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Regression discontinuity (RD) designs allow estimating a local average treatment effect

(LATE) when assignment of an individual to treatment is determined by their location on

a running variable in relation to a cutoff value. The design is especially useful in educa-

tion settings, where ethical concerns can forestall the use of randomization. Applications

of RD in education research typically share two characteristics, which can make the use

of the conventional RD model inappropriate: 1) The use of latent constructs, and 2) The

hierarchical structure of the data. The running variables often used in education research

represent latent constructs (e.g., math ability), which are measured by observed indicators

such as categorical item responses. While the use of a latent variable model to account for

the relationships among item responses and the latent construct is the preferred approach,

conventional RD analyses continue to use observed scores, which can result in invalid or

less informative conclusions. The current study proposes a multilevel latent RD model

which accounts for the prevalence of clustered data and latent constructs in education re-

search, allows for the generalizability of the LATE to individuals further from the cutoff,



and allows researchers to quantify the heterogeneity in the treatment effect due to mea-

surement error in the observed running variable. Models are derived for two of the most

commonly used multilevel RD designs. Due to the complex and high-dimensional nature

of the proposed models, they are estimated in one stage using full-information likelihood

via the Metropolis-Hastings Robbins-Monro algorithm. The results of two simulation stud-

ies, under varying sample size and test length conditions, indicate the models perform well

when using the full sample with at least moderate-length assessments. A proposed model is

used to examine the effects of receiving an English language learner designation on science

achievement using the Early Childhood Longitudinal Study. Implications of the results of

these studies and future directions for the research are discussed.
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Chapter 1: Introduction

With the passage of the Every Student Succeeds Act (ESSA) in 2015, a reaffirming

of the importance of quality education research, there has been a resurgence of interest

in ensuring education research can support valid causal claims. The ability to draw causal

conclusions from research is largely based on the research design used. To this end, designs

that randomly assign participants to treatment groups, such as randomized control trials

(RCTs), are considered the gold standard. However, the random assignment of students,

teachers, or schools to interventions can be infeasible or unethical. For this reason, the

regression discontinuity (RD; Thistlethwaite & Campbell, 1960) design is often used in

education research, as it allows for causal conclusions, under strong model assumptions,

without the need for randomization.

In the RD design, individuals are assigned to treatment conditions based on whether

their scores on a running variable (also called an “assignment variable” or a “forcing vari-

able”) are above/below a specified cutoff value. Running variables (RVs) can be any contin-

uous variable on which all participants have a non-missing value (e.g., age, pre-test scores,

language proficiency). For example, when students are placed in a remedial math course

based on whether their scores on a placement exam meets a given threshold, an RD study

may be conducted to estimate the causal effect of the remedial math course on an outcome

of interest. The causal treatment effect estimate provided by this design is generalizable to

the subpopulation with RV scores at the cutoff (see Section 2.2), and is referred to as the

local average treatment effect (LATE).
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As there are many existing education interventions and programs that target at-need

groups and, therefore, have existing eligibility criteria with a threshold for receiving the

intervention, there are many opportunities to apply the RD design in education research.

However, two other common features of education data can make the use of the conven-

tional RD model challenging: 1) data collected in education settings tend to be clustered

(e.g., students nested in classrooms, classrooms nested in schools), and 2) the variables of

interest are often latent constructs that cannot be directly measured. The first feature poses

a challenge as clustered data violate a key assumption of the conventional RD model, in-

dependence of observations, which can lead to invalid conclusions (see Section 2.4). The

second feature requires researchers to decide how to calculate scores for the latent con-

structs before using them in the RD model. This decision can impact the quality of the RD

treatment estimates (see Section 2.3).

As latent constructs cannot be directly measured, instead, data are collected on observed

indicators (e.g., item responses on an exam). These item responses can be averaged or

summed to calculate an observed score for the latent construct. However, these scores will

contain measurement error. When used as predictors in a regression model, observed scores

can attenuate regression coefficients resulting in invalid conclusions. A preferred approach

is to calculate latent variable (LV) scores through the use of an LV model, which takes

into account the unique relation between each item response and the latent construct, and

consequently accounts for the measurement error. While there has been a trend in many

fields towards extending statistical models to include LVs, RD continues to treat latent

constructs as observed variables.

The tradition of using observed variables in RD stems from the belief that the measure-

ment error in the observed RV (ORV) acts to make the RD design a local RCT and further

allows researchers to examine the heterogeneity in the treatment effect and to generalize

the treatment effect away from the cutoff value (D. S. Lee & Lemieux, 2010). Moreover,

2



when the interpretation of the treatment effect is confined to the scale of the ORV, any atten-

uation in the regression parameters due to measurement error in the ORV is not a concern

(see Section 2.2.6). However, when researchers are interested in interpreting the treatment

effect with respect to the latent RV (LRV), the results of a conventional RD analysis may

be invalid, e.g., parameter estimates may be biased. Moreover, the conventional RD model

is unlikely to allow for adequate generalizability of the LATE or quantification of the het-

erogeneity in the treatment effect without an explicit specification of a measurement model

for the RV and additional assumptions (see Section 2.2.1).

Therefore, in order to account for the prevalence of clustered data and latent constructs

in education research, as well as to increase the generalizability of the treatment effect to

individuals further from the cutoff and allow researchers to quantify the heterogeneity in the

treatment effect due to measurement error in the ORV, the present study proposes multi-

level RD models in which the RV, covariates, and outcome variables are all latent. The

proposed models are estimated using a reasonably efficient algorithm; parameter recovery

is explored in two simulation studies. The recovery of the LATE under the proposed models

is compared to the conventional approach in a simulation study; the proposed model is used

in an empirical data application.

The rest of the chapter is structured as follows. First, I provide an overview of the limi-

tations of the current approach to RD analysis in education settings using latent constructs.

Next, I present the purpose of the current study and the specific study aims, which address

these limitations. Finally, I discuss the possible contributions of this study to education

researchers. The chapter concludes with an overview of subsequent chapters.
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1.1 Statement of the Problem

The conventional RD approach fails to properly account for the hierarchical nature of

education data and the use of latent constructs as predictors. This may not only result in

invalid statistical conclusions (e.g., increased Type I error and bias in parameter estimates),

but also limits the researcher’s ability to gain more information about the effect of the treat-

ment being studied. In an RD design, participants are assessed on a continuous RV and

assigned to treatment conditions based on their scores on that variable in relation to an ex-

ogenous cutoff point. Participants with scores on one side of the cutoff point are assigned

to the treatment group and those on the other side receive the comparison condition. After

participants are assigned and the treatment is administered, they are assessed on an out-

come measure. A regression is fit to predict outcome scores based on the RV and a dummy

variable that indicates whether the participant received treatment or not. The effect of the

treatment is estimated by comparing the regression lines of the two groups. Treatment

effect estimates at the cutoff are unbiased when assumptions are met (Goldberger, 1972;

Rubin, 1977). See Section 2.2.1 for more details on RD model assumptions.

Data and the fitted regression lines from a hypothetical RD study are depicted in Figure

1.1. The vertical line at an RV score of -0.5 designates an arbitrary cut-point above which

participants are assigned to treatment and below which they are assigned to the control

group. The treatment in this example has a positive effect, as depicted by the sharp increase

in outcome scores at the cutoff (or discontinuity).

Opportunities for RD often emerge naturally in education as many programs or inter-

ventions targeting individuals or groups have eligibility cutoffs built into them. Moreover,

because the RV can be unrelated to the outcome variable (Cook, Campbell, & Shadish,

4
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Figure 1.1: Graphical representation of a regression discontinuity model with an interaction
term with a cutscore at -0.5. Participants with running variable scores above the cutoff are
assigned to the treatment group; participants with running variable scores below the cutoff
are assigned to the control group. The treatment has a positive effect as indicated by the
local average treatment effect (LATE).

2002), RD maximizes a program or intervention’s ability to use high-quality assessments

in identifying individuals with the greatest need and assigning them to the appropriate treat-

ment condition (Linden, Adams, & Roberts, 2006). Because the RD design complements

existing features of education interventions, many such studies exist. However, the conven-

tional RD framework fails to account for two features common in education applications:

the multilevel nature of the data and measurement error in the variables.

In education research, RVs are often latent constructs (e.g., math proficiency), which are

not directly observable. Instead, data are collected on response variables such as continuous

or categorical item responses. Observed variable scores are calculated using the item-level

raw scores by summing or taking an average (i.e., total number of items correct on an

5



exam, average of Likert scale responses, etc.). These noisy measures are then used as

RVs in RD analyses. For instance, several RD studies have used school assessment scores

(Chay, McEwan, & Urquiola, 2005; Chiang, 2009; B. A. Jacob & Lefgren, 2004a), entrance

exam scores (Ding & Lehrer, 2007), standardized test scores (B. A. Jacob & Lefgren,

2004b; Van der Klaauw, 2008) and subject specific assessment scores (Goodman, 2008;

Matsudaira, 2008) as RVs. Alternatively, psychometricians often rely on LV measurement

models, such as item response theory (IRT; see e.g., Lord, 1980, for a review) models,

to account for the association between observed indicators and latent constructs. Each

construct is quantified by an LV; the distribution of observed indicators is governed by the

LV and measurement model parameters (e.g., factor loadings, item difficulties). When LVs

are used in the formulation of structural models (e.g., a regression discontinuity model), the

simultaneous estimation of the measurement and structural model parameters is considered

the gold standard (see e.g., Bartholomew & Knott, 1999; Bollen, 1989; Muthén, 2002;

Rabe-Hesketh & Skrondal, 2004). Despite the trend of LV modeling in the social sciences,

RD continues to favor an observed variable approach.

However, the issue of measurement error is more complex in the RD design. While it

can be seen as having a positive effect on making the RD a localized RCT at the cutoff,

it also limits the information researchers can get from the treatment effect. In a conven-

tional RD analysis, the RV, outcome, and covariates are all treated as observed variables.

Measurement error in the ORV is purported to have a positive role in converting an RD

design to a local randomized control trial and allows researchers to examine heterogeneity

and generalizability of the LATE (D. S. Lee & Lemieux, 2010). However, those aspects

of the LATE are unlikely to be revealed by a conventional RD analysis without an explicit

specification of a measurement model for the RV. Furthermore, when the RV is observed,

the associated LATE is only identified on the ORV scale in the unit of the observed out-

come. When the interpretation of the LATE is intended with respect to the latent RV (LRV)

6



in the unit of the latent outcome, the conventional RD analysis may be misleading as the

LATE with respect to the ORV and the LATE with respect to the LRV are not necessarily

the same. Therefore, introducing LVs to the RD analysis proves to be beneficial whether

researchers are interested in the heterogeneity and generalizability of the LATE on the ORV

scale or inferences with respect to the LATE on the LRV scale.

Most education data are hierarchical in nature due to the structure into which the edu-

cation system is organized: Students receive instruction in classrooms which exist inside

schools, which are grouped by districts. This system makes it difficult to implement random

assignment. For example, district officials may be uncomfortable with the unequal alloca-

tion of resources between schools when only some are assigned to a treatment, principals

may be concerned with disruptions to regular school routines and deadlines, and parents

may protest if their child is not randomly assigned to receive a potentially beneficial inter-

vention (Cook, 2002). This hierarchical structure gives rise to multilevel data, which may

create challenges for statistical modeling. Because observations are no longer independent,

a key assumption underlying a majority of parametric procedures is violated making the

use of many traditional statistical models inappropriate (Burstein, 1980; Goldstein, 2011;

Kreft & De Leeuw, 1998; Raudenbush, 1993; Snijders & Bosker, 2012).

In an RD design, it may be the case that treatment assignment occurs at the cluster level;

for instance, an entire school may qualify for participation in a governmental intervention

program. Not accounting for such sampling structures can lead to improper inferences.

On the one hand, ignoring the nested structure of data (e.g. Banks & Mazzonna, 2012;

B. A. Jacob & Lefgren, 2004b; Matta, Ribas, Sampaio, & Sampaio, 2016; Ou, 2010), i.e.,

disaggregation, violates the usual regression assumption of independence of errors which

may lead to underestimated standard errors. On the other hand, aggregation, analyzing the

data at the cluster level instead of the individual observation level (e.g., Holbein & Ladd,

2017; Tang, Cook, Kisbu-Sakarya, Hock, & Chiang, 2017), is only valid if the treatment

7



effect is inferred at the cluster level. However, as Burstein (1980) noted, aggregation bias is

especially salient in education settings because “aggregation inflates the estimated effects

of student background on outcomes and decreases the likelihood of identifying lower level

characteristics and practices that are effective.”

More adequate modeling strategies include pooling the results of separate one-level

RD analysis for each cluster (e.g., Eggers, Fowler, Hainmueller, Hall, & Snyder Jr, 2015;

Gamse, Bloom, Kemple, & Jacob, 2008; Van der Klaauw, 2002), fitting multilevel RD

models (e.g., Boatman & Long, 2010; Li, Mattei, & Mealli, 2015a; Tuckwiller, Pullen,

& Coyne, 2010), and correcting the standard errors of the regression coefficients if clus-

ter effects are not of interest (e.g., Cliffordson & Gustafsson, 2010; Sojourner, Frandsen,

Town, Grabowski, & Chen, 2015). However, the integration of LV measurement models

and multilevel RD analyses has not been explored in the existing literature.

In summary, the conventional application of the RD model in many education studies

is inadequate as the model does not account for the hierarchical data or use of latent con-

structs. Moreover, the conventional model does take advantage of the ability to model the

measurement error in the RV in order to improve the interpretability of the RD treatment

effect estimates.

1.2 Purpose of the Study

Given the value of RD designs in causal inference, the hierarchical nature of educa-

tion data, and the widespread popularity of LV modeling in social sciences research, the

integration of RD analysis, multilevel modeling, and LV modeling would benefit education

researchers who seek causal evidence by providing more information about the effect of

the intervention. The purpose of the proposed study is to derive multilevel LV RD models

in which the outcome, RV, and covariates are latent, and estimate the proposed models with
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a reasonably efficient algorithm. The performance of the LV RD analyses will be assessed

and compared to the performance the conventional RD approach, i.e., using ORVs. The

research questions are as follows:

1. How well does the developed code recover parameters of interest in the proposed

models, e.g., RD treatment effect, IRT item parameters, and variance components?

2. How are the RD treatment effect estimates in the proposed models recovered under

different simulation conditions, e.g., sample size and test length?

3. How do the proposed models perform compared to the conventional observed-variable

approach in simulation studies?

4. How does the proposed model perform when applied to empirical data?

The research hypotheses are:

1. The developed code will recover model parameters well under ideal conditions.

2. The RD treatment effect estimates will be well recovered under large sample sizes

and long tests lengths when using the full sample.

3. The proposed models will recover the treatment effect estimate better than the con-

ventional observed-variable approach under all conditions.

4. The proposed model will provide more comprehensive treatment effect estimates

than the conventional model in an empirical data application.

1.3 Significance of the Study

There are three main areas in which the proposed work may make significant contribu-

tions. Firstly, the proposed model will allow researchers to gain more information about
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the effect of the treatment being studied. The RD design is popular in policy research,

partly because of the high internal validity of the LATE. However, a notable weakness

of the design is the limited external validity of the LATE (i.e., the LATE applies only to

the subpopulation with RV scores within a narrow window of the cutoff). The proposed

work will improve upon this limitation by both increasing the generalizability of the LATE

to participants further from the cutoff (see Section 2.2.4) and by allowing researchers to

quantify how much the LATE differs across individuals with the same observed score (i.e.,

the heterogeneity in the LATE due to measurement error; see Section 2.2.5) under addi-

tional assumptions (see Section 2.3.2). Furthermore, researchers will be able to interpret

the treatment effect with respect to the latent construct (i.e., the LRV) rather than just the

ORV (see Section 2.2.6). As many RD studies in education use measures of latent con-

structs (e.g., depression, anxiety, math ability) as RVs, the proposed model can be applied

widely in the education field so that stakeholders may draw more informed conclusions

about the efficacy of the interventions being studied. For example, a study which aims to

evaluate a gifted reading program using conventional RD analysis may use the score on a

reading exam (e.g., number correct or percentage correct) as the RV. While this allows the

researcher to interpret the LATE with respect to the observed score on the reading exam,

which is applicable only to students with similar reading scores on that same exam, it does

not allow for an interpretation of the LATE with respect to reading ability, the latent con-

struct underlying the observed score. In order to interpret the LATE with respect to the

latent construct, estimate the treatment effect for a larger subpopulation, or examine the

heterogeneity in the LATE due to the measurement error in the ORV, a measurement model

must be correctly specified for the RV. The proposed model includes such a specification

and, therefore, increases the information that the RD analysis can provide about the treat-

ment. Consequently, the proposed model may be used broadly as it not only allows for

the treatment effect to be estimated with respect to the latent construct, which has broader
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implications than its observed counterpart, but also improves inferences on the ORV scale

by allowing for an an estimate of the treatment effect at ORV scores away from the cutoff

as well as for an examination on how the LATE varies due to measurement error in the

ORV.

The second area in which the proposed model may make contributions is in creating

stronger scientific links among studies. When developing instruments and assessments,

psychometricians use LV models, e.g., IRT models, which explicitly specify the relation-

ships between item responses and the latent constructs. In calculating observed scores for

these instruments (e.g., sum or average of item responses) researchers are ignoring the

relationships assumed when the instruments were developed. Moreover, observed scores

contain less information about the latent construct than LV scores. As such, consistently us-

ing LV scores from instrument conception through structural models is the more desirable

approach as it maintains the assumptions and meanings intended when the instrument was

developed. The proposed model will aid in this endeavor as it allows researchers to spec-

ify the appropriate measurement model for the latent constructs. Furthermore, using LV

models will allow researchers greater flexibility when collecting data from multiple sites or

across multiple time points as different forms of tests that measure the same latent construct

can be used; the scores can later be linked onto a common scale (see e.g., Feuer, Holland,

Green, Bertenthal, & Hemphill, 1999; Lim, 1993a, 1993b; Mislevy, 1992). Furthermore,

when the RD analysis is intended to validate the effectiveness of an intervention program

that has been previously evaluated, integrated data analysis can be performed by concate-

nating the data sets, as long as measurement invariance can be established for at least a

subset of items (i.e., anchor items) and the fit of the measurement model is reasonable.

Finally, while many large datasets (including multi-site and multi-year data) measur-

ing latent constructs on which RD analysis can be conducted are available for public or

restricted use (e.g., Institute of Education Sciences, National Science Foundation), most
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of these data include only observed variable scores for the latent constructs and do not

report item-level responses. This not only encourages researchers to use observed vari-

able scores as latent variable scores cannot be calculated without more information, it also

deemphasizes the importance of working with high quality, reliable, and valid instruments

as the provided data cannot be used to these ends. The proposed model requires the use of

item-level data to provide the additional estimates of an intervention’s effect (i.e., increased

generalizability of the treatment effect and quantification of the heterogeneity in the treat-

ment effect), the practice of reporting item-level data may become more commonplace. It

is noted that recording item-level response data and validating measurement models will

eventually contribute to the improvement of research practices and accumulations of scien-

tific evidence.

1.4 Overview of the Chapters

Chapter 2 (Literature Review) introduces causal inference in education settings and

provides an overview of the conventional RD design, including limitations in the inter-

pretability of the LATE. The use of latent constructs in RD analyses is explored and the

typical treatment of multilevel data in RD modeling is reviewed. Estimation approaches

for multilevel LV models are then introduced and the Metropolis-Hastings Robbins-Monro

(MH-RM) algorithm and its general implementation are presented. In Chapter 3 (Multilevel

RD Models with Latent Variables and Estimation), a general multilevel LV RD modeling

model, as well as two common multilevel designs, are derived. The specific implemen-

tation of the MH-RM algorithm to estimation the proposed models is then presented. In

Chapter 4 (Simulation Studies) two simulation study designs are presented and the results

of the studies are described. Chapter 5 (Empirical Data Analysis) presents an empirical

data set, describes the use of the LV RD model applied, and presents the results. Chapter 6
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(Discussion) includes a summary of the study, a discussion of the results, and implications

for future research.
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Chapter 2: Literature Review

2.1 Causal Inference in Education Research

The importance of drawing causal conclusions about the effects of an intervention on

student achievement was reaffirmed with the passage of the Every Student Succeeds Act

(ESSA) in 2015. The legislation promotes the use of “evidence-based interventions” as

the foundation of the education programs schools choose to implement. ESSA defines

four tiers of evidence which correspond with research designs. Experimental studies pro-

vide “strong” evidence, while quasi-experimental studies yield “moderate” evidence and

correlation studies provide “promising” evidence. The least desirable evidence is from

research-based theory (S.1177-290, Section 8002). The ability to draw causal conclusions

from studies is largely determined by the research design employed. Designs that randomly

assign participants to treatment conditions, such as randomized control trials (RCTs), meet

the ESSA’s definition for strong evidence. Randomly assigning participants creates groups

that are probabilistically similar to each other on average. The effect of an intervention can

therefore be measured by the differences observed between the groups after the treatment

is administered (Cook et al., 2002). In the potential outcomes framework (Holland, 1986;

Rubin, 1974), an individual i, has two possible outcomes, Y [1]
i and Y [0]

i , which would result

from receiving the treatment condition and receiving the control condition, respectively.

The causal effect of treatment on an outcome for individual i, is the difference between that

individual’s two potential outcomes, i.e., (Y [1]
i −Y [0]

i ). The fundamental problem of causal
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inference is that both outcomes cannot be observed for the same individual at the same time

(Holland, 1986). Instead a participant only receives one treatment condition, and the coun-

terfactual condition (i.e., the treatment condition the participant does not receive) cannot

be observed. Therefore, the effect of treatment for an individual cannot be calculated.

Instead, the average treatment effect (ATE) for a population can be calculated as the ex-

pected value of the individual treatment effects, or

AT E = E{Y [1]−Y [0]}, (2.1)

which is the same as the difference between expected population outcomes under both

conditions, or

AT E = E{Y [1]}−E{Y [0]}, (2.2)

This calculation is possible because the counterfactual is estimated via the random selec-

tion and random assignment of participants (Murnane & Willett, 2010). However, some

circumstances can mitigate against the use of random assignment (see e.g., Cook, 2002, for

a review). For example, in education research, randomly assigning participants to treatment

conditions may not be ethical (e.g., withholding compensatory education program from at

need students) or be feasible (e.g., schools not willing to use different teaching programs

across classrooms). In these cases, an average treatment effect (ATE) can be estimated via

an alternative assignment mechanism, such as the one used in the RD design.

The RD design is the strongest method for estimating causal effects after RCTs (Cook,

2008; Cook et al., 2002), and the only non-randomized experimental design that has an

unbiased and consistent estimator (Rosenbaum, 1995; Shadish, 2011). Its usefulness as an
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alternative to RCTs is supported by several within-study comparisons which have shown

RD methods yield unbiased estimates of treatment effects comparable to those in RCTs

(Aiken, West, Schwalm, Carroll, & Hsiung, 1998; Berk, Barnes, Ahlman, & Kurtz, 2010).

2.2 The Regression Discontinuity Design

The RD design may be used in situations where participants are assigned to treatment

or control based on whether their value on a continuous variable exceeds a predetermined

cutoff value. To formalize the conventional RD model, let i = 1, . . . ,n indicate participants

in a sample of size n. For each participant i, let Yi be the observed outcome, Xi be the ORV,

which is measured prior to treatment, and Ti ∈ {0,1} be a deterministic function of the

RV such that (Ti = 0) indicates the participant received the control condition and (Ti = 1)

indicates the participant received treatment, based on where Xi falls in relation to a cutoff,

c (e.g., Ti = 1{Xi < c}). Generally, the conventional RD model can be expressed as

Yi = Ti f1(Xi)+(1−Ti) f0(Xi)+ εi, i = 1, . . . ,n, εi ∼ (0,σ2) (2.3)

where f1(x) is the expected outcome when a participant with an ORV value Xi = x receives

treatment, and f0(x) is the expected outcome when the participant does not receive treat-

ment. If both functions are linear, i.e., f1(x) = α0 +α1(x− c) and f0(x) = β0 +β1(x− c),

then Equation 2.3 reduces to

Yi = β0 +β1(Xi− c)+β2Ti +β3(Xi− c)Ti + εi, ε ∼ N(0,σ2), (2.4)

in which the intercept, β0, is the expected outcome score for individuals in the control

group with an ORV at the cutoff, β1 is the relation between the ORV and the outcome, β2

is the treatment effect, and β3 is the interaction between the RV and the treatment effect.
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A graphical illustration of Equation 2.4 appears in Figure 1.1. Recall that the vertical

line at the RV score of -0.5 represents the cutoff value above which participants are assigned

to treatment and below which they are assigned to the control group. A positive LATE

is seen by the jump upwards at the cutoff; this is the conceptualization of RD analysis

as a “discontinuity at a cutoff point” (Hahn, Todd, & Van der Klaauw, 1999), in which

the magnitude and direct of the jump is a measure of the ATE locally at the cutoff. RD

can also be characterized as local randomization (Cattaneo, Frandsen, & Titiunik, 2015;

D. S. Lee, 2008): Participants in an infinitesimal neighborhood of the cutoff point are

deemed identical on average, and consequently the difference observed in the outcome is

attributed to treatment.

Definition of the Treatment Effect

In the conventional RD model (Equation 2.4), it can be seen that E(Y [1]
i |Xi = c) =

limx↓c E(Yi|x) = β0 + β2 when the RV, Xi, approaches the cutoff c from above; similarly,

E(Y [0]
i |Xi = c) = limx↑c E(Yi|x) = β0 when the RV approaches c from below. Therefore, the

coefficient

β2 = lim
x↓c

E(Yi|x)− lim
x↑c

E(Yi|x) (2.5)

amounts to the ATE within the “subpopulation” identified by Xi = c, which is referred to

as the LATE (Hahn, Todd, & Van der Klaauw, 2001).

2.2.1 Assumptions of the RD Model

One critical assumption of the RD design is perfect adherence to the thresholding rule:

That is, the probability of receiving treatment changes perfectly from 0 to 1 at the cut-

off point (Hahn et al., 2001). This assumption can be checked via a visual inspection of

a graph, such as that in Figure 1.1, for discontinuities at places other than the cut-point
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and by formal hypothesis test (McCrary, 2008). Meeting this assumption requires perfect

adherence to the treatment assignment for all participants, i.e. all participants must be com-

pliers. This ideal case is often referred to as a “sharp” RD design. In contrast, when some

participants are defiers, it is typically referred to as a “fuzzy” RD design. Fuzzy RD de-

signs can occur when some treatment group members do not receive treatment while some

control group members do (Bloom, 1984; Bloom et al., 1997). While RD analyses can

still be performed under a fuzzy design by taking into account the effect of the defiers on

the estimated treatment effect (Bloom, 2012), the current work focuses on sharp RD only.

Note, the “sharp” label refers to the ORV only in both the conventional RD model and the

proposed models. The second assumption is that the relation between the RV and the out-

come variable is correctly specified (Hahn et al., 2001; Cook et al., 2002). This assumption

may be violated, for instance, if a researcher fails to model existing non-linearity in the

relation between the RV and the outcome. One way to address such an issue is to select

smaller bandwidths, within which the specified linear model is more likely to be a close ap-

proximation, at the expense of lowering the power to detect small effect sizes (see Section

2.2.2). The third assumption is that no other factor exists that might cause the discontinuity

at the cutoff point. This follows from the conceptualization of RD as local randomiza-

tion. If baseline characteristics of participants also contributes to the discontinuities, then

this assumption has been violated (D. S. Lee & Lemieux, 2010). In case of violation, one

could enter those baseline characteristics as additional covariates into the baseline model

and obtain adjusted LATE estimates.

Additionally, because conventional RD analysis is conducted using ordinary least squares

(OLS) estimation, the following assumptions are also made. It is assumed that the outcomes

is linearly related to the predictors, the error terms are normally distributed with a mean of

zero and are homoscedastic, (i.e., the variance of the error terms is not dependent on any

predictors), and observations are independent.
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2.2.2 Bandwidth Selection for RD Models

Although RD analyses can be conducted with the full sample of data, researchers often

prefer to select a smaller sub-sample such that the RV scores fall within a bandwidth around

the pre-specified cutoff value. This is especially beneficial when the functional form that

relates the outcome and RVs changes near the tails of the RV distribution. That is, even

when the relation is globally nonlinear, a linear model can still be a good approximation

in the neighborhood of the cutoff. Choosing a bandwidth involves a trade-off between 1)

introducing bias from a bandwidth that is too wide due to the failure of the linear approx-

imation and 2) losing precision from a bandwidth that is too narrow due to the limited

sample size. Furthermore, the use of bandwidths also limits the generalizability of the

treatment effect to only those with RV scores near the cutoff. There are many options for

choosing the optimal bandwidth (e.g., Bloom, 2012; G. Imbens & Kalyanaraman, 2012)

ranging from visual checks of graphs to empirical approaches.

A popular empirical approach is cross-validation (G. W. Imbens & Lemieux, 2008; D. S. Lee

& Lemieux, 2010), which compares the ability of the estimator to predict outcomes for

each sample observation at different bandwidth values. The bandwidth with the greatest

prediction power is chosen for the final model. While it is difficult to know that a chosen

bandwidth has reduced bias to an acceptable level, the more robust RD findings are in re-

lation to different bandwidths, the more confidence can be placed in them.

Another option, which also incorporates a check of the modeled functional form (see Sec-

tion 2.2.1) involves sequentially dropping different amounts of the outermost data and com-

paring the results to the original functional form (R. Jacob, Zhu, Somers, & Bloom, 2012).

Finally, G. W. Imbens and Lemieux (2008) also recommend testing different cutoff values.

Identifying other cutoff values that result in significant treatment effects would call into

question the validity of the results obtained with the original cutoff point.
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2.2.3 The Use of Covariates in RD Models

Including covariates in RD models has its root in viewing RD as an RCT in the vicinity

of the cutoff point (Cattaneo et al., 2015; D. S. Lee, 2008), as the use of covariates is regu-

larly employed in RCTs. Applied researchers often augment their RD models with covari-

ates in order to increase the precision of the LATE estimator. Covariates may also reduce

bias in the treatment effect estimator as they account for differences in observed characteris-

tics between participants above and below the cutoff (Frölich, 2007). A covariate-adjusted

LATE estimator is consistent with the standard RD treatment effect and results in more

valid inference under minimal assumptions. In sharp RD designs, the only requirement is

that covariates have equal conditional expectations above and below the cutoff point. If

an interaction between the covariate and RV is present, an extra assumption is required for

valid inference: The partial effect of the covariate on the potential outcome is homogenous,

which is hard to justify in practice (Calonico, Cattaneo, Farrell, & Titiunik, 2016).

In education research, common covariates include demographics such as gender, age, and

ethnicity, as well as assessment scores. For example, an investigation on the effect of finan-

cial aid offer on attending college (Van der Klaauw, 2002) included demographics, student

grades and standardized test scores as covariates. Similarly, Calcagno and Long (2008)

conducted their RD analysis both using covariates (i.e., demographics and a measure of

language proficiency) and not using covariates. Their results were very similar across both

methods, although, as expected, the standard errors were smaller when using the covariates.

2.2.4 Quantifying Generalizibility of Local Treatment Effect

In a conventional RD design the estimated LATE at the cutoff enjoys high internal

validity; however, the external validity, or generalizability, of the estimate to values away
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from the cutoff is limited. Bloom (2012) presents three views on the generalization of

RD findings from the “strict-constructionist” view, which holds that without additional

assumptions, the ATE is only identified for participants locally at the cutoff to the “more-

expansive” view, which suggests measurement error in the RV facilitates the generalization

of the LATE. Typifying this expansive view, Lee and Lemieux (2010) state the RD estimand

can be interpreted as a “ weighted [ATE] where the weights are directly proportional to the

ex ante likelihood that an individual’s realization of [the running variable] will be close

to the threshold.” They further state that the ex ante likelihood at the individual level is

not obtainable from a single measure of the RV. Extra information such as “reliability”, “a

second test measurement”, or “other covariates” that can predict the assignment is needed

to generalize the LATE to a larger population.

Note that item-level data from which the RV scores are calculated are analogous to

the “second test measurement”. Therefore, it is possible to estimate the probability den-

sity/mass of the RV at the individual level, which consequently opens up the possibility of

generalizing the LATE. Notably Angrist and Rokkanen (2015) proposed finding suitable

exogenous covariates conditional on which the RV and the potential outcomes are mean-

independent. Rokkanen (2015) established that the LV in the measurement model that

governs the ORV satisfies this conditional independence assumption and, consequently,

justified the generalizability of the LATE when a LV measurement model is explicitly and

correctly specified. The proposed LV modeling approach to RD analysis builds on the

“more-expansive” view of D. S. Lee and Lemieux (2010). Furthermore, it shares the same

feature with Rokkanen (2015) in that the LVs underlying the RV satisfy the necessary con-

ditional independence assumption of Angrist and Rokkanen (2015).
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2.2.5 Disentangling the Heterogeneity of the Treatment Effect

One goal in many applications of RD analyses is to examine whether the LATE in the

conventional RD model varies along additional variables. Harking back to D. S. Lee and

Lemieux (2010), the LATE can be expressed as a weighted average of individual treatment

effects across the entire population when the RV is not precisely measured. In other words,

measurement error, or equivalently, the latent construct behind the ORV, can be a source

of heterogeneity. However, D. S. Lee and Lemieux (2010)’s discussion was confined to

a simplistic additive error model and thus, albeit insightful, is not directly applicable to

structured measurement models, such as IRT models, in which the observed scores are

typically nonlinearly mapped onto the LV. To unravel the heterogeneity in the LATE due

to measurement error, it is crucial to fully specify a measurement model and empirically

confirm its compatibility with the observed data using fit assessments for factor-analytic

types of models, which have been extensively studied in the literature of psychometrics

(e.g. Bock & Aitkin, 1981; Browne & Cudeck, 1993; Maydeu-Olivares & Joe, 2005, 2006;

Rubin & Thayer, 1983).

2.2.6 Handling Measurement Error in Variables

Suppose that a study aims to evaluate a math tutoring program targeting at-risk high

school students. A reasonable choice of the RV may be the math midterm score. However,

because the midterm exam score is affected by the composition of test items, the score is not

generalizable beyond the particular test administration and can only be treated as a noisy

realization of true math proficiency. When the LATE needs to be estimated with respect

to math proficiency — a latent construct — we essentially run into an error-in-variable

problem.

It is known that measurement error under specific assumptions (e.g., linearity, additive,
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symmetric, normal, independent) results in attenuated correlations and regression coeffi-

cients (e.g., Spearman, 1904). Furthermore, random measurement error, which does not

follow these assumption, adds to the variability in the data and the size and magnitude of

the bias in parameter estimates can vary. However, measurement error in the ORV has

not been much discussed in the RD literature. This is likely because the bias in parameter

estimates is not a problem when the interpretation of the LATE is confined to the scale of

the ORV, instead of any latent construct underlying the ORV. Such interpretations could be

of interest when the ORV is measured without error, e.g., exact age, or if it is not of high

priority to generalize inferences about the treatment beyond the specific measurement of

the construct being used. In the later case, the usefulness of the proposed model mainly

resides in its convenience in probing the heterogeneity and generalizability of the LATE, as

previously discussed. However, when inferences need to be made with respect to the latent

construct, results from conventional RD analyses are not always valid.

The impact of measurement error on parameter estimates varies depending on which

variable in the RD model is compromised as well as how large the measurement error is.

First, it is known that measurement error in the outcome variable affects the standard errors

of regression coefficients — and thus subsequent inferences such as hypothesis tests and

confidence intervals. Second, measurement error in a predictor results in attenuated coeffi-

cient estimates for that predictor. Third, an error-contaminated covariate in the analysis of

covariance (ANCOVA) incurs invalid statistical inferences for the regression coefficients

of other (error-free) predictors (Carroll, Ruppert, Stefanski, & Crainiceanu, 2006). That is

to say, the LATE parameter is at risk in an RD analysis even if it is only the covariates that

are contaminated and the RV itself is free from measurement error.

Furthermore, as previously stated, measurement error can attenuate standardized effect

sizes. A standardized effect size (e.g., Cohen’s d) can be calculated by dividing the mean

difference between two groups (e.g., treatment and control group) by the pooled standard
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deviation of the groups. While measurement error will have no systematic effect on the

mean difference between the groups, it will increase the variability in the scores and, con-

sequently, increase the denominator in the standardized effect size calculation. This will

result in an attenuated standardized effect size, which misrepresents the effect of the inter-

vention being studied.

In addition to addressing issues related to measurement error, using LVs in RD analyses

further allows researchers to benefit from modern measurement theory (e.g., IRT). Firstly,

different forms of tests or instruments (e.g., Year 1 vs Year 2 exams) can be used to measure

the latent construct underlying outcomes, running variables or covariates. In such cases, the

LATE can be estimated when there are a subset of common items (i.e., anchor items) to link

the different forms. Secondly, the LV framework allows measurement parameters estimated

in previous studies to be reused in the current analysis, which increases the comparability

of LATEs across studies, as the LATE can be interpreted with respect to the universal scale

defined by the LVs. Finally, it is noted that factor-analytic techniques are typically used

to explore/confirm the underlying structure of the construct in test development. The LV

framework carries consistent definitions of the constructs to the subsequent RD analysis.

2.3 Latent Constructs as Predictors in RD Analyses

Many education interventions and programs target at-need groups. As such, they have

existing eligibility criteria with a threshold for receiving the intervention, making RD de-

signs a popular choice. Often these criteria are measures of latent constructs (e.g., math,

ability, motivation).

Latent constructs are measured by collecting data on response variables such as contin-

uous or categorical item responses. Responses on the items can be summed or averaged to

create observed variable scores, or the relation between the responses and the latent con-
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struct can be explicitly modeled to calculate LV scores (Thissen & Wainer, 2001) as in

the IRT framework. In each case, the variable scores represent a participant’s level of a

construct of interest. These scores can then be used as predictors or outcomes in subse-

quent models (e.g., as the RV in an RD model). In education research, proxies for latent

constructs are regularly used as RVs: School assessment scores (B. A. Jacob & Lefgren,

2004a; Chay et al., 2005; Chiang, 2009), entrance exam scores (Ding & Lehrer, 2007),

standardized test scores (B. A. Jacob & Lefgren, 2004b; Van der Klaauw, 2008), course

grades (Ou, 2010), and subject specific assessment scores (Goodman, 2008; Matsudaira,

2008).

Such RVs are especially popular in RD analyses of remedial education programs. Col-

leges will often give incoming students a “placement exam” to determine which level of

a course is most appropriate for each student. These exams, which use standardized tests

created by testing companies or individual universities, measure a latent construct (i.e.,

ability in a specified subject area). Thresholds for student placement are determined at the

state or college level, and the values are generally known by the students before taking the

exam. As such, students are sometimes able to negotiate placement in a course-level differ-

ent than their assessment score indicated. Consequently, the majority of studies in this area

are fuzzy RD designs which use the RD with instrumental variables approach to estimate

treatment effects by using the expected discontinuity as an instrument for the actual discon-

tinuity (Boatman, 2012; Boatman & Long, 2010; Calcagno & Long, 2008; Hodara, 2012;

Martorell & McFarlin Jr, 2011; Scott, 2015). In this way, a treatment effect is estimated for

compliers only, i.e., participants that received the treatment condition to which they were

assigned.

Moreover, placement criteria are often based on more than just the placement exam

score (e.g., faculty evaluation, other assessments, demographics). Melguizo, Bos, Ngo,

Mills, and Prather (2016) investigated the effect of a remedial math program on student
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achievement. In order to place students into a math course, a composite score was calcu-

lated for each student including score on the placement exam, scores on other assessments,

student demographics, and letters of recommendation. The researchers found that fewer

than five percent of the students were placed in a course different than the one their place-

ment exam score alone would have indicated. As such, they performed a standard RD

analysis based on the placement exam scores only and excluded the participants who were

not in the course their placement exam score indicated.

2.3.1 Estimation of RD models with Latent Predictors

As mentioned in Chapter 1, RD studies using latent constructs as predictors use a multi-

stage estimation approach, while only addressing the latter stage of the analyses (i.e., the

RD model). Recall that in order to measure latent constructs, data on response variables are

used to calculate either observed variable score or LV scores. In both cases, these scores

are then used as the RV in an RD model. However, calculating LV scores with one model

and using those scores in a second model may still result in misleading conclusions as the

estimated LV scores are erroneously treated as known quantities in the second stage of

estimation (Bollen, 1989; Skrondal & Laake, 2001). Consequently, estimating the relation

among observed response variables, latent constructs, and outcomes should be conducted

in one stage of estimation whenever feasible. While there has been a move in many fields

towards a one-stage LV modeling framework (e.g., Bartholomew & Knott, 1999; Muthén,

2002; Rabe-Hesketh & Skrondal, 2004; Kaplan, Kim, & Kim, 2009), such a move has not

been explored in the RD literature.
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2.3.2 A Single-Level Latent RD Model

In this section, I first present a simple form of single-level RD analysis with a latent

variable that is measured by the observed assignment variable, then illustrate how the gen-

eralizability and heterogeneity of the LATE can be examined and quantified with respect

to observed RV scores by estimating the two regression lines with respect to the latent

regressor.

A Single-level Latent Regression Discontinuity Model

When it is of interest to estimate the LATE with regards to a latent running variable θr,i,

the observed running variable Xi in the conventional RD model (Equations 2.3 and 2.4) is

replaced by θr,i, which yields:

Yi = Ti f1(θr,i)+(1−Ti) f0(θr,i)+ εi

and

Yi = β0 +β1θr,i +β2Ti +β3θr,iTi + εi, i = 1, . . . ,n. (2.6)

While Yi, εi, f1(·), f0(·), and the regression coefficients are defined in the same fashion as in

Equation 2.4, the treatment indicator Ti, however, cannot be simply defined as 1{θr,i ≥ c},

because θr,i is not observed and thus cannot be used for assigning participants into treatment

versus control groups. Let θ̂r,i be an observed “proxy” of θr,i, such as the summed score or

a factor score. Note that θ̂r,i and θr,i may not be on the same scale. There is measurement

error when the conditional distribution of θ̂r,i given θr,i is non-degenerate for some θr,i. We

can define Ti = 1{θ̂r,i ≥ c} and proceed with treatment assignment. The LATE at θr,i is

defined as LATE(θr,i) = β2 +β3θr,i.

Suppose that the latent running variables θr,i, i = 1, . . . ,n, are i.i.d. N(0,1), each of
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which is manifested by a collection of observed response variables Xik,k = 1, . . . ,K. A

measurement model characterizes the dependency of Xik on θr,i. For example, a dichoto-

mous Xik, i.e., Xik ∈ {0,1}, can be generated from a two-parameter logistic model (2PL;

Birnbaum, 1968):

P{Xik = 1|θr,i;ak,ck}=
exp(akθr,i + ck)

1+ exp(akθr,i + ck)
, (2.7)

in which ak and ck denote the item slope and intercept parameters for item k, respectively.

Similarly, the linear-normal factor analysis model can be used for continuous response

variables, and the nominal response model can be used for nominal item responses.

An Illustrative Example

The linear, latent RD model (Equation 2.6) and its connection with the conventional

RD model are illustrated in Figure 2.1. Binary item responses to 16 items were generated

from a 2PL model. Summed scores are used as θ̂r,i, and the treatment indicator is defined

as Ti = 1{θ̂r,i ≥ 6}. The reliability coefficient alpha is approximately 0.85 under the data

generating model, which is often regarded as “sufficiently high.” While the conventional

RD theory requires a continuous RV, in practice discrete RVs such as integer-valued test

scores, as in this example, are often used.

By the tower property of conditional expectation, E(Y [g]
i |θ̂r,i)=E[E(Y [g]

i |θr,i, θ̂r,i)|θ̂r,i],g=

0,1, which further equals to E[E(Y [g]
i |θr,i)|θ̂r,i] assuming conditional independence between

potential outcomes, Y [g]
i , and the ORV, θ̂r,i, given the LRV, θr,i. Consequently, the LATE in

the conventional RD can be reinterpreted as

E(Y [1]
i |θ̂r,i = c)−E(Y [0]

i |θ̂r,i = c). (2.8)
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with the assumption that P{θ̂r,i = c}> 0.

The conditional expectations in Equation 2.8 are taken with respect to the posterior

distribution of the LRV, θr,i, given the ORV, θ̂r,i, which is governed by the measurement

model parameters (e.g., ak’s and ck’s in the 2PL model); hence, the LAT E(θ̂r,i) is essen-

tially E(LAT E(θr,i)|θ̂r,i = c), a posterior average of the LATE with respect to the LRV

(θr,i). In the top panel of Figure 2.1, the quantities E(Y [1]
i |θ̂r,i) and E(Y [0]

i |θ̂r,i) are dis-

played as circles connected by solid lines. Note that those expected values computed from

the latent RD model are not necessarily aligned with the fitted values from the conventional

RD model (dashed lines), even at the cutoff value. The difference is traced to model mis-

specification as well as extrapolation on the left-hand side of the cutoff due to a discrete θ̂r,i.

The latent RD model reveals the heterogeneity intrinsic to the LATE at the cutoff θ̂r,i = c

as illustrated in the second panel of Figure 2.1 where the shaded area represents the middle

90% of the posterior distribution of the LRV at the cutoff. A range of the LATE for this

middle 90% of participants with an ORV at the cutoff θ̂r,i = 6 can be calculated as

[LAT Eq.05,LAT Eq.95 ] = f1(θr,i)− f0(θr,i) : θr,i ∈ [q.05,q.95], (2.9)

where q.05 and q.95 are the 5th and 95th quantiles of the posterior distribution for individ-

uals with an ORV at the cutoff. A range of the LATE at other quantiles of the LRV at the

cutoff can also be computed.

Note, the RD design has perfect separation of treatment and control groups at the cutoff

on the ORV (top panel of Figure 2.1) but imperfect separation on the LRV (bottom panel

of Figure 2.1). The nonempty intersection between the two groups’ LV ranges allows us to

generalize the LATE to an interval of LV values. For example, the ATE within the ±1 unit
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interval around the cutoff θ̂r,i = c, which we will refer to as AT Ec±1, can be calculated by,

AT Ec±1 = E[ f1(θr,i)− f0(θr,i)|θ̂r,i] ∈ [c−1,c+1] (2.10)

As with Equation 2.8, it is assumed that P{θ̂r,i ∈ [c−1,c+1]}> 0.

The imperfect separation between treatment and control observed in the bottom panel

of Figure 2.1 also resembles a “fuzzy” RD design. This is a feature of the latent RD model.

While the design is a sharp RD with respect to the ORV (top panel), it will always be a

fuzzy RD with respect to the LRV. Furthermore, the separation in the bottom panel does

not conform to any additive measurement error model and thus cannot be interpreted as a

simple randomization in the neighborhood of the cutoff θ̂r,i = c (e.g., D. S. Lee & Lemieux,

2010). The validity of the generalized LATE is contingent upon the goodness-of-fit of the

parametric latent RD model. As with conventional RD analysis, a simple parametric form

(e.g., linear model) often approximates the data generating model better when the ORV

values are restricted to a narrower bandwidth.

The LATE with respect to the ORV can also be computed at ORV values away from

the cutoff (see the top panel of Figure 2.1) by replacing c with the desired ORV value in

Equation 2.8. Furthermore, an ATE can be calculated with respect to a range of LRV values

only. For example, the ATE among the bottom p% of participants in the population of the

latent construct can be calculated as,

AT Ep =

∫ zp
−∞

(
f1(θ)− f0(θ)

)
φ(θ)dθ∫ zp

−∞ φ(θ)dθ
(2.11)

where zp is the pth quantile of the standard normal distribution (i.e., the distribution of the

LRV).

Morell, Yang, and Liu (2019) explored the performance of the a single-level latent

30



RD model with a latent RV, latent covariate, and latent outcome. They found the model

parameters were well recovered with short (5-item) and moderate (15-item) test lengths

using sample sizes of 500 and 1000.

Additional Assumptions of the Latent Regression Discontinuity Model

Besides applying the conventional RD assumptions (see Section 2.2.1), the latent RD

model (Equation 2.6) requires the following additional assumptions.

First, the measurement model is assumed to be correctly specified, rendering the LATE

with respect to the latent variable meaningful. While the assumption is somewhat strong, its

validity can be assessed by various model fit diagnostics developed for factor analysis and

IRT models (e.g., Bentler, 1990; Browne & Cudeck, 1993; Joe & Maydeu-Olivares, 2010;

Y. Liu, Yang, & Maydeu-Olivares, 2019a; Y. Liu & Maydeu-Olivares, 2014; Maydeu-

Olivares & Liu, 2015; Maydeu-Olivares & Joe, 2005, 2006).

Second, the latent construct being measured is assumed to be the sole cause of the

discontinuity.

Third, independence of potential outcomes Y [g]
i , g = 0,1, and the observed score θ̂r,i

conditional on the latent assignment variable θr,i is assumed. In other words, the association

between Y [g]
i and θ̂r,i is fully explained by θr,i. Statistics based on residual cross-product

moments, similar in spirit to Y. Liu and Maydeu-Olivares (2014), can be utilized to formally

test conditional independence.

Fourth, normality and homoscedasticity of the error terms εi, i = 1, . . . ,n, is assumed

because parameters in the latent RD model are typically estimated by ML. These distribu-

tional assumptions on the error terms can be examined via residual analysis analogous to

that in mixed-effects regression.
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2.4 Modeling Data Collected in Multilevel Settings

The sampling design often used in education settings is typically not simple random

sampling in which independent samples are drawn from a single-level population of par-

ticipants. Instead, cluster sampling, in which clusters (e.g., school districts, schools, class-

rooms, etc.) are first sampled and then participants (e.g., teachers, students) are randomly

drawn within each sampled cluster, is more common. Studies of interventions or programs

conducted in multilevel settings can be classified into two general types (Seltzer, 2004).

In the block design, sampling occurs at the block (or cluster) level and individuals within

the same block are assigned to treatment versus control groups (e.g., the effect of an in-

tervention on student achievement is studied by sampling schools and assigning students

within the schools to treatment or control). In the randomized cluster design, clusters them-

selves are assigned to different treatment conditions (e.g., all students in a school receive

the intervention and all students in another school receive the control condition).

Data collected from such designs provide researchers with both benefits and challenges.

While researchers can explore research questions that could not be answered with data col-

lected via simple random sampling, standard modeling techniques cannot be used with

clustered data due to assumption violations. Individuals within a cluster may be more sim-

ilar to each other compared to individuals within a different cluster. Such data violate the

assumption of independence of observations necessary for conducting common statistical

analyses (e.g., ordinary least squares regression), which can result in underestimated stan-

dard errors of regression coefficients and, consequently, inflated Type-I error rates (Hox,

Moerbeek, & Van de Schoot, 2017; Raudenbush & Bryk, 2002; Singer, Willett, Willett, et

al., 2003). When cluster sizes are medium to large, even small dependencies in the data will

result in large biases in the standard errors (Walsh, 1947). Historically, such data was an-

alyzed by either aggregation (i.e., analyzing the data at the cluster level) or disaggregation
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(i.e., ignoring the nested structure of the data) and using standard regression or analysis of

variance methods. However, analyzing data from different levels (i.e., individual-level and

cluster-level) at a common level results in both statistical and conceptual problems.

The statistical problems include a loss of power and inflation of the Type-I error rate.

When data are aggregated, individual-level data are combined (e.g., averaged) to make

fewer cluster-level units. Consequently, individual-level information is lost and the sta-

tistical analysis loses power. Conversely, when data are disaggregated, the information

cluster-level data is amplified, and a few cluster-level units are treated as a large number

of individual-level units. The true sample size for these variables is the number of cluster-

level units; using the sample size at the disaggregated individual-level results in spurious

significant results for standard statistical tests (Hox et al., 2017; Snijders & Bosker, 2012).

The conceptual problems occur when a researcher analyzes the data at one level but

makes conclusions at a different level. The ecological fallacy occurs when aggregated data

is interpreted at the individual level. For example, examining the relation between family

income and school achievement and concluding students from wealthy families will per-

form better in school. The relation between variables estimated at the cluster-level will be

stronger than the relation that exists at the individual level (Robinson, 1950). Similarly,

analyzing disaggregated data and making inferences at the cluster-level results in the atom-

istic fallacy. For example, examining the relation between numbers of hours students spend

on homework and student achievement and concluding if schools required more hours of

homework, their students would have better academic outcomes (Hox et al., 2017).

In order to avoid these statistical and conceptual problems when analyzing clustered

data, any dependency of observations must be accounted for using statistical methods.

These can be grouped into two categories: design-based methods (Neyman, 1934), which

use single-level models that adjust the standard errors of parameter estimates (e.g., re-

gression coefficients) to accommodate violations of the assumption of independence of
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observations, and model-based approaches (Fisher, 1955), which include the data cluster-

ing in the analytic model. Deciding between the two approaches is based on the research

questions of interest (Bauer & Sterba, 2011; Stapleton, McNeish, & Yang, 2016).

Design-based approaches are appropriate when research questions do not address dif-

ferences across clusters (e.g., "Does the intervention have an effect on student achieve-

ment?") and the researcher’s concern is getting appropriate estimates of the standard errors

of the model parameters. Such methods include generalized estimating equations (Liang

& Zeger, 1986), linearization (Binder & Roberts, 2003), and resampling methods such

as jackknife and bootstrapping (Efron, 1960). These methods have been shown to ade-

quately adjust standard errors under a variety of sampling conditions (Heeringa, West, &

Berglund, 2017; McNeish, 2014; McNeish, Stapleton, & Silverman, 2017). Furthermore,

they have the added benefit of being simpler to implement and interpret than model-based

approaches.

The model-based approach, i.e., fitting a multilevel model, also called a “hierarchical

linear model” (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), a “mixed-effects”

or “mixed linear model” (Littell, Henry, & Ammerman, 1998), and a “random coefficient

model” (Kreft & De Leeuw, 1998), is appropriate when researchers are interested in the

relation between cluster level characteristics and individual level outcomes (e.g., "Does

the effect an intervention has on student achievement differ by clusters?"). Multilevel re-

gression allows for unobserved heterogeneity in the outcome to be modeled via random

intercepts and unobserved heterogeneity in the effects of predictors on the outcome to be

modeled as random slopes (Rabe-Hesketh & Skrondal, 2004).

The current study focuses on multilevel modeling approaches to handling clustered

data to the exclusion of design-based approaches as it aims to provide a tool for researchers

with complex research questions that require multilevel RD models. The rest of this sec-

tion describes the multilevel modeling framework, assumptions of multilevel models, and
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important modeling decisions.

The multilevel regression model assumes the use of a hierarchical data set with indi-

viduals, i, nested in clusters, j, an outcome variable measured at the individual level, and

predictors included at both levels:

Yi j = β0 j +β1 jX1i j +β2X2i j + εi j (2.12)

In this model, the intercept, β0 j and the regression slope β1 j each have a j subscript, as

it is assumed these coefficients vary across clusters. These coefficients are referred to as

the random intercept and a random slope, respectively. In contrast, β2, does not have a

subscript j and is not assumed to vary across clusters. The regression coefficients can be

fixed or allowed to vary depending on the hypothesized model. Note εi j is the error term

at the individual level and has a variance of σ2. Equation 2.12 is referred to as a “level 1

equation.” The corresponding level 2 equations are

β0 j = γ00 +u0 j (2.13)

β1 j = γ10 + γ11Z j +u1 j

β2 = γ20

The u0 j and u1 j are random residual error terms at the cluster level. More random effects,

u j terms, can be added to the model based on the research question. The variance of u0 j and

u1 j are specified as τ2
0 and τ2

1 , respectively; the covariance between the terms is specified

as τ01. Note that the γ terms do not have j subscripts and are not assumed to vary across

clusters; they are referred to as fixed coefficients. Finally, Z j is a predictor at the cluster

level and therefore does not have an i subscript. The level 1 (Equation 2.12) and level 2
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(Equation 2.13) models can also be expressed as a combined model:

Yi j = γ00 +u0 j + γ10Z jX1i j +u1 jX1i j + γ20X2i j + εi j. (2.14)

Note the cross-level interaction between the level-1 predictor X1i j and the level-2 predictor

Z j. This is an additional benefit, and complication, of multilevel modeling. Cross-level

interactions allow researchers to examine if a relation at a lower level, e.g., the relation

between student motivation and student outcomes, depends on a predictor at a higher level,

e.g., classroom size; however, the interpretation of a cross-level interaction is complicated

by centering decisions, which is discussed in more detail below (see Section 2.4.2). The

combined form of the model also illustrates how the variance in the outcomes is decom-

posed as variance between (τ0) and variance within (σ2)clusters, which results in unbiased

estimates of the standard errors of regression coefficients (Snijders & Bosker, 2012; Rau-

denbush & Bryk, 2002; Hox et al., 2017). We can further calculate the ratio of variance

between clusters to the total variance, which is called the intraclass correlation (ICC).

ρ =
τ0

τ0 +σ2 (2.15)

The ICC estimates the proportion of the total variance explained by the clustering struc-

ture in the population; it can also be interpreted as the expected correlation between two

randomly drawn units from the same cluster (Hox et al., 2017). In practice, this value is

calculated based on an intercept-only model, rendering each variance term the unexplained

variance at each level. After adding predictors to the model, the proportion of variance ex-

plained, R2, can be calculated as in single-level regression; however, as there are multiple

levels, an R2 is calculated at each level.
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The proportion of variance explained at level-1 is (Raudenbush & Bryk, 2002):

R2
1 =

σ2
b −σ2

m

σ2
b

(2.16)

where σ2
b is the residual variance at the individual level for the baseline model (intercept-

only model) and σ2
m is the individual level residual variance for the comparison model.

Similarly, the The proportion of variance explained at level-2 is (Raudenbush & Bryk,

2002):

R2
2 =

τ0|b− τ0|m
τ0|b

(2.17)

where τ0|b is the residual variance at the cluster level for the baseline model and τ0|m is the

cluster level residual variance for the comparison model.

2.4.1 Assumptions of Multilevel Models

The assumptions of multilevel models are as follows. The residual errors at level 1,

εi j are assumed to be independent and normally distributed with mean 0 and variance σ2

for every level-1 unit i within each cluster, j, i.e., the variance of the level-1 residuals

is assumed to be the same in each cluster. To test the assumption, residuals at level 1

should be checked for normality and for a constant variance across level-1 predictors. The

predictors at level 1 are independent of εi j and level-2 predictors are independent of u j.

Note that independence between omitted predictors and the residual error terms cannot be

tested, although, residuals can be plotted against variables not included in the model to

examine if there is a relation between the two. The random error terms at level 2, u j have a

multivariate normal distribution with mean 0 and a constant covariance matrix. The random

error vectors are independent among level-2 units. This assumption can be by checking the

distribution of the level-2 residuals. The error terms at level 2 are independent of the error
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terms at level 1, and the predictors at each level are uncorrelated with the random effects at

the other levels.

2.4.2 Centering Predictors

A key decision for researchers using multilevel modeling is how to enter predictors into

the model, e.g., uncentered, centered at the mean, centered at a meaningful value. Center-

ing a predictor is subtracting a constant, often the mean, from every value of a variable.

This scaling changes the interpretation of the intercept in both single-level and multilevel

models. For example, if every predictor is centered at its mean, the intercept is interpreted

as the expected value of the outcome when all predictors have their mean values. This is

particularly useful when a value of zero for a predictor is not meaningful. In multilevel

regression, centering also changes the interpretation of the variances of the intercept and

slopes. Furthermore, in addition to being uncentered or centered at a meaningful value,

predictors in multilevel regression can be centered at their overall mean, i.e., grand mean

centering, or at their cluster-level means, i.e., group mean centering.

While group mean centering has been recommended by Raudenbush and Bryk (2002)

and Enders and Tofighi (2007), under certain conditions, and entering predictors uncentered

or centered at a meaningful value can be useful depending on the scale of the predictors

and the research question (Hox et al., 2017), grand mean centering is generally the most

popular and highly recommended approach (Bickel, 2007; Enders & Tofighi, 2007; Hox

et al., 2017; Kelley, Evans, Lowman, & Lykes, 2017; Kenny, Kashy, Bolger, et al., 1998;

Paccagnella, 2006). Grand mean centering allows for ease of interpretation as the inter-

cept and variance components are interpreted as the expected values when all predictors

equal their means. Furthermore, a model with all predictors mean-centered is equivalent

to the uncentered model. In contrast, a model with group mean centered predictors is
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not equivalent to its uncentered (or grand mean centered) counterpart (Enders & Tofighi,

2007; Paccagnella, 2006). This is because instead of subtracting a single value from all

raw scores, different values are subtracted depending on the cluster, which consequently

removes information about between-cluster differences from the model.

As previously stated, the centering decision also has implications for interpreting cross-

level interactions. Modeling interactions in multilevel analysis is not as straightforward as

in single-level analysis. When there is a significant interaction effect in the model, the

effect of the coefficient for the interaction and the coefficients for the direct effects of the

predictors in the interaction must be interpreted as a system (Aiken, West, & Reno, 1991;

Jaccard, Wan, & Turrisi, 1990). That is, the regression coefficients of the direct effects have

different meaning in the presence and absence of a significant interaction effect. When the

model includes an interaction, the regression coefficient of each of the predictors in the

interaction is interpreted as the expected value of that regression slope when the other

predictor is equal to zero (Hox et al., 2017).

Centering decisions for latent predictors can also affect model parameter estimates.

Entering latent predictors at level-1 as uncentered or using grand mean centering can result

in attenuated interaction effects at level 1, while group mean centering can attenuate level-

2 interaction effects (Ryu, 2012). In contrast, group mean centering at level 1 and grand

mean centering at level 2 is preferred (Asparouhov & Muthén, 2019).

2.4.3 RD Designs in Multilevel Settings

RD in multilevel settings, generally referred to as “multilevel RD,” can also described

using Seltzer (2004) taxonomy. The RD counterpart to the randomized cluster design is the

hierarchical RD (HRD; see Rhoads & Dye, 2016) design, in which the RV is measured at a

higher level and the outcome variable is measured at a lower level. An example would be a
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Table 2.1: Multilevel RCT and RD Designs
Design Design Features

Cluster-Level
Assignment

RCT Level 2 units are randomly assigned to
treatment or control

RD Running variable is measured at level 2
and outcome is measured at level 1

Individual-Level
Assignment

RCT Level 1 units (within each level 2 unit)
are randomly assigned to treatment or control

RD Running variable and outcome are measured
at level 1

study in which schools are eligible for an intervention based on the percentage of students

with a below grade-level reading score, and the success of the intervention is measured

by student achievement. The treatment assignment happens at the school level, while the

outcomes are measured at the student level. The block design in RD is called a multisite RD

(MRD; see Rhoads & Dye, 2016) design. In the MRD design, the RV must be measured

at the same level as the outcome, but participants exist in clusters which are treated as

random effects. For example, a study in which students district-wide are eligible for a

tutoring program based on their scores on an assessment, and the effect of the program is

measured by student achievement, is a two-level MRD. These designs are summarized in

Table 2.1. Furthermore, multiple RVs can be used (e.g., Wong, Steiner, & Cook, 2013), the

RVs can exist at both levels (e.g., school eligibility and student eligibility), and the cutoff

can vary by cluster; this work focuses on the single RV scenarios in which either school or

student level cutoff is used to assign treatment.

The conventional HRD and MRD models using observed variables are presented below.
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The Observed Variable HRD Model

Level 1: Yi j = β0 j +β1 j(Xr,i j−Xr, j)+β2 j(Xc,i j−Xc, j)+ εi j, (2.18)

Level 2: β0 j = γ00 + γ01Tj +u0 j, (2.19)

β1 j = γ10 + γ11Tj,

β2 j = γ20,

The equivalent combined equation is

Yi j = γ00+γ10(Xr,i j−Xr, j)+γ01Tj+γ11(Xr,i j−Xr, j)Tj+γ20(Xc,i j−Xc, j)+u0 j+εi j, (2.20)

in which Yi j is the observed outcome variable, Xr,i j is the ORV and Xc,i j is the observed

covariate, Xr, j and Xc, j are the group means for the ORV and the observed covariate. γ00

is the mean for the control clusters, γ10 is the relation between the ORV and the outcome

variable, γ01 is the LATE, γ11 is the interaction between the ORV and the treatment, γ20

is the relation between the observed covariate and the outcome, εi j ∼ N(0,σ2), and u0 j ∼

N(0,τ2
0 ).
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The Observed Variable MRD Model

Level 1: Yi j = β0 j +β1 j(Xr,i j−Xr, j)+β2 jTi j +β3 j(Xr,i j−Xr, j)Ti j +β4 j(Xc,i j−Xc, j)+ εi j

(2.21)

Level 2: β0 j = γ00 +u0 j (2.22)

β1 j = γ10

β2 j = γ20 +u2 j

β3 j = γ30

β4 j = γ40

The equivalent combined equation is

Yi j = γ00+γ10(Xr,i j−Xr, j)+γ20Ti j+γ30(Xr,i j−Xr, j)Ti j+γ40(Xc,i j−Xc, j)+u0 j+u2 jTi j+εi j,

(2.23)

in which Yi j is the observed outcome variable, Xr,i j is the ORV and Xc,i j is the observed

covariate, Xr, j and Xc, j are the group means for the ORV and the observed covariate. γ00

is the mean for the control clusters, γ10 is the relation between the ORV and the outcome

variable, γ20 is the LATE, γ30 is the interaction between the ORV and the treatment, γ40

is the relation between the observed covariate and the outcome, εi j ∼ N(0,σ2), and and

(u0 j,u2 j)
T ∼ N(0,T) where

T =

 τ2
0 τ20

τ20 τ2
2

 .
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2.5 Regression Discontinuity Model Estimation

2.5.1 Multi-Stage Estimation

The studies presented in this chapter use a two stage estimation approach where scores

for the latent constructs are obtained either by observed variable methods, such as summing

or taking the average of item responses, or by latent variable methods, such as obtaining ex-

pected a posteriori scores, maximum a posteriori scores, or ML scores from an IRT model.

The scores obtained from any of these methods are then used in the RD model, which is es-

timated using ordinary least squares regression. However, using observed variable methods

to calculate assignment variable scores does not account for the measurement error in the

scores, which can attenuate model parameter estimates (Spearman, 1904). While calculat-

ing LV scores is a more appropriate method, the direct use of such LV scores in subsequent

statistical analyses can result in biased estimates of model parameters and standard errors

(Hoijtink & Boomsma, 1995; Lu, Thomas, & Zumbo, 2005; Mislevy, Johnson, & Muraki,

1992). This occurs because the sampling variability in the estimated LVs is not carried

over into the structural model. Instead, the LVs are treated as known values, which results

in an underestimation of standard errors and biased parameter estimates. Popular methods

to address this limitation in using LV scores include the use of plausible values (Mislevy,

1984, 1985; Mislevy & Sheehan, 1983; Yang & Seltzer, 2015) and adjusting the standard

errors of parameter estimates (Y. Liu, Yang, & Maydeu-Olivares, 2019b; Wang, Weiss, &

Su, 2019). However, as previously discussed, a one-stage estimation framework in which

the relation between the latent construct and the observed item responses is estimated at

the same time as the RD treatment effect is the preferred approach.
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2.5.2 Single-Stage Estimation

One class of single-stage estimation approaches, fully Bayesian estimation, draws sam-

ples that target the posterior distribution via Markov chain Monte Carlo (MCMC) proce-

dures. Such approaches to the RD design have been widely developed in the econometrics

methodological literature (D. S. Lee & Card, 2008; Rau, 2011; Branson, Rischard, Bornn,

& Miratrix, 2019; Karabatsos & Walker, 2015; Geneletti, Ricciardi, OâĂŹKeeffe, & Baio,

2019). Fully Bayesian estimation has been used in estimating the effect of school atten-

dance (Chib & Jacobi, 2016; Li, Mattei, & Mealli, 2015b), employment (Lalive, 2007),

and access to health care (Venkataramani, Bor, & Jena, 2016; Vandenbroucke & Le Cessie,

2014; Cawley & Talbot, 2006). While a Bayesian estimation approach can be used with

the proposed models, there are two limitations that make its implementation less desirable.

First, in the proposed models response patterns are used to estimate measurement model

parameters. When there are item responses that are not observed in the data, Bayesian es-

timation will be inappropriate. Second, the use of MCMC estimation requires many deci-

sions (e.g., selection of prior distributions, determination of “burn-in” period, convergence

diagnostic of chains). As education researchers tend to be less familiar and less comfortable

with Bayesian estimation approaches, their use in estimating the proposed models makes

the adoption of the proposed models more cumbersome.

Single-stage frequentist estimation approaches can be categorized broadly into limited-

information and full-information methods. When used with categorical data, as in the

current study, limited-information methods can be less burdensome to estimate. This is be-

cause these methods utilize a contingency table instead of individual item response, so that

only the univariate and bivariate margins are used. However, this computational ease is at

the cost of omitting the higher-order associations that exist among item responses, making

full-information estimation the preferred method (Maydeu-Olivares & Joe, 2005). Full-

44



information estimation methods utilize all available response data, which has the added

advantage of being a model-based approach to handling missing data (see e.g., Enders,

2010).

However, the use of full-information estimation in multilevel LV modeling with cate-

gorical response data presents computational difficulties that can quickly make such estima-

tion of the model infeasible. Popular full-information estimation schemes in LV modeling,

such as marginal ML with the expectation maximization (EM; Bock & Aitkin, 1981) al-

gorithm, rely on high-dimensional numerical integration of the LVs by use of quadrature

points. This makes them subject to the “curse of dimensionality” (Bellman, 1957) whereby

the number of quadrature points needed increases exponentially as a function of the number

of LVs in the model. For example, a model with 5 LVs, where each dimension is integrated

by 11 quadrature points, results in 115 = 161,051 quadrature points.

As the limitation of implementing these algorithms in high-dimensional LV models

is the number of quadrature points needed, alternative algorithms were developed so that

fewer nodes would be needed for estimation. One such alternative, adaptive quadrature

rules (Q. Liu & Pierce, 1994; Naylor & Smith, 1982), strategically places quadrature nodes

under areas of the LVs’ posterior distribution with higher density. This allows fewer quadra-

ture nodes to achieve comparable estimates to fixed quadrature point approaches. While

adaptive quadrature rules may allow for a larger number of LVs than marginal ML with

EM methods, it is still limited by the number LVs that can be estimated in a model. A sec-

ond alternative algorithm scheme is the Monte Carlo expectation maximization algorithm

(Meng & Schilling, 1996), which uses sampling to obtain quadrature points. However, as

parameter estimates near the ML, Monte Carlo EM requires an increasingly large number

of random draws (Cai, 2010a, 2010b; Gu & Kong, 1998), resulting in a similar limitation

to marginal ML estimation via the EM algorithm.

The Metropolis-Hastings Robbins-Monro (MH-RM) algorithm was developed as an
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alternative to these algorithms, and it has been implemented in a context similar to the cur-

rent work to estimate contextual effects through nonlinear multilevel latent variable models

(Yang & Cai, 2014). In the next section, I describe the general principles of this algorithm.

2.5.3 The MH-RM Algorithm

Let f be the general symbol for probability density/mass functions and ξ be all the

parameters in the measurement and structural models. The ML estimator of ξ can be ob-

tained by maximizing the log-likelihood function log f (X,Y|ξ ), where X is the observed

“predictor-side” data and Y is the observed “outcome-side” data. Because of the high-

dimensional integrations involved in the likelihood function, the MH-RM algorithm is used,

which is a stochastic counterpart of the Newton-Raphson type algorithm. The MH-RM al-

gorithm approximates the observed data likelihood by first using Fisher’s Identity for data

augmentation via a Metropolis-Hastings (MH; Hastings, 1970; Metropolis, Rosenbluth,

Rosenbluth, Teller, & Teller, 1953) sampler and then employs the Robbins-Monro (RM;

Robbins & Monro, 1951) stochastic approximation algorithm. Because the MH-RM algo-

rithm does not use numerical integration, it allows for a large number of latent variables to

be modeled simultaneously. As such, the proposed model can still be estimated with little

added complexity in the case of multidimensional latent variable predictors or the inclusion

of several additional latent covariates.

Each iteration, t = 1, . . . ,T , of the MH-RM algorithm consists of three steps: Stochastic

Imputation, Stochastic Approximation, and Robbins-Monro Update.

Step 1: Stochastic Imputation. Let Z collect all random effects, latent RVs (LRVs)

and latent covariates, which form the “missing data”. These random effects and latent

variables are drawn from a Markov chain that targets the posterior predictive distribution of
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missing data given the observed data (X,Y), i.e., f (Z|X,Y,ξ (t)), where ξ (t) is the current

estimates of model parameters at iteration t : t = 1, . . . ,T . At each iteration, Mt sets of

complete data are formed as follows:

{Y,X,Z(t+1)
m ;m = 1, . . . ,Mt} (2.24)

Step 2: Stochastic Approximation. The gradient vector of the complete data log-

likelihood function is defined as:

s(ξ |Y,X,Z) =
∂

∂ξ
log f (Y,X,Z|ξ ). (2.25)

By Fisher’s (1925) identity, the gradient of the observed data log-likelihood is the ex-

pectation of s(ξ |X,Y,Z) over the posterior distribution f (Z|X,Y,ξ ), that is,

∂

∂ξ
log f (X,Y|ξ ) =

∫
s(ξ |X,Y,Z) f (Z|X,Y,ξ )dZ. (2.26)

Equation 2.26 evaluated at ξ
(t) gives the direction of steepest ascent. For LV models, direct

evaluations of the observed data gradient is computationally expensive, if not completely

infeasible. Nevertheless, given a set of imputed missing data Z(t+1)
m , m = 1, . . . ,Mt , Equa-

tion 2.26 suggests the following Monte Carlo estimates of the observed data gradient:

s̃t+1 =
1

mt

Mt

∑
m=1

s(ξ (t)|Y,X,Z(t+1)
m ). (2.27)

s̃t+1 gives a noise-corrupted version of s(ξ (t)|X,Y).

Step 3: Robbins-Monro Update. A recursive approximation of the conditional expec-

tation of the complete-data information matrix at the (t+1)th iteration (e.g., Cai, 2008; Gu
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& Kong, 1998) is computed as:

Γt+1 = Γt +gt

[
1

Mt

Mt

∑
m=1

H(ξ (t)|X,Y,Z(t+1)
m )−Γt

]
, (2.28)

where the complete data information matrix is

H(ξ |X,Y,Z) =− ∂ 2

∂ξ ∂ξ
′ log f (ξ |X,Y,Z). (2.29)

Parameters are updated recursively:

ξ
(t+1) = ξ

(t)+gtΓ
−1
t+1s̃t+1, (2.30)

in which gt ;t > 1 is a decaying sequence of gain constants, which can be defined to filter

out noise across iterations. In practice, different gain constants are used in different stages

of the MH-RM algorithm. A single gain constant value is used across Stage I iterations in

order to stabilize parameter estimates around the ML estimates. Similarly, Stage II uses a

single gain constant value in all iterations with the goal of obtaining good starting values

for the next stage. Stage III has gain constants defined by ∑
∞
t=1 gt = ∞ and ∑

∞
t=1 g2

t < ∞.

The algorithm is terminated once the minimum change in a parameter estimate is below a

desired threshold for a window of iterations (Cai, 2008).

Standard Error Estimation. Standard errors of structural and measurement param-

eters can be estimated by the Louis formula (Louis, 1982), which can be applied either

iteratively or after convergence. The former produces estimates of standard errors as a by-
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product of the MH-RM iterations, whereas the later requires post-convergence MH sam-

pling steps. When applied iteratively, the gradient vector is approximated recursively as:

ŝt+1 = ŝt +gt{s̃t+1− ŝt}, (2.31)

where s̃t+1 is defined as

s̃t+1 =
1

Mt

Mt

∑
m=1

s(ξ (t)|Y,X,Zm
(t+1)) (2.32)

in each iteration of the MH-RM algorithm. A Monte Carlo estimate of the conditional ex-

pectation is defined as follows:

G̃t =
1

Mt

Mt

∑
m=1

[
H(ξ t |X,Y,Zt+1

m )− s(ξ t |X,Y,Zt+1
m )

[
s(ξ t |X,Y,Zt+1

m )
]′]

(2.33)

which is further stabilized by recursive approximation,

Ĝt+1 = Ĝt +gt{G̃t+1− Ĝt} (2.34)

The observed data information is then approximated as

It+1 = Ĝt+1 + ŝt+1ŝ
′
t+1 (2.35)
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2.6 Summary

The RD design is a popular choice for education researchers as it allows for the esti-

mation of causal effects without the need for random assignment. When participants are

assigned to treatment groups based on where their scores on a running variable (RV) fall

in relation to an exogenous cutoff value, a local average treatment effect (LATE) can be

calculated. While the LATE enjoys high internal validity, it has limited generalizability,

as it is only applicable to participants with RV scores near the cutoff. This limits the use-

fulness of the model as the programs or interventions that researchers are interested in

evaluating treat individuals with a wide range RV values. Furthermore, education research

regularly measures latent constructs, which cannot be directly observed. Instead, data are

collected on a set of indicators, e.g., survey item responses. While psychometricians use

latent variable (LV) models to account for the relation between item responses and the la-

tent construct, conventional RD analysis treats these item responses as observed variables

by calculating sums or averages of the responses. This approach has several disadvantages:

Inferences made based on observed scores are only applicable to that data collection and

are not generalizable to other administrations of that survey or instrument; Results from

multiple studies using different instruments to examine the same latent construct cannot be

combined; The LATE can only be estimated with respect to the observed RV and not to

the underling latent construct. As such, using LVs in place of observed variables would be

preferred. The use of observed RVs in conventional RD analysis is due to the belief that

measurement error in the RV works to convert the RD design to a local randomized con-

trol trial and allows researchers to examine heterogeneity and generalizability of the LATE

(D. S. Lee & Lemieux, 2010). However, the simplistic additive error model discussed by

D. S. Lee and Lemieux (2010) does not apply to modern measurement models. Therefore,

in order to be able to explore these features of the LATE, a measurement model must be
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specified for the RV. When LVs are used in a structural model, it is preferable to estimate

the relation between item responses and the latent construct at the same time as the struc-

tural regression parameters (e.g., the LATE). When item responses are categorical, standard

full-information estimation approaches become infeasible as the number of latent variables

in the model increases. Due to the large number of latent variables in the proposed models,

I use the MH-RM algorithm, which avoids numerical integration.
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Figure 2.1: Conventional and latent regression discontinuity model. Top panel: Outcome
variable values plotted against observed running variable scores. Treatment and control
groups are shown in red and blue colors, respectively. Group-specific expected outcomes
at each observed running variable score (i.e., summed score) were obtained from a fitted
conventional RD model (dashed) and the true latent RD model (solid). Middle panel: Den-
sity functions of the latent running variable at different summed-score levels. The shaded
area represents the middle 90% latent running variable values conditional on a summed
score of 6, the cutoff value. Bottom panel: Outcome variable values plotted against the true
latent running variable values.
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Chapter 3: Multilevel RD Models with Latent Variables and Estimation

This chapter first illustrates the proposed models for multilevel LV RD modeling, then

describes the use of the MH-RM algorithm to estimate the proposed models.

3.1 A General Multilevel RD Model with Latent Variables

In this section, the general measurement and structural model with notations is first

presented and then two major exemplary latent RD models are described.

3.1.1 Measurement Model

Let i index individuals and j index clusters: Individuals are nested within clusters, such

that j = 1, . . . ,J and i = 1, . . . , I j. For each individual i within cluster j, let θ i j be a vector

of latent running variables and covariates, measured by a collection of K indicator variables

Xi j = (Xi jk : k = 1, . . . ,K). In particular, it is assumed that

θ i j = θ j +δ i j, (3.1)

in which θ j denotes the latent cluster mean (level-2 LVs) and δ i j denotes the individual

deviation around the cluster means (level-1 LVs). Pooling across all i’s within cluster j, let
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X j = (Xi j : i = 1, . . . , I j). A “predictor-side” measurement model specifies the likelihood

of X j conditional on θ j:

f j(x j|θ j) =
I j

∏
i=1

K

∏
k=1

fk(xi jk|θ i j) (3.2)

in which x j = (xi jk : i = 1, . . . , I j;k = 1, . . . ,K) denotes a realization of X j. The double

product in Equation 3.2 results from the assumption of independence among Xi j1, . . . ,Xi jK

conditional on θ i j—a key assumption of factor analytic models (McDonald, 1981). By

default, both the level-1 and level-2 components of θ i j are assumed to follow multivariate

normal distributions.

The conditional likelihood of xk given θ i j, i.e., fk(xi jk|θ i j), can take various functional

forms depending on the data type. The current study focuses on dichotomous data as the

use of cognitive assessments, in which item responses can either be correct or incorrect, is

popular in education research. The most commonly used IRT models for such data are the

2PL model and the three-parameter logistic (3PL) model (e.g., Hambleton, Swaminathan,

& Rogers, 1991; Lord, 1980; Lord & Novick, 1968). These models differ in the number of

properties that are estimated for each item. The 3PL model requires a larger sample size to

properly estimate three parameters for every item (De Ayala, 2013). Furthermore, several

studies have pointed out issues regarding the estimation and interpretation of the 3PL’s

“third parameter”, the guessing parameter (Lord, 1974, 1975, 1980; Hambleton et al., 1991;

Holland, 1990). To avoid introducing these additional issues, the current work focuses on

multilevel counterpart of the 2PL model (Equation 2.7) described in Section 2.3.2, which

allows each item to have a unique difficulty value and discrimination value.

fk(xi jk|θ i j) =
exp[xi jk(a>k (θ j +δ i j)+ ck)]

1+ exp(a>k (θ j +δ i j)+ ck)
, (3.3)
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in which ak denotes the slopes, which are assumed to be invariant across level 1 and level

2, and ck are the intercepts. The θ j is distributed as N ∼ (0,Var(θ j)) and δ i j follows a

standard normal distribution.

Let ηi j be the latent outcome variable, Yi j = (Yi jl : l = 1, . . . ,L) be the associated indi-

cator variables, η j = (ηi j : i = 1, . . . , I j), and Y j = (Yi j : i = 1, . . . , I j). An “outcome-side”

measurement model is governed by the following likelihood of Y j conditional on η j

f j(y j) =
I j

∏
i=1

L

∏
l=1

fl(yi jl|ηi j), (3.4)

in which y j = (yi jl : i = 1, . . . , I j; l = 1, . . . ,L) denotes an instance of Y, and fl(yi jl|ηi j) de-

notes the conditional likelihood of Yi jl given ηi j. As with the predictor-side measurement

model, the 2PL model is considered for categorical response data.

3.1.2 Structural Model

ηi j = Ti j f1(θ i j,u j)+(1−Ti j) f0(θ i j,u j)+ εi j, (3.5)

in which u j denotes the random effects. The treatment indicator often takes the form Ti j =

1{X j ∈ B}, in which B is a pre-specified region in the space of X j. As the assignment may

happen at the cluster level, we allow Ti j to be dependent on X-side indicators Xi j for all

i = 1, . . . , I j. εi j’s are i.i.d. N(0,σ2) error terms, assumed to be independent to θ i j’s and

Xi j’s. Two instances of Equation 3.5 are discussed in Sections 3.1.2 to 3.1.2. Note that the

LVs in the models are automatically grand mean centered.
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Hierarchical Regression Discontinuity Models

In a HRD design, the treatment assignment occurs at the cluster level; therefore, the

treatment indicator is denoted Tj with the subscript i dropped from the notation in the

general RD model (Equation 3.5). Recall, the LV θi j collects the latent running variables

θr,i j = θr, j + δr,i j and the latent covariates θc,i j = θc, j + δc,i j. The LATE is a fixed effect

in the HRD design; random effects can be specified for the intercept and the coefficients

for the level-1 components of the predictor-side latent variables. Substituting the observed

variables in Equations 2.18 and 2.20, the structural part of the random-intercept-only HRD

model can be expressed as

Level 1: ηi j = β0 j +β1(θr,i j−θr, j)+β2(θc,i j−θc, j)+ εi j, (3.6)

Level 2: β0 j = γ00 + γ01Tj +u0 j,

β1 j = γ10 + γ11Tj,

β2 j = γ20

The equivalent combined equation is

ηi j = γ00 + γ10(θr,i j−θr, j)+ γ01Tj + γ11(θr,i j−θr, j)Tj + γ20(θc,i j−θc, j)+u0 j +εi j, (3.7)

in which ηi j is the latent outcome variable, θr,i j and θc,i j are the latent running vari-

able and covariate, which, per convention in IRT, each have normal distributions, θr, j and

θc, j are the cluster means, which each have standard normal distributions, γ00 is the fixed

effect intercept, and the other terms are defined as in the observed HRD model. For the
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purpose of identification, σ2 is fixed at 1, to prevent Heywood cases. Furthermore, the

factor standardization approach to model identification was chosen so that factor loadings

could be estimated for each item. As such, γ00 is fixed at 0. The LATE(θr,i j) is calculated

as γ01 + γ11θr,i j.

For simplicity of notation, all fixed effect coefficients not associated with a random

term will be labeled as β as shown below:

ηi j = γ00 +β1(θr,i j−θr, j)+β2Tj +β3(θr,i j−θr, j)Tj +β4(θc,i j−θc, j)+u0 j + εi j, (3.8)

A list of all measurement and structural parameters for the HRD model appears below.

• Measurement parameters:

– θr,i j ∼ N(0,1+Var(θr, j): Latent, continuous RV for individual i in cluster j

– θc,i j ∼ N(0,1+Var(θc, j): Latent, continuous covariate for individual i in clus-

ter j

– ηi j ∼ N(0,σ2 + τ2
0 ): Latent, continuous outcome variable for individual i in

cluster j

– ak: Slope for predictor item k

– ck: Intercept for predictor item k

– al: Slope for outcome item l

– cl: Intercept for outcome item l

• Structural parameters:

– γ00: Regression intercept, fixed at 0 for model identification
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– β1: Relation between latent running variable and outcome variable

– Tj: Observed, dichotomous variable which records the treatment condition as-

signed at the cluster level based on the average cluster ORV

– β2: Main effect of the treatment (LATE)

– β3: Interaction between the latent running variable and the treatment effect

– β4: Relation between latent covariate and outcome variable

– εi j ∼ N(0,σ2): Individual-level residual

– σ2: Individual-level residual variance, fixed at 1 for model identification

– u0 j ∼ N(0,τ2
0 ): Cluster-level residual

– τ2
0 : Cluster-level residual variance

Multisite Regression Discontinuity Models

Recall that a MRD design assigns individuals to treatment versus control groups within

each cluster. It is, therefore, of interest to study not only the overall LATE but also the

extent to which the LATE varies from cluster to cluster. As a result, at least two random

effects are included in the baseline MRD model—one for the intercept, and the other for the

LATE. Because the assignment happens within each cluster, the latent treatment indicator

Ti j is a function of Xi j. Substituting the observed variables in Equations 2.21 and 2.23, the

structural part of the baseline MRD model is then
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Level 1: ηi j = β0 j +β1 j(θr,i j−θr, j)+β2 jTi j +β3 j(θr,i j−θr, j)Ti j +β4 j(θc,i j−θc, j)+ εi j

(3.9)

Level 2: β0 j = γ00 +u0 j

β1 j = γ10

β2 j = γ20 +u2 j

β3 j = γ30

β4 j = γ40

The equivalent combined equation is

ηi j = γ00+γ10(θr,i j−θr, j)+γ20Ti j+γ30(θr,i j−θr, j)Ti j+γ40(θc,i j−θc, j)+u0 j+u2 jTi j+εi j,

(3.10)

in which ηi j is the latent outcome variable, θr,i j and θc,i j are the latent running variable

and covariate, which, per convention in IRT, each have normal distributions, θr, j and θc, j

are the cluster means, which each have standard normal distributions γ00 is the fixed-effect

intercept, and the remaining coefficients are defined as in the observed MRD model.

As in the HRD model, εi j ∼ N(0,σ2) with σ2 fixed at 1 and γ0 fixed at 0 for model

identification. The fixed-effect part of the LATE (with respect to the LRV) is given by

γ20 + γ30θr,i j). Cluster-specific LATEs can be obtained by combining the fixed-effect part

with the empirical Bayes estimates of u0 j and u2 j. In cases when the number of clusters J

is large (e.g., at least 55 with an ICC of 0.25; see Rhoads & Dye, 2016 for more details)
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more random effects can be added to the baseline model. While in the HRD model, the RV

must be measured at the individual level, in the MRD model, the RV may be measured at

the individual level and aggregated to the cluster level, e.g., cluster assignment is based on

average student reading ability, or at the cluster level itself, i.e., assignment of clusters is

based on a measure of principal quality. The proposed MRD model may be applied under

both conditions as the measurement model may be specified at either the individual or the

cluster level.

For simplicity of notation, all fixed effect coefficients not associated with a random

term will be labeled as β as shown below:

ηi j = γ00+β1(θr,i j−θr, j)+γ20Ti j +β3(θr,i j−θr, j)Ti j +β4(θc,i j−θc, j)+u0 j +u2 jTi j +εi j,

(3.11)

A list of all measurement and structural parameters for the MRD model appears below.

• Measurement parameters:

– θr,i j ∼ N(0,1+Var(θr, j): Latent, continuous RV for individual i in cluster j

– θc,i j ∼ N(0,1+Var(θc, j): Latent, continuous covariate for individual i in clus-

ter j

– ηi j ∼ N(0,σ2 + τ2
0 +2τ02Ti j + τ2

2 T 2
i j): Latent, continuous outcome variable for

individual i in cluster j

– ak: Slope for predictor item k

– ck: Intercept for predictor item k

– al: Slope for outcome item l

– cl: Intercept for outcome item l
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• Structural parameters:

– γ00: Regression intercept, fixed at 0 for model identification

– β1: Relation between latent running variable and outcome variable

– Ti j: Observed, dichotomous variable which records the treatment condition as-

signed at the individual level based on the ORV

– γ20: Main effect of the treatment (LATE)

– β3: Interaction between the latent running variable and the treatment effect

– β4: Relation between latent covariate and outcome variable

– εi j ∼ N(0,σ2): Individual-level residual

– σ2: Individual-level residual variance, fixed at 1 for model identification

– (u0 j,u2 j)
T ∼ N(0,T) where

T =

 τ2
0 τ02

τ02 τ2
2

 .

Cluster-level residuals

– τ2
0 : Cluster-level residual variance

– τ2
2 : Variance in cluster-level LATE

– τ02: Covariance between regression intercept and main effect of the treatment

Note, in the current work, the cutoff is not allowed to vary by cluster. While this is a

plausible condition seen in applications where the cutoff rule is based on a field or federal

standard, there are also applications in which the cutoff may vary by cluster, e.g., when

each cluster has its own assignment rule. The proposed model may be applied under this
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latter scenario; however, the interpretation of the LATE is complicated by the varying cutoff

values. When there is a single cutoff value across clusters, an overall LATE is calculated.

When cutoff values are allowed to vary, the overall LATE becomes an average treatment

effect (ATE) as the neighborhood for which a treatment effect is being calculated varies

across clusters. The interpretation of the treatment effect changes in that the effect is for

participants with ORV values near the cutoffs at each cluster. An ATE that is generalizable

to ORV values away from the cutoffs may still be calculated. Furthermore, while hetero-

geneity in the ATE may still be calculated, allowing cutoff values to vary across clusters

introduces another source of heterogeneity in the ATE.

3.1.3 Generalizability and Heterogeneity of Treatment Effect

As discussed in Section 2.3.2, the LATE in the conventional RD model can be inter-

preted as

E(Y [1]
i |θ̂r,i = c)−E(Y [0]

i |θ̂r,i = c),

rendering the LATE with respect to the ORV, a posterior average of the LATE with respect

to the LRV: E(LAT E(θr,i)|θ̂r,i = c).

Quantifying the generalizability of the LATE and calculating the heterogeneity in the

LATE due to measurement error in the ORV requires calculating the likelihood for a given

summed score ẋ. For any IRT model with possible binary responses and items indexed

by k, the likelihood of a given summed score, ẋ = ∑k xik, is calculated by summing the

likelihoods of all the individual response patterns that have that summed score:

f (ẋ,θ) = ∑
∑k xik=ẋ

f (xi,θ). (3.12)

As the number of items in a test increases, the number of response patterns also increases
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and a “brute force” calculation of this likelihood becomes impossible. This is especially

a concern for the HRD model as assignment occurs using cluster-level summed scores,

which further increases the total number of response patterns used in the calculation. As

an alternative to the brute force method, Lord and Wingersky (1984) described a recursive

algorithm for the computation of summed score likelihoods for items with binary responses.

The summed score likelihood is computed as follows:

f[k](ẋ,θ) = fk(0|θ)× f[k−1](ẋ,θ)+ fk(1|θ)× f[k−1](ẋ−1,θ), (3.13)

where the first two terms are the ẋ endorsements in k−1 items and the last two terms are the

ẋ− 1 endorsements in k− 1 items. Equation 3.13 calculates the summed score likelihood

for the first k items, which can then be used to quantify the generalizability of the LATE

and calculate the heterogeneity in the LATE due to measurement error in the ORV.

3.1.4 Observed and Complete Data Likelihoods

Recall from Section 2.5.3 that ξ collects all measurement and structural parameters in

the models. The conditional density of yi j is written as:

fξ (yi j|ηi j) = fξ (yi j|θ j,δ i j,u j,εi j) (3.14)

where θ j = (θ r, j,θ c, j), δ i j = (δ r,i j,δ c,i j), and u j contains only u0 j under the HRD model

(see Equation 3.8) and contains (u0 j,u2 j) under the MRD model (see Equation 3.11). As

previously stated, εi j ∼ N(0,σ2) with σ2 is fixed at 1. Integrating out εi j yields

fξ i j
(yi j,xi j|θ j,δ i j,u j) =

∫
fξ (yi j,xi j|θ j,δ i j,u j,εi j) fξ (εi j)dεi j (3.15)
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And integrating out δ i j gives

fξ (yi j,xi j|θ j,u j) =
∫

fξ (xi j|δ i j) fξ (yi j|δ i j,θ j,u j) fξ (δ i j)dδ i j (3.16)

The conditional joint densities of y j and x j for group j is obtained by multiplying the

conditional join densities for yi j and xi j in the same group:

fξ (y j,x j|θ j,u j) =
I j

∏
i=1

fξ (yi j,xi j|θ j,u j) (3.17)

Integrating out the level-2 latent variables, θ j, and random coefficients, u j, results in

fξ (y j,x j) =
∫ I j

∏
i=1

fxxi(yi j,xi j|θ j,u j) fξ (θ j) fξ (u j)dθ jdu j (3.18)

Thus, the marginal distribution from which parameters can be estimated is obtained by

integrating out all latent variables and random coefficients. Treating ηi j,θ j,δ i j,u j, and εi j

as missing data, the complete data likelihood for J groups, where each group j contains I j

individuals is:

J

∏
j=1

{ I j

∏
i=1
{

L

∏
l=1

fξ (yi jl|δ i j,θ j,u j,εi j)}{
K

∏
k=1

fξ (xi jk|δ i j)} fξ (δ i j) fξ (εi j)

}
× fξ (u j) fξ (θ j),

(3.19)

where K are the number of item response variables used to measure each θ i j and L are the
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number of item response variables used to measure each ηi j.

3.2 Model Parameter Estimation

In the proposed study, full-information maximum likelihood (FIML) estimation of

model parameters will be carried out in R version 3.4.4 (Team et al., 2018). Parameters

of interest include the measurement parameters (e.g., item discrimination, item difficulty)

and structural parameters (e.g., treatment effect). The next section describes how the MH-

RM algorithm is implemented to obtain maximum likelihood estimates for the HRD and

MRD models in the multilevel latent variable modeling framework. The implementation is

the same under both proposed models except where otherwise noted.

3.2.1 MH-RM Algorithm Implementation

The Metropolis-Hastings Sampler

Recall from Section 2.5.3 that X is the observed predictor-side data, Y is the observed

outcome-side data, and Z collects all random effects, latent running variables and latent

covariates, which form the “missing data”. As previously discussed, the first step of the

MH-RM algorithm consists of the stochastic imputation of latent variables and random

effects. This imputation process aims at sampling from the distribution of missing data

given observed data, Fξ (Z|X,Y), which is proportional to the complete data likelihood

L(ξ |Z,X,Y). It works as follows: 1) candidate values are generated using a random walk

sampler, 2) the acceptance probabilities are evaluated, and 3) the candidate values are ac-

cepted or rejected. Recall from Equations 3.1, 3.8, and 3.11 the latent variables are θ j,δ i j,
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and η i j, the random variables are εi j and u j, where u j contains u0 j under the HRD model

(see Equation 3.8) and contains (u0 j,u2 j) under the MRD model (see Equation 3.11). The

parameters which are considered fixed in the population, i.e., all parameters except for

latent variables and random effects, can be denoted ξ f .

For model identification purposes, γ00 is fixed at 0 and the variance of εi j is fixed at 1,

which allows all item factor loadings to be estimated. Per standard convention in IRT, θ,i j

and θc,i j are each defined with a mean of zero and variance 1. The random variables of in-

terest are the individual-level latent predictors δ i j, the group level latent predictors θ j, the

level-1 residuals, εi j, and the level-2 residuals u j, where u j = u0 j in the HRD model and

u j = (u0 j,u2 j) in the MRD model. As ηi j is calculated once the other parameter estimates

are known, it is excluded. These random variables are treated as missing data and corre-

spond to Z, first introduced in Section 2.5.3. The level-1 random variables are collected in

Zi j = (δ i j,εi j) and the level-2 random variables are collected in Z j = (θ j,u j), and both

are treated as missing data. The MCMC imputation procedure is constructed using the

Metropolis-Hastings-within-Gibbs sampler developed by Yang and Cai (2014). Let Zt
i j be

the value of Zi j in the tth iteration of the sampler with the following steps:

DrawZt
1 j ∼ fξ f

(Z1 j|Zt−1
2 j , . . . ,Zt−1

I j ,Z j,Y,X)

DrawZt
2 j ∼ fξ f

(Z2 j|Zt
1 j,Z

t−1
3 j , . . . ,Zt−1

I j ,Z j,Y,X)

...

DrawZt
i j ∼ fξ f

(Zi j|Zt
1 j, . . . ,Z

t
i−1 jZ

t−1
i+1 j,Z

t−1
I j ,Z j,Y,X)

...

DrawZt
I j ∼ fξ f

(ZI j|Zt
1 j, . . . ,Z

t
I−1 j,Z j,Y,X) (3.20)
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The acceptance probability of moving from state Zi j to Z∗i j, is given by parameters ξ f ,

observed data Y and X, and missing data at level-2 Z j is

α(Zi j,Z∗i j|ξ f ,Y,X,Z j)=min
{ fξ f

(Y,X|Z∗i j)h1 j(Z∗i j|µ1 j,Σ1 j)h2(Z j|µ2,Σ2)q(Z∗i j,Zi j)

fξ f
(Y,X|Zi j)h1 j(Zi j|µ1 j,Σ1 j)h2(Z j|µ2,Σ2)q(Zi j,Zi j)

,1
}

(3.21)

where µ1 j and Σ1 j and µ2 and Σ j define the distribution of the level-1 and level-2 missing

data, respectively (see Section 4.1.3), q(Zi j,Z∗i j) is a transition density, and Z∗i j is Zi j +

ei j, where ei j follows a scaled multivariate standard normal distribution with number of

dimensions equal to the number of latent variables, e.g., for the increment to Zi j =(δ i j,εi j)
′

a set of ei j is drawn from a scaled standard multivariate normal distribution N3(0,w2I3).

The acceptance rate of the MH chain is tuned by adjusting the value of w.

Equation 3.21 can be reduced due to the symmetry of the increment density q(Zi j,Z∗i j) =

q(Z∗i j,Zi j) and because the density function related to level-2 missing data h2(Z j|µ j,Σs) is

the same for current and candidate draws. This yields the form:

α(Zi j,Z∗i j|ξ f ,Y,X,Z j) = min
{ fξ f

(Y,X|Z∗i j,Z j)h1(Z∗i j|µ1 j,Σ1 j)

fξ f
((Y,X|Zi j)h1 j(Zi j|µ1 j,Σ1 j)

,1
}

(3.22)

The acceptance probabilities are calculated by Equation 3.22, and the candidates are ac-

cepted or rejected based on the evaluation.

Once the level-1 candidate draws are accepted or rejected, level-2 random effect candi-

dates are generated. Let Zt
j be the value of Z j in the tth iteration of the sampler with the

following steps:
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DrawZt
1 ∼ fξ f

(Z1|Zt−1
2 , . . . ,Zt−1

J ,{Zi j}I1
i=1,Y,X)

DrawZt
2 ∼ fξ f

(Z2|Zt
1,Z

t−1
3 , . . . ,Zt−1

/ j ,{Zi j}I2
i=1,Y,X)

...

DrawZt
j ∼ fξ f

(Z j|Zt
1, . . . ,Z

t
j−1Zt−1

j+1,ZJ,{Zi j}
I j
i=1,Y,X)

...

DrawZt
J ∼ fξ f

(ZJ|Zt
1, . . . ,Z

t
J−1,{Zi j}

I j
i=1,Y,X) (3.23)

Level-2 random effects candidates are generated as Z∗j = Z j + e j. As in level-1, e j is

drawn from a scaled standard multivariate normal distribution. Under the HRD model

the distribution is N3(0,w2I3), and under the MRD model the distribution is N4(0,w2I4),

corresponding to the number of level-2 random effects in each model. Now the likelihoods

are evaluated at level-2 as Z j are level-2 random variables. The acceptance probability of

moving from Z j to Z∗j is calculated by:

α(Z j,Z∗j |¸f,Y,X,Zi j) = min
{

∏
I j
i=1 f¸f(Y,X|Z∗i j,Z∗j)h2(Z∗j |µ2,Σ j)

∏
I j
i=1 f¸f(Y,X|Zi j,Z j)h2(Z j|µ2,Σ j)

,1
}

(3.24)

Alternating sampling the level-1 missing data conditional on level-2 missing data and

then sampling level-2 missing data conditional on the level-1 missing data, the sequence

of drawings in the MH sampler converge in distribution to Fξ f
(Z|Y,X) (Gelfand & Smith,

1990; Geman & Geman, 1984).
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Standard Error Estimation

Standard errors of structural and measurement parameters were shown to be underesti-

mated when using the recursive approximation approach in a pilot study. Consequently, in

the current study standard errors are estimated by the Louis formula (Louis, 1982), which

is applied after convergence of fixed parameter estimates:

IX,Y = Eξ f
{H(X,Y,Z,ξ f )|X,Y,Z} (3.25)

−Eξ f
{s(X,Y,Z,ξ f )s

>(X,Y,Z,ξ f )|X,Y,Z},

+Eξ f
{s(X,Y,Z,ξ f )|X,Y,Z}Eξ f

{s>(X,Y,Z,ξ f )|X,Y,Z}, (3.26)

The first term in Equation 3.26 is calculated as

Eξ f
{H(X,Y,Z,ξ f )|X,Y,Z} ≈ 1

v

v

∑
i=1

H(ξ̂ f ,Xi,Yi,Zi|Xi,Yi,Zi), (3.27)

and the second term in Equation 3.26 is calculated as

Eξ f
{s(X,Y,Z,ξ f )s

>(X,Y,Z,ξ f )X,Y,Z} (3.28)

≈1
v

v

∑
i=1

[s(ξ̂ f ,Xi,Yi,Zi)s>(ξ̂ f ,Xi,Yi,Zi)|Xi,Yi,Zi]

where v is the number of samples used to approximate the covariance matrix and Xi, Yi,

and Zi is an imputation from fξ (Z|X,Y). The third term in Equation 3.26 is 0 when ξ f is

evaluated at the maximum likelihood estimate ξ̂ f . The number of samples used to approx-

imate the covariance matrix needs to be selected. This number tends to be large (e.g. 1000

or more) (Houts & Cai, 2015). To choose the number of samples, I first ran the algorithm
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using 1000 samples. I compared the standard error estimates to the Monte Carlo standard

deviations of the model parameters and saw severe underestimation. I then increase the

number to 2000 and saw improvement in the standard error estimates. I further increased

them to 3000 and saw little improvement. Because of the additional computational burden

of using 3000 samples and the small benefit in standard error estimation, I set the value at

2000 for all simulation conditions.

Complete Data Models and Derivatives for Steps 2 and 3

In the second step of the MH-RM algorithm, stochastic approximation, Equation 2.26

is approximated as the sample average of complete data gradients and the conditional ex-

pected distribution of the missing data, given the observed data are calculated. In the

third step, the RM update is made. The complete data log-likelihood l(ξ f |Y,X) and its

derivatives are needed for these two steps. As such, the first and second derivatives of

the complete data models with respect to unrestricted parameters are described in the next

subsections.

Latent Structure Models

l =−1
2
[η− ¯(ξ f )]

′[Σ(τ)]−1[η− ¯(ξ f )]−
1
2

log|Σ(τ)|−1
2

N log2π. (3.29)

The first derivative of l with respect to the parameter vector ξ f is

∂ l
∂ξ f

=
∂ ¯′

∂ξ f
Σ(τ)−1(η− ¯ξ f ). (3.30)

The first derivative of l with respect to a parameter τr is

∂ l
∂τr

=−1
2

[
tr
(

Σ
−1 ∂Σ

∂τr

)
− (η− ¯)′Σ−1 ∂Σ

∂τr
Σ
−1(η−µ)

]
. (3.31)
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The second derivative of l with respect to ¸f is

∂ 2l

∂ξ f ∂ξ
′
f

=
∂ µ

′

∂ξ f
Σ
−1 ∂ µ−1

∂Σ
−1 +(η−µ)

′
Σ
−1 ∂ 2µ

∂ξ f ∂ξ
′
f

. (3.32)

The second derivative of l with respect to parameter τr is

∂ 2l
∂τr∂τ

′
r
=−1

2
[tr(Σ−1 ∂Σ

∂τr
Σ
−1 ∂ 2Σ

∂τr∂τ
′
r
)

+(η−µ)
′
[(−1)Σ−1 ∂Σ

∂τr
Σ
−1 +Σ

−1 ∂ 2Σ

∂τr∂τ
′
r
Σ
−1

−Σ
−1 ∂Σ

∂τr
Σ
−1](η−µ)]. (3.33)

Measurement Models Recall the 2PL model for dichotomous data (Equation 2.7),

suppressing i and k subscripts and the dependency of P on a and c, define

P =
exp(aθ + c)

1+ exp(aθ + c)
(3.34)

The complete data log-likelihood can be written as

l = ∑x logP+(1− x) log(1−P). (3.35)

The first derivatives of the complete data log-likelihood are as follows:

∂ l
∂a

=
∂ l
∂P

∂P
∂a

,

∂ l
∂c

=
∂ l
∂P

∂P
∂c
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where

∂ l
∂P

=
x−P

P(1−P)
,

∂P
∂a

= P(1−P)θ ,

∂P
∂c

= P(1−P)

The second derivatives are given by the following:

∂ 2l
∂a∂a

= (
∂

∂a
∂ l
∂P

)
∂P
∂a

+
∂ l
∂P

(
∂

∂a
∂P
∂a

),

∂ 2l
∂c∂c

= (
∂

∂c
∂ l
∂P

)
∂P
∂c

+
∂ l
∂P

(
∂

∂c
∂P
∂c

),

∂ 2l
∂a∂c

= (
∂

∂a
∂ l
∂P

)
∂P
∂c

+
∂ l
∂P

(
∂

∂a
∂P
∂c

)

where

∂

∂a
∂ l
∂P

= (− x
P2 −

1− x
(1−P)2 )

∂P
∂a

,

∂

∂c
∂ l
∂P

= (− x
P2 −

1− x
(1−P)2 )

∂P
∂c

,

∂

∂a
∂P
∂a

= P(1−P)(1−2P)θ 2,

∂

∂c
∂P
∂c

= P(1−P)(1−2P),

∂

∂a
∂P
∂c

= P(1−P)(1−2P)θ
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Chapter 4: Simulation Studies

To examine the performance of the proposed HRD and MRD models, I carried out two

Monte Carlo simulation studies. The first study had two purposes: 1) To examine the re-

covery of measurement and structural parameters under FIML estimation with the MH-RM

algorithm, and 2) To explore the proposed models’ parameter recovery under two misspec-

ifications. The purpose of the second study is to examine the recovery of several treatment

effect estimates under both models with varying conditions: 1) the ATE for participants

within 1 point of the cutoff value, AT Ec±1, 2) the range of the LATE for the middle 90%

of participants at the cutoff, [LAT Eq.05,LAT Eq.95], and 3) the ATE within the bottom 30%

of participants in the population of the latent construct, AT Ep. The performance of the

proposed models in terms of estimating a LATE with respect to the ORV, LAT Eo and with

respect to the LRV, LAT El was compared to the conventional observed variable two-stage

estimation approach. This chapter describes the methods and summarizes the results of the

two studies.

4.1 Simulation Study I

4.1.1 Purpose

The first Monte Carlo simulation evaluated if implemented R code properly recovered

item parameters and structural parameters under ideal conditions. Furthermore, the recov-

ery of model parameters was assessed under two mispecifications of the proposed models
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- when the interaction term is omitted and when the covariate is omitted. These misspeci-

fications are a violation of the RD model assumptions, as the error term is now dependent

on omitted variables.

4.1.2 Methods

The ideal measurement and sampling conditions were as follows: A sample size of 500

at level-2 was chosen based on pilot simulations with sample sizes between 100 and 1000

as well as the availability of large scale assessment studies such as the Early Childhood

Longitudinal Study with over 1000 clusters); a test length of 30 items was used as it has

shown to recover 2PL item parameters well under a variety of conditions (Şahin & Anıl,

2017); balanced clusters with 20 individuals per cluster was selected based on typical sam-

ple sizes in education research assessing classroom or school traits (Lüdtke et al., 2008);

the ICC was set at 0.2 to represent a reasonable magnitude as ICC values are generally

smaller than 0.3 in educational research (Bliese, 2000; James, 1982); the data have no

missing responses, and appropriate magnitudes of item slopes and intercepts for normal

and item responses models (e.g., 2PL model) are used (see Section 4.1.2).

Structural parameters reflect effect sizes seen in the education literature. A minimal de-

tectable effect size (MDES) of 0.25 is typical for large scale educational evaluations (Bloom,

Richburg-Hayes, & Black, 2007; Schochet, 2008), and guidance on RD power calculations

commonly use MDES values between 0.2 and 0.5 (see e.g., H. Lee & Munk, 2008; Rhoads

& Dye, 2016). As such, the value of the LATE will be set at 0.45 . Based on RD studies

in education (Jung, 2010; Luyten, 2006), the following values will be used for the HRD

model described in Section 3.1.2: γ00 = 0, β1 = 0.50, β2 = 0.50, β3 = 0.10, β4 = 0.15,

τ2
0 = 0.25. For the MRD model (Section 3.1.2) the following values will be used: γ00 = 0,

β1 = 0.50, γ20 = 0.50, β3 = 0.10, β4 = 0.15, τ2
0 = 0.25, τ20 = 0.25, and τ2

2 = 0. Note, the
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τ20 = 0 indicates there is no relationship between the intercept (i.e., the average outcome

for the control group after controlling for the effect of the RV) and the treatment effect. RD

analysis will be conducted using the full dataset a bandwidth of 1.0.

Data Generation

Data generation comprises three steps.

Step 1: Generating item parameters and latent variables The slope parameters for

the latent predictors and latent outcome were drawn from a lognormal distribution with

a mean of 0.3 and a standard deviation of 0.20 (on the normal scale), truncated to the

interval [1.0, 2.5]. Similarly, the intercept parameters were generated from a standard

normal distribution truncated to [-2, 2] (Feinberg & Rubright, 2016; Mislevy & Stocking,

1989). The item parameters are treated as fixed across all conditions, per test length. Within

each replication, the latent running variable, θr,i j the latent covariate θc,i j are computed as

the sum of the latent group means, drawn

θ j ∼ N2(0,

0.25 0

0 0.25

),
and the individual deviations from the group means, drawn

δ i j ∼ N2(0,

1 0

0 1

).
The latent outcome, ηi j is calculated using Equation 3.8 and 3.11 once the random variables

have been generated and fixed effects have been specified.

Step 2: Generating observed indicators Item responses are generated independently

for each latent variable. Item parameters and latent variable values are used in Equation 3.2
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to calculate probability of endorsement of each item for each individual. These probabili-

ties are compared to draws from a uniform distribution [0,1] to generate item responses.

Step 3. Participant classification Participants are classified based on the ORV. In

practice the cutoff either naturally exists or is chosen based on the research question. In the

current study, the cutoff was chosen so that approximately 30% of the data falls below the

cutoff. In order to select cutoff values that reflect the 30th percentile in the population, I

generated large samples to approximate the population. First, I generated 10,000,000 sets

of item responses for the RV, as described above, and converted them into summed scores.

For the MRD model I then set the 30th percentile of the distribution of the summed scores

as the cutoff value, c = 10. For the HRD model, I then aggregated the summed scores

into 100,000 clusters by calculating the mean; the 30th percentile was set as the cutoff,

c = 13.17.

Under the proposed model, participants are classified based on their ORV scores. Ac-

cordingly, the generated item responses for the LRV were summed to create ORV scores

for each participant. The ORV scores were compared to the cutoff value. Participants were

assigned to treatment if their scores were at or below the cutoff and the control group if

their scores were above the cutoff.

Model For study I, the true data generating model was fitted to the simulated data

using FIML via the MH-RM algorithm. Model equations can be found in Sections 3.1.2

and 3.1.2. Standard errors were calculated via direct application of the Louis formula

after the MH-RM algorithm converged (see Section 2.5.3). To assess impact of model

misspecification, a violation of one of the latent RD assumptions (see Section 3.2.1), the

HRD and MRD models will be fit to the full data under two misspecified conditions: 1)

omitting the interaction term, θr,i jTi j and its corresponding regression parameter, β3 and 2)

omitting the latent covariate, θc,i j and its corresponding regression parameter, β4.

Bandwidths The models were fit to the full data as well as partial data defined by a
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bandwidth of 1.0. The use of bandwidths is more complex with a LV RD model than with

a conventional RD model, as the measurement model would be misspecified if the full

data is not used, a violation of one of the LV RD model’s assumptions. In order to avoid

this issue, I first fit the full data to the model in order to estimate item parameters under

a correctly specified measurement model. These item parameters, estimated from the full

data, were then used when fitting the proposed models using a bandwidth; consequently,

item parameters were not estimated from the partial data and the model can still be fit when

using a bandwidth. The ORV scores (i.e., summed scores) were used to identify the data

that falls within the bandwidth. An interval was calculated around the cutoff value such

that, [c± SD(ORV )× 1.0], where SD(ORV ) is the standard deviation of the ORV scores

and 1.0 is the bandwidth value. Only the individuals with ORV scores within the interval

were included in the analysis. The proposed models were then fit to the partial data.

Evaluation Five hundred replications were completed. The measurement and struc-

tural parameter estimates and LATE were evaluated in terms of their absolute and relative

bias as well as root mean squared error (RMSE). Estimated standard errors for the model

parameters and the LATE were compared against the Monte Carlo standard deviations.

95% confidence intervals for the structural parameters are also evaluated by the empirical

coverage.

4.1.3 MHRM Algorithm: Additional Considerations and Convergence

Before the MHRM algorithm can be implemented, the sampler must be tuned and con-

vergence criteria must be set.
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Tuning Constants

As described in Section3.2.1, the distribution of the level-1 and level-2 missing data are

defined by µ1 j, Σ1 j, µ2, and Σ2. The random variables, which are treated as missing data,

at level 1 are δ i j, the individual deviations from cluster means for the latent predictors

and εi j, the level-1 error terms. As the clustered means are centered on the grand mean

and the level-1 residuals follow a standard normal distribution with a variance of 1, µ1 j =

(0,0,0)′ and Σ1 j is an identity matrix in both models. Similarly, θ j, the cluster means

of the latent predictors and u j are treated as missing data at level 2. The means of these

random components are assumed to be zero, making µ2 = (0,0,0)′ in the HRD model

and µ2 = (0,0,0,0)′ in the MRD model. The variance-covariance matrix at level 2 is

as described in Section 3.1.2 and Section 3.1.2. The values of µ1 j, Σ1 j, µ2, and Σ2 are

summarized in Table 4.1.

As discussed in Section 3.2.1, the desired acceptance rate in the MH sampler is achieved

by adjusting the value of the tuning constant w. In order to determine the values of w which

yield acceptance rates between the target rates of 20 and 30% at each level (Gelman, Gilks,

& Roberts, 1997), I explored the acceptance rates using various tuning constants using a

sample size of 4000 with 200 clusters. The results were similar across models, but varied

by test length (see Table 4.2 and Table 4.3).

The values of w were further tuned for each simulation condition, resulting in values

between 0.60 and 0.25 at level-1 and 0.05 and 0.02 at level-2 for the HRD model and values

between 0.55 and 0.28 at level-1 and 0.06 and 0.01 at level-2 for the MRD model. Notably,

the MRD model was more sensitive to values of w across conditions, requiring changes in

the hundredth decimal place across to achieve appropriate acceptance rates, while one set

of w values was successfully used for all 10-item and one set for all 30-item conditions

under the HRD model.
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Table 4.1: Latent Variable Distributions for Multilevel Latent Regression Discontinuity
Models

Hierarchical Regression Discontinuity Model

Level 1

δr,i j
δc,i j
εi j

∼ µ1 j =

0
0
0

 Σ1 j =

1 0 0
0 1 0
0 0 1



Level 2

θr, j
θc, j
u0 j

∼ µ2 =

0
0
0

 Σ2 =

Var(θr, j) 0 0
0 Var(θc, j) 0
0 0 τ2

0


Multisite Discontinuity Model

Level 1

δr,i j
δc,i j
εi j

∼ µ1 j =

0
0
0

 Σ1 j =

1 0 0
0 1 0
0 0 1



Level 2


θr, j
θc, j
u0 j
u2 j

∼ µ2 =


0
0
0
0

 Σ2 =


Var(θr, j) 0 0 0

0 Var(θc, j) 0 0
0 0 τ2

0 τ20
0 0 τ20 τ2

2



Table 4.2: Tuning Constants for Multilevel Latent RD Models with 10 Items
Set 1 Set 2 Set 3 Set 4

L1 L2 L1 L2 L1 L2 L1 L2

HRD
w 1.0 1.0 0.75 0.3 0.5 0.1 0.6 0.05

AR (%) 17 - 20 1 - 3 22 - 26 3 - 6 29 - 33 10 - 13 27-30 22 - 25

RD
w 1.0 1.0 0.75 0.3 0.5 0.1 0.6 0.05

AR (%) 16 - 19 0.4 - 0.7 23 - 26 2 - 4 30 - 34 7 - 9 25 - 29 20 - 23

Table 4.3: Tuning Constants for Multilevel Latent RD Models with 30 Items
Set 1 Set 2 Set 3 Set 4

L1 L2 L1 L2 L1 L2 L1 L2

HRD
w 1.0 1.0 0.75 0.3 0.5 0.1 0.25 0.01

AR (%) 5 - 8 0 - 1 8 - 11 0 - 2 14 - 16 1 - 4 25 - 29 29 - 32

MRD
w 1.0 1.0 0.75 0.3 0.5 0.1 0.25 0.01

AR (%) 6 - 9 0 - 2 9 - 11 1 - 3 13 - 16 3 - 7 25 - 28 30 - 33
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“Burn-In”

The number of “burn-in” cycles for the MH sampler must also be determined; I did this

in two steps. First, I examined the auto correlations of random drawings under a simulated

condition for each model: 4000 individuals nested in 200 clusters using a 20-item test

length. Time series plots for 5 randomly selected from each of the random effects at both

levels appear in the Appendix. These plots suggest at least 20 burn-in cycles is reasonable

for the HRD model about 50 burn-in cycles for the MRD model. In the next step, I ran the

full MH-RM algorithm, and examined the trace plots of the parameter estimates. Noting

the long run time, I also examined the trace plots using 5 burn-in cycles for the HRD model

and 10 burn-in cycles for the MRD model, which appear in the Appendix. Because the

trace plots of the parameter estimates look similar under both conditions, 5 and 10 burn-in

cycles were used for the HRD and MRD models, respectively, in the study.

Starting Values for Stage 1

The MH-RM algorithm requires starting values for all model parameters. Standardized

summed scores were used as starting values for the LVs, θr,i j, θc,i j, and ηi j. These scaled

summed scores were used in a conventional multilevel RD model; the estimates from this

model were used as the starting values for the the fixed effects. Starting values for the

level-1 residuals were generated from a standard normal distribution. Similarly, starting

values for the level-2 residuals, u0 j and u2 j as well as the cluster-level latent predictors, θr, j

and θc, j were each generated from a N(0,0.252) distribution.
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Convergence

The MH-RM algorithm employs the use of adaptive gain constants in a three-stage

procedure in order to avoid premature convergence (Cai, 2008). In the first stage, M1,

iterations are run with the gain constant fixed at 1. In the second stage, M2, further itera-

tions are run; the parameter estimates calculated during this second stage are averaged and

used as starting values in the third stage, M3, during which a decreasing gain constant is

employed. In order to check convergence, Cai (2008) proposed to monitor a “window” of

the difference between successive parameter estimates. The algorithm convergences once

the largest difference in the window, suggest to be 3 consecutive differences (Cai, 2008), is

below a certain number.

Appropriate gain constants, number of iterations, and convergence criteria is assessed

by examining trace plots with a large number of iterations (e.g., 1000 for M1 and M2

combined and 1000 for M3) for parameter estimates. The Appendix shows trace plots of

measurement and structural parameters when the constant gain was 0.2 and the decreasing

gain constant, gt at the tth iteration is defined as

gt =
0.2
tε

(4.1)

The value of ε was set at 0.75 after examining the trace plots of model parameter estimates.

The trace plots suggest parameter estimates tend to move close to the MLEs within

100 iterations under both models; estimates are oscillating around the MLEs within 200

to 400 iterations for the HRD model and within 300 to 500 iterations for the MRD model.

When 1.0×10−5 was used as convergence criteria both models converged within 300 M3

iterations and parameter estimates were close to their true values. As such, M1 was set at

100 for both models, M2 was set at 300 for the HRD model and 500 for the MRD model,

81



Table 4.4: Gradient Norms for Simulation Study I Conditions

Sample
HRD Model MRD Model

Average Range Average Range

Full Sample <0.01 0 - 0.02 <0.01 0 - 0.02
Bandwidth <0.01 <0.01 - 0.02 <0.01 0 - 0.03

and M3 was set at 400 for both models.

Furthermore, in order to assess whether the algorithm has converged at a local maxi-

mum, I check whether the gradient is sufficiently close to 0 and that the Hessian information

is positive definite. Finally, I compute the condition number of the information matrix.

4.1.4 Results

HRD and MRD Models using the Full Sample

The HRD and MRD models were fit to the generated data. The marginal reliabil-

ity (Thissen & Orlando, 2001), which is the reliability of the LRV (i.e., the IRT scores

calculated for the LRV), under both generating models was approximately 0.90 and the

Cronbach’s alpha is 0.88. All replications converged (i.e., positive definite observed data

information matrix) under both models. The condition numbers of the information matrix

ranged from 109 to 185 under the HRD model and from 176 to 219 under the MRD model.

The average runtime for the HRD and MRD models, was 14 and 23 minutes, respectively.

To assess whether the algorithm converged at a local maximum, I checked whether the

gradient was sufficiently close to 0. The results appear in Table 4.4.

The measurement and structural parameters were well recovered under the HRD and

MRD models, though estimates of the regression coefficients showed slightly more bias

under the MRD model. The recovery of these measurement parameters was similar across

both models (see Figure 4.1). The true generating item slope and item intercept values and
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corresponding bias, relative bias, and RMSE for the RV, covariate, and outcome variable

for both models appear in the Appendix. The relative bias in the item parameter estimates

is generally below 2% for the slopes and below 5% for the intercepts with the exception of

the outcome variable which has several intercept estimates with relative bias values above

20%. The item slope estimates tend to be more stable with RMSE values below .05, than

the item intercept estimates, with RMSE values above .05.

Figure 4.1: True Generating Item Parameters Plotted against Average Estimate over 500

Replications using the Full Sample

The true generating structural parameters and their corresponding bias, relative bias,

and RMSE for both models appear in Table 4.5. Estimates for the regression coefficients

tended to be better under the HRD model than under the MRD model. The estimate for β3,

the interaction between the treatment assignment and the RV, tended to be the most biased

as it was over estimated by between 16 and 19% across models, while the estimate for β2

and γ20, the effect of treatment assignment, tended to be the least precise with an RMSE of

.07 and .10 in the HRD and MRD models, respectively. The variance components tended
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Table 4.5: Bias, Relative Bias, and RMSE for Structural Parameters and LATE at the Latent
Cutoff for Simulation Study I with Full Sample

Par
True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

β1 0.50 -0.01 -1% 0.03 -0.02 -3% 0.04
β2 0.50 <0.01 <1% 0.07 NA NA NA
γ20 0.50 NA NA NA -0.02 -4% 0.10
β3 0.10 0.02 16% 0.05 0.02 19% 0.09
β4 0.25 <0.01 <1% 0.02 <0.01 1% 0.03

Var(θr, j) 0.25 -0.02 -10% 0.03 <0.01 <1% 0.04
Var(θc, j) 0.25 -0.02 -7% 0.03 <0.01 1% 0.03

τ0 0.25 <0.01 -2% 0.02 <0.01 2% 0.04
τ2 0.55 NA NA NA -0.01 -2% 0.06
τ20 0.00 NA NA NA <0.01 NA 0.03

LAT El 0.45 -.02 -4% 0.05 -0.04 -8% 0.09

to be underestimated in the HRD model with relative bias values between -2 and -10% and

well recovered under the MRD model with relative bias values no more extreme than 2%.

As with the regression coefficients, the LATE with respect to the LRV, LAT El is slightly

underestimated under both models with a relative bias of−4% in the HRD model and−8%

in the MRD model. The LAT El also had a smaller RMSE under the HRD model, .05, than

under the MRD model .09.

The post-convergence estimation of standard errors resulted in generally underesti-

mated standard errors in both models. Figure 4.2 shows the average standard errors plotted

against the Monte Carlo standard deviation for slope and intercept parameters for the three

latent variables. The largest difference in the standard error estimates and Monte Carlo

standard deviations is 0.04 in the item slopes and 0.02 in the item intercepts. Standard

errors were also generally underestimated for the structural parameters (see Figures 4.3

and 4.4), with the most severe underestimation for, τ2
2 the variance of the level-2 random

effects, u2 j.
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Figure 4.2: Average Standard Error Estimates Plotted against Monte Carlo Standard Devi-

ations for Measurement Parameters for Simulation Study I with Full Data

Figure 4.3: Average Standard Error Estimates Plotted against Monte Carlo Standard Devi-

ations for Regression Parameters for Simulation Study I with Full Data
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Figure 4.4: Average Standard Error Estimates Plotted against Monte Carlo Standard Devi-

ations for Variance Parameters for Simulation Study I with Full Data

The 95% interval coverage for the regression parameters is near the nominal level when

using the full sample under both models, with coverage above 89% (see Figure 4.5. The

coverage of the variance parameters tends to be slightly lower under the HRD model than

the MRD model, especially for the variance of the cluster level RV, Var(θr, j) (see Fig-

ure 4.6).
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Figure 4.5: 95% Confidence Interval Coverage of Regression Parameters and LATE for

HRD and MRD Models using the full sample
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Figure 4.6: 95% Confidence Interval Coverage of Variance Parameters for HRD and MRD

Models using the full sample

HRD and MRD Models using a Bandwidth

As described in Section 4.1, when using a bandwidth, the full data were first used to

estimate the item parameters. The data was then subset so that only participants within

1 standard deviation of the cutoff (i.e., bandwidth = 1) were included in the sample. The

model was then estimated again using only the subset of the data with the item parameters

that had been previously estimated fixed. All replications properly converged under both

models. The range of condition numbers of the information matrix for the replications was

439 to 868 for the HRD model and 538 to 1399 for the MRD model. The average runtime

for the HRD and MRD models using a bandwidth was 13 and 18 minutes, respectively. As

expected, the measurement parameters were properly recovered under both models with

bias and RMSE values similar to those from the full sample conditions. Figure 4.7 shows
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the average estimates against the true generating values for all the measurement parameters

under the HRD and MRD models when using the a bandwidth. The standard error recovery

for the measurement parameters when using a bandwidth is also comparable to that when

using the full sample.

Figure 4.7: True Generating Item Parameters Plotted against Average Estimate over 500

Replications using a Bandwidth

The true generating values and the corresponding bias, relative bias, and RMSE values

for the structural parameters appear in the Appendix. The regression parameter estimates

are well recovered under the HRD model with relative bias and RMSE values comparable

to those from the full model. However, the regression parameter estimates for the relation

between the RV and the outcome, β1 and for the interaction between treatment assignment

and the RV, β3 have large bias and RMSE values. The β1 parameter is under estimated,

relative bias is -48%, while β3 is over estimated with a relative bias of 140%. The variance

parameters for the group level RV, Var(θr, j), is also severely underestimated in both models
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Table 4.6: Bias, Relative Bias, and RMSE for Structural Parameters and LATE at the Latent
Cutoff for Simulation Study I with Bandwidth

Par
True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

β1 0.50 0.01 2% 0.04 -0.25 -48% 0.28
β2 0.50 -0.02 -3% 0.08 NA NA NA
γ20 0.50 NA NA NA 0.06 12% 0.11
β3 0.10 0.01 10% 0.06 0.14 140% 0.30
β4 0.25 <0.01 1% 0.03 <0.01 1% 0.03

Var(θr, j) 0.25 -0.21 -85% 0.21 -0.21 -83% 0.21
Var(θc, j) 0.25 -0.03 -12% 0.04 -0.04 -14% 0.04

τ0 0.25 -0.01 -6% 0.03 <0.01 -2% 0.03
τ2 0.55 NA NA NA 0.01 -3% 0.04
τ20 0.00 NA NA NA <0.01 NA 0.02

LAT El 0.45 -0.02 -8% 0.08 0.02 4% 0.12

with relative bias values around 84% and RMSE of .21. However, the LATE with respect

to the LRV, LAT El is still well recovered with a relative bias of -8% and RMSE of .08 in

the HRD model and relative bias of 4% and RMSE of .12 in the MRD model.

The post-convergence estimation of standard errors resulted in generally underesti-

mated standard errors in both models. As stated above, standard error estimates for the

measurement parameters were similar with a bandwidth and when using the full sample.

When using a bandwidth, the largest difference in the standard error estimates and Monte

Carlo standard deviations is 0.04 in the item slopes and 0.03 in the item intercepts. Stan-

dard errors were also generally underestimated for the structural parameters (see Figures

4.8 and 4.9).
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Figure 4.8: Average standard error values of regression coefficients plotted against Monte

Carlo standard deviation for HRD and MRD models using a bandwidth of 1.0.

Figure 4.9: Average standard error values of variance parameters plotted against Monte

Carlo standard deviation for HRD and MRD models using a bandwidth of 1.0.

The 95% interval coverage for the regression parameters is below the nominal level

when using a bandwidth of 1.0 under both models. Coverage is especially poor under the

MRD model where the regression coefficient for the relation between the covariate and the

outcome is the only regression parameter with coverage above 25%. However, coverage for

the LAT El remains near the nominal level with coverage around 90% under both models

(see Figure 4.10). The coverage of the variance parameters is poor for the variance of
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the latent predictors at the cluster level (see Figure 4.11), with the coverage being 0% for

Var(θr, j) due to the extreme underestimation of this parameter when using a bandwidth.

The coverage of the other variance parameters are greater than 90% in both models.

Figure 4.10: 95% Confidence Interval Coverage of Regression Parameters and LATE for

HRD and MRD Models using a bandwidth
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Figure 4.11: 95% Confidence Interval Coverage of Variance Parameters for HRD and MRD

Models using a bandwidth

Misspecified Models

No interaction term. One of the assumptions of the latent RD model is that the model

is correctly specified. As a preliminary step to assess the impact of violating this assump-

tion, the full sample was fit to each misspecified model, omitting the interaction term.

All replications converged for both models. The measurement parameter estimates plotted

against the true generating values appear in Figure 4.12. All item parameters are well re-

covered with the item slopes and intercepts being slightly overestimated for the outcome

variable under both models.
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Figure 4.12: Average item parameters plotted against true generating values over 500 repli-

cations for misspecified HRD and MRD models with no interaction term using the full

sample.

The true generating values for all structural parameters and the LAT El appear in Ta-

ble 4.7. The regression parameters are generally well recovered under both misspeci-

fied models with the treatment effect parameters, β2 and γ20, being underestimated more

severely under the MRD model, relative bias is −29% and RMSE is .15, than in the HRD

model, relative bias is −14% and RMSE is .09. Similarly, the variance estimates are well

recovered in the misspecified HRD model but underestimated in the misspecified MRD

model, where the relative bias of τ2 is −22%. As these models were fit without an interac-

tion term, the LAT El is simply the value of β2 and γ20. The LAT El under the misspecified

HRD model is slightly underestimated with a relative bias of −5% and moderately under-

estimated under the misspecified MRD model with a relative bias of −21%.

94



Table 4.7: Bias, Relative Bias, and RMSE for Structural Parameters and LATE at the Latent
Cutoff for Misspecified Models with no Interaction Term using Full Sample

Par
True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

β1 0.50 0.02 5% 0.03 <0.01 <1% 0.03
β2 0.50 -0.07 -14% 0.09 NA NA NA
γ20 0.50 NA NA NA -0.15 -29% 0.15
β4 0.25 <0.01 1% 0.02 <0.01 <1% 0.02

Var(θr, j) 0.25 -0.01 -2% 0.02 -0.01 -4% 0.03
Var(θc, j) 0.25 <0.01 1% 0.02 -0.01 -3% 0.02

τ0 0.25 <0.01 <1% 0.02 -0.01 -5% 0.03
τ2 0.55 NA NA NA -0.06 -22% 0.06
τ20 0.00 NA NA NA 0.03 NA 0.04

LAT El 0.45 -.02 -5% 0.09 -0.09 -21% 0.15

The residuals are plotted against the LRV scores in Figure 4.13. There appears to be

some heteroskedasticity, especially at the tails with a more narrow spread of residuals at

lower LRV values and a broader spread at higher LRV values.

95



Figure 4.13: Residuals plotted against the latent running variable for the misspecified HRD

and MRD models without the interaction term using the full sample.

No Latent Covariate. The full sample was also fit to the misspecified HRD and MRD

models, without the latent covariate. All replications converged for both models. The

measurement parameter estimates plotted against the true generating values appear in Fig-

ure 4.14. The item parameters for the LRV are well recovered under both models. The

item slopes tend to be overestimated for the outcome variable under both models, and the

outcome variable item intercepts are slightly over estimated under the MRD model.
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Figure 4.14: Average item parameters plotted against true generating values over 200 repli-

cations for misspecified HRD and MRD models with no latent covariate using the full

sample.

The true generating values for all structural parameters and the LAT El appear in Ta-

ble 4.8. The regression parameters are generally well recovered under both misspecified

models with the regression parameter for the interaction term, β3, being overestimated un-

der the MRD model, relative bias is 20% and RMSE is .08. Similarly, the variance estimates

are well recovered in the misspecified HRD model but underestimated in the misspecified

MRD model, where the relative bias of τ2 is −2%. The LAT El under the misspecified
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Table 4.8: Bias, Relative Bias, and RMSE for Structural Parameters and LATE at the Latent
Cutoff for Misspecified Models with no Latent Covariate using Full Sample

Par
True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

β1 0.50 -0.01 -3% 0.03 <0.03 -6% 0.05
β2 0.50 -0.01 -2% 0.07 NA NA NA
γ20 0.50 NA NA NA -0.03 -6% 0.10
β3 0.10 <0.01 <1% 0.05 0.02 20% 0.08

Var(θr, j) 0.25 -0.01 -5% 0.02 <0.01 -1% 0.02
τ0 0.25 <0.01 1% 0.02 -0.01 -4% 0.02
τ2 0.55 NA NA NA -0.10 -20% 0.06
τ20 0.00 NA NA NA 0.02 NA 0.03

LAT El 0.45 -.01 -2% 0.07 -0.04 -9% 0.08

HRD model is well recovered with a relative bias of −2% and RMSE of .02; it is slightly

underestimated under the misspecified MRD model with a relative bias of−9% and RMSE

of .08.

The residuals for the two models are plotted against the LRV in Figure 4.15. The

residuals tend to be negative at lower values of the LRV and positive at higher values under

both misspecified models.
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Figure 4.15: Residuals plotted against the latent running variable for the misspecified HRD

and MRD models without the latent covariate term using the full sample.

4.2 Simulation Study II

4.2.1 Purpose

The second Monte Carlo simulation study: 1) evaluates the ability of the proposed

models to provide estimates of the treatment effect for more than just the subpopulation

with RV scores at the cutoff, see Section 2.3.2, and 2) compares the performance of the
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proposed model to the conventional model in terms of recovering the LATE. Using the

proposed model, I quantified the generalizability of the LATE, AT Ec±1, by calculating the

ATE within a ±1 point interval around the cutoff θ̂r,i = c (see Equation 2.10). I quantified

the heterogeneity of the LATE by calculating the range of the LATE for the middle 90%

of participants, [LAT Eq.05,LAT Eq.95], at the cutoff using Equation 2.9. I calculated the ATE

within the bottom 30% of participants in the population of the latent construct, AT Ep, using

Equation 2.11. In addition, I calculated the LATE with respect to the ORV at the cutoff,

LAT Eo and the LATE with respect to the LRV at the cutoff, LAT El . Using the conventional

model, I calculated the LATE with respect to the latent construct, LAT Ec. Standard errors

for these treatment effect estimates were calculated via application of the delta method (see

e.g., Van der Vaart & Wellner, 1996).

4.2.2 Methods

Varying conditions For both the HRD and MRD models, the ICC was fixed at 0.2

as that value is within the range most commonly observed ICCs for cognitive or affective

domain variables in education. A pilot study was conducted to determine the sample sizes

for both models. Results indicated very similar results when using 500 and 1000 clusters

and a poor convergence rate when using 100 clusters (Schochet (2008) suggests at least

100 level-2 units when assignment occurs at the cluster level). Consequently, the number

of clusters in this simulation study was varied at 200 and 500. The number of units per

cluster will be fixed at 20 for the HRD design; varying this factor is not of interest as the

treatment assignment occurs at the cluster level. This results in samples of size 4,000 and

10,000 for the HRD design. In the MRD design the number of units per cluster will be

varied at 20 and 40 to represent small and large-sized classrooms, resulting in sample sizes

ranging from 4,000 to 80,000. The test length for each latent variable will be varied at 10
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Table 4.9: Manipulated Factors in Simulation II.
Manipulated factors Levels

Test length (10 items, 30 items)

Level-1 units per cluster
HRD: (20)

MRD: (20, 40)
Level-2 units (200, 500)
Size of LATE (0, 0.2)

Bandwidth (1.0, full)

and 30 items using the 2PL model to reflect a short and long survey items in education. The

marginal reliability was approximately 0.72 and the Cronbach’s alpha was 0.67 for the 10-

item condition, which is considered minimally satisfactory. The marginal reliability was

approximately 0.89 and the Cronbach’s alpha was 0.87 for the 30-item condition which is

considered high by education researchers. The cut-point, non-LATE structural parameters,

and bandwidth will be the same as those used in simulation study I. The bandwidth will be

calculated for the proposed models as in simulation study I. The values of the LATE will

be varied at 0.25, a moderate effect size, and 0 to examine Type I error rates. There are a

total of 36 conditions that will be tested for the HRD model and 72 conditions that will be

tested for the MRD model (see Table 4.9).

Models For simulation study II, two models are fit to the generated data: the proposed

model and the conventional RD analysis using summed scores for the latent constructs. As

in simulation study I, standard errors for the proposed models were calculated via post-

convergence application of the Louis formula (see Section 2.5.3).

Evaluation The generated data were fit to the proposed models used to generate the

data as well as to the conventional RD model (Equation3.5). 500 replications were done

for each condition. For the proposed model, the AT Ec±1, [LAT Eq.05,LAT Eq.95 ], AT Ep,

LAT El , and LAT Eo were evaluated in terms of their absolute and relative bias as well

as RMSE. Similarly, for the conventional model, LAT El and LAT Eo were evaluated in
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terms of absolute and relative bias and RMSE. Under all models, standard errors for these

treatment effects were calculated via application of the delta method (see e.g., Van der Vaart

& Wellner, 1996) and compared against the Monte Carlo standard deviations.

4.2.3 Results

In this stimulation study, the ability of the HRD and MRD models to recover the average

treatment effect (ATE) for participants within one point of the cutoff value, AT Ec±1, the

heterogeneity in the local average treatment effect (LATE) due to measurement error in

the ORV, [LAT Eq.05 ,LAT Eq.95], the ATE for the bottom 30% of the population, AT Ep, the

LATE with respect to the LRV, LAT El , and the LATE with respect to the ORV, LAT Eo, were

evaluated in terms of their bias, relative bias, and RMSE. Similarly, for the conventional

model, LAT El and LAT Eo were evaluated in terms of absolute and relative bias and RMSE.

Type I error rates for the LAT El and LAT Eo were also evaluated. The HRD models had

runtimes between 3 and 14 minutes, while the MRD models had runtimes between 4 and

42 minutes (see Table A.7 in the Appendix). The convergence rates and range of condition

numbers of the information matrix for all models fit under simulation study II appear in

Table 4.10. Both models have high convergence rates when using the full sample. When

using a bandwidth, the convergence rates are lower for the MRD model than the HRD

model. Under both models, the convergence rates are better with 30 items than with 10

items when using a bandwidth. Under the poorest performing conditions, less than 75%

of MRD models converged when using a 10-item test. As more replications were not run

to reach 500 converged analyses, the results discussed in this section are not based on the

same number of iterations across conditions. To assess whether the algorithm converged at

a local maximum, I checked whether the gradient was sufficiently close to 0. The results

appear in Table A.8 in the Appendix.
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Table 4.11: Bias, Relative Bias, and RMSE for Treatment Effect Estimates under the HRD
model with the full sample and bandwidth for 10-item

Clusters Par
Full Sample Bandwidth

Bias R. Bias RMSE Bias R. Bias RMSE

200

LAT El -0.01 -3% 0.13 0.18 92% 0.24
LAT Eo -0.02 -10% 0.13 0.16 68% 0.23
AT Ec±1 -0.03 -12% 0.14 0.15 64% 0.23
LAT Eq.05 -0.05 -7% 0.07 0.25 54% 0.25
LAT Eq.95 -0.03 -12% 0.06 0.21 46% 0.24

AT Ep -0.02 -11% 0.14 0.22 163% 0.29

500

LAT El <0.01 1% 0.08 -0.06 -29% 0.10
LAT Eo -0.02 -8% 0.08 -0.08 -33% 0.12
AT Ec±1 -0.02 -8% 0.02 -0.07 -30% 0.11
LAT Eq.05 -0.01 -1% 0.06 -0.05 -7% 0.06
LAT Eq.95 -0.06 -11% 0.04 -0.03 -11% 0.04

AT Ep <.01 1% 0.09 -0.06 -44% 0.13

HRD Model using the Full Sample and a Bandwidth

Results of the simulation study show that the treatment effect estimates were generally

well recovered when using the full sample and tended to be biased when using a band-

width, especially when the latent variable test length was 10 items. Table 4.11 shows the

bias, relative bias, and RMSE for the treatment effect estimates under the HRD model when

using 10-item tests for the latent variables. While the bias in the treatment effect estimates

is generally less than 0.05 when using the full sample, when conducting the analysis on

a subsample of the data defined by a bandwidth of 1 standard deviation of the ORV, the

estimates are underestimated (bias between 0.03 and 0.08) with 500 clusters and an over-

estimated (bias between 0.15 and 0.25) with 200 clusters. Similarly, RMSE values tend to

be smaller when using the full data as compared to using a bandwidth and smaller with a

sample size of 500 clusters as compared to 200 clusters. RMSE values tend to be smallest

for the [LAT Eq.05 , LAT Eq.95] estimates and largest for the AT Ep parameter.

When using 30-item tests for the latent variables, treatment effect estimates were well
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Table 4.12: Bias, Relative Bias, and RMSE for Treatment Effect Estimates under the HRD
model with the full sample and bandwidth for 30-item

Clusters Par
Full Sample Bandwidth

Bias R. Bias RMSE Bias R. Bias RMSE

200

LAT El -0.02 -12% 0.09 -0.02 -15% 0.11
LAT Eo -0.01 -6% 0.09 -0.02 -10% 0.11
AT Ec±1 -0.01 -6% 0.08 -0.02 -11% 0.11
LAT Eq.05 -0.03 -9% 0.05 -0.03 -9% 0.05
LAT Eq.95 -0.02 -12% 0.04 -0.02 -13% 0.04

AT Ep -0.01 -11% 0.14 -0.01 -8% 0.12

500

LAT El -0.02 -11% 0.06 -0.03 -18% 0.08
LAT Eo -0.02 -8% 0.06 -0.02 -11% 0.07
AT Ec±1 -0.01 -5% 0.06 -0.02 -10% 0.08
LAT Eq.05 -0.03 -8% 0.04 -0.03 -9% 0.04
LAT Eq.95 -0.02 -12% 0.04 -0.02 -12% 0.03

AT Ep -0.01 -10% 0.07 -0.02 -14% 0.09

recovered under the full sample conditions and slightly underestimated when using a band-

width. Table 4.12 shows the bias, relative bias, and RMSE for the treatment effect estimates

under the HRD model when using 30-item tests for the latent variables.The bias in treat-

ment estimates is comparable across sample sizes with bias values smaller than 0.03 across

conditions. As with the shorter test length, the RMSE values are smaller for the conditions

with the larger sample size and the full sample. Furthermore, RMSE values tend to be

smallest for the [LAT Eq.05 , LAT Eq.95] parameters and largest for the AT Ep parameter.

Type-I error rate is near the nominal level across conditions using the full sample, but

inflated when using a bandwidth (See Figure 4.16). Type I error rates tend to be better

under conditions using 30-items as opposed to 10-items and 500 clusters as opposed to 200

clusters.
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Figure 4.16: Type I error rate of Latent LATE for HRD model using full sample and a

bandwidth.

MRD Model using the Full Sample and a Bandwidth

Treatment effect estimates are well recovered under the MRD model when using the

full sample and slightly biased when using a bandwidth of 1 standard deviation of the

ORV. When using 10-item tests for the latent variables, treatment estimates tend to be

underestimated when using a bandwidth (see Table 4.13). The largest attenuation tends to

be in the AT Ep parameter. While RMSE values tend to be smaller with a larger sample size,

the parameter estimates themselves are largely unaffected by both the number of clusters

and the cluster size.
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When using 30-item tests for the latent variables, treatment estimates tend to be overes-

timated when using a bandwidth (see Table 4.14). The largest bias tends to be in the AT Ep

parameter, with the largest bias, 0.15, when using a sample of size 8,000 with 200 clusters.

However, in general, the magnitude of bias in the treatment effect estimates is comparable

across overall sample size and number of clusters.
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Type-I error rate is near the nominal level across conditions using the full sample, but

inflated when using a bandwidth (See Figure 4.17). Type I error rates tend to be better

under conditions using 30-items as opposed to 10-items and 40 individuals per cluster as

opposed to 20 individuals per clusters. The Type I error rate does not tend to differ by

number of clusters.

Figure 4.17: Type I error rate of Latent LATE for HRD model using full sample and a

bandwidth.

Latent RD Models and Conventional RD Model

The estimation of the LATE with respect to the latent RV is a benefit of the latent RD

model over the conventional RD model. As such, I compared the LAT El from the latent

RD models to the LATE with respect to the latent construct from the conventional RD

model, LAT Ec. Figure 4.18 shows the bias in the estimates for the HRD and conventional

RD models across sample size and test length. The LAT El shows bias values smaller than
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0.03 for all conditions except when using a bandwidth with 200 clusters and 10 items. The

LAT Ec estimates are generally more underestimated than the LAT El across conditions,

though the difference in magnitude is small.

Figure 4.18: Bias in the LATE calculated from the conventional RD model (LAT Ec) and

from the latent HRD model (LAT El) under all simulation conditions.

When using 10-item tests under the MRD model the LAT El is generally well recovered

with bias values no more extreme than 0.05. The LAT Ec in the conventional RD model

is generally underestimated, especially with the use of a bandwidth. The results are simi-

lar when using a 30-item test with the LAT El being overestimated under most conditions

using a bandwidth. Figures 4.19 and 4.20 show the bias in the estimates for the MRD

and the conventional RD models across conditions when using 10-item and 30-item tests,

respectively.
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Figure 4.19: Bias in the LATE calculated from the conventional RD model (LAT Ec) and

from the latent MRD model (LAT El) under all simulation conditions with 10-item tests.
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Figure 4.20: Bias in the LATE calculated from the conventional RD model (LAT Ec) and

from the latent MRD model (LAT El) under all simulation conditions with 30-item tests.
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Chapter 5: Empirical Data Analysis

In this chapter, I apply the latent variable multisite regression discontinuity model to the

Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011 (ECLS-K:2011)

data as a mechanical example to illustrate how the proposed model can be used to esti-

mate treatment effects in empirical data. I also apply the conventional RD analysis using

observed variables and compare the parameter estimates of both models. This chapter de-

scribes the methods and summaries the results of the empirical application.

5.1 Data

The ECLS-K:2011 data is used to examine the effect of being classified as an English

language learner (ELL) in kindergarten on students’ science achievement in the first grade.

Students were given a language screening assessment in the Fall of their kindergarten year.

The 20-item assessment consisted of two tasks from the Preschool Language assessment

Scale (preLAS; Duncan & De Avila, 2000). Students’ ability to follow simple, direct in-

structions was tested with the “Simon Says” task, and the “Art Show” task tested students’

expressive vocabulary. Those who met the minimum score of 17 (i.e., 17 out of 20 items

were correctly answered) on the assessment were considered proficient in English; those

who did not were classified as ELL. All students were further administered an 18-item

measure of cognitive flexibility called the Dimensional Change Card Sort (DCCS; Zelazo,

2006). In the Spring of the first grade all students were administered a 47-item science
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assessment (Science).

The sample consists of 18,174 students in 860 schools. Once students were classified

based on their preLAS scores, there were 571 schools (n = 15,784) with both students

that were designated as ELL and students that were not designated as ELL based on their

preLAS scores. While the conventional RD model can estimate the effect of being desig-

nated ELL on student’s science assessment scores for students with preLAS scores at the

cutoff, the multilevel latent RD model can: 1) estimate the effect of being designated ELL

on student’s science achievement for students with preLAS scores at the cutoff, 2) estimate

the treatment effect for students within 1 point of the cutoff, and quantify the heterogeneity

in the treatment effect based on measurement error in the preLAS score.

5.2 Analysis

The proposed MRD model was be applied to this data:

Sciencei j =(γ00+u0 j)+β1 preLASi j+(γ20+u2 j)ELLi j+β3 preLASi jELLi j+β4DCCSi j+εi j

where Sciencei j is the latent outcome variable score for individual i in school j based on

the first grade science assessment; the variance of the random error term, u0 j, is a measure

of the between-school variability in science scores; β1 is the average relation between the

running variable, i.e., preLASi j, and science achievement; γ20 is the average effect of be-

ing classified as ELL in kindergarten on science achievement across all schools; (γ20+u2 j)

is the LATE for each school; ELLi j is the dichotomous variable that indicates whether a

student was designated as ELL, (ELLi j = 1) or as non-ELL (ELLi j = 0); β4 measures the

relation between the DCCS and the science achievement. The LATE at a specific RV is
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γ20 +β3θr,i j .

Because only raw number-right scores are provided for the RV, preLAS, and not item-

level responses, the item responses were generated in the following way: the number-right

values were transformed into scaled summed scores and treated as the true latent variables;

the 2PL model was then used to simulate item response data based on the latent variable

scores and item parameters generated to be within a reasonable range, i.e., discrimination

parameters between 1.0 and 2.5 and difficulties between -2 and 2. The preLAS IRT scores

had a marginal reliability of 0.73, which is considered minimally sufficient. Similarly,

only IRT factor scores are provided for the outcome variable, Science. These scores were

used with item parameters, which were generated as previously stated, in the 2PL model

to simulate item responses. The simulated item response data were then treated as the real

data for the LRV estimation. As item response data is available for the covariate, DCCS,

the available item response data was directly used in the MRD model. Missing data on

DCCS item responses were treated as incorrect. Students with missing data on preLAS or

Science were list-wise deleted.

5.3 Results

To tune the MH-RM, I first determined the number of “burn-in” cycles for the MH

sampler by examining the auto correlations of random drawings. The time series plots for

4 randomly selected random effects at both levels appear in the Appendix. These plots

suggest at least 50 burn-in cycles is reasonable for this model. Next, I ran the full MH-

RM algorithm and set the values for the tuning constant w at each level, using the values

from Simulation Study II as a guide. The final values were 0.50 at level-1 and 0.04 at

level-2. Finally, I ran the full MH-RM algorithm again and examined the trace plots of
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the parameter estimates, which appear in the Appendix. The trace plots indicate the initial

burn-in stage, M1, should be set to 100. The gain constant stage, M2 is set to 300 iterations,

and the decreasing constant stage, M3 is set to 500 iterations.

The structural parameter estimates from the MRD model and the conventional multi-

level RD model with observed variables appear in Table 5.1. Under both models there is a

significant negative effect of being classified ELL in kindergarten on the outcome. Under

the conventional RD model, the treatment effect estimate of -0.27 can only be interpreted

as the effect of being classified ELL in kindergarten on students’ scores on the science

achievement exam in first grade. In contrast, under the MRD model, the treatment effect of

-0.12 can be interpreted as the effect of being classified ELL in kindergarten on students’

science ability in first grade. This second interpretation allows researchers to make con-

nections with similar studies which have used different science assessments. Furthermore,

the MRD model allows for the estimation of the treatment effect for students within 1 point

of the cutoff, AT Ec±1, and for a quantification of the heterogeneity in the treatment effect

due to measurement error in the ORV, [LAT Eq.05 , LAT Eq.95]. The AT Ec±1 is -0.08 (SE =

0.07), indicating that when generalized to students who scored between 16 and 18 on the

preLAS, there is no significant effect of being classified ELL on science achievement. The

range of the LATE for the middle 90% of students with an ORV of 17 is [0.01, -0.22].

5.4 Limitations

There are several important limitation to this analysis. First, this application is intended

as a mechanical example to illustrate the steps and interpretations when applying the pro-

posed MRD model to empirical data. As the full data needed to apply the proposed model

was not available, i.e., the individual item responses for the RV (preLAS) and the outcome

(Science), this is not a true empirical application. As such, interpretation of the results
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Table 5.1: Structural parameter estimates from ECLS-K:2011 data analysis using the MRD
model and conventional multilevel RD model

Variable
Latent MRD Model Conventional Multilevel RD Model
β̂ SE(β̂ ) t β̂ SE(β̂ ) t

preLAS 0.24 0.01 19.18 0.05 0.004 11.41
ELL -0.12 0.05 -2.43 -0.27 0.05 -4.99

preLASELL 0.10 0.03 2.91 0.01 0.01 0.69
DCCS 0.32 0.01 31.96 -0.05 0.003 -18.94

Var(preLAS j) 0.01 0.01 2.05 NA NA NA
Var(DCCS j) 0.01 0.01 2.08 NA NA NA

τ0 0.01 0.01 2.06 0.09 0.02 4.50
τ2 0.19 0.02 10.43 0.03 0.03 1.03
τ20 -0.02 0.01 -1.81 -0.02 0.02 -1.09

should only be used for illustrative purposes and should not be taken as a true estimate of

the effect of being classified as ELL on science achievement.

Second, based on the cutoff value of 17, approximately 86% of the sample was as-

signed to the treatment condition, while 14% was assigned to the control condition. This

is a much more uneven split between treatment conditions than was used in the simulation

studies. As such, the effect of this more unbalanced treatment allocation on model param-

eter estimates is unclear. Results from the simulation study using the MRD model with

bandwidths indicates an unequal allocation of participants within clusters may lead to poor

model parameter recovery.

Third, the analysis did not take into account background variables such as gender, eth-

nicity, or socioeconomic status. The treatment effect estimate may change once these co-

variates are controlled for. Furthermore, the analysis was conducted using the full sample

instead of a bandwidth. The linear functional form may not be a proper fit for the data,

especially at values away from the cutoff.
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Chapter 6: Discussion

6.1 Summary

An important purpose of education research is to examine the causal associations be-

tween interventions and student outcomes. The ability of researchers to draw causal con-

clusions from a study depends on the research design used, as not all designs can support

causal inferences. To this end, the regression discontinuity (RD) design is a popular choice

in education research as causal effects can be estimated without the need to randomly as-

sign participants to treatment groups. Instead, participants are assigned to treatment groups

based on whether their score on a running variable (RV) falls above or below a specified

cutoff value. The RD design provides treatment effect estimates for the subpopulation with

RV scores at the cutoff, called the local average treatment effect (LATE).

The ability of the RD design to estimate causal effects without requiring the random

assignment of participants to treatment groups makes the design a popular choice in educa-

tion research. Many of the studies conducted in education settings share two features: 1) A

lack of independence between individuals in a study due to the hierarchical structure of the

education system, and 2) The use of assessments that measure latent constructs. The pres-

ence of these characteristics often precludes the use of many traditional statistical models

due to violations of the models’ assumptions. As such, the use of conventional RD models

may not be sufficient to draw valid causal conclusions in many educaitonal research appli-

cations. While there has been a trend in many fields towards extending statistical models to
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include latent variables (LVs), conventional RD analyses continue to treat latent constructs

as observed variables.

This stems from a tradition formalized by Lee and Lemieux (2010), which argues that

the measurement error in the observed RV (ORV) converts the RD design into a local

RCT at the cutoff and consequently allows researchers to examine the heterogeneity and

generalizability of the treatment effect. However, the conventional RD model does not

allow for adequate generalizability of the LATE or quantification of the heterogeneity in

the treatment effect without the explicit specification of a measurement model for the RV.

Furthermore, while any attenuation in the regression parameters due to measurement error

in the ORV does not invalidate results when the interpretation of the LATE is confined to

the ORV scale, it does make interpretations on the LRV scale invalid. The integration of

LV modeling and the RD design would therefore allow researchers to examine the hetero-

geneity and generalizability of the treatment effect as well as to interpret the LATE with

respect to the LRV.

The main purpose of this study was to derive multilevel LV RD models in which the

outcome, RV, and covariates are latent and to estimate the proposed models with full-

information maximum likelihood (FIML) estimation. Due to the complexity in estimating

latent variable models with categorical item responses using traditional FIML algorithms,

the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2010a, 2010b) was im-

plemented using R (R Core Team, 2019). Multilevel latent RD models were derived for

application when the treatment assignment occurs at the cluster level (hierarchical RD;

HRD) and at the individual level (multisite RD; MRD). The performance of the proposed

models was examined in two simulation studies.

Results of the first simulation study suggest measurement and structural parameters are

properly recovered when analyzing the full sample. This was expected and in line with

previous work using a single-level LV RD model and a full sample (Morell et al., 2019).
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Standard errors, which were estimated using direct application of the Louis formula, post

convergence, were underestimated for all model parameters. However, the 95% confidence

interval coverage of the structural parameters and the LAT El tended to be near the nominal

level for both models.

When only a subsample of participants with ORV values within 1 standard deviation of

the cutoff is used (i.e., when a bandwidth of 1 is used), several structural parameters were

biased. As expected, the measurement parameters were well recovered under conditions

using a bandwidth because they were estimated using the full sample. The bias in structural

parameters tended to be more severe for the MRD model. However, the variance of the

cluster-level RV values, Var(θr, j), were severely underestimated (up to 85%) under both

models. This attenuation is expected as the use of a bandwidth specifically restricts the

range of RV values and, therefore, the between cluster variability. The relation between

the RV and the outcome variable, β1, was underestimated by about 50% with the MRD

model. Accordingly, the interaction between the RV and the treatment assignment was

overestimated by 140%. This overestimation is an interaction between the the assignment

mechanism in the MRD model (i.e., participants are assigned at the individual level) and

the use of a bandwidth (i.e., each cluster only contains participants with a narrow band of

values on the RV). This bias was not seen in the HRD model because, as participants are

assigned at the cluster-level, all values of the RV are still represented in the data, within

each cluster.

Standard errors tended to be more severely underestimated for the structural parameter

when using a bandwidth than when using the full sample. This is due to the use of a

“multi-stage” estimation approach when using a bandwidth. The measurement parameters,

which were first estimated using the full sample, were treated as fixed when only the data

within the bandwidth was fit to the model. Treating estimated parameters as fixed in a

subsequent stage of estimation is known to underestimate standard errors (Y. Liu, Yang, &
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Maydeu-Olivares, 2019), a point I return to in the next section.

The 95% confidence interval coverage of the structural parameters when using a band-

width tended to be poor across both model. The regression parameters had especially low

coverage under the MRD model. However, the LAT El had coverage near 90% under both

models. As expected, due to the nature of using only the data within a bandwidth, the vari-

ance of the cluster-level RV values, Var(θr, j), had 0% coverage, while the variance of the

cluster-level latent covariate values , Var(θc, j), had about 75% coverage.

In order to assess the impact of a violation of the latent RD model assumption of a

properly specified model, two misspecified models were examined under the HRD and the

MRD models, one in which the interaction term is omitted and one in which the latent

covariate is omitted. The measurement parameters were generally well recovered, with

the outcome’s item parameters being slightly over estimated under both misspecifications.

When the interaction term was omitted, the structural parameters were properly recovered

under the HRD model with the largest relative bias, -14%, in the treatment effect parameter,

β2. However, many of the structural parameters under the MRD model were attenuated.

The relative bias in γ20 was more than twice that seen in the HRD model, -29%. Further-

more, the variance of the level-2 random effects for the LATE , τ2
2 had a relative bias of

−21%. Consequently, LAT El was properly recovered under the HRD, but attenuated un-

der the MRD. Similarly, when the latent covariate is omitted, the structural parameters are

well recovered under the HRD, but the interaction term, β3 is overestimated with a relative

bias of 20%, and the variance of the level-2 random effects for the LATE, τ2
2 is similarly

underestimated. Under both conditions, the assignment mechanism in the MRD model

(i.e., assignment at the individual level) appears to be more sensitive to misspecifications

than that of the HRD model (i.e., assignment at the cluster level). The results highlight the

importance of assessing the fit of the latent RD model before interpreting the results, espe-

cially when using the MRD model. Furthermore, as these misspecifications occurred when
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simulation conditions were ideal, parameter bias may be worse under some more practical

conditions.

A second simulation study was conducted to examine the ability of the proposed models

to quantify the heterogeneity and generalizability of the treatment effect and to compare the

LATE estimates between the latent multilevel models and the conventional RD model with

observed variables. As with the previous simulation study, the results indicate the models

perform well when using the full sample. While the use of a bandwidth generally resulted in

worse estimates, the magnitude of the bias in parameter estimates depended largely on the

cluster size and the test lengths for the LVs. The parameter recovery was worse with a test

length of 10 than with a test length of 30. This may reflect the impact of the reliability of the

LRV, as the 10-item condition had a marginal reliability of approximately 0.72 and the 30-

item conditions had a marginal reliability of approximately 0.89, and measures with lower

reliability tend to attenuate parameter estimates. The parameter estimates tended to be

comparable under 200 and 500 clusters with the exception of the HRD model using 10-item

tests. Under this condition, the smaller cluster size resulted in relative bias values between

46 and 140%. The number of participants within each cluster did not affect parameter

estimates under the MRD model. Similarly, the Type I error rate was well controlled when

using the full sample and elevated with a bandwidth, with worse performance under the

MRD model than the HRD model.

One of the benefits of the latent RD model over the conventional RD model is the ability

to interpret the LATE with respect to the LRV as well as the ORV. Using the conventional

RD model to interpret the LATE with respect to the LRV can be considered a misspecifi-

cation of the measurement model, as observed scores are used for the LVs. The recovery

of the LATE with respect to the LRV, LAT El in the latent RD models was compared to that

in the conventional RD model, LAT Ec. The bias was comparable under the HRD and the

conventional models across conditions, though the HRD model tended to have less biased
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estimates. The LAT El under the MRD model tended to be less biased than the LAT Ec

across conditions. While the magnitude in the bias between the MRD and the conventional

RD model was greater than that between the HRD and the conventional RD model, the

LAT Ec parameter estimates tended to exhibit bias less than .07 across conditions. This

suggests the LATE with respect to the latent construct may still be estimated accurately

when using the conventional RD model when a sufficient number of items is used.

The two simulation studies indicate that the proposed models perform well with large

sample sizes, moderate to large tests with adequate reliability, and the full sample. While

the use of a bandwidth results in worse estimates across models, the MRD model is more

sensitive to the range restriction due to the assignment of participants to treatment groups

at the individual level. Moreover, when bandwidths are used with the MRD model, the

design becomes unbalanced, which may also contribute to the difficulties in estimation.

The results also suggest sample size recommendations for practitioners using the models.

When using the full sample to estimate the treatment effect, as few as 200 clusters and 20

individuals per cluster may be sufficient when the LRV is of at least moderate length and

has adequate reliability.

A second purpose of this study was to provide an empirical illustration using data

from the Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011 (ECLS-

K:2011). An MRD model was fit to the data to estimate the causal effect of being desig-

nated as an English language learner (ELL) in kindergarten on students’ science achieve-

ment in first grade. The regression parameters were underestimated in the conventional

RD model as compared to the latent MRD model. However, both the MRD and the con-

ventional RD model found a significant negative effect. The MRD model was also able

to provide more information about the treatment by estimating a treatment effect for stu-

dents within 1 point of the ELL designation cutoff, which indicates that once the effect is

generalized to a wider range of scores, the treatment may not have a significant effect on
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science achievement. Furthermore, the quantification of the heterogeneity in the treatment

effect due to the measurement error in the preLAS scores showed a range from no effect to

a stronger negative effect.

The results of the empirical analysis must be interpreted in light of the results of the

simulation studies. The MRD model tended to have more biased estimates than the HRD

model across conditions. It was also more sensitive to changes in simulation conditions.

While the exact conditions of the empirical data were not used in any simulation study, the

number of clusters (571), the number of students per cluster (2 to 26), and the LRV with 20

items and a marginal reliability of 0.73 is similar to conditions examined in the simulation

studies using a bandwidth and a 10-item test, suggesting that the treatment effect in the

empirical analysis may be underestimated. Furthermore, the current study did not apply

sampling weights, which is common practice in the use of such large scale data.

6.2 Directions for Future Study

The findings and limitations of this study suggest several areas for future research in

expanding the applicability and usefulness of the latent multilevel RD model. First, the

standard errors tended to be underestimated across both models. Per large sample the-

ory, standard errors should be unbiased using the delta method. Furthermore, when using

restricted maximum likelihood estimation both parameter variances and standard errors

should be unbiased. However, the current study uses a finite sample, which may be result-

ing in biased standard errors. Further investigations are needed to determine if the direct

application of the Louis formula is appropriate for these models. For example, the num-

ber of iterations used may need to be increased further; however, as this does increase the

already long runtime of the models. Additionally, in the current study only one sample is

drawn from the MH sampler at a time. Drawing multiple samples at each iteration may
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improve the standard error estimates.

Second, when using multilevel modeling it is standard practice to fit a series of mod-

els and conduct nested model comparisons. However, the current implementation of the

MH-RM algorithm does not calculate the likelihood needed to conduct nested model com-

parisons or to calculate fit indices such as the Akaike Information Criterion (AIC; Akaike,

1987) or the Bayesian Information Criterion (BIC; Schwarz et al., 1978).

Third, the exploratory fitting of misspecified models highlighted the importance of as-

sessing model fit when using the latent multilevel RD model. As such, goodness of fit

statistics should be developed for this purpose (e.g., Bock & Aitkin, 1981; Browne & Cud-

eck, 1993; Maydeu-Olivares & Joe, 2005, 2006). Furthermore, in order to support gener-

alizing the ATE to ORV values away from the cutoff, a series of models may be fit using

varying bandwidths. Adequate model fit may be used to justify generalizing the treatment

effect to ORV values based on the bandwidths used.

Fourth, the use of bandwidths with the latent multilevel RD model is more complicated

than with the conventional RD model. Using only the data that falls within the specified

bandwidth to estimate the full latent RD model would mean the measurement model for

the RV is misspecified as the response data within the bandwidth does not represent the

full distribution of ability values. To avoid this issue, the approach used in this study was

to estimate the item parameters first using the full data and then treat them as fixed and

estimate the structural parameters using the bandwidth data. However, this approach has

its own disadvantages as the same item response data should not be used to estimate item

parameters (i.e., calibration) and to calculate ability estimates (i.e., scoring). Furthermore,

treating the item parameter estimates as fixed in the second stage of the estimation results

in underestimated standard errors, which can be corrected using the restricted recalibration

approach (Y. Liu, Yang, & Maydeu-Olivares, 2019).

Fifth, the performance of the proposed models should be examined under a greater
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variety of sample sizes, test lengths, and number of random effects to better understand

the relationship between these factors and its performance. When using a single-level LV

RD model, Morell et al. (2019) found the model recovered parameters well even with a

test-length of 5 and sample size of 500. Finding the limitations of the proposed models

in terms of sample size and test length will be beneficial. Similarly, the MRD model used

specified no relationship between the random intercept and the random slope terms. It is

also possible that there is a relationship between these two terms which may affect the

recover of structural parameters.

Sixth, while the MRD model allows for cutoff values to vary across clusters, the extent

to which these values may vary is unclear. The interpretation of the overall treatment effect

when there is little or no overlap in ORV values across clusters must be done carefully.

Furthermore, the effect of a large difference in the proportion of individuals assigned to

each treatment condition across clusters need to be further investigated, as the results of

the current study showed poor parameter recovery when a bandwidth waws used with the

MRD model.

Seventh, the proposed models are classified as “sharp” RD designs as all participants

comply with their treatment assignment; however, in practice, it may be more likely that

the not all participants adhere to their treatment assignment, i.e., the RD design is fuzzy.

The proposed models may still be applied in this scenario by including the actual treatment

indicator instrumented by the eligibility indicator.

Eighth, the proposed model may be extended to accommodate multi-dimensional mea-

surement structures, such as a two-correlated factor model, which are common in empirical

data. The added complexity of such measurement models may complicate the estimation

of the multilevel LV RD models.
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Table A.1: Bias, Relative Bias, and RMSE for Running Variable Slopes for HRD and MRD
Models in Simulation Study I using Full Sample

True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

1.41 0.02 1% 0.05 0.01 1% 0.04
1.00 0.01 1% 0.03 0.01 1% 0.03
1.07 0.01 1% 0.02 0.01 1% 0.03
1.61 0.03 2% 0.05 0.03 2% 0.05
1.23 0.01 1% 0.04 0.01 1% 0.04
1.16 0.01 1% 0.04 0.01 1% 0.04
1.35 0.02 1% 0.05 0.01 1% 0.04
1.24 0.01 1% 0.04 0.02 1% 0.04
1.38 0.02 1% 0.05 0.02 1% 0.05
1.63 0.02 1% 0.05 0.01 1% 0.04
1.26 0.01 1% 0.05 0.01 1% 0.05
1.76 0.02 1% 0.05 0.01 1% 0.05
1.65 0.02 1% 0.05 0.01 1% 0.05
1.31 0.01 1% 0.04 0.01 1% 0.04
1.20 0.01 1% 0.04 0.02 1% 0.04
1.43 0.02 1% 0.05 0.01 1% 0.04
1.30 0.02 1% 0.04 0.01 1% 0.04
1.29 0.01 1% 0.04 0.01 1% 0.04
1.40 0.01 1% 0.05 0.02 1% 0.05
1.36 0.02 1% 0.04 0.02 1% 0.04
1.71 0.03 1% 0.06 0.01 1% 0.05
1.21 0.01 1% 0.04 0.01 1% 0.04
1.42 0.02 1% 0.04 0.01 1% 0.04
1.66 0.01 1% 0.05 0.01 1% 0.05
1.45 0.02 1% 0.04 0.01 1% 0.04
1.34 0.01 1% 0.04 0.01 1% 0.04
1.32 0.01 1% 0.04 0.01 1% 0.04
1.26 0.01 1% 0.04 0.02 1% 0.03
1.11 0.02 1% 0.03 0.01 1% 0.03
1.48 0.02 1% 0.05 0.01 1% 0.04
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Table A.2: Bias, Relative Bias, and RMSE for Running Variable Intercepts for HRD and
MRD Models in Simulation Study I using Full Sample

True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

-0.35 -0.03 9% 0.07 -0.02 8% 0.06
0.68 -0.01 -1% 0.05 -0.01 -1% 0.05
-0.31 -0.02 6% 0.05 -0.02 6% 0.05
-1.96 -0.03 2% 0.09 -0.02 2% 0.09
-1.03 -0.02 2% 0.06 -0.03 3% 0.07
-1.56 -0.02 1% 0.06 -0.02 1% 0.06
0.73 -0.02 -3% 0.07 -0.02 -3% 0.07
-1.91 -0.02 1% 0.07 -0.02 1% 0.07
0.64 -0.02 -3% 0.07 -0.01 -2% 0.07
-1.12 -0.03 3% 0.07 -0.02 3% 0.07
1.99 -0.02 -1% 0.09 -0.02 -1% 0.09
1.18 -0.03 -3% 0.07 -0.02 -3% 0.07
0.44 -0.02 -5% 0.09 -0.02 -5% 0.09
-2.42 -0.02 1% 0.09 -0.02 1% 0.09
1.06 -0.02 -2% 0.08 -0.02 -2% 0.08
0.84 -0.02 -2% 0.07 -0.02 -2% 0.07
-1.70 -0.02 1% 0.08 -0.02 1% 0.08
1.14 -0.02 -2% 0.07 -0.02 -2% 0.07
2.33 -0.02 -1% 0.07 -0.03 -2% 0.07
0.96 -0.02 -2% 0.08 -0.01 -1% 0.08
-0.64 -0.03 5% 0.07 -0.02 4% 0.07
-0.96 -0.01 1% 0.09 -0.01 1% 0.09
1.21 -0.02 -2% 0.07 -0.02 -2% 0.07
1.91 -0.02 -1% 0.08 -0.02 -1% 0.07
0.31 -0.02 -6% 0.09 -0.02 -6% 0.08
-0.67 -0.02 3% 0.08 -0.02 3% 0.08
2.09 -0.02 -1% 0.07 -0.03 -1% 0.07
0.47 -0.02 -4% 0.07 -0.01 -4% 0.07
-0.56 -0.01 2% 0.06 -0.02 3% 0.07
0.54 -0.03 -6% 0.08 -0.03 -6% 0.08
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Table A.3: Bias, Relative Bias, and RMSE for Covariate Slopes for HRD and MRD Models
in Simulation Study I using Full Sample

True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

1.70 0.01 1% 0.05 0.01 1% 0.05
1.55 0.01 <1% 0.05 0.01 <1% 0.05
1.31 0.01 <1% 0.04 0.01 <1% 0.04
1.35 0.01 <1% 0.04 0.01 1% 0.03
1.41 0.01 1% 0.04 0.01 1% 0.05
1.19 0.01 <1% 0.04 0.01 <1% 0.04
1.28 0.01 <1% 0.03 0.01 <1% 0.03
1.46 0.01 1% 0.04 0.01 1% 0.04
1.57 0.01 1% 0.04 0.01 1% 0.04
1.13 0.01 1% 0.03 0.01 <1% 0.03
1.18 0.01 <1% 0.04 0.01 <1% 0.04
1.09 0.01 <1% 0.04 0.01 <1% 0.04
1.86 0.01 <1% 0.05 0.01 1% 0.06
1.35 0.01 1% 0.04 0.01 1% 0.04
1.68 0.01 1% 0.04 0.01 <1% 0.04
1.41 0.01 <1% 0.05 0.01 <1% 0.05
1.50 0.01 1% 0.05 0.01 1% 0.05
1.10 0.01 <1% 0.03 0.01 1% 0.03
1.48 0.01 <1% 0.04 0.01 <1% 0.03
1.41 0.01 1% 0.04 0.01 <1% 0.03
1.22 0.01 <1% 0.03 0.01 <1% 0.03
1.21 0.01 1% 0.04 0.01 1% 0.04
1.45 0.01 1% 0.04 0.01 1% 0.04
1.37 0.01 1% 0.04 0.01 1% 0.04
1.58 0.01 1% 0.04 0.01 1% 0.04
1.28 0.01 <1% 0.03 0.01 1% 0.04
1.08 0.01 <1% 0.03 0.01 <1% 0.03
1.10 0.01 1% 0.03 0.01 <1% 0.03
1.84 0.01 1% 0.05 0.01 1% 0.04
1.26 0.01 1% 0.04 0.01 1% 0.04
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Table A.4: Bias, Relative Bias, and RMSE for Covariate Intercepts for HRD and MRD
Models in Simulation Study I using Full Sample

True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

0.57 0.02 3% .09 0.02 3% .09
2.67 0.02 1% .09 0.02 1% .09
-1.67 0.02 -1% .07 0.02 -1% .07
0.64 0.01 2% .07 0.01 2% .07
-0.27 0.01 -4% .06 0.01 -3% .05
-1.35 0.01 -1% .07 0.01 -1% .07
-0.48 0.01 -2% .07 0.01 -2% .07
-0.31 0.02 -6% .06 0.01 -3% .05
-0.40 0.02 -5% .09 0.01 -3% .08
-0.88 0.01 -1% .06 0.02 -2% .07
1.41 0.01 1% .07 0.02 1% .07
-1.40 0.01 -1% .06 0.02 -1% .06
0.69 0.02 3% .09 0.01 1% .07
1.21 0.02 2% .07 0.02 2% .07
-0.38 0.02 -5% .09 0.01 -3% .08
2.54 0.02 1% .09 0.03 1% .09
-2.87 0.02 -1% .09 0.02 -1% .09
-1.01 0.01 -1% .06 0.02 -2% .07
-0.85 0.02 -2% .08 0.02 -2% .08
-0.28 0.02 -7% .08 0.01 -4% .06
0.14 0.01 7% .06 0.01 7% .06
0.29 0.01 3% .07 0.02 7% .09
0.51 0.02 4% .08 0.02 4% .08
-0.37 0.02 -5% .07 0.01 -3% .06
-0.11 0.02 -19% .09 0.01 -9% .05
0.13 0.01 8% .08 0.02 16% .10
-1.00 0.01 -1% .06 0.03 -3% .07
1.03 0.01 1% .06 0.02 2% .06
0.46 0.02 4% .09 0.01 2% .08
-2.36 0.02 -1% .07 0.02 -1% .06
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Table A.5: Bias, Relative Bias, and RMSE for Outcome Variable Slopes for HRD and
MRD Models in Simulation Study I using Full Sample

True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

1.41 -.03 -2% .04 -.03 -2% .04
1.48 -.03 -2% .05 -.02 -2% .04
1.01 -.02 -2% .03 -.02 -2% .03
1.42 -.03 -2% .05 -.03 -2% .05
1.25 -.02 -2% .04 -.02 -2% .04
1.22 -.02 -2% .04 -.02 -2% .04
1.46 -.03 -2% .05 -.03 -2% .05
1.08 -.02 -2% .03 -.01 -1% .02
1.50 -.03 -2% .05 -.03 -2% .05
1.25 -.02 -2% .04 -.02 -2% .04
1.47 -.03 -2% .05 -.02 -2% .05
1.50 -.03 -2% .05 -.03 -2% .05
1.22 -.02 -2% .04 -.03 -2% .04
1.19 -.02 -2% .04 -.03 -2% .04
1.35 -.03 -2% .04 -.03 -2% .04
1.19 -.02 -2% .04 -.02 -2% .04
1.15 -.02 -2% .03 -.02 -2% .03
1.37 -.02 -2% .05 -.01 -1% .04
1.41 -.03 -2% .05 -.03 -2% .05
1.38 -.02 -2% .05 -.02 -2% .05
1.24 -.02 -2% .04 -.01 -1% .04
1.57 -.02 -2% .05 -.02 -2% .05
1.42 -.02 -2% .04 -.02 -2% .04
1.48 -.02 -2% .04 -.03 -2% .04
1.51 -.03 -2% .05 -.03 -2% .05
1.27 -.02 -2% .04 -.02 -2% .04
1.48 -.03 -2% .04 -.03 -2% .04
1.19 -.02 -2% .04 -.03 -3% .04
1.09 -.02 -2% .03 -.02 -2% .03
1.57 -.03 -2% .05 -.03 -2% .05
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Table A.6: Bias, Relative Bias, and RMSE for Outcome Variable Intercepts for HRD and
MRD Models in Simulation Study I using Full Sample

True HRD MRD
Value Bias R. Bias RMSE Bias R. Bias RMSE

-0.55 -0.11 20% 0.11 -0.11 20% 0.11
1.29 -0.12 -9% 0.12 -0.11 -9% 0.08
1.38 -0.05 -4% 0.05 -0.06 -4% 0.05
-1.21 -0.11 9% 0.11 -0.11 9% 0.11
-0.63 -0.08 13% 0.09 -0.09 14% 0.09
2.22 -0.08 -4% 0.09 -0.07 -3% 0.09
-2.13 -0.11 5% 0.12 -0.10 5% 0.11
-1.43 -0.06 4% 0.06 -0.06 4% 0.06
0.41 -0.12 -30% 0.13 -0.13 -32% 0.14
1.21 -0.08 -7% 0.09 -0.10 -8% 0.09
-0.40 -0.12 30% 0.12 -0.11 27% 0.11
-0.44 -0.12 28% 0.12 -0.12 27% 0.12
-0.28 -0.08 29% 0.08 -0.09 33% 0.10
2.00 -0.07 -4% 0.08 -0.08 -4% 0.08
0.55 -0.10 18% 0.10 -0.11 -20% 0.10
-.60 -0.08 13% 0.08 -0.09 15% 0.09
0.01 -0.07 -2549% 0.07 -0.07 -2534% 0.07
1.69 -0.10 -6% 0.11 -0.10 -1% 0.05
0.33 -0.11 -33% 0.11 -0.11 -3% 0.06
-2.25 -0.10 5% 0.11 -0.10 4% 0.10
0.49 -0.08 -17% 0.09 -0.10 -20% 0.10
2.00 -0.13 -7% 0.14 -0.11 -6% 0.14
1.15 -0.11 -10% 0.11 -0.11 -10% 0.11
0.07 -0.12 -171% 0.12 -0.12 -173% 0.12
1.23 -0.12 -10% 0.13 -0.12 -10% 0.13
-1.88 -0.09 5% 0.09 -0.10 5% 0.09
0.03 -0.12 -380% 0.12 -0.11 -353% 0.11
-0.08 -0.08 90% 0.08 -0.08 95% 0.09
0.52 -0.06 -12% 0.07 -0.06 -12% 0.07
0.47 -0.13 -29% 0.14 -0.13 -28% 0.14
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Figure A.1: Time-series plots for 5 randomly chosen δri j andδci j under the HRD model,
sample size = 4,000, number of clusters = 200
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Figure A.2: Time-series plots for 5 randomly chosen θr j andθc j under the HRD model,
sample size = 4,000, number of clusters = 200
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Figure A.3: Time-series plots for 5 randomly chosen τ0 j andεi j under the HRD model,
sample size = 4,000, number of clusters = 200
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Figure A.4: Time-series plots for 5 randomly chosen δri j andδci j under the MRD model,
sample size = 4,000, number of clusters = 200
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Figure A.5: Time-series plots for 5 randomly chosen θr j andθc j under the MRD model,
sample size = 4,000, number of clusters = 200
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Figure A.6: Time-series plots for 5 randomly chosen εi j under the MRD model, sample
size = 4,000, number of clusters = 200
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Figure A.7: Time-series plots for 5 randomly chosen τ0 j and τ2 j under the MRD model,
sample size = 4,000, number of clusters = 200
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Figure A.8: Time-series plots for 4 randomly chosen δri j under MRD model with empirical
data

Figure A.9: Time-series plots for 4 randomly chosen δci j under MRD model with empirical
data

142



Figure A.10: Time-series plots for 4 randomly chosen θr j under the MRD model with
empirical data

Figure A.11: Time-series plots for 4 randomly chosen θc j under the MRD model with
empirical data
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Figure A.12: Time-series plots for 4 randomly chosen u0 j under the MRD model using
empirical data

Figure A.13: Time-series plots for 4 randomly chosen u2 j under the MRD model using
empirical data
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Figure A.14: Time-series plots for 4 randomly chosen εi j under the MRD model using
empirical data
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Figure A.15: Trace plots for item slope parameters, ak, for the running variable under the
HRD model, sample size = 4,000, number of clusters = 200, burn-in = 5
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Figure A.16: Trace plots for item intercept parameters, ck, for the running variable under
the HRD model, sample size = 4,000, number of clusters = 200, burn-in = 5
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Figure A.17: Trace plots for regression slopes under the HRD model, sample size = 4,000,
number of clusters = 200, burn-in = 5
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Figure A.18: Trace plots for variance parameters under the HRD model, sample size =
4,000, number of clusters = 200, burn-in = 5
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Figure A.19: Trace plots for item slope parameters, ak, for the running variable under the
MRD model, sample size = 4,000, number of clusters = 200, burn-in = 20
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Figure A.20: Trace plots for item intercept parameters, ck, for the running variable under
the MRD model, sample size = 4,000, number of clusters = 200, burn-in = 20
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Figure A.21: Trace plots for regression slopes under the MRD model, sample size = 4,000,
number of clusters = 200, burn-in = 20
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Figure A.22: Trace plots for variance parameters under the MRD model, sample size =
4,000, number of clusters = 200, burn-in = 20
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Figure A.23: Trace plots for 4 randomly chosen item slope parameters under the MRD
model using empirical data
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Figure A.24: Trace plots for 4 randomly chosen item intercept parameters under the MRD
model using empirical data

Figure A.25: Time-series plots for beta parameters under the MRD model using empirical
data
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Figure A.26: Time-series plots for variance parameters under the MRD model using em-
pirical data
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