MOCHA: A Sdf-Extensible Database Middleware System for
Distributed Data Sources

Manuel Rodriguez-Martinez' Nick Roussopoulos
manuel @s. und. edu ni ck@s. und. edu

Institute for Advanced Computer Studies & Department of Computer Science
University of Maryland, College Park, MD 20742

To appear in the Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, Dallas, TX, May 2000

Abstract

This paper describes MOCHA, a new sdlf-extensible database middleware system designed to inter-
connect data sources distributed over a computer network. MOCHA is designed to scale to large envi-
ronments and is based on the idea that some of the user-defined functionality in the system should be
deployed by the middlewareitself. Thisisrealized by shipping Java code implementing either advanced
data types or tailored query operators to remote data sources and have it executed remotely. Optimized
guery plans push the evaluation of powerful data-reducing operatorsto the data source sites while exe-
cuting data-inflating operators near the client’s site. The Volume Reduction Factor is a new and more
explicit metric introduced in this paper to select the best site to execute query operators and is shown to
be more accurate than the standard sel ectivity factor alone. MOCHA has been implemented in Java and
runs on top of Informix and Oracle. We present the architecture of MOCHA, the ideas behind it, and a
performance study using data and queries from the Sequoia 2000 Benchmark. The results of this study
demonstratethat MOCHA not only providesaflexibleand scalable framework for distributed query pro-
cessing but also substantially improves query performance in contrast to existing middleware solutions.

1 Introduction

The purpose of database middleware! systemsis to integrate collections of data sources distributed over a
computer network. Typically, these systemsfollow an architecture centered around adataintegration server,
which provides client applicationswith a uniform view and a uniform access mechanism to the data avail-
able in each source. Such an uniform view of the data is realized by imposing a global data model on top
of the local data model used by each source. This global model can either be relational, object-oriented or
object-relational, depending on the needs of the targeted applications and the capabilities of the integration
server. There are two main choices for deploying an integration server: a commercial database server or a
mediator system. In thefirst approach, a commercial database server is configured to access aremote data
source through a database gateway, which provides an access method mechanism to the remote data. In the

tContact author. Phone: (301)-405-2714, Fax: (301)-405-6707
YIn this paper we will use the terms database middleware system and middleware interchangeably.

second approach, a mediator server specially designed and tailored for distributed data processing is used
as the integration server. The mediator server utilizes the functionality of wrappers to gain access to the
information stored in each data site. A wrapper extracts the information from a data source and translates
it into the global data model specified by the mediator. In both of these existing middleware solutions, the
user-defined, application-specificdatatypes and query operators defined under the global datamodel are con-
tained in libraries which must be linked to the clients, integration servers, gateways or wrappers deployedin
the system. Usually, the integration server is run close to the client application, on what is called the inte-
grationsite. Thewrapper or gateway can berun either ontheintegration site (either asafunctioncall or asa
separate process), or on the sitewhere the data source resides. There are numerous examples of systemsthat
follow thisarchitecture, some of which are Oracle8i [Ora99], Informix Universa Server [Inf97], TSIMMIS
[CGMH*94], DISCO [TRV96] and Garlic [RS97].

Most of the research on database middleware systems carried out during the past years has focused on
the problems of tranglation and semantic integration of the distinct data collections. In this paper, however,
we deal with two important problems of database middleware which have received little attention from the
research community: 1) the deployment of the application-specific functionality?, and 2) the efficient pro-
cessing of queries with user-defined operators. These are critical problems since they affect the scalahility,
ease-of-use, efficiency and evolution of the system. Nevertheless, we are not aware of any work that has
effectively addressed the first issue, and the second oneisjust beginning to receive more attention from the
community [RS97, HKWY 97, GMSvE98, MS99].

In order to effectively address these two important issues we have designed and implemented MOCHA
(Middleware Based On a Code SHipping Architecture) [RMR98a, RMR98b], anovel database middleware
system designed to interconnect hundreds of data sources. MOCHA is built around the notion that the mid-
dleware for alarge-scale distributed environment should be self-extensible. A self-extensible middleware
system isonein which new application-specific functionality needed for query processingis deployed to re-
mote sitesin automatic fashion by the middieware system itself. In MOCHA, thisisrealized by shipping
Javacode containing new capabilitiesto the remote sites, whereit can be used to manipulatethe data of inter-
est. A mgor goal behind thisideaof automatic code deployment isto fill-in the need for application-specific
processing componentsat remote sitesthat do not provide them. These componentsare migrated on demand
by MOCHA from site to site and become available for immediate use. Thisapproach sharply contrastswith
existing middleware sol utions, in which administrators need to manually install al the required functionality
throughout the entire system.

MOCHA capitalizes on its ability to automatically deploy code in order to provide an efficient query
processing service. By shipping code for query operators, MOCHA can generate efficient plans that place
the execution of powerful data-reducing operators ("filters’) onthedata sources. Examplesof such operators
are aggregates, predicates and datamining operators, which return amuch smaller abstraction of the origina
data. Ontheother hand, data-inflatingoperatorsthat produce resultslarger that their argumentsare evaluated
near theclient. Sincein many cases, the code been shipped ismuch more smaller than the data sets, automatic
code deployment facilitates query optimization based on datamovement reduction. Noticethat sincenetwork

2These are complex data types and query operators not generally provided by general purpose commercial systems, but rather
custom-built for a particular application by third-party developers.

bandwidth typically isthe major performance bottleneck in distributed processing, our approach can reduce
guery execution time by minimizing the overal time spent on data transfer operations. Again, thisisvery
different from the existing middleware sol utions, which perform expensive data movement operations since
either all data processing occurs at theintegration server, or adata source evaluates only those operatorsthat
existapriori initsenvironment [RS97].

In this paper we describe a prototypeimplementation of MOCHA which has been operational at the Uni-
versity of Maryland since the Spring of 1998%. MOCHA is currently been considered as a middleware so-
lution for the NASA Earth Science Information Partnership (ESIP) facility at the University of Maryland.
MOCHA iswritten in Java and supports major database servers, such as Oracle and Informix, file servers
and even XML repositories. We argue that MOCHA provides a more flexible, scalable and efficient frame-
work to deploy new application-specific functionality than those used in existing middleware solutions. Our
experiments show that when compared with the processing schemes used in previous solutions, the query
processing framework proposed in MOCHA can substantially improve query performance by afactor of 4-1
in the case of aggregates, 3-1 in the case of projections and predicates, and closeto 3-1 in the case of dis-
tributed joins. These experimentswere carried out on the MOCHA prototypeusing realistic dataand queries
from the Sequoia 2000 Benchmark [St093].

The remainder of this paper is organized as follows. Section 2 further describes the shortcomingsin
existing middleware solutions and motivates the need for MOCHA.. Section 3 presents the architecture of
MOCHA and our solutionsto the problems presented in section 2. Section 4 describes the query processing
framework used in MOCHA.. Section 5 contains a performance study of the MOCHA prototype. Finaly, our
conclusionsfor this paper are presented in section 6.

2 Motivation for MOCHA

Given the continuous growth of the Internet and the ever increasing number of corporate Intranets and Ex-
tranets, database middleware will be required to interconnect hundreds or more of data sites deployed over
these type of networks. The data sets stored by many of these siteswill be based on complex data types such
as images, audio, text, geometric objects and even programs. And since the World Wide Web has become
the defacto user-interface for networked applications, end-userswill demand amiddleware solution that eas-
ily integrates Web-based clients to visuaize these data sets. Given this scenario, we argue that middleware
solutions for these kind of environments will be successful only if they can provide: @) scalable, efficient
and cost-effective mechanisms to deploy and maintain the application-specific functionality throughout the
entire system, and b) adequate query processing capahilitiesto efficiently execute the queries posed by the
users. We argue that the existing middleware solutionsfall short from providing adequate support for these
two requirements, and we now proceed to justify this argument.

2.1 Deployment of Functionality

In order to depl oy new application-specificfunctionality into asystem based on mediators, or database servers
(using either gateways or aclient/server scheme), the data structures, procedures, and configuration files that

3The actual implementation started in the Summer of 1997.

contain the implementation of the new types and query operators are collected into libraries which must be
installed at each site where a participating integration server, gateway, wrapper or client application resides.
Thisisthe scheme followed by Oracle 8i [Ora99], Informix [Inf97], Predator [SLR97], Jaguar [GM SvE98]
TSIMMIS[CGMHT94], DISCO[TRV96] and Garlic[RS97]. Wearguethat asthe number of sitesinthesys-
tem increases, such an approach becomes impractical because of the complexity and cost involved in main-
tai ning the software throughout the entire system.

Toillustratethis point, consider an Earth Science applicationthat manipul ates datastored and maintained
in sites distributed across the United States. Suppose thereis one data site per state, which holds data scien-
tists gathered from specific regions within that state. As part of its globa schema, the system contains the
following relation:

Rasters(time : Integer,band: Integer, location : Rectangle, image : Raster);

TableRasters storesraster images containing weekly energy readings gathered from satellites orbiting the
Earth. Attribute time isthe week number for the reading, band is the energy band measured, location is
the rectangle covering the region under study and image isthe raster image itself.

To implement the schema for relation Rasters in existing middleware solutions, it would be necessary
to install the libraries containing the code, mostly C/C++ code, for the Rectangle and Raster datatypes
on each sitewhere aclient, integration server, wrapper or gateway interested in usingtableRasters resides.
Thistranslatesinto at least fifty installationsfor the wrappers and gateways, plus as many more as are nec-
essary for the integration servers and clients. The administrators of the system will have to access all these
sitesand manually perform theseinstallations. Moreover, it is often the case that the functionality hasto be
ported to different hardware and operating system platforms. As a result, developers must invest extra ef-
fort in making the functionality work consistently across platforms. Furthermore, scientists are frequently
experimenting with new or improved methods to compute properties about the data, such as averages on the
amount of infrared energy absorbed by the Earth’s surface. Therefore, many users will not be satisfied with
what has been already deployed, and will require for existing operators to be upgraded or replaced by new
ones. Thus, it becomes necessary to have a scalable and efficient mechanism to keep track and maintain the
deployed code base in the system. Clearly, the logisticsin such a large-scale system are formidable for an
approach based on manual installationsand upgrades of application-specific functionality to be feasible.

2.2 Efficient Query Processing

In the context of large-scale distributed environments, it is unrealistic to assume that every site has the same
guery execution capabilities. As aresult, the existing middleware solutions follow a query processing ap-
proach in which most operatorsin aquery are completely evaluated by the integration server [Ora99, Inf97,
CGMHT94, TRV96]. Thetasksfor the wrappers and gateways include the extraction of the dataitems from
the sources and their trangdlation into the middleware schemafor further processing at theintegration site. In
many situations, this scheme can lead to worst-case scenarios in which a query plan dictates the transfer of
very large amounts of data (megabytes or more!) over the communications network, making data transmis-
sion a severe performance bottleneck.

We illustrate this point with the Earth Science application introduced in section 2.1. Let the datasitein

4

the State of Maryland contain 200 entriesin table Rasters. For thistable, attributes t ime and band are 4-
byteintegers, attribute location isa16-byterecord and attribute image isa 1IMB bytearray. A user in the
State of Virginia poses the following query for the datasite at Maryland:

SELECT time,location,AvgEnergy(image)
FROM Rasters
WHERE AvgEnergy(image) < 100

This query will retrieve the time, location and average energy reading for al entries whose average energy
reading isless than the constant 100. Function AvgEnergy() returns a 8-byte double precision floating point
number, so the size of the recordsin theresult isjust 28 bytes. Under the approach of query processing at the
integration server, thisquery isevaluated by shippingtheattributestime, location and image, containedin
every tupleintableRasters fromthedatasitein Maryland to theintegration sitein Virginia. Then, function
AvgEnergy() isevaluated, the qualification clausein the query is tested and the projections are performed.
Thisapproach for query processing is called data shipping [FIK96], since the datais moved from the source
to the site where the query was posed. Now, consider the cost of the operation just described. The systemis
moving roughly 200MB worth of data over awide area network, an operation that will take minutes or even
hours to complete since the bandwidth available to an application in most wide area linksis very limited,
often under IMbps*. On the other hand, if the query is processed at the data source then data movement is
negligible. In aworst-case scenario in which al thetuplesintable Rasters satisfy the qualification clause,
200tuples x 28 bytesisapproximately SKB! Inthisalternativeapproach, called query shipping[FIK96] , the
guery isexecuted at the data source and only thefina result is sent to the query site. However, thisapproach
isfeasible only if the necessary operators and query processing capabilities are available at the data source.

The work in [FJK96] advocates for a hybrid approach in which both data and query shipping are com-
bined, in order to utilize the best alternative for the situation at hand. Unfortunately, query shippingisvery
difficult to realize in alarge scal e environment when user-defined types and operators are present in a query
since these might not be available everywhere. Notice that although many systemsindeed provide the capa-
bilitiesto manually add the code for user-defined types and operatorsinto the wrappers [CGMH*94], gate-
ways [Inf97], or remote data servers [SLR97, GMSVE98, MS99], this approach simply cannot scale for the
reasons already discussedin section 2.1. Other systems, in particular Garlic[RS97], attempt to push the eval-
uation of aquery operator to adatasite, but only if the operator existsa priori at the datasite. Otherwise, the
Garlic approach isnot viable and processing must be done at theintegration site. In our example, it would be
necessary for function AvgEnergy() to be already implemented in the DBMS running at the data source be-
forethequery iseven posed. Clearly, thisisasoundtechnique, can bevery powerful and ought to be exploited
by every middleware solution, butitsmain limitationisthat it ishighly improbablethat all thefunctionsever
needed to evaluate queriesin alarge system will be present in each and every source. Theend resultisthat in
many important situationsthe system will be restricted to use an inefficient query processing strategy sim-
ply because the functionality required to use a superior strategy isnot availablewhereit isneeded. Thus, the
guery processing framework used in existing solutionsfalls short from providing an efficient and scalable
service for alarge-scal e environment in which users have diverse needs for data processing.

4Many wide area networks are built on top of Gigabit networks, such as ATM. However, this bandwidth must be shared by all
thetraffic, and as a result each connection only receives a fraction of the bandwidth that can be sustained by the network.

3 MOCHA Architecture

To overcometheshortcomingsin previousmid-
dleware solutions, we have designed the archi-
tecture of MOCHA around two key principles.
Thefirst oneisthat al the application-specific
i‘eifglewm functionality needed to processany given query
is to be delivered by MOCHA to al interested
Repository sitesin an automatic fashion. Thisisrealized

by shipping the Java classes containing the re-

DAP DAP DAP quired functionality. In thisaspect, MOCHA is
| T anetwork-centricsystem, inwhich thedatapro-

II OIL cessing capabilitiesneeded by theclient or server
Repository sitescan be dynamically obtained from the net-

work, instead of requiring amanual installation
by an administrator. Thesecond principleisthat
each query operator isto beevaluated at thesite
that resultsin minimum datamovement. Thegoal isto ship the code and the computation of operatorsaround
the systemin order to minimize the effect of the network bottleneck. We argue that thisframework provides
the foundation for a more scalabl e, robust and efficient middleware solution. Figure 1 depictsthe organiza-
tion of the major componentsin the architecture for MOCHA.. These arethe Client Application, the Query
Processing Coor dinator (QPC), the Data AccessProvider (DAP) and the Data Server. We now elaborate
on the principles and design choices for MOCHA which form the basisfor our arguments.

3.1 Client Application

Client

Client

QPC

Catalog

i

Figure 1: MOCHA Architecture

To provide support for a wide spectrum of users, MOCHA supports three kinds of client applications: 1)
applets, 2) serverlets and 3) stand-al one Java applications. We expect applets to be the most commonly de-
ployed clientsin the system, used as the GUI for the users to pose queries against the data collections and
visualize their results. Figure 2 shows a screen shot of one of our demo client applets built for the NASA
ESIP Facility at the University of Maryland. Thisapplet allows usersto extract and visualize AVHRR raster
images from land regions, and polygons covering features such as cities, lakes or states. Now, since there
might be users who prefer or require a purely HTML-based interface, or who prefer a non-Java client ap-
plication, MOCHA providesthe aternative of using a serverlet as entry point into the system. The serverlet
receivesthe query requestsand dynamically generatesHTML documentsencoding thequery resultsobtained
from MOCHA. Alternatively, all encoding can be done through XML, which can be converted into HTML
as needed to present the query results. Finally, stand-alone Javaapplicationswill likely be used by users such
as system administrators or software devel opers, who will need to carry out complex tasks such as system
configuration and tuning, data cleaning and/or backups, catalog management and distributed software de-
bugging, to name afew. MOCHA provides a set of Javalibraries containing the APIs needed by the client
to pose queries to the system and retrieve their results, send procedural commands, and request diagnostic
information or metadata about a particular resource. In addition, the APIs contain the infrastructure needed

to load the code containing the application-specific components necessary to manipulate the data produced
by the queries. All of these components are automatically delivered to the client by MOCHA at run time.

EiMocha Demo 1 O[]

Resulttype: |Composite = | Startdate: |2/1/1882 End date: |3/1/1983
Zoom in ‘ | Update | Quety |

Figure2: NASA ESIP Client

3.2 Query Processing Coordinator (QPC)

TheQuery Processing Coordinator (QPC) isthemiddle-

Client AP
tier component that control stheexecution of all thequeries
P _ ! all q SOL Parser | XML Query
and commands received fromtheclient applications. The Par ser brocedurl
roceaur
QPC can bereached through awell-known UniformRe- Optimizer I nterface

source Locator (URL). QPC provides services such as

guery parsing, query optimization, query operator schedul -
. . L . Execution Engine
ing, query executionand monitoring of theentireexecu- frmrormmemmmmeyi e

Catalog M anager

Code iSQL & XML i Procedure
tion process. QPC al so provides access to the metadata Loader : |Iterators | Executor
inthesystem and to arepository containingthe Javaclasses DAP API
with application-specific functionality needed for query
processing. During query execution, the QPC isrespon- Figure 3: Organization of the QPC

siblefor deploying all the necessary functionality to the

client application and to those remote sites from which data will be extracted. The internal components of
the QPC aredepicted in Figure 3. The Client API servesasthe entry point to accept the requestsfrom aclient
application. In MOCHA, the QPC offers three main data processing services. Thefirst one provides access
to distributed data sites which are modeled as object-relational sources. These sources can be full-fledged
database servers, image servers, flat file repositories or any other kind of data source which can be modeled
in arelational fashion. QPC provides the infrastructure to perform operations such as distributed joins and
transactions over these sources. The requests for these kind of services are encoded as SQL queries, which
arefirst preprocessed by the SQL parser in the QPC. The second data processing service provided by QPC

allows usersto directly query the content of XML repositories. XML israpidly becoming a very important
technology and wefelt that MOCHA should support native accessto XML repositorieswithout the burden of
first mapping them to another datamodel. We are currently devel oping the infrastructurethat will enablethe
QPC to parse XSL queries over the XML repositories. Finally, since many sources, such as Web servers or
file systems, do not provide a query language abstraction, the QPC provides a procedural interface through
which operations such as HTTP requests, ftp downloads or proprietary file system access requests can be
channeled to gain access to the datain these sources. We would liketo point out that itisentirely possibleto
add more functionality to the QPC in order to provide an object-oriented modeling abstraction on top of the
datasources. However, thegoa of our research isnot data modeling, but rather the deployment and efficient
use of the application-specific query processing componentsin middleware systems. Therefore, we choseto
leave the implementation of object-oriented capabilitiesfor future work.

One of the most important components of the QPC isits query optimizer, which generates the best strat-
egy to solvethe queries over the distributed sources. The optimizer follows a dynamic programming model
for query optimizationsimilar to thosein System-R [SACt 79] and R* [ML86]. We will defer further details
on query optimization until section 4. For now, it suffices to say that the plan generated by the optimizer ex-
plicitly indicates which are the operatorsto be eva uated by the QPC and thoseto be eval uated at the remote
data sites. In addition, the plan indicates which Java classes need to be dynamically deployed to each of the
participantsin the query execution process. All plans are encoded and exchanged as XML documents, and
the interested reader can find examples of their exact structure in [RMROO]. The QPC uses the services of
the Catalog Manager moduleto retrieve from the catal ogs all relevant metadata for query optimization and
code deployment. Section 3.5 briefly describes the organization of this catalog. The QPC also contains an
extensible query execution engine based on iterators[Gra93]. There areiteratorsto perform local selections,
local joins, remote selections, distributed joins, semi-joins, transfers of files and sorting, among others. The
execution engine a so provides a series of methods used to issue procedural commands (i.e. ftp requests) and
to deploy the application-specific code. The Code Loader module in the execution engineis used to extract
the required code from a code repository, and prepare it for deployment. All the communications with the
remote sources occur through the facilities embedded in the DAP API.

3.3 DataAccess Provider (DAP)

Theroleof aDataAccessProvider (DAP) isto providethe QPC with auniform access mechanismto aremote
datasource. Inthissense, the DAP might seem very similar to awrapper or agateway. However, the DAPhas
an extensible query execution engine, capable of 1oading and using application-specific code that is obtained
from the network with the help of the QPC. Since a DAP isrun at the data source or in close proximity to
it, MOCHA exploitsthiscapability to push down to the DAP the code and computation of certain operators
that “filter” the data been queried, and minimize the amount of data sent back to the QPC. To the best of our
knowledge, none of the existing sol utionshasimplemented thisuniqueapproach. Figure 4 showstheinternal

organization of aDAP. LikeaQPC, aDAP can bereached viaaURL. Query and procedural requestsissued
by the QPC are received through the DAP API, and routed to the control module, where they are decoded
and prepared for execution. Each request containsinformation for the execution enginein the DAP, which
includesthe kind of task to be performed (i.e. a query plan), the code that must be loaded into the run time

system and the access mechanism necessary to extract
thedata. Theexecutionenginefirst callsthecodeloader
to load the required application-specific code, whichis

DAP API

Control Module

delivered to the DAP by the QPC through amechanism Execution Engine

that will be described in section 3.6. Then, it createsit- [, Code | SOL&XML | Procedural
erators for SQL and XML query requests, or prepares Loader | Iterators | Interface
aprocedural call to execute operationssuch asreading | | preleallferesliiicsd
adatafile from afile system, requesting a Web page or WOAPI | JoBC | DOM | NI

some other type of command. Notice that the iterators
to access asourceare built ontop of Java standard pack-
ages such as JDBC, DOM (for XML repositories), Java
Native Interface (JNI) and 1/O file routines. Once the DAP has extended its query execution capabilities, it
startsto carry out its data processing tasks. The dataretrieved are first mapped into the middleware schema,
and then filtered with the operators (if any) specified by the QPC inthe query plan. The DAP then sends back
to the QPC all vauesthat it produced so they can be further processed in order to generate afina result.

Figure 4: DAP Organization

3.4 DataServer

The Data Server isthe server application that stores the data setsfor a particular datasite. Thiselement can
be a full-fledged database server, a Web server and even afile server providing access to flat files. In the
current MOCHA prototypeimplementation, we provide support for object-relational database servers such
asInformix and Oracle8i, XML repositoriesand file systems, since these are among the most commonly used
servers to store the emerging complex data sets.

3.5 Catalog Organization

Query optimization and automatic code deployment are driven by the metadata in the catalog. The catalog
containsthe definitions of views defined over the data sources, user-defined data types, user-defined opera-
tors, and other relevant information such as selectivity of various operators. The views, datatypesand oper-
ators are genericaly referred to as “resources’ and are uniquely identified by a Uniform Resource Identifier
(URI). INMOCHA, URIsare of the form: mocha://<host>/<source|repository>/<name>. Keyword
mocha identifiesthe URI asaoneused by MOCHA.. The <host > portionidentifiesthe host for adatasource
or code repository, and <source|repository> indicates the specific name of adata source (i.e. database
name) or coderepository. Finally, the <name> part givesthe particular name for theresource. For example,
the URI for function AvgEnergy() isstructured as: mocha://cs1.umd.edwEarthScience/AvgEnergy, and
this denotes that the function belongsto the EarthScience repository located in host cs1.umd.edu.
Themetadatafor each resourceis specified in adocument encoded with the Resource Description Frame-
work (RDF). RDF is an XML-based technology used to specify metadata for resources available in net-
worked environments. In MOCHA, for each resource there is a catalog entry of the form (URI, RDF File),
and thisis used by the system to understand the behavior and proper utilization of each resource. For exam-
ple, the RDF file for function AvgEnergy() indicatesthe name of the Java classimplementingit, thetype of

arguments expected and itsreturn type. Theinterested reader isreferred to [RMROO] for more detail s about
the syntax of the metadata files.

3.6 Automatic Code Deployment

In MOCHA, deploying code with application-specific components is done by shipping the compiled Java
classes contai ning the implementation of datatypesand query operators. To simplify thisdiscussion, we as-
sumethat each typeor operator isentirely defined in only one Javaclass. Ingenera, however, adatatypecan
contain several other types, and therefore, itsimplementation can span severa classes. The same argument
holdsfor query operators. In addition, we base our discussion on query requests, but all the ideas al so apply
to procedural requests aswell.
When a system administrator needs to incorporate
anew or updated data type or query operator into the
I nfor mix .
Database system, he/shefirst storesthe classfor that type or op-
erator into a well-known code repository (see Figure
5). Next, the administrator registers the new type or
operator by adding entriesinto the system catal og that
indicate the name of the type or operator, its associ-
ated URI and itsRDFfile. Other relevant information,

Code Repository

AvgEnergy
Class

DAP

AvgEnergy
Class

Computer Network such as version number, user privileges, etc., can be
added thisway. After the code hasbeen registered, the
Figure 5: Shipping code for AvgEnergy() new functionality isready for usein either compiled or

ad-hoc queriesissued by the users. Therefore, the ad-
ministrator might have to periodically inform the users about new functionality added into the system. This
can be achieved by sending an el ectronic message or updating a\Web page describing the availablenew code.
Clearly, some kind of repository management is needed.

Turning now to the automatic deployment of code, it al starts when QPC receives aquery request from
aclient. The first task for the QPC is to generate a list with the data types and operators needed to pro-
cess the query. QPC then accesses the metadata in the catal og to map each type or operator into the specific
class implementing it. Each classis then retrieved from the code repository by the QPC's code loader and
prepared for distribution. Before the actual execution of the query starts, QPC distributes the pieces of the
plan to be executed by each of the DAPs running on the targeted data sites. Afterwards, the QPC startsthe
code deployment phase, in which it ships the classes for the data types to the client and to the DAPs, and
then ships the classes for the query operators to be executed by each DAP. Figure 5 depicts how the class
AvgEnergy.class, whichimplementsfunction AvgEnergy(), would be shipped to aremote DAP. Oncethe
code deployment phaseis completed, QPC signalseach DAP to activateits piece of the query plan, and only
then, QPC and the DAPs start processing the data and generating results. As mentioned before, all results
are gathered by QPC and sent back to the client for visualization purposes.

It isimportant to emphasize that the code depl oyment phase occurs on-line and with no human involve-
ment, as an automatic process carried out completely by the QPC, using the metadata in the system catal og.
It isnot necessary torestart any element in MOCHA beforeit can start using thefunctionality received during

10

the code deployment phase. Instead, each of the QPC, DAPs and client application contains the necessary
logic to load the classes into their Java run time systems and immediately start using them. Therefore, the
capabilitiesof each elementin MOCHA can be extended at run timein adynamic fashion. To the best of our
knowledge, no other system implements this unique approach in which the middleware is self-extensible.

One very interesting issue that we are going to address in depth in the near future, is the possibility for
aDAP to cache frequently used code so it can be reused many times without the need for repeated delivery.
One simple solutionis to have the QPC and DAP exchange information about the last known modification
dates for the classes for types and operators already imported into a DAP. The DAP informs the QPC of al
instances in which dates do not match, and the QPC only deliversthe code for these cases.

3.7 Organization of Data Types

In MOCHA, the attributesin a tuple are imple-
mented as Java objects. MOCHA provides a set [Interface
of well-known Javatypeinterfaceswiththemeth- [Cles

ods needed by the QPC, DAPs and client appli- MWSmallObject

|

cations to handle the classes for data types cor- / \
rectly. Figure 6 shows the hierarchical structure A == o
of thetypesystemfor theMOCHA prototype. The Q

dark rectangles represent type interfaces and the -
white ones represent Java classes for a particu- @

lar type. At the root of the type hierarchy is the @ _

MWObject interfacewhichidentifiesaclassasone @

implementing adatatypefor useinMOCHA. This

interface specifies the methods to be used to read Figure 6: MOCHA Type System

and write each datavalueintothe network. Inaddition, it specifiesamethod used to updatethevaluein aJava
object from the value of another object of equivalent type. Therationa efor these methodswill be discussed
insections3.9.1 and 3.9.2. TheMWLargeObject and MWSmallObject interfaces extend MWObject, parti-
tioningall typesinto two groups: large objectsand small objects. Large objectsare used for large sized types
such asimages, audio or text documents. Small objects are used for smaller types such as numbers, strings,
pointsor rectangles. Additionally,interfacesfor character and numerictypesarederived fromMWwSmallObject.
Any new type added to the system must implement one of the interfaces below MW0bject.

3.8 Organization of Query Operators

MOCHA groups query operatorsinto two categories: 1) projections and predicates, and 2) aggregates. The
complex functions present in projections and predicates are implemented as static methodsin a Java class’.
Figure 7(a) shows how such functions are evaluated in the executor module contained by either QPC or a
DAP The query plan created by QPC indicates the class and the method associated with each function. The
executor module uses thisinformation to create a function eval uation object, which executesthe body of the
method and hence the query operator. The executor successively passes tuples to the function evaluation

5These are methods that can be evaluated by the Javarun time system without first creating a new object from aclass.

11

object and collects the resulting attributes for further processing or adds them into the result.

Query Executor Query Executor | Tuple |
1 ,,
Name \ Function Aggregate

Evaluation Object

Object Java Instance / internal
Class / State
File
Java Class
File v
Result Result
Attribute

Attribute

(a) Predicates & Projections (b) Aggregates
Figure 7: Operator Evaluationin MOCHA

Aggregates, on the other hand, are implemented as Java objects, as shown in Figure 7(b). MOCHA pro-
videsinterface Aggregate which specifies three methods to be implemented by any class used to create an
aggregate: Reset(), Update() and Summarize(). For each aggregate operator, the executor creates one ag-
gregate object for each of the different groups found during the aggregation process. The internal state in
an aggregate object isfirst set to an initial state by calling Reset(). Then, the executor successively calls
Update() to modify the internal state in each object using the next tuple at hand and the current internal
state. Onceall thetuplesare processed, thefinal valuefor each aggregateisextracted from theinternal state
in each object by calling Summarize().

3.9 Implementation Issues

We now discuss three important implementation issues for MOCHA, namely memory management, com-
munications over the network and security.

3.91 Memory Management

One of the mgjor selling pointsfor Javaisthe fact that most of the memory management isdone by the Java
run time system, the so caled Java Virtual Machine (JVM). Contrary to languages such as C or C++, Java
programmers do not need to worry about al theintricate detail s regarding the all ocation and deall ocation of
objects, alignment of structuresaround word boundaries, and the much dreaded pointer arithmetic. Unfortu-
nately, these advantages are often offset by programming practices in which objects are excessively created,
and then | eft to the garbage collector for clean up after just one use. We found such practicesin some JDBC
drivers and proprietary Java database access APIs, in which new objects are created to store column values
each time a tuple is read from the source. Our experience with MOCHA proved that this paradigm is ex-
tremely inefficient for most database applications. The main reason isthat object alocationinvolvescallsto
synchronized methods in the JVM, which are very expensive as they involve context switches between the
thread that all ocates memory and the user’ sthread(s). Since possibly thousandsof tuplesare read from adata

12

source during a query, the overhead of such calls has a devastating effect on performance. Moreover, asthe
number of objectsallocated increases, the garbage collector might perform more work each timeiscalled to
dispose of the unused memory. The net effect is an implementation which spends most of itstime managing
memory, instead of computing the results of the query! Therefore, in MOCHA we adopted an aggressive
policy of object preallocation and reuse. When an iterator is created by the execution engine, the constructor
for theiterator creates one structure to read the columns from the database, and one structure to storethe re-
sultsto be returned by each call of the Next() method in theiterator. Thus, our implementation only creates
objects once and continuously reuses them during the course of query processing. Thisis the rationae be-
hind the resetValue() method in theMWObject interface. This method allows the system to reuse objects
already allocated to store the values of the columnsin the tuples been manipulated by MOCHA.

3.9.2 Communications

Javaprovidesthe Remote Method Invocation (RMI) package for communications, whichissimilar to CORBA,
and its main benefits are that it takes care of all the internals of communications and provides an interface
based on method calls to remote object instances. In our initia implementation of MOCHA, we used RMI
as the communication mechanism between the DAP and the QPC. RMI certainly made our implementation
easy and elegant, but it proved too unstable and slow specially when tuples containing complex and large
types, such as images, where exchanged. On the one hand, RMI relies on stubs and skeletons (like RPC
and CORBA) to generate the remote method calls. We found the serialization protocol to be unstable, oc-
casionally sending the wrong signalsto the receivers, thus causing exceptions when the stubs attempted to
unmarshall the databeen exchanged. On the other hand, we found that at the receiver’s end, multiple objects
were alocated each time atuple was read, and as we aready discussed in section 3.9.1, such an approach is
simply too inefficient. We dealt with these problems by building our own communicationsinfrastructure on
top of the network sockets provided by Java. This certainly required more effort on our part, but we felt it
was an essential task in order to make communicationsin MOCHA stable, reliable and efficient. Asresult
of thisdecision, we needed to incorporate methods readNetwork() and writeNetwork() intheMWwObject
interfacein order to provide a generic mechanism to transmit the data values across the network. Obviously,
this puts more work on the programmer since he/she has to worry about how to “serialize” their types over
the network. Nevertheless, we believe that thistask isnot an onerous one since our interfaces simply require
afield by field write or read operation on a network stream.

3.9.3 Security

Since aclient, QPC or DAP can dynamically load and execute compiled Java code, it is necessary to have a
security mechanism to guarantee that the code does not executes dangerous operationson the host machines.
Notice that in most object-relationa engines, user-defined code is assumed to be “trusted”, and it is the re-
sponsibility of the programmer to guarantee that the code is safe. In alarge-scale environment, thisiskind
of policy is unreasonable, and therefore, MOCHA leverages on the security architecture provided by Java.
Administrators can configure the clients, QPC and DA Psto implement fine-grained security policies as sup-
ported by the SecurityManager class provided by Java. These policiesincluderestrictionson the accessto

13

local file systems, allocation of network sockets, creation of threads, and access to resources such as print-
ers. Also noticethat, sincethe DAPisrun as aprocess independent of the Data Server, acrashin aDAP will
likely go unnoticed by the Data Server. It isimportant to realize, however, that security comes at the price
of extraoverhead. Each time an operation which the administrator defines as dangerousis attempted, a call
to the security manager will be made to determine if the operation can proceed or not. Thus, care must be
taken to avoid asituationin which, for example, every call to a user-defined predicate triggers multiple calls
to the security manager. In our view, security isavery important and complex issueinitself, deserving more
careful exploration, and donein close collaboration with the programming |anguages community, since the
run time system must efficiently support the implementation of the security mechanisms.

3.10 Benefitsof the MOCHA Architecture

MOCHA provides a very flexible framework to deploy application-specific functionality over alarge-scale
environment. By implementing thefunctionality in Java classes, we avoid the problems associated with port-
ing code to different platforms. All classes are compiled just once and automatically delivered by MOCHA
to thesitesthat need them. Since Javaisreadily availablefor most computing platforms, it isneither difficult
nor expensive to set up a Java-based environment to run MOCHA. Also, by organizing the code into repos-
itories, from which it is deployed to remote sites, it becomes easier to add new functionality, keep track of
versions and apply updates. The tasks of the administrators are greatly reduced since they have to deal with
just one or a few well-known sites where all the code resides. Upgrades and new functionality are simply
added to the appropriate code repository, and from there, they are deployed by MOCHA as needed. This
methodology is by far superior to the approach where libraries must be installed at any site where a client,
wrapper, gateway or integration server isto be run. Another important benefit of MOCHA is the ease to
manipulate new functionality added into the system. The use of well-known interfaces allows QPC, DAP
and the client to manipulate any type or operator without understanding all of its internal details. For ex-
ample, the data transmission module in QPC handles every type as aMW0Object, and calls the appropriate
methods defined in thisinterface to exchange the data values over the network. Similarly, all aggregates are
manipulated through the Aggregate interface. Thus, thereisno need to “hard code” special routinesto deal
with each type or operator. Instead, each class customizes the methodsin the appropriate interfacesto work
according with itsintended behavior.

4 Query Processing Framewor k

We have designed MOCHA to capitalize on itsability to ship codein order to generate query plansthat min-
imize data movement. Following a cost-based approach, MOCHA pushes the evaluation of data-reducing
operators to the DAPs running on the data sites and the evaluation of data-inflating operators to the QPC.
The philosophy behind this scheme is that data movement typically isthe major performance bottleneck in
large-scal e environments because network bandwidthis a shared resource, and the applicationsaggressively
competeto obtain afraction of it. To overcome this problem, MOCHA attempts to move the computation to
the data whenever it is cost-effective. Notice that problems with heavy user loads on remote servers can be
alleviated with replication, caching or even by upgrading to better server hardware, given that CPUs, mem-

14

ory and disks are becoming more powerful and less expensive. Networks, on the other hand, are not as easy
and cost-effective to upgrade, and even an upgrade might only be feasiblein small local area environments.
Alsonoticethat retrievingthe“raw” datafrom an already |oaded server to do the processing at the client adds
further load to the server, and it might end up been worse than filtering the datafirst. In short, MOCHA takes
the pragmatic approach of first optimizing for the common case in which the network is the bottleneck.

In MOCHA, the data-reducing operators are those operators that reduce the number and/or the size of
the tuplesin the result. Under this category weinclude: a) predicates with low selectivity, which filter out
unnecessary tuples, b) predicates whose arguments are large-sized attributes that are not part of the result,
C) projections that map large-sized attributes into scalars or smaller values, d) aggregates that map sets of
tuplesinto afew distilled values and €) semi-joins which eliminate tuples that do not participatein ajoin.
For example, the projection operator AvgEnergy(image) presented in section 2.2 is a data-reducing oper-
ator because it maps a IMB image into a 8-byte floating-point number. Whenever possible, data-reducing
operators are evaluated by the DAPS, using a new data processing policy that we call code shipping. This
policy specifies that a query operator and its code will be shipped to and executed by the DAP for a given
data source. One can interpret code shipping as query shipping enhanced with the capability to materialize
the code for an operator remotely, as described in section 3.6.

On the other hand, the data-inflating operators are those that inflate the data values and/or present them
in many forms, projections, rotations, sizes and levels of detail. Recall the Earth Science application from
section 2.1. Suppose a user from the State of Virginianow poses the following query to the data site in the

State of Maryland:
SELECT time,location,IncrRes(image,2X)
FROM Rasters

This query retrieves all images from thetable Rasters in Maryland, but function IncrRes() increases the
resol ution of eachimage by afactor 2X. Thus, theprojection IncrRes(image, 2X)isadata-inflating operator
since it synthesizes a new image that is four times larger than the origina one. Other kinds of data-inflating
operators are those used to visualize the same data val uefrom many perspectives. Examples of theseinclude
an operator that rotates an image by a certain degree ¢ without changing its size or one that allows a user to
visuaizeathree-dimensiona solid from different orientations(i.e. top, bottom or sideways). In these opera-
tors, the same datavalueis repeatedly transformed, and therefore, these transformations are more efficiently
done near the client. For that reason, MOCHA executes data-inflating operators at the QPC using a data
shipping strategy.

We now turn to the discussion of the cost of the user-defined operators. In each case, cost is defined as
computation time plus data transmission time. We first consider operators evaluated at the DAP using code
shipping. Given an input relation R, an operator {2, a set argument attributes 44, ..., 4,,, and a sustained
network bandwidth NV B between the QPC and the DAP, the cost of (2 is defined as:

|R| + (comp(Q) + (75 * size[Q(Ay, ..., A,)])), if Qisaprojection
Cost(Q) = 3 |R|* comp(Q) + (G * 5 * size[Q(A1, ..., A,)]), if Qisanaggregate
|R| * comp(Q) + S Fq *Ele Cost(B;), if Q isapredicate

where comp(?) is the per-tuple cost of evaluating €2, and size(«) isthe size of an attribute «. Thus, when

15

QY isaprojection, itstotal cost isthe time spent computing and transmitting the values (44, ..., 4,,).Notice
that for asimpleprojection of an attribute A, comp(€2) isequal to zero. If Q isan aggregate, thenitstotal cost
isthetime spent computing thevalues (44, ..., A,,) over theinput relation, plusthe time spent transmitting
the values for each of the & different groups generated by the query. Finally, whenever 2 isapredicate, its
cost isthetimeevaluating it over relation R, plusthe product of its selectivity .5 Fy, timesthe sum of the cost
of each of the B, ..., By, projected attributesin the resulting tuples, assuming none of them is an aggregate.
Inall cases, computationtimeand size of aresult attribute are determined from metadatastoredin thecatal og.
Now weturn to the discussion of the case where an operator is evaluated at QPC. For thiscase, itisnecessary
to move all the required attributes from each tuplein theinput relation R from the remote data site to QPC,
and the overall costis: C'ost(2) = | R| * (comp(Q) + 15 * >y size(A;)). Thus, for every operator, its
cost isequal to the time spent computing it, plus the time spent fetching its arguments from the source.

Having discussed how to estimate the cost of each complex operator in a query, we move now to the
presentation of the proposed optimization agorithm for MOCHA.. But first, we need to introduce a new cost
metric, the Volume Reduction Factor for an operator, which is used in the optimization process.

Definition 4.1 TheVolume Reduction Factor, VV R F', for an operator 2 over aninput relation R isdefined

as:
VDT

T VDA
where V DT is the total data volume to be transmitted after applying €2 to R, and V D A is the total data
volume originally presentin R.

VRF(Q) (0 < VRF(Q) <),

Therefore, an operator 2 isdata-reducingif and only if itsV R F’ islessthan 1; otherwise, itisdata-inflating.
In similar fashion, we can define the Cumul ative Volume Reduction Factor for aquery plan P.

Definition 4.2 The Cumulative Volume Reduction Factor, C'V RF, for aquery plan P to answer query
Q overinput relations R4, ..., R, isdefined as:

_CVDT

(0 < CVRF(P) <),

where C'V DT isthetotal datavolumeto be transmitted over the network after applying al the operatorsin
PtoR,y,...,R,andCV D Aisthetota datavolumein R4, ..., R,.

Theintuition hereisthat the smaller the C'V R F' of the plan, the less data it sends over the network, and the
better performance the plan provides. This observationisvalidated by the resultsin sections 5.4-5.7.
Figure 8(a) shows the pseudo-code for the proposed System R-style optimizer for MOCHA. Consider,
for example, the query: o,(A) X 74(o(B)), where predicate ¢ is data-reducing and projection f is data-
inflating. Thealgorithmfirst runssteps(1)-(3) to build selectionplansfor theexpressionso,(A) and ¢ (o (B)).
Step (2) buildsan initia plan with two nodes, one for the QPC (a QPC node), and one for the DAP (a DAP
node) associated with the particular relation A or B. At this point, the QPC node only has annotations that
indicate the output to be returned, and the DAP node has annotations that indicate the attributes to be ex-
tracted and the operators to be evaluated by the data source. Thisinitial plan isthen modified in step (3) to
add the user-defined operators that the middleware must execute. Figure 8(b) shows the agorithm used to
place complex operators, given an input relation R and plan P. First, the set of complex operators O that

16

procedure MOCHA _Optimizer(Ry, ..., R,.):
/* find best join plan */

1.fori=1tondo

2. P« selectPlan(R;)

3. optPlan(R;) — PlaceComplex(P, R;)
4. for i = 2tondo

5 foral SC{Ry,...,R,}st.|S|=ido
6. best Plan «— dummy plan with infinite cost
7.

8.

9.

procedure PlaceComplex(P, R):

[* find best operator placement */

1. O — getComplexOps(P, R)

2.nDAP — findDAP(P, R)

3. nQPC — findAncestorQPC(P,nDAP)

for all R, S; st. S = {R;} U S; do 4. forall Q € O do{

P — joinPlan(opt Plan(S;), opt Plan(R;)) S if VRF(Q) <1

P — PlaceComplex(P, R;) 6. insert(2, nDAP)
10. if cost(P) < cost(bestPlan) 7. else
11. bestPlan — P 8. insert(2, nQPC)}
12. optPlan(S) < bestPlan 9. sortRank(nDAP)
13. return opt Plan({ Ry, ..., R, }) 10. sortRank(nQPC)

(a) System R-style Optimizer (b) Operator Placement

Figure 8: MOCHA Optimization Algorithm

can be applied to the input relation is found with function getComplezOps(). Next, the DAP node used to
accesstherelation R in plan P isfound with function find D AP(). This DAP nodeisthen used to find its
nearest ancestor node in the plan P that aso isa QPC node. Then, each operator €2 inthe set O is placed
initsbest execution location based on its V R F’ value. Those operators with V R F’ less than 1 are placed at
the DAP node, and the rest are placed at the QPC node. These heuristics serve to minimizethe C'V R of
the plan P, and hence, its data movement and cost. Finally, the complex predicates added to each node are
sorted based onincreasing value of themetric: rank(p) = (SF, —1)/Cost(p), where S F), isthe selectivity
of p, asproposed in [HS93]. Theresult of thisprocess on expressionso,(A) and 7 ¢(o(B)) isshownon the
left hand side of Figure 9. The gray nodes are QPC nodes, and the white ones are DAP nodes.

Once the single table access plans have been built,
the agorithm in Figure 8(a) runs through steps (4)-(13) output,
to explore all different possibilitiesto perform the join, Eval f() Evel 10
incrementally building aleft-deep plan in which a new
relation R; is added into an aready existing join plan
S; for a subset of the relations. This task is done by Eval g0,
function join Plan() in step (8). After thejoinplanis | sdect A Select B Select B
built, the algorithm again places complex operators in ‘
step (9). Theseare operatorswhoseargumentscomefrom
more than one relation. The fina join plan for our ex- Figure 9: Optimizationin MOCHA
ample is shown on the right hand side of Figure 9. Notice that our agorithm is not exhaustive in terms of
possible alternatives for complex operator placement (as is [CS96] for predicates). Thisis an intentiona
compromise done to avoid the extra combinatorial explosion of such an exhaustive search. At present, we
have not completed the implementation of the cost-based query optimizer for the QPC athough the magjor
building blocks, such as query plans and search procedures, are in place. In MOCHA, not only do we have

Output,
Join A B,

17

to deal with the placement of complex predicates[HS93, CS96] but also deal with complex projectionsand
aggregates as well, thus making the optimization process more complicated. We are exploring a series of
pruning heuristicsto reduce the search space of the optimizer, and speed up the optimization process.

5 PerformanceEvaluation

To validate our design choices and performance expectations for MOCHA,, we benchmarked our prototype
to characterize its behavior and show: &) the feasibility of using Javato implement types and operators, b)
the benefits obtained by using code shipping, ¢) the need to use data shipping for data-inflating operatorsand
d) that VRF isan accurate cost estimator for choosing the best query plan.

5.1 Experimental Setup

The current implementation of MOCHA was made using Sun’s Java DevelopersKit 1.2, and al middieware
types and operators were implemented in classes containing 100% Java code. We used the Informix Uni-
versal Server as our data server and installed into it a datablade to provide support at the DBMS level for
the types in the schema described in section 5.2. To provide connectivity between Informix and the DAP,
we devel oped a JDBC-likelibrary with support for complex types. Thislibrary translatesthe attributesfrom
their native DBMSS representation into their corresponding middleware representation. Thislibrary wasin-
tegrated with the client libraries provided by Informix using the functionality of the Java Native Interface
(INI). In @l the experiments discussed in this paper, we ran QPC on a Sun Ultra SPARC 60 running Solaris
2.6 and with 128MB of memory. For the experiments in sections 5.4 through 5.6, one DAP and Informix
ran on a Sun Ultra SPARC 1 running Solaris 2.5 and with 256MB of memory. For the experiment in section
5.7, we added to this setup a third machine to run a second pair of DAP and Informix server. This machine
was a Sun UltraSPARC 5 running Solaris 2.6 and with 128 MB of memory. Both Informix servers stored all
their data using raw partitions on two 9GB Seagate Ultra SCSl disks, one disk per machine. All machines
were connected to a 10Mbps Ethernet network, and this choice of network was made mainly to obtain repro-
ducibleresults. In practice, however, we expect MOCHA to be run on wide area environments over which
the available bandwidth would be much smaller, and therefore, MOCHA's benefits much more pronounced.

5.2 Benchmark Dataand Queries

We used the Sequoia 2000 Benchmark [Sto93] to test our implementation of MOCHA. Sequoia contains
real data describing geographicinformation about the Earth. Typically, these data sets are stored at different
sites, and the applications mani pul ating them are inherently distributed. We used the regional version of the
benchmark, which correspondsto the State of California. The schemawe used is asfollows:

¢ Points(name : String,location: Point) - geographic locations represented by their name and coor-
dinates. Thistable had 62,556 tuplesworth 4.3MB.

¢ Polygons(landuse : Integer, location : Polygon) - polygonsenclosing regions of land. Each tuple
stores the type of land been enclosed (i.e. forest, city, etc.) and an array with the exterior vertices of the
polygon. Thistable had 77,643 tuplesworth 18.8MB.

18

¢ Graphs(identifier: Integer, graph: Polyline) - graphs representing drainage networks. Each tu-
ple stores an identifier and an array with the line segments that make up the graph. Thistable had 201,650
tuplesworth 31MB.

eRasters(time: Integer,band : Integer,location: Rectangle,data: Raster,lines : Integer,
samples : Integer) - satellite raster images made from weekly energy readings taken from regions of the
Earth’s surface. Each tuple stores the week number, the energy band measured, the rectangle enclosing the
region, the raster image, the number of linesin the image and the number of samples (pixels) per line. Each
sampleisa16-hit integer and each image is IMB in size. This table had 200 tuplesworth 200MB.

@3: SELECT landuse,
Total Area(location),
Total Perimeter(location)
FROM Polygons
GROUPBY landuse;

@Q1: SELECT MinBox(location)
FROM Points;

Q2: SELECT Tota ArcLength(graph)
FROM Graphs,

4 SELECT location,
Compositel mage(Clip(datalines,
samples,WIN))
FROM Rasters
GROUPBY location;

()5: SELECT time, band, location,
Clip(data,lines,samplesWIN)
FROM Rasters;

Qs: SELECT indentifier,
ArcLength(graph)
FROM Graphs,

()7: SELECT time, band, location,
IncrRes(data,lines,samples,2X)
FROM Rasters;

Qs SELECT identifier
FROM Graphs
WHERE NumVertices(graph) > N

(Q9: SELECT landuse, location
FROM Polygons
WHERE Perimeter(location) > N;

AND ArcLength(graph) > S;

Q10: SELECT Rl.location, R1.time, R2.time,
(AvgEnergy(R1.data) - AvgEnergy(R2.data))
FROM Reastersl R1, Rasters2 R2
WHERE Equal (R1.location,R2.location);

Table 1. Benchmark Queries

Our benchmark queries are shown in Table 1, and each one is discussed in the next sections. We derived
these queries from the ones in Sequoia by adding and combining several new complex operators.

5.3 Experimental Methodology

The objective of thisstudy isto clearly show the substantial performance benefits provided by a system that
uses code shipping, such as MOCHA, over one that lacks this capability. Without code shipping, the mid-
dlewareintegration server hasto evaluate all operators not available at the data sources. Thus, our goal isto
showcase code shipping, not to further expl ore the query-data shipping tradeoffs already throughly discussed
in [FIK96]. To show the benefits of MOCHA in thisimportant and frequent situation, we configured QPC
to use query plansthat place all operators on either the QPC or the DAP. This permitsthe study of each kind
of operator (data-inflating or data-reducing) under each approach. In each experiment, we ran the query plan
onthe MOCHA prototype and measured execution time from thetime QPC startsdeploying codeto thetime
it receives the last tuplein the result. We present these results using graphs, in which the x-axis shows the
guery been tested and the y-axis givesits execution time under each policy. Executiontimewas divided into
four components: 1) DB Time- time spent reading tuples from the data source by DAP; 2) CPU Time- time
spent evaluating all complex operators; 3) Net Time- time spent sending data from a DAP to QPC; and 4)
Misc Time- time spent on al initiaization and cleanup tasks. The Net Time component includes both net-
work transmission time and the communications software overhead. All values reported as execution time

19

are averages obtained from five independent measurements. In addition, we measured the total volume of
dataaccessed by each plan (C'V D A), thetotal volume of datatransmitted by each plan (C'V DT') and thevol-
ume of datain the query result. In each case, the C'V R} for each plan was computed from these measured
values. Weran all experimentslate at night, when all machines and the network were unloaded.

54 Querieswith Complex Aggregates

For this category we used queries ()1, ()2, ¢)3 and (), from Table 1 on page 19. Queries ¢, and (), map
an entire table into asingle value; ¢); finds a minimum bounding box for al pointsin table Points, while
(), computes the total length of all drainage networksin Graphs. Queries ()3 and ()4 contain GROUP BY
clauses, with (), having attribute Llocat ion with complex typeRectangle asthe grouping attribute. Query
()5 computes the total area and total perimeter of al the polygons covering each type of landuse. In @4,
for each of the regions present in table Rasters, function CompositeImage() generates an image which
is the composition of al images stored for each particular region. Before calling this function, each image
isclipped to aregion specified by parameter WIN, which we set to select a piece five times smaller than the
original.

ZZZ o5 Time. | Quay [Ste | CVDA| CVDT | \blumeinReslt | OVRF |
| B et Time (. [DAP] 43MBT 168 168 10
8 i ime OFC | 138 | 238 1
£ ol (. |DAP| 3MB| @B 8| A0
& awy QPC| 3IMB | 3INB B1
§ %00 1 0; |DAP|188MB| 7408 THOB [4x10

1. QPC | 188MB | 188MB 0B | 1

(. |DAP| 200MB| L6MB 16MB | 0,008
Ouery QPC | 200MB | 200MB 6B 1
(a) Execution Times (b) Data Volumes

Figure 10: Performance for Q1, @2, @3, Q4

Figure 10(a) shows the execution time for each query, with the operators eval uated at each site: QPC or
DAP Clearly, evauation at the DAP outperforms evaluation at QPC in all cases. For queries @)», ()3, and
()4, queriescan berun 4 timesfaster at theDAPand in), thereis a 50% improvement in performance. As
can be observed from thefigure, network cost (Net Time) isthe dominant factor in terms of performance. In
each case, theperformance gainis achieved by capitalizing on code shippingto runthe aggregates closeto the
data sourceand only send to the QPC afew result values. Thus, amiddleware system that uses code shipping
will be better equipped to deal with thistype of queriesthan one based on the existing technologies. Figure
10(b) showsthe large savingsin the volume of data movement that can be obtained by using code shipping
to evaluate the aggregates at the data site. Notice that in each case the best processing alternativeindeed has
the smallest C'V R F value. These results show that the V' R F is an excellent metric for choosing the best
operator placement in plansfor queries with complex aggregates because it minimizes data movement.

20

55 Querieswith Complex Projections

We used queries ()5, () and ()7 from Table 1, on page 19, to measure the effect of complex projectionson
the volume of datatransmitted. Queries ()5 and ()¢ contain data-reducing projections; in () 5, each imagein
tableRasters is clipped into an image whose size is determined by the clipping box WIN, which we chose
S0 asto generate an image five times smaller than the original. Query ()¢ maps each graph in table Graphs
into a double precision floating point number representing the length of a drainage network. On the other
hand,) contains a data-inflating projection implemented by function IncrRes(). In thiscase, each image
istransformed into a new image with twice the resolution and four times the size of the original.

1,800 T
DAP [] DB Time

CPU Time
Net Time

1,600 T

8 o] T Ty [Se | CVOA] VDT WiuremResit| OV |
B oo 0 |DAP|20NB| WWB| _ A0WB| 02
§ = . OFC | A0NB | A0MB| A0V 1

g 0 [DAP| SB[28| 2306 007

400

. QPC | 3IMB | 3IMB 23MB | 1
(/; | DAP| 200MB | 800MB 800MB | 4

200 T

Q7 QPC | 200MB | 200MB 800MB | 1

(a) Execution Times (b) Data Volumes

Figure 11: Performance for ()5, ()¢ and ()7

Figure 11(a) demonstrates that operator evaluation at the DAP is the best option for evaluating)5 and
(g, asit resultsin adecrease in execution time from 482 secs to 192 secs for query ()5, and, from 835 secs
to 302 secs for (Js. In both cases, the use of code shipping improves performance by a factor of 3. How-
ever, it istotally inadequate to run (), a the DAP since this query contains a data-inflating operator. For
thiscase, ()7 runsfor 1710 secs as opposed to 562 secs when QPC evaluatesit. The evaluation of projection
IncrRes(data, lines, samples, 2X)at the DAPresultsin the transmission of tuplesfour times larger than
those sent when QPC executes it and, therefore, the network cost is increased by afactor of 4. Notice, how-
ever, that MOCHA will not use code shipping in this case, since any data-inflating operator will be evaluated
at the QPC using data shipping. Theresultsin Figure 11(b) emphasize the accuracy of the V R I in selecting
the best operator placement, becausein each casethe best alternativeisthe onewith the smallest valuefor the
CV RF . Thus, theseresults confirm that V' R F' can be used to select the best plan for queries with complex
projections. Clearly, MOCHA will bewell suited for processing querieswith very different characteristics.

5.6 Querieswith Complex Predicates

For this category, we used queries () and ()¢ from Table 1 on page 19, and in each case, we varied the sel ec-
tivity of the predicatesin order to study the behavior of each execution alternative under different selectivity
values. In query (s, the qualification clause compares the number of vertices and length of each drainage
network graph against two constants. The execution times for () under each selectivity value are shownin

21

Figure 12(a). Aswe can see, execution at the DAP outperforms execution at the QPC in all cases, regardless
of selectivity, with performance improved by afactor of 3-1 for the first three selectivity values and 2-1 for
theremaining ones. By pushingthe code and eval uation of the predicatesin ¢)s tothe DAP, the system avoids
shipping the large-sized attribute graph over the network, thus providing substantia performance gains.

800 T

D osmime | SAectivity [Ste [CVDA | CVDT | Volumeinresult | CVRF |

700 croTime 9 DAP[3IMB| 0B B0

7 M Mis Time QRC | 3IVMB | 3IMB B 1
< s 025 | DAP| 3IMB | 200KB 200KB | 001
E QRC | 3IVMB | 3IMB 200KB | 1
s 05 | DAP | 3IMB | 400KB 400KB | 001
g QFC [3IMB | 3INMB 400KB | 1
@ =200 075 | DAP | 3IMB | 600KB 600KB | 002
QRC | 3IVMB | 3IMB 600KB | 1
| | RN | RRHE RN CRI RSt | RRE | RIS 1 DAP | 3IMB | 790KB 790KB | 0.02

0% | 25% S'e.é’cofﬁ’,it'y 75% | 100% QFC | 3IMB | 3INB TOKB | 1

(a) Execution Times (b) Data Volumes

Figure 12: Performance for ()«

In Qg, al attributes in the tuples of table Polygons appear in the result. For this case, the qualifica-
tion clause compares the perimeter of each polygon against a constant. As shown in Figure 13(a), the per-
formance gain is in inverse proportion to the selectivity value. Execution at the DAP outperforms its QPC
counterpart in all but the last case with 100% selectivity, in which all components are essentialy the same
for both aternatives, but thereis a one minute (almost 9%) overhead for code shipping due to initialization
and cleanup. Notethat thelarge increment in network cost from 0% to 10% sel ectivity is dueto the nature of
tablePolygons. Inthistable, attributelocation, which representsthe verticesin the polygon, has variable
size. Therefore, at low selectivity most of the largest polygons are the only ones satisfying the qualification
clausein)o, which in turn are the most expensive ones to transmit. As the selectivity increases, the incre-
ment in network cost isless pronounce since only the smaller and less costly polygonsare been added to the
result.

Figures12(b) and 13(b) show againthat the V' R I’ isan accurate metric for determining the best planfor a
guery. One important concept emerging from the performance resultsin thissectionisthat a metric based on
selectivity and result cardinality is not the best metric for cost estimation becauseit failsto take into account
the volume of transmitted data, as happensin ¢)s and ¢)¢. Consider the case of 50% selectivity in (). From
Figure 12(b), we can see that code shipping only moves 400K B (1% of the original data volume) from the
DAP to QPC, not 15MB or haf of the volume in the Graphs table. In fact, for ()« the percentage of data
transmitted is always much smaller than what would be expected if selectivity alone were used to make the
estimate. Furthermore, selectivity might under estimate the actual amount of datatransferred. This can be
observed for ()¢ in Figure 13(b), wherein the 10% sel ectivity case, execution at the DAP with code shipping,
actually transmits 34% of the data volume in the Polygons table. Asaresult, a query operator placement
scheme based on sel ectivity and result cardinality, might produce planswith poor performance for distributed
queries. On the other hand, the V' R F' combines the selectivity information, cardinality and the size of the

22

fore ore orc op@AP [bB Time | Sdectivity [Ste [CVDA [CVDT | Volumeinresult | CVRF |

oo <DAP CPU Time | DAP | 188MB | OMB | OMB 0

o hNA?ts;l—errie QPC | 188MB | 188MB | OMB 1
g 400 0.10 DAP | 188MB | 63MB | 63MB 0.34

g QPC | 188MB | 188MB | 6.3MB 1
= 00 0.25 DAP | 188MB | 116MB | 116 MB 0.62

S QPC | 188MB | 188MB | 1L6MB 1
2 200 050 | DAP|188MB | 149MB | 149MB 079

a3 QPC | 188MB | 188MB | 149MB 1
100 0.75 DAP | 188MB | 17.2MB | 17.2MB 091

QPC | 188MB | 188MB | 17.2MB 1

° 0% \710% | 250 | 50% \ 7750/;) 100% 1 DAP | 188MB | 188MB | 188MB L

Selectivity QPC | 188MB | 188MB | 188 MB 1

(a) Execution Times (b) Data Volumes

Figure 13: Performance for ()

attributes in the tuples been transmitted in order to estimate the cost of a query operator and determine its
proper placement. Therefore, for distributed processing, V' R F’ isamuch better metric for the cost of aplan.

5.7 Querieswith Distributed Joins

For thiscategory, weused query Q) from Table 1 on page 20+ .
DB Time
19. Thisquery performs a distributed join between two CPU Time
.. . 100 Ex ime
tables, Rasters1 and Rasters2, containing raster im- E l?nTnme
80 + Il Misc Time

ages. The schemafor thesetablesisthe same as the one
for tableRaster (see section 5.2), but the images where
reduced to 128KB in size, and only three locations are
common to both tables, Rasters1 and Rasters2. Ta
bleRasters1 wasstored on aSun UltraSPARC 1, which
wecal Sitel, whileRasters2 was stored on a Sun Ultra 0
SPARC 5, which we call Site2.) joins all tuples that
coincide on the location attribute, and projects the lo-
cation, the week number for each reading and the difference in the average energy between the readings.
Figure 14 shows the execution time for ()1 for the aternatives in which complex operators in the join
are executed at the QPC or at the DAP. The join itself is performed at the QPC. When complex operators
must be executed at the QPC, attributes time, location and data in all tuples from each of the two rela-
tions have to be moved to QPC. Asthetuplesarrive, the function AvgEnergy() is evaluated to perform the
projections and then the tuples are stored to disk, from which they are later read to perform the join oper-
ation, which is done using a hash join method. In thisfigure, the Join Time component indicates the cost
of accessing disk to manipulate the partia results been generated during join processing. Notice that per-
formance is dominated by the cost of transferring the images over the network. On the other hand, thejoin
performs over two and a half times better when the DAP evaluates some of the operators. In this case, a
2-way semi-joinis performed by computing, at each DAP, the semi-joinsRastersixRasters2 (at Sitel)

60 T

Response Time (secs)

Figure 14: Execution Time for ()¢

23

andRasters2XRasters1 (at Site2), using the complex predicatein)1 for both of them. After each semi-
join operation is performed, function AvgEnergy() is evaluated and al projections are taken. As aresult,
only attributestime, location and AvgEnergy(data) are moved from aDAPto QPC, wherethey arefirst
materialized to disk and then joined. By doing this 2-way semi-join operation and evaluating the complex
projectionsat the DAP, the network cost isminimized and the overall execution timeissubstantially reduced.
In terms of data movement, both plans access 30.6MB worth of data from the data sources, and produce a
result of size 49.2KB. However, the first approach moves 30.6MB worth of data over the network, while
the second approach only moves 3.8KB. Thistranslatesintoa C'V R F' values of 1 and 0.0001, respectively.
Hence, experimental evidence confirmsthat the V' R F' can be used to determine the best operator placement
in the plan for adistributed join.

6 Conclusions

In this paper we have proposed MOCHA as an aternative middleware solution to the problem of integrating
data sources distributed over a network. We have argued that the scheme used in existing solutions, where
user-defined functionality for data types and query operatorsis manually deployed, is inadequate and will
not scale to environmentswith hundreds or more of data sources. The high cost and complexity involvedin
having administrators installing and maintaining the necessary software libraries into every sitein the sys-
tem makes such approach impractical. MOCHA,, on the other hand, is a self-extensible middleware system
written in Java, in which user-defined functionality is automatically deployed by the system to the sites that
do not provideit. Thisis realized by shipping the Java classes implementing the required functionality to
the remote sites. Code shipment in MOCHA is fully automatic with no user involvement and this reduces
the complexity and cost of deploying functionality in large systems. MOCHA classifies operators as data
reducing ones, which are evaluated at the data sources, and data-inflating ones, which are eval uated near the
client. Data shipping is used for data-inflating operators and a new policy, named code shipping, is used for
the data-reducing ones. The selection between code shipping and data shipping is based on a new metric,
the Volume Reduction Factor, which measures the amount of data movement in queries used in distributed
systems. The MOCHA prototype has been implemented with JDK 1.2 and extensively tested top of the In-
formix Universal Server. We have carried out a performance study on MOCHA using data and queries from
the Sequoia 2000 Benchmark, and show that selecting the right strategy and the right site to execute the op-
erators can increase performance of queries by afactor of 4-1, in the case of aggregates, or 3-1, in the case
of projections, predicates and joins. These experiments also demonstrated that the Volume Reduction Factor
(V RF')isamore accurate cost metric for distributed processing than the standard metric based on sel ectivity
factor and result cardinality, because V' R F’ @ so considers the volume of data movement.

References

. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. onstantinou, J. Ullman, an

CGMH'94] S.Ch he, H. GarciaMolina, J. H K. Ireland, Y ak [J. Ul d
J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. In
Proc. of IPSJ Conference, Tokyo, Japan, 1994.

[Inf97] Informix Corporation. Virtual Table Interface Programmer’s Guide, September 1997.

24

[Ora9q]

[CS96]

[FIK96]

[GMSVESS]

[Grag3]

[HKWY97]

[HS93]

[ML86]

[MS99]

[RMR984]

[RMRO8b]

[RMROO]

[RS97]

[SACH79]

[SLRO7]

[Sto93]

[TRV96]

Oracle Corporation. Oracle Transparent Gateways, 1999.
URL : http://www.oracl e.com/gateways/html /transparent.html .

S. Chaudhuri and K. Shim. Optimization of Queries with User-defined Predicates. In Proc.
22nd VLDB Conference, pages 87-98, Bombay, India, 1996.

M.J. Franklin, B.T. Jonsson, and D. Kossmann. Performance Tradeoffs for Client-Server
Query Processing. In Proc. ACM SSGMOD Conference, pages 149-160, Montreal, Canada,
1996.

M. Godfrey, T. Mayr, P. Seshadri, and T. von Eicken. Secure and portable database extensi-
bility. In Proc. ACM SIGMOD Conference, pages 390401, Seattle, Washington, USA, 1998.

G. Grafe. Query Evauation Techniques for Large Databases. ACM Computer Surveys,
25(2):73-170, June 1993.

L.M. Haas, D. Kossmann, E.L. Wimmers, and J.Yans. Optimizing Queries Across Diverse
Data Sources. In Proc. 23rd VLDB Conference, pages 276-285, Athens, Greece, 1997.

JM. Hellerstein and M. Stonebraker. Predicate Migration: Optimizing Queries with Expen-
sive Predicates. In Proc. ACM SSGMOD Conference, pages 267—276, Washington, D.C.,
USA, 1993.

L.F. Mackert and G.M. Lohman. R* Optimizer Validation and Performance Evaluation for
Distributed Queries. In Proc. 12th VLDB Conference, Kyoto, 1986.

T. Mayr and P. Seshadri. Optimization of client-site user-defined functions. In Proc. ACM
SIGMOD Conference, Philadelphia, PA, USA, 1999.

M. Rodriguez-Martinez and N. Roussopoul os. An Architecturefor aMobile and Dynamically
ExtensibleDistributed DBMS. Technical Report ISR-TR 98-10, CSHCN-TR 98-2, University
of Maryland, January 1998.

M. Rodriguez-Martinez and N. Roussopoulos. MOCHA: A Self-Extensible Middleware Sub-
strate For Distributed Data Sources. Technical Report UMIACS-TR 98-67, CS-TR 3955, Uni-
versity of Maryland, October 1998.

M. Rodriguez-Martinez and N. Roussopoulos. Automatic Deployment of Application-
Specific Metadataand Codein MOCHA. In Proc. 7th EDBT Conference, Konstanz, Germany,
2000.

M.T. Roth and P. Schwarz. Don’t Scrap It, Wrap It A Wrapper Architecturefor Legacy Data
Sources. In 23rd VLDB Conference, Athens, Greece, 1997.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R.A. Lorie, and T. G. Price. Ac-
cess Path Selection in a Relational Database Management System. In Proc. ACM SGMOD
Conference, pages 23—34, Boston, Massachusetts, USA, 1979.

P. Seshadri, M. Livny, and R. Ramakrishnan. The Casefor Enhanced Abstract Data Types. In
Proc. 23rd VLDB Conference, pages 66—75, Athens, Greece, 1997.

M. Stonebraker. The SEQUOIA 2000 Storage Benchmark. In Proc. ACM SSGMOD Confer-
ence, Washington, D.C., 1993.

A. Tomasic, L. Rashid, and P. Valduriez. Scaling Heterogeneous Databases and the Design of
DISCO. In Proc. 16th ICDCS Conference, Hong Kong, 1996.

25

