
#### Abstract

Title of Document: USING STATISTICAL METHOD TO REVEAL BIOLOGICAL ASPECT OF HUMAN DISEASE: STUDY OF GLIOBLASTOMA BY USING COMPARATIVE GENOMIC HYBRIDIZATION (CGH) METHOD


Yonghong Wang, MS, 2010
Directed By: Dr. Paul Smith, Mathematics Department

Glioblastoma is a WHO grade IV tumor with high mortality rate. In order to identify the underlying biological causation of this disease, a comparative genomic hybridization dataset generated from 170 patients' tumor samples was analyzed. Of many available segmentation algorithms, I focused mainly on two most acceptable methods: Homogeneous Hidden Markov Models (HHMM) and Circular Binary Segmentation (CBS). Simulations show that CBS tends to give better segmentation result with low false discovery rate. HHMM failed to identify many obvious breakpoints that CBS identified. On the other hand, HHMM succeeds in identifying many single probe aberrations.

Applying other statistical algorithms revealed distinct biological fingerprints of Glioblastoma disease, which includes many signature genes and biological
pathways. Survival analysis also reveals that several segments actually correlate to the extended survival time of some patients.

In summary, this work shows the importance of statistical model or algorithms in the modern genomic research.

# USING STATISTICAL METHOD TO REVEAL BIOLOGICAL ASPECT OF HUMAN DISEASES: STUDY OF GLIOBLASTOMA BY USING COMPARATIVE GENOMIC HYBRIDIZATION (CGH) METHOD 

By<br>Yonghong Wang, Ph.D

Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2010

Advisory Committee:
Professor Paul Smith, Chair
Dr. Paul Meltzer
Professor Eric Slud
© Copyright by
Yonghong Wang

## Acknowledgements

First of all, I would like to thank Dr. Paul Smith for leading me through this thesis writing process, especially for all his advises for the paper.

In the mean time, I would also give my thankfulness to my supervisor, Dr. Paul Meltzer. During the last several years, I have received all kind of supports as well as helps. Without his support, it is basically impossible for me to get to this stage of my study.

I would also like to thank all the faculty members at Mathematics Department of University of Maryland, including Dr. Slud and Dr. Smith. With their help, I have learnt some new knowledge that will be definitely helpful in my scientific career.

It has been more than 15 years since I got my Ph.D in Chemistry. It is always a big challenge for me to go back to the classroom. Without the encouragement and help from my family, it is impossible for me to become a student again. I will give my thanks to my wife and two lovely boys. Thanks them for always with me.

## Table of Contents

Acknowledgements ..... ii
Table of Contents ..... iii
List of Figures ..... v
List of Tables ..... x
Chapter 1: Introduction ..... 1
Chapter 2: Experiment and collected data structure ..... 4
2.1 Experiments ..... 4
2.2 Data Structure ..... 6
2.3 Data processing and analyzing method. ..... 7
Chapter 3: Literature Review ..... 8
3.1 Copy number variation ..... 8
3.2 segmentation methods ..... 9
3.2.1 Homogeneous Hidden Markov Models (HHMM) ..... 10
3.2.2 Heterogeneous Hidden Markov Models (BioHMM). ..... 11
3.2.3 Circular Binary Segmentation (CBS) method ..... 12
3.2.4 Gain and Loss Analysis of DNA (GLAD) method. ..... 13
3.2.5 Cluster Along Chromosomes (CLAC) method. ..... 14
3.2.6 Bayesian model ..... 15
3.2.7 Comparisons of different segmentation methods ..... 16
3.3 Segment merging methods ..... 17
3.4 Centering methods ..... 19
3.5 Chromosome Gains and Losses assignment ..... 20
3.6 Literature review of the molecular biology background for Glioblastoma disease ..... 21
Chapter 4: Data simulation ..... 23
Chapter 5: Data processing and analyzing ..... 28
5.1 Raw data. ..... 29
5.2 Quality control (QC) analysis ..... 29
5.3 Background subtraction ..... 33
5.4 Combination of intensities ..... 34
5.5 Segmentation and Merging ..... 34
5.6 Centering ..... 38
Chapter 6: Experimental results ..... 40
6.1 Breakpoint identification of HHMM and CBS methods ..... 40
6.2 Segment analysis. ..... 45
6.2.1 Frequency analysis of copy number variation ..... 46
6.3 Functional impact of candidate genes or related pathways in the development of Glioblastoma tumor ..... 50
6.4 Genes that show significant variation in individual patients ..... 55
6.5 Survival analysis ..... 57
6.6 Fisher exact test. ..... 64
Chapter 7 Discussion ..... 66
Appendix A Supplementary Tables and Figures ..... 70
Appendix B R code for data processing ..... 100
Glossary and abbreviation. ..... 103
Bibliography ..... 106

## List of Figures

Figure 1.1 Chromosome spread and the karyotypes stained by the G-banding method. Chromosomes shown here are from a normal male.

Figure 2.1.1 Schematic description of array CGH experiments. First the sample genomic DNA is isolated from patients' tissue samples (in this study, glioblastoma tumor) and then fragmented to yield the desirable around 200 bp short DNA population. The reference genomic DNA purchased from commercial sources is also processed in the similar way. After then, both the fragmented tumor DNA and the reference DNA are labeled with Cy 5 and Cy 3 dyes respectively and the mixture of these two samples is hybridized onto the human genome CGH 244 k chip, which is followed by the scanning procedure. Cy5 and Cy3 dyes can generate red and green light, respectively, upon the excitation by laser light, and the intensities of the two dyes of all features are measured for further data analysis.

Figure 3.4.1 Genome aberration of Small Cell Lung Cancer samples shows the highly aberrant patterns across the whole genome. The $y$-axis represents the $\log _{2}$ (Ratio) values of all probes and the black dotted line indicates the predicted segment values.

Figure 4.1 Density plot of the simulated $\log _{2}$ (Ratio) from all 170 simulated sample set. The left panel represents the simulated "observed" $\log _{2}$ (Ratio) and the right panel represents the "true" copy number variation.

Figure 4.2 Comparison of HHMM (read color) and CBS (blue color) segmentation methods using simulated data set. The top two figures show the false discovery rate of similarly simulated data set but with different sample size (sample size number 20 vs 170). The two panels below indicate the false discovery rate of the two segmentation methods from the simulated data sets with the same sample
sizes (samp le numbers are 20) and different data quality (standard deviations 0.1 and 1 respectively).

Figure 5.1 Array CGH data processing procedures. After segmentation, the data are processed using HHMM and CBS separately. QC represents "Quality Control" analysis.

Figure 5.2.1 The relations between DLRs and the noise level in the array CGH experiments. The upper figure shows the probe expression levels for one array CGH experiment with very high DLRs value. This figure is generated based on real data set from different study. Clearly no chromosome aberration patterns can be observed if they exist. On the contrary, for the array CGH data with low DLRs illustrated in the lower figure, we can see clear chromosome gains and losses patterns across the whole genome. The yellow line represents the "center" or baseline. The black line represents the segments values for individual segments.

Figure 5.2.2 data quality metrics and their value information from all hybridizations used in this study. The $y$-axis values are $\log _{10}$ scaled. Since there are two color channels (Green and red for two samples, tumor and reference, separately), the qualities of each channel are accessed independently except for the DLRspread. The reproducibility values shown here are the percentage values.
-••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 33
Figure 5.5.1 Boxplot of segmentation numbers result from HHMM and CBS methods before and after merging steps.

Figure 5.5.2 Density plot of segmented values after performing merging steps for sample TCGA-02-0001. The x -axis represents the $\log _{2}$ (Ratio) values of all probes after performing the merging. From these two figures, we can see that the general patterns of the density plots generated from HHMM and CBS segmentation methods are quite similar, even though we can still see subtle differences between them.

Figure 5.6.1 $\log _{2}$ (Ratio) values of the modes of the density plots from all 170 patients samples (CBS segmentation methods). For most of the hybridizations, the mode
of the density plot is shifted quite far from value and need to be adjusted accordingly.

Figure 5.6.2 comparison of density plots before and after centering for one specific patient sample TCGA-02-0001. The left figure shows the density plot before the centering, and the right figure shows the density plot after the shift.
-••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 39
Figure 6.1.1 Breakpoint identification by using CBS and HHMM algorithms. Only two typical patient samples are displayed here, with only chromosome 11 for sample TCGA-02-0037 and chromosome 17 for sample TCGA-02-0038. Panels (A) and (C) are generated based on the CBS algorithm, and (B) and (D) are based on HHMM segmentation method. For the CBS algorithm, significant copy number loss at position around 40 Mb is clearly identified in (A), while for the HHMM method, this segment is missing in B). On the contrary, the HHMM algorithm identify many single probe aberration in (D), while CBS algorithm failed to do so as shown in (C).

## ono.

Figure 6.1.2 Density plots of all segment lengths (without merging) from both CBS and HHMM segmentation methods. The segments lengths are $\log _{2}$ transformed. The mode of the segments lengths densities of CBS segmentation methods are around 20 to 25 , while as for the HHMM segmentation method, this mode is around 15 to 20 .

Figure 6.1.3 Density of $\log _{2}$ (Ratio) of all single probe aberration segments. All the predicted $\log _{2}$ (Ratio) values are from centralized segments. For the CBS algorithm, only four segments are single probe aberrations. But for the HHMM algorithm, 102,580 single probe segments are identified. Most of the segments have relatively small predicted $\log _{2}$ (Ratio) values.

Figure 6.1.4 Density plots of all segments lengths ( $\log _{2}$ transformed) from segments with copy number variation. The cutoff thresholds for the predicted segmentation values are $1.5 x$ DLRs. Many segments with big length are identified in the CBS algorithm while HHMM segmentation method tends to find the small segments.

Figure 6.2.1 Frequency plots of all segments from 170 patients samples. Top figure generated based on CBS segmentation algorithm, and bottom figure based on HHMM segmentation methods.

Figure 6.2.2 Frequency plot of all segments from 24 normal tissue samples. The segmentation is based on CBS algorithm. For the HHMM segmentation algorithm, a similar result was obtained.

Figure 6.5.1 Typical Kaplan-Meier plots of survival analysis results based on the genes or segments with amplified copy number aberration based on the CBS segmentation analyzing result. In the figures, the $y$-axis represents the survival probability and the $x$-axis represents the survival time in months. In the legend, "change" represents that the specific gene or segment has amplified copy numbers and "no change" indicates no copy number aberration observed for this specific gene or segments in the patient sample. Here only show part of the Kaplan-Meier plots, but the rest plots are quite similar.
-•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••62
Figure 6.5.2 Typical Kaplan-Meier plots of survival analysis results based on the genes or segments with deleted copy number aberration based on the CBS segmentation analyzing result. In the figures, the $y$-axis represents the survival probability and the x -axis represents the survival time in months. In the legend, "change" represents that the specific gene or segment has amplified copy numbers and "no change" indicate no copy number aberration observed for this specific gene or segments in the patient sample. Here only show part of the Kaplan-Meier plots, but the rest plots are quite similar.

Figure 6.6.1 Fisher exact test based on the CBS segmentation result. Top figure is derived from the genes with copy number gains and the lower figure is from those genes with copy number deletion. Genes are grouped based on the same adjusted p value, and each group is located on the same segment. The $\log 2$ transformed adjusted p values (less than 0.05 ) are plotted against the cytobands shown as above.

Figure $\mathrm{S} 5.6 .1 \log _{2}$ (Ratio) values of the modes of the density plots from all 170 patients samples (HHMM segmentation method). For most of the hybridizations, the mode of the density plot shifts quite away from zero value and need to be adjusted accordingly.

## List of Tables

Table 2.1.1: Summarized information for all 170 patients used in this study. The WHO categories for all patients are grade IV and the median survival rate is approximately one year as states in the published paper (TCGA 2008). All the date information is relative to the zero date when patients seek treatment. The "AGE at DIAGNOSIS" indicates patient's age at initial pathologic diagnosis. "Day to progression" stands for "days to tumor progression", and "Day to recurrence" for "days to tumor recurrence". There are two vital status columns available in the table. The discrepancy is due to the inconsistent information from published paper (TCGA 2008) and the TCGA website (http://tcgadata.nci.nih.gov/tcga/homepage.htm).

Table 3.1.1 the relations of copy number variation with the observed $\log _{2}$ (Ratio) in the idealized situation of the diploid genome. In this study, we assume that the reference sample has a perfect diploid genome that is represented by "AA" in the denominator position. The numerator positions represent the ploidy situations of individual sample (or segments within the chromosome regions). For instance, " 00 ", stand for homozygous deletions and "A" indicates that only one copy of the diploid segment remains, which suggest heterozygous deletion. "AA" at the numerator shows no copy number changes, "AAA" indicates one copy gain and "AAAA" indicated 2 copy number gains. It is possible to have multiple copy number gains for some genes or segments.

Table 5.2.1 DLRs values for all hybridizations from 170 patients tumor samples

Table 5.2.2 Manufacturer's recommended QC guidelines for the array CGH platform.

Table 6.2.1 Segmentation result generated based on CBS segmentation algorithm. All
the segments have frequencies at least $25 \%$ of all 170 patients samples

Table 6.3.1 Gene information discussed in this section. In the column of Gene Oncology biological process, only partial GO terms are listed. All these GO terms are
annotated based on Affymetrix gene chip annotation table downloaded from Affymetrix website (http://www.affymetrix.com).

Table 6.4.1 Partial gene list that have either more than 4 folds gains or homozygous deletions with $\log 2$ (Ratio) values more than 2 in at least 9 or 10 patients' samples

Table 6.5.1 Survival analysis of segments with amplified copy number aberration based on the CBS segmentation result. Only segments with p value less than 0.001 are shown here. Due to space limitation, for some segments, only a partial gene list is shown. The segment information generate here is different from the segments from CGH segmentation. For each individual gene a log rank test was performed, and then all the gene on the same chromosome, located near each other, and most importantly having the exact same gain and no change patterns across all 170 samples (so with the same p value) are combined together to generate this table.

Table 6.5.2 Survival analysis of segments with deleted copy number aberration based on the CBS segmentation result. Only segments with p value less than 0.005 are shown here. Due to space limitation, for some segments, only partial gene list is shown. Similar to table 6.5.1, the segments information generate here is different to the segments from CGH segmentation. A log rank test is performed on each individual gene; then all the genes on the same chromosome, located near each other, and most importantly having the exact same deletion and no change patterns across all 170 samples (so with the same p value) are combined together to generate this table.

Table S2.1.1 Detailed patients' information downloaded from public available sources. Due to descripancy of two difference data sources, there are two vital status of each patient.

Table S5.2.1 QC parameters and their value information from all hybridizations used in this study. Since there are two color channels (Green and red for each sample, including both tumor and reference), the qualities of each channel are accessed independently except for the DLRspread. The reproducibility values shown here are the percentage values.

Table S5.5.1 Segment numbers before and after merging processes for both CBS and HHMM segmentation methods. Both CBS merged and HHMM merged represent numbers after merging while as CBS and HHMM represent numbers before the merging.

Table S6.1.1 Single probe segments with absolute predicted $\log 2$ (Ratio) great than one identified by using HHMM segmentation algorithm.
$\bullet \bullet 84$
Table S6.4.1 Genes that have at least four folds aberrations in at least one patient tumor sample. Count for the last column indicates the sample numbers that specific genes being identified having big aberrations

## Chapter 1: Introduction

Cancer is a class of diseases in which a group of cells display uncontrolled growth, invasion, and sometimes metastasis (http://en.wikipedia.org/wiki/Cancer). More than 200 different types of cancers have been identified so far and all these cancers account for $13 \%$ of all human deaths across the whole world.

Cancer could start from any tissue of human body, and many factors have been found to contribute to the development of the disease. These include environmental factors (pollution, smoking, food, ultraviolet radiation from the sun, et al.), genetic factors, as well as other factors such as infections from viruses. Genetically, the direct consequences of the effects of all these factors are the alteration of genetic information including the uncontrolled gene expression of the oncogenes or inhibition of the activity of tumor suppression genes.

The human genome contains 23 pairs of chromosomes with 22 pairs of autosomal chromosomes and 1 pair of sex chromosomes (XX for female and XY for male). There are about 3 billion base pairs of nucleotides for the entire human genome, which contains about 20-30 thousands protein-encoding genes. In fact, only $1.5 \%$ of the entire human genome sequence encodes protein-coding information, while the function of most of the remaining sequence remains unknown.

Cancer is the result of the accumulation of multiple genetic changes (Armitage and Doll 1954), which potentially become cytogenetically visible with the development of the cancer. Comparative Genomic Hybridization (CGH) is the study of chromosome aberrations and their correlations to human diseases. The common tumor chromosome aberrations are generally classified as numerical and structural.

Numerical aberration mainly involves the changes of chromosome numbers (Aneuploidy) and it is believed that some cancers are involved in the aneuploidy (Sen 2000). Structure aberration refers to copy number variations (copy number gains or losses) of some segments of chromosomes. Many tumors have shown to be related to chromosome aberration, for instance renal cell carcinoma (chromosome positions 3p13-21) (Mulshine, et al. 1988), lung adenocarcinoma (chromosome positions 3p1323) (Mulshine, et al. 1988), etc.

Traditionally, due to the limitation of human genome sequence information, staining has been the main method to study the karyotypes of human genome, usually using dyes, such as Giemsa, which results in the G-banding method. For this method, chromosomes are first stained by Giemsa and then followed by digestions with trypsin. In this way, the chromosomes show a series of lightly and darkly stained bands (Figure 1.1). The dark regions tend to be heterochromatic, late-replicating and AT rich, and the light regions are euchromatic, early replicating and GC rich. Usually G-banding can produce 300-400 bands in a normal human genome, with the average resolution around 10M base pairs (bp). FISH or Fluorescence In-Situ Hybridization is a rapid reliable technique in molecular cytogenetics (Celep, Karaguzel, Ozgur and Yildiz 2003) and can be used to identify isolated abnormal cells among a large group of normal cells. It is also a method to locate a specific gene on the chromosome or to study translocations of a known gene. As with G-banding methods to detect genomic variation, the main problems of FISH are also slowness, low throughput and low resolution.


Figure 1.1 Chromosome spread and the karyotypes stained by the G-banding method. Chromosomes shown here are from a normal male.

Array-based comparative genomic hybridization (aCGH) is similar to the traditional karyotyping methods but with the advantages of high throughput and high resolution. For this method, hundreds of thousands of oligonucleotides based on human genome sequences are spotted on an area of roughly $1 \mathrm{~cm}^{2}$ on a 1 "x 3 " glass slide and tumor and reference samples labeled with different dyes are hybridized to the chip. Genomic gains and losses can be analyzed genome widely by comparing sample genomic DNA (in our case, tumor samples) to reference genomic DNA sample in one experiment; this will be discussed in detail in the experimental section.

The ultimate goal of this thesis is to study the underlying causes in the genomic level of human cancer Glioblastoma by using the array CGH method. Since we are dealing with millions of data points, in order to get more reliable biological results, we will apply various statistical methods to process the data set and compare the results generated by these methods.

# Chapter 2: Experiment and collected data structure 

### 2.1 Experiments

All the data used are downloaded from the Cancer Genome Atlas ("cancergenome.nih.gov"). The Agilent array platform - Human Genome CGH 244k chip - is used in this study. On each chip, 244,000 probes are spotted with 236,000 distinct biological features. There are also 1000 replicated biological features and 5045 internal quality control features. Each feature represents one 60 mer oligonucleotide designed based on human genome sequence. The average distance on the chromosomes between two features is about 6.4 kb . Brain Glioblastoma samples collected from 170 patients were analyzed by CGH at Broad Institute/Dana-Farber Cancer Institute. In addition, 24 normal samples were analyzed by CGH at Broad Institute and this data set is used as control in this analysis. Table 2.1.1 lists brief clinical information about the 170 patients. Detailed sample information can be obtained from the published paper (TCGA 2008) (also see supplementary file Table S2.1.1. For the array CGH experiment (hybridization), individual patient's genomic DNA and a common reference genomic DNA are labeled with two different fluorescence dyes (which emit red and green light after laser ignition) and hybridized to the Human Genome CGH 244k chips. Figure 2.1 .1 shows the brief procedures to perform the CGH experiment.

| total patients with tumor | 170 |
| :---: | :---: |
| gender | FEMALE: 67; MALE:103 |
| pretreatment history | No: 148; Yes: 19 |
| histological type | Treated primary GBM: 15; Untreated primary (De Nova) GBM:154 |
| vital status1 | DECEASED:159; LIVING: 10 |
| vital status2 | ALIVE: 15; DEAD: 155 |
| days to birth | Min.: -31627; Q1: -24502; Median: -20931; Mean: -20375; Q3: -17080; Max.: -5303; NA's: 1 |
| days to death | Min.: 8.0; Q1: 209.0; Median: 370.0; Mean: 516.7; Q3: 597.0; Max.: 3040.0; NA's: 11.0 |
| days to last follow up | Min.: 3.0; Q1: 161.0; Median: 357.0; Mean: 519.6; Q3:578.0; Max.: 3040.0; NA's: 1.0 |
| age at diagnosis | Min.: 14.00; Q1:46.00; Median: 57.00; Mean: 55.32; Q3: 67.00; Max.: 86.00; NA's: 1.00 |
| day to progression | Min.: -1409.0; Q1: 88.0; Median: 183.0; Mean: 269.1; Q3: 334.0; Max.: 2339.0; NA's: 61.0 |
| days to recurrence | Min.: 7.0; Q1: 113.0; Median: 283.0; Mean: 523.7; Q3: 524.0; Max.: 2296.0; NA's: 144.0 |
| secondary or recurrent | No: 149; Rec: 16; Sec: 5 |
| race | AMERICAN INDIAN OR ALASKAN NATIVE: 1 ; ASIAN: 1 ; BLACK OR AFRICAN AMERICAN: 2; UNK: 88; WHITE: 78 |
| age at procedure | Min.: 15.00; Q1.: 47.00; Median: 57.00; Mean: 55.68; Q3: 66.50; Max.: 86.00; NA's: 3 |
| age at death | Min.:15.00; Q1: 49.25; Median: 58.00; Mean: 56.82; Q3: 68.00; Max.: 87.00; |

Table 2.1.1: Summarized information for all 170 patients used in this study. The WHO categories for all patients are grade IV and the median survival rate is approximately one year as states in the published paper (TCGA 2008). All the date information is relative to the zero date when patients seek treatment. The "AGE at DIAGNOSIS" indicates patient's age at initial pathologic diagnosis. "Day to progression" stands for "days to tumor progression", and "Day to recurrence" for "days to tumor recurrence". There are two vital status columns available in the table. The discrepancy is due to the inconsistent information from published paper (TCGA 2008) and the TCGA website (http://tcgadata.nci.nih.gov/tcga/homepage.htm).


Figure 2.1.1 Schematic description of array CGH experiments. First the sample genomic DNA is isolated from patients' tissue samples (in this study, glioblastoma tumor) and then fragmented to yield the desirable around 200 bp short DNA population. The reference genomic DNA purchased from commercial sources is also processed in the similar way. After then, both the fragmented tumor DNA and the reference DNA are labeled with Cy5 and Cy3 dyes respectively and the mixture of these two samples is hybridized onto the human genome CGH 244k chip, which is followed by the scanning procedure. Cy5 and Cy3 dyes can generate red and green light, respectively, upon the excitation by laser light, and the intensities of the two dyes of all features are measured for further data analysis.

### 2.2 Data Structure

After hybridization, the chip is scanned and the intensities of red and green colors as well as the corresponding background intensities for each spot are recorded. The $\log _{2}$ transformed Ratio of the two background-subtracted fluorescent dyes of the same probe was used to detect the copy number variations for this probe or feature.

As mentioned above, each chip (from each patient out of a total 170 patients) could yield 236 k distinct data sets (each set includes Cy 3 and Cy 5 intensities, the corresponding backgrounds, as well as other data information). In addition, there are also another 24 normal samples from 24 patients. But only four patients have both tumor samples and normal samples in our analyzed data set. Each sample (tumor or normal) is used to perform hybridization on the chip and the collected data sets are used for data processing and analysis.

### 2.3 Data processing and analyzing method

The data processing mainly relies on the R software "BioConductor" packages (www.bioconductor.org). Specifically, for the CGH part, the "snapCGH" package developed by Smith (Smith 2006) was used. For the survival analysis, "survival" package developed by Therneau (Terry Therneau 2009) and "KMsurve" package by Yan (Yan 2010) were used. The main codes for these analyses are listed as supplementary file. Many other R packages were also being called in the above individual package in order for the full functioning. These R packages include LIMMA (Gordon K. Smyth 2010), and aCGH (Willenbrock and Fridlyand 2005). Another powerful computation tool used in the data processing is Perl scripts and other R functions. Occasionally other commercially available software such as "NEXUS" is used, mainly for presentation purposes.

## Chapter 3: Literature Review

### 3.1 Copy number variation

Array CGH is a high throughput technology to study the chromosome aberration of target samples. Specifically, suitable segmentation methods are used to identify the breakpoint of the DNA copy numbers and to assign gains, losses or no change to all segments based on the $\log _{2}$ (Ratio) and the cutoff criteria applied. For diploid cells, there are $2 n$ numbers of chromosomes. In human cells, especially somatic cells, this $n$ is 23 . Theoretically, the copy number variation is inferred by the $\log _{2}$ (Ratio) of intensities of tumor samples vs. reference sample. For instance, one copy number loss would yield $\log _{2}(1 / 2)=-1$. Table 3.1.1 lists the relations of copy number variation and $\log _{2}$ (Ratio). Practically, due to many random and systematic errors involved in each experiment, the observed $\log _{2}$ (Ratio) values of copy number variation are far from their theoretical values. Nevertheless, we can still derive the chromosome aberration information with proper segmentation methods based on aggregation patterns.

| Example | Copy number variation | Ratio | $\log _{\mathbf{2}}$ (Ratio) |
| :---: | :---: | :---: | :---: |
| $00 / \mathrm{AA}$ | two copy losses | 0 | $-\infty$ |
| A/AA | one copy loss | $1 / 2$ | -1 |
| AA/AA | no change | 1 | 0 |
| AAA/AA | one copy gain | $3 / 2$ | 0.58 |
| AAAA/AA | two copy gains | 2 | 1 |

Table 3.1.1 the relations of copy number variation with the observed $\log _{2}$ (Ratio) in the idealized situation of the diploid genome. In this study, we assume that the reference sample has a perfect diploid genome that is represented by "AA" in the denominator position. The numerator positions represent the ploidy situations of individual sample (or segments within the chromosome regions). For instance, " 00 ", stand for homozygous deletions and "A" indicates that only one copy of the diploid segment remains, which suggests heterozygous deletion. "AA" at the numerator shows no copy number changes, "AAA" indicates one copy gain and "AAAA" indicated 2 copy number gains. It is possible to have multiple copy number gains for some genes or segments.

### 3.2 Segmentation methods

During the past several years, many segmentation algorithms have been developed, for instance, Homogeneous Hidden Markov Models (HHMM) (Fridlyand et al. 2004) and Heterogeneous Hidden Markov Modes (BioHMM) (Marioni, Thorne and Tavare 2006), assign probes to underlying segments or states, which represent different copy numbers. Circular Binary Segmentation (CBS) (Olshen, et al., 2004) is a non-parametric change point method based on the original work of Sen and Srivastava (1975). Hupe proposed a Gaussian model-based algorithm (GLAD) (Hupe 2004) and Hsu suggested a wavelet approach (Hsu, et al. 2005). There are still some
other approaches such as hierarchical cluster based methods (CLAC) (Wang, Kim, Pollack, Narasimhan and Tibshirani 2005), Shifting Level Model (SLM) (Magi, et al. 2009), and the Bayesian based model of Daruwala (Daruwala, et al. 2004), et al. In this section, I will briefly introduce some of the segmentation methods and some pros and cons involved in some of the major methods.

### 3.2.1 Homogeneous Hidden Markov Models (HHMM)

The following description of HHMM segmentation method is taken mainly from Fridlyand et al. (2004). Since each segment could be treated as a state with equal copy number and the total numbers of segments or states is unknown but fixed, the hidden Markov models could be used as a suitable statistical model for the identification of all the unknown states. In this model, each state is reachable from any other state and the state emission distributions are Gaussian with state specific mean and common variance. The initial state distribution and the transition state probability distributions comply with Markov Chain modeling requirement as shown below (cited mainly from Fridlyand et al., 2004):
a) The number of states, $K$, is unknown but fixed. The Markov chain is assumed irreducible with individual states space $S=\left\{S_{1}, S_{2}, \ldots, S_{K}\right\}$ and the state at location $l$ is $\mathrm{S}_{l}$, where $1 \leq l \leq L$.
b) The initial state distribution is $\pi=\left\{\pi_{k}\right\}$ where $\pi_{k}=\mathrm{P}\left\{s_{l}=S_{k}\right\}, 1 \leq k \leq K$.
c) The state transition probability matrix is $A=\left[a_{m p}\right]$ where $a_{m p}=P\left\{s_{l+l}=S_{p} \mid s_{l}=S_{m}\right\}$, $1 \leq m, p \leq K$.
d) The distribution of emission $b_{k}$ is Gaussian with unknown mean and variance: $b_{k} \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)$ for $1 \leq k \leq K$

A forward-backward procedure is used to calculate the likelihood of parameters $(\operatorname{Lik}(\lambda \mid O)$, where $\lambda$ is the parameter vector for the model and $O$ represents the sequence of observed values on a given chromosome. The number of states $K$ is estimated using the parameter correction penalty function $\Psi(K)$ similar to Akaike's Information Criterion (AIC) (Akaike 1969) or Bayesian Information Criterion (BIC) (Schwarz 1978) as shown below:

$$
\Psi(\mathrm{K})=-\log (\operatorname{Lik}(\lambda \mid \mathrm{O}))+\mathrm{q}_{\mathrm{K}} \mathrm{D}(\mathrm{~L}) / \mathrm{L}
$$

Briefly, for $k=1$ to $K_{\max }$, where $K_{\max }=5$ (based on the observation from real data sets), first fit the k-state HHMM model and calculate the penalized negative loglikelihood $\Psi(k)$. Choose the model corresponding to the number of states with the smallest $\Psi(k)$, and so that $K=\operatorname{argmin}_{k} \Psi(k)$. If $K=1$, then stop the modeling. Otherwise, perform merge states test by calculating the absolute median differences of two states and compare to a cutoff threshold. If the difference is smaller than the cutoff threshold, merge the two states and also set $K=K-1$. Repeat the same testing until no merging is possible.

### 3.2.2 Heterogeneous Hidden Markov Models (BioHMM)

In homogenous hidden Markov models, the spatial information (the distances between the adjacent probes) is not taken into account. But in fact, due to specific properties of chromosomes, nucleotides are not evenly distributed and in many areas
it is very hard to design suitable probes for the array CGH study. Therefore the distances between two adjacent probes vary significantly. This uneven tiling of probes on the chromosome reflects the biological properties embedded in each chromosome. BioHMM (Marioni, et al. 2006) is a segmentation method constructed based on the HHMM algorithm, but adding probe distance as an additional factor in the transition probabilities. Practically, the distance is defined as differences between two adjacent probes and this information is incorporated into the transition probabilities as shown below:

$$
A_{i}=\left(\begin{array}{cc}
1-p_{1}\left(1-\mathrm{e}^{-f_{i}}\right) & p_{1}\left(1-\mathrm{e}^{-f_{i}}\right) \\
p_{2}\left(1-\mathrm{e}^{-f_{i}}\right) & 1-p_{2}\left(1-\mathrm{e}^{-f_{i}}\right)
\end{array}\right)
$$

where $f_{i}=x_{\mathrm{i}}^{\mathrm{r}}, x_{i}$ is the vector containing the distance information and $r$ belongs to $R$ with initial value as 1 . Detailed algorithms for this method can be found in the cited paper (Marioni et al., 2006).

### 3.2.3 Circular Binary Segmentation (CBS) method

CBS was proposed by Olshen (Olshen et al., 2004) based on the binary segmentation model proposed Sen and Srivastava (1975). The underlying framework for this model is that the gains and losses are discrete events and the aberrations occur in contiguous regions of the chromosomes. Segmentation is in fact a process to find the change points or breakpoints along the chromosome. For the binary segmentation method proposed by Sen and Srivastava, the third breakpoint located within the two known breakpoints will split the original segment into two segments. Both segments were assumed to follow normal distributions with equal variance but unknown means. Suppose $\mathrm{X}_{\mathrm{i}}$ is the $\log _{2}$ (Ratio) of $n$ consecutive probes $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, Maximum
likelihood ratio statistics for testing the null hypothesis is given by $Z_{b}=\max _{1<i<n}\left|Z_{i}\right|$, where $Z_{i}=\{1 / i+1 /(n-i)\}^{-1 / 2}\left\{S_{i} / i-\left(S_{n}-S_{i}\right) /(n-i)\right\}$ and $S_{i}=X_{I}+X_{2}+X_{i}, 1<\mathrm{i}<\mathrm{n}$.

One problem with the binary segmentation method is that it can only detect one breakpoint each time. Olshen et al. (2004) proposed a modified test called the Circular Binary Segmentation (CBS) method. Instead of finding one breakpoint suggested by binary segmentation method, CBS assumes the original two breakpoints were linked together to form a cycle and then trying to assign two additional breakpoints on the cycle following the similar procedures as shown in binary segmentation method. In this case, the maximum likelihood ratio statistic for testing the null hypothesis is modified to $Z_{c}=\max I_{1, i<j=n}\left|Z_{i j}\right|$, in which

$$
Z_{i j}=\{1 /(j-i)+1 /(n-j+i)\}-1 / 2\left\{\left(S_{j}-S_{i}\right) /(j-i)-\left(S_{n}-S_{j}+S_{i}\right) /(n-j+i)\right\}
$$

where $l<i<j<n, S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ and $X_{\mathrm{i}}$ denotes $\log _{2}$ (Ratio) of $i^{\text {th }}$ probe. Similar to the binary segmentation method, the critical value is also derived by Monte Carlo simulation (Siegmund 1986). This procedure is applied recursively until all change points are identified.

### 3.2.4 Gain and Loss Analysis of DNA (GLAD) method

GLAD is a breakpoint detection method developed by Hupe et al. (Hupe 2004), mainly based on the adaptive weights smoothing (AWS) procedure proposed by Polzehl (Polzehl and Spokoiny 2000), which is "an iterative, data adaptive smoothing technique that was designed for smoothing in regression problems involving discontinuous regression function" (Hupe 2004). The statistical model for the GLAD method is based on the locally constant Gaussian regression model $Y_{i}=\theta\left(X_{i}\right)+\varepsilon_{i}$,
where $\varepsilon_{\mathrm{i}}$ are i.i.d with $N\left(0, \sigma^{2}\right)$ distribution. $\left(X_{i}, Y_{i}\right)$ are independent observations, $X_{i}$ determines the chromosome locations of each individual probe or feature and the corresponding $Y_{i}$ is the measured $\log _{2}$ (Ratio). AWS is applied to find the maximal possible neighborhood around location $X_{i}$ based on the local likelihood model in which $\theta\left(X_{i}\right)$ is constant. The regression function of $Y_{i}=\theta\left(X_{i}\right)+\varepsilon$ could be estimated by using the weighted maximum-likelihood estimate of local probes. The "contrasts" and the "edges" generated from AWS on the chromosomes provide potential segmentation (breakpoint) and its copy number information.

### 3.2.5 Cluster Along Chromosomes (CLAC) method

The basic idea of CLAC (Wang, et al. 2005) is to build hierarchical cluster trees along each chromosome arm and assign the gains or losses based on the information associated with each node, such as the height of the node in the tree, the size of the sub-tree and the mean value of the sub-tree. Unlike the standard agglomerative clustering method, for the CGH data set, the order of the probe sequences of the chromosome are fixed, and so is the order the cluster. In order to compare the different measurement of two adjacent nodes, the authors proposed of using "relative difference" to measure the similarity of two adjacent sub-tree. If there are $n$ probe on one chromosome with $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ represent the $\log _{2}$ (Ratio) of each probe. The relative difference (rd) for two contiguous probes is defined as:

$$
\operatorname{rd}\left(x_{i}, x_{i+1}\right)=\frac{\left|x_{i}-x_{i+1}\right|}{\left|x_{i}\right|+\left|x_{i+1}\right|+\left|x_{i}+x_{i+1}\right|}
$$

By comparison of the relative difference to the specific cutoff value (defined based on
the height of the cluster, span on the chromosome as well as number of the probes), we can assign gains or losses to each segment. A brief clustering procedure within each chromosome is listed as follows:
1). Start clustering using all probes with one probe in each cluster.
2).Merge the two adjacent clusters with the smallest value of relative difference.
3). Repeat 2 ) until one big cluster is formed.

### 3.2.6 Bavesian model

In this Bayesian model, some assumptions are made. First, all probes on the chromosomes are categorized into two groups. One group contains all "regular probes", whose copy numbers are not affected by the disease, and whose $\log _{2}$ transformed ratios follow a Gaussian distribution with mean $\mu_{r}$ and standard deviation $\sigma_{r}$. In the other group, which includes the deviated probes, the $\log _{2}$ (Ratio) values also follow the Gaussian distribution but have unknown mean $\mu_{b}$ and unknown standard deviation $\sigma_{b}$. Another assumption is that the segments that have copy number variation (gains or losses) follow the Poisson distribution with parameter $p_{b} N$, where $N$ is the total number of probes. The segmentation algorithm is to find all the potential breakpoints on the chromosome, or equivalently, to subdivide all the probes along the chromosome into $k$ non-overlapping intervals. Probes within the same interval follow the same distribution with same mean (or same copy number variations) and standard deviation. Specifically, for the $j$-th interval, the copy number values follow the Gaussian distribution $N\left(\mu_{j}, \sigma_{j}^{2}\right)$. The parameter related to this interval is $I_{j}=\left(\mu_{j}, i_{j}, \sigma_{j}\right)$ where $i_{j}$ is the position of the last probe in the interval. In this Bayesian model, we also assume the standard deviations of all intervals are similar.

In this model, the prior distribution is constructed based on both the Poisson distribution to model the number of intervals with Poisson parameter $p_{b} N$ and the Bernoulli trial where $p_{r}$ represents the probability that a given probe is a "regular" probe.

$$
\operatorname{Pr}\left(\mathrm{I}_{N}\right)=e^{-p_{b} N} \frac{\left(p_{b} N\right)^{k}}{k!} p_{r}^{\# \text { regular }}\left(1-p_{r}\right)^{\# \text { deviated }}
$$

where "\#regular" denotes the number of unchanged probes and "\#deviated" denotes the number of which assign gains or losses. The likelihood function of the first $n$ probe is:

$$
\operatorname{Pr}\left(\mathbf{x} \mid \mathrm{l}_{N}\right)=\prod_{i=1}^{n} \phi\left(x_{i}, \mu_{j}, \sigma^{2}\right)
$$

with posterior likelihood function:

$$
L\left(\mathrm{I}_{N} \mid \mathbf{x}\right)=e^{-p_{b} N} \frac{\left(p_{b} N\right)^{k}}{k!} p_{r}^{\# \text { regular } \cdot\left(1-p_{r}\right)^{\# \text { deviated }} \cdot \prod_{i=1}^{n} \phi\left(x_{i}, \mu_{j}, \sigma^{2}\right) . . . ~}
$$

### 3.2.7 Comparisons of different segmentation methods

Even though many segmentation algorithms have been proposed during the past several years, only a few papers perform comparisons among some of the algorithms. In the recent paper of Willenbrock and Fridlyand (2005) three methods (HHMM, CBS and GLAD) are compared. Of these three methods, CBS yields the best operational sensitivity and lowest false discovery rate compared to the HHMM and GLAD segmentation methods. The drawbacks of this method are its slow computation and its inability to identify many single probe aberrations. On the
contrary, the HHMM algorithm is fast and identifies many single probe aberrations. The problem is its low sensitivity to the breakpoint, since it fails to identify many big segments of aberrations. GLAD is said to be superior to HHMM in identifying wide aberration. Lai, et al. (2005) compared 11 different segmentation methods, even though many of these methods are gradually becoming obsolete in current data analysis. Some of their results are very consistent with the conclusions of Willenbrock and Fridlyand. In general, Lai et al. found that CBS performed better in general than most of the other algorithms. The detailed results can be found in the published paper (Lai et al., 2005). As mentioned above, different methods have their own pros and cons. After many years of development, HHMM and CBS have been recommended as more reliable in identifying potential breakpoints on the chromosome in general (Willenbrock and Fridlyand 2005). Based on the nature and goal of this thesis, we choose to use HHMM and CBS to perform the data processing and to compare the segmentation results by using both simulated and real tumor data sets.

### 3.3 Segment merging methods

Since most of the segmentation methods work on the individual chromosome level, which means each chromosome is segmented independently, this poses a potential danger that aberration segments located on different chromosomes are incomparable. In some cases, this can cause information losses when the whole chromosome is deleted or amplified, which is the case in many tumor tissues. Even in the same chromosome segmentation profile, numerous segments with many different segment means make the identification of chromosome aberration complicated. The
merging algorithm is used to merge those comparable segment values with insignificant differences into a common value. In GLAD algorithm, the adaptive weights smoothing (AWS) algorithm is used to remove the excessive breakpoints (Hupe 2004). Another merging algorithm was proposed by Willenbrock and Fridlyand (2005). Specifically, in this algorithm, if the difference between the $\log _{2}$ (Ratio) values of two segments is not statistically significantly different, then these two segments are assigned to the same predicted value. In detail, the distances calculated based on the predicted (or segmented) values of $\log _{2}$ (Ratio) values from any segments are ordered. From the smallest distance, using Wilcoxon rank sum test based on the observed $\log _{2}$ (Ratio) of all probes within each segment to test whether both segments values are statistically different by using $\mathrm{p}<0.0001$ as threshold or if the distance is less than a give threshold if the probe number within one or both segments contain less than 3 . If the predicted values of two segments are not significantly different or the distance is less than the cutoff threshold, these two segments are merged and the above process is repeated until no more segments can be merged together. If only 3 or fewer probes exist on one segment, then only the distance cutoff threshold will apply.

In order to determine the cutoff threshold, the above steps are repeated with increased threshold and compare the current residual (current merged values minus observed $\log _{2}$ (Ratio)) with the original residual (original merged value minus observed $\log 2$ (Ratio)). The Ansari-Bradley two-sample test for equality of dispersion is used to test the distributions of these residues. The optimal threshold is chosen as
the largest threshold such that the Ansari-Bradley 2 -sample test has p value $>0.05$. The above test is repeated until no more segments can be merged together.

### 3.4 Centering methods

DNA copy number gains or losses are defined relative to some common baseline agreed to represent the "normal" or "no changes" condition. Centering means calibrating the "normal" DNA copy number to a standard value, such as zero for the $\log _{2}$ (Ratio) values. Different centering methods have been proposed, many of them based on different assumptions. Traditionally, the overall mean or median is used as the center value and all other $\log _{2}$ (Ratio) values are shifted accordingly. But this method fails in highly aberrant genomes such as the tumor samples shown in Figure 3.4.1. Other methods, such as minimum aberration location, the segment intensity with the longest run length probe or using the highest mode of the intensities have also been suggested (Chen, et al. 2008). The first two methods require the presegmentation while the last one doesn't. Since the female X chromosome always has one copy number gain aberration in many studies with male genome references, sex chromosomes are always excluded from the calculation when define the centering values. In this analysis, after segmentation, we assume the mode of the predicted value of segments represents the "unchanged" information; so all the data are centralized accordingly.


Figure 3.4.1 Genome aberration of Small Cell Lung Cancer samples shows the highly aberrant patterns across the whole genome. The y-axis represents the $\log _{2}$ (Ratio) values of all probes and the black dotted line indicates the predicted segment values.

### 3.5 Chromosome Gains and Losses assignment

After finding all potential breakpoints, the next question is to decide which segments represent chromosome gains or losses. As discussed in Section 3.1, due to all kinds of systematic and random errors involved in each experiment, the predicted segmentation values are far different from the standard, ideal $\log _{2}$ (Ratio) of copy number variation as shown in Table 3.1.1. After suitable data processing steps, finding the chromosome gains or losses becomes a question of setting the reasonable cutoff thresholds for the predicted segmentation values. In some papers (Veltman, et al. 2003, Nakao, et al. 2004), a series of normal vs. normal hybridizations is performed in addition to the tumor sample hybridization. Ideally, all the $\log _{2}$ (Ratio) values from normal vs. normal comparisons are zero if no systematic or random
errors are involved in the experiment. So the $\log _{2}$ (Ratio) values in the normal vs. normal comparisons actually represent the noise information from the similar experiments. From the distribution of the $\log _{2}$ (Ratio) of this controlled experiment, the cutoff thresholds could be decided by using 2 or 3 folds standard deviations of mean of $\log _{2}$ (Ratio) values.

Derivative Log Ratio (DLR) is the difference between the $\log _{2}$ (Ratio) values of consecutive probes along the chromosomes. Derivative Log Ratio spread (DLRs) can be used to estimate the probe-to-probe noise information. Based on the IQR of the DLRs, we can set a suitable cutoff threshold to estimate the noise level of the specific array CGH experiment.

### 3.6 Literature review of the molecular biology background for

## Glioblastoma disease

Glioma is a type of tumor that starts mostly in the brain. It is the most common primary brain tumor in adults. Histopathologically, Glioma has been subtyped into four categories, WHO grade I to IV, with grade I indicating a more benign tumor and grade IV being malignant featuring uncontrolled cellular proliferation, and resistance to apoptosis and high invasiveness. Glioblastoma is the most common grade IV brain tumor and is also a deadly disease with average survival time approximately one year. More than two decades of research work by many labs worldwide has revealed many molecular mechanisms about this disease. A detailed review of this research appears in the paper published on Gene \& Development (Furnari, et al. 2007). Briefly, some genes or gene products have been shown to play very important roles in tumor development. These genes include, but are not limited
to, phosphatase and tensin homolog (PTEN), retinoblastoma protein (RB1), TP53, epidermal growth factor receptor (EGFR). PTEN, Rb1, and TP53 have been classified as tumor suppressor genes, all of them involving cell cycle regulations. For instance, PTEN is involved in the regulation of the cell cycle, preventing cells from growing and dividing too rapidly (Chu and Tarnawski 2004). Rb 1 is a protein that helps to prevent excessive cell growth by inhibiting cell cycle progression (Murphree and Benedict 1984). Like PTEN and Rb1, the protein product of TP53, p53, acts as a checkpoint regulator at the G1 to S phase (Furnari, et al. 2007). Loss of these functions through either mutations or deletions may cause the cancer cells to grow uncontrollably. Many molecular pathways have also been identified for the development of Glioblastoma. These pathways include PTEN/PI3K/AKT (Cantley and Neel 1999), TGF-Beta pathway (Xu and Kapoun 2009), and EGFR regulated pathway (Comincini, et al. 2009). Many other potential molecular pathways have also proposed and been detailed in Furnari's review paper (Furnari, et al. 2007).

## Chapter 4: Data simulation

Simulated data sets have been widely used in evaluation of the performance of different CGH segmentation algorithms (Hupe 2004, Hsu, et al. 2005, Lai, et al. 2005, Willenbrock, et al. 2005, Huang, et al. 2007). The basic requirement is that the artificially generated data set should closely mimic the real data set, which includes probe tiling information on the chromosomes, breakpoint information, simulated intensity distribution, and even sample contamination information. In this analysis, in order to get a rough idea of segmentation properties of HHMM and CBS algorithms and also for the purpose of further comparison using the real data set, we perform a simulation study using the algorithm embedded in the R "snapCGH" package (Smith 2006) mainly based on the simulation method proposed by Willenbrock and Fridlyand (2005). First thing we need to consider for the simulation is the array numbers. Sample numbers always determine the statistical testing power. In order to reflect the condition in our data set, we should use comparable data set numbers for our simulation. Second, chromosome information is also considered. Human genome contain 22 pairs of euchromosomes, each pair has different length. Each chromosome also contain one short arm and one long arm separated by the centromere, this information has also been considered as suggested in the aCGH R package ( Fridlyand 2008). Probe tiling is another issue we should consider. Even though sometimes it is difficult to design probes at specific regions due to some sequence structure reasons, we still try to design array probes evenly across all chromosomes in order to get a complete coverage for whole genome. In this simulation, we set the
probabilities of assigning probes on both short and long arms of each chromosome to $50 \%$. In addition to this, the simulation function of snapCGH also has the option to specify the minimum and maximum probe distances and the probabilities of each segment of chromosomes being tiled. In order to mimic the noise level of real data set, Gaussian noise with mean zero and varying variance were added based on the suggestion of Willenbrock and Fridlyand (2004). The standard deviation of each state is random sampled from uniform distribution of 0.1 to 0.2 as been observed from real data set (Fridlyand et al., 2004).

The ratio profiles for the simulated data set are generated based on the 145 real tumor samples in order to emulate the complexity of real tumor profile ( Fridlyand et al., 2004). Briefly, the mean values of segments were binned into the interval between -0.2 and 0.2 and length for normal level were sampling from the level $[-0.2,0.2]$ bin. The altered segments values are sampled from other bins contain other segmentation values. This simulated dataset is considered as the known dataset with known breakpoints. The HHMM and CBS algorithms were applied to the simulated dataset estimated and known breakpoints were compared and the false discovery rate was returned.

For this study, all the simulated data sets are generated under the "default" condition (except otherwise specified) and then followed by HHMM and CBS segmentation processes. The default is the conditions that try to mimic the real data condition while still considering the limitation of simulation situation. For instance, the probability of probe tiles on both arms of each chromosome is $50 \%$ even though in reality the probes designed for short arms and long arms might be different. The
default standard deviation of the simulated data in each of the states is randomly sampled uniformly between 0.1 and 0.2 . The lower limit for the distance between adjacent clones in non-tiled region is 0.9 Mb and upper limit is 1.1 Mb . Sex chromosomes are always excluded from simulation due to their special situation.

For the remaining 22 pairs of chromosomes, about 8000 probes are generated in each simulated sample file. Since we have more than 170 hybridizations in this study, we first generated the simulated data set with 170 samples. Figure 4.1 shows the density plots of the generated $\log _{2}$ (Ratio) from all 170 simulated samples. The left panel represents the "observed" $\log _{2}$ (Ratio) and the right panel represents the "true" $\log _{2}$ (Ratio). After segmentation with HHMM and CBS algorithms, we can compare the observed breakpoints and the true breakpoints and further derive the false discovery rate. First of all, we tested whether the sample size could affect the false discovery rate. Simultaneously, we also test whether the data quality has big effects to the false discovery rate (Figure 4.2). The R code is given in Appendix B.


Figure 4.1 Density plot of the simulated $\log _{2}$ (Ratio) from all 170 simulated sample set. The left panel represents the simulated "observed" $\log _{2}$ (Ratio) and the right panel represents the "true" copy number variation.

False Discovery rate (sample\# = 20)


False Discovery rate (sd = 0.1)


False Discovery rate (sample\# = 170)


False Discovery rate (sd=1)


Figure 4.2 Comparison of HHMM (read color) and CBS (blue color) segmentation methods using simulated data set. The top two figures show the false discovery rate of similarly simulated data set but with different sample size (sample size number 20 vs 170). The two panels below indicate the false discovery rate of the two segmentation methods from the simulated data sets with the same sample sizes (sample numbers are 20) and different data quality (standard deviations 0.1 and 1 respectively).

First, within each panel of Figure 4.2, we can clearly see that the CBS segmentation method (blue color) generates more reliable results with relatively low false discovery rates. For the CBS segmentation method, the FDR for the CBS segmentation method is around 0.1 , while for HHMM (red color) segmentation method is about 0.6 . The top panel also indicates that for reasonable sample sizes (20
and 170 here), the FDRs for the same segmentation method are quite similar. For data sets with low quality, the ability to correctly find the breakpoints for both CBS and HHMM segmentation methods dropped significantly, reflected in the higher False Discovery Rate in the right figure of the lower panel. In summary, the results above clearly indicate that data segmented using the CBS method gives low false discovery rate in general even though it was suggested that HHMM surpass CBS in detecting the short segments (Willenbrock and Fridlyand, 2005). Of course, increasing the data variations could significantly increase the false discovery rate for both methods. This is also easy to understand, since the increasing of the variability of the data sets will increase the chance to commit the type I error.

## Chapter 5: Data processing and analyzing

For the array-based experiment, there are several significant features compared to the traditional karyotyping experiments. The first feature is large data volume. Specifically in this study there are 236,381 probes on each chip that will generate the same volume of ratio values. Considering all the tumor data from 170 patients, the total data volume is tremendous. In order to derive reliable analytical results from this massive data set, we set up the following steps to process the data as shown in Figure 5.1.


Figure 5.1 Array CGH data processing procedures. After segmentation, the data are processed using HHMM and CBS separately. QC represents "Quality Control" analysis.

### 5.1 Raw data

After hybridization, the chips are scanned and the intensities and backgrounds from both channels for all probes were recorded. This information will be used for further data processing.

### 5.2 Quality control (QC) analysis

As in many other experiments, data quality is vital to the reliability of the results generated. In microarrays, data quality of array CGH can be affected by many factors starting from the sample collection to the final chip scanning. Some of these factors include, but are not limited to, tissue quality, genomic DNA quality, and hybridization techniques as well as others. Good data quality will maximize the information we can get from each study. For the array CGH , one of the very important quality parameters to access the final data quality is Derivative Log Ratio spread (DLRs). Derivative Log Ratio (DLR) calculates the $\log _{2}$ (Ratio) differences between consecutive probes on the chromosomes. Based on the inter-quartile range (IQR) of all DLR values on each chip data set, we can derive the DLRs with comparable robust standard deviation. DLRs value estimates probe-to-probe noise from the array itself calculated from the $\log _{2}$ (Ratio). High DLRs values could result in low discrimination of different copy number variation. Figure 5.2 .1 shows QC information of two hybridizations with different DLRs values. Clearly low DLRs values are required in order to get reliable result.


Figure 5.2.1 The relations between DLRs and the noise level in the array CGH experiments. The upper figure shows the probe expression levels for one array CGH experiment with very high DLRs value. This figure is generated based on real data set from different study. Clearly no chromosome aberration patterns can be observed if they exist. On the contrary, for the array CGH data with low DLRs illustrated in the lower figure, we can see clear chromosome gains and losses patterns across the whole genome. The yellow line represents the "center" or baseline. The black line represents the segments values for individual segments.

Table 5.2.1 list all the DLRs values for 170 hybridizations used in this part of the analysis. From this table, we can see that the DLRs values for most of the hybridizations are very low. Based on many experimental results and also the manufacturer's recommendation (Table 5.2.2), the highest DLRs (0.33) is also an acceptable value.

| Patients | DLRs | Patients | DLRs | Patients | DLRs | Patients | DLRs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-08-0386 | 0.14 | TCGA-02-0102 | 0.19 | TCGA-02-0338 | 0.21 | TCGA-02-0007 | 0.24 |
| TCGA-08-0358 | 0.14 | TCGA-06-0178 | 0.19 | TCGA-02-0333 | 0.21 | TCGA-06-0139 | 0.24 |
| TCGA-06-0146 | 0.15 | TCGA-02-0258 | 0.19 | TCGA-02-0106 | 0.21 | TCGA-08-0373 | 0.24 |
| TCGA-06-0175 | 0.16 | TCGA-08-0520 | 0.19 | TCGA-12-0616 | 0.21 | TCGA-02-0079 | 0.24 |
| TCGA-08-0518 | 0.16 | TCGA-02-0057 | 0.19 | TCGA-08-0510 | 0.21 | TCGA-06-0132 | 0.24 |
| TCGA-06-0394 | 0.16 | TCGA-02-0446 | 0.19 | TCGA-08-0521 | 0.21 | TCGA-02-0011 | 0.24 |
| TCGA-06-0194 | 0.16 | TCGA-08-0514 | 0.19 | TCGA-02-0028 | 0.21 | TCGA-02-0456 | 0.24 |
| TCGA-08-0509 | 0.16 | TCGA-02-0080 | 0.19 | TCGA-12-0620 | 0.21 | TCGA-06-0122 | 0.24 |
| TCGA-08-0512 | $0.16$ | TCGA-02-0071 | $0.19$ | TCGA-08-0531 | 0.21 | TCGA-06-0176 | 0.24 |
| TCGA-08-0352 | 0.17 | TCGA-02-0430 | 0.19 | TCGA-02-0451 | 0.21 | TCGA-02-0037 | 0.24 |
| TCGA-06-0648 | 0.17 | TCGA-06-0185 | 0.19 | TCGA-06-0158 | 0.21 | TCGA-02-0281 | 0.24 |
| TCGA-02-0330 | 0.17 | TCGA-06-0646 | 0.19 | TCGA-06-0209 | 0.21 | TCGA-02-0083 | 0.24 |
| TCGA-02-0439 | 0.17 | TCGA-12-0618 | 0.19 | TCGA-02-0034 | 0.21 | TCGA-02-0006 | 0.25 |
| TCGA-08-0349 | $0.17$ | TCGA-02-0113 | $0.19$ | TCGA-02-0432 | 0.21 | TCGA-06-0148 | 0.25 |
| TCGA-06-0164 | 0.17 | TCGA-02-0324 | 0.19 | TCGA-06-0214 | 0.21 | TCGA-02-0260 | 0.25 |
| TCGA-02-0422 | 0.18 | TCGA-06-0162 | 0.19 | TCGA-06-0208 | 0.21 | TCGA-02-0058 | 0.25 |
| TCGA-06-0414 | $0.18$ | TCGA-02-0326 | $0.20$ | TCGA-02-0060 | 0.21 | TCGA-06-0145 | 0.25 |
| TCGA-06-0213 | 0.18 | TCGA-02-0332 | 0.20 | TCGA-06-0128 | 0.21 | TCGA-02-0024 | 0.25 |
| TCGA-06-0168 | 0.18 | TCGA-02-0055 | 0.20 | TCGA-02-0111 | 0.21 | TCGA-02-0089 | 0.25 |
| TCGA-06-0195 | 0.18 | TCGA-02-0074 | 0.20 | TCGA-06-0237 | 0.21 | TCGA-06-0211 | 0.25 |
| TCGA-06-0238 | 0.18 | TCGA-02-0047 | 0.20 | TCGA-02-0337 | 0.22 | TCGA-06-0189 | 0.25 |
| TCGA-06-0402 | $0.18$ | TCGA-02-0069 | 0.20 | TCGA-06-0171 | 0.22 | TCGA-06-0169 | 0.25 |
| TCGA-02 | $0.18$ | TCGA-06-0179 | $0.20$ | TCGA-06-0413 | $0.22$ | TCGA-06-0133 | 0.25 |
| TCGA-02-0075 | 0.18 | TCGA-08-0517 | 0.20 | TCGA-06-0182 | 0.22 | TCGA-02-0116 | 0.26 |
| TCGA-06-0149 | $0.18$ | TCGA-08-0524 | $0.20$ | TCGA-06-0166 | 0.22 | TCGA-02-0317 | 0.26 |
| TCGA-02-0321 | $0.18$ | TCGA-06-0127 | $0.20$ | TCGA-06-0173 | 0.22 | TCGA-02-0010 | 0.26 |
| TCGA-02-0107 | 0.18 | TCGA-02-0084 | 0.20 | TCGA-08-0345 | 0.22 | TCGA-02-0021 | 0.27 |
| TCGA-06-0409 | $0.18$ | TCGA-02-0052 | $0.20$ | TCGA-02-0001 | 0.22 | TCGA-02-0003 | 0.27 |
| TCGA-06-0197 | 0.18 | TCGA-06-0152 | 0.20 | TCGA-02-0009 | 0.22 | TCGA-06-0174 | 0.27 |
| TCGA-06-0157 | 0.18 | TCGA-06-0210 | 0.20 | TCGA-06-0156 | 0.22 | TCGA-06-0126 | 0.27 |
| TCGA-08-0511 | $0.18$ | TCGA-02-0266 | $0.20$ | TCGA-08-0529 | 0.22 | TCGA-06-0125 | 0.27 |
| TCGA-08-0516 | 0.18 | TCGA-02-0038 | 0.20 | TCGA-06-0190 | 0.22 | TCGA-06-0147 | 0.28 |
| TCGA-02-0114 | $0.18$ | TCGA-02-0271 | 0.20 | TCGA-02-0086 | 0.23 | TCGA-06-0137 | 0.28 |
| TCGA-06-0397 | 0.18 | TCGA-02-0033 | 0.20 | TCGA-02-0339 | 0.23 | TCGA-06-0141 | 0.28 |
| TCGA-02-0325 | 0.18 | TCGA-06-0412 | 0.20 | TCGA-02-0046 | 0.23 | TCGA-06-0221 | 0.28 |
| TCGA-02-0054 | 0.18 | TCGA-06-0184 | $0.20$ | TCGA-06-0177 | 0.23 | TCGA-06-0154 | 0.29 |
| TCGA-02-0085 | 0.18 | TCGA-02-0440 | 0.20 | TCGA-06-0129 | 0.23 | TCGA-02-0014 | 0.29 |
| TCGA-06-0241 | $0.19$ | TCGA-02-0289 | 0.20 | TCGA-06-0124 | 0.23 | TCGA-06-0138 | 0.29 |
| TCGA-06-0645 | 0.19 | TCGA-02-0064 | 0.20 | TCGA-02-0290 | 0.23 | TCGA-02-0027 | 0.29 |
| TCGA-12-0619 | 0.19 | TCGA-02-0087 | 0.20 | TCGA-06-0187 | 0.23 | TCGA-06-0188 | 0.31 |
| TCGA-02-0099 | 0.19 | TCGA-06-0644 | 0.21 | TCGA-02-0043 | $0.23$ | TCGA-02-0285 | 0.33 |
| TCGA-02-0115 | 0.19 | TCGA-06-0143 | 0.21 | TCGA-08-0522 | 0.23 |  |  |
| TCGA-08-0525 | 0.19 | TCGA-06-0410 | 0.21 | TCGA-06-0130 | 0.24 |  |  |

Table 5.2.1 DLRs values for all hybridizations from 170 patients tumor samples

Other data quality metrics include signal to noise ratio, signal intensities and background noise information for both red and green channels. Since there are also 1000 replicated biological features printed on each chip, for each channel, reproducibility is assessed by calculating the median percent coefficient of variation of background-subtracted signal for replicate non-control probes. Figure 5.2.2 summarizes the data distributions of all these data quality metrics including the DLRs presented as box plots. Exact values of these quantities are given in supplementary Table S5.2.1. Based on the manufacturer's guidelines (Table 5.2.2), all experiments have reasonably good quality and therefore all will be used for further data analysis.

| Metric | Excellent | Good | Poor |
| :---: | :---: | :---: | :---: |
| BackgroundNoise | $<5$ | $5-10$ | $>10$ |
| Signal Intensity | $>150$ | $50-150$ | $<50$ |
| Signal to Noise | $>100$ | $30-100$ | $<30$ |
| Reproducibility | $<0.05$ | $0.05-0.2$ | $>0.2$ |
| DLRspread | $<0.2$ | $0.2-0.3$ | $>0.3$ |

Table 5.2.2 Manufacturer's recommended QC guidelines for the array CGH platform.


Figure 5.2.2 data quality metrics and their value information from all hybridizations used in this study. The $y$-axis values are $\log _{10}$ scaled. Since there are two color channels (Green and red for two samples, tumor and reference, separately), the qualities of each channel are accessed independently except for the DLRs. The reproducibility values shown here are the percentage values.

### 5.3 Background subtraction

Traditionally, background intensities are subtracted from the foreground intensities and generate the final intensities for each specific probe. The problem with
this method is that the foreground signal intensities might be smaller than the corresponding background intensities in many cases. So the subtraction will result in "negative" intensities for some probes, which could cause further computational problems when performing log transformation. In this analysis, we use "minimum" background subtraction in which the background intensity is subtracted from foreground intensity of each probe unless the resulting intensity is zero or negative value. In this case, half the value of foreground intensity will be used. Using this "minimum" background subtraction can avoid generating either negative or zero value intensities and facilitate the computerization of the data processing steps.

### 5.4 Combination of intensities

As with many other Microarray platforms, duplicates or replicates of many probes are printed on the chip in order to access the data quality or the variability of each array experiment. The intensities from these replicates are normally merged into one value, mostly by mean or median, based on the unique ID. On the Agilent array platform - Human Genome CGH 244k chips, more than a thousand probes spotted on the chips are replicated. These replicates are averaged into the single final value for each probe.

### 5.5 Segmentation and Merging

As mentioned above, all the data are processed using both HHMM and CBS segmentation methods. Since HHMM and CBS are based on different statistical models, it is reasonably to expect that both the segmentation results should not be exactly same. Subtle differences in the mean $\log _{2}$ (Ratio) values of two segments are not necessarily biologically relevant, but they do make the downstream analysis more
complex. In this case, merging of these segments values with insignificant statistical differences becomes necessary especially when segments are located on different chromosomes. In this analysis, this process is performed by applying Willenbrock and Fridlyand's (2005) merging method. Briefly, the predicted levels of segments were merged into the same level if the differences between them were not significant according to the Wilcoxon rank test or less than the specific threshold generated by using the Ansari-Bradley 2 -sample test (for details see Section 3.3).


Figure 5.5.1 Boxplot of segmentation numbers result from HHMM and CBS methods before and after merging steps.

Figure 5.5 .1 shows the segmentation and merging results from both the HHMM and CBS analyzing methods. The original segmentation numbers are listed in Supplementary Table S5.5.1. First, within each segmentation method, the merging process did reduce the segments numbers. Second, the two segmentation methods generate dramatically different segment numbers. For the CBS segmentation method, the mean segment numbers from 170 patients' samples after merging is 198 , while as for HHMM segmentation method, this number increased to 2495 . Density plots of the merged segmentation results also show subtle differences between the HHMM and CBS segmentation methods. Figure 5.5 .2 is from two pairs of typical density plots from the same patient (patient TCGA-02-0001). From these two figures, we can see that the general patterns of the density plots generated from HHMM and CBS segmentation methods are quite similar, even though we can still see subtle differences between them.


Figure 5.5.2 Density plot of segmented values after performing merging steps for sample TCGA-02-0001. The x-axis represents the $\log _{2}$ (Ratio) values of all probes after performing the merging. From these two figures, we can see that the general patterns of the density plots generated from HHMM and CBS segmentation methods are quite similar, even though we can still see subtle differences between them.

### 5.6 Centering



Figure 5.6.1 $\log _{2}$ (Ratio) values of the modes of the density plots from all 170 patients samples (CBS segmentation methods). For most of the hybridizations, the mode of the density plot is shifted quite far from value and need to be adjusted accordingly.

As discussed previously, for the array CGH study, all the copy number changes (gains or losses) are relative to the unchanged copy number. If the segment shows no aberration, we expect to see the ratio of tumor sample and control sample equal to one $\left(\right.$ or $\log _{2}($ Ratio $\left.)=0\right)$. In this study, we assume the mode of densities for each patient sample represents the center of the $\log _{2}$ (Ratio) values and all the $\log _{2}$ (Ratio) values in each array CGH are shifted accordingly. The density plots in Figure 5.5.2 clearly show the shift of the mode of segments for one typical patient sample. Figure 5.6 .1 shows the $\log _{2}$ (Ratio) of the modes from all 170 patients by using CBS segmentation method. Similar results are generated from HHMM
segmentation and the plot is posted as supplementary figure (Figure S5.6.1). Since most of the modes from the density plots of all 170 hybridizations are quite far away from zero, all the $\log _{2}$ (Ratio) data should be adjusted. So, centering is necessarily in order to make all the experiments comparable. Figure 5.6 .2 shows the density plots from the same patients as in Figure 5.5.2 after performing the centering (based on the CBS segmentation result).


Figure 5.6.2 comparison of density plots before and after centering for one specific patient sample TCGA-02-0001. The left figure shows the density plot before the centering, and the right figure shows the density plot after the shift.

## Chapter 6: Experimental results

### 6.1 Breakpoint identification of HHMM and CBS methods

Regardless of which segmentation algorithms we are using, the most important thing is that we can reliably identify those segments with copy number variation or identify the break points. Based on the simulated data set, we know CBS can identify breakpoints fairly reliably with low false discovery rate compared to the HHMM algorithm. For the real data set in this study, we also want to know whether CBS or HHMM segmentation methods can find the breakpoints reliably. By checking the chromosome aggregation plots (not included due to huge file sizes (10Gb)), we observed that the HHMM segmentation method failed to pick up many obvious change points as shown in one example in Figure 6.1.1, while CBS could. On the other hand, the HHMM segmentation method identified many single probe aberration change points, while the CBS algorithm failed to do so.

Detailed analysis of the length of all the segments reveals that HHMM identified many single probe aberrations while the CBS method failed to do so. The histogram of the lengths of all segments clearly shows this pattern (Figure 6.1.2). In this figure, the segments lengths, which are plotted along the x -axis, are $\log 2$ transformed. For the HHMM segmentation, in addition to a sharp peak at a short length position, there is another main peak around 15 to 20 . But for the CBS segmentation, the only peak is around 20 to 25 .


Figure 6.1.1 Breakpoint identification by using CBS and HHMM algorithms. Only two typical patient samples are displayed here, with only chromosome 11 for sample TCGA-020037 and chromosome 17 for sample TCGA-02-0038. Panels (A) and (C) are generated based on the CBS algorithm, and (B) and (D) are based on HHMM segmentation method. For the CBS algorithm, significant copy number loss at position around 40 Mb is clearly identified in (A), while for the HHMM method, this segment is missing in (B). On the contrary, the HHMM algorithm identify many single probe aberration in (D), while CBS algorithm failed to do so as shown in (C).


Figure 6.1.2 Density plots of all segment lengths (without merging) from both CBS and HHMM segmentation methods. The segments lengths are $\log _{2}$ transformed. The mode of the segments lengths densities of CBS segmentation methods are around 20 to 25 , while as for the HHMM segmentation method, this mode is around 15 to 20.

Considering the absolute segmentation numbers from all 170 samples, for the CBS segmentation method, only 4 single probe aberrations are identified from the total 36,553 segments of all 170 samples. On average, only 215 segments are identified in each sample. For the HHMM segmentation method, the total number of segments from all samples was 472,656 , or an average of 2,780 segments per sample. Of these 472,656 segments, 117,653 segments are single probe aberrations, or an average of 692 single probe aberrations identified per hybridization.

Since there are so many single probe aberrations identified by using the HHMM segmentation algorithm, the next question we would like to ask is how the $\log _{2}$ (Ratio) distribution looks for these single probe aberration segments. In order to
make all the data comparable, the predicted values from centralized (after merging) segments are used. Figure 6.1 .3 shows the density plots of all the predicted $\log _{2}$ (Ratio) values of all single probe aberration segments. Most of these 100 k single probe aberration segments have relatively small chromosome variations. Nevertheless there are still 1000 single probe segments (not including segments on the sex chromosomes) having absolute $\log _{2}$ (Ratio) values greater than 1 (For details see supplementary Table S6.1.1).


Figure 6.1.3 Density of $\log _{2}$ (Ratio) of all single probe aberration segments. All the predicted $\log _{2}$ (Ratio) values are from centralized segments. For the CBS algorithm, only four segments are single probe aberrations. But for the HHMM algorithm, 102,580 single probe segments are identified. Most of the segments have relatively small predicted $\log _{2}$ (Ratio) values.

If we think DLRs reflects the noise information for each experiment, then the segments with $\log _{2}$ (Ratio) outside the noise range may reflect the copy number
variation. In this analysis, 1.5 times DLRs ( $1.5 x$ DLRs) was used as cutoff threshold to identify the segments with copy number variations. The histogram of the segment lengths ( $\log _{2}$ transformed) in Figure 6.1.4 shows that there are more "big" segments when using CBS while HHMM tends to identify short length segments. Again, in the segment profiles with $1.5 x$ DLRs cutoff, HHMM identified a total of 47114 single probe segments out of 106,868 segments. On the contrary, CBS identified only four. For the segment length distribution, we can also see that CBS tends to identify big segments while HHMM fails to do so.

Even though we can't say that all the single probe aberration identified by HHMM are biologically relevant, failure to identify these segments when using CBS segmentation methods clearly leads to the incomplete data analysis results. Similar conclusion could be drawn to the HHMM segmentation method that fails to identify many breakpoints of large sized segments


Figure 6.1.4 Density plots of all segments lengths ( $\log _{2}$ transformed) from segments with copy number variation. The cutoff thresholds for the predicted segmentation values are $1.5 x$ DLRs. Many segments with big length are identified in the CBS algorithm while HHMM segmentation method tends to find the small segments.

### 6.2 Segment analysis

Even though in many cases, copy number variation can lead to the development of certain cancers, due to the individual variation of each patient and
also our poor understanding basically of all cancers, we should not expect all patients to have the same chromosome aberration patterns. In order to identify the underlying biological causes of Glioblastoma, we focus the analysis on the following two areas. The first area is to use frequency method to identify chromosome regions that show frequent copy number variations in many patients The second area is to focus on each individual patient and find those regions that clearly show high copy number gain or loss and to elucidate the relations of those genes within these segments to their biological phenotype (discussed in section 6.4).

### 6.2.1 Frequency analysis of copy number variation

Frequency analysis is attempts to identify those chromosome regions that show frequent aberrations (amplifications or deletions) in most of the disease patient samples. Regardless of which segmentation method is used, the frequency plots in Figure 6.2 .1 clearly indicates that more than $60 \%$ of the patients have chromosome amplification of chromosome 7 and massive copy number losses of chromosomes 10 and 9 p. About fourth of the patients have copy number losses on chromosome 13, 14 and 22 and/or copy number gain on chromosome 19, 20. Similar data processing and analyzing of 24 normal samples show no chromosome aberration at these regions (Figure 6.2.2). From the aberration plots, we can also see that for the HHMM segmentation algorithm, the data look more noise than the aberration plot generated based on CBS segmentation algorithm. This "noisy" pattern of HHMM frequency plot is probably due to the existence of many single probes.

ALL frequency plots, thresh=(1.5,-1.5)


ALL frequency plots, thresh=(1.5,-1.5)


Figure 6.2.1 Frequency plots of all segments from 170 patients samples. Top figure generated based on CBS segmentation algorithm, and bottom figure based on HHMM segmentation methods.

## ALL frequency plots, thresh=(1.5,-1.5)


chromosome
Figure 6.2.2 Frequency plot of all segments from 24 normal tissue samples. The segmentation is based on CBS algorithm. For the HHMM segmentation algorithm, a similar result was obtained

Table 6.2 .1 shows the aberration regions with frequencies $25 \%$ or higher segmented by using the CBS algorithm method. For the HHMM segmentation algorithm, quite similar results are derived (see supplementary Table S6.2.1). We could notice from both table that some genes gain copy numbers in some patients (ADAM5P and ADAM3A at p11.23 of chromosome 8 in Table 6.2.1) while they lose copy numbers in other patients. The polymorphism properties of these genes (or other genes with the same property) are probably not of direct interest.

| aberration pattern | chrom | start | end | cytoband | gene num |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gain | chr1 | 71641212 | 72520865 | p31.1 | 1 |
| Loss | chr1 | 71641212 | 72520865 | p31.1 | 1 |
| Loss | chr1 | 149370786 | 149385728 | q21.2 | 1 |
| Gain | chr1 | 149579739 | 149586393 | q21.2 | 1 |
| Loss | chr1 | 238719495 | 238842085 | q43 | 1 |
| Loss | chr1 | 245069024 | 245148302 | q44 | 1 |
| Loss | chr3 | 196933423 | 196950211 | q29 | 1 |
| Gain | chr4 | 69546931 | 69570979 | q13.2 | 1 |
| Loss | chr4 | 69546931 | 70396215 | q13.2 | 2 |
| Loss | chr5 | 848719 | 904101 | p15.33 | 1 |
| Loss | chr6 | 32593131 | 32719407 | p21.32 | 4 |
| Loss | chr6 | 165660767 | 165995574 | q27 | 1 |
| Gain | chr7 | 288051 | 158630410 | p22.3-q36.3 | 964 |
| Loss | chr7 | 141517438 | 141567562 | q34 | 1 |
| Loss | chr8 | 7408720 | 7791647 | p23.1 | 14 |
| Gain | chr8 | 39291338 | 39499627 | p11.23 | 2 |
| Loss | chr8 | 39291338 | 39499627 | p11.23 | 2 |
| Loss | chr9 | 111037 | 33029062 | p24.3-p13.3 | 114 |
| Loss | chr10 | 170642 | 135341873 | p15.3-q26.3 | 782 |
| Loss | chr11 | 5755465 | 5756440 | p15.4 | 1 |
| Loss | chr11 | 55127492 | 55190148 | q11 | 4 |
| Gain | chr12 | 56374152 | 56462591 | q14.1 | 8 |
| Loss | chr13 | 35241122 | 101852125 | q13.3-q33.1 | 158 |
| Loss | chr14 | 18447593 | 92225087 | q11.1-q32.12 | 13 |
| Loss | chr15 | 18997107 | 19915749 | q11.2 | 8 |
| Loss | chr16 | 54352011 | 54366325 | q12.2 | 1 |
| Loss | chr17 | 41463128 | 41605371 | q21.31 | 1 |
| Gain | chr19 | 232043 | 63722733 | p13.3-q13.43 | 784 |
| Loss | chr19 | 56837617 | 56841944 | q13.33 | 1 |
| Gain | chr20 | 16350 | 62378023 | p13-q13.33 | 567 |
| Loss | chr20 | 1493029 | 1548689 | p13 | 1 |
| Gain | chr22 | 22670594 | 22731899 | q11.23 | 4 |
| Loss | chr22 | 22703116 | 22714284 | q11.23 | 2 |
| Loss | chr22 | 37683472 | 37718729 | q13.1 | 2 |

Table 6.2.1 Segmentation result generated based on CBS segmentation algorithm. All the segments have frequencies at least $25 \%$ of all 170 patients samples

### 6.3 Functional impact of candidate genes or related pathways in the development of Glioblastoma tumor

PTEN has been found to be a tumor suppressor gene and the mutation or deletion of this gene is associated with the development of many cancers. PTEN has also been deleted in $60 \%$-- $70 \%$ of high-grade Glioblastoma patients' tumors (Johnston, et al. 2006). In this study, PTEN was deleted in around 100 patients out of all 170 patient samples (depending on the segmentation method; see Table 6.3.1 for detailed information). The pathway involving PI3K/PTEN/AKT has been suggested in previous studies (Fan, et al. 2007, Furnari, et al. 2007). Deletion of the tumor suppressor gene PTEN could result in uncontrolled PI3K signaling (Knobbe and Reifenberger 2003, Ohgaki, et al. 2004). Many regulatory subunits of PI3K have been identified, which include PIK3CA, PIK3CB and PIK3CD. Copy number gains of PIK3CA, PIK3CB and PIK3CD in some patient samples indicate the potential involvement of this pathway. In our study, we also observed that more than 90 patients' samples contain copy number gains of PIK3CG. PIK3CG has been shown to interact with PIK3CD (Vanhaesebroeck, et al. 1997). Amplification of PIK3CG probably also involves the PI3K/PTEN/AKT signal pathways. Other PI3K subunits including PIK3R2 (gain in about 40 samples), PIK3AP1 (losses in 95 patients samples) were also identified in our study.

Some other genes acting as "induction of programmed cell death" are deleted in most of the patient samples. These genes include FAS, TIAL1, SMNDC1, BNIP3 and CUL2. FAS belongs to TNF-receptor superfamily and has been shown to activate NF-kappa-B and MAPK3/ERK1 pathways. NF-kappa-B has been linked to inflammatory events associated with many diseases. In this study, more than half of
the patients have NF-kappa-B2 deleted. Since this gene is also located on chromosome 10, whether the deletion of this gene is a causal factor for the disease or is simply an involuntary deletion is unclear. FAS contains a death domain and is shown to play a central role in programmed cell death. Human leukocyte antigen (HLA) variants have been shown associated to be with the onset and prognosis of adult Glioblastoma multiforme (Tang, et al. 2005), in this analysis with CBS segmentation algorithm, HLA-DRB5 has been deleted in 109 patients samples and HLA-DRB6 been deleted in 78 patients. There are also 38 patients see the deletion of HLA-DRB1 in the tumor samples.

Epidermal growth factor receptor (EGFR) is a cell surface receptor. It has been shown that amplification of EGFR occurs in about 40\% of Glioblastoma patients (Furnari, et al. 2007). In our study, about 100 patients have amplified EGFR. Matrix metallopeptidase 9 (MMP9) is involved in the breakdown of extracellular matrix. Amplified MMP9 might facilitate tumor cell growth and migration. More than 30 patients also displayed the elevated expression level of this gene.

P53 is another tumor suppressor gene acting as a check point regulator at the G1 to S phase. Loss of p53 could be either through point mutations or chromosome deletions whereas point mutation is inaccessible by using the array CGH method. But in this study, there are also 11 patients who have copy number deletion for this gene. It has also been shown that the protein encoded by CDKN2A is an important accessory to p53 activation under conditions of oncogenic stress due to its neutralization of the p53 ubiquitin ligase, MDM2 (Kamijo, et al. 1998, Pomerantz, et al. 1998, Stott, et al. 1998, Furnari, et al. 2007). The overwhelming deletion of tumor
suppressor gene CDKN2A on chromosome 9 in about 100 patient samples suggestions a potential pathway of development of Glioblastoma tumor involving p53 regulation. Concordantly, MDM2 has been detected amplified in 25 patient samples when segmented based on CBS algorithm. We also observed that only 8 patients samples show amplification when data were analyzed by the HHMM algorithm. This suggests that there is a potential discrepancy between the CBS and HHMM algorithms. It is the best idea to consider all possibilities in order to get a better picture of the result. MDM4 could inhibit p53 transcription and enhances the ubiquitin ligase activity of MDM2 (Furnari, et al. 2007). We also noticed that 14 patients samples have amplified MDM4.

Retinoblastoma protein ( Rb 1 ) is another tumor suppressor protein frequently found deleted in many types of cancer (Murphree, et al. 1984). It has been shown that Rb 1 can block the proliferation of tumor cells by binding to the E2F family of transcription factors (Sherr and McCormick 2002). Amplification of CDK4 and CDK6 accounts for the inactivation of Rb1 in many patient samples (Serrano, Hannon and Beach 1993). In this study, 99 patient samples have amplified copy numbers of CDK6. Copy number gains of CDK6 probably at least partially contribute to the inactivation of Rb 1 . We observed 41 patient sample deletions using the CBS segmentation algorithm and 49 sample deletions using HHMM segmentation method. P16 (or CDKN2A) is another tumor suppressor gene, which functions as an inhibitor of CDK4. In 104 patient samples, copy number losses of p16 were observed based on the CBS segmentation algorithm and 90 patients showed similar patterns based on the HHMM methods. CDKN2B lies adjacent to the CDKN2A and encodes also a cyclin-
dependent kinase inhibitor, which forms a complex with CDK4 or CDK6. We observed 103 and 89 patients with copy number losses of CDKN2B from the CBS and HHMM segmentation algorithms respectively.

DMTF1 functions as negative regulation of cell cycles. Gene expression level of DMTF1 was amplified in at least 93 patient samples. Other cell cycle regulating genes that have been amplified in at least half of the patient samples include RINT1, MAD1L1, HUS1, CDC2L5, INHBA and ASNS and all of them are located on chromosome 7.

DMBT1 is a "Deleted in Malignant Brain Tumors 1" protein and the deletion of this gene has been associated with the progression of human cancers. DMBT1 was originally isolated based on the deletion in a medulloblastoma cell line, but was also later found deleted in many cases of Glioblastoma tumor. In this study, from HHMM segmentation analysis with $1.5 x$ DLRs cutoff threshold, 121 patients have DMBT1 deleted, and 105 patients have the same gene deleted based on the CBS segmentation method. Other genes that involve cell cycle regulating are BUB3, KIF20B, BCCIP, ZWINT, PDCD4, RASSF4, ZMYND11, CDC123, GTPBP4. All these genes were deleted in more than half of the patient sample.

| Gene | Gain <br> (CBS) | Loss <br> (CBS) | Gain <br> (HHMM) | Loss <br> (HHMM) | Chromosomal <br> Location | Gene Ontology Biological <br> Process |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASNS | 87 | 4 | 90 | 2 | chr7q21.3 | asparagine biosynthetic process; <br> positive regulation of mitotic cell <br> cycle |
| BCCIP | 4 | 97 | 4 | 95 | chr10q26.1 | regulation of cyclin-dependent <br> protein kinase activity; cell cycle |
| BNIP3 | 4 | 93 | 8 | 90 | chr10q26.3 | cell death; negative regulation of <br> survival gene product expression |
| BUB3 | 4 | 98 | 4 | 94 | chr10q26 | mitotic sister chromatid <br> segregation; mitotic cell cycle <br> checkpoint |


| Gene | Gain <br> (CBS) | Loss <br> (CBS) | Gain (HHMM) | Loss (HHMM) | Chromosomal Location | Gene Ontology Biological Process |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CDC123 | 10 | 84 | 9 | 83 | chr10p13 | cell cycle arrest; regulation of mitotic cell cycle; positive regulation of cell proliferation |
| CDC2L5 | 89 | 4 | 92 | 2 | chr7p13 | positive regulation of cell proliferation |
| CDK4 | 37 | 3 | 15 | 1 | chr12q14 | G1/S transition of mitotic cell cycle; positive regulation of cell proliferation |
| CDK6 | 99 | 4 | 93 | 2 | chr7q21-q22 | G1 phase of mitotic cell cycle; negative regulation of cell cycle |
| CDKN2A | 6 | 104 | 7 | 90 | chr9p21 | cell cycle checkpoint; G1/S transition of mitotic cell cycle; induction of apoptosis |
| CDKN2B | 6 | 103 | 7 | 89 | chr9p21 | negative regulation of cell proliferation ; G1/S transition checkpoint |
| CUL2 | 6 | 89 | 6 | 86 | chr10p11.21 | G1/S transition of mitotic cell cycle; negative regulation of cell proliferation |
| DMBT1 | 4 | 99 | 4 | 105 | chr10q26.13 | multicellular organismal development; epithelial cell differentiation |
| DMTF1 | 94 | 4 | 93 | 2 | chr7q21 | cell cycle |
| EGFR | 112 | 7 | 96 | 3 | chr7p12 | activation of MAPKK activity; negative regulation of mitotic cell cycle |
| FAS | 4 | 97 | 4 | 96 | chr10q24.1 | induction of apoptosis; positive regulation of necrotic cell death |
| GTPBP4 | 10 | 82 | 8 | 80 | chr10p15-p14 | regulation of cyclin-dependent protein kinase activity |
| HLADRB1 | 7 | 38 | 5 | 23 | chr6p21.3 | immune response |
| HLADRB5 | 10 | 109 | 10 | 47 | chr6p21.3 | immune response |
| HLADRB6 | 9 | 78 | 8 | 33 | chr6p21.3 | --- |
| HUS1 | 89 | 4 | 91 | 3 | chr7p13-p12 | DNA damage checkpoint |
| INHBA | 88 | 4 | 91 | 2 | chr7p15-p13 | G1/S transition of mitotic cell cycle; negative regulation of cell cycle |
| KIF20B | 4 | 96 | 4 | 93 | chr10q23.31 | M phase of mitotic cell cycl; cell cycle arrest |
| MAD1L1 | 90 | 4 | 94 | 5 | chr7p22 | mitotic cell cycle checkpoint |
| MDM2 | 25 | 4 | 8 | 2 | chr12q14.3-q15 | negative regulation of transcription from RNA polymerase II promote |
| MDM4 | 14 | 0 | 9 | 0 | chr1q32 | negative regulation of transcription from RNA polymerase II promote; G0 to G1 transition |
| MMP9 | 37 | 0 | 38 | 0 | $\begin{gathered} \text { chr20q11.2- } \\ \text { q13.1 } \\ \hline \end{gathered}$ | positive regulation of apoptosis |
| NFKB2 | 5 | 91 | 5 | 72 | chr10q24 | regulation of transcription, DNAdependent |
| PDCD4 | 4 | 94 | 6 | 90 | chr10q24 | apoptosis; negative regulation of cell cycle |


| Gene | Gain <br> (CBS) | Loss <br> (CBS) | Gain <br> (HHMM) | Loss <br> (HHMM) | Chromosomal <br> Location | Gene Ontology Biological <br> Process |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIK3CA | 8 | 2 | 11 | 4 | chr3q26.3 | negative regulation of apoptosis |
| PIK3CB | 6 | 5 | 10 | 4 | chr3q22.3 | activation of MAPK activity |
| PIK3CD | 8 | 17 | 8 | 5 | chr1p36.2 | B cell homeostasis |
| PIK3CG | 90 | 4 | 92 | 2 | chr7q22.3 | negative regulation of apoptosis |
| PTEN | 4 | 98 | 4 | 97 | chr10q23.3 | regulation of cyclin-dependent <br> protein kinase activity; negative <br> regulation of apoptosis |
| RASSF4 | 3 | 92 | 3 | 88 | chr10q11.21 | cell cycle |
| RB1 | 1 | 41 | 6 | 48 | chr13q14.2 | cell cycle checkpoint |
| RINT1 | 91 | 4 | 92 | 2 | chr7q22.3 | G2/M transition DNA damage <br> checkpoint |
| SMNDC <br> 1 | 4 | 93 | 4 | 92 | chr10q23 | induction of apoptosis |
| TIAL1 | 4 | 98 | 4 | 97 | chr10q | induction of apoptosis; positive <br> regulation of cell proliferation |
| ZMYND | 10 | 82 | 8 | 83 | chr10p14 | negative regulation of transcription <br> from RNA polymerase II promoter; <br> cell cycle |
| ZWINT | 5 | 91 | 5 | 88 | chr10q21-q22 | cell cycle; phosphoinositide- <br> mediated signaling |

Table 6.3.1 Gene information discussed in this section. In the column of Gene Oncology biological process, only partial GO terms are listed. All these GO terms are annotated based on Affymetrix gene chip annotation table downloaded from Affymetrix website (http://www.affymetrix.com).

### 6.4 Genes that show significant variation in individual patients

Many genes show very big gene expression variation within individual samples. For instance, 951 genes have at least four-fold ratio differences between the tumor samples and the reference control within all 170 tumor samples. Among these genes, 245 of them have at least 16-fold aberration. As discussed before, EGFR plays a very important role in the Glioblastoma development. In 50 tumor samples out of 170 patients samples, EGFR is amplified at least 16 folds. Even though, for many genes, the biological function involving the development of Glioblastoma remains unknown, the potential function of some of them involving the pathways discussed
before suggests the importance of these genes. Table 6.4 . 1 shows the partial gene list that has at least four-fold aberrations. The full list is given in supplementary Table

S6.4.1.

| genes | chrom | sample number | pattern | genes | chrom | sample number | pattern |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K03193 | 7 | 62 | Gain | AJ001612 | 7 | 15 | Gain |
| EGFR | 7 | 62 | Gain | MBD6 | 12 | 15 | Gain |
| SEC61G | 7 | 42 | Gain | DDIT3 | 12 | 14 | Gain |
| LANCL2 | 7 | 32 | Gain | GEFT | 12 | 14 | Gain |
| AK128355 | 7 | 25 | Gain | DTX3 | 12 | 14 | Gain |
| CDK4 | 12 | 25 | Gain | SLC35E3 | 12 | 14 | Gain |
| CENTG1 | 12 | 25 | Gain | SLC26A10 | 12 | 14 | Gain |
| TSPAN31 | 12 | 25 | Gain | KIF5A | 12 | 14 | Gain |
| ECOP | 7 | 24 | Gain | FLJ44060 | 7 | 13 | Gain |
| 38784 | 12 | 24 | Gain | DCTN2 | 12 | 13 | Gain |
| CYP27B1 | 12 | 24 | Gain | B4GALNT1 | 12 | 13 | Gain |
| AK093897 | 12 | 24 | Gain | PIP5K2C | 12 | 13 | Gain |
| DKFZP586D0919 | 12 | 24 | Gain | MARS | 12 | 13 | Gain |
| METTL1 | 12 | 24 | Gain | NUP107 | 12 | 13 | Gain |
| CR613464 | 7 | 23 | Gain | GSH2 | 4 | 12 | Gain |
| BC045679 | 7 | 23 | Gain | PDGFRA | 4 | 12 | Gain |
| MGC33530 | 7 | 22 | Gain | AY229892 | 4 | 12 | Gain |
| TSFM | 12 | 22 | Gain | LOC402176 | 4 | 12 | Gain |
| AVIL | 12 | 21 | Gain | CHIC2 | 4 | 12 | Gain |
| OS9 | 12 | 20 | Gain | BC094796 | 7 | 12 | Gain |
| CTDSP2 | 12 | 20 | Gain | ZNF713 | 7 | 11 | Gain |
| AF119871 | 12 | 19 | Gain | ARHGAP9 | 12 | 11 | Gain |
| MDM2 | 12 | 18 | Gain | CR590495 | 7 | 10 | Gain |
| CPM | 12 | 18 | Gain | MRPS17 | 7 | 9 | Gain |
| BC032840 | 12 | 17 | Gain | GBAS | 7 | 9 | Gain |
| XRCC6BP1 | 12 | 17 | Gain | CPSF6 | 12 | 9 | Gain |
| CR602022 | 12 | 16 | Gain | GLI1 | 12 | 9 | Gain |
| AK096400 | 12 | 16 | Gain | DDX5 | 17 | 9 | Gain |
| AF109294 | 9 | 37 | Loss | KLHL9 | 9 | 19 | Loss |
| CDKN2B | 9 | 36 | Loss | IFNA14 | 9 | 18 | Loss |
| CDKN2A | 9 | 36 | Loss | IFNE1 | 9 | 18 | Loss |
| HLA-DRB5 | 6 | 35 | Loss | BTNL3 | 5 | 15 | Loss |
| AJ007770 | 7 | 34 | Loss | IFNW1 | 9 | 14 | Loss |
| X89654 | 8 | 31 | Loss | ELAVL2 | 9 | 14 | Loss |
| LOC651362 | 8 | 30 | Loss | CR627240 | 9 | 14 | Loss |
| MTAP | 9 | 26 | Loss | BC042393 | 9 | 14 | Loss |
| LOC652848 | 14 | 26 | Loss | UGT2B17 | 4 | 13 | Loss |


| genes | chrom | sample <br> number | pattern | genes | chrom | sample <br> number | pattern |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOC647353 | 7 | 25 | Loss | U06641 | 4 | 13 | Loss |
| BC003593 | 6 | 24 | Loss | AK127991 | 22 | 12 | Loss |
| AK092601 | 9 | 22 | Loss | GSTT1 | 22 | 12 | Loss |
| DMRTA1 | 9 | 22 | Loss | BC043197 | 13 | 11 | Loss |
| AK124391 | 9 | 21 | Loss | BC019327 | 3 | 10 | Loss |
| IFNA8 | 9 | 19 | Loss | KIAA1797 | 9 | 10 | Loss |
| IFNA2 | 9 | 19 | Loss | OR4P4 | 11 | 10 | Loss |
| V00541 | 9 | 19 | Loss | CR593785 | 11 | 10 | Loss |

Table 6.4.1 Partial gene list that have either more than 4 folds gains or homozygous deletions with $\log _{2}$ (Ratio) more than 2 in at least 9 or 10 patients' samples.

MDM2 is potentially involved in p53 tumor suppressor pathway. Similar to EGFR and CDK4, MDM2 helps to regulate the cell cycle process. The common GO term "regulation of Ras protein signal transduction" of GEFT, GENTG1 and also SLC26A10 indicate the potential involvement of the Ras signal transduction pathway in at least some patients. Since the maximum copy number losses are 2, the "high" copy number losses simply suggest the homozygous deletions of the gene.

### 6.5 Survival analysis

Even though Glioblastoma is a WHO grade IV tumor with very high mortality rate. From Table 2.1.1, we can still see that the survival times of individual patients are quite different, ranging from a few days to more than a hundred months after the diagnosis and treatment. In this analysis, in order to analyze the potential correlation of individual genes or segments of chromosome to the survival information, the log rank test (or Chi square test) is performed to compare the differences of two groups (the gene (or segment) amplified or deleted vs unchanged within all samples). Table 6.5.1 and Table 6.5 .2 shows the analysis result based on the CBS segmentation
method. In Table 6.5.1, all the "segments" have amplified copy number aberration, while Table 6.5 .2 shows the survival analysis results of "segments" and genes with copy number deletion aberration.

| Chrom | Start | End | Genes | pvalue |
| :---: | :---: | :---: | :---: | :---: |
| Chr7 | 5312948 | 5429703 | TNRC18 | 0.000775179 |
| Chr7 | 28305464 | 28832036 | CREB5 | 0.000944061 |
| Chr7 | 29200645 | 30763743 | CHN2 PRR15 CRHR2 INMT | 0.000611761 |
| Chr7 | 30777557 | 31714593 | FLJ22374 AQP1 GHRHR..... | 0.000983259 |
| Chr7 | 31795771 | 32077516 | PDE1C | 0.00094093 |
| Chr7 | 32491469 | 32736120 | LSM5 AVL9 LOC441208 | 0.000983259 |
| Chr7 | 32874302 | 32949307 | KBTBD2 RP9P | 0.000611761 |
| Chr7 | 32963529 | 33612205 | FKBP9 NT5C3 RP9 BBS9 | 0.000924488 |
| Chr7 | 53070842 | 53072112 | DKFZp564N2472 | 0.000828016 |
| Chr7 | 54236410 | 54237608 | HPVC1 | 8.52E-05 |
| Chr7 | 54577512 | 54604442 | VSTM2A | 0.000614989 |
| Chr7 | 54787433 | 55242525 | SEC61G EGFR | 0.000458793 |
| Chr7 | 55400634 | 55468929 | LANCL2 | 0.000566615 |
| Chr7 | 55505799 | 55607694 | ECOP | 0.000829675 |
| Chr7 | 55680805 | 55682137 | LOC442308 | 0.000895219 |
| Chr7 | 55828730 | 55897976 | SEP14 | 0.000349342 |
| Chr7 | 55947824 | 55975927 | ZNF713 | 0.000685318 |
| chr17 | 20970849 | 21035428 | DHRS7B | 0.00011957 |
| chr17 | 24107122 | 24357207 | C17orf63 ERAL1... | 0.000676561 |
| chr17 | 37718868 | 37794039 | STAT3 | 0.000168583 |
| chr17 | 37807993 | 38105536 | PTRF ATP6V0A1 NAGLU ...... | 0.00045271 |
| chr17 | 38306340 | 38318912 | G6PC | $1.22 \mathrm{E}-05$ |
| chr17 | 42283966 | 42873676 | WNT9B GOSR2 RPRML..... | 0.000106719 |
| chr17 | 43373887 | 45633999 | PNPO ATAD4 CDK5RAP3 ..... | 0.000206057 |
| chr17 | 45706831 | 46553225 | TMEM92 XYLT2 MRPL27..... | 2.53E-06 |
| chr17 | 46585918 | 51209747 | NME1-NME2 NME1..... | 0.000206057 |
| chr17 | 63144522 | 63799000 | NOL11 BPTF C17orf58..... | 0.000966895 |
| chr17 | 78494955 | 78646011 | B3GNTL1 METRNL | 0.000825796 |
| chr10 | 7837372 | 14412872 | KIN ATP5C1 TAF3 ...... | 0.000339128 |
| chr10 | 14600564 | 14856902 | FAM107B | 0.000195038 |
| chr10 | 14901256 | 15801776 | ARMETL1 HSPA14 SUV39H2 ..... | 0.000339128 |
| chr10 | 15860180 | 15942525 | C10orf97 | 0.000562784 |
| chr10 | 16518972 | 17283687 | PTER C1QL3 RSU1 CUBN TRDMT1 | 0.000339128 |
| chr22 | 21731592 | 21990224 | RTDR1 GNAZ RAB36 BCR | 0.000326071 |
| chr22 | 41226539 | 41245752 | SERHL RRP7A | 0.000381544 |
| Chr5 | 70366555 | 70399256 | GTF2H2B GTF2H2C | 0.000226356 |


| Chrom | Start | End | Genes | pvalue |
| :---: | :---: | :---: | :---: | :---: |
| Chr5 | 70366706 | 70399253 | GTF2H2 | $2.67 \mathrm{E}-05$ |
| Chr5 | 70366932 | 70399233 | GTF2H2D | 0.000226356 |
| Chr5 | 70405174 | 70424653 | OCLN LOC647859 | $2.67 \mathrm{E}-05$ |
| Chr5 | 129268421 | 135720972 | CHSY3 TRPC7 | 0.00075346 |
| chr16 | 11255774 | 11353118 | SOCS1 TNP2 PRM3.... | $4.73 \mathrm{E}-06$ |

Table 6.5.1 Survival analysis of segments with amplified copy number aberration based on the CBS segmentation result. Only segments with $p$ value less than 0.001 are shown here. Due to space limitation, for some segments, only a partial gene list is shown. The segment information generate here is different from the segments from CGH segmentation. For each individual gene a log rank test was performed, and then all the gene on the same chromosome, located near each other, and most importantly having the exact same gain and no change patterns across all 170 samples (so with the same p value) are combined together to generate this table.

| Chrom | Start | End | Genes | pvalue |
| :---: | :---: | :---: | :---: | :---: |
| chr3 | 37259741 | 47029961 | GOLGA4 C3orf35 ITGA9... | 0.003403045 |
| chr3 | 47032903 | 47180471 | SETD2 | 0.002168912 |
| chr3 | 47244520 | 51509041 | KIF9 KLHL18 PTPN23 ... | 0.003403045 |
| chr8 | 35212516 | 35771722 | UNC5D | 0.004481786 |
| chr1 | 793319 | 869824 | FAM41C LOC100130417 SAMD11 | 0.003662627 |
| chr1 | 869445 | 1041599 | NOC2L KLHL17 PLEKHN1 HES4 ISG15 AGRN C1orf159 | 0.00135508 |
| chr1 | 1099148 | 1171965 | TTLL10 TNFRSF18 TNFRSF4 SDF4 B3GALT6 FAM132A | 0.002042499 |
| chr1 | 1179154 | 1500125 | UBE2J2 SCNN1D ACAP3 ... | 0.004211136 |
| chr1 | 158352143 | 158379996 | ATP1A2 | 0.003451951 |
| chr1 | 239005439 | 239587101 | RGS7 | 0.003109638 |
| chr10 | 42598264 | 43224702 | BMS1 RET CSGALNACT2 RASGEF1A FXYD4 HNRNPF | 0.004732608 |
| chr10 | 43252579 | 43464332 | ZNF487 ZNF239 ZNF485 ZNF32 | 0.0040157 |
| chr10 | 43602865 | 43605871 | HNRNPA3P1 | 0.002556484 |
| chr10 | 44185610 | 45410360 | CXCL12 TMEM72 RASSF4... | 0.001861497 |
| chr10 | 45431044 | 45488257 | ANUBL1 | 0.002811846 |
| chr10 | 47128239 | 47171452 | ANTXRL | 0.003682633 |
| chr10 | 52420950 | 53725280 | PRKG1 | 0.004829294 |

Table 6.5.2 Survival analysis of segments with deleted copy number aberration based on the CBS segmentation result. Only segments with p value less than 0.005 are shown here. Due to space limitation, for some segments, only partial gene list is shown. Similar to Table 6.5.1, the segments information generate here is different to the segments from CGH segmentation. A log rank test is performed on each individual gene; then all the genes on the same chromosome, located near each other, and most importantly having the exact same deletion and no change patterns across all 170 samples (so with the same p value) are combined together to generate this table.

Even though Tables 6.5.1 and 6.5 .2 clearly show significant differences based on the $\log$ rank test, we can't tell from the table whether the copy number aberration helps survival or works in an opposite way. Kaplan-Meier plots can reveal this kind of information visually. Figure 6.5 .1 shows several typical Kaplan-Meier plots of the analysis from amplified segments based on the CBS segmentation. From these plots, basically there are two different patterns; one is that amplified copy numbers helps patients surviving longer time. Segments with this pattern in Figure 6.5.1 include
some genes located at Chr10:14901256-15801776 (p value: 0.00034), Chr10:15860180-15942525 (p value: 0.00056), and Chr10:1460056414856902(pvalue: 0.00020). Although for most patients' samples, chromosome 10 suffers massive copy number deletion, for instance, the gene PTER is deleted in 88 patients' samples, but still in 11 patients' samples, the copy number of this gene is actually amplified. Some other genes with this pattern and within above segments include FAM107B, ARMETL1, HSPA14, SUV39H2, C10orf97, PTER, C1QL3, RSU1, CUBN, TRDMT1, et al.

Another set of genes actually does more damage than good to the patients. Many of them located on Chromosome 17, for instance, Chr17: 45706831-46553225 (p value: 2.5e-06), Chr17: 78494955-78646011 (p value: 0.00083) and Chr17: 37807993-38105536 (p value: 0.00045). Some genes located at these regions include B3GNTL1, METRNL, TMEM92, XYLT2, MRPL27, PTRF, ATP6V0A1, NAGLU, et al. For the other genes or segments with significant $\log$ rank $p$ value ( $p<0.0001$ ), amplifications of these genes in these segments won't help or damage too much to the survival as shown on the rest of the Kaplan-Meier plots Figure 6.5.1, even though, statistically both groups (patients with amplified genes and patients with no gene changes) are different.


Figure 6.5.1 Typical Kaplan-Meier plots of survival analysis results based on the genes or segments with amplified copy number aberration based on the CBS segmentation analyzing result. In the figures, the $y$-axis represents the survival probability and the x -axis represents the survival time in months. In the legend, "change" represents that the specific gene or segment has amplified copy numbers and "no change" indicates no copy number aberration observed for this specific gene or segments in the patient sample. Here only show part of the Kaplan-Meier plots, but the rest plots are quite similar.


Figure 6.5.2 Typical Kaplan-Meier plots of survival analysis results based on the genes or segments with deleted copy number aberration based on the CBS segmentation analyzing result. In the figures, the $y$-axis represents the survival probability and the x -axis represents the survival time in months. In the legend, "change" represents that the specific gene or segment has amplified copy numbers and "no change" indicate no copy number aberration observed for this specific gene or segments in the patient sample. Here only show part of the Kaplan-Meier plots, but the rest plots are quite similar.

For those genes with deleted copy number aberration as shown in Table 6.5.2, Kaplan-Meier survival analysis (Figure 6.5.2) also shows patterns similar to Figure 6.5.1. Some segments at chromosome 1 and 3, for instance, Chrl: 793319-869824 (p
value: 0.0037), Chrl: 869445-1041599 (p value: 0.0014), Chrl: 1099148-1171965 (p value: 0.0020), Chr1: 1179154-1500125 (p value: 0.0042), and Chr3: 372594151509047 ( p value: 0.0021 and 0.0034 ), deletion of these genes actually correlate to extended survival of patients.

### 6.6 Fisher exact test

As discussed before, 1.5 xDRLs is applied to identify those segments with copy number variation. Each gene within these segments could be assigned either gain or loss depending on the patterns of the copy number variation of each individual segments. For those segments with amplified copy number variation from all 170 tumor samples, each individual gene is assigned either gain or no gain. There are also 24 normal samples in which the same gene could also be assigned to gain or no gain. One-tail Fisher exact tests are performed for all genes (each gene has one $2 \times 2$ contingency table) and p values are derived for each gene. Similarly, for those segments with copy number deletion, each individual gene within these segments could also form a $2 \times 2$ contingency table and each table could apply Fisher exact test. After the testing, the adjusted $p$ values for multiple comparisons are calculated based on the method of Benjamin and Hochberg (1995)and the result is shown in Figure 6.6.1. Many other genes, some of which were discussed in Section 6.3, also show significant p values. These genes include HUS1, CDC2L5, DMTF1, RINT1, EGFR, CDK6, MAD1L1, INHBA, PIK3CG, ASNS, and CDKN2B. All these genes have adjusted p values less than 0.05 , and except for CDKN2B, all of them have gained copy number aberrations.


Figure 6.6.1 Fisher exact test based on the CBS segmentation result. Top figure is derived from the genes with copy number gains and the lower figure is from those genes with copy number deletion. Genes are grouped based on the same adjusted p value, and each group is located on the same segment. The $\log 2$ transformed adjusted p values (less than 0.05 ) are plotted against the cytobands shown as above.

## Chapter 7 Discussion

This thesis includes two main parts; the first part discussed the raw data processing and the second part mainly focused on biological aspects from the analysis. Through out the entire analysis, extensive statistical methods are used, which include, but are not limited to, Hidden Markov Chain, log rank test, Fisher exact test, as well as many others. Briefly, in the data processing part, even though there are more than ten different data processing algorithms available, many of them are gradually becoming obsolete due to various reasons. HHMM and CBS are the two data processing algorithms that stand up among all methods. In this thesis, both HHMM and CBS algorithms are used and their performances are compared using the data set generated from real tumor samples. From the analysis we can see CBS tends to identify the relatively big segments, but HHMM tends to identify more single probe aberrations while missing many obvious big segments. Simply based on the current CGH experiments, it is hard to tell whether single probe aberrations represent true biological copy number variation. One potential solution to verify whether the single probe aberrations really represent the copy number variation is to increase the resolutions of the CGH array. Moreover, the biological significance of each copy number aberration needs to be verified based on the laboratory bench work.

Ideally, the copy number variation could easily be calculated mathematically as shown in Table 3.1.1. Due to many systematic and random errors involved in each
experiment, we seldom can apply the ideal mathematic values in Table 3.1.1 to find the copy number changes. Instead, the noise level (DRLs) of each array experiment is calculated and an arbitrary 1.5 x (DRLs) cutoff is applied to individual hybridization. All the segments with the absolute predicted $\log _{2}$ (Ratio) values greater than this cutoff are treated as segments with copy number variation.

Frequency plots also show (Figure 6.2.1) that copy number gains on the whole or most part of chromosome 7 and losses on whole or part of chromosome 10 are the signatures of Glioblastoma. Other than these two whole chromosome copy number aberrations, other chromosomes also contain various copy number aberrations with various segment lengths as shown in Table 6.2.1. We also observed from the frequency plots that there is no single segment whose copy number variation is shared by all patients. Gene level analysis (Fisher test) also yields the same conclusion. This suggests that even though all patients suffered from the same or similar WHO grade IV Glioblastoma, the genotypes of these patients are similar but not identical. This also implies that the Glioblastoma in individual patients many not have the same causation at the genome level.

In this analysis, we also noticed that many tumor suppression genes are deleted and the copy numbers of many cell cycle related genes are changed. Some of the well-known tumor suppression genes identified in this study include, but are not limited to, PTEN, TP53, CDKN2A and RB1. Many of these genes are involved in the cell cycle checkpoints. Deletion of any of these tumor suppression genes in the tumor cells may directly cause the uncontrolled tumor growth in these patients.

From the segmentation results, we can also confirm some signal transduction pathways that are involved in the development of Glioblastoma. One of these pathways is PI3K/PTEN/AKT. EGFR has been found amplified in the tumors of more than half of the patients, which is consistent with published results. The NF-kappa-B involved signal transduction pathway has been linked to inflammatory events associated with many diseases. In this study, identification of some components involving this pathway suggests the importance of NF-kappa-B and MAPK3/ERK1signal transduction pathways in tumor development.

Due to the individual variation of each patient, the causations of the same disease are also very different. Even though we can generate a signature pattern for this disease using frequency plots as shown in Figure 6.2.1, the gene level fingerprints of each individual patients could also reveal the importance of many genes or segments to each individual patient, especially when the copy number variation is significantly changed (homozygous deletion or multi-fold copy number gains). This part of the analysis will clearly benefit us in the personalized gene therapy or personalized drug development study in the future.

Even though the mortality rate of the grade IV Glioblastoma disease is very high, survival analysis using the log rank test clearly shows the differences of some segments or genes to the survival rate. In this analysis, amplification of some genes at specific segments for instance Chr10: 14600564-15942525 or deletion of copy number of Chr1: 793319-1500152 and Chr3: 3725941-51509047, may help to extend the life expectation of some Glioblastoma patients. Even though many genes within these segments are known genes, their biological functions involving Glioblastoma
are actually not quite clear and array CGH can't answer this question. The only solution to this question is laboratory bench work for each individual gene. But at least this result could serve as guidance for future laboratory work.

## Appendix A Supplementary Tables and Figures

Table S2.1.1 Detailed patients' information downloaded from public available sources. Due to descripancy of two difference data sources, there are two vital status of each patient

| Case ID | Gender | PRETREATME NT HISTORY | VITAL STATUS | Vital Status | $\begin{aligned} & \text { DAYS TO } \\ & \text { BIRTH } \end{aligned}$ | $\begin{aligned} & \text { DAYS } \\ & \text { TO } \\ & \text { DEATH } \end{aligned}$ | $\begin{aligned} & \text { DAYS TO } \\ & \text { LAST } \\ & \text { FOLLOWUP } \end{aligned}$ | DAYS TO TUMOR PROGRESSION | DAYS TO TUMOR RECURRENCE | Secondary <br> or <br> Recurrent | Age at Procedure | Age at Death |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0001 | female | Yes | DECEASED | DEAD | -16179 | 353 | 358 | null | 137 | Rec | 45 | 45 |
| TCGA-02-0003 | male | No | DECEASED | DEAD | -18340 | 144 | 144 | null | 40 | No | 50 | 50 |
| TCGA-02-0006 | female | No | DECEASED | DEAD | -20516 | 558 | 558 | null | 302 | No | 56 | 58 |
| TCGA-02-0007 | female | Yes | DECEASED | DEAD | -14805 | 705 | 705 | 518 | null | Rec | 42 | 43 |
| TCGA-02-0009 | FEMALE | No | DECEASED | DEAD | -22456 | 322 | 322 | 264 | null | No | 61 | 62 |
| TCGA-02-0010 | FEmale | Yes | DECEASED | DEAD | -7451 | 1077 | 1077 | 351 | null | Sec | 22 | 23 |
| TCGA-02-0011 | FEmale | No | DECEASED | DEAD | -6926 | 630 | 630 | 144 | null | No | 19 | 20 |
| TCGA-02-0014 | male | No | DECEASED | DEAD | -9369 | 2511 | 2511 | -1409 | null | Rec | 25 | 32 |
| TCGA-02-0021 | FEMALE | Yes | DECEASED | DEAD | -16035 | 2361 | 2361 | 254 | null | Rec | 44 | 50 |
| TCGA-02-0024 | MALE | Yes | DECEASED | DEAD | -13116 | 1614 | 1614 | null | 1400 | Rec | 39 | 40 |
| TCGA-02-0027 | female | No | DECEASED | DEAD | -12369 | 370 | 315 | 257 | null | No | 34 | 35 |
| TCGA-02-0028 | male | Yes | DECEASED | DEAD | -14303 | 2755 | 2755 | 1921 | null | Sec | 46 | 46 |
| TCGA-02-0033 | male | No | DECEASED | DEAD | -20070 | 86 | 86 | 32 | null | No | 55 | 55 |
| TCGA-02-0034 | male | No | DECEASED | DEAD | -22166 | 430 | 430 | 386 | null | No | 61 | 62 |
| TCGA-02-0037 | FEmALE | No | DECEASED | DEAD | -27063 | 109 | 109 | 37 | null | No | 74 | 74 |
| TCGA-02-0038 | FEMALE | No | DECEASED | DEAD | -17749 | 326 | 326 | 238 | null | No | 49 | 50 |
| TCGA-02-0043 | FEmale | Yes | DECEASED | DEAD | -19882 | 556 | 556 | 282 | null | Rec | 56 | 56 |
| TCGA-02-0046 | MALE | No | DECEASED | DEAD | -22417 | 208 | 208 | 194 | null | No | 61 | 62 |
| TCGA-02-0047 | male | No | DECEASED | DEAD | -28759 | 447 | 447 | 57 | null | No | 79 | 80 |
| TCGA-02-0052 | male | No | DECEASED | DEAD | -18060 | 383 | 383 | 204 | null | No | 50 | 51 |
| TCGA-02-0054 | FEmale | No | DECEASED | DEAD | -16223 | 199 | 199 | 72 | null | No | 44 | 45 |
| TCGA-02-0055 | FEmALE | No | DECEASED | DEAD | -22798 | 76 | 76 | 6 | null | No | 62 | 62 |
| TCGA-02-0057 | FEMALE | Yes | DECEASED | DEAD | -24139 | 604 | 604 | 473 | null | Rec | 67 | 68 |
| TCGA-02-0058 | FEmALE | No | DECEASED | DEAD | -10517 | 254 | 254 | 171 | null | Rec | 29 | 29 |
| TCGA-02-0060 | FEMALE | No | DECEASED | DEAD | -24150 | 183 | 183 | 183 | null | No | 66 | 66 |
| TCGA-02-0064 | male | No | Deceased | DEAD | -18280 | 600 | 600 | null | 496 | No | 49 | 51 |


| Case ID | Gender | PRETREATME NT HISTORY | VITAL STATUS | Vital Status | DAYS TO BIRTH | $\begin{gathered} \text { DAYS } \\ \text { TO } \\ \text { DEATH } \end{gathered}$ | $\begin{aligned} & \text { DAYS TO } \\ & \text { LAST } \\ & \text { FOLLOWUP } \end{aligned}$ | DAYS TO TUMOR PROGRESSION | DAYS TO TUMOR RECURRENCE | Secondary or <br> Recurrent | Age at Procedure | Age at Death |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0069 | FEMALE | No | LIVING | DEAD | -11668 | null | 873 | 873 | null | No | 31 | 34 |
| TCGA-02-0071 | male | No | DECEASED | DEAD | -19425 | 167 | 167 | 8 | null | No | 53 | 54 |
| TCGA-02-0074 | Female | No | Deceased | DEAD | -24906 | 310 | 310 | 154 | null | No | 68 | 69 |
| TCGA-02-0075 | male | No | DECEASED | DEAD | -23205 | 634 | 634 | 336 | null | No | 63 | 65 |
| TCGA-02-0079 | MALE | No | DECEASED | DEAD | -21173 | 828 | 828 | 797 | null | No | 56 | 58 |
| TCGA-02-0080 | MALE | Yes | DECEASED | DEAD | -10309 | 2729 | 2729 | 2339 | null | Rec | 34 | 35 |
| TCGA-02-0083 | FEMALE | Yes | DECEASED | DEAD | -21626 | 691 | 691 | 462 | null | Rec | 61 | 62 |
| TCGA-02-0084 | FEmALE | No | DECEASED | DEAD | -13263 | 384 | 7 | null | null | No | 34 | 37 |
| TCGA-02-0085 | FEMALE | No | DECEASED | DEAD | -23289 | 1560 | 1560 | 976 | null | No | 66 | 69 |
| TCGA-02-0086 | FEmALE | No | DECEASED | DEAD | -16763 | 268 | 268 | 97 | null | No | 46 | 47 |
| TCGA-02-0087 | FEmALE | No | LIVING | DEAD | -10185 | null | 1757 | null | 1757 | No | 28 | 30 |
| TCGA-02-0089 | male | Yes | DECEASED | DEAD | -19233 | 515 | 515 | 358 | null | Rec | 54 | 54 |
| TCGA-02-0099 | male | Yes | DECEASED | DEAD | -17080 | 106 | 106 | null | null | Rec | 46 | 47 |
| TCGA-02-0102 | MALE | Yes | DECEASED | DEAD | -15660 | 821 | 821 | 450 | null | Sec | 44 | 45 |
| TCGA-02-0106 | MALE | No | DECEASED | DEAD | -19883 | 355 | 355 | null | 195 | No | 55 | 55 |
| TCGA-02-0107 | MALE | Yes | DECEASED | DEAD | -20557 | 537 | 537 | null | 146 | Rec | 57 | 58 |
| TCGA-02-0111 | MALE | No | Deceased | DEAD | -20813 | 704 | 704 | 74 | null | No | 57 | 59 |
| TCGA-02-0113 | FEMALE | Yes | LIVING | DEAD | -15836 | null | 2817 | null | 1559 | Rec | 49 | 51 |
| TCGA-02-0114 | FEmale | Yes | DECEASED | DEAD | -13681 | 3040 | 3040 | null | 2296 | Sec | 45 | 46 |
| TCGA-02-0115 | male | No | DECEASED | DEAD | -19257 | 476 | 476 | 91 | null | No | 53 | 54 |
| TCGA-02-0116 | MALE | Yes | DECEASED | DEAD | -18656 | 1489 | 1489 | 1231 | null | Rec | 54 | 55 |
| TCGA-02-0258 | female | No | Deceased | DEAD | -13268 | 503 | 503 | null | 503 | No | 36 | 37 |
| TCGA-02-0260 | male | No | DECEASED | DEAD | -19956 | 514 | 514 | null | null | No | 54 | 56 |
| TCGA-02-0266 | MALE | No | DECEASED | DEAD | -5303 | 538 | 538 | 293 | null | No | 15 | 16 |
| TCGA-02-0269 | male | No | DECEASED | DEAD | -25194 | 327 | 327 | 99 | null | No | 69 | 70 |
| TCGA-02-0271 | male | No | DECEASED | DEAD | -9578 | 440 | 440 | 0 | null | No | 26 | 27 |
| TCGA-02-0281 | FEMALE | No | DECEASED | DEAD | -28695 | 121 | 121 | 0 | null | No | 78 | 79 |
| TCGA-02-0285 | FEMALE | No | DECEASED | DEAD | -18353 | 422 | 422 | 0 | null | No | 50 | 52 |
| TCGA-02-0289 | MALE | No | DECEASED | DEAD | -21031 | 432 | 432 | 244 | null | No | 57 | 59 |
| TCGA-02-0290 | male | No | DECEASED | DEAD | -18066 | 485 | 485 | 374 | null | No | 49 | 50 |


| Case ID | Gender | PRETREATME NT HISTORY | VITAL STATUS | Vital Status | $\begin{aligned} & \text { DAYS TO } \\ & \text { BIRTH } \end{aligned}$ | $\begin{gathered} \text { DAYS } \\ \text { TO } \\ \text { DEATH } \end{gathered}$ | $\begin{aligned} & \text { DAYS TO } \\ & \text { LAST } \\ & \text { FOLLOWUP } \end{aligned}$ | DAYS TO TUMOR PROGRESSION | DAYS TO TUMOR RECURRENCE | $\begin{aligned} & \text { Secondary } \\ & \text { or } \\ & \text { Recurrent } \end{aligned}$ | Age at Procedure | Age at Death |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0317 | MALE | No | DECEASED | DEAD | -14636 | 372 | 372 | 238 | null | No | 40 | 41 |
| TCGA-02-0321 | male | No | DECEASED | DEAD | -27125 | 300 | 300 | 73 | null | No | 15 | 15 |
| TCGA-02-0324 | Female | No | Deceased | DEAD | -25352 | 234 | 234 | 163 | null | No | 69 | 70 |
| TCGA-02-0325 | MALE | No | DECEASED | DEAD | -22598 | 323 | 323 | 284 | null | No | 62 | 63 |
| TCGA-02-0326 | FEMALE | No | DECEASED | DEAD | -30159 | 223 | 374 | 5 | null | No | 83 | 84 |
| TCGA-02-0330 | FEMALE | No | DECEASED | DEAD | -18654 | 484 | 484 | 120 | null | No | 51 | 52 |
| TCGA-02-0332 | FEMALE | No | DECEASED | DEAD | -17021 | 782 | 782 | 438 | null | No | 47 | 47 |
| TCGA-02-0333 | FEMALE | No | DECEASED | DEAD | -28449 | 133 | 133 | 4 | null | No | 78 | 78 |
| TCGA-02-0337 | MALE | No | DECEASED | DEAD | -17642 | 764 | 764 | 691 | null | No | 48 | 50 |
| TCGA-02-0338 | male | No | DECEASED | DEAD | -15231 | 322 | 322 | 167 | null | No | 42 | 43 |
| TCGA-02-0339 | male | No | DECEASED | DEAD | -24524 | 377 | 377 | 148 | null | No | 67 | 68 |
| TCGA-02-0422 | male | No | DECEASED | DEAD | -18367 | 441 | 441 | 125 | null | No | 50 | 51 |
| TCGA-02-0430 | FEmALE | No | DECEASED | DEAD | -24641 | 321 | 321 | null | null | No | 68 | 68 |
| TCGA-02-0432 | MALE | No | DECEASED | DEAD | -13260 | 1433 | 1433 | 1053 | null | No | 37 | 41 |
| TCGA-02-0439 | FEMALE | No | DECEASED | DEAD | -25623 | 20 | 20 | 13 | null | No | 70 | 70 |
| TCGA-02-0440 | MALE | No | DECEASED | DEAD | -22955 | 345 | 345 | 212 | null | No | 63 | 64 |
| TCGA-02-0446 | MALE | No | DECEASED | DEAD | -22541 | 281 | 281 | null | 15 | No | 61 | 62 |
| TCGA-02-0451 | FEMALE | No | DECEASED | DEAD | -22662 | 492 | 492 | null | 427 | No | 62 | 63 |
| TCGA-02-0456 | FEmALE | No | DECEASED | DEAD | -24796 | 102 | 102 | null | 12 | No | UNK | 68 |
| TCGA-06-0122 | FEmALE | No | DECEASED | DEAD | -30967 | 187 | 8 | null | null | No | 85 | 86 |
| TCGA-06-0124 | MALE | No | DECEASED | DEAD | -24591 | 619 | 123 | null | null | No | 67 | 69 |
| TCGA-06-0125 | female | No | Deceased | DEAD | -23343 | 1448 | 1439 | 797 | null | No | 64 | 68 |
| TCGA-06-0126 | male | No | DECEASED | DEAD | -31627 | 210 | 3 | null | null | No | 86 | 87 |
| TCGA-06-0127 | MALE | No | DECEASED | DEAD | -24502 | 120 | 108 | 90 | null | No | 68 | 68 |
| TCGA-06-0128 | male | No | DECEASED | DEAD | -24217 | 691 | 691 | 189 | null | No | 66 | 68 |
| TCGA-06-0129 | male | No | DECEASED | DEAD | -11284 | 1024 | 988 | 147 | null | No | 31 | 33 |
| TCGA-06-0130 | MALE | No | DECEASED | DEAD | -19811 | 394 | 320 | 244 | null | No | 54 | 55 |
| TCGA-06-0133 | MaLE | No | DECEASED | ALIVE | -23402 | 435 | 428 | 78 | null | No | 64 | 64 |
| TCGA-06-0137 | FEMALE | No | DECEASED | DEAD | -23273 | 812 | 701 | 487 | null | No | 63 | 66 |
| TCGA-06-0138 | male | No | DECEASED | DEAD | -15736 | 737 | 674 | 394 | null | No | 43 | 45 |


| Case ID | Gender | PRETREATME NT HISTORY | VITAL STATUS | Vital Status | DAYS TO BIRTH | $\begin{gathered} \text { DAYS } \\ \text { TO } \\ \text { DEATH } \end{gathered}$ | $\begin{aligned} & \text { DAYS TO } \\ & \text { LAST } \\ & \text { FOLLOWUP } \end{aligned}$ | DAYS TO TUMOR PROGRESSION | DAYS TO TUMOR RECURRENCE | Secondary or <br> Recurrent | Age at Procedure | Age at Death |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0139 | MALE | No | DECEASED | DEAD | -14728 | 362 | 327 | 152 | null | No | 41 | 42 |
| TCGA-06-0141 | male | No | DECEASED | DEAD | -22925 | 313 | 280 | 145 | null | No | 63 | 64 |
| TCGA-06-0143 | MALE | No | Deceased | DEAD | -21386 | 357 | 357 | null | 264 | No | 58 | 59 |
| TCGA-06-0145 | FEMALE | No | DECEASED | DEAD | -19660 | 71 | 71 | null | null | No | 54 | 54 |
| TCGA-06-0146 | FEMALE | No | DECEASED | DEAD | -12252 | 611 | 611 | 530 | null | No | 33 | 35 |
| TCGA-06-0147 | FEMALE | No | DECEASED | DEAD | -18742 | 541 | 508 | null | null | No | 52 | 53 |
| TCGA-06-0148 | MALE | No | DECEASED | DEAD | -27842 | 307 | 298 | 188 | null | No | 76 | 77 |
| TCGA-06-0149 | FEmALE | No | DECEASED | DEAD | -27315 | 261 | 238 | 203 | null | No | 75 | 75 |
| TCGA-06-0152 | MALE | No | DECEASED | DEAD | -24844 | 375 | 359 | 299 | null | No | 68 | 69 |
| TCGA-06-0154 | male | No | DECEASED | DEAD | -20018 | 423 | 389 | 207 | null | No | 55 | 56 |
| TCGA-06-0156 | male | No | DECEASED | DEAD | -20931 | 178 | 164 | null | null | No | 57 | 57 |
| TCGA-06-0157 | FEmale | No | DECEASED | DEAD | -23127 | 97 | 97 | null | null | No | 63 | 63 |
| TCGA-06-0158 | male | No | DECEASED | DEAD | -26855 | 329 | 166 | 90 | null | No | 74 | 74 |
| TCGA-06-0162 | FEmaLE | No | DECEASED | DEAD | -17272 | 104 | 78 | null | null | No | 47 | 48 |
| TCGA-06-0164 | MALE | No | DECEASED | DEAD | -17510 | 1730 | 1729 | 1428 | null | No | 47 | 52 |
| TCGA-06-0166 | MALE | No | DECEASED | DEAD | -18902 | 178 | 161 | 66 | null | No | 52 | 52 |
| TCGA-06-0168 | FEmale | No | DECEASED | DEAD | -21776 | 598 | 579 | 461 | null | No | 60 | 62 |
| TCGA-06-0169 | male | No | DECEASED | DEAD | -25127 | 100 | 95 | 92 | null | No | 69 | 69 |
| TCGA-06-0171 | male | No | DECEASED | DEAD | -24085 | 399 | 396 | 117 | null | No | 66 | 67 |
| TCGA-06-0173 | FEmale | No | DECEASED | DEAD | -26548 | 136 | 7 | null | null | No | 73 | 74 |
| TCGA-06-0174 | MALE | No | DECEASED | DEAD | -19824 | 98 | 67 | 47 | null | No | 54 | 54 |
| TCGA-06-0175 | Male | No | Deceased | DEAD | -25558 | 123 | 83 | 39 | null | No | 70 | 71 |
| TCGA-06-0176 | male | No | LIVING | ALIVE | -12777 | null | 1561 | 41 | null | No | 35 | 37 |
| TCGA-06-0177 | MALE | No | Deceased | DEAD | -23498 | 126 | 60 | null | null | No | 65 | 65 |
| TCGA-06-0178 | male | No | LIVING | ALIVE | -14235 | null | 1642 | 192 | null | No | 39 | 42 |
| TCGA-06-0179 | male | No | DECEASED | DEAD | -23449 | 616 | 578 | 250 | null | No | 64 | 66 |
| TCGA-06-0182 | MALE | null | DECEASED | DEAD | -27963 | 111 | 77 | null | null | No | 77 | 77 |
| TCGA-06-0184 | MALE | No | LIVING | ALIVE | -23317 | null | 1228 | null | null | No | 64 | 66 |
| TCGA-06-0185 | male | No | Living | alive | -19922 | null | 1126 | 711 | null | No | 54 | 57 |
| TCGA-06-0187 | male | No | DECEASED | ALIVE | -25317 | 828 | 801 | null | 531 | No | 69 | 70 |


| Case ID | Gender | PRETREATME NT HISTORY | VITAL <br> STATUS | Vital Status | DAYS TO BIRTH | $\begin{gathered} \text { DAYS } \\ \text { TO } \\ \text { DEATH } \end{gathered}$ | $\begin{gathered} \text { DAYS TO } \\ \text { LAST } \\ \text { FOLLOWUP } \end{gathered}$ | DAYS TO TUMOR PROGRESSION | DAYS TO TUMOR RECURRENCE | Secondary <br> or <br> Recurrent | Age at Procedure | $\begin{aligned} & \text { Age at } \\ & \text { Death } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0188 | male | No | LIVING | ALIVE | -26079 | null | 866 | null | null | No | 72 | 73 |
| TCGA-06-0189 | male | No | DECEASED | dead | -20296 | 469 | 454 | null | null | No | 55 | 56 |
| TCGA-06-0190 | male | No | deceased | DEAD | -22835 | 317 | 313 | 88 | null | No | 62 | 63 |
| TCGA-06-0194 | female | No | DECEASED | DEAD | -13852 | 142 | 142 | 125 | null | No | 38 | 38 |
| TCGA-06-0195 | male | No | DECEASED | DEAD | -23131 | 225 | 214 | 147 | null | No | 64 | 64 |
| TCGA-06-0197 | female | No | DECEASED | DEAD | -24095 | 168 | 79 | 47 | null | No | 66 | 67 |
| TCGA-06-0208 | FEmale | No | DECEASED | DEAD | -19108 | 255 | 166 | 148 | null | No | 53 | 53 |
| TCGA-06-0209 | male | No | DECEASED | DEAD | -27877 | 231 | 118 | null | null | No | 77 | 77 |
| TCGA-06-0210 | FEmale | No | DECEASED | DEAD | -26600 | 225 | 151 | 67 | null | No | 73 | 74 |
| TCGA-06-0211 | male | No | DECEASED | DEAD | -17514 | 360 | 360 | 53 | null | No | 48 | 49 |
| TCGA-06-0213 | female | No | DECEASED | DEAD | -20134 | 16 | 6 | null | null | No | 55 | 55 |
| TCGA-06-0214 | MALE | No | DECEASED | DEAD | -24187 | 457 | 378 | 48 | null | No | 66 | 67 |
| TCGA-06-0221 | male | No | DECEASED | DEAD | -11332 | 603 | 548 | 260 | null | No | 31 | 32 |
| TCGA-06-0237 | FEmale | No | DECEASED | ALIVE | -27735 | 415 | 314 | null | null | No | 75 | 77 |
| TCGA-06-0238 | MALE | No | DECEASED | ALIVE | -17037 | 404 | 359 | 311 | null | No | 47 | 48 |
| TCGA-06-0241 | female | No | LIVING | alive | -24101 | null | 455 | null | 196 | No | 66 | 67 |
| TCGA-06-0394 | male | No | DECEASED | DEAD | -18913 | 329 | 313 | 87 | null | No | 51 | 52 |
| TCGA-06-0397 | FEmale | No | DECEASED | DEAD | -20997 | 121 | 15 | null | null | No | 57 | 58 |
| TCGA-06-0402 | MALE | No | DECEASED | DEAD | -26059 | 8 | 8 | null | null | No | 71 | 71 |
| TCGA-06-0409 | MALE | No | DECEASED | DEAD | -16023 | 2201 | 2145 | 334 | null | No | 44 | 50 |
| TCGA-06-0410 | Female | No | DECEASED | dead | -28084 | 142 | 142 | null | 7 | No | 77 | 77 |
| TCGA-06-0412 | female | No | DECEASED | dead | -20618 | 291 | 245 | 130 | null | No | 56 | 57 |
| TCGA-06-0413 | FEmale | No | DECEASED | DEAD | -28433 | 96 | 5 | null | null | No | 77 | 78 |
| TCGA-06-0414 | MALE | No | DECEASED | DEAD | -23215 | 1068 | 1065 | null | 1013 | No | 64 | 67 |
| TCGA-06-0644 | male | No | LIVING | ALIVE | -26246 | null | 375 | null | 85 | No | 72 | 73 |
| TCGA-06-0645 | FEMALE | No | DECEASED | ALIVE | -20448 | 175 | 98 | null | null | No | 56 | 57 |
| TCGA-06-0646 | MALE | No | DECEASED | ALIVE | -22272 | 175 | 136 | 90 | null | No | 61 | 62 |
| TCGA-06-0648 | MALE | No | DECEASED | ALIVE | -28477 | 297 | 293 | 201 | null | No | 78 | 79 |
| TCGA-08-0345 | FEMALE | null | DECEASED | DEAD | -25960 | 53 | 53 | null | null | No | 71 | 72 |
| TCGA-08-0349 | male | No | DECEASED | DEAD | -16964 | 298 | 231 | 92 | null | No | 47 | 48 |


| Case ID | Gender | PRETREATME NT HISTORY | VITAL STATUS | Vital Status | $\begin{aligned} & \text { DAYS TO } \\ & \text { BIRTH } \end{aligned}$ | $\begin{gathered} \text { DAYS } \\ \text { TO } \\ \text { DEATH } \end{gathered}$ | $\begin{aligned} & \text { DAYS TO } \\ & \text { LAST } \\ & \text { FOLLOWUP } \end{aligned}$ | DAYS TO TUMOR PROGRESSION | DAYS TO TUMOR RECURRENCE | $\begin{aligned} & \text { Secondary } \\ & \text { or } \\ & \text { Recurrent } \end{aligned}$ | Age at Procedure | Age at Death |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-08-0352 | MALE | No | DECEASED | DEAD | -29106 | 39 | 39 | null | null | No | 80 | 80 |
| TCGA-08-0358 | male | No | DECEASED | DEAD | -18383 | 678 | 593 | null | 263 | No | 51 | 52 |
| TCGA-08-0373 | male | No | Deceased | DEAD | -25273 | 134 | 134 | null | null | No | 69 | 69 |
| TCGA-08-0386 | male | No | DECEASED | DEAD | -27053 | 548 | 478 | null | 427 | No | 74 | 76 |
| TCGA-08-0509 | MALE | No | DECEASED | DEAD | -23273 | 382 | 17 | null | null | No | 63 | 65 |
| TCGA-08-0510 | MALE | No | DECEASED | DEAD | -27675 | 129 | 106 | null | 89 | No | 76 | 76 |
| TCGA-08-0511 | MALE | No | DECEASED | DEAD | -25299 | 235 | 235 | null | null | No | 69 | 70 |
| TCGA-08-0512 | male | No | DECEASED | DEAD | -17821 | 1282 | 358 | 231 | null | No | 49 | 53 |
| TCGA-08-0514 | FEmale | No | DECEASED | DEAD | -25457 | 337 | 259 | null | null | No | 70 | 71 |
| TCGA-08-0516 | male | No | DECEASED | DEAD | -5308 | 596 | 561 | 40 | null | No | 15 | 17 |
| TCGA-08-0517 | FEmALE | Yes | DECEASED | DEAD | -12771 | 1785 | 1770 | null | 1024 | Rec | UNK | 40 |
| TCGA-08-0518 | FEmALE | No | DECEASED | DEAD | -21995 | 588 | 39 | 134 | null | No | 60 | 62 |
| TCGA-08-0520 | male | No | DECEASED | DEAD | -25766 | 326 | 326 | null | 105 | No | 70 | 71 |
| TCGA-08-0521 | MALE | No | DECEASED | DEAD | -6376 | 146 | 146 | 125 | null | No | 18 | 18 |
| TCGA-08-0522 | MALE | No | DECEASED | DEAD | -22413 | 635 | 555 | 266 | null | No | 61 | 63 |
| TCGA-08-0524 | FEMALE | No | DECEASED | DEAD | -6464 | 220 | 198 | 61 | null | No | 17 | 18 |
| TCGA-08-0525 | MALE | Yes | DECEASED | DEAD | -19012 | 486 | 486 | 343 | null | Sec | UNK | 54 |
| TCGA-08-0529 | FEmale | No | DECEASED | DEAD | -20556 | 559 | 526 | null | 328 | No | 56 | 58 |
| TCGA-08-0531 | male | No | DECEASED | DEAD | -23481 | 230 | 168 | null | null | No | 65 | 65 |
| TCGA-12-0616 | FEmale | No | DECEASED | DEAD | -13451 | 447 | 438 | 397 | null | No | 37 | 38 |
| TCGA-12-0618 | MALE | No | DECEASED | DEAD | -18071 | 394 | 49 | null | null | No | 50 | 51 |
| TCGA-12-0619 | MALE | No | DECEASED | DEAD | -21920 | 1062 | 316 | 203 | null | No | 60 | 63 |
| TCGA-12-0620 | MALE | No | DECEASED | DEAD | -21068 | 318 | 181 | null | null | No | 58 | 59 |
| TCGA-06-0132 | MALE |  |  | ALIVE |  |  |  |  |  | No | 50 | 51 |

Table S5.2.1 QC parameters and their value information from all hybridizations used in this study. Since there are two color channels (Green and red for each sample, including both tumor and reference), the qualities of each channel are accessed independently except for the DLRspread. The reproducibility values shown here are the percentage values.

|  |  | Signal To | Signal <br> To Noise | Signal <br> Intensity | Signal <br> Intensity <br> Roise | BG <br> Noise <br> Green | BG <br> Noise <br> Red | Reproduci <br> bility <br> Green | Reprodu <br> cibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Red |  |  |  |  |  |  |  |  |  |


|  |  | Signal To | Signal <br> To Noise | Signal <br> Intensity | Signal <br> Intensity | BG <br> Noise | BG <br> Noise | Reproduci <br> bility | Reprodu <br> cibility |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Array Name | DLRs | Noise | Green | Red | Green | Red | Green | Red | Green | Red


| Array Name | DLRs | Signal To Noise Green | Signal To Noise Red | Signal Intensity Green | Signal Intensity Red |  |  | Reproduci bility Green | Reprodu cibility Red |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0138 | 0.25 | 271.4 | 59 | 379.2 | 70.5 | 1.4 | 1.2 | 8.9 | 12.4 |
| TCGA-06-0139 | 0.23 | 346.8 | 233.6 | 704.6 | 611.3 | 2 | 2.6 | 9.2 | 8.4 |
| TCGA-06-0141 | 0.25 | 258.2 | 169.7 | 713.5 | 493.8 | 2.8 | 2.9 | 12.8 | 15.7 |
| TCGA-06-0143 | 0.2 | 116.7 | 90.3 | 540.6 | 460.7 | 4.6 | 5.1 | 12.4 | 13 |
| TCGA-06-0145 | 0.23 | 305.8 | 182.3 | 698.9 | 467.5 | 2.3 | 2.6 | 9.7 | 9.9 |
| TCGA-06-0146 | 0.15 | 217.6 | 248 | 590.4 | 698 | 2.7 | 2.8 | 10.1 | 9.8 |
| TCGA-06-0147 | 0.25 | 307.8 | 152.2 | 800.2 | 385.4 | 2.6 | 2.5 | 9.6 | 12.7 |
| TCGA-06-0148 | 0.23 | 189.9 | 127.9 | 876.9 | 483 | 4.6 | 3.8 | 8.2 | 7.9 |
| TCGA-06-0149 | 0.16 | 239 | 268.7 | 443.7 | 561.4 | 1.9 | 2.1 | 8.6 | 8.8 |
| TCGA-06-0152 | 0.19 | 70.2 | 57.9 | 189.3 | 319.1 | 2.7 | 5.5 | 10.2 | 10.6 |
| TCGA-06-0154 | 0.24 | 235 | 159.5 | 695.1 | 340.7 | 3 | 2.1 | 9.9 | 12.7 |
| TCGA-06-0156 | 0.22 | 162.8 | 128.5 | 735.5 | 569.2 | 4.5 | 4.4 | 10.7 | 12.3 |
| TCGA-06-0157 | 0.18 | 118.7 | 105.4 | 797.7 | 995.1 | 6.7 | 9.4 | 9.7 | 10.3 |
| TCGA-06-0158 | 0.19 | 199.9 | 161.9 | 617.3 | 581.1 | 3.1 | 3.6 | 8.1 | 9.1 |
| TCGA-06-0162 | 0.19 | 197.9 | 206.3 | 529.6 | 648.2 | 2.7 | 3.1 | 8.6 | 9.3 |
| TCGA-06-0164 | 0.16 | 168.3 | 179.3 | 532.9 | 616.9 | 3.2 | 3.4 | 9 | 8.5 |
| TCGA-06-0166 | 0.21 | 150.5 | 120.4 | 842.7 | 759.5 | 5.6 | 6.3 | 10.6 | 11.9 |
| TCGA-06-0168 | 0.17 | 180.4 | 145.5 | 810.5 | 914.1 | 4.5 | 6.3 | 8.8 | 9.4 |
| TCGA-06-0169 | 0.24 | 190.7 | 135.9 | 730 | 506.2 | 3.8 | 3.7 | 9.6 | 9.6 |
| TCGA-06-0171 | 0.2 | 240.4 | 210.4 | 585.4 | 555.6 | 2.4 | 2.6 | 9.1 | 9.6 |
| TCGA-06-0173 | 0.21 | 290.1 | 221.8 | 582.5 | 520.3 | 2 | 2.3 | 9.1 | 12 |
| TCGA-06-0174 | 0.24 | 210.6 | 109.4 | 680.2 | 228.6 | 3.2 | 2.1 | 9.7 | 10.9 |
| TCGA-06-0175 | 0.15 | 164.2 | 154.1 | 644.7 | 704.3 | 3.9 | 4.6 | 11.5 | 10.1 |
| TCGA-06-0176 | 0.23 | 186.9 | 150.7 | 940.6 | 780.7 | 5 | 5.2 | 9 | 10.9 |
| TCGA-06-0177 | 0.22 | 117.5 | 118.5 | 610 | 745.3 | 5.2 | 6.3 | 10.1 | 11.1 |
| TCGA-06-0178 | 0.18 | 165.2 | 165.4 | 922.7 | 1079.5 | 5.6 | 6.5 | 10.9 | 11.9 |
| TCGA-06-0179 | 0.2 | 173.8 | 143.9 | 459.2 | 432.7 | 2.6 | 3 | 8.2 | 8.8 |
| TCGA-06-0182 | 0.21 | 234.1 | 207.7 | 474.3 | 459.2 | 2 | 2.2 | 12.8 | 12.1 |
| TCGA-06-0184 | 0.2 | 119.9 | 100.7 | 935.3 | 808.3 | 7.8 | 8 | 9.9 | 10.1 |
| TCGA-06-0185 | 0.19 | 237.2 | 225.8 | 570 | 632 | 2.4 | 2.8 | 10.8 | 10.4 |
| TCGA-06-0187 | 0.22 | 166.4 | 177.3 | 566 | 519.2 | 3.4 | 2.9 | 8.7 | 11.4 |
| TCGA-06-0188 | 0.26 | 322.4 | 87.2 | 635 | 107.7 | 2 | 1.2 | 9.4 | 15.1 |
| TCGA-06-0189 | 0.23 | 171.3 | 121.6 | 421.9 | 334.4 | 2.5 | 2.7 | 12.7 | 12.9 |
| TCGA-06-0190 | 0.21 | 250 | 193.2 | 740.3 | 636 | 3 | 3.3 | 10 | 11.4 |
| TCGA-06-0194 | 0.16 | 205.2 | 236.5 | 587.1 | 752.6 | 2.9 | 3.2 | 10.2 | 11 |
| TCGA-06-0195 | 0.17 | 176.4 | 149.9 | 905.9 | 1014.6 | 5.1 | 6.8 | 12.2 | 13 |
| TCGA-06-0197 | 0.18 | 316.3 | 252.1 | 757.3 | 911.2 | 2.4 | 3.6 | 11.9 | 12.6 |
| TCGA-06-0208 | 0.21 | 180.6 | 140.6 | 880.6 | 748.9 | 4.9 | 5.3 | 10.6 | 11.4 |
| TCGA-06-0209 | 0.2 | 163.6 | 154.6 | 415.3 | 469.8 | 2.5 | 3 | 11.2 | 11.3 |
| TCGA-06-0210 | 0.19 | 126.4 | 106.3 | 457.4 | 482.1 | 3.6 | 4.5 | 12.6 | 13.1 |
| TCGA-06-0211 | 0.22 | 127.9 | 168 | 743.4 | 599.4 | 5.8 | 3.6 | 10.6 | 9 |
| TCGA-06-0213 | 0.17 | 135.8 | 111.3 | 938.4 | 1080.3 | 6.9 | 9.7 | 9 | 9.5 |
| TCGA-06-0214 | 0.2 | 133.1 | 113.1 | 873.3 | 611.1 | 6.6 | 5.4 | 11.7 | 12.5 |
| TCGA-06-0221 | 0.23 | 272.4 | 149.2 | 716.3 | 272.7 | 2.6 | 1.8 | 7.7 | 12.2 |
| TCGA-06-0237 | 0.2 | 168.8 | 134.2 | 351.2 | 315.9 | 2.1 | 2.4 | 13.2 | 13 |
| TCGA-06-0238 | 0.17 | 63.8 | 72.7 | 194.5 | 359.1 | 3 | 4.9 | 9.8 | 9.7 |
| TCGA-06-0241 | 0.18 | 192.7 | 149.5 | 868.9 | 922.9 | 4.5 | 6.2 | 10.1 | 9.5 |


| Array Name | DLRs | Signal To Noise Green | Signal To Noise Red | Signal Intensity Green | Signal Intensity Red |  | $\begin{gathered} \text { BG } \\ \text { Noise } \\ \text { Red } \end{gathered}$ | Reproduci bility Green | Reprodu cibility Red |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0394 | 0.15 | 289.7 | 285.6 | 510.1 | 581.5 | 1.8 | 2 | 11.5 | 11.4 |
| TCGA-06-0397 | 0.17 | 161.8 | 143.4 | 692.7 | 675.7 | 4.3 | 4.7 | 11.9 | 11.2 |
| TCGA-06-0402 | 0.17 | 218.4 | 212.8 | 538.5 | 645.2 | 2.5 | 3 | 11.2 | 10.9 |
| TCGA-06-0409 | 0.17 | 112.4 | 118.8 | 628.6 | 692.4 | 5.6 | 5.8 | 10.1 | 8.8 |
| TCGA-06-0410 | 0.2 | 171.3 | 165.4 | 532.3 | 591.8 | 3.1 | 3.6 | 11.2 | 10 |
| TCGA-06-0412 | 0.2 | 208.9 | 180.7 | 583.1 | 624.1 | 2.8 | 3.5 | 11.9 | 11.9 |
| TCGA-06-0413 | 0.21 | 197.9 | 172.4 | 554.4 | 490 | 2.8 | 2.8 | 11.3 | 12.6 |
| TCGA-06-0414 | 0.17 | 240.9 | 250.6 | 550.8 | 657 | 2.3 | 2.6 | 9.5 | 9.8 |
| TCGA-06-0644 | 0.2 | 56.6 | 58.4 | 164 | 356.5 | 2.9 | 6.1 | 12.7 | 10.8 |
| TCGA-06-0645 | 0.17 | 64.1 | 71.8 | 163.6 | 297.5 | 2.6 | 4.1 | 11.9 | 11.2 |
| TCGA-06-0646 | 0.19 | 48.4 | 102.5 | 168.5 | 281 | 3.5 | 2.7 | 11.8 | 11.9 |
| TCGA-06-0648 | 0.17 | 54.7 | 67.2 | 180.6 | 385.8 | 3.3 | 5.7 | 10 | 8.8 |
| TCGA-08-0345 | 0.21 | 49.5 | 40.9 | 177.2 | 334.5 | 3.6 | 8.2 | 7.8 | 7.7 |
| TCGA-08-0349 | 0.16 | 73.7 | 74.4 | 201.8 | 337.2 | 2.7 | 4.5 | 10.2 | 10.3 |
| TCGA-08-0352 | 0.15 | 70.9 | 79 | 179.9 | 324.2 | 2.5 | 4.1 | 9.9 | 11 |
| TCGA-08-0358 | 0.12 | 80.9 | 87.4 | 205.5 | 307.4 | 2.5 | 3.5 | 9.9 | 11 |
| TCGA-08-0373 | 0.22 | 40.3 | 72.1 | 106.2 | 232.7 | 2.6 | 3.2 | 12.6 | 14.5 |
| TCGA-08-0386 | 0.13 | 57.1 | 57 | 247 | 338 | 4.3 | 5.9 | 11.4 | 11.7 |
| TCGA-08-0509 | 0.15 | 200.1 | 203.9 | 546.9 | 654.7 | 2.7 | 3.2 | 9.2 | 8.9 |
| TCGA-08-0510 | 0.19 | 173.3 | 161.2 | 680.9 | 712.7 | 3.9 | 4.4 | 11.4 | 11.2 |
| TCGA-08-0511 | 0.17 | 140 | 128.8 | 564.1 | 696.3 | 4 | 5.4 | 10.3 | 9.2 |
| TCGA-08-0512 | 0.16 | 162.9 | 170.3 | 558.7 | 761.7 | 3.4 | 4.5 | 11.4 | 10.9 |
| TCGA-08-0514 | 0.19 | 75.8 | 69.5 | 674.1 | 722.2 | 8.9 | 10.4 | 11.5 | 11.5 |
| TCGA-08-0516 | 0.18 | 348.1 | 320.9 | 554.4 | 555 | 1.6 | 1.7 | 13.6 | 13.8 |
| TCGA-08-0517 | 0.19 | 141.6 | 119.9 | 697.9 | 632.2 | 4.9 | 5.3 | 12 | 11.8 |
| TCGA-08-0518 | 0.15 | 177.8 | 191.4 | 535.3 | 683.9 | 3 | 3.6 | 9 | 8 |
| TCGA-08-0520 | 0.18 | 303.4 | 299.4 | 625.4 | 695.3 | 2.1 | 2.3 | 10.6 | 9.4 |
| TCGA-08-0521 | 0.2 | 267.6 | 246.1 | 623.5 | 636.2 | 2.3 | 2.6 | 10.3 | 9.7 |
| TCGA-08-0522 | 0.23 | 244.8 | 186.8 | 724.4 | 649.4 | 3 | 3.5 | 8 | 7.7 |
| TCGA-08-0524 | 0.19 | 125.4 | 128.9 | 613.2 | 680.3 | 4.9 | 5.3 | 9.7 | 9.3 |
| TCGA-08-0525 | 0.18 | 167.7 | 165 | 674.6 | 710.8 | 4 | 4.3 | 13 | 12.4 |
| TCGA-08-0529 | 0.22 | 206.9 | 184.7 | 404.6 | 380.1 | 2 | 2.1 | 10 | 10 |
| TCGA-08-0531 | 0.19 | 266.2 | 243.4 | 611.5 | 552.3 | 2.3 | 2.3 | 12.9 | 10.6 |
| TCGA-12-0616 | 0.2 | 53 | 48.1 | 251.1 | 511.3 | 4.7 | 10.6 | 10.5 | 9.4 |
| TCGA-12-0618 | 0.18 | 67.8 | 62 | 183.4 | 298.7 | 2.7 | 4.8 | 10.6 | 11.1 |
| TCGA-12-0619 | 0.18 | 64.8 | 69.3 | 170.6 | 323.3 | 2.6 | 4.7 | 11 | 10 |
| TCGA-12-0620 | 0.2 | 77.6 | 57.8 | 205.8 | 330 | 2.7 | 5.7 | 9.2 | 9.8 |

Table S5.5.1 Segment numbers before and after merging processes for both CBS and HHMM segmentation methods. Both CBS merged and HHMM merged represent numbers after merging while as CBS and HHMM represent numbers before the merging.

| probe | CBS | CBS <br> Merged | HHMM | HHMM <br> Merged | probe | CBS | CBS <br> Merged | HHMM | HHMM <br> Merged |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0085 | 163 | 161 | 3387 | 3336 | TCGA-06-0412 | 176 | 171 | 1361 | 1219 |
| TCGA-02-0014 | 294 | 245 | 3060 | 2729 | TCGA-02-0055 | 175 | 162 | 1084 | 1055 |
| TCGA-06-0210 | 179 | 166 | 1290 | 1135 | TCGA-02-0064 | 149 | 129 | 2645 | 2010 |
| TCGA-02-0338 | 161 | 151 | 3983 | 3121 | TCGA-02-0324 | 238 | 235 | 3141 | 2848 |
| TCGA-06-0132 | 119 | 113 | 600 | 512 | TCGA-02-0439 | 247 | 226 | 2232 | 1999 |
| TCGA-02-0332 | 220 | 208 | 2291 | 1899 | TCGA-02-0006 | 232 | 217 | 1512 | 1333 |
| TCGA-06-0164 | 243 | 202 | 995 | 906 | TCGA-02-0339 | 236 | 218 | 1450 | 1389 |
| TCGA-06-0168 | 220 | 205 | 1053 | 1006 | TCGA-06-0141 | 394 | 364 | 2294 | 1637 |
| TCGA-06-0145 | 220 | 210 | 527 | 224 | TCGA-08-0345 | 282 | 280 | 8280 | 8116 |
| TCGA-02-0330 | 273 | 259 | 1634 | 1470 | TCGA-06-0179 | 152 | 139 | 1026 | 952 |
| TCGA-06-0133 | 144 | 138 | 1925 | 1845 | TCGA-02-0071 | 150 | 144 | 1648 | 1536 |
| TCGA-02-0001 | 163 | 152 | 1124 | 1061 | TCGA-12-0620 | 416 | 409 | 10979 | 10254 |
| TCGA-08-0349 | 183 | 177 | 6268 | 5860 | TCGA-08-0531 | 185 | 167 | 758 | 668 |
| TCGA-02-0317 | 128 | 123 | 3202 | 3084 | TCGA-08-0510 | 237 | 195 | 1582 | 1347 |
| TCGA-06-0171 | 187 | 159 | 581 | 506 | TCGA-02-0432 | 165 | 130 | 1423 | 1133 |
| TCGA-06-0182 | 284 | 251 | 876 | 593 | TCGA-08-0516 | 206 | 194 | 722 | 686 |
| TCGA-06-0166 | 271 | 239 | 2270 | 1719 | TCGA-06-0127 | 207 | 207 | 18063 | 17867 |
| TCGA-02-0446 | 159 | 147 | 2279 | 1753 | TCGA-02-0037 | 145 | 134 | 1869 | 1627 |
| TCGA-06-0402 | 432 | 380 | 553 | 430 | TCGA-06-0126 | 119 | 113 | 3029 | 2044 |
| TCGA-06-0238 | 236 | 234 | 9595 | 9344 | TCGA-08-0386 | 291 | 272 | 3166 | 3063 |
| TCGA-02-0266 | 406 | 344 | 2751 | 2366 | TCGA-02-0028 | 167 | 166 | 1879 | 1867 |
| TCGA-06-0154 | 147 | 141 | 2997 | 2091 | TCGA-02-0083 | 208 | 176 | 4954 | 4151 |
| TCGA-02-0033 | 115 | 111 | 1181 | 1128 | TCGA-02-0116 | 111 | 108 | 3449 | 2971 |
| TCGA-02-0281 | 278 | 265 | 3413 | 3153 | TCGA-06-0175 | 300 | 278 | 1523 | 1155 |
| TCGA-02-0052 | 134 | 130 | 1535 | 1305 | TCGA-02-0011 | 159 | 140 | 3319 | 3218 |
| TCGA-06-0156 | 223 | 182 | 1107 | 683 | TCGA-02-0038 | 209 | 205 | 1536 | 1317 |
| TCGA-08-0529 | 245 | 237 | 973 | 843 | TCGA-06-0648 | 283 | 283 | 10903 | 10486 |
| TCGA-08-0522 | 141 | 136 | 1220 | 860 | TCGA-02-0054 | 167 | 155 | 1076 | 1044 |
| TCGA-02-0113 | 175 | 166 | 3932 | 2944 | TCGA-02-0440 | 166 | 164 | 1405 | 1282 |
| TCGA-02-0069 | 332 | 281 | 2619 | 2061 | TCGA-02-0456 | 145 | 137 | 2993 | 2755 |
| TCGA-02-0074 | 187 | 177 | 3476 | 3171 | TCGA-06-0148 | 196 | 177 | 1147 | 874 |
| TCGA-08-0514 | 330 | 309 | 2821 | 2145 | TCGA-06-0194 | 198 | 191 | 1265 | 1222 |
| TCGA-02-0087 | 183 | 163 | 1628 | 1588 | TCGA-02-0325 | 289 | 246 | 1993 | 1640 |
| TCGA-06-0162 | 351 | 316 | 1952 | 1368 | TCGA-06-0130 | 150 | 138 | 644 | 588 |
| TCGA-06-0129 | 934 | 781 | 2889 | 2242 | TCGA-06-0125 | 192 | 180 | 2151 | 1637 |
| TCGA-06-0195 | 169 | 160 | 1526 | 1481 | TCGA-02-0115 | 197 | 181 | 2784 | 2524 |
| TCGA-02-0034 | 194 | 185 | 1304 | 1156 | TCGA-02-0009 | 257 | 241 | 2178 | 1691 |
| TCGA-02-0084 | 198 | 197 | 9592 | 8706 | TCGA-06-0122 | 177 | 153 | 1300 | 1266 |
| TCGA-06-0158 | 145 | 136 | 1364 | 1342 | TCGA-02-0080 | 269 | 216 | 2095 | 1610 |
| TCGA-08-0373 | 177 | 173 | 8999 | 8789 | TCGA-02-0337 | 127 | 122 | 2587 | 2492 |


| probe | CBS | CBS <br> Merged | HHMM | HHMM <br> Merged | probe | CBS | CBS <br> Merged | HHMM | HHMM <br> Merged |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-08-0525 | 213 | 192 | 1156 | 978 | TCGA-02-0422 | 235 | 208 | 1215 | 1166 |
| TCGA-02-0269 | 408 | 334 | 959 | 710 | TCGA-02-0285 | 119 | 117 | 2765 | 2350 |
| TCGA-02-0099 | 236 | 212 | 2583 | 1687 | TCGA-08-0352 | 284 | 278 | 5494 | 4850 |
| TCGA-02-0089 | 138 | 127 | 2150 | 1924 | TCGA-06-0176 | 147 | 143 | 2649 | 2208 |
| TCGA-06-0187 | 160 | 148 | 1714 | 1056 | TCGA-06-0147 | 125 | 117 | 2175 | 1634 |
| TCGA-02-0058 | 148 | 120 | 1205 | 894 | TCGA-02-0114 | 257 | 238 | 4835 | 4608 |
| TCGA-02-0111 | 154 | 144 | 870 | 688 | TCGA-06-0146 | 510 | 460 | 1494 | 1322 |
| TCGA-06-0209 | 177 | 161 | 1270 | 1074 | TCGA-02-0075 | 147 | 142 | 3491 | 2963 |
| TCGA-06-0185 | 188 | 173 | 761 | 698 | TCGA-06-0177 | 255 | 254 | 6457 | 5811 |
| TCGA-06-0178 | 108 | 106 | 2151 | 2096 | TCGA-08-0521 | 148 | 145 | 2533 | 2359 |
| TCGA-06-0197 | 167 | 164 | 1390 | 1179 | TCGA-06-0169 | 128 | 120 | 1792 | 1676 |
| TCGA-08-0518 | 296 | 274 | 1706 | 1113 | TCGA-02-0102 | 141 | 134 | 1183 | 931 |
| TCGA-06-0644 | 184 | 176 | 12523 | 12341 | TCGA-02-0260 | 232 | 213 | 3211 | 2822 |
| TCGA-08-0517 | 305 | 267 | 853 | 730 | TCGA-06-0137 | 191 | 152 | 1244 | 1085 |
| TCGA-06-0128 | 194 | 170 | 2189 | 1986 | TCGA-06-0397 | 195 | 181 | 1787 | 1696 |
| TCGA-02-0010 | 275 | 224 | 1278 | 1202 | TCGA-06-0237 | 262 | 234 | 1091 | 1044 |
| TCGA-08-0511 | 235 | 219 | 1222 | 1166 | TCGA-02-0046 | 162 | 152 | 2762 | 2486 |
| TCGA-06-0645 | 206 | 203 | 10923 | 10692 | TCGA-06-0409 | 159 | 154 | 879 | 817 |
| TCGA-02-0024 | 215 | 171 | 898 | 865 | TCGA-06-0124 | 150 | 139 | 1213 | 1085 |
| TCGA-06-0241 | 287 | 274 | 2455 | 2096 | TCGA-02-0326 | 169 | 159 | 1356 | 1130 |
| TCGA-06-0410 | 245 | 236 | 2817 | 2726 | TCGA-06-0174 | 119 | 104 | 1909 | 1835 |
| TCGA-06-0213 | 225 | 199 | 2121 | 1662 | TCGA-02-0271 | 135 | 126 | 2380 | 2092 |
| TCGA-02-0003 | 125 | 117 | 929 | 842 | TCGA-06-0184 | 205 | 188 | 832 | 795 |
| TCGA-02-0107 | 112 | 110 | 1741 | 1468 | TCGA-08-0358 | 459 | 422 | 3100 | 2805 |
| TCGA-06-0190 | 165 | 157 | 1136 | 957 | TCGA-02-0057 | 146 | 134 | 3056 | 2603 |
| TCGA-12-0619 | 253 | 246 | 10186 | 9357 | TCGA-06-0189 | 103 | 101 | 1930 | 1892 |
| TCGA-06-0221 | 207 | 177 | 1295 | 772 | TCGA-06-0149 | 223 | 215 | 1066 | 913 |
| TCGA-06-0188 | 114 | 104 | 2690 | 2263 | TCGA-06-0157 | 193 | 187 | 1743 | 1392 |
| TCGA-06-0211 | 168 | 156 | 1140 | 689 | TCGA-02-0289 | 164 | 164 | 4172 | 3450 |
| TCGA-02-0007 | 175 | 159 | 1984 | 1626 | TCGA-02-0079 | 283 | 269 | 7998 | 7711 |
| TCGA-08-0512 | 149 | 145 | 1515 | 1291 | TCGA-06-0208 | 227 | 212 | 1301 | 782 |
| TCGA-02-0027 | 131 | 125 | 2957 | 2906 | TCGA-02-0430 | 263 | 236 | 1678 | 1518 |
| TCGA-02-0047 | 131 | 124 | 1149 | 1077 | TCGA-02-0321 | 236 | 223 | 542 | 469 |
| TCGA-02-0106 | 246 | 205 | 1133 | 932 | TCGA-06-0414 | 154 | 149 | 1745 | 1608 |
| TCGA-02-0021 | 193 | 186 | 2367 | 2287 | TCGA-06-0214 | 259 | 236 | 1162 | 890 |
| TCGA-06-0394 | 180 | 161 | 1191 | 1103 | TCGA-08-0524 | 274 | 241 | 1398 | 1266 |
| TCGA-12-0618 | 166 | 165 | 10075 | 8880 | TCGA-02-0258 | 383 | 294 | 1186 | 1077 |
| TCGA-12-0616 | 298 | 294 | 16256 | 15933 | TCGA-02-0333 | 311 | 293 | 2191 | 1747 |
| TCGA-08-0509 | 180 | 180 | 920 | 782 | TCGA-06-0173 | 243 | 232 | 1539 | 1295 |
| TCGA-06-0143 | 227 | 219 | 1828 | 1625 | TCGA-02-0086 | 134 | 128 | 2255 | 2053 |
| TCGA-06-0139 | 420 | 350 | 1508 | 1129 | TCGA-02-0290 | 149 | 148 | 6011 | 4658 |
| TCGA-06-0138 | 115 | 97 | 1128 | 1078 | TCGA-06-0152 | 249 | 246 | 12700 | 12581 |
| TCGA-06-0413 | 178 | 177 | 1762 | 1711 | TCGA-08-0520 | 206 | 193 | 568 | 473 |
| TCGA-02-0060 | 304 | 260 | 1620 | 1536 | TCGA-06-0646 | 248 | 244 | 10156 | 9754 |
| TCGA-02-0451 | 251 | 231 | 2299 | 1950 | TCGA-02-0043 | 209 | 199 | 2184 | 2112 |



Figure S5.6.1 $\log _{2}$ (Ratio) values of the modes of the density plots from all 170 patients samples (HHMM segmentation method). For most of the hybridizations, the mode of the density plot shifts quite away from zero value and need to be adjusted accordingly.

Table S6.1.1 Single probe segments with absolute predicted $\log _{2}$ (Ratio) great than one identified by using HHMM segmentation algorithm.

| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0124 | 1 | 149390893 | 149390952 | -2.47 |  | TCGA-02-0451 | 10 | 32885520 | 32885579 | -1.28 | CCDC7 |
| TCGA-02-0058 | 1 | 245054641 | 245054700 | -2.27 |  | TCGA-02-0451 | 10 | 66951636 | 66951695 | -1.28 |  |
| TCGA-12-0619 | 1 | 175222626 | 175222685 | -2.14 | Clorf49 | TCGA-02-0451 | 10 | $\begin{gathered} 12220393 \\ 2 \end{gathered}$ | $\begin{gathered} 12220399 \\ 1 \end{gathered}$ | -1.28 |  |
| TCGA-02-0028 | 1 | 5548432 | 5548490 | -1.31 |  | TCGA-08-0509 | 10 | 7480070 | 7480129 | -1.26 | SFMBT2 |
| TCGA-02-0028 | 1 | 14971358 | 14971417 | -1.31 | KIAA1026 | TCGA-08-0509 | 10 | 55814784 | 55814843 | -1.26 | PCDH15 |
| TCGA-02-0028 | 1 | 37554771 | 37554830 | -1.31 |  | TCGA-08-0509 | 10 | 81766470 | 81766529 | -1.26 |  |
| TCGA-02-0028 | 1 | 50942883 | 50942942 | -1.31 | FAF1 | TCGA-08-0509 | 10 | 97984467 | 97984526 | -1.26 | BLNK |
| TCGA-02-0028 | 1 | 104018651 | 104018710 | -1.31 |  | TCGA-06-0188 | 10 | 7739585 | 7739644 | -1.24 | ITIH5 |
| TCGA-02-0028 | 1 | 120923696 | 120923755 | -1.31 | AK128714 | TCGA-06-0188 | 10 | 14709241 | 14709300 | -1.24 | FAM107B |
| TCGA-02-0028 | 1 | 177906433 | 177906492 | -1.31 |  | TCGA-06-0188 | 10 | 18548400 | 18548459 | -1.24 | CACNB2 |
| TCGA-06-0124 | 1 | 149394958 | 149395017 | -1.28 |  | TCGA-06-0188 | 10 | 70334318 | 70334377 | -1.24 | DDX50 |
| TCGA-06-0124 | 1 | 149579637 | 149579696 | -1.28 |  | TCGA-02-0089 | 10 | 13517548 | 13517607 | -1.22 |  |
| TCGA-06-0124 | 1 | 197596962 | 197597021 | -1.28 | C1orf106 | TCGA-02-0089 | 10 | 90985518 | 90985577 | -1.22 | LIPA |
| TCGA-06-0124 | 1 | 197982932 | 197982991 | -1.28 |  | TCGA-02-0089 | 10 | $\begin{gathered} 13072695 \\ 9 \end{gathered}$ | $\begin{gathered} 13072701 \\ 8 \end{gathered}$ | -1.22 |  |
| TCGA-12-0618 | 1 | 796956 | 797005 | -1.18 |  | TCGA-06-0648 | 10 | 1058642 | 1058692 | -1.20 | IDI2 |
| TCGA-12-0618 | 1 | 1116011 | 1116057 | -1.18 | BC028014 | TCGA-06-0648 | 10 | 3167933 | 3167992 | -1.20 | PFKP |
| TCGA-12-0618 | 1 | 1161026 | 1161070 | -1.18 | TTLL10 | TCGA-06-0648 | 10 | 12437331 | 12437390 | -1.20 | CAMK1D |
| TCGA-12-0618 | 1 | 1201344 | 1201388 | -1.18 | SDF4 | TCGA-06-0648 | 10 | 26332271 | 26332330 | -1.20 | MYO3A |
| TCGA-12-0618 | 1 | 1285365 | 1285409 | -1.18 | PUSL1 | TCGA-06-0648 | 10 | 44193364 | 44193409 | -1.20 | CXCL12 |
| TCGA-12-0618 | 1 | 19410882 | 19410937 | -1.18 | CAPZB | TCGA-06-0648 | 10 | 45534651 | 45534696 | -1.20 |  |
| TCGA-12-0618 | 1 | 22001371 | 22001430 | -1.18 | HSPG2 | TCGA-06-0648 | 10 | 49955253 | 49955306 | -1.20 | C10orf72 |
| TCGA-12-0618 | 1 | 33988075 | 33988134 | -1.18 | CSMD2 | TCGA-06-0648 | 10 | 69627248 | 69627307 | -1.20 | FLJ14437 |
| TCGA-12-0618 | 1 | 59618935 | 59618994 | -1.18 | FLJ10986 | TCGA-06-0648 | 10 | 89199763 | 89199822 | -1.20 |  |
| TCGA-12-0618 | 1 | 112964625 | 112964684 | -1.18 | AF338193 | TCGA-06-0648 | 10 | 89615644 | 89615703 | -1.20 | PTEN |
| TCGA-12-0618 | 1 | 147836482 | 147836541 | -1.18 | C1orf56 | TCGA-06-0648 | 10 | 90291257 | 90291316 | -1.20 | C10orf59 |
| TCGA-12-0618 | 1 | 198567488 | 198567547 | -1.18 | IPO9 | TCGA-06-0648 | 10 | 90651370 | 90651429 | -1.20 | STAMBPL1 |
| TCGA-12-0618 | 1 | 199154489 | 199154548 | -1.18 | PPP1R12B | TCGA-06-0648 | 10 | 90685095 | 90685154 | -1.20 | ACTA2 |
| TCGA-12-0618 | 1 | 219503635 | 219503694 | -1.18 | DISP1 | TCGA-06-0648 | 10 | 99324268 | 99324325 | -1.20 | ANKRD2 |
| TCGA-06-0152 | 1 | 796956 | 797005 | -1.03 |  | TCGA-06-0648 | 10 | $\begin{gathered} 10191706 \\ 8 \end{gathered}$ | $\begin{gathered} 10191712 \\ 7 \end{gathered}$ | -1.20 | SPFH1 |
| TCGA-06-0152 | 1 | 1026414 | 1026458 | -1.03 | AGRN | TCGA-06-0648 | 10 | $\begin{gathered} 10351747 \\ 2 \end{gathered}$ | $\begin{gathered} 10351752 \\ 6 \end{gathered}$ | -1.20 |  |
| TCGA-06-0152 | 1 | 1161026 | 1161070 | -1.03 | TTLL10 | TCGA-06-0648 | 10 | $\begin{gathered} 10414767 \\ 1 \end{gathered}$ | $\begin{gathered} 10414772 \\ 7 \end{gathered}$ | -1.20 | NFKB2 |
| TCGA-06-0152 | 1 | 1201344 | 1201388 | -1.03 | SDF4 | TCGA-06-0648 | 10 | $\begin{gathered} 10529037 \\ 3 \end{gathered}$ | $\begin{gathered} 10529043 \\ 2 \end{gathered}$ | -1.20 | NEURL |
| TCGA-06-0152 | 1 | 1285365 | 1285409 | -1.03 | PUSL1 | TCGA-06-0648 | 10 | $\begin{gathered} 13287679 \\ 4 \end{gathered}$ | $\begin{gathered} 13287685 \\ 3 \end{gathered}$ | -1.20 | TCERG1L |
| TCGA-06-0152 | 1 | 2614922 | 2614970 | -1.03 |  | TCGA-02-0006 | 10 | 66951636 | 66951695 | -1.19 |  |
| TCGA-06-0152 | 1 | 19410882 | 19410937 | -1.03 | CAPZB | TCGA-02-0006 | 10 | 70947915 | 70947974 | -1.19 |  |
| TCGA-06-0152 | 1 | 26288909 | 26288954 | -1.03 | CCDC21 | TCGA-02-0006 | 10 | 89256027 | 89256086 | -1.19 | MINPP1 |
| TCGA-06-0152 | 1 | 30687222 | 30687281 | -1.03 |  | TCGA-02-0006 | 10 | 96842251 | 96842310 | -1.19 |  |
| TCGA-06-0152 | 1 | 33988075 | 33988134 | -1.03 | CSMD2 | TCGA-06-0152 | 10 | 1386766 | 1386810 | -1.16 | ADARB2 |
| TCGA-06-0152 | 1 | 46410804 | 46410851 | -1.03 | Clorf190 | TCGA-06-0152 | 10 | 3899933 | 3899992 | -1.16 |  |
| TCGA-06-0152 | 1 | 59618935 | 59618994 | -1.03 | FLJ10986 | TCGA-06-0152 | 10 | 7739585 | 7739644 | -1.16 | ITIH5 |
| TCGA-06-0152 | 1 | 72978376 | 72978435 | -1.03 |  | TCGA-06-0152 | 10 | 11674768 | 11674827 | -1.16 | D13644 |
| TCGA-06-0152 | 1 | 112964625 | 112964684 | -1.03 | AF338193 | TCGA-06-0152 | 10 | 11953319 | 11953378 | -1.16 | C10orf47 |
| TCGA-06-0152 | 1 | 147836482 | 147836541 | $-1.03$ | C1orf56 | TCGA-06-0152 | 10 | 15249136 | 15249195 | -1.16 | NMT2 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0152 | 1 | 176128016 | 176128075 | -1.03 | C1orf125 | TCGA-06-0152 | 10 | 26030462 | 26030521 | -1.16 | AK096400 |
| TCGA-06-0152 | 1 | 219503635 | 219503694 | -1.03 | DISP1 | TCGA-06-0152 | 10 | 29704220 | 29704279 | -1.16 |  |
| TCGA-06-0152 | 1 | 233380409 | 233380468 | -1.03 | MTR | TCGA-06-0152 | 10 | 34438690 | 34438749 | -1.16 | AF196185 |
| TCGA-02-0057 | 1 | 85468110 | 85468169 | 1.01 | AK125723 | TCGA-06-0152 | 10 | 39018805 | 39018864 | -1.16 |  |
| TCGA-02-0057 | 1 | 119942294 | 119942353 | 1.01 |  | TCGA-06-0152 | 10 | 44193364 | 44193409 | -1.16 | CXCL12 |
| TCGA-02-0057 | 1 | 175227043 | 175227102 | 1.01 | AK097518 | TCGA-06-0152 | 10 | 49340053 | 49340111 | -1.16 | ARHGAP22 |
| TCGA-02-0057 | 1 | 230972236 | 230972295 | 1.01 | BC040195 | TCGA-06-0152 | 10 | 50178065 | 50178124 | -1.16 | C10orf71 |
| TCGA-02-0113 | 1 | 56126922 | 56126981 | 1.36 |  | TCGA-06-0152 | 10 | 52945287 | 52945346 | -1.16 | PRKG1 |
| TCGA-02-0113 | 1 | 72489681 | 72489740 | 1.36 |  | TCGA-06-0152 | 10 | 56071056 | 56071115 | -1.16 | PCDH15 |
| TCGA-02-0113 | 1 | 222038023 | 222038082 | 1.36 | ENAH | TCGA-06-0152 | 10 | 59122592 | 59122651 | -1.16 |  |
| TCGA-02-0071 | 1 | 72489681 | 72489740 | 1.50 |  | TCGA-06-0152 | 10 | 63382145 | 63382204 | -1.16 | ARID5B |
| TCGA-02-0071 | 1 | 199904886 | 199904945 | 1.50 | X75546 | TCGA-06-0152 | 10 | 69627248 | 69627307 | -1.16 | FLJ14437 |
| TCGA-08-0529 | 2 | 94950913 | 94950972 | -1.16 |  | TCGA-06-0152 | 10 | 71541910 | 71541969 | -1.16 | H2AFY2 |
| TCGA-08-0529 | 2 | 102195099 | 102195158 | -1.16 |  | TCGA-06-0152 | 10 | 72029378 | 72029434 | -1.16 | PRF1 |
| TCGA-08-0529 | 2 | 112717800 | 112717859 | -1.16 | ZC3H8 | TCGA-06-0152 | 10 | 72324240 | 72324293 | -1.16 |  |
| TCGA-08-0529 | 2 | 186437582 | 186437641 | -1.16 | FSIP2 | TCGA-06-0152 | 10 | 72351591 | 72351650 | -1.16 |  |
| TCGA-08-0529 | 2 | 200138001 | 200138060 | -1.16 | SATB2 | TCGA-06-0152 | 10 | 74539893 | 74539952 | -1.16 |  |
| TCGA-08-0529 | 2 | 231068830 | 231068889 | -1.16 | LOC93349 | TCGA-06-0152 | 10 | 80668229 | 80668288 | -1.16 | RAI17 |
| TCGA-08-0529 | 2 | 241125726 | 241125781 | -1.16 | GPC1 | TCGA-06-0152 | 10 | 98350765 | 98350824 | -1.16 | PIK3AP1 |
| TCGA-06-0169 | 2 | 27432096 | 27432155 | -1.06 | TRIM54 | TCGA-06-0152 | 10 | 99369370 | 99369421 | -1.16 | C10orf83 |
| TCGA-06-0169 | 2 | 99562517 | 99562576 | -1.06 | REV1L | TCGA-06-0152 | 10 | $\begin{gathered} 10128434 \\ 5 \end{gathered}$ | $\begin{gathered} 10128440 \\ 4 \end{gathered}$ | -1.16 | NKX2-3 |
| TCGA-06-0169 | 2 | 112308318 | 112308377 | -1.06 | ANAPC1 | TCGA-06-0152 | 10 | $\begin{gathered} 10159174 \\ 4 \end{gathered}$ | $\begin{gathered} 10159180 \\ 3 \end{gathered}$ | -1.16 | ABCC2 |
| TCGA-06-0169 | 2 | 131928689 | 131928748 | -1.06 | PLEKHB2 | TCGA-06-0152 | 10 | $\begin{gathered} 10273779 \\ 0 \end{gathered}$ | $\begin{gathered} 10273783 \\ 7 \end{gathered}$ | -1.16 | PEO1 |
| TCGA-06-0169 | 2 | 200138001 | 200138060 | -1.06 | SATB2 | TCGA-06-0152 | 10 | $\begin{gathered} 10351747 \\ 2 \end{gathered}$ | $\begin{gathered} 10351752 \\ 6 \end{gathered}$ | -1.16 |  |
| TCGA-02-0113 | 2 | 10886580 | 10886639 | 1.00 | PDIA6 | TCGA-06-0152 | 10 | $\begin{gathered} 10358802 \\ 6 \end{gathered}$ | $\begin{gathered} 10358808 \\ 5 \end{gathered}$ | -1.16 | KCNIP2 |
| TCGA-02-0113 | 2 | 15211744 | 15211803 | 1.00 |  | TCGA-06-0152 | 10 | $\begin{gathered} 10422360 \\ 3 \end{gathered}$ | $\begin{gathered} 10422364 \\ 7 \end{gathered}$ | -1.16 | C10orf77 |
| TCGA-02-0113 | 2 | 26578752 | 26578811 | 1.00 | MGC16372 | TCGA-06-0152 | 10 | $\begin{gathered} 10442587 \\ 6 \end{gathered}$ | $\begin{gathered} 10442593 \\ 5 \end{gathered}$ | -1.16 | ARL3 |
| TCGA-02-0113 | 2 | 30017514 | 30017573 | 1.00 | ALK | TCGA-06-0152 | 10 | $\begin{gathered} 10504006 \\ 5 \end{gathered}$ | $\begin{gathered} 10504012 \\ 0 \end{gathered}$ | -1.16 | AB209785 |
| TCGA-02-0113 | 2 | 32630298 | 32630357 | 1.00 | BIRC6 | TCGA-06-0152 | 10 | $\begin{gathered} 10529037 \\ 3 \end{gathered}$ | $\begin{gathered} 10529043 \\ 2 \end{gathered}$ | -1.16 | NEURL |
| TCGA-02-0113 | 2 | 43908309 | 43908368 | 1.00 | AK096400 | TCGA-06-0152 | 10 | $\begin{gathered} 10736943 \\ 3 \end{gathered}$ | $\begin{gathered} 10736949 \\ 2 \end{gathered}$ | -1.16 |  |
| TCGA-02-0113 | 2 | 71396419 | 71396478 | 1.00 |  | TCGA-06-0152 | 10 | $\begin{gathered} 11734616 \\ 1 \end{gathered}$ | $\begin{gathered} 11734622 \\ 0 \end{gathered}$ | -1.16 | ATRNL1 |
| TCGA-02-0113 | 2 | 89937411 | 89937470 | 1.00 | AY942022 | TCGA-06-0152 | 10 | $\begin{gathered} 12044735 \\ 3 \end{gathered}$ | $\begin{gathered} 12044741 \\ 2 \end{gathered}$ | -1.16 | C10orf46 |
| TCGA-02-0113 | 2 | 107379595 | 107379654 | 1.00 |  | TCGA-06-0152 | 10 | $\begin{gathered} 12283869 \\ 1 \end{gathered}$ | $\begin{gathered} 12283875 \\ 0 \end{gathered}$ | -1.16 | AB030073 |
| TCGA-02-0113 | 2 | 113216035 | 113216094 | 1.00 | CKAP2L | TCGA-06-0152 | 10 | $\begin{gathered} 12540268 \\ 9 \end{gathered}$ | $\begin{gathered} 12540274 \\ 8 \end{gathered}$ | -1.16 |  |
| TCGA-02-0113 | 2 | 163200026 | 163200085 | 1.00 | KCNH7 | TCGA-06-0152 | 10 | $\begin{gathered} 12559720 \\ 3 \end{gathered}$ | $\begin{gathered} 12559726 \\ 2 \end{gathered}$ | -1.16 | CPXM2 |
| TCGA-02-0113 | 2 | 219879591 | 219879650 | 1.00 |  | TCGA-06-0152 | 10 | $\begin{gathered} 13131785 \\ 3 \end{gathered}$ | $\begin{gathered} 13131791 \\ 2 \end{gathered}$ | -1.16 | MGMT |
| TCGA-02-0113 | 2 | 240659146 | 240659205 | 1.00 | NDUFA10 | TCGA-06-0152 | 10 | $\begin{gathered} 13287679 \\ 4 \end{gathered}$ | $\begin{gathered} 13287685 \\ 3 \end{gathered}$ | -1.16 | TCERG1L |
| TCGA-02-0071 | 2 | 114719726 | 114719785 | 1.02 |  | TCGA-06-0152 | 10 | $\begin{gathered} 13497231 \\ 6 \end{gathered}$ | $\begin{gathered} 13497236 \\ 1 \end{gathered}$ | -1.16 | ADAM8 |
| TCGA-02-0071 | 2 | 169668054 | 169668113 | 1.02 | ABCB11 | TCGA-06-0645 | 10 | 1058642 | 1058692 | -1.07 | IDI2 |
| TCGA-02-0071 | 2 | 205581237 | 205581296 | 1.02 | ALS2CR19 | TCGA-06-0645 | 10 | 1386766 | 1386810 | -1.07 | ADARB2 |
| TCGA-02-0071 | 2 | 210647216 | 210647275 | 1.02 | AB058746 | TCGA-06-0645 | 10 | 12437331 | 12437390 | -1.07 | CAMK1D |
| TCGA-02-0071 | 2 | 240659146 | 240659205 | 1.02 | NDUFA10 | TCGA-06-0645 | 10 | 18949751 | 18949810 | -1.07 | NSUN6 |
| TCGA-02-0071 | 2 | 241724916 | 241724971 | 1.02 | AK074062 | TCGA-06-0645 | 10 | 26030462 | 26030521 | -1.07 | AK096400 |
| TCGA-02-0046 | 2 | 114719726 | 114719785 | 1.73 |  | TCGA-06-0645 | 10 | 32821797 | 32821856 | -1.07 | CCDC7 |
| TCGA-02-0046 | 2 | 182746745 | 182746804 | 1.73 | CR600208 | TCGA-06-0645 | 10 | 34430998 | 34431057 | -1.07 |  |
| TCGA-02-0069 | 3 | 9896427 | 9896486 | -1.50 | AF230335 | TCGA-06-0645 | 10 | 44987093 | 44987152 | -1.07 | AK098688 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0069 | 3 | 76799534 | 76799593 | -1.50 | AJ012503 | TCGA-06-0645 | 10 | 45468415 | 45468474 | -1.07 | ANUBL1 |
| TCGA-02-0038 | 3 | 166528671 | 166528730 | -1.22 |  | TCGA-06-0645 | 10 | 49955253 | 49955306 | -1.07 | C10orf72 |
| TCGA-02-0038 | 3 | 167881635 | 167881694 | -1.22 |  | TCGA-06-0645 | 10 | 50178065 | 50178124 | -1.07 | C10orf71 |
| TCGA-02-0055 | 3 | 191208239 | 191208298 | -1.17 | LEPREL1 | TCGA-06-0645 | 10 | 50485951 | 50486010 | -1.07 |  |
| TCGA-02-0271 | 3 | 6006012 | 6006071 | -1.12 |  | TCGA-06-0645 | 10 | 69627248 | 69627307 | -1.07 | FLJ14437 |
| TCGA-02-0271 | 3 | 36193272 | 36193331 | -1.12 |  | TCGA-06-0645 | 10 | 72029378 | 72029434 | -1.07 | PRF1 |
| TCGA-02-0271 | 3 | 64325557 | 64325616 | -1.12 |  | TCGA-06-0645 | 10 | 72324240 | 72324293 | -1.07 |  |
| TCGA-02-0271 | 3 | 111465930 | 111465989 | -1.12 |  | TCGA-06-0645 | 10 | 74692636 | 74692695 | -1.07 | TTC18 |
| TCGA-02-0271 | 3 | 169460868 | 169460927 | -1.12 |  | TCGA-06-0645 | 10 | $\begin{gathered} 10529037 \\ 3 \end{gathered}$ | $\begin{gathered} 10529043 \\ 2 \end{gathered}$ | -1.07 | NEURL |
| TCGA-02-0271 | 3 | 175704921 | 175704980 | -1.12 | AJ607399 | TCGA-12-0620 | 10 | 5530640 | 5530688 | -1.05 | CALML5 |
| TCGA-02-0271 | 3 | 185573293 | 185573340 | -1.12 | THPO | TCGA-12-0620 | 10 | 7372309 | 7372368 | -1.05 | SFMBT2 |
| TCGA-02-0271 | 3 | 190368566 | 190368625 | -1.12 | BX641108 | TCGA-12-0620 | 10 | 9864908 | 9864967 | -1.05 |  |
| TCGA-06-0122 | 3 | 88797733 | 88797792 | -1.07 | M19503 | TCGA-12-0620 | 10 | 17931709 | 17931760 | -1.05 | MRC1 |
| TCGA-02-0440 | 3 | 47209546 | 47209605 | 1.05 | AK096853 | TCGA-12-0620 | 10 | 33163680 | 33163739 | -1.05 | C10orf68 |
| TCGA-02-0440 | 3 | 99534264 | 99534323 | 1.05 | BC104637 | TCGA-12-0620 | 10 | 35450870 | 35450929 | -1.05 |  |
| TCGA-02-0440 | 3 | 196258410 | 196258469 | 1.05 |  | TCGA-12-0620 | 10 | 39018805 | 39018864 | -1.05 |  |
| TCGA-08-0345 | 3 | 33514508 | 33514567 | 1.19 | CLASP2 | TCGA-12-0620 | 10 | 72029378 | 72029434 | -1.05 | PRF1 |
| TCGA-08-0345 | 3 | 48705552 | 48705611 | 1.19 | IHPK2 | TCGA-12-0620 | 10 | 72324240 | 72324293 | -1.05 |  |
| TCGA-08-0345 | 3 | 49370234 | 49370284 | 1.19 | GPX1 | TCGA-12-0620 | 10 | 74692636 | 74692695 | -1.05 | TTC18 |
| TCGA-08-0345 | 3 | 56669849 | 56669908 | 1.19 | C3orf63 | TCGA-12-0620 | 10 | 79357832 | 79357891 | -1.05 | AF194537 |
| TCGA-08-0345 | 3 | 113831725 | 113831784 | 1.19 | CCDC80 | TCGA-12-0620 | 10 | 88690277 | 88690334 | -1.05 | MMRN2 |
| TCGA-08-0345 | 3 | 115523069 | 115523128 | 1.19 |  | TCGA-12-0620 | 10 | 96987297 | 96987356 | -1.05 | PDLIM1 |
| TCGA-08-0345 | 3 | 128769344 | 128769403 | 1.19 |  | TCGA-12-0620 | 10 | 99324268 | 99324325 | -1.05 | ANKRD2 |
| TCGA-08-0345 | 3 | 140574757 | 140574816 | 1.19 | COPB2 | TCGA-12-0620 | 10 | $\begin{gathered} 10078950 \\ 7 \end{gathered}$ | $\begin{gathered} 10078956 \\ 6 \end{gathered}$ | -1.05 | HPSE2 |
| TCGA-08-0345 | 3 | 186434695 | 186434754 | 1.19 | EHHADH | TCGA-12-0620 | 10 | $\begin{gathered} 10273779 \\ 0 \end{gathered}$ | $\begin{gathered} 10273783 \\ 7 \end{gathered}$ | -1.05 | PEO1 |
| TCGA-08-0345 | 3 | 187117470 | 187117529 | 1.19 | SFRS10 | TCGA-12-0620 | 10 | $\begin{gathered} 10278308 \\ 0 \end{gathered}$ | $\begin{gathered} 10278313 \\ 9 \end{gathered}$ | -1.05 | SFXN3 |
| TCGA-08-0345 | 3 | 188918925 | 188918984 | 1.19 | BC045669 | TCGA-12-0620 | 10 | $\begin{gathered} 10352858 \\ 9 \end{gathered}$ | $\begin{gathered} 10352864 \\ 8 \end{gathered}$ | -1.05 |  |
| TCGA-08-0345 | 3 | 188936799 | 188936857 | 1.19 | BCL6 | TCGA-12-0620 | 10 | $\begin{gathered} 10414767 \\ 1 \end{gathered}$ | $\begin{gathered} 10414772 \\ 7 \end{gathered}$ | -1.05 | NFKB2 |
| TCGA-06-0646 | 3 | 50536585 | 50536644 | 1.24 |  | TCGA-12-0620 | 10 | $\begin{gathered} 10529037 \\ 3 \end{gathered}$ | $\begin{gathered} 10529043 \\ 2 \end{gathered}$ | -1.05 | NEURL |
| TCGA-06-0646 | 3 | 99893658 | 99893717 | 1.24 |  | TCGA-12-0620 | 10 | $\begin{gathered} 11609505 \\ 6 \end{gathered}$ | $\begin{gathered} 11609510 \\ 4 \end{gathered}$ | -1.05 | KIAA1914 |
| TCGA-06-0238 | 3 | 151165586 | 151165645 | 1.25 | PFN2 | TCGA-12-0620 | 10 | $\begin{gathered} 11929556 \\ 9 \end{gathered}$ | $\begin{gathered} 11929561 \\ 6 \end{gathered}$ | -1.05 | EMX2 |
| TCGA-02-0439 | 3 | 163987465 | 163987524 | 1.58 | BC019327 | TCGA-06-0410 | 10 | 37508402 | 37508461 | -1.04 | ANKRD30A |
| TCGA-06-0148 | 4 | 41587341 | 41587400 | -1.57 | PHOX2B | TCGA-02-0034 | 10 | 80943483 | 80943542 | -1.01 | BC070048 |
| TCGA-06-0148 | 4 | 83995737 | 83995796 | -1.57 | SCD5 | TCGA-02-0069 | 10 | 33177446 | 33177505 | 1.09 | C10orf68 |
| TCGA-06-0148 | 4 | 173804227 | 173804286 | -1.57 | GALNT17 | TCGA-02-0069 | 10 | 30701361 | 30701420 | 1.18 | AL122121 |
| TCGA-06-0414 | 4 | 65081008 | 65081067 | -1.42 | SRD5A2L2 | TCGA-02-0010 | 11 | 40145100 | 40145159 | -3.42 | LRRC4C |
| TCGA-06-0176 | 4 | 6519210 | 6519269 | -1.06 | PPP2R2C | TCGA-02-0010 | 11 | 43385450 | 43385509 | -3.42 | TTC17 |
| TCGA-06-0176 | 4 | 142355308 | 142355367 | -1.06 | RNF150 | TCGA-02-0010 | 11 | 43581380 | 43581439 | -3.42 |  |
| TCGA-06-0176 | 4 | 154676070 | 154676129 | -1.06 | MND1 | TCGA-02-0271 | 11 | $\begin{gathered} 11618219 \\ 4 \end{gathered}$ | $\begin{gathered} 11618225 \\ 3 \end{gathered}$ | -2.36 |  |
| TCGA-08-0358 | 4 | 2969303 | 2969362 | 1.01 | TETRAN | TCGA-02-0010 | 11 | 5714298 | 5714357 | -2.20 | OR56B1 |
| TCGA-08-0358 | 4 | 78326484 | 78326543 | 1.01 | CCNI | TCGA-02-0010 | 11 | 40138697 | 40138756 | -2.20 | LRRC4C |
| TCGA-08-0358 | 4 | 88751976 | 88752035 | 1.01 | SPARCL1 | TCGA-02-0010 | 11 | 40636139 | 40636198 | -2.20 | DQ084202 |
| TCGA-08-0358 | 4 | 173814860 | 173814919 | 1.01 | GALNT17 | TCGA-02-0010 | 11 | 40875860 | 40875919 | -2.20 | DQ084202 |
| TCGA-02-0084 | 4 | 78326484 | 78326543 | 1.02 | CCNI | TCGA-02-0010 | 11 | 41967473 | 41967532 | -2.20 |  |
| TCGA-02-0084 | 4 | 83908026 | 83908085 | 1.02 | SCD5 | TCGA-02-0010 | 11 | 42320627 | 42320686 | -2.20 |  |
| TCGA-02-0084 | 4 | 174684198 | 174684257 | 1.02 | SCRG1 | TCGA-02-0010 | 11 | 42441291 | 42441350 | -2.20 |  |
| TCGA-06-0169 | 4 | 4314081 | 4314140 | 1.13 | OTOP1 | TCGA-02-0010 | 11 | 43350238 | 43350297 | $-2.20$ | TTC17 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0169 | 4 | 20771524 | 20771583 | 1.13 | KCNIP4 | TCGA-02-0010 | 11 | 43369996 | 43370055 | -2.20 | TTC17 |
| TCGA-06-0169 | 4 | 173797255 | 173797314 | 1.13 | GALNT17 | TCGA-02-0010 | 11 | 43576127 | 43576185 | -2.20 |  |
| TCGA-02-0069 | 4 | 119787238 | 119787297 | 1.25 |  | TCGA-02-0010 | 11 | 66469412 | 66469471 | -2.20 | PC |
| TCGA-08-0345 | 4 | 176930261 | 176930320 | 1.37 | GPM6A | TCGA-02-0086 | 11 | 12730077 | 12730136 | -1.81 | AL833289 |
| TCGA-08-0373 | 4 | 75786041 | 75786100 | 1.38 |  | TCGA-02-0116 | 11 | 4422151 | 4422209 | 1.13 |  |
| TCGA-08-0373 | 4 | 111021272 | 111021331 | 1.38 | CFI | TCGA-02-0116 | 11 | 5039792 | 5039851 | 1.13 |  |
| TCGA-02-0446 | 4 | 56434374 | 56434433 | 2.10 |  | TCGA-02-0116 | 11 | 50016006 | 50016065 | 1.13 |  |
| TCGA-06-0644 | 4 | 88751976 | 88752035 | 2.30 | SPARCL1 | TCGA-02-0116 | 11 | 62081604 | 62081658 | 1.13 |  |
| TCGA-02-0011 | 5 | 65930516 | 65930575 | -2.75 | $\begin{gathered} \text { LOC37544 } \\ 9 \end{gathered}$ | TCGA-02-0116 | 11 | $\begin{gathered} 12582091 \\ 0 \end{gathered}$ | $\begin{gathered} 12582096 \\ 9 \end{gathered}$ | 1.13 | KIRREL3 |
| TCGA-02-0011 | 5 | 180351118 | 180351177 | -2.75 | BTNL3 | TCGA-08-0510 | 12 | 22246157 | 22246216 | -1.86 | ST8SIA1 |
| TCGA-02-0439 | 5 | 763494 | 763553 | -2.39 | AF251188 | TCGA-02-0075 | 12 | 6309670 | 6309724 | -1.24 | TNFRSF1A |
| TCGA-02-0060 | 5 | 41270804 | 41270863 | -1.42 | BC035723 | TCGA-02-0075 | 12 | 83250693 | 83250752 | -1.24 |  |
| TCGA-02-0060 | 5 | 55994367 | 55994426 | -1.42 |  | TCGA-02-0432 | 12 | 20451634 | 20451693 | -1.20 | PDE3A |
| TCGA-02-0069 | 5 | 15772846 | 15772905 | -1.34 | FBXL7 | TCGA-02-0116 | 12 | 43930302 | 43930361 | -1.17 | TMEM16F |
| TCGA-02-0069 | 5 | 154503127 | 154503186 | -1.34 |  | TCGA-02-0028 | 12 | 11077272 | 11077331 | -1.05 | BC071692 |
| TCGA-08-0516 | 5 | 72852165 | 72852224 | -1.20 |  | TCGA-02-0028 | 12 | 83250693 | 83250752 | -1.05 |  |
| TCGA-02-0084 | 5 | 129005390 | 129005449 | -1.16 | $\begin{gathered} \text { ADAMTS } 1 \\ 9 \end{gathered}$ | TCGA-02-0060 | 12 | 45828785 | 45828844 | 1.13 | BC072670 |
| TCGA-02-0084 | 5 | 175590732 | 175590791 | -1.16 |  | TCGA-02-0060 | 12 | 47147923 | 47147970 | 1.13 |  |
| TCGA-02-0084 | 5 | 175717047 | 175717106 | -1.16 | KIAA1191 | TCGA-02-0060 | 12 | 54363637 | 54363688 | 1.13 | METTL] |
| TCGA-08-0529 | 5 | 20776045 | 20776104 | -1.04 | AK093362 | TCGA-02-0060 | 12 | 60982821 | 60982880 | 1.13 | USP15 |
| TCGA-08-0529 | 5 | 69274433 | 69274492 | -1.04 | $\begin{gathered} \text { LOC15356 } \\ 1 \end{gathered}$ | TCGA-02-0060 | 12 | 68301742 | 68301801 | 1.13 |  |
| TCGA-08-0529 | 5 | 72852165 | 72852224 | -1.04 |  | TCGA-02-0060 | 12 | 68612610 | 68612669 | 1.13 | C12orf28 |
| TCGA-08-0529 | 5 | 117403380 | 117403439 | -1.04 |  | TCGA-02-0060 | 12 | 70516795 | 70516854 | 1.13 |  |
| TCGA-06-0141 | 5 | 28853748 | 28853807 | -1.02 |  | TCGA-02-0060 | 12 | 56445035 | 56445079 | 1.65 | CYP27B1 |
| TCGA-02-0003 | 5 | 34407822 | 34407881 | -1.01 |  | TCGA-02-0060 | 12 | 68293939 | 68293998 | 1.65 |  |
| TCGA-02-0027 | 5 | 41541451 | 41541510 | -1.01 | PLCXD 3 | TCGA-02-0060 | 12 | 68627275 | 68627334 | 1.65 | C12orf28 |
| TCGA-02-0027 | 5 | 60277014 | 60277061 | -1.01 | mimitin | TCGA-02-0060 | 12 | 69119002 | 69119061 | 1.65 |  |
| TCGA-02-0027 | 5 | 69274433 | 69274492 | -1.01 | $\begin{gathered} \text { LOC15356 } \\ 1 \end{gathered}$ | TCGA-02-0060 | 12 | 73929394 | 73929453 | 1.65 | AK093193 |
| TCGA-02-0027 | 5 | 100842157 | 100842216 | -1.01 |  | TCGA-02-0060 | 12 | 56449995 | 56450051 | 2.17 | METTL1 |
| TCGA-02-0027 | 5 | 125801997 | 125802056 | -1.01 | GRAMD3 | TCGA-06-0414 | 13 | 59499981 | 59500040 | -2.75 | AY750055 |
| TCGA-08-0521 | 5 | 34407822 | 34407881 | -1.01 |  | TCGA-02-0115 | 13 | 98277054 | 98277113 | -1.43 | DOCK9 |
| TCGA-08-0521 | 5 | 117326075 | 117326134 | -1.01 |  | TCGA-06-0176 | 13 | $\begin{gathered} 10814900 \\ 7 \end{gathered}$ | $\begin{gathered} 10814906 \\ 6 \end{gathered}$ | -1.36 | MYR8 |
| TCGA-06-0414 | 5 | 34407822 | 34407881 | -1.01 |  | TCGA-02-0258 | 13 | 27564238 | 27564297 | -1.22 | FLT3 |
| TCGA-06-0414 | 5 | 55994367 | 55994426 | -1.01 |  | TCGA-02-0258 | 13 | 48770638 | 48770697 | -1.22 |  |
| TCGA-06-0414 | 5 | 118719760 | 118719808 | -1.01 | TNFAIP8 | TCGA-02-0258 | 13 | 49224565 | 49224624 | -1.22 | KPNA3 |
| TCGA-06-0178 | 6 | 153446065 | 153446124 | -2.50 | RGS17 | TCGA-02-0258 | 13 | 50057943 | 50058002 | -1.22 | AJ412029 |
| TCGA-02-0011 | 6 | 110760400 | 110760459 | -1.81 | AK127146 | TCGA-02-0258 | 13 | 51077617 | 51077676 | -1.22 | WDFY2 |
| TCGA-06-0410 | 6 | 32629848 | 32629907 | -1.72 | BC003593 | TCGA-02-0258 | 13 | 58110118 | 58110177 | -1.22 |  |
| TCGA-08-0516 | 6 | 32654432 | 32654491 | -1.65 | BC003593 | TCGA-02-0258 | 13 | 66001904 | 66001963 | -1.22 | PCDH9 |
| TCGA-02-0324 | 6 | 109812732 | 109812791 | -1.39 |  | TCGA-02-0258 | 13 | 75553783 | 75553842 | -1.22 |  |
| TCGA-02-0113 | 6 | 162554711 | 162554770 | -1.27 | PARK2 | TCGA-02-0258 | 13 | 76189003 | 76189062 | -1.22 |  |
| TCGA-02-0086 | 6 | 110760400 | 110760459 | -1.23 | AK127146 | TCGA-08-0386 | 13 | 49085437 | 49085496 | -1.13 |  |
| TCGA-06-0149 | 6 | 161002365 | 161002409 | -1.10 | LPA | TCGA-08-0386 | 13 | 51491170 | 51491229 | -1.13 | ALG11 |
| TCGA-06-0645 | 6 | 35866245 | 35866302 | -1.09 |  | TCGA-08-0386 | 13 | 73171121 | 73171180 | -1.13 | KLF12 |
| TCGA-06-0645 | 6 | 126183513 | 126183572 | -1.09 | NCOA7 | TCGA-08-0386 | 13 | $\begin{gathered} 10029626 \\ 0 \end{gathered}$ | $\begin{gathered} 10029631 \\ 9 \end{gathered}$ | -1.13 | AK025806 |
| TCGA-06-0645 | 6 | 129614962 | 129615021 | -1.09 | LAMA2 | TCGA-08-0386 | 13 | $\begin{gathered} 10204652 \\ 7 \end{gathered}$ | $\begin{gathered} 10204658 \\ 6 \end{gathered}$ | -1.13 |  |
| TCGA-06-0645 | 6 | 167767660 | 167767704 | -1.09 | TCP10 | TCGA-06-0137 | 13 | 67882690 | 67882749 | 1.90 |  |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0645 | 6 | 169461396 | 169461455 | -1.09 | THBS2 | TCGA-12-0616 | 14 | 67387689 | 67387733 | -1.66 | RAD51L |
| TCGA-06-0127 | 6 | 21704616 | 21704667 | -1.02 | SOX4 | TCGA-12-0616 | 14 | 79742303 | 79742358 | -1.66 | DIO2 |
| TCGA-06-0127 | 6 | 22401348 | 22401407 | -1.02 | PRL | TCGA-12-0616 | 14 | 80737659 | 80737718 | -1.66 | GTF2A1 |
| TCGA-06-0127 | 6 | 33649670 | 33649716 | -1.02 | BAK1 | TCGA-12-0616 | 14 | 92173663 | 92173722 | -1.66 | RIN3 |
| TCGA-06-0127 | 6 | 34509282 | 34509341 | -1.02 |  | TCGA-12-0616 | 14 | 99330427 | 99330486 | -1.66 | EML1 |
| TCGA-06-0127 | 6 | 35327326 | 35327385 | -1.02 | BX537875 | TCGA-06-0646 | 14 | 96412034 | 96412093 | -1.61 | VRK1 |
| TCGA-06-0127 | 6 | 35479198 | 35479257 | -1.02 | PPARD | TCGA-02-0011 | 14 | 19397709 | 19397768 | -1.49 | BC020999 |
| TCGA-06-0127 | 6 | 35853209 | 35853254 | -1.02 | UNQ3045 | TCGA-02-0011 | 14 | $\begin{gathered} 10579416 \\ 1 \end{gathered}$ | $\begin{gathered} 10579422 \\ 0 \end{gathered}$ | -1.49 | LOC652848 |
| TCGA-06-0127 | 6 | 39397697 | 39397752 | -1.02 | KCNK16 | TCGA-08-0520 | 14 | 20418299 | 20418358 | -1.26 |  |
| TCGA-06-0127 | 6 | 45623047 | 45623106 | -1.02 | RUNX2 | TCGA-02-0258 | 14 | 55960336 | 55960395 | -1.13 |  |
| TCGA-06-0127 | 6 | 63574775 | 63574834 | -1.02 |  | TCGA-06-0646 | 14 | 22765734 | 22765778 | -1.11 |  |
| TCGA-06-0127 | 6 | 80042348 | 80042407 | -1.02 |  | TCGA-06-0646 | 14 | 31509284 | 31509343 | -1.11 |  |
| TCGA-06-0127 | 6 | 80846877 | 80846936 | -1.02 |  | TCGA-06-0646 | 14 | 32544742 | 32544801 | -1.11 | NPAS3 |
| TCGA-06-0127 | 6 | 84706582 | 84706641 | -1.02 | CYB5R4 | TCGA-06-0646 | 14 | 32975012 | 32975071 | -1.11 | NPAS3 |
| TCGA-06-0127 | 6 | 86406013 | 86406072 | -1.02 | SYNCRIP | TCGA-06-0646 | 14 | 33049437 | 33049496 | -1.11 | NPAS3 |
| TCGA-06-0127 | 6 | 104449055 | 104449114 | -1.02 |  | TCGA-06-0646 | 14 | 34063670 | 34063718 | -1.11 | C14orf11 |
| TCGA-06-0127 | 6 | 105918008 | 105918066 | -1.02 | PREP | TCGA-06-0646 | 14 | 52112020 | 52112079 | -1.11 | AK123953 |
| TCGA-06-0127 | 6 | 109466409 | 109466468 | -1.02 | SESN1 | TCGA-06-0646 | 14 | 58891735 | 58891794 | -1.11 | DAAM1 |
| TCGA-06-0127 | 6 | 110408187 | 110408246 | -1.02 | GPR6 | TCGA-06-0646 | 14 | 64965154 | 64965213 | -1.11 | FUT8 |
| TCGA-06-0127 | 6 | 117931629 | 117931680 | -1.02 | DCBLD1 | TCGA-06-0646 | 14 | 67241027 | 67241086 | -1.11 |  |
| TCGA-06-0127 | 6 | 118697288 | 118697347 | -1.02 | SLC35F1 | TCGA-06-0646 | 14 | 67387689 | 67387733 | -1.11 | RAD51L1 |
| TCGA-06-0127 | 6 | 129614962 | 129615021 | -1.02 | LAMA2 | TCGA-06-0646 | 14 | 71065782 | 71065838 | -1.11 | SIPA1L1 |
| TCGA-06-0127 | 6 | 143467919 | 143467978 | -1.02 | AIG1 | TCGA-06-0646 | 14 | 76641904 | 76641954 | -1.11 | KIAA1737 |
| TCGA-06-0127 | 6 | 167767660 | 167767704 | -1.02 | TCP10 | TCGA-06-0646 | 14 | 85586106 | 85586165 | -1.11 |  |
| TCGA-06-0127 | 6 | 169461396 | 169461455 | -1.02 | THBS2 | TCGA-06-0646 | 14 | 96404574 | 96404633 | -1.11 | VRK1 |
| TCGA-02-0266 | 6 | 31898633 | 31898692 | 1.02 | BC011600 | TCGA-06-0646 | 14 | 96417233 | 96417292 | -1.11 | VRK1 |
| TCGA-02-0266 | 6 | 44347885 | 44347941 | 1.02 | C6orfl37 | TCGA-06-0646 | 14 | 99375657 | 99375716 | -1.11 | EML1 |
| TCGA-02-0266 | 6 | 160175470 | 160175529 | 1.02 | TCP1 | TCGA-06-0646 | 14 | $\begin{gathered} 10268404 \\ 0 \end{gathered}$ | $\begin{gathered} 10268409 \\ 9 \end{gathered}$ | -1.11 |  |
| TCGA-08-0373 | 6 | 35718556 | 35718615 | 1.13 | FKBP5 | TCGA-06-0646 | 14 | $\begin{gathered} 10508276 \\ 0 \end{gathered}$ | $\begin{gathered} 10508281 \\ 1 \end{gathered}$ | -1.11 | S55096 |
| TCGA-08-0373 | 6 | 76006782 | 76006841 | 1.13 | COX7A2 | TCGA-06-0646 | 14 | $\begin{gathered} 10559418 \\ 9 \\ 10563008 \end{gathered}$ | $\begin{gathered} 10559424 \\ 8 \\ 10563014 \end{gathered}$ | -1.11 | LOC652848 |
| TCGA-08-0373 | 6 | 76526464 | 76526523 | 1.13 | MYO6 | TCGA-06-0646 | 14 | $\begin{gathered} 10563008 \\ 9 \\ 9 \end{gathered}$ | $\begin{gathered} 10563014 \\ 8 \end{gathered}$ | -1.11 | LOC652848 |
| TCGA-08-0373 | 6 | 112142246 | 112142305 | 1.13 | FYN | TCGA-06-0646 | 14 | $\begin{gathered} 10588127 \\ 9 \end{gathered}$ | $\begin{gathered} 10588132 \\ 3 \end{gathered}$ | -1.11 | AK125079 |
| TCGA-08-0373 | 6 | 122807669 | 122807728 | 1.13 | SERINC1 | TCGA-06-0646 | 14 | $\begin{gathered} 10594699 \\ 3 \\ 10509545 \end{gathered}$ | $\begin{gathered} 10594705 \\ 2 \\ 10508551 \end{gathered}$ | -1.11 | AK125079 |
| TCGA-08-0373 | 6 | 137561232 | 137561291 | 1.13 | IFNGR1 | TCGA-06-0646 | 14 | $\begin{gathered} 10598545 \\ 8 \end{gathered}$ | $\begin{gathered} 10598551 \\ 7 \end{gathered}$ | -1.11 | AK125079 |
| TCGA-08-0373 | 6 | 144457695 | 144457754 | 1.13 | SF3B5 | TCGA-06-0646 | 14 | $\begin{gathered} 10612532 \\ 5 \end{gathered}$ | $\begin{gathered} 10612538 \\ 4 \end{gathered}$ | -1.11 | AK125079 |
| TCGA-02-0084 | 6 | 18502918 | 18502977 | 1.16 | IBRDC2 | TCGA-06-0143 | 14 | 23523096 | 23523155 | -1.09 | AY616182 |
| TCGA-02-0084 | 6 | 76025847 | 76025906 | 1.16 | TMEM30A | TCGA-06-0143 | 14 | $\begin{gathered} 10585719 \\ 3 \end{gathered}$ | $\begin{gathered} 10585725 \\ 2 \end{gathered}$ | -1.09 | LOC652848 |
| TCGA-02-0084 | 6 | 122807669 | 122807728 | 1.16 | SERINC1 | TCGA-02-0099 | 14 | 21966870 | 21966929 | -1.08 | BC063432 |
| TCGA-02-0086 | 7 | 141985466 | 141985512 | -1.16 | $\begin{gathered} \text { LOC64735 } \\ 3 \end{gathered}$ | TCGA-02-0034 | 14 | 37193624 | 37193683 | -1.03 | BC038110 |
| TCGA-02-0324 | 7 | 1263119 | 1263178 | 1.05 | MICAL-L2 | TCGA-02-0034 | 14 | 52247460 | 52247519 | -1.03 | PSMC6 |
| TCGA-02-0324 | 7 | 2333471 | 2333526 | 1.05 | LFNG | TCGA-06-0152 | 14 | 46778735 | 46778794 | -1.01 | MAMDC1 |
| TCGA-02-0324 | 7 | 27000106 | 27000165 | 1.05 | BC025338 | TCGA-06-0152 | 14 | 80737659 | 80737718 | -1.01 | GTF2A1 |
| TCGA-02-0324 | 7 | 48477536 | 48477595 | 1.05 |  | TCGA-06-0152 | 14 | 92173663 | 92173722 | -1.01 | RIN3 |
| TCGA-02-0324 | 7 | 75792244 | 75792291 | 1.05 | UPK3B | TCGA-06-0152 | 14 | 99317055 | 99317107 | -1.01 |  |
| TCGA-02-0324 | 7 | 83302247 | 83302306 | 1.05 | SEMA3A | TCGA-06-0152 | 14 | $\begin{gathered} 10007372 \\ 7 \\ \end{gathered}$ | $\begin{gathered} 10007378 \\ 6 \\ 6 \end{gathered}$ | -1.01 | KIAA1446 |
| TCGA-02-0324 | 7 | 116363804 | 116363863 | 1.05 | ST7 | TCGA-06-0152 | 14 | $\begin{gathered} 10612532 \\ 5 \end{gathered}$ | $\begin{gathered} 10612538 \\ 4 \end{gathered}$ | -1.01 | AK125079 |
| TCGA-02-0324 | 7 | 122349450 | 122349509 | 1.05 | SLC13A1 | TCGA-02-0281 | 14 | 19505698 | 19505757 | $-1.01$ | BC020999 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0324 | 7 | 129532549 | 129532608 | 1.05 | CPA4 | TCGA-02-0281 | 14 | 22385544 | 22385598 | -1.01 | MMP14 |
| TCGA-02-0324 | 7 | 129875106 | 129875151 | 1.05 | KLF14 | TCGA-02-0281 | 14 | 22439703 | 22439762 | -1.01 | BC106012 |
| TCGA-06-0154 | 7 | 51730660 | 51730719 | 1.13 |  | TCGA-02-0281 | 14 | 57266951 | 57267010 | -1.01 |  |
| TCGA-06-0154 | 7 | 52016452 | 52016511 | 1.13 |  | TCGA-02-0281 | 14 | 64811144 | 64811203 | -1.01 |  |
| TCGA-06-0154 | 7 | 53947391 | 53947450 | 1.13 |  | TCGA-06-0648 | 15 | 30423192 | 30423251 | -2.30 |  |
| TCGA-06-0154 | 7 | 55078607 | 55078666 | 1.13 | K03193 | TCGA-06-0648 | 15 | 80451436 | 80451495 | -2.30 | CR936602 |
| TCGA-06-0154 | 7 | 55412238 | 55412297 | 1.13 | ECOP | TCGA-02-0011 | 15 | 28719136 | 28719195 | -2.05 | BC071990 |
| TCGA-06-0154 | 7 | 55739664 | 55739723 | 1.13 | BC094796 | TCGA-12-0618 | 15 | 19819961 | 19820020 | -1.31 | AY941978 |
| TCGA-06-0154 | 7 | 65931904 | 65931963 | 1.13 | RSAFD1 | TCGA-12-0618 | 15 | 19910867 | 19910926 | -1.31 | AY941978 |
| TCGA-06-0154 | 7 | 88764458 | 88764517 | 1.13 |  | TCGA-12-0618 | 15 | 21610007 | 21610066 | -1.31 |  |
| TCGA-06-0154 | 7 | 92632452 | 92632511 | 1.13 | FLJ20097 | TCGA-12-0618 | 15 | 22860025 | 22860075 | -1.31 | AL832758 |
| TCGA-06-0154 | 7 | 107423997 | 107424056 | 1.13 | NRCAM | TCGA-12-0618 | 15 | 62292333 | 62292392 | -1.31 | CSNK1G1 |
| TCGA-06-0154 | 7 | 110498901 | 110498960 | 1.13 | IMMP2L | TCGA-12-0618 | 15 | 63131441 | 63131496 | -1.31 | OSTbeta |
| TCGA-06-0154 | 7 | 113575827 | 113575886 | 1.13 | AK131266 | TCGA-12-0618 | 15 | 80451436 | 80451495 | -1.31 | CR936602 |
| TCGA-06-0154 | 7 | 124008262 | 124008321 | 1.13 |  | TCGA-12-0618 | 15 | 88619485 | 88619529 | -1.31 | AK125370 |
| TCGA-06-0154 | 7 | 127992874 | 127992933 | 1.13 | CALU | TCGA-12-0618 | 15 | 98679517 | 98679576 | -1.31 | ADAMTS17 |
| TCGA-06-0154 | 7 | 129875106 | 129875151 | 1.13 | KLF14 | TCGA-06-0238 | 15 | 18722595 | 18722639 | -1.18 |  |
| TCGA-06-0154 | 7 | 136947009 | 136947068 | 1.13 | DGKI | TCGA-06-0238 | 15 | 22364310 | 22364369 | -1.18 | AK058147 |
| TCGA-06-0154 | 7 | 146110679 | 146110738 | 1.13 | CNTNAP2 | TCGA-06-0238 | 15 | 29640538 | 29640597 | -1.18 | OTUD7 |
| TCGA-06-0154 | 7 | 150772061 | 150772120 | 1.13 | PRKAG2 | TCGA-06-0238 | 15 | 30423192 | 30423251 | -1.18 |  |
| TCGA-06-0154 | 7 | 150894557 | 150894616 | 1.13 | PRKAG2 | TCGA-06-0238 | 15 | 46005914 | 46005973 | -1.18 | BC023624 |
| TCGA-12-0620 | 7 | 810135 | 810191 | 1.18 | MGC11257 | TCGA-06-0238 | 15 | 47655530 | 47655589 | -1.18 | C15orf33 |
| TCGA-12-0620 | 7 | 13800963 | 13801022 | 1.18 | ETV1 | TCGA-06-0238 | 15 | 61329801 | 61329860 | -1.18 | RAB8B |
| TCGA-12-0620 | 7 | 26003797 | 26003856 | 1.18 | BX538099 | TCGA-06-0238 | 15 | 73865562 | 73865606 | -1.18 |  |
| TCGA-12-0620 | 7 | 101707816 | 101707862 | 1.18 | POLR2J | TCGA-06-0402 | 15 | 40231199 | 40231256 | -1.06 | PLA2G4F |
| TCGA-12-0620 | 7 | 107474529 | 107474588 | 1.18 | NRCAM | TCGA-06-0402 | 15 | 54579631 | 54579690 | -1.06 |  |
| TCGA-12-0620 | 7 | 111012308 | 111012367 | 1.18 | DOCK4 | TCGA-06-0402 | 15 | 55616161 | 55616220 | -1.06 | CGNL1 |
| TCGA-12-0620 | 7 | 121310523 | 121310582 | 1.18 | AASS | TCGA-02-0439 | 15 | 19879661 | 19879720 | -1.05 | AY941978 |
| TCGA-12-0620 | 7 | 130634163 | 130634222 | 1.18 | MKLN1 | TCGA-02-0439 | 15 | 86225234 | 86225293 | -1.05 | NTRK3 |
| TCGA-12-0620 | 7 | 156017585 | 156017644 | 1.18 | LMBR1 | TCGA-06-0128 | 15 | 28441169 | 28441228 | -1.00 |  |
| TCGA-02-0001 | 7 | 7362407 | 7362466 | 1.38 |  | TCGA-06-0195 | 15 | 29272766 | 29272813 | 1.44 |  |
| TCGA-02-0001 | 7 | 65931904 | 65931963 | 1.38 | RSAFD1 | TCGA-08-0520 | 16 | 3100485 | 3100544 | -1.01 | BC001809 |
| TCGA-02-0001 | 7 | 82760953 | 82761012 | 1.38 | SEMA3E | TCGA-08-0520 | 16 | 79670474 | 79670533 | -1.01 |  |
| TCGA-02-0001 | 7 | 107423997 | 107424056 | 1.38 | NRCAM | TCGA-02-0326 | 16 | 76938723 | 76938782 | 1.24 | WWOX |
| TCGA-02-0001 | 7 | 122705022 | 122705081 | 1.38 | FLJ35834 | TCGA-06-0184 | 17 | 31474518 | 31474577 | -1.05 |  |
| TCGA-02-0001 | 7 | 129875106 | 129875151 | 1.38 | KLF14 | TCGA-12-0616 | 17 | 6532881 | 6532940 | -1.03 | SLC13A5 |
| TCGA-02-0001 | 7 | 141238383 | 141238442 | 1.38 | MGAM | TCGA-12-0616 | 17 | 7318722 | 7318771 | -1.03 | ZBTB4 |
| TCGA-02-0001 | 7 | 141511878 | 141511937 | 1.38 | AJ007770 | TCGA-12-0616 | 17 | 7694620 | 7694679 | -1.03 | AB002344 |
| TCGA-02-0001 | 7 | 146116115 | 146116174 | 1.38 | CNTNAP2 | TCGA-12-0616 | 17 | 19522211 | 19522270 | -1.03 | FLJ31196 |
| TCGA-02-0086 | 7 | 20047659 | 20047718 | 1.57 |  | TCGA-12-0616 | 17 | 20234571 | 20234630 | -1.03 |  |
| TCGA-02-0086 | 7 | 62806412 | 62806471 | 1.57 | BC029561 | TCGA-12-0616 | 17 | 20625245 | 20625304 | -1.03 |  |
| TCGA-02-0086 | 7 | 95236836 | 95236895 | 1.57 | DYNC1I1 | TCGA-12-0616 | 17 | 20684380 | 20684439 | -1.03 |  |
| TCGA-02-0086 | 7 | 122705022 | 122705081 | 1.57 | FLJ35834 | TCGA-12-0616 | 17 | 21442476 | 21442522 | -1.03 |  |
| TCGA-02-0086 | 7 | 141511878 | 141511937 | 1.57 | AJ007770 | TCGA-12-0616 | 17 | 25911485 | 25911529 | -1.03 | $\underset{047}{\text { DKFZP434O }^{0}}$ |
| TCGA-02-0086 | 7 | 158617983 | 158618042 | 1.57 |  | TCGA-12-0616 | 17 | 26501612 | 26501671 | -1.03 | NF1 |
| TCGA-02-0271 | 7 | 139642681 | 139642740 | 1.69 |  | TCGA-12-0616 | 17 | 31486540 | 31486599 | -1.03 |  |
| TCGA-02-0271 | 7 | 141974616 | 141974667 | 1.69 | $\mathrm{LOC}_{3}$ | TCGA-12-0616 | 17 | 39608802 | 39608861 | $-1.03$ | ASB16 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0116 | 7 | 54558881 | 54558940 | 2.71 |  | TCGA-12-0616 | 17 | 39752508 | 39752560 | -1.03 | CGI-69 |
| TCGA-02-0451 | 7 | 53857835 | 53857894 | 2.80 |  | TCGA-12-0616 | 17 | 41011530 | 41011589 | -1.03 | AK124512 |
| TCGA-08-0514 | 7 | 64701922 | 64701968 | 3.98 |  | TCGA-12-0616 | 17 | 46260128 | 46260181 | $-1.03$ |  |
| TCGA-02-0116 | 7 | 55862893 | 55862952 | 4.14 | PSPH | TCGA-12-0616 | 17 | 55035194 | 55035253 | -1.03 | DHX40 |
| TCGA-02-0106 | 8 | 12276178 | 12276237 | -2.25 | BC032892 | TCGA-12-0616 | 17 | 57983727 | 57983786 | -1.03 | TLK2 |
| TCGA-02-0084 | 8 | 7729311 | 7729370 | -1.85 | BC030211 | TCGA-12-0616 | 17 | 59370192 | 59370251 | -1.03 | SCN4A |
| TCGA-02-0107 | 8 | 1333233 | 1333292 | -1.81 |  | TCGA-12-0616 | 17 | 63739129 | 63739187 | -1.03 |  |
| TCGA-02-0107 | 8 | 37907045 | 37907104 | -1.81 |  | TCGA-12-0616 | 17 | 69818169 | 69818228 | -1.03 | DNAI2 |
| TCGA-02-0107 | 8 | 101800174 | 101800233 | -1.81 | PABPC1 | TCGA-12-0616 | 17 | 76068937 | 76068984 | -1.03 |  |
| TCGA-02-0439 | 8 | 77057200 | 77057259 | -1.48 |  | TCGA-12-0616 | 17 | 76749430 | 76749479 | -1.03 | AK131529 |
| TCGA-02-0266 | 8 | 107602071 | 107602130 | -1.38 | AK124441 | TCGA-12-0616 | 17 | 77041927 | 77041971 | -1.03 | AB040880 |
| TCGA-02-0266 | 8 | 133094826 | 133094885 | -1.38 | KIAA0143 | TCGA-12-0616 | 17 | 77478901 | 77478945 | -1.03 | AF338198 |
| TCGA-06-0152 | 8 | 90816 | 90868 | -1.22 | BC071667 | TCGA-12-0616 | 17 | 78653545 | 78653589 | -1.03 |  |
| TCGA-06-0152 | 8 | 6929691 | 6929747 | -1.22 |  | TCGA-02-0079 | 17 | 1315406 | 1315465 | -1.02 | MYO1C |
| TCGA-06-0152 | 8 | 31607545 | 31607604 | -1.22 |  | TCGA-02-0079 | 17 | 1877316 | 1877367 | -1.02 |  |
| TCGA-06-0152 | 8 | 32141825 | 32141884 | -1.22 | NRG1 | TCGA-02-0079 | 17 | 3727364 | 3727419 | -1.02 | CAMKK1 |
| TCGA-06-0152 | 8 | 33568440 | 33568487 | -1.22 | DUSP26 | TCGA-02-0079 | 17 | 4424180 | 4424239 | -1.02 |  |
| TCGA-06-0152 | 8 | 37913540 | 37913593 | -1.22 | GOT1L1 | TCGA-02-0079 | 17 | 4789213 | 4789267 | -1.02 | RNF167 |
| TCGA-06-0152 | 8 | 39599448 | 39599507 | -1.22 | ADAM18 | TCGA-02-0079 | 17 | 6871963 | 6872019 | -1.02 | BCL6B |
| TCGA-06-0152 | 8 | 50776370 | 50776429 | -1.22 |  | TCGA-02-0079 | 17 | 7318722 | 7318771 | -1.02 | ZBTB4 |
| TCGA-06-0152 | 8 | 53424593 | 53424652 | -1.22 | ST18 | TCGA-02-0079 | 17 | 7694620 | 7694679 | -1.02 | AB002344 |
| TCGA-06-0152 | 8 | 55138187 | 55138246 | -1.22 | LYPLA1 | TCGA-02-0079 | 17 | 8052025 | 8052084 | -1.02 | AURKB |
| TCGA-06-0152 | 8 | 75582884 | 75582943 | -1.22 |  | TCGA-02-0079 | 17 | 16370645 | 16370704 | -1.02 |  |
| TCGA-06-0152 | 8 | 92307137 | 92307196 | -1.22 | BC060784 | TCGA-02-0079 | 17 | 20625245 | 20625304 | -1.02 |  |
| TCGA-06-0152 | 8 | 118601645 | 118601704 | -1.22 |  | TCGA-02-0079 | 17 | 23862418 | 23862477 | -1.02 | BC045622 |
| TCGA-06-0152 | 8 | 123979018 | 123979077 | -1.22 | ZHX2 | TCGA-02-0079 | 17 | 26501612 | 26501671 | -1.02 | NF1 |
| TCGA-06-0152 | 8 | 131103860 | 131103919 | -1.22 |  | TCGA-02-0079 | 17 | 28177706 | 28177765 | -1.02 | MYO1D |
| TCGA-06-0152 | 8 | 141106328 | 141106387 | -1.22 | NIBP | TCGA-02-0079 | 17 | 41459223 | 41459276 | -1.02 | MAPT |
| TCGA-06-0152 | 8 | 144166141 | 144166185 | -1.22 | BC007589 | TCGA-02-0079 | 17 | 44360021 | 44360080 | -1.02 | UBE2Z |
| TCGA-06-0152 | 8 | 144203999 | 144204053 | -1.22 | C8orf31 | TCGA-02-0079 | 17 | 45019015 | 45019071 | -1.02 |  |
| TCGA-06-0152 | 8 | 144537484 | 144537534 | -1.22 | BC025767 | TCGA-02-0079 | 17 | 46006096 | 46006155 | -1.02 | CACNA1G |
| TCGA-06-0152 | 8 | 145533392 | 145533436 | -1.22 |  | TCGA-02-0079 | 17 | 69024557 | 69024616 | -1.02 | BC041474 |
| TCGA-02-0115 | 8 | 137160246 | 137160305 | -1.13 |  | TCGA-02-0079 | 17 | 69774078 | 69774137 | -1.02 |  |
| TCGA-02-0046 | 8 | 140318249 | 140318308 | -1.03 |  | TCGA-02-0079 | 17 | 69890659 | 69890716 | -1.02 |  |
| TCGA-12-0619 | 8 | 90816 | 90868 | -1.03 | BC071667 | TCGA-02-0079 | 17 | 70367463 | 70367509 | -1.02 | GRIN2C |
| TCGA-12-0619 | 8 | 974966 | 975025 | -1.03 | BC022082 | TCGA-02-0079 | 17 | 70596987 | 70597031 | -1.02 | SLC16A5 |
| TCGA-12-0619 | 8 | 6929691 | 6929747 | -1.03 |  | TCGA-02-0079 | 17 | 77041927 | 77041971 | -1.02 | AB040880 |
| TCGA-12-0619 | 8 | 33568440 | 33568487 | -1.03 | DUSP26 | TCGA-02-0258 | 17 | 3400142 | 3400201 | $-1.00$ | TRPV3 |
| TCGA-12-0619 | 8 | 39599448 | 39599507 | -1.03 | ADAM18 | TCGA-02-0079 | 17 | 36351895 | 36351954 | 1.02 |  |
| TCGA-12-0619 | 8 | 50776370 | 50776429 | -1.03 |  | TCGA-02-0079 | 17 | 37744308 | 37744367 | 1.02 | STAT3 |
| TCGA-12-0619 | 8 | 53424593 | 53424652 | -1.03 | ST18 | TCGA-02-0079 | 17 | 72239339 | 72239398 | 1.02 | CR599912 |
| TCGA-12-0619 | 8 | 66640572 | 66640631 | -1.03 |  | TCGA-06-0208 | 17 | 69926294 | 69926352 | 1.04 |  |
| TCGA-12-0619 | 8 | 86064843 | 86064902 | -1.03 |  | TCGA-06-0208 | 17 | 76449446 | 76449505 | 1.04 | KIAA1303 |
| TCGA-12-0619 | 8 | 87405509 | 87405568 | -1.03 |  | TCGA-06-0208 | 17 | 78528645 | 78528704 | 1.04 | B3GNTL1 |
| TCGA-12-0619 | 8 | 92307137 | 92307196 | -1.03 | BC060784 | TCGA-06-0414 | 17 | 36534226 | 36534285 | 1.05 |  |
| TCGA-12-0619 | 8 | 106441121 | 106441180 | -1.03 | ZFPM2 | TCGA-06-0644 | 17 | 22315936 | 22315983 | 1.09 |  |
| TCGA-12-0619 | 8 | 118601645 | 118601704 | -1.03 |  | TCGA-06-0644 | 17 | 36228012 | 36228071 | 1.09 | KRT10 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-12-0619 | 8 | 132063081 | 132063140 | -1.03 | ADCY8 | TCGA-06-0644 | 17 | 72239339 | 72239398 | 1.09 | CR599912 |
| TCGA-12-0619 | 8 | 141106328 | 141106387 | -1.03 | NIBP | TCGA-06-0644 | 17 | 74381487 | 74381542 | 1.09 | TIMP2 |
| TCGA-12-0619 | 8 | 144203999 | 144204053 | -1.03 | C8orf31 | TCGA-02-0060 | 17 | 38398917 | 38398976 | 1.13 | RUNDC1 |
| TCGA-12-0619 | 8 | 144537484 | 144537534 | -1.03 | BC025767 | TCGA-06-0210 | 17 | 76449446 | 76449505 | 1.17 | KIAA1303 |
| TCGA-12-0619 | 8 | 145695514 | 145695558 | -1.03 | PPP1R16A | TCGA-06-0188 | 17 | 23682723 | 23682782 | 1.21 | IFT20 |
| TCGA-02-0266 | 8 | 144945861 | 144945906 | 1.31 | SCRIB | TCGA-06-0188 | 17 | 23979594 | 23979653 | 1.21 | KIAA0100 |
| TCGA-02-0043 | 9 | 23816193 | 23816243 | -3.19 | ELAVL2 | TCGA-06-0188 | 17 | 25520058 | 25520117 | 1.21 | CCDC55 |
| TCGA-02-0043 | 9 | 127262922 | 127262981 | -3.19 |  | TCGA-06-0188 | 17 | 29640471 | 29640530 | 1.21 |  |
| TCGA-06-0148 | 9 | 346079 | 346138 | -3.04 | DOCK8 | TCGA-06-0188 | 17 | 33726698 | 33726757 | 1.21 | MRPL45 |
| TCGA-06-0148 | 9 | 21179604 | 21179663 | -3.04 |  | TCGA-06-0188 | 17 | 36969988 | 36970044 | 1.21 |  |
| TCGA-06-0148 | 9 | 26913325 | 26913384 | -3.04 | PLAA | TCGA-06-0188 | 17 | 37513554 | 37513598 | 1.21 | LGP2 |
| TCGA-06-0148 | 9 | 29245323 | 29245382 | -3.04 |  | TCGA-06-0188 | 17 | 38202283 | 38202338 | 1.21 | WNK4 |
| TCGA-02-0009 | 9 | 36611606 | 36611665 | -2.94 | MELK | TCGA-06-0188 | 17 | 44212401 | 44212460 | 1.21 | TTLL6 |
| TCGA-06-0125 | 9 | 110104594 | 110104653 | -2.83 |  | TCGA-06-0188 | 17 | 50986963 | 50987022 | 1.21 |  |
| TCGA-02-0021 | 9 | 23901804 | 23901863 | -2.73 |  | TCGA-06-0188 | 17 | 53747474 | 53747533 | 1.21 | BZRAP1 |
| TCGA-02-0021 | 9 | 23971151 | 23971210 | -2.73 |  | TCGA-06-0188 | 17 | 57148071 | 57148123 | 1.21 | BRIP1 |
| TCGA-02-0021 | 9 | 25195505 | 25195564 | -2.73 |  | TCGA-06-0188 | 17 | 67531059 | 67531118 | 1.21 |  |
| TCGA-02-0021 | 9 | 43378350 | 43378400 | -2.73 |  | TCGA-06-0188 | 17 | 68826587 | 68826646 | 1.21 |  |
| TCGA-02-0037 | 9 | 43378350 | 43378400 | -2.45 |  | TCGA-02-0107 | 18 | 24048647 | 24048706 | -1.29 |  |
| TCGA-02-0430 | 9 | 43378350 | 43378400 | -2.23 |  | TCGA-02-0046 | 18 | 2382176 | 2382235 | -1.07 |  |
| TCGA-06-0148 | 9 | 330083 | 330142 | -2.19 | DOCK8 | TCGA-02-0046 | 18 | 17945381 | 17945440 | -1.07 |  |
| TCGA-06-0148 | 9 | 629010 | 629069 | -2.19 | ANKRD15 | TCGA-02-0046 | 18 | 22436502 | 22436561 | -1.07 | KCTD1 |
| TCGA-06-0148 | 9 | 20208937 | 20208996 | -2.19 |  | TCGA-02-0046 | 18 | 33015923 | 33015982 | -1.07 | KIAA1328 |
| TCGA-06-0148 | 9 | 20684462 | 20684521 | -2.19 | KIAA1797 | TCGA-02-0046 | 18 | 56467989 | 56468048 | -1.07 |  |
| TCGA-06-0148 | 9 | 20739288 | 20739347 | -2.19 | KIAA1797 | TCGA-02-0439 | 18 | 64017240 | 64017299 | -1.05 |  |
| TCGA-06-0148 | 9 | 20871870 | 20871926 | -2.19 | KIAA1797 | TCGA-02-0024 | 18 | 14196224 | 14196283 | -1.01 |  |
| TCGA-06-0148 | 9 | 21282858 | 21282917 | -2.19 |  | TCGA-02-0010 | 18 | 22442191 | 22442250 | 1.19 | KCTD1 |
| TCGA-06-0148 | 9 | 21466463 | 21466522 | -2.19 | AK124391 | TCGA-02-0271 | 18 | 42794580 | 42794639 | 1.22 | KATNAL2 |
| TCGA-06-0148 | 9 | 21510354 | 21510413 | -2.19 | AK124391 | TCGA-08-0373 | 18 | 22690074 | 22690133 | 1.44 | AQP4 |
| TCGA-06-0148 | 9 | 21958041 | 21958099 | -2.19 | CDKN2A | TCGA-02-0271 | 19 | 737550 | 737609 | -2.03 | AK024373 |
| TCGA-06-0148 | 9 | 22723912 | 22723971 | -2.19 | AK092601 | TCGA-06-0176 | 19 | 13199527 | 13199586 | -1.31 | CACNA1A |
| TCGA-06-0148 | 9 | 25678698 | 25678757 | -2.19 |  | TCGA-06-0176 | 19 | 57038202 | 57038261 | -1.31 |  |
| TCGA-06-0148 | 9 | 26104455 | 26104514 | -2.19 | FLJ16323 | TCGA-06-0213 | 19 | 40543992 | 40544045 | -1.28 |  |
| TCGA-06-0148 | 9 | 26123251 | 26123310 | -2.19 |  | TCGA-02-0086 | 19 | 61559132 | 61559191 | -1.25 | BC043232 |
| TCGA-06-0148 | 9 | 26613334 | 26613393 | -2.19 |  | TCGA-12-0616 | 19 | 1803379 | 1803438 | -1.18 | KLF16 |
| TCGA-06-0148 | 9 | 26821029 | 26821088 | -2.19 |  | TCGA-12-0616 | 19 | 3911050 | 3911095 | -1.18 | DAPK3 |
| TCGA-06-0148 | 9 | 28196294 | 28196353 | -2.19 | LRRN6C | TCGA-12-0616 | 19 | 4760281 | 4760340 | -1.18 |  |
| TCGA-06-0148 | 9 | 29289692 | 29289751 | -2.19 |  | TCGA-12-0616 | 19 | 6155257 | 6155316 | -1.18 |  |
| TCGA-06-0148 | 9 | 29358120 | 29358179 | -2.19 |  | TCGA-12-0616 | 19 | 7015859 | 7015918 | -1.18 |  |
| TCGA-06-0148 | 9 | 30237394 | 30237453 | -2.19 |  | TCGA-12-0616 | 19 | 9861570 | 9861629 | -1.18 | OLFM2 |
| TCGA-06-0148 | 9 | 42913008 | 42913063 | -2.19 | BC031626 | TCGA-12-0616 | 19 | 20099547 | 20099606 | -1.18 |  |
| TCGA-02-0422 | 9 | 86952145 | 86952204 | -2.13 |  | TCGA-12-0616 | 19 | 20860538 | 20860597 | -1.18 |  |
| TCGA-02-0290 | 9 | 35971395 | 35971454 | -2.13 |  | TCGA-12-0616 | 19 | 23221921 | 23221980 | -1.18 |  |
| TCGA-02-0260 | 9 | 20431890 | 20431949 | -2.11 | MLLT3 | TCGA-12-0616 | 19 | 40716218 | 40716265 | -1.18 | GAPDHS |
| TCGA-02-0260 | 9 | 20684462 | 20684521 | -2.11 | KIAA1797 | TCGA-12-0616 | 19 | 40944669 | 40944728 | -1.18 | LOC148137 |
| TCGA-02-0260 | 9 | 21282858 | 21282917 | -2.11 |  | TCGA-12-0616 | 19 | 48221641 | 48221700 | -1.18 | PSG11 |
| TCGA-02-0260 | 9 | 21394289 | 21394347 | -2.11 |  | TCGA-12-0616 | 19 | 50609052 | 50609096 | -1.18 | ERCC1 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-02-0260 | 9 | 21504931 | 21504990 | -2.11 | AK124391 | TCGA-12-0616 | 19 | 52722417 | 52722476 | -1.18 | ZNF541 |
| TCGA-02-0260 | 9 | 21958041 | 21958099 | -2.11 | CDKN2A | TCGA-12-0616 | 19 | 55664690 | 55664734 | -1.18 | LOC112703 |
| TCGA-02-0260 | 9 | 22723912 | 22723971 | -2.11 | AK092601 | TCGA-12-0616 | 19 | 57791741 | 57791800 | -1.18 | ZNF137 |
| TCGA-02-0260 | 9 | 22842920 | 22842979 | -2.11 |  | TCGA-12-0616 | 19 | 57929244 | 57929303 | -1.18 | BC056265 |
| TCGA-02-0260 | 9 | 23784955 | 23785014 | -2.11 | ELAVL2 | TCGA-12-0616 | 19 | 58875960 | 58876019 | -1.18 |  |
| TCGA-02-0116 | 9 | 34267524 | 34267583 | -2.10 |  | TCGA-12-0616 | 19 | 59492650 | 59492707 | -1.18 | LILRA6 |
| TCGA-06-0125 | 9 | 21114816 | 21114875 | -2.08 |  | TCGA-12-0616 | 19 | 59617971 | 59618024 | -1.18 | AF315098 |
| TCGA-06-0125 | 9 | 21282858 | 21282917 | -2.08 |  | TCGA-12-0616 | 19 | 63190370 | 63190429 | -1.18 | ZNF606 |
| TCGA-06-0125 | 9 | 21394289 | 21394347 | -2.08 |  | TCGA-12-0616 | 19 | 63676549 | 63676604 | -1.18 | ZNF324 |
| TCGA-06-0125 | 9 | 22723912 | 22723971 | -2.08 | AK092601 | TCGA-06-0171 | 19 | 10432640 | 10432687 | -1.11 | PDE4A |
| TCGA-06-0125 | 9 | 23704617 | 23704676 | -2.08 | ELAVL2 | TCGA-06-0171 | 19 | 59492650 | 59492707 | -1.11 | LILRA6 |
| TCGA-06-0125 | 9 | 23784955 | 23785014 | -2.08 | ELAVL2 | TCGA-08-0517 | 19 | 47574701 | 47574758 | -1.08 | SBP1 |
| TCGA-06-0125 | 9 | 25678698 | 25678757 | -2.08 |  | TCGA-08-0517 | 19 | 55146867 | 55146912 | -1.08 | SIGLEC11 |
| TCGA-06-0125 | 9 | 25969531 | 25969590 | -2.08 |  | TCGA-08-0517 | 19 | 56840346 | 56840401 | -1.08 | AY358369 |
| TCGA-06-0125 | 9 | 27430770 | 27430827 | -2.08 | MOBKL2B | TCGA-08-0517 | 19 | 57561995 | 57562054 | -1.08 | BC039903 |
| TCGA-06-0125 | 9 | 28196294 | 28196353 | -2.08 | LRRN6C | TCGA-12-0618 | 19 | 3911050 | 3911095 | -1.05 | DAPK3 |
| TCGA-06-0125 | 9 | 28294971 | 28295030 | -2.08 | LRRN6C | TCGA-12-0618 | 19 | 6155257 | 6155316 | -1.05 |  |
| TCGA-06-0125 | 9 | 28335772 | 28335831 | -2.08 | LRRN6C | TCGA-12-0618 | 19 | 10074425 | 10074476 | -1.05 | AF230330 |
| TCGA-06-0125 | 9 | 41470116 | 41470175 | -2.08 |  | TCGA-12-0618 | 19 | 10420582 | 10420626 | -1.05 | AY593872 |
| TCGA-06-0125 | 9 | 110100386 | 110100445 | -2.08 |  | TCGA-12-0618 | 19 | 12889945 | 12889989 | -1.05 | CR620067 |
| TCGA-06-0125 | 9 | 120634700 | 120634746 | -2.08 | FBXW2 | TCGA-12-0618 | 19 | 16858458 | 16858506 | -1.05 |  |
| TCGA-08-0521 | 9 | 109690961 | 109691020 | -1.97 | PALM2 | TCGA-12-0618 | 19 | 18400268 | 18400312 | -1.05 | SSBP4 |
| TCGA-08-0521 | 9 | 138301699 | 138301758 | -1.97 |  | TCGA-12-0618 | 19 | 20099547 | 20099606 | -1.05 |  |
| TCGA-06-0412 | 9 | 109690961 | 109691020 | -1.76 | PALM2 | TCGA-12-0618 | 19 | 20860538 | 20860597 | -1.05 |  |
| TCGA-06-0154 | 9 | 113477324 | 113477383 | -1.64 |  | TCGA-12-0618 | 19 | 40716218 | 40716265 | -1.05 | GAPDHS |
| TCGA-06-0210 | 9 | 21154498 | 21154557 | -1.48 |  | TCGA-12-0618 | 19 | 50609052 | 50609096 | -1.05 | ERCC1 |
| TCGA-06-0210 | 9 | 86952145 | 86952204 | -1.48 |  | TCGA-12-0618 | 19 | 52615730 | 52615789 | -1.05 |  |
| TCGA-06-0143 | 9 | 41470116 | 41470175 | -1.39 |  | TCGA-12-0618 | 19 | 52722417 | 52722476 | -1.05 | ZNF541 |
| TCGA-08-0525 | 9 | 26821029 | 26821088 | -1.35 |  | TCGA-12-0618 | 19 | 53802678 | 53802732 | -1.05 | FAM83E |
| TCGA-08-0525 | 9 | 26925960 | 26926019 | -1.35 | PLAA | TCGA-12-0618 | 19 | 54232133 | 54232177 | -1.05 | J00117 |
| TCGA-08-0525 | 9 | 27094550 | 27094609 | -1.35 |  | TCGA-12-0618 | 19 | 55664690 | 55664734 | -1.05 | LOC112703 |
| TCGA-08-0525 | 9 | 30524794 | 30524853 | -1.35 | BC022036 | TCGA-12-0618 | 19 | 56018305 | 56018353 | -1.05 | KLK1 |
| TCGA-12-0620 | 9 | 32374264 | 32374323 | -1.32 |  | TCGA-12-0618 | 19 | 57791741 | 57791800 | -1.05 | ZNF137 |
| TCGA-12-0620 | 9 | 35467102 | 35467161 | -1.32 | BC031276 | TCGA-12-0618 | 19 | 57929244 | 57929303 | -1.05 | BC056265 |
| TCGA-12-0620 | 9 | 94414166 | 94414225 | -1.32 | FBP2 | TCGA-12-0618 | 19 | 59492650 | 59492707 | -1.05 | LILRA6 |
| TCGA-12-0620 | 9 | 108704113 | 108704159 | -1.32 | BC014610 | TCGA-12-0618 | 19 | 59617971 | 59618024 | -1.05 | AF315098 |
| TCGA-02-0089 | 9 | 26491363 | 26491422 | -1.24 |  | TCGA-12-0618 | 19 | 63190370 | 63190429 | -1.05 | ZNF606 |
| TCGA-06-0646 | 9 | 23316739 | 23316798 | -1.22 |  | TCGA-12-0618 | 19 | 63676549 | 63676604 | -1.05 | ZNF324 |
| TCGA-06-0646 | 9 | 34703703 | 34703762 | -1.22 |  | TCGA-06-0214 | 19 | 40543992 | 40544045 | -1.02 |  |
| TCGA-06-0646 | 9 | 36894709 | 36894768 | -1.22 | PAX5 | TCGA-06-0214 | 19 | 59146487 | 59146540 | -1.02 | AB209671 |
| TCGA-06-0646 | 9 | 79490663 | 79490722 | -1.22 | TLE4 | TCGA-06-0214 | 19 | 59492650 | 59492707 | -1.02 | LILRA6 |
| TCGA-06-0646 | 9 | 83312126 | 83312177 | -1.22 | FRMD3 | TCGA-02-0106 | 19 | 57718358 | 57718417 | -1.01 | BC056265 |
| TCGA-06-0646 | 9 | 92816494 | 92816542 | -1.22 | FGD3 | TCGA-08-0345 | 19 | 611954 | 612011 | $-1.00$ | RNF126 |
| TCGA-06-0646 | 9 | 93619886 | 93619945 | -1.22 |  | TCGA-08-0345 | 19 | 626534 | 626591 | $-1.00$ | AK024373 |
| TCGA-06-0646 | 9 | 94414166 | 94414225 | -1.22 | FBP2 | TCGA-08-0345 | 19 | 807195 | 807247 | $-1.00$ | ELA2 |
| TCGA-06-0646 | 9 | 104697731 | 104697790 | -1.22 | ABCA1 | TCGA-08-0345 | 19 | 2574069 | 2574116 | -1.00 | GNG7 |
| TCGA-06-0646 | 9 | 111478822 | 111478881 | -1.22 | $\begin{gathered} \text { bA16L21.2. } \\ 1 \end{gathered}$ | TCGA-08-0345 | 19 | 3441792 | 3441848 | -1.00 | BC009863 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0646 | 9 | 114162328 | 114162387 | -1.22 |  | TCGA-08-0345 | 19 | 3935557 | 3935616 | $-1.00$ | EEF2 |
| TCGA-06-0646 | 9 | 115918913 | 115918972 | -1.22 |  | TCGA-08-0345 | 19 | 4245786 | 4245834 | -1.00 | MGC23244 |
| TCGA-06-0646 | 9 | 125747778 | 125747837 | -1.22 | PBX3 | TCGA-08-0345 | 19 | 4760281 | 4760340 | $-1.00$ |  |
| TCGA-06-0646 | 9 | 132117335 | 132117394 | -1.22 | NTNG2 | TCGA-08-0345 | 19 | 5729696 | 5729750 | $-1.00$ | TMEM146 |
| TCGA-06-0646 | 9 | 133011339 | 133011393 | -1.22 | RALGDS | TCGA-08-0345 | 19 | 6155257 | 6155316 | $-1.00$ |  |
| TCGA-06-0646 | 9 | 135648788 | 135648839 | -1.22 |  | TCGA-08-0345 | 19 | 7015859 | 7015918 | $-1.00$ |  |
| TCGA-06-0646 | 9 | 136071499 | 136071558 | -1.22 | UBADC1 | TCGA-08-0345 | 19 | 7498185 | 7498244 | $-1.00$ | MCOLN1 |
| TCGA-06-0646 | 9 | 136839806 | 136839850 | -1.22 | EGFL7 | TCGA-08-0345 | 19 | 9800520 | 9800566 | $-1.00$ | UBL5 |
| TCGA-06-0646 | 9 | 137561971 | 137562015 | -1.22 | FLJ20433 | TCGA-08-0345 | 19 | 11298922 | 11298976 | -1.00 | RAB3D |
| TCGA-06-0646 | 9 | 138301699 | 138301758 | -1.22 |  | TCGA-08-0345 | 19 | 16858458 | 16858506 | -1.00 |  |
| TCGA-06-0190 | 9 | 21359384 | 21359443 | -1.17 |  | TCGA-08-0345 | 19 | 18496572 | 18496624 | -1.00 |  |
| TCGA-06-0190 | 9 | 21408944 | 21409003 | -1.17 |  | TCGA-08-0345 | 19 | 19922085 | 19922142 | -1.00 |  |
| TCGA-06-0190 | 9 | 24160666 | 24160725 | -1.17 |  | TCGA-08-0345 | 19 | 20860538 | 20860597 | $-1.00$ |  |
| TCGA-06-0210 | 9 | 20883453 | 20883512 | -1.17 | KIAA1797 | TCGA-08-0345 | 19 | 22533332 | 22533391 | $-1.00$ |  |
| TCGA-06-0210 | 9 | 21044957 | 21045016 | -1.17 |  | TCGA-08-0345 | 19 | 38504014 | 38504073 | $-1.00$ |  |
| TCGA-06-0210 | 9 | 21114816 | 21114875 | -1.17 |  | TCGA-08-0345 | 19 | 40716218 | 40716265 | -1.00 | GAPDHS |
| TCGA-06-0164 | 9 | 36353448 | 36353507 | -1.13 | RNF38 | TCGA-08-0345 | 19 | 42396997 | 42397056 | -1.00 |  |
| TCGA-06-0164 | 9 | 41470116 | 41470175 | -1.13 |  | TCGA-08-0345 | 19 | 43927527 | 43927583 | $-1.00$ |  |
| TCGA-02-0269 | 9 | 114165838 | 114165888 | -1.13 | ORM1 | TCGA-08-0345 | 19 | 49263677 | 49263736 | -1.00 | ZNF223 |
| TCGA-02-0064 | 9 | 11308830 | 11308889 | -1.11 |  | TCGA-08-0345 | 19 | 49950095 | 49950154 | -1.00 | BCL3 |
| TCGA-02-0064 | 9 | 43378350 | 43378400 | -1.11 |  | TCGA-08-0345 | 19 | 52615730 | 52615789 | -1.00 |  |
| TCGA-06-0194 | 9 | 114165838 | 114165888 | -1.09 | ORM1 | TCGA-08-0345 | 19 | 52722417 | 52722476 | -1.00 | ZNF541 |
| TCGA-08-0345 | 9 | 30134402 | 30134461 | -1.01 |  | TCGA-08-0345 | 19 | 55395280 | 55395334 | -1.00 | AK125082 |
| TCGA-08-0345 | 9 | 39355550 | 39355594 | -1.01 | CNTNAP3 | TCGA-08-0345 | 19 | 55664690 | 55664734 | -1.00 | LOC112703 |
| TCGA-08-0345 | 9 | 68962739 | 68962798 | -1.01 |  | TCGA-08-0345 | 19 | 57791741 | 57791800 | -1.00 | ZNF137 |
| TCGA-08-0345 | 9 | 94414166 | 94414225 | -1.01 | FBP2 | TCGA-08-0345 | 19 | 57929244 | 57929303 | -1.00 | BC056265 |
| TCGA-08-0345 | 9 | 104690871 | 104690930 | -1.01 | ABCA1 | TCGA-08-0345 | 19 | 58003930 | 58003989 | $-1.00$ | ZNF28 |
| TCGA-02-0034 | 9 | 39131835 | 39131894 | -1.00 | CNTNAP3 | TCGA-08-0345 | 19 | 58088740 | 58088799 | -1.00 | X78928 |
| TCGA-02-0034 | 9 | 43017845 | 43017904 | -1.00 |  | TCGA-08-0345 | 19 | 58875960 | 58876019 | -1.00 |  |
| TCGA-02-0034 | 9 | 43948886 | 43948940 | -1.00 |  | TCGA-08-0345 | 19 | 59310832 | 59310881 | -1.00 | PRPF31 |
| TCGA-06-0133 | 9 | 85298838 | 85298897 | 1.14 |  | TCGA-08-0345 | 19 | 59617971 | 59618024 | -1.00 | AF315098 |
| TCGA-06-0413 | 9 | 42913008 | 42913063 | 1.73 | BC031626 | TCGA-08-0345 | 19 | 63190370 | 63190429 | -1.00 | ZNF606 |
| TCGA-06-0126 | 9 | 137529571 | 137529630 | 2.20 | FLJ20433 | TCGA-02-0107 | 19 | 52823576 | 52823635 | 1.19 | BC032065 |
| TCGA-06-0137 | 9 | 43410478 | 43410537 | 2.98 | AY098593 | TCGA-06-0174 | 19 | 5934511 | 5934570 | 1.21 |  |
| TCGA-02-0043 | 10 | 66951636 | 66951695 | -3.03 |  | TCGA-06-0174 | 19 | 13870803 | 13870862 | 1.21 | MGC11271 |
| TCGA-02-0043 | 10 | 98125575 | 98125634 | -3.03 | TLL2 | TCGA-06-0174 | 19 | 16406261 | 16406318 | 1.21 | EPS15L1 |
| TCGA-02-0333 | 10 | 98125575 | 98125634 | -2.79 | TLL2 | TCGA-06-0174 | 19 | 33356504 | 33356563 | 1.21 |  |
| TCGA-06-0414 | 10 | 51264997 | 51265056 | -2.74 | TIMM23 | TCGA-06-0174 | 19 | 39614667 | 39614726 | 1.21 | UBA2 |
| TCGA-06-0138 | 10 | 32885520 | 32885579 | -2.29 | CCDC7 | TCGA-06-0174 | 19 | 44473559 | 44473615 | 1.21 |  |
| TCGA-06-0138 | 10 | 51581040 | 51581091 | -2.29 |  | TCGA-06-0174 | 19 | 49469272 | 49469331 | 1.21 | ZNF233 |
| TCGA-06-0138 | 10 | 66951636 | 66951695 | -2.29 |  | TCGA-06-0174 | 19 | 52530292 | 52530351 | 1.21 |  |
| TCGA-06-0138 | 10 | 100678817 | 100678876 | -2.29 | HPSE2 | TCGA-06-0174 | 19 | 60941502 | 60941556 | 1.21 | NALP9 |
| TCGA-08-0520 | 10 | 118757869 | 118757928 | -2.19 |  | TCGA-06-0412 | 20 | 1528899 | 1528958 | -1.71 | SIRPB1 |
| TCGA-06-0648 | 10 | 45554717 | 45554776 | -2.00 | FAM21C | TCGA-02-0027 | 20 | 51513440 | 51513499 | -1.27 | TSHZ2 |
| TCGA-06-0414 | 10 | 3438109 | 3438168 | -1.98 | BC037918 | TCGA-06-0156 | 20 | 51513440 | 51513499 | -1.11 | TSHZ2 |
| TCGA-06-0414 | 10 | 4104978 | 4105037 | -1.98 | AK055803 | TCGA-06-0129 | 20 | 25839919 | 25839978 | -1.09 |  |
| TCGA-06-0414 | 10 | 4217287 | 4217346 | -1.98 |  | TCGA-02-0085 | 20 | 25885935 | 25885994 | 1.08 | BC052952 |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-06-0414 | 10 | 4742025 | 4742084 | -1.98 |  | TCGA-06-0412 | 20 | 25885935 | 25885994 | 1.09 | BC052952 |
| TCGA-06-0414 | 10 | 5154246 | 5154305 | -1.98 |  | TCGA-06-0402 | 20 | 4144452 | 4144506 | 1.14 |  |
| TCGA-06-0414 | 10 | 51306200 | 51306259 | -1.98 | AF005043 | TCGA-06-0397 | 21 | 28368917 | 28368976 | -1.80 | AK093119 |
| TCGA-06-0414 | 10 | 89241227 | 89241286 | -1.98 |  | TCGA-02-0102 | 21 | 28368917 | 28368976 | -1.51 | AK093119 |
| TCGA-06-0414 | 10 | 89295627 | 89295686 | -1.98 | MINPP1 | TCGA-02-0106 | 21 | 28368917 | 28368976 | -1.28 | AK093119 |
| TCGA-06-0414 | 10 | 89679976 | 89680035 | -1.98 | PTEN | TCGA-02-0432 | 21 | 28368917 | 28368976 | -1.24 | AK093119 |
| TCGA-06-0414 | 10 | 89879205 | 89879264 | -1.98 |  | TCGA-08-0531 | 21 | 28368917 | 28368976 | -1.20 | AK093119 |
| TCGA-06-0414 | 10 | 90051433 | 90051492 | -1.98 | C10orf59 | TCGA-06-0209 | 21 | 28368917 | 28368976 | -1.14 | AK093119 |
| TCGA-06-0414 | 10 | 90174342 | 90174401 | -1.98 | C10orf59 | TCGA-02-0043 | 21 | 39030818 | 39030877 | -1.03 |  |
| TCGA-06-0414 | 10 | 97984467 | 97984526 | -1.98 | BLNK | TCGA-02-0043 | 21 | 40192300 | 40192359 | -1.03 | PCP4 |
| TCGA-06-0414 | 10 | 99548159 | 99548218 | -1.98 |  | TCGA-02-0043 | 21 | 42480546 | 42480605 | -1.03 |  |
| TCGA-02-0083 | 10 | 60513350 | 60513409 | -1.89 |  | TCGA-02-0043 | 21 | 44856311 | 44856357 | -1.03 | C21orf29 |
| TCGA-02-0324 | 10 | 37508402 | 37508461 | -1.78 | $\underset{\mathrm{A}}{\mathrm{ANKRD} 30}$ | TCGA-02-0079 | 21 | 32896034 | 32896092 | 1.13 | C21orf59 |
| TCGA-02-0324 | 10 | 90976366 | 90976425 | -1.78 | LIPA | TCGA-12-0619 | 21 | 26175055 | 26175112 | 1.43 | APP |
| TCGA-02-0324 | 10 | 98125575 | 98125634 | $-1.78$ | TLL2 | TCGA-06-0174 | 22 | 22672513 | 22672572 | -4.08 |  |
| TCGA-12-0619 | 10 | 37508402 | 37508461 | -1.64 | $\underset{\mathrm{A}}{\mathrm{ANKRD} 30}$ | TCGA-06-0188 | 22 | 22672513 | 22672572 | -3.19 |  |
| TCGA-12-0619 | 10 | 89440846 | 89440905 | -1.64 | PAPSS2 | TCGA-06-0188 | 22 | 24050904 | 24050963 | -3.19 |  |
| TCGA-12-0619 | 10 | 90678178 | 90678237 | -1.64 | AB037794 | TCGA-08-0349 | 22 | 22672513 | 22672572 | -2.17 |  |
| TCGA-06-0646 | 10 | 9864908 | 9864967 | -1.56 |  | TCGA-06-0402 | 22 | 14504218 | 14504277 | -2.15 | BC016035 |
| TCGA-06-0646 | 10 | 25672743 | 25672802 | -1.56 | GPR158 | TCGA-06-0402 | 22 | 45755429 | 45755488 | -2.15 | TBC1D22A |
| TCGA-06-0646 | 10 | 33163680 | 33163739 | -1.56 | C10orf68 | TCGA-02-0084 | 22 | 22672513 | 22672572 | -1.89 |  |
| TCGA-06-0646 | 10 | 37508402 | 37508461 | -1.56 | $\underset{\mathrm{A}}{\mathrm{ANKRD} 30}$ | TCGA-02-0084 | 22 | 49356005 | 49356052 | -1.89 | ARSA |
| TCGA-06-0646 | 10 | 105290373 | 105290432 | -1.56 | NEURL | TCGA-06-0238 | 22 | 49356005 | 49356052 | -1.78 | ARSA |
| TCGA-08-0520 | 10 | 5530640 | 5530688 | -1.47 | CALML5 | TCGA-08-0345 | 22 | 49356005 | 49356052 | -1.74 | ARSA |
| TCGA-08-0520 | 10 | 37523207 | 37523266 | -1.47 | $\underset{\mathrm{A}}{\mathrm{ANKRD} 30}$ | TCGA-06-0175 | 22 | 31690525 | 31690584 | -1.71 | SYN3 |
| TCGA-08-0520 | 10 | 53695083 | 53695142 | -1.47 | PRKG1 | TCGA-06-0175 | 22 | 47880174 | 47880233 | -1.71 |  |
| TCGA-08-0520 | 10 | 55138890 | 55138949 | -1.47 | AF083130 | TCGA-02-0325 | 22 | 36070350 | 36070409 | -1.67 | AK055475 |
| TCGA-08-0520 | 10 | 55384225 | 55384284 | -1.47 | PCDH15 | TCGA-02-0057 | 22 | 27667173 | 27667232 | -1.62 | AB051436 |
| TCGA-08-0520 | 10 | 69688265 | 69688324 | -1.47 |  | TCGA-02-0060 | 22 | 49349292 | 49349344 | -1.50 |  |
| TCGA-08-0520 | 10 | 90976366 | 90976425 | -1.47 | LIPA | TCGA-06-0188 | 22 | 22665928 | 22665976 | -1.41 | HS322B1A |
| TCGA-08-0520 | 10 | 98125575 | 98125634 | -1.47 | TLL2 | TCGA-06-0188 | 22 | 22676549 | 22676593 | -1.41 |  |
| TCGA-08-0520 | 10 | 118752176 | 118752235 | -1.47 | KIAA1598 | TCGA-06-0188 | 22 | 22690716 | 22690769 | -1.41 |  |
| TCGA-02-0046 | 10 | 80943483 | 80943542 | -1.45 | BC070048 | TCGA-06-0188 | 22 | 22719859 | 22719907 | -1.41 | AK127991 |
| TCGA-02-0046 | 10 | 99247798 | 99247854 | -1.45 | MMS 19 L | TCGA-06-0188 | 22 | 23978623 | 23978682 | -1.41 |  |
| TCGA-02-0046 | 10 | 126834997 | 126835056 | -1.45 | CTBP2 | TCGA-06-0188 | 22 | 24228038 | 24228097 | -1.41 | BC004918 |
| TCGA-06-0214 | 10 | 66951636 | 66951695 | -1.45 |  | TCGA-06-0188 | 22 | 31690525 | 31690584 | -1.41 | SYN3 |
| TCGA-06-0210 | 10 | 100678817 | 100678876 | -1.42 | HPSE2 | TCGA-06-0152 | 22 | 17317314 | 17317358 | -1.32 |  |
| TCGA-02-0071 | 10 | 42266351 | 42266410 | -1.33 | BC039000 | TCGA-06-0152 | 22 | 17494609 | 17494663 | -1.32 | DGCR13 |
| TCGA-02-0071 | 10 | 69257482 | 69257541 | -1.33 | DNAJC12 | TCGA-06-0152 | 22 | 18127109 | 18127159 | -1.32 | TBX1 |
| TCGA-02-0071 | 10 | 80943483 | 80943542 | -1.33 | BC070048 | TCGA-06-0152 | 22 | 22672513 | 22672572 | -1.32 |  |
| TCGA-02-0071 | 10 | 88203067 | 88203126 | -1.33 | WAPAL | TCGA-06-0152 | 22 | 25749756 | 25749815 | -1.32 |  |
| TCGA-12-0618 | 10 | 11953319 | 11953378 | -1.30 | C10orf47 | TCGA-06-0152 | 22 | 26468793 | 26468852 | -1.32 | MN1 |
| TCGA-12-0618 | 10 | 23014261 | 23014320 | -1.30 | PIP5K2A | TCGA-06-0152 | 22 | 28007348 | 28007405 | -1.32 | EWSR1 |
| TCGA-12-0618 | 10 | 25129184 | 25129243 | -1.30 |  | TCGA-06-0152 | 22 | 29594981 | 29595040 | -1.32 | OSBP2 |
| TCGA-12-0618 | 10 | 29704220 | 29704279 | -1.30 |  | TCGA-06-0152 | 22 | 30207655 | 30207714 | -1.32 | EIF4ENIF1 |
| TCGA-12-0618 | 10 | 33163680 | 33163739 | -1.30 | C10orf68 | TCGA-06-0152 | 22 | 37730228 | 37730287 | -1.32 |  |
| TCGA-12-0618 | 10 | 33647766 | 33647825 | $-1.30$ | NRP1 | TCGA-06-0152 | 22 | 41221190 | 41221234 | -1.32 | SERHL |


| sample | chr | start | end | segval | genes | sample | chr | start | end | segval | genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCGA-12-0618 | 10 | 49340053 | 49340111 | -1.30 | ARHGAP2 | 2 | TCGA-06-0152 | 22 | 43210959 | 43211009 | -1.32 |
| LDOC1L |  |  |  |  |  |  |  |  |  |  |  |
| TCGA-12-0618 | 10 | 50178065 | 50178124 | -1.30 | C10orf71 | TCGA-06-0152 | 22 | 45818352 | 45818411 | -1.32 | TBC1D22A |
| TCGA-12-0618 | 10 | 50485951 | 50486010 | -1.30 |  | TCGA-06-0152 | 22 | 48956760 | 48956818 | -1.32 | SELO |
| TCGA-12-0618 | 10 | 54775509 | 54775568 | -1.30 |  | TCGA-06-0152 | 22 | 49356005 | 49356052 | -1.32 | ARSA |
| TCGA-12-0618 | 10 | 60786104 | 60786163 | -1.30 | FAM13C1 | TCGA-02-0058 | 22 | 21174548 | 21174607 | -1.23 | SUHW2 |
| TCGA-12-0618 | 10 | 69612724 | 69612783 | -1.30 | FLJ14437 | TCGA-02-0058 | 22 | 48749925 | 48749984 | -1.23 | FLJ41993 |
| TCGA-12-0618 | 10 | 72324240 | 72324293 | -1.30 |  | TCGA-02-0111 | 22 | 17525955 | 17526014 | -1.15 |  |
| TCGA-12-0618 | 10 | 88690277 | 88690334 | -1.30 | MMRN2 | TCGA-06-0237 | 22 | 14504218 | 14504277 | -1.12 | BC016035 |
| TCGA-12-0618 | 10 | 99324268 | 99324325 | -1.30 | ANKRD2 | TCGA-06-0237 | 22 | 22719859 | 22719907 | -1.12 | AK127991 |
| TCGA-12-0618 | 10 | 100789507 | 100789566 | -1.30 | HPSE2 | TCGA-06-0237 | 22 | 47122623 | 47122682 | -1.12 |  |
| TCGA-12-0618 | 10 | 101591744 | 101591803 | -1.30 | ABCC2 | TCGA-06-0410 | 22 | 22719859 | 22719907 | -1.08 | AK127991 |
| TCGA-12-0618 | 10 | 101933488 | 101933542 | -1.30 | SPFH1 | TCGA-06-0410 | 22 | 27754812 | 27754871 | -1.08 | AB051436 |
| TCGA-12-0618 | 10 | 103517472 | 103517526 | -1.30 |  | TCGA-06-0410 | 22 | 27884866 | 27884925 | -1.08 | AK056425 |
| TCGA-12-0618 | 10 | 104152486 | 104152530 | -1.30 | PSD | TCGA-06-0410 | 22 | 32067638 | 32067697 | -1.08 | LARGE |
| TCGA-12-0618 | 10 | 105290373 | 105290432 | -1.30 | NEURL | TCGA-06-0410 | 22 | 38851943 | 38852002 | -1.08 | TNRC6B |
| TCGA-12-0618 | 10 | 107411772 | 107411831 | -1.30 |  | TCGA-02-0102 | 22 | 18984101 | 18984160 | 1.33 |  |
| TCGA-12-0618 | 10 | 119298404 | 119298463 | -1.30 | EMX2 |  |  |  |  |  |  |

Table S6.4.1 Genes that have at least four folds aberrations in at least one patient tumor sample. Count for the last column indicates the sample numbers that specific genes being identified having big aberrations

| Patient ID | Chromosomal Location | gene | count |
| :---: | :---: | :---: | :---: |
| TCGA-06-017 | chr1q43-q44 | SDCCAG8 | 1 |
| TCGA-06-015 | chr1q32 | SOX13 | 1 |
| TCGA-06-0412;TCGA-06-015 | chr 1 q32.1 | PPP1R15B | 2 |
| TCGA-06-017 | chr1q44 | C1orf101 | 1 |
| TCGA-06-017 | chr1q44-qter | ZNF238 | 1 |
| TCGA-06-017 | chr1q44 | CEP170 | 1 |
| TCGA-06-015 | chr1q32.1 | ETNK2 | 1 |
| TCGA-06-0412;TCGA-06-015 | chr1q32 | PIK3C2B | 2 |
| TCGA-06-015 | chr1q32.1 | GOLT1A | 1 |
| TCGA-06-017 | chr1q44 | C1orf100 | 1 |
| TCGA-06-015 | chr 1 q32.1 | NFASC | 1 |
| TCGA-06-015 | chr1q32.1 | PLEKHA6 | 1 |
| TCGA-06-017 | chr1cen-q12 | ADSS | 1 |
| TCGA-06-0412;TCGA-06-015 | chr1q32 | MDM4 | 2 |
| TCGA-06-017 | chr1q43-q44 | AKT3 | 1 |
| TCGA-06-015 | chr1q32 | KISS1 | 1 |
| TCGA-06-015 | chr1q32 | REN | 1 |
| TCGA-06-020 | chr3q28 | IL1RAP | 1 |
| TCGA-06-020 | chr3q28-q29 | CLDN1 | 1 |
| TCGA-06-020 | chr3q28 | CLDN16 | 1 |
| TCGA-06-0241;TCGA-08-0524;TCGA-06-017 | chr4q11-q12 | KIT | 3 |
| TCGA-06-017 | chr4q12 | SGCB | 1 |
| TCGA-06-0241;TCGA-06-017 | chr4q11-q12 | KDR | 2 |
| TCGA-02-0440;TCGA-06-017 | chr4q12 | SCFD2 | 2 |
| TCGA-06-017 | chr4q12 | LNX1 | 1 |
| TCGA-02-0440;TCGA-06-0241;TCGA-08-0524;TCGA-06-017 | chr4q11 | CHIC2 | 4 |
| TCGA-06-017 | chr4q12 | SPATA18 | 1 |
| TCGA-08-052 | chr4p13 | RPL9 | 1 |
| TCGA-02-0440;TCGA-06-0241;TCGA-08-0524;TCGA-06-017 | chr4q11-q13 | PDGFRA | 4 |
| TCGA-06-017 | chr4q12 | DCUN1D4 | 1 |
| TCGA-06-0139;TCGA-06-013 | chr4q13 | UGT2B17 | 2 |
| TCGA-08-052 | chr4p14 | LIAS | 1 |
| TCGA-06-017 | chr4q12 | USP46 | 1 |
| TCGA-06-017 | chr4q12 | RASL11B | 1 |
| TCGA-02-0440;TCGA-06-017 | chr4q12 | FIP1L1 | 2 |
| TCGA-06-0210;TCGA-02-0285;TCGA-02-0321;TCGA-02-0007;TCGA-06-0168;TCGA-02-0024;TCGA-02-043 | chr5q35.3 | BTNL3 | 7 |
| TCGA-06-0122;TCGA-02-0021;TCGA-06-018 | chr7p12 | GBAS | 3 |
| TCGA-02-008 | chr7q36.1 | ACTR3B | 1 |
| TCGA-06-018 | chr7p11.2 | CCT6A | 1 |
| TCGA-02-033 | chr7q31.2 | TFEC | 1 |

## Patient ID

TCGA-02-004
TCGA-02-0333;TCGA-02-0285;TCGA-02-0317;TCGA-06-0157;TCGA-02-0071;TCGA-06-0169;TCGA-12-0619;TCGA-08-0352;TCGA-06-0209;TCGA-02-0021;TCGA-02-0260;TCGA-02-0289;TCGA-06-0126;TCGA-02-0064;TCGA-02-0422;TCGA-02-0089;TCGA-06-0133;TCGA-06-0211;TCGA-08-0514;TCGA-08-0531;TCGA-08-0529;TCGA-02-0043;TCGA-08-0358;TCGA-06-0137;TCGA-06-0127;TCGA-06-0145;TCGA-02-0046;TCGA-06-0122;TCGA-08-0525;TCGA-02-0038;TCGA-06-0125;TCGA-02-0269;TCGA-02-0009;TCGA-02-0106;TCGA-02-0116;TCGA-06-0143;TCGA-02-0290;TCGA-02-0003;TCGA-06-0148;TCGA-02-0083;TCGA-06-0152;TCGA-06-0158;TCGA-06-0187;TCGA-06-0185;TCGA-06-0173;TCGA-06-0182;TCGA-06-0645;TCGA-06-0409;TCGA-02-0430;TCGA-02-010
TCGA-02-0333;TCGA-08-0352;TCGA-06-0209;TCGA-02$0021 ;$ TCGA-02-0289;TCGA-02-0064;TCGA-06-0133;TCGA-02-0089;TCGA-06-0211;TCGA-08-0514;TCGA-02-0043;TCGA-06-0137;TCGA-06-0127;TCGA-06-0145;TCGA-02-0046;TCGA-06-0122;TCGA-02-0038;TCGA-02-0116;TCGA-02-0290;TCGA-02-0083;TCGA-06-0187;TCGA-06-0185;TCGA-06-0645;TCGA-06-0173;TCGA-02-0430;TCGA-02-010

TCGA-06-018
TCGA-12-061
TCGA-06-0209;TCGA-02-0021;TCGA-06-0211;TCGA-06-0122;TCGA-06-018
TCGA-02-0057;TCGA-02-0010;TCGA-08-0525;TCGA-02-002
TCGA-02-0317;TCGA-06-0157;TCGA-02-0071;TCGA-06-0169;TCGA-12-0619;TCGA-06-0209;TCGA-02-0021;TCGA-02-0260;TCGA-02-0289;TCGA-06-0126;TCGA-06-0133;TCGA-06-0211;TCGA-08-0514;TCGA-08-0531;TCGA-08-0358;TCGA-060127 ;TCGA-06-0137;TCGA-06-0145;TCGA-02-0046;TCGA-06-0122;TCGA-08-0525;TCGA-06-0125;TCGA-02-0009;TCGA-02-0116;TCGA-02-0003;TCGA-02-0290;TCGA-06-0158;TCGA-06-0152;TCGA-06-0187;TCGA-06-0185;TCGA-06-0409;TCGA-06-0645;TCGA-06-0182;TCGA-06-0173;TCGA-02-043

TCGA-08-052
TCGA-08-052
TCGA-08-052
TCGA-08-052
TCGA-08-052
TCGA-08-052
TCGA-08-052
TCGA-08-052
TCGA-06-017
TCGA-06-017
TCGA-06-0129;TCGA-06-0209;TCGA-12-0616;TCGA-06-0177;TCGA-06-0152;TCGA-06-018
TCGA-06-0209;TCGA-02-0052;TCGA-06-0152;TCGA-06-0187;TCGA-06-0173;TCGA-06-0182;TCGA-02-010

TCGA-06-017
TCGA-06-017
TCGA-06-017
TCGA-06-0648;TCGA-06-018
TCGA-06-012
TCGA-06-017
TCGA-06-017

Chromosomal

## Location

chr7q31.3
gene
count
PTPRZ1
chr7p12
chr7q31.1-q31.33 LANCL2

| chr7p15.2-p15.1 | PSPH | 1 |
| :---: | :---: | :---: |
| chr7p14.1 | C7orf10 | 1 |
| chr7p11.2 | ZNF713 | 5 |
| chr7q34 | MGAM | 4 |

chr7p11.2 SEC61G 35

| chr9q34 | GTF3C5 | 1 |
| :---: | :---: | :---: |
| chr9q34.13 | C9orf98 | 1 |
| chr9q34 | TSC1 | 1 |
| chr9q34.13-q34.3 | GBGT1 | 1 |
| chr9q34.3 | CEL | 1 |
| chr9q34.3 | RALGDS | 1 |
| chr9q34.13 | GFI1B | 1 |
| chr9q34 | C9orf9 | 1 |
| chr12q12-q13 | KRT6B | 1 |
| chr12q12-q13 | KRT3 | 1 |
| chr12q14 | CDK4 | 6 |
| chr12q15 | SLC35E3 | 7 |
| chr12q13 | KRT8 | 1 |
| chr12q14.3 | WIF1 | 1 |
| chr12q13.13 | GRASP | 1 |
| chr12q14 | CAND1 | 2 |
| chr12q24.33 | GLT1D1 | 1 |
| chr12q13.3 <br> chr12q12-q13 | HOXC11 | 1 |


| Patient ID | Chromosomal Location | gene | count |
| :---: | :---: | :---: | :---: |
| TCGA-12-061 | chr12q21.32 | CEP290 | 1 |
| TCGA-06-012 | chr12q13.3 | NDUFA4L2 | 1 |
| TCGA-06-012 | chr12p13.3 | CACNA1C | 1 |
| $\begin{gathered} \text { TCGA-06-0129;TCGA-06-0209;TCGA-12-0616;TCGA-06- } \\ 0177 ; \text { TCGA-06-0152;TCGA-06-018 } \end{gathered}$ | chr12q13.3 | TSPAN31 | 6 |
| TCGA-06-017 | chr12q14.1 | XRCC6BP1 | 1 |
| TCGA-06-017 | chr12q13-q21 | TAC3 | 1 |
| TCGA-06-020 | chr12p12.3 | AEBP2 | 1 |
| TCGA-06-017 | chr12q14.2 | DPY19L2 | 1 |
| $\begin{aligned} & \text { TCGA-06-0209;TCGA-06-0152;TCGA-06-0187;TCGA-06- } \\ & 0182 ; \text { TCGA-02-010 } \end{aligned}$ | chr12q15 | CPSF6 | 5 |
| TCGA-06-0182;TCGA-02-010 | chr12q15 | PTPRR | 2 |
| TCGA-06-018 | chr12q13.2-q13.3 | GLI1 | 1 |
| TCGA-06-017 | chr12q13 | ACVR1B | 1 |
| TCGA-06-017 | chr12q13 | KRT18 | 1 |
| TCGA-06-017 | chr12q13.3 | RDH16 | 1 |
| TCGA-06-017 | chr12q13.3 | HOXC10 | 1 |
| TCGA-06-0152;TCGA-06-0187;TCGA-02-010 | chr12q15 | CCT2 | 3 |
| TCGA-06-0177;TCGA-06-018 | chr12q14.1 | LRIG3 | 2 |
| TCGA-06-0152;TCGA-06-0187;TCGA-06-018 | chr12q15 | CNOT2 | 3 |
| $\begin{aligned} & \text { TCGA-06-0129;TCGA-06-0209;TCGA-06-0177;TCGA-06- } \\ & 0152 ; \text { TCGA-06-018 } \end{aligned}$ | chr12q13.1-q13.3 | CYP27B1 | 5 |
| TCGA-06-018 | chr12q13.2-q13.3 | DCTN2 | 1 |
| TCGA-06-017 | chr12q12-q13 | KRT4 | 1 |
| TCGA-12-061 | chr12q21.32 | TMTC3 | 1 |
| TCGA-06-0187;TCGA-06-018 | chr12q | KCNMB4 | 2 |
| TCGA-06-018 | --- | MBD6 | 1 |
| TCGA-06-0129;TCGA-06-0209;TCGA-06-018 | chr12q13 | OS9 | 3 |
| $\begin{gathered} \text { TCGA-06-0209;TCGA-12-0616;TCGA-02-0337;TCGA-06- } \\ 0177 ; \text { TCGA-02-0052;TCGA-06-0648;TCGA-06-0152;TCGA-06- } \\ 0187 ; \text { TCGA-06-0173;TCGA-06-0182;TCGA-02-010 } \end{gathered}$ | chr12q14.3-q15 | MDM2 | 11 |
| TCGA-06-0209;TCGA-12-0616;TCGA-02-0337;TCGA-06- $\begin{gathered} \text { 0177;TCGA-02-0052;TCGA-06-0648;TCGA-06-0152;TCGA-06- } \\ 0187 ; \text { TCGA-06-0173;TCGA-06-0182;TCGA-02-010 } \end{gathered}$ | chr12q14.3 | CPM | 11 |
| TCGA-06-018 | chr12q14.3 | IRAK3 | 1 |
| TCGA-06-018 | chr12q15 | C12orf28 | 1 |
| TCGA-06-0129;TCGA-06-017 | chr12q13.3 | R3HDM2 | 2 |
| TCGA-06-0129;TCGA-06-0209;TCGA-06-017 | chr12q13-q14 | TSFM | 3 |
| TCGA-06-018 | chr12q13.3 | INHBE | 1 |
| TCGA-06-0177;TCGA-06-018 | chr12q14.1 | FAM19A2 | 2 |
| TCGA-06-0177;TCGA-06-018 | chr12q14.3 | RAB3IP | 2 |
| TCGA-06-018 | chr12q13.2 | MARS | 1 |
| TCGA-12-061 | chr12q21.32 | C120rf29 | 1 |
| TCGA-06-017 | chr12q13-q15 | CTDSP2 | 1 |
| TCGA-06-012 | chr 12 q 21.33 | C12orf12 | 1 |
| $\begin{gathered} \text { TCGA-06-0209;TCGA-02-0052;TCGA-06-0152;TCGA-06- } \\ 0173 ; \text { TCGA-06-0182;TCGA-02-010 } \end{gathered}$ | chr12q15 | NUP107 | 6 |
| TCGA-06-017 | chr12q13.11 | SLC38A1 | 1 |
| TCGA-06-017 | chr12q12-q13 | KRT7 | 1 |
| TCGA-06-0129;TCGA-06-017 | chr12q14.1 | AVIL | 2 |


| Patient ID | Chromosomal | gene | count |
| :---: | :---: | :---: | :---: |
| TCGA-06-017 | chr12q13.2 | WIBG | 1 |
| TCGA-06-0209;TCGA-06-0152;TCGA-06-018 | chr12q13-q15 | YEATS4 | 3 |
| TCGA-06-0177;TCGA-06-0152;TCGA-06-0182;TCGA-02-010 | chr12q14.2 | SRGAP1 | 4 |
| TCGA-06-017 | chr12q13.3 | HOXC8 | 1 |
| TCGA-06-017 | chr12q13.3 | HOXC9 | 1 |
| TCGA-06-0129;TCGA-06-0209;TCGA-06-0177;TCGA-06- | chr12q13 | METTL1 | 5 |
| 0152;TCGA-06-018 | chr12q13.3 | ZBTB39 | 1 |
| TCGA-06-017 | chr12q15 | FRS2 | 4 |
| TCGA-06-0209;TCGA-06-0152;TCGA-06-0187;TCGA-02-010 | chr12q14 | ARHGAP9 | 1 |
| TCGA-06-018 | chr12q15 | LYZ | 2 |
| TCGA-06-0209;TCGA-06-018 | chr12q15-q21 | PTPRB | 1 |
| TCGA-06-012 | chr12q13.3 | STAC3 | 1 |
| TCGA-06-015 | chr12q14 | LEMD3 | 1 |
| TCGA-06-017 | chr12q13.3 | HOXC4 | 1 |
| TCGA-06-014 | chr14q32.33 | PLD4 | 1 |
| TCGA-06-014 | chr14q32.32\|14q32.32 | AKT1 | 1 |
| TCGA-06-014 | chr14q32.33 | KIAA0284 | 1 |
| TCGA-06-014 | chr14q32.33 | ADSSL1 | 1 |
| TCGA-06-018 | chr22q11.23 | GSTT1 | 1 |
| TCGA-02-031 | chr22q13.1-q13.2 | APOBEC3A | 1 |

## Appendix B R code for data processing

```
library(snapCGH);
library(limma);
targets <- readTargets("targets");
files <- dir(pattern = ".txt")
cols =
list(Rf="rMedianSignal",Gf="gMedianSignal",Rb="rBGMedianSignal
",Gb="gBGMedianSignal")
data = read.maimages(targets$FileName, columns=cols, source =
'agilent')
save(data, file = "data")
save.image(file = "importeddata.RData")
RG2 <- backgroundCorrect(data, method="minimum")
RG3 <- RG2[grep("chr", data$genes$SystematicName),]
RG3$genes$Chr <- gsub(":.+", "", RG3$genes$SystematicName)
RG4 <- RG3[-grep("_random", RG3$genes$Chr),]
RG4$genes$Chr <- gsub("chr", "", RG4$genes$Chr)
RG4$genes$Chr <- gsub("X", "23", RG4$genes$Chr)
RG4$genes$Chr <- gsub("Y", "24", RG4$genes$Chr)
RG4$genes$Chr <- as.numeric(as.character(RG4$genes$Chr))
RG4$genes$Position <- gsub(".+:", "",
RG4$genes$SystematicName) RG4$genes$Position <- gsub("-.+",
"", RG4$genes$Position)
RG4$genes$Position <-
as.numeric(as.character(RG4$genes$Position))
RG4$genes$end <- gsub(".+-", "", RG4$genes$SystematicName)
RG4$genes$end <- as.numeric(as.character(RG4$genes$end))
RG5 <- RG4[order(RG4$genes$Chr, RG4$genes$Position),]
RG5$weights <- array(1, dim(RG5))
RG5$weights[RG5$genes$chrom > 22,] <- 0
colnames(RG5$weights) <- colnames(RG5$G)
save(RG5, file = "RG5");
rm(list = ls());
gc();
load("RG5");
MA <- normalizeWithinArrays(RG5, bc.method="none",
method="none")
MA$targets <- readTargets("targets");
MA$design <- rep(1,dim(MA)[2])
save(MA, file = "MA");
MA2 <- processCGH(MA, maxChromThreshold=24,
method.of.averaging=mean, ID="ProbeName")
save.image(file = "MA.RData");
gc();
```

```
Seg.CBS <- runDNAcopy(MA2)
Seg.HHMM <- runHomHMM(MA2)
save.image(file = "seg.RData"); gc();
Seg.CBS.merged <- mergeStates(Seg.CBS, MergeType=1)
Seg.HHMM.merged <- mergeStates(Seg.HHMM, MergeType = 1)
save(Seg.CBS.merged, Seg.CBS, file="SegCBS")
save(Seg.HHMM.merged, Seg.HHMM, file = "SegHHMM")
save.image(file = "mergesStates.RData")
```

\#\# R code for data simulation

```
library(snapCGH);
library(limma);
simu_data1 <- simulateData(nArrays = 4, seed = 1, output =
TRUE)
simu_data2 <- simulateData(nArrays = 20, seed = 1, output =
TRUE)
simu_data3 <- simulateData(nArrays = 50, seed = 1, output =
TRUE)
simu_data4 <- simulateData(nArrays = 100, seed = 1, output =
TRUE)
simu_data5 <- simulateData(nArrays = 170, seed = 1, output =
TRUE)
```

sim. HHMM1 <- runHomHMM(simu_data1)
sim.DNAcopy1 <- runDNAcopy(simu_data1)
sim.HHMM2 <- runHomHMM(simu_data22)
sim.DNAcopy2 <- runDNAcopy(simu_data2)
sim. HHMM3 <- runHomHMM(simu_data3)
sim.DNAcopy3 <- runDNAcopy(simu_data3)
sim.HHMM4 <- runHomHMM(simu_data4)
sim.DNAcopy4 <- runDNAcopy(simu_data4)
sim. HHMM5 <- runHomHMM(simu_data5)
sim.DNAcopy5 <- runDNAcopy(simu_data5)
comp1 <- compareSegmentations(simu_data1, offset = 0,
sim. HHMM1, sim.DNAcopy1)
comp2 <- compareSegmentations(simu_data2, offset $=0$,
sim. HHMM2, sim.DNAcopy2)
comp3 <- compareSegmentations(simu_data3, offset = 0,
sim. HHMM3, sim.DNAcopy3)
comp4 <- compareSegmentations(simu_data4, offset $=0$,
sim. HHMM4, sim.DNAcopy4)
comp5 <- compareSegmentations(simu_data5, offset $=0$,
sim.HHMM5, sim.DNAcopy5)
par(mfrow $=c(4,3))$

```
boxplot(comp1$TPR ~ row(comp1$TPR), col = c("red", "blue"),
main = "True Positive rate")
boxplot(comp1$FDR ~ row(comp1$FDR), col = c("red", "blue"),
main = "False Positive rate")
boxplot(comp2$TPR ~ row(comp2$TPR), col = c("red", "blue"),
main = "True Positive rate")
boxplot(comp2$FDR ~ row(comp2$FDR), col = c("red", "blue"),
main = "False Positive rate")
boxplot(comp3$TPR ~ row(comp3$TPR), col = c("red", "blue"),
main = "True Positive rate")
boxplot(comp3$FDR ~ row(comp3$FDR), col = c("red", "blue"),
main = "False Positive rate")
boxplot(comp4$TPR ~ row(comp4$TPR), col = c("red", "blue"),
main = "True Positive rate")
boxplot(comp4$FDR ~ row(comp4$FDR), col = c("red", "blue"),
main = "False Positive rate")
boxplot(comp5$TPR ~ row(comp5$TPR), col = c("red", "blue"),
main = "True Positive rate")
boxplot(comp5$FDR ~ row(comp5$FDR), col = c("red", "blue"),
main = "False Positive rate");
## R code for Survival analysis
library(survival)
library(KMsurv)
files <- list.files(pattern=".txt$");
pdf("survival_plot.pdf", width=8, height=10)
par(mfrow=c(4,3))
for(i in files) {
d <- read.table(i, header=TRUE, sep="\t");
fit <- survfit(Surv(d$suv, d$dead) ~d[,5], data = d)
fit2 <- survdiff(Surv(d$suv, d$dead) ~d[,5], data = d)
pval <- 1-pchisq(fit2$chisq, 1)
f <- length(d[d[,5]==1,4]);
p <- format(pval, digit = 2)
title = paste("pvalue", ":", p)
if((pval <0.005)&(f>3)){
write.table(pval, paste(i, c(".out"), sep=""), quote=FALSE,
sep="\t", col.names = "pvalue");
plot(fit, main = title, lty = c(1,3), xlab = "months", ylab =
"Survival Prob")
legend(40, 1, c("no change", "change"), lty = c(1,3))};
}
dev.off()
```


## Glossary and abbreviation

Aneuploidy: The occurrence of one or more extra or missing chromosomes leading to an unbalanced chromosome complement, or, any chromosome number that is not an exact multiple of the haploid number
BioConductor: BioConductor represents the web site of www.bioconductor.org where hoses many R packages used for the microarray data processing and analyzing.

## CBS: Circular Binary Segmentation

Cell cycle: The cell cycle, or cell-division cycle, is the series of events that takes place in a cell leading to its division and duplication (replication). In cells without a nucleus (prokaryotic), the cell cycle occurs via a process termed binary fission. In cells with a nucleus (eukaryotes), the cell cycle can be divided in two brief periods: interphase-during which the cell grows, accumulating nutrients needed for mitosis and duplicating its DNA-and the mitosis (M) phase, during which the cell splits itself into two distinct cells, often called "daughter cells".

Centromere: The specialized region of a chromosome to which spindle fibers attach during cell division

CGH: Comparative genomic hybridization
Comparative genomic hybridization (CGH) is a technique that allows the detection of losses and gains in DNA copy number across the entire genome without prior knowledge of specific chromosomal abnormalities. Comparative genomic hybridization utilizes the hybridization of differentially labeled tumor and reference DNA to generate a map of DNA copy number changes in tumor genomes. Comparative genomic hybridization is an ideal tool for analyzing chromosomal imbalances in archived tumor material and for examining possible correlations between these findings and tumor phenotypes.

Chromosome: In prokaryotes, the intact DNA molecule containing the genome. In eukaryotes, a DNA molecule complexed with RNA and protein into a threadlike structure containing a linear array of genes.

Chromosomal aberration: Any type of change in the chromosome structure or number (deficiencies, duplications, translocations, inversions, etc.). Although it can be a mechanism for enhancing genetic diversity, such alterations are usually fatal or ill-adaptive, especially in animals.

## CLAC: Cluster Along Chromosomes

Diploid: The condition of having two of each chromosome. Somatic cells of higher plants and animals are normally diploid.

DLRs: Derivative Log Ratio spread
DNA: (deoxyribonucleic acid) The macromolecule that contains genetic information and comprises the genes. DNA consists of a chain of deoxyribonucleotides joined by phosphodiester linkages. Each deoxyribonucleotide consists of a nitrogenous base attached to the sugar deoxyribose, which in turn has a phosphate group attached at its 5 ' position.

FISH: Fluorescent in situ hybridization
Fluorescence in situ hybridization (FISH) is a laboratory technique for detecting and locating a specific DNA sequence on a chromosome. The technique relies on exposing chromosomes to a small DNA sequence called a probe that has a fluorescent molecule attached to it. The probe sequence binds to its corresponding sequence on the chromosome.

Gene: The fundamental unit of heredity; a segment of DNA found at a fixed location on a chromosome that codes for a single polypeptide.

Gene expression: The process of RNA and protein production by which genes exert their phenotypic effects on an organism.

Genome: A genome is an organism's complete set of DNA, including all of its genes. Each genome contains all of the information needed to build and maintain that organism. In humans, a copy of the entire genome-more than 3 billion DNA base pairs-is contained in all cells that have a nucleus.

GLAD: Gain and Loss Analysis of DNA
GO: Genome Ontology
The Gene Ontology (GO) project is a collaborative effort to address the need for consistent descriptions of gene products in different databases. The GO collaborators are developing three structured, controlled vocabularies (ontologies) that describe gene products in terms of their associated biological processes, cellular components and molecular functions in a speciesindependent manner.

HHMM: Homogenous Hidden Markov Model
Karyotypes: A photographic representation of the chromosomes of a single cell, cut and arranged in pairs based on their banding pattern and size according to a standard classification

Microarray: Sets of miniaturized chemical reaction areas that may also be used to test DNA fragments, antibodies, or proteins, by using a chip having immobilised target and hybridising them with probed sample. the color we get from the chip after hybridisation is then scanned and the data is analysed by a soft ware to find the expression level.

Ploidy: A term referring to the basic set of chromosomes or multiples of that set.
QC: Quality Control
Sex chromosome: A chromosome involved in sex determination. An example of this are the X and Y chromosomes of humans.

TCGA: The Cancer Genome Atlas
The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the genetics of cancer using innovative genome analysis technologies.

WHO: World Health Organization

## Bibliography

Akaike, H. (1969), "Fitting Autoregressive Models for Prediction," Annals of the Institute of Statistical Mathematics, 243-247.

Armitage, P., and Doll, R. (1954), "The Age Distribution of Cancer and a Multi-Stage Theory of Carcinogenesis," Br J Cancer, 8, 1-12.

Benjamini, Y, Hochberg, Y. (1995), "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing," J Roy Statist Soc Ser B (Methodological), 57, 289-300.

Cantley, L. C., and Neel, B. G. (1999), "New Insights into Tumor Suppression: Pten Suppresses Tumor Formation by Restraining the Phosphoinositide 3Kinase/Akt Pathway," Proc Natl Acad Sci U S A, 96, 4240-4245.

Celep, F., Karaguzel, A., Ozgur, G. K., and Yildiz, K. (2003), "Detection of Chromosomal Aberrations in Prostate Cancer by Fluorescence in Situ Hybridization (Fish)," Eur Urol, 44, 666-671.

Chen, H. I., Hsu, F. H., Jiang, Y., Tsai, M. H., Yang, P. C., Meltzer, P. S., Chuang, E. Y., and Chen, Y. (2008), "A Probe-Density-Based Analysis Method for Array Cgh Data: Simulation, Normalization and Centralization," Bioinformatics, 24, 1749-1756.

Chu, E. C., and Tarnawski, A. S. (2004), "Pten Regulatory Functions in Tumor Suppression and Cell Biology," Med Sci Monit, 10, RA235-241.

Comincini, S., Paolillo, M., Barbieri, G., Palumbo, S., Sbalchiero, E., Azzalin, A., Russo, M. A., and Schinelli, (2009), "Gene Expression Analysis of an Egfr Indirectly Related Pathway Identified Pten and Mmp9 as Reliable Diagnostic Markers for Human Glial Tumor Specimens," J Biomed Biotechnol, 2009, 924565.

Daruwala, R. S., Rudra, A., Ostrer, H., Lucito, R., Wigler, M., and Mishra, B. (2004), "A Versatile Statistical Analysis Algorithm to Detect Genome Copy Number Variation," Proc Natl Acad Sci U S A, 101, 16292-16297.

Fan, Q. W., Cheng, C. K., Nicolaides, T. P., Hackett, C. S., Knight, Z. A., Shokat, K. M., and Weiss, W. A. (2007), "A Dual Phosphoinositide-3-Kinase Alpha/Mtor Inhibitor Cooperates with Blockade of Epidermal Growth Factor Receptor in Pten-Mutant Glioma," Cancer Res, 67, 7960-7965.

Fridlyand, J., and Dimitrov, P. (2008), "Bioconductor's aCGH Package," BioConductor.

Fridlyand, j., Snijders, A. M., Pinkel, D., Albertson, D. G., and Jain, A. N. (2004), "Hidden Markov Medels Approach to the Analysis of Array Cgh Data," Journal of Multivariate Analysis, 132-151.

Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., Hahn, W. C., Ligon, K. L., Louis, D. N., Brennan, C., Chin, L., DePinho, R. A., and Cavenee, W. K. (2007), "Malignant Astrocytic Glioma: Genetics, Biology, and Paths to Treatment," Genes Dev, 21, 2683-2710.

Gordon K. Smyth, M. R., Natalie Thorne, James Wettenhall and Wei Shi. (2010), "Limma: Linear Models for Microarray Data User's Guide," BioConductor.

Hsu, L., Self, S. G., Grove, D., Randolph, T., Wang, K., Delrow, J. J., Loo, L., and Porter, P. (2005), "Denoising Array-Based Comparative Genomic Hybridization Data Using Wavelets," Biostatistics, 6, 211-226.

Huang, J., Gusnanto, A., O'Sullivan, K., Staaf, J., Borg, A., and Pawitan, Y. (2007), "Robust Smooth Segmentation Approach for Array Cgh Data Analysis," Bioinformatics, 23, 2463-2469.

Hupe, P., Stransky N, Thiery JP, Radvanyi F, Barillot E. (2004), "Analysis of Array Cgh Data: From Signal Ratio to Gain and Loss of DNA Regions," Bioinformatics, 20, 3412-3420.

Johnston, J. B., Navaratnam, S., Pitz, M. W., Maniate, J. M., Wiechec, E., Baust, H.,

Gingerich, J., Skliris, G. P., Murphy, L. C., and Los, M. (2006), "Targeting the Egfr Pathway for Cancer Therapy," Curr Med Chem, 13, 3483-3492.

Kamijo, T., Weber, J. D., Zambetti, G., Zindy, F., Roussel, M. F., and Sherr, C. J. (1998), "Functional and Physical Interactions of the Arf Tumor Suppressor with P53 and Mdm2," Proc Natl Acad Sci U S A, 95, 8292-8297.

Knobbe, C. B., and Reifenberger, G. (2003), "Genetic Alterations and Aberrant Expression of Genes Related to the Phosphatidyl-Inositol-3'-Kinase/Protein Kinase B (Akt) Signal Transduction Pathway in Glioblastomas," Brain Pathol, 13, 507-518.

Lai, W. R., Johnson, M. D., Kucherlapati, R., and Park, P. J. (2005), "Comparative Analysis of Algorithms for Identifying Amplifications and Deletions in Array Cgh Data," Bioinformatics, 21, 3763-3770.

Magi, A., Benelli, M., Marseglia, G., Nannetti, G., Scordo, M. R., and Torricelli, F. (2010), "A Shifting Level Model Algorithm That Identifies Aberrations in Array-Cgh Data," Biostatistics, 11, 265-280

Marioni, J. C., Thorne, N. P., and Tavare, S. (2006), "Biohmm: A Heterogeneous Hidden Markov Model for Segmenting Array Cgh Data," Bioinformatics, 22, 1144-1146.

Mulshine, J. L., Avis, I., Treston, A. M., Mobley, C., Kaspryzyk, P., Carrasquillo, J. A., Larson, S. M., Nakanishi, Y., Merchant, B., Minna, J. D., et al., (1988), "Clinical Use of a Monoclonal Antibody to Bombesin-Like Peptide in Patients with Lung Cancer," Ann N Y Acad Sci, 547, 360-372.

Murphree, A. L., and Benedict, W. F. (1984), "Retinoblastoma: Clues to Human Oncogenesis," Science, 223, 1028-1033.

Nakao, K., Mehta, K. R., Fridlyand, J., Moore, D. H., Jain, A. N., Lafuente, A., Wiencke, J. W., Terdiman, J. P., and Waldman, F. M. (2004), "HighResolution Analysis of DNA Copy Number Alterations in Colorectal Cancer by Array-Based Comparative Genomic Hybridization," Carcinogenesis, 25,

Ohgaki, H., Dessen, P., Jourde, B., Horstmann, S., Nishikawa, T., Di Patre, P. L., Burkhard, C., Schuler, D., Probst-Hensch, N. M., Maiorka, P. C., Baeza, N., Pisani, P., Yonekawa, Y., Yasargil, M. G., Lutolf, U. M., and Kleihues, P. (2004), "Genetic Pathways to Glioblastoma: A Population-Based Study," Cancer Res, 64, 6892-6899.

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004), "Circular Binary Segmentation for the Analysis of Array-Based DNA Copy Number Data," Biostatistics, 5, 557-572.

Polzehl, J., and Spokoiny, V. G. (2000), "Adaptive Weights Smoothing with Applications to Image Restoration," Journal of the Royal Statistical Society Series B-Statistical Methodology, 62, 335-354.

Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H. W., Cordon-Cardo, C., and DePinho, R. A. (1998), "The Ink4a Tumor Suppressor Gene Product, P19arf, Interacts with Mdm2 and Neutralizes Mdm2's Inhibition of P53," Cell, 92, 713-723.

Schwarz, G. (1978), "Estimating the Dimension Os a Model," Ann. Statist., 461-464.
Sen A., Srivastava, M. S. (1975), "On Tests for Detecting Change in Mean," The annals of Statistics, 3, 98-108.

Sen, S. (2000), "Aneuploidy and Cancer," Curr Opin Oncol, 12, 82-88.
Serrano, M., Hannon, G. J., and Beach, D. (1993), "A New Regulatory Motif in CellCycle Control Causing Specific Inhibition of Cyclin D/Cdk4," Nature, 366, 704-707.

Sherr, C. J., and McCormick, F. (2002), "The Rb and P53 Pathways in Cancer," Cancer Cell, 2, 103-112.

Siegmund, D. (1986), "Boundary Crossing Probabilities and Statistical Applications," Annals of Statistics, 14, 361-404.

Smith, M. L., Marioni, J.C., Hardcastle, T.J., Thorne, N.P. (2006), "Snapcgh: Segmentation, Normalization and Processing of Acgh Data Users' Guide," Bioconductor.

Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K. H., and Peters, G. (1998), "The Alternative Product from the Human Cdkn2a Locus, P14(Arf), Participates in a Regulatory Feedback Loop with P53 and Mdm2," EMBO J, 17, 5001-5014.

Tang, J., Shao, W., Dorak, M. T., Li, Y., Miike, R., Lobashevsky, E., Wiencke, J. K., Wrensch, M., Kaslow, R. A., and Cobbs, C. S. (2005), "Positive and Negative Associations of Human Leukocyte Antigen Variants with the Onset and Prognosis of Adult Glioblastoma Multiforme," Cancer Epidemiol Biomarkers Prev, 14, 2040-2044.

TCGA. (2008), "Comprehensive Genomic Characterization Defines Human Glioblastoma Genes and Core Pathways," Nature, 455, 1061-1068.

Therneau, T. Lumley, T. (2009), "Survival: Survival Analysis, Including Penalised Likelihood," Bioconductor.

Vanhaesebroeck, B., Welham, M. J., Kotani, K., Stein, R., Warne, P. H., Zvelebil, M. J., Higashi, K., Volinia, S., Downward, J., and Waterfield, M. D. (1997), "P110delta, a Novel Phosphoinositide 3-Kinase in Leukocytes," Proc Natl Acad Sci U S A, 94, 4330-4335.

Veltman, J. A., Fridlyand, J., Pejavar, S., Olshen, A. B., Korkola, J. E., DeVries, S., Carroll, P., Kuo, W. L., Pinkel, D., Albertson, D., Cordon-Cardo, C., Jain, A. N., and Waldman, F. M. (2003), "Array-Based Comparative Genomic Hybridization for Genome-Wide Screening of DNA Copy Number in Bladder Tumors," Cancer Res, 63, 2872-2880.

Wang, P., Kim, Y., Pollack, J., Narasimhan, B., and Tibshirani, R. (2005), "A Method for Calling Gains and Losses in Array Cgh Data," Biostatistics, 6, 45-58.

Willenbrock, H., and Fridlyand, J. (2005), "A Comparison Study: Applying Segmentation to Array Cgh Data for Downstream Analyses," Bioinformatics, 21, 4084-4091.

Xu, X. L., and Kapoun, A. M. (2009), "Heterogeneous Activation of the Tgfbeta Pathway in Glioblastomas Identified by Gene Expression-Based Classification Using Tgfbeta-Responsive Genes," J Transl Med, 7, 12.

Yan, J. (2010), "Data Sets from Klein and Moeschberger (1997), Survival Analysis," Bioconductor.

