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 In approaches to joint response and response time (RT) modeling there is an 

assumption of conditional independence of the responses and the RTs. Further, in IRT 

modeling of the responses, there is the assumption that the items and the persons have 

local independence, respectively. In practice, violations of the local item 

independence results from the bundling of items into testlets. Violation of the person 

independence are encountered in complex examinee sampling situations.  

 A multilevel testlet joint responses and RT model is proposed and evaluated in 

this study that accounts for the dual local item and person dependence due to testlets 

and complex sampling. A simulation study is performed to investigate parameter 

recovery for the proposed model and provide comparison to models that do not model 

dual local dependencies. In addition to the simulation study, a study using empirical 

data is also conducted to evaluate relative model fit indices. 



  

 Generally, results determined by statistical analyses and inspection of graphs 

developed from descriptive statistics supported the need to model local item 

dependency and local person dependency. Parameter recovery outcome measures in 

the simulation study showed interaction of factors included with the model factor 

when the comparison models were included. When deviance model fit criterion was 

applied the proposed model was selected as the best-fitting model. For the Bayesian 

model fit index DIC the proposed model was not selected as best-fitting in for either 

the simulation or the empirical data analyses. Limitations of the study and 

opportunities to refine joint response and RT modeling of this dual dependency were 

elaborated. 
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Chapter 1: Introduction 

The applications of item response theory (IRT) in scoring require a 

fundamental assumption that item scores are related only underlyingly through latent 

person variables. This assumption, known as local item independence, requires that 

the performance on one item should only have a relationship with the underlying 

latent ability dimension and be conditionally independent of other items given this 

ability. Violations of local item independence, local item dependence (LID) may have 

such effects as underestimating the measurement error in the ability parameter 

estimation. The consequences of underestimation manifest as less precise ability 

estimates, which can affect scoring decisions and possibly lead to premature stopping 

for computerized adaptive tests (CATs).  

In sampling examinees from identified subsets of a population not selected at 

random, person clustering issues may arise in statistical analyses. A simple random 

sample is different from samples that are taken from specific subpopulations because 

there is the possibility that examinees from the same group have similarities not 

intended to be accounted for that are not present in other subgroups in modeling. One 

such grouping unit is a country in an international assessment. Analysis techniques 

have been developed to address such natural person clustering. Often in social science 

and education contexts, a hierarchical (or multilevel) structure is used to appropriately 

model this local person dependence (LPD) structure where the person residuals may 

be correlated (e.g., Kamata, 1999, 2001; Raudenbush & Bryk, 2000). 

Responses such as those obtained and analyzed via IRT modeling, and a form 

of product data (item responses), are often the only source of student data used to 
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make an estimation of a student’s ability. Some models include other variables, 

covariates, to inform estimation or provide improved ways to analyze the data. More 

recently, process data has been available to the assessment professional where 

previously mainly product data was used for different measurement purposes (Rupp, 

Gushta, Mislevy, & Shaffer, 2010). A key development is the widespread usage of 

computers for use in assessment presentation and data collection. Process data, for 

example response time (RT) needed for a student to indicate a response selection, is 

becoming better integrated with product data to provide a more comprehensive view 

of latent trait estimation. 

1.1 Statement of the Problem 

 

Many assessments focus primarily on response accuracy (RA; correct 

response) with a corresponding ability dimension, and have a secondary dimension 

identified as the speed of the respondent which incorporates time. The relationship of 

these two dimensions has been of interest to researchers since early in the 

development of psychometrics (e.g. Luce, 1986; Thurstone, 1937). Only in the 

theoretical realm are tests conducted without any time limit. Due to the practical 

restriction of finite time resources, tests include a time component. Hybrid tests (van 

der Linden, 2007) is the term used for those tests when time is not a key focus of the 

assessment. While tests have time limits, the time management to complete the entire 

test within the allotted time is the province of the individual and their decisions 

regarding time allotment for each item. Often data on the time elapsed for an 

individual to respond to single item is not captured. More recently, response time, 

(RT) the time duration from item presentation to examinee response, is captured 
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without disruption to the assessment context. For example, the Programme for 

International Student Assessment (PISA; Organisation for Economic Co-operation 

and Development [OECD], 2017) and the National Assessment of Educational 

Progress (NAEP; U.S. Department of Education, Institute of Education Sciences, 

National Center for Education Statistics, 2013) reported response time in their public 

data files. 

Models that incorporate RT have historically been proposed and can be 

categorized into three classes: RT for psychological or cognition processing analysis, 

RT in assessment collected for separate analysis, RT collected for combined analysis 

with responses (Schnipke & Scrams, 2002). Psychometric models for non-

speededness with a focus on accuracy have been developed using IRT as fundamental 

measurement models (Lee & Chen, 2011; Schnipke & Scrams, 2002). In this form of 

modeling there are further differentiators of RT modeled with RA that leads to three 

classifications. One class is the models that include RT in IRT modeling. Examples of 

this modeling include using RT as a covariate (e.g. Wang & Hanson, 2005). A second 

class are the models in RT that incorporate accuracy (e.g., Lee, 2007). Further, a third 

class are models that jointly consider response accuracy and RT (e.g., Klein Entink, 

Fox, & van der Linden, 2009; van der Linden, 2007). 

The hierarchical model for responses and RTs (van der Linden, 2007, 2006) 

jointly models the response accuracy and response time. This model estimates RA 

and RT related latent parameters underlying responses and RT data and is considered 

to be “the most promising approach within IRT” (van der Maas, Molenaar, Maris, 

Kievit, & Borsboom, 2011, p. 351). In a study that compared response and RT 
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models, Suh (2010) found that the hierarchical model, which is a joint modeling 

approach to associate the response and RT models, was the best performing when 

compared to the Thissen (1983) model of RT that includes a RA component, and 

Wang and Hanson (2005) model for RA that includes a RT component. Contributions 

to the hierarchical framework have been developed by Klein Entink, Fox, and van der 

Linden (2009) in the multilevel multivariate accuracy and response time model. This 

model addresses LPD by adding groups to the multilevel structure.  

While items may exhibit LID for various reasons, the presentation method in 

some assessments to create multiple items based on one common stimulus is a 

common assessment format that induces LID. A reading passage that has more than 

one question or a math chart with multiple questions referring to it are just two 

examples of how items may be intentionally clustered in assessment. These item 

bundles are known as testlets (Wainer & Kiely, 1987). Various models in IRT have 

been developed to accommodate the testlet effects (e.g., Bradlow, Wainer, & Wang, 

1999; Jiao, Wang, & He, 2013; Jiao, Wang, & Kamata, 2005; Jiao, Kamata, & Xie, 

2016; Wainer, Bradlow, & Wang, 2007; Wainer, Bradlow, & Du, 2000; Wang & 

Hanson, 2005). 

Enhancements in modeling for IRT have been addressing the issues of LID 

and LPD for decades. The joint modeling of IRT and RT is relatively recent; it bears 

the requirement collection of, or access to, datasets where the requisite product and 

process data was captured. A challenge facing the practitioner with access to such 

data may be at the other end of the scale where they have significant amounts of 

process data, but not a viable approach to analyze it. The sophistication of modeling 
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in the IRT space has not yet been adopted to joint response and RT modeling 

accounting for real-world testing scenarios. 

1.2 Purpose of the Study 

 

This study models responses and RTs jointly when dual local dependencies 

are present. The new multilevel testlet joint model (MTJM) extends van der Linden’s 

(2007) hierarchical framework for various situations and item presentations. The 

proposed work differs from previous models that have been developed on the 

foundation of the hierarchical framework (e.g., Im, 2015; Klein Entink, et al, 2009), 

the proposed model addresses the issues of manifest LID and LPD simultaneously. 

To account for the potential presence of local item dependence due to item clustering, 

a testlet structure is incorporated into the model. To account for local person 

dependence due to person clustering, a multilevel model structure for groups and 

persons is implemented. 

The study investigates the following research questions: 

1. How do the manipulated study factors (the number of items, the magnitude of 

the testlet effect, the magnitude of the group effect, and the correlation 

between person parameters in terms of response accuracy and speed) affect 

the proposed model parameter estimates? 

2. How do violations of local person independence and local item independence 

affect parameter recovery when fitting the data with standard joint models of 

response and RT that ignore either the person clustering effects, the item 

clustering effects, or both of these effects?  
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3. How does model selection using a Bayesian model fit index perform for the 

proposed model compared to alternative competing models for joint modeling 

of responses and RTs when LID and/or LPD is ignored in simulated and 

empirical data analysis?  

The estimation of model parameters is developed within a Bayesian 

framework using Markov Chain Monte Carlo (MCMC) techniques. There are three 

comparisons planned. One, to evaluate the effect of the LPD, the proposed model is 

compared to the hierarchical framework model incorporating testlet effects (Im, 

2015), but does not include person grouping. Two, a comparison of the proposed 

model is made with a multilevel hierarchical framework model (Klein Entink, et al, 

2009), a model that does not incorporate testlets for the effect of LID. Three, a model 

comparison is made to evaluate the proposed model in contrast to the van der Linden 

(2007) hierarchal framework that does not account for either LPD or LID. An 

empirical data set from an assessment using testlets with students nested within 

groups (PISA 2015) is used to demonstrate the application of the proposed model. 

1.3 Significance of the Study 

 

This study models dual dependency by proposing a model that more closely 

approximates the circumstances encountered in several large-scale assessments. 

There are three benefits that are achieved by the use of the proposed model. The 

benefits are as follows: one, modeling of the more complex real-world situation, two, 

statistical estimation improvement, and three, Bayesian modeling methods 

development.  



 

 

7 

 

Regarding advantage one, complex sampling may result from natural 

groupings as they occur. For example, in a national assessment program, students 

within schools can be sampled for analysis of student performance nested within 

schools, or an international study could be conducted for countries and used to look at 

group level performance across countries. A significant cost-savings may be obtained 

by sampling these naturally formed groups instead of using simple random sampling. 

Regarding innovative item developments, testlets (Wainer & Kiely, 1987) as a 

presentation unit of assessments is widely employed. These item clusters are found in 

large-scale assessments such as TOEFL, PISA, PIRLS, and NAEP. Testlets can be 

used in testing across varied subject matter, for example, in language assessment 

using reading passages; mathematics including data tables; and in science assessment 

with graphs and figures. 

Advantage two is statistical improvement, specifically, parameter estimation 

and model fit. It is expected that the proposed model will show improved parameter 

estimation when the assumptions of local item independence and local person 

independence are violated. The model is expected to reduce the error associated with 

the parameters of interest through variance partitioning in both the person and the 

item facets. The model fit refers to the consistency between the data and the fitted 

model. It is assumed that the proposed more complex model will fit the best when the 

data that are generated from a similarly complex situation is fitted with the proposed 

model. Model fit indices that include terms to reward parsimony are anticipated to 

provide results showing the proposed model better fits the data than the models used 

for comparison. 
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Advantage three is in Bayesian estimation methodology. The model proposed, 

and the accompanying description of its development, may assist practitioners in 

applying more complex statistical modeling as appropriate to the data structure of 

their investigations. The planned use of widely available and free statistical 

programming software R and Bayesian estimator program JAGS support the 

capability to disseminate the gains from conducting this study.  

1.4 Overview of the Chapters 

 

The proposal is organized as follows. Chapter 2 contains the literature review. The 

chapter includes the discussion of the creation and establishment of joint response and 

response time modelling. The proposed model is situated within an historical context. 

Specific models are presented to illustrate key developments in response and RT 

modeling, the hierarchical framework, and alternative models. Chapter 3 contains the 

methodology – this chapter presents the proposed model and investigation. The 

chapter describes the manipulated factors, fixed factors, model constraints, model 

assumptions. In the chapter, the study design, the simulation of data sets, and the 

empirical dataset are detailed. The Bayesian methods, prior distributions, hyperprior 

distributions, and estimation programming are also discussed. A brief conclusion 

chapter is provided at the end to summarize the proposed study and highlights 

potential extensions in the future.  
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Chapter 2: Literature Review 

This chapter provides discussion of well-known and frequently applied 

models in IRT and RT. For IRT modeling of product data, an incorporation of RT 

process modeling is presented. Likewise, the converse relationship, RT models that 

include IRT modeling, are reviewed. Models that jointly estimate the response and 

RT parameters are next addressed. The chapter concludes with a summary of key 

Bayesian modeling concepts and implementations.  

2.1 Item Response Modeling 

 
2.1.1 Standard IRT Models  

The hallmark of IRT, also known as latent trait theory, is the conceptual 

approach, borne out in statistical modeling, where the unobserved phenomenon of 

interest is measured using observed responses to a series of items. The latent variable 

in assessment contexts is often achievement, where it is frequently referred to as the 

ability parameter in the IRT model. This parameter is not knowable through direct 

observation, so a statistical model is employed to estimate the value. An advantage of 

IRT over its predecessor, now referred to as classical test theory (CTT), is that the 

estimation of the latent ability is not restricted by the requirement to have a fixed set 

of items, as the term “test” in CTT would imply. Items that are identified for 

inclusion in an assessment may be calibrated and included without the need to 

composing a fixed set. This has led to important developments such as computer 

adaptive testing (CAT) where the items are drawn from an item pool based on their 

psychometric characteristics and the assessment structural design.  
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The IRT statistical model is based on linear regression. Specifically, logistic 

regression is an appropriate form for modeling the response when an item is scored 1 

if correct and 0 if incorrect, or the response is identified as a member of discrete 

categories. As a statistical model, IRT has associated assumptions. Two fundamental 

assumptions are unidimensionality and local independence (Reckase, 2009). 

Unidimensionality is the term to identify that the latent trait of interest is the only trait 

contributing to the measurement of the respondent, That is, there is only one 

dimension that contributes to the variance of the respondents’ performance (Lord & 

Novick, 1968; Rasch, 1960). In practice, the truth or falsity of this assumption is 

unknowable. Statistical tests and models have been developed to determine whether 

explicit violations of the unidimensionality assumption have occurred, and the 

consequences of its violation (e.g., Bolt, 1999; Camilli, Wang, & Fesq, 1995). 

Deliberate relaxation of the unidimensionality assumption has been developed in 

multidimensional IRT models where there is more than one dimension of interest for 

measurement (e.g., Mulaik, 1972; Reckase, 1972, 2009; Sympson, 1978). 

The assumption of local independence requires that the probability of a 

correct response to an item should have no statistical relationship to that of another 

item, and no respondent should have an effect on the probability of a correct response 

for another respondent beyond that accounted for by the parameters. These two 

elements of the location independence assumption are known respectively as local 

item independence and local person independence, respectively. The violation of the 

item element of the assumption is termed local item dependence (LID). The causes of 
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LID that have been identified include speededness, practice, testlet dependence, and 

item chaining (Yen, 1984, 1993).  

Local person dependence (LPD) addresses the relationship of the respondents. 

This violation is often encountered in group sampling situations where the 

respondents are not sampled randomly over person groupings that affect performance. 

The investigation and assessment of a joint model of responses and RT that addresses 

LID and LPD is the subject of this study. Specific IRT models are next discussed to 

highlight the key developments in this univariate modeling; three standard models, 

Rasch (1960), 2-PL (Birnbaum, 1968) and 3-PL (Birnbaum, 1968) are presented 

followed by the testlet and multilevel extensions of these standard models. 

The Rasch (1960) or the 1-PL model is a foundational IRT model where there 

is a single item parameter in the modeling relationship. An advantage of the model 

over earlier models for assessment is that it locates ability and difficulty on the same 

scale. The model is mathematically expressed as follows: 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑏𝑖)  =  
1

1 + exp[−(𝜃𝑗 − 𝑏𝑖)]
, (2.1) 

where yij represents the observed correct response on item i for person j, 𝜃𝑗  is the 

latent ability of person j, 𝑏𝑖 is the item location (difficulty) where, for this logistic 

function, the success probability is .50. 

In the Rasch model, the shape of the logistic curve is the same for all items. 

To address the slope of the curve as well as location, Birnbaum (1968) developed the 

2-PL model which includes a discrimination parameter, 𝑎𝑖. This parameter allows for 

the scaling of the logistic curve to vary per item. The greater the discrimination value, 
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the more distinctly an item provides separation for the probability of a correct 

response around the inflection point for persons of different ability. The 2-PL model 

is represented as 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖 𝑏𝑖)  =  
1

1 + exp[−𝑎𝑖(𝜃𝑗 − 𝑏𝑖)]
. (2.2) 

In the IRT models previously discussed, the upper and lower asymptotes of 

the logistic function probability values tend to 1 for asymptotically increasing ability 

and to 0 for asymptotically decreasing ability. Education assessments often include 

multiple-choice items where there is a non-zero probability of correctly responding to 

an item due to chance. Birnbaum (1968) included a parameter in the IRT model to 

shift the lower asymptote of the logistic function to account for guessing. Called the 

pseudo-guessing parameter, 𝑐𝑖 raises the lowest probability of correct response to the 

value of 𝑐𝑖. The item difficulty is no longer the location on the scale where the 

probability of a correct response is .50, but where the probability of such as response 

is (1+ 𝑐𝑖) / 2. The 3-PL model is specified as 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖 𝑏𝑖, 𝑐𝑖)  =  𝑐𝑖 +
1 − 𝑐𝑖

1 + exp[−𝑎𝑖(𝜃𝑗 − 𝑏𝑖)]
. (2.3) 

In some IRT modeling contexts, the link function of the probit (normal ogive) 

is more readily applied than the logistic. The 3-parameter normal ogive (3PNO) and 

more restricted form (2PNO) are alternatives to the 3-PL and 2-PL IRT model. The 

latent variables and parameter interpretations in the 3PNO model are the same as that 

of the 3-PL IRT model. With the discussion of the three standard models of IRT 

concluded, models that use these foundations to address LID or LPD are discussed in 

the next section. 
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2.1.2 IRT Model Extensions – Testlet Models 

The IRT Rasch, 2-PL and 3-PL are ubiquitous in unidimensional latent 

modeling. The modeling of local item dependencies by incorporating a testlet design 

in the previously discussed standard IRT models followed three decades later with 

Bradlow, Wainer, and Wang (1999) who proposed the 2-PL testlet response theory 

(TRT) model. The 3-PL testlet model was further proposed by Wainer, Bradlow, and 

Du (2000). As a special case of the multidimensional random coefficients 

multinomial logit model (MRCMLM; Adams, Wilson, & Wang, 1997), the Rasch 

testlet response model was specified by Wang and Wilson (2005) which is 

mathematically equivalent to a multilevel model by Jiao, Wang and Kamata (2005) 

for item clustering effects due to testlets. In each of these approaches, a parameter is 

specified in the IRT model to account for within-testlet LID. The Rasch testlet model 

is mathematically presented as 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑏𝑖, 𝛾𝑗𝑑(𝑖))  =  
1

1 + exp[−(𝜃𝑗 − 𝑏𝑖 + 𝛾𝑗𝑑(𝑖))]
, (2.3) 

where the testlet parameter 𝛾𝑗𝑑(𝑖) denotes the effect of a local effect of dependence for 

items within a testlet 𝑑(𝑖) for person 𝑗, 𝜃𝑗  is the latent ability parameter for person 𝑗, 

and 𝑏𝑖 is the item difficulty for item 𝑖. The LID magnitude is characterized by 𝜎𝛾
2. 

The identification of the variability contributed to the testlet is therefore 

straightforward with this formulation. The description of the modeling used for 

incorporating a complex sampling design with LPD is more involved than that for 

LID, consequently as the next section is on the topic of LPD there will first be a 
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general example to describe this perspective followed by specific approaches to its 

modeling. 

2.1.3 IRT Model Extensions – Multilevel IRT Models 

Generally, a 3-level model may be developed by identifying a level-1 where 

observations are made, level-2, the cluster in which the level-1 units are nested, and 

level-3, the group in which the level-2 units are nested. In the example of a school 

setting, students are nested within a classroom and classrooms are nested within 

schools (Raudenbush & Bryk, 2002). A model with no predictors, that is, one that is 

fully unconditional, indicates how variation in the observed measure is dispersed 

across the three different levels. The following example uses Raudenbush and Bryk 

(2002) notation for a 3-level multilevel model. In this model, level-1 student 

achievement is 

𝑌𝑖𝑗𝑔 = 𝜋0𝑗𝑔 + 𝑒𝑖𝑗𝑔 (2.4) 

where 𝑌𝑖𝑗𝑔 refers to the achievement of student i in classroom j in school 𝑔, 𝜋0𝑗𝑔 is 

the mean of student achievement in classroom j, and 𝑒𝑖𝑗𝑔 is a random effect, the 

deviation from the classroom mean for student i in classroom j school 𝑔. The level-2 

classroom model presents each classroom mean as a random effect of a school mean:  

𝜋0𝑗𝑔 = 𝛽00𝑔 + 𝑟0𝑗𝑔. (2.5) 

The mean achievement for school 𝑔 is 𝛽00𝑔, and 𝑟0𝑗𝑔 is the random effect for 

classrooms which are assumed normally distributed with mean 0 and variance 𝜎𝜋
2. 

The level-3 model is the school-level model that shows the variability between 

schools:  

𝛽00𝑔 = 𝛾000 + 𝑢00𝑔, (2.6) 
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where 𝛾000 is the grand mean across all schools, 𝑢00𝑔 represents a random effect for 

schools the effects are assumed normally distributed with mean 0 and variance 𝜎𝛽
2. 

Multilevel models in IRT that can account for LPD due to person grouping 

were developed by Fox and Glas (2001), Kamata (2001), and Maier (2001). These 

models employ the hierarchical linear model (Bryk & Raudenbush, 1992, Goldstein, 

1987) or a generalization (Raudenbush, 1995) as the modeling framework. The Fox 

and Glas (2001) model is first presented followed by Kamata (2001) to highlight 

different approaches in the area of IRT multilevel modeling and parameter 

specification. 

Fox and Glas (2001) developed the multilevel IRT model, which has a focus 

on the structural, not the measurement model (Fox, 2007). The measurement model, 

level-1 is a 2PNO with a link function of the standard normal cumulative distribution 

function Φ, the model parameters are the same as those of the 2PL IRT with the 

addition of j students nested in 𝑔 groups. The level-1 model is 

𝑃(𝑦𝑖𝑗𝑔 = 1|𝜃𝑗𝑔, 𝑎𝑖 𝑏𝑖)  = Φ(𝑎𝑖𝜃𝑗𝑔 − 𝑏𝑖). (2.7) 

Level-2 is the person level of the structural model, where the ability parameter 

𝜃𝑗𝑔 is the dependent variable. The intercept 𝛽0𝑔 represents the student mean within a 

cluster, covariates x are included in the model with the associated coefficients 

𝛽𝑄𝑘where Q is the number of covariates. The model is presented as: 

𝜃𝑗𝑔  = 𝛽0𝑔 + 𝛽1𝑥1𝑗𝑔 +⋯+ 𝛽𝑞𝑔𝑥𝑞𝑗𝑔 + ⋯+ 𝛽𝑄𝑔𝑥𝑄𝑗𝑔 + 𝑒𝑗𝑔. (2.8) 

where ejg∼ N(0, σ2). 

The Level-3 model is the group level of the structural model. Each of the 

coefficients in the Level-2 model are treated as dependent variables with their own 
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intercepts and covariates. The intercepts are the student population mean, denoted as 

𝜸𝑄0, the covariates w at this level have associated coefficients 𝛾𝑄𝑘where S is the 

number of covariates. There may be several models at Level 3, a representation of 

each type, intercept, slope, and sum, respectively, are as follows: 

𝛽0𝑔  = 𝛾00 + 𝛾01𝑤1𝑔 +⋯+ 𝛾0𝑆𝑤𝑆𝑔 + 𝑢𝑗𝑔 (2.9) 

𝛽1𝑔  = 𝛾10 + 𝛾10𝑤1𝑔 +⋯+ 𝛾1𝑆𝑤𝑆𝑔 + 𝑢1𝑔 

⋮ = ⋮                                                             

  𝛽𝑄𝑔  = 𝛾𝑄0 + 𝛾𝑄1𝑤1𝑔 +⋯+ 𝛾𝑄𝑆𝑤𝑆𝑔 + 𝑢𝑄𝑔, 

where uj ∼ N(0, T). The multilevel modeling approach has the advantage of 

simultaneously estimating all model parameters, unlike methods that use fixed 

parameters, the uncertainty in measurements is included in the multilevel IRT 

modeling estimation (Fox, 2004). Another framework developed for incorporating 

LPD, albeit one that gives equal status to the development of the measurement model, 

was developed by Kamata (2001). 

For the framework of the hierarchical generalized linear model (HGLM; 

Kamata, 2001) various link functions are afforded such as probit, complementary log-

log, and logit. The logit link function is predominantly used in IRT modeling and was 

detailed in Kamata (2001) to show that for models that include levels 1 and 2, they 

are equivalent to the Rasch (1960) IRT model.  

Kamata (2001) provides two forms of notation for the model to include 

covariates. As it is similar in form to the notation used by Fox and Glas (2001), where 

a choice is possible, the more compact notation is described. The model assumes 
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Bernoulli sampling for item i and person j within group 𝑔. Therefore, the item 

responses 𝑦𝑖𝑗𝑔 have expected mean and variance for a correct response:  

𝐸(𝑦𝑖𝑗𝑔 = 1|𝑝𝑖𝑗𝑔)  =  𝑝𝑖𝑗𝑔 and (2.10) 

𝑉𝑎𝑟(𝑦𝑖𝑗𝑔 = 1|𝑝𝑖𝑗𝑔)  =  𝑝𝑖𝑗𝑔(1 − 𝑝𝑖𝑗𝑔),  

where 𝑝𝑖𝑗𝑔 is the probability of a correct response. By employing this probability, 

level-1 is the item-level model where the log-odds (logit) of 𝑝𝑖𝑗𝑔 is 𝜂𝑖𝑗𝑘 and 

log (
𝑝𝑖𝑗𝑔

1 − 𝑝𝑖𝑗𝑔
)  = 𝜂𝑖𝑗𝑔 = 𝛽0𝑗𝑔 +∑𝛽𝑞𝑗𝑔𝑥𝑞𝑖𝑗𝑔

𝑘−1

𝑞=1

. (2.11) 

The Kamata (2001) model includes an intercept 𝛽0𝑗𝑘 and linear predictors with 

associated coefficients, 𝛽𝑞𝑗𝑘. These predictors are dummy variables where 𝑥𝑞𝑖𝑗𝑘 is the 

qth dummy variable for person j in group 𝑔, with values for 𝑞 =  𝑖, 1 and 𝑞 ≠  𝑖, 0 for 

item i. To achieve full rank, an item dummy variable, usually the last one, is selected 

to be dropped from the equation. Due to this, the number of dummy variables q is 

indexed q = 1, …, k-1. Interpretation of the intercept differs from other multilevel 

models as the dropped coefficient is now associated as a reference item. The 

individual item effect 𝛽𝑞𝑗𝑘 is therefore established as the deviation from the effect 

𝛽0𝑗𝑘. The simplified model for a correct response of person j in group 𝑔 on item i is  

𝑃(𝑦𝑖𝑗𝑔 = 1)  =  
1

1 + exp(−𝜂𝑖𝑗𝑔)
. (2.12) 

 Level-2 is a person-level model where the item effects 𝛽𝑞𝑗𝑔 are decomposed 

into a fixed component and a random component; the random component 𝑢0𝑗𝑔 is the 

person effect. This level closely aligns with the structural level-3 of the multilevel 

model previously described in this section. To emphasize the combined model 
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presentation, the treatment will not include additional specific predictors at level-2 or 

level-3. The Level-2 representations of the model are 

𝛽0𝑗𝑔  = 𝛾00𝑔 + 𝑢0𝑗𝑔 (2.13) 

     𝛽1𝑗𝑔  = 𝛾10𝑔     

    ⋮ = ⋮                 

           𝛽(𝑘−1)𝑗𝑔  = 𝛾(𝑘−1)0𝑔, 

where 𝑢0𝑗𝑔 ∼ N(0, 𝜎𝑤
2) and w is the index for the ability distribution. The combined 

model for level 1 and 2 for a person j correctly responding to item i in group 𝑔 with a 

probability 𝑝𝑖𝑗𝑔 of a correct response is 

𝑝𝑖𝑗𝑔  =  
1

1 + exp{−[𝑢0𝑗𝑔 − (−𝛾𝑞0𝑔 − 𝛾00𝑔) ]}
, (2.14) 

where i = q. This equation is mathematically equivalent to the Rasch model. The 

relationships are as follows: the ability parameter and the random effect for persons 

have a one-to-one correspondence, 𝜃𝑗𝑔 = 𝑢0𝑗𝑔 , and the item difficulty parameter 𝑏𝑖 

has been parsed into components. That is, 𝑏𝑖 = −𝛾𝑞0𝑔 − 𝛾00𝑔, where each is a fixed 

parameter. 

 The level-3 model is the group-level model. The specification is the same as 

that of the level-2 model with exception of the addition of parameters to identify 

group effects. The level-2 person intercept 𝛾00𝑔 is modeled at the group-level with a 

group intercept and a random effect 𝑟00𝑔 for variability between groups. The 𝑟00𝑔∼ 

N(0, 𝜎𝜋
2) and π is the index for the group ability distribution. The models for groups 𝑔 

are 

𝛾00𝑔  = 𝜋000 + 𝑟00𝑔 (2.15) 
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     𝛾10𝑔  = 𝜋100 

              ⋮ = ⋮           

           𝛾(𝑘−1)0𝑔  = 𝜋(𝑘−1)00. 

When the combined model is presented following dummy coding at level-1,  

𝑝𝑖𝑗𝑔  =  
1

1 + exp{−[(𝑟00𝑔 + 𝑢0𝑗𝑔 ) − (−𝜋𝑞00 − 𝜋000) ]}
, (2.16) 

the similarities with the Rasch model remain, with some caveats. As in the 2-level 

model, there are two components for the item difficulty. In the level-3 model, 

−𝜋𝑞00 − 𝜋000 expresses the item difficulty for items (excepting the reference item 

where the difficulty is 𝜋000). Ability is also provided by two components at this level 

of the model, 𝑟00𝑔 and 𝑢0𝑗𝑔 . The random effect for groups 𝑟00𝑔 may be considered 

the average ability of persons in group 𝑔. The random effect for persons 𝑢0𝑗𝑔 is 

interpreted as a person-specific ability of persons 𝑗 in group 𝑔. This model therefore 

provides the advantage of separating contributions of ability effects by groups and by 

persons. 

An alternative representation of this model that emphasizes the 

correspondence with the Rasch model was described by Jiao, Kamata, Wang, and Jin 

(2010) as 

𝑃(𝑦𝑖𝑗𝑔 = 1|𝜃𝑗𝑔, 𝜃𝑔, 𝑏𝑖)  =  
1

1 + exp[−(𝜃𝑗𝑔 + 𝜃𝑔 − 𝑏𝑖)]
(2.17) 

where 𝜃𝑗𝑔 denotes the ability of persons 𝑗 in group 𝑔, and 𝜃𝑔 represents the ability for 

group 𝑔. 

2.1.4 IRT Model Extensions – Multilevel Testlet Models 
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There are a few testlet models that include a consideration for person 

clustering. Such a model was developed by Jiao, Kamata, Wang, and Jin (2010, 

2012). In this model a multilevel structure for groups and a testlet model for items 

were incorporated in the RA model to address both LID and LPD simultaneously. 

The multilevel structure they described was adapted from the multilevel model 

(Kamata, 2001) and the model extension for testlets (Jiao, Wang, & Kamata, 2005).  

In this dual local dependence model, four levels are specified (Jiao, Kamata, 

Wang, & Jin, 2010). The level-1 model provides an expression of the relationship in a 

linear regression with intercept term of persons 𝑗 with items 𝑖, for these items nested 

in testlet 𝑑. The level-2 model includes a testlet effect where the random effect is 

analogous to the testlet parameter included in testlet IRT models (e.g., Bradlow et al, 

1999; Wainer et al, 2000). The level-3 model presents a person effect where the 

random effect is the person ability as in the previously discussed IRT models. The 

level-4 model establishes a person group effect where the variability of the group 

ability is a measure of the impact of the person clustering, a graphical depiction of the 

model is represented in Figure 1. 
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Figure 1. A hierarchical structure of the joint modeling of the multilevel testlet joint 

model (MTJM) of responses and response time (Jiao, Kamata, Wang, & Jin, 2012). 

 

As the level-2 model is introduced here into the multilevel framework, it is 

described in more detail. The other levels of the model follow closely with Kamata 

(2001). The item cluster effect is modeled for person j in group 𝑔 responding to item i 

in testlet d as 

𝛽0𝑑𝑗𝑔  = 𝛾00𝑗𝑔 + 𝑢0𝑑𝑗𝑔 , and (2.18)  

          𝛽𝑞𝑑𝑗𝑔  = 𝛾𝑞0𝑗𝑔,  

where 𝛾00𝑗𝑔 is the fixed effect of the level-1 intercept, and 𝑢0𝑑𝑗𝑔  is a random effect of 

the level-1 intercept. This random effect may be considered an interaction between 

testlet and ability. There is an assumption that 𝑢0𝑑𝑗𝑔  ∼ N(0, 𝜎𝑢
2). The combined model 

for all levels is 

𝑃(𝑦𝑖𝑗𝑔 = 1|𝜃𝑗𝑔 , 𝜃𝑔, 𝑏𝑖, 𝛾𝑗𝑑(𝑖))  =  
1

1 + exp[−(𝜃𝑗 + 𝜃𝑔 − 𝑏𝑖 + 𝛾𝑗𝑑(𝑖))]
(2.19) 
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where, as in previously discussed testlet models, the testlet effect has its own 

parameter, 𝛾𝑗𝑑(𝑖) , and all other parameters follow the IRT conventions where 𝜃𝑗 is the 

person-specific ability, 𝜃𝑔is the group-specific ability, and 𝑏𝑖 is item difficulty. 

2.2 RT Modeling 

 

The duration of an examinee time elapsed prior to responding has been used 

as a proxy for ability in early RT models. As conceptualizations of ability and RT 

have generally become more nuanced, these measures have been disentangled. More 

recently research has investigated the use of RT in estimation of ability accuracy 

(e.g., Ferrando & Lorenzo-Seva, 2007; Meng, Tao, & Chang, 2015). Models for 

measurement of RT and some applications are next discussed. 

2.2.1 Standard RT Models 

Many observations of RT distributions positively skew (skew to the right) 

This is good fit for lognormal distribution (e.g., Schnipke & Scrams, 1999; Thissen, 

1983), other RT distributions have been observed including symmetrical and 

negatively skewed. To accommodate these observances, alternative distributions have 

been incorporated into the modeling of RT. 

van der Linden (2006) described the lognormal RT model 

ln(𝑡𝑖𝑗)  = 𝛽𝑖 − 𝜏𝑗 + 𝜀𝑖𝑗,     𝜀𝑖𝑗~𝑁(0, 𝛼𝑖
−2) (2.20) 

where 𝜏 is person speed parameter, 𝛽i is item intensity parameter, αi is discrimination 

parameter. The value of αi is 1/σ of the log RT error distribution. The 𝛽𝑖 item speed 

and 𝛼𝑖 item discrimination parameters of this RT model are analogues to the b, 

difficulty (location) parameter and the a, discrimination, and in the 2-PL IRT model. 
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The Box-Cox normal model (Klein Entink, van der Linden, and Fox, 2009) 

identifies a 2PNO for the RA model. The formulation of the RT model is 

𝑡𝑖𝑗
(𝑣)  = 𝛽𝑖 − 𝜏𝑗 + 𝜀𝑖𝑗,     𝜀𝑖𝑗~(0, 𝛼𝑖

−2). (2.21) 

Tv is the Box-Cox transformed time with that distribution’s shape parameter v, 𝜏𝑗 is 

person speed, 𝛽𝑖 is item intensity, 𝛼𝑖 is discrimination parameter (1/σ of log RT). In 

Box and Cox (1964) Tv is transformed from Tv-1 / v for v ≠ 0 and log T for v=0. T is 

the original time, therefore v=0 is a lognormal transform as in van der Linden (2006). 

The shape parameter may be applied with values differing by item, or by setting the 

value to be the same for all items. The fit for each item may be improved by modeling 

the differing distribution’s shapes, but this improvement in fit comes with the 

disadvantage that the parameter interpretation may no longer be the same across 

items. The shape parameterization provides a family of RT shape approximating data 

from Weibull, gamma, and exponential models (Klein Entink, van der Linden, and 

Fox, 2009). 

The Semiparametric Cox proportional hazards (PH) model (Ranger & Ortner, 

2012; Wang, Fan, Chang, & Douglas, 2013) is an alternative model that addresses the 

concerns raised for the Box-Cox RT model regarding interpretability. The model 

includes a hazard function, which is often represented as h((t)), that specifies an 

event’s instantaneous rate of occurrence. In testing contexts, the hazard rate is the 

conditional probability of finishing a task in the next moment. The model is  

ℎ𝑖(𝑡𝑖𝑗|𝜏𝑗)  = ℎ0𝑗(𝑡𝑖𝑗) exp(𝛾𝑖𝜏𝑗) (2.22) 
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where 𝑡𝑖𝑗 is RT, ℎ0𝑗 (∙) identifies the baseline hazard function, 𝜏𝑗 denotes the speed 

parameter for person j, 𝛾𝑖 is an item slope parameter that determines the increase in 

hazard rate.  

When the distributions for the normal, lognormal, gamma, and Weibull were 

evaluated for fit, Schnipke and Scrams (1999, 2002) found the lognormal distribution 

to be best fitting in exploratory and confirmatory settings 

2.2.2 Incorporating RT for Modeling RA 

Following the introduction to standard RT models, the topic of interest 

regarding the phenomenon of the speed-accuracy tradeoff is presented. The 

discussion will first include RA models that incorporate RT. 

The Rasch RT model, (Roskam, 1987, 1997) implemented the observed RT as 

collateral information for insertion into the IRT model. The model is specified as 

𝑃(𝑦𝑖𝑗 =  1|𝜃𝑗 , 𝑡𝑖𝑗 , 𝑏𝑖) =  
𝜃𝑗𝑡𝑖𝑗

𝜃𝑗𝑡𝑖𝑗  + 𝑏𝑖  
= 

exp(𝜃𝑗 ∗  + 𝑡𝑖𝑗 ∗  − 𝑏𝑖 ∗)

1 + exp(𝜃𝑗 ∗  + 𝑡𝑖𝑗 ∗  − 𝑏𝑖 ∗)
(2.23) 

where 𝜃𝑗  is person ability, here termed mental speed, 𝑏𝑖 is item difficulty, and 𝑡𝑖𝑗 is 

the RT, the * parameters are the respective logarithms of the person ability, item 

difficulty, and RT; the product of mental speed and response time is termed effective 

ability. The speed-accuracy tradeoff is specified by the positive relationship where 

with increasing time the probability of a correct response tends to 1.0. This model is 

therefore appropriate for speed tests where the assumption is with infinite time 

respondents will correctly respond to all items. 

In a Rasch-like model, where speed is included as a latent parameter, 

Verhelst, Verstralen, and Jansen (1997) introduced a model where the distribution of 
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the RT could vary. The  𝑝𝑖 item parameter allows the shape of RT distribution to 

change; the model is 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝜏𝑗 , 𝑏𝑖) =  {
1

1 + exp[−(𝜃𝑗 + 𝜏𝑗 − 𝑏𝑖)]
}

−𝑝𝑖

(2.24) 

where 𝜃𝑗  is person ability, 𝑏𝑖 is item difficulty, and 𝜏𝑗  person speed. The model 

includes a latent variable for RT, speed, as compared to an observed t. The 

distribution of RT is a combination of a generalized extreme-value distribution and a 

gamma distribution.  

Wang and Hanson (2005) developed a 4-PL model that includes the 3PL IRT 

and 1 new parameter, −𝜌𝑗𝑑𝑖 𝑡𝑖𝑗⁄  where 𝜌𝑗is a person slowness parameter, 𝑑𝑖, is an 

item slowness parameter and 𝑡𝑖𝑗 is RT  

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖 𝑏𝑖, 𝑐𝑖)  =  𝑐𝑖 +
1 − 𝑐𝑖

1 + exp [−𝑎𝑖 (𝜃𝑗 (
𝜌𝑗𝑑𝑖
𝑡𝑖𝑗
) − 𝑏𝑖)]

. (2.25)
 

The contribution of the parameters for “slowness” each has the same assumed effect 

on the probability of a correct response. With increasing time, the probability of a 

correct response approaches that found in the 3-PL IRT model. It is therefore 

identified as a model that is appropriate for hybrid tests.  

2.2.3 Incorporating RA for Modeling RT 

For the focus on the RT distributions, RA has been used to improve 

estimation. Early development was the Thissen (1983) model  

ln(𝑡𝑖𝑗)  = 𝜇 + 𝜏𝑗 + 𝛽𝑖 − 𝜌(𝑎𝑖𝜃𝑗 − 𝑏𝑖) + 𝜀𝑖𝑗,     𝜀𝑖𝑗~𝑁(0, 𝜎
2) (2.26) 

where μ overall mean log RT, 𝜃𝑗 “effective ability”, 𝑏𝑖 is item difficulty, 𝑎𝑖 is item 

discrimination, 𝜏𝑗 is person “slowness”, 𝛽𝑖 is item “slowness”, ρ is a regression slope 
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parameter of log RT on the IRT model (2-PL). Interpretation of the “slowness” 

parameters in Wang and Hanson (2005) differs from this model. The two models 

reflect different goals, where Wang and Hanson (2005) are modeling response 

accuracy probability and Thissen (1983) is modeling RT. 

The Ferrando and Lorenzo-Seva (2007) model is similar to Thissen (1983), 

the regression is on square root of squared IRT parameters modeled √𝑎𝑖
2(𝜃𝑗 − 𝑏𝑖)

2
. 

Developed in personality measures context, informed by distance-difficulty 

hypothesis, Ferrando and Lorenzo-Seva (2007) and Thissen (1983) each models a 

speed-accuracy tradeoff. The correlation parameter ρ represents the direction of the 

tradeoff, with a positive value for the parameter indicating an increase in 𝜏𝑗 associated 

with an increase of 𝜃𝑗 , and a negative value indicating the reverse relationship. 

Gaviria (2005) presented the double log-normal distribution model that is 

represented as  

𝑙𝑛 (
𝑡𝑖𝑗 − 𝑇0

𝐴
)  = −𝑎𝑖(𝜃𝑗 − 𝑏𝑖) + 𝜀𝑖𝑗 ,     𝜀𝑖𝑗~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑖

2). (2.27) 

T0 is time taken by the person on an infinitely easy item, A is a scaling constant for 

RT where a respondent’s ability coincides with the item’s difficulty, 𝜃𝑗  is person 

ability, 𝑏𝑖 is item difficulty, 𝑎𝑖 is item discrimination, 𝜀𝑖𝑗  is a residual. The model is 

posited for correct responses. 

2.3 Joint Modeling of RT and RA 

 

In the standard IRT models presented, the assumption was made that the level 

of a person’s ability did not vary during the assessment. For the conditionally 

independent joint response and RT models, this assumption is also held for person 
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speed (e.g., Goldhammer & Kroehne, 2014; Meng et al., 2015; van der Linden, 

2009). Based on these assumptions, the within-subject relationship of the respondent 

with the items does not vary during the test. 

The joint distribution of RT and RA can be expressed as follows: 

𝑓(𝑦𝑖𝑗, 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖 , 𝜆𝑖) (2.28) 

where 𝑦𝑖𝑗 is the response of person j for item i, 𝑡𝑖𝑗 is the RT associated with response 

𝑦𝑖𝑗, 𝜃𝑗 and 𝜏𝑗 are respectively the latent ability and the latent speed parameters, β𝑖 

represents the item parameters in the IRT model and 𝜆𝑖 represents the item parameters 

in the RT model. 

This section addresses three different approaches to modeling the joint 

distribution of RT and RA (Ranger & Ortner, 2012). In this their classification, one 

group of models are conditionally independent, a second group of models have 

dependency within the response model, and a third group of models have dependency 

within the RT models. In the first classification, there are two marginals, here the 

assumption is the responses and RT are conditionally independent (e.g., Thissen, 

1983); van der Linden, 2007) 

𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖)𝑓(𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝜆𝑖). (2.29) 

In the second classification, a conditional and a marginal probability relationship is 

specified; here for an observed response 𝑦𝑖 a dependency exists on the RT 𝑡𝑖𝑗 spent on 

this item. In the third classification, a conditional and a marginal are again specified, 

in this case, where the reverse dependency is modeled; an observed RT 𝑡𝑖𝑗 depends on 

the response 𝑦𝑖 on this item. 



 

 

28 

 

Thissen (1983) and van der Linden (2007) each chose to model the 

relationship of response and RT to reflect that they are conditionally independent of 

each other  

𝑓(𝑦𝑖𝑗, 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝛽𝑖)𝑓(𝑡𝑖𝑗| 𝜏𝑗 , 𝜆𝑖). (2.30) 

This assumption indicates that responses are dependent on the IRT ability and item 

parameters, and RTs are dependent on the RT model speed and item parameters. With 

these being the only dependencies, the responses and RT are therefore conditionally 

independent of each other. Other models that require this assumption include, for 

example, Klein Entink, van der Linden, and Fox (2009) and Wang, Fan, Chang, and 

Douglas (2013). 

van der Linden’s (2007) hierarchical framework is often applied for joint 

response and RT modeling. Level-1 for measurement models, one for IRT and one 

for RT. At this level, the observed response or RT is associated with latent model 

parameters. Level-2 is the population modeling level where a covariance structure 

allows the modeling of relationship for person and item parameters rather than having 

it dictated by a specific speed-accuracy tradeoff function.  

The IRT model chosen was the three-parameter normal-ogive (3PNO), the 

selection of the RT model was the lognormal model (van der Linden, 2006). The 

second level specified a multivariate normal distribution for the person parameters 

and another multivariate normal distribution for the item parameters. For the person 

parameters, the mean vector and covariance matrix are identified with subscript P and 

specified as: 

𝝁𝑃 = (𝜇𝜃, 𝜇𝜏), (2.31) 
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𝜮𝑃 = (
σθ
2 σθτ

σ𝜏𝜃 σ𝜏
2
) , (2.32) 

The mean vector and covariance matrix for item parameters are subscripted I: 

𝝁𝐼 = (𝜇𝑎, 𝜇𝑏 , 𝜇𝑐, 𝜇𝛼, 𝜇𝛽) (2.33) 

𝜮𝐼 = 

(

 
 
 

σ𝑎
2 σ𝑎𝑏

σ𝑏𝑎 σ𝑏
2

σ𝑎c σ𝑎α σ𝑎β
σ𝑏c σ𝑏α σ𝑏β

σc𝑎 σc𝑏
σα𝑎
σβ𝑎

σα𝑏
σβ𝑏

σc
2 σ𝑐α σc𝛽

σαc
σβc

σα
2

σ𝛽α

σαβ

σβ
2
)

 
 
 

(2.34) 

Built upon this framework, several response and RT models are developed by 

changing the RT model for another distribution (Klein Entink, van der Linden, & 

Fox, 2009) or making a level-1 change for another measurement model, such as, the 

Cox PH model (Ranger & Kuhn, 2014a; Wang, Fan, et al., 2013), multilevel for 

person groups (Klein Entink, Fox, & van der Linden, 2009), multivariate (Fox, Klein 

Entink, & Timmers, 2014), and item clustering (Im, 2015). 

A model of the first version of conditional independence not assumed is  

𝑓(𝑦𝑖𝑗, 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖) = 𝑓(𝑦𝑖𝑗|𝑡𝑖𝑗 , 𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖 , 𝜆𝑖)𝑓(𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖). (2.35) 

In its simplified form, it is represented as  

𝑓(𝑦𝑖𝑗, 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖) = 𝑓(𝑦𝑖𝑗|𝑡𝑖𝑗 , 𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖)𝑓(𝑡𝑖𝑗| 𝜏𝑗 , 𝜆𝑖). (2.36) 

 Models that employ this dependency address item characteristics such as item 

difficulty (e.g., Bolsinova, De Boeck, & Tijmstra, 2017; Bolsinova, Tijmstra, & 

Molenaar, 2017). The model developed in that research incorporated a median split to 

identify a fast or slow response. They found that slower responding was associated 

with greater probability of a correct response on difficult items, but that slower 

responding was associated with lower probability of a correct response on easy items. 
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To investigate variable ability and speed, Partchev and De Boeck (2012) used a 

branching model for evaluation of fast or slow intelligence. A mixture model was 

applied for high-stakes and low-stakes assessments when pace may differ due to the 

nature of the assessment (rapid-guessing, Wang & Xu, 2015). Lee and Wollack 

(2017) used the information in their model to determine whether the respondents had 

item pre-knowledge. 

 The second form of conditional independence not assumed in its full version 

is 

𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖)𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖). (2.37) 

This model may also be simplified where it takes the form 

𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛽𝑖, 𝜆𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝛽𝑖)𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜏𝑗 , 𝜆𝑖). (2.38) 

This conception applies to differing models for the RTs associated with correct and 

incorrect responses (e.g., Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016; Glas 

& van der Linden, 2010; and van der Linden & Glas, 2010). Results from these 

studies often encounter issues of conditional independence violations. 

2.3.1 Multilevel Models for Person Clustering 

The multivariate multilevel model for response and RT (Klein Entink, Fox, & 

van der Linden, 2009) provides three significant changes that extend the model of van 

der Linden (2007). First, the model introduces a time discrimination parameter within 

the RT measurement model. Second, covariates are enabled for inclusion by the 

specification of the regression equations. Third, the model includes a third level so 

that person grouping variance may be accounted for. The model at level one applies a 

3PNO for responses and the RT measurement model: 
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𝑡𝑖𝑗𝑔  = 𝛽𝑖 − 𝜑𝑖𝜏𝑗𝑔 + 𝜀𝜏𝑖𝑗𝑔,     𝜀𝜏𝑖𝑗𝑔~𝑁(0, 𝜎𝐼
2 ) (2.39) 

the additional subscript 𝑔 is used as there is a need to identify the group membership 

of persons, 𝜏 is person speed parameter, 𝛽 is item intensity parameter, φ is the time 

discrimination parameter. 

In level-2 of the model, as in van der Linden (2007), two covariate matrices 

are employed to model the relationships of the person parameter with other person 

parameters; this model also supports the use of additional covariates. The regression 

equations written in matrix notation are:  

𝜃𝑗𝑔  = 𝐱𝑗𝑔
𝑡 𝜷1𝑔 + 𝑒𝜃𝑗𝑔, (2.40) 

𝜏𝑗𝑔  = 𝐱𝑗𝑔
𝑡 𝜷2𝑔 + 𝑒𝜏𝑗𝑔, (2.41) 

where 𝐱𝑗𝑔
𝑡  known covariate vector for all persons j in group 𝑔, 𝜷𝑔 vector of 

regression coefficients for each group 𝑔, the error terms, 𝑒𝜃𝑗𝑔 and 𝑒𝜏𝑗𝑔 can correlate. 

Error terms are assumed to follow a bivariate normal distribution with means and 

covariance matrix specified as follows: 

𝝁𝑃 = (𝜇𝜃, 𝜇𝜏), (2.42) 

𝜮𝑝 = ( 
σθ
2 σθ𝜏
σ𝜏θ στ

2
) . (2.43) 

For the items, the parameter distributions are assumed to follow are multivariate 

normal distribution with means and covariance matrix specified as follows:  

𝝁𝐼 = (𝜇𝑎, 𝜇𝑏 , 𝜇𝜑 , 𝜇𝛽), (2.44) 

𝜮𝐼 = 

(

 
 

σ𝑎
2 σ𝑎𝑏

σ𝑏𝑎 σ𝑏
2

σ𝑎φ σ𝑎β
σ𝑏φ σ𝑏β

σφ𝑎 σφ𝑏
σβ𝑎 σβ𝑏

σφ
2 σφ𝛽

σ𝛽φ σβ
2
)

 
 
, (2.45) 
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where the vector  

                                                𝝃𝐼 = 𝝁𝐼 + 𝒆𝐼 , 𝒆𝐼~𝑁(𝟎, 𝜮𝐼).                                   (2.46) 

As there are no covariates in this presentation, it is simplified, where the four 

equations for the item parameters are condensed. Therefore, the value of the 

parameter is the mean of the parameter with random error. 

The ci parameter is not included in the multivariate normal distribution shown 

as there is not an analogous parameter in the RT model, therefore an independent 

Beta prior distribution was described. 

For the level-3 a group relationship structure is presented: 

𝜷1𝑔  = w𝑔𝛾1 + 𝑢1𝑔, (2.47) 

𝜷2𝑔  = w𝑔𝛾2 + 𝑢2𝑔. (2.48) 

Parameters 𝜷1𝑔 and 𝜷2𝑔 are the random effects, where 𝐰𝑔 is a known covariate 

vector for all groups 𝑔. The group-level error terms, (𝑢1𝑔, 𝑢2𝑔), are assumed to be 

multivariate normally distributed with means of zero and covariance matrix V. With 

the assumption of restricting the covariance matrix to block diagonal, the IRT model 

random effects are independent of RT model random effects.  

2.3.2 Joint Testlet Models for RA and RT 

 

Im (2015) described a measurement model for the RA that is the testlet 

response model with the 2-PL for parameters to adjust the shape of the logistic curve. 

All parameters are interpreted as in the 2-PL IRT model with the addition of the 

testlet parameter 𝛾𝑗𝑑(𝑖). The model is represented as  

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 ,  𝑎𝑖 , 𝑏𝑖 , 𝛾𝑗𝑑(𝑖))  =  
1

1 + exp[−𝑎𝑖(𝜃𝑗 − 𝑏𝑖 + 𝛾𝑗𝑑(𝑖))]
. (2.49) 
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The measurement model for the RT follows van der Linden (2007) hierarchical 

framework with an additional parameter for testlet 𝛿𝑗𝑑(𝑖). The RT model is  

𝑓(𝑡𝑖𝑗|𝜏𝑗 , 𝛼𝑖  , 𝛽𝑖, 𝛿𝑗𝑑(𝑖) )  =  
𝛼𝑖

𝑡𝑖𝑗√2𝜋
exp {−

1

2
[𝛼𝑖 (ln 𝑡𝑖𝑗 − (𝛽𝑖 − 𝜏𝑗 + 𝛿𝑗𝑑(𝑖))) ]

2

} . (2.50) 

Priors used were similar to those in van der Linden (2007),  

𝝁𝑃 = (𝜇𝜃, 𝜇𝜏) = (0, 0), 

𝜮𝑃 = (
1 0
0 1

) ,  

𝝁𝐼 = (𝜇𝑎, 𝜇𝑏 , 𝜇𝛼 , 𝜇𝛽) = (1, 0, 1, 0),  

𝜮𝐼 = (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

) ,  

𝛾𝑑~𝑁(0, 𝜎𝛾
2),  

𝛿𝑑~𝑁(0, 𝜎𝛿
2).  

Hyperpriors for the testlet parameters: 

𝜎𝛾
2~𝑈(0, 10),  

𝜎𝛿
2~𝑈(0, 10).  

This model is the only known one to explicitly address LID using a testlet parameter 

in joint IRT response and RT modeling. 

In their model, which can account for item dependencies, Klotzke and Fox 

(2019) used a Bayesian covariance structure modeling approach. An additive 

covariance matrix models dependencies directly through the covariance parameters. 

An advantage of this method is that  the modeling of random effects is not required. 

By taking this approach, unlike when using random effects, covariances can be 
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negative or positive. Also, tests for local independence do not encounter boundary 

conditions that can impede effective measurement. This affords the testing of local 

within-testlet independence, and the development of more parsimonious models 

compared to models requiring random effects. 

2.4 Model Estimation 

 

Two approaches to model estimation in statistics are the frequentist and the 

Bayesian. In the frequentist perspective, data sampling is based a hypothetical infinite 

number of draws from a sample. Parameters are fixed for distributions and data are 

randomly sampled. In the Bayesian perspective, the parameters are random and 

described probabilistically. Prior beliefs about the parameters that describe the data 

are included in the estimation of the values of the priors after data have been 

observed. The estimation of models in the Bayesian perspective may be more 

complex and more demanding computationally, compared with the frequentist 

modeling, due to the ability to model posterior distributions that do not have a closed 

form. 

Software using a frequentist perspective that employs maximum likelihood 

estimation (MLE) include Mplus (Muthén & Muthén, 2007) and LatentGOLD 

(Vermunt & Magidson, 2013). Software in Bayesian modeling includes Markov 

chain Monte Carlo (MCMC) methods and are implemented in JAGS (Plummer, 

2015), WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003), OpenBUGS (Lunn, 

Spiegelhalter, Thomas, & Best, 2009), and Stan (Gelman, Lee, & Guo, 2015), to list a 

few. 
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A Bayesian modeling approach was selected for this effort for three reasons. 

One, Bayesian inferences via MCMC methods could be used to sample the complex 

parameter space of the proposed model that is not readily available with frequentist 

modeling tools. Two, the parameters each have a distribution and are not assumed to 

be without error. This better aligns with the investigative goals of appropriately 

modeling and estimating sources of error. Three, for a complex modeling design, the 

sample sizes are those that may be expected in real-life scenarios and are not 

asymptotically large. 

2.4.1 Introduction to Bayesian Inference 

 

Bayes’ theorem provides the relationship of a prior probability distribution 

𝑃(𝜽), the likelihood of the data given the parameters 𝑃(𝑿|𝜽), the marginal 

probability of the data 𝑃(𝑿), to provide the posterior distribution of the parameters, 

given the data. This model is  

𝑃(𝜽|𝑿)  =  
𝑃(𝑿|𝜽)𝑃(𝜽)

 𝑃(𝑿)
. (2.51) 

In the Bayesian modeling approach, data are fixed and parameters are random. 𝑃(𝑿) 

is a normalizing constant, so the probability density function integrates to 1. The 

contribution of these two facts is that the Bayes’ fully specified model may be 

simplified to  

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟. (2.52) 

With this specification, the parameters’ posterior distribution given the data is 

proportional to the product of the likelihood and the prior. 

2.4.2 Markov Chain Monte Carlo Methods 
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Bayesian inference is well-suited to problems where the closed-form solution, 

which otherwise could have been addressed analytically, does not exist. The Bayesian 

approach is appropriate for modeling in high-dimensional parameter space. Sampling 

in Bayesian estimation often uses MCMC methods to build a Markov chain from a 

probability distribution; this approximates the joint posterior distribution. As the 

number of iterations increases, the approximation to the posterior distribution 

improves (Gelman, Carlin, Stern, & Rubin, 2003). The probability of an event 

following the Markov process is dependent only on the state of the immediately 

preceding event.  

There are three commonly employed MCMC sampling methods used in 

Bayesian inference. These methods are: the Gibbs sampler (Geman & Geman, 1984), 

the Metropolis sampler (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953), 

and the Metropolis-Hastings sampler (Hastings, 1970). The Gibbs sampler has the 

requirement that the model be conditionally conjugate. That is, there is a model 

structure for known distributions for which the posterior distribution of interest may 

be parsed. The Metropolis sampler may be used to estimate models that are not 

conditionally conjugate. The Metropolis-Hastings sampler is the most flexible of the 

three; it employs a proposal distribution to determine whether the new proposed state 

should be rejected or accepted. 

2.4.3 Convergence Diagnosis 

 

A stationary distribution should be obtained for the Markov chain providing 

sufficient iterations have been afforded. This expectation is based on the theory for 

this method; in practice the stationarity may not be achieved. The rate of convergence 
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can be affected by autocorrelation, choice of sampling algorithm, and model 

identification issues (Kim & Bolt, 2007). The lack of convergence can be determined 

by visual and diagnostic means. Visual inspection is the observation of plots such as 

history, running mean, density, quantiles. The practitioner reviews the graphs for 

these plots to determine if the properties such as a lack of variability, or for density, 

strongly unimodal distributions, are observed.  

Automated tools have been developed to analytically diagnose whether 

acceptable levels of variation have been met. Frequently applied measures are the z-

score, (Geweke, 1992) and the potential scale reduction factor, also called 𝑅hat 

(Gelman and Rubin, 1992). For the z-score method, the z-score for the difference 

between the first 10% of the iterations after burn-in and last 50% of these iterations is 

calculated. The z-score is then tested for a significance where values that are within 

±1.96 provide evidence for convergence. The R-hat is a measure that compares the 

between-chain and within-chain variance. When R-hat is approximately 1.0 

convergence is acceptable. In practice, R-hat smaller than 1.2 is considered as 

acceptable convergence. 

In conclusion, this chapter introduces foundational concepts in response and 

RT modeling including models most-often applied in IRT and extensions that address 

LID, LPD or both. Discussion of RT modeling was provided for the speed-accuracy 

tradeoff which in some models is specified directly and in other models is permitted 

to be estimated. Statistical relationships were presented, for example, conditionally 

independent, where dependency is associated only within the modeling of the IRT 

and within that of the RT, respectively. Advancements in joint IRT and RT modeling 
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of responses and RT were presented, followed by an overview of Bayesian estimation 

methods. The next chapter details a proposed joint response and RT model and the 

methods for investigation of the model. 
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Chapter 3: Methods 

The previous chapter presents a review of the landscape for research in 

development, evaluation, and parameterization of models with dual dependency. The 

current chapter highlights the relevant factors that determine the scope and challenges 

of driving the proposed study. The discussion addresses prior similar efforts and the 

factors that must be addressed related to the proposed model, estimation, evaluation 

of the proposed model against multiple competing models in a simulation study and 

an empirical study. 

3.1 A Multilevel Testlet Joint Response and Response Time Model 

The van der Linden (2007) joint response and response time model allows 

speed and accuracy parameters to covary. That is, unlike most previous models in the 

history of response time modeling, the model does not a priori determine the strength 

or direction of the relationship. The van der Linden model’s flexibility has led to its 

use in the development of several extensions (e.g., Im, 2015; Klein Entink, Fox, & 

van der Linden, 2009; Klotzke & Fox, 2019). Presented in Figure 2 is the hierarchical 

model framework. 
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Figure 2. A hierarchical structure of the joint modeling of responses and response 

time (van der Linden, 2007). 

 

In some testing programs, items are being developed not as stand-alone items 

rather associated with item clusters or testlets. Departing from the simple structure of 

one item being associated with one response makes it likely one item response might 

be dependent of another response. There is opportunity for more sophisticated 

modeling to capture the testlet effects. Currently, many testing programs (e.g. PISA, 

NAEP) use testlets. While these programs use complex sampling designs inducing 

person clustering, which in the proposed model is accounted for by multilevel 

modeling by group, there has not been a thorough simulation study to assess a model 

that addresses the dual dependencies (violations of independence) for both LID and 

LPD in a joint response and response time model. The proposed model, the multilevel 

testlet joint model (MTJM) takes into account the dual dependence due to person and 
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item clustering. This research study intends to develop a Bayesian estimation method 

for model parameter recovery for the proposed new model. 

In general, the proposed model extends the hierarchical framework for joint 

modeling of responses and response time (van der Linden, 2007), the multilevel 

models for person clustering effects (Fox & Glas, 2001; Kamata, 1998, 2001), the 

testlet (Bradlow, Wainer, & Wang, 1999), and the joint modeling person and item 

clustering effects (Jiao et al., 2012).  Figure 3 graphically represents the proposed 

MTJM. To investigate the impact of ignoring the person and item clustering effects in 

the joint modeling of responses and response time, this study referred to the above 

models as the HM – the hierarchical model, MJM – the multilevel joint model, and 

TJM – testlet joint model. The HM provides the joint estimation of latent parameters 

for both a response and response time model and assumes the conditional 

independence for responses and RTs, respectively. The MJM accounts for the group 

effects within a population as an extension of the hierarchical model. The TJM is also 

an extension of the HM. The TJM model enables the estimation of a testlet effect due 

to item clustering. In the TJM, the testlet effect is modeled for the response accuracy 

and the response time concurrently. The proposed MTJM account for both person and 

item clustering effects in responses and response time data due to complex sampling 

as in the MJM and item clustering for the response model. 
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Figure 3. A hierarchical structure of the joint modeling of the multilevel testlet joint 

model (MTJM) of responses and response time. 

Note. Extensions to the hierarchical model (van der Linden, 2007) are identified in 

red. 

 

The MTJM is a multi-level model that is intended to be used to investigate 

person clustering and item clustering effects. The IRT model used for modeling item 

responses is the traditional Rasch model (Rasch 1960). As the proposed model 

incorporates testlets (Im, 2015), the Rasch testlet model (Bradlow, Wainer, & Wang, 

1999; Wang & Wilson, 2005) is adopted for dichotomous responses. On the other 

hand, according to Gelman and Hill (2007), there are five approaches to modeling a 

multi-level structure. Several of these have been addressed in multilevel response and 

RT studies (Klein Entink, Fox, & van der Linden, 2009; van der Linden, 2007) and in 

the testlet literature (Im, 2015; Jiao et al., 2012). This proposed research models the 

dual clustering effects simultaneously using the combined approach as in Jiao et al. 

(2012). Combining the multilevel structures in responses, the RA model can be 

presented as follows: 
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𝑃(𝑦𝑖𝑗𝑔 = 1|𝜃𝑗𝑔, 𝜃𝑔, 𝑏𝑖, 𝛾𝑗𝑑(𝑖))  =  
1

1 + exp − (𝜃𝑗𝑔 + 𝜃𝑔 − 𝑏𝑖 + 𝛾𝑗𝑑(𝑖))
. (3.1) 

In this formulation, the probability of a correct response 𝑦𝑖𝑗𝑔 = 1 by examinee j 

within group 𝑔 with group ability 𝜃𝑔 and person-specific latent ability 𝜃𝑗𝑔 to item i 

within testlet d with testlet-specific ability 𝛾𝑗𝑑(𝑖) is presented as 𝑃(𝑦𝑖𝑗𝑔 =

1|𝜃𝑗𝑔, 𝜃𝑔, 𝑏𝑖, 𝛾𝑗𝑑(𝑖)). Following the simplified formulation as in Jiao, Kamata, Wang, 

and Jin (2012), item difficulty is 𝑏𝑖, and the testlet effect parameter, 𝛾𝑗𝑑(𝑖), where d 

indicates the specific testlet items i associated with. The group ability is the same for 

all persons in a group but differs for persons from different groups. The variance of 

the ability of the groups is the indication of the person clustering effects.  

On the other hand, combining the multilevel structure in RT, the RT model 

can be presented as follows: 

𝑓(𝑡𝑖𝑗𝑔|𝜏𝑗, 𝛽𝑖)  =  
1

𝑡𝑖𝑗√2𝜋
exp {−

1

2
(ln 𝑡𝑖𝑗𝑔 − (𝛽𝑖 − 𝜏𝑗𝑔) )

2
} . (3.2) 

Expressed a bit differently, the formulation is 

𝑡𝑖𝑗𝑔 = 𝛽𝑖 − 𝜏𝑗𝑔 + 𝜀𝜏𝑖𝑗𝑔  ; 𝜀𝜏𝑖𝑗𝑔  ~ 𝑁(0, 1)     (3.3)  

𝑡𝑖𝑗𝑔was transformed via log-normal function. The RT is a continuous measure, 𝑡𝑖𝑗𝑔 

and is modeled for examinee j within group 𝑔 with the lognormal distribution using 

the person speed parameter, 𝜏𝑗𝑔, and item parameters for item intensity 𝛽𝑖. As each 

examinee is nested within one group, the joint model provides indexing of parameters 

that represents the examinee’s group membership. The group speed parameter 

variance is the indicator of the between-group effects for speed. The proposed RT 
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model is a simplified HM where the discrimination parameter is assumed constant 

and set to unity. 

 For this study, the effects of LID and LPD are a key motivation. 

Consequently, the proposed model is compared to the alternative models using the 

same parameterizations and formulations when applicable. Table 1 provides the 

response model parameters and RT model parameters in the proposed model, which 

is useful to highlight the key differences compared to the alternative models. 

Table 1 

 

The Proposed and the Alternative Models 

Model Abbreviation Response Formulation RT Formulation 

Multilevel testlet 

joint model 
MTJM 𝜃𝑗𝑔 + 𝜃𝑔 − 𝑏𝑖 + 𝛾𝑗𝑑(𝑖) 𝛽𝑖 − 𝜏𝑗𝑔 

Testlet joint 

model 
TJM 𝜃𝑗 − 𝑏𝑖 + 𝛾𝑗𝑑(𝑖) 𝛽𝑖 − 𝜏𝑗 

Multilevel joint 

model 
MJM 𝜃𝑗𝑔 + 𝜃𝑔 − 𝑏𝑖 𝛽𝑖 − 𝜏𝑗𝑔 

Hierarchical 

model 
HM 𝜃𝑗 − 𝑏𝑖 𝛽𝑖 − 𝜏𝑗 

 

3.2 Model Parameter Estimation 

The estimation of the model parameters is conducted in R using the package 

R2Jags with calls to the Bayesian estimation program JAGS (Just Another Gibbs 

Sampler; Plummer, 2017). Jags uses Markov Chain Monte Carlo (MCMC) simulation 

to generate a posterior distribution for each stochastic node, that is, each node follows 

a distribution with different moments, instead of a known fixed value. 

In Bayesian estimation, the distribution of a parameter before being updated 

based on data via the MCMC process is known as the prior distribution. The choice of 
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priors has influence on the posterior distribution. This effect diminishes when the 

prior has a diffuse distribution, that is greater variability, and when more information 

is available from data during the updating process (Gelman & Hill, 2007). The 

selection of the priors for this study is guided by preceding research. The prior 

distributions for the related model parameters are presented as follows. Across 

models, the same prior distributions are set for the equivalent model parameters. 

y ~ Bernoulli distribution, 

t ~ N, after log transform of response time, t, 

𝝁𝑃 = (𝜇𝜃, 𝜇𝜏) = (0, 0)
T,  

𝜮𝑃 = (
1 𝜎𝜃𝜏
𝜎𝜃𝜏 𝜎𝜏

2 ) ,  

𝜮𝐼 = (
𝜎𝑏
2 𝜎𝑏𝛽

𝜎𝑏𝛽 𝜎𝛽
2 ) ,  

𝛾𝑑~𝑁(0, 𝜎𝛾
2),  

𝜃𝑔~𝑁(0, 𝜎𝜃𝑔
2 )  

𝜏𝑔~𝑁(0, 𝜎𝜏𝑔
2 )  

Hyperpriors 

𝜮𝐼~𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑰2, 2)  

𝜎𝛾
2~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1, 1)  

𝜎𝜃𝑔
2 ~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1, 1)  

𝜎𝜏𝑔
2 ~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1, 1)  

𝑰2 is a 2-dimensional identity matrix 
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The item parameters are assumed to follow a bivariate distribution, whereas 

van der Linden (2007) applied the multivariate normal distribution due to the addition 

of time discrimination parameters to be estimated. Liao (2018) found that there were 

a ten-fold gain in efficiency, in terms of time for one iteration to be processed, by 

using the bivariate estimation approach. As the partitioning is similar for this study, 

the Liao (2018) approach is adopted here. The model is identified by fixing the scale 

of the person parameters. 

3.3 Simulation Design 

To determine the effects of the manipulated factors on the estimation of the 

proposed model, a simulation study was designed. The effects on parameter estimates 

as a function of the test length, testlet effects, person clustering effects, and the 

correlation between the ability and the speed parameters were evaluated when 

compared to competing models. The selection of the data generating model which is 

the proposed model when compared to the alternative models using relative model fit 

measures are presented. In addition, an empirical study using a PISA (2015) 

international dataset is presented to illustrate the application of the proposed model to 

real test data.  

3.3.1 Manipulated Factors 

This section details the factors and the levels manipulated for the simulation 

study. Table 2 provides a summary of the values of each level of these factors. Each 

of the factors includes two levels. Fully crossing the levels of the manipulated factors 

results in 16 experimental conditions. The conditions are summarized in Table 3.  
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Table 2 

 

Summary of Manipulated Factors 

 Manipulated Factors 

Levels  Test Length σ2
γi(d) 

Group 

Variance 
ρθτ 

1  24 0.25  0.25 .30 

2  48  1.0 1.0 .70 

 

Table 3 

 

Summary of the Simulation Conditions 

 Manipulated Factors 

Condition No.  Test Length σ2
γi(d) 

Group 

Variance 
ρθτ 

1  24 0.25  0.25  .30 

2  24 0.25  0.25  .70 

3  24 0.25  1.0  .30 

4  24 0.25  1.0  .70 

5  24 1.0 0.25  .30 

6  24 1.0 0.25  .70 

7  24 1.0 1.0  .30 

8  24 1.0 1.0  .70 

9  48 0.25  0.25  .30 

10  48 0.25  0.25  .70 

11  48 0.25  1.0  .30 

12  48 0.25  1.0  .70 

13  48 1.0 0.25  .30 

14  48 1.0 0.25  .70 

15  48 1.0 1.0  .30 

16  48 1.0 1.0  .70 

 

In studies related to response and RT modeling, the number of items (test 

length) has been a manipulated factor. Researchers have included as few as 15 items 

(Man, Harring, Jiao, & Zhan, 2019) and as many as 68 items (Im, 2015) in their 

investigations. The most frequently paired levels for items is 20 and 40; this two-level 

manipulation is found in the studies by Liao (2018), Molenaar, Tuerlinckx, and van 

der Maas (2015) and Wang, Fan, Chang, and Douglas (2013). Other choices for test 
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length include 30 and 60 items, (e.g., Suh, 2010), 20 and 60 items (e.g., Wang & 

Hanson, 2005), and 25 and 49 items (e.g., Bolsinova, de Boeck, & Tijmstra, 2017). In 

multilevel modeling for person clustering effects, Klein Entink, Fox, and van der 

Linden (2009) included 20 items but did not manipulate the number of items as a 

factor. A testlet was included in the response and RT joint modeling by Im (2015) 

which had 54 to 68 items in the simulation and 33 items in the empirical dataset. 

Other studies on polytomous testlet models but not RT models included 20 items 

(e.g., Huang & Wang, 2014) and 36 items (e.g., Jiao & Zhang, 2015). For this 

proposed study, two levels are manipulated for test length at 24 items and 48 items. 

The number of testlets is 3 for the proposed 24-item test and 6 for the 

proposed 48-item test. This is a relatively low number which is motivated by the 

interest in evaluating the variance of the testlet estimate. Studies of item clustering 

have included as few as 2 in a condition (e.g., Huang & Wang, 2014) and 10 or more 

(DeMars, 2006, 2012; Ra, 2012). Tests described with 4 testlets include those by 

Wang and Wilson (2005), Wainer, Bradlow, and Du (2000), Jiao, Kamata, Wang and 

Jin (2012), and with 6 testlets (Im, 2015), Jiao and Zhang (2015), Jiao, Wang, and He 

(2013), Jiao, Kamata, Wang, and Jin (2012). 

Items per testlet is often a consideration along with the number of testlets as 

the product provides the overall test length. At the lower end, studies such as Wang 

and Wilson (2005) used 5 items. On the other hand, the study by Im (2015) included a 

range of 8 to 14 items per testlet. Bradlow, Wainer, and Wang (1999), and Wainer, 

Bradlow, and Du (2000), included 10. Nine items per testlet were in the studies by 
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Jiao, Kamata, Wang and Jin (2012), and Jiao, Wang, and He (2013); Jiao and Zhang 

(2015) incorporated 6 items per testlet. 

The magnitude of testlet effects has often been simulated by manipulating the 

testlet variance at different levels. Researchers have included a zero-variance 

condition as a control, (e.g., Bradlow, Wainer, & Wang, 1999; Jiao, Wang, & He, 

2013; DeMars, 2012; Murphy, Dodd, & Vaughn, 2010). The variance of 0.25 has 

been selected as the value for a “small” testlet effect by several studies (e.g., Glas, 

Wainer, & Bradlow, 2000; Im, 2015; Jiao, Wang, & He, 2013; Jiao & Zhang, 2015; 

Wang & Wilson, 2005). This testlet variance magnitude was also simulated in Jiao, 

Kamata, Wang, and Jin (2012), which modeled LID and LPD jointly. When a study 

has included a level for a “moderate” effect of a testlet, the value tends to be 0.50 

(e.g., Bradlow, Wainer, & Wang, 1999; Wang & Wilson, 2005; Im, 2015). For a 

“large” effect size, the variance chosen is rarely greater than 1.0 (e.g., Bradlow, 

Wainer, & Wang, 1999; DeMars, 2012 Murphy, Dodd, & Vaughn, 2010), and 1.0 is 

very frequently the magnitude for testlet variance (e.g. Bradlow, Wainer, & Wang, 

1999; Glas, Wainer, & Bradlow, 2000; Im, 2015; Jiao, et al, 2012; Jiao, Wang, & He, 

2013; Jiao & Zhang, 2015; Wang & Wilson, 2005). Studies that model examinee 

responses and RT using testlets for LID are not well-represented in the literature. In a 

testlet partial credit model (PCM), Jiao and Zhang (2015) considered the LPD, and in 

Im (2015) testlets were applied but without the consideration of the LPD. In the study 

proposed, the “small” and “large” testlet variances included have values, 0.25 and 

1.0, respectively. 
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For joint modeling of response and RT, often a correlation of person 

parameters is explicitly simulated. Values of the correlation between latent person 

ability and person speed have ranged from -0.9 to 0.9 (Suh, 2010). Some researchers 

have studied a correlation of 0.50 representing moderate strength (e.g. Klein Entink, 

Fox, & van der Linden, 2009; Molenaar, Tuerlinckx, & van der Maas, 2015). The 

same value was also used by Liao (2018) and Zhan, Jiao, and Liao (2017). Studies 

with low strength include absolute correlations values of 0.20 (e.g., Liao, 2018) and 

0.30 (e.g., Suh, 2010; Zhan, Jiao, & Liao, 2017; Man, Harring, Jiao, & Zhan, 2019). 

Strong correlations between the ability and speed parameters have been 0.80 (e.g., 

Sen, 2012; Liao, 2018), and 0.90 (Suh, 2010). In their empirical data study, Zhan, 

Jiao, and Liao (2017) reported the absolute value of correlation 0.507. For this study, 

the levels manipulated are 0.30 and 0.70 which respectively represent weak and 

strong association between the ability and speed parameters. 

The group clustering effect is quantified in terms of the group variance 

(Raudenbush & Bryk, 2002). When a testlet effect was modeled (Jiao et al, 2012) in 

IRT, group variances were manipulated at two levels of 0.25 and 1.0. These same 

values were used when the multilevel effects were simulated in the polytomous IRT 

study by Jiao and Zhang (2015). For this study, the group clustering effect is 

manipulated at two levels of group variances, 0.25 and 1.0. These two levels are 

applied to both the ability and speed person clustering parameters.  

3.3.2 Fixed Factors 

The simulation design includes consideration of factors reflecting the real 

application situations. Some factors are manipulated as described in the above section 
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while other factors are fixed as described in this section. Table 4 provides a summary 

of factors that are not manipulated. 

Table 4 

 

Summary of Fixed Factors 

Factor Fixed Value 

Number of person clusters 50 

Cluster group size 25 

Total sample size 1,250 

Number of items per testlet 8 

Correlation between item difficulty and item 

intensity 

0.30 

Time discrimination  1 

 

For simulations with fixed correlations between item parameters (here, 

difficulty and intensity), recent research (e.g., Liao, 2018; Man et al, 2019) has set the 

parameter to .30. This correlation strength is also used in the proposed study.  

In the 2015 paper by Jiao and Zhang, the sample of 1,000 students was split 

among 40 groups with each group having the same number of students, therefore, 25 

students per group. In the proposed study, as in Jiao, Kamata, Wang, and Jin (2012) 

supported by Binici (2007), the cluster number for this design is 50. Therefore, 50 

groups of equal size with 25 respondents per group result in a sample size of 1,250 

respondents. The number of respondents proposed is in line with Im (2015) who 

evaluated a TJM with sample sizes ranging from 888 to 1,378 respondents, but for 

which there was no person clustering. Other studies in RT have used similar sample 

sizes, for example, van der Linden (2007) included 1,104 respondents and Klein 

Entink, Fox, and van der Linden (2009) modeled the response and response times of 

1,000 respondents. The proposed model has additional complexity compared to the 

comparison models, so the number of respondents is set at least as large as those 
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studies that have one fixed sample size and near the upper range of those studies that 

included multiple samples. 

As the design is to have all levels fully crossed, the total number of conditions 

is 2 × 2 × 2 × 2 = 16. Originally, 25 replications were proposed for each condition. 

Due to difficulties of convergence, there were a resulting 10 converged datasets for 

all models simulated for each condition. This provides 160 total simulated datasets. 

The generating model is the proposed new model. Each dataset is fitted with the 

proposed model and the three comparison models, respectively. The individual-

specific ability, individual-specific speed, and item difficulty each follow standard 

normal distributions. The time intensity has distribution N(4,1). To account for 

homogeneity of variance the within-group variance was fixed. R version 3.5.3 (R 

Core Team, 2019) is used to generate data, and interface with JAGS using the R2jags 

package (Su & Yajima, 2015). It is also used for analyses to evaluate model 

parameter recovery evaluation. 

3.3.3 Evaluation Criteria 

For this study, two chains are used for model parameter estimation. In 

MCMC, the initial iterations that are not kept for the estimation of the posterior 

distribution are known as burn-in iterations. For this study, a minimum of 10,000 

iterations are identified as burn-in number of iterations. The number of burn-in 

iterations depends on the model. The convergence is evaluated by the Gelman-Rubin 

convergence diagnostic 𝑅̂ < 1.20 (Gelman & Rubin, 1992). A stopping rule is 

performed automatically in the JAGS program when this criterion is met for all 

sampled nodes. There are 10,000 iterations per chain kept for the estimation post-burn 
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in resulting in an estimation sample of 20,000. Visual inspection of the parameters of 

interest showed good mixing.  

To evaluate the model parameter recovery, two error indices are computed: 

the bias and the root mean squared error (RMSE). The formulations for these indices 

are: 

𝐵𝑖𝑎𝑠(𝜼̂) =  
∑ (𝜂𝑟̂ − 𝜂)
𝑅
𝑟=1

𝑅
, (3.4) 

𝑅𝑀𝑆𝐸(𝜼̂) = √
1

𝑅
∑ (𝜂𝑟̂ − 𝜂)

2
𝑅

𝑟=1
 , (3.5) 

The true parameter of interest is 𝜂 and the parameter estimate 𝜂̂ represents 𝜂 at 1 

replication. The R term indicates the number of replications for a specific study 

condition. For these calculations, the effective number of replications in this study 

was 1, as each simulation run was aggregated within a condition. According to Lord 

(1986), the increase in the bias of a Bayesian estimate in IRT is the trade-off for 

achieving a lower overall mean squared error, which relates to the random error in 

model parameter estimates.  

To investigate the effects of the manipulated factors, an analysis of variance 

(ANOVA) is performed for each of the outcome measures. Prior to conducting the 

ANOVA analyses, the assumptions are checked so that the right procedure is 

identified. For example, when the sphericity assumption is violated, the Huynh-Feldt 

correction (Huynh & Feldt, 1976) is applied. A summary of parameters of interest is 

provide in Table 5. This table also identifies the method of analysis used for reporting 

in the results section. 
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Table 5 

 

Methods for Summarizing Model Parameters 

No. Symbol Variable Description Analysis 

1 θj(g) Individual-specific ability ANOVA 

2 τj(g) Individual-specific speed ANOVA 

3 bi Item difficulty ANOVA 

4 βi Time intensity ANOVA 

5 σ2θj(g) Variance of individual-

specific ability 

Descriptive 

6 σ2θg Variance of group-specific 

ability 

Descriptive 

7 σ2τj(g) Variance of individual-

specific speed 

Descriptive 

8 σ2τg Variance of group specific 

speed 

Descriptive 

9 σ2γd(i) Variance of testlet Descriptive 

10 ρθτ Correlation between ability 

and speed 

Descriptive 

11 σ2b Variance of item difficulty Descriptive 

12 σ2β Variance of time intensity Descriptive 

13 ρbβ Correlation between item 

difficulty and time intensity 

Descriptive 

 

Some factors are repeated measures in ANOVA. The repeated factor in 

ANOVA in this study is the factor: model, including the proposed model and the 

competing models (namely 4 models: MTJM –multilevel testlet joint model, MJM – 

multilevel joint model, TJM – testlet joint model, and HM – hierarchical model). 

Other non-repeated factors in the ANOVA include: the number of items (test length), 

the testlet effects, the correlation of ability and speed, and person clustering effects. 

The dependent variables are the bias and RMSE for each of the following parameters: 

individual-specific ability, individual-specific speed, item difficulty, and time 

intensity.  

The proposed model is also compared with competing models on measures of 

relative model fit to identify which of the model fit indices perform best on 
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identifying the true model. The model fit indices investigated are the deviance and the 

deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 

2002) which is derived from deviance and an estimated number of effective 

parameters. Its formulation is:  

𝐷𝐼𝐶 =  𝐷(𝑆)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝐷 , (3.6) 

where 𝑆 indicates the sample space of all model parameters, 𝐷(𝑆)̅̅ ̅̅ ̅̅ ̅ is the posterior 

mean of the deviance, calculated as -2log likelihood, 𝑝𝐷is a complexity term that is 

calculated as the posterior mean deviance at each iteration minus the deviance at the 

posterior means of the parameters. 

3.4 Empirical Data Analysis 

An empirical data analysis is conducted to demonstrate the application of the 

proposed model and for comparison with competing models. A set of mathematics 

items from the Program of International Student Assessment (PISA) 2015 was 

selected; the data are publicly available and include response and response time data 

for each item. The set of items are from the M1 and M2 testing clusters. There are 17 

dichotomously scored items on the subtest, included are 4 testlets of 2 items each and 

9 independent items. Response times are provided in milliseconds. They were 

transformed to seconds then set on a logarithmic scale prior to estimation using the 

proposed model. Cases with missing values were deleted listwise. This selection 

process resulted in a dataset of 8,606 students from 58 countries. This initial dataset is 

the same as that used by Zhan, Liao, and Bian (2018). The empirical analysis uses a 

random sample of 20% from the PISA study. Countries that had 20 or more students 

were included. The sample cluster sizes per country were expected to be proportional 
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to the number of participants from a given country. This selection processes resulted 

in a final dataset with G=44 countries and N=1,478 respondents. There was an 

average of 34.37 students per country with SD=19.60, the maximum number of 

students was 119 from a single country, and as previously stated the minimum cluster 

size was 20.  

Unlike a simulation, the true values of the parameters are not known, therefore 

the empirical data analysis is limited to relative comparisons. The proposed model 

and the three alternative models included in the simulation design are compared for 

model fit. For these model comparisons, the DIC (Spiegelhalter, Best, Carlin, & van 

der Linde, 2002) and deviance are compared. 
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Chapter 4: Results 
 

The previous chapter introduced the proposed model and research study 

design. In the present chapter the findings from the simulation study and the empirical 

study are presented. The chapter is organized in the following manner: Section 4.1, 

the results of the simulation study for the measured error for parameter recovery and 

the effects of manipulated factors; Section 4.2, the performance of DIC in selecting 

the MTJM as the best-fitting model for data with LID and LPD; and Section 4.3, the 

application of the proposed model using empirical data. 

4.1 Results of Simulation Study 

The proposed and comparison models were fitted to each generated data set to 

estimate parameters from simulated datasets to evaluate model parameter recovery. 

The MCMC Bayesian estimation approach was used for model parameter estimation. 

Among the compared models: the MTJM, the multilevel joint model (MJM), the 

testlet joint model (TJM) and the hierarchical model (HM), not all models included 

the same parameters as some models may ignore the effects of LID or LPD or both. 

An overview of the model specification is included in Table 6. For parameters where 

sample size was adequate, the evaluation criteria were summarized in terms of 

descriptive and inferential statistics methods.  

Table 6 

 

Overview of the Model Specifications of the Estimation Model in the Simulation Study 

Model 

Model addresses presence of local dependence 

 Local item 

dependence 

 Local person 

dependence 

HM  ×  × 

MJM  ×  √ 

TJM  √  × 

MTJM  √  √ 
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Note. HM= Hierarchical Model, MJM= Multilevel Joint Model, TJM= Testlet Joint Model, 

MTJM= Multilevel Testlet Joint Model; × represents absence of parameter in the model, √ 

represents presence of parameter in the model. 

 

The simulation study design includes the manipulation of four factors 

including the test length, testlet variance, group variance, and person ability and 

speed correlation. As each factor included two levels, in this fully crossed design 

there are 16 simulation conditions. The parameters of interest for recovery 

determination are listed in Table 5 (previous chapter). Estimated covariances were 

converted to correlations using the estimated variances for the respective parameters.  

Convergence for the Bayesian MCMC parameter estimation was empirically 

evaluated by checking if 𝑅̂ < 1.20 for all model parameters. The number of burn-in 

iterations differed by model and test length. For the models that did not include a 

multilevel component (TJM and HM), burn-in was set to 10,000 iterations; for the 

shorter test length condition with models that did include a multilevel component 

(MTJM and MJM) burn-in was 50,000 iterations, and in the longer test length 

conditions for the MTJM and MJM burn-in was 100,000 iterations. If convergence 

was not met in the post-burn in sample, then for the 10,000 burn-in scenario autojags 

was run until the convergence criteria was met; this occurred for all estimation runs in 

five or fewer updates. For the scenarios with burn-in of 50,00 and 100,000, autojags 

was not used as the time to run an estimation replication could be considerable. These 

replications were re-run on a separate computing instance to allow the script to 

continue with the estimation of additional replications.  

Visual inspection of diagnostic plots and trace plots was also used in 

convergence assessment. There were two MCMC chains run, in the two scenarios 
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with longer burn-in, these were computed using parallel processing. The data sample 

included 5,000 iterations post-burn in, and as there were 2 chains per MCMC run, this 

resulted in 10,000 iterations used for the estimates of the model parameters. In the 

two scenarios with longer burn-in, the 5,000 iterations were secured by running 

25,000 iterations and applying a thinning of 5 in order to conserve computer memory. 

Ten replications with converged results were obtained within each simulation 

condition. All estimations were performed using cloud computing on virtual 

machines using an Amazon Machine Image (AMI) that was pre-built with R, 

RStudio, and JAGS included (Aslett, 2019). Specifications for these computing 

resources include virtual machines for the short burn-in scenario each with 2 cores, 

2.8 GHz speed, 4 GB memory, and virtual machines for the longer burn-in scenarios 

each with 4 cores, 2.3 GHz speed, and 8 GB memory. A replication took 

approximately 4 hours for the short burn-in scenario and 48 hours for the longest 

burn-in scenario.  

Two dependent measures were computed based on the estimates of the 

parameters. The bias and RMSE were calculated for person-specific ability, speed, 

item difficulty, and time intensity parameters. The detailed bias and RMSE for each 

simulation condition is reported for each parameter identified in the ANOVA analysis 

of Table 5 in Appendix A. Mixed-effect ANOVA was performed to investigate the 

effects of the manipulated factors on the estimation error measures. This analysis was 

conducted using the repeated measures ANOVA in SPSS (version 26.0, IBM Corp, 

2019). The mixed-effect ANOVA included the estimation model as a within-subjects 
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factor, and the four manipulated variables as the between-subjects factors in the 

simulation design. 

The assumptions for the mixed-effect ANOVA are checked prior to the 

ANOVA and reporting. The assumption of normality for the dependent variables was 

addressed by inspection of P-P and Q-Q plots; these were determined to be within 

acceptable levels based on robustness to moderate deviations from normality (e.g., 

Glass, Peckham, & Sanders, 1972).  

Following the recommendation of Maxwell and Delaney (1990), the 

simulation was designed to have equal sample sizes to address the violation of the 

assumption. This implementation with equal sample sizes in study conditions with the 

same test length makes the procedure robust to the normality assumption. Sphericity, 

the variances of the differences between the related groups, was checked using the 

Mauchly’s Test of Sphericity (Mauchly, 1940). SPSS provides a null hypothesis test 

in the output of the ANOVA. For example, in the RMSE of the speed parameter the 

Mauchly’s W=.000 (df=5, p<.001), the Huynh-Feldt epsilon=.340 which was used to 

adjust to degrees of freedom for the tests of within-subject effects. In all cases the 

sphericity assumption was violated, therefore the results using the Huynh-Feldt 

correction (Huynh & Feldt, 1976) are reported. 

 In addition to statistical testing for significance (evaluated at the alpha level  

of 0.05), an effect size measure is used for evaluation of practical significance. The 

effect size applied in this study is the partial 𝜂2 (Cohen, 1965). The range of effect 

size was used as suggested by Cohen (1988). That is, a small effect: 0.01≤ partial 𝜂2 

<0.06, a medium effect: 0.06≤ partial 𝜂2 <0.14, and a large effect: partial 𝜂2 ≥0.14. 
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Only the effects which are both statistically significant with at least a small effect size 

are reported and discussed in this study. To make interpretation manageable, the 

higher-order interaction reported for the mixed-ANOVA in this study is up to a three-

way interaction.  

The mixed-effect ANOVA is conducted for (a) the person ability parameters , 

𝜃𝑗 , (estimated in the IRT model), (b) person speed parameter, 𝜏𝑗 (estimated in the RT 

model), (c) the item difficulty parameters, 𝑏𝑖, (estimated in the IRT model), and (d) 

the item time intensity parameters, 𝛽𝑖, (estimated in the RT model). The results are 

summarized as follows. 

4.1.1 Person Parameters 

For the person parameters, the mixed-effect ANOVA results indicate that the 

interaction of the study factors: the estimation model and the person group variance, 

has significant impact with a moderate or large effect size on the RMSE of the person 

ability and speed parameter recovery respectively. For bias, none of the factors and 

their interactions were identified as significant. A summary of the higher-order 

interaction for the person parameters is provided in Table 7.  

Table 7 

 

Summary of the ANOVA results on the Person Ability Parameter Recovery 

Effect 
Person Ability (𝜃𝑗)  Person Speed (𝜏𝑖) 

 Bias RMSE  Bias RMSE 

Model*group_var  - .066  - .158 

 

Effect Size 
Small 

(0.01≤partial 𝜂2<0.06) 

Medium 

(0.06≤partial 𝜂2<0.14) 

Large 

(partial 𝜂2≥0.14) 

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2); The values in 

the cells are partial 𝜂2. 
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Person ability. In general, no factors or their interactions had significant 

effects on the bias of the ability parameter estimates for the mixed-effect ANOVA. 

However, to better understand bias in model parameter recovery, the conditional bias 

is plotted. Figure 4 provides a comparison of bias conditional on the true ability 

parameter between two conditions that differ only in the terms of the test length factor 

(conditions 4 and 12 respectively). In both conditions the same pattern results where 

the mean bias is greatest in the extremes near 3 logits in absolute value and decreases 

to nearly zero as the true ability decreases in absolute units. In consideration of the 

pattern observed and to support the analysis of the effects, the bias and RMSE were 

calculated using all the estimates for a parameter within a condition and not by 

aggregating these values per replication.  

 
Figure 4. Mean Bias of Ability Parameter Estimates, 𝜃𝑗 , for Representative 

Conditions 4 and 12, which have the same factor levels with the exception of test 

length where condition 4 is I=24 and 12 is I=48. 

Note. X-axis values are grouped by the true ability parameter with bin size of 0.5. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel 

Joint Model, HM= Hierarchical Model. 

 

There is a significant model and group variance two-way interaction on the 

RMSE of the 𝜃𝑗  with medium effect size (F=14183.43, p<.001, partial 𝜂2=.066), 

there is also a significant two-way model and test length interaction with small effect 
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size (F=2030.59, p<.001, partial 𝜂2=.010). These effects are reported in Table 8. The 

Model main effect is large (F=56338.34, p<.001, partial 𝜂2=.220).  The group 

variance factor has a small effect (F=7651.87, p=<.001, partial 𝜂2=.037).   

Table 8 

 

The ANOVA Results of the RMSE of the Person Ability Estimates 

Source 
RMSE of 𝜃𝑗  

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 56338.34 <0.001 .220 

Model*test_length 2030.59 <0.001 .010 

Model*group_var 14183.43 <0.001 .066 

Between-Subject Effects    

group_var 7651.87 <0.001 .037 

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2). 

 

 

 

To better understand the two-way interaction between the two factors: model 

and test length, a mean plot is presented in Figure 5. Longer test lengths are 

associated with smaller mean RMSEs for 𝜃𝑗. The two-way interaction between model 

and group variance is provided in Figure 6. In both of these figures the two models 

that take into account person clustering effects yielded mean RMSEs for 𝜃𝑗  smaller 

than those that do not include a group parameter in the model largely due to the fact 

that person clustering is an effect related to person parameters. Thus, models that take 

into account of such effect are expected to produce lower total estimation error. 

Figure 6 shows that for the TJM and HM, a larger group variance, σ𝑔
2, is associated 

with larger 𝜃𝑗  mean RMSE, compared to the level with smaller σ𝑔
2.  
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Figure 5. Significant two-way interaction of Model*test_length on the RMSE of the 

person ability parameter estimates, 𝜃𝑗 . 

[Note. Model=Estimation model type; testlet_var=Testlet variance magnitude (σ𝛾
2).] 

 

 
Figure 6. Significant two-way interaction of Model*group_var on the RMSE of the 

person ability parameter estimates, 𝜃𝑗 .  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2). 
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Person speed. For the individual-specific speed parameter, 𝜏𝑗, in the RT 

model, no factors have statistically significant effects on the bias. The model and the 

two-way interaction between the model and the group variance had significant effects 

on the RMSE of the speed parameter, 𝜏𝑗. The two-way interaction between the model 

and the group variance has large effect size (F=37559.59, p<.001, partial 𝜂2=.158) 

while the model has a large effect size (F=185938.24, p<.001, partial 𝜂2=.482). The 

group variance factor has a large effect size (F=30467.07, p=<.001, partial 𝜂2=.132). 

The ANOVA results are summarized in Table 9.  

Table 9 

 

The ANOVA Results of the RMSE of the Person Speed Estimates 

Source 
RMSE of 𝜏𝑗 

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 185938.24 <0.001 .482 

Model*group_var 37559.59 <0.001 .158 

Between-Subject Effects    

group_var 30467.07 <0.001 .132 

Note. Model=Estimation model type; test_length=Number of test items (I); group_var=Group 

variance magnitude (σ𝑔
2). 

 

Figure 7 depicts the two-way interaction between the model and the group 

variance. The mean RMSE for two of the four competing models, TJM and HM are 

almost overlapped; these are at the top of the figure. A similar pattern is found for the 

MTJM and the MJM; these models are at the bottom of the figure indicating smaller 

mean RMSE 𝜏𝑗, These two models, which share the characteristic that they do have a 

grouping parameter, are showing smaller mean RMSE of 𝜏𝑗 than the TJM and HM. 

The magnitude of this difference is greater for the larger group variance. 
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Figure 7. Significant two-way interaction of Model*group_var on the RMSE of the 

person ability parameter estimates, 𝜏𝑗.  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2). 

 
4.1.2 Item Parameters 

The ANOVA results of the bias and RMSE for the item parameters are 

presented in Table 10. Only the significant effects with at least a small effect size are 

presented in the table.  

Table 10 

 

The ANOVA Results for the Item Parameter Recovery 

I Effect 

Item Difficulty 

Parameter (𝑏𝑖) 

 Item Time 

Intensity 

Parameter (𝛽𝑖) 
 Bias RMSE  Bias RMSE 

24 Model*group_var  .013 .051  .022  
 Model*testlet_var   .051    

 Model*testlet_var*group_var      .020 

48 Model*testlet_var*theta_tau_corr  - .018  .016 .017 

 

Effect Size 
Small 

(0.01≤partial 𝜂2<0.06) 

Medium 

(0.06≤partial 𝜂2<0.14) 

Large 

(partial 𝜂2≥0.14) 
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Note. Number of test items (I); Model=Estimation model type; testlet_var=Testlet variance 

magnitude (σ𝛾
2); group_var=Group variance magnitude (σ𝑔

2); theta_tau_corr=Correlation between 

person ability and speed (𝜌𝜃𝜏). The values in the cells are partial 𝜂2. 

 

Item difficulty. Two test lengths were investigated in this study. For the 

shorter test length (I=24), the two-way interaction between the model and the group 

variance has a statistically significant and small effect (F=25.01, p<.001, partial 

𝜂2=.013) on the bias of the item difficulty, 𝑏𝑖, parameter estimate between model and 

group variance. The mixture-effect ANOVA results are presented in Table 11. The 

factor, Model, has a significant and small effect size on the bias of the item difficulty 

parameter estimates (F=21.38, p<.001, partial 𝜂2=.011). The two-way interaction is 

presented graphically in Figure 8. The mean estimation bias due to the estimation 

models is larger in absolute magnitude for the level with greater group variance, σ𝑔
2. 

There is a significant testlet variance effect on the bias of the 𝑏𝑖with small effect size 

(F=25.03, p<.001, partial 𝜂2=.013) and a group variance effect (F=163.26, p<.001, 

partial 𝜂2=.079) with medium effect size. 

Table 11 

 

The ANOVA Results of the Bias of the Item Difficulty Estimates (I=24) 

Source 
Bias of 𝑏𝑖 

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 21.38 <0.001 .011 

Model*group_var 25.01 <0.001 .013 

Between-Subject Effects    

testlet_var 25.03 <0.001 .013 

group_var 163.26 <0.001 .079 

Note. Number of test items (I); Model=Estimation model type; group_var=Group variance 

magnitude (σ𝑔
2); testlet_var=Testlet variance magnitude (σ𝛾

2); theta_tau_corr=Correlation between 

person ability and speed (𝜌𝜃𝜏). 
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Figure 8. Significant two-way interaction of Model*group_var on the Bias of the item 

difficulty parameter estimates, 𝑏𝑖 when I=24.  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2). 

 

For the study conditions with the shorter test length (I=24), the two-way 

interaction between the model and the testlet variance exerted a significant small 

effect on the RMSE of 𝑏𝑖 (F=103.28, p<.001, partial 𝜂2=.051). So does the two-way 

interaction between the model and group variance (F=101.98, p<.001, partial 

𝜂2=.051), as seen in Table 12. The factor, Model, has a medium effect (F=240.91, 

p<.001, partial 𝜂2=.112) on the RMSE of 𝑏𝑖. The group variance factor has a large 

effect size (F=218.34, p=<.001, partial 𝜂2=.102). 

Table 12 

 

The ANOVA Results of the Bias of the Item Difficulty Estimates (I=24) 

Source 
RMSE of 𝑏𝑖 

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 262.67 <0.001 .121 

Model*testlet_var 103.28 <0.001 .051 
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Model*group_var 101.98 <0.001 .051 

Between-Subject Effects    

group_var 218.34 <0.001 .102 

Note. Number of test items (I); Model=Estimation model type; testlet_var=Testlet variance 

magnitude (σ𝛾
2); group_var=Group variance magnitude (σ𝑔

2); theta_tau_corr=Correlation between 

person ability and speed (𝜌𝜃𝜏). 
 

To better understand the two-way interactions, two figures are plotted and 

presented in Figures 9 and 10. The two-way interaction between the model and the 

testlet variance is presented in Figure 9. The mean RMSE of 𝑏𝑖 is smaller for models 

incorporating a testlet parameter (MTJM and TJM) for the study condition with a 

large testlet variance, σ𝛾
2; and is larger for the models that do not incorporate a testlet 

parameter (MJM and HM) at the larger level of σ𝛾
2. 

 

 

 
Figure 9. Significant two-way interaction of Model*testlet_var on the RMSE of the 

item difficulty parameter estimates, 𝑏𝑖 when I=24.  

Note. Model=Estimation model type; testlet_var=Testlet variance magnitude (σ𝛾
2). 
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The two-way interaction between the Model and group variance, σ𝑔
2 is 

represented in Figure 10 for the mean RMSE of 𝑏𝑖. In general, RMSE is smaller when 

the group variance, σ𝑔
2, is small for all models. For the study conditions with larger 

group variance, σ𝑔
2, the mean RMSE of 𝑏𝑖 is smaller for the models that incorporate a 

group parameter (MTJM and MJM) than for the models that do not (TJM and HM). 

 
Figure 10. Significant two-way interaction of Model*group_var on the RMSE of the 

item difficulty parameter estimates, 𝑏𝑖 when I=24.  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2). 

 

For the study conditions with a longer test length, the summary results of the 

mixed-effect ANOVA analyses are presented in Table 13. There were no significant 

effects for bias of 𝑏𝑖. However, several factors significantly affected the RSME of 

item difficulty parameter estimation with non-negligible effect sizes as presented in 

Table 13. Two significant three-way interactions: model, testlet variance, and 

correlation between ability and speed (F=70.31, p<0.001, partial 𝜂2=.018) and 

model, group variance, and correlation between ability and speed, (F=37.71, 
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p<0.001, partial 𝜂2=.010) were significant, each had a small effect. Both of these 

interactions are related to the correlation between person ability and speed (𝜌𝜃𝜏). The 

two-way interactions between the Model and the factors included in the three-way 

interactions (testlet variance , group variance, and correlation between theta and tau) 

were each found to be statistically significant: model and testlet variance (F=153.20, 

p<0.001, partial 𝜂2=.038), model and group variance (F=164.50, p<0.001, partial 

𝜂2=.041), and model and correlation between theta and tau (F=74.72, p<0.001, 

partial 𝜂2=.019). There was a medium effect for the Model factor (F=602.27, 

p<0.001, partial 𝜂2=.136). The group variance and the correlation between theta and 

tau had a significant two-way interaction with a significant small effect (F=151.13, 

p=<0.001, partial 𝜂2=.038). In addition, two factors had significant effects with small 

effect sizes: testlet variance (F=90.61, p<0.001, partial 𝜂2=.023 and group variance 

(F=173.92, p<0.001, partial 𝜂2=.043). 

Table 13 

 

The ANOVA Results of the RMSE of the Item Difficulty Estimates (I=48) 

Source 
RMSE of 𝑏𝑖 

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 602.27 <0.001 .136 

Model*testlet_var 153.20 <0.001 .038 

Model*group_var 164.50 <0.001 .041 

Model*theta_tau_corr 74.72 <0.001 .019 

Model*testlet_var*theta_tau_corr 70.31 <0.001 .018 

Model*group_var*theta_tau_corr 37.71 <0.001 .010 

Between-Subject Effects    

testlet_var 90.61 <0.001 .023 

group_var 173.92 <0.001 .043 

group_var*theta_tau_corr 151.13 <0.001 .038 
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Note. Number of test items (I); Model=Estimation model type; testlet_var=Testlet variance 

magnitude (σ𝛾
2); group_var=Group variance magnitude (σ𝑔

2); theta_tau_corr=Correlation between 

person ability and speed (𝜌𝜃𝜏). 
 

To better understand the multiple multi-way interactions, the mean plots for 

the three-way interaction among the model, testlet variance and the correlation 

between theta and tau are presented in Figure 11. For the study conditions with a 

smaller testlet variance, σ𝛾
2, the MTJM and MJM with the multilevel structure, have 

smaller mean RMSE of 𝑏𝑖 than the models that do not model the multilevel structure. 

In the left panel for the study conditions with smaller correlations between the ability 

and speed parameters, the larger testlet variance leads to a greater mean RMSE of 𝑏𝑖, 

an ordinal pattern is found among the model performance. In the right panel for the 

study conditions with larger correlations between the ability and speed parameters, 

the RMSE for the item difficulty parameters for the two models with a testlet 

parameter (MTJM and TJM) were not affected by the magnitude of the testlet 

variance. This is not the case observed in the models that do not address local item 

dependence (MJM and HM).That is, the mean RMSE of 𝑏𝑖, appears much greater for 

the study conditions with larger testlet variance (σ𝛾
2=1.0). 
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Figure 11. Significant three-way interaction of Model*testlet_var*theta_tau_corr on 

the RMSE of the item difficulty parameter estimates, 𝑏𝑖, when I=48.  

Note. Model=Estimation model type; testlet_var=Testlet variance magnitude (σ𝛾
2); 

theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏). 
 

The mean RMSE of 𝑏𝑖 is represented in Figure 12 for the three-way 

interaction between model, group variance, and correlation between theta and tau. 

When the correlation between ability and speed was smaller (𝜌𝜃𝜏=.3) as presented in 

the left panel, the mean RMSE of 𝑏𝑖 appeared similar for the smaller level of group 

variance. When the group variance is large, the two models with grouping parameter 

(MTJM and MJM) produced smaller mean RMSE compared to the two models that 

do not include a grouping parameter (TJM and HM). In the right panel that presents 

the results for the conditions with larger correlation, the MTJM and MJM show a 

slight decrease in the mean RMSE of 𝑏𝑖 while the TJM and HM show slight increase 

with the true model lead to the smallest RMSE and the HM which ignores both item 

and person clustering effects the largest.  
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Figure 12. Significant three-way interaction of Model*group_var*theta_tau_corr on 

the RMSE of the item difficulty parameter estimates, 𝑏𝑖, when I=48.  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2); 

theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏). 

 

Item time intensity. The same analyses were conducted for the recovery of the 

item time intensity parameter, 𝛽𝑖. The results are summarized for study conditions 

with two different test lengths, respectively.  

As presented in Table 15 for the study conditions with shorter test length, the 

two-way interaction between the model and the group variance had a small significant 

effect on the bias of the item time intensity parameter recovery (F=42.15, p<0.001, 

partial 𝜂2=.022). The factor Model had a significant small effect (F=66.66, 

p=<0.001, partial 𝜂2=.034). The testlet variance had a significant small effect 

(F=30.48, p=<0.001, partial 𝜂2=.016). 

Table 14 

 

The ANOVA Results of the Bias of the Item Time Intensity Estimates (I=24) 

Source Bias of 𝛽𝑖 
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F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 66.66 <.001 .034 

Model*group_var 42.15 <.001 .022 

Between-Subject Effects    

testlet_var 30.48 <.001 .016 

Note. Number of test items (I); Model=Estimation model type; testlet_var=Testlet variance 

magnitude (σ𝛾
2); theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏); 

group_var=Group variance magnitude (σ𝑔
2).  

 

The significant two-way interaction is presented in Figure 13. The two-way 

interaction Model and group variance shows at the smaller level of σ𝑔
2  the mean bias 

of time intensity, 𝛽𝑖, the models have error values that appear to be very similar (note 

that the metric of the y-axis is in 0.005 increments). For the larger level of the σ𝑔
2, the 

mean bias of 𝛽𝑖 has decreased substantially for the MJM, but in absolute terms of bias 

is nearly the same as in the smaller level of σ𝑔
2. The other models appear to have 

relatively similar mean bias of 𝛽𝑖. 
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Figure 13. Significant two-way interaction of Model*group_var on the bias of the 

item time intensity parameter estimates, 𝛽𝑖, when I=24.  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2). 

 

 

 The mixed-effect ANOVA for the RMSE of 𝛽𝑖 when I=24 has a small three-

way interaction effect among model, testlet variance, and group variance (F=38.69, 

p<0.001, partial 𝜂2=.020) according to Table 15. The two-way interaction model and 

group variance had a significant medium effect (F=290.10, p<0.001, partial 

𝜂2=.132).  The main effect of Model (F=536.78, p<0.001, partial 𝜂2=.219) was large.  

Figure 14 shows the three-way interaction among model, testlet variance, and 

group variance. For the small group variance (σ𝑔
2=0.25), the mean RMSE of 𝛽𝑖 are 

very similar. For the large σ𝑔
2 , the models without a group parameter lead to larger 

mean RMSE of 𝛽𝑖 than the models accounting for the group clustering effect. The 

difference was even larger for the level with a greater σ𝛾
2. The main effect of group 

variance (F=207.19, p=<.001, partial 𝜂2=.098) was medium. The two-way interaction 

of group variance and the correlation between the theta and tau parameters was small 

(F=24.02, p=<.001, partial 𝜂2=.012). The three-way interaction among testlet 

variance, group variance, and the correlation between the theta and tau parameters 

had a significant small effect (F=19.67, p=<0.001, partial 𝜂2=.010).  

 

Table 15 

 

The ANOVA Results of the RMSE of the Item Time Intensity Estimates (I=24) 

Source 
RMSE of 𝛽𝑖 

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 536.78 <0.001 .219 
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Model*group_var 290.10 <0.001 .132 

Model*testlet_var*group_var 38.69 <0.001 .020 

Between-Subject Effects    

group_var 207.19 <0.001 .098 

group_var*theta_tau_corr 24.02 <0.001 .012 

testlet_var*group_var*theta_tau_corr 19.67 <0.001 .010 

Note. Number of test items (I); Model=Estimation model type; group_var=Group variance 

magnitude (σ𝑔
2); testlet_var=Testlet variance magnitude (σ𝛾

2); theta_tau_corr=Correlation between 

person ability and speed (𝜌𝜃𝜏). 

 

 

  
Figure 14. Significant three-way interaction of Model*testlet_var*group_var on the 

RMSE of the item time intensity parameter estimates, 𝛽𝑖, when I=24.  

Note. Model=Estimation model type; testlet_var=Testlet variance magnitude (σ𝛾
2); 

group_var=Group variance magnitude (σ𝑔
2). 

 

 

 The estimates of the 𝛽𝑖 for the study conditions with longer test length (I=48) 

were evaluated with the mixed-effect ANOVA. All the possible three-way 

interactions that could include the Model factor were significant. The three-way 

interaction among the model, testlet variance, and group variance (F=42.91, p<0.001, 

partial 𝜂2=.011) is small, as are the other two three-way interactions among model, 
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testlet variance, and the correlation between theta and tau (F=63.88, p<0.001, partial 

𝜂2=.016) and that among model, group variance, and the correlation between theta 

and tau (F=51.35, p<0.001, partial 𝜂2=.013), presented in Table 16. The disordinal 

three-way interaction among model, testlet variance, and group variance is depicted 

in Figure 15. In general, the mean bias of 𝛽𝑖 generally is positive for the smaller σ𝑔
2 

level with the smaller level of σ𝛾
2, and negative for the larger level of σ𝛾

2. In the panel 

that shows the larger level σ𝑔
2, the models show a trend of decreased mean bias of 𝛽𝑖, 

in absolute value for the larger testlet variance level, σ𝛾
2. The change in bias is less 

pronounced for the MTJM. 

Table 16 

 

The ANOVA Results of the Bias of the Item Time Intensity Estimates (I=48) 

Source 
Bias of 𝛽𝑖 

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 36.77 <0.001 .010 

Model*theta_tau_corr 46.88 <0.001 .012 

Model*testlet_var*group_var 42.91 <0.001 .011 

Model*testlet_var*theta_tau_corr 63.88 <0.001 .016 

Model*group_var*theta_tau_corr 51.35 <0.001 .013 

Between-Subject Effects    

testlet_var*group_var 51.41 <0.001 .013 

testlet_var*theta_tau_corr 276.16 <0.001 .067 

group_var*theta_tau_corr 42.33 <0.001 .011 

Note. Number of test items (I); Model=Estimation model type; testlet_var=Testlet variance 

magnitude (σ𝛾
2); group_var=Group variance magnitude (σ𝑔

2); theta_tau_corr=Correlation between 

person ability and speed (𝜌𝜃𝜏). 
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Figure 15. Significant three-way interaction of Model*testlet_var*group_var on the 

bias of the item time intensity parameter estimates, 𝛽𝑖, when I=48.  

Note. Model=Estimation model type; testlet_var=Testlet variance magnitude (σ𝛾
2); 

group_var=Group variance magnitude (σ𝑔
2). 

 

The three-way interaction among model, testlet variance, and theta-tau 

correlation is displayed visually in Figure 16. For the smaller level of correlation 

between speed and ability, 𝜌𝜃𝜏, the absolute value of the bias for each model appears 

approximately the same. A larger absolute bias is observed for the larger level of 𝜌𝜃𝜏 

compared with the smaller testlet variance, σ𝛾
2 . As seen in Figure 17, the interaction 

of σ𝑔
2 with 𝜌𝜃𝜏 is disordinal. For the larger level of 𝜌𝜃𝜏, the mean bias of 𝛽𝑖 is larger 

compared to that for study conditions with smaller correlation. In addition to the 

three-way interactions, the two-way interaction between model and the correlation 

between theta and tau had a small effect on the RMSE of item intensity (F=46.88, 

p=<0.001, partial 𝜂2=.012) while Model had a small effect (F=36.77, p=<0.001, 

partial 𝜂2=.010) as well.  
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There are three significant two-way interactions between the study factors. 

Two of these interactions were small, specifically, that between testlet variance and 

group variance (F=51.41, p=<0.001, partial 𝜂2=.013) and that between group 

variance and the correlation between the theta and tau parameters (F=42.33, 

p=<0.001, partial 𝜂2=.011). The two-way interaction of testlet variance and the 

correlation between the theta and tau parameters (F=276.16, p=<0.001, partial 

𝜂2=.067) was of medium effect size. 

 
Figure 16. Significant three-way interaction of Model*testlet_var*theta_tau_corr on 

the bias of the item time intensity parameter estimates, 𝛽𝑖, when I=48.  

Note. Model=Estimation model type; testlet_var=Testlet variance magnitude (σ𝛾
2); 

theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏). 
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Figure 17. Significant three-way interaction of Model*group_var*theta_tau_corr on 

the bias of the item time intensity parameter estimates, 𝛽𝑖, when I=24.  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2); 

theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏). 
 

 The ANOVA results for the RMSE of 𝛽𝑖 are presented in Table 17. Two 

higher-order interactions for the longer test (I=48) were significant. These interaction 

effects had small effect sizes. The three-way interactions are model, testlet variance, 

and group variance (F=64.68, p<0.001, partial 𝜂2=.017), and model, group variance, 

and correlation between theta and tau (F=42.96, p<0.001, partial 𝜂2=.011). Two two-

way interactions were also evaluated with a small effect for the interaction between 

model and testlet variance (F=66.42, p<0.001, partial 𝜂2=.017) and with a large effect 

for the interaction between model and testlet variance (F=890.38, p<0.001, partial 

𝜂2=.189). The factor Model effect was large (F=2088.47, p<0.001, partial 𝜂2=.353). 

The two-way interaction between group variance and the correlation between theta 

and tau (F=85.81, p<0.001, partial 𝜂2=.022) was small. Two main effects were 

significant: testlet variance (F=45.44, p<0.001, partial 𝜂2=.012) had a small effect 
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size and group variance (F=396.85, p<0.001, partial 𝜂2=.094) had a medium effect 

size. 

Table 17 

 

The ANOVA Results of the RMSE of the Item Time Intensity Estimates (I=48) 

Source 
Bias of 𝛽𝑖 

F Statistics p-value Partial 𝜂2 

Within-Subject Effects  

(with Huynh-Feldt Adjustment) 
   

Model 2088.47 <0.001 .353 

Model*testlet_var 66.42 <0.001 .017 

Model*group_var 890.38 <0.001 .189 

Model*testlet_var*group_var 64.68 <0.001 .017 

Model*group_var*theta_tau_corr 42.96 <0.001 .011 

Between-Subject Effects    

testlet_var 45.44 <0.001 .012 

group_var 396.85 <0.001 .094 

group_var*theta_tau_corr 85.81 <0.001 .022 

Note. Number of test items (I); Model=Estimation model type; testlet_var=Testlet variance 

magnitude (σ𝛾
2); group_var=Group variance magnitude (σ𝑔

2); theta_tau_corr=Correlation between 

person ability and speed (𝜌𝜃𝜏). 

 

Figures 18 and 19 present the two significant three-way interactions. Both 

levels of σ𝑔
2 in Figure 18 show disordinal interactions where the models behave 

similarly for the level with smaller group variance. The models with a group 

parameter (MTJM and MJM) had lower mean RMSE of 𝛽𝑖 than the models that do 

not have this parameter (TJM and HM). There is a slight decrease in the measurement 

error comparing across levels of σ𝛾
2. That is, the mean RMSE of 𝛽𝑖 is lower for the 

conditions with larger σ𝛾
2 compared to those with smaller σ𝛾

2.  

In Figure 19, both levels of 𝜌𝜃𝜏 display disordinal interactions. Within each 

level of 𝜌𝜃𝜏 , a larger mean RMSE of 𝛽𝑖 is found for the larger level of group 

variance, σ𝑔
2, compared to the smaller level, for the models that do not include a 
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group parameter (TJM and HM) compared with the models that incorporate a group 

parameter (MTJM and MJM).  

 

 

  
Figure 18. Significant three-way interaction of Model*testlet_var*group_var on the 

RMSE of the item time intensity parameter estimates, 𝛽𝑖, when I=48.  

Note. Model=Estimation model type; testlet_var=Testlet variance magnitude (σ𝛾
2); 

group_var=Group variance magnitude (σ𝑔
2). 
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Figure 19. Significant three-way interaction of Model*group_var*theta_tau_corr on 

the RMSE of the item time intensity parameter estimates, 𝛽𝑖, when I=48.  

Note. Model=Estimation model type; group_var=Group variance magnitude (σ𝑔
2); 

theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏). 
 

4.1.3 Variance and Correlation Parameters 

 

In model parameter estimation, the variance and covariance parameters were 

estimated. As the correlation was generated as the true values of the strength of 

relationship between the accuracy and speed parameters in the simulation, the 

estimated correlations were derived from the associated variances and covariances. 

This section is organized in the following presentation order (1) the estimates of 

variances and correlation for the person parameters, (2) the estimates of groups and 

testlet variances, and (3) the estimates of variances and correlation for the item 

parameters. The variance of the individual-specific ability was fixed at 1 in estimation 

for the scale identification. Summaries of the parameter estimates by condition are 

compared to the known “true” values. Appendix B includes the descriptive statistics 

for each of these parameters.  
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Person Speed Parameter Variance and Correlation Estimates. The variance 

of the person speed parameter, σ𝜏
2, was estimated for the RT model. The parameter 

true value, 1.0, was very well recovered by the MTJM and MJM models, regardless 

of the manipulated level for a condition. The models that ignore the person clustering 

structure (TJM and HM) did not recover σ𝜏
2 well. The variance of person speed was 

double the true value when the manipulated group variance, σ𝑔
2, factor was at the 

larger level (σ𝑔
2=1.0). The estimated mean σ𝜏

2 summarized by condition is provided in 

Figure 20.  

 

 
Figure 20. Mean of variance of person speed parameter, σ𝜏

2 estimates by simulation 

condition.  

 

 The correlation between the person ability and speed parameters, 𝜌𝜃𝜏, was 

estimated to determine the strength of association between the IRT and RT models 

for the person parameters. For the even-numbered conditions, the true value of 

𝜌𝜃𝜏 was .7, for the odd-numbered conditions the true value was .3. As seen in Figure 

21, the parameter was very well recovered by the MTJM and MJM for all conditions. 
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The 𝜌𝜃𝜏 parameter estimates reflect the true value for the TJM and HM in many 

conditions. In conditions where the manipulated group variance was larger, σ𝑔
2, the 

recovery of the 𝜌𝜃𝜏 true values was poor; less than half of the strength of the true 

correlation was estimated by the models that do not account for group modeling. 

 

 
Figure 21. Mean correlation between person ability and speed parameter, 𝜌𝜃𝜏, 
estimates by simulation condition.  

 

 Group Parameter Variance Estimates. Group parameters were estimated for 

both the IRT and RT models. In the IRT model, the group-specific ability parameter 

variance, σ𝜃𝑔
2 , is estimated only for the models that account for multilevel structure, 

the MTJM and MJM. Figure 22 visually depicts the mean of the estimates of the 

σ𝜃𝑔
2 for the simulation study conditions. Parameter recovery was generally good. For 

the conditions with the smaller level of group variance (σ𝜃𝑔
2 =0.25), the two models 

performed very similarly. For the conditions with larger group variance (σ𝜃𝑔
2 =1.0), 

the MTJM better recovered the true value. Within this group variance level, the 
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recovery differences were most pronounced in conditions 7, 8, 15, and 16, conditions 

with larger testlet variance, σ𝛾
2. 

 

 
Figure 22. Mean of group-specific ability variance parameter, σ𝜃𝑔

2 , estimates by 

simulation condition. 

 

The group speed parameter variance, σ𝜏𝑔
2 , represents the effect of group 

clustering in the multilevel structure in the RT model. The recovery of this parameter 

for the related models (MTJM and MJM) was overall quite good. In the conditions 

with larger group variance (σ𝜃𝑔
2 =1.0), as seen in Figure 23, the variances may be 

overestimated for conditions 7, 8, 11, and 12 and underestimated for conditions 3, 4, 

15 and 16. There is no clear pattern associated with other manipulated study factors. 
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Figure 23. Mean of group-specific speed variance parameter, σ𝜏𝑔

2 , estimates for 

estimation by simulation condition.  

 

Testlet Variance Estimates. Two models in the simulation included testlet 

parameters, MTJM and TJM. All testlet variance parameters were well recovered. For 

ease of readability, Figure 24 provides the recovery of the variance of testlet 3. The 

descriptive statistics for estimated testlet variance for each testlet are provided in 

Appendix B.  
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Figure 24. Mean of testlet variance parameter, σ𝛾
2, estimates by simulation condition. 

Note. Testlet 3 values provided as an example. 

 

Item Parameter Variance and Correlation Estimates. The variances of item 

difficulty parameter, σ𝑏
2 , were estimated in the IRT model. As Figure 25 reflects, the 

recovery of σ𝑏
2  for a model that incorporates a testlet parameter, TJM, was most 

consistent. This model outperformed the models that ignore the local dependence of 

items within testlets (MJM and HM). In general, the TJM also outperformed the more 

complex MTJM. The differences between TJM and the models which ignore the 

testlet is the greatest in the conditions where the σ𝛾
2 is larger (σ𝛾

2=1.0 compared to 

σ𝛾
2=0.25). The mean σ𝑏

2  estimated by the MTJM resulted in consistent overestimation 

of this parameter. 

 

 
 

Figure 25. Mean of item difficulty variance parameter, σ𝑏
2 , estimates by simulation 

condition.  

 

The estimates of variance of item time intensity parameter, σ𝛽
2 , were 

recovered extremely consistently for all models across all conditions. As shown in 
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Figure 26, the mean σ𝛽
2  was slightly higher than the true value, 1.0 indicating 

overestimation of this parameter. 

 

 
Figure 26. Mean of item intensity variance parameter, σ𝛽

2 , estimates by simulation 

condition.  

 

 The strength of the relationship between item parameters in the IRT and RT 

models was characterized by the correlation of the item difficulty and item time 

intensity, 𝜌𝑏𝛽. This value was fixed for the true parameter at .3 for all conditions. As 

seen in Figure 27, the recovery of this parameter was good. The mean estimates 

consistently underestimated the 𝜌𝑏𝛽. There are no patterns that suggest the 

manipulated factors result in differences in parameter recovery performance. 
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Figure 27. Mean of correlation of item difficulty and item intensity parameter, 𝜌𝑏𝛽, 

estimates by simulation condition.  

 

To summarize, generally, the MTJM which accounts for both LPD and LID 

recovered these parameters well. The person parameter estimates were also well 

recovered by the MJM which addresses the simulated grouping of the examinees. 

Person parameters were poorly recovered by the models that do not account for LDP 

(TJM and HM) when the effect of the person grouping was at the larger level 

(σ𝑔
2=1.0). Of the multilevel models accounting for person clustering, MTJM and 

MJM, the IRT group ability variance, σ𝜃𝑔
2 , was recovered less well by the model 

which ignores the testlet effect, MJM, compared to the MTJM when the testlet 

variance was at the larger level (σ𝛾
2=1.0). The IRT group speed variance, σ𝜏𝑔

2 , was 

well recovered by both of these models. Overall, the models that incorporated a testlet 

parameter (MTJM and TJM) performed well recovering the testlet variances, σ𝛾
2. For 

the item difficulty variance, σ𝑏
2 , parameter recovery was mixed. The performance was 

poorest for the models that ignore item clustering (TJM and HM) when such effect 
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was larger (σ𝛾
2=1.0). All models performed well in the recovery of the item intensity 

variance, σ𝛽
2 ,  and the true item correlation parameter values, 𝜌𝑏𝛽.  

4.2 Model Fit 

The relative model fit indices deviance and DIC was applied to model 

selection. Table 18 presents the frequency of selection of the true model as the best 

fitting model based on the deviance and DIC. Deviance may be viewed as a 

component of DIC. The deviance is an estimation of the -2log likelihood of the data 

given the parameters. DIC includes a penalty for parsimony based on the effective 

number of parameters.  

For all conditions, deviance identified the data generating model as the best 

fitting model for the majority of the time. In 14 out of 16 conditions, the deviance 

selected the MTJM as the best fitting model 100% of the time. The DIC did not 

identify the data generating model as the best fitting model as successfully as the 

deviance. The MJM was selected by DIC as the best fitting model with the highest 

frequency. For 9 out of 16 conditions, DIC selected the MJM most frequently, 

including all conditions where the testlet variance, σ𝛾
2, was of the smaller level. When 

the σ𝛾
2 was at the larger level, the DIC selected the data generating MTJM in 75% of 

the conditions. In the remaining 25% of these larger σ𝛾
2 conditions, the TJM was 

selected by DIC as the best fitting model. When the TJM was selected by DIC, the 

group variance, σ𝑔
2, was at the smaller level. In summary, deviance 87.5% of the time 

selected the data-generating model as the best fitting model. The results for DIC were 

more mixed. In more than half of the conditions, DIC identified the MJM as the best-

fitting model for the majority of simulated data runs within a condition. 
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Table 18 

 

Frequency of Identifying Each Model as the Best-Fitting Model in the Simulation 

Study 

I σ𝛾
2 σ𝑔

2 𝜌𝜃𝜏 
 Deviance   DIC  

 MTJM TJM MJM HM  MTJM TJM MJM HM 

24 .25 .25 .3  10 0 0 0  0 0 10 0 

   .7  10 0 0 0  0 0 10 0 

  1.0 .3  10 0 0 0  0 0 10 0 

   .7  10 0 0 0  0 0 10 0 

 1.0 .25 .3  10 0 0 0  4 5 0 1 

   .7  10 0 0 0  8 2 0 0 

  1.0 .3  10 0 0 0  7 0 3 0 

   .7  10 0 0 0  9 0 1 0 

48 .25 .25 .3  10 0 0 0  0 0 9 1 

   .7  10 0 0 0  0 0 7 3 

  1.0 .3  10 0 0 0  0 0 10 0 

   .7  8 2 0 0  0 0 10 0 

 1.0 .25 .3  10 0 0 0  0 0 9 1 

   .7  10 0 0 0  4 6 0 0 

  1.0 .3  9 1 0 0  7 0 3 0 

   .7  10 0 0 0  8 0 2 0 
Note. The largest numbers of replications among the three model under each condition are bolded. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel Joint 

Model, HM= Hierarchical Model. 
 

 

 

4.3 Empirical Study 

 The proposed model was applied for the estimation of model parameters on an 

empirical dataset. The dataset was excerpted from the PISA 2015 (OECD, 2017) 

mathematics assessment. For data cleaning the procedure was followed as described 

in Section 3.4. The dataset consists of 1,478 participants and 17 items, 8 of which 

were bundled as testlets of 2 items apiece. The items were scored dichotomously. In 

addition to the proposed MTJM, the three alternative models (MJM, TJM, and HM) 

were also used for parameter estimation. The model fit index DIC, which was 

described previously, was applied for the evaluation of the best fitting model to the 
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data. The convergence criteria that were used in the simulation study were applied in 

this empirical data study. In the Bayesian MCMC estimation, the 𝑅̂ criterion for all 

parameter estimates less than 1.2 was achieved; the result was obtained that all 

parameter estimates had 𝑅̂ values less than 1.05. Inspection of diagnostic plots 

supported the decision that convergence was met.  

The results of the item fit index selection mirrored those of the simulation 

study. That is, the deviance value favored the MTJM, but when adjusted with a 

complexity penalty in favor of parsimony, DIC selection resulted in a model that did 

not address both anticipated sources of local dependence. Table 19 provides the 

values obtained from the DIC evaluation. DIC did not choose a more complex model, 

thus ignoring or minimizing the known structural dependencies of person clustering 

and testlet-designed items present in the assessment implementation. 

 

Table 19 

 

Model Fit Indices for PISA Mathematics Dataset 

Model Deviance  DIC 

MTJM 84447.30  94481.08 

TJM 84595.12  94023.53 

MJM 85528.25  88529.37 

HM 85616.01  88473.75 
Note. DIC=deviance information criterion. The lowest Deviance and DIC values among the 

competing models are bolded. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, 

MJM= Multilevel Joint Model, HM= Hierarchical Model. 

 

 

 The parameter estimates of the MTJM and the three alternative models (TJM, 

MJM, and HM) are summarized in Table 20. The empirical dataset shows the 

presence of the clustering effects for both items (the testlet variance, σ𝛾
2) and persons 

(the group variance, σ𝑔
2). Specifically, the testlet variance for the four testlets in the 
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mathematics subtest had means ranging from 0.265 to 1.344, in the MTJM, these 

values represent small to large testlet effects. In the TJM, these four testlets had 

means that ranged from 0.436 to 1.296. When comparing individual testlets across 

models with testlets, the mean magnitudes were similar. For the group clustering 

effects the proposed model estimated a negligible effect for the speed parameter, σ𝜏𝑔
2 , 

and small to medium effect for the ability parameter (σ𝜃𝑔
2 =0.376). The group 

clustering effects estimated using the MJM, yielded magnitudes much like the 

MTJM, negligible for the speed parameter, σ𝜏𝑔
2 , and small to medium effect for the 

ability parameter (σ𝜃𝑔
2 =0.351). The mean and standard deviation values for the 

individual ability, θj(g), individual speed, τj(g),  item difficulty, bi,  and time intensity, 

βi, differed by no more than 0.09 when the proposed model was compared to the 

alternative models. Appendix C provides the descriptive statistics for the person and 

item parameter estimates for the proposed and the alternative competing models. 

Overall, the parameter estimation was appeared similar for the four models. The 

negligible effect of the group speed parameter, σ𝜏𝑔
2 ,  coupled with the small to 

medium effect of the ability parameter σ𝜃𝑔
2  provides the reasonable explanation of 

why neither of the multilevel models in this study were selected as best-fitting by the 

relative fit indices. That is, although there is complex sampling in the administration 

of the assessment, the data do not exhibit person clustering effects in both the 

response and RT models. In addition, the speed parameter variance was near zero, so 

the benefit in estimation to come from joint modeling of response and RT may have 

been muted. 
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Table 20 

 

Parameter Estimates for the Data-Fitting Models 

Parameters 
MTJM TJM MJM HM 

Mean SD Mean SD Mean SD Mean SD 

θj(g) 0.002 0.802 0.002 0.889 0.000 0.800 0.000 0.887 

τj(g) 0.000 0.100 0.000 0.126 0.000 0.100 0.000 0.126 

bi -0.058 0.832 -0.077 0.812 -0.055 0.811 -0.068 0.794 

βi 4.184 0.397 4.178 0.398 4.183 0.397 4.179 0.398 

σ𝜏
2 0.026 0.003 0.039 0.004 0.026 0.003 0.039 0.004 

𝜎𝜃𝜏 -0.092 0.009 -0.046 0.009 -0.093 0.009 -0.047 0.009 

σ𝜏𝑔
2  0.067 0.016 - - 0.067 0.015 - - 

σ𝜃𝑔
2  0.376 0.091 - - 0.351 0.087 - - 

𝜌𝜃𝜏 -0.575 NA -0.234 NA -0.575 NA -0.237 NA 

σ𝛾1
2  0.441 0.137 0.436 0.147 - - - - 

σ𝛾2
2  0.265 0.081 0.253 0.083 - - - - 

σ𝛾3
2  1.344 0.283 1.296 0.279 - -- - -- 

σ𝛾4
2  0.555 0.158 0.441 0.129 - - - - 

σ𝑏
2  0.808 0.312 0.771 0.306 0.772 0.304 0.736 0.288 

𝜎𝑏𝛽 0.254 0.137 0.245 0.139 0.251 0.135 0.242 0.131 

σ𝛽
2  0.236 0.092 0.235 0.095 0.236 0.091 0.234 0.092 

𝜌𝑏𝛽 0.581 NA 0.575 NA 0.589 NA 0.583 NA 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel Joint 

Model, HM= Hierarchical Model. Correlation parameters are derived from the respective 

variance-covariance matrices. NA= not available. Testlets are identified in the subscript of the 

testlet variances. Parameters that are not present in a model are represented with “-“. 
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Chapter 5: Discussion 

The joint modeling of response and response time using IRT and RT has 

received increasing attention as the computational capabilities and access to process 

data expands (e.g.,  Im, 2015; Liao, 2018; Man et al., 2019). The present study 

investigates local dependence due to item clustering and person clustering in the joint 

modeling of responses and response time. The proposed multilevel testlet joint model 

(MTJM) simultaneously addressed both types of local dependence. The performance 

of the proposed model was evaluated in an experiment that manipulated variables 

frequently employed in this line of research and compared the proposed model to 

models that addressed neither or only one type of local dependence. The chapter is 

organized as follows: findings from the simulation and empirical study are 

summarized first, and then limitations and future directions are elaborated. 

5.1 Summary of the Study Results 

In this section, findings from the simulation study regarding the impact of the 

manipulated factors in terms of the recovery of model parameters as well as model 

selection in the simulation and empirical analyses were discussed. Generally, 

parameter recovery was good for the joint response and RT models accounting for 

dual local dependence for the individual person and item parameters as measured in 

terms of bias and RMSE; the recovery of the variance and correlation parameters was 

not performed as successfully by all models. The mixed-effect ANOVAs were 

conducted for the estimated parameters of person ability, person speed, item 

difficulty, and item time intensity. Only the effects which are statistically significant 

and practically significant effects with at least small effect sizes were reported and 
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discussed. The discussions related to interaction effects were up to three-way for 

easiness of interpretation. Further, the high-level interactions of the studied factors 

were also visually represented and discussed. The parameters that were not evaluated 

in ANOVAs were summarized by comparing the estimate to the known true value per 

condition. The findings are summarized in responding to each of the research 

questions proposed for this dissertation research below.  

How do the manipulated factors affect the proposed model parameter estimates?  

The results from the ANOVAs of the parameters estimated for the proposed 

MTJM indicate that outcome measures, i.e., the measurement errors of the model 

parameter estimates, were impacted by at least one of the manipulated factors, namely 

the number of items (test length), the testlet effects, the person clustering effects, and 

the correlation of ability and speed. For the test length variable there were two levels, 

a shorter test with 24 items and a longer test with 48 items. The testlet effect factor 

was operationalized in this study by manipulating two levels of testlet variance 

(𝜎𝛾
2=0.25 and 𝜎𝛾

2=1.0). The group variances for the two levels were 𝜎𝑔
2=0.25 and 𝜎𝑔

2 

=1.0. The correlation between person ability and speed (𝜌𝜃𝜏) was manipulated to 

provide another factor in the investigation. The two levels of this factor were 𝜌𝜃𝜏=.3 

and 𝜌𝜃𝜏=.7.  

Test length had a small effect (F=6008.03, p<0.001, partial 𝜂2=.029) on the 

RMSE of the ability parameter, 𝜃𝑗 , as did testlet variance (F= 2496.93, p<0.001, 

partial 𝜂2=.012). Further, test length also had a small effect (F= 8678.32, p<0.001, 

partial 𝜂2=.042) on the RMSE of the speed parameter, 𝜏𝑗.  
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The estimation errors for item parameters were analyzed separately by test 

length (I=24, I=48). For the shorter test, the testlet variance factor has a significant 

small effect on the bias of item difficulty, 𝑏𝑖 (F= 25.33, p<0.001, partial 𝜂2=.013). 

The group variance factor had medium effects on the bias (F= 162.20, p<0.001, 

partial 𝜂2=.078) and on the RMSE (F= 166.22, p<0.001, partial 𝜂2=.080) of item 

difficulty. The univariate ANOVA of the results from the longer tests indicate a 

significant small two-way interaction among group variance and the correlation 

between theta and tau (F= 71.11, p<0.001, partial 𝜂2=.018) on the RMSE of the item 

difficulty, 𝑏𝑖. The theta-tau correlation also had a small effect (F= 37.08, p<0.001, 

partial 𝜂2=.010) on the RMSE of item difficulty, 𝑏𝑖. For the longer test, no study 

factors produced any statistically significant effects on the bias for 𝑏. 

For the shorter test, the testlet variance affected the bias of time intensity, 𝛽𝑖 

with a small effect (F= 26.00, p<0.001, partial 𝜂2=.013). The correlation between 

theta and tau had a small effect (F= 25.75, p<0.001, partial 𝜂2=.013) on the bias of 

time intensity, 𝛽𝑖. Further, group variance had a small effect (F= 97.43, p<0.001, 

partial 𝜂2=.048) on RMSE.  

For the longer tests, most factors had significant interactions effects on the 

item time intensity parameter,𝛽𝑖. The two-way interaction between the testlet 

variance and the correlation between theta and tau had medium effect (F= 386.34, 

p<0.001, partial 𝜂2=.092) on the bias of 𝛽𝑖. So did the group variance with a small 

effect (F= 65.83, p<0.001, partial 𝜂2=.017). In addition, group variance had a small 

effect on the RMSE of  𝛽𝑖 (F= 132.05, p<0.001, partial 𝜂2=.033). There was a 

significant two-way interaction between group variance and theta-tau correlation on 
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RMSE of 𝛽𝑖 with small effect size (F= 46.72, p<0.001, partial 𝜂2=.012). The factor 

testlet variance had a small effect (F= 47.05, p<0.001, partial 𝜂2=.012) on the RMSE 

of 𝛽𝑖. The summary tables for all the significant univariate ANOVAs are provided in 

Appendix D. 

How do violations of local person independence and local item independence affect 

parameter recovery when fitting the data with standard joint models of response 

and RT? 

 The simulation study included the proposed model which accounts for local 

item and local person dependency (MTJM) and three models which do not include a 

parameter to account for the local person dependency, the local person dependency, 

or both of these dependencies (the TJM, MJM, and HM, respectively). The violations 

of local independence assumptions were found to affect the person parameters, item 

parameters, and the variance and correlation parameters. The results of the mixed-

effect ANOVAs and descriptive analyses provide the answers to this research 

question. 

For the person ability parameter,  two significant interactions: model and test 

length, and model and group variance were found on the RMSE. Test length had a 

smaller effect. The mean RMSE were smaller for the models that incorporate a group 

parameter to address the LPD.  

For the RT speed parameter, the interaction between the model and group 

variance had a significant effect on RMSE. As was observed for the ability parameter 

recovery, the models that account for LPD performed better in the speed parameter 

recovery.  
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 For the item difficulty parameters, the interactions between models and group 

variances and the interaction between models and testlet variances had significant 

effects. Specifically, in the short test length conditions, the interaction between 

models and group variances had significant effects on both bias and RMSE. For this 

RMSE, the interaction of model and testlet was also significant. For the longer test 

lengths, the three-way interactions among the group variance, testlet variance, and the 

correlation of the ability and speed had an impact on the RMSE.        

 The bias of the item time intensity in the short test conditions were affected by 

the model and group variance interaction while the RMSE were affected by the three-

way interaction among the model, testlet variance, and group variance. On the other 

hand, the two-way interactions between group and testlet variance factors had an 

effect on the bias and the RMSE. 

 It was found that the group variance and the correlation parameters for the 

person related model parameters were better recovered by the models that incorporate 

the group parameter (MTJM and MJM). The group variance for the person ability 

parameters estimated by the MJM was adversely affected by ignoring the LID. For 

the item difficulty parameter variance, the models that did not incorporate the testlet 

parameter performed more poorly in estimating the true testlet variances.  

 These results indicate that that ignoring LID, LPD or both have negative 

impact on the recovery of true model parameters. Overall, the proposed model 

performed better in terms of parameter recovery than the models that did not 

incorporate a parameter for local dependence when local dependence was present. 
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How does model selection perform for the proposed model compared to alternative 

competing models when LID and/or LPD is ignored in simulated and empirical 

data analysis?  

A Bayesian model fit index was used to model selection. The deviance and 

deviance information criterion (DIC) was calculated for each model. The DIC 

selected the multilevel joint model (MJM) more frequently than the other models 

including the proposed multilevel testlet joint model (MTJM). The deviance, without 

the penalty imposed in the DIC, was best performing in terms of identifying the true 

model for data generation. The better performance for model selection by deviance 

was also reported in Liao (2018). In this study, deviance selected the proposed model 

as the best fitting model in 98% of the replications.  

 An empirical dataset from the PISA 2015 mathematics was analyzed to 

provide a comparison of model selection for the proposed model and three alternative 

competing models. The competing models were the same as those in the simulation 

study. For this dataset, the MTJM was again not selected by DIC as the best-fitting 

model. Instead the HM, which does not include parameters to accommodate LID and 

LPD, was selected by DIC as the best fitting model. Like in the simulation study, the 

deviance selected the proposed model as the best-fitting model. The parameters 

estimated by the proposed model for the testlets and for the group variances were 

very similar to those estimated by the models that included a parameter for these 

effect (the TJM and MJM, respectively). This indicates that there is presence of LID 

and of marginal LPD in the empirical dataset, although the DIC fit index did not 

identify the proposed model as the best fitting model.  

5.2 Limitations and Future Directions 
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 This study proposed a joint response and RT model that addresses complex 

local dependence issues often present in assessment contexts. As such, different study 

conditions were simulated to explore model performance under different assessment 

contexts that are consistent with prior research and is appropriately scoped for this 

current independent investigation. The following presents the limitations of this 

study. Five areas were identified for future exploration. 

Model Extensions 

 The present study proposed one type of measurement model of RA and one 

type of RT to develop the joint model. The models used for comparison were 

parameterized to provide a means of evaluation of similar models that differed only 

with respect to ignoring the LID, LPD, or both. There are several alternatives for 

modeling that could be used such as the IRT model for polytomous items in a testlet 

(e.g., Huang & Wang, 2014; Jiao & Zhang, 2015), RT where the speed is not fixed 

(e.g., Bolsinova et al., 2017, Fox & Marianti, 2016; Meng, Tao, & Chang, 2015), RT 

that includes a testlet (e.g., Im, 2015), and joint models of response and RT that 

includes covariates (e.g., Klein Entink, Fox, and van der Linden, 2009). Future study 

may explore possible overfitting of the data further through simulation where 

multiple generating models are used. 

RT Model Extensions 

 Assumptions of how the data are modeled were considered in the design of 

this study. For the RT model the lognormal distribution was used for data generation 

and data modeling. This is based on the relative simplicity of applying this 

distribution and its wide application (e.g., van der Linden, 2006, 2007). Other 
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possible distributions may be explored instead such as the Box-Cox normal model 

(e.g., Klein Entink, van der Linden, and Fox, 2009), or the Semiparametric Cox 

proportional hazards (PH) model (e.g., Ranger & Ortner, 2012; Wang, Fan, Chang, & 

Douglas, 2013).  

Prior Distributions 

For the simulation study, the means of the item parameters were fixed. These 

values were based on the study by Liao (2018). An analysis of a sample run of the 

estimation for each of the four models found no consequential differences in item 

parameter estimates compared to when the means had normal hyperprior 

distributions. Klein Entink, Fox, and van der Linden (2009) performed an analysis of  

simulated datasets that investigated the sensitivity of different priors for the person 

correlation parameter. Similar sensitivity analyses on the effect of varying priors and 

hyperpriors in joint response and RT modeling would be of benefit to the research 

community. 

The RT model had a fixed item discrimination parameter to provide an 

analogous model to the IRT Rasch model for RA. An explicit time discrimination 

parameter was specified in the joint multilevel model of Klein Entink, Fox, and van 

der Linden (2009). Some other newly proposed joint models have also included this 

parameter (e.g., Liao, 2018, Man et al., 2019). Future study extending the proposed 

model may include varying the discrimination parameter in the RT model.  

Model Fit 

 A relative model fit index, DIC, was used in this study for model comparison 

in both simulation and empirical data analyses. Recent joint response and RT models 
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(e.g., Im, 2015; Man et al., 2019) applied only the DIC as a relative model fit index. 

Other relative model fit indices are available to the practitioner for model comparison 

such as Akaike’s information criterion (AIC; Akaike, 1987), AIC adjusting for small 

sample sizes (AICc; Sugiura, 1978), and Bayesian information criterion (BIC; 

Schwarz, 1978). In addition to relative model fit indices, other methods of fit analysis 

such as the posterior predictive model check (PPMC, Guttman, 1967; Rubin, 1981, 

1984) could be used in future research on other extended joint response and RT 

modeling.   

Other Factors to Consider 

 In multilevel studies, having a larger number of groups is usually favored over 

more participants within a group (e.g., Gelman & Hill, 2007; Raudenbush & Bryk, 

2002). However, future studies extending this current joint multilevel response and 

RT modeling may investigate the impact of the cluster number as well as the cluster 

sizes. In addition, the number of testlets and the number of items per testlet can be 

other manipulated factors for future exploration.  

 To sum up, this study proposed a joint response and RT model that account 

for local item dependence and local person dependence in analyzing response and RT 

data. The model parameter s could be well recovered based on the Bayesian approach 

explored in this research study. Further, the comparison of the proposed model and 

three competing models that ignore one or both types of local dependence found in 

complex sampling of persons and items bundled in testlets revealed the impact of 

ignoring local dependence on the ability, person speed parameters, item difficulty and 

item time intensity parameters.  
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The collection of process and product data in the computer-based assessment 

is expanding dramatically. Test stakeholders are gaining easier access to a wealth of 

data in this information age. As the modeling of data from multiple sources may also 

increase in terms of access and complexity, this study intends to contribute in this 

area.  
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Appendix A 
 

Table A. 1 

 

Bias and RMSE of the Estimates of the Person Ability Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
Bias of 𝜃𝑗   RMSE of 𝜃𝑗  

MTJM TJM MJM HM  MTJM TJM MJM HM 

24 .25 .25 .3 - -.003 - -  .392 .487 .394 .496 

.7 - -.001 - -.002  .360 .455 .363 .471 

1.0 .3 .001 -.001 .001 -  .398 .666 .399 .685 

.7 .001 - .002 -  .367 .676 .370 .702 

1.0 .25 .3 - - - .001  .476 .537 .486 .565 

.7 .001 - - .001  .423 .476 .451 .524 

1.0 .3 .002 - .002 .004  .485 .686 .496 .750 

.7 .002 .002 .001 .002  .430 .657 .458 .737 

48 .25 .25 .3 - .001 .001 -.002  .298 .443 .299 .445 

.7 .001 .001 .002 -  .283 .431 .285 .437 

1.0 .3 -.001 - .001 -.001  .302 .713 .303 .715 

.7 .001 -.003 .003 -.002  .288 .713 .293 .718 

1.0 .25 .3 - - .001 -.002  .296 .428 .297 .429 

.7 - -.003 .001 -.003  .351 .446 .364 .468 

1.0 .3 - .001 .002 .002  .384 .719 .388 .730 

.7 - -.002 .001 .001  .347 .692 .365 .712 
Note. Bias values that approach 0 (i.e., -.001<Bias<.001) are represented with “-”. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel Joint Model, HM= Hierarchical Model. 
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Table A. 2 

 

Bias and RMSE of the Estimates of the Person Speed Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
Bias of 𝜏𝑗  RMSE of 𝜏𝑗 

MTJM TJM MJM HM  MTJM TJM MJM HM 

24 .25 .25 .3 .001 -.001 - -.003  .171 .404 .171 .405 

.7 - -.002 - -.001  .171 .405 .171 .405 

1.0 .3 - -.001 - .003  .173 .765 .173 .765 

.7 .001 .001 .001 -.004  .169 .761 .169 .761 

1.0 .25 .3 -.001 -.001 -.001 -.005  .173 .427 .173 .427 

.7 .001 -.001 - -.001  .172 .391 .171 .391 

1.0 .3 - -.007 -.001 .002  .172 .806 .171 .806 

.7 .001 .002 - -.002  .174 .814 .174 .814 

48 .25 .25 .3 .001 - -.001 -.002  .127 .386 .134 .386 

.7 .001 .003 .001 -  .128 .390 .132 .390 

1.0 .3 - .001 -.001 -.007  .116 .816 .130 .816 

.7 .002 -.001 .003 .004  .117 .853 .128 .853 

1.0 .25 .3 .001 - .001 .004  .125 .389 .133 .389 

.7 .001 -.006 .001 -.004  .126 .377 .132 .377 

1.0 .3 - -.002 .001 -.001  .117 .791 .136 .791 

.7 -.005 -.008 -.004 -.006  .122 .761 .142 .761 
Note. Bias values that approach 0 (i.e., -.001<Bias<.001) are represented with “-”. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel Joint Model, HM= Hierarchical Model. 

 

 

 

 

 



 

 

109 

 

Table A. 3 

 

Bias and RMSE of the Estimates of the Item Difficulty Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
Bias of 𝑏𝑖  RMSE of 𝑏𝑖 

MTJM TJM MJM HM  MTJM TJM MJM HM 

24 .25 .25 .3 .033 .032 .033 .033  .077 .079 .079 .083 

.7 .018 .023 .021 .021  .070 .072 .071 .076 

1.0 .3 -.005 -.010 -.008 -.009  .133 .164 .129 .165 

.7 -.055 -.080 -.051 -.075  .103 .133 .098 .141 

1.0 .25 .3 .017 .017 .013 .017  .068 .068 .107 .114 

.7 .001 .001 .001 .002  .069 .073 .116 .122 

1.0 .3 -.078 -.113 -.067 -.097  .110 .155 .134 .180 

.7 -.052 -.079 -.056 -.071  .107 .132 .131 .170 

48 .25 .25 .3 .006 .004 .004 .001  .064 .068 .072 .078 

.7 .001 - .003 -.001  .077 .085 .079 .090 

1.0 .3 .011 .019 .020 .017  .093 .145 .095 .148 

.7 .008 .016 .008 .017  .069 .095 .072 .097 

1.0 .25 .3 .017 .020 .016 .017  .079 .082 .080 .089 

.7 .025 .023 .018 .021  .075 .082 .128 .136 

1.0 .3 -.017 -.017 -.013 -.013  .101 .155 .134 .174 

.7 - -.007 -.001 -.002  .070 .095 .122 .147 
Note. Bias values that approach 0 (i.e., -.001<Bias<.001) are represented with “-”. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel Joint Model, HM= Hierarchical Model. 
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Table A. 4 

 

Bias and RMSE of the Estimates of the Item Time Intensity Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
Bias of 𝛽𝑖  RMSE of 𝛽𝑖 

MTJM TJM MJM HM  MTJM TJM MJM HM 

24 .25 .25 .3 -.013 -.015 -.014 -.017  .049 .061 .053 .058 

.7 .018 .015 .012 .016  .052 .059 .053 .059 

1.0 .3 .003 -.003 -.016 .001  .070 .089 .063 .088 

.7 -.009 -.012 -.020 -.017  .072 .088 .066 .092 

1.0 .25 .3 .005 .009 .003 .004  .053 .059 .057 .059 

.7 .025 .022 .022 .022  .049 .049 .047 .046 

1.0 .3 .004 .013 -.001 .022  .057 .089 .057 .088 

.7 .034 .032 .015 .029  .083 .118 .082 .119 

48 .25 .25 .3 .022 .022 .020 .021  .061 .070 .062 .074 

.7 .002 .002 -.003 -.001  .047 .057 .046 .055 

1.0 .3 .014 .027 .005 .019  .068 .107 .054 .115 

.7 -.051 -.088 -.049 -.083  .081 .151 .087 .153 

1.0 .25 .3 -.023 -.037 -.029 -.032  .054 .071 .059 .068 

.7 .023 .014 .025 .015  .042 .055 .044 .049 

1.0 .3 -.031 -.021 -.005 -.020  .060 .101 .066 .098 

.7 .017 .017 .018 .020  .061 .102 .062 .106 

Note. Bias values that approach 0 (i.e., -.001<Bias<.001) are represented with “-”. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel Joint Model, HM= Hierarchical Model. 
 

 

 

 

 



 

 

111 

 

Appendix B 
 

Table B. 1 

 

MTJM and TJM Estimates of Variance of the Individual-Specific Speed Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝜏𝑗𝑔

2   TJM σ𝜏𝑗𝑔
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.992 1.017 1.003 0.007  1.148 1.290 1.194 0.043 

.7 0.981 1.020 1.002 0.013  1.110 1.213 1.167 0.036 

1.0 .3 0.998 1.042 1.015 0.013  1.577 2.064 1.873 0.158 

.7 0.979 1.035 1.005 0.015  1.572 2.000 1.826 0.156 

1.0 .25 .3 0.979 1.021 1.005 0.012  1.158 1.302 1.222 0.053 

.7 0.992 1.024 1.015 0.009  1.091 1.234 1.175 0.040 

1.0 .3 0.991 1.042 1.015 0.015  1.707 2.299 2.000 0.191 

.7 0.970 1.043 1.015 0.024  1.623 2.340 1.937 0.241 

48 .25 .25 .3 0.988 1.013 1.000 0.007  1.116 1.238 1.183 0.047 

.7 0.990 1.015 0.999 0.008  1.088 1.201 1.153 0.037 

1.0 .3 0.991 1.010 1.001 0.006  1.740 2.158 1.976 0.152 

.7 0.977 1.024 0.994 0.015  1.589 2.375 2.000 0.258 

1.0 .25 .3 0.985 1.015 1.003 0.009  1.117 1.263 1.182 0.044 

.7 0.981 1.017 0.999 0.015  1.064 1.224 1.146 0.053 

1.0 .3 0.997 1.023 1.010 0.008  1.539 2.168 1.908 0.188 

.7 0.980 1.020 1.000 0.017  1.574 2.090 1.769 0.174 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 2 

 

MJM and HM Estimates of Variance of the Individual-Specific Speed Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MJM σ𝜏𝑗𝑔

2   HM σ𝜏𝑗𝑔
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.991 1.017 1.003 0.007  1.145 1.290 1.194 0.043 

.7 0.979 1.015 1.000 0.012  1.109 1.211 1.166 0.036 

1.0 .3 0.998 1.043 1.014 0.013  1.577 2.065 1.872 0.158 

.7 0.977 1.031 1.002 0.015  1.573 1.998 1.825 0.154 

1.0 .25 .3 0.978 1.022 1.005 0.012  1.158 1.302 1.221 0.054 

.7 0.988 1.017 1.008 0.009  1.084 1.230 1.170 0.040 

1.0 .3 0.989 1.041 1.013 0.015  1.709 2.300 2.000 0.191 

.7 0.961 1.035 1.007 0.024  1.619 2.337 1.934 0.241 

48 .25 .25 .3 1.000 1.028 1.007 0.009  1.117 1.241 1.185 0.047 

.7 1.008 1.031 1.017 0.007  1.096 1.214 1.164 0.038 

1.0 .3 0.992 1.055 1.016 0.019  1.741 2.160 1.976 0.151 

.7 0.992 1.053 1.016 0.017  1.592 2.378 2.004 0.258 

1.0 .25 .3 0.997 1.020 1.010 0.008  1.119 1.264 1.184 0.044 

.7 1.035 1.068 1.049 0.014  1.092 1.261 1.179 0.053 

1.0 .3 1.005 1.160 1.042 0.045  1.542 2.170 1.912 0.189 

.7 1.025 1.136 1.063 0.033  1.588 2.105 1.783 0.173 
Note. MJM= Multilevel Joint Model, HM= Hierarchical Model. 
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Table B. 3 

 

MTJM and TJM Derived Estimates of Correlation of the Individual-Specific Ability and Speed Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM 𝜌𝜃𝜏  TJM 𝜌𝜃𝜏 

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.286 0.323 0.296 0.012  0.193 0.270 0.238 0.026 

.7 0.692 0.724 0.703 0.010  0.533 0.614 0.577 0.025 

1.0 .3 0.283 0.322 0.298 0.013  -0.062 0.238 0.119 0.086 

.7 0.684 0.716 0.699 0.010  0.209 0.397 0.290 0.068 

1.0 .25 .3 0.265 0.335 0.303 0.025  0.138 0.272 0.232 0.037 

.7 0.659 0.734 0.706 0.022  0.517 0.642 0.582 0.041 

1.0 .3 0.278 0.374 0.303 0.031  0.026 0.290 0.112 0.078 

.7 0.685 0.740 0.711 0.018  0.211 0.426 0.300 0.070 

48 .25 .25 .3 0.274 0.322 0.295 0.018  0.194 0.258 0.222 0.022 

.7 0.683 0.713 0.701 0.010  0.472 0.579 0.534 0.034 

1.0 .3 0.284 0.327 0.298 0.012  0.023 0.230 0.091 0.057 

.7 0.683 0.713 0.700 0.010  0.139 0.379 0.257 0.076 

1.0 .25 .3 0.281 0.317 0.301 0.010  0.202 0.289 0.241 0.033 

.7 0.679 0.731 0.702 0.018  0.468 0.613 0.541 0.041 

1.0 .3 0.271 0.339 0.306 0.018  0.028 0.224 0.124 0.069 

.7 0.686 0.722 0.700 0.011  0.229 0.346 0.306 0.040 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 4 

 

MJM and HM Derived Estimates of Correlation of the Individual-Specific Ability and Speed Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MJM 𝜌𝜃𝜏  HM 𝜌𝜃𝜏 

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.275 0.312 0.285 0.012  0.184 0.261 0.229 0.025 

.7 0.663 0.692 0.674 0.010  0.509 0.589 0.553 0.024 

1.0 .3 0.270 0.308 0.286 0.013  -0.059 0.228 0.115 0.082 

.7 0.654 0.687 0.670 0.011  0.199 0.383 0.278 0.066 

1.0 .25 .3 0.234 0.289 0.264 0.020  0.122 0.234 0.201 0.031 

.7 0.575 0.643 0.614 0.019  0.451 0.553 0.505 0.034 

1.0 .3 0.242 0.325 0.262 0.028  0.020 0.252 0.096 0.068 

.7 0.593 0.644 0.615 0.016  0.179 0.363 0.256 0.061 

48 .25 .25 .3 0.274 0.320 0.294 0.017  0.192 0.256 0.221 0.022 

.7 0.676 0.705 0.693 0.010  0.468 0.575 0.530 0.034 

1.0 .3 0.282 0.325 0.297 0.012  0.023 0.229 0.090 0.057 

.7 0.675 0.708 0.692 0.010  0.138 0.377 0.256 0.075 

1.0 .25 .3 0.279 0.316 0.300 0.010  0.200 0.288 0.240 0.033 

.7 0.653 0.698 0.673 0.016  0.453 0.589 0.523 0.038 

1.0 .3 0.260 0.328 0.298 0.019  0.030 0.219 0.121 0.068 

.7 0.658 0.696 0.672 0.012  0.224 0.338 0.298 0.038 
Note. MJM= Multilevel Joint Model, HM= Hierarchical Model. 
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Table B. 5 

 

MTJM and MJM Estimates of Variance of the Group-Specific Ability Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝜃𝑔

2   MJM σ𝜃𝑔
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.196 0.345 0.265 0.045  0.185 0.323 0.251 0.042 

.7 0.210 0.324 0.262 0.045  0.199 0.310 0.247 0.043 

1.0 .3 0.569 1.145 0.917 0.168  0.528 1.080 0.858 0.158 

.7 0.713 1.458 1.045 0.243  0.672 1.367 0.980 0.223 

1.0 .25 .3 0.207 0.310 0.263 0.035  0.174 0.259 0.219 0.028 

.7 0.192 0.268 0.227 0.024  0.167 0.223 0.191 0.019 

1.0 .3 0.853 1.305 1.065 0.171  0.687 1.034 0.854 0.134 

.7 0.758 1.767 1.082 0.287  0.600 1.394 0.857 0.225 

48 .25 .25 .3 0.189 0.339 0.258 0.054  0.180 0.312 0.240 0.048 

.7 0.206 0.407 0.271 0.061  0.197 0.381 0.254 0.057 

1.0 .3 0.596 1.391 1.005 0.202  0.551 1.296 0.929 0.188 

.7 0.567 1.473 1.010 0.245  0.520 1.373 0.943 0.230 

1.0 .25 .3 0.196 0.314 0.230 0.039  0.180 0.300 0.216 0.038 

.7 0.174 0.350 0.258 0.056  0.151 0.301 0.211 0.046 

1.0 .3 0.765 1.290 1.031 0.197  0.596 0.995 0.800 0.148 

.7 0.906 1.283 1.028 0.123  0.674 0.967 0.797 0.099 
Note. MTJM= Multilevel Testlet Joint Model, MJM= Multilevel Joint Model. 
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Table B. 6 

 

MTJM and MJM Estimates of Variance of the Group-Specific Speed Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝜏𝑔

2   MJM σ𝜏𝑔
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.209 0.343 0.250 0.042  0.205 0.342 0.250 0.042 

.7 0.180 0.293 0.251 0.037  0.180 0.293 0.252 0.038 

1.0 .3 0.624 1.118 0.919 0.163  0.636 1.127 0.924 0.159 

.7 0.664 1.096 0.929 0.161  0.668 1.101 0.930 0.163 

1.0 .25 .3 0.220 0.353 0.274 0.047  0.217 0.361 0.275 0.050 

.7 0.162 0.287 0.237 0.035  0.163 0.291 0.237 0.036 

1.0 .3 0.742 1.358 1.048 0.196  0.728 1.362 1.047 0.201 

.7 0.716 1.420 1.023 0.234  0.729 1.434 1.024 0.233 

48 .25 .25 .3 0.192 0.292 0.245 0.039  0.181 0.295 0.241 0.041 

.7 0.207 0.304 0.255 0.032  0.204 0.306 0.252 0.034 

1.0 .3 0.845 1.232 1.042 0.151  0.802 1.215 1.025 0.149 

.7 0.742 1.468 1.136 0.246  0.720 1.476 1.126 0.257 

1.0 .25 .3 0.186 0.310 0.241 0.041  0.169 0.305 0.234 0.041 

.7 0.183 0.297 0.242 0.043  0.186 0.288 0.235 0.038 

1.0 .3 0.586 1.214 0.971 0.197  0.577 1.205 0.942 0.215 

.7 0.727 1.232 0.899 0.172  0.712 1.154 0.875 0.159 
Note. MTJM= Multilevel Testlet Joint Model, MJM= Multilevel Joint Model. 
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Table B. 7 

 

MTJM and TJM Estimates of Variance of the Testlet 1 Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝛾1

2   TJM σ𝛾1
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.200 0.349 0.253 0.044  0.193 0.344 0.251 0.045 

.7 0.211 0.371 0.295 0.052  0.219 0.371 0.297 0.053 

1.0 .3 0.204 0.342 0.285 0.050  0.236 0.403 0.303 0.056 

.7 0.258 0.399 0.311 0.044  0.259 0.463 0.319 0.058 

1.0 .25 .3 0.798 1.153 0.952 0.115  0.790 1.208 0.964 0.123 

.7 0.860 1.143 0.997 0.099  0.838 1.154 0.994 0.110 

1.0 .3 0.870 1.146 0.981 0.093  0.928 1.323 1.086 0.122 

.7 0.891 1.185 1.049 0.083  0.922 1.399 1.138 0.139 

48 .25 .25 .3 0.202 0.312 0.278 0.033  0.200 0.314 0.275 0.033 

.7 0.229 0.343 0.281 0.034  0.221 0.322 0.272 0.031 

1.0 .3 0.202 0.373 0.272 0.046  0.197 0.340 0.258 0.046 

.7 0.198 0.325 0.272 0.037  0.183 0.329 0.255 0.038 

1.0 .25 .3 0.807 1.147 0.976 0.108  0.801 1.141 0.969 0.108 

.7 0.853 1.178 0.991 0.101  0.835 1.185 0.979 0.110 

1.0 .3 0.899 1.123 1.014 0.086  0.869 1.098 0.985 0.076 

.7 0.879 1.120 0.982 0.066  0.849 1.102 0.944 0.077 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 8 

 

MTJM and TJM Estimates of Variance of the Testlet 2 Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝛾2

2   TJM σ𝛾2
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.185 0.315 0.247 0.036  0.195 0.300 0.252 0.034 

.7 0.203 0.340 0.299 0.048  0.224 0.365 0.298 0.046 

1.0 .3 0.230 0.382 0.289 0.047  0.249 0.351 0.291 0.036 

.7 0.193 0.353 0.251 0.058  0.183 0.400 0.269 0.057 

1.0 .25 .3 0.919 1.140 1.049 0.076  0.920 1.168 1.058 0.079 

.7 0.851 1.302 1.073 0.135  0.853 1.337 1.085 0.138 

1.0 .3 0.829 1.160 1.032 0.099  0.919 1.255 1.098 0.106 

.7 0.883 1.163 1.040 0.100  0.963 1.308 1.127 0.099 

48 .25 .25 .3 0.253 0.371 0.295 0.040  0.248 0.358 0.289 0.037 

.7 0.229 0.326 0.276 0.026  0.227 0.319 0.274 0.026 

1.0 .3 0.222 0.375 0.286 0.048  0.203 0.362 0.261 0.049 

.7 0.223 0.342 0.285 0.035  0.216 0.325 0.265 0.032 

1.0 .25 .3 0.808 1.146 0.970 0.110  0.809 1.144 0.967 0.111 

.7 0.883 1.181 1.059 0.102  0.917 1.195 1.057 0.100 

1.0 .3 0.880 1.181 0.993 0.099  0.841 1.119 0.965 0.085 

.7 0.726 1.132 0.954 0.111  0.739 1.043 0.917 0.085 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 9 

 

MTJM and TJM Estimates of Variance of the Testlet 3 Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝛾3

2   TJM σ𝛾3
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.208 0.347 0.280 0.040  0.201 0.347 0.282 0.042 

.7 0.204 0.297 0.264 0.027  0.199 0.300 0.267 0.032 

1.0 .3 0.203 0.310 0.256 0.037  0.203 0.336 0.265 0.045 

.7 0.226 0.311 0.278 0.031  0.214 0.343 0.295 0.042 

1.0 .25 .3 0.833 1.110 0.994 0.100  0.854 1.159 1.006 0.103 

.7 0.823 1.108 0.952 0.085  0.840 1.132 0.967 0.081 

1.0 .3 0.880 1.103 1.004 0.078  0.988 1.147 1.060 0.055 

.7 0.919 1.218 1.033 0.085  0.941 1.316 1.101 0.108 

48 .25 .25 .3 0.188 0.345 0.270 0.064  0.182 0.338 0.262 0.061 

.7 0.211 0.342 0.270 0.040  0.200 0.327 0.269 0.040 

1.0 .3 0.212 0.408 0.286 0.071  0.188 0.396 0.272 0.073 

.7 0.194 0.315 0.245 0.040  0.181 0.313 0.235 0.038 

1.0 .25 .3 0.813 1.130 0.967 0.103  0.807 1.123 0.961 0.104 

.7 0.846 1.185 0.995 0.102  0.834 1.157 0.975 0.092 

1.0 .3 0.867 1.344 1.057 0.137  0.810 1.348 1.021 0.148 

.7 0.812 1.164 1.001 0.103  0.778 1.133 0.988 0.111 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 10 

 

MTJM and TJM Estimates of Variance of the Testlet 4 Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝛾4

2   TJM σ𝛾4
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .25 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .3 - - - -  - - - - 

.7 - - - -  - - - - 

48 .25 .25 .3 0.206 0.341 0.269 0.049  0.204 0.341 0.266 0.048 

.7 0.234 0.384 0.295 0.052  0.232 0.378 0.287 0.049 

1.0 .3 0.232 0.339 0.280 0.035  0.207 0.331 0.263 0.040 

.7 0.219 0.325 0.282 0.032  0.197 0.302 0.260 0.031 

1.0 .25 .3 0.828 1.178 0.978 0.116  0.834 1.179 0.975 0.116 

.7 0.821 1.108 0.977 0.074  0.813 1.109 0.981 0.078 

1.0 .3 0.768 1.148 0.986 0.104  0.745 1.146 0.962 0.105 

.7 0.874 1.124 1.028 0.080  0.827 1.083 0.981 0.097 
Note. Testlets not present for the shorter test length condition are represented with “-”. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 11 

 

MTJM and TJM Estimates of Variance of the Testlet 5 Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝛾5

2   TJM σ𝛾5
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .25 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .3 - - - -  - - - - 

.7 - - - -  - - - - 

48 .25 .25 .3 0.221 0.343 0.281 0.037  0.212 0.348 0.277 0.038 

.7 0.204 0.345 0.274 0.044  0.206 0.342 0.268 0.048 

1.0 .3 0.239 0.388 0.298 0.046  0.221 0.364 0.278 0.048 

.7 0.235 0.319 0.279 0.029  0.227 0.298 0.264 0.025 

1.0 .25 .3 0.836 1.135 0.987 0.104  0.834 1.132 0.981 0.101 

.7 0.806 1.192 0.981 0.103  0.769 1.143 0.965 0.104 

1.0 .3 0.710 1.191 0.990 0.151  0.725 1.147 0.955 0.133 

.7 0.817 1.132 1.000 0.113  0.799 1.203 0.981 0.128 
Note. Testlets not present for the shorter test length condition are represented with “-”. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 12 

 

MTJM and TJM Estimates of Variance of the Testlet 6 Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝛾6

2   TJM σ𝛾6
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .25 .3 - - - -  - - - - 

.7 - - - -  - - - - 

1.0 .3 - - - -  - - - - 

.7 - - - -  - - - - 

48 .25 .25 .3 0.205 0.315 0.280 0.033  0.199 0.309 0.275 0.032 

.7 0.226 0.310 0.278 0.027  0.214 0.312 0.272 0.028 

1.0 .3 0.213 0.309 0.254 0.034  0.198 0.303 0.237 0.034 

.7 0.226 0.377 0.291 0.050  0.192 0.368 0.266 0.055 

1.0 .25 .3 0.823 1.130 0.981 0.106  0.820 1.133 0.979 0.105 

.7 0.839 1.223 1.006 0.109  0.818 1.178 1.001 0.099 

1.0 .3 0.868 1.111 0.990 0.090  0.778 1.058 0.950 0.095 

.7 0.929 1.156 1.065 0.076  0.888 1.167 1.038 0.082 
Note. Testlets not present for the shorter test length condition are represented with “-”. 

MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 13 

 

MTJM and TJM Estimates of Variance of the Item Difficulty Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝑏

2   TJM σ𝑏
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 1.017 1.122 1.077 0.035  0.998 1.098 1.051 0.032 

.7 1.038 1.106 1.070 0.022  1.012 1.082 1.044 0.025 

1.0 .3 1.008 1.169 1.086 0.043  0.927 1.076 1.005 0.040 

.7 1.031 1.170 1.081 0.038  0.938 1.137 0.988 0.061 

1.0 .25 .3 1.015 1.099 1.057 0.027  1.000 1.082 1.039 0.027 

.7 1.025 1.079 1.053 0.019  1.014 1.060 1.036 0.017 

1.0 .3 0.968 1.192 1.075 0.070  0.879 1.152 1.008 0.087 

.7 0.985 1.178 1.086 0.051  0.910 1.106 1.015 0.057 

48 .25 .25 .3 0.968 1.057 1.026 0.031  0.959 1.047 1.008 0.029 

.7 0.976 1.074 1.033 0.031  0.959 1.047 1.014 0.028 

1.0 .3 0.987 1.086 1.051 0.028  0.950 1.058 0.998 0.035 

.7 1.017 1.114 1.062 0.032  0.955 1.054 0.993 0.031 

1.0 .25 .3 0.991 1.071 1.036 0.024  0.971 1.052 1.022 0.024 

.7 0.986 1.057 1.014 0.024  0.966 1.040 1.000 0.023 

1.0 .3 0.999 1.118 1.060 0.039  0.926 1.078 1.007 0.048 

.7 1.000 1.067 1.035 0.024  0.928 1.007 0.972 0.029 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 14 

 

MTJM and TJM Estimates of Variance of the Item Difficulty Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MJM σ𝑏

2   HM σ𝑏
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.956 1.055 1.007 0.034  0.934 1.034 0.980 0.030 

.7 0.967 1.025 0.997 0.018  0.948 1.000 0.972 0.016 

1.0 .3 0.936 1.100 1.015 0.042  0.859 0.997 0.935 0.037 

.7 0.977 1.075 1.009 0.028  0.878 1.028 0.917 0.048 

1.0 .25 .3 0.802 0.881 0.841 0.025  0.790 0.861 0.822 0.022 

.7 0.806 0.871 0.836 0.020  0.796 0.848 0.820 0.019 

1.0 .3 0.774 0.928 0.854 0.047  0.689 0.896 0.787 0.063 

.7 0.781 0.932 0.855 0.040  0.710 0.874 0.787 0.048 

48 .25 .25 .3 0.900 0.975 0.944 0.026  0.881 0.959 0.928 0.026 

.7 0.903 0.976 0.949 0.024  0.895 0.962 0.935 0.022 

1.0 .3 0.916 1.008 0.968 0.026  0.879 0.973 0.923 0.033 

.7 0.937 1.030 0.979 0.028  0.892 0.968 0.920 0.024 

1.0 .25 .3 0.906 0.987 0.954 0.024  0.892 0.970 0.940 0.024 

.7 0.745 0.803 0.773 0.019  0.739 0.790 0.761 0.018 

1.0 .3 0.775 0.846 0.813 0.025  0.725 0.820 0.778 0.033 

.7 0.772 0.807 0.791 0.012  0.725 0.771 0.751 0.018 
Note. MJM= Multilevel Joint Model , TJM= Testlet Joint Model. 
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Table B. 15 

 

MTJM and TJM Estimates of Variance of the Item Intensity Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM σ𝛽

2   TJM σ𝛽
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 1.039 1.081 1.055 0.015  1.034 1.078 1.054 0.014 

.7 1.032 1.077 1.054 0.015  1.032 1.078 1.053 0.016 

1.0 .3 1.055 1.086 1.070 0.010  1.045 1.086 1.062 0.012 

.7 1.032 1.088 1.059 0.015  1.025 1.086 1.054 0.017 

1.0 .25 .3 1.035 1.083 1.055 0.015  1.035 1.076 1.052 0.015 

.7 1.034 1.077 1.056 0.012  1.032 1.066 1.052 0.010 

1.0 .3 1.035 1.077 1.055 0.013  1.037 1.071 1.049 0.010 

.7 1.053 1.093 1.065 0.011  1.044 1.101 1.065 0.015 

48 .25 .25 .3 1.018 1.049 1.029 0.008  1.018 1.051 1.028 0.010 

.7 1.010 1.048 1.030 0.011  1.002 1.039 1.028 0.012 

1.0 .3 1.017 1.064 1.036 0.013  1.021 1.080 1.039 0.019 

.7 1.031 1.072 1.040 0.012  1.023 1.206 1.061 0.054 

1.0 .25 .3 1.010 1.049 1.029 0.013  1.014 1.050 1.028 0.013 

.7 1.011 1.044 1.029 0.010  1.009 1.050 1.028 0.011 

1.0 .3 1.019 1.054 1.039 0.011  1.010 1.093 1.043 0.028 

.7 1.014 1.048 1.035 0.011  1.015 1.060 1.038 0.016 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 16 

 

MJM and HM Estimates of Variance of the Item Intensity Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MJM σ𝛽

2   HM σ𝛽
2  

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 1.035 1.076 1.056 0.015  1.034 1.072 1.052 0.014 

.7 1.028 1.076 1.055 0.017  1.029 1.077 1.053 0.016 

1.0 .3 1.049 1.093 1.071 0.013  1.043 1.090 1.062 0.015 

.7 1.031 1.088 1.059 0.016  1.020 1.091 1.053 0.021 

1.0 .25 .3 1.041 1.072 1.055 0.012  1.034 1.075 1.052 0.014 

.7 1.042 1.077 1.057 0.009  1.032 1.068 1.052 0.010 

1.0 .3 1.042 1.072 1.055 0.010  1.037 1.064 1.048 0.010 

.7 1.043 1.087 1.064 0.013  1.040 1.103 1.063 0.017 

48 .25 .25 .3 1.017 1.055 1.030 0.010  1.016 1.054 1.028 0.011 

.7 1.011 1.040 1.029 0.009  1.005 1.039 1.027 0.010 

1.0 .3 1.023 1.049 1.034 0.009  1.014 1.085 1.039 0.021 

.7 1.031 1.115 1.047 0.024  1.019 1.195 1.061 0.051 

1.0 .25 .3 1.017 1.043 1.029 0.011  1.013 1.052 1.029 0.013 

.7 1.013 1.050 1.030 0.011  1.009 1.050 1.026 0.012 

1.0 .3 1.018 1.058 1.039 0.011  1.010 1.094 1.044 0.026 

.7 1.016 1.048 1.035 0.010  1.010 1.062 1.037 0.015 
Note. MJM= Multilevel Joint Model, HM= Hierarchical Model. 
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Table B. 17 

 

MTJM and TJM Derived Estimates of Correlation of the Item Difficulty and Item Intensity Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MTJM 𝜌𝑏𝛽  TJM 𝜌𝑏𝛽 

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.262 0.308 0.287 0.012  0.264 0.310 0.287 0.012 

.7 0.236 0.315 0.281 0.023  0.240 0.313 0.282 0.021 

1.0 .3 0.264 0.297 0.280 0.010  0.255 0.304 0.278 0.016 

.7 0.277 0.312 0.290 0.012  0.266 0.309 0.289 0.015 

1.0 .25 .3 0.271 0.312 0.290 0.013  0.274 0.312 0.292 0.013 

.7 0.257 0.305 0.286 0.014  0.256 0.309 0.286 0.016 

1.0 .3 0.263 0.310 0.288 0.016  0.244 0.328 0.283 0.025 

.7 0.243 0.302 0.282 0.018  0.201 0.310 0.281 0.032 

48 .25 .25 .3 0.275 0.310 0.293 0.011  0.275 0.311 0.293 0.012 

.7 0.274 0.313 0.291 0.012  0.270 0.314 0.290 0.012 

1.0 .3 0.276 0.320 0.292 0.012  0.264 0.341 0.294 0.022 

.7 0.273 0.309 0.291 0.012  0.218 0.304 0.280 0.025 

1.0 .25 .3 0.269 0.308 0.288 0.012  0.270 0.307 0.288 0.012 

.7 0.268 0.314 0.290 0.014  0.270 0.308 0.291 0.014 

1.0 .3 0.269 0.321 0.296 0.015  0.244 0.346 0.296 0.027 

.7 0.278 0.307 0.291 0.011  0.255 0.308 0.286 0.016 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model. 
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Table B. 18 

 

MJM and HM Derived Estimates of Correlation of the Item Difficulty and Item Intensity Parameter 

I 𝜎𝛾
2 𝜎𝑔

2 𝜌𝜃𝜏 
MJM 𝜌𝑏𝛽  HM 𝜌𝑏𝛽 

Min. Max. Mean SD  Min. Max. Mean SD 

24 .25 .25 .3 0.268 0.306 0.287 0.009  0.263 0.307 0.286 0.011 

.7 0.242 0.309 0.281 0.020  0.241 0.318 0.281 0.021 

1.0 .3 0.260 0.292 0.279 0.009  0.257 0.311 0.279 0.017 

.7 0.273 0.313 0.291 0.014  0.266 0.307 0.288 0.015 

1.0 .25 .3 0.273 0.306 0.289 0.012  0.274 0.307 0.289 0.011 

.7 0.259 0.307 0.284 0.015  0.254 0.306 0.284 0.016 

1.0 .3 0.264 0.311 0.287 0.016  0.247 0.319 0.278 0.023 

.7 0.248 0.296 0.281 0.017  0.201 0.305 0.277 0.030 

48 .25 .25 .3 0.273 0.312 0.292 0.012  0.273 0.309 0.292 0.012 

.7 0.277 0.314 0.291 0.012  0.275 0.313 0.291 0.011 

1.0 .3 0.278 0.312 0.292 0.009  0.256 0.344 0.293 0.024 

.7 0.266 0.310 0.290 0.013  0.223 0.304 0.279 0.023 

1.0 .25 .3 0.266 0.302 0.287 0.011  0.267 0.308 0.288 0.013 

.7 0.268 0.311 0.290 0.014  0.268 0.308 0.290 0.013 

1.0 .3 0.277 0.317 0.295 0.012  0.246 0.342 0.294 0.025 

.7 0.275 0.307 0.288 0.011  0.258 0.309 0.284 0.016 
Note. MJM= Multilevel Joint Model, HM= Hierarchical Model. 
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Appendix C 
 

Table C. 1 

 

Descriptive Statistics for Parameter Estimates by Model 

Parameter Model Min. Max. Mean SD 

𝜃𝑖 MTJM -2.365 2.212 0.002 0.802 

TJM -2.162 2.230 0.002 0.889 

MJM -2.352 2.201 0.000 0.800 

HM -2.159 2.233 0.000 0.887 

𝜏𝑖 MTJM -0.242 0.480 0.000 0.100 

TJM -0.285 0.703 0.000 0.126 

MJM -0.242 0.481 0.000 0.100 

HM -0.299 0.698 0.000 0.126 

𝑏 MTJM -1.498 1.336 -0.058 0.832 

TJM -1.482 1.286 -0.077 0.812 

MJM -1.496 1.314 -0.055 0.811 

HM -1.476 1.277 -0.068 0.794 

𝛽𝑖 MTJM 3.424 5.042 4.184 0.397 

TJM 3.416 5.038 4.178 0.398 

MJM 3.422 5.042 4.183 0.397 

HM 3.418 5.038 4.179 0.398 
Note. MTJM= Multilevel Testlet Joint Model, TJM= Testlet Joint Model, MJM= Multilevel Joint 

Model, HM= Hierarchical Model. 
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Appendix D 
 

Table D. 1 

 

The Univariate ANOVA Results of the RMSE of the Person Ability Estimates 

Source 
RMSE of 𝜃𝑗  

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

test_length 6008.03 <0.001 .029 

testlet_var 2496.93 <0.001 .012 

Note. test_length=Number of test items (I); testlet_var=Testlet variance magnitude (σ𝛾
2). 

 

 

Table D. 2 

 

The Univariate ANOVA Results of the RMSE of the Person Speed Estimates 

Source 
RMSE of 𝜏𝑗 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

test_length 8678.32 <0.001 .042 

Note. test_length=Number of test items (I). 

 

 

Table D. 3 

 

The Univariate ANOVA Results of the Bias of the Item Difficulty Estimates (I=24) 

Source 
Bias of 𝑏𝑖 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

testlet_var 25.33 <0.001 .013 

group_var 162.20 <0.001 .078 

Note. group_var=Group variance magnitude (σ𝑔
2); testlet_var=Testlet variance magnitude (σ𝛾

2). 
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Table D. 4 

 

The Univariate ANOVA Results of the RMSE of the Item Difficulty Estimates (I=24) 

Source 
Bias of 𝑏𝑖 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

group_var 166.22 <0.001 .080 

Note. group_var=Group variance magnitude (σ𝑔
2). 

 

 

Table D. 5 

 

The Univariate ANOVA Results of the RMSE of the Item Difficulty Estimates (I=48) 

Source 
RMSE of 𝑏𝑖 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

theta_tau_corr 37.08 <0.001 .010 

group_var*theta_tau_corr 71.11 <0.001 .018 

Note. group_var=Group variance magnitude (σ𝑔
2); theta_tau_corr=Correlation between person ability 

and speed (𝜌𝜃𝜏). 

 

 

Table D. 6 

 

The Univariate ANOVA Results of the Bias of the Item Time Intensity Estimates (I=24) 

Source 
Bias of 𝛽𝑖 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

testlet_var 26.00 <0.001 .013 

theta_tau_corr 25.75 <0.001 .013 

Note. testlet_var=Testlet variance magnitude (σ𝛾
2); theta_tau_corr=Correlation between person ability 

and speed (𝜌𝜃𝜏). 
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Table D. 7 

 

The Univariate ANOVA Results of the RMSE of the Item Time Intensity Estimates (I=24) 

Source 
RMSE of 𝛽𝑖 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

group_var 97.43 <0.001 .048 

Note. group_var=Group variance magnitude (σ𝑔
2). 

 

 

Table D. 8 

 

The Univariate ANOVA Results of the Bias of the Item Time Intensity Estimates (I=48) 

Source 
Bias of 𝛽𝑖 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

group_var 65.83 <0.001 .017 

testlet_var*theta_tau_corr 386.34 <0.001 .092 

Note. group_var=Group variance magnitude (σ𝑔
2); testlet_var=Testlet variance magnitude (σ𝛾

2); 

theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏). 

 

 

Table D. 9 

 

The Univariate ANOVA Results of the RMSE of the Item Time Intensity Estimates (I=48) 

Source 
RMSE of 𝛽𝑖 

F Statistics p-value Partial 𝜂2 

Between-Subject Effects    

testlet_var 47.05 <0.001 .012 

group_var 132.05 <0.001 .033 

group_var*theta_tau_corr 46.72 <0.001 .012 

Note. group_var=Group variance magnitude (σ𝑔
2); testlet_var=Testlet variance magnitude (σ𝛾

2); 

theta_tau_corr=Correlation between person ability and speed (𝜌𝜃𝜏). 
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