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The insect visuomotor system combines a lightweight and high bandwidth sen-

sor with fast processing algorithms for efficient information extraction that enables

autonomous navigation in complex, obstacle laden environments. In this disserta-

tion, a H∞ loop shaping controller synthesis framework is introduced to couple the

dynamic controller with an information extraction approach based on the process-

ing of optic flow patterns by using wide-field motion-sensitive interneurons in the

insect visuomotor system. Local proximity and velocity estimates are obtained with

an optic flow model that is based on parameterization of typical three-dimensional

urban environments. The insect inspired visual navigation technique developed in

the dissertation combines optic flow outputs with a H∞ controller to provide robust

stability in a cluttered environment while mitigating measurement noise and gusts.

Simulation-based validation studies are undertaken and the loop shaping approach

is used to overcome limitation in optic flow-based navigation for planar applications

as well as demonstrate safe obstacle avoidance and terrain following behavior on

an autonomous rotary wing miro-air-vehicle (MAV) for an urban-like environment



subjected to gusts for both planar and 3D navigation applications.

In addition, an alternate approach to the H∞ loop shaping framework is

considered, based on using hair mechanosensory arrays in conjunction with optic

flow outputs for enabling safe reflexive navigation. The hair sensor array outputs

are combined with optic flow outputs within a biomimetic control framework and

simulation-based studies are carried out to investigate their impact on the dynamics

of a fixed wing MAV in an urban environment. The use of hair sensor arrays is

found to augment stability and improve gust rejection performance resulting in safe

obstacle avoidance behavior in the urban environment.
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Chapter 1

Introduction

Unmanned air vehicles (UAVs) have become increasingly ubiquitous in the

fields of aerial surveillance and reconnaissance, weather research and topography.

The flight profile typically involves the vehicle flying at high altitudes with global

positioning system (GPS) enabled waypoint navigation minimising operator work-

load (yellow trajectory in Fig. 1.1). Current limitations render terrain hugging

profiles that include evading local unmapped obstacles impractical. On the other

hand, micro-air-vehicles (MAVs), a subset of UAVs, fly much closer to ground and

are envisaged for use in applications such as autonomous reflexive navigation in ob-

stacle laden GPS denied environments subjected to gusts (red and blue trajectories

in Fig. 1.1). Safe autonomous operation in such an environment would require an

agile vehicle that is capable of sensing and reacting to clutter in the local environ-

ment, as well as being robust to uncertainties in terrain and gusts. Given the size

and limited processing capabilities available onboard an MAV, this would entail the

development of lightweight, high-bandwidth sensors and computationally efficient

processing algorithms enabling low-latency actuation and high loop closure rate.

While significant progress has been made in fabrication and actuation technology

for such micro-systems [1, 2, 3], the development of requisite sensors and processing

algorithms suitable for such highly agile vehicles has fallen behind. The aim of this

1
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GPS (position, velocity) 16-28 770-910 4
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(distance, velocity,
attitude, ang. rate)

0.25 0.01 500-1000

Target 2 100 20-50

Feedback 
Control 

State 
Estimation Environment

Vehicle 
Dynamics

∑
Gust

Optic Flow 
Output

Photoreceptors

Lobula
Plate

Tangential
Cell

Lobula

Descending
Cell

Figure 1.1: UAV autonomous navigation hierarchy; yellow: GPS-guided waypoint

navigation, blue: local maneuvering through clutter to target, red: reactive obstacle

avoidance preempting maneuver to target.

dissertation is to develop biologically-inspired sensing and control algorithms based

on the insect visuomotor system that enable low-level reflexive navigation.

Developing a MAV capable of autonomous navigation in a cluttered environ-

ment is a difficult objective to achieve given the current state of sensing technology

(Fig. 1.2). The fast dynamics of a MAV alongwith the payload limitations imposed

requires high bandwidth sensors of the order of 2 g, that can operate at about 20-

50 Hz and consume about 100 mW of power. Sensors such as GPS and Inertial

Measurement units (IMU) that are typically employed to provide Kalman-filtered

estimates of velocity [4, 5], attitude and inertial location are bandwidth and power

limited (≈ 5 Hz and 1 W respectively), weigh about 15-30 g and unavailable indoors.

Miniature laser rangefinders and ultrasonics have the requisite bandwidth but are

restricted to being point sensors with small fields of view and consume far greater

power than available for deploying onboard MAVs [6].
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Figure 1.2: Size, power and bandwidth capabilities of typical miniature sensors.

Negotiating a cluttered environment requires a MAV to be capable of sensing

proximity to objects in the surrounding environment, especially when it becomes un-

safe. Proximity detection capability is uncommon in large vehicles and is considered

highly advanced for micro-systems. Vision provides abundant information of the

obstacle-rich local environment and is particularly well suited for detecting proxim-

ity or generating an environment map. Traditional machine vision approaches that

infer proximity and velocity from camera imagery have been implemented; however,

these algorithms can be computationally expensive and require significant payload

[6, 7, 8, 9, 10], necessitating off-board processing, even for relatively large vehicles

with significant payloads [11]. Moreover, their small size and high maneuverability

render MAVs acutely susceptible to wind gusts, requiring complicated sensing appa-

ratus for large gust mitigation [12], especially in outdoor environments. For an aerial

micro-system with a requirement of both indoor and outdoor operation, there is no

viable approach for proximity and velocity estimation for safe obstacle avoidance

3



behavior. Novel sensing and processing mechanisms then need to be considered for

the development of successful autonomous micro-systems.

Nature provides an elegant solution to the problem of robust visual proximity

and velocity detection. Flying insects have demonstrated safe navigation behaviour

in uncertain environments without the computational complexity that current ma-

chine vision algorithms require to perform the same task. Insects utilize optic flow

[13, 14], the characteristic patterns of luminance that form on the retina, as they

move. These patterns of visual motion are a rich source of motion cues, and they are

a function of relative speed and proximity to objects in the surrounding environment

[15]. Specialized tangential cell neurons, located in the insect’s lobula plate, parse

these patterns of optic flow over large fields of view to extract vital motion cues

such as relative proximity and velocity for navigation. The robust flight behavior

of these insects [16, 17, 18, 19] render optic flow based navigation methodologies

particularly suitable for MAVs.

Therefore, the central aim of the dissertation is to utilize optic flow to develop

control algorithms that enable accurate extraction of proximity and velocity infor-

mation and provide stabilising commands for safe reflexive navigation in unknown,

obstacle-laden and gusty environments. The methodology developed allows for a

degree of uncertainty in the structure of the local environment map, thus preclud-

ing the need for either generating accurate environment structure from motion or

employing optimization-based trajectory generation strategies.

4
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Figure 1.3: Insect visuomotor system.

1.1 Insect Visuomotor System

The insect eye is composed of numerous photoreceptors that function to create

patterns of luminance, based on insect motion, on the retina. The relative veloc-

ity vector arising from local image shifts mapped over the entire visual field form

patterns of optic flow. These patterns of optic flow are a function of insect’s rela-

tive motion and proximity to objects in the surrounding environment, which can be

expressed in closed form [20]. The retinotopic arrangement of the spatiotemporal

patterns of optic flow is preserved and are parsed over large swathes of the visual

field by tangential cell interneurons that reside in the lobula plate of the visual

ganglia (Fig. 1.3). The most prominent of these neurons have been found to be

sensitive to motion in the horizontal and vertical planes [21, 22, 23]. They respond

with graded membrane potentials whose polarity depends on motion direction, with

the magnitude being highly directionally selective [24, 25]. The directional sensitiv-
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ity field has been mapped out in some instances [25] and it has been hypothesized

that the optic flow outputs are generated by making a comparison between these

sensitivity patterns and the pattern of the visual stimulus with the cells thus acting

as matched filters [26, 27].

1.2 Optic Flow-Based Navigation

Biologically inspired approaches for MAV navigation [28] have been studied

as an alternative paradigm to traditional computer and machine vision approaches

[29, 30]. Seminal work by Srinivasan et al. [31, 19] that led to the discovery of

honeybee-inspired optic flow heuristics - where optic flow on the left and right reti-

nas were balanced as an insect traversed a narrow corridor - has spawned several

similar approaches for MAV navigation [32, 33, 34, 35, 36, 37, 38]. For example,

Muratet et al. employed a perspective camera in vehicle motion direction to de-

tect frontal obstacles and execute a safe collision avoidance maneuver, while Hrabar

[38] used a set of stereo cameras to generate depth estimates for lateral obstacle

avoidance in an urban environment. Behavioral observations of visual perception in

fruit flies [17], which demonstrate obstacle avoidance by turning away from regions

of high optic flow, have inspired strategies for centering [39, 40], reflexive obstacle

avoidance [41, 42, 43] and terrain following [44, 45, 46] behaviors. Typically, a feed-

back signal is generated by comparing single points or uniform averages of optic flow

to generate continuous control input. One fundamental drawback of some of these

approaches is the inability to decouple translational and rotational components of

6



optic flow, requiring independent estimation of vehicle rotation rates or selecting

viewing stations on the camera to cancel those components directly.

Safe obstacle avoidance behavior requires attending to the twin issues of gen-

erating accurate self-motion (egomotion) estimates and developing an accurate envi-

ronment map at the bandwidths required for safe operation. Most research efforts for

estimating egomotion and generating an accurate 3D depth map involve comparing

a theoretical linear model of time-dependent optic flow patterns to measurements

across the camera image as a solution of the least squares problem [47, 48, 49, 50].

Alternatively, algorithms have been developed that generate updates of egomotion

estimate and terrain structure in an iterative manner [51], requiring a GPS-IMU

enabled initial egomotion estimate. Noise attenuation is accomplished by selecting

viewing stations that generate high contrast images for measuring optic flow, requir-

ing feature detection capability [52, 53]. Extended Kalman filters have been used

by incorporating vehicle dynamics for generating more accurate estimates, based

on a nonlinear optic flow measurement model [54, 52, 55]. Although these efforts

to transition behavioral heuristics to engineered systems provide a path forward,

they typically involve feature detection and tracking algorithms that impose high

computational cost and largely ignore the processing and feedback mechanisms that

insects employ to extract information and regulate behavior. Alternative path plan-

ning strategies such as simultaneous localization and mapping (SLAM) algorithms -

which involve computing vehicle pose, proximity and velocity from successive track-

ing of a vast amount of select environment features as well as generating an accu-

rate map of the environment from camera images [56, 57] - and receding horizon

7



model-based predictive control approaches, which utilize optimization strategies for

trajectory generation at each instant, are also computationally expensive requiring

significant payload, necessitating offboard processing.

The insect visuomotor system was first explored by Franz et al. [32] as a source

for generating egomotion estimates necessary for obstacle avoidance applications. A

linear model of optic flow was derived and selected weightings, that match the

apparent motion induced by certain modes of egomotion, were used to filter the

time dependent optic flow patterns to generate relevant motion cues. Loop closure

using the filtered outputs was addressed by Humbert et al. [58, 59, 60], wherein a

mathematical formalism - the technique of Wide Field Integration - was introduced

to analyze flight behavior. Spatial decomposition of optic flow patterns can be

used to detect imbalance and shift in the optic flow pattern arising from changes

in velocity and proximity to obstacles in the environment. Traditional controller

framework can then be used in generating stabilising commands that regulate optic

flow pattern to typical patterns such as a simple sine wave that is induced across the

imaging surface by planar motion in a corridor. This framework thus helps generate

rapid compensatory commands to regulate flight behavior between obstacles.

Insects mitigate noise inherent in optic flow computation by implementing

wide-field spatial integration across large areas of the visual field [14, 13, 25]. Safe

stabilisation and obstacle avoidance behavior is achieved by extracting relative prox-

imity and velocity information and using feedback with descending cell neurons

transmitting tangential cell outputs to the the flight motor governing wing kinemat-

ics [61]. The primary advantage of WFI is computational simplicity and does not

8



require visual feature detection, tracking and classification. The approach leverages

the fact that valuable information encoded by the spatial structure of optic flow

patterns can be extracted by weighting these patterns with a set of well-chosen sen-

sitivity functions which are then reducible to just a handful of stabilising control

inputs via feedback of optic flow. This is a promising approach for micro-systems

with limited processing capabilities and is extrememly robust to noise.

1.3 MAV Controller Framework

The typical control architecture utilizing optic flow feedback for safe obstacle

avoidance behavior is shown in Fig. 1.4. The vehicle state x is sought to be regu-

lated to the desired state xref by using the feedback control law, which actuates the

vehicle’s control inputs to provide appropriate stabilising commands for good track-

ing. Appropriate design of the feedback control law assumes accurate knowledge

of the vehicle state x. In the absence of a certain required state not being directly

estimated from optic flow sensor outputs, the state estimation block generates the

required estimates x̂ from available measurements. The estimator and the controller

block assume knowledge of the vehicle dynamics, given by a set of either linear or

nonlinear ordinary differential equations.

Safe reflexive navigation behavior in an uncertain environment requires gen-

erating stabilising commands based on an accurate environment map and vehicle

state estimate. Thus the twin issues of environment mapping and localization needs

to be addressed in a computationally efficient manner. The objective of generat-
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u
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Figure 1.4: Typical feedback architecture for MAV navigation.

ing a depth map, which require computationally expensive feature detection and

tracking algorithms, is replaced with the objective of generating estimates of vehicle

proximity to an obstacle-symmetric path through the environment, a feature that

is independent of environment structure, by allowing for a degree of uncertainty

in the local environment map. Additionally, optic flow is used to generate vehicle

pose and velocity estimates, eliminating the need for GPS-IMU enabled estimates.

The framework outlined in this dissertation utilizes tools from control theory for

model-based controller synthesis to obtain pose, proximity and velocity information

in a gusty, complex, obstacle laden environment by employing feedback of optic

flow. Better visual navigation performance results from efficient processing of optic

flow information together with design for stability and navigation, which are closely

intertwined. This research specifically addresses these issues and reduces the re-

quirements of mapping and localization through the design of feedback gains using

computationally efficient control and estimation algorithms for accurate state esti-

mation in the presence of uncertainties, while generating stabilising commands that

ensure good command tracking and gust mitigation characteristics.

The controller synthesis framework outlined in this dissertation has wide ap-
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plication in the area of safe reflexive navigation. The current approach is equally

well suited to the design of feedback gains using a wide array of distributed and

point sensing apparatus such as the artificial lateral line system for proximity de-

tection and prey localization found in fish, or the mechanosensory hair array system

for flight stabilization found on insects.

1.4 Dissertation Contributions and Organization

The main contributions are listed below:

• Most approaches have considered visual navigation in an ad-hoc manner using

a narrow field of view, with no explicit demonstration of stability. In contrast,

the current approach uses a wide field of view to demonstrate safe navigation

behavior using traditional control architecture that includes demonstration of

stability.

• Safe obstacle avoidance and terrain following behavior require detailed knowl-

edge of the local environment. Most prior approaches assume prior knowledge

of an environment and hence are not suitable for navigating through an un-

known environment. In contrast, the current approach seeks to develop nav-

igation algorithms for safe flight in a cluttered, obstacle-laden environment

that is subjected to gusts.

• Safe reflexive navigation behavior requires accurate extraction of vehicle state

and the local environment map. Most prior approaches have utilized compu-

tationally expensive algorithms for the purpose, rendering them unsuitable for
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MAVs. In contrast, the current bio-inspired approach seeks to extract vehi-

cle pose, proximity and velocity in a computationally efficient manner that is

suitable for implemention on an MAV.

The dissertation is organized as follows. Chapter 2 presents the development

of the optic flow model and the technique of wide-field integration, which is used

to extract relevant motion cues from spatiotemporal patterns of optic flow for both

planar and 3D navigation applications. A typical urban environment is parame-

terized as a family of simplified environments, and optimal patterns for extracting

proximity and velocity estimates are developed that minimise noise and uncertainty

throughput relative to those environments. Chapter 3 addresses the H∞ controller

synthesis framework for design of feedback gains for good noise attenuation and

gust mitigation characteristics resulting in safe planar and 3D navigation in the

presence of gusts and environmental uncertainties. Robust stability is explicitly

demonstrated for navigation in the urban environment with structural uncertainty.

The resulting framework is applied to an aerial micro-system and simulation-based

validation studies are carried out to demonstrate safe reflexive navigation behavior

for both planar and 3D applications in an urban-like environment in chapter 4. Also,

results are presented that demonstrate improvement in closed loop performance and

bandwidth using the feedback gains developed from the loop shaping approach for

planar navigation applications in chapter 4. Additionally, the controller synthesis

framework is shown to result in low order dynamic gains that are physically real-

izable on a flying micro-system. Results that extend the mapping between optic
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flow estimates and actuator commands to incorporate dynamic controllers are also

presented. Chapter 5 introduces the hair mechanosensory system for use as an al-

ternative to dynamic controller framework for urban navigation, and the wide-field

integration technique is used to generate relevant motion cues for planar and 3D

navigation applications. Static compensation is employed and simulation studies

are undertaken for the use of the mechanosensory arrays in conjunction with the

optic flow outputs for two different applications - as a stability augmentation sys-

tem for planar motion in a corridor and as a gust rejection system for 3D urban

navigation application. A biomimetic sensorimotor architecture is developed that

is patterned on the insect visuomotor system. The hair sensor arrays are shown to

help improve system performance and bandwidth, by helping overcome limitations

of the optic flow outputs for planar navigation. Additionally, hair sensor arrays are

shown to provide accurate relative wind velocity estimates, and simulation studies

are carried out to study the efficacy of the hair sensor system for the purpose of gust

rejection in 3D urban navigation applications. Conclusions, limitations and areas of

future work are discussed in Chapter 6.
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Chapter 2

Review of Bio-Inspired Information Extraction from Optic Flow

In this chapter, the mathematical formalism of the technique of wide-field

integration (WFI) is presented as an information extraction procedure from instan-

taneous patterns of optic flow. Previous efforts using WFI have either involved an

ad-hoc analytical approach or have been restricted to analysis in known simplified

planar environments. This chapter seeks to extend the use of WFI to both pla-

nar and 3D unmapped environments, and the information extraction approach will

be presented as part of the controller synthesis framework outlined in the previ-

ous chapter. The idea is to use spatial decomposition of instantaneous optic flow

patterns to generate navigationally relevant motion cues. Towards that end, an

optic flow model is developed based on the parameterization of a set of expected

3-D environments. Small perturbation techniques are then applied to the optic flow

output model, which are a function of motion cues such as relative proximity and

velocity with respect to the parameterized environments. Weighting patterns that

link motion cues to the optic flow outputs are then generated.

2.1 Review of Spherical Optic Flow

True optic flow refers to the angular velocity field induced by the movement

of images of objects in the environment that are projected onto the spherical retina.
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The velocity field depends on the geometry of the retinal surface, motion and the spa-

tial distribution of objects in the environment. Optic flow encodes relative motion

cues as it is a consequence of relative motion of material points in the environment.

Optic flow cannot be measured directly, and estimation algorithms typically involve

comparing spatiotemporal patterns of luminance over successive camera frames from

an image sequence.

Mathematically, optic flow is the tangential component of the relative velocity

vector of material points in the environment projected into the imaging surface (Fig.

2.1). In a stationary environment, it is a function of observer translational and

rotational motion, along with relative proximity to surrounding objects. If the optic

flow field and the spatial distribution of objects in the environment are modeled as a

continuous function of the body-referred viewing angles γ and β, denoting azimuth

and elevation respectively, the optic flow field Q̇ on a spherical surface S2 can be

written as [20]

Q̇(γ, β, x) = −ω × r− µ(γ, β, q)[v− 〈v, r〉r] , (2.1)

where Q̇ = Q̇γγ̂+ Q̇ββ̂ has components along the azimuth and elevation directions.

ω, v are respectively the rotational and translational velocity of the vantage point,

µ(γ, β, q) = 1/d(γ, β, q) is the nearness function representing the distribution

of objects in the surrounding environment, d(γ, β, q) is the radial distance to the

nearest object in the environment at the viewing station r(γ, β) and q is the observer

pose with respect to the environment. The optic flow model is dependent on the

observer state x = (q, q̇), with q̇ being the relative velocity in the body frame.
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Figure 2.1: Spherical optic flow. Optic flow is the projection of relative velocity on

the tangent plane TrS
2 of the sphere.

Given the components of the translational and rotational velocity v = {u, v, w},

ω = {p, q, r} in the body frame B = {Xb, Yb, Zb}, the azimuthal and elevation

components of optic flow can be shown to be

Q̇γ = p cos β cos γ + q cos β sin γ − r sin β + µ(u sin γ − v cos γ)

Q̇β = p sin γ − q cos γ + µ(−u cos β cos γ − v cos β sin γ + w sin β) (2.2)

The optic flow vector as derived above assumes the complete spherical surface

to be available for measurement, which is appropriate for 3-dimensional motion of

the 6DOF vehicle. However, navigational quantites of interest can also be obtained

by considering optic flow over smaller domains. For motion restricted to a plane,

the spherical optic flow components (2.2) can be reduced to planar optic flow for

the yaw ring. If the yaw ring is aligned with the body axis of the vehicle, then for

planar motion of the 3DOF vehicle, the yaw-ring specific optic flow field is obtained

for the case β = π
2
, and is given by,
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Figure 2.2: Planar optic flow. Optic flow is the projection of relative inplane velocity

on the tangent plane TrS
1 of the yaw ring.

Q̇γ = −r + µ(u sin γ − v cos γ) (2.3)

where the nearness function µ respresents the spatial distribution of surrounding

objects in the constrained plane.

2.2 Parameterization of the Urban Environment

The nearness function is assumed to be bounded and piecewise continuous with

a finite number of discontinuities. Simplifying assumptions are required on the shape

of the nearness function µ(γ, β, q) to completely characterise the optic flow pattern

(2.2) in closed form. The vehicle pose is given by q = {x, y, z, φ, θ, ψ}, where

(x, y, z) are the vantage point coordinates in the inertial frame F = {X, Y, Z},

and (φ, θ, ψ) are the 3-2-1 Euler angles, representing the attitude of the body frame

B relative to F . Assume the environment to be a cube enclosing the viewing surface
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(Fig. 2.3a), with the reference position of the vehicle represented by the distance

of the vehicle to the walls in the various directions, denoted by aE, aW , gN , gS, hU ,

hD. The deviation from this reference state is captured by the proximity quantities

along the three orthogonal directions (x, y, z). For this environment model, the

nearness function can be shown to be a piecewise continuous function given by

µ(γ, β, q) =


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Figure 2.3: (a) 3-D environment parameterization; (b) Nominal optic flow pattern.

The derivation of the nearness function above has previously been presented

in detail [62]. Owing to numerical complexity, the bounds on the nearness function,
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specifying the location of intersection of the various surfaces, and hence the optic flow

components are computed numerically. The generic environment described above

can be simplified to environments useful for outdoor navigation. It is pertinent to

note the continuous variation of the nearness function as a function of the nominal

wall distance in various directions. A typical urban environment can now be modeled

as a series of limiting cases, where each limiting case represents one extremum of the

family of modeled environments. Flight past a left sided wall with a minimum nom-

inal wall clearance of aW is modeled by the case for which (aE, gN , gS, hU) → ∞.

Similarly, if there is an east side obstacle with a designated nominal clearance of aE,

then (aW , gN , gS, hU)→∞. For the case with obstacles at equal distances on both

sides (nominal clearance a), aE = aW = a, (gN , gS, hU) → ∞. Parameterization

of the environment in this manner then requires that the design the feedback loop

provide stability for the set of limiting cases. Demonstrating robust stability of a

vehicle to the set of limiting environments then translates to the vehicle being stable

when traversing the urban environment. This is the central idea behind the design

of the stable feedback controller, which is demonstrated in Chapter 4.

The nominal optic flow pattern for a vehicle flying at a constant forward speed

in a composite environment obtained as an unweighted mean of the above three

environments is shown in Fig. 2.3b.

For motion restricted to the horizontal plane, the nearness function can be

simplified as,
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µ(γ,q) =


sin(γ+ψ)
aW−y

, 0 ≤ γ + ψ ≤ π ,

− sin(γ+ψ)
aE+y

, π ≤ γ + ψ ≤ 2π .

2.3 Measurement Model with Environment Uncertainty

The tangential cells of insects reside in the lobula plate which pool vast quan-

tities of optic flow patterns and respond with graded membrane potentials whose

magnitude is highly directionally selective [24, 25], with the response being depo-

larizing if the motion is progressive and hyperpolarizing if the motion is regressive.

The optic flow outputs are generated by making a comparison between the preferred

sensitivity pattern of the tangential cell interneurons and the pattern of the visual

stimulus [26, 27], with the output being modeled as an inner product 〈a, b〉 of two

vectors, representing the projection of b along a or vice-versa. As a consequence,

patterns that are orthogonal to one another generate null output. For 3-D mo-

tion, the patterns Q̇ are assumed to reside in L2(S2,R2), the vector-valued space of

piecewise continuous and square-integrable functions on the sphere S2, given by,

L2(S2, R2) =

f =

 f1(r)

f2(r)

 : r ∈ S2, fk(r) ∈ L2(S2), k = 1, 2


The matched filter concept can then be mathematically written as

〈Q̇,F(γ, β)〉 =

∫
S2

Q̇ .F(γ, β) dΩ. (2.4)

F(γ, β) = Fγγ̂+Fββ̂ represents any piecewise continuous, square-integrable weight-

ing function, . denotes the dot product in R2, dΩ = sin βdβdγ represents the solid

angle of the sphere and the output resulting from the comparison represents the
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decomposition of the motion field into state perturbations from the desired pattern

[26].

Real spherical harmonics, being orthogonal functions on L2(S2), are particu-

larly well suited for use as weighting functions along the azimuthal and elevation

directions. These functions are given by:

Yl,m(γ, β) = Nm
l Φm

l (cos β)


cosmγ m ≥ 0 ,

sin |m|γ m < 0.

where Φm
l (cos β) is the associated Legendre function, {l, m} ∈ Z with l ≥ 0, |m| ≤ l,

and Nm
l is the normalization coefficient. The optic flow outputs representing the

spatial decomposition of the optic flow patterns for component weighting functions

Fk
l,m = Yl,mk̂ for k ∈ {γ, β} are then given by,

ykl,m(x) =

∫ 2π

0

∫ π

0

Q̇k(x)Y k
l,m sin β dβ dγ (2.5)

For the case of a vehicle undergoing planar motion while traversing the length

of a corridor (half width a) with a reference forward velocity u0, with perturbations in

the lateral direction and about the yaw axis, the planar optic flow outputs ya0 , ya1 , ya2

and the corresponding linearized terms are listed in table 2.1 [26, 59]. It is pertinent

to note that the optic flow outputs negatively couple lateral velocity ẏ and heading

ψ (ya1 in table 2.1) and hence couple the lateral and yaw dynamics. This imposes

severe limitations on the closed loop performance as the poles of the linear system

can no longer be placed arbitrarily. This limitation is a characteristic feature of

planar optic flow outputs. The optic flow outputs for the case aE 6= aW can be
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Table 2.1: Inertial planar optic flow outputs y(x) (aE = aW = a)

Sensitivity pattern, F (γ) WFI sensory output Linearization

1 ya0 = −
√

2r + y√
2(a2−y2)

u −
√

2r + u0√
2a2y

cos γ ya1 = 4a
3π(a2−y2)

(2u sinψ − ẏ cosψ) 4
3πa

(2u0ψ − ẏ)

cos 2γ ya2 = − y
2(a2−y2)

(u cos 2ψ + ẏ sin 2ψ) − u0

2a2y

derived in a manner similar to the outputs shown in table 2.1. Safe planar navigation

in an uncertain environment compounded by gusts then requires the development

of estimation and control algorithms that helps generate estimates of the coupled

inplane states. State feedback then allows for placement of poles in an optimal

manner. This is one of the basic objectives of current research, which is undertaken

in Chapter 3 which deals with feedback loop design.

Optic flow is inferred indirectly from spatiotemporal patterns of luminance

incident on the spherical imaging surface. The optic flow estimation process then

introduces errors in measurements that is further corrupted by sensor noise as well

as contrast and texture variations in the environment. Furthermore, variation in

the distribution of obstacles in the surrounding environment, characterised by the

the nearness function, adds uncertainty to the measurement model. Given p ≥ n

spherical harmonics F = {Fj, j = 1...p}, for small perturbations about the reference

flight condition xref , the linear optic flow outputs - accounting for environment

uncertainty and measurement noise - can be written in the form

ỹ = Cx + w; C = Cm + ∆C (2.6)
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where, ỹ ∈ Rp are the measured optic flow outputs, the noise w is zero mean

E{w} = 0 with known covariance E{wwT} = Rw. The quantity ∆C is assumed

to be zero mean random perturbation E{∆C} = 0, which captures the variation in

the nearness function µ(γ, β, q) from the baseline environment. Furthermore, it is

assumed that E{w∆CT} = 0. The quantity Cm is approximated as an unweighted

average of the three cases described in section 2.2:

Cm =
1

3
[C(aE = 1, aW =∞) + C(aE =∞, aW = 1) + C(aE = 1, aW = 1)] (2.7)

where aE,W = 1 m defines the minimum nominal wall clearance or halfwidth of a

corridor the vehicle is likely to encounter.

The solution to the static estimation problem of the overdetermined, inconsis-

tent set of linear equations (2.6) is given by the weighted least squares estimator,

C† = (CT
mWCm)−1CT

mW , which is used to generate optimal estimates x̂ = C†ỹ

that minimises noise and uncertainty throughput. The weighting matrix W that

acts to penalize high measurement noise and environment uncertainty is W =

(Rw + R∆C)−1, where Rw, R∆C represent noise and uncertainty covariance respec-

tively. Optic flow estimates across the imaging surface are assumed to be affected

by zero mean additive noise η(γ, β) with variance σ2
n with no correlation between

measurement nodes or with signal amplitude. Measurement noise at the output can

then be written as w = 〈η, F〉. Using linearity of the WFI operator (2.4) and the

properties of the covariance matrix, we have,

Rwij = ∆β∆γσ2
n〈Fi, Fj〉 (2.8)

where ∆γ, ∆β is the spacing between successive viewing stations along the azimuthal
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and elevation directions respectively. For the present application, ∆γ,∆β are set to

9 deg. The uncertainty covariance matrix R∆C is computed as,

R∆Cij = σ2
n

n∑
k=1

Cov(∆Cik)(∆Cjk) (2.9)

Based on the model of environments considered in section 2.2, R∆C is conservatively

approximated using ∆C matrices corresponding to the three limiting cases.

The relative state estimates x̂ are optimal with respect to the span of the

basis function set F. Inclusion of spherical harmonics to a high degree is sufficient

to achieve convergence to the global optimum over L2(S2,R2). For the relative

state estimates x̂ = C†ỹ with ỹ = 〈Q̇, F〉, the linearity of the WFI operator allows

computing state estimates using the state extraction pattern Fx̂, given by,

x̂ = 〈Q̇,Fx̂〉, Fx̂ = C†F (2.10)

The optimal state extraction patterns are shown in Fig. 2.4. The state extrac-

tion patterns could be used to extract motion state estimates (vehicle pose, proxim-

ity, velocity, angular rate) that are embedded in instantaneous optic flow patterns,

with minimal noise and uncertainty throughput. The state extraction patterns thus

act to remove the coupling between non-orthogonal states that impose perturbations

on the nominal optic flow pattern (Fig. 2.3b).
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Chapter 3

H∞ Loop Shaping Design

In this chapter, the inner product model for tangential cell analogs previously

developed is coupled with the H∞ loop shaping procedure for designing feedback

gains that are robust to environmental uncertainities as well as gusts for safe ob-

stacle avoidance and terrain following behavior. For a vehicle to navigate a gusty

environment in a safe manner, the flight controller needs to be designed for good

command tracking and gust mitigation. In addition, the vehicle is required to be

robustly stable to disturbances associated with a visually uncertain environment.

The objective is to regulate relative state estimates x̂ provided by WFI (2.10) to

desired reference values xref resulting in safe navigation in an obstacle-laden envi-

ronment. This chapter presents a feedback design approach that helps achieve the

twin objectives of good nominal performance (gust disturbance rejection, command

tracking) as well as sufficient robust stability in a simple and straightforward man-

ner. The computationally efficient loop shaping approach results in a feedback gain

that is a low-order dynamic controller that is physically realizable onboard an aerial

micro-system.

In the first section, a typical dynamic controller framework is presented and the

general requirements on the feedback gain for achieving good nominal performance

are delineated. Subsequently, the loop shaping framework is developed for planar
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navigation in an urban environment. The limitation of planar optic flow, that was

outlined in chapter 2, impose unique constraints on optic-flow based planar naviga-

tion that require an alternate loop shaping approach to the design of feedback gain.

In the final section, the loop shaping framework for a 6DOF vehicle navigating in

three dimensional environments is introduced and the process of designing feedback

gains for achieving good nominal and robust performance is delineated.

3.1 General Dynamic Controller Framework

The implementation structure of a general dynamic controller framework for

MAV navigation applications is shown in Fig. 3.1. The objective is to regulate the

plant output y to the desired output yref , in the presence of gust d. The vehicle

dynamics is represented by the open loop transfer function G. The plant output

y is corrupted by measurement noise w. The open loop gust transfer function Gd

links the gust disturbance to the plant output. If the plant is internally stable, the

following equation for the closed loop system holds:

y =
GK

1 +GK
yref +

Gd

1 +GK
d− GK

1 +GK
w (3.1)

Let the closed loop gust transfer function be defined as Gdcl
= Gd

1+GK
. As

stated, the objective is to design the feedback gain K that helps regulate plant out-

put y to the desired value yref , in the presence of gust d and measurement noise

w. From (3.1), it is apparent that y approaches yref if good gust mitigation and

command tracking characteristics are achieved (GK >> 1), together with adequate

noise attenuation (GK << 1). Gust mitigation and command tracking are neces-
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sary only at low frequencies and noise attenuation only at high frequencies. Hence,

good nominal performance requires large loop gain (denoted by GK) at low fre-

quency, small loop gain at large frequency and moderate roll-off rate at crossover

frequency ensuring good command tracking, gust mitigation and noise attenuation

characterisitics [63]. These requirements are summarized in Fig. 3.2.
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Figure 3.1: Typical feedback control architecture.

3.2 H∞ Controller Synthesis Framework for Planar Navigation Ap-

plications

In this section, based on the general requirements of a feedback gain for good

nominal performance, the loop shaping approach to the design of the controller

for the specific case of optic-flow based planar navigation in urban environments

is looked at. As seen from table 2.1, optic flow outputs couple the inplane states

- lateral vehicle velocity ẏ with attitude ψ - that necessitates the development of

an observer-based loop shaping framework for the design of feedback gains. Unlike

the case with three-dimensional navigation where the static estimator C† links the

relative state estimates x̂ to the optic flow outputs y, an exact observer based loop
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Figure 3.2: Loop gain design specifications.

shaping framework that uses a dynamic model to link outputs y to estimate x̂

needs to be looked at. For the purposes of feedback controller design, the vehicle is

assumed to be governed by the linear dynamics model, given by,

ẋ = Ax +Bu +Dd

Accordingly, the observer form structure of the loop shaping controller can be

written as the combination of an exact plant observer and state feedback controller

[64]. For the vehicle dynamics given by (3.2) and the optic flow outputs given by

(2.6), the observer form structure of the loop shaping controller for the nominal

plant can then be written as
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˙̂x = Ax̂ +Bu +H(Cmx̂− y) ,

u = K(x̂− xref) , (3.2)

where x̂ is the state estimate, u and y are the plant input and output respectively,

and

H = −ZCT
m ,

K = −B[I − γ−2I − γ−2XZ]−1X , (3.3)

Z and X are solutions of the uncoupled complementary Riccati equations

AZ + ZAT − ZCT
mCmZ +BBT = 0 ,

ATX +XA−XBBTX + CT
mCm = 0 . (3.4)

Furthermore, the nominal and the uncertainty plant as well as the gust transfer
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functions can be written as

G = Cm(sI − A)−1B,

∆G = ∆C(sI − A)−1B ,

Gd = Cm(sI − A)−1D . (3.5)

Robust stability can then be demonstrated by considering the normalised left co-

prime factorisation of the nominal and the perturbed plant. For the nominal plant

G with a left coprime factorisation given by,

G = M−1
l Nl, (3.6)

an uncertain plant model Gp can then be written as

Gp = G+ ∆G = (Ml + ∆M)−1(Nl + ∆N) , (3.7)

where ∆M and ∆N are stable transfer functions that represent the uncertainty in

the nominal plant G. Robust stability can again be demonstrated if the small gain

theorem is satisfied, which requires that

||M∆||∞ < 1 , (3.8)

where the blocks M and ∆ represent the nominal closed loop system and the in-

fluence of uncertainty respectively, as shown in Fig. 3.4. The dynamic gain matrix

K∞ can then be easily obtained from (3.2) and can be shown to be

K∞(s) = −K[sI − (A+BK +HCm)]−1H . (3.9)

For each of the limiting cases, one can numerically determine ∆M and ∆N from
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Figure 3.4: Normalized uncertainty coprime factorization.

(3.17), (3.18) and demonstrate (3.19). Satisfaction of (3.19) for each limiting case

again ensures robust stability for a more complex urban-like environment. Thus, the

control objective is to regulate the relative state estimates provided by the visuo-

motor system to reference values, while simultaneously alleviating gust effects and

demonstrating robust stability across a range of simplified environments, resulting

in stable obstacle avoidance behavior with adequate gust mitigation in a complex,

urban-like environment. Leveraging linearity of the WFI operator (2.4), the input

sensitivity function Fu can be written as,

Fu(γ, s) = K∞(s)F(γ) . (3.10)

These patterns are spatio-temporal in nature and help reduce a large set of dis-

tributed optic flow sensor measurements to a handful of actuator commands. Fu

thus helps minimise computational complexity of the H∞ framework by linking the

incident optic flow pattern to the vehicle actuator inputs directly, as seen in Fig.

3.5.The plots of Fu for a vehicle undergoing planar motion in an urban environment
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Figure 3.5: Control architecture with dynamic input sensitivity pattern.

are looked at in chapter 4. Additionally, for the observer form structure of the loop

shaping controller (Fig. 3.3), the size of the controller K∞ equals the size of the

open loop plant G. This results in a feedback gain that is a low-order dynamic

controller that is potentially physically realizable onboard an aerial micro-system.

Finally, the closed loop gust transfer function Gdcl
, that link the gust distur-

bance d to the output y, can be obtained from (3.1) in a straightforward manner,

Gdcl
=

Gd

1−GK∞
. (3.11)

The singular values of Gdcl
in the low frequency range provide a measure of the

degree of gust mitigation. Smaller the singular values of Gdcl
, greater the gust
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Figure 3.6: Implementation structure of H∞ loop shaping controller.

attenuation and vice-versa.

3.3 H∞ Controller Synthesis Framework for Three-Dimensional Nav-

igation Applications

In this section, the loop shaping approach to the design of the feedback con-

troller is undertaken for good nominal and robust performance of a 6DOF vehicle

navigating with the aid of optic flow in three dimensional environments. The con-

ventional implementation structure for H∞ loop shaping controller is shown in Fig.

3.6. The loop shaping approach is essentially a two-stage process. In the first stage,

weighting functions W1 and W2 are used to shape the singular values of the open

loop plant G to achieve desired nominal closed loop performance. The weighting

functions are chosen such that the plant attains large gain at low frequency, small

gain at large frequency and moderate roll-off rate at crossover frequency ensuring

good command tracking, gust mitigation and noise attenuation characterisitics.

The optic flow output equation is given by (2.6). For the aerial micro-system
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under consideration, with relative state estimates x̂ as the plant output, the nominal

open loop and uncertainty plant as well as gust transfer functions can be written

as,

G = (sI − A)−1B,

∆G = C†∆C(sI − A)−1B . (3.12)

The transfer functions for the shaped plant are then given by,

Gs = W2(sI − A)−1BW1,

∆Gs = W2C
†∆C(sI − A)−1BW1 . (3.13)

The next stage involves computation of the controller block K∞ that robustly sta-

bilises the vehicle in the presence of environmental uncertainties. For the plant Gs

with the minimal realisation [As, Bs, Cs, 0], the central controller is given by

K∞ = C∞(sI − A∞)−1B∞ (3.14)

A∞ = As +BsF + γ2(LT )−1ZCT
s (Cs),

B∞ = γ2(LT )−1ZCT
s , C∞ = BT

s X (3.15)

where γ is set to 1.1/εmax, F = −BT
s X, L = (1−γ2)I+XZ. Z and X are solutions

of the uncoupled complementary Riccati equations

AsZ + ZATs − ZCT
s CsZ +BsB

T
s = 0 ,

ATsX +XAs −XBsB
T
s X + CsCs = 0 . (3.16)

Robust stability can then be demonstrated by considering the normalised left co-

prime factorisation of the nominal and the perturbed plant. A normalised coprime
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Figure 3.7: Normalized uncertainty coprime factorization.

factorisation for the nominal shaped plant can be written as [65]

Gs = M−1
l Nl, (3.17)

an uncertain plant model Gp can then be written as

Gp = Gs + ∆Gs = (Ml + ∆M)−1(Nl + ∆N) , (3.18)

where ∆M and ∆N are stable transfer functions that represent the uncertainty in

the nominal plant Gs. Robust stability can then be demonstrated if the small gain

theorem is satisfied [66], which requires that

||M∆||∞ < 1 , (3.19)

where the blocks M and ∆ represent the nominal closed loop system and the influ-

ence of uncertainty respectively, as shown in Fig. 3.7. For each of the limiting cases

considered in section 2.2, as before, one can then numerically determine ∆M and ∆N

from (3.17), (3.18) and demonstrate (3.19). Satisfaction of (3.19) for each limiting

case then ensures robust stability for a more complex urban-like environment. Thus,
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the control objective is to regulate the relative state estimates provided by the visuo-

motor system to reference values, while simultaneously alleviating gust effects and

demonstrating robust stability across a range of simplified environments, resulting

in stable obstacle avoidance behavior with adequate gust mitigation in a complex,

urban-like environment. This methodology leverages the design philosophy adopted

by Hyslop et al. [62], where static compensation is employed to regulate relative

state estimates generated from the visuomotor system and achieve stable behaviour

across a range of different environments.

Finally, it is of interest to consider closed loop gust transfer function Gdcl
,

given by,

Gdcl
=

C†Gd

1−GW1K∞W2

. (3.20)

The closed loop gust transfer function links the gust disturbance d to the relative

state estimate x̂. The singular values of Gdcl
at low frequency provide a measure of

the influence of gust on the relative state estimates, and hence provide a measure of

the degree of gust mitigation. Smaller the singular values of Gdcl
, greater the degree

of gust mitigation and vice-versa.
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Chapter 4

Validation

In this chapter, simulation-based validation studies are carried out with the

dynamic feedback gains designed on the basis of the H∞ controller synthesis frame-

work for the purposes of achieving safe reflexive navigation behavior. Optic flow

estimates provide important motion cues for stabilization and navigation of the ve-

hicle in flight. The spatial decompositions of time-dependent optic flow patterns are

coupled with a H∞ controller to enable a micro-helicopter to autonomously navi-

gate a three dimensional urban-like environment. Both planar and three-dimensional

navigation applications are considered. The controller is shown to help the vehicle

achieve good nominal and robust performance in the presence of gusts and environ-

ment uncertainty, resulting in safe reflexive obstacle avoidance and terrain following

behavior.

The vehicle chosen for simulation is the 390g E-Sky hobby helicopter, with a

50.5 cm main rotor diameter and a 14.5 cm tail rotor Fig. 4.1. System identification

technique was employed in a prior study to generate the linear flight dynamics model

with the U.S. Army’s CIFER software package [67]. The vehicle is assumed to be

subjected to sustained gust throughout its time of travel. The wind gust model as

well as the flight dynamics model for both planar and 3D applications are given

below.
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Figure 4.1: Honeybee micro-helicopter.

4.1 Wind Gust Model

The wind gust model for both planar and 3D navigation is derived from the

Dryden model, and is obtained as the summation of a large number of sinusoidal

excitations,

d(t) =
200∑
i=1

ai sin(Ωit+ ηi) , (4.1)

where d is the time dependent wind gust vector, and Ωi, ηi are randomly selected

frequencies and phase shifts (uniform distribution assumed with ηi ∈ [0, 2π]) with

amplitude ai. The values of Ωi are taken in the range 0.05-1.5 rad/s [12]. The

amplitude ai is given by ai =
√

∆ΩiΦ(Ωi), where ∆Ωi is the interval between

successive frequencies, and Φ(Ωi) is the power spectral density, given in military

handbook MIL-F-8785C and MIL-HDBK-1797 [68, 69]. The gust profiles are shown

in Fig. 4.2.

The micro-helicopter encounters a strong gust field with magnitude compa-

rable to the vehicle nominal forward speed of uref = 1 m/s, causing substantial

buffeting and exerting a strong influence on the vehicle dynamics.
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Figure 4.2: Time history of translational and rotational gust.

4.2 Simulation

The simulation environment considered in the present study provides visu-

alization capabilities as well as the ability to compute optic flow from simulated

cameras. The virtual micro-helicopter deploys six cameras, each with a 90 × 90

deg field of view and a resolution of 128 × 128 pixels. The cameras cover six sides

of a cube, such that the full three dimensional viewing arena is imaged. Aliasing

is removed by passing the captured imagery through a Gaussian blurring function

that eliminates high frequency noise. The three dimensional image is generated by

combining images from the six cameras which is followed by the computation of op-

tic flow using the resolution-iterative Lucas-Kanade algorithm [62] at 60 fps for 800

image points uniformly distributed across the panorama. The points are mapped

from the spherical surface to the flat camera surfaces using geometric projection.

Spatial averaging and desampling of the resultant optic flow measurements is then
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undertaken to reduce noise, with outlier measurements that generate implausibly

large shift estimates ignored in the averaging process. The simulation process for

planar and 3D navigation are depicted in Figs. 4.4, 4.13.

4.3 Planar Navigation of the Micro-Helicopter

In this section, planar navigation of the micro-helicopter is considered. The

task was to enable a micro-helicopter undergoing planar motion to autonomously

navigate an urban-like environment using estimates of relative proximity and veloc-

ity derived by coupling spatial decompositions of time-dependent optic flow patterns

with the obsrever form structure of the H∞ loop shaping framework (Fig. 3.3). This

methodology was used to design feedback gains for the purposes of adequate gust

and noise attenuation, good command tracking as well as provide stability for the

complex urban-like environment, resulting in safe reflexive obstacle avoidance be-

havior. Several basic assumptions were made regarding the problem. The side walls

and the floor of the environments considered require sufficient texture with adequate

lighting conditions for optic flow patterns to be detected. Independent regulation

of altitude allows the vehicle motion to remain planar.

4.3.1 Flight Dynamics Model

The vehicle is assumed to travel at an altitude 1 m above ground. Further-

more, a constant forward velocity u0 = 1 m/s is assumed that generates consistent

optic flow. The lateral and yaw dynamics of the helicopter subjected to gusts and
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linearized about the reference flight condition xref = [0, 0, 0, 0]T are given by the

state equation:

ẋ = A x + B u + D d, (4.2)

where x = [y, v, ψ, r]T , u = [φ, uψ]T , d = [vg, rg]
T , and

A =



0 1 u0 0

0 Yv 0 −u0

0 0 0 1

0 0 0 Nr


, B =



0 0

g 0

0 0

0 Nµy


, D =



0 0

−Yv 0

0 0

0 −Nr


.

y, v are lateral displacement and lateral velocity, ψ and r are vehicle heading and

yaw rate respectively, φ, uψ are the roll and torque inputs to the vehicle respectively

and vg, rg are respectively the inplane translational and rotational components of

gust d buffeting the vehicle. The body stability derivatives are Yv = −0.4799, Nr =

−0.8786, Nµy = 39.06, and gravity g = 9.81 m/s2.

4.3.2 Results

For the micro-helicopter under consideration, the observer form structure of

the loop shaping controller (Fig. 3.3) results in a stability margin εmax = 0.3, which

has been shown to provide adequate gust and noise attenuation as well as good com-

mand tracking characteristics [70]. For the resulting feedback gain, the methodology

and results are presented for simulation of a helicopter flying in a corridor and an

outdoor urban-like environment. The spatial decompostion of optic flow signals cou-

pled with H∞ loop shaping approach is used to extract sufficient information that
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provides stability and demonstrates safe navigation with the linear vehicle model

in the presence of measurement noise, gusts and environmental uncertainty. The

simulation process is shown in Fig. 4.4.

4.3.2.1 Corridor Navigation

The flight behaviour of the helicopter is studied for a set of trials chosen with

initial perturbations having a mean of [y0, v0, ψ0, r0]T = [0.4 m, 0.18 m/s, 3 deg, 17 deg /s]T .

The simulation of the helicopter flying in a quiescent environment along the length of

a corridor (half-width 1.5 m) with no external gusts is constructed. The simulation

replicates the actual flight of a micro-helicopter with the dynamics given by (4.3)

with the planar optic flow yaw ring attached. The planar optic flow equation as the

vehicle navigates the corridor is given by (2.3). The optic flow estimates generated
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Figure 4.4: Operational flow chart for planar navigation.

by the simulation correspond to true optic flow estimates as the vehicle navigates

the length of the corridor, with the attendant characteristics of being nonlinear and

embedding noise. A snapshot of the corridor the helicopter navigates in and used

in the simulation is shown in Fig. 4.5A.

The results for 20 different trials are as shown in Fig. 4.5B and the time history

comparison of the true states and their estimates for a sample trajectory are shown

in Fig. 4.6. The time history comparison of the vehicle inplane states shows good

convergence between the true states and the corresponding estimates. In particular,

the negative coupling between the lateral velocity v and the attitude ψ manifests as

a 180◦ phase difference between the corresponding estimates. Furthermore, from the

plots of the closed loop dynamics, we see that the observer form implementation of

H∞ loop shaping controller results in a marked decrease both in the transient decay

time and the deviation from the mean - as depicted by the sparse band around the
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solid line - in relation to [71]. Hence, there is significant alleviation of the problems

of performance and bandwidth limitations associated with optic flow guided planar

navigation.
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Figure 4.5: (A) Snapshot of the corridor with wall textures used in simulation; (B)

Lateral, Yaw dynamics for small perturbations with trajectories (and mean) for 20

trials; Band and solid line represent combined trajectories and mean respectively.

4.3.2.2 Urban Navigation

A snaphot of the urban environment the vehicle traverses in is shown in Fig.

4.7. Fig. 4.12 illustrates the characteristics of the open and closed loop systems.

The singular values of the open loop plant are shown in Fig. 4.8A. Large gain

at low frequency, moderate roll off rate at crossover frequency and small gain at

large frequency result in good nominal response. In particular, Fig. 4.8C illustrates
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the large degree of gust mitigation achieved with the loop shaping gain, as can be

seen with small singular values of the closed loop gust transfer function Gdcl at low

frequency, enabling safe navigation behavior even in the presence of strong gusts.

Fig. 4.8B illustrates the concept of robust stability, where (3.19) is satisfied for

the three limiting cases considered in section 2.2. The vehicle attempts to track a

symmetric path between obstacles in the environment, thus ensuring safe navigation

behavior in a complex, cluttered urban-like environment.

Fig. 4.9A shows that in the presence of sustained gust, from 20 different initial
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Figure 4.7: Snapshot of the urban-like environment.

headings and locations (X, Y ), the helicopter is able to successfully avoid the obsta-

cles in flight. This is achieved almost entirely with optic flow-based measurements,

with the exception of a laser rangefinder that is used to sense frontal proximity and

initiate emergency turn away from an obstacle when proximity becomes unsafe. This

is particularly the case where the probability of a collision with a symmetric obstacle

is finite as such trajectories are unstable [72]. There are several close encounters

in Fig. 4.9A, with the optic flow system initiating an evasive maneuver resulting

in safe navigation behavior in most instances. The instances when the vehicle flies

into a symmetric obstacle is rendered safe due to emergency turn initiated by the

presence of laser rangefinder. Fig. 4.9B again shows good convergence between the

true vehicle velocity states and their corresponding estimates for a sample trajec-

tory. The spikes in the velocity profiles denote instances when the vehicle initiates

an emergency turn away from an obstacle directly in front.
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4.3.3 Discussion

The results demonstrate that optic flow-guided navigation based on the cou-

pling of spatial decompositions of optic flow patterns withH∞ loop shaping approach

can be used to design a dynamic controller that ensures safe navigation behavior

in the presence of environmental uncertainties and strong gusts. The observer form

structure of H∞ loop shaping is used to obtain relative proximity and velocity es-

timates from measurements of the 2-D optic flow patterns, which are accurate and

reliable enough for vehicle stabilization and navigation in an unknown, complex

and cluttered environment subjected to gusts. Robust stability is explicitly demon-

strated for a family of simple 2-D corridor-like environments which is shown to be

sufficient in ensuring safe navigation behavior in more complex environments. For

the micro-helicopter undergoing planar motion while flying at a constant forward

speed and subject to lateral and yaw perturbations, H∞ loop shaping results in a

low order dynamic controller (2 outputs, 3 inputs and 4 internal states), which is

potentially physically realizable on the MAV.

The input sensitivity function, given by (3.10), is completely characterised by

the time-domain impulse response and the frequency domain magnitude response

plots, as shown in Fig. 4.11. The azimuthal variation of the time invariant plot of

the sensitivity function, obtained as a simple time average, is also included. These

plots resemble the elementary-motion sensing spatio-temporal action fields obtained

from fly figure tracking experiments [73] for regulating flight behavior.
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4.4 6 DOF Micro-Helicopter with Spherical Optic Flow

In this section, the dynamics of the 6DOF micro-helicopter is considered and

3D navigation in an urban-like environment is looked at. The task was to enable

a micro-helicopter to autonomously navigate the three dimensional environment

using estimates of relative proximity and velocity obtained from the visuomotor

system and coupling it with the feedback gains resulting from the controller synthe-

sis framework from section 3.3. The objective is to demonstrate good nominal (gust

mitigation and command tracking characteristics) and robust performance, thus en-

suring safe obstacle avoidance and terrain mapping behavior. The WFI generated

state estimates, based on the parameterization of a typical 3-D environments, are

shown to be reliable and accurate enough for vehicle navigation in a cluttered envi-

ronment. The H∞ controller synthesis framework is used to explicitly demonstrate

robust stability for a family of simple 3-D corridor-like environments, and simulation

studies of a micro-helicopter in a cluttered arena subjected to gusts demonstrate safe

navigation behavior in more complex environments.

4.4.1 Flight Dynamics Model

The 6DOF micro-helicopter vehicle dynamics are again obtained using system

identification techniques in a prior study with the U.S. Army’s CIFER software pack-

age [67]. The vehicle state is given by x = {y, z, u, v, w, φ, θ, ψ, p, q, r, ζ, χ, Ωmr}T ,

with the final three states being the actuator states of the helicopter. The helicopter

attains a nominal forward speed of 1 m/s and the vehicle dynamics and kinematics
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are linearized about the reference flight condition xref = {0, 0, 1, 0, −0.05, 0, −0.05,

0, 0, 0, 0, 0, 0, 0.21}T for the design of H∞ feedback controller. The full nonlinear

kinematic equations are used for simulation. The dynamics of the helicopter sub-

jected to gusts are given in (4.3). The actuator saturation limits are |Λlat| < 1,

|Λlon| < 1, |Λyaw| < 1, |Λt| < 0.5. The characteristic stability derivatives are defined

in table 4.1.

u̇ = −gθ +Xu(u− ug), v̇ = gφ+ Yv(v − vg)− urefr

ẇ = Zw(w − wg) + ZΩmrΩmr + urefq, ṗ = Lv(v − vg) + Lζζ

q̇ = Mu(u− ug) +Mχχ, ṙ = Nr(r − rg) +NΛyawΛyaw

ζ̇ = −(p− pg)−
1

τf
ζ +

ζχ
τf
χ+

ζlat

τf
Λlat +

ζlon

τf
Λlon

χ̇ = −(q − qg) +
χζ
τf
ζ − 1

τf
χ+

χlat

τf
Λlat +

χlon

τf
Λlon

Ω̇mr = TΩmrΩmr + TΛtΛt (4.3)

The linearized vehicle model is then written as ẋ = A x + B u + D d, where

d = {ug, vg, wg, pg, qg, rg}T is the six-component gust disturbance vector, and

A, B, D matrices have their usual meaning. The implementation strucuture of the

H∞ controller framework (Fig. 3.6) is used to design the feedback gain K∞. The

precompensator W1(s) = 10s (s+0.5)
(s+5)

is chosen to add integral action along each input

channel which helps improve low frequency command tracking and gust rejection

performance. Additional dynamics is included to bring the cut-off to 5 rad/s which

is typical for rotorcraft contollers. Postcompensator W2 is used to provide relative

weights to the outputs of the open loop plant, and can be used to help finetune

system robust stability as well as control actuation characteristics. The postcom-
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Table 4.1: MAV Stability Derivatives

Helicopter stability derivatives Actuator dynamics derivatives

Xu = −0.52,Yv = −0.48 τf = 0.15, ζχ = 1.55

Zw = −0.68,ZΩmr = 0.17 ζlat = 0.245, ζlon = 0.043

Lv = −8.26,Lζ = 1273 χζ = −2.82,χlat = 0.044

Mu = 3.6,Mχ = 341.6 χlon = −0.202,TΩmr = −6.182

Nr = −0.88,NΛyaw = 39.06 TΛt = 1449, g = 9.81

pensator was set to W2 = diag(1, 4, 4, 2, 4, 1, 1, 2, 1, 1, 1, 10−15, 10−15, 10−15) re-

sulting in a stability margin εmax = 0.23, which has been shown to provide adequate

gust and noise attenuation as well as good command tracking characteristics [70].

The singular value plots of the open loop and shaped plant are shown in Fig. 4.12A.

The singular values of the loop gain M∆ for the closed loop incorporating un-

certainty for the various limiting cases are shown in Fig. 4.12B. As can be seen from

the plot, robust stability is indeed achieved for the family for modeled environments.

4.4.2 Results

In this section, the methodology and results are presented for simulation of

the micro-helicopter flying in an outdoor urban-like environment (Fig. 4.7). The

simulation replicates the actual flight of a micro-helicopter with the dynamics, given

by (4.3), with the spherical optic flow sensor pod attached (Fig. 2.1). The spatial

decompostion of optic flow signals coupled with H∞ loop shaping approach is used
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to successfully demonstrate safe navigation behavior in the presence of measurement

noise, gusts and environmental uncertainty.

4.4.2.1 Methodology

The proposed methodology assumes that a sonar is available for altitude mea-

surement z̄, along with the vehicle actuator states (ζ, χ, Ωmr) for feedback. The es-

timates of the remaining 10 relative states are generated using the optimal weighting

function Fx = C†F:

x̂i = 〈Q̇, Fx̂i〉+ C†i, p+1z̄ (4.4)

F is a (p+ 1)× 2 matrix representing the component spherical harmonic weighting

functions, and the p + 1 column of C† corresponds to the sonar estimate z̄. The

desired reference state for the state vector x is given by

xref = (0, −Kz,θ(θ̂ − θref), 1, 0, −0.05, 0, −0.05, 0, 0, 0, 0, 0, 0, 0.21) (4.5)

In order to prevent unacceptable speed loss during climb over steep terrain, the

target altitude is set as zref = −Kz,θ(θ̂ − θref) which is a function of the WFI pitch

estimate (providing information of upcoming terrain) relative to its reference value.

Furthermore, the range is restricted to (-1, 0) to prevent large vertical velocities.

Kz,θ was set to -10 for the simulation studies that follow. Finally, a pitch sensor

is assumed to be available for accurate pitch estimates. The simulation process is

shown in Fig. 4.13.

To account for variation in the initial conditions, the Monte-Carlo approach

is employed. Twenty-three initial locations and headings were generated using a

52



uniform distribution across the entire layout of the environment, excluding areas

covered by buildings.

4.4.2.2 Discussion

Fig. 4.14 shows that in the absence of gust, from all initial conditions, the

helicopter is able to successfully avoid obstacles while maintaining a target height

of 1 m above ground. This is achieved almost entirely with optic flow-based mea-

surements, with the exception of independent pitch, altitude and actuator-related

state measurements. The variable target altitude, induced by the pitch sensor and

the WFI pitch estimate which provides an update of upcoming terrain, increases

the reference offset temporarily which helps the vehicle climb obstacles over ground

(Figs. 4.14B, C, D). The time history comparison of the true and the measured

states are shown in Figs. 4.15, 4.16 for part of the broken line trajectory from Fig.

4.14A (corresponding to second major turn). Despite a large lateral offset, it is

apparent that WFI state estimates closely track the true states as well as the target

state during the course of the sharp maneuver. Near accurate pitch attitude and

altitude estimates result from the use of pitch sensor and sonar respectively. Course

correction during the sharp maneuver results in the optic flow field showing a strong

lateral bias at the instant of lowest proximity, as seen in Fig. 4.15A.

Fig. 4.17 shows that in the presence of sustained gust, from all initial condi-

tions, the helicopter is again able to successfully avoid obstacles while maintaining

the desired height above ground. The gust exerts a significant influence on the vehi-
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cle dynamics, as seen from two sample trajectories (broken line trajectories in Figs.

4.14A, 4.17A). The gust disturbance causes the vehicle to traverse entirely differ-

ent trajectories, despite having the same origin. The vehicle surmounts obstacles

over ground (Figs. 4.14B, C, D) despite strong gusts in the transverse direction.

The time history comparison of the true and measured states are shown in Figs.

4.18 and 4.19 as the vehicle executes a right turn. It is again apparent that the

state estimates closely track the true states as well as the target state of the vehi-

cle despite the sharp maneuver. Course correction again results in the optic flow

field showing a strong lateral bias at the instant of lowest proximity, as seen in Fig.

4.18A. There are several instances when the vehicle gets in close proximity to an

obstacle before initiating an evasive maneuver resulting in large deviation from the

target state. Such close encounters occur on fewer occasions in the absence of gust.

The low noise levels in the relative state estimates x̂ can be ascribed to white-noise

mitigation property of WFI, the spatial filtering of optic flow measurements and

the associated outlier rejection step, and the noise attenuation property of the loop

shaping approach.

The simulations as seen in this study demonstrate safe navigation behavior

of the MAV in an uncertain, cluttered environment. The H∞ controller synthesis

framework for robust stability (Fig. 4.12B) is numerically validated by the obstacle

avoidance and terrain following behavior of the vehicle flying in the absence of gust

(Fig. 4.14), with the vehicle attempting to track a symmetric path between obsta-

cles in the environment. Furthermore, the strong gust perturbations manifest as

large deviation of the vehicle velocity from the nominal values (Fig. 4.19), and re-
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sults in the vehicle traversing different routes from the same origin, as seen with the

broken line trajectories in Figs.4.14A, 4.17A. The loop shaping framework generates

a feedback gain that results in significant gust mitigation, as seen from the singular

value plot of Gdcl
(Fig. 4.20), especially at low frequency. The vehicle manages

to fly safely even in the presence of strong gust, validating the performance of the

vehicle and demonstrating robustness to the combined influence of environmental

uncertainties and gusts. Thus, accurate state estimation and good command track-

ing characteristics in the presence of such strong gust disturbance and environment

structural uncertainty establishes the reliability of the WFI framework and loop

shaping approach for navigation.

As noted above, there are several close encounters of the vehicle as it tra-

verses the environment buffeted by gusts. This is particularly the case when the

vehicle encounters symmetric obstacles in its flight path, where small lateral optic

flow asymmetries grow larger when the vehicle nears collison, initiating an evasive

maneuver before impact. The current environment model is restricted to detecting

lateral proximity and excludes walls in the longitudinal direction, rendering the ve-

hicle blind to such obstacles. Symmetric obstacles induce minimal optic flow across

the visual field, suggesting the need for a forward pointing laser rangefinder or ex-

tend the current environment model to link longitudinal proximity to a continuous

control capability for collision avoidance in such instances.

With regard to literature comparison, as optic flow is a scaled relative measure

of speed/depth and does not provide explicit measure of the environment structure,

most studies of MAV navigation with optic flow assume either prior knowledge of
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vehicle motion [44] or prior knowledge of the environment [74, 51]. Furthermore,

the ablity of the vehicle in the present study to navigate a cluttered environment

successfully is superior to the methodology followed in [75, 62] which is restricted

to regulating flight behavior in the absence of gusts. In addition, the current study

uses the complete spherical viewing arena to generate navigation cues, making it

superior to [76] where measurements were confined to the three orthogonal rings

rendering the vehicle vulnerable to obstacles not appearing in either the pitch, yaw

or the roll plane. The obstacle avoidance behavior in Figs. 4.14, 4.17 is achieved by

jointly regulating vehicle pose and proximity, and hence outperforms earlier studies

that only regulate proximity in the horizontal [39] and vertical [45, 46] plane. A

disadvantage of using imaging devices is their unsuitability to low contrast envi-

ronments, necessitating the use of feature tracking and detection based navigation

algorithms [77]. However, the associated computational burden is too large for

practical implementation onboard an MAV.

With regard to concept feasibility, note that an attractive property of WFI

is the high computational simplicity in motion-state extraction. Typical SLAM al-

gorithms that employ feature detection and tracking techniques for motion state

extraction in unknown environments are typically more computationally expensive,

thus requiring off-board implementation [56]. For instance, a typical iteration is im-

plemented on an Intel Core 2×2 GHz processor that processes high resolution images

(640×480) captured at 30 fps [78]. In contrast, WFI-based navigation strategies,

being more computationally efficient, have been implemented onboard on a 500 MHz

fixed point processor that processes low resolution images (160×120) captured at
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55fps [26].

The methodology proposed in this chapter is certainly feasible as lightweight

accelerometers, and sonar sensors or laser rangefinders have been used extensively

on existing MAVs for accurate pitch and altitude estimation [79, 26]. Also, it is

certainly practical to use optic flow to estimate the other nine states, particularly

using just the lower hemisphere measurements which have been found to be suffi-

cient in generating accurate relative state estimates [62]. The size of the dynamic

controller equals the size of the vehicle model and the size of the precompensator.

It may be beneficial to investigate model reduction techniques to reduce the size of

the H∞ controller, which is beyond the scope of study. Also, the dynamic compen-

sation framework of the loop shaping approach requires a digital implementation

supporting a floating point processor, which results in a greater payload as opposed

to a static compensation framework. A reduced order H∞ controller resulting in

better vehicle performace coupled to a lower hemisphere optic flow sensor with re-

duced payload requirements is certainly a practical option for three-dimensional

MAV navigation applications.

This section demonstrates that optic flow-guided navigation methodology based

on the coupling of spatial decompositions of optic flow patterns with H∞ loop shap-

ing approach can be used to design a dynamic controller that ensures safe navigation

behavior in a complex, three-dimensional urban environment subjected to gusts.

Given the current lack of sensors with the required size and bandwidth capabilities,

as well as computationally efficient estimation and control algorithms, coupling the

optic flow sensor with the H∞ dynamic controller provides an attractive alternate
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paradigm for MAV navigation applications.
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Figure 4.13: Operational flow chart for 3D navigation.

63



-80 -60 -40 -20 0 20

-40

-20

0

20

40

60

Y (m)

X
(m

) -2

-2

-1

-1

-2
-1

Z
(m

)
Z

(m
)

Z
(m

)

65

65

65

65

65

65

65

65

65

65

65

-100 0 100
0

50

100

150

Azimuth (deg)

E
le

va
tio

n 
(d

eg
)

Optic flow at 49.7 s

y
(m

)
z

(m
)

u
(m

/s
)

v
(m

/s
)

w
(m

/s
)

Ã
(d

eg
)

µ
(d

eg
)

Á
(d

eg
)

p
(d

eg
/s

)
q

(d
eg

/s
)

r
(d

eg
/s

)

rue state
measured state

target state

rue state
measured state

target state

time (s) time (s)

time (s) time (s)

t

t

A
B

C

D

4540 50 55 60

4540 50 55 60

4540 50 55 60

4540 50 55 60

4540 50 55 60

4540 50 55 60 4540 50 55 60

4540 50 55 60

4540 50 55 60

4540 50 55 60

4540 50 55 60

0
-1

1

0
-0.2

0.2

0
-20

20

0
-10

10

0
-20

20

0
-10

10

0
-20

20

0
-20

20
0

-0.2

0.2

0
-0.2

0.2

1
0.8

1.2

Figure 4.14: (A) Simulation results with trajectories in the absence of gust; (B)

trajectory side-view during flight over a 0.5 m box; (C) 1 m box; (D) 1 m ramp.
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Figure 4.15: Time history comparison of vehicle proximity and pose of dashed-line

trajectory from Fig. 4.14.
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Figure 4.16: Time history comparison of vehicle velocity and rotational rate of

dashed-line trajectory from Fig. 4.14.
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Figure 4.17: (A) Simulation results with trajectories in the presence of gust; (B)

trajectory side-view during flight over a 0.5 m box; (C) 1 m box; (D) 1 m ramp.
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Figure 4.18: Time history comparison of vehicle proximity and pose of dashed-line

trajectory from Fig. 4.17.
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Figure 4.19: Time history comparison of vehicle velocity and rotational rate of

dashed-line trajectory from Fig. 4.17.
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Figure 4.20: Singular value plot of closed loop gust transfer function.
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Chapter 5

Hair Mechanosensory System

As noted previously, obtaining reliable translational and rotational velocity

measurements for navigation of micro air vehicles is a challenge given the current

state of sensing technology, with the need for novel sensors and sensory processing

techniques if autonomous microsystems are to be successful. Also, the limitations

of the optic flow system, especially for planar navigation, renders accurate velocity

estimation necessary for good vehicle performance. In the previous few chapters, a

H∞ loop shaping based dynamic controller synthesis framework was presented for

achieving the twin objectives of improved vehicle performance for planar navigation

applications and safe reflexive 3D navigation in an obstacle laden environment that

is subjected to gusts. This chapter presents an alternate approach of using hair

mechanosensory arrays in conjunction with optic flow towards achieve the same

objectives. Both planar and 3D navigation are considered. Static - as opposed

to dynamic - compensation is employed, yielding a fast and efficient computation

paradigm.

An isolated hair mechnosensory sensillum is a tactile sensor that responds to

dynamic pressure and deflects in response to airflow. Consequently, the integrated

hair array output can be used to detect relative wind velocity. In conjunction with

the optic flow output, the hair array output can then be used to either augment
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stability, resulting in better vehicle performance in planar navigation applications,

or detect wind velocity, which can be used to negate gusts in a feedforward man-

ner. Thus, for gust rejection applications, the tasks for the optic flow and the hair

sensor systems can be neatly decoupled. Optic flow outputs are used to generate

accurate estimates of vehicle proximity and velocity for navigation in an uncertain

environment, while hair array outputs are used to generate wind velocity estimates

for gust rejection. A miniature hair sensor array satisfying the size, weight and

power constraints of a micro flying platform and which provides relative wind ve-

locity estimates would be invaluable when embedded in such a platform and used in

conjunction with processed outputs from the visuomotor system for flight stability,

control and navigation.

5.1 Review of Insect Hair Sensor Array-Based Navigation

The insect flight control system is an excellent example of how stimuli from

multiple sensory modalities are parsed and integrated into a common neural code

that shapes the organism’s behavioral response. During flight, insects experience

a number of external and internal influences, such as wind gusts or wing damage,

that act to create unintended deviations in the desired flight path. Typically, two

or more exteroceptive sensors–compound eyes and mechanoreceptive wind hairs on

the thorax and the head, for instance–act in concert for wind sensing and direction.

Importantly, the systems might detect different aspects of the relative wind: optic

flow might provide the body velocity estimates and the trichoid hair sensillae might
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Figure 5.1: Frontal view of locust head with the five sets of hair arrays shaded in grey

(redrawn from [81]). Inset A: Close up view of an array with distributed sensillae.

Inset B: Sensor response (δ) caused by flexure from incident flow. ce-compound eye,

e-ocelli, f-antenna.

provide an estimate of relative wind velocity and direction [80]. Hence, optic flow is

one possible source of information that can be used to derive estimates of relative

velocity for feedback, while the arrays of mechanoreceptive wind hairs provide an

additional source of velocity information. In general, the presence of multiple kinds

of sensors capable of detecting similar motion cues points towards the usefulness of

back-up systems increasing stability as well as robustness in flight.

Arrays of trichoid hairs are found all over insect bodies including abdomen,

thorax, wings and head (Fig. 5.1). These arrays deflect in response to air flow,

with the sensor cells exhibiting a shift in the membrane potential, firing neurons at

a frequency that is in general proportional to relative wind velocity and direction
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[82]. The sensor inputs thus generated provide useful cues for navigation and flight

stability, much like those obtained from optic flow. For instance, arrays of hair found

on the locust head have been known to provide information of its yaw rate [83]. The

insect trichoid hair sensillae are directionally sensitive and respond to flows along

certain directions. This directional sensitivity arises primarily due to the eccentric

attachment of the dendrite to the base of the hair shaft [84, 85], the shaft curvature

and the socket force asymmetry at the base of the hair shaft [82], with the response

being greatest in the direction opposite to the direction of shaft curvature.

The role of wind hair sensillae in navigation and stabilization of insect flight

has been well known for a few decades [86, 87, 81]. In his seminal work, Weis Fogh

directed a steady stream of air at the head of a desert locust at various angles of

sideslip and showed that wind stimulation of hair arrays was a sufficient condition

for initiating and maintaining flight in locusts. In an investigation of the role of the

air current sensors in horizontal course control of tethered Locusta migratoria [88],

it was found that the wind sensitive hair fields were the predominant sensor arrays

involved in flight control. Moreover, the wind sensitive hair fields were found to

directly control wing beat parameters that affected the course stabilizing horizontal

flight maneuvers.

The local hair response is ambiguous as it is largely dependent on local flow

velocity as well as its orientation and local temperature. Hence, the hair sensor

system is thought to generate motion cues useful for navigation and stability through

the combined array response obtained by integrating the individual hair responses

over the array. Support for this surmise arises from the fact that the hair sensors
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in over any array on the locust head are oriented in the same direction [89]. Also,

the wind hair outputs have been found to be spatially compatible with the visual

output and a map of the transduction channel for the wind-senstive hair system has

been found to be very similar to that of the visuomotor system [90]. The numerous

cephalic wind hair inputs,carried by sensory neurons, converge on parallel channels

of descending interneurons that pass through the circumoesophageal ganglion on the

ipsilateral side onto the suboesophageal ganglion, the cervical connective and finally

through the thoracic ganglia where they emerge to provide just a few inputs to the

flight motor neurons, which are post synaptic to thoracic interneurons [84, 91, 92].

Hence, each hair sensor is associated with one nerve cell, each of which carry the large

number of hair array outputs and converge on relatively few descending interneurons,

which in turn communicate with the flight motor. Thus, it is apparent that the

transduction mechanism of the visuomotor and the hair mechanosensory systems

are similar. Consequently, the mathematical formalism of wide-field integration can

be used to study integrated hair array outputs.

The framework and approach outlined in this paper, initially demonstrated by

Humbert et al. [58] for optic flow, takes advantage of the fact that while individual

hair sensor response might be ambiguous in nature, valuable information related

to the vehicle body states - encoded by the spatial structure of sensor response

pattern spread over a wide field - can be extracted by weighting these patterns with

a set of orthogonal functions which are then reducible to just a handful of control

inputs and can be used to provide either increased stability or gust mitigation. The

objective in this chapter is to develop a mathematical framework for combining hair
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sensor array outputs with the optic flow outputs for the purpose of vehicle stability

augmentation and gust rejection. Two different applications are looked at–stability

augmentation of the micro-helicopter undergoing planar motion along a quiescent

corridor and gust rejection of a fixed wing micro-air-vehicle undergoing 3D motion

in an urban environment.

5.2 Individual Hair Sensor Response

In this section, the invididual hair sensor response is considered. Each hair

sensor is modeled as a cantilever beam, a large fraction of which is assumed to be

immersed in the boundary layer and with the tip immersed in a region of potential

flow. The sensor responds to the dynamic pressure with flow viscosity having a

significant influence on the sensor response. Accordingly, the Reynolds number

largely determines the magnitude of the tip deflection and the root strain. Larger the

Reynolds number, smaller the thickness of the boundary layer as the flow negotiates

the surface, and larger is the tip deflection. The external excitation frequency is

assumed to be small compared to the sensor’s fundamental frequency, resulting in

the inertial effects exerting a negligible influence on the sensor output. As the hair

sensor responds to dynamic pressure across the surface, the sensor output can be

written as (to the first order),

δ = Kp ||V ||V (5.1)

where V is the local flow velocity. The constant Kp depends on the properties of the

hair sensor (length L, bending stiffness EI) and the flow (density ρ, drag coefficient
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CD), and therefore accounts for the effects of flexure of the hair sensor as well as

boundary layer effects of the flow. Hence, the sensor output is proportional to the

square of the local flow velocity. Both linear and curved MEMS-based artificial hair

sensor arrays have been fabricated and the quadratic nature of the sensor output

has been demonstrated in prior studies [93, 94].

5.3 Stability Augmentation in a Corridor

The limitations of using optic flow outputs for planar navigation, where the

outputs couple inplane vehicle states v and ψ, was previously pointed out in chapter

2. In this section, it is shown that the hair array outputs can be used to augment the

stability of the micro-helicopter by combining with optic flow outputs, as it traverses

down the corridor. Towards that end, the integrated array response over a circular

array (encoding vehicle-level properties) is considered. Assume that the micro-

helicopter carries a circular ring, on which, mounted symmetrically on either side of

the longitudinal axis, hair sensor arrays are located extending between φ1 ≤ γ ≤ φ2,

and 2π−φ2 ≤ γ ≤ 2π−φ1, with γ being the azimuth angle (anticlockwise positive,

Fig. 5.2). If the vehicle perturbation states are small ( v
u0
, y
a
<< 1, small ψ, r),

the flow over the hair arrays can be assumed to be fully attached. It is further

assumed that the hair ring remains unaffected by the downwash from the main

rotor. Finally, the hair sensor arrays are assumed to be directionally sensitive, with

the sensors responding to air flow in the tangential direction (to the circular ring).
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Figure 5.2: Hair sensor arrays on the micro-helicopter.

For planar incident flow, we have,

δ(γ) = Kp ||V (γ)||V (γ), (5.2)

where, V (γ) is the azimuthal variation of the local tangential flow velocity.

If βss is the sideslip angle, defined as the angle between the body’s longitudinal

axis and the relative wind, it can be easily observed that for small perturbations,

βss = v
u0

. From the results of planar, uniform potential flow around a sphere with a

rotational velocity r, we have for flow around the hair sensor ring,

V (γ) =
3

2
u0 sin γ − 3

2
v cos γ −Rr, 0 ≤ γ ≤ 2π.

Rearranging, we have in the relative wind frame,

V (γ) =
3

2
U sin(γ − βss)−Rr, 0 ≤ γ ≤ 2π. (5.3)
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where U =
√
u2

0 + v2 ≈ u0 is the resultant body translational velocity.

If the hair array response is assumed positive for clockwise deflection,

δ =


−Kp V

2(γ), φ1 ≤ γ ≤ φ2;

Kp V
2(γ), 2π − φ2 ≤ γ ≤ 2π − φ1.

The wide-field integration technique for hair sensor arrays over the hair array

S1 can then be modeled as an inner product of sensitivity functions with the sensor

response.

yhi (x) = 〈 δ(γ,x), F h
i (γ)〉 =

∫ 2π

0

δ(γ,x) . F h
i (γ) dγ. (5.4)

Since the hair sensor arrays extend only over φ1 ≤ γ ≤ φ2 and 2π−φ2 ≤ γ ≤ 2π−φ1,

we have,

yhi (x) = 〈 δ(γ,x), F h
i (γ)〉

=

∫ φ2

φ1

δ(γ,x) . F h
i (γ) dγ

+

∫ 2φ−φ1

2π−φ2

δ(γ,x) . F h
i (γ) dγ. (5.5)

For the hair sensor array under consideration, the components of the Fourier

series (1, sin γ, cos γ, sin 2γ, cos 2γ...), which form a linearly independent set over

γ ∈ [φ1, φ2] ∪ [2π − φ2, 2π − φ1], are used to construct a set of orthonormal basis

fuctions using the Gram-Schmidt Orthonormalization process, resulting in (1/2(φ2−

φ1))1/2, 1
d
(cos γ − sinφ2−sinφ1

(φ2−φ1)
), 1

e
sin γ - corresponding to the first three Fourier har-

monics - as the basis functions for wide-field spatial integration. Taking the inner
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Table 5.1: Hair array array response yh(x)

WFI sensory input Linearization

ah0=−9
4
u0l/
√

2fv − 6Ru0
c√
2f
r −9

4
u0l/
√

2fv − 6Ru0
c√
2f
r

ah1=9
4
u0( lg1

fd
− (b+c)

d
)v + 3

2
Ru0(4cg1

fd
− l

d
)r 9

4
u0( lg1

fd
− (b+c)

d
)v + 3

2
Ru0(4cg1

fd
− l

d
)r

bh1=1
e
(9

8
u2

0(3c− b) + 9
8
u2

0 β
2
ss(b+ c) + 3

2
Ru0 l βss r)

9
8e
u2

0(3c− b)

product with the tip displacement pattern, from (5.5),

yha0
=

1

Kp

〈 δ, 1/
√

2f〉,

yha1
=

1

Kp

〈 δ, 1

d
(cos γ − g1

f
)〉,

yhb1 =
1

Kp

〈 δ, 1

e
sin γ〉. (5.6)

where,

b =
1

3
(cos 3φ2 − cos 3φ1), c = cosφ2 − cosφ1,

d =

√
f + h1 − 2

g2
1

f
, e =

√
f − h1,

f = φ2 − φ1, g1 = sinφ2 − sinφ1,

h1 =
1

2
(sin 2φ2 − sin 2φ1), l = cos 2φ2 − cos 2φ1, .

Table 5.1 lists the planar hair array response and their linearizations obtained
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from (5.6). It is apparent that the coefficients yha0
and yha1

are linear in βss and

r. Hence, for a helicopter flying at a constant forward speed u0, the processed hair

sensor outputs that are sent to the flight motor generate direct linear estimates of the

lateral translational velocity and the yaw rate, much like the processed outputs from

optic flow. It is also apparent that an estimate of forward speed can be exclusively

obtained from yhb1 component of the hair array output. In addition, in hover u0 = 0,

and hence yh = 0. Therefore, hair sensor reponse cannot be used to stabilize the

vehicle dynamics in hover. The response gets progressively stronger as the vehicle

reference speed increases. Also, these outputs are exclusively a function of the

velocity states of the vehicle. This is a typical feature of the hair sensor array. They

do not generate information regarding the position states of the system, and hence

cannot be independently used in applications where such information is critical, such

as centering and obstacle avoidance. These sensors are thus usually used in concert

with the visuomotor system, as is generally the case with flying insects. Finally, it

is important to note that the hair sensor arrays generate a measure of the sideslip

angle βss that can be used in feedback for horizontal course correction.

The block diagram for combining the hair array outputs with the visuomotor

system is shown in Fig. 5.3. Neglecting the yhb1 component, the combined observation

equation is:

y = C x, (5.7)
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Figure 5.3: Static output feedback architecture for stability augmentation using hair

sensor arrays.

where,

C =



−u0

2a2 0 0 0

0 −4
3πa

4u0

3πa
0

0 −9
4
u0

l√
2f

0 −6Ru0
c√
2f

0 9
4
u0( lg1

fd
− (b+c)

d
) 0 3

2
Ru0(4cg1

fd
− l

d
)


.

It was earlier noted that the optic flow outputs couple some of the inplane

states and hence couple the lateral and yaw dynamics imposing severe limitations

on the closed loop dynamics, bandwidth and performance (table 2.1). Combining

optic flow and hair array outputs together allows for the decoupling of the states

v and ψ from one another. This fact, together with the fact that lateral position

estimates can be computed directly from optic flow results in a complete decoupling
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Figure 5.4: Lateral, Yaw dynamics for small perturbations with trajectories (and

mean) for 20 trials; (A) Band (solid line) represents combined trajectories (mean)

using just optic flow outputs, (B) Band (solid line) represents trajectories (mean)

with combined hair and optic flow outputs.

of lateral and yaw dynamics. By including the hair sensor system and decoupling the

lateral and yaw dynamics, the constraints on the gain selection can be alleviated

allowing for greater latitude in the choice of gains of the system which improves

bandwidth and performance, especially in yaw.

Hence, for quiescent flows, one can express δ in closed form, and subsequently

linearize about the desired equilibrium pattern of hair deflection, yielding the lin-

ear output equation y = Cx. Modern control techniques such as LQR and pole

placement can then be applied to derive gains for desired stability and navigational

performance.

The hair array and optic flow outputs are combined to help stabilize and

81



navigate the micro-helicopter down the centerline of the corridor is demonstrated.

Towards that end, static output feedback is used to couple the sensor systems with

the in-plane dynamics of the helicopter and set up the stability augmentation sys-

tem. The feasibility of using static output feedback would be evaluated for the

combined sensor input through linear control design that guarantees local asymp-

totic stability of the complete nonlinear system, in effect extending the methodology

used previously [26] to stabilize the vehicle using optic flow exclusively.

The equations of motion, linearized about the reference flight condition, de-

scribing the lateral (or sideslip) and yaw dynamics in the body frame are given by

(4.3). The closed loop dynamics with static output feedback is governed by the

equation ẋ = (A + B K C) x. For the helicopter flying in a quiescent environment

with no external disturbances, the problem simplifies to finding an appropriate gain

matrix K that guarantees asymptotic stability of closed loop dynamics, which can

be easily solved by using modern control techniques such as LQR, pole placement

etc.

5.3.1 Simulation and Results

The influence of the hair sensor array inputs when used in conjunction with the

optic flow system is demonstrated by constructing a simulation and investigating the

closed loop dynamics of the helicopter in quiescent flow. For the various simulations

that follow, the hair array parameters are set as follows: φ1 = π/8 rad, φ2 = 3π/8

rad, radius of the hair sensor ring R=0.1 m.
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The flight behaviour of the helicopter is studied for a set of trials chosen with

initial perturbations having a mean of [y0, v0, ψ0, r0]T = [0.4 m, 0.18 m/s, 3 deg, 17 deg /s]T .

The simulation of the helicopter flying in a quiescent environment along the length

of a corridor with no external gusts is constructed. A snapshot of the corridor the

helicopter navigates in and used in the simulation was shown in Fig. 4.5A. The

gains corresponding to the visuomotor system are selected in a manner similar to

the gains chosen in prior studies [26]. The gains corresponding to the hair sensor

array are chosen so as to decouple the states v and r from one another by selecting

the desired damping coefficient for the lateral and the yaw dynamics.

The results for 20 different trials are as shown in Figs.5.4, 5.5. From these

plots of the closed loop dynamics, we see that by augmenting the optic flow outputs

(and gains) with hair array outputs (and gains), we augment the stability of the

helicopter through static output feedback making the vehicle more robust. Also,

significant mitigation of the problems associated with performance and bandwidth

limitations of the closed loop dynamics is clearly seen from the results.

The results demonstrate the feasibility of using hair sensor arrays to extract

useful motion cues for stability and navigation for planar motion of a micro heli-

copter using optic flow-based WFI methodology. Sideslip is difficult to estimate for

small fixed-wing UAVs and the use of hair array outputs to measure sideslip provides

a significant benefit of the use of the sensory system. A simple 2-D model of the hair

arrays located symmetrically around a circular ring is shown to result in efficient

stability augmentation and mitigation of the limitations imposed on bandwidth and

closed loop performance by using just optic flow inputs.
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5.4 Gust Rejection in an Urban Environment

In this section, a spatially continuous representation response of the hair sen-

sor over a hemispherical array is developed and a model for wide-field integration

is introduced. Subsequently, a biologically consistent feedback architecture is devel-

oped by combining optic flow outputs with hair array outputs for detecting wind

gust velocity. The wind gust velocity estimates are then used to reject gusts acting

on a fixed wing MAV navigating in an urban environment.

5.4.1 Response of Hemispherical Hair Sensor

A spherical configuration is considered with the hair sensor array assumed to

be uniformly distributed over the frontal hemisphere, where the flow as well as the

boundary layer over the hair array is assumed to be laminar, with flow separation
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Figure 5.6: Hemispherical hair sensor array.

occurring over the rear end of the hemisphere. The interference effects of the hair

sensor on the flow downstream is assumed to be negligible. A distributed array

of hair sensors spread over the frontal hemisphere responds in flexure caused by

tangential flow over the surface with each sensor output being proportional to the

magnitude of the flexure root strain. In nominal state, the vehicle is assumed to

have a reference velocity u0 with the nominal velocity flow field across the surface

leading to nominal response pattern across the sensor array. Perturbations to the

nominal state causes perturbations to the nominal root strain, inducing changes in

the sensor and cumulative array output. Hence, perturbations to the nominal state

induces perturbations in the array output.

To obtain the hair sensor response at the location r(γ, β) on the hemispherical

surface , one begins by deriving the tangential velocity vector arising from both

the translational and rotational components {u, v, w, p, q, r} as well as gust d =

[ug, vg, wg, pg, qg, rg]
T .
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The flow field due to the translational velocity is axisymmetric about the

mean free stream velocity axis. Let γ, β and γ′, β′ be the spherical coordinates of

the body defined in the body frame B = {Xb, Yb, Zb} and the relative wind frame

W = {XW, YW, ZW} respectively. The axisymmetric unit tangent velocity vector

at any point r(γ′, β′) arising from the translation of the body is,

r̂t = sin θt (−̂iW ) + cos θt

(
cos ζt(̂jW ) + sin ζt(k̂W )

)
, cos θt = cos γ′ sin β′,

sin ζt =
cos β′

sin θt
, cos ζt =

sin β′ sin γ′

sin θt
(5.8)

where ζt is the angle between the component of the tangent projected on the

YW −ZW plane and YW axis (Fig. 5.7). The translational velocity vector at r(γ′, β′)

defined in the relative wind frame then becomes

vtrans =
3

2
V∞ sin θt r̂t (5.9)

The velocity vector needs to be defined in spherical coordinates attached to the

body frame. Towards that end, the transformation from body frame to relative

wind frame is accomplished by the matrix,

TWB : R3
B 7→ R3

W , TWB =


cosα cos β sin β sinα cos β

− cosα sin β cos β − sinα sin β

− sinα 0 cosα

 .

Furthermore, the transformation from rectangular coordinates to spherical co-

ordinates is accomplished by the matrix

TSR =


cos γ sin β sin γ sin β cos β

− sin γ cos γ 0

− cos γ cos β − sin γ cos β sin β


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Finally, the relative wind frame coordinates γ′, β′ can be related to the body fixed

coordinates γ, β through the transformation
cos γ′ sin β′

sin γ′ sin β′

cos β′


= TWB


cos γ sin β

sin γ sin β

cos β


(5.10)

For small perturbations of the body and wind velocity components from the

nominal flow field, we have the following:

u0βss = v − vg, u0α = w − wg

V∞ = u0 + u− ug (5.11)

where, α and βss are the vehicle angle of attack and sideslip respectively, V∞ is the

freestream flow velocity and {ug, vg, wg}, {pg, qg, rg} are the respectively wind

translational and rotational velocities defined in the body frame B.

Then from (5.8) and (5.10), the tangential velocity field over the spherical

surface due to translation described fully in body-fixed spherical coordinates can be

obtained as,

vtrans =
3

2
V∞

[
sin(γ − βss) γ̂ − (cos β cos(γ − β)− α sin β) β̂

]
(5.12)

In addition to body translation, the rotation of the body also contributes to

the the response of the hair sensor arrays. Accordingly, the relative wind velocity

at any point r(γ, β) defined in body-fixed coordinates needs to be derived.

vrot = −ω × r (5.13)
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ω = (p− pg) îB + (q − qg) ĵB + (r − rg) k̂B defines the angular velocity of the body

with {p, q, r} and {p, q, r} being the rotational (roll, pitch and yaw) rates of the

vehicle and gust respectively defined in the body frame. and,

r(γ, β) = R cos γ sin β îB +R sin γ sin β ĵB +R cos β k̂B (5.14)

with R being the radius of the hemisphere. Switching from rectangular coordinates

to spherical coordinates, the resulting rotational component of the relative wind

velocity is given by,

vrot = [R((q − qg) sin γ cos β − (r − rg) sin β + (p− pg) cos β cos γ)] γ̂ −

[R((q − qg) cos γ − (p− pg) sin γ)] β̂ (5.15)

The total relative wind velocity is then given by

v = vtrans + vrot

or,

v =

[
3

2
V∞ sin(γ − βss) +R((q − qg) sin γ cos β − (r − rg) sin β + (p− pg) cos β cos γ)

]
γ̂ −[

3

2
V∞(cos β cos(γ − βss)− α sin β) +R((q − qg) cos γ − (p− pg) sin γ)

]
β̂(5.16)

We notice that the velocity vector resides in the tangent space TrS
2 at r(γ, β).

The sensor output is then given by

δ(x, γ, β) = Kp||v||v. (5.17)

where v(x, γ, β) is the incident flow velocity vector obtained in (5.16). Substituting

the expression for v from (5.16) and truncating the resulting expression to first order
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terms, the quantity 1
Kp
δ(x, γ, β) = δγγ̂ + δββ̂ has components along the azimuth γ

and elevation β directions and resides in the vector space of piecewise continuous,

square integrable functions on the sphere:

L2(S2,R2) =

f =

 f1(r)

f2(r)

 : r ∈ S2, fk(r) ∈ L2(S2), k = 1, 2

 (5.18)

The component sensor response δγ and δβ at any point r(γ, β) on the surface can

be obtained as,

 δγ

δη

 =

 δγu δγα δγβss δγp δγq δγr

δβu δβα δββss δβp δβq δηr





(u2
0 + 2u0(u− ug))

u2
0α

u2
0βss

u0R(p− pg)

u0R(q − qg)

u0R(r − rg)


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where,

δγu =

(
3

2

)2

sin γ
√

1− (cos γ sin β)2,

δγα = −
(

3

2

)2
cos β cos η sin γ cos γ√

1− (cos γ sin β)2
,

δγβss = −
(

3

2

)2

cos γ
1− (cos γ sin β)2 + (sin β sin γ)2√

1− (cos γ sin β)2
,

δγp =

(
3

2

)
cos β cos γ

√
1− (cos γ sin β)2,

δγq =

(
3

2

)
sin γ cos β

2− (cos γ sin β)2√
1− (cos γ sin β)2

,

δγr = −
(

3

2

)
sin β

1− (cos γ sin β)2 + (sin γ)2√
1− (cos γ sin β)2

,

δβu = −
(

3

2

)2

cos β cos γ
√

1− (cos γ sin β)2,

δβα =

(
3

2

)2

sin β
1− (cos γ sin β)2 + (cos γ cos β)2√

1− (cos γ sin β)2
,

δββss = −
(

3

2

)2

sin γ cos β
1− 2(sin β cos γ)2√

1− (cos γ sin β)2
,

δβp =

(
3

2

)
sin γ

√
1− (cos γ sin β)2,

δβq = −
(

3

2

)
cos γ

1− (cos γ sin β)2 + (cos β)2√
1− (cos γ sin β)2

,

δβr =

(
3

2

)
sin γ cos γ cos β sin β√

1− (cos γ sin β)2
. (5.19)

The nominal (axisymmetric) tip deflection pattern at the reference forward

speed u0 is shown in Fig. 5.8.

5.4.2 WFI-based Decompositions of Hemispherical Hair Sensor Ar-

ray

This section outlines the framework for pooling the response of individual

sensors distributed over the hemisphere that contribute to the combined output and
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the inversion technique for minimising the noise throughput to generate the required

state estimates.

As noted in the earlier section, there are various similarities between the insect

visuomotor system and the wind-hair mechanosensory system. Spatial pooling of

the response of wind-hair sensilla occurs in a manner analogous to optic flow. Real

spherical harmonics are again used as weighting functions to extract motion cues

by parsing hair sensor response along the azimuthal and elevation directions. The

WFI-based decompositions of the hair sensor response over the hemispherical array

are given by,

ykl,m =
1

Kp

〈δ,Fh(γ, β)〉 =
1

Kp

∫
S2

δ .Fh(γ, β) dΩ. (5.20)

where Fh = Yl,m(γ, β)k̂, k ∈ {γ, β} are the spherical harmonics along azimuth and

elevation directions that form an orthogonal basis over the sphere S2, given by (2.5).

The wide-field spatial pooling of individual sensor outputs is used in generating

motion cues from the mechanosensory system. For instance, yβ0,0 quantifies the

goodness of the match between the sensor response induced by the flow and the

transverse template pattern Y0,0β̂ having a constant magnitude at all points on the

spherical surface. A perturbation induced by a climbing vehicle can be captured by

output yβ0,0. The lateral asymmetry introduced by lateral velocity or sideslip βss can

be extracted by the sensitivity function that is symmetric about the longitudinal

axis in the vertical plane and antisymmetric in the horizontal plane, such as Y3,−1γ̂

or Y3,−3γ̂, while transverse and lateral asymmetry introduced by the roll rate p can

be estimated by functions that are antisymmetric in the vertical plane, such as Y3,2β̂.

91



Given p ≥ n spherical harmonics Fh = {Fh
j , j = 1...p}, for small perturbations

about the reference flight condition xref , the linear hair array outputs, accounting

for measurement noise, can be written in the form

ỹh = Cx + C0 + w (5.21)

where, ỹh ∈ Rp are the measured hair array outputs, the noise w is zero mean

E{w} = 0 with known covariance E{wwT} = Rw. The quantity C0 = 1
Kp
〈 δ|xref

, Fh 〉

represents the nominal array output corresponding to the reference state xref . The

solution to the static estimation problem of the overdetermined, inconsistent set of

linear equations, given by (5.21), is given by the weighted least squares estimator,

C†h = (CTWC)−1CTW , which is used to generate optimal estimates x̂ = C†hỹ
h that

minimises noise throughput. Hair sensor output measurements across the imaging

surface are assumed to be affected by zero mean additive noise η(γ, β) with variance

σ2
n with no correlation between measurement nodes or with signal amplitude. Mea-

surement noise at the output can then be written as w = 〈η, F〉. Using linearity of

the WFI operator (5.20) and the properties of the covariance matrix, we have,

Rwij = ∆β∆γσ2
n〈Fh

i , F
h
j 〉 (5.22)

where ∆γ, ∆β is the spacing between successive viewing stations along the az-

imuthal and elevation directions respectively. For the present application, succes-

sive measurement nodes are assumed to be uniformly distributed across the frontal

hemisphere with a separation of 9 deg. Hence, ∆γ,∆β are set to 9 deg.

The relative state estimates x̂ are optimal with respect to the span of the basis

function set Fh. Inclusion of spherical harmonics to a high degree is sufficient to
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achieve convergence to the global optimum over L2(S2,R2). For the relative state

estimates x̂ = C†hỹ
h with ỹh = 1

Kp
〈δ− δ|xref

, Fh〉, the linearity of the WFI operator

allows computing state estimates using the state extraction pattern Fh
x̂, given by,

x̂ =
1

Kp

〈δ − δ|xref
,Fh

x̂〉, Fh
x̂ = C†hF

h (5.23)

Taking the inner product of the state extraction patterns with the instantaneous

optic flow pattern results in velocity estimates with minimal noise throughput. The

optimal state extraction patterns are shown in Fig. 5.9. As is apparent from the

plots, hair array outputs can be used to generate an estimate of the relative wind

velocity states {u− ug, v − vg, w −wg, p− pg, q − qg, r − rg} of the vehicle. These

estimates can then be combined with optic flow outputs that generate body state

estimates to decouple wind velocity and body velocity states of the system.

5.4.3 Feedback Control Design

In this section, the state estimates generated by the visuomotor and the

mechanosensory hair systems are used in design of controller gains for gust alle-

viation of a vehicle flying autonomously through a gusty environment as it demon-

strates safe obstacle avoidance behavior. The control objective is to regulate the

relative state estimates provided by visuomotor and hair sensor systems to refer-

ence values, while simultaneously alleviating gust effects resulting in stable obstacle

avoidance behaviour. The salient features of the control design philosophy are listed

below.

Static (as opposed to dynamic) compensation is employed yielding a fast and
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efficient computation paradigm. The vehicle considered is a highly maneuverable

fixed wing MAV developed by Aurora Flight Sciences Inc., weighing 680 g, with

a payload of 227 g and with a wing span of 1.7 ft. The vehicle attains a nominal

flight speed of 7 m/s. The complete three dimensional motion of the vehicle with six

degrees of freedom is considered. Small perturbation theory is invoked in developing

the state equations, which is given by (5.24).

u̇

ẇ

q̇

θ̇

v̇

ṗ

ṙ

φ̇



=



0.036 −1.93 1.92 9.81 0 0 0 0

1.78 −5.82 4.61 0 0 0 0 0

2.20 −15.261 −12.21 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −0.39 2.21 6.46 9.81

0 0 0 0 −15.54 −4.72 −4.8158 0

0 0 0 0 −2.26 0.39 −1.39 0

0 0 0 0 0 1 0 0


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u

w

q

θ

v

p

r

φ



+



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 −1 0 0

0 0 0 1

0 0 0 0





Fx

LL

MM

NN


+



−0.036 0 0 0 0 0

0 0 0 5.82 0 0

0 0 0 0 12.21 0

0 0 0 0 0 0

0 0.39 0 0 0 0

0 0 0 4.72 0 0

0 0 0 0 0 1.39

0 0 0 0 0 0


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

(5.24)

The above equation can be written in the standard form ẋ = Ax +Bu +Dd, with
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A, B, D having their usual meaning. Throttle, and the three turning moments -

roll, pitch and yaw - provide actuation of the vehicle, with the control saturation

limits being |Fxt | ≤ 7, |LL| ≤ 10, |MM | ≤ 10.3, |NN | ≤ 10.5. The reference

for the state vector x = {y, z, u, v, w, φ, θ, ψ, p, q, r} that accounts for the pitch and

thrust deviation required to attain a nominal speed of 7 m/s is given by xref =

{0,−Kzθ(θ̂− θ̃), 7, 0, 2.135, 0, 0.305, 0, 0, 0, 0}. The reference Kzθ is set to 3.5, which,

as before in chapter 4, helps the vehicle surmount vertical obstacles by spiking

the reference altitude temporarily. Also, as before, in addition to the optic flow

and hair array sensors, the vehicle deploys a pitch sensor and an altitude sensor

(sonar), generating near perfect pitch and altitude measurements respectively, that

are available for feedback. Hence, the optic flow system generates estimates for the

nine body states {y, u, v, w, φ, ψ, p, q, r}, while the hair sensor system (in conjunction

with the optic flow system) generates the six wind (gust) velocity estimates. The

optimal weighting patterns for the body and wind states are:

x̂i = 〈 Q̇,Fxi〉+ C†i,M+1z̄

d̂j = 〈 Q̇,Fxj〉 − 〈
1

Kp

(δ − δ|ref),F
h
(x−d)j

〉. (5.25)

where z̄ denotes sonar altitude measurements, i = {y, u, v, w, φ, θ, ψ, p, q, r} denote

the set of optic flow state estimates, j = {u, v, w, p, q, r} denote the velocity esti-

mates and d denotes the wind velocity estimates generated by the combined action

of the hair and optic flow systems. C† is the weighted least squares minimum vari-

ance estimator from chapter 2, that generates body state estimates with minimal

noise and environment uncertainty throughput.
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The gust velocity estimates are generated from the variation of hair sensor

response across the surface of the sphere. The relationship between the hair sen-

sor response and the velocity states is basically quadratic (5.17), which has been

approximated as a linear model for small gust disturbance (5.25). Larger the gust

disturbances or greater the deviation of the vehicle body states from the target state,

greater the deviation of the linear gust estimates from their true values. As gust

rejection performance is completely determined by the accuracy of the gust velocity

estimates, the linear gust estimation process for the highly maneuverable vehicle

would not be sufficiently accurate for the purpose of adequate gust alleviation. It

then becomes imperative to consider the complete non linear model in estimating

gust velocities. Hence, the linear model for generating the gust velocity estimates

(5.25) is replaced with the complete nonlinear model.

Given the hair sensor array outputs ỹh and the body state estimates from optic

flow outputs, the equation ỹh − v|v| = 0 needs to be solved for the gust velocities

d = {ug, vg, wg, pg, qg, rg}T . Broyden’s iterative root-finding algorithm [95] lends

itself very well to the present application and is used to generate the gust estimate

from the non linear model. The method requires an initial guess, as well as the

approximation of the inverse of the Jacobian matrix at the initial guess estimate.

The iterative algorithm is given by,

dn+1 = dn + J−1
n (ỹh − vn|vn|) (5.26)

with J−1
0 = C†h being the Jacobian and the linear gust estimate (5.25) chosen as the

initial guess estimate d0.
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The objective of gust rejection is achieved through feedforward control using

gust velocity estimates, given by uff = −B−1Dd̂. However, referring to the control

input matrix B given in (5.24), it is apparent that perfect gust alleviation cannot be

achieved as control authority is insufficient to negate lateral and transverse gusts vg

and wg. Therefore, H∞ control strategy with state feedback is employed to mitigate

the througput of vg, wg components of gust, while the rest of the components are

negated directly by the feedforward mechanism. The methodology for generating

static H∞ feedback gains for gust mitigation, which was developed in a prior study

[96], was adopted for deriving feedback gains for the fixed wing MAV. The state

penalty matrix is set to Jx = diag{1, 100, 1, 1, 100, 100, 400, 1, 1, 0.25, 1} and the

control penalty matrix is set to Ju = diag{1, 1, 1, 1}. The control gains are chosen

so as to ensure vehicle stability across the family of different environments described

in section 2.2. This is done by analyzing for linear stability analysis that proceeds

by ensuring the eigenvalues of Acl = (A − BKC†C) across the family of modeled

environments lie in the open left half plane. The control gains are given in table 5.2.

The resulting poles of the closed loop system for each of the limiting cases is shown

in Fig. 5.10. Thus, the gust velocity estimates are used to achieve near-perfect

rejection of those gust components with adequate control authority, while the static

feedback gains that act on the body state estimates generated by the optic flow

system ensure stable obstacle avoidance behaviour through state feedback.
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Table 5.2: H∞ static feedback gains K

Throttle Roll Pitch Yaw

KFx,y = 0.00 KLy = 0.13 KMy = 0.00 KNy = 1.00

KFx,z = −3.64 KLz = 0.00 KMz = −17.78 KNz = 0.00

KFx,u = 4.06 KLu = 0.00 KMu = −0.53 KNu = 0.00

KFx,v = 0.00 KLv = 0.40 KMV
= 0.00 KNv = 1.62

KFx,w = 4.21 KLw = 0.00 KMw = −4.45 KNw = 0.00

KFx,φ = 0.00 KLφ = −3.22 KMφ
= 0.00 KNφ = −4.38

KFx,θ = −33.67 KLθ = 0.00 KMθ
= 66.32 KNθ = 0.00

KFx,ψ = 0.00 KLψ = 2.37 KMψ
= 0.00 KNψ = 11.49

KFx,p = 0.00 KLp = −0.51 KMp = 0.00 KNp = −0.48

KFx,q = −0.53 KLq = 0.00 KMq = 3.61 KNq = 0.00

KFx,r = 0.00 KLr = 0.4828 KMr = 0.00 KNr = 5.79

98



5.4.4 Simulation

In this section, the efficacy of using the hair sensor system for the purpose of

gust rejection is investigated. Various controller architectures are considered and

results are presented for simulation of the fixed wing micro-air-vehicle subjected

to sustained gust flying in an outdoor urban environment (Fig. 4.7). Optic flow

estimates provide sufficient motion cues for vehicle stabilization and navigation. In

addition, the hair sensor system is used to estimate gust velocities accurately.

The simulation process for the combined use of the optic flow and the hair

mechanosensory systems in achieving stable obstacle avoidance behaviour as well

as efficient gust rejection performance of the vehicle is shown in Fig. 5.11. The

feedforward gain Kff = B−1D helps achieve gust mitigation while the feedback gain

K, shown in table 5.2 helps achieve stable obstacle avoidance behavior. The gust

profiles are generated by the Dryden model described by (4.1).

5.4.4.1 Static Controller Framework-Based Navigation of the Urban

Environment

The static feedback gains are coupled to the static estimator (Fig. 5.25) for

enabling safe relexive navigation in the urban environment. As the emphasis of

current study is demonstration of collision avoidance by gust rejection using hair

sensory arrays, a single nominal trajectory in the absence of gust as well as the

influence of the hemispherical hair sensor array on vehicle trajectories for 20 different

sets of gust profiles are looked at. The nominal trajectory of the vehicle flying in
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the absence of gust is shown in Fig. 5.12. The vehicle pose, proximity and velocity

variation with time is shown in Fig. 5.13. As can be seen from the figure, safe

collision avoidance behavior of the highly agile vehicle results in substantial deviation

of the state estimates from the target state, especially during the first right turn

of the vehicle, requiring the nonlinear model of the hair sensor array response for

accurate gust estimation.

Gust causes deviation from the nominal trajectory, with larger gust throughput

resulting in greater deviation from the nominal case. The combined trajectories

obtained by the vehicle flying with just the optic flow sensor enabled is shown

in Fig. 5.14A for all the gust cases. As can be seen from the figure, optic flow

based navigation of a cluttered environment results in collision in multiple instances,

making navigation hazardous in the presence of gusts. The activation of the hair

sensor system also results in mutiple collisions (Fig. 5.14B), resulting in a marginal

improvement in the collision avoidance behavior of the vehicle. The time history

of the vehicle velocity as well as the gust component velocity states for a sample

trajectory from Fig. 5.14B are shown in Fig. 5.15. A sharp maneuver (during

the first right turn) causes large deviation from the true states of the vehicle. It

is apparent that the deviation in the gust velocity estimates from their true values

coincide with the deviation in the estimates of vehicle velocity from their true values.

This can clearly be seen in the Fig. 5.16, where the relative wind velocity estimates,

generated by the hair sensor system, coincide with their true values. Hence, poor

gust velocity estimation, caused by poor body velocity estimation, gives rise to poor

gust rejection performance, causing multiple collisions in Fig. 5.14B.
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An improvement in the vehicle’s gust rejection performance then requires bet-

ter accuracy in body velocity estimates than that obtained using optic flow. The

niche of optic flow-based sensing is proximity and pose estimation. Thus, an al-

ternate approach based on a combination of a triaxial GPS and rate gyro unit

is considered for generating accurate velocity estimates. The GPS and rate gyro

units operate at 10 and 50 Hz, with an accuracy of ±0.2 m/s and ±0.1 deg/s [97],

generating near-accurate estimates of vehicle translational and rotational velocity

respectively. Static estimation and compensation framework is again employed, with

optic flow used to sense vehicle pose and proximity, while GPS and rate gyro units

are used to detect vehicle velocity.

The nominal trajectory in the absence of gust is shown in Fig. 5.17. Improved

velocity estimation clearly results in a change in the trajectory when compared with

Fig. 5.12. The results with and without the hair sensor system are shown in Fig.

5.18. The vehicle manages to negotiate the environment in a safe manner using just

optic flow, with the hair sensor system again exerting a marginal influence on the

vehicle’s collision avoidance behavior. Fig. 5.19 shows the comparison of the body

and gust velocity estimates with the true states for a sample trajectory from Fig.

5.18B. It is apparent that the increase in accuracy of the body velocity estimates

results in near accurate gust velocity estimation.

As noted earlier, the gust velocity components vg, wg are not directly negated

with feedforward control, and their combined influence on the vehicle dynamics

could be the reason for the negligible improvement in the vehicle’s performance

despite accurate gust velocity estimation. To confirm this supposition, the vehicle
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trajectories with just the 4 components of gust ({ug, pg, qg rg}) that are directly

negated with the hair sensor array are considered. The results are shown in Fig.

??. It is apparent that the hair sensor system exerts a significant influence on

the vehicle dynamics and manages to reject gust completely, resulting in vehicle

trajectories that are similar to the nominal trajectory (Fig. 5.17). Hence, in this

case, near perfect gust rejection using hair sensor arrays results in safe collision

avoidance behavior.

5.4.4.2 Kalman Filter-Based Navigation of the Urban Environment

Finally, to complete the study, a brief discussion of an alternative to the static

controller framework, based on the Kalman filter, for the purpose of accurate velocity

estimation is included. The static estimator used above is replaced with the Kalman

filter which is a dynamic estimator. A well known property of the Kalman filter is

capability of state estimation in the absence of a full state estimate. Thus, Kalman

filter can be used to generate wind velocity estimates in addition to body state

estimates using just optic flow outputs, precluding the need for the hair sensor

system. Using the optic flow measurement model developed in section 2.3, the

dynamic estimate of the augmented state xa = {x, d}T can be obtained from,

˙̂xa = Aax̂a +Bau + L(ỹ− Cmx̂a) (5.27)

where L = PCT
mR
−1 is the Kalman gain, R = Rw + R∆C is the covariance matrix

that penalizes high measurement noise and environment uncertainty in the output

measurements, ỹ are the outputs obtained from the spherical optic flow model and
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Cm is the mean of the limiting cases of the environments considered in section 2.2.

P is obtained from the equation

AaP + PATa +DDT − PCmR
−1Cm = 0

The augmented matrices Aa, Ba are given by,

Aa =

 A DCw

0 Aw

 , Ba =

 B

u

 ,
The dynamics of the gust filter is given by,

ẋw = Awxw +Bwn

d̂ = Cwxw +Dwn (5.28)

where n is white noise input. Thus, the gust filter dynamics is used to estimate

the gust velocity d̂. The gust dynamics that generates estimates of the Dryden

gust profile is described in a prior study [96]. The simulation process used is again

given by Fig. 5.11, where the static H∞ feedback gain K is given in table 5.2 and

the feedforward control input uff negates gust using the wind velocity estimates d̂

generated by the dynamic estimator in the absence of the hair sensory system.

When implemented on the fixed wing MAV, the Kalman filter results in a

negligible improvement in the gust rejection performance of the vehicle (Fig. 5.21),

again leading to multiple collisions for several different gust profiles. It is seen that

the gust velocity estimates show poor convergence with the true values. One pos-

sible explanation could be the inability of the dynamic estimator to incorporate

environment structural uncertainty in a straightforward manner. The combination
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of environment structural uncertainty and gust disturbance results in the poor per-

formance of the dynamic estimator, which is reflected in the performance of the

vehicle as it navigates the cluttered environment.

5.4.5 Discussion

The motion cues generated by the optic flow system employing static controller

framework is sufficient to safely navigate the cluttered environment if perfect gust

rejection takes place. The hair sensor arrays manage to generate accurate relative

wind velocities using the non-linear hair estimation model from section 5.4.3. The

study highlights the need for accurate gust velocity estimates for perfect gust re-

jection, which in turn depend on accurate body velocity estimates derived from the

optic flow outputs. Thus, it is seen that the performance of the hair sensor system

depends on the performance of the optic flow system. In addition, the hair sensor

system is seen to be especially useful if sufficient control authority exists to negate

the most important components of gust in a feedforward manner. Thus, given these

conditions, the hair sensor system is well suited for gust rejection applications.

The hair sensor arrays generate motion cues such as sideslip and angle-of-

attack, which are particularly difficult to estimate using lightweight miniature sen-

sors embedded on microsystems, in a computationally efficient manner, thus pre-

cluding the need for an extensive wind velocity estimating apparatus as well as

complicated processing algorithms [12]. The methodology proposed in this chapter

is certainly feasible as lightweight triaxial GPS and rate gyro sensors have been
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used extensively on existing MAVs for accurate translational and rotational velocity

estimation [5, 98]. Given the current lack of sensors with the required size and band-

width capabilities, coupling the optic flow sensor with hair sensor arrays in a static

controller framework provides an attractive alternate paradigm for MAV navigation

applications.

Finally, with regard to a comparison of the static controller framework using

hair sensor arrays with the dynamic H∞ controller framework that exclusively uti-

lizes optic flow outputs, it is seen that both approaches successfully overcome the

optic flow output deficiency in planar motion. Simulation-based validation studies

of both approaches demonstrate improved closed loop performance and bandwidth

for navigation applications. Additionally, both static and dynamic controller frame-

works are seen to account for environment uncertainty as well as mitigate gusts in a

straightforward manner. Both approaches are used to demonstrate safe reflexive 3D

navigation behavior in an cluttered, urban environment subjected to gusts. Finally,

both approaches are computationally efficient - H∞ loop shaping approach results

in a low order dynamic gain, while static compensation using hair sensor arrays

allows offline computation of the corresponding gains. This is especially true of

planar navigation applications. It is seen that both approaches enable autonomous

reflexive navigation in outdoor, gusty and uncertain environments.
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Figure 5.7: Flow field over spherical surface.
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Figure 5.15: Vehicle and gust velocity profiles for a sample trajectory from Fig.

5.14B. Blue solid lines represent true state, red broken lines represent state estimates
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Figure 5.16: Relative wind velocity profiles generated using the hemispherical hair

sensor array; blue lines represent true states, red lines represent state estimates.
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Figure 5.18: Simulation trajectories with GPS and rate gyro measurements in the

presence of gust; (A) Optic flow enabled navigation, (B) Optic flow and hair sensor

array enabled navigation.

115



2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

10

0

5

1
0
-1

0

2

2

0
-2

2
0
-2

2
0
-2

-0.5
0

0.5

1
0
-1

0.1
0

-0.1

0.2

0

-0.2

0.4

0

-0.4

0.4

-0.2

time (s) time (s)

u
(m

/s
)

v
(m

/s
)

w
(m

/s
)

p
(ra

d/
s)

q
(ra

d/
s)

r
(ra

d/
s)

time (s) time (s)

p g
(ra

d/
s)

q g
r g

(ra
d/

s)

u
g

(m
/s

)
v g

(m
/s

)
w

g
(m

/s
)

(ra
d/

s)

Figure 5.19: Vehicle and gust velocity profiles for a sample trajectory from Fig.

5.18B; blue solid lines represent true states, broken broken lines represent state

estimates.
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Figure 5.20: Simulation trajectories with GPS and rate gyro measurements in the

presence of gust (vg = wg = 0); (A) Optic flow enabled navigation, (B) Optic flow

and hair sensor array enabled navigation.
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Figure 5.21: Vehicle trajectory using the Kalman filter in the presence of gusts.

117



Chapter 6

Summary and Conclusions

This chapter summarizes key results, contributions as well as limitations of

current work. Areas of future work are also identified.

6.1 Conclusion

The primary focus of this dissertation involves optic flow-guided navigation

in a cluttered, urban environment that is subjected to gusts. The central objective

of current research is the development of insect-inspired computationally efficient

processing algorithms that enable safe reflexive obstacle avoidance and terrain map-

ping behavior (red and blue trajectories in Fig. 1.1). Accordingly, the H∞ loop

shaping dynamic controller framework is employed in designing feedback gains that

provide stabilising commands for the vehicle to follow an obstacle-symmetric path,

resulting in safe navigation in unknown and gusty environments. The methodology

adopted allows for a degree of uncertainty in the local environment map, which

precludes the need for computationally expensive algorithms that generate accurate

environment structure from motion or employ optimization-based trajectory gener-

ation strategies. The techniques developed in this dissertation are broad-based with

application to any distributed sensor array such as the lateral line system found

in fish for proximity detection or any point sensor such as sonar, rangefinders and
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IMUs. The following key contributions of the dissertation are listed below:

H∞ controller synthesis framework

• The insect-inspired technique of wide-field integration is adapted to the H∞

controller synthesis framework for designing feedback gains for plants that

incorporate environment uncertainty and gusts.

• Robust stability is expressly demonstrated in a rigorous fashion for both planar

and 3D urban navigation.

• Safe planar and 3D urban navigation using the H∞ controller synthesis frame-

work is demonstrated. Dynamic controllers suitable for planar and 3D urban

navigation are developed.

• The H∞ loop shaping approach is shown to overcome the limitation of optic

flow outputs by generating accurate pose, proximity and velocity estimates for

planar navigation, which is shown to help improve closed loop performance and

bandwidth.

• The feedback gains obtained with the loop shaping design methodology are

shown to deliver robust vehicle performance in a typical 3D urban environment

for both planar and 3D navigation applications, resulting in a physically real-

izable system requiring minimal computational effort. The current framework

extends the previous static analysis to dynamic controllers and the mapping

between optic flow estimates and actuator commands for the dynamic con-

troller framework is demonstrated.
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Hair mechanosensory system

• The hair sensor array outputs are derived and extraction of navigationally

relevant motion cues for both planar and 3D navigation are demonstrated.

• The use of the hair sensor array for the purposes of stability augmentation are

demonstrated for the micro-helicopter undergoing planar motion. The hair

array outputs are shown to help overcome the limitation of optic flow outputs,

and the attendant improvement in the closed loop system performance and

bandwidth is demonstrated.

• The hemispherical hair array response for 3D gust rejection application is

derived and extraction of suitable motion cues for navigation is demonstrated.

The hair array outputs are shown to generate optimal relative wind velocity

estimates that minimise noise throughput.

• A biomimetic sensorimotor architecture, patterned on the insect visuomotor

system, is developed and various static and dynamic controller frameworks are

considered for detection of gusts for safe 3D urban navigation. The perfor-

mance of the hair sensor system is shown to be dependent on the performance

of the optic flow system and the necessary conditions for efficient use of the

hair sensor system for gust rejection applications are delineated.
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6.2 Limitations

The technique of WFI, which forms the basis of the controller synthesis frame-

work, is computationally efficient for generating relevant motion cues for navigation.

However, it is limited to working in regions of sufficient contrast and texture, which

is a limitation of modern imaging devices, thus necessitating the use of feature

tracking and detection based navigation algorithms [77]. However, the associated

computational burden is too large for practical implementation onboard an MAV.

A secondary flaw of WFI is its insensitivity to small obstacles. WFI is ideally

suited to detection of large obstacles, with integration over a wide field filtering out

perturbations due to small obstacles. Insects have demonstrated detection of to

both large and small obstacles [99, 73], suggesting the need for a complementary

small-field processing mechanism that enables small obstacle avoidance behavior.

The environment model in chapter 2 does not include a front wall, and hence

the measurement model for optic flow does not incorporate longitudinal proximity

x. This results in several close encounters of the vehicle as it navigates the urban

environment, as seen in Fig. 4.17. This is particularly the case when the vehicle

encounters symmetric obstacles in its flight path, which induce minimal optic flow

across the visual field. Thus, the current methodology renders navigation hazardous

in the presence of such obstacles.

Finally, the methodology adopted for demonstrating safe reflexive navigation

behavior is based on the surrounding environment being stationary. Optic flow is

a scaled measure of velocity/depth. Hence, a moving environment that generates
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either decreased or increased optic flow would cause the vehicle to either move closer

or move away, depending on motion direction, much like honeybees flying past a

moving wall [18]. Such flight behavior might become hazardous, particularly with

the present methodology where close encounters were reported in multiple instances

in chapter 4. Thus, stability analysis in a non-stationary environment needs to be

investigated.

6.3 Future Work

The need for continuous control capability that is a function of longitudinal

proximity x to evade obstacles directly in front was highlighted in chapter 4. The

environment model from chapter 2 can be modified to incorporate longitudinal prox-

imity, thus eliminating blind spots on the optic flow sensor and precluding the need

for a frontal proximity sensor such as sonar or laser rangefinder.

The current methodology is geared towards enabling safe relexive navigation

behavior in a cluttered, obstacle laden environmet (red and blue trajectories from

Fig. 1.1), as demonstrated in chapter 4. Thus, the vehicle is seen to wander aimlessly

in the large urban environment. True autonomous capability requires implementa-

tion of an outer control loop that enables strategic waypoint navigation (yellow line

in Fig. 1.1).

Another way forward is to experimentally validate the H∞ loop shaping design

framework, especially for planar navigation, where the resulting controller was shown

to be of low order (2 outputs, 3 inputs and 4 states), which is potentially physically
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realizable. The demonstration of improvements in closed loop performance and

bandwidth, as well as safe reflexive navigation in an uncertain environment subjected

to gusts are in order.

The hair sensor array outputs currently do not model flow separation and

hence do not incorporate the attendant effects of flow noise and uncertainty. Devel-

oping an optimal estimator, similar to the optic flow system, that minimises noise

and uncertainty throughput, would deliver relative wind velocity estimates that are

robust to the influence of flow separation. Also, experimental validation of the hair

sensor array, especially for stability augmentation in planar navigation applications,

needs to be demonstrated.

Finally, the H∞ controller synthesis framework can be extended to other dis-

tributed sensor systems.
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