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Localized pipeline damages, caused by degradation processes such as corrosion, are 

prominent, can result in pipeline failure and are expensive to monitor. To prevent pipeline failure, 

many Prognostics and Health Monitoring (PHM) approaches have been developed in which 

sensor network for online, and human inspection for offline data gathering are separately used. In 

this dissertation, a two-level (segment- and integrated-level) PHM approach for locally damaged 

pipelines is proposed where both of these degradation data gathering schemes (i.e., detection 



 

  

methods) are considered simultaneously. The segment-level approach, in which the damage 

behavior is considered to be uniform, consists of a static and a dynamic phase. In the static phase, 

a new optimization problem for health monitoring layout design of locally damaged pipelines is 

formulated. The solution to this problem is an optimal configuration (or layout) of degradation 

detection methods with a minimized health monitoring cost and a maximized likelihood of 

damage detection. In the dynamic phase, considering the optimal layout, an online fusion of high-

frequency sensors data and low-frequency inspection information is conducted to estimate and 

then update the pipeline’s Remaining Useful Life (RUL) estimate. Subsequently, the segment-

level optimization formulation is modified to improve its scalability and facilitate updating 

layouts considering the online RUL estimates. Finally, at the integrated-level, the modified 

segment-level approach is used along with Stochastic Dynamic Programming (SDP) to produce 

an optimal set of layouts for a long pipeline consisting of multiple segments with different damage 

behavior.  

Experimental data and several notional examples are used to demonstrate the performance 

of the proposed approaches. Synthetically generated damage data are used in two examples to 

demonstrate that the proposed segment-level layout optimization approach results in a more 

robust solution compared to single detection approaches and deterministic methods. For the 

dynamic segment-level phase, acoustic emission sensor signals and microscopic images from a 

set of fatigue crack experiments are considered to show that combining sensor- and image-based 

damage size estimates leads to accuracy improvements in RUL estimation. Lastly, using 

synthetically generated damage data for three hypothetical pipeline segments, it is shown that the 

constructed integrated-level approach provides an optimal set of layouts for several pipeline 

segments. 
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Chapter 1: Introduction, Problem Statement, and Research Overview 

 

Localized pipeline damages are caused by degradation processes such as corrosion and fatigue 

(Lewandowski, 2002; Okeniyi et al., 2014). These damages are usually distributed sparsely on 

the pipeline’s interior or exterior surface and can lead to catastrophic failures in aging pipelines. 

These failures may involve human, environmental, and economic losses. As an example, 

localized corrosion is responsible for more than 80% of pipeline corrosion failures 

(Papavinasam, 2013). On the other hand, in the US alone, the annual cost of corrosion 

maintenance, repair, and replacement in transmission pipelines is estimated to be about $125 

billion (Koch, 2016). However, the costly health monitoring and repair downtime associated 

with these localized damages (Iqbal et al., 2017) can be managed using data-driven and effective 

Prognostics and Health Monitoring (PHM) . A survey shows that  more than 80% of field experts 

in rail and oil and gas industries of the US consider data analytics (including data-driven PHM) 

among the top three priorities of their industries (Kim et al., 2016). However, while data-driven 

PHM approaches have been applied in condition monitoring of structures such as bridges and 

railways (Wu and Jahanshahi, 2018; Guo et al., 2017), they have not been widely used for 

pipelines condition monitoring due to easy implantation of the currently popular approach, i.e., 

in-line inspection (Iqbal et al., 2017), and prolonged degradation rate of processes such as 

corrosion (Alaswad and Xiang, 2017). As such, the description of a data-driven and effective 

PHM approach for locally damaged (and aging) pipelines is the main subject of this dissertation. 

One possible approach to the PHM of locally damaged pipelines involves collecting 

condition data of the interior and/or exterior pipeline surfaces using external data gathering 

schemes and then fusing the corresponding multi-source data to estimate the Remaining Useful 

Life (RUL). In such an approach, uncertainties associated with localized damage and 
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measurements, especially localized corrosion, should be considered (Zhang and Zhou, 2014). 

Additionally, geometric constraints of pipelines, and set up and implementation limitations from 

different data gathering schemes, necessitate having a flexible PHM approach so that its 

application is not limited to any particular pipeline or operational condition (Iqbal et al., 2017). 

Undoubtedly, minimizing health monitoring costs and maximizing confidence over the damage 

size and RUL estimations should also be considered in such a PHM approach. 

In this dissertation, a PHM approach for locally damaged pipelines is presented. The 

presented approach determines optimal health monitoring layouts for segments of a locally 

damaged pipeline where a segment is defined as a relatively short section of the pipeline with a 

uniform damage behavior. An optimal layout includes different data gathering schemes (i.e., 

location and type of sensors and human inspection tools), which are used to gather, cost 

effectively, high confidence data on the state of the entire pipeline segment. Collected data are 

then fused to gether to obtain estimates of the online damage size and pipeline’s RUL. These 

estimates can then be used to update the optimal health monitoring layouts corresponding to 

different pipeline segments. Moreover, while considering RUL estimates and an overall cost 

constraint, this dissertation presents approaches for finding optimal health monitoring layouts 

corresponding to a set of connected pipeline segments with different damage behavior and risk 

of failure.  

This dissertation addresses several gaps in the literature on the PHM of pipelines. These 

gaps are discussed in Section 1.1. Then, in Section 1.2, a brief description of the overall problem 

considered is presented. Research objectives are defined in Section 1.3, considering the 

literature gaps. Finally, this chapter is concluded with a discussion of the research tasks in 

Section 1.4.  
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1.1 Literature Gaps 

Several research gaps in the literature on PHM of pipelines, which are addressed in this 

dissertation, are outlined in this section.  

 

1.1.1 Data Gathering Schemes and their Attributes  

Online sensors network and offline human inspection are among the most common data 

gathering schemes (hereafter also called detection methods) related to degradation and damage, 

as reported in the literature for pipeline health monitoring (Iqbal et al., 2017). Each of these 

schemes has some strengths and weaknesses (Iqbal et al., 2017; Alaswad and Xiang, 2017). As 

an example, a network of sensors can provide frequent and inexpensive health monitoring data 

but have high uncertainty, bias, and noise1. On the other hand, human inspection-based data 

usually includes less uncertainty and less bias since human can control inspection tool 

imperfections, yet it is far less frequent and more expensive. Nonetheless, these two schemes 

are often considered separately in earlier optimization-based models (Zulkifli et al., 2018 ; 

Perumal, 2014; Zhang and Zhou, 2014; Alduraibi et al., 2016; Argyris et al., 2018). 

Furthermore, for either of the two schemes, only a few of the key attributes, such as data 

acquisition frequency, cost, location of sensors or human inspection, type of sensors, inspection 

tools, and measurement error are considered in each of the previous works (Alaswad and Xiang, 

2017).  

                                                 
1 The dimension of sensor measurement data in most cases is different from that of damage data. As an example, 

the sensor output can be a voltage signal for measuring damage size. Also, noises and biases may be involved in 

the sensor-based damage measurement data. 
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1.1.2 Probabilistic Detection Metrics 

Several probabilistic damage detection metrics have been reported in the literature, which 

can be used for reliable and optimal pipeline PHM. Probability of Detection (POD) and 

probabilistic Measurement Error (ME) are two of these metrics (Berens, 1989; Liu et al., 2018; 

Chatterjee and Modarres, 2013; Zhang and Zhou, 2014). POD is defined as the probability of 

damage detected by a specific means of a detection device with or without input from a human 

inspector. POD, in general, depends on a number of factors such as the size and type of damage, 

type of the detection method, and the distance of damage to the detection device (e.g., sensor).  

On the other hand, ME is an uncertainty metric defined as the difference between the reported 

and true values of a measured quantity. As a result, ME for a damage size is the difference 

between the reported and actual size of the damage. Inference Probability (IP) is another 

detection metric which is defined as the probability of true prediction of the pipeline’s state at a 

particular point, given the spatial correlation of localized damage and corresponding health 

monitoring evidence at other locations. 

Despite several probabilistic detection metrics proposed in the literature, most of the 

reported works on pipeline health monitoring methods use deterministic detection models. As 

an example, a considerable number of previous studies only consider a binary damage detection 

model (Abdollahzadeh and Navimipour, 2016; Alaswad and Xiang, 2017). As a result, health 

monitoring layouts produced by the existing optimization approaches (Brunton et al., 2016; Guo 
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et al., 2017) cannot consider risk and severity of damage of different sizes and types. 

Additionally, while some works have considered spatial variability of localized damage along 

a pipeline (Abyani and Bahaari, 2020; Zhang and Zhou, 2014), to the best of the author’s 

knowledge, IP has not been considered in the corresponding literature. 

1.1.3 Uncertainty Consideration and Probabilistic Sampling of Localized Damages 

Most of the existing pipeline PHM approaches are based on deterministic information 

about location, type, and size of damage (Ostachowicz et al., 2019). However, the performance 

of the deterministic approaches is unsatisfying at the early stages of a pipeline design 

(Ostachowicz et al., 2019) when there are plenty of uncertainties.  Computationally expensive 

finite element simulation methods are used to simulate damaged segments of a structure or 

pipeline for optimal health monitoring purposes (Hou et al., 2019).  However, computational 

and cost limitations constrain gathering or simulation of damages. As a result, researchers have 

used computationally efficient methods to obtain limited size samples that represent the entire 

damaged structure (pipeline) with high confidence. Partial coverage inspection (Terpstra, 2009; 

Benstock and Cegla, 2016) is one of these methods. Nonetheless, the results of such methods 

might not be reliable for structures subject to stochastic degradation processes such as localized 

corrosion (Zhang and Zhou, 2014). The corresponding stochasticity, in terms of damage 

location, type, and size, can be considered using reliable resampling methods (e.g., the method 

by Wilks, 1946, and its more recent variations). However, computationally efficient  and limited 
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size (re)sampling approaches for simulating stochastic damages with different sizes and types 

have not been considered in the literature on PHM of pipelines. 

1.1.4 Health Monitoring Optimization 

While different features, such as sensor lifetime or energy consumption (Alaswad and 

Xiang, 2017; Ostachowicz et al., 2019) are considered in the reported optimal sensor placement 

works, only a handful of the previous works have considered cost-effectiveness while 

maximizing the probability of detecting localized damages (Shafiee and Sørensen, 2017; 

Argyris et al., 2018) to maximize RUL of the pipeline, as it is common in PHM practices 

(Heidary et al., 2017). Additionally, simplifying assumptions, such as having a fixed number of 

the same-type sensors and a one-dimensional sensor network, are used in the corresponding 

literature in order to minimize the computational cost of multi-type sensor optimization models 

(Guo et al., 2017; Zulkifli et al., 2018 ; Hou et al., 2019; Ostachowicz et al., 2019). On the other 

hand, the literature on human inspection planning is more focused on optimizing inspection time 

rather than on inspection location and tool (Zhang and Zhou, 2014; Alaswad and Xiang, 2017). 

1.1.5 Data Fusion for Damage Size and RUL Estimation 

PHM of structures, including pipelines, requires an estimate of RUL (Khan and Yairi, 

2018). Many approaches have been reported in the literature for online and offline estimation 

of damage size and resulting RUL. As an example, there is extensive literature on the application 

of homogenous data fusion (e.g., same-type multi-sensor data fusion) in the PHM of machinery 
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(Cao et al., 2016; Lei et al., 2017; Fang et al., 2017). Nonetheless, the literature on the 

application of heterogeneous data fusion (e.g., the fusion of different-type sensor data) for 

damage size and RUL estimation is very limited (Wu and Jahanshahi, 2018). Furthermore, 

fusion of heterogeneous data, consisting of the fusion of sensor data and inspection information, 

is not considered in the corresponding literature. In fact, sensor-based data gathering and human 

inspection information are mostly considered separately in the reported PHM approaches (Wu 

and Jahanshahi, 2018).  

Assuming time-series data obtained from a sensor network and image-based inspection 

information, the next two sub-sections briefly discuss the literature on sensor-based and image-

based damage size and RUL estimation.  

1.1.6 Damage Size and RUL Estimation Based on Sensors’ Time-Series Data 

Time-series data from sensors has been studied for damage size and RUL estimation of 

degraded structures (Rabiei et al., 2016; Zheng et al., 2017; Lei et al., 2018). However, because 

of the volume and diversity of data, complex data analytic models may be needed in data 

analysis. For instance, Hidden Markov Models (HMMs) (Rabiei et al., 2018; Yu et al., 2019), 

Convolutional Neural Networks (CNNs) (Tian, 2012; Li et al., 2018; Cofre Martel, 2018), and 

Recurrent Neural Networks (RNNs) (Khan and Yairi, 2018; Lei et al., 2018) are among the 

popular analytics used for such estimations based on time-series data. Unfortunately, the 

excessive computational effort needed in HMMs, the tradeoffs between the time window size 

and overfitting in CNN-based models, and gradient vanishing or explosion in RNNs (Lipton et 

al., 2015), make these methods inappropriate for accurate RUL estimation in cases such as 
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nonmonotonic degradation processes such as in corrosion or fatigue crack considerations. In 

such processes, the behavior pattern is modulated and changes occur over different periods of 

time. Thus, short and immediate temporal correlations may not reveal degradation behaviors 

(Heidary et al., 2018). As a result, the consideration of longer temporal correlations can lead to 

a better size estimation for such processes compared to cases when only immediate temporal 

correlations are considered. 

To manage the computational effort associated with longer temporal correlations, Long 

Short-Term Memory (LSTM) networks can be used (Zheng et al., 2017). These networks have 

shown promising results when applied to time-series data analysis with long, as opposed to 

immediate, temporal correlations (Zheng et al., 2017; Elsheikh et al., 2019; Zhao et al., 2019). 

However, LSTM networks have not been used for damage size and RUL estimation based on 

Acoustic Emission (AE) technology. More specifically, AE sensor data has not been used for 

PHM of locally damaged pipelines (which may have cracks).  

In this context, AE signals are waves generated and transmitted in the medium of a 

structure if any deformation happens. As a result, AE is considered a passive and inexpensive 

Non-Destructive Testing (NDT) technology. AE, in contrast to wave-based NDT methods, do 

not need actuation (Gholizadeh et al., 2015). Moreover, in contrast to vibration signals, AE 

signals have an inherently high signal-to-noise ratio and are sensitive to microscopic-level 

events (Filippov et al., 2018; Cerrada et al., 2018). Hence, comparing to wave-based and 

vibration methods, AE signals can provide more accurate and less expensive early assessment 

of damage size. Nonetheless, only a few studies in the literature have investigated AE-based 

damage size and RUL estimation of structures (Loutas et al., 2017; Eleftheroglou et al., 2018). 

A hybrid method based on Bayesian analysis and Paris-Erdogan relation for crack-growth rate 
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has been used for the AE-based estimation of crack size (Rabiei and Modarres, 2013). However, 

only immediate temporal correlations are considered in the reported approach (Rabiei and 

Modarres, 2013). Moreover, such approaches will not work well for online damage size 

estimation due to the need for a computationally expensive Bayesian recursive analysis. 

Furthermore, none of the above-mentioned works have considered LSTMs and pipeline 

applications of AE sensors. 

1.1.7 Damage Size and RUL Estimation Based on Inspection Images 

Automated image-based approaches have recently been used for damage detection and 

RUL estimation in structures. However, damage sizing is not considered in corresponding 

works. For example, CNN-based models for detection and diagnosis of various damages are 

introduced in several reported works (Modarres et al., 2018; Atha and Jahanshahi, 2018; Cofre 

Martel et al., 2018; Yu et al., 2019b). However, automated image processing (Smith et al., 2018) 

has not been used for online damage sizing and subsequent RUL estimation. This gap in the 

literature might be due to the structure of the standard CNNs, which can result in significant 

loss of resolution in the output due to successive pooling layers (Jegou et al., 2017). Hence, 

although standard CNN-based models are used successfully for damage detection, (i.e., per-

image classification tasks), they are not a good fit for damage sizing (i.e., per-pixel classification 

tasks). Fortunately, this problem can be solved using semantic image segmentation (Jegou et 

al., 2017), where images are segmented for determination of the boundary of all objects. Fully 

Convolutional DenseNet (FCDN) (Jegou et al., 2017) is a class of CNN extensions recently 

introduced for semantic image segmentation. FCDNs are built upon fully convolutional 

networks (Long et al., 2015), DenseNets (Huang et al., 2016), and ResNets (He et al., 2015) to 
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achieve better performance in terms of pixel-wise classification accuracy and convergence time 

(Jegou et al., 2017).  

1.1.8 Integrated and Dynamic Health Monitoring of Pipelines 

The majority of the reported optimization-based pipeline PHM approaches only consider 

a single and relatively small pipeline segment (with less than ten localized damages). They do 

so since consideration of large segments of a pipeline, with a large number of damages and 

design variables, in an “all-in-one” optimization problem, results in computational intractability 

(Alaswad & Xiang, 2017; Hou et al., 2019). Moreover, different pipeline segments may follow 

different degradation behaviors. As a result, considering all segments together makes simulation 

and statistical sampling quite difficult even if processes for non-uniform sampling are used 

(Valor et al., 2015). Furthermore, even for PHM of a single segment pipeline, only a few of the 

reported approaches consider expected damage behavior over a period of time to do static, but 

not dynamic and time-dependent, placement of sensors (Ostachowicz et al., 2019). For human 

inspection, on the other hand, while some reported approaches consider damage growth to tune 

inspection frequency accordingly, they do not consider the inspection area in their analysis for 

time-variant health monitoring. Thus, to the best of the author’s knowledge, no reported pipeline 

PHM approach has considered dynamic placement of detection methods (e.g., sensors and 

inspection tools) based on online health monitoring data for several segments of a pipeline 

(Alaswad & Xiang, 2017). Considering the benefits of the dynamic programming, once dealing 

with multi-stage problems (Bellman, 1954), Stochastic Dynamic Programming (SDP) (Bellman, 

2003) can be used for integrated (i.e., multi-segment) health monitoring of pipelines. In other 

words, SDP can be used to find the optimal set of health monitoring layouts based on the 
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imperfect information on the failure risk associated with a system of pipeline segments any time 

new data becomes available.  

Considering the present literature and the noted research gaps, a statement of the problem 

at hand, alongside corresponding research objectives, are provided in the next two subsections.  

 

1.2 Problem Statement 

Consider a pipeline with localized damages. The problem is to determine an optimized 

health monitoring layout for each pipeline segment (Figure 1) considering a health monitoring 

cost constraint for the entire pipeline. (Pipeline segments are considered separately to make sure 

that damage behavior is uniform at each segment. In other words, the longitudinal density of 

damages is almost uniform along a segment.) 

The layout corresponding to each segment includes the location and type of all sensors and 

human inspection tools for obtaining data regarding the damaged state of the pipeline (Figure 1). 

The damage data gathered using each optimal layout is to be fused for online damage size estimation. 

The RUL curve for each pipeline segment of interest is then obtained based on damage size 

estimates, and the corresponding health monitoring layout is updated accordingly.  

It is assumed here that the sensors are mounted on the exterior surface of the pipeline. 

Moreover, it is assumed that sensors transmit time-series data while human inspection tools provide 

images. The objective function of the layout optimization problem is formulated to be a combination 

of an average probabilistic detection metric and a health monitoring cost metric. Upon completion 

of the segment-level analysis, it is desirable to obtain an optimal set of layouts for a set of pipeline 

segments with an optimized average cost metric and an optimized average probabilistic detection 

metric, while an overall cost constraint is considered. 

 



 

 

12 
Amin Aria. All rights reserved. 2020                                        PhD dissertation, Reliability Engineering 

 

 

Figure 1- Schematic for PHM Problem for a Multi-segment Pipeline 

The key elements of the framework for this problem are illustrated in Figure 2. For each 

pipeline segment, size distribution is assumed to be available for each damage type based on 

historical, or a priori gathered, health monitoring data. (A damage type refers to an underlying 

failure mechanism that results in damage. Damage refers to localized degradation throughout 

this dissertation.) It is assumed that a segment-wise pipeline vulnerability model is also known 

based on pipeline health monitoring history or up to date monitoring data/information. The 

vulnerability model consists of distributions that reveal a pointwise probability of having 
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damage of a certain type and size at an arbitrary location on the inner or outer surface of the 

pipeline.  

 
Figure 2 - Key Elements of the Problem Model 

1.3 Research Objectives (ROs)  

Considering the previously stated problem to develop a cost-effective and reliable PHM 

approach for locally damaged pipelines, the research objectives RO1 to RO4 listed below are 

determined: 

RO1- Formulate an optimization problem for obtaining a two-dimensional layout of location 

and type of sensors and human-based inspection in order to maximize confidence over the 

assessment of pipeline health while a health monitoring cost metric is minimized.  

RO2- Probabilistically assess and infer pipeline conditions under limited detection data in a 

cost-effective way.  

RO3- Consider uncertain data and information from various sources and determine ways to fuse 

them rogether in order to obtain online damage size and RUL estimates for each pipeline 

segment of interest. Update health monitoring layouts corresponding to different pipeline 

segments considering RUL curves. 

RO4- Find an optimal set of layouts for a set of pipeline segments considering different RUL 

prediction scenarios and a total health monitoring budget. 
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1.4 Research Tasks (RTs) 

To achieve the above mentioned ROs, several research tasks are considered as in the 

following: 

RT1- Formulate an optimization problem where a combination of detection methods (e.g., 

sensors network and human inspection) are modeled while multiple detection and 

measurement metrics are considered to model probabilistic detection of all damages with 

different sizes and types along a pipeline segment (RO1).  

RT2- Consider a fewer number of assumptions and a larger number of detection methods’ 

key attributes in the health monitoring layout optimization problem while attempting to 

maintain the computationally effort tractable (RO1). 

 

RT3- Modify and/or redefine extant detection metrics to facilitate their use in the context of 

optimization. Additionally, define new probabilistic metrics to consider inference in the 

health monitoring optimization problem (RO2). 

RT4- Use available statistical and limited size sampling methods to account for stochastic 

behavior of localized damages so that the final health monitoring layout of each pipeline 

segment at each assessment period is not dependent on any particular sample of localized 

damages (RO2). 

RT5- Fuse data gathered through different detection methods to attain the RUL curve for 

each pipeline segment and update the health monitoring layout accordingly (RO3).   

RT6- Use stochastic optimization to develop a model for finding the optimal set of health 

monitoring layouts for a set of pipeline segments considering different scenarios for RUL 

prediction and a total budget limit (RO4). 
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  In short, in this dissertation, an overall approach is constructed for dynamic and 

integrated PHM of locally damaged pipelines. This approach is developed considering the noted 

research gaps (Section 1.1) and defined research tasks (Section 1.4). An overview of the 

approach is discussed in the next section. Following that, different levels and phases of the 

approach are detailed in Chapters 2 through 4.  

 

1.5 Overview of the Proposed Approach  

The proposed approach for the dynamic PHM of locally damaged pipelines includes two 

main levels of analysis and computations. The first level is for a segment analysis (dashed blue 

box in Figure 3, called segment-level), while the second level is for integrated planning of health 

monitoring of pipelines (solid black box in Figure 3, called integrated-level). These two levels 

are briefly explained next.  

The segment-level approach consists of two phases: a static phase and a dynamic phase 

(Figure 3). In the static phase (ROs 1 and 2, RTs 1 to 4), the intent is to obtain an optimal health-

monitoring layout for a pipeline segment. Sensors network and human inspection, as popular 

detection methods per literature for health monitoring of locally damaged pipelines, are 

considered in the approach of the static segment-level phase.  

Using the static segment-level approach, an optimization model is formulated that can be 

used to choose the type and location of sensors and human inspection tools along the pipeline.  

In the proposed formulation, several key attributes of these detection methods, such as a health 

monitoring cost metric, and three probabilistic detection metrics (namely, POD, IP, and ME to 

detect, infer, and size different damages), are considered. Statistical sampling methods are used 



 

 

16 
Amin Aria. All rights reserved. 2020                                        PhD dissertation, Reliability Engineering 

 

to simulate data based on limited data history and obtain the final health monitoring layout while 

stochasticity of localized damages is considered. This approach is detailed in Chapter 2. There, 

applications of the approach and corresponding results are given and discussed using two 

notional examples using synthetically generated damage data. 

The second phase of the segment-level approach is called the “Dynamic Phase”. This 

phase includes data fusion for damage size and RUL estimation (RO3, RT5). The corresponding 

approach consists of three modules. In the first module, an LSTM-regression model is used to 

develop a sensor-based estimation of the damage size. In the second module, a CNN semantic 

image segmentation approach is used to build automated damage size estimations in which a 

pixel-wise classification is carried out on images of the damaged areas. Finally, in the third 

module, damage size estimates obtained by the first two modules are fused together for an online 

RUL estimation of the structure. This approach is detailed in Chapter 3. AE sensors data and 

microscopic images of a set of fatigue experiments are used there to demonstrate the 

performance of the proposed approach. 

The second level of the constructed PHM approach (integrated-level) is for dynamic and 

integrated pipeline health monitoring. Once an updated RUL curve for each pipeline segment is 

obtained, the primary optimal health monitoring layouts will be updated, while fixing a preferred 

number of sensors and exploring different per segment cost constraints. As such, for each 

pipeline segment, a set of optimal health monitoring layouts corresponding to different values 

of cost constraints are obtained and fed into the integrated module of the proposed PHM 

approach (solid black box with white background in Figure 3). Next, an optimal set of layouts 

for all pipeline segments of interest are obtained using SDP. In the formulated SDP problem, 

health monitoring cost is considered as the state variable. Moreover, the average POD of all 
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damages over all segments of interest is considered in the objective function. In doing, an 

optimal set of health monitoring layouts for pipeline segments of interest is obtained as a 

function of time (RO 4, RT 6). Layout update process and integrated pipeline health monitoring 

are detailed in Chapter 4. Corresponding results are discussed there using synthetically 

generated data and considering three hypothetical pipeline segments. 

 

 

         Figure 3 - Schematic of the Constructed Solution Approach 
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The remainder of this dissertation is organized as follows. Different level of details and 

phases of the constructed approach (Figure 3) are provided in Chapters 2 through 4. In those 

chapters where their application and performance are evaluated using demonstrative examples. 

Lastly, a summary of the dissertation, concluding remarks, delivered contributions, and some 

future research directions are provided in Chapter 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

19 
Amin Aria. All rights reserved. 2020                                        PhD dissertation, Reliability Engineering 

 

Chapter 2: Layout Optimization of Multi-type Sensors and Human Inspection Tools with 

Probabilistic Detection of Localized Damages for Pipelines2 

A new health monitoring approach for a pipeline segment is introduced in this chapter. 

This approach determines an optimized layout for multi-type sensors and human inspection 

areas/tools for a pipeline for which a probabilistic detection of damages is considered.  

The remainder of this chapter is organized as follows. A statement for the problem is 

described in section 2.1.  Three probabilistic detection metrics and their aggregation are detailed 

in section 2.2. The steps of the proposed approach for optimal placement of sensors and human 

inspection are presented in section 2.3 with the optimization problem formulated in section 2.4 

.Two examples with corresponding results are discussed in section 2.5. Finally, the chapter ends 

with some concluding remarks in section 2.6.   

 

2.1 Optimal Health Monitoring Layout Problem Statement  

 

Consider a pipeline segment that is subjected to localized damages (Figure 4). The 

problem is to determine an optimized health monitoring layout for the pipeline segment. The 

layout determines the location and type of all sensors and human inspection tools for obtaining 

data regarding damage state of a pipeline (Figure 4). Here, it is assumed that sensors are 

mounted on the exterior surface of the pipeline. The objective function of the layout 

optimization problem is formulated to be a combination of an average probability of detection 

and a cost metric.   

                                                 
2 This chapter is based on the following paper: Aria, A., Azarm, S., and Modarres, M., 2020. Layout Optimization 

of Multi-type Sensors and Human Inspection Tools with Probabilistic Detection of Localized Damages for 

Pipelines. IEEE Access, DOI: 10.1109/ACCESS.2020.2992671 

 

https://ieeexplore.ieee.org/document/9087850
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Figure 4- Conceptual layout of the pipeline health monitoring problem  

 

 
Figure 5 - Key elements of the framework for sensors and human inspection placement 

 

The key elements of the framework for this problem are illustrated in Figure 5. (Refer to 

Figure 2 for an explanation of the elements.) 

A description of the probabilistic detection metrics, which are used in the optimization-

based approach of this chapter, is followed.  

 

2.2 Probabilistic Detection Metrics 

 

Three detection metrics, i.e., POD, IP, and ME, are formulated and employed in the 

proposed approach of this chapter. These metrics are described in Sections 2.2.1 to 2.2.3. Note 

that sensors and human inspections are referred to as detection methods throughout this chapter 

where human inspection is modeled as a high coverage and low frequency data generating 

sensor. Detection methods are assigned to candidate locations for detecting damages which are 
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defined as nodes of a graph in this chapter. A graph is defined considering a particular “sample” 

of localized damages. A sample is a particular realization of the pipeline with damages. It is 

assumed that there is a single node in the vicinity of each damage of a pipeline realization 

(sample). 

 

2.2.1 Probability of Detection (POD) 

 

For a damage of particular type and size to be detected by a detection tool (e.g., acoustic 

emission (AE) sensor), POD depends on factors such as size and type of a damage and distance 

between the damage and a corresponding detection method. These dependencies are typically 

investigated separately in the literature (Zhang and Zhou, 2014; Sause et al., 2018). In this 

chapter, a new tabularized and aggregate model of POD as a function of damage size and 

damage-to-sensor distance is developed (see details in section 2.3, Step 6).  

The use of this new aggregate POD model is facilitated through a binary (hit or miss) 

detection model, namely Pexist. A damage is considered detectable in the proposed Pexist model 

regardless of its type and size, if it is located in the coverage range of the detection method. The 

coverage range of a detection method is defined as the distance beyond which the marginal POD 

of a damage by that particular detection method is zero.  

As shown in Figure 6 for an unrolled pipeline segment, the longitudinal and (unrolled) 

circumferential coordinates are used in the Pexist model (and throughout this chapter) as 

coordinates of the location of damages on the surface of the pipeline. To account for the 

circularity of the circumferential coordinate (y-axis in Figure 6), a replica of each damage is 

considered with the same longitudinal component as that of the original damage. The replica’s 

circumferential component is: (y-2πR), where y denotes the circumferential component of the 
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original damage location and R is the radius of the pipeline. The origin of the x-y coordinate 

system is located at the leftmost point of the bottom line of the pipeline.  The location vector of 

both the damage and its replica are inserted into the Pexist model (Eq. 1) to determine whether a 

damage (di) is in the coverage range (crj) of the detection method at a node j (dmj). To do this, 

consider a damage k denoted by dk (located at: ak = (xk , yk)) and damage i, di (located at: ai = 

(xi , yi)), as shown in Figure 6. A replica of di (located at: ai’ = (xi , yi-2πR)) and dk itself are in 

the coverage range of the detection method at node j (located at: bj = (xj , yj)). Hence, both 

damages are detectable by the detection method at node j, dmj. 

 
Figure 6- Geometry of damages on the surface of a pipeline segment 

 

 

 

2.2.2 Inference Probability (IP) 

 

IP is a metric that accounts for the detectability of a damage of a particular size and type 

at a particular point of the pipeline given the health monitoring data at some other point of the 
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pipeline. To better illustrate IP, the differences between IP and POD in the proposed approach 

are illustrated in Figure 7. As shown, a pipeline segment with two damage types (hollow 

diamond and hollow multiplication symbols) and detection methods (solid triangle and solid 

plus symbols) are considered. A hollow square node is located in the vicinity of each of the 

damages and detection methods are assigned to these nodes. For example, a detection method 

of type triangle is assigned to node 3 while a detection method type zero is assigned to node 4 

(The assignment of no detection method to a node is considered as the detection method type 

zero.) 

 

 Each detection method has a specific coverage range, cost, precision (measurement 

error), data acquisition frequency, and inference capability. In Figure 7, coverage boundaries 

are shown with dashed circles while inference boundaries are shown with dashed parabolas. 

Note that the second inference boundary of the detection method at node 1 (dm1) and at node 3 

(dm3) are not shown in Figure 7 to avoid clutter. Moreover, for human inspection coverage 

range is equal to half of the inspection length along the pipeline since inspection tool coverage 

range is not of importance as long as it is assumed that the tool is taken to the exact location of 

all damages in the inspection area. 

 

Figure 7- Coverage and inference boundaries along an unrolled pipeline segment of length L and radius R. 

Nodes are located along the pipeline’s bottom line (centerline of this figure) for easier illustration. 
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For each node j, inference boundaries are the locus of zero IP and an inference distance 

limit is defined as the minimum distance of zero IP locus from the corresponding node. IP is a 

function of the damage-to-node distance, detection method type, damage size and type, and 

similarity of the degradation behavior at the damage and node locations. Hence, IP(di, dmj) is 

zero at inference boundaries of node j while IP(di, dmj) is unity if di is located at node j. 

A damage will be missed if POD and IP values corresponding to all neighboring detection 

methods are zero at the damage location. To minimize probability of missing a true damage, 

detection methods should be placed in a way that minimize Probability of Not Detection 

(POND), accordingly: 

( ) ( ) ( )i

N

i

j

i,

1

j i i

=

  )   1 1 [ θ ]( 1 = − −   = −  (2) 

where Ωi is POND of damage i, Θi is the aggregate IP of damage i (resultant IP of all detection 

methods assigned to the nodes in the vicinity of damage i), and Φi is the aggregate POD of 

damage i (resultant POD of all detection methods with damage i in their coverage range). N is 

the number of nodes over the pipeline surface of interest. Moreover, i,jθ  is an elment of 

matrix, which represents the probability of missing di through inference based on health 

monitoring data gathered by dmj. Note that in Eq. 2 (and elsewhere in the proposed approach), 

it is assumed that the probability of a false positive detection is zero.   

 

To simplify the model, a log-linear version of POND, LPOND, is used (Eq. 3) where Ω’i 

is LPOND of damage i.  
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Application of a tabularized LPOND based on Eq. 3 is discussed in section 2.3 (Step 6). 

2.2.3 Measurement Error (ME) 

 

ME is an uncertainty metric defined as the difference between reported and true values 

of a quantity. In this chapter, the probabilistic ME, simply referred to as ME, is defined as the 

probability of the reported size value of a damage of known type not being within the interval 

[(True size – ϵl), (True size + ϵu)]. The quantities ϵl and ϵu are for pre-specified acceptable lower 

and upper error margins, specified by an expert, and “True size” refers to the actual size of the 

damage. Note that only tool measurement errors but not the human error are considered in the 

calculation of ME values. Nonetheless, human error can be easily included (see e.g., Knop et 

al., 2019).  

The LPOND model, as an aggregate of POD and IP models, and probabilistic ME are 

considered in a step-by-step approach for pipeline health monitoring, as discussed next. 

 

2.3 Proposed Approach for Optimal Placement of Sensors and Human Inspection 

 

The proposed approach simulates and randomly places localized damages on the pipeline 

surface and repeats the process over many realizations, each with the consideration of 

degradation and maintenance history of similar pipelines. Using the approach, a pipeline is 

divided into multiple segments, each having a uniform longitudinal and non-uniform 

circumferential density of damages. For each realization, the location and size of the localized 

damages are randomly simulated and placed over each pipeline segment (see e.g., Chatterjee 

and Modarres, 2013; Barton et al., 2017). However, for non-uniform longitudinal damage 

density, one can use a method like the one by Valor et al. (2015). Moreover, clustering is 
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conducted on all realizations (or samples) of spatially distributed damages to smooth the 

optimization work and improve the choice and placement of detection methods. Additionally, 

to account for stochasticity of localized damages with a limited computational expense, the 

proposed approach uses a modified version of a well-known probabilistic sampling method, i.e., 

Wilks method (Wilks, 1941). As such, the proposed approach is also a good fit to be used at 

early stages of a pipeline design. 

Figure 8 shows an overview of the various steps of the approach, as shown with the 

number to the right side of each block. These steps are detailed next. 

 

Step 1 - Obtain Modified Vulnerability Distributions (MVDs): Collect prior maintenance 

and degradation data of a similar pipeline. Map the available data over the pipeline surface and 

perform data analysis, including data simulation (augmentation) for model selection and fitting. 

Subsequently, obtain three distributions for each localized damage type: longitudinal, 

circumferential spatial, and size distributions. Assume the three distributions are independent. 

Modify the distributions to have a higher intensity for larger size damages in the pipeline areas 

with a higher risk of failure. 

Step 2 - Determine Segments and Mesh Cell Size: Based on longitudinal MVD for each 

damage type, divide the pipeline into segments with an (approximately) uniform longitudinal 

density of damages. Mesh each pipeline segment into circumferential strips (as mesh cells) with 

their width laid out along the longitudinal direction (x axis) of the pipeline (recall Figure 6). 

Considering constant longitudinal density of damages and using Poisson distribution, determine 

the width of each strip so that the probability of having more than a damage of each type in each 

strip is negligible. 
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Figure 8-Schematic of the proposed health monitoring approach 

 

Step 3 – Generate a Pipeline Segment Realization: Assuming constant longitudinal density 

of damages along a pipeline segment, generate the longitudinal location of randomly generated 

localized damages of each type using the Poisson and binomial distributions. Determine 

segment realizations involving placement of damages of different types on the strips. Use the 

Poisson distribution to calculate the probability of having a single damage of an arbitrary type 

in each strip. Use this value in a Bernoulli test as a success probability. If the simulated outcome 

of a Bernoulli test is one, place a damage in the strip and determine its circumferential location 

based on the circumferential MVD. 
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Step 4 - Define Type-Size Indicators:  Once a segment realization is simulated, determine a 

type-size class vector for each of the damages of that realization. For each damage type, define 

type-size classes which refer to intervals of the corresponding size MVD with a same cumulative 

probability. Use a Monte Carlo simulation to assign one of these classes to each of the simulated 

damages of the realization at hand. As an example, consider Figure 9 that presents a size MVD 

for a pitting corrosion damage (Ossai et al., 2015). For this size MVD, the number of classes is 

set to four.  If a (randomly generated) class of damage i (di) is equal to 3, di will be a pit damage 

with a depth in the interval 0.33-0.55 mm and its binary class vector will be Ci = [0,0,1,0]. 

In the case of multiple damage types (e.g., pitting corrosion and stress corrosion cracking 

damages), extend the above-explained technique so that classes 1 to 4, for example, represent 

pitting corrosion size MVD while classes 5 to 8 represent stress corrosion cracking. 

 

 

Figure 9- Example of type-size classes for depth (in mm) distribution of pitting corrosion damages 

 

Step 5 - Determine Nodes: Place a single node near each damage of a segment realization. The 

longitudinal location of the node is the same as that of the corresponding damage. In contrast, 
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its circumferential location is randomly generated to make it possible for the optimization solver 

to distinguish detection methods with different coverage and detection capabilities. 

 

Step 6 - Develop IP, POD, and ME Matrices: Follow the instructions below and develop 

matrices to be used for modeling probabilistic detection in an optimization context.  

For IP, develop a log( k,m ) matrix for each combination of damage type-size classes (k) 

and detection methods type (m). These matrices will be used in the optimization formulation to 

calculate the resulting log( ) matrix of LPOND of each damage (Eq. 3). On the other hand, to 

calculate the POD term of Eq. 3 in a linear optimization context, develop Λi as the POD matrix 

of damage i with element λi
m,j . Use Eq. 4 to calculate λi

m,j that denotes POD for damage i of a 

priori known class k which will be recognized by detection method type m (if used) at node j. 

Assume uncorrelated POD dependency on damage size (λsi
m) and damage-to-node distance 

(λdi
m,j). 

m,j

iλ =  m

iλs ×  m,j

iλd  (4) 

Lastly, calculate tabularized ME values to be used in the optimization problem. At first 

develop a matrix Δ with its element δk,m defined to be the ME value corresponding to the 

detection of a damage of class k by detection method type m. Next, considering particular 

placement of damages in the realization at hand, use Eq. 5 to calculate the mean ME (δm
j) 

corresponding to detection of all damages i in the coverage range of detection method m, if it is 

used at node j. The number of corresponding damages of interest is denoted by N(i,j) and 
ki

c  is 

the element of type-size class vector for damage i.  

 m

jδ = kk,m ii,k
δ ×c

 
N(i,j)


 (5) 
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Step 7 - Cluster Damages: Cluster damages of the realization at hand to smooth the 

optimization work.  To do that, define a Minimal Spanning Tree (MST) (Kruskal, 1956) with 

damages at its nodes. Calculate clustering distance limit considering the inference distance limit 

(section 2.2.2) and length of the longest edges of the corresponding MST. Then, determine the 

number of clusters accordingly. Define a similarity metric based on the model in Eq. 1 and Eq. 

6.10. Use the constrained k-means (Wagstaff et al., 2001) algorithm to cluster damages where 

the defined similarity metric is considered and damages at a distance greater than clustering 

distance limit are not assigned to a same cluster.  

 

Steps 8 and 9 - Perform Partial Coverage Inspection Analysis and Determine Detection 

Limits and Inference Confidence: Use partial coverage inspection analysis (Benstock and 

Cegla, 2016) to estimate the state of the entire pipeline segment under study with a minimal 

monitoring coverage (i.e., minimum health monitoring cost) and a certain confidence level. In 

the case of locally damaged pipelines, use partial coverage inspection to determine the damage 

detection percentage required for having the worst-case damage of the entire segment under 

investigation being detected with p% confidence. Define an overall detection constraint as well 

as a lower limit on detection percentage for each damage cluster considering the required 

detection percentage.  

 

Step 10 – Perform Health Monitoring Layout Optimization: Feed the results of pre-

processing stage (i.e., Steps 1 through 9) as well as available detection methods and their 

specifications into the optimization model. (This step and the corresponding formulated problem 

are detailed in section 2.4) 
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Steps 11 – Implement Probabilistic Sampling: Use a modified version of Wilks method 

(Pourgol-Mohammad, 2007) to determine the minimum number of realizations (NW) of a 

stochastic phenomenon (e.g., localized corrosion) needed to capture at least p1% of variations 

(e.g., spatial and size variations of localized damages) with p2% confidence. Repeat steps 1 to 

10 of the proposed approach NW times and obtain NW optimal heath monitoring layouts.  

 

Steps 12 – Aggregate All Layouts: Aggregate all NW layouts to form an aggregated layout 

where p1% of variations are considered with p2% confidence. Use K-means clustering to find 

clusters of detection methods in the aggregated layout.  Determine number of clusters 

considering the value of NW and total number of detection methods in the aggregated layout. 

Then, place the detection methods at the center of corresponding clusters to form the final 

layout.  

 

2.4 Health Monitoring Layout Optimization Problem Formulation 

 

The health monitoring layout optimization problem is formulated as a mixed integer 

nonlinear programming problem where the objective function (Eq. 6.1) is formed by a weighted 

sum of an average utility and an average LPOND function. The utility function is formulated 

based on key features of available detection methods. These key features include data gathering 

cost, coverage range, and an information metric that is defined as a linear combination of data 

acquisition frequency, ME, and information value of the gathered data. The utility is maximized 

in order to maximize the information value and data acquisition frequency while the cost of the 

health monitoring layout and ME are minimized.  Moreover, an average LPOND is maximized 
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to, equivalently, maximize the geometric mean of POND of all damages in the realization of the 

pipeline segment under study.   

The variables being optimized in the optimization problem are dmj (Eq. 6.19), i.e., an 

integer indicator for the type of detection method used at each node j. All other variables (i.e., 

binary detection indicators and detection method variables in Eqs. 6.10-12) are either 

determined in the pre-processing stage of the approach or are a function of dmj. Furthermore, 

the optimization problem has several constraints, including (1) detection limits (Eq. 6.14-15): 

these constraints are determined in the pre-processing stage using partial coverage inspection 

analysis. (2) Overall inference limit (Eq. 6.21): this constraint is also determined in the pre-

processing stage. (3) Cost limit (Eq. 6.16): the expected cost of detection methods along a 

segment cannot be higher than a pre-specified limit.  

In the proposed formulation, the detection method type vector (Eqs. 6.12-13) is used to 

show the type of detection method used at each node. Detection methods can refer to the type 

of sensors or human inspection tool used. A detection method type zero indicates that no 

detection method is assigned to a corresponding node. Moreover, the utility of detection 

methods’ attributes is given as an input for each detection method (Eq 6.5). 

The formulation of the optimization problem is shown by Eqs. 6.1-6.21, with Table 1 

providing a definition for all symbols in the problem. Note that bold letters in Table 1 and 

formulated problem represent vectors or matrices while regular letters represent scalers.  
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Table 1- Symbols used in the optimization model (Eqs. 6.1 – 6.21). 

Symbol Definition 

bl Lower bound of overall detection percentage  

bu Upper bound of overall detection percentage 

Ci Damage type-size vector with element ci,k  

cou Upper bound of expected cost of detection 

CO Detection methods cost vector (its m+1th element is cost of detection method m) 

CR Detection methods coverage vector (its m+1th element is coverage radius of 

detection method m) 

dcic Minimum detection for damages in cluster ic 

dmj Integer indicator of detection method used at node j  

E(.) Expected value of (.) 

frm Data acquisition frequency of detection method type m 

GL  Lower bound of LPOND  

GU Upper bound of LPOND 

I Damage number superscript 

imj Information metric of detection method used at node j 

ivm Information value of detection method type m 

IDj Detection method type vector corresponding to node j 

J Node number superscript 

m Type indicator for detection method used at each node 

M Number of available detection methods 

N Number of damages/nodes in the segment realization at hand 

Ncl Number of clusters of damages in the segment realization at hand 

Q Number of damage type-size classes 

REmax Upper limit of detection redundancy for each damage 

REu Upper limit of expected detection redundancy 

t Vector superscript for transpose of a vector 

U(.) Input utility for (.) 

Uj Utility value of the detection method used at node j 

Utot Total utility value of a layout 

(x,y) Location coordinates of a damage or node (see Section 2.2.1) 

y’ Circumferential coordinate of the replica of a damage (see section 2.2.1) 

w(.) Weighting factor of (.) 

δj
m Mean ME corresponding to detection method m used at node j (see Eq. 5) 

i,jη  Pexist binary indicator (Eqs. 1 and 6.10) 

k,m

i,jθ   
Probability of missing damage i of type k through infernce by detection method 

m at node j (Eq. 6.2) 

ΛJ
i
 Column j of POD matrix of damage i (Eq. 6.2) 

iπ  Detection indicator of damage i (Eq. 6.11)  

i'  LPOND of damage i (Eq. 6.2) 
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L
G  i

'  U
G   (6.21) 

 

In the problem formulation, Eq. 6.2 represents LPOND of damage i (see Section 2.2).  

Eq. 6.4 defines information metric corresponding to data on all the damages detected by the 

detection method used at node j. Moreover, Eq. 6.5 defines the utility value corresponding to 

the detection method used at each node. On the other hand, Eq. 6.10-6.21 represent constraints 

of the formulated problem where overall and per cluster detection limits (Eqs. 6.14-15) and 

LPOND allowable range (Eq. 6.21) should be determined through partial coverage inspection 

analysis. 

The above-formulated optimization problem is modified, using linear and integer 

programming techniques (Crowder et al., 1983), so that the corresponding problem can be 

solved using a mixed integer non-linear programming (Bussieck and Pruessner, 2003) solver.  

 

 

2.5 Examples 

 

Two notional examples are solved in this section using the proposed approach. In both 

examples, only localized damages resulting from internal pitting corrosion but not any other 

failure mechanism are considered. Moreover, pit depth is considered as damage size while pit 

length is neglected following the work in (Shabarchin and Tesfamariam, 2016). For both 

examples, it is assumed that the pipeline segment under consideration is used for transporting 

crude oil. Except for the assumed pipeline radius (R = 1 unit of length, i.e., 1 meter), other 

pipeline specifications, and their effect on the performance of detection methods, are not 

considered. Furthermore, due to lack of access to real world data synthetic internal pitting 

corrosion data are generated considering values, models, and relations reported in the literature 
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for pitting corrosion or similar degradation processes (e.g., Sause et al., 2018; Rabiei and 

Modarres, 2013; and Heidary et al., 2018). Generated data are then used as the input in both 

examples. Stochasticity of the localized damages is also considered through probabilistic 

sampling. 

In the first example, section 2.5.1 , a problem corresponding to a short pipeline segment 

is solved to illustrate the proposed approach step-by-step. The corresponding results are used to 

evaluate the performance of the proposed approach. The final health monitoring layout is 

obtained for this example through aggregation of layouts corresponding to different realizations 

of pitting corrosion damages over the pipeline segment. For this example, in the layout 

optimization formulation, there are 142 continuous variables representing utility of features of 

the detection method at each node and 198 binary variables representing indicators for 

probabilistic detection, inference, and the types of detection method at each node. Moreover, 

there are 345 constraints.  For the second example, a longer pipeline segment is considered in 

section 2.5.2), where only results corresponding to a single realization of damages are presented. 

This example is presented to show the applicability of the proposed approach to a larger sized 

problem for which there are 490 continuous variables, 670 binary variables, and 11,065 

constraints in the layout optimization problem. 

 

2.5.1 Example 1 

 

In this example, a pipeline segment with 50-meter length (L) and 1-meter radius (R) is 

considered. It is assumed that there are only two detection options: an AE sensor (detection 

method type 1 (m=1)) and human inspection with an ultrasonic tool (detection method type 2 
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(m=2)). An assignment of no detection method to the nodes is the other option (m=0). Table 2 

shows assumed specifications of the detection methods. 

Table 2- Specifications of detection methods 

Attribute AE sensor Human Inspection with ultrasonic tool 

Coverage radius (meter) 0.400 20.0 

Cost 1.000 10.0 

Utility (cost) 1.000 0.10 

Utility (coverage) 0.013 1.00 

Utility (frequency) 1.000 0.01 

Utility (information value)  0.020 1.00 

 

 

2.5.1.1 Step-by-Step Application of the Proposed Approach 

 

Considering the modified Wilkes method by Pourgol-Mohammad (2007), forty-six 

realizations (Nw in Step 11 of Figure 8) of the corresponding pipeline segment are generated to 

guarantee capturing 95% of spatial and size variations of localized damages with 90% two-sided 

confidence. There are 5 to 15 damages in each of these realizations. The 22nd realization has a 

relatively dense placement of damages (with 13 damages) that is good for illustration purposes. 

Hence, a brief discussion of the steps in the proposed approach (as shown in Figure 8) for the 

22nd  realization of pipeline damages is followed. 

 

Step 1 – Based on the existing literature (Wang et al., 2016; Lewandowski, 2002; Valor et al., 

2015), it is assumed that the longitudinal MVD for internal pitting corrosion over the segment 

under investigation is 0.2 pits per unit length of pipeline. Also, considering the higher likelihood 

of corrosion at the lower quadrant of oil pipelines (Barton et al., 2017), it is assumed that the 

circumferential MVD of localized damages follows a normal distribution with zero mean at the 

bottom of the pipeline. Moreover, assuming that risk of failure is consistent with damage size 
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over the pipeline segment of interest, the distribution shown in Figure 9 is considered as the 

size MVD.  

Step 2- Using Poisson distribution with identically, independently and uniformly distributed 

damages along the pipeline segment, the mesh strip width is found to be 0.5 meters, so that the 

probability of having more than one localized damage at each mesh strips is less than 0.01.  

Steps 3, 4 –The problem setup corresponding to the 22nd realization is provided in Figure 10 

where axes are defined based on Eq.1 and Figure 6. Moreover, diamonds of different sizes 

represent localized damages of classes 1 through 4 (see Figure 9) where classes are randomly 

assigned to each damage.  

 

Step 5- Thirteen nodes are located along the pipeline segment (stars represent nodes in Figure 

10). The longitudinal locations of the nodes are set to coincide with those of corresponding pits 

while the circumferential location of the nodes is determined by adding a random value from 

the interval (-0.5, 0.5) to that of the corresponding damage. This interval is chosen considering 

AE sensor coverage radius (See Table 2). 

Step 6- In this step, to develop the aggregate POD model (Eq. 4) for AE sensors, a decaying 

power relation is defined for dependency of POD on damage-node distance. This relation is 

defined based on distance metric in Eq. 1, assumed coverage radius of AE sensors (0.4 m), and 

the information provided in (Sause et al., 2018). However, this dependency is neglected for 

 
Figure 10- The 22nd realization out of 46 total realizations of the pipeline of Example 1 
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human inspection with ultrasonic tool since the inspector takes the inspection tool to the exact 

location of damages in the inspection area. On the other hand, dependency of POD on damage 

size is calculated for AE sensors and human inspection with ultrasonic tool using probabilistic 

relations provided in (Zhang and Zhou, 2014) and (Chatterjee and Modarres, 2013), 

respectively. As such, POD as a function of type-size class of 22nd realization damages is 

presented in Table 3. 

Table 3- POD as a function of damage type-size class 

Class (k)    Acoustic Emission (m=1) Human Inspection (m=2) 

1 0.32 0.02 

2 0.54 0.07 

3 0.72 0.25 

4 0.90 0.77 

   

IP matrices are developed next.  Due to a lack of access to real world data and in the absence of 

a pattern recognition practice on historical data, it is assumed here that damage class and the 

inference distance (between a node and the point to be inferred) are important inference factors 

to be considered. As such, k,m=1log( ) matrices (see section 2.3, Step 6) for AE sensors (m=1) 

are developed where a positive correlation of IP and damage size and a negative correlation of 

IP and inference distance are considered. Moreover, it is assumed that inference distance limit 

(section 2.3, Step 7) increases with damage size and is approximately 20 meters for all classes 

of damages. On the other hand, for human inspection with ultrasonic tool (m=2), it is assumed 

that IP values are greater than and proportional to those of an AE sensor. This assumption is 

made since human inspection provides information on the state of all points in the greater 

inspection area as opposed to limited coverage range of an AE sensor. Subsequently, 

k,m=2log( ) is assumed to be k,m=11.5 log( )  for any damage of any class.   
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Lastly, to obtain ME values (δk,m in Eq. 5), at fist relations provided in (Rabiei and 

Modarres, 2013) and (Chatterjee and Modarres, 2013) are used to simulate size values sensed 

by AE sensors and ultrasonic tool (i.e. inspection tool), respectively. Then, probabilistic ME 

values are calculated as probability of sensed size values not being laid in the interval of the 

original class of a damage of interest. Resulted ME values and class intervals are reported in 

Table 4.  

Table 4- Class intervals and corresponding ME probabilities (δk,m) 

Class (k) AE sensors (m=1) Human Inspection (m=2) Class Interval (mm) 

1 0.130 0.147 [0        0.19] 

2 0.060 0.151 [0.19   0.32] 

3 0.045 0.142 [0.32   0.55] 

4 0.015 0.145 [0.55   1.50] 

 

Step 7- Following the proposed clustering approach (section 2.3, Step 7), damages of the 22nd 

realization are clustered to 3 groups where the clustering distance limit is determined to be 15 

meters. In addition, the minimum number of detected damages of each cluster (Table 5) is 

determined considering the overall detection lower limit (Eq. 6.14) obtained using partial 

coverage inspection analysis. 

Table 5- Clustered damages of realization #1 

Cluster # Damage # Minimum Detected Damages 

1 1,2,3,4 2  

2 5,6,7,8,9 3 

3 10,11,12,13 2 

   

 

Steps 8, 9- In parallel, it is assumed that the overall detection lower limit is 50% for an 

estimation of the entire segment, with 90% confidence. Considering the overall detection lower 

limit, minimum detection of each of clusters is determined in step 7.  
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Step 10- Subjective utility weights (Table 6) are used to form the utility function that is defined 

to be maximized (see Table 1 for abbreviations). Moreover, the cost limit is set to be 25 (see 

Table 2 for cost metric values). Also, LPOND limits (Eq. 6.21) are set to be -1.5 and -12.  

Table 6- Utility weights used in utility function 

Wco Wcr Wfr Wiv WME 

0.3 0.3 0.1 0.15 0.15 

 

2.5.1.2 Single Realization Results and Discussion 

 

Two health monitoring layouts and results corresponding to the 22nd realization of the 

pipeline segment of this example are discussed in this section. All the results presented in this 

section, including layouts illustrated in Figure 11, are obtained using the GAMS® optimization 

software program and BARON® solver (Tawarmalani and Sahinidis, 2005) using a desktop 

computer with a 64-bit Windows® 10 operating system, an Intel® Core™ i7-2760QM CPU at 

2.40 GHz, and 16.0 GB of RAM. Also, the damage simulation is conducted using the R 

programming language. The corresponding code package is described in Appendix A. For all 

the results of this chapter, the weighting factor of the objective function (wobj in Eq. 6.1) is equal 

to 0.5 unless mentioned otherwise.  

Dashed circles in Figure 11 are the coverage boundary of the AE sensors and hatched 

areas represent the inspection areas. Moreover, double hatched areas are inspected twice (Note 

that inspection time is not discussed in this dissertation and inspections can be done at different 

time instances). Average LPOND, which is considered in the objective function of the 

formulated optimization problem (Eq. 6.1) and summarizes POD and IP (Eq. 3), is considered 

in both layouts of Figure 11. However, clustering and ME are not considered in layout (a) to 
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illustrate improvements achieved upon their consideration in layout (b). Hence, dashed lines in 

Figure 11 (b) represent cluster boundaries. 

 

        (a) 

 

      (b) 

 

Layouts of Figure 11 indicate that consideration of clustering and ME in layout (b) has 

led to a better average utility (Table 7). This improvement can be resulted from lower health 

monitoring cost in layout (b) with four AE sensors, instead of five as in layout (a). Moreover, 

efficient assignment of AE sensors to nodes 2 and 8 , with larger damages and smaller ME 

values, in layout (b) instead of nodes 4 and 6, as is done in ME-insensitive layout (a), can be the 

other reason of this improvement.  

LPOND (Eq. 3) is a log-linear relation that is not sensitive to decimal probabilistic 

changes. Hence, insufficient monitoring (e.g. LPOND = log(0.11) = -0.95) of some 

areas/damages of a segment is likely while other areas are excessively monitored (e.g., LPOND 

Figure 11- Optimal health monitoring layout corresponding to the 22nd realization when (a) damage clustering 

and ME are not considered, (b) damage clustering and ME are considered. 
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= log(0.11/10)= -1.95). Thus, damage clustering is utilized here to provide guidelines for a 

placement of detection methods consistent with the distribution of damages over all parts of a 

pipeline segment. As such, layout (b) of Figure 11 has a slightly worst average LPOND, a better 

overall coverage and a better average redundancy (Table 7) in comparison to layout (a).  

Considering the discussion above, it can be concluded that utilizing clustering and ME 

has resulted in a better performance in the case of 22nd realization.  Moreover, Table 7 reveals 

that usage of clustering not only has not led to sub-optimality, but also has led to an improved 

optimization runtime. As such, impacts of utilization of clustering and ME on the optimal 

layouts of all 46 realizations of this example are explored next to check if these improvements 

are seen for other realizations as well. 

Table 7- Comparison of performance of the layouts of Figure 11 

 

2.5.1.3 Multiple Realization Results and Final Aggregate Layout 

 

Statistics of improvements achieved upon consideration of clustering and ME 

corresponding to all 46 realizations of this notional example (recall the beginning of section 

2.5.1) are reported in Table 8. Reported statistics indicate that the average utility is improved 

upon consideration of clustering and ME for majority of the realizations. Nonetheless, the 

average LPOND gets slightly worse for considerable number of the realizations while average 

detection redundancy is improved. These observations can be due to a more efficient placement 

of detection methods following utilization of clustering, as was discussed earlier. On the other 

 Ave 

(Utility) 

Ave 

(Redun.) 

Ave 

(LPOND) 

Run Time 

(s) 

Without clustering and ME 0.29 1.30 -9.10 106 

With clustering and ME 0.45 1.46 -8.73 68 

Improvement % 55% 12%   -4% 55% 
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hand, reported statistics for run time reveal a significant improvement for almost all the 

realizations when damage clustering is considered. The shrinkage of the combinatorial feasible 

region of the optimization problem following removal of cases that violate detection limits of 

any damages cluster can be the reason of this observation.  

Table 8- Statistics of improvement percentage in layout performance for 46 realizations of Example 1 when 

clustering and ME are considered 

 Ave(Utility) Ave(Redun.) Ave(LPOND) Run Time (s) 

10% quantile 36.4% -5.0% -7.5% 0.0% 

90% quantile 62.1% 25.0% 3.0% 210.0% 

Average 49.2% 8.8% -1.0% 93.4% 

Standard Deviation 11.0% 13.8% 5.2% 109.7% 

 

Considering Table 8, utilizing damage clustering in more computationally complex cases 

of layouts with ME reduces the run time considerably, while leading to improvements in terms 

of health monitoring performance (e.g., average utility and average detection redundancy). 

Thus, we may claim that the proposed approach provides a computationally tractable solution 

for consideration of probabilistic detection metrics in optimal health monitoring of pipelines 

and the final layout of each realization should be the one that considers clustering and ME. 

An aggregation of all 46 optimal health monitoring layouts of this example is illustrated 

in Figure 12 where there are 176 AE sensors (triangles) and 54 inspection nodes (plus signs). 

As a result, it is expected to have 4 AE sensors and 1 human inspection with ultrasonic tool in 

each health monitoring layout. Consequently, the final health monitoring layout is obtained 

(Figure 13) where sensors and human inspection are located at the center of 4 sensor clusters 

and 1 inspection node cluster corresponding to Figure 12.   
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Figure 12- Scatter plot obtained through aggregation of all 46 optimal layouts of Example 1 

 

 
Figure 13- Final health monitoring layout corresponding to the pipeline segment under study 

 

All 46 realizations of this example, i.e., a spectrum of localized damages with different 

sizes and at different locations, are considered in obtaining the final layout of Figure 13. 

Moreover, placement of sensors and human inspection, is consistent with the uniform 

longitudinal and non-uniform circumferential spatial distribution of localized damages (see 

section 2.5.1.1). Nonetheless, to verify the choice of this layout as the final layout, the 

performance of this layout is compared with that of (Pareto) optimal designs corresponding to 

the most and least expensive (in terms of health monitoring total cost) layouts of all 46 

realizations. Pareto optimal designs are different layout designs corresponding to the various 

values of weight factor wobj in the objective function (Eq. 6.1) of formulated optimization 
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problem. In Figure 14, longitudinal projection of Pareto designs corresponding to realizations 

31 (most expensive layouts with redundant inspection) and 45 (least expensive layouts with no  

 

human inspection) are presented. Also, design “final” represents the longitudinal projection of 

layout of Figure 13. In Figure 14, the triangles denote AE sensors while shaded strips denote 

inspection area. In addition, double shaded strips represent regions that are inspected twice. 

Using the Analytic Hierarchy Process (Saaty, 2008), performance of the projected 

layouts of Figure 14 was compared for two newly generated realizations of the segment under 

investigation (filled and hollow diamonds in Figure 15). It was concluded that the final health 

monitoring layout (Figure 13) outperforms all layouts of Figure 14 for both test realizations in 

terms of average utility and average LPOND. 

 
Figure 15- Two newly generated realizations used as test realizations 

 

 

Figure 14- Longitudinal projection of final health monitoring layout and Pareto designs corresponding to 

most and least expensive layouts of realizations of example 1. Here, w refers to wobj in Eq. 6.1 
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2.5.2 Example 2 

 

To show the applicability of the proposed approach for larger and more densely corroded 

pipelines, a pipeline segment of 200-meter length and 1-meter radius is considered. It is assumed 

that the longitudinal intensity of localized damages is 0.4 pit per meter. Data generation process 

and all other assumptions, conditions, and relations used in this example are the same as those 

in the previous example.  

The health monitoring layout corresponding to one realization of the segment for this 

example is shown in Figure 16 where diamonds of different sizes denote localized damages 

which belong to different classes. Stars represent nodes and dashed ovals represent AE sensor 

coverage boundary. Also, hatched areas represent inspection areas.  

There are 22 AE sensors and 6 inspection nodes in the optimal layout of Figure 16 that 

is reasonable considering the long pipeline segment and greater corrosion density. Similar to the 

previous example, the final health monitoring layout of this example (with 95% coverage of 

localized corrosion variations with 90% confidence) can be attained through aggregation of 46 

optimal layouts corresponding to 46 realizations of the longer pipeline segment of this example. 

 

 
Figure 16- Health monitoring layout corresponding to one realization of the longer pipeline segment 
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2.6 Concluding Remarks 

 

This chapter presents a new approach for an early stage health monitoring layout 

optimization for pipelines with a focus on probabilistic detection of localized damages. This 

approach considers different detection methods (e.g. different sensors and human inspection 

tools) simultaneously. The optimal layout includes location and type of sensors and human 

inspection (tools).  

The proposed approach has several important features. (i) It uses three metrics for 

probabilistic detection of damages with different levels of severity. As shown in the results and 

discussion section, the use of these metrics can reduce the cost of health monitoring. (ii) It is 

based on an optimization objective function which is formed based on a weighted sum of two 

functions: a health monitoring utility function and a function for probabilistic detection of 

damages. By changing the weights for these functions, the user can explore different optimized 

layout solutions and also manage tradeoffs between the two functions.  (iii) It considers a 

significant number of key attributes of the detection methods, such as detection cost, coverage 

capability, data acquisition frequency, and measurement error. Compared to the existing 

literature, this will provide a more detailed account of the detection methods considered. (iv) It 

uses probabilistic sampling methods for simulating and placing damages on a pipeline surface 

considering relevant available data. In this way, not only the expected value of damage 

specifications (e.g., damage location and size) can be considered, but also their variations can 

be accounted for.  

The proposed approach is demonstrated with two notional examples. For the first 

example, a step-by-step demonstration of the proposed approach is provided. In addition, 

considering the severity level of different damages, it is shown that the proposed layout 
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optimization approach can obtain a better solution than a single detection method approach. For 

the second example, a longer pipeline segment with more densely localized damages is 

considered to show applicability of the proposed approach to larger sized problems.  

In the next chapter, a detailed explanation of the approach for the dynamic segment-level 

phase of health monitoring of locally damaged pipelines is presented. 
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Chapter 3: Estimating Damage Size and Remaining Useful Life in Degraded Structures 

Using Deep Learning-based Multi-source Data Fusion3  

 

One of the key contributions of the PHM approach in this dissertation is that it considers 

multi-source data fusion in a hybrid context at the dynamic segment-level phase. In this 

approach for multi-source data fusion, online, frequent, and indirect sensor data along with 

periodic, less frequent yet accurate inspection images are considered together with a Physics of 

Failure (POF) model. The final outcome of the developed fusion approach (i.e., dynamic 

segment-level phase in Figure 3) is a more accurate, frequent and online RUL estimation.  

The rest of this chapter is organized as follows.  Section 3.1 provides a detailed 

explanation of the developed approach for damage size and RUL estimation where 

corresponding deep learning methods are discussed. Section 3.2 summarizes the experimental 

set-up as explained and conducted by Yun (2018), general data analytics and data pre-

processing. Section 3.3  discusses the results attained. Lastly, section 3.4  concludes the chapter 

where possible extensions and future work are briefly discussed.  

 

3.1 Proposed Approach for Damage size and RUL Estimation 

 

The approach for damage size and RUL estimation consists of three key modules, as 

shown in Figure 17: (In Figure 17, the number shown in the top right corner of each block refers 

to the module number, as described next.) 

 

                                                 
3 This chapter is based on the following paper: Aria, A., Lopez Droguett, E., Azarm, S. and Modarres, M., 2019. 

Estimating damage size and remaining useful life in degraded structures using deep learning-based multi-source 

data fusion. Structural Health Monitoring, DOI: 10.1177/1475921719890616 

https://doi.org/10.1177%2F1475921719890616
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1- Module for Time-series Analysis: In this first module, a particular class of LSTM 

networks along with a Multi-Layer Perceptron regression (Rosenblatt, 1961) is used to produce 

frequent damage size estimates. Multiple-sensor data are considered to denoise data from the 

sensor of interest. Then, corresponding LSTM-regression model is trained considering denoised 

sensor data. Size estimations produced by a POF model are considered as ground truth (denoted 

by T in Box 1) in the training process. The POF model is parametrized based on manual image-

based size measurements produced using a NIH ImageJ tool (Schneider et al., 2012).   

 

2- Module for Image Processing: In this module, a customized FCDN model is used to 

estimate damage size through a pixel-wise classification of microscopic images of a damaged 

area. The corresponding FCDN is trained using annotated images and the output of FCDN, i.e., 

accurate but low frequency images which are segmented to damage and background parts, is 

fed into a pixel counter unit to estimate the damage size. Resulting size estimates, which have a 

frequency similar to that of the first module, are then used to parametrize a corresponding POF 

model.  Next, the parametrized POF model is used to produce image-based size estimate at each 

instance of time with a sensor-based estimate available.  

 

 

Figure 17- Schematic of the proposed data fusion and RUL estimation approach 
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3- Module for Data Fusion and RUL Estimation: In this module, sensor- and image-

based damage size estimates obtained from the first two modules (i.e., ES and EI in Figure 17 ) 

are fused together to obtain a final estimation of the damage size and RUL. Using the POF 

model for data augmentation in the first two modules, the frequency mismatches between 

sensor- and image-based estimates are resolved. Moreover, the ground truth values produced in 

the first module are again used here to parametrize the POF model. As such, size estimates of 

the same frequency are fused in this module to obtain high frequency and accurate damage size 

and RUL estimates. 

 

The above-mentioned modules and corresponding deep learning models are further 

detailed in Sections 3.1.1 through 3.1.3. 

 

3.1.1 Module for Time-series Analysis 

This section starts off with a general overview of the LSTM networks and their 

application for damage size estimation. Next, since the performance of the developed approach 

is investigated in this chapter using data associated with fatigue crack experiments, the proposed 

LSTM regression model and its dependency on POF model for fatigue crack size estimation is 

discussed. 

 

3.1.1.1 LSTM-based Regression for Damage Size Estimation 

Consider a structure subjected to a degradation process such as fatigue which results in 

crack damages. Let us assume that there is time-series data from a sensor known to correlate 

with degradation behavior of the structure. Also, assume that the degradation behavior at each 

instance of time t is only dependent on a limited number (i.e., Ntw) of sensor signals transmitted 
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just before time t. If the time-series data includes Nft features extracted from denoised sensor 

signals, then  𝐗t𝛼 can be defined as a vector consisting of Nft features corresponding to the signal 

transmitted at time tα < t where α is integer and 1≤ α ≤Ntw . Now assume a LSTM network with 

Ntw layers (Figure 18). This network is set up to estimate damage size at time t considering the 

last Ntw transmitted signals. For this LSTM network, 𝐗t𝛼 is the input of the layer at time tα 

(Figure 18a) and 𝐡t𝛼 represents the corresponding output. Moreover, all the LSTM layers of 

this network include the same LSTM cell (Figure 18b). Consequently, a particular LSTM cell 

structure is considered in obtaining the final output of this network.  Moreover, all Ntw signals 

of interest and corresponding temporal correlations are considered in obtaining the output, e.g., 

a vector of neural node values corresponding to estimated damage size for time t.  

 

 

a) 

 

b) 

Figure 18- Structure of a) LSTM network; b) LSTM cell 

Consider the LSTM cell at time tα (Figure 18b). At first, the input vector is fed into the 

input port (𝑎t𝛼) which considers immediate temporal correlations using a hyperbolic tangent 

activation function. Next, the Hadamard product (denoted by o ) and three different types of 

gates (Figure 18b) are utilized. All these gates include a sigmoid activation function. 

Meanwhile, a memory cell (𝑐t𝛼−1) is employed to consider longer temporal correlations. The 
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input port, the gates, and the memory cell are referred to as LSTM operation units in this chapter. 

For the sake of computational consistency, each operation unit has Nn neural nodes. A 

concurrent usage of all of these operation units facilitates a computationally manageable flow 

of information in LSTM models. This way, the LSTM models can handle long temporal 

correlations through a manageable computational effort (Zheng et al., 2017).  

The LSTM operation units and their functionality are detailed in the literature. It is 

discussed there (Zheng et al., 2017; Elsheikh et al., 2019) that dropout (Pd as dropout 

probability) and batching (Nb as batch size) are used to avoid overfitting. While different 

variations of a LSTM cell are reported (Zheng et al., 2017; Elsheikh et al., 2019), the above 

explained structure is the cell used in the bi-directional LSTM model of this chapter. In a bi-

directional LSTM model, each of the Ntw layers consists of two cells so that both backward and 

forward temporal correlations are considered (Elsheikh et al., 2019). As such, a bi-directional 

LSTM is used in the LSTM-regression model of this chapter for damage size estimation (Figure 

19).  

In the aggregated model of Figure 19, the output of the bi-directional LSTM at the end 

of each training iteration is a set of weights corresponding to Nn neural nodes for each of the 

operation units of a LSTM cell. These weights are then fed into a Multi-Layer Perceptron 

regression model, with a rectified linear unit (ReLU) activation function (Elsheikh et al., 2019), 

to estimate the damage size at time t. In the regression model, the true damage size (i.e., ground 

truth) values, which are obtained by Eq. 1 and are denoted by “T” in Figure 19 as well as Module 

1 of Figure 17, are used as reference points of a loss function, which is then minimized in the 

regression process. In parallel, the structure of LSTM cell, i.e., weights of neural nodes, is 

updated through a back-propagation scheme. Consequently, following Ntr training iterations and 
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using samples of sensor time-series data, the optimal structure of LSTM cell, which leads to a 

minimized regression loss, is determined. Hence, the damage size at any time t can be estimated 

considering the last Ntw sensor signals transmitted prior to time t. 

 

Figure 19- Aggregated LSTM-regression model for damage size estimation 

 

3.1.1.2 Customized LSTM-Based Regression Model for Fatigue Crack Size Estimation 

 

In the results and discussion section of this chapter (Section 3.3), the aggregated LSTM-

regression model of Figure 19 is employed to estimate the fatigue crack size based on the 

corresponding AE signals. In order to guarantee obtaining the best accuracy of crack size 

estimates using the proposed LSTM-regression model, some issues should be addressed. Firstly, 

optimal values of hyperparameters should be determined. Hyperparamters are external to the 

model structure and their values are specified before the start of training process of the model. 

Hyperparmeters of the proposed LSTM-regression model, i.e., [Ntw, Nft,, Nn, Pd , Nb], and a 

corresponding grid search are discussed in section 3.3.1. Secondly, accurate and dependable 

size measurements are required as regression reference points, if high confidence in size 

estimates is desired. To address this issue for the case of fatigue crack size estimation, an integral 

form of the Paris-Erdogan relation for fatigue crack growth (Bannantine et al., 1990) is used 

(Eq. 7) as the POF model of the hybrid approach of the time-series analysis module. This POF 
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model is parametrized based on manual image-based crack size measurements produced by the 

NIH ImageJ tool. The resulting crack size estimates are then used as the reference points of the 

regression procedure.  

1

0

(1.12 )
i

m

i

i

a C a dN 
−

=    (7) 

 

In Eq. 7, ia  represents crack size (length) at loading cycle i. N denotes the loading cycle 

and i0 is the loading cycle at which crack is initiated.   is the cyclic loading stress amplitude. 

Also, C and m are model parameters to be determined.  This choice of POF model is based on 

existing literature on promising results from AE-based crack growth rate estimation using a 

Paris-Erdogan model (Bassim et al., 1994; Rabiei and Modarres, 2013; Keshtgar et al., 2018).  

 

The last issue about the LSTM-regression model of Figure 19 is the choice of the loss 

function.  A loss function can be defined and manipulated to favor size overestimation as it is 

desired in PHM of structures where an underestimation of damage size and subsequent 

overestimation of RUL is not acceptable (Lei et al., 2018). Hence, a modified RUL-based loss 

function (Zheng et al., 2017) is employed in this chapter for fatigue crack size estimation. Eq. 8 

formulates this loss function where model parameters a and b are determined considering 

manual crack length measurements. Here, Lpre denote LSTM predicted size values while LPOF 

is POF generated crack size value considered as true damage size.  Note that negative values of 

LSTM predicted crack size values are penalized in Eq. 8 using Pneg term.  
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3.1.2 Module for Image Processing  

 

In this section, first, an overview of the main building blocks of FCDNs with a minor 

focus on an application in damage size estimation is presented. Then, a customized FCDN 

structure and its application for fatigue crack size estimation in relation with segmented and 

annotated images is discussed. 

 

3.1.2.1 FCDN for Damage Size Estimation  

 

A FCDN model for semantic image segmentation, with a minor focus on segmentation 

of images of damaged area with two classes of objects (damage and background), is discussed 

in this Section. Figure 20 illustrates general architecture of a FCDN model where downsampling 

and upsampling paths are considered together to resolve the issue of resolution loss in standard 

CNNs. In a downsampling process (Jegou et al., 2017), successive convolutions are carried out 

to generate low resolution feature maps which are used to find coarse patterns in the original 

input (image). On the other hand, successive transposed convolutions are utilized in upsampling 

path to produce high resolution feature maps and find fine patterns in the original image. In 

transposed convolution (Dumoulin and Visin, 2016), higher resolution feature maps are 

produced while maintaining spatial consistency with respect to the original and lower resolution 
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feature maps. As such, downsampling and upsampling counterpart units, which are at the same 

resolution level (Figure 20), are connected in a FCDN model to maintain the spatial consistency. 

Coarse pattern features maps produced by a downsampling unit are passed on to the counterpart 

upsampling unit through skip connection (Figure 20). Next, all the coarse and fine pattern 

feature maps at the same resolution level are concatenated and fed into the next upsampling 

unit. Doing so, the new fine pattern feature maps with a higher resolution are produced 

considering both fine and coarse patterns of the original image. This process is referred to as 

multi-scale supervision (Jegou et al., 2017) and leads to computationally efficient recovery of 

the resolution of the original input image. The heart of efficient multi-scale supervision in FCDN 

models is the reverse correlation between number and resolution of feature maps (Figure 20).  

 

 

Figure 20- Architecture of FCDN model for semantic image segmentation  

 

A brief discussion of the mechanism behind computational efficiency in FCDN models 

is followed where the units of FCDN architecture, from input to output, are shortly explained 

based on the original work in (Jegou et al., 2017).To have a more focused discussion, images of 

damaged area are considered as the model input in the following description. 
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1- Initialization unit: The input of this unit is three layers of an RGB image of a damaged area. 

A standard CNN with a set of kin convolution kernels of shape [Sin1   Sin2] form this block. 

These convolution kernels essentially help with locating the damage. Hence, their shape is a 

function of damage geometry. The output of this unit is kin feature maps with no loss of 

resolution with respect to the input. 

 

2- Downsampling unit: This unit consists of a dense block (Huang et al., 2016), followed by 

a concatenation and transition down sub-unit. Ns number of this unit are consecutively used 

to produce a set of feature maps at different resolution levels. The proposed structure of this 

unit is shown in Figure 21 and its sub-units are briefly discussed below: 

 

Dense Block (DB): A DB (Huang et al., 2016) is consisted of Nl consecutive layers. The 

input of the first layer is the output of the preceding unit (i.e., initialization unit or an 

earlier downsampling unit). The input of other layers, however, is the concatenation of 

the original input of the DB and output of preceding layer in the DB. In each layer, a set 

of k convolutions with kernels of shape [Sdb   Sdb] are carried out on the input. Hence, 

output of each layer is a set of k feature maps. As a result, the final output of the block is 

the concatenation of all Nl k feature maps with the same resolution as the input of DB.  

 

Concatenation: To facilitate multi-scale supervision (Jegou et al., 2017), output of the 

DB is concatenated with the identity mapping of the DB input and the result is fed into 

the transition down unit as well as the upsampling unit at the same resolution level. 
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Transition Down (TD): Resolution (spatial dimensionality) of feature maps is reduced 

in this sub-unit through a [St   St] convolution and a [22] max pooling. With the 

concatenated feature maps as the input, the output of a TD sub-unit is a set of reduced 

resolution feature maps. 

 

 

Figure 21-Downsampling and upsampling units of the FCDN model for semantic image segmentation 

 

3- Bottleneck: It is a DB at the end of downsampling path and before upsampling path. It 

has Nbl layers and its output is Nbl   k feature maps with the same resolution of bottleneck 

input. 

 

4- Upsampling unit: This unit is consisted of a transition up sub-unit followed by 

concatenation and a DB (Figure 21). Similar to downsampling path, Ns number of this 

unit are consecutively used in upsampling path. However, they are used here to recover 

original resolution in a step-by-step manner. Therefore, each upsampling unit is 

connected to its downsampling counterpart at the same resolution level through a skip 

connection (Figure 20). The main difference of these counterparts is that no identity 

mapping is done in upsampling units. In other words, only feature maps generated by the 

preceding unit are upsampled in the transition up (TU) sub-unit of each unit to avoid 
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feature explosion. To do so, transposed convolution is utilized. As such, a [St   St] 

convolution kernel is used in transposed convolution of each TU sub-unit to partially 

recover the resolution of feature maps produced at the preceding unit. Next, upsampled 

feature maps are concatenated with those of the same resolution produced at the 

counterpart downsampling unit. Lastly, concatenated coarse and fine pattern feature 

maps are fed into a DB to produce new fine pattern feature maps at the same resolution 

level. 

 

5- Softmax unit: a 1×1 same convolution is carried out on high resolution feature maps 

attained at the end of upsampling path. The result is a set of n feature maps with n 

representing the number of classes of objects in the images (e.g., n=2 for images with 

damage and background as the classes). Lastly, a softmax function determines per pixel 

class of objects. 

 

Considering the above-explained FCDN architecture, a FCDN model is customized in 

the next section for fatigue crack size estimation. The customized FCDN model will be used in 

the image processing module of the developed approach (recall Module 2 in Figure 17).  

 

 

3.1.2.2 Proposed FCDN-based Approach for Fatigue Crack Size Estimation 

 

A customized FCDN model, an image annotator unit and a pixel counter unit are used in 

the image processing module of the approach in this chapter (recall Module 2 of Figure 17). To 

customize and train a FCDN model for fatigue crack size estimation, hundreds of (RGB) images 
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of cracked area should be annotated. Thus, microscopic images of five fatigue crack experiments 

(see section 3.2) were annotated using MATLAB® and Photoshop®. A sample of the original 

and annotated images are presented in Figure 22. 

 
 

                                                   a)            b) 

Figure 22- a) A sampled microscopic crack image, b) corresponding annotated image. The resolution of both 

images is 480   1024. 

 

Table 9 -Hyper parameters of FCDN_AA for semantic segmentation of fatigue crack images 

Hyperparameter (Optimal) Value 

Batch size 10 

Dropout probability 0.2 

Number of Initialization kernels (kin) 48 

Shape of Initialization kernels ([Sin1   Sin2]) [32   3] 

Number of sampling modules (Ns) Grid Search: [1,2] 

Number of layers per DB (Nl) Grid Search: [3,4,6,8,10] 

Number of feature maps per DB layer (k) Grid Search: [1,2,3,4,5,6] 

Shape of DB kernels ([Sdb   Sdb]) [5   5] 

Shape of transition kernel ([St   St]) [3   3] 

Number of layers in bottleneck DB (Nbl) Nbl = Nl 

 

For the case of fatigue crack size estimation, the output of the FCDN model will be a two 

color (e.g., black and white) segmented image where each color represents one class of objects 

(e.g., black for background and white for crack pixels). Thus, annotated ground truth images are 

also in black and white as illustrated in Figure 22b. 
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Considering the microscopic fatigue crack images (Figure 22a) and corresponding 

annotated images (Figure 22b), a FCDN model is customized. A majority of the 

hyperparamters of this model, which is referred to as the FCDN_AA model, are determined 

during the primary analysis of crack and annotated images (Table 9). However, the optimal 

values of [Nl, k, Ns] are determined through a grid search process over the intervals presented 

in Table 9. An optimal architecture of FCDN_AA and its performance are discussed in section 

3.3.2. 

For optimization loss function, the Intersection over Unions (IoU) score is considered in 

FCDN_AA model. IoU is defined in Eq. 9 where prei and yi represent FCDN predicated and 

true class of pixel i, respectively, while c is used to designate the crack or background.  

i ii

i ii

(pre =c & y =c) 
IoU(c)

(pre =c or y =c) 
=



 (9) 

 

The average mean IoU is formulated in Eq. 10 where Eset(.) represents the expected value 

with respect to training or testing set of images. The average mean IoU is considered as the 

optimization loss function of FCDN_AA model. 

set cE(IoU)=E (E (IoU(c)))  (10) 

 

Upon optimizing the loss function, the output of FCDN_AA, i.e., a segmented black and 

white image, is generated. With white representing crack pixels, the crack size is estimated next 

by a pixel counter unit in which the length of the median line of white pixels, excluding the 

notch, is calculated. The resulting crack size estimates are then used to parametrize a POF model 
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(Eq. 7) and generate automated and frequent image-based size estimates. Next, the resulting 

estimates are fed into the data fusion and RUL estimation module.  

 

3.1.3 Module for Data Fusion and RUL Estimation 

 

Following generation of the damage size estimates by the time-series analysis and image 

processing modules, a model similar to the LSTM-regression model of time-series analysis 

module (Figure 19) is parameterized and trained for data fusion and final size estimation. Since 

image-based estimates are generally much less frequent in comparison to those of sensor data, 

POF model is utilized in the image processing module as well as time-series analysis module to 

solve the corresponding frequency mismatch problem. Then, the same-frequency size estimates 

produced by the first two modules are fused together using the LSTM-regression model of the 

data fusion and RUL estimation module. Subsequently, the final output of the proposed 

approach, i.e., an online estimation of RUL, is produced.   

Performance of the proposed approach and its final output are evaluated using AE data 

and microscopic images produced in a set of fatigue crack experiments. These experiments are 

summarized next.  

 

3.2 Experimental Set-Up and Data Pre-Processing   

  

  In this section, first an overview of the fatigue crack experiments is provided. These 

fatigue crack experiments were conducted at the University of Maryland’s Center for Risk and 

Reliability as part of another research effort (Yun and Modarres, 2018). The relevant 

specifications and features of those experiments are briefly discussed here. An application of a 
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POF model in time-series analysis and image processing modules of the developed approach is 

discussed next considering the experimental data. Lastly, the data pre-processing for the two 

mentioned modules is explained.  

 

3.2.1 Overview of the Experiments 

   

Five fatigue crack experiments were carried out by Yun (Yun, 2019). In those 

experiments, aluminum alloy 7075-T6 dogbone specimens, with a notch at the center as a stress 

concentrator, were tested under uniaxial cyclic loading. In the experimental set up, two AE 

sensors were symmetrically placed at 23 mm distance from the specimen notch so that two AE 

sensor data streams can be used for signal denoising purposes and increase integrity of extracted 

AE features as a result. Furthermore, the experimental set up is managed to minimize AE noise 

corresponding to vibration in mechanical connections (Yun, 2019; Yun et al., 2018). However, 

only AE features corresponding to one AE sensor are considered here for the final assessment 

of crack length. 

Regarding the loading conditions in Yun’s experiments (Yun, 2019), the maximum load 

for experiments 1 through 5 is reported to be 13 through 17 kN, respectively, with 0.1 stress 

ratio and 5 Hz frequency. Loading was ceased every 1000 cycles for 2 minutes to capture images 

with a frequency of 0.2 Hz. Hence, the time stamp (loading cycle) of all images and sensor 

readings are available and are used in parametrizing POF models to temporally relate 

corresponding sensor- and image-based size estimations. 
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3.2.2 Application of POF Model in the Time-Series and Image Processing Modules 

 

During the fatigue testing, an optical microscope system took images of crack 

initiation/growth area. Corresponding images were used for both manual and automated crack 

length estimation. Limited manual NIH ImageJ measurements are used for POF model 

parametrization in the time series analysis module. Doing so, POF generated length estimates 

are used as ground truth at instances of time with an AE signal available to train the LSTM 

models of time-series analysis and data fusion modules. On the other hand, the above-explained 

procedure is also carried out for the image processing module. However, the POF model is 

parametrized there based on corresponding accurate and automated image-based estimates to 

generate frequent size estimates and facilitate data fusion process. 

 

3.2.3 Data Pre-Processing and Primary Data Analytics 

 

AE features files were obtained for five fatigue crack experiments by Yun (2019). A primary 

exploration of features files revealed that a large portion of the transmitted AE signals 

corresponds to pre-initiation stage of the crack. Furthermore, the literature review revealed that 

the tasks involving crack detection (i.e., crack initiation recognition) and crack length estimation 

are separately investigated in nearly all of the reported works (Bassim et al., 1994; Keshtgar et 

al., 2018; Rabiei and Modarres, 2013; Shateri et al., 2017). Moreover, the AE cumulative count 

and energy have shown promising results in the literate on crack detection and growth estimation 

using AE (Keshtgar et al., 2018; Smith et al., 2018). Consequently, the AE cumulative count 

and energy are used as the input features in our time-series analysis (Nft=2, see section 3.3.1 ) 

where crack detection and length estimation tasks are carried out in a two-fold process: 1- Crack 
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detection: considering a previous work (Keshtgart and Modarres, 2013), abrupt change in the 

AE count per signal is considered for crack initiation detection. It turned out that this value is in 

the range of [65 150] for all of Yun’s experiments where crack initiation is defined to be the 

time at which crack reaches 250 μm of length. Thus, 100 units change in AE count per signal 

was set as the crack initiation threshold. 2- Crack length estimation: assuming an existing crack, 

the two mentioned AE features of the post-initiation set were considered as the input to the time-

series analysis module to estimate the crack length. 

3.1.1.2 Customized LSTM-Based Regression Model for Fatigue Crack Size Estimation 

Table 10- Sample AE data for five experiments when the crack length reaches 999 𝜇𝑚  

Experiment Time (sec) Cum(Count) 
Normalized 

Cum(Count) 
Cum(Energy) 

Normalized 

Cum(Energy) 

1 9,371 434,265 1.40 1.07×109 11.30 

2 2,569 31,403 3.62 1.2×107 2.51 

3 6,510 44,611 1.18 3.1×107 1.10 

4 8,944 30,682 1.54 1.3×107 1.66 

5 4,009 44,985 1.41 2.7×107 1.32 

 

Through a preliminary implementation of the proposed two-fold process, it turned out 

that crack length estimation results were not promising when different experiments are 

considered in the training and testing processes. This observation is logical considering the 

considerable variability in features values corresponding to similar crack length in different 

experiments as it is shown in Table 10 (normalized columns represent original value of the 

corresponding feature divided by the last value of that feature in the pre-initiation stage of the 

crack).  

The significant variability in the AE waveforms and resulting features have also forced 

most of the researchers to study AE-based damage growth trend as opposed to AE-based damage 

size estimation (Yun et al., 2018; Shateri et al., 2017). As such, one LSTM regression model is 
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trained and tested for each of the five experiments of this study in the time-series analysis 

module as well as data fusion module. Normalized cumulative AE count and normalized 

cumulative AE energy are considered as the input of the time-series analysis module in this 

study. 

For a detailed illustration of results and evaluation of the performance of the proposed 

approach, size estimates corresponding to Experiment 1 are presented and comprehensively 

discussed in sections 3.3.1 through 3.3.3.  

 

3.3. Results and Discussion 

 

Among the five experiments in this study, Experiment 1, with the smallest maximum 

loading (13 KN), showed the slowest average growth rate where it took more than 5 hours to 

reach the assumed failure threshold of 1,650 𝜇𝑚 of crack length. As a result, the largest AE 

features file (with more than 150,000 entries) and the largest images set (with more than 1,900 

clear images) were generated in Experiment 1 (Yun, 2019). Table 11 summarizes microscopic 

images of Experiment 1 where seven different crack lengths are recognized. This is important 

for illustration and training purposes as long as only three or four different crack lengths are 

captured in images of other experiments. Hence, results corresponding to Experiment 1, as the 

data and image wealthy experiment, are detailed in sections 3.3.1 through 3.3.3. However, 

corresponding performance metrics of Experiment 1 are also compared with those of 

experiments 2 through 5 in section 3.3.4 to show the accuracy of the developed approach on 

different experiments and data sets. All the results shown in the following sections are obtained 

using a desktop computer with a 64-bit Windows 10 operating system, an Intel® Core™ i7-

8700k CPU @ 3.70 GHz, 32.0 GBs of RAM, and a Nvidia® Titan V graphical processing unit. 
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Moreover, the corresponding code files (see Appendix B) were developed in a TensorFlow® 

environment using Python® programming language.  

 
Table 11- Growth of fatigue crack of Experiment 1 and corresponding manual size measurements  

 

 

Fatigue 

Crack 

Image 

       
Length 0 m  364 m  676 m  926 m  1,234 m  1,496 m  1,538 m  

 

3.3.1 Time-Series Analysis Results 

 

AE Features file of the first sensor of Experiment 1 is considered here for analysis. This 

file consists of 155,650 entries (for AE signals) where about 30,000 signals correspond to pre-

initiation stage of the crack and 50,000 entries correspond to crack lengths beyond a failure 

threshold. Consequently, at first, crack initiation is recognized considering the defined crack 

initiation threshold (i.e., more than 100 units change in count rate per AE signal) and it is 

determined that a crack is initiated after 6,920 seconds with an abrupt change of 135 units in 

AE count per signal (this value is also close to the estimated initiation time (7,320 seconds) 

based on crack images). Once the crack is detected, post-initiation signals are considered to train 

the model of time-series analysis module and make crack length estimations. POF model (Eq. 

7) is parametrized [C=1.160 ×10-5, m=1.282] based on manual and limited NIH ImageJ 

measurements to generate ground truth values.  Moreover, a set of more than 72,200 AE signals 

with a crack length smaller than failure threshold (1,650 𝜇𝑚) is randomly divided into portions 

of size [training: 0.6, cross validation: 0.1, testing: 0.3] to be used for LSTM-regression model 
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training. Through a grid search process on 1,024 possible combinations, optimal structure of 

LSTM model of time-series analysis module with best performance metrics was obtained. In 

the grid search process, Pneg of the RUL loss function (Eq. 8) was set to be 100 while parameters 

a and b were set to 1 and 0.5, respectively. Hyperparameters of the optimal LSTM model, 

namely bi-LSTM_AA, and grid search intervals are presented in Table 12.  

Table 12-Hyperparameters of bi-LSTM_AA  

LSTM Hyperparameter Grid Search Values Value in optimal Structure 

Temporal correlation range (Ntw) [5,10,20,40] 40 

Training steps (Ntr) [100, 200, 300,400] 300 

Batch size (Nb) [20, 64, 128, 256] 256 

Number of nodes (Nn) [32,64,128, 256] 128 

Dropout probability (Pd) [0.3,0.4,0.5,0.6] 0.3 

 

Table 13- LSTM structures with best performance metrics for different Ntw values 

Ntw Ntr Nb Nn Pd Cross RMSE Cross Loss Test RMSE 

5 200 64 256 0.5 0.073 0.550 0.077 

5 200 128 128 0.4 0.096 0.235 0.096 

10 400 128 128 0.3 0.072 0.358 0.070 

10 400 128 32 0.4 0.101 0.874 0.103 

20 200 128 128 0.3 0.090 0.419 0.090 

20 300 128 128 0.3 0.071 1.274 0.074 

40 300 256 128 0.3 0.085 0.088 0.090 

40 400 256 128 0.3 0.100 0.099 0.096 

 
To show the effect of consideration of longer temporal correlations on length (size) 

estimation accuracy, values of hyperparamters of LSTM models with the best performance 

metrics corresponding to different Ntw values are reported in Table 13. Three performance 

metrics (RMSE of cross validation set, RUL loss of cross validation set, and mean RMSE of 

300 random test sets) are presented there. Reported values in Table 13 (with values of 

hyperparamters of bi-LSTM_AA in bold) reveal that, in general, consideration of longer 

temporal correlations (Ntw), larger batches (Nb), and smaller dropout probability (Pd) lead to a 
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better size estimation accuracy. This observation essentially implies that, in accordance to our 

expectation, consideration of longer temporal correlations leads to a better sizing accuracy.   

 

 
 

a)  b)  
Figure 23- Performance of bi-LSTM_AA: a) Predicted vs POF estimated (real) length of crack of Experiment 1 

in mm. (The solid red line is the identity line based on POF estimations); b) RMSE distribution for a set of 300 

test runs  

 

To illustrate the performance of bi-LSTM_AA model, Figure 23a depicts the LSTM vs. 

POF estimated size values based on the AE features file of Experiment 1. Moreover, Figure 23b 

illustrates the testing RMSE corresponding to predicted crack length values for 300 random 

samples of Experiment 1, which show acceptable variability in predictions for different sample 

sets. Finally, it only takes about a second to test a sample of 10,000 AE signals. Hence, online 

size estimation is feasible using the time-series analysis module of our proposed approach. 

 
3.3.2 Image Processing Results 

 

To make image-based automated size estimations on fatigue crack of Experiment 1, a set 

of 1410 training images, 434 validation images, and 833 testing images corresponding to 

experiments 2 to 5 were used to train and test different FCDN structures in a grid search process. 

Considering candidate values of hyperparameters (Table 9), 60 combinations were evaluated in 
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the grid search to find the optimal values of hyperparameters for the FCDN_AA model with the 

best performance metrics and greatest average mean IoU (Eq. 4). Corresponding results are 

reported in Table 14. Reported accuracies represent a true positive probability which is the 

percentage of correctly classified pixels of each class (crack and background) or the entire 

image. Table 14 indicates that the model with the greatest average mean IoU (i.e. FCDN_AA) 

has a relatively simple structure (Ns =1) even though more complex structures were also 

investigated. This observation sounds reasonable considering the bi-class nature of our work 

while more complex structures have shown promising results for cases with more than five 

classes of objects (Jegou et al., 2017).  Another point about the reported values in Table 14 is 

that accuracies are greater than average mean IoU values since misclassified pixels of each class 

are also considered in the denominator of IoU (Eq. 9).  

Segmented images corresponding to sample crack images of Experiment 1 (Table 11) are 

presented in Table 15. Reported length values are produced by the pixel-counter unit of image 

processing module and error values are calculated with respect to corresponding manual NIH 

ImageJ length estimations (Table 11) where a negative error represents underestimation of crack 

length. 

Similar to the time-series analysis module, promising sizing errors and fast testing 

process (it only takes 7 seconds to produce 100 segmented images) makes the proposed image 

processing module a good fit for online and accurate damage size estimation. As such, reported 

length values in Table 15 are used to parameterize POF model of image processing module ([C=

51.198 10− , m=1.284]) so that length estimations with a consistent frequency with those of the 

time-series analysis module are produced to be used for a final and accurate size estimation in 

data fusion and RUL estimation module.  
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Table 14- Hyperparameters and performance metrics of FCDN_AA 

Hyperparameter Optimal Value 

Number of epochs 200 

Number of sampling modules (Ns) 1 

Number of layers per DB (Nl) 4 

Number of feature maps per DB layer (k) 8 

Training IoU 0.918 

Total training accuracy 0.996 

Testing IoU 0.810 

Total testing accuracy 0.984 

Crack testing accuracy 0.946 

Test precision 0.982 

Test recall 0.983 

  

Table 15- Segmented Images and corresponding size estimations of Experiment 1 by FCDN_AA 

 

 

Segmented 

Images 

       

Length 0 m  380 m  647 m  924 m  1185 m  1509 m  1547 m  

Error  0% +4.3% -4.2% -0.2% -3.9% +0.9% +0.6% 

 

 

3.3.3 Data Fusion and RUL Estimation Results 

 

The input of this module includes two crack size estimations of each time instance 

produced by former modules of the proposed approach. Similar to the time-series analysis 

module, the input file of this module is also divided into potions of size [training: 0.6, cross 

validation: 0.1, testing: 0.3] to facilitate training and testing of the proposed bi-directional 

LSTM model of the current module. In training and testing processes, POF generated ground 

truth values of time-series analysis module are again used as ground truth (i.e., real size values). 

Through a grid search process similar to the one in section 3.3.1, the optimal structure of the bi-
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LSTM model of this module, namely bi-LSTM_AAF, is determined and corresponding results 

are reported in Table 16.  

Table 16- Hyperparameters of bi-LSTM_AAF 

LSTM Hyper Parameter Grid Search Values Value in optimal Structure 

Time window size (Ntw) [5,10,20,40] 20 

Training Steps (Ntr) [100, 200, 300,400] 300 

Batch Size (Nb) [20, 64, 128, 256] 20 

Number of Nodes (Nn) [32,64,128, 256] 256 

Dropout Probability (Pd) [0.3,0.4,0.5,0.6] 0.4 

 

 

LSTM structures with best performance metrics for different Ntw values resulted from the 

grid search process are reported in Table 17 where values corresponding to the bi-LSTM_AAF 

are in bold. Similar to time-series analysis module, Table 17 reveals that in general consideration 

of longer temporal correlations leads to a better sizing accuracy.  

Figure 24 depicts performance of the bi-LSTM_AAF model on the test portion of the 

input data of this module. In comparison to the performance of the time-series analysis module, 

a better prediction accuracy is achieved where the sparsity of estimated size values has 

significantly reduced in Figure 24a with respect to Figure 23a. Moreover, mean test RMSE for 

300 random test samples (Figure 24b) has dropped to 0.026 from 0.080 (mean test RMSE in 

Figure 23b). The standard deviation is also considerably improved. This significant 

improvement in performance was expected since data fusion module benefits from frequent 

senor data and high accuracy image-based estimates to produce final frequent and accurate size 

estimates. As such, fused size estimates are favored over the output of both preceding modules. 

Moreover, fast data fusion analysis (0.87 seconds to produce test size estimates corresponding 

to a sample of 10000 AE signals) indicates high feasibility of the proposed approach for online 

damage size estimation. 
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Table 17- Fusion LSTM structures with best performance metrics for different Ntw values 

Ntw Ntr Nb Nn Pd Cross RMSE Cross Loss Test RMSE 

5 300 128 256 0.4 0.048 0.035 0.056 

5 400 128 128 0.4 0.041 0.032 0.040 

10 300 128 128 0.3 0.035 0.032 0.043 

10 400 256 256 0.3 0.030 0.028 0.037 

20 300 128 128 0.3 0.033 0.033 0.032 

20 400 128 256 0.3 0.026 0.025 0.027 

40 300 256 256 0.4 0.028 0.035 0.028 

40 300 128 128 0.4 0.038 0.039 0.037 

 

 

 

a)                                                                                    b)    
Figure 24- Performance of data fusion and RUL estimation module: a) Predicted vs. POF estimated (real) length 

of crack of Experiment 1 in mm. (The solid red line is the identity line based on POF based real size values) b) 

RMSE distribution for 300 test samples 

 

Size estimations resulted from data fusion are used to predict RUL considering the 

assumed failure threshold (1650 𝜇𝑚 of crack length). Figure 25 illustrates predicted RUL values 

vs. Real RUL for Experiment 1. The discontinuity in graph is because of cooling intervals in 

Yun’s experiments (Yun, 2019) where most of clear crack images were taken and only a few 

AE signals were transmitted. As Figure 25 depicts, the accuracy of predicted RUL values is 

acceptable and predicted values are very close to real RUL values at most instances of time. 
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Figure 25- Predicted RUL vs real RUL values for Experiment 1 where real RUL values are calculated based on 

manual NIH ImageJ measurements and POF model. The red line is the real RUL identity line. 

 

3.3.4 Evaluation of Performance for All Five Experiments 

 

As it was discussed in Section 3.2.2 and shown in Table 10, variability in AE waveforms 

and resulted features motivated us to train LSTM models for one single experiment and make 

final size estimates for the same experiment. As such, results corresponding to Experiment 1 

were presented in the previous subsections. Nonetheless, size estimation statistics and errors 

corresponding to predictions made for all experiments are presented in Table 18 to demonstrate 

the accuracy of the proposed approach once applied on different data sets (experiments). Time-

series analysis and fusion tuned models of Section 3.3, namely bi-LSTM_AA and bi-

LSTM_AAF, as well as the tuned image processing model FCDN_AA are used to produce the 

statistics of Table 18. As such, no new grid search was conducted. Errors are calculated for 

produced crack length estimates with respect to POF produced ground truth values based on 

manual NIH ImageJ measurements. Moreover, RMSE is calculated for Modules 1 and 3 using 

300 test samples. As Table 18 indicates, best statistics are not necessarily achieved for 
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Experiment 1. As an example, automated image-based size estimates (Module 2) have a smaller 

error for Experiments 2 and 3 which seems reasonable since images from Experiments 2 through 

5 were included in the training set of FCDN_AA. On the other hand, smaller error values 

corresponding to Modules 1 and 3 are obtained for Experiment 1 as expected. Furthermore, 

Table 18 reveals that Module 3 has better error statistics in comparison to those of Module 1 for 

all experiments in accordance to the discussion in Section 3.3.3 on results of Experiment 1. 

However, the highest size estimation accuracy for Experiments 2 through 5 is achieved for 

image processing module, not the data fusion module. This observation can be due to small size 

features file corresponding to these experiments that provides LSTM models with insufficient 

data for an accurate training process. As an example, the features file of Experiment 4, the 

second largest after Experiment 1, has only around 20,000 entries as opposed to that of 

Experiment 1 with more than 155,000 entries (Section 3.3.1).  

Table 18- Size and error statistics (mean, standard deviation) corresponding to all 5 experiments (in 𝜇𝑚)  

 Experiment 1 2 3 4 5 

 Real Size (929,406) (714,406) (903,422) (862,364) (757,356) 

Module 

1 

(LSTM) 

Size Estimation (914,406) (851,469) (987,403) (908,378) (751,346) 

RMSE  (80,2) (77,2) (59,3) (100,3) (89,2) 

Module 

2 

(FCDN) 

Size Estimation (952,414) (730,412) (922,424) (887,374) (773,368) 

 Absolute Error (22,9) (17,7) (19,9) (26,10) (16,5) 

Module 

3 

(Fusion) 

Size Estimation (937,400) (724,429) (912,424) (884,396) (743,356) 

RMSE  (17,2) (22,4) (31,6) (26,11) (25,3) 

 

Nonetheless, fusion of automated and less frequent image-based estimates with more 

frequent sensor-based estimates has still led to improvements for all experiments in terms of 

producing more frequent size estimates in comparison to automated image-based ones and a 

better accuracy in comparison to sensor-based estimates. Consequently, generic trends which 

were discussed in Section 3.3.3 for Experiment 1 are valid for all five experiments and it can be 
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argued that the proposed approach can be used to predict RUL for different experiments 

subjected to different loading conditions.  

Comparing the obtained performance statistics with those of the existing approaches, it 

turned out that, to the best of our knowledge, the data fusion approach proposed here 

outperforms the existing ones. The reported AE-based approaches for damage sizing using data 

fusion mostly use Bayesian-based techniques and report accuracies less than 80 percent 

(Eleftheroglou et al., 2018; Rabiei and Modarres, 2013). For damage initiation prediction, fully 

adaptive particle filtering is used by Rabiei and Modarres (2018), and the reported accuracy is 

97.5%. However, considering the RMSE values in Table 18, the average accuracy for the 

proposed approach is 97.6% for damage sizing but not recognition of damage initiation only. 

Moreover, while the approach proposed here can be considered computationally complex, 

reported approaches are Bayesian-based and, as a result, are also computationally expensive 

while being very sensitive to manually-chosen initial values of model parameters (Rabiei and 

Modarres, 2018). However, less computationally complicated models may obtain results as 

good as those of the proposed approach. As an example, benefiting from LSTM and FCDN 

models of the first two modules, a linear fusion model for Module 3 of the proposed approach 

achieves an average accuracy almost as good as the Module 3 results reported in Table 18. 

Nonetheless, it is expected that the sizing accuracy corresponding to simple models drops when 

the frequency of high-confidence image-based estimations is decreased or if the data fusion is 

carried out for degradation processes faster than fatigue crack.   
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3.4. Concluding Remarks 

 

This chapter addresses an important gap in the literature on structural damage size and 

RUL estimation. It presents a new deep learning based approach for multi-source data fusion 

for damage size and RUL estimation. The proposed approach considers frequent sensor-based 

damage size estimates which are produced using a LSTM regression model where long temporal 

correlations are considered. Moreover, automated but accurate and less frequent size estimates 

are produced by the proposed approach using a CNN-based semantic image segmentation 

approach, namely FCDN, where a pixel-wise classification task is carried out on images of a 

damaged area. Using POF models, the frequency mismatch problem associated with sensor- and 

image-based size estimates is resolved and corresponding size estimates are fused in another 

LSTM regression model. Fusion resulted damage size estimates are more accurate with respect 

to sensor-based estimates and more frequent with respect to image-based estimates. These size 

estimations are then used to predict the RUL. 

Performance of the proposed approach is evaluated using the AE signals and microscopic 

images corresponding to five fatigue crack experiments under different loading conditions. It is 

shown that the AE features can be used not only for crack detection and crack growth 

assessment, as has been reported in the literature, but also for crack size estimation. Moreover, 

it is shown that computationally reasonable consideration of longer temporal correlations in 

LSTM models leads to a better accuracy of size estimates needed for RUL estimation. 

Furthermore, automated accurate crack size estimates were produced using FCDN model. The 

results show that data fusion provides size estimates with a higher accuracy in comparison to 

sensor-based estimates. Moreover, it is shown that size estimates resulted from data fusion have 
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a better accuracy even in comparison to less frequent automated image-based estimates if 

enough sensor data for an accurate training of LSTM models is available.  

The static and dynamic phases of the segment-level of the constructed PHM approach 

were discussed in the last two chapters. In the next chapter, the approach for the integrated-level 

is detailed where the results of the segment-level analysis are used as the input.   
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Chapter 4: Dynamic and Integrated Health Monitoring of Pipelines 

 

The pipeline’s segment-level analysis, as presented in Chapters 2 and 3, estimates RUL 

for a single pipeline segment based on the damage data gathered using an optimal health 

monitoring layout for the pipeline segment. However, some modifications to the formulated 

optimization problem in section 2.4 can improve the scalability of the proposed segment-level 

layout optimization approach. Doing so, larger pipeline segments, with a larger number of 

localized damages, can be handled in the segment-level analysis. Results from the segment-

level analysis can then be used in the integrated-level analysis to find an optimal set of layouts, 

including configuration of sensors and human inspection areas, for several pipeline segments. 

In obtaining the optimal set of layouts, an overall cost constraint and online damage size (or 

RUL) estimates can be considered. (Note that the frequency of inspection or data sensing is 

assumed as given: recall inputs of the optimization model discussed in Chapter 2.) 

In this chapter, a methodology for solving the problem of integrated and dynamic health 

monitoring of pipelines is proposed. In the proposed methodology, at first, some modifications 

are introduced to improve the scalability of the segment-level approach and facilitate layout 

updates. Then, SDP is utilized to find an optimal set of layouts for pipeline segments of interest. 

As such, the rest of this chapter is organized as follows: Section 4.1 presents a description of 

the problem of integrated and dynamic health monitoring of pipelines. Then, Section 4.2 

provides an explanation of the modifications made to the segment-level optimization 

formulation (section 2.4) and discusses the resulting scalability improvement. Next, Section 4.3 

discusses the process for updating health monitoring layouts based on online damage size 

estimates. Following that, Section 4.4 presents a brief overview of SDP and its application for 
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integrated health monitoring of a pipeline including a case study. Lastly, the chapter is 

completed with some concluding remarks in Section 4.5. 

 

4.1 Problem Description 

 

Let us consider a hypothetical pipeline divided into several segments with uniform 

damage behaviors. In the shadow of online damage size estimates for each individual pipeline 

segment, layouts corresponding to each of the segments need to be updated accordingly while 

different budget allocations are explored (see cost constraint in Figure 3). Each layout consists 

of a configuration of multi-type sensors and human inspection along the pipeline segment of 

interest. Once a layout is updated, the number, location, and type of sensors as well as inspection 

areas may be changed while some sensors are fixed. An overall cost constraint does not allow 

the use of individually optimal layouts. Hence, it is desired to find an optimal set of layouts that 

maximizes average detection probability and average health monitoring utility (including cost) 

for all segments while allocated segment-wise budgets meet the overall cost constraint. We 

propose here to utilize SDP for this matter. However, an improved segment-level layout 

optimization approach, with a better scalability, will be helpful since longer pipeline segments 

can be handled at the segment level and, as a result, it will be needed to consider fewer pipeline 

segments in the SDP roblem. As such, some modifications are made to the layout optimization 

approache of Chapter 2. These modifications are discussed next.   
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4.2 Modified Formulation for Improving Scalability 

 

The layout optimization problem presented in Chapter 2 is formulated as a mixed-integer 

nonlinear problem. The formulation is nonlinear because of the Euclidian distance relation 

between the damage and detection device (Eq. 6.10). This relation also introduces further 

nonlinearity in other equations (e.g., Eq. 6.2) and causes the formulated problem to become NP-

hard  to solve (Salkin, 1975). To get rid of nonlinearies, improve the scalability of the original 

optimization problem, and solve it using less computationally expensive mixed-integer 

programming techniques, it is proposed to do the calculations regarding Eq. 6.10 in step 6 of the 

approach of Figure 8. Specifically, Η , a three-way array, is introduced here for each pipeline 

segment realization. H is a M×N×N zero-one array where M is the number of detection options, 

N is the number of damages in a pipeline realization and the number of nodes in the 

corresponding graph (see Chapter 2). The quantity ηm
i,j denotes an element of Η  and is equal to 

one if damage i is detected by detection method m (if used) at node j. Accordingly, Ηi,j is a vector 

with its (m+1)th element equal to ηm
i,j. Considering this modification, Eqs. 11 and 12 are 

introduced as modified versions of Eqs. 6.2 and 6.10, respectively. The symbol “o” in Eq. 11 

denotes the Hadamard product (see Table 1 for the definition of other symbols): 

( )
QM N

k,m

i i,k i,j

m=0 j=1j 1 k

N
J

j,m i i,j

1

j' {c   log(θ  )} log -d ×1i
= =

 =  +  Λ IDo  (11) 

m

i,j i,j j,m

m

η η id=    (12) 

  

Replacing Eqs. 6.2 and 6.10 of the original formulation (section 2.4) with Eqs. 11 and 

12, a modified optimization formulation is achieved, which can be solved using mixed-integer 

optimization techniques. While, in general, mixed integer optimization problems are also known 
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to be NP-hard (Salkin, 1975), it is shown in the following section that the modified formulation 

provides a better scalability performance in comparison to the original formulation.  

In next few paragraphs, some results are presented to show improvements that can be 

achieved in computerized runtimes when “size” of the problem is increased for the modified 

optimization formulation versus the original one (Chapter 2).  

Recall section 2.5.1 where 46 synthetically generated pipeline realizations were used 

with the modified Wilks method. There were four to fifteen damages in each of those 

realizations.  As shown in Figure 26, solid black circles denote log of the computerized runtime 

(in seconds) vs. number of damages for the optimal layout corresponding to each of those 

pipeline realizations. The runtime values of those 46 realizations correspond to the amount of 

time it takes to solve the layout optimization problem using the original optimization formulation 

from chapter 2. On the other hand, six new realizations are generated, under conditions and 

assumptions similar to those of section 2.5.1, to show the scalability performance of the proposed 

modified formulation (Table 19). The solid red squares in Figure 26 denote the log of 

computerized runtime vs. number of damages for each of the six new realizations using the 

modified formulation. (Results presented in Figure 26 are obtained using the desktop computer 

with specifications described in Section 2.5.1.2) 

Table 19- Specifications of new pipeline realizations for evaluation of scalability 

Realization # 1 2 3 4 5 6 

Number of damages 9 15 27 49 65 73 

Length of segment (m) 50 50 100 200 300 300 
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Figure 26- Scalability of the original and modified formulations for layout optimization 

As the trend lines in Figure 26 show, runtime as a function of the number of damages 

follow an exponential relation for the original optimization formulation (chapter 2) while that 

of the new formulation follows a second order polynomial. Thus, it can be concluded that, 

based on these test results, the modified formulation has a better scalability performance and 

can handle longer and more densely damaged pipeline segments. 

Considering the discussion above, from this point on the modified formulation will be 

used to produce optimal layouts for each pipeline segment of interest.  

 

4.3 Dynamic (Online) Health Monitoring 

 

Chapter 2 presented an approach for static (time-invariant) health monitoring layout 

optimization of pipelines. The work there, in conjunction with the damage size (and RUL) 

estimates obtained using the approach from Chapter 3, provides support for dynamic (i.e., online) 

health monitoring of pipelines. In other words, online damage size estimates can be used to 
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update the configuration (or layout) of damages on the surface of a pipeline and accordingly 

update the corresponding health monitoring layout (Figure 27).  

 

Figure 27- Schematic of layout update process 

In Figure 27, the top left block, tagged “Original”, schematically show an original layout 

where sensors and human inspection areas are placed to gather damage data and estimate RUL. 

It is possible that gathered damage data and RUL estimates for different points of the pipeline 

surface are not consistent with the original assumptions regarding damage behavior. In that case, 

it might be needed to change the number and location of sensors, as well as human inspection, 

in the updated layout (see the “Updated” block in Figure 27) if the goal is to maximize 

confidence in probabilistic detection of damages. (Darker blue areas in the “Updated” block 
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indicate higher confidence in the probabilistic detection of damages.) As an example, while the 

placement of sensors in the original and updated blocks of Figure 27 is the same, the human 

inspection area location is slightly changed in the “Updated” block.  

Some additions to the problem formulation of section 2.4  are proposed here to implement 

this updating process for dynamic health monitoring of pipelines. (Recall the original problem 

formulation provided in section 2.4 and modified in section 4.2) It is proposed here that for each 

detection method type to add one constraint to the modified formulation so that some detection 

methods can be fixed (i.e., during an optimization run), at some graph nodes while the layout is 

updated in view of the online damage size and RUL estimates. Fixed detection methods are 

determined according to the original layout and detection considerations. Eq. 13 formulates the 

constraint for fixing the detection methods where idj,m is the binary indicator of using detection 

method type m at node j (Table 1), SS is the set of nodes with detection method type s fixed, and 

N(SS) is the number of fixed detection methods (nodes). 

j,m=s

j S

id = N(SS)


  (13) 

  Adding Eq. 13 to the modified formulation, an optimal health monitoring layout can be 

obtained considering the online estimated size and location of damages while the detection 

methods of interest are fixed at corresponding nodes. As an example, suppose that we have used 

the approach of Chapter 2 during design of a hypothetical pipeline segment of the example in 

section 2.4. For that pipeline segment, a final static health monitoring layout (Figure 13) is 

obtained considering 46 realizations. Assume that after some elapsed time, damage size 

estimates, which are obtained using the approach of Chapter 3, show that the current 

configuration of damages over the internal surface of the pipeline segment is similar to the 22nd 

realization of the example in Section 2.5 (recall Figure 10). Hence, it is expected that the 
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updated layout is similar to the one shown in Figure 11b (repeated, for convenience, in Figure 

28a). However, according to the online damage size estimates, size of diamonds (representing 

damages with different type-size classes) is bigger for most of the damages in the updated 

realization of damages (Figure 28b). Moreover, the corresponding updated layout should have 

some detection methods fixed (Eq. 13). AE sensors at nodes [4, 5, 8, 10] are fixed in the updated 

layout (Figure 28b), assuming that the placement of AE sensors in the final static layout (Figure 

13) cannot be changed. Hence, the layout of Figure 28b is slightly different from the layout of 

Figure 28a. The goodness of these two layouts is compared against each other in Table 20 with  

results obtained using the desktop computer with specifications described in Section 2.5.1.2. 

 

(a) 

 

(b) 

Figure 28- (a) Original optimal layout corresponding to 22nd realization, (b) Updated layout with AE sensors 

fixed at nodes [4, 5,8,10] 
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Table 20- Comparison of the performance of layouts of Figure 28 

 

Considering the values reported in Table 20, adding some and fixing four nodes (AE 

sensors) in the updated layout (Figure 28b) has surprisingly led to a lower value for redundancy 

of detection in comparison to the original layout (Figure 28a). While the original layout is 

tailored for the exact 22nd realization, the final static layout and corresponding fixed AE sensors 

in the updated layout  (Figure 28b) are obtained based on a set of 46 realizations.As a result, the 

above-mentioned performance deficiency of the updated layout could be expected. Nonetheless, 

a greater density of detection methods in the updated layout has led to a better average LPOND. 

Table 20 also confirms that the modified formulation (used to obtain the updated layout of 

Figure 28b) has a much better scalability performance (or optimization run time) in comparison 

to the original formulation  (used to get the original layout of Figure 28a). 

Note that the frequency (number of times) of inspection is not considered in this research. 

Hence, damages in more than one inspection area might be inspected at different instances of 

time. Nonetheless, any changes regarding inspection location in a health monitoring layout can 

be considered as a guide for further frequency analysis for human inspection planning.  

 

4.4 Stochastic Dynamic Programming (SDP) for Integrated Health Monitoring of Pipelines 

 

SDP (Bellman, 2003) is a te chnique for decision making under uncertainty. SDP is a 

stochastic extension of dynamic programming where a set of states (possible values of design 

variables) is explored at different stages in order to find an optimal policy for a multi-stage 

 

Ave 

(Utility) 

Ave 

(Redun.) 

Ave 

(LPOND) 

Runtime 

(s) 

Original Layout 0.45 1.46 -8.73 68 

Updated Layout  0.37 1.31 -11.48 0.29 
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optimization problem. As such, a brief discussion of multi-stage problems and corresponding 

application of dynamic programming is followed. Next, the difference of dynamic programming 

and SDP, as its extension, is elaborated. Then, the application of SDP for integrated health 

monitoring of pipelines is explained using notional examples.  

 

4.4.1 Dynamic Programming 

 

 Let’s assume we have a system consisting of several sub-units. It is desired to optimize 

an objective function for the entire system while satisyfying a total budget (TB) constraint.  As 

such, one can model the corresponding problem as a distrubuted optimization problem with S 

sub-units (stages), as illustrated in Figure 29a . Optimizing the objective function of such a 

system is equivalent of optimizing sum of objective values for all sub-units (stages) while 

satisfying the TB constraint (Eq. 14). A formulation for this distributed optimization problem is 

provided in Eq. 14, where TB represents the total budget limit, (ri(gi)) is the stage-level objective 

function and gi is the stage-level buget. Note that, in Eq. 14, the right hand side value of the 

stage-level constraints (gi
min and gi

max) is different for each stage.  

Eq. 14 provides an “all-in-one” solution for the distrubted optimization problem at hand 

and can be computationally expensive to solve, especially in the case of discrete optimization 

problems, which are quite popular in operations management (e.g., pipeline PHM).  

To demonstrate the computational complexity ascociated with the ‘all-in-one’ 

formulation for a discrete optimization problem, consider an integer programming optimization 

problem where the stage-level budget gi can only take integer values. As a result, and assuming 

q feasible integer budget values for each stage, it may be necessary to explore qS combinations 

for a problem with S stages to find an optimal solution using the all-in-one formulation.  
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a) 

 

b) 

Figure 29- a) General schematic of a multi-stage optimization problem, b) a sequential solution schematic  of a 

multi-stage optimization problem 

Maxg1,g2…  r1(g1) + r2(g2) + ⋯ + rs(gs) 

                                       s. t. 
g1,  g2, … gs ϵ Z 

g1 + g2 + ⋯ gs ≤ TB 

g1 ≤ g1
max 

−g1 ≤ −g1
min 

g2 ≤ g2
max 

⋮ 

−g𝑠 ≤ −g𝑠
min 

(14)  

 

On the other hand, due to the existence of an overall constraint (TB in Figure 29a) the 

optimization problems for stages cannot be solved separately to parallelize the computations 

and reduce the computational cost. Nonethelss, such a discrete optimization problem can be 
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modeled as a multi-stage one and stage-level optimization problems can be solved consecutively 

to reduce the computational cost while satisfying the TB constraint (Figure 29b). This way, 

considering the formulation provided in Eq. 14, ri(gi) would be the reward (objective) function 

of the stage-level optimization problem for stage i and gi is the stage-level budget, which must 

be within a feasible interval [gi
min, gi

max] for each stage i. Dynamic programming offers a 

computationally manageable way to solve this discerete  and multi-stage optimization problem. 

In dynamic programming (Bellman, 2003), the optimization problem is separately solved 

for each stage, and different stages are related to each other considering the total budget limit 

and through a cumulative state value (i.e., cumulative spent budget) which is fed into a recursive 

reward function (See Section 4.4.1.2 for more details). In this way, the problem is solved 

backward where the “Principle of Optimality” is assumed to hold. The Principle of Optimality 

is a form of a Markov property, where it is assumed that the current state of the system (at the 

current stage) is independent of the preceding states.  Following this, the optimization problem 

of the last stage is solved first in dynamic programming. Each possible reward of the last stage 

problem is then fed into the second to the last stage problem using a recursive reward function. 

At each stage, the total budget constraint determines the feasible paths (i.e., a set of reward and 

state variable values for the last to the current stage) and only feasible paths with a semi-optimal 

reward value are explored (See section 4.4.2.1 for more details). As such, the number of 

combinatorial cases needed to be explored is reduced to q+(S-1)×q2 in comparison to qS 

combinatorial cases of the all-in-one formulation. The process continues in dynamic 

programming until the first stage is reached. Following the solution of the first stage problem, 

the optimal solution is obtained while a computationally tractable number of combinatorial 

cases has been considered and total budget constraint is satisfied.  
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As it was mentioned earlier, SDP is a stochastic extension of dynamic programming. The 

only difference between SDP  and dynamic programming is the consideration of uncertainty in 

calculation of the reward function of each stage (ri(gi)in Eq. 14). In other words, the expected 

reward, corresponding to different scenarios for the stage-level problem, is considered for each 

stage in an SDP problem as opposed to dynamic programming, where a deterministic reward is 

considered.  

The next section details an application of SDP to integrated health monitoring of 

pipelines where three notional examples are considered and demonstrated using SDP. 

 

4.4.2 Integrated Health Monitoring of Pipelines using SDP 

 

It is desired to find an optimal set of health monitoring layouts for a set of pipeline 

segments which are subject to different operational conditions and follow different degradation 

behaviors. As such, the process of finding an optimal set of layouts is called “integrated” health 

monitoring of pipelines. For a hypothetical pipeline, assume that only low and high-risk failure 

scenarios are to be considered. Considering two major elements of the risk associated with an 

event (i.e., the frequency and consequences of an event), it is assumed that the risk of having a 

failure at each pipeline segment is correlated with the density of localized damages. In other 

words, it is assumed that having a failure has the same consequences regardless of the localized 

damage and the frequency of failures is the major affecting factor of the risk of failure. As such, 

high-risk scenarios have a higher density of localized corrosion and require a greater budget if 

achieving a particular detection percentage is intended.  

As it was stated earlier, the goal here is to find an optimal set of health monitoring layouts 

for different segmetns of a pipeline and it is proposed to use SDP for this matter. The key 
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assumption here is that damage behavior (i.e., density, size, and type of localized damages) in 

each segment of the pipeline is independent of all other segments considering reported sparsity 

of localized damages along a pipeline (Lewandowski, 2002; Valor et al., 2015). Hence, the 

principle of optimality is applicable, and an SDP problem can be formulated to find an optimal 

set of health monitoring layouts. As such, details of the formulated SDP problem is provided in 

the following section.  

 

4.4.2.1 Integrated Pipeline Health Monitoring: SDP Problem  

 

For a set of pipeline segments with a pre-specified total budget and detection percentage 

limits, the goal is to find an optimal set of health monitoring layouts. Each optimal layout 

includes a configuration of multi-type sensors and human inspection tools and areas. According 

to the approach of Chapter 2, given a cost/budget constraint for each pipeline segment, an 

optimal layout with a weighted sum combination of average LPoND and health monitoring 

utility (including the utility of cost) can be determined. However, given the online damage size 

estimates, different damage growth and density scenarios (with different risks of failure) can be 

considered for each segment. Moreover, different budget allocations are possible for different 

pipeline segments considering the total budget. Thus, a set of feasible optimal layouts can be 

obtained for each segment considering different damage scenarios and budget allocations.  

For each pipeline segment, feasible optimal layouts are those that meet detection and cost 

constraints. For instance, consider a damage scenario with ten localized damages of different 

sizes along a 50-meter pipeline segment. Assume that the cost metric value of a single AE sensor 

and human inspection is set to be 1 and 10, respectively. With a cost constraint of 12 and a 50% 

minimum detection, a layout with three sensors and one human inspection (cost metric value of: 
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3×1+10=13>12) is not feasible. A layout with two sensors is not feasible either since the 

required minimum detection cannot be achieved. Feasible optimal are fed into the SDP problem 

to find an optimal set of layouts. The stages and states of such an SDP problem should be defined 

first. 

In order to use SDP for integrated pipeline health monitoring, each pipeline segment is 

considered and formulated as a stage of an SDP problem. Additionally, the cumulative 

discretized cost metric of the last to the current segments is considered as the state variable xi at 

stage i. The cost metric ci represents the cost of an optimal layout for the stage i which is obtained 

considering a particular budget allocation gi (i.e., cost constraint) and a detection limit. Feasible 

optimal layouts corresponding to different values of state variable xi are determined and 

generated for each pipeline segment using the approach of Chapter 2. Hence, the reward 

function for each segment (i.e., stage) is the negated objective function of the segment-level 

problem (Eq. 6.1) to be maximized. To account for detection uncertainty and size estimation 

error, damage scenarios of different risk levels are considered for each pipeline segment in the 

proposed SDP formulation. Once all feasible optimal layouts for all segment-risk scenario pairs 

are obtained, an overall cost constraint (TB in Eq. 14) is considered in the SDP problem to find 

an optimal set of layouts with a minimum average LPoND and a maximum average health 

monitoring utility. Admittedly, this optimal set of layouts is consistent with TB.  

i

i i i+1 i i i i
,

R (x ) = max{R (x -c )+r (g )}
ic g

  (15.1) 

ri(gi) = Pl ×rl(gi) + Ph ×rh(gi) (15.2) 

i i i+1 s

i i

x =c +c +...+c

c g
 (15.3) 
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Variables used in the formulated SDP problem are described in Table 21 and the major 

equations for each stage problem are provided in Eqs. 15.1 through 15.3. However, the equations 

needed to solve the SDP problem in a step-by-step manner are presented in the following 

paragraphs, along with their descriptions. The stage recursive reward Ri(xi) (Eq. 15.1) is defined 

considering the recursive relationship given by Eq. 15.2.  Ri(xi) is used to relate different stages 

of an SDP problem, as illustrated in Figure 30, and calculate the reward value corresponding to 

each path.  Given high- and low-risk damage scenarios for each segment, the expected reward 

function ri(gi) is defined in Eq. 15.2 for each stage i. Lastly, state variable xi, corresponding to 

stage i, is defined in Eq. 15.3. 

Table 21- The nomenclature for SDP problem 

 

As mentioned earlier, the calculation process in an SDP problem starts at the last stage 

(segment S). Thus, at first the feasible set of the discrete state variable xs is determined for the 

Symbol Name Description 

ci Cost metric for segment i Cost metric for the optimal layout of segment i given gi 

gi Budget limit for segment i  

i Segment index  

k State value index  

Pl  Low-risk likelihood The associated likelihood of the low-risk damage scenario 

Ph  High-risk likelihood The associated likelihood of the high-risk damage scenario 

ri (gi) Expected reward for segment i  Expected objective value for a given budget limit gi at segment i 

rl(gi) Low-risk reward  Objective value of layout optimization problem (Eq. 6.1) for 

low-risk damage scenario subject to cost constraint gi 

 

rh(gi) High-risk reward Objective value of layout optimization problem (Eq. 6.1) for 

high-risk damage scenario subject to cost constraint gi 

 

Ri(xi) State/reward value for segment i Maximum expected objective value for given state variable xi 

S Number of segments  

TB Total budget limit Budget limit in the SDP problem 

xi State variable for segment i Sum of the cost metrics from current segment i to the last 

segment 
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last segment S (Eq. 15). Next, the stage reward Rs(xs) is determined for feasible values for the 

state variable xs, which is determined considering discrete cost constraint (gs) values, as  is  

indicated in Eq. 16. Note that the sign A in Eq. 16 denotes mathematical correspondence.  

 

min max

s s s s

min min max max

s s s s

s s s s

c x c , x N

c g ,...,c g

R (x ) = r (g )

  

A A  (16) 

Once feasible set of state values xs and corresponding reward values are determined for 

the last segment, the process determines the feasible state values for the second to the last 

segment. For this segment and all other segments i, feasible values of state variable are 

determined by Eq. 17 where TB denotes the overall cost constraint (i.e., total budget).   

 

Figure 30- Schematic of the SDP problem 
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min max

i i i i

s
min min

i j

j=i

s i-1
max max min

i j j

j=i j=1

max max min min

j j j j

x x x , x N

x c

x min( c ,TB c )

c g ,...,c g

  

=

= −



 

A A

 (17) 

 

Next, for each feasible value of the state variable xi, all possible paths from the state xi 

(at stage i) to the state xi+1 at next stage i+1 should be listed. Considering detection limits, there 

is an allowable range for cost constraint gi for each segment i and the following constraint (Eq. 

18) must be met in solution of the SDP problem. 

min max

i i i+1 ig x -x g   (18) 

Once all possible paths are listed for each feasible state value at stage i, the recursive 

reward value, is calculated (Eq. 15.1). The maximum of recursive reward is noted as the state 

value. As such, the path with the state value (i.e., maximum reward value) and the corresponding 

path are stored for each value of state variable.  

For all paths, i.e., different combinations of state values and stages, the recursive reward 

value Ri(xi) can be calculated through the process discussed above. Once the first segment is 

reached, all reward values are compared and the optimal value for the SDP will be attained (Eq. 

19). 

1

SDP 1 1
x

Obj = max (R (x ))  (19) 

Since all paths for different state values at all stages are stored, corresponding segment- 

wise cost constraints and state values (i.e., cumulative cost metrics) of the optimal path can be 
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easily found. Some notional examples are discussed in the following section for a better and 

more descriptive illustration of the application of SDP for integrated pipeline health monitoing. 

 

4.4.2.2 Illustrative Case Study 

 

A short case study is presented in this section. Three 50-meter segments of a locally 

corroded pipeline with a one-meter radius are considered here. All damage data are synthetically 

generated following the approach of section 2.5. It is assumed that these pipeline segments are 

subjected to low and high-risk scenarios, with the likelihood of occurrence of 0.4 and 0.6, 

respectively. The segments are considered as the three stages of an SDP problem. Similar to 

section 2.5, it is assumed that health monitoring layouts can include AE sensors (cost metric = 

1) as well as human inspection with an ultrasonic tool (cost metric = 10). Feasible layouts are 

considered to be those with at least 30% detection and a smaller-than-one average detection 

redundancy for high-risk scenarios. High- and low-risk scenarios for all three segments, and 

corresponding upper and lower cost constraints are presented in Table 22.  It is  assumed that 

damage configuration in each low-risk scenario is a subset of high-risk scenario of the same 

segment. Moreover, cost constraints are determined considering the above-mentioned detection 

limits and number of damages in low and high-risk scenarios.    

 In this case study, three problems with different overall cost constraint  values are solved: 

TB = 13 (minimum detection); TB = 27 (moderate detection), and TB = 37 (maximum 

Table 22- Number of damages and budget limits for each stage of the SDP problem 

Segment # (𝒊) Low risk Scenario High Risk Scenario Cost Constraint  

1 10 damages 15 damages 15 g 15   

2 7 damages 9 damages 23 g 9   

3 9 damages 13 damages 35 g 13   
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redundancy). Let’s start with the problem with TB = 27 as an example and discuss the results 

corresponding to all three cases in the next section. It is assumed that the weight of the objective 

function of layout optimization problem (wobj in Eq. 6.1) is set to be 0.5. The procedure to 

determine cost metric of optimal layouts considering cost/budget limits of each segment is 

described as follows. 

First, the expected reward values (ri(gi)) are obtained for each segment using the approach 

of Chapter 2  and given the corresponding cost constraints. The process starts with segment 3. 

As Table 22 indicates, segment 3 is considered in the last stage of the SDP problem.  Optimal 

layouts corresponding to all integer values of g3 in the interval [5 13] are obtained. Since budget 

limit values are determined considering detection constraints, the constraint on the value of 

LPOND (Eq. 6.21) is relaxed. As a result, the budget limit constraint will remain active in all 

the problems (g3 = c3) and the state variable x3 can have any integer value in the interval [5 13]. 

Considering the feasible values of x3, feasible reward values (R3(x3)) are determined. 

3 3 3

3 3 3 3

N, 5 13

R (x ) = r (x )

x c c=   
 

Following the same procedure and considering Eq. 17, the feasible sets of the state 

variable at the other two segments are then calculated: 

2 3 2

2 2

1 3 2 1

1 2

x = c + c

x N, 8 x 22

x = c + c + c

N, 13 x 27x

  

  

 

Figure 31 shows the stages and states of the formulated SDP problem. Once the feasible 

sets of the state variable are determined for all the stages, corresponding state values (i.e., 

maximum recursive reward) at each stage are calculated. To do that, the possible paths from 

current stage to the next stage are listed considering different values of state variable xi. For 
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example, assume that x2 =15 (Figure 32). For the stage 2 problem, c2 can have any value in the 

range [3, 9] considering lower and upper cost constraints and Eq. 18. Thus, the possible paths 

(x2, x3) would be: [(15, 6), (15, 7), … ,(15, 12)]. All these paths are illustrated in Figure 32. 

Among all the feasible paths with x2=15, the path with the maximum reward (R2(15)) is 

determined using Eq. 15.1. It turned out that the path (x2, x3) = (15, 8) has the greatest reward 

value (Figure 32). Thus, the state value R2(15) is 1.57.  

The above procedure has been used to determine state values for segments 1 and 2 

considering feasible values of state variable xi. Thus, the optimal solution for the case with TB 

= 27 is obtained to be: state variables (x1,x2,x3) = (27,19,12) ; cost metrics (c1,c2,c3) = (8,7,12). 

This result and those corresponding to other values of TB are elaborated and discussed in the 

next section.  

 

 

Figure 31- States and stages for the SDP problem for pipeline health monitoring 
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4.4.2.3 Results and Discussion 

 

The formulated SDP problem is solved using a MATLAB® 2016 code (see Appendix 

C), where for each stage, different paths and their corresponding expected reward values are 

calculated given the upper- and lower-cost constraints at each segment. Following the same 

problem setup as described in the previous section, the SDP is solved for the overall cost 

constraint (TB) equal to 13 and 37 in addition to 27. The case TB = 13 is chosen considering 

the sum of the minimum required budget for all three stages to meet the minimum detection 

limit (30% detection). Additionally, TB = 37 corresponds to the sum of upper cost constraints 

corresponding to the case with average detection redundancy of one for all three segments. 

Finally, TB = 27 is considered as an in-between value for overall cost constraint which allows 

having a human inspection for two segments at most while assigning sensors to the layouts of 

all three segments.  

For the three different values of TB, different objective function weight (wobj) values 

(i.e., 0.2, 0.4, 0.5, 0.7, and 0.9) are considered and corresponding Pareto results are attained 

 

Figure 32- Possible paths for state x2 = 15 and the optimal path 
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(Table 23). It can be observed in Table 23 that for TB = 13, the minimum required number of 

the sensors are assigned to the layouts of all three segment and results are not changed with the 

weight as long as the optimal solution coincides with the only feasible design point.  

For two other cases (TB= 27, 37), results change with the wobj. As an example, let us 

consider the case with TB =37. For two cases with wobj equal to 0.2 and 0.7, LPOND and cost 

metric values corresponding to layouts of the optimal set corresponding to TB =37 are presented 

in Table 24. One can see that when the weight is increased to 0.7, as a result, LPOND is favored 

over utility (which considers cost). Thus, the latter optimal set of layouts (corresponding to wobj 

= 0.7) is found to be one with better average LPoND value and higher cost. In this set of layouts, 

the layout for 1st segment might be considered as a sub-optimal answer since the health 

monitoring cost is increased unnecessarily. However, this observation can be easily justified 

since the optimal set of layouts, with a maximum average utility and a minimum average 

LPoND, can include individually sub-optimal layouts of different segments.   

 

Table 23: Optimal layout for each segment for different LPOND weights (0.2, 0.4, 0.5, 0.7 and 0.9) and total 

budget limit of (13, 27, 37). 

Total 

Budget 
13 27 37 

wobj 0.2 0.4 0.5 0.7 0.9 0.2 0.4 0.5 0.7 0.9 0.2 0.4 

1st segment 5 5 5 5 5 13 9 8 8 10 13 15 

2nd  

segment 
3 3 3 3 3 7 7 7 7 8  9 9 

3rd   

segment 
5 5 5 5 5 7 11 12 12 9 11 13 

Obj. value 1.26 1.08 0.96 0.84 0.81 2.37 2.25 2.37 2.46 2.58 2.61 2.64 

 

Total Budget 37 

wobj 0.5 0.7                                                  0.9 

1st segment 15 15  [10, 11,12,13,14]             [10, 11,12,13,14]                  [10, 11,12,13,14] 

2nd segment 9 9              9                                      9                                             9 

3rd segment 12 13             11                                    12                                           13 

Objective  value 2.67 2.82                                                  2.64 
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There is one other observation from Table 23 which is worth discussing here. Note the 

unexpected set of results for the case with TB = 37 and wobj = 0.9. This observation can be 

justified in the shadow of definition of the LPOND and utility in the problem formulation of 

section 2.4. There, ME is one of the elements considered in the definition of utility. On the other 

hand, POD is considered in LPOND. In the particular case at hand, AE sensors have a higher 

ME and smaller POD values in comparison to human inspection. Thus, even though adding 

sensors provides us with a slightly greater detection percentage, significantly high measurement 

error cancels out corresponding improvements in the objective function resulted from a better 

average LPOND. Thus, the objective function value remains the same for several solutions with 

different numbers of sensors. 

 

4.5 Concluding Remarks 

 

An extension to the formulation from chapter 2 is considered here. This extension 

addressed the problem of dynamic and integrated health monitoring of pipelines. The original 

approach (Chapter 2) is developed to work for a single pipeline segment. However, the  extended 

approach allows us to do integrated health monitoring for several segments of a pipeline using 

SDP. In the extended approach, the problem formulation of the original approach is first 

modified so that the problem can be solved using mixed-integer programming. Hence, as it is 

Table 24: LPOND for the case with budget limit =37 

Total Budget  37  

wobj 0.2 0.7 

 LPOND Cost  LPOND Cost 

1st  segment -13.47 13 -13.89 15 

2nd  segment -9.95 9 -10.25 9 

3rd  segment -12.90 11 -13.93 13 

Average -12.10 11 -12.35 12.33 
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shown, the modified approach has better scalability in comparison to the original approach. 

Additionally, a set of constraints are added to the modified formulation so that the optimal health 

monitoring layout of each segment can be updated given online damage size estimates and with 

some detection methods fixed. Following that, the extended approach utilizes SDP to make 

optimal decisions for dynamic and integrated health monitoring of pipelines.  

In order to utilize SDP, two damage scenarios are generated for each pipeline segment 

and corresponding objective values are obtained to form the feasible region of the SDP problem. 

In the proposed SDP approach, the layouts of each segment of a pipeline are considered to find 

sn optimal set of layouts considering the detection limits and the limited total budget. In order 

to evaluate the performance of the extended approach, different budget allocations are 

considered in a case study, where results are obtained for different objective function weight 

values to account for the subjective importance of the utility and LPoND as the elements of the 

objective function of the original approach (Chapter 2). Additionally, it is shown that the optimal 

set of layouts, with maximum average utility and minimum average LPoND, may include 

individually sub-optimal layouts. 

A summary of the dissertation delivered contributions, and some future directions are 

presented in the next chapter.  
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Chapter 5: Conclusions, Contributions, and Potential Future Directions 

An approach for dynamic and integrated PHM of locally damaged pipelines is developed 

in this research. This approach has two main levels: segment and integrated. The segment-level 

includes two phases, static and dynamic. Moreover, it assumes in the segment-level analysis 

that a segment has near identical spatial, geometric, and material properties as well as 

operational conditions. Therefore, damages are expected to be distributed uniformly along a 

segment. The second level (integrated-level) is for dynamic and integrated health monitoring of 

the entire pipelines, where a system of pipeline segments is considered. A summary of the 

approach of each of these levels is provided in the next section. Following that, major 

contributions of this research are discussed in Section 5.2. Lastly, some potential directions for 

future research projects are presented in Section 5.3 considering the limitations of the presented 

work in this dissertation. 

 

5.1 Summary of the Approaches  

 

A summary of each of the approaches developed for the levels and phases of the proposed 

PHM approach is followed.  

 

5.1.1 Summary of the Approaches for the Static and Dynamic Phases of the Segment-

Level Analysis 

 

The segment-level approach consists of two phases; a static and a dynamic phase. In the 

static phase, an optimal health monitoring layout for a pipeline segment is obtained to gather 

damage-related data. The online network of sensors and offline human inspection methods, as 

popular data gathering schemes (or damage detection methods), are considered there. The 
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corresponding static phase approach has several important features. (i) It uses three metrics 

(namely, POD, IP, and ME) for probabilistic detection of damages with different levels of 

severity. (ii) It is based on an optimization objective function that uses a weighted sum of two 

functions; a health monitoring utility function and a function for probabilistic detection of 

damages. By changing the weights for these functions, the analysis explores different optimized 

layout solutions, including tradeoffs between the two functions.  (iii) It considers a significant 

number of key attributes of the detection methods, such as detection cost, coverage capability, 

data acquisition frequency, and measurement error. (iv) It uses probabilistic sampling methods 

for simulating and random placing of localized damages along a pipeline surface considering 

relevant available data. In this way, not only the expected value of damage specifications (e.g., 

damage location and size) can be considered, but also their variations can be accounted for. 

Applications of the approach for optimal and static health monitoring of a pipeline segment are 

given and discussed in Chapter 2. Considering different levels of severity for different localized 

damages, it is shown that the developed approach provides a better solution for segment-level 

health monitoring of pipelines in comparison to available approaches that rely on deterministic 

damage data and/or only consider one detection method. However, the static phase approach is 

tailored for uniform localized degradation. Hence, modifications may be needed if PHM of 

pipeline segments with non-uniform localized degradation is intended.  

The second phase of the segment-level approach is the dynamic phase. This phase mostly 

includes data fusion for damage size and RUL estimation. In the approach of this phase, LSTM- 

regression models and a CNN semantic image segmentation method are used to construct 

automated damage size estimates based on sensor data and images of the damaged area. Final 

damage size estimates are obtained through fusing sensor- and image-based size estimates. An 
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online RUL estimation of the structure is then obtained accordingly. This approach is detailed 

in Chapter 3, and its performance is evaluated using the AE signals and microscopic images 

corresponding to five fatigue crack experiments under different loading conditions. It is shown 

there that the AE features can be used not only for crack detection and crack growth assessment, 

as has been reported in the literature, but also for crack size estimation. Moreover, it is shown 

that computationally reasonable consideration of longer temporal correlations in LSTM models 

leads to better accuracy of damage sizing needed for RUL estimation. Furthermore, automated 

and accurate crack size estimates were produced using CNN-based image processing. The 

results presented in Chapter 3 show that data fusion provides size estimates with higher accuracy 

in comparison to sensor-based estimates and a better accuracy in comparison to less frequent 

automated image-based estimates, if enough sensor data for better training of LSTM models are 

available. It is worth mentioning that it turned out in the training process that, as opposed to 

multi-object segmentation tasks, FCDNs with a relatively simple structure show promising 

results once used for damage sizing (where damage and background are the only two classes of 

objects). Moreover, it was determined that one LSTM model should be trained for each 

experiment with AE sensor data to achieve higher damage sizing accuracy.  

 

5.1.2 Summary of the Integrated-Level Approach 

 

The second level of the developed PHM approach (integrated-level) is for dynamic and 

integrated health monitoring of pipelines. The corresponding approach and results were 

elaborated and discussed in Chapter 4, where the problem formulation of the original approach 

(Chapter 2) is first modified to improve the scalability. Additionally, a set of constraints are 

added to the modified formulation so that the optimal health monitoring layout of each segment 
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can be updated, given online damage size estimates and some detection methods fixed. In the 

integrated-level approach, at first online damage size and RUL estimates, attained using the 

approach of Chapter 3, are fed into the modified optimization formulation. As such, the primary 

layouts, obtained using the static segment-level approach (Chapter 2), are updated while a set 

of detection methods are fixed, and different cost constraints are explored. 

Next, a set of optimal health monitoring layouts is obtained for each pipeline segment. 

These layouts are then fed into the formulated SDP problem to find an optimal set of layouts for 

pipeline segments of interest, considering an overall cost constraint. In the formulated SDP 

problem, it is assumed that high- and low- risk failure scenarios are likely. Moreover, a 

cumulative health monitoring cost metric is considered as the state variable. The average 

probability of detection of all damages over all segments of interest and average utility are 

considered in the state value (i.e., objective function) of the SDP problem, where expected 

reward corresponding to low- and high- risk scenarios is considered. A case study, including 

three notional examples, is used there to demonstrate the performance of the developed 

approach. Pareto solutions corresponding to different trade-offs between two functions of the 

objective function are explored there. It is shown that the optimal set of layouts may include 

individually sub-optimal layouts. It is also demonstrated that finding an optimal health 

monitoring layout for a long pipeline segment, with hundreds of localized damages, can be 

computationally expensive. However, finding an optimal set of layouts for an equivalent system 

of pipeline segments is shown to be computationally manageable, once pipeline segmentation 

is utilized in conjunction with SDP. 

 

 



 

 

110 
Amin Aria. All rights reserved. 2020                                        PhD dissertation, Reliability Engineering 

 

5.2 Research Contributions  

 

Considering the gaps in the existing literature, as discussed in Chapter 1, and the 

developed PHM approach, as discussed in Chapters 2 to 4, the followings are cited as the 

contributions of this dissertation: 

 

• The majority of pipeline health monitoring approaches only consider one 

detection method (section 1.1.1). However, this work considers a combination of 

multi-type sensors network, and human. Doing so, a more cost-effective and 

reliable health monitoring of locally damaged pipelines is achieved. Moreover, in 

the developed approach, a larger number of key attributes from different detection 

methods are accounted for. Additionally, this research considers both cost and 

detection probability and optimizes them concurrently, as opposed to the 

literature where PHM approaches typically only consider either health monitoring 

cost or probabilistic detection of damage (section 1.1.4). 

• The majority of reported pipeline PHM approaches consider binary detection 

methods (section 1.1.2). However, this research integrates three probabilistic 

measures (namely POD, IP, and ME), along with their dependencies on damage 

type, damage size, and damage-to-sensor distance. In this way, the resulting 

health monitoring layouts will be consistent with the severity and risk of failure 

corresponding to different localized damages with different sizes.  
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• Pipeline PHM analyses used deterministic data regarding location, type, and size 

of damages (Section 1.1.3). The proposed PHM approach leverages probabilistic 

and limited size sampling to simulate and place different damage on a pipeline. 

As such, it is well-suited for applications in the early stages of pipeline design.   

• While the literature lacks approaches for the fusion of heterogeneous sensor data 

and inspection information to estimate damage size and RUL (section 1.1.5), the 

developed PHM approach considers multi-source data fusion in a hybrid context, 

where online, frequent, and indirect sensor data along with periodic, less frequent 

yet accurate inspection images are considered together with a POF model. The 

outcome of the proposed fusion approach is a more accurate, frequent and online 

RUL estimation. 

• Sensor-based damage size estimation approaches do not consider long temporal 

correlations due to expensive computations (section 1.1.6). The proposed hybrid 

fusion approach advances this shortcoming by benefiting from a POF model and 

utilizing an LSTM-regression model that provides a computationally tractable 

solution with long temporal correlations, as opposed to immediate correlations, 

considered for online estimation of damage size based on sensors’ time-series 

data (e.g., AE sensors’ signals).  
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• Past research has considered images for damage localization, but not for damage 

sizing (section 1.1.7). This research developed a customized FCDN model, which 

has a structure with as many layers and convolution kernels as needed for damage 

sizing tasks. Then, the customized FCDN model is used in the proposed fusion 

approach for automated and online estimation of damage size using images of the 

damaged area. 

• The litearature lacks approaches with propor scalability to be used for optimal 

health monitoring of long and densly damaged pipeline segments (section 1.1.8). 

However, this research provides a computationally tractable solution for 

integrated health monitoring of a pipeline. The corresponding solution utilizes 

SDP, along with the modified segment-level approach with a better scalability, to 

find an optimal set of health monitoring layouts corresponding to a set of pipeline 

segments, while detection limits and an overall cost constraint are considered. 

 

5.3 Potential Future Research 

 

Possible extensions of the work reported in this dissertation, considering the limiations 

of the presetend work, are listed below.  

 

1- The approach for segment-level health monitoring layout design optimization was 

originally (Chapter 2) formulated as a mixed-integer nonlinear problem. The 

corresponding formulation was modified in Chapter 4 to improve the scalability through 

solving the problem using mixed-integer optimization techniques. Nonetheless, even 

mixed-integer problems are known to be NP-hard. Thus, new research to modify the 
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developed approach, so that it can be solved using less computationally expensive 

techniques, is desirable. As a result, the layout design problem will not be NP-hard 

anymore.  

 

2- In the approach for online damage size and RUL estimation (Chapter 3), LSTM 

models for AE-based time-series analysis should be retrained if the approach is used for 

different experiments or type of damage. This limitation is justified to a reasonable extent 

considering the significant variability in AE waveforms upon any changes in the 

operational environment. Nonetheless, an extension of the presented approach would be 

desirable to address this issue through the usage of deep learning for automated AE 

feature extraction for damage size and RUL estimation.  

 

3- LSTM and FCDN can be considered as computationally complex models. The trade 

off between computational complexity and performance of the models can be explored 

to see if acceptable results can be obtained using less complicated models. This 

exploration is not considered in this research and can be the topic of another research 

effort. The results of the trade off exploration can then be compared to those obtained in 

this research to determine the optimal model with an acceptable performance. 

 

4- Damage growth behavior is not considered in the proposed optimization models for 

layout design in Chapter 2 and integrated health monitoring in Chapter 4.  Thus, while 

the developed approach for dynamic and integrated PHM of locally damaged pipelines 

considers online damage size estimates to update health monitoring layouts accordingly, 
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it doesn’t consider inspection time as well as data gathering frequency. As an extension 

to the current research, future research should consider damage growth behavior in 

optimization modeling. Doing so, an approach for optimal and online PHM of pipelines 

can be achieved at where inspection schedule and data acquisition frequency are also 

optimized.  

 

5- The approach for integrated PHM of pipelines, discussed in Chapter 4, considers two 

failure risk scenarios for each pipeline segment to account for failure uncertainties. 

However, there are uncertainties associated with probabilistic detection and sizing of 

damages which are not considered in the segment-level approach. Moreover, RUL 

estimation may also involve uncertainties. An extension of the approach of this 

dissertation can use probabilistic optimization techniques to take those uncertainties into 

account in order to achieve a more reliable PHM of pipelines. 

 

6- The approach presented in this dissertation considers uncertainties associated with 

stochastic localized damages and their detection by using probabilistic sampling. Thus, 

the final layout of each segment is obtained in the presented approach while optimal 

layouts, corresponding to different realizations of damages, are considered. However, 

damage and detection uncertainties can be directly considered in the optimization. As 

such, in future research, the problem of pipeline health monitoring can be formulated as 

a reliability-based design optimization problem. In doing so, health monitoring layout 

design will be optimized while detection uncertainties are modeled as probabilistic 

design constraints. 
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7- There are numerous sensor types and inspection tools that can be used for PHM of 

pipelines. However, simultaneous consideration of all of them in an optimization 

problem may lead to computation intractability. Rating and screening different types of 

sensors and inspection tools for pipeline health monitoring can be a topic of further 

research. In such a research, sensors and inspection tools can be ranked considering their 

key features, e.g., cost, data gathering frequency, and precision, in addition to 

degradation behavior, pipeline specifications, and degradation likelihood over the 

pipeline surface. Results of such a screening process can be used to select a set of 

candidate types of sensors and inspection tools to be considered in the layout design 

optimization problem.  

 

8- The developed approach for dynamic and integrated PHM of pipelines tries to provide 

an optimal allocation of detection methods, while all damages with different levels of 

severity, located at different pipeline segments, are considered. As such, average 

probabilistic detection and average utility are optimized in finding optimal layouts using 

the developed approach. However, this problem can also be solved using max-min 

optimization techniques. Thus, future research may consider different possible problem 

formulations where max-min optimization techniques are used to solve the same problem 

for the segment- and integrated-level health monitoring of pipelines. Corresponding 

results, then, can be compared with those of this dissertation to evaluate the performance 

of each of the approaches.  
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Appendix A 

 

This is an instruction manual for SHM2Opt package. This package is used to obtain 

optimal health monitoring layouts for locally damaged pipelines. The output of this package is 

a two-dimensional layout, including configuration of sensor of different types and human 

inspection along the exterior surface of a pipeline. The code package can be found at 

https://github.com/aminaria/SHM2Opt . To obtain results using this package, please follow the 

steps of the illustrative example described below. 

1- Run Damage Generator_AA_UMD.R 

Make any changes in the input section, if necessary.   

 

2- The output is the Wilks.txt file stored in the folder at where the code file is. Open Wilks.txt  

and choose the sample you want. 

https://github.com/aminaria/SHM2Opt
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3- Copy the sample under study in the corresponding area in Optimizer-

Feeder_AA_UMD.xlsx  

 

In the meanwhile, open Matrix Developer_AA_UMD.R, assign values to ‘first’ and ‘last’ 

variables to choose the sample under study (outloc is the table corresponding to Wilks.txt). Once 

values are assigned, run only the code that is shown in the figure below.  
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4- Make any changes necessary in the input section of Matrix Developer_AA_UMD.R and run 

the remaining part of the Matrix Developer_AA_UMD.R (starting from input section). 

 

5- From the ‘output’ folder at the code file directory, copy the output matrices (ME1,ME2, 

LPODT1, LPODT2,DeltaAE,DeltaHI, and LPOND) to the corresponding areas in  Optimizer-

Feeder_AA_UMD.xlsx.  Note that GAMS is sensitive to rows and columns indices. So make 

sure that those indices are numbers in ascending order (as you see in the figure below).  
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6- Open Clustering-Unit_AA_UMD.ipynb  

Use Clustering Feeder in Optimizer-Feeder_AA_UMD.xlsx to form the matrix of damages 

location.  

 

Copy this matrix and use it as the input of Clustering-Unit_AA_UMD.ipynb and run first two 

boxes. Make sure that the default perimeter value, as well as “x” and “t” values, are consistent 

with the sample you are using. 
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Next, define cannot-link damages (if any), run the output box, and obtain the output.  

 

Considering the output, clusters are like this: \1,2,3,4,5\6,7,8,9\10,11\ 

7- Define each cluster in the cluster box of Optimizer-Feeder_AA_UMD.xlsx 

  



 

 

121 
Amin Aria. All rights reserved. 2020                                        PhD dissertation, Reliability Engineering 

 

8- Open 2D Optimizer_AA_UMD.gms 

Follow all the hints and instructions in the section:  

*********INPUTs that their change, or relaxation, changes the final data**************** 

 

Input the corresponding values from Optimizer-Feeder_AA_UMD.xlsx and to the appropriate 

positions in the input section of the GAMS file. Moreover, copy the excel file in GAMS 

directory (GAMS makes a directory in your (user) documents folder in Windows®). Make sure 

that the structure of the feeder excel file is kept as is since GAMS will read tables from that file 

and location of cells matter.  

For example, for LPODT matrices:  

$CALL GDXXRW.EXE Optimizer-Feeder_AA_UMD.xlsx trace=3 Squeeze=N par=LPoDT1 

rng=Sheet1!AJ59  maxDupeErrors=1000000  

If the yellow cell of LPODT table in the excel file is not located at AJ59, you will get an 

error or illogical results! 

 

9- Run 2D Optimizer_AA_UMD.gms 

In the display sub-section of output file (2D Optimizer_AA_UMD.lst), which will be opened 

once compilation is finished, you see what we have in the screenshot followed. 
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 To summarize it, for the sample under study with 11 damages of different size classes, the 

optimal solution is: 

5 AE sensors at nodes 2,4,5,9, and 10 while human inspection is assigned to node 8. Using this 

layout, all the damages are detected with average redundancy of 0.909. Additionally, geometric 

mean of probability of missing a damage is calculated to be e-8.391.  
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Appendix B 

 

This is an instruction manual for the code packages used for sensor- and image-based 

damage size estimation in Chapter 5.  In this appendix, at first the instruction manual for the 

package FuseLSTM_AA (for damage size estimation based on sensor data) is described. Next, 

the instruction manual for biSS_AA package (for damage size estimation based on images) is 

elaborated.  

Package “FuseLSTM_AA” 

The package FuseLSTM_AA, available at https://github.com/aminaria/FuseLSTM_AA, 

uses an LSTM regression model to do time-series analysis and estimate crack length (or variable 

of interest) based on features of data corresponding to a particular time window prior to the time 

of interest. This package can also be used to fuse different damage size estimates to obtain a 

more accurate final estimate.  

To use this FuseLSTM_AA package, follow the steps listed below: 

1- To do a grid search at first, run "BiLSTM_AA_GS.py". Determine: 

a) Grid search intervals 

b) The input file (e.g., Exp 18.csv at the link above) 

c) Features (columns) to be considered, and  

d) The label column (e.g., size column in the case of crack size estimation) 

 in the section “Grid search intervals” and “Input files”, as shown in the next figure. 

 

https://github.com/aminaria/FuseLSTM_AA
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2- Considering the text output file of the grid search (e.g., see the figure below), find the best 

model based on reported performance metric and use "BiLSTM_AA.py" to train that model.  
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For the model with the best performance metrics, determine input variables and input file in the 

"Input variables/paramters" section of the "BiLSTM_AA.py" code and run the file.  
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3- Use "BiLSTM_AA_predict.py" to predict the value of interest (e.g., size). The output will be 

a csv file including input features and the predicted value (e.g., final damage size estimate) 

 

Example of final output:  
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Package “biSS_AA” 

The package biSS_AA is a a modification of George Seif semantic segmentation 

package (https://github.com/GeorgeSeif/Semantic-Segmentation-Suite).  

The package biSS_AA can be found at https://github.com/aminaria/bi-class-Semantic-

Segmentation-in-Python-Tensor-Flow-. To use this modified package, the user may start with 

ReadME file of the original package and then continue with current instructions manual. This 

modified package is different from the original package is the following ways:  

1- The current package is customized for bi-class segmentation with an example on 

images of a cracked area (two classes: crack and background).  

 

2- The current package is customized to handle images with significant class imbalnace 

in the pixels.  

 

3- A new model (FC_Dense_Net_AA) is added in ‘FC_DenseNet_Tiramisu.py’ code in 

the models folder. The newly introduced model has a simpler structure in comparison to the 

original 100 layer Tiramisu model. The new model is specifically fabricated for the relatively 

simple case of bi-class semantic segmentation. Hence, it achieves accurate results for the cases 

with two classes of objects. Nonetheless, it is possible that it doesn’t show promising results 

when used for cases with more than 5 classes of objects. 

 

4- Grid search files (with "_GS_AA" suffix in their name) are added to do a grid search 

regarding the newly introduced model (FC_DenseNet_AA) or any other model. 

https://github.com/GeorgeSeif/Semantic-Segmentation-Suite
https://github.com/aminaria/bi-class-Semantic-Segmentation-in-Python-Tensor-Flow-
https://github.com/aminaria/bi-class-Semantic-Segmentation-in-Python-Tensor-Flow-
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5- In the case of grid search, the user has to determine the search intervals (discrete 

values) corresponding to each of the hyperparameters of the interest. 

 

6- In the case of grid search, checkpoints corresponding to each of the explored models 

are saved in the checkpoints folder. 
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Appendix C 

 

As it is mentioned in Chapter 6, the developed Meta planning approach for health 

monitoring of pipelines uses the package code of Appendix A, i.e., SHM2Opt, to produce per 

segment optimal layouts. For each optimal layout, the objective function value, cost metric, and 

budget limit are stored to be passed to the SDP problem. The following MATLAB® code is 

used to solve the SDP problem. The output of this code is the optimal set of layouts 

corresponding to a set of pipeline segments subject to low and high-risk damage scenarios.    

 

MATLAB Code 

function [y,obj]=SDP_3segments_v3_SCM(G,file) 
%function takes as input the number of available sensors and the name of the file containing the objct fnc for 

each segment and for each possible number of sensors 

 

%% 

folder = pwd; %obtain current directory path 
 

% Import the data 
[~, ~, raw] = xlsread(strcat(folder,file),'Utility'); %read data file 
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
  
% Replace non-numeric cells with NaN 
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 
raw(R) = {NaN}; % Replace non-numeric cells 
Utility = reshape([raw{:}],size(raw)); % Create output variable 
clearvars raw R; % Clear temporary variables 
  
%%  
S = 3; %Number of segments 
C_min = [5 3 5]; 
C_max = [15 9 13]; %Max sensor capacity 
x_sensor = C_max-C_min+1; % possible number of sensors assigned at each segment. 
  
% Utility_2 replaces Utility  
Utility_2 = zeros(S,max(C_max)); 
for j=1:S 
    for i=1:x_sensor(j) 
    Utility_2(j,C_min(j)+i-1)=Utility(j,i); 
    end 
end 
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% create the f table and put the last stage value into it. f is the obj func. 
f = zeros(S,min([max(C_max) G])); 
for j=1:min([max(C_max) G]) 
    f(S,j)=Utility_2(S,j); 
end 
  
% create stage2 to stage3 paths 
comb = []; 
cont =1; 
path23 = []; 
for i=C_min(2)+C_min(3):min([(G-C_min(3)) C_max(2)+C_max(3)])  
    a=0; 
    for j=C_min(3):min([(G-C_min(2)-C_min(3)) C_max(3)])  
       if (i-j)<=C_max(2) && i-j>=C_min(2) 
           a=a+1; 
           path23(cont,1) = i; 
           path23(cont,2) = j; 
           cont = cont+1; 
       end 
    comb(i+1)=a; 
    end 
end 
paths23 = size(path23); 
% calculate the utility at each path 
for i=1:paths23(1) 
   path23(i,3) = path23(i,1)-path23(i,2); 
   path23(i,4) = path23(i,2); 
   path23(i,5)=path23(i,3)+path23(i,4); 
   path23(i,6)= Utility_2(2,path23(i,3))+f(3,path23(i,4)); 
end 
% choose the best path for each state 
for i=C_min(2)+C_min(3):min([(G-C_min(3)) C_max(2)+C_max(3)]) 
    f(2,i)=max(path23((path23(:,5)==i),6)); 
end 
  

  
path12=[]; 
cont=1;%reset cont 
for i=C_min(1)+C_min(2)+C_min(3):min([G (C_max(1)+C_max(2)+C_max(3))])  
    a=0; 
    for j=C_min(2)+C_min(3):min([(G-C_min(3)) C_max(2)+C_max(3)])  
       if (i-j)<=C_max(1) && i-j>=C_min(1) 
           a=a+1; 
           path12(cont,1) = i; 
           path12(cont,2) = j; 
           cont = cont+1; 
       end 
    comb(i+1)=a; 
    end 
end 
  
paths12=size(path12); 
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for i=1:paths12(1) 
   path12(i,3) = path12(i,1)-path12(i,2); 
   path12(i,4) = path12(i,2); 
   path12(i,5)=  path12(i,3)+path12(i,4); 
   path12(i,6)= Utility_2(1,path12(i,3))+f(2,path12(i,4));  

% 1,2 are the stages here 
end 
  
for i=C_min(1)+C_min(2)+C_min(3):min([G (C_max(1)+C_max(2)+C_max(3))]) 
    f(1,i)=max(path12((path12(:,5)==i),6)); 
end 
  
obj=max(f(1,:)); % get the objective value 
  
% get each stage variable, only consider one path 
result_s(1,:)=path12(path12(:,6)==obj,1); 
  
result_g(1,:)=path12(path12(:,6)==obj,3); 
result_s(2,:)=path12(path12(:,6)==obj,2); 
  
result_g(2,:)=path23(path23(:,6)==f(2,result_s(2)),3); 
result_s(3,:)=path23(path23(:,6)==f(2,result_s(2)),2); 
  
result_g(3,:)=result_s(3,:); 
  
y=result_g; 
end 
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