
 
 

ABSTRACT 
 
 
 

 
Title of Document: STUDIES OF THE EFFECTS OF 

ATMOSPHERIC TURBULENCE ON FREE 
SPACE OPTICAL COMMUNICATIONS. 

  
 Heba Yuksel, Doctor of Philosophy, 2005 
  
Directed By: Professor Christopher C. Davis 

Department of Electrical and Computer 
Engineering 

 
 

Even after several decades of study, inconsistencies remain in the application 

of atmospheric turbulence theories to experimental systems, and the demonstration of 

acceptable correlations with experimental results. This dissertation shows a flexible 

empirical approach for improving link performance through image analysis of 

intensity scintillation patterns coupled with frame aperture averaging on a free space 

optical (FSO) communication link. Aperture averaging is the effect of the receiver 

size on the power variance seen at the receiver. A receiver must be large enough to 

collect sufficient power and reduce scintillation effects at a given range, but must also 

be of practical size. An imaging system for measuring the effects of atmospheric 

turbulence and obscuration on FSO links will be presented. Weak and intermediate 

turbulence results will be shown for an 863 meter link at the University of Maryland.  

Atmospheric turbulence has a significant impact on the quality of a laser beam 

propagating through the atmosphere over long distances.  Turbulence causes intensity 

scintillation and beam wander from propagation through turbulent eddies of varying 

  



sizes and refractive index. This can severely impair the operation of target 

designation and FSO communications systems. A new geometrical model to assess 

the effects of turbulence on laser beam propagation in such applications will be 

presented. The atmosphere along the laser beam propagation path is modeled as a 

spatial distribution of spherical bubbles with refractive index discontinuity 

statistically distributed according to various models. For each statistical 

representation of the atmosphere, the path of rays is analyzed using geometrical 

optics. These Monte Carlo techniques can assess beam wander, phase shifts and 

aperture averaging effects at the receiver. An effective Cn
2 can be determined by 

correlating beam wander behavior with the path length. In addition, efficient 

computational techniques have been developed for various correlation functions that 

are important in assessing the effects of turbulence. The Monte Carlo simulations are 

compared with the predictions of wave theory.  

This is the first report to present weak and intermediate turbulence results 

using an efficient imaging technique. It is also the first report to geometrically 

simulate aperture averaging. 
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Chapter 1: Introduction 

 

1.1 Thesis Contributions 

This dissertation shows a flexible empirical approach for improving link 

performance through image analysis of intensity scintillation patterns coupled with 

video-frame aperture averaging on a free space optical (FSO) communication link. 

An imaging system for measuring the effects of atmospheric turbulence and 

obscuration on FSO links will be presented. Weak and intermediate turbulence results 

will be shown for an 863 meter link at the University of Maryland. In addition, 

efficient computational techniques have been developed for various correlation 

functions that are important in assessing the effects of turbulence. This thesis will 

present the most accurate empirical data to date for the intermediate turbulence 

regime. Such results can help develop upon existing empirical data and lead to the 

development of new theories. In addition, the weak turbulence results show the best 

fit to date to the analytical expressions described by theory. 

A new geometrical model to assess the effects of turbulence on laser beam 

propagation will also be presented. The atmosphere along the laser beam propagation 

path is modeled as a spatial distribution of spherical bubbles with refractive index 

discontinuities that are statistically distributed in size and diameter according to 

various models. The Monte Carlo techniques used allow us to assess beam wander 

and phase shifts effects along the path, and aperture averaging effects at the receiver. 

The Monte Carlo simulations are compared and are well fitted with the predictions of 
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wave theory. This thesis is the first to date to geometrically simulate aperture 

averaging. 

1.2 Turbulence Overview 

Direct line-of-sight optical communication links, which are commonly called 

“optical wireless” systems or free space optical (FSO) communication links are 

becoming increasingly popular. Such links can provide virtually unlimited bandwidth 

at a relatively low cost and high performance communication over short distances up 

to a few kilometers. In addition, FSO links do not require any spectrum allocation by 

the Federal Communications Commission (FCC) and are highly secure because of 

their directionality with a low probability of interception and/or detection. Such links 

are also rapidly deployable, scalable and flexible. These properties make them 

attractive in a variety of applications including communication between buildings in 

cities and industrial parks, and between aircraft or ships, especially for military 

purposes due to their high security of transmission. Unfortunately, the atmosphere is 

not an ideal communication channel. Atmospheric turbulence can cause fluctuations 

in the received signal level, which increase the bit errors in a digital communication 

link. In order to quantify the performance limitations, a better understanding of the 

effect of the intensity fluctuations on the received signal at all turbulence levels is 

needed.  

The local density of the atmosphere is constantly fluctuating because of 

temperature and pressure fluctuations. This is atmospheric turbulence. The 

foundations of the study of atmospheric turbulence were laid in the late 1960s and 

1970s.  Theory reliably describes the behavior in the weak turbulence regime, but 
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theoretical descriptions in the intermediate and strong turbulence regimes are less 

well developed.  Within the troposphere layer of the atmosphere, the air temperature 

decreases rapidly with increasing altitude causing turbulence strength to decrease 

with altitude. Turbulence can become very strong near the ground because of the heat 

transfer between ground and air. However, even at a modest height of 12 meters, 

which is used in the experiment to be presented, strong turbulence is rarely 

experienced. Nevertheless, strong turbulence can still occur if the beam propagates 

near rooftops and/or near other structures that cause increased temperature 

fluctuations. In addition, strong turbulence effects can occur for a beam leaving and 

entering an aircraft because of boundary-layer turbulence. An FSO system is expected 

to perform in both weak and strong turbulence conditions.  Because of the 

shortcomings of theory, an empirical approach to determining ways of improving link 

performance through experiment and data analysis will fill gaps in the theory, and 

potentially result in the development of new theories.   

When a laser beam propagates through the atmosphere the randomly varying 

spatial distribution of refractive index that it encounters causes a number of effects. 

These include: 

(1) A fluctuating intensity as observed with an optical detector at the end of the path. 

This is referred to as scintillation. 

(2) A varying degree of fluctuation with the size of the detector, or with the size of 

the receiving optics that direct the collected light to the detector. This is called 

aperture averaging. 
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(3) If a circularly symmetric Gaussian beam is observed at different distances from a 

transmitter it suffers progressive deterioration with increasing distance and turbulence 

strength. The progressive changes that are observed are: 

  (i) deviations of the beam shape from circular that are time dependent; 

  (ii) wander of the centroid of the beam; 

  (iii) increase in the width of the beam over and above that expected from diffraction;     

         and 

  (iv) breakup of the beam into distinct patches of illumination whose shapes and  

         locations fluctuate with time. 

 (4) The “coherence length” of the laser beam falls. 

 (5) The angle of arrival of the phase fronts at a receiver fluctuates. 

Winds, which move the atmosphere in a more correlated way, can cause the 

centroid of the beam to shift, but they do not intrinsically randomize the laser beam as 

does turbulence. In principle, the effects of correlated atmospheric effects that “steer” 

a laser beam can be compensated with a beam-steering scheme at the transmitter.  

1.3 Aperture Averaging 

Intensity fluctuations at a receiver lead to a received power variance that 

depends on the size of the receiver aperture.  Increasing the size of the receiver 

aperture reduces the power variance.  This effect of the receiver size on power 

variance is called aperture averaging and will be presented and studied in detail in this 

dissertation. If there were no aperture size limitation at the receiver, then there would 

be no turbulence-induced scintillation. In practice, there is always a tradeoff between 

aperture size, transceiver weight, and potential transceiver agility for pointing, 
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acquisition and tracking (PAT) of links. An optimized receiver aperture size can be 

selected by using multi-frame image analysis of received intensity scintillation 

patterns. Aperture averaging theory has been extensively developed for plane and 

spherical waves in weak turbulence conditions [1-7]. Minimal theory is available for 

the strong turbulence regime [6, 8]. There has been some previous experimental work 

[2, 3], but early experiments did not account for scintillation saturation, and resulted 

in data that is different from that predicted by theory. Later data were limited by the 

short path lengths under investigation [3]. 

The Maryland Optics Group (MOG) at the University of Maryland has been 

developing novel technologies that will enable autonomous reconfiguration in hybrid, 

wireless networks with directional optical and RF links [9]. These include: 1) 

autonomous connection/configuration of narrow beam links; and 2) management of 

changes in link states in the context of an overall network.  The former is referred to 

as the pointing, acquisition and tracking (PAT) of links, and the latter as topology and 

link control. In this thesis, a flexible, empirical approach is described for optimizing 

the design and configuration of  FSO communication links by using multi-frame 

image analysis of received intensity scintillation patterns.  This is a versatile way for 

performing aperture averaging analysis, which guides receiver aperture size selection 

when there are trade offs between transceiver size, weight, and power. 

The Maryland Optics Group has previously described the use of hybrid 

FSO/RF systems to provide better directional wireless connectivity than either FSO 

or RF alone [9]. In clear conditions, FSO links can provide significant power margins 

for excellent performance, even over long distances, but these links must be able to 
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operate in the face of potentially large fluctuating received powers. These “fades” and 

“surges” result from the imperfect nature of the optical communication channel 

through the atmosphere caused by atmospheric turbulence. Atmospheric turbulence is 

the random fluctuations of coupled temperature/density/refractive index, which vary 

from point to point along the link path. A key to the maintenance of network quality 

of service, amidst such degradation, is to optimize the level of received signals [10]. 

In this thesis, aperture averaging of received scintillation will be studied in 

order to design receivers that can mitigate the negative effects of turbulence and 

hence optimize performance. Intensity scintillation and associated beam wander are 

the two most problematic characteristics of an FSO link. A receiver must be large 

enough to collect sufficient power and reduce scintillation effects at a given range, 

but must also be small enough to be of practical size for cost effectiveness. In general, 

an FSO receiver does not need to have a very large diameter to reduce scintillation 

effectively, because of a nonlinear reduction in scintillation with increasing the 

aperture size. Optimized apertures increase the effective signal-to-noise (S/N) ratio 

and reduce the bit-error-rate (BER).  

1.4 Geometrical Simulations 

In line-of-sight optical communication systems, absorption of the beam by the 

atmosphere can be important, especially in adverse weather conditions of fog, snow, 

heavy rain, or in conditions of battlefield obscuration. The combined effects of direct 

absorption and scattering of laser light can be described by a single path-dependent 

absorption coefficient ( )zα . The power reaching a receiver (RX) from a transmitter 

(TX) is easily calculated for links without significant turbulence effects. The received 
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power for a RX area A, range L, and beam divergence angle θ  varies as 

22θα LPAe L−≈ , where P is the TX power, and α  in this case is assumed constant 

along the path L. When turbulence effects are included, the effects of the atmosphere 

are in a sense more subtle. The laser beam diverges as it propagates, which leads to a 

reduction in the received power with range. In addition, the phase fronts of the laser 

beam are distorted, and in coherent optical communication applications, in which the 

received beam is mixed with a local oscillator laser beam -- much as in a FM radio -- 

badly distorted phase fronts lead to poor mixing and serious loss of detectable signal. 

In line-of-sight optical links in which the receiver acts as a “photon-bucket” for 

received light -- only the amount of received optical power is important, not the 

quality of the incoming wavefronts. However, indirectly, the effects of the 

atmosphere on phase fronts does lead to “beam wander” and problems associated 

with pointing the transmitter beam at the receiver, so this issue can not be completely 

ignored. In principle, such effects can be minimized by “steering” the beam so that it 

always hits the receiver. Even when this is done, however, several problems remain, 

even for a photon-bucket or intensity-based receiver. This is particularly true for a 

terrestrial link that runs essentially parallel to the ground. Links from ground to space, 

and vice-versa, are affected differently because the laser beam travels for only a small 

part of its path through the denser layers of air near the ground where atmospheric 

disturbances are concentrated.  

In this thesis, a theoretical model is presented with new features for 

calculating the effect of atmospheric turbulence and obscuration on line-of-sight laser 

communication links. This model will build on existing weak and strong turbulence 
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theories to assess the effect of the turbulence parameter  on link performance 

where z is distance along the propagation path. Efficient computational techniques are 

presented in this dissertation for various important correlation functions that are 

important in assessing the effects of turbulence. An additional, new geometrical 

optics approach is also developed in which the atmosphere is modeled as a spatial 

distribution of spherical bubbles in which there are small refractive index 

distributions distributed according to various statistical models. The model has 

proved capable of assessing beam wander, phase shifts, and aperture averaging at the 

receiver for a laser beam propagating down range in turbulence. A receiver of varying 

size can be used to collect rays that are initially Gaussian distributed or uniformly 

distributed and propagate through the simulated spherical bubbles. This allows 

aperture averaging to be calculated for varying receiver sizes. The random nature of 

the atmosphere along the link is constructed from random number generated 

distributions, and the effective  can be determined for a given randomly selected 

atmospheric path by correlating beam wander behavior with the path length. These 

statistical analyses are obtained by Monte Carlo simulations over distributions of 

randomly selected index distributions along atmospheric paths.  

)(2 zCn

2
nC

1.5 Thesis Organization 

This thesis is divided into 6 chapters. Chapters 1 and 6 are the introduction 

and conclusion respectively. Chapter 2 presents an overview of the key turbulence 

theory that will be used throughout this thesis. It also includes efficient computational 

techniques for various important correlation functions that are important in assessing 
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the effects of turbulence. Chapter 3 presents the experimental setup, methodology, 

and results of an imaging system that is used to measure the effects of atmospheric 

turbulence and obscuration on FSO links. Results are presented for weak and 

intermediate turbulence and compared with the atmospheric turbulence theory 

developed and presented in Chapter 2. Chapter 4 describes the aperture averaging 

effect on the performance of FSO links through bit-error-rate (BER) and Signal-to-

noise (S/N) ratio analysis. Finally, Chapter 5 describes a new geometrical optics 

model than can assess the effect of atmospheric turbulence on the propagation of rays 

that are initially Gaussian as well as uniformly distributed. 
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Chapter 2: Turbulence Theory Overview 

 

 

2.1 Introduction 

A complete theory of wave propagation through random media is not yet 

available – it remains an active area of research in many diverse fields such as 

atmospheric optics, ocean acoustics, radio physics, and astronomy [4]. However, the 

general theory is fairly well understood in certain asymptotic regimes. We will 

concentrate in this chapter on a plane wave approximation for the propagating beam. 

2.2 Atmospheric Turbulence 

 Optical Turbulence can be defined as the fluctuations in the index of 

refraction resulting from small temperature fluctuations. The atmosphere has two 

distinct states of motion as a viscous fluid – laminar and turbulent. In the earliest 

study of turbulent flow, Reynolds defined a non-dimensional quantity Re=Vl/v, 

where V is the characteristic velocity (in m/s), l is the dimension of the flow (in m), 

and v is the kinematic viscosity (in m/s2). When the flow of a viscous fluid exceeds a 

critical Reynolds number, the flow changes from laminar to a more chaotic state 

called turbulence. Turbulent air motion is represented by a set of eddies of various 

scale sizes extending from a large scale size Lo called the outer scale of turbulence to 

a small scale size lo called the inner scale of turbulence forming the inertial range. 

Scale sizes smaller than the inner scale belong to the dissipation range. The source of 
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energy at large scales is either wind shear or convection. Under the cascade theory, 

the wind velocity increases until it reaches a point at which the critical Reynolds 

number is exceeded. This causes local unstable air masses called eddies to form. 

Under the influence of inertial forces, larger eddies break up into smaller eddies 

forming the inertial range between scale size of lo to Lo. Figure 2.1 shows the 

Kolmogorov cascade model of turbulence as a function of spatial scale [4]. 

Turbulence  
Spectrum Φ(κ) 

Energy Input 

Energy Dissipation 

κ0
Wavenumber κ κs

 

Fig. 2.1:   A pictorial description of the process of turbulent decay.  As turbulent 
eddies subdivide, they become smaller and more uniform until all of their energy 
dissipates as heat [4]. 

 
The outer scale Lo is usually assumed to grow linearly with the order of the 

height above the ground of the observation point up to approximately 100 meters. 

Eddies of scale sizes smaller than Lo are assumed statistically homogeneous and 

isotropic. Statistical homogeneity implies that the mean value of the field is constant 

and that correlations between random fluctuations in the field from point-to-point are 

independent of the chosen observation points, depending only on their vector 

separation. Statistical isotropy implies that point-to-point correlations depend only on 
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the magnitude of the vector separation between observation points [4]. The inner 

scale lo is typically on the order of 1 to 10mm near the ground but is in the order of 

centimeters or more in the troposphere and stratosphere. 

The most important parameter to consider in optical wave propagation is the 

index of refraction fluctuations caused by atmospheric turbulence [4], 

   )()( 1 rnnrn o
rr

+= ,    (2.1) 

where rr  is a point in space, 1)( ≅= rnno
r

 is the mean value of the index of 

refraction of air at atmospheric pressure and )(1 rn r  represents the random deviation of 

)(rn r  from its mean value. Therefore 0)(1 =rn r . Time variations are suppressed in 

the calculations assuming the wave maintains a single frequency as it propagates. The 

fluctuations in the index of refraction are related to corresponding temperature and 

pressure fluctuations as follows [4], 

    
)(
)(10791)( 6

rT
rPrn r

r
r −×+= ,   (2.2) 

where P is the pressure in millibars and T is the temperature in degree kelvin. 

Humidity fluctuations only contribute in the far-IR region, and pressure fluctuations 

are usually negligible. Therefore, the index of refraction fluctuations within the 

visible and near-IR region of the spectrum are due primarily to random temperature 

fluctuations [4]. 

 The covariance function of  )(rn r  can be expressed by, 

  2
11111121 )()(),(),( onn nrrnrnrrrBrrB ++=+=

rrrrrrrr
, (2.3) 
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where  and  are 2 points in space and 1r
r

2r
r

12 rrr rrr
−= . Assuming a homogeneous, 

isotropic turbulent media, the covariance function reduces to a function of only the 

scalar distance 12 rrr rr
−= . 

 Random fields that permit a decomposition into a varying mean and a 

statistically homogeneous fluctuation are called locally homogeneous [4]. Locally 

homogeneous fields are usually not characterized by the covariance function, but by 

the structure function, 

  ( ) ( )[ ] [ ])()0(2rrr)( 2
11 rBBnnrD nnn −=−+= . (2.4) 

By plugging Equation (2.3) into Equation (2.4), we arrive at the Kolmogorov-

Obhukov two-thirds power law describing the structure function of refractive index 

fluctuations for separations between l0 and L0 [4],  

   322)( rCrD nn =  ,    oo Lrl <<<<   (2.5) 

where  is the index of refraction structure parameter, also called the structure 

constant.  is a function of height. Over short time intervals at a fixed propagation 

distance and constant height above the ground which is the case of interest in this 

research, it is reasonable to assume that  is essentially constant.  typically 

ranges from 

2
nC

2
nC

2
nC 2

nC

321710 −− m  or less for conditions of “weak turbulence” and up to 

321310 −− m  or more when the turbulence is “strong”. 

2.3 Power Spectrum Models for Refractive index fluctuations 

We have described thus far the covariance as well as the structure function of 

the index of refraction fluctuations. The three-dimensional spatial power spectrum of 
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the random field )(κrnΦ  form a Fourier transform pair with the covariance function 

[11], 

   ,   (2.6) ∫ ∫ ∫
∞

∞−

Φ= κκκ 3. )()( derB n
ri

n
rr rr

  ∫ ∫ ∫
∞

∞−

−⎟
⎠
⎞

⎜
⎝
⎛=Φ rdrBe n

ri
n

3.
3

)(
2
1)( rr rrκ

π
κ ,   (2.7) 

where κ
r

 is the wave number vector. Assuming homogeneity and isotropy, these 

Fourier transform relations reduce to [4], 

   ∫
∞

=Φ
0

2 )sin()(
2

1)( rdrrrBnn κ
κπ

κ
r

,   (2.8) 

   ∫
∞

Φ=
0

)sin()(4)( κκκκπ dr
r

rB nn
r

,   (2.9) 

where l/2πκκ ==
r  is the magnitude of the wave number vector and l is the 

turbulent eddy size. 

If we call the one-dimensional spectrum )(κnV , then its relation with the 

three-dimensional spectrum )(κrnΦ  is given by [4], 

   
κ

κ
πκ

κ
d

dVn
n

)(
2

1)( −=Φ .    (2.10) 

Therefore a one-dimensional spectrum exhibiting a 35−κ  behavior corresponds to a 

three-dimensional spectrum with a 311−κ  behavior. 

In addition, the relation between the structure function and the power 

spectrum is given by [4], 
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2
22 )()sin(

4
1)(

κ
κ

κπ
κ . (2.12) 

The correlation and covariance functions represent a spatial domain 

description whereas the power spectrum is a wave number representation. 

2.3.1 Kolmogorov Spectrum 

Kolmogorov defined the power spectral density for refractive index 

fluctuations over the inertial range by [4], 

  , 3/112033.0)( −=Φ κκ nn C 0/1/1 lLo ≤≤ κ .  (2.13) 

The Kolmogorov spectrum is used when the inner scale is zero and the outer scale is 

infinite, or as long as the wave number is within the inertial subrange (where 

eddysize/2πκ = ). 

Turbulence  
Spectrum Φ(κ) 

Inertial subrange 

 

Fig. 2.2: Spectrum of the refractive index fluctuation.  The energy input range, 
inertial subrange, and energy dissipation ranges are indicated [11]. 
 

κ0=2π/L0
Wavenumber κ

(~κ-11/3)

Energy Energy dissipation 
Input range 
range 

κ0=2π/l0
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2.3.2 Tatarski Spectrum 

When the inner or outer scale effect cannot be ignored, the Kolmogorov 

power law spectrum in Equation (2.13) needs to be modified. Tatarski suggested the 

extension of Equation (2.13) into the dissipation range ol/1>κ  through the 

introduction of a Gaussian function that essentially truncates the spectrum at high 

wave number [12],  

  , )/exp(033.0)( 223/112
mnn C κκκκ −=Φ −

oL/1≥κ , (2.14) 

where om l/92.5=κ . This method was developed for the purpose of mathematical 

convenience. However, Equation (2.14) suggests a singularity at 0=κ  for the 

limiting case . This implies that the structure function  (Equation 

2.11) exists but the covariance function  (Equation 2.9) does not. 

0/1 =oL )(rDn

)(rBn

2.3.3 Von Karman Spectrum 

Von Karman modified the Tatarski spectrum such that it is finite for oL/1<κ  

to make it valid over both the inner and outer scale parameters, 

  6/112
0

2

22
2

)(
)/exp(

033.0)(
κκ

κκ
κ

+
−

=Φ m
nn C ,  ∞<≤ κ0 , (2.15) 

where  oo L/1=κ (or oo L/2πκ = ). Within the inertial subrange, both Tatarski and 

Von Karman spectra reduce to the Kolmogorov spectrum. 

2.3.4 Modified Atmospheric Spectrum 

Both the Tatarski and Von Karman spectra are based on mathematical 

convenience, not physical models [4]. Both spectra, for example, fail to show the rise 
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or “bump” at high wave numbers near  that is revealed in temperature 

experimental data performed by Champagne et al. [13] as well as Williams and 

Paulson [14]. Such a bump should also appear in the spectrum of refractive index 

fluctuations since the refractive index follows the same two-third’s power law as the 

temperature. Hill [15] modified the Von Karman spectrum to include the high wave 

number spectral bump, 

ol/1

[ ] 6/112
0

2

22
6/72

)(
)/exp()/(254.0)/(802.11033.0)(

κκ
κκ

κκκκκ
+
−

−+=Φ l
llnn C ∞<≤,  κ0 , (2.16)

where ol l/3.3=κ . Other analytic approximations to the Hill spectrum have also been 

developed by Churnside [16] and by Frehlich [17]. 

2.4 Weak Turbulence Theory 

2.4.1 The Rytov Approximation 

The local state of the atmosphere is constantly changing because of 

temperature, density, and refractive index fluctuations. When a laser beam propagates 

through the atmosphere the randomly varying spatial distribution of refractive index 

that it encounters causes a number of effects, including scintillation, a fluctuating 

intensity observed with an optical detector at the end of the path. An established 

method for analyzing the propagation of plane waves in weak turbulence is the Rytov 

method, which uses the field of the wave in the form [4], 

     ,   (2.17) 
)()( rerE ψ=

and develops a series solution to E in the form 

    ...).exp( 210 ψψψ ++=E    (2.18) 
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The contribution from the term 1ψ  is the first approximation to the effect of the 

random medium through which the wave passes. This term is usually written as [4],  

    11 )( jSr += χψ ,    (2.19) 

where χ represents the first order fluctuation of the log of the amplitude of the field 

and  is the first order phase fluctuation. The Rytov solution for the intensity 

fluctuations of a plane wave, when the turbulence is sufficiently weak, gives a 

variance for the log intensity fluctuations of

1S

  [4], 

  ( ) 6/116/72222
ln 23.14lnln LkCII nIR

==−= χσσ .  (2.20) 

The notation here indicates that this is a variance of log intensity fluctuations: 

the R subscript emphasizes that this variance holds in the Rytov regime, where the 

turbulence is weak. When the turbulence is not weak, it is still possible to refer to the 

Rytov variance, as calculated from Equation (2.20), but this calculated variance will 

not agree with the measured variance. It is easy to show that the variance of the log 

normalized intensity variations ( )IIln  is also equal to . 2
ln RIσ

Equation (2.20) predicts that as the strength of turbulence or the range L 

increase that the variance of the log intensity fluctuations increases without limit. In 

practice, the variance of the log intensity fluctuations is found to saturate as the 

turbulence increases, and then decrease slowly as the turbulence becomes even larger. 

In practice the Rytov method only predicts the correct variance provided 

.When this condition holds true the turbulence is said to be weak. For 3.02
ln <

RIσ
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weak turbulence ( ) 11/ 2 <<−II . The turbulence is relatively ``strong" 

for , although true strong turbulence may require  to be larger than 25.   12
ln >

RIσ 2
ln RIσ

A second important parameter is the variance of the normalized intensity 

fluctuations, which is [11], 

   2

22
2

I

II
I

−
=σ .     (2.21) 

For weak turbulence the Rytov variance can be re-written as [18], 
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2

22

I

II −
= . 

Consequently, in weak turbulence [18], 

    .     (2.23) 22
ln IIR

σσ =

In other words, if the intensity variance is observed under conditions of weak 

turbulence, it will be identical to the variance of the log intensity.  

2.4.2 Numerical Calculation of Fante’s Correlation Functions in Weak Turbulence 

Although theoretically there are differences in the way the atmosphere 

perturbs plane waves, spherical waves, and focused laser beams, there is considerable 

similarity between many of the effects on plane waves and collimated laser beams. 

 19 
 



 

Consequently, only plane waves will be dealt with specifically in this discussion and 

in the case of laser beam wander, collimated laser beams. The field of such a wave 

propagating in the z direction can be represented at the transmitter as [18] 

)(
0EE kztje −= ω .    (2.24) 

The magnitude of the wave vector k is k = 2π/λ, where λ is the wavelength of 

the wave. For a plane wave E0 is constant over the transmitter aperture, which we will 

assume is located in the plane z = 0. For a linearly polarized wave E always points in 

the same direction. For a laser beam the field distribution at the transmitter is [18] 

22

0E)(E wrer −= ,    (2.25) 

where w is the spot-size at the transmitter. Because the atmosphere is not intrinsically 

chiral, left and right circularly polarized waves should be identically affected by 

turbulence so we do not expect any perturbation of the polarization state of a light 

wave that has propagated through turbulence. At a receiver aperture located at z = L, 

the electric field fluctuates in time and space because of turbulence.  

Because turbulence is a random phenomenon, the actual behavior of the 

electric field E(z, r, t) components of a wave propagating through turbulence cannot 

be determined. All that can be calculated are various time and ensemble averages 

over field variables. Of central importance is the correlation function of log 

amplitudes for two observation points spaced a distance ρ apart in a plane that is 

perpendicular to the direction of wave propagation, 

    ( ) ( ) ( ) ,,,, 21 ρχρχρχ zzzB =   (2.26) 
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where 21 ρρρ −= . The distance z is measured along the line of sight from the 

source. For weak turbulence, provided the log amplitude χ is normally distributed, 

this correlation coefficient can be related to the normalized correlation for intensity 

( )ρ,zbI  defined by the relation [4, 18], 

  ( ) ( ) ( ) ( ) ( )
( ) ( ) ,

,,
,,,,

,
21

2121

ρρ
ρρρρ

ρ
zIzI

zIzIzIzI
zbI

−
=   (2.27) 

by 

    ( ) ( )[ ρρχ ,1ln
4
1, zbzB I+= ] .   (2.28) 

Calculations of these correlation coefficients differ somewhat depending on 

whether a plane wave or Gaussian beam is propagating from source to observation 

plane, and on whether the Gaussian beam is being focused or not. I will deal here 

only with the plane wave case: a large diameter Gaussian beam that is diverging 

slowly is equivalent to a plane wave provided w<<ρ  where w is the spotsize in the 

observation plane. In this case [20], 

( ) ( ) ( ) ( ) ,
2

sin,4,
2

2

0 0
0

22 dzd
k

zLzJkLB n

L

κκκκρκπρχ ⎥
⎦

⎤
⎢
⎣

⎡ −
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∞

  (2.29) 

where L is the distance from source to observation plane, Jo is the zero-order Bessel 

function, and  is the spectrum of refractive index fluctuations. If the 

turbulence parameter C

),( kznΦ

n
2 is constant along the path the integral over z is readily 

carried out to give [20],  

( ) ( ) ( )∫
∞
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⎠
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0
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2
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L

L
kLkLB n   (2.30) 
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Equations (2.29) and (2.30) hold provided , where is the inner 

scale of turbulence. This is certainly true for cases of interest to us here.  

Ll <<λ/2
0 ol

The spatial distribution of the refractive index fluctuations is often represented 

by the Von Karman spectrum, which will be used for the calculations in this chapter. 

The form of the Von Karman spectrum that will be used is [21], 
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where and are the inner and outer scales of turbulence respectively. Figure 2.3 

shows a plot of the Von Karman spectrum.  
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Fig. 2.3: Von Karman spectrum versus the wave number, κ for a  of 102
nC -15 m-2/3. 

The magnitude of the von Karman spectrum is linearly dependent on , so a 

normalized version of Equation (2.30) using a baseline turbulence  of 10

2
nC

2
nC -15 m-2/3, a 

 22 
 



 

specified range and a specified wavelength  can be calculated. The integral in 

Equation (2.30) has been numerically calculated for our particular link length of 863 

meters and operating wavelength of 632.8nm. The numerical calculation was initially 

done in Mathcad 6.0 and then rewritten in Microsoft Visual C/C++ for faster 

performance. Figure 2.4 shows a plot of the correlation function versus the separation 

distance between the points ρ for our link parameters and a  of 102
nC -15 m-2/3. 
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Fig. 2.4: Correlation Function ),( ρχ LB  versus the separation between the transverse 
points ρ in weak turbulence using our link parameters. 
 

For other values the results can be determined from, 2
nC

( ) ( ) .1010,,,, 1515222 −−== nnn CLBCCLB ρρ χχ   (2.32) 

For other ranges and wavelengths Equation (2.30) must be evaluated again. 

The calculated variation of  for lateral point separations from 0 to 100mm was 

fitted to a 7th order polynomial function, which can be used for further computations 

involving the correlation function. The 7th order polynomial in this case is, 

χB
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×+×−×+×−

×++−=B
 (2.33) 

This is the smallest order polynomial with a “satisfactory” goodness of fit. 

The correlation function for the normalized intensity can be calculated from, 

( ) ( )[ ] .1,4exp, −= ρρ χ zBzbI    (2.34) 

2.5 Strong Turbulence Theory 

Strong turbulence is caused by the multiple scattering of the optical wave by 

refractive index inhomogeneities resulting in strong fluctuation of the irradiance. 

Various methods of analysis have been proposed for dealing with strong fluctuation 

conditions, many of which are reviewed in Ishimaru [11]. It has been shown that, up 

to second-order moments of the field, most of these methods are equivalent to each 

other given appropriate restrictions. Unfortunately, only asymptotic results have been 

obtained thus far by any method for specializations of the fourth-order field moment 

[4].  

2.5.1 Andrews-Prokhorov Asymptotic Analysis 

The Andrews Asymptotic Analysis considers a plane wave with the 

assumption that the inner scale of turbulence is smaller than the spatial coherence 

radius of the plane optical wave oρ  where oρ   is defined by Fried as [1, 22], 

  .    (2.35) 5/322 )46.1( −= no LCkρ

Using the Kolmogorov spectrum in the Andrews Asymptotic Analysis, the 

scintillation index in strong turbulence for the plane wave case is derived as [3], 
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where  is the Rytov variance. 2
Rσ

 For the spherical wave case, the Andrews asymptotic analysis used the 

Kolmogorov spectrum to relate the irradiance variance in the saturation region to the 

plane wave Rytov variance [3], 
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2.5.2 Churnside Asymptotic Analysis 

After the phenomenon of saturation of scintillation was understood, Churnside 

built upon Fried’s work and published the first significant application of asymptotic 

theory to the study of aperture averaging. Churnside’s result for the irradiance 

variance in strong turbulence for the plane wave case is, 

  1,
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2 >>+= I
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σ
σ .   (2.38) 

For the spherical wave case, the Churnside approximate of the scintillation 

index in strong turbulence is, 

  
3/12

2 86.31 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

L
k o

I
ρ

σ ,    (2.39) 

where the coherence length for the spherical wave oρ  is, 

5/322 )546.0( −= no LCkρ .    (2.40) 

The spherical wave scintillation index in strong turbulence can be expressed 

in terms of the plane wave Rytov variance as, 
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2.5.3 Numerical Calculation of Fante’s Correlation Functions in Strong 

Turbulence 

In strong turbulence, for which , the correlation function for 

normalized intensity is [19],  
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where  is the plane wave lateral coherence length for uniform 

turbulence along a path of length L. The correlation function of log amplitudes can be 

calculated from Equation (2.34). The functions 

( 5/322
0 46.1 −

= nLCkρ )

( )Sf  and ( )Wg  used in Equation 

(2.42) in evaluating the correlation function for normalized intensity in strong 

turbulence have been given by Fante [23, 24], although beware of a critical error in 

the power of t in the g(W) function in Equation (6) of reference [24], where it is 

written as t8/3 but should be t8/11 as defined correctly by Fante in reference [23]. These 

functions are 

( ) ( ) (∫ ∫
∞

−−−−=
1

0 0

15/3
0

66.226.45/23/1 ,54.343.1 SytJedttdyySf yt )

)

 (2.43) 

and 

( ) ( ) (∫ ∫
∞ ∞

−−− −=
0 0

11/311/8
0

3/8 .43.2cos127.0 WstJdsetdttWg s   (2.44) 
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The function  is easier to evaluate numerically than( )Sf ( )Wg  and the range of 

integration does not need to be split into as many parts as it is for  in order to 

obtain a convergent answer. For example, the inner integral in Equation (2.43) is 

reliably evaluated by breaking the integration range into parts from 0 to 1 and 1 to 10. 

On the other hand the double integral in Equation (2.44) was broken up into 12 

subranges to obtain a reliable result. For use in calculating correlation functions, such 

as Equation (2.42) it is convenient to have a simpler version of 

( )Wg

( )Sf  and . The 

function  is “very well” fit by a tenth order polynomial in the range  

with 

( )Wg

( )Sf 50 ≤≤ S

( )

1098

7654

32

0000220974.00006918.00093015.0
0701426.03241827.0937165.06331602.1

4652269.11696313.07527889.04203171.0

SSS
SSSS

SSSSf

−+−

+−+−

+−−=

. (2.45) 
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Fig. 2.5: Fante’s f(S) function plotted using the tenth order polynomial in Equation 
(2.45). 
 

The function  is very well fit by a double exponential function in the 

range with 

( )Wg

100 ≤≤ W
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( ) .3786.01852.0 2818.10744.0 WW eeWg −− +=  (2.46) 
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Fig. 2.6: Fante’s g(W) function plotted using the double exponential fit in Equation 
(2.46). 

 

A check on the validity of the numerical results is provided from the value 

, which is numerically determined to be 0.5633. An analytic result for  can 

be determined since 

( )0g ( )0g

( ) ( )∫
∞ ∞

−− −=
0 0

3/8 ,cos127.00 dsetdttg s   (2.47) 

which gives 

( ) ( )∫
∞

− −=
0

3/8 .cos127.00 dtttg    (2.48) 

Integration by parts and using the result from Gradshteyn and Ryzhik [25] that 

∫
∞

− ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛Γ=

0

3/2 ,
6

cos
3
1cos πtdtt    (2.49) 
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gives , which is in excellent agreement with the numerical result.  ( ) 563767.00 =g

Figure 2.7 plots the normalized correlation function (Equation (2.34)) using 

strong turbulence theory (Equation (2.42)), our link parameters and the f(S) and g(W) 

fitted functions in Equations (2.45) and (2.46) respectively. 
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Fig. 2.7: Normalized Correlation function using Equation (2.34) and Fante’s strong 
turbulence approximation of the Correlation function Equation (2.42). 
 

The aperture averaging measurements in this thesis will be compared with the 

predictions of weak and strong turbulence theory.  

2.6 Weak to Strong Turbulence Theory 

As a coherent wave propagates in the atmosphere, the wave is scattered by the 

smallest of the turbulent cells (on the order of millimeters) through diffraction. The 

largest turbulent cells within the inertial range act as refractive “lenses” with focal 

lengths typically on the order of hundreds of meters or more. Small-scale 
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contributions to scintillation are associated with turbulent cells smaller than either the 

first Fresnel zone kL /  or the coherence radius oρ , whichever is smallest. The 

Fresnel zone defines the most effective turbulent cell size in producing scintillation at 

distance L from the source. Turbulent cell sizes smaller than the Fresnel zone 

contribute less to scintillation because of the weaker refractivity fluctuations 

associated with them, and cell sizes larger than the Fresnel zone do not diffract light 

through a large enough angle to reach the receiver at L. Large-scale fluctuations of 

the irradiance are generated by turbulent cells larger than that of either the Fresnel 

zone or the scattering disk okL ρ/ , whichever is largest. The scattering disk is defined 

by the refractive cell size l at which the focusing angle LlF /≈θ  is equal to the 

average diffraction angle oD kρθ /1≈  [8].  

Figure 2.8 shows the relative scale sizes versus the propagation distance L for 

an infinite plane wave, ( ) 5/32246.1 −
= LkCnoρ  with wavelength mµλ 06.1= , a fixed 

, and inner-scale and outer-scale effects ignored. The onset of 

strong fluctuations occurs just beyond 200 m where the curves intersect. For constant 

 and weak fluctuations, the scale size of the spatial coherence radius 

3/2132 105 −−= mxCn

2
nC oρ  is larger 

than the Fresnel zone size, but the Fresnel zone represents the correlation width of the 

optical wave and is the most effective cell size in producing irradiance fluctuations in 

this regime. At the onset of moderate-to-strong fluctuations, the spatial coherence 

radius approaches the scale size of the Fresnel zone, and hence all three cell sizes 

(spatial coherence radius, Fresnel zone size, and scattering disk) are roughly equal. 

This happens in the vicinity of the focusing regime where irradiance fluctuations are 
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maximum. For stronger irradiance fluctuations, the spatial coherence radius and the 

scattering disk are the dominant cell sizes forming the upper bound of small 

diffractive cells and lower bound of the large refractive cells, respectively. Cell sizes 

between that of the coherence radius and the scattering disk have little effect on 

scintillation in this regime [8].     
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Fig. 2.8: Relative scale sizes vs. propagation distance for an infinite plane wave. The 
point of intersection denotes the onset of strong fluctuations [8]. 
 

Experimental data reveals that the scintillation index increases initially within 

the weak turbulence regime with increasing values of the Rytov variance. It then 

reaches its maximum value in the focusing regime and gradually decreases toward a 

unity as the Rytov variance increases without bound.  
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The value of , which is the autocorrelation function of the intensity 

observed at a particular point, is the same as the intensity variance that will be 

observed with a point detector. Figure 2.9 compares the variances calculated using 

Fante’s weak and strong turbulence theories with the Rytov value [18]. It also shows 

the path of a composite curve that is predicted to be valid over all turbulence 

strengths.  
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Fig. 2.9: Weak and Strong Variances compared with the Rytov value [18]. Circles 
shown represent the path of a composite curve that is predicted to be valid over all 
turbulence strengths. 
 

 32 
 



 

Note that the “Weak” curve follows the linear variation predicted by the 

Rytov variance well up to . The “Strong” curve is not valid for small 

values of , but should represent expected variances well for . The 

circles in Figure 2.9 represent a path for a “composite curve” that follows 

3.02
ln =

RIσ

2
ln RIσ 12

ln >
RIσ

weakσ  for 

small  and then merges with 2
ln RIσ strongσ  for larger . Such a composite curve 

demonstrates the increase in intensity variance that occurs as turbulence increases 

followed by its saturation at high levels of turbulence. Ishimaru [11], Fig.(20-10) 

presents such a “schematic curve”, and shows the saturation of the intensity variance 

at a value just above unity. 

2
ln RIσ

2.6.1  Scintillation Index Model 

Andrews and Phillips developed a model for the plane wave case that is valid 

under all fluctuation conditions. This was done through replacing the Kolmogorov 

spectrum (Equation (2.13)) with the effective Kolmogorov spectrum [7, 8, 26], 
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where the large-scale filter function that passes only spatial frequencies xκκ <  is, 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

exp)(
x

xG
κ
κκ ,    (2.51) 

and the small-scale filter function passing only yκκ > is, 

   6/1122
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Using the modified Rytov theory, the scintillation index is defined in terms of 

the large-scale  and small scale  log irradiance fluctuations which are 

described in detail in Reference [7], 

2
ln xσ 2

ln yσ

    .   (2.53) 1)exp( 2
ln

2
ln

2 −+= yxI σσσ

 The scintillation index for a plane wave, excluding inner scale effects, is then 

defined to be [7, 8], 

  1
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where  is the Rytov variance for a plane wave. Equation (2.54) reduces to the 

Rytov variance under weak turbulence conditions, and to the Andrews asymptotic 

model in Equation (2.36) under strong turbulence conditions. 

2
Rσ

 For a spherical wave, the scintillation index for zero inner scale effects is 

defined by [7, 8], 
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2.7 Aperture Averaging 

Intensity fluctuations at a receiver lead to a received power variance that 

depends on the size of the receiver aperture.  Increasing the size of the receiver 

aperture reduces the power variance. This effect of the receiver size on power 

variance is called aperture averaging. The aperture averaging factor “F” is defined as 

the ratio of the normalized intensity variance of the signal at a receiver with diameter 

D to that of a point receiver [27],  
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Received signals are normalized by the square of the average signal. Tatarski 

has given an expression that allows the aperture averaging effect to be calculated 

from the correlation function of the normalized intensity [27]. His result is 

( )
( ) ( )∫

∞

=
0

2 ,
0

16 ρρρρ
π

dK
b
b

D
F

I

I     (2.57) 

where bI(ρ) is the covariance function of the irradiance, bI(0) is the variance of the 

irradiance, which is equivalent to the Rytov variance for weak turbulence, D is the 

diameter of the receiver aperture, and 

( ) ( ) ( ) ( )[ ] 21221arccos DDDK ρρρρ −−= .  (2.58) 

The aperture averaging factor F represents the intensity variation seen with 

the actual receiver relative to a point receiver. In practice, at range L, a receiver 

whose diameter satisfies LD λ<<  will behave as a point receiver. The calculation of 

F requires an integration involving the correlation function ( )ρIb  and it is in this 

calculation that the simple expressions for this function in weak and strong turbulence 

(Equations (2.33), (2.34), (2.42), (2.45), (2.46)) become valuable.  

For a plane wave with small inner scale, l0 << (L/k)1/2, Churnside 

approximated the aperture averaging factor in weak turbulence by [3, 6, 7], 
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In weak turbulence, Andrews reported a better approximation for the aperture 

averaging factor as [4], 

 35 
 



 

  .
4

062.11
6/72 −

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

L
kDF     (2.60) 

For small apertures (kD2/4L << 1), F=1 as expected. For larger apertures 

(kD2/4L >> 1), the variance decreases with increasing aperture size. Note that as 

turbulence becomes more severe, aperture averaging becomes more effective in 

reducing the intensity variance, but only up to a point. Significant aperture averaging 

kicks in at a very small receiver diameter, but there is a long tail. This effect occurs 

because strong turbulence scrambles the beam sufficiently that it becomes almost 

homogeneous and reduces the intensity variance.  

In strong turbulence, Churnside approximated the strong turbulence spherical 

wave aperture averaging factor as [3], 
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where  is the scintillation index in strong turbulence conditions defined by 

Churnside in Equations (2.38), (2.41) and Andrews in Equation (2.36), (2.37) and the 

transverse coherence length for the spherical wave is . 

2
Iσ

5/322 )545.0( −= no LCkρ

2.7.1 Aperture Averaging calculations using Fante’s correlation functions in 

weak turbulence 

Using our calculations of the normalized correlation functions in weak 

turbulence (Equations (2.33) and (2.34)), the aperture averaging factor can be 

calculated using Equation (2.57). Figure 2.10 plots the approximation of the aperture 
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averaging factor in weak turbulence for several variances. Only the variance of value 

4.23e-3 is considered a weak turbulence variance. The rest of the variance values 

plotted actually correspond to intermediate to strong turbulence variances and such a 

theoretical equation used in plotting the curves applies only for weak turbulence 

regimes and will provide inaccurate measurements for non-weak variance curves.  
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Fig. 2.10: Aperture averaging approximation using Fante’s weak correlation functions 
plotted for several variances or turbulence levels. 
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2.7.2 Aperture Averaging calculations using Fante’s correlation function in 

strong turbulence 

Using our calculations of the normalized correlation functions in strong 

turbulence (Equations (2.34) and (2.42)), the aperture averaging factor can be 

calculated using Equation (2.57). Figure 2.11 plots the approximation of the aperture 

averaging factor using strong turbulence theory for various values of Cn
2 or 

turbulence strengths. 
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Fig. 2.11: Aperture Averaging Factor using Fante’s strong correlation functions 
plotted for various Cn

2. 
 

Figure 2.12 plots the approximation of the aperture averaging factor using 

weak and strong turbulence theory for the same Cn
2 of 1e-13 which is considered as 
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strong turbulence. It is apparent from the plot that the weak theory greatly 

underestimates the aperture averaging values, and should not be used in considering 

such a strong turbulence strength. 
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Fig. 2.12: Comparison of the Aperture averaging Factor using Fante’s weak and 
strong turbulence theory for a choice of variance = 4.32 which is considered as strong 
turbulence level. 
 

Instead Equation (2.33) should be used for Cn
2 in the weak turbulence range 

and Equation (2.42) for Cn
2 in strong turbulence. When such a comparison is done in 

Figure 2.13, it is clear that the stronger the turbulence, the sharper the initial drop 

causing a faster saturation or a longer tail. Figure 2.13 provides an accurate measure 

of the relationship between the Aperture Averaging Factor values in weak and strong 

turbulence regimes. 
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correlation functions with a variance of 4.32e-3 implying weak turbulence and a 
second curve using Fante’s strong correlation functions with a variance of 4.32 
implying strong turbulence.  
 

2.8 Conclusions 

This chapter presented an overview of the key turbulence theory that will be 

used throughout this dissertation. It also includes efficient computational techniques 

for Fante’s correlation functions that are important in assessing the effects of 

turbulence in weak and strong conditions. The aperture averaging factor was defined 

and presented for weak and strong turbulence using Andrews and Churnside 

approximations as well as the derived Fante’s correlation functions. 
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Chapter 3: Experimental Setup and Results 

 

 

3.1 Introduction 

The foundations of the study of atmospheric turbulence were laid in the late 

1960s and 1970s.  Even after several decades of study, inconsistencies remain in the 

application of atmospheric turbulence theories to experimental systems, and the 

demonstration of acceptable agreement with experimental results. Theory reliably 

describes the behavior in the weak turbulence regime, but theoretical descriptions in 

the intermediate and strong turbulence regimes are less well developed. Most 

experiments to 1970 have been conducted over very long paths and were susceptible 

to the effects of scintillation saturation [28]. Other experiments done over shorter 

paths to exclude the saturation effects were inaccurate and inefficient in calculating 

the scintillation effects. 

By 1991, Churnside had conducted an experiment over 100, 250, 500, and 

1000m paths to avoid saturation effects [3, 6]. He produced results in reasonably 

good agreement with spherical wave theory over short paths of 250 m. Over longer 

paths though, the results diverged from theory. Shortcomings of the experiment 

include the lack of the measurement of the background light which must be 

subtracted from the data for accurate measurements. Also, the scintillometer used in 

the experiment measured turbulence over a 250 m path, and not the path length under 

test causing inaccuracy in the calculation of Cn
2. In addition, only six apertures were 
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used in the experiment ranging from 1mm to 5cm, where larger aperture sizes are 

used by many commercial free space optical communication (FSO) units, so more 

measurements are needed.   

Linda Wasiczko, formerly of the Maryland Optics Group at the University of 

Maryland, conducted an experiment to measure aperture averaging over the same 863 

meters link that was used in this thesis [29]. Her earlier work differed from the work 

described here because of differences in the receiver and the method of capturing and 

analyzing data. Dr. Wasiczko used two receiver apertures: a point receiver and a 

variable aperture receiver. The point receiver (5mm in diameter) is a scintillometer 

and is used to calculate the path-averaged Cn
2 measurements. The variable receiver is 

a 20cm planoconvex lens with aperture stops ranging from 1cm to 16 cm. The beam 

is then received by a photodetector and the signal is recorded and processed in 

LabVIEW [29]. The main shortcoming of this experiment is the inaccuracy in data 

collection and the length of time required to collect all of the required data. Data 

collection for each aperture is typically done in 5 to 15 minute intervals, and to 

acquire proper data over all aperture sizes and various turbulence levels, data was 

mostly collected over several days. This provides a lot of inaccuracy in the 

measurement as well as inefficiency in the measurement time. 

For this reason, new empirical approaches that provide accurate and efficient 

experimental measurements are needed to help in the development of new theories. 

One such approach will be discussed in detail in this chapter. 
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3.2 Aperture Averaging Experimental Setup and Methodology 

A flexible empirical approach will be demonstrated for improving link 

performance through image analysis of intensity scintillation patterns coupled with 

frame aperture averaging on a free space optical (FSO) communication link. Aperture 

averaging calculations are invaluable in receiver design. A receiver must be large 

enough to collect sufficient power and reduce scintillation effects at a given range, 

but must also be of practical size. An imaging system has been constructed for 

measuring the effects of atmospheric turbulence and obscuration on FSO links. A He-

Ne laser beam propagates over a range of 863 meters in atmospheric turbulence 

conditions that vary diurnally and seasonally from weak to strong. A high 

performance digital camera with a frame-grabbing computer interface is used to 

capture received laser intensity distributions at rates up to 30 frames per second and 

various short shutter speeds, down to 62.5µs per frame. The captured image frames 

are analyzed in LabVIEW to evaluate the turbulence parameter Cn
2, temporal and 

spatial intensity variances, and aperture averaging.  

3.2.1 Experimental Setup 

An experimental system has been constructed for measuring the effects of 

atmospheric turbulence and obscuration on line-of-sight laser communication links. A 

21mW He-Ne laser propagates between 2 rooftops over a range of 863 meters of free 

space at an average height above the ground of 12 meters. The propagating beam has 

a beam divergence on the order of 1.15 mrad. Figure 3.1 shows the University of 

Maryland campus map which locates the link range used with the transmitter location 
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shown on the roof of the A.V. Williams Building and the receiver at the Chesapeake 

Building. 

 

Fig. 3.1: University of Maryland Map showing the 863 meters link range used with 
the Transmitter shown on the roof of the A.V. Williams Building and the receiver at 
the Chesapeake Building. 
 
 

The transmitter uses a 21mW JDS Uniphase HeNe laser operating in a single 

mode (TEM00) at 632.8 nm, with a 0.70 mm output diameter and 1.15 mrad beam 

divergence. The laser is followed by two reflective mirrors that direct the laser 

propagation direction towards the receiver end. The laser beam is then passed through 

a 30x Melles Griot beam expander which is adjusted to give a beam diameter at the 

receiver of approximately 1 meter. The transmitter is placed on the roof of the A.V. 

Williams building which is approximately 14 meters above the ground. A photograph 

of the transmitter is shown in Figure 3.2. 

The laser light then propagates over an 863 meter free-space path between the 

A.V. Williams Building and the Chesapeake Building mostly over asphalt parking 

lots with a few trees and grassy fields.  

Tx 

Rx
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Fig. 3.2: Transmitter of the 863m link from AVW to Chesapeake Building. 

The receiver consists first of a Meade LX200 Schmidt-Cassegrain telescope. 

Light is then filtered through a laser line filter at 632.8 nm with a 10 nm passband 

width. The filter removes any stray light from interfering with the operation of the 

receiver. The laser light then goes into a Pulnix TM1400 digital monochrome camera 

to be processed. The receiver in the Chesapeake building is approximately 12 meters 

above the ground. A photograph of the receiver is shown in Figure 3.3, and a 

complete schematic of the aperture averaging setup is shown in Figure 3.4. 

The receiver collects part of the wavefront that has been transmitted down 

range through the turbulent atmosphere. If the receiver has a small collection area, 

then the variance of the intensity that it will see is determined by the range length L, 

and the turbulence level. If the area of the receiver is increased, then the intensity 

variance decreases. This is to be expected, as in the limit a sufficiently large detector 

will collect all the transmitted light, and no atmospheric-turbulence-induced intensity 

variations should be seen.   
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Fig. 3.3: Receiver of the 863m link from AVW to Chesapeake Building. 

Incident He-Ne
radiation

To
LabVIEW

Schmidt-Cassegrain
Telescope

Camera

Filter
He-Ne Laser

Incident He-Ne
radiation

30x Beam 
Expander

Transmitter Receiver

He-Ne
Mirror

He-Ne
Mirror

Incident He-Ne
radiation

To
LabVIEW

Schmidt-Cassegrain
Telescope

Camera

Filter
He-Ne Laser

Incident He-Ne
radiation

30x Beam 
Expander

Transmitter Receiver

He-Ne
Mirror

He-Ne
Mirror

 
Fig. 3.4: Aperture Averaging Setup using a Schmidt-Cassegrain telescope with a 
406.4 mm outer aperture size and a 127 mm inner obstruction diameter. The 
incoming beam intensity distribution is directed to a CCD camera to measure the 
variance of the received irradiance.  
 

3.2.2 Frame Analysis 

Aperture averaging at the receiver is performed through the use of a digital 

monochrome 1392x1040 pixel camera with 4.65x4.65 µm2 pixels capturing frames at 

a rate of 30 frames per second and various short shutter speeds. A Schmidt-

Cassegrain telescope is used to reproduce the intensity fluctuation pattern on the front 

of the telescope onto the camera CCD array, in a manner similar to that described by 

Moore, et. al. [30].  The telescope has an effective focal length of 4 meters at the 

 46 
 



 

output flange of the telescope with a 406.4 mm outer aperture size and 127 mm inner 

obscuration diameter resulting in a total annular collection area of 1170 cm2. 

Additional imaging elements are not required since the telescope is setup in normal 

adjustment where the object is a collimated beam resulting in a demagnified output 

beam to the CCD. The captured frames are then analyzed in LabVIEW to calculate 

the turbulence index Cn
2, temporal and spatial variances, and the aperture averaging 

factor. Figure 3.5 shows a typical captured frame, with the characteristic multiple 

“blob”-like variations of intensity across the field of view that is characteristic of 

laser beams significantly affected by turbulence. The central obscured region of the 

Cassegrain system is clearly visible. This image is essentially a compressed version 

of the input family of almost parallel rays entering the telescope front aperture. 

 

 

Fig. 3.5: Captured frame using a shutter speed of 1/500 second showing turbulence 
scintillation effects. 
 

The following steps describe the frame analysis performed on the image. First, 

the CCD camera settings are adjusted to acquire N number of images at a particular 
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shutter speed and frame rate. An AVI file is then acquired through a LabVIEW code 

interfacing with the camera. The file will contain a series of image frames which 

contain all of the frames information including the frame rate and the number of 

captured frames. Each captured frame is then subtracted from the background light. 

The background light is calculated through capturing a frame with the laser beam 

turned off. The resulting image frames can then analyzed for the required turbulence 

parameters. 

For a given range/wavelength scenario, the intensity variance for a point 

receiver is first measured and then the turbulence parameter Cn
2 can be assessed 

through Equation (2.20). In practice, for a given range and wavelength, a receiver 

whose diameter is much less than the Fresnel zone size, D<<λL, will behave as a 

point receiver. The intensity variations seen with the actual receiver in relation to a 

point receiver - the aperture averaging factor - is then evaluated. In the LabVIEW 

code interfacing with the camera, a series of circular apertures with set diameter sizes 

are selected within the image portion (
2

127 mm<radius<
2

4.406 mm) of each captured 

frame as shown in Figure 3.6 and the time variance is then evaluated for each specific 

aperture diameter through analysis of several frames. In addition, the set of variances 

of different aperture sizes are individually compared with the time variance of the 

point detector across the frames (taken as one pixel) to evaluate the aperture 

averaging factor. The spatial variance is calculated through evaluation of the variance 

of all of the intensity pixel values within a particular frame. The temporal and spatial 

variances are then compared, and the intensity fluctuations are plotted versus the 

aperture diameter. 
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Fig. 3.6: Frame analysis of received scintillation at the CCD camera. The dashed 
circles are different diameter regions selected to contain families of rays that enter 
magnified corresponding circular regions in the telescope aperture. 

3.3 Aperture Averaging Results 

A customized LabVIEW program, whose front panel is shown in Figure 3.7 is 

used to acquire the AVI files and process them for the calculation of the turbulence 

parameters. The camera settings are adjusted at a capture rate of 15 frames per second 

and 30 frames are captured per analysis. Table 3.1 shows the output computational 

values performed by the LabVIEW program and their description. 
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Fig. 3.7: Front panel of the LabVIEW program designed to calculate and record 
irradiance statistics for the aperture averaging experiment. 
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Table 3.1: List of the outputs of the LabVIEW program and their description. 
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The empirical values for the relative intensity fluctuations or aperture 

averaging factor, which will be presented next, all assess the expected reduction in 

intensity fluctuations with increasing aperture diameter. Such reductions in 

scintillation with aperture size tail off at a value that guides selection of the optimum 

receiver size. The following section outlines our procedure in choosing such an 

optimum value in the receiver design. 

In order to investigate the relationship between relative intensity fluctuations 

(aperture averaging factor) and aperture diameter, the experimental data are compared 

with Fante’s theoretical values for weak and strong turbulence derived in Chapter 2 

(Equations (2.33), (2.34) and (2.42)) as well as Churnside and Andrews Asymptotic 

analysis (Equations (2.59), (2.60), (2.61)). Our experiments produce weak and 

intermediate turbulence quantitative values of the aperture averaging factor for a 

specific range and degree of turbulence. To date, there is no entirely satisfactory 

theory describing turbulence in the intermediate to strong regimes. However, the 

situation is somewhat better for strong turbulence and aperture averaging calculations 

can be carried out using the numerical calculations of Fante’s correlation functions in 

strong turbulence performed in Chapter 2 (Equation (2.42)), which when plotted in 

Figure 2.10 shows a long tail for larger apertures. These theoretical curves are useful 

in showing that aperture averaging is effective in reducing scintillation, although 

beyond a certain aperture diameter, the improvement with increasing diameter slows. 

3.3.1 Weak Turbulence Results 

The experimental results giving a point-detector variance of 0.3 or less are 

considered to be weak turbulence and their corresponding Cn
2 values can be 
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calculated using the Rytov variance equation (Equation (2.20)). In the experiment, 

Cn
2 is not directly measured. Since there is no direct relation between σI

2 and Cn
2 in 

intermediate to strong turbulence, only weak turbulence experimental measurements 

could give an accurate value for Cn
2 through the well-known Rytov variance 

equation.  
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Fig. 3.8: Experimental Data plotted versus the Andrews and Churnside Weak 
Turbulence Approximations (Equations (2.55) and (2.54) respectively).  
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Figure 3.8 plots the aperture averaging factor, F for experimental data points 

with a point-detector variance of σI
2 = 0.274 which is considered weak turbulence. 

Using the Rytov variance equation, this corresponds to a Cn
2 of 6.34e-15. The data 

points are compared with Andrews (Equation (2.60)) and Churnside (Equation (2.59)) 

weak turbulence approximations for the aperture averaging factor. The error bars are 

generated through choosing similar sets of circular aperture sizes at different center 

locations within the frame. The experimental data in Figure 3.8 show “excellent 

agreement” with the Andrews and Churnside approximations. This is the first weak 

turbulence empirical data obtained to date to show such a “close agreement” with 

Andrews and Churnside weak turbulence approximations. 

3.3.2 Intermediate Turbulence Results 

Figure 3.9 and 3.10 show the experimental data points for a point-detector 

variance of  = 0.44576. Such a variance is above the limit of 0.3 for the Rytov 

approximation in weak turbulence. It can be considered as low intermediate 

turbulence. Due to the lack of theory in the intermediate turbulence regime, and being 

closer of a variance to weak turbulence than it is to strong, it’s compared here with 

weak theory which is pretty well developed. 

2
Iσ

In Figure 3.9, the experimental data is compared with the numerical 

calculations of Fante’s weak turbulence correlation functions performed in Chapter 2 

(Equations (2.32), (2.33), (2.34)). The experimental data seems to be following the 

theoretical Fante’s slope initially, then having a longer tail.  
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Fig. 3.9: Aperture Averaging factor for Experimental Data with a variance of 0.44567 
plotted along with Fante’s weak turbulence theoretical curve (using Equations (2.32), 
(2.33), (2.34)).  

 

Figure 3.10 plots the aperture averaging factor for the experimental data with 

point-detector variance of 0.44567 along with Churnside and Andrews weak 

turbulence approximations of the aperture averaging factor. It’s apparent that the low-

intermediate turbulence data starts initially with a steeper slope then follows the 

theoretical weak turbulence curves. 
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Fig. 3.10: Aperture Averaging factor for Experimental Data with a variance of 
0.44567 plotted along with Andrew’s and Churnside weak turbulence approximations 
(Equation (2.55) and (2.54) respectively).  
 

It seems that a combination of the sharper initial decline in Figure 10 and the 

higher saturation in Figure 9 would be the expected effect seen when intermediate 

turbulence level is compared with weak theory. These new experimental data are the 

most accurate to date in the low-intermediate turbulence level and should help in the 

development of new theories in such a turbulence range. 

Figure 3.11 shows the experimental data points for a specific point detector 

variance  = 1.38 along with theoretical values plotted for various strengths of 2
Iσ
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turbulence. Such a variance value can be considered to be intermediate turbulence 

strength. Since there is no accurate theory describing turbulence over all turbulence 

strengths, the results were compared with a strong turbulence curve with a variance 

 = 4.32 and a weak turbulence curve of a variance  = 4.32e-3. Different 

variance values were picked for the theoretical curves since Fante’s correlation 

functions are valid only over weak and strong turbulence regimes. Therefore, to 

ensure validity of the curves and to serve as a comparison between different 

turbulence levels, a weak variance of 4.32e-3 was used in Fante’s weak correlation 

functions and a strong variance of 4.32 was used in Fante’s strong correlation 

functions. In comparison to the weak theoretical curve, the experimental data show a 

sharper decline at small aperture sizes then saturate at higher values. The intermediate 

turbulence data also seem to fit in between the weak and strong turbulence theoretical 

curves as expected. Such empirical data can help in filling gaps in the theory, and 

potentially result in the development of new intermediate turbulence theories. 

2
Iσ 2

Iσ

The experimental results also show good agreement between spatial (1.38) 

and temporal (0.9577) variance calculations for a camera rate of 30 frames per 

second, shutter speed resolution of 1/1000 second and 30 captured frames. The 

plotted experimental results are derived from the spatial variance calculations because 

these provide the more accurate measurements for a small number of captured 

frames. We expect however that variances calculated temporally and spatially would 

be in closer agreement if we were to analyze a greater number of captured frames. 
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The same experimental results are plotted in Figure 3.12 along with the 

theoretical curves (Equation 2.57) using the numerical calculations of Fante’s weak 

and strong turbulence correlation functions (Equations (2.32), (2.33), (2.34), and 

(2.42)) evaluated at the same variance of 1.38. 
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 Figure 3.12 show that the experimental data do not exactly follow the 

theoretical curve in weak turbulence. This is expected since a variance of 1.38 is not 

really considered weak turbulence. The same conclusion is again confirmed though 

that the stronger the turbulence the sharper the initial decline followed by a longer 

tail. It is clear though from Figure 3.12 that the experimental data follow the shape of 

the strong theoretical curve very well. The data however seems to be a bit bellow the 

theoretical curve in value. This can be due to the fact that the experimental variance 

of 1.38 was converted to a Cn
2 value of 3.1894e-14 using the Rytov variance 
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equation. The conversion into Cn
2 was important since the theoretical correlation 

equation (Equation (2.32)) is a function of Cn
2. But such a conversion can lead to a 

small scaling error since 1.38 is an intermediate turbulence strength and the Rytov 

variance equation is only valid in weak turbulence regimes. 

Figure 3.13 plots the aperture averaging factor for the intermediate turbulence 

data of variance 1.38 along with Andrews and Churnside weak turbulence 

approximations of the aperture averaging factor.  
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Fig. 3.13: Aperture averaging factor for intermediate experimental data of point-
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It is clear from Figure 3.13 that the experimental data has an initial sharper 

decline followed by a higher saturation when compared with the theoretical curves 

which decay to zero. This is exactly what is expected to occur, and it confirms that 

such intermediate turbulence data is very good. 

Figure 3.14 plots the same experimental data with variance 1.38 along with 

the Churnside approximation for a spherical wave valid for all turbulence strengths 

(Equation (2.61)). 
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Fig. 3.14: Using Churnside Asymptotic theory for a spherical wave for all turbulence 
strengths (Equation (2.55)) to calculate the Aperture Averaging factor. The plane 
wave equation was used for the coherence length ρo with Cn

2 = 3.1894e-14.  
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In plotting the theoretical curve, the plane wave equation was used for the 

coherence length ρo (Equation (2.35)). In evaluating ρo, again an assumption of Cn
2 

had to be made since it is not directly measured in the experiment. The Rytov 

variance equation was used in the conversion which can cause some errors. In 

addition, the Churnside approximation can not be fully trusted with great accuracy 

since there is still a gap in theory to describe intensity scintillations over all 

turbulence strengths. There is a need for more experimental results in the intermediate 

to strong turbulence regimes to fill such a gap at intermediate turbulence strengths. 

3.4 Optimizing Aperture Size in Receiver Design 

The optimum receiver size is chosen as the point at which the aperture size 

needs to at least double in order to achieve a 3 dB reduction in the intensity 

fluctuations. Using Figure 3.11, this can be seen to occur around the knee in the 

curve, after which saturation occurs and further reduction in the intensity fluctuations 

requires an impractical and costly increase in the aperture size. Using the 

experimental results shown in Figure 3.11, the optimum receiver size can be seen to 

be around 7cm in diameter, giving an aperture averaging factor of 0.1 relative to a 

point detector variance of 1.38 and a resulting aperture-averaged variance of 0.138 at 

the optimum aperture size.  

3.5 Shape Independence in Image Frame Analysis 

A LabVIEW program has been written to prove that the frame analysis is 

independent of the shape of the chosen apertures. Instead, all of the irradiance 

calculations depend on the area of the aperture. This implies that the apertures in the 
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frame analysis do not need to be chosen as circular even if such parameters were to be 

used for the design of an optimum circular photo-detector or receiver. This was 

verified through a choice of rectangular apertures instead of circular ones that had the 

same effective area. The aperture averaging results were equivalent in shape and 

values since the rectangular apertures were chosen at the same center as the circular 

ones. Some scaling factors might be needed in the calculation if the square apertures 

were taken at a location that is more attenuated than the circular aperture locations. 

This for example can occur if circular apertures were taken at the center of the beam 

where the intensity is highest and apertures of different shapes were taken at the edge 

where the image was quite attenuated. 
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Fig. 3.15: Frame Analysis using Rectangular apertures of the same area as the circular 
apertures chosen in the analysis. 
 

Figure 3.16 show the results using rectangular and circular apertures versus 

the aperture area. The empirical data of variance 0.44576 that was presented for 

circular apertures in Figures 3.9 and 3.10 is used. It is clear from the plot that the 
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aperture averaging factor is independent of the aperture’s shape, but instead only on 

its area. 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

Aperture Area (cm2)

F 
Fa

ct
or

Circles
Rectangles

Apertures

Cn
2 = 1.0321e-14 (σI

2 = 0.44576)

Fig. 3.16: Aperture Averaging factor “F” versus Aperture Area for Circular as well as 
rectangular apertures plotted for a variance of 0.44576. 
 

Such a finding greatly helps the designer of the optimum receiver size in the 

selection of the aperture. For example, in the experiment presented here, quite a large 

Schmidt-Cassegrain telescope is used due to the obscured region in the middle since 

circular aperture diameters were chosen and a large diameter is needed to get the tail 

of the curves. Instead, circular apertures from the center of the telescope could be 

chosen that include the obscured region as long as the collective area meets the 

requirement of the aperture size needed. This can make the chosen telescope in the 
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experiment much smaller in size, which can make it more portable and cost-effective 

for outdoor experiments. 

3.6 Weather Effect on Turbulence Level 

 A weather instrument, Davis Vantage Pro Plus II, has been setup on the roof 

of the Chesapeake building at the receiver side to monitor the weather condition. 

Some of the weather parameters recorded are solar radiation, humidity level, rainfall 

amount, wind speed and direction, barometric pressure, dew point, heat index, as well 

as the date and exact time of measurement. There is a wireless console that is located 

indoors and transfers all of the weather conditions onto a computer. The computer 

preserves log sheets of the recorded weather parameters which are updated every 5 

minutes. There is also a website setup to report such parameters online every 5 

minutes so they can be checked from any remote computer anytime. 

 Such measurements were helpful in making some observations related to the 

effect of the weather condition on the turbulence level. It was noticed that during rain, 

the turbulence is weak, and that causes less irradiance fluctuations at the receiver 

which leads to a better signal level. This can be due to the rain droplets possibly 

breaking up some of the eddies causing less refractive index variations along the path. 

Therefore, as opposed to RF wireless technology, optical wireless links actually 

perform better in light to moderate rain level. Of course, severe rain conditions can 

lead to signal loss, but such an improvement in signal quality in moderate rain 

conditions is a great advantage of FSO links. 

 Another observation from the weather instrument measurements was made 

during sunrise and sunset. Again, during such times, the turbulence experienced is the 
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lowest of the entire day turbulence level. This can be due to the fact that during 

sunrise, the surface of the ground is cool and the sun starts to heat it up until both the 

ground surface and the surrounding air temperatures are equivalent which can last for 

a few minutes then the ground’s surface starts heating up more than the surrounding 

air. During sunset the reverse process occurs. During the equilibrium state where the 

ground’s surface is equivalent in temperature to its surrounding atmosphere, there is 

the least temperature fluctuations occurring causing less refractive index variations in 

the atmosphere and hence lower scintillation effects at the receiver. 

3.7 Conclusions 

The aperture averaging results demonstrated the expected reduction in 

intensity fluctuations with increasing aperture diameter, and show quantitatively the 

differences in behavior between various strengths of turbulence. The reduction in 

scintillation with aperture size guides the selection of optimum receiver aperture. The 

experimental results presented in the intermediate turbulence region fitted between 

the weak and strong turbulence theory and showed excellent agreement with the 

expected behavior. Such results are the most accurate obtained to date and should be 

very valuable in the development of new theories for intermediate turbulence. Spatial 

and temporal variance analyses within single frames and between frames were also 

compared and show good agreement. It was finally proved that the irradiance 

calculations using the frame analysis are independent of the shape of the receiver 

aperture but instead only depend on the area.   
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Chapter 4: Aperture Averaging Effect on 

Performance of FSO Links 

 

 

4.1 Introduction 

Bit-Error-Rate (BER) depends on average received power, the scintillation 

over the aperture, and the receiver noise (consisting primarily of Johnson and shot 

noise). It also depends strongly on the decision level setting in the receiver. Aperture 

averaging affects both the received power and its scintillation, therefore having a 

doubly beneficial effect. The analysis to follow will help in understanding the effect 

of aperture averaging on BER and Signal-to-Noise (S/N) ratio and in turn on the 

overall performance of FSO links. 

4.2 The Normal Distribution of Log Amplitude Fluctuations 

It is found experimentally that for both weak turbulence , and strong 

turbulence  the distribution of log field amplitude is a normal 

distribution, as are the log intensity variations measured at a point [31]. A point 

detector will see a distribution of log intensities that satisfies [32],  
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If in Equation (4.1) we use normalized intensities, and write IIi /= , then  

and the distribution of l is [31], 
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Therefore, the probability distribution for log intensity and log (normalized) intensity 

is [32], 
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But, since , then the probability distribution for normalized intensity i 

can be written as [32], 
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4.3 Bit Error Rates in turbulent FSO links 

The atmosphere fluctuates relatively slowly; in fact, there is not much 

fluctuation on time scales below about 1ms. Consequently, at high data rates, large 

numbers of bits are transmitted through a channel that is in a “frozen” state, but for 

successive groups of bits the characteristics of the channel slowly change. 

Consequently, the BER is constantly changing due to such fluctuations caused by 

atmospheric turbulence. In the absence of turbulence, the BER can be calculated by 

assuming the errors result from receiver noise. This can be determined from the shot 

and Johnson noise originating in the receiver. In the presence of turbulence, there is 

an additional dominating factor that needs to be added to the noise in the BER 

calculations originating from the intensity fluctuations caused by turbulence. Such 

fluctuations are only apparent for a received “one”, since a received “zero” implies no 

received signal. By averaging over the appropriate intensity distribution function, and 

using the function describing the probability of making an error in detecting a “one”, 

an average BER can be calculated for different log intensity variances [32].  
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There are several techniques for detecting the signal, which ordinarily rely on 

a threshold device of some kind. Only when the output of the detector exceeds the set 

threshold value do we say a signal is present. False alarms occur when the noise alone 

exceeds the threshold value and is interpreted as the presence of a signal. On the other 

hand, if the signal plus noise does not exceed the threshold, it is called missed 

detection. Threshold detection concepts are illustrated in Figure 4.1 [8]. 

 

Fig. 4.1: Probability of detection and false alarm [8]. 

In the absence of turbulence, the received detector signal corresponding to a 

“one” has a steady value I , and the normalized received signal is 1. In this case the 

BER can be calculated by assuming the errors result from receiver noise, which is 

assumed to be Gaussian distributed about zero. For a detector whose noise is 

Gaussian distributed about zero with a variance 2
Ni  the probability that the noise is 

below a set level  is si

( ) ∫
∞−

−=≤
si

x
sN dxeiiP ,

2
1 22 2/ σ

πσ
   (4.11) 
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where 22
Ni=σ  . The signal-to-noise (S/N) ratio is 

.2

2

σ
I

N
S

=      (4.12) 

From Equation (4.12), we can see that there is a double improvement in the 

S/N ratio through reducing the variance. The first obvious reason is the reduction in 

the noise factor caused by the variance in the denominator. The second reason is that 

we reduce the turbulence induced variance through increasing the aperture size, 

which in turn means increasing the received signal intensity and the S/N ratio. 

In on-off keyed (OOK) systems, the probability distributions of either noise 

alone or signal plus noise is assumed to be Gaussian. Thus, if the threshold level is set 

at half the average signal level “ ”, then a “one” error results if the signal “2/I I ” 

plus detector noise is less than  ( 22/I /IiI N <+  which means 2/IiN −< ). A “zero” 

error results if the detector noise is greater than  ( 2 ).  Hence, the overall 

probability of error is, 

2/I /IiN >

( )

( ) ([ ].2/2/
2
1
2
1

IiPIiP

ppBER

NN

zeroone

>+−<=

+=

)
  (4.13) 

Using Equation (4.11), the BER can be written as, 
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In the presence of optical turbulence, the probability of error in Equation 

(4.14) must be averaged over the intensity fluctuation corresponding to a received 

“one”. In this case, at any instant the actual received S/N ratio will rise or fall 

depending on whether the turbulence causes a “fade” or a “surge”. The probability of 

a “zero” error does not change because there is no received signal when a “zero” 

arrives and can be written as [32],  
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However, the probability of a “one” error is now, 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −=

N
Sierfcpone 2

1
2
1

2
1 ,   (4.16) 

where i is the detector signal corresponding to the actual received normalized 

intensity. 

To compute the average BER, the product of the probability of a “one” error 

and the probability distribution for the normalized intensity (Equation (4.10)) must be 

integrated over all possible intensity values [32], 
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which gives, 

( zeroone ppBER +=
2
1 ) .      (4.18) 

Figure 4.2 shows calculations of the average BER versus S/N ratio in the 

absence of turbulence. The threshold is set to 1/2. Different curves are plotted for 
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different values of intensity The plot shows the expected reduction in BER as the 

variance is decreased, implying better system performance at lower turbulence levels. 
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Fig. 4.2: Average BER versus S/N ratio in the absence of turbulence. Threshold is set 
to 1/2, and different curves are plotted for several intensity variances ( ).  2
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A desirable BER for an FSO link is 10-9, and Figure 4.2 allows the base 

receiver S/N ratio required to achieve this value to be assessed for different received 

signal intensity variances.  For example, for a received intensity variance of 0.29, the 

base receiver S/N required is about 26dB. It has been shown that for very high levels 
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of turbulence, additional improvement in BER can be achieved by reducing the 

threshold decision level for “ones” and “zeros” below the usually accepted value of 

1/2 [32]. 

4.4 Effective Signal-to-noise Ratio analysis  

The discussion to follow will present the relationship between a so-called 

effective S/N ratio and the receiver aperture size. The effective S/N ratio will be 

defined in detail in this section. However, it is important to note from the start that 

such a parameter is not equivalent to the S/N ratio defined in the previous section 

except for the no turbulence case where they become equivalent. This means that the 

effective S/N ratio can not be used to predict the BER as shown for the S/N ratio in 

Figure 4.2. This is due to the fact that the effective S/N ratio fails to show the 

expected increase in value when the transmitted intensity is increased. In order to 

account for higher transmitted intensity, an adaptive method in finding the optimum 

threshold level must be included in the calculation. Nevertheless, such a parameter 

serves to guide the appropriate selection of the receiver size that ensures optimum 

performance. Such a value will be compared with the experimental choice of 

optimum receiver size presented in the previous chapter.  

Under weak turbulence conditions, the radial intensity distribution is the one 

appropriate to a Gaussian beam [4], 
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where r is the lateral distance from the center of the beam, wo is the minimum spot 

size at the transmitter, ( )[ ] 2/16/522 /233.11 LILE kwLww σ+= is a measure of the effective 

turbulence induced beam spot size, 222
0 θLwwL += is the spot size of the phase 

front at range L in the absence of turbulence, and θ is the beam divergence angle. The 

transmitted intensity is defined as, , where P2
0/2 wPI txo π= tx is the transmitted 

Power. For our experimental setup defined in the previous section, L = 863 m, λ = 

632.8nm, Ptx = 20 mW, wo = 15 mm, and θ = 3 milliradians. 

In the presence of atmospheric turbulence between the transmitter and 

receiver, the average received signal power can be approximated by [8], 

( )∫ ∫ ≅=
π πθ

2
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2/

0

2 ,,0
8

),(
D

s LIDrdrdLrIP    (4.20) 

where D is the diameter of the receiver aperture. It follows that the mean signal 

current is ,ss Pi ℜ=  where ℜ  is the responsivity of the photodetector. 

The major sources of noise in FSO communication are shot noise and Johnson 

noise. Shot noise originates from fluctuations in the rate of photo-produced carriers, 

with mean zero and variance sSN ieB22 =σ . Johnson noise results from thermal 

fluctuations in receiver electronics, also with mean zero and variance . 

Since these noise contributions are statistically independent, the total noise has zero 

mean with variance  

RkTBJN /42 =σ

.222
JNSNN σσσ +=

The total noise is assumed to be additive, which means the output current 

from the detector is a random variable Ns iii += , with mean si  and variance 
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.222
NSi σσσ +=   The averaged signal power to noise power ratio which we call the 

effective signal-to-noise ratio is given by [8], 
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where  is the S/N ratio in the absence of the optical turbulence (receiver 

S/N ratio), and F is the aperture averaging factor. 

22
0 / NSiSNR σ=

Figure 4.3 plots the effective S/N ratio versus aperture diameter for several 

variances. In evaluating the Johnson and shot noise, a bandwidth B of 107 Hz, 

temperature T of 300K, and a resistance R of 50 ohms were used. The plot shows the 

improvement of S/N ratio with reduction in variance as expected. The experimental 

results for the aperture averaging factor for a variance of 1.38 described in the 

previous chapter were used in Equation (4.21) to plot the experimental curve shown.  

Figure 3.13 showed a higher aperture averaging factor for Fante’s strong 

theoretical curve than the experimental results which were both evaluated at the same 

variance of 1.38. Figure 4.4 is consistent with such analysis since the aperture 

averaging factor is shown in the denominator of Equation (4.21), so a higher value 

represents a lower effective S/N ratio. It is also clear from the experimental curve in 

Figure 4.3 that the S/N ratio saturates around an effective S/N ratio of 10 dB. Such an 

optimum value occurs at an aperture size of around 7cm which is the proved 

experimental optimum receiver size for the 1.38 variance data in Chapter 3. 
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Fante’s Correlation functions. 
 
 

We can redefine Equation (4.21) in terms of the aperture-averaged variance 

through the use of Equation (2.56). In addition, if we assume that turbulence-induced 

beam spreading is small, the second parameter in the denominator of Equation (4.21) 

can be removed leading to, 
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where is the aperture-averaged variance. 2
AAσ
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Fig. 4.4: Effective signal-to-noise ratio for various aperture-averaged variances. 

 

Figure 4.4 plots the effective S/N ratio for various aperture-averaged 

variances. In the absence of turbulence, the effective S/N ratio is equivalent to the 

receiver S/N ratio as expected. In the presence of turbulence, the higher the aperture-

averaged variance the lower the effective S/N ratio. Equations (4.21) and (4.22) fail to 

 78 
 



 

show the expected increase in the effective S/N ratio when the transmitted intensity is 

increased. In order to account for higher transmitted intensity, an adaptive method in 

finding the optimum threshold level must be included in the calculation. Figure 4.4 

however serves as a good comparison of the results in Figure 4.3. For the 

experimental aperture-averaged variance of 0.138 at the optimum diameter of 7cm, 

Figure 4.3 shows an effective S/N ratio of around 10dB.  Figure 4.4 also shows the 

maximum effective S/N ratio at an aperture-averaged variance of 0.1 to be 

approaching 10dB. Such plots serve to guide the appropriate selection of receiver size 

that ensures optimum performance for a particular turbulence level. 

From Figures 4.2, 4.3 and 4.4, we can see the reduction in BER and increase 

in the effective S/N ratio with the reduction in the variance. This shows the 

improvement in the overall system performance with decreasing variance. Therefore, 

aperture averaging can significantly improve the performance of the link, especially 

as the turbulence gets stronger because of the faster saturation of the effective S/N 

ratio, as shown in Figures 4.3 and 4.4, which leads to a smaller choice of optimum 

receiver size for best performance in the face of scintillation.  

4.5 Conclusions 

Analysis of BER and S/N ratios for different turbulence levels shows that 

aperture averaging can significantly improve the performance of the link, especially 

as the turbulence gets stronger. The data presented is valuable in guiding the design 

of receivers for FSO communication systems. This is especially true for agile FSO 

transceivers, where size and weight compromises are needed.  It is important to 

design such systems with apertures that are large enough for satisfactory 
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performance, but where excessively large receiver apertures, which provide only a 

marginal improvement in intensity scintillation, are avoided.  
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Chapter 5: Geometrical Simulation Models 

 

 

5.1 Introduction 

Atmospheric turbulence has a significant impact on the quality of a laser beam 

propagating through the atmosphere over long distances.  Turbulence causes the 

optical phasefront to become distorted from propagation through turbulent eddies of 

varying sizes and refractive index.  Turbulence also results in intensity scintillation 

and beam wander, which can severely impair the operation of target designation and 

free space optical (FSO) communications systems.   

A new model is presented in this chapter to assess the effects of turbulence on 

laser beam propagation in such applications. The atmosphere is modeled along the 

laser beam propagation path as a spatial distribution of spherical bubbles. The size 

and refractive index discontinuity represented by each bubble are statistically 

distributed according to various models. For each statistical representation of the 

atmosphere, the path of a single ray, or a bundle of rays, is analyzed using 

geometrical optics. These Monte Carlo techniques allow us to assess beam wander, 

beam spread and phase shifts along the path, as well as aperture averaging effects at 

the receiver. An effective Cn
2 can be determined by correlating beam wander 

behavior with the path length. This model has already proved capable of assessing 

beam wander, in particular the (Range)3 dependence of mean-squared beam wander, 

and in estimating phase shifts developed across the laser phasefront as it propagates 
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through turbulence as well as aperture averaging at the receiver. The Monte Carlo 

simulations are compared and show good agreement with the predictions of wave 

theory [33]. 

A Random Interface Geometric approach which closely resembles this 

technique has already been developed by the Maryland Optics Group at the 

University of Maryland and is presented in detail in [34]. Such a Random Interface 

approach models the extended random medium as a series of random curved 

interfaces with random refractive index discontinuities across them [34].The new 

geometrical approach presented in this chapter which models the random medium as 

a spatial distribution of spherical bubbles is equivalent in analysis to the Random 

Interface Model in simulating beam wander and phase shifts. However, the bubble 

model allows for control of separation between the different bubbles, which better 

describes the real eddy structure formation of the atmosphere. In addition, the 

Random Interface Model propagated just a single ray or a pair of collimated pencil-

thin rays through the random medium. In the bubble model, a bundle of rays that are 

initially Gaussian or uniformly distributed, are propagated through the simulated 

random medium. A varying aperture size is also added at the receiver to measure the 

aperture averaging effect. This is the first geometrical model to date to simulate the 

aperture averaging effect. 
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5.2 Theory Overview 

5.2.1 Various Approaches 

The theory of wave propagation in random media is contained in a rich 

literature based on different approaches to the problem. These approaches range from 

rigorous diffraction theory to completely physically-based heuristic theories. 

Interestingly, heuristic theories often yield similar results to the diffraction theory, 

and give a much more intuitive feel to the problem. In all these methods, the 

polarization of the wave is not considered, since polarization changes of the wave as 

it propagates through random media have found to be negligible [34,35]. 

The earliest attempt to define meaningful field statistics for a random medium 

was based on geometrical optics. The best known published work that illustrates this 

approach is Chernov’s book [21]. Chernov based his analysis on Fermat’s principle in 

which each ray takes the shortest optical path. The problem then simplifies to a 

standard variational problem, that of solving the Lagrangian to find the trajectories of 

the rays. The main limitation of this approach is that it neglects diffraction effects 

[34]. 

To overcome this limitation and obtain a more realistic theory, the wave 

equation may be solved by the method of small perturbations [35], called the 

“classical” theory of optical propagation because it was the first method to derive its 

results directly from Maxwell’s equations. The major advantage of this technique is 

the transform of the original Helmholtz equation, which is a homogeneous partial 

differential equation with random, space-dependent coefficients, into an equation 

which has constant coefficients and a source term [34]. 
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An alternate approach to solving the statistics of the perturbations on a wave 

traveling through a random medium involves using a spectral phase-screen technique, 

first proposed by Lee and Harp [36]. Contrary to the method of small perturbations, 

the technique is physical and geometrical rather than mathematical, and any 

approximations which are made are done in a physical context, making the 

implications of the approximations easier to assess. Furthermore, the technique takes 

diffraction effects into account with a minimum of mathematics, and the final results 

are identical to the method of small perturbations. The Random Interface Model 

closely resembles this technique and is presented in detail in [34]. 

5.2.2 Phase Structure Function 

We can show that a heuristic derivation of the five-thirds phase structure 

function behavior can be used in order to illustrate how a simple model can yield 

results similar to more rigorous theory [35, 37]. Consider two parallel rays separated 

by a distance r, and traveling from a source at z = 0 to a receiver at z = L. Clearly, 

those eddies having the most impact on the phase difference between the two beams 

are on the order of r. Eddies much smaller than r will tend to be uncorrelated between 

the two beams and hence average to zero. Larger eddies will tend to contribute 

equally in phase to both beams and thus will not affect the phase difference. Thus, we 

may divide the path traveled by both rays into N segments of length r, where N = L/r. 

The phase difference )(rφ∆ due to a single segment between the two rays is then 

simply, 

   ),()( rnkrr ∆≈∆ φ    (5.1) 
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where  is the difference in index of refraction between two points separated a 

distance r, and k is the wave vector. Since by assumption 

)(rn∆

)(rn∆  is zero, )(rφ∆  is 

zero. The phase structure function for a single segment is given by, 

   )()( 2222 rnrkr ∆≈∆φ .   (5.2) 

But the last term of Equation (5.2) is simply the refractive index structure 

function, which for a turbulent region is described by Equation (2.5). Thus, the phase 

structure function due to a single element is, 

   .033.0)( 38222 rkCr n≈∆φ    (5.3) 

Finally, if we assume that the phase difference over different segments is 

statistically uncorrelated, we can average over the entire path of N segments to obtain 

the phase structure function, 

  .033.0)()( 35222 LrkCrNrD np ≈∆≈ φ   (5.4) 

Tatarski has derived the phase structure function for a plane wave to be [27], 

   ( ) 3/52264.0 LrkCrD np = .   (5.5) 

If instead of a plane wave, we considered a pair of collimated parallel pencil 

thin beams separated by a distance r, Equation (5.5) would exactly result (except for a 

factor of 2, 

( ) 3/52232.0 LrkCrD np = .   (5.6) 

5.2.3 Beam Wander 

In weak turbulence a laser beam will retain its beam shape, but the beam will 

be additionally broadened with distance traveled by turbulence over and above its 
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natural broadening. In addition the beam centroid will wander about. If a photograph 

of the beam is taken, both these effects will broaden a time-exposed picture of the 

beam cross-section. The beam wander is generally more important than the 

turbulence induced beam broadening for many optical communication links. In such 

links when a wide, fairly well collimated laser beam is used, a good approximation to 

the mean-squared beam wander is defined by Ishimaru as [11], 

  ( ) ( )[ ] 33/1
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2
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−+−+= ααρ ,  (5.7) 

where z is the propagation distance, is the inner scale, 0l 02 1 R=α , where  is the 

radius of the equivalent Gaussian wave,  is the spot-size, and 

0R

0W ( )2
01 Wπλα = . For 

plane waves, the equation for the mean square beam wander simplifies to [35],

   
33/1

0
22 2.2 zlCnl

−=ρ .   (5.8) 

At a range of 1km with mm10 =l and , the root-mean-squared 

(RMS) beam wander is about 5mm. With , which would strictly speaking 

not correspond to “weak” turbulence, the RMS beam wander would be 50mm. 

3/2152 m10 −−=nC

132 10 −=nC

If the transmitted beam spot size is , then the beam diameter at range L is 0w

.22 0
0

w
w
Lw +=

π
λ

    (5.9) 

For example, with mm200 =w , m3.1 µλ = , and L = 1km, . With 

the received beam diameter increases to 416mm. In this chapter, we will 

deal only with the plane wave case: a large diameter Gaussian beam that is diverging 

mm402 =w

mm10 =w

 86 
 



 

slowly is equivalent to a plane wave provided w<<ρ  where w  is the spotsize in the 

observation plane. 

When turbulence effects are strong, a laser beam will be broadened by the 

turbulence and will break up into distinct bright patches. Fante [19] states that this 

occurs when . Since  can vary from 1 to 100m this suggests that at 2
0kLL > 0L m3.1 µ , 

for example, beam breakup effects might not occur until L > 10,000km. This 

prediction is clearly incorrect since beam breakup depends on turbulence strength and 

has been observed over path lengths on the order of 1km. Since the atmosphere 

fluctuates on a time scale that goes up to around 1kHz, a fast framing camera is 

required to visualize the actual breakup of the beam. Experiments performed with 

point detectors or with detectors that perform aperture averaging will not reveal beam 

breakup effects directly, but will fold this effect into the statistical variations 

observed. It is probably safe to assume that if weak turbulence theory does not hold 

for a given range, λ  and , that beam breakup might occur. When beam breakup 

occurs the concept of beam wander becomes less relevant [35].  

2
nC

5.3 The Spherical/Bubble Model 

The Spherical Bubble Model assesses the effects of turbulence on laser beam 

propagation. The atmosphere along the laser beam propagation path is modeled as a 

spatial distribution of spherical bubbles. The size and refractive index discontinuity 

represented by each bubble are statistically distributed according to various models. 

For each statistical representation of the atmosphere, the path of a single ray, or a 

bundle of rays, is analyzed using geometrical optics. These Monte Carlo techniques 
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have already proved capable of assessing beam wander, in particular the (Range)3 

dependence of mean-squared beam wander, and in estimating phase shifts between 

rays as the laser beam propagates through turbulence. An effective Cn
2 can also be 

determined by correlating beam wander behavior with the path length. In addition, 

this model is used to simulate the aperture averaging effect at the range for choices of 

varying receiver aperture sizes. This is the first geometrical simulation to predict the 

aperture averaging factor.  

5.3.1 Beam Wander Simulation 

The beam wander simulation calculates the three dimensional trajectory for a 

single ray traveling a distance L through a simulated random medium.  
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Fig. 5.1: Spherical/Bubble Model - Beam Wander Simulation. 
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The random medium is modeled as a series of random spheres/bubbles of 

random refractive index. For each statistical representation of the atmosphere, the 

path of a single ray is analyzed using geometrical optics. The mean square beam 

wander is averaged over each run. Figure 5.1 illustrates the beam wander simulation. 

5.3.1.1 Simulation Procedure and Geometrical Analysis 

 The uniform and Gaussian (normal) distributions will be used in the 

simulation model to evaluate the refractive indices of the spheres as well as the 

separation between the spheres. For this reason, their definition is included in this 

section.  

 A uniform distribution in the range of [0, 1], which we call here U(0,1) simply 

returns a number within the specified range with equal probability of any of the 

numbers in between to be chosen. In order to modify such a distribution to increase 

the range, a multiplicative constant needs to be applied to the uniform distribution, 

U(0,1). In addition, the end points can simply be modified by adding and subtracting 

the appropriate values to the random uniform distribution. 

 A Gaussian (normal) distribution is one that has the following density 

distribution, 
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where µ is the mean, σ2 is the variance, and X here is said to possess a normal 

distribution which we denote here as N(µ,σ2). A normal distribution can be obtained 

using several methods, one of which is described in detail by Morgan [38]. Only the 

final result is presented here and will be used in the following simulations. Morgan 
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has defined a method of forming a normal distribution from two uniform 

distributions. If we call the uniform distributions, V1 = U(-1,1) and V2 = U(-1,1), then 

we can generate a pair of independent normal variables with zero mean and unit 

variance from the relation [38], 

21

21
ln2

⎟
⎠
⎞

⎜
⎝
⎛ −

=
W

WVN ,    (5.11) 

21

21
ln2

⎟
⎠
⎞

⎜
⎝
⎛ −

=
W

WVN ,    (5.12) 

where . To generate a normal variable with mean µ other than zero, we 

can simply add µ to N

2
2

2
1 VVW +=

1 or N2. To create a normal variable with standard deviation σ, 

we need to multiply the standard normal by σ. 

 A three-dimensional Snell’s law needs to be evaluated in order to calculate the 

refracted output vector given the incident vector, the normal to the sphere, and 

refractive indices of spheres. Such analysis is described in detail below since it will 

be used in all of the simulations described in this chapter.  

When a ray traveling in free-space encounters a dielectric interface, it refracts 

due to the change of index it encounters. The boundary conditions state that the 

tangential component of the electric field and the normal component of the magnetic 

field are continuous. In order to satisfy such conditions, Snell’s law defines the 

relation between the incident and refracted angle as follows, 

    )sin()sin( 2211 θθ nn = ,   (5.13) 

where n1 and n2 are the indices of refraction of air and the sphere respectively when 

the ray is entering the sphere and reversely when the ray is exiting the sphere. θ1 and 
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θ2 are the incident and refracted angles with the normal to the spheres, respectively. 

In addition, the boundary conditions require that the refracted ray 2r
r

 to lie in the 

same plane as the plane of incidence which includes the incident ray  and the 

normal to the sphere . We define

1r
r

nr 1P
r

 to be the perpendicular vector to the plane of 

incidence with magnitude ( )1sin θ  and 2P
r

 to be in the same direction as  but with 

magnitude . If we use unit vectors for the incident ray ( ), refracted ray ( ) 

as well as the sphere’s normal ( ), then, we can write 

1P
r

( 2sin θ ) 1̂r 2̂r

n̂ 1P
r

 and 2P
r

 as,  

    nrP ˆ1̂1 ×=
r

,    (5.14) 

    nrP ˆ2̂2 ×=
r

.    (5.15) 

 Given the incident ray  and the sphere’s normal , 1̂r n̂ 1P
r

 can be determined 

through Equation (5.14). The incident angle is then 1θ , 

    ( ) 11sin P
r

=θ .    (5.16) 

 The refracted angle 2θ  can then be calculated through the application of 

Snell’s law, Equation (5.13). Therefore, 2P
r

 is, 

    ( )212 sinˆ θ⋅= PP
r

,    (5.17) 

where 111̂ PPP
rr

=  is the normalized unit vector of 1P
r

. 
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Figure 5.2 show the three-dimensional Snell’s Law which can be used to 

determine the refracted ray . The refracted unit vector  can be evaluated through 

adding the 

2̂r 2̂r

2ˆ Pn
r

×  vector which is in the plane of incidence to a scaled version (by a 

constant λ ) of the unit vector of the sphere’s normal , n̂

    22 Pˆn̂λˆ
r

×+= nr .    (5.18) 

Therefore, in order to calculate the output vector , we only need to know 

the incident vector, the normal to the sphere, and the refractive indices of the spheres 

assuming air of index 1.0001 in between them.     
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Fig. 5.2: Three dimensional Snell’s Law. 

Equation (5.18) can be rewritten as, 

  2
22

2
2

2 ˆˆ2ˆˆˆ PnnnPnr
rr

×⋅++×= λλ ,  (5.19) 
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where 12̂ =r .But the last term in Equation (5.19) is zero since the vector is 

perpendicular to the 

n̂

2ˆ Pn
r

×  vector as shown in Figure 5.2. If we specify 

[ cban ,,Pˆ 2 =× ]
r

 and [ ]zyx nnnn ,,ˆ = , then 

   .   (5.20) 012222 =−+++ cbaλ

Defining ,  and , and 

noting that , the solution for λ can be written as, 

1a
~

= 0222b
~

=++= zyx cnbnan 1c 222
~

−++= cba

1nnn 2
z

2
y

2
x =++

    ~

~~~
2

~

a2

ca4bb-λ −±
= .   (5.21) 

This equation yields two solutions for , but only the solution that gives a 

positive z component is correct and is chosen. Using Figure 5.2, the unit vector  can 

be multiplied by a scaling factor to determine the full refracted vector , 

2̂r

2̂r

2r
r

   ( )( )222 cos2ˆ θRrr ⋅=
r

,   (5.22) 

where R is the radius of the sphere. 

 A particular simulation run is comprised of the following: The user inputs the 

length of the target L, the mean free path lµ  which defines the distance traveled in 

free-space before the sphere is encountered, and standard deviation for the path lσ , 

the mean index of refraction of the spheres nµ  taken as the air index and standard 

deviation for the refractive index nσ , and the number of runs desired N. A beam is 

started out at location (0,0,0) in the z-direction. The index of refraction of the spheres 
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is chosen from a Gaussian distribution, and the sphere’s center and radius are chosen 

from a uniform distribution with the condition that the propagating ray must hit the 

chosen sphere. Snell’s law is then used to evaluate the new output vectors at the 

entering and exiting point of the sphere. The ray then travels through free-space a 

certain path length, chosen from a Gaussian distribution with mean lµ  and standard 

deviation lσ . The rays then encounter another sphere. This entire process is repeated 

until the target length is reached. The mean square of the distance from the center of 

the target 2
lρ  is updated, and the next run begins. In this simulation, no correlation 

between spheres is assumed through choosing the mean free path to be much larger 

than the inner scale of turbulence.  
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Fig. 5.3: Flowchart of the Beam Wander Simulation Model. 
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5.3.1.2 Beam Wander Simulation Results 

Figure 5.4 plots the beam wander simulation results using the following 

parameters: L = 1km, lµ = 1m, lσ = 0.9m, nµ = 1.0001 (free-space index), nσ = 

0.00001, and N = 1000. The radius of the randomly selected spheres is chosen in the 

range of 1mm to 1m. It is clear that the simulation results show excellent agreement 

with the cubic fit described in theory in Equation (5.8). 
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Fig. 5.4: Mean Square Beam Wander and Cubic Fit for a 1km range using the 
Spherical/Bubble Model. 
 

The nominal value for  is evaluated through the use of Equation (5.8) and 

for this particular run was 5.87×10

2
nC

-13. This is a fairly strong turbulence level. 

Different values of  can be obtained by varying the simulation parameters. For 2
nC
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lower turbulence levels which can give a lower beam wander at the receiver, a 

variation in the simulation parameters can easily achieve this. For example, the choice 

of the bubbles’ standard deviation of their refractive index fluctuations nσ  can be 

reduced or the mean free path lµ  can be increased to achieve lower turbulence levels 

and consequently decrease the beam wander. In addition, only the range can be 

reduced in the chosen simulation parameters for lower turbulence levels. 

Another plot is shown in Figure 5.5 where the range is chosen to be 5 km. The 

simulation parameters used were: L = 5km, lµ = 1m, lσ = 0.9m, nµ = 1.0001 (free-

space index), nσ = 0.00001, and N = 1000.  
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Fig. 5.5: Mean Square Beam Wander and Cubic Fit for a 5km range using the 
Spherical/Bubble Model. 
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Again, the mean square beam wander in Figure 5.5 follow the expected cubic 

fit described by theory in Equation (5.8). Since the range has been increased from 

1km in the simulation plotted in Figure 5.3 to 5km in Figure 5.4, the turbulence level 

has also increased. This is shown from the increase in  which is evaluated for this 

simulation to be 5.9×10

2
nC

-13. 

5.3.2 Phase Wander Simulation Model 

The trajectories of two parallel rays propagating through the simulated 

random medium are computed simultaneously. Figure 5.6 illustrates the phase wander 

simulation procedure. The simulation is very similar to the beam wander simulation, 

except that two rays are now considered. 

 

 

Fig. 5.6: Spherical Bubble Model – Phase Wander Simulation. 

The total distance traveled by each ray as both rays travel to the target is 

computed. The difference in the path length traveled l∆  will yield the phase 

difference φ∆  between the rays through [34],  

Beams Separated 
Distance r in mm 

x 

z

Laser Beam 

y 

Target Length L

Beam 1 

Beam 2 

l1

l1’ 

l2 l3

l2’ l3’ l4’ l5’ l6’ l7’ 
l8’ l9’

l4 l5
l6 l7

l8 l9 l10 l11
l12 l13 l14Beams Separated 

Distance r in mm 

x 

z

Laser Beam 

Beam 1 

y 

Target Length L

Beam 2 

l1

l1’ 

l2 l3

l2’ l3’ l4’

l5 l8l4 l9 l10 l11l6 l7
l12 l13 l14

l6’ l7’ l5’
l8’ l9’

 97 
 



 

   l∆=∆
λ
πφ 2 .     (5.23) 

The three-dimensional geometry of the sphere is taken into account in the 

propagation of the rays. The spheres are chosen such that the first ray intersects all of 

the selected spheres. Therefore, the first ray follows the same path described in the 

beam wander simulation model. The second ray though is started out in the positive 

z-direction separated a distance r from the first ray in the x-direction. First, a check is 

made to see whether or not the second ray intersects the selected sphere. This can be 

done by solving the sphere equation with the second ray vector equation. The line 

equation can be defined as, 

   n
zz

m
yy

l
xx 121212 −

=
−

=
−

,   (5.24) 

where (x1,y1,z1) and (x2,y2,z2)  are 2 points on the line, and l, m, n are the directional 

cosines of the line. The directional cosines are defined as l = cosα, m = cosβ, n = 

cosγ, where α, β, γ are the angles that the vector makes with the positive x-, y- and z-

axes, respectively. In addition, we have the following inequality,  

   .    (5.25) 1coscoscos 222 =++ γβα

The sphere equation is defined as, 

   ( ) ( ) ( ) 22
02

2
02

2
02 Rzzyyxx =−+−+− ,  (5.26) 

where (x2,y2,z2) is a point on the sphere, (x0,y0,z0) is the center of the sphere and R is 

the Radius of the sphere. A solution is checked for z2 by plugging in x2 and y2 in 

terms of z2 in Equation (5.24) into Equation (5.26). If a solution exists, the smaller 

root of z2 is taken from which x2 and y2 can be solved for. Then, the three-
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dimensional Snell’s law can be applied as in the procedure outlined in the previous 

section to calculate the refracted vector. If however no solution exists, this implies 

that the second ray can not intersect the selected sphere. In this case, the ray is made 

to propagate to the same z-location as the first ray. This can be achieved through 

solving the second ray’s incident vector with the plane z = k, where k is the z-location 

of the first ray after it propagated through the sphere. For example, let us assume the 

incident unit vector for the second ray to be (Vx, Vy, Vz), and its starting point as (x1, 

y1, z1). Then the end point for the second ray is, 

  ( )ktVytVxzyx yx ,.,.),,( 11222 ++= ,   (5.27) 

where . zVzkt /)1( −=

A single simulation run is comprised of the following steps: The user inputs 

the length of the target L, the mean free path lµ , and standard deviation for the path 

lσ , the mean index of refraction nµ  and standard deviation for the refractive index 

nσ , the starting separation between the beams r and the step size between separations 

∆r, and the number of runs desired N.  Two beams are started out separated by a 

distance r at the coordinates (0,0,0) and (-r,0,0). The index of refraction of the 

spheres/bubbles for both beams is chosen from a Gaussian distribution. Similarly, the 

sphere’s radius and center are chosen from a uniform distribution with the condition 

that the first propagating ray starting at (0,0,0) must hit the randomly chosen sphere. 

A single path length is chosen from a Gaussian distribution, and the first beam travels 

this length to intersect the sphere. If the second beam can intersect the sphere, then it 

is made to propagate till it intersects it. Otherwise, if no intersection occurs, the 
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second beam is made to travel a path length such that the z-coordinates for both 

beams are made the same. Snell’s law is then invoked to find each beam’s new output 

vector. A running sum is kept of the distances traveled by each beam, and the entire 

process is repeated until the z-coordinate of each ray equals the target length. The 

square difference between the beams is then averaged and saved for the particular 

value of separation r, after which r is decremented by ∆r and the simulation is 

restarted until r = 0 (for which 0=∆φ ). 
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Fig. 5.7: Flowchart of the Phase Wander Simulation Model. 
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5.3.2.1 Phase Wander Simulation Results 

The mean square phase difference is taken to be the phase structure function, 

which was shown for a pair of collimated parallel pencil thin rays in Equation (5.6) 

and obeys a five-third law assuming weak turbulence. In Figure 5.8, the simulation 

results are plotted for varying mean free path lµ  on a log-log graph.  
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Figure 5.8: Phase Wander Simulation Structure Function for Various Mean Free 
Paths. 
 

The fixed parameters assumed in Figure 5.8 are: target length L = 1 km, mean 

index of refraction 00001.1=nµ with standard deviation 000001.0=nσ , and starting 

beam separation r = 0.25m with ∆r = 0.01. The beam separation was chosen to range 
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from cmL 2510 =λ to 0 (no separation) assuming a He-Ne laser beam propagating 

with λ = 632.8nm.  The simulation was averaged for 1000 runs.  

Figure 5.8 show that as lµ  is decreased, the y-intercept, which represents a 

number proportional to increases as expected. This is because a decrease in ,2
nC lµ  

causes more collisions to occur and thus larger path differences between the beams 

which represents a larger turbulence level. Figure 5.8 agrees well with this prediction. 

Furthermore, it is found that the slope of the curve is increasing with higher lµ  

values or lower turbulence levels. For the highest value of ml 1=µ  plotted, the slope 

is approximately 4/3rd. It is expected for a high enough choice of lµ  that causes 

weak turbulence, the slope should follow the five-third power level predicted by 

theory. Although the form of the refractive index fluctuations was assumed Gaussian 

rather than following a Kolmogorov spectrum, perhaps the random encounters with 

many spheres tends to blur the difference between the assumed functional forms of 

the refractive index fluctuations, leading to the same statistical result in the wave 

parameter. 

5.3.3 Aperture Averaging Simulation Model 

This model calculates the aperture averaging factor for a number of rays, 

Gaussian as well as uniformly distributed, propagating through turbulence simulated 

spherical bubbles into a circular receiver of varying aperture size.  

The three-dimensional trajectory of each ray is analyzed using geometrical 

optics. The number of rays that reach the target length L, within the selected receiver 

aperture size are summed. The variance of the total rays within each aperture size is 
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then calculated over N simulation runs. Such variances are then normalized by the 

variance of the smallest chosen aperture size to evaluate the aperture averaging factor, 

   .
)0(
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=
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Fig. 5.9: Aperture Averaging Simulation using the Spherical Bubble Model. 

5.3.3.1 Simulation Procedure and Geometrical Analysis 

 The three-dimensional space is first filled with spherical bubbles of varying 

sizes ranging between 1mm and 1m. There is a coverage percentage chosen for the 

percentage of bubbles filling the three-dimensional space. The bubbles are chosen 

such that they do not intersect or touch one another. The starting x and y coordinates 

of the rays (x0,y0) are each selected from a random Gaussian distribution with 

means 0=xµ , 0=yµ , respectively and variance  , where w is the beam spot 22 w=σ

Selected
Receiver
Aperture 
Sizes

x 

y 

(0,0,0) z

Ydim 

Range, L

Bundle of ys ra
-Gaussian distributed

Xdim

Selected
Receiver
Aperture 
Sizes

x 

Ydim 
Bundle of ys ra

-Gaussian distributed

Xdim

z(0,0,0)

y 

Range, L

 103 
 



 

size at the transmitter  (starting point)  taken as 20mm. The starting z-coordinate of all 

of the rays is at z=0, and the beam divergence angle, θο at the transmitter is chosen as 

1 milliradians. 

5.3.3.1.1 Three-Dimensional Gaussian Ray Modeling 

 The starting three-dimensional unit vector for each ray needs to be determined 

before the rays can be propagated through the randomly simulated medium,  

i

iii

i

i
i S

kzjyix
S
rr

ˆˆˆ ++
==

∧
r

,   (5.29) 

where 222
iiii zyxS ++=  is the magnitude of the vector ir

r , and i the index of the 

ray.  
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Fig. 5.10: Position Figure showing the origins of the rays in the x-y plane. 
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Figure 5.10 is a position figure showing the origin ( )0,,
001 ii yxO =  of the rays 

in the x-y plane, where 

2
0

2
0 iii yxR += ,    (5.30) 

is the distance from the Origin ( )0,0,0=O  coordinate to the starting point of the ray, 

O1. Hence, 

    ,cos 0

i
x R

x
i

i
=θ     (5.31) 

    
i

y R
y

i

i

0cos =θ .     (5.32) 

Figure 5.11.a shows the angles of the Gaussian randomly distributed rays in 

the x-z plane where, 

    ,tan
1

1

i

i

ix z
x

z =θ     (5.33) 

and from our choice of the initial divergence angle at the transmitter, we can say that, 

    0
0tan θθ ⋅=

w
x

i

ixz .   (5.34) 

Since all of the parameters in Equation (5.34) are known, we can determine
ixzθ  

through which  and can be determined. 
i

x1 i
z1

Similarly, Figure 5.11.b shows the angles of the Gaussian randomly 

distributed rays in the y-z plane where, 
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Equation (5.35) can be used to determine  and . 
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Fig. 5.11a: Rays in the x-z plane.  Fig. 5.11.b: Rays in the y-z plane 
 

Figure 5.12 shows the random three-dimensional Gaussian ray propagation 

vector ir
r originating from the x-y plane and propagating in the x-y-z direction, where, 

    
ixi zi xx θsin1 == ,   (5.36) 

    
iyi zi yy θsin2 == ,   (5.37) 

    
iyixii zzi zzz θθ sinsin21 +=+= . (5.38) 

Therefore, 

   kzzjyixr
iiiii

ˆ)(ˆˆ
2121 +++=

r
.  (5.39) 
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Fig. 5.12: Random Three-dimensional Gaussian Ray propagation vector ir
r . 

5.3.3.1.2 Simulation Procedure  

A typical simulation run is comprised of the following: First the user is 

prompted to input the X and Y dimensions as well as the range L of the three-

dimensional space. The user then inputs the coverage percentage (Spheres Cover) of 

the spheres as well as the mean nµ and variance nσ  of the spheres’ index of 

refraction, which will be calculated from a random Gaussian distribution. Finally the 

user inputs the beam’s starting divergence angle 0θ  and beam waist w as well as the 
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number of simulation runs N. The space is first filled with bubbles according to the 

percentage of coverage chosen. The bubbles are then sorted by the z-coordinates of 

their centers. The rays all start at z = 0 and their x and y coordinates are selected from 

a random Gaussian distribution with mean 0=xµ and 0=yµ , respectively and 

variance as described above. The starting angle of each ray with the axes is 

determined using the procedure outlined above from which each ray’s starting unit 

vector can be defined. Each ray is checked for intersection with any of the bubbles 

and the bubble with the smallest z-coordinate is chosen for the ray to refract through 

it according to Snell’s law. Such a check is done until no more spheres can be 

intersected by the ray within the chosen three-dimensional space. Then, the ray is 

made to propagate to the target length L. The ray’s beam wander from the center 

22 w=σ

22 yx +  is checked to whether or not it lies within some selected circular aperture 

sizes at the receiver.  If so, it gets counted. The same procedure is repeated for each of 

the rays. Then the whole simulation is repeated N times for different rays’ 

distributions. The variance of the total rays within each aperture size is then 

calculated over the simulation runs. Such variances are then normalized by the 

variance of the smallest chosen aperture size to evaluate the aperture averaging factor, 

F. 

5.3.3.2 Simulation Results  

5.3.3.2.1 Turbulence Strength 

 First, one ray starting at the origin is propagated in the z-direction through the 

simulated randomly chosen spheres. Such a simulation is performed in order to 
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determine the level of turbulence for varying standard deviation of the spheres’ index 

of refraction nσ . 

The chosen simulation parameters are: L=1km, Spheres Cover = 20%, nµ = 

1.0001 and N = 1000 runs. The mean-squared (MS) beam wander (Equation (5.8)) is 

calculated for varying nσ values. Cn
2 can then be calculated through the Rytov 

variance equation where the inner scale of turbulence lo which represents the smallest 

sphere size is taken as 1mm.  

Table 5.1 shows Cn
2 for varying nσ  values. It is clear from the Cn

2 values 

presented that a nσ of 1e-5 represents a relatively strong turbulence level, while a nσ  

of 1e-7 already gives a relatively weak turbulence level. Such values of nσ  

representing weak and strong turbulence levels will be used as a limiting choice in the 

simulations to follow. 

σn MS Beam Wander (m) Cn
2

1.00E-04 2.35E+03 1.0669E-07 
 

5.00E-05 1.85E+01 8.4114E-10 

1.00E-05 3.47E-03 1.576E-13 

1.00E-06 2.39E-05 1.0852E-15 

5.00E-07 5.08E-06 2.3086E-16 

1.00E-07 2.91E-07 1.3218E-17 

1.00E-08 9.38E-08 4.2641E-18 
 
Table 5.1: Cn

2 for varying nσ  values. A nσ  of 1e-7 already gives a relatively weak 
turbulence level while a nσ  of 1e-5 represents relatively strong turbulence. 
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5.3.3.2.2 Ray Number Reaching Circular Receiver Apertures 

The simulation was then performed for the Gaussian distributed rays using the 

procedure outline in the previous subsection for 1000 Rays. The parameters chosen in 

the simulation are as follows: L=1km, Spheres Cover = 20%, nµ = 1.0001, 0θ = 

1mrad, w = 20mm, and N = 1 run. 

First the simulation number, N was set to 1 and 1000 rays that are Gaussian 

distributed were propagated through the randomly simulated bubbles. Figure 5.13 

shows curves for the number of rays that fit within circular aperture receivers of 

varying sizes. Different curves were plotted for bubbles with varying nσ along with 

the no bubbles case. On average, the space was filled with about 14,000 bubbles with 

the rays intersecting about 300 bubbles on average along its path. The results show 

the expected reduction in received number of rays with increasing nσ  or increasing 

turbulence level as expected. However, such a conclusion is only expected for 

severely strong turbulence levels. Table 5.1 show that a nσ of 1e-5 already represents 

a relatively strong turbulence level yet the ray number in Figure 5.13 is very close in 

value to the no turbulence level then saturating at a bit lower value. This is due to the 

fact that higher turbulence levels do not necessarily imply that the rays will miss the 

targeted aperture radius especially for small aperture radii. It only means a higher 

beam wander which could be accounted for through outer rays bending inwards 

towards the center and being collected by the aperture. However, severely strong 

turbulence bent the rays sufficiently to mostly miss the selected aperture radii.  
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Fig. 5.13: Ray Number verses Receiver Aperture Radius for 1 simulation run of 
Gaussian Distributed rays. Various curves are plotted for bubbles of varying standard 
deviation “std”, nσ  along with the no bubbles case.  
 

The same simulation procedure was repeated for plane rays instead of 

Gaussian rays. The rays are started uniformly distributed in the x-y plane and 

propagating in the z-direction. The rays are chosen to initially fill a circular region in 

the x-y plane equivalent in diameter to the largest aperture size chosen at the receiver 

side. Figure 5.14 shows the ray number for 1000 rays over 1 simulation run. 
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Fig. 5.14: Ray Number verses Receiver Aperture Radius for 1 simulation run of 
Uniformly Distributed rays. Various curves are plotted for bubbles of varying 
standard deviation “std”, nσ  along with the no bubbles case.  
 

It is clear from Figure 5.14 that a nσ of 1e-5 which represents a relatively 

strong turbulence level can give even a higher ray number than the no turbulence case 

for the lower aperture diameters. This confirms the analysis described for the 

Gaussian Ray model in Figure 5.14 which implied that stronger turbulence can lead to 

an equivalent or even higher ray number reaching the smaller aperture sizes but only 

up to a certain degree of turbulence level. 
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The Gaussian ray distribution failed to show the higher ray number for 

stronger turbulence levels at small aperture diameters as was shown for uniformly 

distributed rays. This could be due to the fact that the Gaussian distributed rays are 

initially diverging outwards which increases the possibility of ray miss at the receiver 

especially for small aperture sizes. 

5.3.3.2.3 Aperture Averaging Factor “F” 

Now, the aperture averaging factor “F” can be calculated through using 

Equation (5.28). The sample variance form is used in calculating the variance of a 

particular aperture diameter over 100 simulation runs. It is then normalized by the 

mean squared to calculate the normalized aperture-averaged variance, 
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,    (5.40) 

where i is the aperture diameter index and j is the simulation run index. Equation 

(5.40) is then divided by the normalized variance of the minimum aperture diameter 

to evaluate the aperture averaging factor F (Equation (5.28)).  

Through plugging Equation (5.40) in Equation (5.28), the aperture averaging 

factor is calculated and plotted in Figure 5.15 for the Gaussian distributed rays with 

0θ = 1mrad and nσ =1e-7, 1e-6 and 1e-5 corresponding to weak, intermediate and 

strong turbulence levels respectively. 
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Fig. 5.15: Aperture averaging factor (F) versus the aperture radius for Gaussian 
distributed rays. Different curves are plotted for nσ =0.00001, 0.00005, and 0.0001. 
 

Figure 5.15 shows that the higher the standard deviation of the bubbles’ 

indices nσ , the higher the aperture averaging factor. This is expected since the ray 

number in Figure 5.13 for even relatively strong turbulence such as 1e-5 is lower than 

the no turbulence case even at small aperture sizes. This implies that the Gaussian ray 

model used gave the expected reduction in ray number reaching the receiver aperture 

with increasing turbulence level at all receiver aperture sizes. Hence the mean 

squared value of the number of rays in the denominator of the aperture-averaged 

variance in Equation (5.40) will be less for higher turbulence levels. In addition, the 

variance in the numerator of Equation (5.40) is expected to increase with increasing 
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turbulence level. These two effects both imply an increase in the F Factor with 

higher nσ values. 

 Figure 5.16 plots the aperture averaging factor F versus aperture radius for 

uniformly distributed rays. Different curves are plotted for several nσ  values.  
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Fig. 5.16: Aperture Averaging Factor versus Aperture Radius for uniformly 
distributed rays. Different curves are plotted for several nσ  values all within the 
strong turbulence regime.  
 

Figure 5.16 show that the higher the nσ  value, the higher the aperture 

averaging factor. This is because all of the nσ  choices in the plot present strong 

turbulence levels. This implies that the higher the nσ  value, the lower the mean 

square value of the number of rays reaching the particular aperture diameter. Since 
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the mean square shows in the denominator of the aperture-averaged variance 

(Equation (5.40)), then this corresponds to a higher F factor. 

Figure 5.17 shows the F factor for uniformly distributed rays plotted for nσ  = 

1e-7, 1e-6 and 1e-5 corresponding to weak, intermediate and strong turbulence 

strengths correspondingly. It is clear from the plot that the higher the nσ  value which 

implies higher turbulence level, the sharper the initial decline followed by a longer 

tail. This exact result is expected and was proved in the theoretical analysis as well as 

from the experimental results shown in Chapter 2 and 3.  
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Fig. 5.17: Aperture Averaging Factor versus Aperture Radius for uniformly 
distributed rays. Different curves are plotted for several nσ  values corresponding to 
different turbulence strengths. 
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This result is expected from Figure 5.17 using such a geometric ray model 

since a nσ  of 1e-5 corresponding to relatively strong turbulence has given a higher 

ray number at small aperture diameters when compared to the no bubbles case as 

observed in Figure 5.14. If we think of weak turbulence such as a nσ of 1e-7 to follow 

a similar behavior to the no turbulence case at low aperture diameters, then the mean 

square value of the ray number for small apertures will be higher for the nσ  of 1e-5. 

Such analysis confirms that the F factor for nσ of 1e-5 to be less at small aperture 

sizes when compared to a nσ  of 1e-7. However, at larger aperture diameters, the 

fluctuation from the mean term in the numeration of Equation (5.40) becomes more 

noticeable for stronger turbulence levels dominating the increase in the mean square 

ray number in the denominator. This effect lead to a higher F factor for stronger 

turbulence levels which explains the long tail at larger diameters.  

5.4  Conclusions 

A new geometrical model was presented to assess the effects of turbulence on 

laser beam propagation in the atmosphere. The atmosphere was modeled along the 

laser beam propagation path as a spatial distribution of spherical bubbles with 

refractive index discontinuities that are statistically distributed according to various 

models. For each statistical representation of the atmosphere, the path of a single ray, 

or a bundle of rays, was analyzed using geometrical optics. These Monte Carlo 

simulations have proved capable of assessing beam wander, in particular the (Range)3 

dependence of mean-squared beam wander, and in estimating phase shifts between 

the rays as they propagate through turbulence and in calculating the aperture 
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averaging effect. An effective Cn
2 was also determined by correlating beam wander 

behavior with the path length. The Monte Carlo simulations were all compared and 

show good agreement with the predictions of wave theory.  

This is the first report to date to simulate the aperture averaging factor using 

geometrical ray analysis. The aperture averaging factor was modeled for Gaussian as 

well as uniformly distributed rays. The results assessed the reduction in scintillation 

with increasing aperture diameter. In addition, for the uniformly distributed rays, the 

aperture averaging factor F showed the sharper initial decline followed by a longer 

tail for higher turbulence strengths as predicted by the theoretical as well as 

experimental results. 
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Chapter 6: Conclusions and Future Research 

 

 

A flexible empirical approach was demonstrated for improving free space 

optical (FSO) communication link performance through image analysis of intensity 

scintillation patterns coupled with frame aperture averaging on FSO communication 

link. The aperture averaging results shown in Chapter 3 demonstrated the expected 

reduction in intensity fluctuations with increasing aperture diameter, and show 

quantitatively the differences in behavior between various strengths of turbulence. 

The reduction in scintillation with aperture size guides the selection of the optimum 

receiver aperture. Efficient computational techniques for Fante’s correlation functions 

that are important in assessing the effects of turbulence in weak and strong conditions 

were developed in Chapter 2 to compare with the experimental results. The 

experimental results presented in the intermediate turbulence region fitted between 

the weak and strong turbulence theory and show “excellent agreement” with the 

expected behavior. Such results show significant improvement upon existing 

empirical data in accuracy and should be very valuable in the development of new 

theories in the intermediate turbulence regime. Theory reliably describes the behavior 

in the weak turbulence regime, but theoretical descriptions in the intermediate and 

strong turbulence regimes are less well developed. For this reason, such results should 

help in the development of new theories that can help in filling the existing gap. 
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Spatial and temporal variance analyses within single frames and between frames were 

also compared and show good agreement. It was also observed that turbulence is 

weaker during light to moderate rain conditions due to the reduction in the intensity 

scintillation. This causes a better performance of the FSO links during rain which is 

one of its advantages over RF technology. In addition, during sunrise and sunset 

where the ground surface and surrounding air temperatures are at an equilibrium 

state, the lowest turbulence level within the day is noticed. It was finally proved that 

the irradiance calculations using the frame analysis are independent of the shape of 

the receiver aperture but instead only on the area.   

Analysis of BER and S/N ratios for different turbulence levels shows that 

aperture averaging can significantly improve the performance of the link, especially 

as the turbulence gets stronger. The data presented is valuable in guiding the design 

of receivers for FSO communication systems. This is especially true for agile FSO 

transceivers, where size and weight compromises are needed.  It is important to 

design such systems with apertures that are large enough for satisfactory 

performance, but where excessively large receiver apertures, which provide only a 

marginal improvement in intensity scintillation, are avoided.  

A new geometrical model was also presented in Chapter 5 to assess the effects 

of turbulence on laser beam propagation in the atmosphere. The atmosphere was 

modeled along the laser beam propagation path as a spatial distribution of spherical 

bubbles with refractive index discontinuities that are statistically distributed 

according to various models. For each statistical representation of the atmosphere, the 

path of a single ray, or a bundle of rays, was analyzed using geometrical optics. These 

 120 
 



 

Monte Carlo simulations have proved capable of assessing beam wander, in particular 

the (Range)3 dependence of mean-squared beam wander, and in estimating phase 

shifts between the rays as they propagate through turbulence and in calculating the 

aperture averaging effect. An effective Cn
2 was also determined by correlating beam 

wander behavior with the path length. The Monte Carlo simulations were all 

compared and show good agreement with the predictions of wave theory.  

This is the first report to date to simulate the aperture averaging factor using 

geometrical ray analysis. The aperture averaging factor was modeled in Section 5.3.3 

for Gaussian as well as uniformly distributed rays. The results assessed the reduction 

in scintillation with increasing aperture diameter. In addition, for the uniformly 

distributed rays, the aperture averaging factor F showed the sharper initial decline 

followed by a longer tail for higher turbulence strengths as predicted by the 

theoretical as well as experimental results. 

 A future direction for this work would be to develop an experimental setup 

that is portable to be taken outdoors closer to the ground’s surface for higher 

temperature fluctuations and hence strong turbulence measurements. The 

experimental setup presented was about 12 meters above the ground which led to 

only weak and intermediate turbulence results. There is a need for more strong 

turbulence empirical results to compare with the existing strong turbulence theory and 

help in the development of new theories that fits throughout all of the turbulence 

levels from weak to strong. 

For the geometrical Monte Carlo simulations, the simulation runs were limited 

to 20% spheres’ coverage, 1000 Rays and 100 Runs. This limitation was due to the 
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long run time which was about 40 minutes for each choice of the bubbles’ standard 

deviation of their refractive index fluctuations. Such a program could be further 

optimized to reduce run time, as well as computers with faster processing time or 

super computers could be used to increase the number of simulation runs. This would 

allow the aperture averaging curves to be smoother giving better results as well as 

allows the study of more turbulence levels through a larger variation in the simulation 

parameters. 
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