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Electromagnetic environments are becoming increasingly complex and con-

gested, creating a growing challenge for systems that rely on electromagnetic waves

for communication, sensing, or imaging. The use of intelligent, reconfigurable meta-

surfaces provides a potential means for achieving a radio environment that is capable

of directing propagating waves to optimize wireless channels on-demand, ensuring

reliable operation and protecting sensitive electronic components. The capability to

isolate or reject unwanted signals in order to mitigate vulnerabilities is critical for

any practical application.

In the first part of this dissertation, I describe the use of a binary pro-

grammable metasurface to (i) control the spatial degrees of freedom for waves propa-

gating inside an electromagnetic cavity and demonstrate the ability to create nulls in

the transmission coefficient between selected ports; and (ii) create the conditions for



coherent perfect absorption. Both objectives are performed at arbitrary frequencies.

In the first case a novel and effective stochastic optimization algorithm is presented

that selectively generates coldspots over a single frequency band or simultaneously

over multiple frequency bands. I show that this algorithm is successful with multiple

input port configurations and varying optimization bandwidths. In the second case

I establish how this technique can be used to establish a multi-port coherent perfect

absorption state for the cavity.

In the second part of this dissertation, I introduce a technique that combines

a deep learning network with a binary programmable metasurface to shape waves in

complex electromagnetic environments, in particular ones where there is no direct

line-of-sight. I applied this technique for wavefront reconstruction and accurately de-

termined metasurface configurations based on measured system scattering responses

in a chaotic microwave cavity. The state of the metasurface that realizes desired

electromagnetic wave field distribution properties was successfully determined even

in cases previously unseen by the deep learning algorithm. My technique is enabled

by the reverberant nature of the cavity, and is effective with a metasurface that

covers only ∼1.5% of the total cavity surface area.
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Preface

This dissertation is long overdue. I started down the path of electromagnetics,

specifically adaptive optics, as an undergraduate student at the University of North

Carolina at Charlotte (UNCC) back in 1999 under the instruction of Bob Tyson.

My career as an electro-optical engineer began at Xinetics, Inc. in Devens, MA in

2002, where I characterized deformable mirrors and active optical components. I had

completed a Master’s degree and expected that I would return to school to pursue

a Ph.D. at some point in the future. I chose an occupational path instead of an

academic one however, and spent over a decade in the field of adaptive optics with a

specialty in beam control for high energy lasers. I joined Adaptive Optics Associates

in 2005 and worked out of offices in Wichita, KS, Lancaster, CA, and East Hartford,

CT until 2013. I then moved to the Johns Hopkins University Applied Physics

Laboratory (JHU/APL) in Laurel, MD, where my career expanded to include radio

frequency (RF) and intelligence, surveillance, and reconnaissance (ISR) systems.

Finally, in 2015, under the encouragement of my wife (then fiance), I returned to

the University of Maryland (UMD) as a part time graduate student.

At UMD, I took the electrophysics/applied electromagnetics route. I joined

the Wave Chaos group in 2017, researching electromagnetic wave propagation in

chaotic microwave cavities. When the COVID19 pandemic hit in early 2020, the

labs at UMD were closed and experimental work ground to a halt. Professor Anlage
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was able to get a binary programmable metasurface through our Office of Naval

Research (ONR) contacts (and my JHU/APL colleagues). My immediate thought

was “adaptive optics with microwaves”, and I was hooked. I built a smaller scale

cavity (< 1 m3 volume) in my basement and proceeded with experimentation. The

chaotic nature of the environment required a control approach more complex than

found in traditional adaptive optics systems. This worked well as a research project

and culminated in 2 publications that form the basis of this dissertation: 1) Fra-

zier, Antonsen, Anlage, and Ott. “Wavefront Shaping with a Tunable Metasurface:

Creating Cold Spots and Coherent Perfect Absorption at Arbitrary Frequencies”,

Physical Review Research, 2:043422, 2020; and 2) Frazier, Antonsen, Anlage, and

Ott, “Deep Learning Estimation of Complex Reverberant Wave Fields with a Pro-

grammable Metasurface”, arXiv, 2103.13500 [physics.app-ph], 2021.

Ben Frazier,

Ellicott City, MD, October, 2021
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To my father, Richard T. Frazier, whom I still miss profoundly.

iv



Acknowledgments

First and foremost, I am exceptionally grateful to Professors Thomas M. An-

tonsen and Steven M. Anlage for guiding my research over the last several years and

presenting me with interesting and challenging projects. They were always willing

to offer their time whenever I needed help or advice. I am also indebted to Professor

Edward Ott for providing valuable insight along the way, and would like to thank

both the UMD Wave Chaos group and the UNM Extreme Electromagnetics group

for allowing me the opportunity to present my work at various stages and receive

feedback. I have learned a tremendous amount and will always be appreciative of

the experience. Funding for this research was provided through AFOSR COE Grant

FA9550-15-1-0171 and ONR Grant N000141912481.

Bob Tyson will always be thanked for starting me on the path to adaptive

optics (and in general, electromagnetics) at UNC Charlotte all those years ago.

This kick started my career and has been an area of great interest for me ever since.

I am further indebted to him for bringing me on as a co-author for the “Field Guide

to Adaptive Optics” SPIE books and the upcoming “Principles of Adaptive Optics,

5th Edition” book through Taylor & Francis/CRC Press (currently scheduled for

publication in January 2022).

I am also grateful to my colleagues at JHU/APL, who were patient and sup-

portive (most of the time) as I pursued my educational goals. In particular I would

v



like to thank Eric Rose, Ray Sova, Coire Maranzano, Cris Fernandes, Andy New-

man, and Matt Zuber for support and encouragement. Zerotti Woods and Chad

Hawes were also instrumental in teaching me about deep learning.

Many additional people have helped shaped my career both academically and

professionally, too many to adequately thank each and every one. A roughly chrono-

logical (but certainly not exhaustive) list of additional people with significant impact

is: Mark Ealey, Jeff Cavaco, Mike and Jackie Roche, Harold Schall, Paul Shattuck,

Frank Lewis, John Hernandez, Steve Headrick, Nick Hilton, Gino Delizo, Lawton

Lee, Terry Brennan, Greg Luther, Sue Lathan, Mike Reilly, Jack Keane, Erik John-

son, Bob Cameron, Kem White, Eric Fisher, and Jeff Barton.

Finally, I would never have made it without the support of my amazing family:

my wonderful wife Jana, step son Max, and son Luke. I owe you guys everything.

vi



Table of Contents

Preface ii

Dedication iv

Acknowledgements v

Table of Contents vii

List of Tables xi

List of Figures xii

List of Listings xv

List of Abbreviations xvi

List of Symbols xviii

Chapter 1: Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Background 6

vii



2.1 Metasurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Wavefront Reconstruction and Control . . . . . . . . . . . . . . . . . 9

2.3 Complex Reverberant Scattering Environments . . . . . . . . . . . . 17

2.4 Common Simplifying Assumptions . . . . . . . . . . . . . . . . . . . 20

2.5 Microwave Coldspots . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Coherent Perfect Absorption . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Types of Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.2 Training Neural Networks . . . . . . . . . . . . . . . . . . . . 34

Chapter 3: Stochastic Optimization Approach 38

3.1 Cavity Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Generating Coldspots . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Generating Coherent Perfect Absorption . . . . . . . . . . . . . . . . 50

Chapter 4: Deep Learning Approach 62

4.1 Wavefront Control in Reverberant Environments . . . . . . . . . . . . 63

4.2 Experimental Configuration . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Deep Learning Network Design . . . . . . . . . . . . . . . . . . . . . 72

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 5: Summary and Discussion 84

Appendix A:Characteristic Parameters of Chaotic Cavities 89

viii



Appendix B: Time Gating in the Frequency Domain 90

Appendix C: Estimating Cavity Time Constants 98

Appendix D:Ensemble Statistics 101

Appendix E: Stochastic Optimization Approach Supplemental Material 105

E.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

E.2 Cavity Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

E.3 Diverse Cavity Realizations . . . . . . . . . . . . . . . . . . . . . . . 110

E.4 Coherent Perfect Absorption State Generation and Verification . . . . 113

Appendix F: Deep Learning Approach Supplemental Material 116

F.1 Cavity and Experimental Configuration . . . . . . . . . . . . . . . . . 116

F.2 Metasurface Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

F.3 Data Preparation and Collection . . . . . . . . . . . . . . . . . . . . . 118

F.4 Deep Learning and Neural Network Layers . . . . . . . . . . . . . . . 122

F.5 Network Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . 123

F.6 Complex Network Layers and Existing Deep Learning Frameworks . . 125

F.7 Network Architecture for Sequential Layers . . . . . . . . . . . . . . . 127

F.8 Offline Training Results for 5 x 4 Binning . . . . . . . . . . . . . . . . 134

F.9 Inception and Terrapin Modules . . . . . . . . . . . . . . . . . . . . . 135

F.10 Offline Training Results for 3 x 3 Binning . . . . . . . . . . . . . . . . 142

F.11 Offline Training Results for 2 x 2 Binning . . . . . . . . . . . . . . . . 142

F.12 Scattering Fidelity Loss . . . . . . . . . . . . . . . . . . . . . . . . . 145

ix



Appendix G:Monte Carlo Simulations 147

G.1 Normalized Impedance Realizations . . . . . . . . . . . . . . . . . . . 147

G.2 Simulated Cavity Impedance . . . . . . . . . . . . . . . . . . . . . . . 150

G.3 Relation to Scattering Parameters . . . . . . . . . . . . . . . . . . . . 151

Bibliography 152

x



List of Tables

A.1 Cavity Characteristic Parameters . . . . . . . . . . . . . . . . . . . . 89

xi



List of Figures

1.1 Conceptual view of a deep learning enabled programmable metasur-

face in a complex electromagnetic environment. . . . . . . . . . . . . 4

2.1 Reflectarray device used for the research. . . . . . . . . . . . . . . . 8

2.2 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Dense Neural Network Layer . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 1D Convolution with Multiple Features. . . . . . . . . . . . . . . . . 31

2.5 Receptive field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Conceptual overview of the metasurface enabled cavity as a closed

loop system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Experimental schematic and cavity configuration. . . . . . . . . . . . 41

3.3 Results of minimizing power at port 2 with the iterative optimization

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 S-matrix statistics for a random distribution of 2000 metasurface

commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xii



3.5 Point clouds of selected S-matrix eigenvalues for a random distribu-

tion of 2000 metasurface commands. . . . . . . . . . . . . . . . . . . 56

3.6 Experimental S-matrix eigenvalue trajectories for realization of Co-

herent Perfect Absorption (CPA) states. . . . . . . . . . . . . . . . . 58

3.7 Coherent Perfect Absorption (CPA) state verification at 3.6697 GHz. 60

4.1 Metasurface binning configurations. . . . . . . . . . . . . . . . . . . . 70

4.2 Terrapin Module Architecture. . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Deep learning performance with complex-valued layers for 2x2 binning. 77

4.4 On-line performance verification. . . . . . . . . . . . . . . . . . . . . 81

4.5 Deep wavefront shaping performance vs. cavity reverberation time. . 83

B.1 Example S11 Time Domain Response. . . . . . . . . . . . . . . . . . 91

B.2 Time Gating Filter Response. . . . . . . . . . . . . . . . . . . . . . . 94

B.3 Example S11 Ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.1 Estimating Cavity τ . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.1 Correlation coefficient for S21 over an ensemble of 50 realizations. . . 102

D.2 Matrix of correlation coefficients for S21 over an ensemble of 50 real-

izations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

E.1 Metasurface device showing both the front and back of the board. . . 105

E.2 Metasurface installed inside the cavity. . . . . . . . . . . . . . . . . . 107

E.3 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

E.4 Estimated cavity time constant for various configurations. . . . . . . 111

xiii



E.5 Hadamard sequence |S21| ensembles for both high loss and low loss

cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

E.6 Ensemble of 4000 |S21| realizations from a combination of doubly

random power spectrum and biased coin toss approaches. . . . . . . . 114

F.1 Cavity configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

F.2 Data preparation example. . . . . . . . . . . . . . . . . . . . . . . . . 120

F.3 Impact of using complex network layers. . . . . . . . . . . . . . . . . 128

F.4 Sequential network layer architecture. . . . . . . . . . . . . . . . . . . 130

F.5 Deep learning performance with complex-valued layers for 5x4 Binning.136

F.6 Terrapin Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

F.7 Sequential neural network performance with complex scattering sys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

F.8 Deep learning performance with complex-valued layers for 3x3 Binning.144

F.9 Scattering fidelity loss over time. . . . . . . . . . . . . . . . . . . . . 146

xiv



Listings

B.1 Computing the Kaiser-Bessel Window . . . . . . . . . . . . . . . . . . 95

B.2 Computing the Time Gating Function . . . . . . . . . . . . . . . . . 96

B.3 Frequency Domain Gating with Renormalization . . . . . . . . . . . . 97

F.1 Sequential Network Implementation . . . . . . . . . . . . . . . . . . . 129

F.2 Complex Convolutional Batch Norm ReLu Layer Implementation . . 132

F.3 Hybrid Complex 1D Batch Normalization Implementation . . . . . . 132

F.4 Terrapin Module Implementation . . . . . . . . . . . . . . . . . . . . 138

F.5 Terrapin Network Implementation . . . . . . . . . . . . . . . . . . . . 140

G.1 Computation of RMT Eigenvalues . . . . . . . . . . . . . . . . . . . . 149

G.2 Frequency Dependent RCM . . . . . . . . . . . . . . . . . . . . . . . 150

xv



List of Abbreviations

AFOSR Air Force Office of Scientific Research
ANN Artificial Neural Network

CDF Cumulative Distribution Function
CNN Convolutional Neural Network
CPA Coherent Perfect Absorption

DOF Degrees of Freedom
DQN Deep Q Network

EMI Electromagnetic Interference

FFT Fast Fourier Transform

GOE Gaussian Orthogonal Ensemble

HPM High Power Microwave

IFFT Inverse Fast Fourier Transform
IFT Inverse Fourier Transform

JHU/APL Johns Hopkins University Applied Physics Laboratory

LOS Line-of-Sight

MAE Mean Absolute Error
MEMS Micro-Electrical-Mechanical System
ML Machine Learning
MSE Mean Squared Error

ONR Office of Naval Research

PA Perfect Absorption

xvi



PDF Probability Density Function
PDP Power Delay Profile
PMN Lead Magnesium Niobate
PNA Performance Network Analyzer

RCM Random Coupling Model
RCS Radar Cross Section
ReLU Rectified Linear Unit
RF Radio Frequency
RMT Random Matrix Theory
RNN Recurrent Neural Network

SAR Synthetic Aperture Radar
SDR Software Defined Radio
SGD Stochastic Gradient Descent
SLM Spatial Light Modulator
SPGD Stochastic Parallel Gradient Descent
SRE Smart Radio Environment
SWAP-C Size, Weight, Power, and Cost

TRS Time Reversal Symmetry

UMD University of Maryland
UNM University of New Mexico
UWB Ultra Wide Band

xvii



List of Symbols

α Loss parameter unitless
γ Learning Rate unitless
λ Wavelength m
λs Scattering matrix eigenvalues unitless
ν Slope of power delay profile dB/s
ω Angular temporal frequency rad/s
ρc Pearson correlation coefficient unitless
τc Cavity time constant (reverberation time) s
δa Metasurface command perturbation vector controller units
ξ Universal (fluctuating) component of impedance unitless

E Environment arbitrary
∆f Cavity mean mode spacing Hz
∆k2

n Cavity eigenvalue spacing (rad/s)2

∆P2 Difference in average power metric dB
∆S21 Normalized difference in reflection coefficient unitless
∆φ Phase Sweep Difference deg

a Metasurface command vector controller units
a∗ Trial metasurface command vector controller units
c Speed of Light (2.997×108) m/s
f Temporal frequency Hz
i Iteration number unitless
j Complex number,

√
−1 unitless

k Wave number/spatial frequency rad/m
n Element number unitless

ACPA Amplitude for the CPA State eigenvector W
B Geometry matrix arbitary
J Cost function arbitrary
L Loss function unitless
M Number of modes/number of elements to toggle unitless
N Number of points unitless

xviii



Pout Power emerging from the cavity W
Pin Power injected into the cavity W
Q Cavity quality factor unitless
R Reconstruction matrix arbitrary
S Scattering parameters V/V
Scav Cavity scattering parameters V/V
Srad Radiation (free-space) scattering parameters V/V
T Convergence criteria unitless
V Cavity volume m3

Zavg Average impedance Ω
Zcav Cavity impedance Ω
Zrad Radiation (free-space) impedance Ω

xix



Chapter 1: Introduction

1.1 Motivation

Reverberant and highly scattering environments scramble electromagnetic waves,

producing interference among the multiple paths between source and receiver. The

resulting spatio-temporal fluctuations can seriously degrade imaging, sensing, and

communication systems at microwave and optical wavelengths, disrupting opera-

tion or even damaging sensitive components. Large enclosed spaces, such as offices

or compartments on ships or aircraft can act as “chaotic” reverberating chambers

for short-wavelength electromagnetic waves [1]. Additional emissions in these en-

vironments, whether from unintentional coupling between components or from an

intentional electromagnetic attack, can have serious consequences. Some platforms,

such as aircraft and spacecraft, can experience devastating consequences, resulting

in mission failure or even casualties [2].

Future smart radio environments (SREs) are envisioned to handle such dy-

namic conditions, adapting on-the-fly to optimize a given wireless channel through

a spatial light modulator (SLM) [3–5]. Intelligently controlling wave fields in the

presence of multi-path reflections is therefore a critical factor for enabling SREs.

In addition, an intelligent and self-adaptive approach will benefit applications such
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as micromanipulation of objects in complex scattering environments [6], and time

reversal mirrors that can selectively focus a wavefront or enhance communication

system performance [7,8]. A necessary step along this path is to identify approaches

for wavefront reconstruction, i.e., determining the configuration of the SLM that ac-

curately produces a given scattering response, that work in reverberant scattering

environments.

In optics, SLMs have been used to control waves under strong scattering con-

ditions for some time. Applications range from focusing through general disordered

media [9,10] to sophisticated biomedical imaging instruments that fall under the um-

brella of adaptive optics [11,12]. In the last several years, SLMs in the form of pro-

grammable metasurfaces have also become widely available at radio frequency (RF)

wavelengths [13–16]. Programmable electromagnetic metasurfaces are metamaterial

sheets that can modify their local surface impedance over unit cells (meta-atoms)

and have emerged as powerful tools for shaping waves inside complex microwave

cavities [17–25], increasing the available degrees of freedom (DOF) by manipulating

boundary conditions.

Wavefront shaping techniques with metasurfaces have been well studied; how-

ever, control in complex environments still relies on simple, online brute force opti-

mization methods. While these approaches work, they require a large number of it-

erations to reach convergence, are not guaranteed to achieve a global minimum, and

can produce undesirable scattering configurations through the intermediate steps

of the optimization process. Our approach, as shown in Fig. 1.1 and described

in the remainder of this thesis, leverages a deep learning network to enable wave-

2



front reconstruction and control in complex and highly reverberant environment.

The metasurface is placed in a reverberant scattering environment, with a signal

injected at Port 1 and the resulting field measured at a specific point of interest

(Port 2). The environment is defined by irregular walls and inclusions and is probed

by waves with wavelengths much smaller than the characteristic dimension of the

enclosure.

The reverberating nature of the environment provides capabilities not present

in non-reverberant environments. The requirement for establishing direct LOS is

removed, which allows the location of the metasurface to be arbitrarily chosen.

In addition, the ability to modify the wave field distribution at arbitrarily chosen

regions is enhanced, which allows a relatively small metasurface to be used. In

our configuration, the metasurface covers only ∼1.5% of the total surface area of

the cavity. Establishing a viable method to control a metasurface in a reverberant

environment will unlock novel applications and encourage research in new and under-

explored domains.

One such unexplored area is coherent perfection absorption (CPA), where co-

herent excitation of a lossy system can result in complete absorption of all incident

waves [26, 27]. It has applications in highly efficient notch filtering, energy conver-

sion, and even detection; since the CPA state is extremely sensitive to parameter

variation, it can be used to identify small changes in a complex scattering sys-

tem [28]. The ability of a metasurface to manipulate additional DOF presents a

novel capability for realizing CPA states.
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Figure 1.1: Conceptual view of a deep learning enabled programmable
metasurface in a complex electromagnetic environment. Constructive and
destructive interference between multiple propagation paths in a reverberating en-
vironment induces randomness in the scattering parameters and scrambles electro-
magnetic waves that are injected at Port 1. A reconfigurable metasurface is used
to tune the interference to create cold spots for protection of sensitive electronic
components, realize coherent perfect absorption states for long range wireless power
transfer, or unscramble the output fields to enable smart radio environments. The
metasurface, along with a sensing antenna at Port 2, is coupled with a deep learning
network that provides control. Measurements are used as training data, enabling
the network to determine the control settings of the metasurface, and allowing the
system to adapt to changing environmental conditions on-the-fly. The metasurface
is shown here as large relative to the cavity. In our configuration however, the
metasurface is much smaller, covering only ∼1.5% of the total surface area of the
cavity.
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1.2 Outline

The rest of the dissertation is organized as follows. Chapter 2 presents rele-

vant background information for metasurfaces, wavefront reconstruction, complex

reverberant scattering environemnts, the random coupling model (RCM), and deep

learning. Chapter 3 discusses the stochastic optimization approach for creating

coldspots and coherent perfect absorption states. Much of this chapter was pub-

lished in Frazier, Antonsen, Anlage, and Ott, “Wavefront Shaping with a Tunable

Metasurface: Creating Cold Spots and Coherent Perfect Absorption at Arbitrary

Frequencies”, Physical Review Research 2:043422, 2020 [24]. Chapter 4 presents the

deep learning approach, most of which was published in Frazier, Antonsen, Anlage,

and Ott, “Deep Learning Estimation of Complex Reverberant Wave Fields with a

Programmable Metasurface”, arXiv , 2103.13500 [physics.app-ph], 2021 [29]. Fi-

nally, Chapter 5 provides a summary and discussion of the impacts and potential

future research directions.
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Chapter 2: Background

2.1 Metasurfaces

A “meta”-material is an engineered material that has characteristics not found

in naturally occuring materials. A metasurfaces is then a 2-D sheet of metamateri-

als that is capable of changing its boundary conditions over local regions. Because

the incident, reflected, and transmitted electromagnetic waves must have a contin-

uous spatial phase profile across the boundary, metasurfaces need to approximate a

continuous phase distribution. This requires the elements to be subwavelength [14].

Smaller dimensions relative to the wavelength provide better approximation [13,30],

but are more difficult to produce. In addition, the subwavelength nature can reduce

the effective number of DOF, as elements may need to operate in groups rather

than individually. Due to the circuit design complexity, many devices only provide

binary control over the local spatial phase at each element (relative phase shifts

of π radians); however recent advances in fabrication have led to devices with 2-bit

control (relative phase shifts of π/2 radians) [31–34]. Higher fidelity in the realizable

phase profile provides additional flexibility for shaping fields, but increases the device

complexity in terms of size, weight, power, and cost (SWAP-C). In communications,

metasurfaces have been used to generate optical beams with orbital angular momen-
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tum that have reduced sensitivity to turbulence [35–38], and for spatial phase coding

with visible light [39]. At radio frequencies, metasurfaces have been demonstrated

to work as a transmitter for quadrature amplitude modulation [40, 41], simplifying

the processing design and providing the potential to enable beyond 5G capabilities.

In addition, they have been used to control nonlinear reflections to harness higher

order harmonics for spectrum conversion [42], and improving communications using

backscatter of WiFi signals [43].

Computational imaging has seen a tremendous boost from the use of metasur-

faces [44]. Applications include digital holography at microwave frequencies [45–47],

aperture generation for synthetic aperture radar (SAR) [48–50], imaging through

walls [51], in cavities [52], and in large scale apertures for human sized objects [53].

Enhanced diversity with the increased number of available DOF is what makes

many of these concepts possible, so there has also been significant work in exploring

what types of diversity can be leveraged. This includes exploiting spatial and tem-

poral DOF [17, 19, 20, 54, 55], transforming a regular cavity into a chaotic one [21],

performing electronic mode stirring [56–58], cancelling electromagnetic fields at a

point [18], realizing a high Q open cavity [59], radar cross section (RCS) reduc-

tion [60–62], and cloaking objects [63].

Metasurfaces are not limited to shaping only electromagnetic waves. In seis-

mology, control over surface acoustic waves has been demonstrated using metasur-

faces made of elastic metamaterials for Love waves (horizontally polarized) [64] and

Rayleigh waves (containing both longitudinal and transverse motion) [65]. In the

case of quantum waves, a metasurface created from an array of trapped neutral
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Figure 2.1: Reflectarray device used for the research. The left-hand side
shows the front of the board with the individual unit cells visible. The right-hand
side shows the back of the board with the GaAs FET amplifiers and control elec-
tronics visible.

atoms was used to manipulate light at the quantum level [66]. While the underlying

physics of these metasurfaces is vastly different, the overall operation and process

of wave interaction is essentially the same, implying that strategies for wavefront

shaping in one domain can be readily adapted to another.

The metasurface used for this dissertation is a reflectarray fabricated by the

Johns Hopkins University Applied Physics Laboratory (JHU/APL) that is designed

to operate from 3-3.75 GHz and is shown in Figure 2.1. It has a lattice of 10 × 24

squares occupied by unit cells with size < λ/6 [30], where λ is the wavelength. These

240 unit cells can be independently set to one of two states, which approximate

electric or magnetic boundary conditions and provide a relative 180◦ phase shift for

waves reflected by the element. This results in the local surface impedance of the

array varying from cell to cell and state to state. The array surface thus has 2240

(1.8× 1072) independent states, each of which reflects waves in a uniquely different

set of directions.
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2.2 Wavefront Reconstruction and Control

Wavefront control has a rich history and has been well studied from the per-

spective of adaptive optics. Conceived by Horace Babcock in 1953 [67], and real-

ized in the 1970’s [68], adaptive optics provides a method of correcting wavefront

aberrations induced by propagation through random media. It has been success-

fully used in a diverse array of applications including astronomical imaging [69],

biomedical imaging [70], high energy laser propagation [71], free space optical com-

munications [72], quantum networking with satellites [73], and laser processing of

materials [74].

Adaptive optics systems typically employ reflective deformable mirrors that

provide mechanical phase compensation [75, 76]. Conventional deformable mir-

rors are built with ferroelectric actuators [77] with as small as 5 mm spacing,

though monolithic deformable mirrors manufactured from a block of lead mag-

nesium niobate (PMN) material can have 1 mm spacing between actuators [78].

Micro-electrical-mechanical-system (MEMS) mirrors using electrostatic actuation

have made great strides over the past decade [79, 80] and are very competitive

with conventional deformable mirrors, particularly where a large actuator density

is desired. Refractive liquid crystal devices have also been proposed and devel-

oped [81,82], but tend to be slow and are uncommon outside of microscopy [12], or

laser processing [74].

The availability of inexpensive reconfigurable metasurfaces has driven research

into a field known as wavefront shaping [9,10,18,83–85]. While there is not a strict

9



convention or definition, adaptive optics is generally associated with controlling dis-

torted wavefronts for a single propagation path while wavefront shaping is generally

associated with controlling (or shaping) a combination of multiple scattered wave-

fronts. We will adopt this convention here and refer to adaptive optics and wavefront

shaping in general as wavefront control. While many applications are built around

scattering systems possessing time reversal symmetry (TRS), the presence of TRS

is not a requirement for all wavefront control systems.

Conventional adaptive optics systems measure the wavefront directly and use

an operator, called the reconstructor, to solve the inverse problem between mea-

surements and control signals. Wavefront reconstruction is therefore at the heart of

any wavefront control system. The process is generally indirect, as the reconstructor

evaluates the wavefront in the basis of command signals, rather than explicitly in

phase. Wavefront reconstruction is a specialized area of system identification [86],

and relies heavily on methods for solving inverse problems.

For a linear system, or one that can be linearized, the standard reconstructor,

R, is a regularized optimal Wiener filter given as [87]

R =
[
BTC−1

n B + gW + BTC−1
ϕ B

]−1
BTC−1

n (2.1)

Here, Cn is the measurement noise covariance matrix, Cn =
〈
nTn

〉
, Cϕ is the

covariance matrix of the environmental disturbance, Cϕ =
〈
ϕTϕ

〉
, W is a weight-

ing/regularization matrix, g is a scalar gain term, and B is a system configuration

(geometry) matrix that relates control signals to wavefront measurements. Both Cn
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and Cϕ are defined in sensor space, while W is defined in command space.

The inverse problem is often ill-posed due to singularities or the presence of

highly correlated responses with different commands [88], which effectively means

we do not have enough information to solve the problem. We can add the necessary

information through a process known as regularization. The weighting matrix, W,

in Eq. 2.1 implicitly provides Tikhonov regularization, which acts as a spectral

filter on the singular values [89, 90]. W can be the identity matrix to raise all the

singular values, or a projection matrix to suppress specific modes that either induce

singularities or expend control energy in ways we wish to avoid. The gain term,

g < 1, then determines how strongly these modes are suppressed. Using the inverse

of the environmental covariance matrix, C−1
ϕ , preconditions the solution towards

expected spatial modes with the appropriate statistics.

For nonlinear systems, we can apply iterative methods to handle the recon-

struction process. These are typically Krylov subspace methods such as the conju-

gate gradient method [89,91,92]. Regularization can be applied through Landweber

iteration, where the gradient is allowed to decay with a relaxation parameter [89,91].

In this case, the iterations are performed “offline”, meaning that each iteration is

evaluated numerically on the measurements. The convergence rate is therefore only

limited by the computational power we can throw at the problem.

Wavefront reconstruction is viable for some metasurface applications, but de-

pends on being able to solve the inverse problem. Complex environments include un-

certainties in determining the system configuration (B matrix), and multiple reflec-

tion paths create intricate interference patterns at the antennas, producing chaotic
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fluctuations [93,94]. In addition, short orbits that manifest as persistent features in

the ensemble [95] are not removed, leading to a complicated relationship between

metasurface commands and cavity scattering parameters. For a metasurface that

is small relative to the cavity, the effective strength of the metasurface commands

on the cavity scattering parameters is reduced. This results in high correlation be-

tween measurements taken with different sets of commands and creates problems for

uniqueness, as many potential solutions are extremely similar. The effective strength

is enhanced by reverberant environments, however these add additional complica-

tions that will be discussed later. In addition, the scattering process is linear, but the

relationship between metasurface commands and measured scattering parameters is

not necessarily so, particularly for measurements in the temporal domain. In these

extreme scattering environments, we are limited to partial information and may not

be able to define the system, let alone determine the inverse. Therefore, model-free

control approaches that do not require knowledge of the system configuration, and

bypass an explicit wavefront reconstruction step altogether, have traditionally been

preferred.

Early metasurface control approaches used brute force trial and error, tog-

gling every element or combination of elements [96, 97]. This guarantees that a

global minimum is reached, but becomes infeasible with large numbers of elements.

The simplest practical approach is an extension of iterative multidither techniques

in adaptive optics [98], where, at the ith iteration, the algorithm updates a trial

command vector, a∗, with a small perturbation, δa, so that

12



a∗
i+1 = ai + δai (2.2)

The impact on performance is evaluated through a metric or cost function,

J , that is positive and real-valued, and dependent on both the command vector

and the environment, E . If the cost function, J
(
a∗
i+1, E

)
, is improved, the trial

command vector becomes the new command vector, ai+1 = a∗
i+1. Otherwise, the

trial command vector is rejected and a new trial command vector is generated.

The iterative process continues until either a specified number of iterations, T ,

are performed without improving the metric, or the cost function reaches a pre-

determined value, at which point we claim convergence. While simple to implement

and not reliant on knowledge of the system configuration, the dithering approach is

by no means optimal, so we next turn to stochastic optimization.

Gradient based approaches have proven extremely successful for general stochas-

tic optimization problems [99]. In a stochastic gradient descent (SGD) optimization,

the descent is performed by taking steps along the gradient of the cost function with

respect to the element command vector. The step size, γ, which may or may not

depend on the iteration, determines how quickly the algorithm descends, and is

sometimes referred to as a “learning rate”. Tuning the step size is an important

aspect of SGD methods. If γ is too small, the algorithm will take a long time to

converge and may not be able to escape a local minimum. On the other hand, if γ

is too large, the algorithm may become unstable. The basic SGD is implemented as
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ai+1 = ai − γi∇ai
J (ai, E) (2.3)

In most cases, it is not possible to evaluate the gradient, ∇aJ , directly, so it

must be approximated. The general approach is to apply a small perturbation to the

current command vector and estimate the gradient from a one-sided or two-sided

finite difference. The perturbation is applied to all elements of the command vector

simultaneously (in parallel) to increase the convergence rate.

A specialty of wavefront control, known as wavefront sensorless, or target-in-

the-loop adaptive optics [100], leverages stochastic optimization in a sensor agnostic

manner, indirectly evaluating the wavefront through the cost function. In target-

in-the-loop approaches, the iterations are performed “online”, meaning that each

iteration requires applying commands and measuring the result. The convergence

rate is therefore limited by the sampling rate of the system.

Target-in-the-loop methods are not as easily analyzed through modern multi-

variable control theory as conventional methods, but in theory they are applicable

to the problem of controlling metasurfaces in complex scattering environments. In

particular, stochastic parallel gradient descent (SPGD) [101,102] has enjoyed great

success in target-in-the-loop adaptive optics systems. For SPGD, the gradient is

estimated from a one-sided finite difference,

∇aJ (a, E) ≈ [J(a + δa, E)− J(a, E)] δa−1 (2.4)

The cost function is arbitrarily defined, allowing SGD methods to be applied
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based on the specific need. It can be an image quality metric such as Strehl ra-

tio [101] for imaging systems, signal strength for free space optical communica-

tions [103], transmission coefficient for cold spot generation, or scattering matrix

eigenvalue magnitudes for CPA state realization. Specific to the problem of con-

trolling metasurfaces in microwave wavebands, energy efficiency in terms of bits-per

joule is an attractive metric for wireless networks [104]. Energy efficiency optimiza-

tion using a reconfigurable metasurface has been proposed and simulated using both

SGD and sequential programming in an open scattering environment [105].

SGD methods work well in principle for controlling a metasurface. However,

they begin to fail with coarse quantization, which limits the ability to tune both the

size of the applied perturbation and the size of the step taken along the gradient.

In the extreme case of a binary (1-bit) metasurface, applying a perturbation boils

down to simply toggling or not toggling each element, so that for the nth element,

δan = {0, 1}. This leads to singularities in estimating the gradient (Eq. 2.4 ),

as well as approximation errors with driving the solution along the gradient (Eq.

2.3), since the resulting command must also be quantized to either 0 or 1. While

metasurfaces can be manufactured with more bits of resolution for phase control,

this increases complexity, cost, and power consumption considerably, making them

less attractive for wide scale use. In addition, the capability of binary metasurfaces

has been demonstrated many times; these devices can be expected to be utilized

whenever power and cost are drivers for implementation.

Since gradient based approaches are problematic with coarse quantization,

dithering methods have dominated wavefront control applications with binary tun-
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able metasurfaces. We can however modify the dithering technique in Eq. 2.2 to

use shaped or intelligent perturbations. When the algorithm is initialized, we do

not know where the optimal commands are located with respect to the solution

space. We would like to apply “larger” effective changes that induce highly diverse

responses with large scale global changes. As the algorithm proceeds, effectively

moving along the gradient, we want the changes to become “smaller”, and more

localized. In this manner, we are able to continue the optimization process without

wasting trials on global changes that are less likely to improve the specific metric

of interest. Finally, once the algorithm has converged, we would like to be able to

make sure we are not stuck in a local minimum.

This shaped perturbation approach is discussed in Chapter 3, and was demon-

strated to successfully enable generating cold spots and realizing CPA states for

a binary metasurface with 240 elements [24]. In this case, the perturbations were

“shaped” by changing the number of elements that were toggled (perturbed) each

time the algorithm converged. The algorithm cycled through perturbations that

toggled 120, 48, 24, 12, and then 6 elements, with a convergence criteria of T = 30

trials. This can also be thought of as a simple policy-iteration method of reinforce-

ment learning [106]. To ensure the solution was not stuck in a local minimum, the

algorithm then entered a “single element” phase where three trial command vectors

were generated at each iteration that toggled the individual element, the nearest

neighbors of that element, and the diagonal neighbors of that element. Cold spots

were generated with this technique and provided 4-40 dB of suppression over a 1 GHz

frequency range and CPA states were realized and verified with power absorption
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ratios ∼ 106 [24].

While dithering allows us to provide wavefront control in some capacity, a true

wavefront reconstruction method is desired. Deep learning may provide a viable

approach, as it has already been successfully demonstrated for general ill-posed

inverse problems [107]. This is the basis for Chapter 4.

2.3 Complex Reverberant Scattering Environments

Complex reverberant scattering environments contain universal fluctuations

with statistics governed by random matrix theory (RMT) [108], as well as determin-

istic behavior from the system specific configuration of the ports and short orbits,

i.e., prompt or direct paths, between the ports [95, 109, 110]. For the particular

case of chaotic cavities, electromagnetic wave fields have specific statistical prop-

erties that depend upon a limited number of parameters [111]. Among these is

the fact that the wave field is statistically equivalent to a random superposition of

plane waves [112]. As such, we can leverage analytical tools from the active re-

search area of quantum chaos [108,113] in the more generalized framework of wave

chaos [114,115].

Complex scattering environments are often characterized by their scatter-

ing matrix, or S-matrix, which is a frequency dependent transfer function matrix

containing the complex-valued reflection and transmission coefficients between the

ports. While useful for describing the overall behavior, separating the universal and

deterministic features is difficult when working with the S-matrix [116].
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An analytical approach known as the random coupling model (RCM), has

been shown to accurately predict fluctuation statistics and allows separation of the

universal and deterministic contributions in a simple additive manner [114,115]. The

RCM extends RMT and is characterized by a single parameter, α, that describes the

losses in the system. It is supported by wealth of experimental validation data with

chaotic microwave cavities [93,94,117–119]. The behavior in large, thee-dimensional

enclosures has also been studied to understand these statistics and the potential

impact of high power microwave (HPM) attacks [1, 120]. A table of characteristic

parameters of chaotic microwave cavities derived from the RCM is given in Appendix

A.

The RCM works in the impedance domain to separate the universal contri-

butions; conversion between impedance and scattering is handled through standard

bilinear transformations [121]. In the RCM, the fluctuating cavity impedance, Zcav,

is defined as

Zcav = jIm{Zrad}+ Re{Zrad}1/2ξRe{Zrad}1/2 (2.5)

Here, Zrad is the radiation or free-space impedance of the ports and ξ is the

fluctuating or universal component, which is described by RMT [114]. For lossless

systems, ξ is a Lorentzian distributed random variable. With loss, the distribution

becomes much more complicated, but it is well suited to Monte Carlo simulations

[111] (see Appendix G). Zcav represents a single realization of a cavity, experimental

results typically collect an ensemble of realizations with a mechanical mode stirrer
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used to realize new cavity configurations.

The RCM has been shown to apply to fading statistics in open systems, such

as wireless communication paths, as well as closed systems, such as microwave cav-

ities. [122, 123]. A chaotic system is characterized by extreme sensitivity to initial

conditions and is qualitatively different than an open one. In open systems, fading

statistics are often modeled with empirically fit distributions [124]: the Rayleigh

distribution when no line-of-sight path is present, the Rician distribution when a

strong line-of-sight path is present, or the K distribution for propagation over the

ocean [125]. The limiting cases of Rayleigh and Rician distributions are captured

by the RCM with the σ parameter related to the loss parameter, as α = (8πσ2)
−1

,

and the ν parameter equal to the magnitude of the short orbits [122,123].

Operating in a reverberant scattering environment presents an additional set

of challenges in comparison to an open environment. In addition to the fundamen-

tal difference in the character of the fluctuations, in the semi-classical case or short

wavelength limit, we can look at the behavior of ray trajectories. Specifically, we

are interested in the change in ray trajectories in response to a change in the meta-

surface configuration. In an open system, there is a single ray (or ray bundle) that

is observed by the sensor, with at most a single reflection off the metasurface. In a

chaotic system, that single ray will reflect off multiple walls and obstacles in the cav-

ity and possibly off the metasurface itself multiple times before reaching the sensor.

This creates a cascading effect, so that the wavefront at the sensor is a combination

of constructive and destructive interference of the multiple rays. The effect of these

multiple interference paths is highly dependent on the configuration of the cavity.
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For an open system, a wavefront reconstruction approach is only dependent on the

geometry between the sensor and the correcting device and is invariant to environ-

mental changes (provided the disturbances remain within the dynamic range of the

sensor and corrector). Wavefront reconstruction is therefore very robust for an open

system. For a chaotic system however, small environmental changes can cause a

wavefront reconstruction technique that was previously successful to no longer be

viable, so that being “close” is not good enough.

2.4 Common Simplifying Assumptions

To build environmental models for simulations, we typically need to make

assumptions or approximations for simplicity or computational tractability. We

also need to ensure that these assumptions are valid for the environments that are

being modeled. Otherwise, the models may neglect potentially significant effects.

We will outline some of the most problematic simplifying assumptions here.

The first simplifying assumption often made is that the channels are assumed

to be perfectly known by the transmitter, so the only uncertainty in the environment

is random thermal noise at the receiver(s). In complex scattering environments,

there is always uncertainty due to multi-path reflections, which can be significant. In

addition, inside chaotic cavities, measured scattering responses with the same initial

conditions will change over time, a phenomenon known as scattering fidelity decay

[126–128], which means that perfect knowledge of a complex scattering environment

has a finite lifetime. This lifetime can be several days in controlled conditions, but
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is sensitive to temperature and humidity and will be reduced in scenarios such as

dense urban environments. Having only partial knowledge of the system limits

deterministic control approaches and encourages learning algorithms. Scattering

fidelity has an impact here as well; as the scattering responses start to change, any

machine learning algorithm will require periodic retraining.

The second simplifying assumption often made is that the equivalent channel

matrix is assumed to be invertible, so the inverse problem is well-posed. Complex

scattering environments generally contain short orbits, or prompt direct paths, that

are persistent across measurements [95,118]. These short orbits induce correlations

that are difficult for simple machine learning approaches to unwrap and typically

lead to ill-posed inverse problems. Excluding multi-path reflections and short orbits

can overestimate the performance of a given algorithm.

The third simplifying assumption often made is that all the propagation paths

are assumed to have a single reflection off the metasurface, so direct line-of-sight

and multi-path trajectories are not included. Channel fading is then modeled with

Rayleigh amplitude statistics. In real-world systems, strong direct line-of-sight paths

induce Rician statistics and the presence of multi-path reflections drives statistics

that are governed by RMT [122, 123]. Neglecting these statistics can lead to al-

gorithms that are not properly tuned. The longer tails in the distributions lead

to large amplitude signal spikes that can degrade imaging performance or disrupt

signal processing algorithms. This phenomenon is well known for the maritime

synthetic aperture radar (SAR) systems and has lead to the development of the

K-distribution [125].
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The final simplifying assumption is that the metasurface is often assumed to

have infinite phase resolution, so quantization effects are not included. As stated

previously, most commercially available metasurfaces have a single bit of control,

though custom devices with 2 bits of control are becoming available [31–33, 129],

which means quantization effects are important and likely significant. In addition,

as discussed in Section 2.2, coarse quantization can cause gradient based controllers

to fail, so neglecting quantization effects may lead to poorly performing real world

controllers. The metasurfaces are also idealized, with identical responses across all

elements. In real devices, manufacturing defects produce nonuniformities between

the phase at each element, and the metasurface may also include uncontrollable

losses or gain.

In addition to simplifying assumptions, testing and verification is often done

in anechoic chambers to remove the environment and capture only the impact of

the reconfigurable metasurface. Anechoic chambers are very good at covering up

emissions problems, which become immediately apparent in reverberation chambers

[130]. A complex scattering system is reverberant in nature, so mismatches that

seem negligible in anechoic chambers may be significant in real world environments.

Caution should be taken when applying any of these simplifying assumptions.

Otherwise, they can overestimate the performance or install a false sense of confi-

dence in a particular approach.
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2.5 Microwave Coldspots

A microwave coldspot is simply a null in the transmission coefficient between

two ports. References [17–19] present a sequence of research using a 102 element

metasurface with λ/2 spacing to generate coldspots. First, a small office was used

as the reverberating environment and the ability to null transmission at a point

was demonstrated when the metasurface covered only ∼ 1% of the overall surface

area [18]. This work was extended by placing the metasurface inside a cavity where

it covered ∼ 7% of the surface area [17] and culminated in loading the cavity to test

cases with low, medium, and high Q values [19]. In each of these cases, the opti-

mization process was performed at a single frequency corresponding to the element

spacing of λ/2. These experiments show evolving capability; however, practical ap-

plications require operation over a range of frequencies and need to simultaneously

handle inputs from different directions.

2.6 Coherent Perfect Absorption

CPA is an exciting research area where coherent excitation of a lossy system

can result in complete absorption of all incident waves [26, 27]. Creating CPA re-

quires coherent excitation of all the ports in an eigenvector whose corresponding

S-matrix eigenvalue is zero. Operationally, the first step in establishing CPA is to

find an eigenvalue of the scattering matrix that is close to zero. For example, a 2

x 2 scattering matrix will have a pair of eigenvalues at each frequency. However,
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realizing CPA only requires driving 1 eigenvalue to zero, as the other eigenvalue

corresponds to the anti-CPA state [28].

CPA has typically been investigated in simple, regular scattering scenarios and

cavities but recently it has been demonstrated in more complex systems, specifically

in the realm of wave chaos, and graphs [131–134]. These works analytically demon-

strate the use of RMT to explore CPA states with semiclassical tools without relying

on the limit of weak coupling. CPA states have also been experimentally investigated

in multiple scattering environments [27], and in graphs that break time-reversal in-

variance [28]. The use of enhanced spatio-temporal diversity from a metasurface for

realization of CPA has not yet been explored and presents a novel capability.

While practical applications are still being developed, research has demon-

strated that a high fraction of the power was absorbed by the target in a CPA

demonstration using a tuned absorber embedded in a lossy environment [135]. This

work also showed that the target absorbed virtually nothing in the “anti-CPA” state,

demonstrating a high degree of control over absorption by a specific target in a CPA

scenario. An interesting future application is to utilize a generalized Wigner-Smith

operator [136] to apply a high absorption fraction to a target with a modulated

impedance or loss.

Recent research has investigated the use of metasurfaces for Perfect Absorp-

tion (PA) inside a cavity and demonstrated a secure communication system as an

application [22]. PA is a complementary idea to CPA for a single port system that

relies only on the reflection coefficient, S11 [137]. Full coherent multi-channel CPA

is more complicated than single channel perfect absorption. However, one advan-
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tage is the increase in delivered power by a factor of N , where N is the number of

channels. This is a significant gain and worth the difficulty of additional phase and

amplitude control.

2.7 Deep Learning

Learning is natural to humans but difficult for machines and should be explic-

itly differentiated from simple memorization. As a classification example, learning

means developing the ability to recognize something new as similar to something

previously observed. We want the machine to be able to learn patterns that we may

not be able to explicitly describe from data that we believe contains these patterns.

Machine learning (ML) is therefore dependent on the machine being able to generate

representations of the underlying data. Bengio et al. discuss the many qualities of

a “good” representation in great length [138]. These qualities grow exponentially

more complex with the number of features due to the curse of dimensionality.

Artificial neural networks (ANNs) started to rise in the 1980’s as an attempt to

leverage the architecture of the human brain and get away from specific hand tailored

representations that required significant engineering and domain expertise [139].

Early ANNs contained only a few layers due to limitations with computational

resources and difficulties in training and stagnated in the mid 1990’s. In the mid

2000’s however, ANNs made a comeback in the form of deep learning due to advances

in high performance computing platforms, innovations in architecture and training,

advanced regularization techniques, and the availability of labeled training data
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[139].

The concept of depth comes from complexity theory as defined for circuits,

with the depth being the longest path from an input to an output [140]. The

number of potential paths or ways to reuse features grows exponentially with depth,

which leads to progressively more abstract features [138]. Depth therefore provides

an exponential advantage in the expressive power of a network [141]. The use of a

deep network allows the machine to learn a rich, hierarchical feature representation

with data-learned features progressing from simple to abstract concepts [142].

Depth is provided in terms of “hidden” layers, that are unobservable from

the input or output of the network. A representative deep network with 2 hidden

layers in addition to the input and output layers is given in Figure 2.2. This is an

example of a feedforward network as the connections are in only one direction with

no explicit dependence on neurons further upstream.

Many networks are designed for classification of objects, as such, it is common

to refer to the inputs to the network as “features” and the outputs from the network

as “labels”. The incremental outputs from the various layers are often referred

to as feature maps. Supervised learning means labels are available for use, while

unsupervised learning means labels are not available.

The ubiquity of open source tools such as Tensorflow [143] and Keras [144],

both in Python, greatly simplifies the design and use of deep ANNs. However, these

tools mask many important and subtle details, so it is quite easy to develop broken

designs without realizing it. Unfortunately, many online resources also only provide

a superficial discussion, focusing instead on the software layout.
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Figure 2.2: Deep Neural Network. A deep neural network consists of an input
and an output layer around 1 or more hidden layers. Intermediate outputs after each
layer are a linear combination of the weights with the inputs. Nonlinear activation
functions (not shown) operate on these intermediate outputs. Shown here is a case
with N inputs in the input layer, followed by 2 hidden layers containing A and B
neurons, and then an output layer with P neurons, providing P total outputs.

2.7.1 Types of Layers

As a consequence of the “no free lunch” theorem [145], no single method or

technique is optimal for all problems. This has led to many different varieties of

artificial neurons as well as architectures.

2.7.1.1 Dense Neural Networks

The simplest type of layer is “dense” or “fully connected” and provides a single

scalar weight for each neuron. An example of a dense neural network is given in

Figure 2.3, which shows that the outputs for each neuron are linear combinations

of the inputs. The number of outputs is equal to the number of neurons, and a

nonlinear activation function acts as a gating function for each output. In some
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Figure 2.3: Dense Neural Network Layer. A dense neural network processes
N inputs with M neurons. The intermediate output vector from each neuron, z, is a
linear combination of the inputs with a vector of trained weights, w, for each input.
The final output from each neuron, y, is then the result of a nonlinear activation
function applied to the intermediate output. Because z is the input to the activation
function, it is referred to by some authors as “activations”.

literature the intermediate calculations, z, are referred to as “activations”.

The output layer in almost all ANNs will be a dense layer, this ensures that the

output of the ANN will have the appropriate size and consist of a linear combination

of the outputs from the previous layer. The output layer should be thought of as a

final conditioning step and does not perform feature extraction.

2.7.1.2 Convolutional Neural Networks

A convolutional layer simply convolves a kernel, h, with the input and provides

an optional bias, b. For a 1-D kernel of length L, the output y at point n for an

input x is given by
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y[n] =

n+(L−1)/2∑

n−(L−1)/2

x[k]h[n− k] + b (2.6)

As shown here, the output of the convolution will have a different size than the input.

If the input has length N , the output will have length M , given by M = N −L+ 1.

We can zero pad the signal to force M = L if desired.

A convolutional layer is defined by the number of filters (number of neurons),

the length of the kernel, the stride, the padding, and the activation function. We

can also control various parameters that affect how the kernel and bias are updated

during training. Padding specifies whether to use the zero padded result of the same

size as the input or the unpadded result with a smaller size than the input. Stride

is the number of samples to skip during the operation and is left at 1 in most cases.

Kernel lengths are typically odd for alignment (centering).

A transposed convolutional layer is also available and often incorrectly de-

scribed as deconvolution. As forward convolution without padding results in an

output with a smaller size than the input, transposed convolution can be thought of

as convolution with upsampling and provides an output with a larger size than the

input. These are generally found in image processing applications with U-shaped

networks to preserve the output size [146].

2.7.1.3 1D Convolution

An aspect that is not well understood outside of the signal processing com-

munity is how convolutional layers are implemented for inputs containing multiple
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features. In signal processing, the feature dimensionality is referred to as the num-

ber of channels and is sometimes defined as the width or the depth of the data. This

arises from color image processing with 3 color channels for red, green, and blue.

To perform the convolution over the desired dimension and ensure all the features

are captured, the convolution kernel is multidimensional as shown in Fig. 2.4. For

a specified kernel length, k, the size of the kernel for a 1D convolutional layer with

an input containing N features is k × N . The kernel will only be shifted along a

single dimension, the local frequency window in our case, but will contain optimized

weights for each element. This means that the number of trainable parameters for

a 1D convolutional layer scales as kN , not just k. For an input data set X, the

output, y, of the convolutional layer with kernel K is given by

y[n] =
k−1∑

i=0

N−1∑

j=0

K[i, j]X[n− i, j] (2.7)

For our purposes, we will zero pad the input data by appending (k − 1)/2

rows of zeros to either end and keeping the central part of the result, so the number

of points along the convolution dimension is constant in the output. By designing

a convolutional layer consisting of Nl filters, there will be Nl such outputs or new

features for the next layer.

2.7.1.4 Receptive Field

The receptive field of a CNN defines the number of points in input space that

contribute to the result at a single point in a given layer. Our CNNs use zero

padding to keep the output size fixed, and the stride and dilation are always set
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Figure 2.4: 1D Convolution with Multiple Features. Top: Graphical rep-
resentation showing the N feature vectors and F local frequencies processed by 3
different filters with kernel length k. The kernel only moves along a single dimension
(vertically) even though the data is represented in a 2D format. Each position of
the kernel results in a single point in the output vector which has length F − k + 1
if zero padding is not used and length F if padded as described in the text. The
weights for each of the kNl elements of the kernel are computed collectively, but can
be different. Bottom: Numerical example with 3 features containing 5 points each
convolved with a kernel of length 3. The input data is zero padded with a row of
zeros at the top and bottom and the outputs for the 5 central rows are kept.
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to 1. This means the receptive field at any layer, rl, is given by a simple recursive

equation dependent on the receptive field at the previous layer, rl−1, and the kernel

length of the current layer, kl [147].

rl = rl−1 + kl − 1 (2.8)

As shown in Fig. 2.5, the receptive field for a sequential architecture grows

monotonically with depth, with each layer only seeing the receptive field from the

preceding layer. An architecture that utilizes parallel branches along with con-

catenation conserves the intermediate receptive fields, making them available for

all subsequent layers and introduces width as well as depth to the network and

providing the motivation for the inception module.

2.7.1.5 Pooling Layers

Pooling layers are used to reduce the size of output feature maps and can help

prevent networks from learning features only at specific locations. They operate by

reducing the size of the feature map by taking either an average or the maximum

value of the input values over the pool size, commonly 2.

2.7.1.6 Dropout Layers

Dropout layers provide a regularization method that randomly sets a specified

percentage, 0 < d < 1, of input values to 0. The sum of the inputs is held constant,

so inputs that are not dropped out are scaled by 1/(1 − d). Dropouts are only

applied during training and are not present when evaluating the neural network.
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Figure 2.5: Receptive field. (a) The receptive field of a convolutional neural
network (CNN) layer indicates the number of points in input space that contribute
to a single point at a given layer. (b) For a purely sequential architecture, the
receptive field increases monotonically. (c) A parallel architecture with concate-
nation produces multiple receptive fields with each available for subsequent layers,
promoting sparsity in the representations.
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2.7.2 Training Neural Networks

Training a network leverages an objective or loss function, J , evaluated over

the neuron weights, w. For the mean squared error (MSE), the loss function over

K samples of data is given as

J(w) =
1

K

K∑

i=0

1

2
||ci − h(zi)||2 (2.9)

Here, ci is the true set of outputs (labels) from the ith sample in the data and

h(zi) is the collection of outputs from the neural network, explicitly showing the

dependence on the activation function. Training is performed iteratively, with each

iteration referred to as an epoch. Networks are generally trained in reverse using

an algorithm known as backpropagation. Backpropagation is a layer-wise recursive

process that starts at the output of the network and propagates errors back through

the network layer by layer; this allows us to compute the desired gradients for each

neuron.

The workhorse algorithm is the SGD [139], where the weights at each epoch, e,

are updated based on the estimated gradient of the cost function scaled by a factor

γ.

we = we−1 − γ∇J (2.10)

SGD has problems with “pathological curvature”, or narrow ravines, which are
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common around local optima and the response tends to oscillate back and forth

across the ravine. To address this, we can introduce the concept of momentum,

“forgetting” a portion of the previous gradient [148].

ve = µve−1 − γ∇J

we = we−1 − ve

(2.11)

Here, v is an intermediate calculation and µ is the momentum, typically around 0.9.

Momentum can be thought of as a very coarse approximation of the curvature or

2nd derivative.

The gradient can be looked at in terms of the chain rule for derivatives [139],

∇J =
∂J

∂w
=
∂J

∂h

∂h

∂z

∂z

∂w
(2.12)

The selection of activation function and the existence of a gradient is therefore

important in training the network. An example of typical activation functions is

given in Figure 2.6, showing the tanh, sigmoid, and rectified linear unit (ReLU).

The tanh and sigmoid activation functions experience saturation where the gradient

goes to zero. When the intermediate outputs, z, are near these saturation regimes,

we experience a vanishing gradient and the network is unable to train. The ReLU

does not have this issue and its development enabled deep networks by improving

training convergence and providing better solutions than tanh or sigmoid [149].

Another activation function used almost exclusively in the output layer of
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Figure 2.6: Activation Functions. Three commonly used activation functions
are the tanh, sigmoid, and rectified linear unit (ReLU). The ReLU significantly
improved convergence of training and is the standard activation function in deep
learning.
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classifier ANNs is softmax. Softmax forces the sum of probabilities to 1 and guar-

antees that the network will always choose one and only one class from the list of

possibilities.

Finally, it is also important to understand how the inputs to the activation

functions, z, behave during training. In general, the distributions (mean and stan-

dard deviation) between layers change over the course of training, a phenomenon

known as internal covariate shift [150]. This causes problems as the inputs to the

next layer in the network become a moving target for the learning process and the

weights tend to get learned sequentially from the output layer to the input layer.

Internal covariate shift can be addressed with batch normalization, which nor-

malizes each feature (dimension) of the input independently across the samples. The

normalized input for the nth feature is then

x̂n =
xn − 〈xn〉√
〈x2

n〉 − 〈xn〉2
(2.13)

Simply normalizing the inputs to a layer may change the underlying repre-

sentation of the layer. To account for this, batch normalization scales and shifts

the normalized values to ensure that the identity transform is represented. This

provides an additional set of parameters, γ and β, to be learned [150]

x̃k = γkx̂k + βk (2.14)
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Chapter 3: Stochastic Optimization Approach

In this chapter we describe the use of a binary programmable metasurface to

create microwave coldspots at arbitrary frequencies, and to realize CPA states, both

within the 1 GHz band of operation of the metasurface. The conceptual overview

is shown in Figure 3.1 where the metasurface is installed in a complex reverber-

ating cavity and controlled in a closed loop manner. Input directional diversity is

introduced by simultaneously driving multiple ports with arbitrary relative phase

shifts. An iterative optimization algorithm is used to generate coldspots at the out-

put port, or to drive candidate scattering matrix eigenvalues towards the origin to

achieve CPA.

3.1 Cavity Configuration

As shown in Figure 3.2, the array was installed in a 0.76 m3 cavity where it

covers ∼ 1.5% of the total interior surface area. The cavity has 3 ports with one

acting as a target for scoring and two used for signal injection; the input ports can

be driven either individually or collectively with a relative phase shift. Although 3

ports are present, we are typically using the cavity as a 2-port system because we

have a 2-port network analyzer. All 3 ports are used when driving ports 1 and 3

simultaneously, in which case the underlying scattering system is represented by a

38



Figure 3.1: Conceptual overview of the metasurface enabled cavity as a
closed loop system. The cavity S-parameters (scattering parameters) are mea-
sured with a network analyzer and passed to a controller that updates the metasur-
face elements with a new set of commands. The controller can generate coldspots
at port 2 at an arbitrary set of frequencies, or drive candidate S-matrix eigenvalues
towards the origin, and includes a stochastic iterative optimization algorithm. The
three ports allow additional angular and spatial diversity to be added at the inputs.
The inset shows a closeup view of one of the metasurface unit cells.
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3×3 scattering matrix. While the experiment has a physically fixed number of ports,

the results can be generalized to an arbitrary number of ports. The cavity has both

low and high loss configurations to test how the behavior varies with the typical

quality factor, Q, of the modes; here we consider the high Q case. Introducing the

metasurface to the cavity reduced the average Q in the frequency band of operation

of the metasurface by a factor of ∼2. However, once the metasurface was installed,

the average Q was found to be independent of the number of active or inactive

elements on the surface. The quality factor was determined to be roughly 5.5 ×

103, by measuring the power decay time, τc = Q/ω (250 ns with the metasurface

installed). A method for estimating the time constant is given in Appendix C.

Further details of the metasurface, cavity construction, experimental setup, and

impact of the metasurface on losses are provided in Appendix E.2.

The cavity mean mode spacing in frequency, ∆f , is found from the Weyl

formula as ∆f = πc3 (2ω2V )
−1

[119]. A measure of the loss in the cavity is the

Q-width of a mode normalized to the mode spacing, α = f/(2∆fQ) = 3 for this

cavity. For our cavity, the mean mode spacing is roughly 115 kHz at a 3.5 GHz

center frequency. As discussed in Appendix E.1, the mean spacing between nulls in

the transmission coefficient, |S21|, was found to be ∼2 MHz and the average width

of the nulls was found to be ∼200 kHz. This indicates a transmission coefficient null

contains about 2 modes. Alternatively, it corresponds to a path difference of 750 m

between two interfering signals.

We are interested in the steady state response, so the average Q does put a

bound on the effective speed with which we can switch the cavity scattering matrix
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Figure 3.2: Experimental schematic and cavity configuration. a) Schematic
of the experimental setup in the configuration driving all 3 ports. A network ana-
lyzer (Agilent PNA-X 5241A) is used to measure cavity S-parameters, with channel
1 connected to both Port 1 and Port 3 (through a phase shifter) and channel 2 con-
nected to Port 2. The ports are terminated with ultra wide band (UWB) antennas.
The metasurface is mounted on the cavity wall opposite Ports 1 and 3, and a block
is used next to Port 2 to break the line-of-sight (LOS) between Port 2 and Ports 1
and 3. A laptop controls the system and is connected to the metasurface through
a USB interface and to the network analyzer through a wired ethernet link. b)
Photograph looking inside the cavity, with the metasurface and ports labeled. Also
shown in the photo are the line of sight block and the irregular scattering elements
installed on the cavity walls as discussed in Appendix E.1.
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between fixed states. This can be seen through the power decay time, which mea-

sures how quickly energy in the cavity dissipates. In order to guarantee a steady

state result, the metasurface commands must be toggled at a rate slower than 1/τc.

The time between measurements must also be staggered by several τc to ensure

each measurement corresponds to the desired metasurface commands. To observe

transient behavior in a cavity with a 250 ns power decay time, the metasurface com-

mands must be switched at rates greater than 4 MHz. This assumes the bandwidth

of the measured phenomena is wider than the switching rate; an additional complica-

tion arises with narrow bandwidth responses that are of interest. When considering

finite bandwidth nulls (200 kHz as stated above), the narrower bandwidth process

will determine the bound. Our experimental setup is limited to switching rates <

1 Hz, so neither limit presents a practical concern for our configuration. However,

experiments with an embedded microcontroller demonstrated that the metasurface

itself can be switched at rates up to 15 kHz [30], so this may need to be considered

with high speed operation in higher Q cavities.

A complex scattering system such as our cavity exhibits both universal fluc-

tuations, which can be described by RMT [108], and deterministic behavior arising

from the system specific configuration of the ports and short orbits between the

ports [109, 110, 151]. Due to the small relative size of the metasurface, the chaotic

ray paths with many multipath bounces will experience the strongest influence.

Since minimizing the power received at a port is accomplished by creating destruc-

tive interference of the ray paths, the relationship between commands and responses

is quite complicated. This leads to utilizing stochastic iterative approaches, or ma-
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chine learning, in place of linear deterministic methods for control. Here we consider

iterative processes. A metasurface covering a larger fraction of the interior surface

would likely produce stronger results [18] and allow us to use a transmission matrix

based approach to determine the optimal metasurface commands [152–154]. For

this reason most prior research utilizes metasurfaces that cover a significant portion

of a wall (or multiple walls). However, using a relatively small metasurface coverage

is better suited for real world applications where it is not practical to build or use

a larger device.

A key step in evaluating system performance is to determine the range of

possible responses of the scattering properties of the system so as to ensure that we

have a sufficiently diverse command set. Unfortunately, with 2240 possible commands

(approximately 1.8× 1072), it is not feasible to test every one and we need to find a

reduced number that produces the full range of outcomes. As discussed in Appendix

E.3, deterministic decomposition of commands into orthogonal basis functions, such

as Hadamard bases [155, 156], generated a very narrow range of system scattering

responses. Diversity in the responses requires a distribution of commands with a

variety of spatial frequencies, ratios of active to inactive elements, and localized

groupings of active elements. Doubly random methods or compound distributions,

such as a biased coin toss, or power law spectral density with the bias, or power

exponent itself a random draw, were found to yield the widest range of responses.

Details of our novel stochastic algorithm are discussed in the next section.
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3.2 Generating Coldspots

Our goal is to program the metasurface to minimize the transmission between

two ports in a complex scattering system at an arbitrary frequency. Cases are scored

by evaluating the difference in average power, ∆P2, in a specified frequency range

at a given center frequency between the initial inactive (all 0s) state and the current

state of the metasurface. To maximize this difference we take a directed random

walk approach in which at each step a number of array element states are toggled

(changed), ∆P2 is evaluated, and the new state is accepted or rejected based on

whether or not it decreases ∆P2. As discussed in the previous section, we need to

have a mix of large and small spatial groupings of elements and a varied number

of active elements to ensure a diverse set of responses. To meet this requirement,

our iterative algorithm operates in 2 distinct phases: multiple element toggling and

individual element toggling.

In the multiple element toggling phase, we select M elements at random as

a trial and toggle their state (0 → 1 and 1 → 0). If ∆P2 is decreased, the trial

set of commands becomes the new reference set and we repeat the process selecting

another M elements at random and toggling their state. When T consecutive trials

have been made without improving ∆P2 we claim convergence and move to the

next value of M . In a typical experimental run, M = [120, 48, 24, 12, 6], and T =

30. After all values of M have been exhausted, we move to the individual element

phase.

The individual element toggling phase has 3 cases associated with each trial.

44



We select a single element at random and toggle it and then, in an adaptation

of the neighbor toggling method of Ref. [97], we toggle the 4 nearest neighbors

and the 4 diagonal neighbors. ∆P2 is evaluated for each of these cases and the

algorithm continues as in the 1st phase until T consecutive trials are performed

without improving ∆P2.

The multiple element toggling phase tends to result in a local minimum which

is difficult to escape when toggling only a single element. Adding neighbor toggling

significantly improves the performance, as it provides larger localized changes in the

command set and allows us to escape the local minimum. Even with the neighbor

toggling, however, our stochastic approach does not guarantee that a global mini-

mum is found. Increasing the convergence criteria, T , can increase the probability

of finding the global minimum, but comes with the cost of increased time. The

absolute minimum is not necessarily required, and our stochastic algorithm is able

to provide substantially deep nulls at arbitrary frequencies in a reasonable amount

of time.

A typical experimental run will provide∼350 trials, ∼25 iteration updates, and

take ∼1.5 hours, as the experimental setup is not optimized for run time. We use an

ethernet connection to transfer 32,001 frequency samples over the full 1 GHz band

for each of the 4 complex S-parameter measurements using 64-bit precision. With

the frequency values themselves included, this means 2.3 MB of data are transferred

for each trial. In addition, the commands and measured |S21| are plotted at each

trial for operator feedback, resulting in a delay of ∼15 seconds per trial. Disabling

plotting and capturing only the processed frequency band could potentially reduce
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the time to 1-2 seconds per trial, or 6-12 minutes for an experimental run. In gen-

eral, the cavity should not be used for other purposes while generating a coldspot,

as trials that move in the wrong direction in the solution space may produce unde-

sirable responses. Reducing the time to find a solution in only a few minutes may

present an acceptable interruption in service. To move towards a faster, real time

operational system, we would replace the network analyzer with software defined

radios (SDRs), such as the HackRF One [157] or BladeRF [158] commercial de-

vices which retail for ∼$300 or ∼$500-1000 respectively. In addition, an embedded

micro-controller, such as an Arduino or Raspberry Pi, could be used to reduce the

USB communications overhead induced by traditional desktop operating systems

when interfacing with the metasurface. This would mean measuring signal I and

Q channels rather than S-parameters; however, this is a realistic requirement for a

practical fielded solution that would not use a bulky, expensive network analyzer

anyway. Trial rates approaching 1 kHz could be achieved in this fashion, though

substantial engineering effort would be required to reduce the latency to approach

the metasurface switching limit of 15 kHz [30].

Figure 3.3 shows the results obtained when minimizing the average power

at the output port and compares the results of many different experiments and

configurations. All the cases are scored by the change in average power, ∆P2,

between the initial inactive (all 0s) state and the final state. The optimization

algorithm was performed with ∆P2 evaluated over a single frequency band as well

as simultaneously over multiple separated frequency bands. As discussed previously,

the widths of the nulls were observed to be ∼200 kHz. The initial bandwidth was
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selected to be 500 kHz in order to ensure that ∆P2 was evaluated over an entire

null. In addition, the cavity configuration was switched between driving a single

input port and driving two input ports simultaneously with varying relative phase

shifts. The achieved suppression ranges from 4-40 dB with most cases providing >

10 dB. The lower values of ∆P2 arise in the following cases: working near the edges

of the metasurface operational window, evaluating ∆P2 over a large bandwidth,

or evaluating ∆P2 over multiple separated bands. This is not surprising as more

bandwidth results in more features in the region where ∆P2 is evaluated, which

then means more degrees of freedom are required to be manipulated for destructive

interference. The metasurface provides some benefit outside of the 3-3.75 GHz

design window; the reflection phase change of the pixels is limited near the edges of

the operational bandwidth, so performance is expected to be reduced under those

conditions.

Since ∆P2 is inherently a relative measurement, there is an implicit dependence

on the initial state. Using the inactive (all 0s) state as the reference ensures the

metasurface is always initialized with the same command even though the specific

value is dependent on the selected frequency window. Starting with a condition

where there was already a deep null would result in limited improvement; the average

power in that case would already be quite low and there would not be a need for

further reduction. Starting with a condition where there is a transmission peak

however, would result in significant reduction. When using a single frequency band

metric, we were able to drive deep nulls in each of the windows that were tested, as

can be seen by the circles in Fig. 3.3a and the power at port 2 in panels b) through
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e). Panels b) and d) show moderate cases where there is not a clear peak in the

initial P2 measurement, while panels c) and e) show cases with a clear peak in the

initial P2 measurement and demonstrate significant improvement. This highlights

the dependence of ∆P2 on the initial state.

Deep transmission nulls were also observed when driving two input ports si-

multaneously with varying relative phase shifts, as shown by the diamonds in Fig.

3.3a. This indicates our approach is self-adaptive and can compensate for multi-

ple input signals as well as signals coming in from different directions. With dual

frequency bands however, we were generally unable to drive deep nulls in both

bands simultaneously, which can be seen by the hexagrams in Fig. 3.3a and the

power at port 2 over the frequency band in panels f) and g). This is because the

metasurface frequency response in separated bands is correlated, as the metasurface

induces wide bandwidth effects on the scattering properties of the enclosure. Dif-

ferent choices of metrics produce different out of band behavior. These results show

that our approach provides 3 distinct advantages over previous works: 1) we are

able to generate coldspots at arbitrary frequencies and are not limited to a single

operating frequency; 2) we are able to generate coldspots simultaneously in multiple

separated frequency bands as well as at single frequencies; and 3) we are able to

generate coldspots when the injected signal comes from multiple directions with an

arbitrary relative phase shift and are not limited to a single direction.
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Figure 3.3: Results of minimizing power at port 2 with the iterative
optimization algorithm. a) Plot of ∆P2 at various frequencies in the range of
operation of the metasurface. Circles represent cases where the metric was evaluated
over a single frequency band and are color coded by bandwidth (sky blue is 500
kHz, green is 5 MHz, and red is 10 MHz). Hexagrams represent dual frequency
band metrics and are color coded by matching pairs. Diamonds represent driving
both ports 1 and 3 collectively and are color coded by relative phase shift (0, 8,
15, 25, and 50 deg/GHz). Letters indicate points shown in detail in the following
panels. The dashed black lines indicate the smallest reduction (-4dB) and largest
reduction (-41 dB). b through g) P2 evolution from initial (all 0s) to final state.
The dark shaded region represents the frequency band where ∆P2 was evaluated,
the dashed black line shows the initial response, the solid bold red line shows the
final response, and the remaining lines show a few of the incremental steps. b and
c) Single band examples centered at 3.033 GHz and 3.6525 GHz, with 28 and 5 dB
of suppression, respectively. d and e) Single band examples centered at 3.473 GHz
and 3.437 GHz, with 41 and 31 dB of suppression, respectively. f and g) Dual band
example centered at 3.75 GHz and 3.15 GHz, with 7 dB of suppression averaged
over the 2 bands.
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3.3 Generating Coherent Perfect Absorption

CPA is a situation in which all energy injected into a system is absorbed,

no matter how small the losses are in the system. Creating CPA requires coherent

excitation of all the ports in an eigenvector whose corresponding S-matrix eigenvalue

is zero. Operationally, the first step in establishing CPA is to find an eigenvalue of

the scattering matrix that is close to zero. For example, a 2 x 2 scattering matrix will

have a pair of eigenvalues at each frequency. However, realizing CPA only requires

driving 1 eigenvalue to zero, as the other eigenvalue corresponds to the anti-CPA

state [28]. For the following discussion and experimental results, we only consider

the smallest eigenvalue of each pair.

CPA has typically been investigated in simple, regular scattering scenarios and

cavities but recently it has been demonstrated in more complex systems, specifically

in the realm of wave chaos, and graphs [131–134]. These works analytically demon-

strate the use of RMT to explore CPA states with semiclassical tools without relying

on the limit of weak coupling. CPA states have also been experimentally investigated

in multiple scattering environments [27], and in graphs that break time-reversal in-

variance [28]. The use of enhanced spatio-temporal diversity from a metasurface for

realization of CPA has not yet been explored.

Recent research however has investigated the use of metasurfaces for Perfect

Absorption (PA) inside a cavity and demonstrated a secure communication system

as an application [22]. PA is a complementary idea to CPA for a single port system

that relies only on the reflection coefficient, S11 [137]. Coherent excitation of a single
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port with complete absorption has been demonstrated to enhance wireless power

transfer [159]. Our work extends this to coherent operation with the full scattering

matrix for a 2-port system, and can be generalized to an arbitrary number of ports.

Realizing a true absolute zero of the S-matrix eigenvalues is generally diffi-

cult, because the eigenvalues are complex numbers. Thus two parameters must be

varied independently to drive an eigenvalue to zero. Further, a CPA state is highly

dependent on the structure of the underlying scattering system. This is best un-

derstood in the framework of the RCM [114, 115]. The eigenvalues accessible by

means of the programmable metasurface tend to cluster around values determined

by the coupling properties of the ports, which are characterized by the radiation

S-matrix, Srad. We define Srad as the S-matrix corresponding to the free-space ra-

diation condition with the cavity walls taken out to infinity such that no waves come

back to the ports [94]. Srad can be determined by a number of means [160]. Here

we employ the ensemble average of the time gated measured S-parameters in the

cavity [119], as described in Appendix B. Deviations of the scattering matrix from

Srad have a number of causes. First there are deviations resulting from relatively

direct ray paths between the ports [110]. These deviations are removed by averaging

the S-matrix over a frequency window that is the reciprocal of the time of flight on

the path. However, in finding the eigenvalues of the S-matrix in a narrow frequency

range, these deviations are present. Second, there are deviations due the multitude

of longer paths, and these are characterized statistically by RMT within the RCM.

These fluctuations in S tend to be of the order of 1/(πα)1/2 [109, 110, 151] where

the loss parameter α = f/(2∆fQ) = 3 in the present experimental case. Finally,
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there are deviations dependent on the state of the metasurface. These deviations

are constrained to be less than or equal to either the direct path or the statistical

long path deviations.

Thus, to find a CPA state it is necessary for the ports to be sufficiently matched

so that the statistical fluctuations can shift the eigenvalues to zero. If the ports are

poorly matched and losses within the cavity are sufficiently high, the eigenvalues will

naturally fall near values determined by the properties of the ports with statistical

fluctuations around those values dictated by the amount of cavity loss. As such, it

is generally not possible to realize a CPA state at arbitrary frequencies when limited

to a single DOF [28]. The availability of additional DOF, such as those produced by

the metasurface, allows greater control over the underlying scattering system and

provides a greater likelihood of potential CPA states.

Characterization of the S-matrix eigenvalues from a distribution of 2000 com-

mand sets is presented in Figures 3.4 and 3.5. Figure 3.4 shows the probability

distributions for all of the S-matrix eigenvalues over all frequencies and commands.

Panel a) shows that the magnitude follows a Rician distribution as predicted by

Ref. [123], which also tells us that the ν parameter of the Rician distribution is

due to the presence of persistent short orbits [95]. Panel b) shows that the phase

of the S-matrix eigenvalues is not truly uniformly distributed. The deviation of

the eigenphase from uniformity indicates that the random distribution is not sta-

tistically independent and again tells us there are persistent short orbits present in

the system. These short orbits are not captured explicitly in Srad, and will cause

the eigenvalues of Srad to be offset from the center of the point cloud of S-matrix
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eigenvalues. Short orbits can be explicitly included analytically in the RCM [95,118]

and do not prevent us from proceeding. Panel c) shows the cumulative distribution

function (CDF) of the eigenvalue magnitudes and is useful in establishing thresholds

for potential CPA candidates.

Figure 3.5 shows point clouds of the S-matrix eigenvalues at selected frequen-

cies and demonstrates that the eigenvalues can have very different behavior in how

they approach the origin. The panels show the collection of eigenvalues of the 2000

S-matrices at selected frequencies along with the eigenvalues of Srad at that fre-

quency. We can see that the eigenvalues of the distribution tend to cluster around

the eigenvalues of Srad; the offset from the center of the point cloud is due to the

presence of short orbits, as discussed above. In panel a), the S-matrix eigenvalues

are clustered in the upper right quadrant far from the origin and do not enter the

inner rings. The Srad eigenvalue is in the upper right-hand quadrant outside of the

plot area, at 0.1862 + j0.2288. In panel b), the S-matrix eigenvalues are clustered

in the upper half, with some getting close to the origin. In panel c), the S-matrix

eigenvalues show a fairly uniform density throughout the full |λs| < 0.15 range. In

panel d), the S-matrix eigenvalues show a high density clustered around the origin.

The results in these panels are from a random distribution of commands rather than

a targeted search. During optimization, we will take smaller dithering steps for finer

control as we approach the origin, and expect to see slightly different behavior.

The variance in eigenvalue magnitudes means we need to use a large threshold

for identifying candidates because the overall global minimum S-matrix eigenvalue

may not be identified as a candidate in every realization. In practice, we found that
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Figure 3.4: S-matrix statistics for a random distribution of 2000 meta-
surface commands. Panels show statistics for the scattering matrix eigenvalues
covering all commands and all frequencies from 3-4 GHz. a) PDF for the magnitude
of scattering matrix eigenvalues, |λs|. The dashed red line shows the fit to a Rician
distribution with σ = 0.173 and ν = 0.177. b) PDF for the phase of scattering
matrix eigenvalues, ∠λs. The dashed red line shows the distribution for a perfectly
uniform phase. c) CDF for the magnitude of scattering matrix eigenvalues. The
dashed red line shows the threshold of |λs| < 0.15.
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we were unable to realize CPA states when starting with a magnitude |λs| ≥ 0.2 but

were generally able to realize CPA states when starting with a magnitude |λs| ≤

0.15. Moving an eigenvalue far from the origin requires modifying the underlying

scattering matrix more strongly than moving an eigenvalue that is already near the

origin, so this behavior is expected. Assessing the probability of finding a CPA state

in a given frequency range a priori is difficult. The universal properties of a complex

scattering system are not easily separated from the deterministic properties when

working with S-parameters, as the statistics are dominated by Srad [93]. This means

the existence of a CPA state is highly dependent on the coupling properties of the

ports and therefore the specific antennas chosen. An analytical approach is possible

through the framework of the RCM and will be left to future work.

An open question is how small do the eigenvalues need to be to realize CPA?

This is dependent on the specific application and scattering system, as that deter-

mines how accurately the eigenvalues can be measured and maintained. For our

experimentation, we set |λs| ≤ 5× 10−3 as the upper bound and |λs| ≤ 1× 10−3 as

the goal for realizing CPA.

We adopt the same basic algorithm used for power minimization but initialize

it differently. We apply a random set of commands to the metasurface and then

select a candidate eigenvalue with a specified magnitude. Figure 3.6 presents the

results of 27 separate CPA eigenvalue optimization experiments. Fig. 3.6a shows

the behavior of 4 selected cases away from the origin for |λs| < 0.15, and Fig. 3.6b

shows the behavior at the CPA condition for |λs| < 5 × 10−3. Only 3 of the 4

selected cases reach the CPA threshold. Fig. 3.6c presents the collection of all 27
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Figure 3.5: Point clouds of selected S-matrix eigenvalues for a random
distribution of 2000 metasurface commands. Panels show the point clouds
of the smaller eigenvalues of the 2000 scattering matrices at 4 selected frequencies.
The colored circles are the S-matrix eigenvalues, and are color coded by the specific
command, from 1 to 2000. The large black hexagrams indicate the position of the
eigenvalue of Srad. a) Candidate at f = 3.0055 GHz, minimum |λs| = 6 × 10−2.
b) Candidate at f = 3.4021 GHz, minimum |λs| = 2× 10−3. c) Candidate at f =
3.6564 GHz, minimum |λs| = 5×10−3. d) Candidate at f = 3.9991 GHz, minimum
|λs| = 5× 10−4.
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experiments, with the four shown in detail in panels a) and b) color coded. Each case

was initialized with an eigenvalue magnitude chosen in the range 0.075 ≤ |λs| ≤ 0.5.

The case that started with |λs| = 0.5 is enclosed by a triangle, the cases that started

with |λs| = 0.2 are enclosed by squares and the case that started with |λs| = 0.175

is enclosed by a circle. All the rest started with |λs| ≤ 0.15. Three cases initialized

with |λs| = 0.15 did not quite make the CPA threshold, |λs| ≤ 5 × 10−3. Two

cases were within a factor of 2, |λs| ≤ 9 × 10−3, while the third was within ∼20%,

|λs| = 6× 10−3 .

Utilizing the iterative optimization algorithm to change the metasurface, we

are able to drive eigenvalues towards the origin in all cases, but the algorithm stalls

at different points. The closer we get to the origin, the more difficult it becomes

to reduce the eigenvalue further. As with the coldspot optimization, the stochastic

nature of the algorithm plays a role in where convergence is reached. The overall

performance could be improved by increasing the convergence criteria or making

the algorithm adaptive so that it tracks multiple candidates and switches to another

candidate when the optimization stalls.

As a final step, we want to verify that the CPA state has been achieved. Be-

cause the CPA state is found by minimizing the eigenvalues of the scattering matrix,

verification requires that we apply the corresponding S-matrix eigenvector. This can

be done using a network analyzer with 2 independent sources and an external phase

shifter [28]. After directing a particular eigenvalue towards the origin, the network

analyzer was configured for independent source operation and the amplitude and

phase were adjusted to generate the eigenvector, as described in Appendix E.4. The
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Figure 3.6: Experimental S-matrix eigenvalue trajectories for realization
of Coherent Perfect Absorption (CPA) states. a) and b) Directed trajectories
for eigenvalues showing the random walk nature of the algorithm and demonstrating
mobility of selected eigenvalue candidates. a) Zoomed out view showing selection of
initial S-matrix eigenvalue candidates and behavior away from the origin, the bulls-
eye circles are spaced at radii incrementing by 2.5 × 10−2. The starting eigenvalue
magnitude in each case is identified by a star. b) Close up view showing behavior
near the origin, the bulls-eye circles are spaced at radii incrementing by 1 × 10−3.
Of the four cases shown, only 3 were able to get inside the inner rings near the
origin where |λs| < 5× 10−3. c) Minimum achieved eigenvalue magnitude for each
performed experiment. The circles indicate data that is shown in the upper plots
and are color coded to match. The gray squares indicate an experiment that was
performed but whose detailed trajectory is not shown in the upper plots. The dashed
black lines indicate the cross over points of 5 × 10−3 and 1 × 10−3. The enclosed
squares indicate cases where the initial eigenvalue magnitude |λs| > 0.15. |λs| = 0.5
for the triangle, |λs| = 0.2 for the squares, and |λs| = 0.175 for the circle.
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presence of a CPA state is verified by looking at the ratio of all the power emerging

from the cavity to all the power injected into the cavity, Pout/Pin. Sensitivity to

changes in the eigenvector can be determined by making small deviations in the rel-

ative phase shift or amplitude between the two sources. Sensitivity to the eigenvalue

can be determined by small changes in frequency.

A set of parameter sweeps that verify a CPA state was realized are presented

in Figure 3.7. Fig. 3.7e shows the S-matrix eigenvalue magnitude trajectory during

optimization prior to performing the verification sweeps. The overall experimental

setup is shown in Fig. 3.7f, which shows that a 2-source network analyzer was

configured with independent source operation and connected to the cavity with

an external phase shifter on port 1. This allows us to produce the appropriate

eigenvector by controlling the relative amplitude with the network analyzer and the

relative phase with the phase shifter. The metric for the sweeps is the power ratio,

Pout/Pin, of all the power emerging from the cavity to all the power injected into

the cavity. At the CPA condition, all the energy should be absorbed. However, due

to instrumentation limitations with the system noise floor, the smallest measurable

power ratio is ∼10−6. Before performing the sweeps, the eigenvector was tweaked

to provide the closest CPA state realization and then the parameters were varied to

determine the sensitivity of the power ratio.

Fig. 3.7a shows the results of the frequency sweep performed in a ± 10 MHz

window around 3.6697 GHz, with the inset showing a closeup in a ± 200 kHz

window. The width of the deep null is ∼200 kHz, which matches the null widths

found during cold spot generation. Fig. 3.7b shows the results of the phase sweep,
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Figure 3.7: Coherent Perfect Absorption (CPA) state verification at
3.6697 GHz. a) Frequency sweep showing the power ratio, Pout/Pin, over a ±
10 MHz window, with the inset providing a closeup of the null in a ± 200 kHz
window. b) Pout/Pin vs. phase difference, ∆φ, showing the power ratio over a ± 30◦

window. c) Pout/Pin vs. relative amplitude showing the power ratio when driving
port 1 with an amplitude ∼0-2 times the CPA amplitude (ACPA). d) Metasurface
command sweep showing the power ratio when toggling individual elements rela-
tive to the optimized set. Each bar indicates the power ratio when that particular
element was flipped between a 1 or a 0. The black dashed line shows the power
ratio for the optimized state, the red dashed line shows the power ratio for the all
0s state, and the magenta dashed line shows the power ratio for the all 1s state.
e) Eigenvalue magnitude trajectory during optimization of the CPA state prior to
performing the verification sweeps. Minimum achieved |λs| = 4× 10−4. f) Diagram
showing experimental setup for applying CPA eigenvector excitation and verification
sweeps.
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which was performed by adjusting the external phase shifter. Here, ∆φ represents

the phase shift at port 1 away from the CPA eigenvector phase. Fig. 3.7c shows

the results of the relative amplitude sweep. This was performed by sweeping the

power injected into port 1 from -10 dBm to +10 dBm. The x-axis is then scaled to

show the relative change in injected amplitude from the initial CPA state. In each

of these cases, the minimium power ratio is ∼ 6× 10−6 and shows a steep cusp-like

increase with the various parameters. Fig. 3.7d shows the results of the metasurface

command sweep. In this case, the 240 individual metasurface elements were toggled

to determine the impact of a single element on the CPA state. Several elements had

negligible impact on the power ratio in comparison with the optimized value as seen

in the dashed black line, but no toggles were found with clearly better performance.

The elements in the center of the metasurface have a stronger impact than those at

the edges of the metasurface, but the largest change from the CPA condition was

observed by setting all the elements to 1s as shown in the dashed magenta line.
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Chapter 4: Deep Learning Approach

In this chapter, we again use a binary programmable metasurface to shape

radio frequency electromagnetic waves inside a chaotic microwave cavity, and present

a deep learning network that solves the wavefront reconstruction problem, enabling

real-time operation once trained. We emphasize that our method is enabled by

the use of a reverberant environment, which allows the metasurface to interact with

multiple ray trajectories, often more than once. A reverberant environment provides

two major capabilities that are not present in non-reverberant environments: 1)

the ability to control the distribution of wave fields at arbitrary regions inside the

cavity is enhanced. This allows the use of relatively small metasurfaces, e.g., in

our configuration, the metasurface covers only ∼1.5% of the total surface area of

the cavity; and 2) the requirement on establishing a line-of-sight path between the

metasurface and the ports is removed, which allows the location of the metasurface

to be arbitrarily chosen, increasing the flexibility and versatility of the approach.

We anticipate that realization of this concept, as shown in Fig. 1.1, will help usher

in the new era of smart radio environments, as well as allow on-demand creation

of microwave cold spots to protect sensitive electronic components and coherent

perfect absorption states for wireless power transfer.
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4.1 Wavefront Control in Reverberant Environments

Microwave experiments have shown that programmable metasurfaces can pro-

vide fine control over the scattering parameters of a cavity, with the most recent

work demonstrating perfect absorption [22] and coherent perfect absorption [24,25]

states inside the cavity. The relationship between metasurface commands and cav-

ity scattering parameter responses is extremely complicated (there are 1018 possible

configurations of the metasurface in our case). Therefore, optimization of the meta-

surface is typically handled through brute force trial and error or stochastic search

algorithms [24, 96, 97]. As discussed in Sections 2.2 and 2.3, rapid and accurate

wavefront reconstruction techniques that solve the inverse problem between mea-

surements and metasurface commands are necessary to realize practical intelligent

wavefront shaping systems. Conventional methods fall apart in complex scattering

environments with binary metasurfaces; however, the inherent complexity makes it

an ideal place to utilize deep learning. Ma et al. explored the use of deep learn-

ing networks with wave chaotic systems, demonstrating the ability to successfully

distinguish between different types of wave chaotic cavities through the measured S-

parameters [161]. We now tackle a more difficult problem, quickly identifying a set

of metasurface commands required to achieve a specific wave scattering requirement,

even for cases where that set of commands has not been previously encountered.

In 2018, artificial neural networks were demonstrated to be applicable to solv-

ing inverse scattering problems in electromagnetics [162]. Since then, deep learning

has been successfully used to design metasurfaces for wavefront shaping applica-
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tions in both the photonic and microwave domains [163–173]. However, most of

the publications so far have focused on designing and arranging the individual unit

cells of the metasurface for static use cases. Active deep learning approaches with

programmable metasurfaces have been demonstrated for microwave imaging appli-

cations [174–179]. Li et al. used a two-bit coding metasurface to generate radi-

ation patterns for a machine learning algorithm that detects and classifies human

movement [174, 175]. del Hougne et al. started with a pair of metasurfaces as a

transmitter and receiver to feed a dense neural network that detects and classifies

objects in a learned integrated sensing paradigm [176,177]. Further research by this

group used a dense neural network to classify the position of a scattering object

inside a complex cavity with a metasurface acting as a coded aperture [178]; this

work was recently extended to predict a continuous position with sub-wavelength

precision [179].

These examples demonstrate how a programmable metasurface can enhance

the processing power of a deep learning network for microwave imaging, but they do

not leverage the deep learning network for wavefront reconstruction. This is a key

component of intelligent wavefront shaping, which has so far been an underexplored

area of research. Qian et al. used a simple dense network to enable cloaking of

an object [63], while Shan et al. used a 2D convolutional network to optimize the

steering of multiple beams [180]. Both cases utilize an idealized testing environment

inside an anechoic chamber, where multi-path reflections from the environment are

intentionally excluded. In addition, both cases are built around a propagation path

with a direct reflection off the metasurface, which means that the metasurface in-
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teracts with virtually all ray trajectories from the source to the receiver.

As discussed in Section 2.3, a single propagation path eliminates redundancies

from persistent short orbits, reducing the measured correlation between metasurface

configurations. These cases can be treated with more traditional system identifica-

tion techniques or simple neural network models. When the metasurface is placed

inside a complex reverberant scattering volume [178,179], determining the relation-

ship between metasurface commands and scattering responses becomes substantially

more difficult due to the presence of multiple scattering paths. A reverberant scat-

tering system is qualitatively different from an open system. It is characterized by

extreme sensitivity to initial conditions [108,113], and the fluctuations are only well

represented by Rayleigh or Rician distributions under high loss conditions. This

means accurate wavefront reconstruction must account for chaotic behavior and

be sensitive to small environmental changes, as well as handle non-negligible large

amplitude signal spikes that include phenomena such as rogue waves [181]. This

difficulty is further compounded as we wish to optimize the metasurface response

over a wide bandwidth or even over multiple separated bandwidths simultaneously.

Finally, real world chaotic systems contain short orbits, or prompt direct paths that

do not ergodically sample the enclosure [95, 118]. Short orbits are persistent and

manifest as correlations between realizations.

The reverberating nature of the cavity enables operation with a smaller meta-

surface than would be possible in a non-reverberating environment. Longer rever-

beration times (lower cavity losses) mean that the rays will survive longer in the

cavity, resulting in more reflections from scattering objects and more ray trajecto-
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ries that interact with the metasurface, often multiple times. Longer reverberation

times then provide the metasurface more flexibility in controlling constructive and

destructive interference at the ports, allowing for larger relative changes when tog-

gling metasurface states. We demonstrate this to be the case and show that the

performance of the deep learning network degrades as the losses in the cavity in-

crease because the metasurface has a smaller relative impact on the S-parameters.

This is another distinction between a reverberant environment and an open one,

where environmental losses only impact the signal magnitude through absorption.

We further show that our trained network can successfully determine the meta-

surface configuration from the measured scattering response in the cavity several

days after the training data was collected. Measured S21 responses with the same

initial conditions inside a chaotic cavity will change over time, a phenomenon known

as scattering fidelity decay [126–128]. Scattering fidelity decay is a property of wave

chaotic systems, and is sensitive to boundary conditions and the scattering environ-

ment. This is in contrast to ray chaos and the sensitivity of bouncing ray trajectories

to initial conditions in billiards. This decay means that any deep learning system

that learns scattering responses inside a chaotic cavity will require periodic retrain-

ing. As discussed in Chapter 5, the fact that we are still able to determine the

metasurface configuration accurately after several days means our technique is op-

erationally useful, as it can function at a high level of accuracy for a long period

of time before requiring retraining. Our approach is robust and highly accurate in

determining metasurface commands from measured cavity S21 spectra, providing an

enabling capability for intelligent wavefront shaping applications. In addition, our
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method is general enough to operate in arbitrary complex scattering systems and

does not requires a specifically engineered environment.

Our technique is achieved through the development and combination of four

major novel aspects: 1) adaptive configuration of the metasurface unit cells by bin-

ning elements together to dynamically alter the relative size of the elements; 2)

representation of the complex system S-parameters in a pseudo-2D “image” to pro-

mote extraction of features that are correlated over both local and global frequencies;

3) complex-valued deep learning layers to exploit both phase and amplitude infor-

mation, accelerating training and improving the accuracy when applied to complex

scattering environments; and 4) introduction of the Terrapin Module to parallelize

the deep learning network, promoting sparse feature representation and improving

training robustness.

Future efforts will refine our technique to intentionally scramble (or unscram-

ble) waves propagating through a complex scattering environment. Three aspira-

tional goals include: 1) tuning the scattering responses through a controller that op-

timizes the system for a given application at arbitrary frequencies and bandwidths.

Specific metrics include minimizing transmitted power for coldspot generation, min-

imizing scattering matrix eigenvalue magnitudes for coherent perfect absorption, or

minimizing the bit error rate for wireless communication; 2) introducing feedback

from the environment to dynamically update the controller and react to changing

environmental conditions; and 3) realizing a fully autonomous system that enables

persistent and robust smart radio environments that do not require human inter-

vention.
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4.2 Experimental Configuration

The complex, ray chaotic cavity used for experimentation has a binary pro-

grammable metasurface installed on an interior wall. It has a volume of 0.76 m3 and

is in the same configuration used in our previous work [24], as discussed in Appendix

F.1 and Fig. F.1. The metasurface was fabricated by the Johns Hopkins University

Applied Physics Laboratory and is designed to operate in the frequency range of 3-4

GHz. It contains 240 binary meta-atoms (LC resonators) arranged in a rectangular

grid of 10× 24 elements. Each element has a characteristic length of ∼ λ/6 and is

switched by a GaAs transistor amplifier to 1 of 2 states (0 or 1), changing the phase

of the reflection coefficient by ∼ 180◦ [30]. The metasurface covers a small region

of the interior surface area of the cavity, 1.5%, so only a limited number of rays are

intercepted by the metasurface.

The goal of our deep learning network is to enable wavefront reconstruction

inside a complex cavity. The network will accept a given S21 spectra from 3-4 GHz

and accurately determine the metasurface commands necessary to closely realize

that specific scattering response. The relatively small size of the metasurface and

its unit cells leads to high correlation between system scattering responses with

minor changes in metasurface commands, which means the inverse problem is ill-

posed. Deng et al. recently introduced a neural-adjoint approach for solving the ill-

posed inverse problem of designing unit cell geometries to match specified absorption

spectra [107]. In this case, a fully connected deep learning network was used to model

the forward problem, acting as a Green’s function to predict the spectrum from a
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given design. The inverse problem was then solved iteratively, driving the design

along an estimated gradient towards the optimal solution. As discussed in Section

2.2, gradient methods work best for a continuous or near continuous solution space

rather than a binary one such as ours; however, the adjoint method from [107] can

be adapted into a reinforcement learning approach as discussed in Section 5. In

addition, inside a chaotic reverberating environment, the spectra will have more

structure, resulting in higher frequency oscillations or local features that must also

be learned. Therefore, we require a different deep learning approach.

The complexity of the cavity scattering responses combined with the enormous

number of possible metasurface command configurations (2240) means the direct

development of a deep learning network for the full space of 240 elements is overly

ambitious. To simplify the problem, we reduced the number of degrees of freedom of

the metasurface by binning together neighboring pixel elements, or grouping them

together so that each element in a group is always commanded with the same value.

Binning the metasurface elements reduces the total number of elements that must

be determined and strengthens the relative change in cavity scattering parameters

when driving a single effective element. Binning also promotes generality, as a

metasurface with smaller elements can always approximate one with larger elements.

This provides the first major novel aspect of our approach and allows us to explore

the use of deep learning models in simpler configurations before working our way up

to the more difficult cases. We used 4 different metasurface binning configurations,

as shown in Fig. 4.1 and discussed in Appendix F.2, to progressively decrease the

number of elements.
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No Binning
240 Elements

2× 2 Binning
60 Elements

3× 3 Binning
24 Elements

5× 4 Binning
12 Elements

Figure 4.1: Metasurface binning configurations. Binning configurations show-
ing the relationship between the various options. The shaded green region identifies
a single effective element for the specified configuration and the thin gray lines show
the layout of the unbinned elements. With no binning, there are 240 elements, bin-
ning into groups of 2× 2 yields 60 elements, binning into groups of 3× 3 yields 24
elements, and binning into groups of 5× 4 yields 12 elements. For the 3× 3 binning
case, the bottom row of elements consists of a 4× 3 group so that all the elements
are utilized.
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An important step for deep learning is preparation of the measured data.

As discussed in Appendix F.3, the raw data consists of M sets of complex two-

port S-parameter values, each containing 32,001 points measured over a 3-4 GHz

window. We use a pseudo-2D “image“ to capture both long-range and short-range

correlations in frequency, as shown in Fig. F.2. This represents the complex S21

measurements in a basis set convenient for deep learning networks. The pseudo-2D

format provides the second major novel aspect of our approach.

The primary limitation is that we are not guaranteed to be able to generate

any arbitrary S21 response, as a configuration of the metasurface that produces that

response does not necessarily exist. The small size of the metasurface relative to the

cavity limits its ability to interact with all possible ray trajectories, emphasizing the

importance of a binning capability to adapt the effective pixel size to the environ-

ment. This limitation is therefore a function of the system configuration, and not

the deep learning network. The small relative size of the metasurface does represent

a realistic configuration for practical smart radio environments, however.

We show that the deep learning network achieves an accuracy exceeding 95%.

This high success rate is achieved with a limited amount of training data, requiring

the collection of far fewer sets than the number of possible combinations of meta-

surface commands. To be specific, we have a dataset of 104 S21 measurements, each

containing 32,001 frequency points, whereas there are 1018 possible configurations of

the metasurface. The data sets are split into 75% training data and 25% validation

data. At each step (epoch), validation of the trained model is performed by testing

the model with a new set of data not present in the training set.
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Training is performed in a parallelized fashion over all the training data at

once, e.g., for our computational resources, taking ∼ 4 hours to collect a sufficient

set of data and train the deep learning network. Testing, however, is performed on

single shot measurements and takes less than 1 second to measure the S21 response

and make a determination of the metasurface commands, enabling real-time oper-

ation. In contrast, the iterative approach in our earlier work [24] required ∼300

measurements to converge to a desired configuration, taking ∼10 minutes to reach

the answer for each configuration. Online iterative optimization does not require

training, but may produce undesirable configurations due to the randomly applied

perturbations. When time is available for offline training, the deep learning approach

is preferred.

4.3 Deep Learning Network Design

The goal was to design a deep learning network that provided the best perfor-

mance for the wavefront reconstruction problem, and determine metasurface com-

mands that approximately realize the desired complex transmission coefficient, S21,

vs. frequency (3-4 GHz). A discussion of the different types of neural network layers

used and the overall training approach is provided in Appendices F.4 and F.5.

The added complexity resulting from placing the metasurface inside a chaotic

cavity requires a correspondingly complicated deep learning network to extract the

relevant features. Rather than only designing progressively more intricate network

topologies, we can also introduce complex-valued layers [182], which serve as the

third major novel aspect of our approach. The wave scattering phenomenon is
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fundamentally complex-valued, so using complex-valued layers allows the network to

better match the underlying physical system and exploit both phase and amplitude

information. This is shown to be true for our system in Appendix F.6 and Fig.

F.3, which further demonstrates that the real-valued networks are more sensitive to

tuning parameters than the complex-valued networks and ultimately do not reach

the same level of accuracy for extremely complicated scattering systems. Complex-

valued multiplicative layers have been used to invert propagation through multi-

mode fibers [183, 184], but, to the best of our knowledge, have not previously been

used for wavefront reconstruction. Unfortunately, as discussed in Appendix F.6,

there are no officially supported complex-valued modules in any of the major deep

learning frameworks. Multiplicative layers are straightforward to implement, but

more complicated modules, such as convolutional layers, are not. For the research

described here, we leveraged the open source complexPyTorch library [185] as the

basis for our complex-valued network layers.

As described in Appendices F.7 and F.8, the 5 × 4 binning case performed

extremely well using a straightforward sequential CNN architecture. After training,

we were able to accurately realize 100% of the target responses over both the training

and validation sets. Unfortunately, the purely sequential architecture of the network

did not work as well for the 3× 3 binning configuration (see Appendix F.10). The

increased complexity implies that we need a more complex network, so we turned to

approaches successfully used in modern image classification, specifically inception

modules [186,187]. As discussed in Appendix F.9, we modified the general architec-

ture to perform 1D convolutions over the 10 MHz local frequency windows. The 1D

73



convolutional filters then extract local features over the 10 MHz windows, while the

relationship between the filters acts as a dense or fully connected layer, extracting

global features over the full 1 GHz measurement window. The final version, which

we refer to as a “Terrapin Module”, is shown schematically in Fig. 4.2, and provides

the fourth and final major novel technical contribution of our approach.

With a deep learning network containing 4 Terrapin Modules in series, we

were able to get excellent performance for the 3× 3 binning configuration with only

4,000 sets of training data, as discussed in Appendix F.10. The 2× 2 configuration

required 10,000 sets of data for a similar level of performance (see Appendix F.11).

The smaller effective elements in this configuration produce responses with a larger

degree of correlation. Thus, more data is required for the network to learn and dis-

tinguish the more subtle relationships between metasurface command configurations

and scattering matrix responses, S21(f).

4.4 Results

The primary objective of this work is to demonstrate that deep wavefront

shaping is a viable technique for wavefront reconstruction inside complex scattering

environments, enabling intelligent wavefront shaping in a chaotic cavity. In this

section, we shown how our deep wavefront shaping approach accurately determines

metasurface commands from measured cavity scattering parameters.

Training results for the 5× 4 and 3× 3 binning configurations are provided in

Appendices F.8 and F.7, while training results for the 2 × 2 binning configuration

are provided in Appendix F.11 and shown in Fig. 4.3. The training data consists
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Figure 4.2: Terrapin Module Architecture. Five parallel branches with 8 1D
convolutional neural network (CNN) layers and a max pool layer are used in the
module. The module operates on the pseudo-2D data format discussed previously,
and the input layer can ingest either the raw measured S21 parameters or the outputs
from a previous Terrapin module. The output layer is then connected either to a
subsequent Terrapin module for additional processing or to the final output layer
for conversion to metasurface commands. Each CNN includes a 1D convolution, a
batch normalization, and a rectified linear unit activation function. The 2nd level
CNNs have kernel lengths of 5, 17, and 33 to increase the receptive field by 125
kHz, 500 kHz, and 1 MHz, respectively. A 1D max pooling layer with pool size of
4 is included to provide a pooling window of 125 kHz as well. The quantity Nxx

indicates a tunable parameter for the number of convolutional filters at each branch
and stage, acting as a dense or fully connected layer for the global correlations. The
convolutions with unit length kernels serve to buffer and condition the inputs to
each stage, and the single layer 1st branch maintains the receptive field sizes from
previous modules. The outputs of each branch are concatenated together to form
the module output, preserving the receptive field sizes for subsequent layers.
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of 10,000 random realizations of metasurface commands, representing an extremely

small fraction of the 1.2 ×1018 possible configurations. The data was split into 7500

sets for training and 2500 sets for validation to ensure the validation process is un-

biased. The evolution of the loss function is shown in Fig. 4.3 (a) and the evolution

of the accuracy is shown in Fig. 4.3 (b). The loss function was chosen as the mean

absolute error (MAE), or the L1 norm, between determined and actual metasurface

commands. Accuracy is the fraction of sets that was determined without error and

provides a more conservative estimate of performance. The variation around Epoch

45 is due to choosing an aggressive initial learning rate and the impact of reducing

the learning rate on a plateau can be seen at Epoch 55. These panels demonstrate

that we were able to obtain high accuracy and a small loss function for both the

training and validation data sets.

The trained model did not have perfect accuracy but was able to determine

2,443 out of 2,500 sets in the validation data without error for an accuracy of 97.7%.

One set had 2 errors and 56 sets had a single error, as shown in Fig. 4.3 (c).

A comparison of the determined and true commands is shown in Fig. 4.3 (d),

(e), (g), and (h). These panels show that for the worst case set with two errors,

the network was not highly confident in the results as the erroneous determined

command probabilities were 0.41 and 0.73. Finally, example scattering responses

are shown in Fig. 4.3 (f) and (i), which demonstrate both the complexity of the

S21 responses and the fact that the difference between the measured and predicted

responses are ∼20 dB lower than the signal magnitudes themselves.

To further validate the trained deep learning network, we adopted the on-line,
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Figure 4.3: Deep learning performance with complex-valued layers for 2x2
binning. (a) Evolution of the loss function for the training and validation sets over
100 epochs. The learning rate is reduced at Epoch 55, inducing an additional re-
duction in the loss function. The initial learning rate was aggressive, resulting in a
large variation in the validation loss function between Epochs 45-50. (b) Evolution
of the accuracy for the training and validation sets over 100 epochs, the dashed
black line identifies 95% accuracy. (c) Number of errors over the validation set for
the trained model, showing a total of 58 errors and 97.7% accuracy. The maximum
number of errors in a single set was 2 (out of 60 elements), which occurred once.
(d) Determined commands for validation set #2311 showing the output from the
deep learning network. (e) True commands for validation set #2311 showing what
was actually applied to the metasurface. (f) Example scattering responses for on-
line validation showing the measured and predicted S21responses. (g) Determined
command probability for validation set #2311, showing the raw outputs from the
deep learning network prior to rounding. This panel shows that the 2 elements
determined incorrectly have command probabilities of 0.41 and 0.73, meaning the
network was not highly confident in the result. (h) Errors, or incorrectly determined
commands for validation set #2311, showing the 2 elements that were determined
incorrectly. (i) Prediction errors or difference between the measured and predicted
S21 responses.
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closed loop configuration as shown in Fig. 4.4 (a). Commands were applied to the

metasurface and the S21 response was measured and then passed through the trained

deep learning model to verify accuracy. This provides a 3rd set of data that was not

seen during training (or the initial validation). When the deep learning determined

commands had errors, the determined commands were applied to the metasurface

so that the difference in S21 responses could be computed. We define the difference,

∆S21, between two measured S21 responses, Sa21 and Sb21 through the L2 (Euclidean)

norm, ||S21(f)||2 =
√∑

f |S21(f)|2. The summation is taken over the full measured

frequency range (3-4 GHz) and ∆S21 is defined as

∆S21 = 2
||Sa21(f)− Sb21(f)||2
||S0

21(f)||2 + ||S1
21(f)||2

(4.1)

The normalization factor here is determined by the average of the L2 norms

of the active commands (all 1s), S1
21, and the inactive commands (all 0s), S0

21.

To understand how ∆S21 depends on the difference between commands, we first

identified the minimum Hamming distance for each of the 10,000 sets in the training

data. The Hamming distance is simply the number of elements that are different

between 2 sets of commands. It is a useful metric for comparing command sets, but

does not include scaling or correlation based on position; in some cases, the impact

of toggling an element in the center may be significantly different than the impact

of toggling an element on the edge of the metasurface.

The smallest Hamming distance between the training data sets ranged from

a single element to 19 elements (out of 60). A series of whisker box plots showing
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∆S21 for the various Hamming distances is shown in Fig. 4.4 (b). The general trend

shows an increase in ∆S21 with an increase in the Hamming distance. While the

relationship is nonlinear, the dynamic range in ∆S21 for Hamming distances up to

1/3 of the total number of elements is large, approximately an order of magnitude.

Validation of the deep learning network in the configuration shown in Fig. 4.4

(a) was performed periodically after collecting the training data and the results are

shown in Fig. 4.4 (c) at 2 hours, (d) at 36 hours (1.5 days), and (e) at 72 hours (3

days). Over time the scattering environment is expected to “age” and systematic

changes to the scattering environment will occur. The blue diamonds show cases

where there was a single error, and the black dots show cases where there were 2

errors. Each on-line validation experiment showed ∼ 95% accuracy and the resulting

∆S21 for errors was small compared to the observed statistical extent of ∆S21 for

single element Hamming distances. This suggests that even when the deep learning

network is unable to determine the commands completely accurately, the resulting

difference in S21 is very small. As shown in Appendix F.12, the accuracy was still

>85% after 120 hours (5 days), but dropped to ∼65% after 9 days.

The number of errors and number of cases with more than one error increases

with time, showing the “aging” effect of the cavity, which can be quantified through

the concept of scattering fidelity. Scattering fidelity is the normalized correlation as a

function of time between two cavity responses with the same initial conditions [188].

Because a chaotic cavity is sensitive to small changes in the boundary conditions,

such as volume perturbations, the scattering fidelity will decay over time [126–128].

Loss in scattering fidelity means that the accuracy of any trained deep learning
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network has a finite lifetime, so we must periodically retrain the network on new

training data to maintain accuracy. In our case, we have demonstrated that the

deep learning network can determine metasurface commands with high accuracy (>

95%) for at least 72 hours (3 days) after the initial training data collection, and with

reasonable accuracy (> 85%) up to 120 hours (5 days) after the initial training data

collection. Large variations in environmental conditions, such as temperature or hu-

midity, will introduce larger perturbations and more rapidly degrade the scattering

fidelity.

An additional set of experiments was performed to determine the impact of

cavity reverberation time on the performance of the deep learning network. To

increase the losses in the cavity (and decrease the reverberation time), RF absorbent

materials were placed inside the cavity. For each loss configuration, an ensemble of

measurements was collected using the mechanical mode stirrer and the reverberation

time was estimated from the power delay profile (PDP) [189]. See appendix C for

details on estimating the reverberation time and Appendix D for a description of

the ensemble statistics and the complex correlation coefficient. The mode stirrer

was then set to a fixed position and another ensemble was collected for training

data with 10,000 random metasurface configurations (following a biased random

coin toss approach). The correlation coefficient was computed over all possible

measurement pairs, for ∼ 5 × 107 combinations, to assess how highly correlated

the training sets were. The deep learning network was then trained using the same

network and parameters as previously discussed and the results are shown in Fig.

4.5. The cavity reverberation time ranged from 23 ns to 179 ns. The statistics of
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Figure 4.4: On-line performance verification. (a) Closed loop validation
configuration. Commands were applied to the metasurface inside the cavity, the
corresponding S21 response was measured on the PNA, and the results were passed
through the trained deep learning network. Errors for the trained model were then
measured to determine the difference in S21, ∆S21, between the two command sets.
(b) ∆S21 statistics for the minimum Hamming distance across the 10,000 sets from
the training data. Whisker plots are given for the smallest Hamming distance for
each case, and show the mean value, 25th and 75th percentiles, and maximum and
minimum values. (c) through (e) ∆S21 for online validation sets taken a specified
time after the training data was collected. The shaded regions show the extent of
the single element Hamming distance whisker box plot from panel (b). The grey
region shows the full range from maximum to minimum, and the red region shows
the 25th and 75th percentiles. The blue diamonds indicate cases with a single error,
while the black circles indicate cases with 2 errors. These panels show that the
∆S21 for errors is very small, and in the lower region of the statistics covered by
observed cases with single element Hamming distances. (c) Validation 2 hours after
collecting training data, 2000 sets of commands were tested with 86 errors for an
accuracy of 95.7%. (d) Validation 36 hours after collecting training data, 2000 sets
of commands were tested with 80 errors for an accuracy of 96%. (e) Validation 72
hours after collecting training data, 2000 sets of commands were tested with 107
errors for an accuracy of 94.7%.
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the correlation coefficients are shown relative to the left-hand axis, and show the

median value, quartiles, and full extent. The achieved accuracy of the deep learning

network on the training set is shown as the dashed red line relative to the right-

hand axis and indicates that the accuracy and correlation coefficients are inversely

related. The deep learning network is capable of operating in extremely complicated

scattering environments, but the performance degrades as the cavity losses increase.

This is because ray trajectories do not persist as long for high loss systems; the

number of bounces for a given trajectory is reduced, which means there are fewer

rays intercepted by the metasurface.
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Figure 4.5: Deep wavefront shaping performance vs. cavity reverberation
time. Performance of the deep learning network for different cavity loss config-
urations as specified by the cavity reverberation time (x-axis). The reverberation
time is shown on a log scale to highlight the behavior for high loss configurations
(short reverberation times). The statistics of the correlation coefficient over the ∼50
million combinations of measurement sets are shown relative to the left-hand y-axis.
The blue line shows the extent between the quartiles, the blue circle indicates the
median value, and the dashed black line shows the full extent. The achieved accu-
racy of the deep learning network is shown as the dashed red line relative to the
right-hand y-axis, with individual points represented by a cross. The trend shows
an inverse relationship between the correlation coefficient and the achieved accuracy
of the deep learning network, indicating that the deep learning network struggles to
identify features in the data when it is highly correlated.
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Chapter 5: Summary and Discussion

In the first part of this dissertation, we demonstrated the ability of a pro-

grammable metasurface to generate microwave coldspots in a chaotic cavity at arbi-

trary frequencies and showed this capability exists even when applied over multiple

frequency bands simultaneously.

The coldspots can be generated for different bandwidths and multiple input

port configurations that induce additional angular and spatial diversity. We have

also utilized the programmable metasurface to control the eigenvalues of the scatter-

ing matrix and direct them towards the origin to realize a CPA state for the cavity.

Finally, we verified the existence of a CPA state and demonstrated the sensitivity

to parameter sweeps in frequency, phase, amplitude, and metasurface configuration.

All of this is accomplished with a metasurface that covers only 1.5% of the interior

surface area of the cavity and a unique and effective stochastic algorithm to find

desired outcomes despite the enormous space of possible metasurface commands.

A potential worst-case scenario could be experienced where many trials are

attempted with no improvement in the metric. With sufficient diversity in the

responses, this should only occur when the baseline metasurface commands (all

0s) already produce a deep null at the desired frequency. In the experimentation,

we were always able to reduce the measured power by at least 4 dB; however, no
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experimental cases were initialized with the bandwidth centered directly over a deep

null. This could be addressed by shifting the center frequency or the bandwidth of

the metric so that the metric is not initialized at a deep null. Increasing diversity

unfortunately requires changing the cavity configuration so that the metasurface

intercepts more rays. A larger metasurface, multiple metasurfaces, or even a smaller

cavity may be necessary in this case.

In the second part of this dissertation, we demonstrated the use of a deep

learning network for wavefront reconstruction to enable intelligent wavefront shaping

in complex environments. Major novel aspects include complex-valued deep learning

layers that exploit both phase and amplitude information, binning of the metasurface

elements, a pseudo-2D data format that allows features to be extracted over both

narrow and wide bandwidths, and a Terrapin module that enhances the receptive

field, providing width and depth to the network.

One of the primary limitations of traditional deep learning is the amount

of data required to train the networks. This is especially concerning in light of

the fact that loss of scattering fidelity requires periodically collecting new training

data. We have demonstrated the ability to train highly accurate networks with a

limited amount of training data, requiring far fewer sets than the number of possible

combinations of commands. We have also demonstrated that the accuracy can be

maintained for a period of at least several days. This indicates that successful

training on a reduced amount of data is possible, provided it is sufficiently diverse.

Diversity in both the metasurface commands and the measured responses is then a

key aspect in setting up any potential autonomous system.
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For on-the-fly learning and adaptation to changing environmental conditions,

we propose the future use of reinforcement learning [106, 190], which is at the in-

tersection of artificial intelligence and optimal control. Reinforcement learning uses

an agent that interacts with an environment to learn about it and then manipulate

that environment in order to maximize (minimize) a reward (cost function), leading

to the development of optimal control policies. In particular, the subset of rein-

forcement learning known as deep or double deep “Q” learning is gaining traction

as a method for controlling quantum states [191–193]. Deep “Q” learning uses a

deep learning network to estimate a quality matrix that scores the result of taking

a particular action, while double deep “Q” learning uses two estimates to limit the

implementation of poor control policies from overestimation [194]. The deep learn-

ing network architecture developed in this dissertation is well suited for estimation

of this quality matrix.

Specification of an arbitrary scattering condition in the current implementa-

tion is cumbersome, as the complete S21 response over the full 3-4 GHz measurement

window must be defined. For practical engineering applications, we prefer a simpler

method of defining a desired wave scattering condition. Deep reinforcement learning

also helps in this case, as it scores the performance of an agent through a scalar,

positive, and real-valued metric. The agent uses the deep learning network to learn

the relationship between metasurface commands and S21 responses, but the compli-

cated details are hidden from the user. There are therefore 2 learning components

to deep reinforcement learning: an inner deep learning network that learns how to

map S21 responses onto metasurface commands, and an outer agent based loop that
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learns how to use the inner deep learning network to optimize the desired metric.

This metric can be the total power in a specified bandwidth for cold spot genera-

tion, the magnitude of the eigenvalues of the full S-matrix at a given frequency for

coherent perfect absorption, or the bit error rate for communications systems.

Learning from scratch can be slow and may not be fast enough to adapt to

changing environmental conditions. In this case, transfer learning, or using in-

formation about a similar problem to accelerate training for another one, can be

incorporated into the reinforcement learning strategy [195].

Several concerns must be addressed to enable practical fielded hardware sys-

tems. First, the sensing component must be reduced in cost and size. The avail-

ability of SDR architectures presents an ideal path here, with many inexpensive

platforms readily available. Compact devices such as the bladeRF [158] can replace

the bulky network analyzer. SDRs have limited instantaneous bandwidth, typically

10-20 MHz, so modifications would be required to the pseudo-2D data representa-

tion. Second, processing large deep learning models on power hungry GPUs may

exceed the allowable footprint in terms of both cost and power consumption. Deep

learning models can be compressed by pruning and quantization [196], and the ex-

plosion of edge intelligence for connected devices in the Internet of Things is leading

to more efficient embedded deep learning systems. An example is the Jetson series

of embedded GPUs from NVIDIA; the currently available TX2 series can provide

up to 1.26 trillion floating point operations per second on a 256-core GPU while

consuming only 10-20 W of power [197].

In addition, cabling and interface requirements grow with the number of unit
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cells provided by a metasurface. The ability to address individual unit cells and

switch states as needed is critical to achieve a practical SRE. Connectors and large

cable runs form bottlenecks and tend to be the weakest links in a system, so the

capability of addressing unit cells wirelessly without further corrupting the environ-

ment is highly desired for large element counts.

In closing, we have shown that deep wavefront shaping provides an impor-

tant step towards realizing intelligent reconfigurable metasurfaces for smart radio

environments. Potential applications in the domain of electromagnetics include

wireless power transfer, protection of sensitive electronic components, optimization

of wireless networks, micromanipulation of objects, and nonlinear time reversal.

Our technique is applicable to general wave chaotic scattering systems and is not

strictly limited to electromagnetic waves. Adopting deep wavefront shaping to con-

trol the system scattering response with metasurfaces that interact with seismic

waves [64, 65] or quantum waves [66] will unlock many innovative applications for

wave chaotic systems.
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Appendix A: Characteristic Parameters of Chaotic Cavities

This appendix lists the characteristic parameters of chaotic cavities.

Parameter Equation Description

Mean Mode Spacing ∆f = πc3

2ω2V
Specific to a 3D cavity [116]

Mean Mode Spacing ∆k2
n = 2π2

kV
Specific to a 3D cavity [116]

Loss Parameter α = k3V
2π2Q

Specific to a 3D cavity [116]

Mean Mode Spacing ∆f = c2

ωA
Specific to a 2D cavity [116]

Mean Mode Spacing ∆k2
n = 4π

A
Specific to a 2D cavity [116]

Loss Parameter α = k2A
4πQ

Specific to a 2D cavity [116]

Heisenberg Time τH = 1
2π∆f

Timescale after which dynam-
ics are governed by quantum
fluctuations [198,199]

Ballistic Flight Time τf = Lc

c
Time required for a ray to tra-
verse the cavity once

Power Delay Profile PDP =
〈
|IFT{S21}|2

〉
Decay in transmitted energy
through the cavity [200]

Reverberation Time τc = 4.34/ν Time constant of the energy de-
cay in the cavity, ν is the slope
of the PDP in dB/s [119]

Cavity Quality Factor Q = ωτc See Appendix C

Number of Modes N = V k3

3π2 Weyl approximation [201]

Radiation Impedance Zrad =
〈

[GW ]∗Zcav

[GW ]∗1

〉
See Appendix B

Average Impedance Zavg = 〈Zcav〉 See Appendix B

Table A.1: Cavity Characteristic Parameters.
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Appendix B: Time Gating in the Frequency Domain

This appendix presents a method to determine the radiation S-parameters,

Srad, in the frequency domain. In many cases, it is not feasible to directly measure

Srad but it can extracted from time gating the measured cavity S-parameters, Scav

[119]. To ensure that the important features of Srad are maintained, the optimal

gate width is determined by examining the S-parameters in the time domain and

selecting a point in time before significant contributions from the ensemble average

are present. This prevents short orbits from having a large impact on the estimated

Srad. Figure B.1 shows an example ensemble of S11 measurements. The largest

short orbit contribution occurs at ∼ 8 ns, so we will select a gating time of 7 ns.

A simple time-gating approach is to convert the signal into the time domain

with an Inverse Fast Fourier Transform (IFFT), multiply the signal with a rectan-

gular gate, and then convert the signal back to the frequency domain with a Fast

Fourier Transform (FFT). However, this approach compounds truncation effects

through the IFFT/FFT sequence and induces band edge roll off effects due to the

fact that we are using a finite, single-sided spectrum [202]. In addition, the lack of

low frequency (DC) information induces a roll off at long times when using a simple

IFFT. To account for this, the signal must be conditioned to increase the length so

the low frequency roll off is outside the region of interest. It must also be resampled
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Figure B.1: Example S11 Time Domain Response. The solid black line is the
ensemble average, Savg, and the colored lines are the individual realizations. The
dominant short orbit is present at ∼8 ns, as seen by the largest bump after the
initial prompt reflection.
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and zero padded to obtain the desired resolution and then windowed to remove the

edge effects. The implementation then requires significant book-keeping to ensure

the desired frequency domain information is preserved.

An alternative approach is to perform gating in the frequency domain through

a convolution operation and use the concept of renormalization to remove band

edge artifacts. In order to optimize frequency domain gating, the gate needs to be

centered at the time of the response being gated [202]. Because we are interested in

gating the initial response, we will center the time window at 0 seconds; accordingly,

the overall width of the gate will be double the desired end time to include both

positive and negative time extents (due to the periodicity of the discrete Fourier

transform).

The gate can be designed in 2 segments: a rectangular gate in time transformed

to the frequency domain, and a window to reduce side lobes and ringing artifacts

due to the sharp transitions of the rectangular gate. The generalized gate function

in the frequency domain, G(f), for a rectangular time domain gate defined between

times t1 and t2 is given by a sinc function, where we define sinc(x) = sin(πx)/(πx).

G(f) = (t2 − t1)sinc [f( t2 − t1 )] exp [−j2πf(t2 + t1)] (B.1)

For a gate centered at t = 0 with end time tg (t1 = −tg, t2 = tg), this expression

is simplified.

G(f) = 2tgsinc [2ftg] (B.2)
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The next step is to design a window function in the frequency domain to

suppress side lobes. A common window is the Kaiser-Bessel window, which is defined

by a shape parameter, β, and the window length, M [203]. For the analysis described

here, the Agilent PNA provided 32,001 points of data and the window was defined

with β = 6.5 and M = 23, 897. The filter response in both the time and frequency

domains is shown in Figure B.2. Because we are gating the signal at 7 ns, the -3dB

width of the gated window is 14 ns.

Finally, we can apply the gate by convolving the product of G(f) and W (f)

with the measured S-parameter for a given cavity realization. Renormalization is

handled by dividing the gated S-parameter by the convolution of the product of

G(f) and W (f) with a constant unit frequency response, which removes band edge

roll off effects [202]. Srad is then found by taking the average over the ensemble of

cavity configurations as shown in Equation B.3.

Srad(f) =

〈
[G(f)W (f)] ∗ S(f)

[G(f)W (f)] ∗ 1(f)

〉
(B.3)

Figure B.3 shows the overall ensemble with the average and radiation S-

parameters superimposed. Note that in general, Savg 6= Srad. The persistent short

orbits longer than the time gate are removed from Srad but remain in Savg. Short

orbits are due to the specific configuration of the cavity and are not representative of

the free-space responses, so time gating provides a better estimate of the radiation
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Figure B.2: Time Gating Filter Response. The top shows the gate function
W in the frequency domain and the bottom shows the gate function in the time
domain.
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Figure B.3: Example S11 Ensemble. The solid black line is the ensemble average,
Savg, the solid red line is the radiation S-parameter, Srad, and the colored lines are
the individual realizations, Scav.

S-parameters.

To demonstrate how to actually apply this in practice, several Matlab code

listings follow. Listing B.1 provides code to generate the appropriate Kaiser-Bessel

window with the parameters stated above. It requires defining the gate width (7

ns for the provided examples), the number of points present in the signal, and the

overall frequency span of the signal.
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Listing B.1: Computing the Kaiser-Bessel Window

1 %need to have the gate width (gateWidth) defined, along with ...
signal size (N) and span in frequency (fSpan)

2 %get the time spacing
3 dt = (N-1)/(N*fSpan);
4 %first setup the parameters for the Kaiser-Bessel window
5 alpha = 68;
6 %kaiser beta parameter
7 if alpha > 50
8 beta = 0.1102*(alpha - 8.7);
9 elseif alpha > 21

10 beta = 0.5842*(alpha - 21)ˆ0.4 + 0.07886*(alpha-21);
11 else
12 beta = 0;
13 end
14 %get the window length
15 nWindowPoints = ceil((alpha - 7.95)*N/80.4160);
16 %make sure window length is odd
17 if mod(nWindowPoints,2) == 0
18 nWindowPoints = nWindowPoints + 1;
19 end
20 %get the window
21 wf = window(@kaiser,nWindowPoints,beta);

Listing B.2 builds the time gating function, W , in the frequency domain. This

assumes the window function from Listing B.1 was generated.

Listing B.2: Computing the Time Gating Function

1 %determine the number of samples to be set to one in the gate
2 nGateSamples = floor(gateWidth/dt);
3 %make sure it is an odd number
4 if (mod(nGateSamples,2) == 0)
5 nGateSamples = nGateSamples - 1;
6 end
7 %initialize R in the time domain
8 Rt = zeros(nWindowPoints,1);
9 %construct R as a box with energy at the edges

10 %nGateSamples is odd, put (N-1)/2 at the front and (N-1)/2 + 1 ...
at the back

11 Rt(1:(nGateSamples-1)/2) = 1;
12 Rt(end-(nGateSamples-1)/2:end) = 1;
13 %take the Fourier transfer and use fftshift to center the gate ...

in the
14 %frequency domain
15 Rf = fftshift(fft(Rt));
16 %Muliply the gate and the window to get the windowed gate
17 W = Rf.*wf;
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Listing B.3 then applies the time gating with renormalization. It assumes

the input signal vector, Sf, contains the entire ensemble and is sized as number of

frequencies × number of realizations.

Listing B.3: Frequency Domain Gating with Renormalization

1 %% Apply the gate in the frequency domain
2 %initialize the output signal
3 Sfc = zeros(size(Sf));
4 %convolve the original signal with the windowed gate
5 for count = 1:M
6 Sfc(:,count) = conv(Sf(:,count),W,'same');
7 end
8 %for renormalization, build a unit vector across the frequencies
9 unitResponse = ones(size(Freq));

10 %convolve the unit vector with the windowed gate
11 unitResponsec = conv(unitResponse,W,'same');
12 %divide the signal by the gated unit response
13 Sfg = Sfc./unitResponsec;
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Appendix C: Estimating Cavity Time Constants

This appendix presents a method to estimate the cavity time constant or

reverberation time, τc, the basic aspects of which are provided in the literature [119,

130]. The time constant is critical to estimating the cavity Q and loss parameter,

α, so it is important to have a good estimate of τc to start. The time constant is an

inherent parameter of the cavity that is solely dependent on the losses [130]. It is

independent of the geometric details and does not depend on the position or specific

configuration of the antennas used for measurement; however, lossy or nonlinear

elements in the antenna will impact the estimate.

To estimate the time constant, we use the Power Delay Profile (PDP), which

is defined as [189,200]

PDP =
〈
|IFT {S21}|2

〉
(C.1)

Because the PDP is a function of the cavity, the cavity S-parameters are used in Eq.

C.1 rather than the radiation S-parameters. Note that for a 2-port system, the PDP

is defined by the transmission coefficients, S21 or S12. The reflection coefficients, S11

or S22 can also be used provided the ports are well coupled (the reflection coefficients

are small); if the ports are not well coupled, losses due to reflection dominate and
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S11 (or S22) does not accurately represent losses in the cavity. In this regard, the

difference between estimating the time constant with S11 (or S22) vs. S12 (or S21)

provides a measure of how well coupled the ports are.

The PDP will have an exponential decay as the energy is lost from the cavity,

so we can estimate the time constant by either fitting an exponential curve in linear

space or a straight line in log space. In log space, τc = 4.34/ν, where ν is the slope

of the PDP in dB/s [119]. The fitting concept is straightforward; however, there is

an art to selecting the region where the fit is applied.

The PDP will deviate from a decaying exponential at both early and late times.

For the early time behavior, the cavity is still charging and is described by a double

exponential model [189]. The measurements usually have a single sided spectrum

without a DC component, so a direct IFFT induces a roll off in the response at long

times (relative to the sampling time). Late time behavior is further impacted by

the noise floor, which introduces additional uncertainty in the estimate. To account

for these issues, the fitting should start late enough to avoid early time deviations

and stop early enough to avoid late time deviations. The start and stop times can

be determined by inspection, and are dependent on both the cavity under test and

the measurement settings.

Figure C.1 shows the fit to the PDP with a starting time of 750 ns and a

stopping time of 2.75 µs. The blue curve is the raw measured PDP, the red curve is

the PDP after smoothing with a moving average filter, the black line is the fit over

the specified region, and the yellow line is the fit extended to cover the full time

period. The overall time constant here was found to be 180 ns.
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Figure C.1: Estimating Cavity τc. PDP of the measured realization along with
the curve fits to estimate τc.
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Appendix D: Ensemble Statistics

This appendix presents the Pearson correlation coefficient for complex data

and discusses ensemble statistics from chaotic cavities. To compare the similarity

between measured sets of S-parameters, we can use the Pearson correlation coeffi-

cient, ρc. For complex sequences, where the sequence is over N frequency points, ρc

for realizations Sa and Sb is given as

ρc(S
a, Sb) =

1

N − 1

N∑

i=1

[
Sai − 〈Sa〉

σa

]∗ [Sbi −
〈
Sb
〉

σb

]
(D.1)

Here, σa represents the standard deviation of sequence (realization) a. An example

of the correlation coefficient from an ensemble of S21 measurements at 50 different

mode stirrer positions is given in Fig. D.1. In this figure, each realization indicates

that the mode stirrer was rotated by an increment of 360◦/50 = 7.2◦. For realization

r, the correlation coefficient is computed between position 1 and position r of the

mode stirrer. The largest correlation coefficients are therefore when the mode stirrer

is close to its original position, i.e., at realization 2 and 50.

For an ensemble containing M realizations, the number of distinct combina-

tions of 2 realizations can be determined from the binomial coefficient, which tells us

how many independent correlation coefficients can be determined from the ensemble.
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Figure D.1: Correlation coefficient for S21 over an ensemble of 50 real-
izations. Realizations were generated through a mechanical mode stirrer and the
correlation coefficient of all the positions compared to the 1st position is shown here.
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(
M

2

)
=

M !

2 (M − 2)!
(D.2)

An ensemble with M = 10,000 has 49.995 × 106 unique correlation coefficients,

while an ensemble with M = 50 only has 1225 unique correlation coefficients. For

computational efficiency, the correlation coefficients are often computed as a matrix.

The diagonal of this matrix represents the correlation of each realization with itself

and the correlation coefficients are symmetric about the diagonal. Therefore, the

unique correlation coefficients are contained either above or below the diagonal. An

example showing the matrix of correlation coefficients is given in Fig. D.2. Note

that the largest correlations again occur between realizations separated by small

angular differences of the mode stirrer, and are located near the diagonal.

The statistics of the correlation coefficients are useful for evaluating the en-

semble. High correlation coefficients can indicate the presence of persistent short

orbits or poor coupling between the port and the cavity. In addition, large reflec-

tion coefficients, |S11|, are a hallmark of poor coupling and indicate that most of

the energy is reflected back to the port rather than coupled into the cavity.
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Figure D.2: Matrix of correlation coefficients for S21 over an ensemble of
50 realizations. Realizations were generated through a mechanical mode stirrer,
the unique correlation coefficients are contained either above or below the main
diagonal.
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Appendix E: Stochastic Optimization Approach Supplemental Ma-
terial

This appendix provides supplemental material for the stochastic optimization

approach discussed in Chapter 3.

E.1 Experimental Setup

The metasurface used for the experimentation is a reflectarray fabricated by

the Johns Hopkins University Applied Physics Laboratory (JHU/APL) and is shown

in Figure E.1. The individual LC resonator unit cells can be seen on the front side

and the GaAs FET amplifiers can be seen on the back side. It is designed to

operate in the S-band from 3-3.75 GHz and provides 240 binary unit cells arranged

in a rectangular grid of 10 rows and 24 columns. The unit cells have characteristic

length < λ/6 [30].

Figure E.1: Metasurface device showing both the front and back of the
board.
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A test cavity was constructed using aluminum angle brackets for the frame

and 0.019 inch thick aluminum sheets for the sides. Each side length is 3ft (0.9144

m), so the total cavity volume is 0.76 m3 and the total surface area is 5.02 m2. This

geometry ensures the cavity is overmoded with at least 9 wavelengths per side, but

unfortunately means that the active area of the metasurface only covers a small

portion (∼ 1.5%) of the total surface area. All interior joints were lined with copper

tape to minimize losses and hemispherical scatterers were installed in the corners of

the cavity to force an irregular shape, after which the effective volume was reduced

to 0.74 m3. A higher loss version of the cavity was realized by distributing absorbing

material in the bottom of the cavity. The metasurface was installed on a wall of the

cavity as shown in Figure E.2, with a 1/4 inch gap between the metasurface and

the wall. This figure also shows the power and 3 USB cables running out through

the top of the cavity.

An overview of the experimental setup is shown in Figure E.3 and shows the

cavity configuration, the locations of the 3 ports relative to the metasurface, and the

overall connectivity. The cavity has 3 ports with port 2 used for scoring and ports

1 and 3 used for signal injection. The input ports can be driven either individually

or collectively with a relative phase shift. When they are driven collectively, the

underlying scattering matrix is 3 x 3; this extra dimensionality is hidden when using

a 2-port network analyzer. To ensure that wave interaction with the metasurface

dominates the results, a sheet of foil is used to block the direct line of sight path

from the input ports to port 2. Ultra wide band (UWB) antennas designed for

operation from 3-10 GHz are connected to each port. The antennas connected to
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Figure E.2: Metasurface installed inside the cavity.
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ports 1 and 3 are Taoglas FXUWB10 antennas and are mounted so they radiate

outward into the cavity from the walls in a vertically polarized configuration. The

antenna connected to port 3 is a PCB module mounted orthogonally so that it is

horizontally polarized.

Finally, the metasurface is controlled through 3 USB interfaces using custom

C++ software with a Python wrapper on a MacBook Pro laptop, which also controls

the Agilent network analyzer through an ethernet connection. In order to prevent

corruption from noise, multiple measurements are averaged.

E.2 Cavity Losses

The cavity time constant, τc, is an intrinsic aspect of the cavity that is depen-

dent on losses but independent of the specifics of the underlying scattering system.

This means τc is not dependent on the positioning or characteristics of the ports or

antennas used to obtain it [130]. τc is an important characteristic of the cavity as

it is related to the quality factor, Q, through Q = ωτc. One way to estimate τc is

through Power Delay Profile (PDP), which is the ensemble average of the magni-

tude squared of the Inverse Fourier Transform (IFT) of the transmission coefficient,

PDP =
〈
|IFT {S21}|2

〉
[189,200]. Since the power in the cavity decays exponentially,

we can perform a linear fit on the logarithmic magnitude and estimate τc as 4.34/ν

where ν is the slope of the PDP in dB/s [119]. See Appendix C for further details.

Figure E.4 shows the time constant estimated for the cavity under various

configurations. There were 3 antenna pairs used in the PDP measurement: dipoles

with both horizontal and vertical polarization, loops, and UWB. Measurements
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Figure E.3: Experimental setup.
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were taken with the cavity empty before installing the metasurface and in low and

high loss cases with the metasurface installed. Each data point in Figure E.4 came

from a 100 MHz window centered at the corresponding frequency. Installing the

metasurface in the cavity had a significant impact on the time constant, reducing it

by a factor of 2. Adding absorbing material for the high loss configuration reduced

the time constant by another factor of 2. Powering on and off the metasurface

however, had little impact on the time constant in either configuration. The PDP

was measured between ports 1 and 2 with 3 different antenna pairs: dipole (in both

horizontally and vertically polarized orientations), loop and UWB. The On and Off

curves indicate whether the metasurface was powered on or off.

E.3 Diverse Cavity Realizations

Attempts were made to decompose the input commands into a deterministic

set of orthogonal basis functions. This included driving single elements, columns of

elements and even Hadamard matrices. Unfortunately, these all produced a narrow

range of responses that did not cover the full extent of possibilities. A Hadamard

matrix provides an orthonormal basis and decomposes sequences similarly to spatial

frequencies; it is less computationally intensive than 2-D Fourier transforms and has

many applications in multi-input multi-output communication theory and synthetic

aperture imaging [204,205].

Figure E.5 presents the resulting ensembles from driving the metasurface with

Hadamard basis functions and shows that the responses are narrow and do not

cover the full extent. While the spatial frequency content and grouping of elements
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Figure E.4: Estimated cavity time constant for various configurations. The
three primary groupings are the empty cavity without the metasurface (top), the
low loss configuration with the metasurface (middle), and the high loss configuration
with the metasurface (bottom).
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Figure E.5: Hadamard sequence |S21| ensembles for both high loss and
low loss cases. The high loss case is shown on the left hand side and the low loss
case is shown on the right hand side.

in the command sets changed, the number of active elements did not. An unbiased

random coin toss approach likewise yielded a narrow distribution as roughly 1/2 the

elements were active in each command set. The ensembles do not span the range

covered by the inactive (all 0s) and active (all 1s) cases and do not cover the full

extent. More variation is present in the low loss case because the ray trajectories

survive longer and have more opportunities to interact with one another

The overall best approach to generating diverse ensembles was to use dou-

bly random methods, in which compound probability distributions are used. This

implies the statistics follow a Cox process, which is a generalization of a Poisson

process with the underlying intensity or local mean itself a random process [206].

A random biased coin toss, where the bias itself was selected from a random draw

for each command set worked well but only excited high spatial frequencies on the

metasurface. To include lower spatial frequencies, we added a doubly random in-

verse power spectrum approach, where the power spectrum is just a power law on
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spatial frequencies with the exponent a random draw.

C = Re
(

IFFT
{

[N (0, 1) + jN (0, 1)]
√

fr
γ
})

(E.1)

A small exponent will excite lower spatial frequencies, while a larger exponent

will excite higher spatial frequencies. the number of active elements was allowed to

change with each trial. We generally used a combination, with half the ensemble

generated through an inverse power spectrum and the other half generated through

a random biased coin toss. The ensemble for a set of 4000 realizations is shown

in Figure E.6. The doubly random methods allow the number of active elements

to change and provide a wider range of responses than the deterministic methods.

This can be seen as the distribution from the biased coin toss covers the entire area

between the inactive (all 0s) and active (all 1s).

From Figure E.6, we can see that the bandwidth of the narrowest null is ∼

500 kHz and the closest spacing between nulls is ∼ 1 MHz. This matches the

observed trends over the full 1 GHz measurement window, with typical bandwidths

of 0.5-1 MHz and spacings of 1-2 MHz. The optimization metric was chosen to

be the average power measured at port 2, P2, when driving an input from some

combination of ports 1 and 3. To isolate narrow band features, our initial metric

bandwidth was chosen to be 500 kHz.

E.4 Coherent Perfect Absorption State Generation and Verification

A Coherent Perfect Absorption (CPA) state is not guaranteed at any specific

frequency, so the approach needs to identify candidates. We repeated the iterative
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Figure E.6: Ensemble of 4000 |S21| realizations from a combination of
doubly random power spectrum and biased coin toss approaches. The
mean value is shown as the solid red line, the case with all elements active is shown
as the solid black line and the case with all elements inactive is shown as the dashed
black line.
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optimization algorithm from the coldspot generation but initialized it by applying

a random command set to the metasurface and then finding the eigenvalue with

magnitude closest to a pre-selected value.

Verifying the CPA state requires exciting the scattering system with the cor-

responding eigenvalue. We used an Agilent N5242A PNA-X Network Analyzer con-

figured for 2-independent source operation. This configuration requires selecting the

appropriate signal path on the setup menu and making the jumper connections on

the back of the instrument as per the network analyzer documentation. An external

phase shifter was connected between port 1 and the cavity. The CPA state condition

was tuned by adjusting the relative amplitude between the elements with the power

control on the network analyzer and the relative phase between the elements with

the external phase shifter. We can perform parameter sweeps to determine the sen-

sitivity of the CPA to frequency, relative phase, relative amplitude, and metasurface

commands.

Because there are 2 independent sources, S-parameter measurements are not

available in this configuration and we need to make use of the network analyzer

receivers. The network analyzer has reference and test port receivers to measure

incoming and outgoing signals. R1 measures the reference signal out of port 1 and

R2 measures the reference signal out of port 2. A measures the signal into port 1

and B measures the signal into port 2. The metric we are interested in is the power

ratio of the total outgoing power from the cavity to the total incoming power from

the network analyzer, Pout/Pin = (A+B)/(R1 +R2).
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Appendix F: Deep Learning Approach Supplemental Material

This appendix provides supplemental material for the deep learning approach

discussed in Chapter 4.

F.1 Cavity and Experimental Configuration

The cavity used has a volume of ∼0.76 m3 and includes 3 ports, with ports 1

and 3 used to inject signals and port 2 used for scoring. The cavity configuration

and experimental schematic are shown in Fig. F.1. Each port is connected to an

ultra wide band antenna (UWB) and the nominal measurement window is 3-4 GHz.

A line-of-sight block is used to obstruct the direct transmission path from port 2 to

both ports 1 and 3, and an Arduino Uno [207] controlled mechanical mode stirrer

is included to allow collection of an ensemble of cavity realizations. The stepper

motor is a Stepper Online 17HS13 motor [208], and provides 200 distinct steps.

The experimental setup is controlled by a MacBook Pro laptop, with an Agilent

N5242A network analyzer used to measure cavity S-parameters. Ports 1 and 3 can

be driven either independently or collectively with a relative phase shift provided

by a NARDA phase shifter. To reduce the cavity symmetry, irregular scattering

objects were installed on the walls.

In the frequency range of interest, 3-4 GHz, the Weyl formula [201] predicts
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Figure F.1: Cavity configuration. (a) Experimental schematic of the cavity,
showing the metasurface installed on the cavity walls, the locations of the 3 ports,
the line-of-sight (LOS) block to prevent direct transmission between Port 2 and
Ports 1 and 3, and the mode stirrer that is controlled by a stepper motor through
an Arduino. Also shown are the network analyzer, phase shifter, control laptop and
router. (b) Photograph of the interior of the cavity showing the components from
the schematic as well as the irregular scatters that were installed on the cavity walls.
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approximately 8524 resonant modes of the complex enclosure and the measured

quality factor of the cavity is roughly 5.5 × 103 [24]. A resonance mode width is

then ∼ 5 times greater than the mean mode spacing, which means there is some

local overlap between modes.

F.2 Metasurface Binning

The metasurface was binned to combine elements and start with a simpler

configuration before moving up to more complicated configurations. Without bin-

ning, there are 240 elements arranged in a 10 × 24 grid, which allows 1.8 × 1072

possible combinations of commands. Binning elements into 2 × 2 groups results in

60 elements in a 5 × 12 grid and 1.2 × 1018 possible combinations, while binning

elements into 3×3 groups results in 24 elements in a 3×8 grid and 1.7×107 possible

combinations. In the 3× 3 binning configuration, the bottom row consists of 4× 3

groups to ensure all the elements are included. Finally, binning elements into 5× 4

groups results in 12 elements in a 2× 6 grid and 4096 possible combinations. These

binning configurations are shown in Fig. 4.1.

Binning is an important capability that allows us to adapt the size of an

effective element to the underlying scattering system. This is one of the major

contributions of our work.

F.3 Data Preparation and Collection

An important step for deep learning is preparation of the measured data.

The goal here is to represent the data in a basis set that can be ingested by the

118



neural network architecture. The raw data consists of M sets of complex two-

port S-parameter values, each containing 32,001 points measured over a 3-4 GHz

window. We are interested in the relationship between metasurface commands and

transmission between the ports, so we select S21 as the primary variable of interest.

The measured data contains local and global correlations, both of which must be

captured by the deep learning network. We can exploit the local correlations with 1D

convolutional neural network (CNN) layers, but would like the individual windows

to cover a smaller bandwidth. Our previous work showed diminishing returns for

optimization over bandwidths greater than 10 MHz [24], so 10 MHz provides a

reasonable limit for the local window size. We therefore extract the complex S21

in 10 MHz frequency windows at 100 distributed center frequencies to provide 100

feature vectors containing 321 points each. A representative data set is shown

in Fig. F.2 (a), with only 50 feature vectors used for illustration. The data are

organized into a 3D structure of M sets of data × F local frequencies × N features,

or 10, 000× 321× 100 for the 2× 2 binning configuration. Each data set takes on a

pseudo-2D format with a 321 × 100 pixel “image” as shown in Fig. F.2 (b). Local

features in the 10 MHz frequency windows (over the F dimension) will be extracted

by 1D CNN layers and global features (over the N dimension) will be extracted

by the overall deep learning network architecture. The overall architecture then

acts as a dense or fully connected layer from the perspective of the global features.

The pseudo-2D format and its ability to capture both long-range and short-range

correlations in frequency provides the second major novel aspect of our approach.

The output values of the deep learning network (equal in number to the num-
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Figure F.2: Data preparation example. The deep learning networks use com-
plex amplitudes, however, only the magnitude is shown here for illustrative purposes.
(a) Raw |S21| data vs. frequency showing 50 local windows highlighted in gray. The
actual data preparation uses 100 local windows, only 50 are shown here for clarity.
The data was collected over a 1 GHz measurement window with 32,001 points and
each local window (highlighted in gray) has a bandwidth of 10 MHz or 321 points.
(b) Extracted |S21| data (in log scale) in a pseudo-2D format as a 321×50 pixel “im-
age”. The data is represented as center frequency (over the full 1 GHz measurement
window or N dimension) vs. local frequency (over the 10 MHz local window or F
dimension). The deep learning network will use 1D convolutions to extract features
in the 10 MHz local frequency windows (y-axis) and use the relationships between
convolutional filters to capture global correlations over the full 1 GHz measurement
window (x-axis).
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ber of binned metasurface elements) are floating point numbers rather than binary

numbers and can be interpreted as the probability that a given element in the meta-

surface is active (set to 1). The determined commands are then found by rounding

the outputs to either a 1 or a 0. Inspection of the raw (unrounded) outputs allows us

to assess how correct the deep learning network was, or how confident the network

was in the result. Details of the network training approach are provided in Section

F.5.

A major concern with deep learning is the amount of data required for training,

which grows with the complexity of the problem being solved. To work within

the constraint of reasonable training time, we wish to limit the number of data

sets that must be collected. Therefore, acquiring good training data is of critical

importance to ensure we cover the full range of possible responses. As found in

earlier work [24], a diverse set of measurements requires variations in the number of

active elements, spatial frequencies of active elements, and local groupings of active

elements. Therefore, we utilized a random biased coin toss approach with the bias

itself a uniformly distributed random number to assign values to the elements for

training data generation. To speed up operation as much as possible, the microwave

network analyzer was configured to only provide S21 measurements vs. frequency.

With averaging disabled, collecting 4,000 sets of data took a little under an hour

and a half, while collecting 10,000 sets of data took roughly 3.5 hours. Training was

performed on a computer running Ubuntu 20.04 equipped with an NVIDIA RTX

3080 GPU, and took roughly 30 minutes for 10,000 training sets.

For the initial experiment, we collected 4000 sets of data in each of the specified
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binning configurations; the 5×4 configuration allows 4096 unique metasurface com-

binations, so we collected 4096 sets (covering all possible combinations) in that case.

With the exception of the 5× 4 binning configuration, the number of sets collected

was far smaller than the number of possible configurations of the metasurface.

F.4 Deep Learning and Neural Network Layers

Neural networks come in many different shapes and sizes; no single type is

optimal for all problems, a consequence of the “No Free Lunch” theorem [145]. The

networks described in this thesis utilize 4 different types of layers as disscused in

Section 2.7: 1) Dense, linear, or fully connected layers characterized by the number

of neurons. The output is a linear combination of the inputs; 2) Convolutional layers

characterized by the number of filters and the length of the kernel. The output is

the result of convolving the inputs with the kernels; 3) Pooling layers characterized

by the pool size. The output is either the maximum or average value over a sliding

window of width given by the pool size. These layers serve to reduce the size of

the feature map and help ensure the learning process is position invariant; and 4)

Dropout layers characterized by the drop out rate. Dropout layers randomly set the

specified percentage of inputs to 0 at each iteration in the training process, providing

coarse regularization and simplifying the model.

Identifying the optimal deep learning network topology for a given binning con-

figuration took a significant amount of time to iterate over many potential designs,

e.g., for our computing resources, often several weeks, and was performed off-line.

Once the deep learning network architecture was determined, we switched to an on-
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line, closed loop configuration where the data collection and training processes were

separated by a few hours rather than days or weeks. The determined metasurface

commands were directly applied to the metasurface and the resulting S21 responses

were measured by the network analyzer, closing the loop. The on-line configura-

tion also serves as a “field-test” for the deep learning network, further validating it

against data not seen during training, as well as testing performance against poten-

tial small variations in measurement noise and the scattering configuration of the

cavity itself.

F.5 Network Training Setup

For training the networks, the data was split into 75% training data and 25%

validation data. The validation data is used to score the performance after each

training run and is not used during the training process itself, so that validation is

unbiased. The data was randomly shuffled prior to splitting and each network was

trained several times to ensure results were in family and that the training process

was unbiased as well.

To score the performance, we need to define metrics for loss and accuracy.

The loss function was selected as mean absolute error to emphasize outliers in the

data and we define accuracy as the fraction of sets of commands that were predicted

without error. To clarify the difference, the loss function is defined as the average

of the sum of the absolute value of the true commands, Tj, subtracted from the

predicted commands, Pj, for set j, computed over N sets of M elements.
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L =
1

NM

∑

j

|Pj − Tj| (F.1)

The loss function is then computed on a per element basis and tells us how

close the prediction was on average for each element. The output of the network is

floating point rather than binary, so the loss function does not necessarily provide

an indication of the total number of incorrect predictions. The accuracy metric is

defined as the percentage of sets that were predicted without a single error. It is

evaluated on a per set basis and explicitly uses the rounded output (0 or 1) from the

network. Because accuracy is computed on a per set basis, it is dependent on the

number of elements in a command set and provides a more conservative estimate of

performance for the various binning configurations. Accuracy is also more volatile,

especially when the loss function is large. The loss function is continuous and more

appropriate for training where we need to compute a gradient, while accuracy is a

better metric for scoring the overall performance.

The networks were trained for 100-200 epochs using stochastic gradient descent

(SGD) with momentum. The basic SGD algorithm has potential problems with

pathological curvature, or narrow ravines, which are common around local optima,

and the response tends to oscillate back and forth across the ravine. To address this,

we can use momentum [209], effectively forgetting a portion of the previous gradient.

Momentum can be thought of as a very coarse approximation of the curvature or 2nd

derivative. To accelerate the training, we explicitly use Nesterov momentum [210].

The networks were trained in batches, meaning multiple data sets were eval-
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uated at each iteration prior to updating the weights. This allows several samples

of data to be processed simultaneously so that the effect of changes in the weights

are observed over multiple sets of data, improving robustness and desensitizing the

response to noise [211]. A batch size of 100 was used by default.

To prevent the networks from simply training on noise, we introduce an ad-

ditional regularization step on the loss function. By enforcing an L2 regularization

scheme, the regularized loss function L∗ is computed from the loss function L, and

the vector of weights for the current iteration, wi, as L∗ = L + λ||wi||2. The value

λ is referred to as a weight decay. The learning rate, γ, is the step size along the

gradient, so the weights are incremented at each iteration as

wi+1 = wi − γ∇wi
L− 2γλwi (F.2)

Finally, the learning rate is stepped down when the loss function plateaus,

which allows the network to continue learning when it stalls due to the rate being

too high.

F.6 Complex Network Layers and Existing Deep Learning Frame-
works

With complex values, the mechanics of a network layer are the same as for

the real-valued counterpart but they incur four times the computational cost due to

having both real and imaginary components as well as the cross-terms. Our initial

deep learning implementation leveraged Keras [144] and TensorFlow [143]. These

provide an excellent, high level framework that is very easy to use. Unfortunately
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this ease of use complicates things when attempting to develop custom complex-

valued modules. Complex dense layers are straightforward to implement, but batch

normalization, convolution, and recurrent layers are not. While there are repositories

with complex deep networks containing some of these modules in Keras [212] and

Caffe [213], they are not actively maintained and are not formally supported by

the frameworks. In the case of Keras, changes to the way the backend is handled

in the most recent version (v2.4) mean that the complex library [212] is no longer

functional and would require significant modification to bring up to date.

This leads us to utilize PyTorch [214], another deep learning framework. The

interface to PyTorch is lower level than Keras, which means it requires more knowl-

edge of Python to use effectively, but that it is also easier to implement custom

modules. In addition, there is an open source complex library written by Sebastien

Popoff [185] that includes complex versions of dense, convolutional, and batch nor-

malization layers. We were able to utilize this library with only minor modifications

to the batch normalization implementation to handle our multiple feature data sets.

Figure F.3 shows the impact of using complex network layers. In each of the

panels, the blue plots indicate results for a real-valued network while the red plots

indicate results for a complex-valued network. In addition, the solid lines show

results for the validation set while the dashed lines show the results for the training

set. The complex-valued networks all converged faster than the real-valued networks

and the complex-valued network achieved better accuracy on the training set than

the real-valued network did for the 2×2 binning case. The only differences in training

were for the real-valued network in the 2× 2 binning case. The two differences here
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were that 1) the ”patience” parameter, or number of epochs to wait before reducing

the learning rate had to be increased significantly because the training converged

slowly even with an aggressive learning rate; and 2) the number of epochs had to be

increased from 100 to 300 in order to capture the converged model. The increased

patience parameter leads to a longer period of oscillations in the validation set loss

function.

The acceleration in training comes with a caveat in that the overall compu-

tational time for the purely real-valued deep learning network is still less than that

of the complex-valued deep learning network. Complex-valued layers increase the

computation requirements for multiplication and convolution by a factor of 4 to

handle the real and imaginary terms as well as the cross-terms. In addition, highly

optimized and efficient implementations of purely real-valued layers are readily avail-

able through the NVIDA CUDA deep neural network library (cuDNN), but are not

available for their complex-valued counterparts.

F.7 Network Architecture for Sequential Layers

Figure F.4 presents the generalized architecture used for sequential layers. The

input consists of Ni feature vectors containing the local 10 MHz windows with F

points in each vector. 1D CNN layers with Nl filters and a kernel length of kl at the

lth layer perform the feature extraction. As shown in the lower inset, each CNN layer

includes a 1D convolution followed by a batch normalization and a rectified linear

unit (ReLU) activation function. The batch normalization is used to ensure the

distribution of the data (mean and variance) remains relatively constant throughout
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Figure F.3: Impact of using complex network layers. a) through c) Evolution
of the loss function (mean absolute error) for the 5×4, 3×3, and 2×2 binning cases.
e) through f) Evolution of the accuracy for the 5×4, 3×3, and 2×2 binning cases.
The blue lines indicate real-valued network layers, the red lines indicate complex-
valued network layers, the dashed lines indicate the training set, and the solid lines
indicate the validation set. The dashed black line on the accuracy plots indicates
95% accuracy. Training was performed for 100 epochs in all cases except for the
3×3 binning case with real-valued network layers, which was trained for 300 epochs.
In each case, training with the complex-valued layers converged faster than training
with the real-valued layers. For the 2× 2 binning case, the complex-valued network
achieved higher accuracy for the training set (99.2%) than the real-valued network
did (93.6%).
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the network; changing distributions between layers induces internal covariate shift

and leads to convergence issues during training [150]. The ReLU activation function

is used in virtually all deep learning networks as it does not experience a vanishing

gradient due to saturation, and leads to expedited convergence and generally better

solutions than sigmoid like functions [215].

The Python code implementing the sequential network is provided in Listing

F.1, and the code that implements the combined complex convolutional layer uti-

lizing batch normalization and a ReLu activation function is provided in Listing

F.2. Finally, the code that implements the hybrid 1D complex batch normalization

is provided in Listing F.3. “Hybrid” here indicates batch normalization for a 1D

signal with multiple features.

Listing F.1: Sequential Network Implementation

1

2 class SequentialComplexCNN(nn.Module):
3 def init (self,din,dout):
4 super(SequentialComplexCNN, self). init ()
5 self.cnn11 = complexConvBatchNormReLU1D(din, 32, 3)
6 self.cnn12 = complexConvBatchNormReLU1D(32, 32, 5)
7 self.cnn13 = complexConvBatchNormReLU1D(32, 64, 3)
8 self.cnn14 = complexConvBatchNormReLU1D(64, 64, 5)
9

10 self.cnn21 = complexConvBatchNormReLU1D(64, 64, 3)
11 self.cnn22 = complexConvBatchNormReLU1D(64, 64, 5)
12 self.cnn23 = complexConvBatchNormReLU1D(64, 128, 3)
13 self.cnn24 = complexConvBatchNormReLU1D(128, 128, 5)
14

15 self.cnn31 = complexConvBatchNormReLU1D(128, 128, 3)
16 self.cnn32 = complexConvBatchNormReLU1D(128, 128, 5)
17 self.cnn33 = complexConvBatchNormReLU1D(128, 64, 3)
18 self.cnn34 = complexConvBatchNormReLU1D(64, 64, 5)
19

20 self.cnn41 = complexConvBatchNormReLU1D(64, 64, 3)
21 self.cnn42 = complexConvBatchNormReLU1D(64, 64, 5)
22 self.cnn43 = complexConvBatchNormReLU1D(64, 32, 3)
23 self.cnn44 = complexConvBatchNormReLU1D(32, 32, 5)
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Figure F.4: Sequential network layer architecture. The input layer consists
of Ni feature vectors containing S21 measurements in a local 10 MHz window of F
points, for a total size of F × Ni. This is followed by a series of 1D convolutional
layers defined by the number of filters and the kernel length. Each convolutional
layer includes a 1D convolution, a batch normalization to keep the distribution
statistics constant throughout the network, and a rectified linear unit activation
function. Interspersed with the convolutions are 1D max pooling layers defined
by the pool size, p, that serve to reduce the dimensionality of the local frequency
window. The output stage consists of a global average pooling layer to further reduce
dimensionality and convert the complex-valued signals to magnitude, followed by
a dense or fully-connected layer to ensure the correct number of outputs. The
dense layer produces outputs that are linear combinations of the outputs from the
global average pooling layer, and is followed by a sigmoid activation function to
approximate binary values at the output.
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24

25

26 self.denseOut = nn.Linear(32,dout)
27 self.sigmoid = nn.Sigmoid()
28

29

30

31 def forward(self,x):
32 xr = x.real
33 xi = x.imag
34 dr = 0.2
35

36 #stage 1
37 xr,xi = self.cnn11(xr,xi)
38 xr,xi = self.cnn12(xr,xi)
39 xr,xi = self.cnn13(xr,xi)
40 xr,xi = self.cnn14(xr,xi)
41

42 xr,xi = complex max pool1d(xr,xi, 2)
43 xr,xi = complex dropout(xr,xi,dr)
44

45 #stage 2
46 xr,xi = self.cnn21(xr,xi)
47 xr,xi = self.cnn22(xr,xi)
48 xr,xi = self.cnn23(xr,xi)
49 xr,xi = self.cnn24(xr,xi)
50

51 xr,xi = complex max pool1d(xr,xi, 2)
52 xr,xi = complex dropout(xr,xi,dr)
53

54 #stage 3
55 xr,xi = self.cnn31(xr,xi)
56 xr,xi = self.cnn32(xr,xi)
57 xr,xi = self.cnn33(xr,xi)
58 xr,xi = self.cnn34(xr,xi)
59

60 xr,xi = complex max pool1d(xr,xi, 2)
61 xr,xi = complex dropout(xr,xi,dr)
62

63 #stage 4
64 xr,xi = self.cnn41(xr,xi)
65 xr,xi = self.cnn42(xr,xi)
66 xr,xi = self.cnn43(xr,xi)
67 xr,xi = self.cnn44(xr,xi)
68

69 xr,xi = complex max pool1d(xr,xi, 2)
70

71 x = torch.sqrt(torch.pow(xr,2)+torch.pow(xi,2))
72 x = x.mean([2])
73 x = self.denseOut(x)
74 x = self.sigmoid(x)
75 return x
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Listing F.2: Complex Convolutional Batch Norm ReLu Layer Implementation

1 class complexConvBatchNormReLU1D(nn.Module):
2 def init (self,din,Nf, k):
3 super(complexConvBatchNormReLU1D,self). init ()
4 self.c1 = ...

ComplexConv1d(din,Nf,k,1,int(np.floor((k-1)/2)))
5 self.bn1 = ComplexBatchNormHybrid(Nf)
6

7

8 def forward(self,xr,xi):
9

10 xr,xi = self.c1(xr,xi)
11 xr,xi = self.bn1(xr,xi)
12 xr,xi = complex relu(xr,xi)
13

14 return xr,xi

Listing F.3: Hybrid Complex 1D Batch Normalization Implementation

1 class ComplexBatchNormHybrid( ComplexBatchNorm):
2

3 def forward(self, input r, input i):
4 assert(input r.size() == input i.size())
5 assert(len(input r.shape) == 3)
6 exponential average factor = 0.0
7

8 if self.training and self.track running stats:
9 if self.num batches tracked is not None:

10 self.num batches tracked += 1
11 if self.momentum is None: # use cumulative ...

moving average
12 exponential average factor = 1.0 / ...

float(self.num batches tracked)
13 else: # use exponential moving average
14 exponential average factor = self.momentum
15

16

17 if self.training:
18

19 # calculate mean of real and imaginary part
20 mean r = input r.mean([0, 2])
21 mean i = input i.mean([0, 2])
22

23 mean = torch.stack((mean r,mean i),dim=1)
24

25 # update running mean
26 with torch.no grad():
27 self.running mean = exponential average factor * ...

mean\
28 + (1 - exponential average factor) * ...

self.running mean
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29

30 input r = input r-mean r[None, :, None]
31 input i = input i-mean i[None, :, None]
32

33 # Elements of the covariance matrix (biased for train)
34 n = input r.numel() / input r.size(1)
35 Crr = 1./n*input r.pow(2).sum(dim=[0,2])+self.eps
36 Cii = 1./n*input i.pow(2).sum(dim=[0,2])+self.eps
37 Cri = (input r.mul(input i)).mean(dim=[0,2])
38

39 with torch.no grad():
40 self.running covar[:,0] = ...

exponential average factor * Crr * n / (n - 1)\
41 + (1 - exponential average factor) * ...

self.running covar[:,0]
42

43 self.running covar[:,1] = ...
exponential average factor * Cii * n / (n - 1)\

44 + (1 - exponential average factor) * ...
self.running covar[:,1]

45

46 self.running covar[:,2] = ...
exponential average factor * Cri * n / (n - 1)\

47 + (1 - exponential average factor) * ...
self.running covar[:,2]

48

49 else:
50 mean = self.running mean
51 Crr = self.running covar[:,0]+self.eps
52 Cii = self.running covar[:,1]+self.eps
53 Cri = self.running covar[:,2]
54

55 input r = input r-mean[None,:,0,None]
56 input i = input i-mean[None,:,1,None]
57

58 # calculate the inverse square root of the covariance matrix
59 det = Crr*Cii-Cri.pow(2)
60 s = torch.sqrt(det)
61 t = torch.sqrt(Cii+Crr + 2 * s)
62 inverse st = 1.0 / (s * t)
63 Rrr = (Cii + s) * inverse st
64 Rii = (Crr + s) * inverse st
65 Rri = -Cri * inverse st
66

67 input r, input i = Rrr[None,:,None]*input r + ...
Rri[None,:,None]*input i, \

68 Rii[None,:,None]*input i + ...
Rri[None,:,None]*input r

69

70 if self.affine:
71 input r, input i = self.weight[None,:,0,None] *i ...

nput r + self.weight[None,:,2,None] * input i + ...
\ self.bias[None,:,0,None], \ ...
self.weight[None,:,2,None] * input r + ...
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self.weight[None,:,1,None] * input i + \ ...
self.bias[None,:,1,None]

72

73 return input r, input i

The CNN layers are grouped together to form stages and are interspersed

with 1D max pooling layers defined by the pool size, p. Also included are dropout

layers for regularization, which are not explicitly shown in Fig. F.4. The output

stage contains a global average pooling layer that averages along the F dimension,

reducing the feature maps to a single dimension. It also converts the complex-valued

signals to magnitude and is followed by a dense layer that provides the correct

number of outputs, No. As shown in the upper inset, the output of the dense layer

is a linear combination of the outputs from the global pooling layer, with a sigmoid

activation function used to clip the output between 0 and 1.

F.8 Offline Training Results for 5 x 4 Binning

When using 5 × 4 binning, the metasurface is effectively partitioned into 12

elements, for 4096 possible sets of commands. We measured all 4096 combinations,

and the 75%/25% split yielded 3072 sets for training and 1024 sets for validation.

The batch size was set to 64 as a result. A purely sequential deep network was

utilized, following the layout given in Fig. F.4. Four CNN layers, a max pooling

layer, and a dropout layer were combined into a stage. Four stages were then used,

with the output provided by a global average pooling layer and a dense layer with

a sigmoid activation function.

Initial experiments used purely real-valued deep learning layers, in which case
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the global average pooling layer only provided dimensionality reduction. We were

able to establish excellent prediction performance, regularly achieving < 10 total

prediction errors over the validation set or > 99% accuracy after training for 500

epochs. When switching to complex-valued layers with the same architecture, we

were able to regularly achieve perfect prediction (100%) over both the training

and validation sets after training for fewer than 100 epochs. This improvement

demonstrates that the complex-valued deep learning network is able to exploit phase

as well as amplitude to better fit the relationship between metasurface commands

and transmitted power.

The training results for the 5 × 4 binning case with complex-valued layers

are shown in Fig. F.5. Figure F.5 (a) shows the loss function evolution for the

training and validation sets while Fig. F.5 (b) shows the accuracy evolution. The

performance is excellent, achieving perfect prediction over both the training and

validation data sets. Note that the loss function continues to improve even after

the accuracy saturates at 100%. This is because the loss function is continuous

and computed using the floating point predicted values rather than the rounded

binary values; it shows that the network is still learning and continuing to increase

its confidence in the prediction.

F.9 Inception and Terrapin Modules

An inception module is designed to promote sparse feature representation us-

ing available dense components [186] and works by optimizing the receptive field

coverage of a convolutional network. The receptive field is the number of points in
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Figure F.5: Deep learning performance with complex-valued layers for 5x4
Binning. (a) Evolution of the loss function for the training and validation sets over
200 epochs. The loss function measures the average prediction error per element
and provides an estimate of the confidence in the prediction. (b) Evolution of the
accuracy for the training and validation sets over 200 epochs. Accuracy provides the
relative number of sets of commands that were predicted without error, and shows
that perfect prediction was achieved on both the training and validation sets in less
than 100 epochs. The loss function continues decreasing after the accuracy saturates
at 100% because it is continuous and evaluated on the floating point predicted values
and the decrease indicates the network is still learning and improving its estimate.
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input space that contribute to a point at a given layer of the deep learning network

and is described in detail in Section S11 of the supplemental material. Through

the use of parallelization and concatenation, the receptive field sizes at a layer are

conserved for subsequent layers to utilize, extracting features through the width of

the deep learning network as well as its depth.

The original inception module was developed for image processing and op-

erates in a true 2D space, with full 2D convolutions. It uses 4 parallel paths with

CNN layers containing unit length kernels for buffering and conditioning, along with

3 and 5 sample length kernels for feature extraction, and a max pool layer to im-

prove performance [186]. There have been several variations of the inception module;

however, none operate in the pseudo-2D space we desire. For our “images”, the fre-

quency spacing along columns is the resolution of the network analyzer (31.25 kHz),

while the frequency spacing along rows is the separation between local windows (10

MHz). The difference in sampling means we need to treat the rows and columns

accordingly and avoid traditional 2D convolutions that assume uniform sampling.

Therefore, we modified the general architecture of the inception module to perform

1D convolutions over the 10 MHz local frequency windows. The 1D convolutional

filters then extract local features over the 10 MHz windows, while the relationship

between the filters acts as a dense or fully connected layer, extracting global features

over the full 1 GHz measurement window.

From previous work with the cavity, we found that the mean mode spacing

is ∼125 kHz and we demonstrated the ability to generate strong nulls over a 500

kHz bandwidth [24]. This suggests we should use a pooling window of 125 kHz
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and allow the receptive field to increase by 125 kHz and 500 kHz at each stage, or

layer in the deep learning network. After experimenting, we found that adding a

5th stage which increased the receptive field by 1 MHz helped to further improve

performance. We refer to the final version of our module as a ”Terrapin Module”,

a block diagram of which is shown in Fig. 4.2.

The Python code implementing the Terrapin Module is provided in Listing

F.4.

Listing F.4: Terrapin Module Implementation

1 class TerrapinModule(nn.Module):
2 def init (self,din,N11,N21,N22,N31,N32,N42,N51,N52):
3 super(TerrapinModule, self). init ()
4

5 k1 = 1
6 k2 = 5
7 k3 = 17
8 k4 = 33
9 s = 1

10 p1 = np.floor((k1-1)/2).astype(int)
11 p2 = np.floor((k2-1)/2).astype(int)
12 p3 = np.floor((k3-1)/2).astype(int)
13 p4 = np.floor((k4-1)/2).astype(int)
14

15 Nd = N11 + N22 + N32 + N42 + N52
16

17 self.s1c1a = ComplexConv1d(din, N11, k1,s,p1)
18 self.bns1c1a = ComplexBatchNormHybrid(N11)
19

20 self.s1c1b = ComplexConv1d(din, N21, k1,s,p1)
21 self.bns1c1b = ComplexBatchNormHybrid(N21)
22 self.s1c2b = ComplexConv1d(N21, N22, k2,s,p2)
23 self.bns1c2b = ComplexBatchNormHybrid(N22)
24

25 self.s1c1c = ComplexConv1d(din, N31, k1,s,p1)
26 self.bns1c1c = ComplexBatchNormHybrid(N31)
27 self.s1c2c = ComplexConv1d(N31, N32, k3,s,p3)
28 self.bns1c2c = ComplexBatchNormHybrid(N32)
29

30 self.s1c2d = ComplexConv1d(din, N42, k1,s,p1)
31 self.bns1c2d = ComplexBatchNormHybrid(N42)
32

33 self.s1c1e = ComplexConv1d(din, N51, k1,s,p1)
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34 self.bns1c1e = ComplexBatchNormHybrid(N51)
35 self.s1c2e = ComplexConv1d(N51, N52, k4,s,p4)
36 self.bns1c2e = ComplexBatchNormHybrid(N52)
37

38 def forward(self,xr,xi):
39 dr = 0.15
40 pool size = 3
41 s = 1
42 padding = np.floor((pool size-1)/2).astype(int)
43

44 #branch1
45 xr1,xi1 = self.s1c1a(xr,xi)
46 xr1,xi1 = self.bns1c1a(xr1,xi1)
47 xr1,xi1 = complex relu(xr1,xi1)
48

49 #branch 2
50 xr2,xi2 = self.s1c1b(xr,xi)
51 xr2,xi2 = self.bns1c1b(xr2,xi2)
52 xr2,xi2 = complex relu(xr2,xi2)
53 xr2,xi2 = complex dropout(xr2,xi2,dr)
54 xr2,xi2 = self.s1c2b(xr2,xi2)
55 xr2,xi2 = self.bns1c2b(xr2,xi2)
56 xr2,xi2 = complex relu(xr2,xi2)
57

58 #branch 3
59 xr3,xi3 = self.s1c1c(xr,xi)
60 xr3,xi3 = self.bns1c1c(xr3,xi3)
61 xr3,xi3 = complex relu(xr3,xi3)
62 xr3,xi3 = complex dropout(xr3,xi3,dr)
63 xr3,xi3 = self.s1c2c(xr3,xi3)
64 xr3,xi3 = self.bns1c2c(xr3,xi3)
65 xr3,xi3 = complex relu(xr3,xi3)
66

67 #branch 4
68 xr4,xi4 = complex max pool1d(xr,xi, pool size,s,padding)
69 xr4,xi4 = self.s1c2d(xr4,xi4)
70 xr4,xi4 = self.bns1c2d(xr4,xi4)
71 xr4,xi4 = complex relu(xr4,xi4)
72

73 #branch 5
74 xr5,xi5 = self.s1c1e(xr,xi)
75 xr5,xi5 = self.bns1c1e(xr5,xi5)
76 xr5,xi5 = complex relu(xr5,xi5)
77 xr5,xi5 = complex dropout(xr5,xi5,dr)
78 xr5,xi5 = self.s1c2e(xr5,xi5)
79 xr5,xi5 = self.bns1c2e(xr5,xi5)
80 xr5,xi5 = complex relu(xr5,xi5)
81

82 xr = torch.cat((xr1,xr2,xr3,xr4,xr5),1)
83 xi = torch.cat((xi1,xi2,xi3,xi4,xi5),1)
84

85 return xr,xi
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Figure F.6: Terrapin Network. Deep learning network utilized for the 3× 3 and
2× 2 binning configurations. There are 4 Terrapin Modules that are split between
max pooling layers. The output stage consists of a global average pooling layer and
a dense layer with a sigmoid activation function.

The deep learning network used for the 3× 3 and 2× 2 binning configurations

utilized 4 Terrapin modules and is shown in Fig. F.6, and the code that implements

the full network is provided in Listing F.5.

Listing F.5: Terrapin Network Implementation

1 class TerrapinNetwork(nn.Module):
2 def init (self,din,dout):
3 super(TerrapinNetwork, self). init ()
4 print('Building Model: TerrapinNetwork')
5 N11a = 64
6 N21a = 64
7 N22a = 80
8 N31a = 32
9 N32a = 64

10 N42a = 64
11 N51a = 32
12 N52a = 64
13 ia = N11a + N22a + N32a + N42a + N52a
14

15 N11b = 80
16 N21b = 80
17 N22b = 96
18 N31b = 48
19 N32b = 96
20 N42b = 48
21 N51b = 48
22 N52b = 80
23 ib = N11b + N22b + N32b + N42b + N52b
24
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25 N11c = 96
26 N21c = 96
27 N22c = 112
28 N31c = 64
29 N32c = 96
30 N42c = 64
31 N51c = 64
32 N52c = 96
33 ic = N11c + N22c + N32c + N42c + N52c
34

35 N11d = 112
36 N21d = 112
37 N22d = 128
38 N31d = 80
39 N32d = 112
40 N42d = 80
41 N51d = 80
42 N52d = 112
43 id = N11d + N22d + N32d + N42d + N52d
44

45 self.terrapin1 = TerrapinModule(din,N11a,N21a,N22a,N31a,
46 N32a,N42a,N51a,N52a)
47 self.terrapin2 = TerrapinModule(ia,N11b,N21b,N22b,N31b,
48 N32b,N42b,N51b,N52b)
49

50 self.terrapin3 = TerrapinModule(ib,N11c,N21c,N22c,N31c,
51 N32c,N42c,N51c,N52c)
52 self.terrapin4 = TerrapinModule(ic,N11d,N21d,N22d,N31d,
53 N32d,N42d,N51d,N52d)
54

55 self.denseOut = nn.Linear(id,dout)
56 self.sigmoid = nn.Sigmoid()
57

58 def forward(self,x):
59 xr = x.real
60 xi = x.imag
61 dr = 0.15
62

63 xr,xi = self.terrapin1(xr,xi)
64 xr,xi = self.terrapin2(xr,xi)
65 xr,xi = complex max pool1d(xr,xi, 4)
66 xr,xi = complex dropout(xr,xi,dr)
67

68 xr,xi = self.terrapin3(xr,xi)
69 xr,xi = self.terrapin4(xr,xi)
70

71 x = torch.sqrt(torch.pow(xr,2)+torch.pow(xi,2))
72 x = x.mean([2])
73 x = self.denseOut(x)
74 x = self.sigmoid(x)
75 return x
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F.10 Offline Training Results for 3 x 3 Binning

For the 3 × 3 binning configuration, the purely sequential network did not

perform very well and was unable to learn the relationships for either the training

or validation sets. This inspired the modified inception module that we defined

as the Terrapin Module. The performance difference between the sequential CNN

model and the Terrapin Module is shown in Fig. F.7, which presents training results

for the 5 × 4, 3 × 3, and 2 × 2 binning cases. The sequential CNN is not able to

train very well for the more complicated systems (3 × 3 and 2 × 2 binning cases),

while the Terrapin Module is able to exploit the more complicated relationships and

provide similar performance to the sequential CNN model on the 5×4 binning case.

The results for the 3 × 3 binning case with complex-valued layers are shown

in Fig. F.8. The impact of reducing the learning rate on a plateau can be seen at

Epoch 54, where a drop in the learning rate by a factor of 10 induces a drop in the

loss function of approximately a factor of 2.

F.11 Offline Training Results for 2 x 2 Binning

For the 2 × 2 configuration with 4000 sets of data, we were able to achieve

>98% accuracy on the training set, but were limited to ∼50% accuracy on the val-

idation set. The discrepancy between training and validation results is a hallmark

of overtraining. In this particular case, the validation results were improving but

stalled as the training results approached 100% accuracy. The error landscape be-

came extremely small with a negligible gradient, so there was no direction to take
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Figure F.7: Sequential neural network performance with complex scat-
tering systems. The solid lines indicate results for the validation data while the
dashed lines indicate results for the training data. a) and c) Evolution of the loss
function and accuracy for the 5 × 4, 3 × 3, and 2 × 2 binning cases using the se-
quential CNN model. Only the 5× 4 binning case is able to significantly reduce the
loss function and provide reasonable accuracy. There is no separation between the
validation results and the training results, indicating that there is not an issue with
too little data. b) and d) Evolution of the loss function and accuracy for the 3× 3
binning case using the sequential CNN and Terrapin Modules. The Terrapin Mod-
ule provides similar loss and accuracy to the 5× 4 binning case with the sequential
CNN.
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Figure F.8: Deep learning performance with complex-valued layers for
3x3 Binning. (a) Evolution of the loss function for the training and validation
sets over 100 epochs. The loss function hits a plateau at approximately Epoch
33 but shows an additional drop at Epoch 54 when the learning rate is reduced.
(b) Evolution of the accuracy for the training and validation sets over 100 epochs.
Accuracy provides the relative number of sets of commands that were predicted
without error, and shows that perfect prediction was achieved on both the training
and validation sets in less than 100 epochs. The loss function continues decreasing
after the accuracy saturates at 100% because it is continuous and evaluated on the
floating point predicted values and the decrease indicates the network is still learning
and improving its estimate.
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and continue learning. The network therefore learned specific features of the train-

ing set rather than general features of the full range of possible responses. This

suggests the overtraining is due to having a limited amount of data (only 4000 sets).

We captured a larger amount of data (10,000 sets) and were able to achieve >95%

accuracy on both the training and validation sets, as shown in Chapter 4, Fig. 4.3.

Perfect accuracy for the validation set may be possible with the collection of an even

larger amount of data.

F.12 Scattering Fidelity Loss

Figure F.9 shows the decay in scattering fidelity for online validation at the 4,

5, and 9 day marks. The accuracy is still >85% after 5 days, but the number of sets

with more than 1 prediction error has increased. After 9 days, the accuracy drops

to 65.5% and many cases with 2, 3, and even 4 prediction errors are found.
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Figure F.9: Scattering fidelity loss over time. ∆S21 for online validation sets
taken a specified time after the training data was collected. The shaded regions
show the extent of the single element Hamming distance results from the training
data. The grey region shows the full range from maximum to minimum, and the red
region shows the 25th and 75th percentiles. The blue diamonds indicate cases with a
single prediction error, the black circles indicate cases with 2 prediction errors, the
red squares indicate cases with 3 prediction errors, and the green circles indicate
cases with 4 prediction errors. These panels show that the ∆S21 for prediction
errors is very small, and in the lower region of the statistics covered by observed
cases with single element Hamming distances. (a) Validation 4 days after collecting
training data, 2000 sets of commands were tested with 303 mispredictions for an
accuracy of 84.9%. (b) Validation 5 days after collecting training data, 2000 sets
of commands were tested with 236 mispredictions for an accuracy of 88.2%. (c)
Validation 9 days after collecting training data, 2000 sets of commands were tested
with 690 mispredictions for an accuracy of 65.5%.
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Appendix G: Monte Carlo Simulations

This appendix presents the background theory for Monte Carlo simulations

the produce impedance statistics following the RCM.

G.1 Normalized Impedance Realizations

The development of Monte Carlo simulations for the RCM has been well ad-

dressed by previous researchers in the Wave Chaos group at UMD [116]. We will

address some specific issues here for performing Monte Carlo simulation with the

frequency dependent RCM, and focus on a 2-port system. For a 3D cavity, the

system configuration is defined by the loss parameter, α, and the cavity volume, V .

We first need to define the number of modes, M , to use. The mean mode

spacing in frequency, ∆f , is given by ∆f = πc3 (2ω2V )
−1

, so if we are interested

in performing a simulation over a specified bandwidth, Bw, the requirement on the

number of modes is M � Bw/∆f . A reasonable limit is to let M ≥ 10Bw/∆f .

We next need to find the eigenvalues following RMT. For the Gaussian orthog-

onal ensemble (GOE) case, a random matrix A with the appropriate statistics can

be found from a matrix B, whose elements are normally distributed random numbers

with 0 mean and unit variance. This results in anM×M matrix, A = 1/2
[
B + BT

]
.

The eigenvalues of A, λ̃ = eig(A), are then the eigenvalues of interest. Explicit eval-
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uation of large matrices in this form is computationally expensive. Fortunately, we

can generate eigenvalues with the same distribution with a symmetric, tri-diagonal

matrix H [216].

H =
1√
2




N (0, 2) χM−1 0 . . . 0

χM−1 N (0, 2) χM−2
. . .

...

0 χM−2
. . . . . . 0

...
. . . . . . N (0, 2) χ1

0 . . . 0 χ1 N (0, 2)




(G.1)

Here, χm is a Chi-distributed random variable with m degrees of freedom.

M is again the number of modes, so H will be an M × M matrix. Computing

the eigenvalues of H provides the same distribution as the eigenvalues of A, but

is significantly faster [216]. The eigenvalues will follow Wigner’s semi-circle law, so

we need to normalize them to provide eigenvalues with a uniform distribution [116].

Starting with the eigenvalues of H, λ̃ = eig(H), the normalized distribution of

eigenvalues, λ, is given by

λ =
M

2π

[
π + 2 sin−1

(
λ̃√
2M

)
+ 2

λ̃√
2M

2M −
√
λ̃√

2M

]
− M

2
(G.2)

Listing G.1 presents Matlab code to determine the RMT eigenvalues. For this

work, we are assuming time reversal symmetry holds, so we are interested in the

GOE case and beta = 1 in line 7. In the Monte Carlo simulation, we compute the
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eigenvalues for all the realizations before computing the normalized impedance.

Listing G.1: Computation of RMT Eigenvalues

1 %compute RMT eigenvalues, fast method from Ming-Jer Lee's ...
Thesis, Appendix A

2 %M = number of modes to be included
3 for cnt=1:N
4 %offdiagonal term
5 d0= normrnd(0, sqrt (2) ,1 ,M)';
6 %diagonal term
7 d1= sqrt( chi2rnd( beta *((M-1): -1:1)))';
8 %form tri-diagonal matrix
9 H= spdiags([[d1 ;0] ,d0 ,[0; d1 ]] ,[ -1 ,0 ,1] ,M,M)/ sqrt (2);

10 % now compute the eigenvalues
11 eigen(:,cnt)=eig(H);
12 end
13 % Transform the eigenvalues to a uniform distribution, following ...

Wigner's semicircle law
14 Elevel = (M/(2*pi))*(pi+2*asin(eigen./sqrt(2*2*M))+ ...
15 2.*(eigen./sqrt(2*2*M)).*sqrt(2*2*M-eigen.ˆ2)/sqrt(2*2*M))-M/2;

The β parameter in Listing G.1 references the RMT type, and β = 1 will follow

the GOE distribution. Once the eigenvalues have been found, we can compute the

normalized impedance. We need to specify the frequency sampling over Bw, and

generate a vector of spatial frequencies, k = ω/c. We also need to find the center

of the spatial frequencies, kc, the mean eigenvalue spacing, ∆k2
n = 2π2 (kV )−1 for

a 3D cavity, and a pair of random coupling matrices, W1 and W2. The coupling

matrices will have size M ×N and, for the GOE case, contain normally distributed

elements with 0 mean and unit variance. Letting Λ be a diagonal matrix containing

the eigenvalues from Listing G.1, we can find the normalized fluctuating impedance,

ξ, for each component from port x to port y as

ξxy(k) = − j
π

Wx

[
k2 − k2

c

∆k2
n

+ Λ− jα
]−1

WT
y (G.3)

149



Listing G.2 presents Matlab code to generate the frequency dependent nor-

malized impedance for the 2-port RCM.

Listing G.2: Frequency Dependent RCM

1 %setup the random coupling matrices for the 2 ports
2 %M = number of modes to be included
3 %N = number of realizations to be produced
4 %k is the wave number (spatial frequency)
5 %kc is the central wave number (spatial frequency)
6 %dkn2 is the mean eigenvalue spacing, dkn2 = 2*piˆ2/(kc*V) in 3D
7 CoupleMatrix1=normrnd(0,1,M,N);%coupling matrix of port 1
8 CoupleMatrix2=normrnd(0,1,M,N);%coupling matrix of port 2
9 for p=1:length(k)

10 green=(1i/pi)./(Elevel+1i*alpha-((k(p)ˆ2-kcˆ2)/dkn2));% ...
Setting up green's function

11 z11(p,:)=sum(CoupleMatrix1.*green.*CoupleMatrix1);
12 z12(p,:)=sum(CoupleMatrix1.*green.*CoupleMatrix2);
13 z21(p,:)=sum(CoupleMatrix2.*green.*CoupleMatrix1);
14 z22(p,:)=sum(CoupleMatrix2.*green.*CoupleMatrix2);
15 end

G.2 Simulated Cavity Impedance

We can provide a representative cavity impedance from the Monte Carlo re-

sults by using the RCM formulation [109] with the radiation resistance, Rrad, and

radiation reactance, Xrad.

Zcav = jXrad + ξRrad (G.4)
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G.3 Relation to Scattering Parameters

The impedance matrix can be converted to scattering parameters through a

standard bilinear transformation [121].

S =

[√
Z−1

0 Z

√
Z−1

0 − I

] [√
Z−1

0 Z

√
Z−1

0 + I

]−1

(G.5)

Generally, the characteristic impedance, Z0, is a scalar value (nominally 50 Ω)

multiplied by the identity matrix, in which case we can simplify this equation.

S = [Z− Z0] [Z + Z0]−1 (G.6)
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rich Kuhl, and Stefan Rotter. Focusing inside disordered media with the
generalized wigner-smith operator. Phys. Rev. Lett., 119:033903, Jul 2017.

[137] V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V.
Semchenko, and S. A. Tretyakov. Broadband Reflectionless Metasheets:
Frequency-Selective Transmission and Perfect Absorption. Physical Review
X, 5(3):031005, July 2015.

[138] Yoshua Bengio. Deep Learning of Representations: Looking Forward.
arXiv:1305.0445 [cs], June 2013.

[139] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

[140] Yoshua Bengio. Deep Learning of Representations for Unsupervised and
Transfer Learning. Proceedings of Machine Learning Research, 27:17–36, 2012.

[141] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-
Dickstein. On the expressive power of deep neural networks. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 2847–2854, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

[142] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
On the number of linear regions of deep neural networks. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 27, pages 2924–2932. Cur-
ran Associates, Inc., 2014.

[143] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

164



Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Distributed Systems. arXiv:1603.04467 [cs], March 2016.

[144] F. and others Chollet. Keras. https://github.com/fchollet/keras, 2015.

[145] David H Wolpert and William G Macready. No Free Lunch Theorems for Op-
timization. IEEE Transactions on Evolutionary Computation, 1(1):16, 1997.

[146] Ramesh Kestur, Shariq Farooq, Rameen Abdal, Emad Mehraj, Omkar Sub-
baramajois Narasipura, and Meenavathi Mudigere. UFCN: a fully convolu-
tional neural network for road extraction in RGB imagery acquired by remote
sensing from an unmanned aerial vehicle. Journal of Applied Remote Sensing,
12(1):1 – 15, 2018.
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