃⋆

i =
∑2M

k=1 β
(i)
k Rk for all i ∈ S. Then, given S and j = η+ 1, we

need to show that there are β
(j)
k and β

(i)
k , k ∈ {1, 2, . . . , 2M}, for all i ∈ S such that

1. β
(j)
k , β

(i)
k ∈ [0, 1] and

∑
i∈S β

(i)
k + β

(j)
k ≤ 1,

2.
∑

i∈S β
(i)
k⋆ + β

(j)
k⋆ = 1 for k⋆ ∈ Θ1,

3. β
(i)
k = 0 for k ∈ Ψ

(i)
1 , i ∈ S and β

(j)
k = 0 for k ∈ Ψ

(j)
1 ,

4. β
(i)
k = 1 for k ∈ Ψ

(i)
2 , i ∈ S and β

(j)
k = 1 for k ∈ Ψ

(j)
2 ,

5. x̃⋆
i =

∑2M

k=1 β
(i)
k Rk for i ∈ S and x̃⋆

j =
∑2M

k=1 β
(j)
k Rk.

From Proposition 1,

∑
i∈S

x̃⋆
i ≥

∑
k∈Θ2

Rk ,

x̃⋆
j ≥

∑
k∈Θ3

Rk ,∑
i∈S

x̃⋆
i + x̃⋆

j ≥
∑
k∈Θ1

Rk +
∑
k∈Θ2

Rk +
∑
k∈Θ3

Rk . (7.24)

From Proposition 2,

∑
i∈S

x̃⋆
i ≤

∑
k∈Θ1

Rk +
∑
k∈Θ2

Rk +
∑
k∈Θ5

Rk ,∑
i∈S

x̃⋆
i + x̃⋆

j ≤
∑
k∈Θ1

Rk +
∑
k∈Θ2

Rk +
∑
k∈Θ3

Rk +
∑
k∈Θ7

Rk . (7.25)

Since we assumed that, in the previous round, β
(i)
k ’s are selected in such a way

that 0 ≤ β
(i)
k ≤ 1 and x̃⋆

i =
∑2M

k=1 β
(i)
k Rk for all i ∈ S and

∑
i∈S β

(i)
k ≤ 1 for all

k ∈ {1, 2, . . . , 2M}, the following condition is initially guaranteed in this round.

∑
i∈S

x̃⋆
i ≥

∑
k∈Θ1

(∑
i∈S

β
(i)
k

)
Rk +

∑
k∈Θ2

Rk (7.26)
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From the definition of Θ1, because only the sellers in S ∪ {j} contribute,

∑
i∈S

β
(i)
k + β

(j)
k = 1 for k ∈ Θ1 . (7.27)

Thus, β
(j)
k for k ∈ Θ1 can be determined by (7.27). However, the condition

x̃⋆
j ≥

∑
k∈Θ1

β
(j)
k Rk +

∑
k∈Θ3

Rk , (7.28)

may not be satisfied at the same time.

Lemma 6. Given S = {1, 2, . . . , η}, 2 ≤ η ≤ M − 2, suppose that β
(i)
k ≥ 0,∑

i∈S β
(i)
k ≤ 1, and x̃⋆

i =
∑2M

k=1 β
(i)
k Rk for all i ∈ S. Then, for j = η + 1,∑

k∈Θ5

(∑
i∈S β

(i)
k

)
Rk ≥

∑
k∈Θ1

β
(j)
k Rk +

∑
k∈Θ3

Rk − x̃⋆
j .

Proof. We have

∑
i∈S

x̃⋆
i =

∑
k∈Θ1

(∑
i∈S

β
(i)
k

)
Rk +

∑
k∈Θ2

Rk +
∑
k∈Θ5

(∑
i∈S

β
(i)
k

)
Rk . (7.29)

By subtracting (7.29) from (7.24) and substituting (7.27),

x̃⋆
j ≥

∑
k∈Θ1

β
(j)
k Rk +

∑
k∈Θ3

Rk −
∑
k∈Θ5

(∑
i∈S

β
(i)
k

)
Rk .

Thus, when (7.28) is not satisfied, Lemma 6 tells us that we can adjust β
(i)
k for i ∈ S

so that both (7.26) and (7.28) hold. In this adjustment, β
(i)
k , i ∈ S and k ∈ Θ1,

are increased and, as a result, β
(i)
k , i ∈ S and k ∈ Θ5, are decreased because the

condition x̃⋆
i =

∑
k∈Θ5

β
(i)
k Rk +

∑
k∈Θ1

β
(i)
k Rk +

∑
k∈Θ2

β
(i)
k Rk for i ∈ S should be

maintained. Hence, β
(i)
k , i ∈ S and k ∈ Θ1, can be increased until each β

(i)
k , i ∈ S

and k ∈ Θ5, becomes zero. Then, β
(j)
k , k ∈ Θ1, that satisfy (7.28) can always be
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found because of Lemma 6. Note that decreasing β
(i)
k , i ∈ S and k ∈ Θ5, may affect

the β
(l)
k , l ∈ P \ (S ∪ {j}) that will be determined in a future round. However, by

Lemma 6, there is always enough room to adjust β
(l)
k , l ∈ P \ (S ∪ {j}), if needed,

so that x̃⋆
l , l ∈ P \ (S ∪ {j}), satisfies (7.28) when x̃⋆

l is added.

Once the conditions (7.26) and (7.28) are satisfied, β
(j)
k for k ∈ Θ6 can be

found so that

x̃⋆
i =

∑
k∈Θ5

β
(i)
k Rk +

∑
k∈Θ1

β
(i)
k Rk +

∑
k∈Θ2

β
(i)
k Rk for all i ∈ S ,

x̃⋆
j =

∑
k∈Θ6

β
(j)
k Rk +

∑
k∈Θ1

β
(j)
k Rk +

∑
k∈Θ3

Rk , (7.30)∑
i∈S

β
(i)
k + β

(j)
k ≤ 1 and β

(j)
k ≥ 0 for k ∈ Θ6 .

Even if β
(j)
k +

∑
i∈S β

(i)
k = 1, i ∈ S and k ∈ Θ6, the condition (7.30) may not

be satisfied, i.e., x̃⋆
j >

∑
k∈Θ6

β
(j)
k Rk +

∑
k∈Θ1

β
(j)
k Rk +

∑
k∈Θ3

Rk. In this case, β
(i)
k ,

i ∈ S and k ∈ Θ1, need to be decreased to meet (7.30) by increasing β
(j)
k , k ∈ Θ1.

In this adjustment, as a result of decreasing β
(i)
k , i ∈ S and k ∈ Θ1, β

(i)
k , i ∈ S and

k ∈ Θ7 \ Θ6, will be increased until they become 1. During this operation, we can

always find suitable β
(i)
k , i ∈ S and k ∈ Θ7 \Θ6, because of (7.25).

This tell us that, starting with S = {1} and j = 2, we can finally find β
(i)
k for

all i ∈ P \ {M} and k ∈ {1, 2, . . . , 2M}.6

◃ Step 3 : Finally, for S = {1, 2, . . . ,M − 1} and j = M , since
∑

i∈S x̃
⋆
i has all

nonnegative β
(i)
k satisfying 0 ≤

∑
i∈S β

(i)
k ≤ 1, from

∑
l∈P x̃⋆

l =
∑2M

k=1 Rk, we can

6Even though we added sellers, starting with seller 1, by increasing order, any arbitrary choice

of j is possible in each stage.
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obtain β
(j)
k from

β
(j)
k = 1−

∑
i∈S

β
(i)
k .

This guarantees 0 ≤ β
(j)
k ≤ 1 for all k ∈ Ψ

(j)
3 .
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Chapter 8

Optimal auction mechanism for multiple-region cases

8.1 Optimal multi-area auction

In the previous chapters, the auction conducted to trade the spectrum in one

market or service area was introduced and analyzed. However, in general, the PSP

may have obtained the frequency bands from the government in multiple geographic

regions to provide its own services in a wide area, e.g., multiple cities, states, or

nation-wide. In the general situation we consider here, the PSP, i.e., seller, has

surplus frequency bands in multiple regions (markets) and the SSPs, i.e., buyers,

also operate in multiple regions. In this chapter, we focus on designing an optimal

multi-region auction mechanism with a single auctioneer.1 When an auctioneer has

frequency bands for sale in multiple regions, it can organize the auction in two

different ways. In the first case, the auctioneer holds multiple auctions, one for

each region or market (Figure 8.1). In this case, each buyer needs to participate in

separate auctions for the regions in which it wants to lease spectrum bands. When

a separate auction is held for each region, a buyer may win different numbers of

frequency bands in different regions.

In general, the value of a buyer for a frequency band in a region may depend

1In the case where a coalition of sellers holds a single auction to sell all the frequency bands of

coalition members together, we regard the coalition as a single auctioneer.
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on the frequency bands it receives in other regions. In this case, the auctioneer

may wish to sell the available frequency bands in different regions jointly in order

to increase revenue, adding to the complexity in the design of a suitable auction

mechanism. This may require the auctioneer to hold a single auction for all regions

(Figure 8.2). In this type of auction, it is likely that the auctioneer should take

into account dependency in buyers’ values (or demands) in allocation and pricing

schemes if it to maximize the profit.

Figure 8.1: Separate auctions for multiple regions.

8.2 Model

In this chapter, we investigate the second case described above where an auc-

tioneer holds one auction to lend all (surplus) frequency bands in a set of regions. As

we already stated, we assume that there is only one risk neutral auctioneer. As we de-

fined in Chapter 4, let S = {1, 2, . . . , N} be the set of buyers and R = {1, 2, . . . , R}

the set of regions.
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Figure 8.2: Combined auction for multiple regions.

1) Auctioneer: An auctioneer owns a set of frequency bands. We denote

the number of available frequency bands for sale2 in region r ∈ R by S̃r. We

define S̃max := max{S̃1, S̃2, . . . , S̃R}. We denote auctioneer’s value for the ℓ-th item

it wants to sell in region r ∈ R by V̂
(ℓ)
r , ℓ ∈ {1, 2, . . . , S̃r}. In other words, the

auctioneer would prefer not to sell the ℓ-th frequency band if it cannot receive at

least V̂
(ℓ)
r for it. Without loss of generality, we assume that the auctioneer’s items

are ordered by increasing value, i.e., V̂
(1)
r ≤ V̂

(2)
r ≤ · · · ≤ V̂

(S̃r)
r .

2) Buyers: Analogously to the single market cases, each buyer j ∈ S has

private information, namely its type denoted by Tj. We assume that Tj, j ∈ S, are

given by mutually independent, continuous random variables. The distribution of

Tj is Gj with support Tj := [tj,min, tj,max]. Moreover, we assume that Gj yields a

density function gj. Let T = (Tj; j ∈ S) be the random vector of the types of the

2Similarly to the single market case, we assume that frequency spectrum is divided into the

same size units.
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buyers and T :=
∏

j∈S Tj.

In order to make progress, we restrict our attention to the following case: Let

Rj ⊂ R, j ∈ S, denote the set of regions in which buyer j operates. We assume that

every buyer prefers to receive the same number of frequency bands in its operating

regions.3 In other words, given its type, the value buyer j acquires from a set of

frequency bands it wins {ar; r ∈ R}, where ar is the number of frequency bands

it wins in region r ∈ R, depends only on minr∈Rj
ar. Note that this assumption

implicitly implies that the buyer does not receive any value from winning frequency

bands in the regions where it does not operate. We call such buyers simple-minded

buyers.

An example is given in Table 8.1. Suppose that a buyer demands frequency

bands in regions 1 and 2 only. When the buyer wins frequency band(s) in both

regions 1 and 2, it earns a value which depends on the smallest number of units it

receives in the two regions. As we can see, the buyer does not have any additional

value for the frequency band(s) in region 3.

The type of a buyer determines its values for the set of frequency bands it

wins:4 For each k ∈ {1, 2, . . . , S̃max}, let Vj,k : Tj → IR+ be the function that

determines buyer j’s value for the k-th set of frequency bands it wins (i.e., Vj,k(tj) is

the value buyer j has for the k-th set of frequency bands it receives in its operating

regions Rj when its type is tj). The functions Vj,k are increasing and differentiable.

3SSPs may need this to support handover to their customers. In [39], for multiple items with

a single unit supply, the optimal combinatorial auction mechanism has been proposed.
4We still assume that the frequency bands in each region are homogeneous.
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Table 8.1: Example of simple-minded buyer’s value

The number of units

Region 1 Region 2 Region 3

Value

1 1 0 $1000

2 2 0 $1800

2 2 1 $1800

2 1 0 $1000

1 2 0 $1000

0 2 3 $0

1 0 0 $0

Buyer demands frequency bands in regions 1 and 2 only

We also assume that Vj,1(tj) ≥ Vj,2(tj) ≥ · · · ≥ Vj,S̃max
(tj) ≥ 0 for all tj ∈ Tj. In

order to make progress, we assume that the auctioneer knows the buyers’ valuation

functions Vj,k, j ∈ S and k ∈ {1, 2, . . . , S̃max}, and operating regions Rj, j ∈ S.

8.3 Optimal combinatorial auction mechanism for simple-minded buy-

ers

In this section, we introduce an optimal combinatorial auction mechanism for

multiple regions with simple-minded buyers. We follow the same framework which

was used in Branco’s mechanism and the GBM. An auction mechanism is given by

a pair (p, c), where
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• pj,k : T → [0, 1], j ∈ S and k ∈ {1, 2, . . . , S̃max}, where pj,k(t) is the probability

that buyer j wins at least k sets of frequency bands given that buyers’ type

vector T = t, and

• cj : Tj → IR+, j ∈ S, where cj(tj) is the expected payment of buyer j with

type tj.
5

We are interested in a mechanism with the allocation rule with the property pj,k(t) ∈

{0, 1} for all j ∈ S, k ∈ {1, 2, . . . , S̃max}, and t ∈ T .

8.3.1 Conditions for the auction mechanism

Define indicator functions Ir(j) where

Ir(j) =


1 if r ∈ Rj ,

0 otherwise .

Using these indicator functions, the conditions for an allocation rule can be stated

as follows: For every t ∈ T ,

∑
j∈S

S̃max∑
k=1

pj,k(t)× Ir(j) ≤ S̃r for all r ∈ R , (8.1)

pj,k(t) ≥ pj,k+1(t) , and (8.2)

pj,k(t) ∈ {0, 1} . (8.3)

5Note that this is the expected payment with respect to both the other buyers’ types and

the probability of winning a varying number of items. The payment rule will be provided in

section 8.3.2.
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The condition (8.1) ensures that the auctioneer does not allocate more items than it

has. The conditions (8.2) and (8.3) follow from the definition of p and our restriction

on p, respectively.

Suppose that a buyer j reports its type t∗j ∈ Tj to the auctioneer. The reported

type t∗j is not necessarily its true type tj. Since the buyer is assumed risk neutral,

its utility can be written as

Uj(t
∗
j ; tj) = ET−j

S̃max∑
k=1

Vj,k(tj)pj,k(t
∗
j ,T−j)

− cj(t
∗
j) , (8.4)

where T−j = (Tj∗ ; j∗ ∈ S \ {j}). Then, we can find the conditions that guarantee

incentive compatibility and individual rationality.

In order for a mechanism to satisfy incentive compatibility, the following needs

to hold for all j ∈ S and tj, t
∗
j ∈ Tj:

Uj(tj; tj) ≥ Uj(t
∗
j ; tj) . (8.5)

By following the same step used in developing the GBM in Chapter 5, we can find

equivalent conditions to (8.5).

ET−j

S̃max∑
k=1

∫ tj

t∗j

dVj,k(x)

dx
pj,k(x,T−j)dx


≥ ET−j

S̃max∑
k=1

(
Vj,k(tj)− Vj,k(t

∗
j)
)
pj,k(t

∗
j ,T−j)

 with (8.6)

Uj(tj; tj) = Uj(t
∗
j ; t

∗
j) + ET−j

S̃max∑
k=1

∫ tj

t∗j

dVj,k(x)

dx
pj,k(x,T−j)dx

 (8.7)

To guarantee individual rationality, we need

Uj(tj; tj) ≥ 0 (8.8)

113



for all j ∈ S and tj ∈ Tj. Thus, it is obvious that

Uj(tj,min; tj,min) ≥ 0 . (8.9)

Since we assume that Vj,k is increasing, from (8.7) and (8.9), we can verify that (8.8)

holds. Therefore, instead of (8.5) and (8.8), conditions (8.6), (8.7), and (8.9) can be

used.

8.3.2 Allocation and payment schemes

Since the optimal combinatorial auction mechanism for simple-minded buyers

is designed to be incentive compatible, from now on, we assume that buyers report

their types truthfully. However, we will show that our proposed mechanism satisfies

the incentive compatibility property. The number of allocated units in region r ∈ R

is given by m̂⋆
r(t) =

∑
j∈S
∑S̃r

k=1 pj,k(t) × Ir(j) for t ∈ T . Then, the auctioneer’s

expected payoff is defined as

U0 =
∑
j∈S

ETj
[cj(Tj)] + ET

∑
r∈R

S̃r∑
k=m̂⋆

r(T)+1

V̂ (k)
r


=

∑
j∈S

ETj
[cj(Tj)] +

∑
r∈R

S̃r∑
k=1

V̂ (k)
r − ET

∑
r∈R

m̂⋆
r(T)∑
k=1

V̂ (k)
r

 . (8.10)

Theorem 8.1. Suppose that the allocation rule p⋆ solves the following problem

maximizep(·) ET

∑
j∈S

S̃max∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
pj,k(T)


+ET

∑
r∈R

S̃r∑
k=m̂r

⋆(T)+1

V̂ (k)
r


subject to (8.1), (8.2), (8.3), (8.6), (8.7), and (8.9) , (8.11)
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and that the expected payment c⋆ is given by

c⋆j(tj) = ET−j

S̃max∑
k=1

(
Vj,k(tj)p

⋆
j,k(tj,T−j)−

∫ tj

tj min

dVj,k(x)

dx
p⋆j,k(x,T−j)dx

) .(8.12)

Then, (p⋆, c⋆) is an optimal mechanism.

Proof. The expected payment the auctioneer receives can be written as 6

∑
j∈S

ETj
[cj(Tj)]

=
∑
j∈S

ETj

ET−j

S̃max∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)


−
∑
j∈S

ETj

ET−j

S̃max∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)

− cj(Tj)


=
∑
j∈S

ETj

ET−j

S̃max∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)

−
∑
j∈S

ETj
[Uj(Tj;Tj)]

=
∑
j∈S

ETj

ET−j

S̃max∑
k=1

Vj,k(Tj)pj,k(Tj,T−j)


−
∑
j∈S

ETj

Uj(tj,min; tj,min) + ET−j

S̃max∑
k=1

∫ Tj

tj,min

dVj,k(x)

dx
pj,k(x,T−j)dx



=
∑
j∈S

ETj

ET−j

S̃max∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
pj,k(Tj,T−j)


−
∑
j∈S

Uj(tj,min; tj,min) . (8.13)

The second equality follows from (8.4) and the third equality is a result of (8.7).

6It follows the same step used in Chapter 5.
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Then, by using (8.13), the auctioneer’s expected payoff (8.10) can be rewritten as

U0 =
∑
j∈S

ETj

ET−j

S̃max∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
pj,k(Tj,T−j)


−
∑
j∈S

Uj(tj,min; tj,min) + ET

∑
r∈R

S̃r∑
k=m̂⋆

r(T)+1

V̂ (k)
r


= ET

∑
j∈S

S̃max∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
pj,k(T)

+
∑
r∈R

S̃r∑
k=m̂⋆

r(T)+1

V̂ (k)
r

 (8.14)

−
∑
j∈S

Uj(tj,min; tj,min) . (8.15)

Note that the buyer j’s expected payment, cj, appears only in Uj(tj,min; tj,min). Since

p⋆ is assumed to be an allocation rule that maximizes

ET

∑
j∈S

S̃max∑
k=1

(
Vj,k(Tj)−

dVj,k(Tj)

dTj

1− Gj(Tj)

gj(Tj)

)
p⋆j,k(T) +

∑
r∈R

S̃r∑
k=m̂⋆

r(T)+1

V̂ (k)
r


and Uj(tj,min; tj,min) ≥ 0 from individual rationality, in order to maximize the auc-

tioneer’s expected payoff U0, cj should be selected so that Uj(tj,min; tj,min) = 0.7

From (8.7),

Uj(tj,min; tj,min)

= Uj(tj; tj)− ET−j

S̃max∑
k=1

∫ tj

tj,min

dVj,k(x)

dx
pj,k(x,T−j)dx


= ET−j

S̃max∑
k=1

(
Vj,k(tj)pj,k(tj,T−j)−

∫ tj

tj min

dVj,k(x)

dx
pj,k(x,T−j)dx

)
−cj(tj) . (8.16)

Thus, the optimal expected payment is given by (8.12).

7The optimal allocation rule should maximize (8.14). Given this, the optimal pricing scheme

should minimize (8.15).
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Note that (8.9) holds automatically with the optimal expected payment. By

substituting (8.12) in (8.4), one can easily verify that (8.7) is also satisfied by the

expected payment.

Given the type t = (tj; j ∈ S), define the contribution of buyer j for the k-th

set of frequency bands (k = 1, 2, . . . , S̃max) by

πj,k(tj) := Vj,k(tj)−
dVj,k(Tj)

dTj

∣∣∣∣
Tj=tj

1− Gj(tj)

gj(tj)
, (8.17)

where Gj (resp. gj) denotes the distribution (resp. density function) of Tj. The

problem is regular if, for all j ∈ S, tj, t̂j ∈ Tj, and k = 1, 2, . . . , S̃max,

(tj − t̂j)
(
πj,k(tj)− πj,k(t̂j)

)
≥ 0 (8.18)

and, if πj,k+1(tj) ≥ 0, then

πj,k(tj) ≥ πj,k+1(tj) . (8.19)

The regularity assumption implies that (i) the contribution is non-decreasing in its

type and (ii) the nonnegative contribution is non-increasing in the number of the

sets of frequency bands it receives.

Suppose that the expected payment is given by (8.12). Then, by substituting

(8.13) with Uj(tj,min; tj,min) = 0 in (8.10) and using (8.17), we can rewrite U0 as

U0 =
∑
j∈S

S̃max∑
k=1

ET [πj,k(Tj)pj,k(Tj,T−j)]

+
∑
r∈R

S̃r∑
k=1

V̂ (k)
r − ET

∑
r∈R

m̂⋆
r(T)∑
k=1

V̂ (k)
r

 . (8.20)

Thus, an optimal allocation rule needs to select the contributions so that (8.20) is

maximized while the feasiblity conditions (8.1),(8.2), and (8.3) are satisfied. The
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condition (8.6) holds since Vj,k is increasing in tj and the regularity assumptions are

in place. The conditions (8.7) and (8.9) hold because of the earlier selection of the

expected payment while maximizing U0.

Define the set of possible allocations as

Ã = {ã = (ã1, ã2, . . . , ãN) ∈ ZN
+ |
∑
j∈S

ãj · Ir(j) ≤ S̃r for all r ∈ R} .

For ã ∈ Ã, denote the number of allocated items in region r by m̃r(ã) =
∑

j∈S ãj ·

Ir(j). Under the regularity assumptions, if πj,k+1(tj) is a winning contribution,

πj,k(tj) is also a winning contribution. Then, for a given t ∈ T , the auctioneer’s

problem becomes

maximizeã∈Ã
∑
j∈S

ãj∑
k=1

(πj,k(tj))−
∑
r∈R

m̃r(ã)∑
k=1

V̂ (k)
r +

∑
r∈R

S̃r∑
k=1

V̂ (k)
r . (8.21)

Suppose that ã∗ ∈ Ã is an allocation which solves (8.21). Then, pj,k(t) = 1 only for

k ≤ ã∗j . Here, it is clear that the constraints (8.1), (8.2), and (8.3) are satisfied. The

chosen allocation rule ã⋆ is defined through the optimization in (8.21) such that,

given t ∈ T ,

ã⋆(t) ∈ argmaxã∈Ã
∑
j∈S

ãj∑
k=1

(πj,k(tj))−
∑
r∈R

m̃r(ã)∑
k=1

V̂ (k)
r +

∑
r∈R

S̃r∑
k=1

V̂ (k)
r .

Then, we rewrite the allocation rule,

pj,k(t) =


1 if k ≤ ã⋆j(t) ,

0 otherwise .

(8.22)

Define, for each j ∈ S and k = 1, 2, . . . , S̃max,

ς̃j,k(t−j) := inf{t̃j ∈ Tj | pj,k(t̃j, t−j) = 1},

where t−j = {tj∗ ; j∗ ∈ S \ {j}}. Then, we can state following theorem.
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Theorem 8.2. Suppose that the problem is regular. The following allocation rule

p⋆ and payment scheme c⋆ give rise to an optimal mechanism.

p⋆j,k(t) =


1 if tj > ς̃j,k(t−j) ,

0 otherwise,

(8.23)

c⋆j(tj) = ET−j

S̃max∑
k=1

Vj,k(ς̃j,k(T−j)) p
⋆
j,k(tj,T−j)

 . (8.24)

From (8.24), for each realization t ∈ T , we can use the following payment rule.

ĉj,k(t) :=


Vj,k(ς̃j,k(t−j)) if pj,k(t) = 1 ,

0 otherwise .

In other words, for the k-th set of frequency bands in the operating regions, the

winner pays the smallest value that would win the k-th set of frequency bands.

In general, the combinatorial optimization problem in (8.21) is NP-complete.

Thus, the computational complexity of the algorithm may be an issue in some cases.

However, we believe that the number of frequency bands available for sale and the

number of buyers are unlikely to be very large in the spectrum trading markets.

Therefore, an electronic auction system should be able to handle this algorithm.

We leave this complexity issue for future study.8

8One may be interested in designing an approximate algorithm which provides a sub-optimal

solution in polynomial time.
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Chapter 9

Conclusion and future work

9.1 Conclusion

We first investigated the problem of designing a suitable trading mechanism

for dynamic spectrum sharing with multiple sellers and multiple buyers in a single

market. We modeled the interaction between selfish buyers interested in leasing

spectrum as a noncooperative game. We showed that, when the buyers are homoge-

neous, there exists a symmetric mixed strategy Nash equilibrium. When there are

no more than five sellers in the market and they hold separate individual auctions

with positive probability we showed that there is a unique mixed strategy Nash

equilibrium. Moreover, we demonstrated that the buyers’ strategy converges to a

symmetric mixed strategy in two seller cases. Because of the difficulty involved

with computing buyers’ expected payoff, we leave the convergence analysis of more

general cases as an open problem.

We demonstrated that risk neutral sellers have an incentive to cooperate with

each other in order to maximize their expected profits when the buyers behave

according to a symmetric mixed strategy Nash equilibrium. We formulated the

interaction among the sellers as a cooperative game and proved that its core is

nonempty. From this finding, we introduced the payoff/profit sharing schemes that

allow the sellers to achieve any equitable sharing of payoff/profit in the core, hence
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encouraging them to cooperate.

Finally, we considered the scenario with multiple regions and simple-minded

buyers, and provided an optimal auction mechanism for the auctioneer who has

surplus frequency spectrum bands in several regions and wants to lend its bands

using an auction. This mechanism can be used when the buyers have the same

demand in every region they are interested in. The findings in this dissertation

provide a general guidance for the sellers or auctioneers to design a spectrum sharing

mechanism in dynamic spectrum access networks.

Based on the results of this dissertation, we expect that more interesting re-

search will follow to enrich and complete the problem of designing an optimal mech-

anism for dynamic spectrum market.

9.2 Future work

Here we list some problems of interest for future work.

1. We modeled the interaction among the sellers as a cooperative game under the

assumption that sellers would share their items and information, i.e., value of

each item, truthfully. However, since sellers are selfish, they may have an

incentive to lie about their private information. Thus, it would be interesting

to study how such selfish nature of the sellers may change the picture and how

one should design a mechanism that ensures the sellers to tell the truth.

2. Although we expect that the number of sellers and buyers in the spectrum

trading market will not be very large, computational complexity may still
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present an issue in the optimal auction mechanism for multiple-region cases.

In order to reduce the complexity, one may wish to develop a sub-optimal

mechanism which runs in polynomial time at the price of a lower expected

payoff (or profit) of the seller.

3. We developed an optimal combinatorial mechanism for a seller who has sur-

plus frequency bands in multiple regions. One may want to extend our inves-

tigations to the cases where multiple sellers have surplus frequency bands in

multiple regions and are free to form any coalition among themselves. We be-

lieve that there are several interesting issues to be investigated related to the

issue of complexity in the case of multiple regions, due to the combinatorial

nature.
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Appendix A

Proof of Theorem 6.4

Let µ̃(C) be the probability that a coalition C ∈ P forms and Û
(i)
j (C, ξ̄) the

conditional expected payoff of buyer j choosing seller i in the coalition C, assuming

that the coalition C forms and all buyers employ the same mixed strategy ξ̄ =

(ξ1, ξ2, . . . , ξM).1 Since we assume homogeneous buyers, for notational convenience

we omit the subscription j and simply use Û (i)(C, ξ̄). Note that U (i)(ξ̄) denotes the

conditional expected payoff of a buyer, given that the buyer selects seller i and all

buyers adopt the same mixed strategy ξ̄.

A.1 Two sellers case (M = 2)

When there are only 2 sellers in the market, note that µ̃({1}) = µ̃({2})

and µ̃({1}) + µ̃({1, 2}) = µ̃({2}) + µ̃({1, 2}) = 1. In addition, Û (1)({1, 2}, ξ̄) =

Û (2)({1, 2}, ξ̄). Given a mixed strategy ξ̄, a buyer’s expected payoff is equal to

U(ξ̄) = ξ1

{
µ̃({1})Û (1)({1}, ξ̄) + µ̃({1, 2})Û (1)({1, 2}, ξ̄)

}
+ξ2

{
µ̃({2})Û (2)({2}, ξ̄) + µ̃({1, 2})Û (2)({1, 2}, ξ̄)

}
.

1ξi, i ∈ P, denotes the probability that buyer j chooses seller i.

123



Suppose that Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆) is a symmetric MSNE. Then, at the equilibrium

mixed strategy ξ̄⋆, Û (1)(ξ̄⋆) = Û (2)(ξ̄⋆). Hence,

µ̃({1})Û (1)({1}, ξ̄⋆) + µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆)

= µ̃({2})Û (2)({2}, ξ̄⋆) + µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆) .

Since µ̃({1}) = µ̃({2}) and Û (1)({1, 2}, ξ̄⋆) = Û (2)({1, 2}, ξ̄⋆), we must have

Û (1)({1}, ξ̄⋆) = Û (2)({2}, ξ̄⋆) . (A.1)

Note that ξ1 + ξ2 = 1 and Û (i)({i}, ξ̄) is a decreasing function of ξi.
2 Suppose

that there exist two different symmetric MSNEs Ξ⋆1 = (ξ̄⋆
1
, ξ̄⋆

1
, . . . , ξ̄⋆

1
) and Ξ⋆2 =

(ξ̄⋆
2
, ξ̄⋆

2
, . . . , ξ̄⋆

2
). Then, if ξ⋆

1

1 > ξ⋆
2

1 and ξ⋆
1

2 < ξ⋆
2

2 , from (A.1) we have Û (1)({1}, ξ̄⋆1) <

Û (1)({1}, ξ̄⋆2) = Û (2)({2}, ξ̄⋆2) < Û (2)({2}, ξ̄⋆1), which is a contradiction. We can

draw similar contradiction when ξ⋆
1

1 < ξ⋆
2

1 and ξ⋆
1

2 > ξ⋆
2

2 .

A.2 Three sellers case (M = 3)

In 3 seller cases, note that, for any mixed strategy ξ̄, we have

Û (1)({1, 2}, ξ̄) = Û (2)({1, 2}, ξ̄),

Û (2)({2, 3}, ξ̄) = Û (3)({2, 3}, ξ̄),

Û (3)({1, 3}, ξ̄) = Û (1)({1, 3}, ξ̄), and

Û (1)({1, 2, 3}, ξ̄) = Û (2)({1, 2, 3}, ξ̄) = Û (3)({1, 2, 3}, ξ̄) .
2See the equation (6.6).
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The expected payoffs from choosing seller 1, 2, and 3 are given by

U (1)(ξ̄) = µ̃({1})Û (1)({1}, ξ̄) + µ̃({1, 2})Û (1)({1, 2}, ξ̄)

+µ̃({1, 3})Û (1)({1, 3}, ξ̄) + µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄), (A.2)

U (2)(ξ̄) = µ̃({2})Û (2)({2}, ξ̄) + µ̃({2, 3})Û (2)({2, 3}, ξ̄)

+µ̃({1, 2})Û (2)({1, 2}, ξ̄) + µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄), and(A.3)

U (3)(ξ̄) = µ̃({3})Û (3)({3}, ξ̄) + µ̃({1, 3})Û (3)({1, 3}, ξ̄)

+ µ̃({2, 3})Û (3)({2, 3}, ξ̄) + µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄). (A.4)

Suppose that Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆) is a symmetric MSNE.

Recall that, at the equilibrium mixed strategy ξ̄⋆, we have U (1)(ξ̄⋆) = U (2)(ξ̄⋆) =

U (3)(ξ̄⋆). Hence, by subtracting the common terms from (A.3) and (A.4), we get

µ̃({2})Û (2)({2}, ξ̄⋆) + µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆)

= µ̃({3})Û (3)({3}, ξ̄⋆) + µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆) . (A.5)

Assume that there are two different symmetric MSNEs Ξ⋆1 = (ξ̄⋆
1
, ξ̄⋆

1
, . . . , ξ̄⋆

1
)

and Ξ⋆2 = (ξ̄⋆
2
, ξ̄⋆

2
, . . . , ξ̄⋆

2
). Without loss of generality, we can consider following

case only.3

ξ⋆
1

1 < ξ⋆
2

1

ξ⋆
1

2 ≤ ξ⋆
2

2

ξ⋆
1

3 > ξ⋆
2

3 .

In this case, since Û (i)(C, ξ̄), i ∈ C, depends on ξ̄ only through
∑

l∈C ξl,

3Other cases can be obtained by permutating the indices in the subscript and can be handled

in a similar way.
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• µ̃({2})Û (2)({2}, ξ̄⋆1) ≥ µ̃({2})Û (2)({2}, ξ̄⋆2) ,

• µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆1) > µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆2) ,

• µ̃({3})Û (3)({3}, ξ̄⋆1) < µ̃({3})Û (3)({3}, ξ̄⋆2) , and

• µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆1) ≤ µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆2) .

Therefore, we have

µ̃({2})Û (2)({2}, ξ̄⋆1) + µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆1)

> µ̃({2})Û (2)({2}, ξ̄⋆2) + µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆2) and

µ̃({3})Û (3)({3}, ξ̄⋆1) + µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆1)

< µ̃({3})Û (3)({3}, ξ̄⋆2) + µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆2) .

By (A.5), this yields the contradiction U (2)(ξ̄⋆
1
) > U (2)(ξ̄⋆

2
) = U (3)(ξ̄⋆

2
) > U (3)(ξ̄⋆

1
).

A.3 Four sellers case (M = 4)

The expected payoffs from choosing seller 1, 2, 3, and 4 are equal to

U (1)(ξ̄) = µ̃({1})Û (1)({1}, ξ̄) + µ̃({1, 2})Û (1)({1, 2}, ξ̄) + µ̃({1, 3})Û (1)({1, 3}, ξ̄)

+µ̃({1, 4})Û (1)({1, 4}, ξ̄) + µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄)

+µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄) + µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄)

+µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄) , (A.6)
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U (2)(ξ̄) = µ̃({2})Û (2)({2}, ξ̄) + µ̃({1, 2})Û (2)({1, 2}, ξ̄) + µ̃({2, 3})Û (2)({2, 3}, ξ̄)

+µ̃({2, 4})Û (2)({2, 4}, ξ̄) + µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄)

+µ̃({1, 2, 4})Û (2)({1, 2, 4}, ξ̄) + µ̃({2, 3, 4})Û (2)({2, 3, 4}, ξ̄)

+µ̃({1, 2, 3, 4})Û (2)({1, 2, 3, 4}, ξ̄) ,

U (3)(ξ̄) = µ̃({3})Û (3)({3}, ξ̄) + µ̃({1, 3})Û (3)({1, 3}, ξ̄) + µ̃({2, 3})Û (3)({2, 3}, ξ̄)

+µ̃({3, 4})Û (3)({3, 4}, ξ̄) + µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄)

+µ̃({1, 3, 4})Û (3)({1, 3, 4}, ξ̄) + µ̃({2, 3, 4})Û (3)({2, 3, 4}, ξ̄)

+µ̃({1, 2, 3, 4})Û (3)({1, 2, 3, 4}, ξ̄) , and

U (4)(ξ̄) = µ̃({4})Û (4)({4}, ξ̄) + µ̃({1, 4})Û (4)({1, 4}, ξ̄) + µ̃({2, 4})Û (4)({2, 4}, ξ̄)

+µ̃({3, 4})Û (4)({3, 4}, ξ̄) + µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄)

+µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄) + µ̃({2, 3, 4})Û (4)({2, 3, 4}, ξ̄)

+µ̃({1, 2, 3, 4})Û (4)({1, 2, 3, 4}, ξ̄) .

Suppose that Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆) is a symmetric MSNE. Then, at the equilibrium

mixed strategy ξ̄⋆, U (1)(ξ̄⋆) = U (2)(ξ̄⋆) = U (3)(ξ̄⋆) = U (4)(ξ̄⋆). Hence, by subtracting

the common terms from (A.7) and (A.7), we get

µ̃({3})Û (3)({3}, ξ̄⋆) + µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆) + µ̃({2, 3})Û (3)({2, 3}, ξ̄⋆)

+µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄⋆)

= µ̃({4})Û (4)({4}, ξ̄⋆) + µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆) + µ̃({2, 4})Û (4)({2, 4}, ξ̄⋆)

+µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄⋆) . (A.7)
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Similarly, from U (1)(ξ̄⋆) = U (3)(ξ̄⋆),

µ̃({1})Û (1)({1}, ξ̄⋆) + µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆) + µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆)

+µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆)

= µ̃({3})Û (3)({3}, ξ̄⋆) + µ̃({2, 3})Û (3)({2, 3}, ξ̄⋆) + µ̃({3, 4})Û (3)({3, 4}, ξ̄⋆)

+µ̃({2, 3, 4})Û (3)({2, 3, 4}, ξ̄⋆) , (A.8)

and using U (2)(ξ̄⋆) = U (4)(ξ̄⋆),

µ̃({2})Û (2)({2}, ξ̄⋆) + µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆) + µ̃({2, 3})Û (2)({2, 3}, ξ̄⋆)

+µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄⋆)

= µ̃({4})Û (4)({4}, ξ̄⋆) + µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆) + µ̃({3, 4})Û (4)({3, 4}, ξ̄⋆)

+µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄⋆) . (A.9)

Suppose that there are two different symmetric MSNEs Ξ⋆1 = (ξ̄⋆
1
, ξ̄⋆

1
, . . . , ξ̄⋆

1
)

and Ξ⋆2 = (ξ̄⋆
2
, ξ̄⋆

2
, . . . , ξ̄⋆

2
). Without loss of generality, we consider following two

cases.4

Case 1:

ξ⋆
1

1 < ξ⋆
2

1 ,

ξ⋆
1

2 ≤ ξ⋆
2

2 ,

ξ⋆
1

3 ≤ ξ⋆
2

3 ,

ξ⋆
1

4 > ξ⋆
2

4 .

4Other cases can be obtained by permutating the indices in the subscript and can be handled

in a similar way.
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Case 2:

ξ⋆
1

1 < ξ⋆
2

1 ,

ξ⋆
1

2 ≤ ξ⋆
2

2 ,

ξ⋆
1

3 ≥ ξ⋆
2

3 ,

ξ⋆
1

4 > ξ⋆
2

4 .

In case 1, we have the following inequalities:

ξ⋆
1

1 + ξ⋆
1

4 ≥ ξ⋆
2

1 + ξ⋆
2

4 ,

ξ⋆
1

2 + ξ⋆
1

4 > ξ⋆
2

2 + ξ⋆
2

4 ,

ξ⋆
1

3 + ξ⋆
1

4 > ξ⋆
2

3 + ξ⋆
2

4 ,

ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

4 ≥ ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

4 ,

ξ⋆
1

1 + ξ⋆
1

3 + ξ⋆
1

4 ≥ ξ⋆
2

1 + ξ⋆
2

3 + ξ⋆
2

4 , and

ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

4 > ξ⋆
2

2 + ξ⋆
2

3 + ξ⋆
2

4 .

Since Û (i)(C, ξ̄), i ∈ C, depends on ξ̄ only through
∑

l∈C ξl and is strictly decreasing

in
∑

l∈C ξl, we have

• µ̃({3})Û (3)({3}, ξ̄⋆1) ≥ µ̃({3})Û (3)({3}, ξ̄⋆2) ,

• µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆1) > µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆2) ,

• µ̃({2, 3})Û (3)({2, 3}, ξ̄⋆1) ≥ µ̃({2, 3})Û (3)({2, 3}, ξ̄⋆2) ,

• µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄⋆1) > µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄⋆2),

• µ̃({4})Û (4)({4}, ξ̄⋆1) < µ̃({4})Û (4)({4}, ξ̄⋆2) ,
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• µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆1) ≤ µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆2) ,

• µ̃({2, 4})Û (4)({2, 4}, ξ̄⋆1) < µ̃({2, 4})Û (4)({2, 4}, ξ̄⋆2) , and

• µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄⋆1) ≤ µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄⋆2) .

Using the equality U (3)(ξ̄⋆) = U (4)(ξ̄⋆) at the equilibrium and the above inequalities

in the expression for U (3)(ξ̄⋆
1
), U (3)(ξ̄⋆

2
), U (4)(ξ̄⋆

1
), and U (4)(ξ̄⋆

2
), we can construct

the contradiction U (3)(ξ̄⋆
1
) > U (3)(ξ̄⋆

2
) = U (4)(ξ̄⋆

2
) > U (4)(ξ̄⋆

1
).

In case 2, the following inequalities hold.

ξ⋆
1

1 + ξ⋆
1

2 < ξ⋆
2

1 + ξ⋆
2

2 ,

ξ⋆
1

3 + ξ⋆
1

4 > ξ⋆
2

3 + ξ⋆
2

4 ,

ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

3 < ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

3 ,

ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

4 ≤ ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

4 ,

ξ⋆
1

1 + ξ⋆
1

3 + ξ⋆
1

4 ≥ ξ⋆
2

1 + ξ⋆
2

3 + ξ⋆
2

4 , and

ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

4 > ξ⋆
2

2 + ξ⋆
2

3 + ξ⋆
2

4 .

Here, the relation between ξ⋆
1

2 + ξ⋆
1

3 and ξ⋆
2

2 + ξ⋆
2

3 is unknown. Hence, we consider

two different cases.

Case 2-(i): Suppose that ξ⋆
1

2 + ξ⋆
1

3 ≥ ξ⋆
2

2 + ξ⋆
2

3 . Then, ξ⋆
1

1 + ξ⋆
1

4 ≤ ξ⋆
2

1 + ξ⋆
2

4 , and

the following inequalities can be shown:

• µ({1})Û (1)({1}, ξ̄⋆1) > µ({1})Û (1)({1}, ξ̄⋆2) ,

• µ({1, 2})Û (1)({1, 2}, ξ̄⋆1) > µ({1, 2})Û (1)({1, 2}, ξ̄⋆2) ,

• µ({1, 4})Û (1)({1, 4}, ξ̄⋆1) ≥ µ({1, 4})Û (1)({1, 4}, ξ̄⋆2) ,
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• µ({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆1) ≥ µ({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆2) ,

• µ({3})Û (3)({3}, ξ̄⋆1) ≤ µ({3})Û (3)({3}, ξ̄⋆2) ,

• µ({2, 3})Û (3)({2, 3}, ξ̄⋆1) ≤ µ({2, 3})Û (3)({2, 3}, ξ̄⋆2) ,

• µ({3, 4})Û (3)({3, 4}, ξ̄⋆1) < µ({3, 4})Û (3)({3, 4}, ξ̄⋆2) , and

• µ({2, 3, 4})Û (3)({2, 3, 4}, ξ̄⋆1) < µ({2, 3, 4})Û (3)({2, 3, 4}, ξ̄⋆2) .

Using the equalities U (1)(ξ̄⋆
1
) = U (3)(ξ̄⋆

1
) and U (1)(ξ̄⋆

2
) = U (3)(ξ̄⋆

2
) and the above

inequalities, one can draw a contradiction that U (1)(ξ̄⋆
1
) > U (1)(ξ̄⋆

2
) = U (3)(ξ̄⋆

2
) >

U (3)(ξ̄⋆
1
).

Case 2-(ii): Suppose that ξ⋆
1

2 + ξ⋆
1

3 < ξ⋆
2

2 + ξ⋆
2

3 . Then, ξ⋆
1

1 + ξ⋆
1

4 > ξ⋆
2

1 + ξ⋆
2

4 and

we have

• µ̃({2})Û (2)({2}, ξ̄⋆1) ≥ µ̃({2})Û (2)({2}, ξ̄⋆2) ,

• µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆1) > µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆2) ,

• µ̃({2, 3})Û (2)({2, 3}, ξ̄⋆1) > µ̃({2, 3})Û (2)({2, 3}, ξ̄⋆2) ,

• µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄⋆1) > µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄⋆2) ,

• µ̃({4})Û (4)({4}, ξ̄⋆1) < µ̃({4})Û (4)({4}, ξ̄⋆2) ,

• µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆1) < µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆2) ,

• µ̃({3, 4})Û (4)({3, 4}, ξ̄⋆1) < µ̃({3, 4})Û (4)({3, 4}, ξ̄⋆2) , and

• µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄⋆1) ≤ µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄⋆2) .
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By the equalities U (2)(ξ̄⋆
1
) = U (4)(ξ̄⋆

1
) and U (2)(ξ̄⋆

2
) = U (4)(ξ̄⋆

2
), the above inequal-

ities yield the contradiction that U (2)(ξ̄⋆
1
) > U (2)(ξ̄⋆

2
) = U (4)(ξ̄⋆

2
) > U (4)(ξ̄⋆

1
).

A.4 Five sellers case (M = 5)

Given the mixed strategy ξ̄, the expected payoffs from choosing seller 1, 2, 3,

4, and 5, are equal to

U (1)(ξ̄) = µ̃({1})Û (1)({1}, ξ̄) + µ̃({1, 2})Û (1)({1, 2}, ξ̄) + µ̃({1, 3})Û (1)({1, 3}, ξ̄)

+µ̃({1, 4})Û (1)({1, 4}, ξ̄) + µ̃({1, 5})Û (1)({1, 5}, ξ̄)

+µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄) + µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄)

+µ̃({1, 2, 5})Û (1)({1, 2, 5}, ξ̄) + µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄)

+µ̃({1, 3, 5})Û (1)({1, 3, 5}, ξ̄) + µ̃({1, 4, 5})Û (1)({1, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄) + µ̃({1, 2, 3, 5})Û (1)({1, 2, 3, 5}, ξ̄)

+µ̃({1, 2, 4, 5})Û (1)({1, 2, 4, 5}, ξ̄) + µ̃({1, 3, 4, 5})Û (1)({1, 3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4, 5})Û (1)({1, 2, 3, 4, 5}, ξ̄) ,
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U (2)(ξ̄) = µ̃{2})Û (2)({2}, ξ̄) + µ̃({1, 2})Û (2)({1, 2}, ξ̄) + µ̃({2, 3})Û (2)({2, 3}, ξ̄)

+µ̃({2, 4})Û (2)({2, 4}, ξ̄) + µ̃({2, 5})Û (2)({2, 5}, ξ̄)

+µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄) + µ̃({1, 2, 4})Û (2)({1, 2, 4}, ξ̄)

+µ̃({1, 2, 5})Û (2)({1, 2, 5}, ξ̄) + µ̃({2, 3, 4})Û (2)({2, 3, 4}, ξ̄)

+µ̃({2, 3, 5})Û (2)({2, 3, 5}, ξ̄) + µ̃({2, 4, 5})Û (2)({2, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4})Û (2)({1, 2, 3, 4}, ξ̄) + µ̃({1, 2, 3, 5})Û (2)({1, 2, 3, 5}, ξ̄)

+µ̃({1, 2, 4, 5})Û (2)({1, 2, 4, 5}, ξ̄) + µ̃({2, 3, 4, 5})Û (2)({2, 3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4, 5})Û (2)({1, 2, 3, 4, 5}, ξ̄) ,

U (3)(ξ̄) = µ̃({3})Û (3)({3}, ξ̄) + µ̃({1, 3})Û (3)({1, 3}, ξ̄) + µ̃({2, 3})Û (3)({2, 3}, ξ̄)

+µ̃({3, 4})Û (3)({3, 4}, ξ̄) + µ̃({3, 5})Û (3)({3, 5}, ξ̄)

+µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄) + µ̃({1, 3, 4})Û (3)({1, 3, 4}, ξ̄)

+µ̃({1, 3, 5})Û (3)({1, 3, 5}, ξ̄) + µ̃({2, 3, 4})Û (3){2, 3, 4}, ξ̄)

+µ̃({2, 3, 5})Û (3)({2, 3, 5}, ξ̄) + µ̃({3, 4, 5})Û (3)({3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4})Û (3)({1, 2, 3, 4}, ξ̄) + µ̃({1, 2, 3, 5})Û (3)({1, 2, 3, 5}, ξ̄)

+µ̃({1, 3, 4, 5})Û (3)({1, 3, 4, 5}, ξ̄) + µ̃({2, 3, 4, 5})Û (3)({2, 3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4, 5})Û (3)({1, 2, 3, 4, 5}, ξ̄)
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U (4)(ξ̄) = µ̃({4})Û (4)({4}, ξ̄) + µ̃({1, 4})Û (4)({1, 4}, ξ̄) + µ̃({2, 4})Û (4)({2, 4}, ξ̄)

+µ̃({3, 4})Û (4)({3, 4}, ξ̄) + µ̃({4, 5})Û (4)({4, 5}, ξ̄)

+µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄) + µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄)

+µ̃({1, 4, 5})Û (4)({1, 4, 5}, ξ̄) + µ̃({2, 3, 4})Û (4)({2, 3, 4}, ξ̄)

+µ̃({2, 4, 5})Û (4)({2, 4, 5}, ξ̄) + µ̃({3, 4, 5})Û (4)({3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4})Û (4)({1, 2, 3, 4}, ξ̄) + µ̃({1, 2, 4, 5})Û (4)({1, 2, 4, 5}, ξ̄)

+µ̃({1, 3, 4, 5})Û (4)({1, 3, 4, 5}, ξ̄) + µ̃({2, 3, 4, 5})Û (4)({2, 3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4, 5})Û (4)({1, 2, 3, 4, 5}, ξ̄) , and

U (5)(ξ̄) = µ̃({5})Û (5)({5}, ξ̄) + µ̃({1, 5})Û (5)({1, 5}, ξ̄) + µ̃({2, 5})Û (5)({2, 5}, ξ̄)

+µ̃({3, 5})Û (5)({3, 5}, ξ̄) + µ̃({4, 5})Û (5)({4, 5}, ξ̄)

+µ̃({1, 2, 5})Û (5)({1, 2, 5}, ξ̄) + µ̃({1, 3, 5})Û (5)({1, 3, 5}, ξ̄)

+µ̃({1, 4, 5})Û (5)({1, 4, 5}, ξ̄) + µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄)

+µ̃({2, 4, 5})Û (5)({2, 4, 5}, ξ̄) + µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 5})Û (5)({1, 2, 3, 5}, ξ̄) + µ̃({1, 2, 4, 5})Û (5)({1, 2, 4, 5}, ξ̄)

+µ̃({1, 3, 4, 5})Û (5)({1, 3, 4, 5}, ξ̄) + µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄)

+µ̃({1, 2, 3, 4, 5})Û (5)({1, 2, 3, 4, 5}, ξ̄) .

Suppose that Ξ⋆ = (ξ̄⋆, ξ̄⋆, . . . , ξ̄⋆) is a symmetric MSNE. Then, at the equilibrium

mixed strategy ξ̄⋆, U (1)(ξ̄⋆) = U (2)(ξ̄⋆) = U (3)(ξ̄⋆) = U (4)(ξ̄⋆) = U (5)(ξ̄⋆). From
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U (1)(ξ̄⋆) = U (5)(ξ̄⋆) and their expressions, we can show

µ̃({1})Û (1)({1}, ξ̄⋆) + µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆) + µ̃({1, 3})Û (1)({1, 3}, ξ̄⋆)

+µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆) + µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄⋆)

+µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆) + µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄⋆)

+µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄⋆)

= µ̃({5})Û (5)({5}, ξ̄⋆) + µ̃({2, 5})Û (5)({2, 5}, ξ̄⋆) + µ̃({3, 5})Û (5)({3, 5}, ξ̄⋆)

+µ̃({4, 5})Û (5)({4, 5}, ξ̄⋆) + µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄⋆)

+µ̃({2, 4, 5})Û (5)({2, 4, 5}, ξ̄⋆) + µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄⋆)

+µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄⋆) . (A.10)

From U (2)(ξ̄⋆) = U (4)(ξ̄⋆),

µ̃({2})Û (2)({2}, ξ̄⋆) + µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆) + µ̃({2, 3})Û (2)({2, 3}, ξ̄⋆)

+µ̃({2, 5})Û (2)({2, 5}, ξ̄⋆) + µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄⋆)

+µ̃({1, 2, 5})Û (2)({1, 2, 5}, ξ̄⋆) + µ̃({2, 3, 5})Û (2)({2, 3, 5}, ξ̄⋆)

+µ̃({1, 2, 3, 5})Û (2)({1, 2, 3, 5}, ξ̄⋆)

= µ̃({4})Û (4)({4}, ξ̄⋆) + µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆) + µ̃({3, 4})Û (4)({3, 4}, ξ̄⋆)

+µ̃({4, 5})Û (4)({4, 5}, ξ̄⋆) + µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄⋆)

+µ̃({1, 4, 5})Û (4)({1, 4, 5}, ξ̄⋆) + µ̃({3, 4, 5})Û (4)({3, 4, 5}, ξ̄⋆)

+µ̃({1, 3, 4, 5})Û (4)({1, 3, 4, 5}, ξ̄⋆) , (A.11)
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and using U (3)(ξ̄⋆) = U (4)(ξ̄⋆),

µ̃({3})Û (3)({3}, ξ̄⋆) + µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆) + µ̃({2, 3})Û (3)({2, 3}, ξ̄⋆)

+µ̃({3, 5})Û (3)({3, 5}, ξ̄⋆) + µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄⋆)

+µ̃({1, 3, 5})Û (3)({1, 3, 5}, ξ̄⋆) + µ̃({2, 3, 5})Û (3)({2, 3, 5}, ξ̄⋆)

+µ̃({1, 2, 3, 5})Û (3)({1, 2, 3, 5}, ξ̄⋆)

= µ̃({4})Û (4)({4}, ξ̄⋆) + µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆) + µ̃({2, 4})Û (4)({2, 4}, ξ̄⋆)

+µ̃({4, 5})Û (4)({4, 5}, ξ̄⋆) + µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄⋆)

+µ̃({1, 4, 5})Û (4)({1, 4, 5}, ξ̄⋆) + µ̃({2, 4, 5})Û (4)({2, 4, 5}, ξ̄⋆)

+µ̃({1, 2, 4, 5})Û (4)({1, 2, 4, 5}, ξ̄⋆) . (A.12)

Assume that there are two different symmetric MSNEs Ξ⋆1 = (ξ̄⋆
1
, ξ̄⋆

1
, . . . , ξ̄⋆

1
)

and Ξ⋆2 = (ξ̄⋆
2
, ξ̄⋆

2
, . . . , ξ̄⋆

2
). Without loss of generality, we can consider only two

cases.5

Case 1:

ξ⋆
1

1 < ξ⋆
2

1

ξ⋆
1

2 ≤ ξ⋆
2

2

ξ⋆
1

3 ≤ ξ⋆
2

3

ξ⋆
1

4 ≤ ξ⋆
2

4

ξ⋆
1

5 > ξ⋆
2

5 .

5Again, other cases are obtained by permutating the indices and can be handled in a similar

way.
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Case 2:

ξ⋆
1

1 < ξ⋆
2

1

ξ⋆
1

2 ≤ ξ⋆
2

2

ξ⋆
1

3 ≤ ξ⋆
2

3

ξ⋆
1

4 > ξ⋆
2

4

ξ⋆
1

5 > ξ⋆
2

5 . (A.13)

In case 1, we can see that,

• µ̃({1})Û (1)({1}, ξ̄⋆1) > µ̃({1})Û (1)({1}, ξ̄⋆2) ,

• µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆1) > µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆2) ,

• µ̃({1, 3})Û (1)({1, 3}, ξ̄⋆1) > µ̃({1, 3})Û (1)({1, 3}, ξ̄⋆2) ,

• µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆1) > µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆2) ,

• µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄⋆1) > µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄⋆2) ,

• µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆1) > µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆2) ,

• µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄⋆1) > µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄⋆2) ,

• µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄⋆1) > µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄⋆2) ,

• µ̃({5})Û (5)({5}, ξ̄⋆1) < µ̃({5})Û (5)({5}, ξ̄⋆2) ,

• µ̃({2, 5})Û (5)({2, 5}, ξ̄⋆1) < µ̃({2, 5})Û (5)({2, 5}, ξ̄⋆2) ,

• µ̃({3, 5})Û (5)({3, 5}, ξ̄⋆1) < µ̃({3, 5})Û (5)({3, 5}, ξ̄⋆2) ,
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• µ̃({4, 5})Û (5)({4, 5}, ξ̄⋆1) < µ̃({4, 5})Û (5)({4, 5}, ξ̄⋆2) ,

• µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄⋆1) < µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄⋆2) ,

• µ̃({2, 4, 5})Û (5)({2, 4, 5}, ξ̄⋆1) < µ({2, 4, 5})Û (5)({2, 4, 5}, ξ̄⋆2) ,

• µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄⋆1) < µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄⋆2) , and

• µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄⋆1) < µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄⋆2) .

Now, using these inequalities, we can get the contradiction U (1)(ξ̄⋆
1
) > U (1)(ξ̄⋆

2
) =

U (5)(ξ̄⋆
2
) > U (5)(ξ̄⋆

1
).

In case 2, in (A.10), note that the relations between (i) ξ⋆
1

1 + ξ⋆
1

4 and ξ⋆
2

1 + ξ⋆
2

4 ,

(ii) ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

4 and ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

4 , and (iii) ξ⋆
1

1 + ξ⋆
1

3 + ξ⋆
1

4 and ξ⋆
2

1 + ξ⋆
2

3 + ξ⋆
2

4 are

unknown. In order to deal with this, we will consider all possible subcases. Consider

following conditions.

(S1) : ξ⋆
1

1 + ξ⋆
1

4 > ξ⋆
2

1 + ξ⋆
2

4

(S2) : ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

4 > ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

4

(S3) : ξ⋆
1

1 + ξ⋆
1

3 + ξ⋆
1

4 > ξ⋆
2

1 + ξ⋆
2

3 + ξ⋆
2

4 .

If S1 holds,

ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

5 < ξ⋆
2

2 + ξ⋆
2

3 + ξ⋆
2

5 .

If S2 holds, combined with the earlier inequalities for case 2, the following inequal-
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ities hold.

ξ⋆
1

3 + ξ⋆
1

5 < ξ⋆
2

3 + ξ⋆
2

5 ,

ξ⋆
1

1 + ξ⋆
1

4 > ξ⋆
2

1 + ξ⋆
2

4 ,

ξ⋆
1

2 + ξ⋆
1

4 > ξ⋆
2

2 + ξ⋆
2

4 ,

ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

5 < ξ⋆
2

2 + ξ⋆
2

3 + ξ⋆
2

5 ,

ξ⋆
1

1 + ξ⋆
1

3 + ξ⋆
1

5 < ξ⋆
2

1 + ξ⋆
2

3 + ξ⋆
2

5 .

If S3 holds, similarly,

ξ⋆
1

2 + ξ⋆
1

5 < ξ⋆
2

2 + ξ⋆
2

5 ,

ξ⋆
1

1 + ξ⋆
1

4 > ξ⋆
2

1 + ξ⋆
2

4 ,

ξ⋆
1

3 + ξ⋆
1

4 > ξ⋆
2

3 + ξ⋆
2

4 ,

ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

5 < ξ⋆
2

2 + ξ⋆
2

3 + ξ⋆
2

5 ,

ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

5 < ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

5 .

Note that if at least one of S2 and S3 holds, S1 is automatically satisfied.6

If S2 holds, the following inequalities hold.

• µ̃({3})Û (3)({3}, ξ̄⋆1) ≥ µ̃({3})Û (3)({3}, ξ̄⋆2) ,

• µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆1) > µ̃({1, 3})Û (3)({1, 3}, ξ̄⋆2) ,

• µ̃({2, 3})Û (3)({2, 3}, ξ̄⋆1) ≥ µ̃({2, 3})Û (3)({2, 3}, ξ̄⋆2) ,

• µ̃({3, 5})Û (3)({3, 5}, ξ̄⋆1) > µ̃({3, 5})Û (3)({3, 5}, ξ̄⋆2) ,
6This is because ξ⋆

1

2 ≤ ξ⋆
2

2 and ξ⋆
1

3 ≤ ξ⋆
2

3 .
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• µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄⋆1) > µ̃({1, 2, 3})Û (3)({1, 2, 3}, ξ̄⋆2) ,

• µ̃({1, 3, 5})Û (3)({1, 3, 5}, ξ̄⋆1) > µ̃({1, 3, 5})Û (3)({1, 3, 5}, ξ̄⋆2) ,

• µ̃({2, 3, 5})Û (3)({2, 3, 5}, ξ̄⋆1) > µ̃({2, 3, 5})Û (3)({2, 3, 5}, ξ̄⋆2) ,

• µ̃({1, 2, 3, 5})Û (3)({1, 2, 3, 5}, ξ̄⋆1) > µ̃({1, 2, 3, 5})Û (3)({1, 2, 3, 5}, ξ̄⋆2) ,

• µ̃({4})Û (4)({4}, ξ̄⋆1) < µ̃({4})Û (4)({4}, ξ̄⋆2) ,

• µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆1) < µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆2) ,

• µ̃({2, 4})Û (4)({2, 4}, ξ̄⋆1) < µ̃({2, 4})Û (4)({2, 4}, ξ̄⋆2) ,

• µ̃({4, 5})Û (4)({4, 5}, ξ̄⋆1) < µ̃({4, 5})Û (4)({4, 5}, ξ̄⋆2) ,

• µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄⋆1) < µ̃({1, 2, 4})Û (4)({1, 2, 4}, ξ̄⋆2) ,

• µ̃({1, 4, 5})Û (4)({1, 4, 5}, ξ̄⋆1) ≤ µ̃({1, 4, 5})Û (4)({1, 4, 5}, ξ̄⋆2) ,

• µ̃({2, 4, 5})Û (4)({2, 4, 5}, ξ̄⋆1) < µ̃({2, 4, 5})Û (4)({2, 4, 5}, ξ̄⋆2) , and

• µ̃({1, 2, 4, 5})Û (4)({1, 2, 4, 5}, ξ̄⋆1) ≤ µ̃({1, 2, 4, 5})Û (4)({1, 2, 4, 5}, ξ̄⋆2) .

Using the equality U (3)(ξ̄⋆
1
) = U (4)(ξ̄⋆

1
) and U (3)(ξ̄⋆

2
) = U (4)(ξ̄⋆

2
) at the equilibrium

and the above inequalities in the expression for U (3)(ξ̄⋆
1
), U (3)(ξ̄⋆

2
), U (4)(ξ̄⋆

1
), and

U (4)(ξ̄⋆
2
), we can get the contradiction U (3)(ξ̄⋆

1
) > U (3)(ξ̄⋆

2
) = U (4)(ξ̄⋆

2
) > U (4)(ξ̄⋆

1
).

If S3 holds, the following inequalities hold.

• µ̃({2})Û (2)({2}, ξ̄⋆1) ≥ µ̃({2})Û (2)({2}, ξ̄⋆2) ,

• µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆1) > µ̃({1, 2})Û (2)({1, 2}, ξ̄⋆2) ,
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• µ̃({2, 3})Û (2)({2, 3}, ξ̄⋆1) ≥ µ̃({2, 3})Û (2)({2, 3}, ξ̄⋆2) ,

• µ̃({2, 5})Û (2)({2, 5}, ξ̄⋆1) > µ̃({2, 5})Û (2)({2, 5}, ξ̄⋆2) ,

• µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄⋆1) > µ̃({1, 2, 3})Û (2)({1, 2, 3}, ξ̄⋆2) ,

• µ̃({1, 2, 5})Û (2)({1, 2, 5}, ξ̄⋆1) > µ̃({1, 2, 5})Û (2)({1, 2, 5}, ξ̄⋆2) ,

• µ̃({2, 3, 5})Û (2)({2, 3, 5}, ξ̄⋆1) > µ̃({2, 3, 5})Û (2)({2, 3, 5}, ξ̄⋆2) ,

• µ̃({1, 2, 3, 5})Û (2)({1, 2, 3, 5}, ξ̄⋆1) > µ̃({1, 2, 3, 5})Û (2)({1, 2, 3, 5}, ξ̄⋆2) ,

• µ̃({4})Û (4)({4}, ξ̄⋆1) < µ̃({4})Û (4)({4}, ξ̄⋆2) ,

• µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆1) < µ̃({1, 4})Û (4)({1, 4}, ξ̄⋆2) ,

• µ̃({3, 4})Û (4)({3, 4}, ξ̄⋆1) < µ̃({3, 4})Û (4)({3, 4}, ξ̄⋆2) ,

• µ̃({4, 5})Û (4)({4, 5}, ξ̄⋆1) < µ̃({4, 5})Û (4)({4, 5}, ξ̄⋆2) ,

• µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄⋆1) < µ̃({1, 3, 4})Û (4)({1, 3, 4}, ξ̄⋆2) ,

• µ̃({1, 4, 5})Û (4)({1, 4, 5}, ξ̄⋆1) ≤ µ̃({1, 4, 5})Û (4)({1, 4, 5}, ξ̄⋆2) ,

• µ̃({3, 4, 5})Û (4)({3, 4, 5}, ξ̄⋆1) < µ̃({3, 4, 5})Û (4)({3, 4, 5}, ξ̄⋆2) , and

• µ̃({1, 3, 4, 5})Û (4)({1, 3, 4, 5}, ξ̄⋆1) ≤ µ̃({1, 3, 4, 5})Û (4)({1, 3, 4, 5}, ξ̄⋆2) .

Using the equality U (2)(ξ̄⋆
1
) = U (4)(ξ̄⋆

1
) and U (2)(ξ̄⋆

2
) = U (4)(ξ̄⋆

2
) at the equilibrium

and the above inequalities in the expression for U (2)(ξ̄⋆
1
), U (2)(ξ̄⋆

2
), U (4)(ξ̄⋆

1
), and

U (4)(ξ̄⋆
2
), this yields the contradiction U (2)(ξ̄⋆

1
) > U (2)(ξ̄⋆

2
) = U (4)(ξ̄⋆

2
) > U (4)(ξ̄⋆

1
).

If none of S1,S2, and S3 holds, we have
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• µ̃({1})Û (1)({1}, ξ̄⋆1) > µ̃({1})Û (1)({1}, ξ̄⋆2) ,

• µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆1) > µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆2) ,

• µ̃({1, 3})Û (1)({1, 3}, ξ̄⋆1) > µ̃({1, 3})Û (1)({1, 3}, ξ̄⋆2) ,

• µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆1) ≥ µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆2) ,

• µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄⋆1) > µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄⋆2) ,b

• µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆1) ≥ µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆2) ,

• µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄⋆1) ≥ µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄⋆2) ,

• µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄⋆1) > µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄⋆2) ,

• µ̃({5})Û (5)({5}, ξ̄⋆1) < µ̃({5})Û (5)({5}, ξ̄⋆2) ,

• µ̃({2, 5})Û (5)({2, 5}, ξ̄⋆1) ≤ µ̃({2, 5})Û (5)({2, 5}, ξ̄⋆2) ,

• µ̃({3, 5})Û (5)({3, 5}, ξ̄⋆1) ≤ µ̃({3, 5})Û (5)({3, 5}, ξ̄⋆2) ,

• µ̃({4, 5})Û (5)({4, 5}, ξ̄⋆1) < µ̃({4, 5})Û (5)({4, 5}, ξ̄⋆2) ,

• µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄⋆1) ≤ µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄⋆2) ,

• µ̃({2, 4, 5})Û (5)({2, 4, 5}, ξ̄⋆1) < µ({2, 4, 5})Û (5)({2, 4, 5}, ξ̄⋆2) ,

• µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄⋆1) < µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄⋆2) , and

• µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄⋆1) < µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄⋆2) .
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By applying same approach, we can draw the contradiction U (1)(ξ̄⋆
1
) > U (1)(ξ̄⋆

2
) =

U (5)(ξ̄⋆
2
) > U (5)(ξ̄⋆

1
).

One remaining subcase is when S1 holds while S2 and S3 do not. Note that

the conditions S1, S2, and S3 are from unknown relations in (A.10). In the same

way, there are many other unknown relations in (A.11), (A.12), and so on. For

example, from (A.11), we can identify following similar conditions we work with.

(S4) : ξ⋆
1

2 + ξ⋆
1

5 > ξ⋆
2

2 + ξ⋆
2

5

(S5) : ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

5 > ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

5

(S6) : ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

5 > ξ⋆
2

3 + ξ⋆
2

3 + ξ⋆
2

5 .

In each case, by following similar steps, one can draw a contradiction except for one

remaining subcase (e.g., S4 holds while S5 and S6 do not). Now, we show that the

intersection of those remaining subcases yields a contradiction. The intersection of

subcases7 is

ξ⋆
1

1 + ξ⋆
1

4 > ξ⋆
2

1 + ξ⋆
2

4

ξ⋆
1

1 + ξ⋆
1

5 > ξ⋆
2

1 + ξ⋆
2

5

ξ⋆
1

2 + ξ⋆
1

4 > ξ⋆
2

2 + ξ⋆
2

4

ξ⋆
1

2 + ξ⋆
1

5 > ξ⋆
2

2 + ξ⋆
2

5

ξ⋆
1

3 + ξ⋆
1

4 > ξ⋆
2

3 + ξ⋆
2

4

ξ⋆
1

3 + ξ⋆
1

5 > ξ⋆
2

3 + ξ⋆
2

5

7The subcases are from U (1)(ξ̄⋆) = U (5)(ξ̄⋆), U (2)(ξ̄⋆) = U (4)(ξ̄⋆), U (3)(ξ̄⋆) = U (4)(ξ̄⋆),

U (1)(ξ̄⋆) = U (4)(ξ̄⋆), U (2)(ξ̄⋆) = U (5)(ξ̄⋆), and U (3)(ξ̄⋆) = U (5)(ξ̄⋆), where ξ̄⋆ is an equilibrium

mixed strategy.

143



ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

4 ≤ ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

4

ξ⋆
1

1 + ξ⋆
1

3 + ξ⋆
1

4 ≤ ξ⋆
2

1 + ξ⋆
2

3 + ξ⋆
2

4

ξ⋆
1

1 + ξ⋆
1

2 + ξ⋆
1

5 ≤ ξ⋆
2

1 + ξ⋆
2

2 + ξ⋆
2

5

ξ⋆
1

1 + ξ⋆
1

3 + ξ⋆
1

5 ≤ ξ⋆
2

1 + ξ⋆
2

3 + ξ⋆
2

5

ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

4 ≤ ξ⋆
2

2 + ξ⋆
2

3 + ξ⋆
2

4

ξ⋆
1

2 + ξ⋆
1

3 + ξ⋆
1

5 ≤ ξ⋆
2

2 + ξ⋆
2

3 + ξ⋆
2

5 . (A.14)

Given two mixed strategies ξ̄1 and ξ̄2, define

∆(C, ξ̄1, ξ̄2) = µ̃(C) |Û (i)(C, ξ̄1)− Û (i)(C, ξ̄2)| , (A.15)

where C ⊂ P and i ∈ C. Note that the right hand side of (A.15) is the same for all

i ∈ C.8

Rewriting (A.10) with ξ̄⋆
1
, we have

µ̃({1})Û (1)({1}, ξ̄⋆1) + µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆1) + µ̃({1, 3})Û (1)({1, 3}, ξ̄⋆1)

+µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆1) + µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄⋆1)

+µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆1) + µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄⋆1)

+µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄⋆1)

= µ̃({5})Û (5)({5}, ξ̄⋆1) + µ̃({2, 5})Û (5)({2, 5}, ξ̄⋆1) + µ̃({3, 5})Û (5)({3, 5}, ξ̄⋆1)

+µ̃({4, 5})Û (5)({4, 5}, ξ̄⋆1) + µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄⋆1)

+µ̃({2, 4, 5})Û (5)({2, 4, 5}, ξ̄⋆1) + µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄⋆1r)

+µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄⋆1) . (A.16)

8This is because Û (i1)(C, ξ̄) = Û (i2)(C, ξ̄) for any i1, i2 ∈ C.
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and similarly with ξ̄⋆
2
,

µ̃({1})Û (1)({1}, ξ̄⋆2) + µ̃({1, 2})Û (1)({1, 2}, ξ̄⋆2) + µ̃({1, 3})Û (1)({1, 3}, ξ̄⋆2)

+µ̃({1, 4})Û (1)({1, 4}, ξ̄⋆2) + µ̃({1, 2, 3})Û (1)({1, 2, 3}, ξ̄⋆2)

+µ̃({1, 2, 4})Û (1)({1, 2, 4}, ξ̄⋆2) + µ̃({1, 3, 4})Û (1)({1, 3, 4}, ξ̄⋆2)

+µ̃({1, 2, 3, 4})Û (1)({1, 2, 3, 4}, ξ̄⋆2)

= µ̃({5})Û (5)({5}, ξ̄⋆2) + µ̃({2, 5})Û (5)({2, 5}, ξ̄⋆2) + µ̃({3, 5})Û (5)({3, 5}, ξ̄⋆2)

+µ̃({4, 5})Û (5)({4, 5}, ξ̄⋆1) + µ̃({2, 3, 5})Û (5)({2, 3, 5}, ξ̄⋆2)

+µ̃({2, 4, 5})Û (5)({2, 4, 5}, ξ̄⋆1) + µ̃({3, 4, 5})Û (5)({3, 4, 5}, ξ̄⋆2r)

+µ̃({2, 3, 4, 5})Û (5)({2, 3, 4, 5}, ξ̄⋆2) . (A.17)

By subtracting the left hand side (resp. right hand side) of (A.16) from the left

hand side (resp. right hand side) of (A.17) and using the inequalities in (A.14) and

the definition in (A.15), we get

∆({1, 4}, ξ̄⋆1 , ξ̄⋆2)−∆({1}, ξ̄⋆1 , ξ̄⋆2)−∆({1, 2}, ξ̄⋆1 , ξ̄⋆2)−∆({1, 3}, ξ̄⋆1 , ξ̄⋆2)

−∆({1, 2, 3}, ξ̄⋆1 , ξ̄⋆2)−∆({1, 2, 4}, ξ̄⋆1 , ξ̄⋆2)−∆({1, 3, 4}, ξ̄⋆1 , ξ̄⋆2)

−∆({1, 2, 3, 4}, ξ̄⋆1 , ξ̄⋆2) (A.18)

= ∆({5}, ξ̄⋆1 , ξ̄⋆2) + ∆({2, 5}, ξ̄⋆1 , ξ̄⋆2) + ∆({3, 5}, ξ̄⋆1 , ξ̄⋆2) + ∆({4, 5}, ξ̄⋆1 , ξ̄⋆2)

+∆({2, 4, 5}, ξ̄⋆1 , ξ̄⋆2) + ∆({3, 4, 5}, ξ̄⋆1 , ξ̄⋆2) + ∆({2, 3, 4, 5}, ξ̄⋆1 , ξ̄⋆2)

−∆({2, 3, 5}, ξ̄⋆1 , ξ̄⋆2) . (A.19)
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Performing a similar procedure with (A.11) (instead of (A.10) above), we obtain

∆({2, 5}, ξ̄⋆1 , ξ̄⋆2)−∆({2}, ξ̄⋆1 , ξ̄⋆2)−∆({1, 2}, ξ̄⋆1 , ξ̄⋆2)−∆({2, 3}, ξ̄⋆1 , ξ̄⋆2)

−∆({1, 2, 3}, ξ̄⋆1 , ξ̄⋆2)−∆({1, 2, 5}, ξ̄⋆1 , ξ̄⋆2)−∆({2, 3, 5}, ξ̄⋆1 , ξ̄⋆2)

−∆({1, 2, 3, 5}, ξ̄⋆1 , ξ̄⋆2) (A.20)

= ∆({4}, ξ̄⋆1 , ξ̄⋆2) + ∆({1, 4}, ξ̄⋆1 , ξ̄⋆2) + ∆({3, 4}, ξ̄⋆1 , ξ̄⋆2) + ∆({4, 5}, ξ̄⋆1 , ξ̄⋆2)

+∆({1, 4, 5}, ξ̄⋆1 , ξ̄⋆2) + ∆({3, 4, 5}, ξ̄⋆1 , ξ̄⋆2) + ∆({1, 3, 4, 5}, ξ̄⋆1 , ξ̄⋆2)

−∆({1, 3, 4}, ξ̄⋆1 , ξ̄⋆2) . (A.21)

Denote the values of (A.18) and (A.20) by ∆⋆
1 and ∆⋆

2, respectively. Note that, since

we assume that ξ⋆
1

1 < ξ⋆
2

1 , ξ⋆
1

5 > ξ⋆
2

5 , and µ̃({i}) > 0 for all i ∈ P , we have

∆({1}, ξ̄⋆1 , ξ̄⋆2) > 0 and ∆({5}, ξ̄⋆1 , ξ̄⋆2) > 0 . (A.22)

We will now proceed to show that if (A.18) is either strictly positive or negative,

this leads to a contradiction.

Case (i): If ∆⋆
1 ≥ 0, we see that ∆({1, 4}, ξ̄⋆1 , ξ̄⋆2) > ∆({1, 3, 4}, ξ̄⋆1 , ξ̄⋆2) from

(A.18) and ∆({1}, ξ̄⋆1 , ξ̄⋆2) > 0 from (A.22). By comparing (A.18) and (A.21), we

can get ∆⋆
2 > ∆⋆

1 ≥ 0. In this case, since ∆⋆
2 > 0, from (A.20), ∆({2, 5}, ξ̄⋆1 , ξ̄⋆2) >

∆({2, 3, 5}, ξ̄⋆1 , ξ̄⋆2) as remaining terms are less than or equal to 0. Then, by com-

paring (A.19) and (A.20), we can show that ∆⋆
1 > ∆⋆

2 because ∆({5}, ξ̄⋆1 , ξ̄⋆2) > 0

from (A.22). This contradicts the earlier finding that ∆⋆
2 > ∆⋆

1.

Case (ii): If ∆⋆
1 < 0, we see that ∆({2, 5}, ξ̄⋆1 , ξ̄⋆2) < ∆({2, 3, 5}, ξ̄⋆1 , ξ̄⋆2) from

(A.19). Then, from (A.20) and the condition ∆({5}, ξ̄⋆1 , ξ̄⋆2) > 0 in (A.19), we can

get 0 > ∆⋆
1 > ∆⋆

2. In this case, since ∆⋆
2 < 0, from (A.21), ∆({1, 4}, ξ̄⋆1 , ξ̄⋆2) <
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∆({1, 3, 4}, ξ̄⋆1 , ξ̄⋆2). Then, by comparing (A.18) and (A.21), we conclude ∆⋆
2 > ∆⋆

1.

This contradicts the earlier finding that ∆⋆
1 > ∆⋆

2.
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Appendix B

Variables and functions

Table B.1: Variables and functions defined in Section 7.1 (1)

Variable or Function Definition

DT N ·KT

B PN

B (Bj; j ∈ S), where Bj the seller chosen by buyer j

Si(B) {j ∈ S | Bj = i} ⊂ S

π(l)(t) l-th highest contributions (l = 1, 2, . . . , DT )

πj·(tj) {πj,k(tj); k = 1, 2, . . . , KT}

Π̃t {πj·(tj); j ∈ S}

Πt (π(k)(t); k = 1, 2, . . . , DT )

Π̃i
t(B) {πj·(tj); j ∈ Si(B)}

Πi
t(B) order statistics of Π̃i

t(B)

Πt(B) {Πi
t(B); i ∈ P}

H(t) {Πt(b); b ∈ B}
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Table B.2: Variables and functions defined in Section 7.1 (2)

Variable or Function Definition

π ∈ H(t) (π1, π2, . . . , πM)

πi ordered contributions of the buyers that choose seller i

bt(π)(π ∈ H(t)) vector that tells the selected sellers of the buyers

νt distribution over the set H(t)

Ψπ(C)(⊂ Π̃t) set of winning contributions in a coalition C ⊂ P

ζ(C, π) sum of the winning contributions of coalition C

Φπ(C) set of sellers’ values of the unsold frequency bands

in the coalition C

λ(C, π)
∑

x∈Φπ(C) x

m⋆
C |Ψπ(C)|

K(C)
∑

i∈C Ki
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Table B.3: Variables and functions defined in Section 7.2 and 7.3

Variable or Function Definition

ik(t,b) seller i whose Πi
t(b) contains π(k)(t)

īvk seller who has the value V
(k)
0 for one of its frequency bands

W T × B

νW distribution over the set W

r
(g)
t (w)(w ∈ W) total profit of the grand coalition

r
(g)
i (w)(w ∈ W) received profit of the seller i ∈ P in the grand coalition

r
(s)
i (w)(w ∈ W) profit the seller i can make in separate auction

v̄i(w)(w ∈ W) seller i’s total value of the sold items

under the grand coalition

V̄ i seller i’s total value of all items

W (k) subset of W assigned the number k

Λk set of sellers who receive share of the revenue

Ψ
(i)
1 {k ∈ {1, 2, . . . , 2M} | i /∈ Λk}

Ψ
(i)
2 {k ∈ {1, 2, . . . , 2M} | Λk = {i}}

Ψ
(i)
3 {1, 2, . . . , 2M} \

(
Ψ

(i)
1 ∪Ψ

(i)
2

)
Rk

∫
w∈W(k) r

(g)
t (w)dνW(w)
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