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Incomplete data is common in both observational studies and clinical trial-

s. Ignoring missing data may produce seriously biased estimators and could lead

to misleading results. During the last three decades, a vast amount of work has

been done in this area. The approaches can be classified into the following main

categories: imputation methods, likelihood-based methods and inverse probability

weighting methods. Longitudinal and crossover studies with repeated measures are

particularly subject to missing observations. Various methods, including general-

ized estimating equations (GEE) (Liang and Zeger, 1986), weighted GEE (WGEE)

(Robins, Rotnitzky and Zhao, 1995) and multiple imputations, have been proposed

to cope with missing data in longitudinal studies. However, very few researchers

have explored the missing data issue in crossover studies. In addition to reviewing

and critiquing the methods dealing with missing observations in general and in re-

peated measures, in this dissertation, we propose a new weighting approach for GEE



to estimate the regression parameters in crossover studies. The proposed method

provides consistent and asymptotically normally distributed estimators. Simulation

and asymptotic efficiency results indicate that the proposed estimators are more

efficient than both regular GEE and WGEE. Applications of the proposed method

are illustrated with real data.
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Chapter 1

Introduction

Missing data is a common problem in both observational and controlled s-

tudies. Ignoring missing data may produce seriously biased estimators and could

be lead to misleading results. During the last three decades, a large amount of

research has been done in analyzing incomplete data. As a result, a rich taxonomy

of missing data concepts and methods as well as various data analysis tools have

been developed.

One way to deal with missingness is the complete-case (CC) method where

cases with any missing values are simply discarded. Advantages of this method

are simplicity of implementation and the fact that valid inferences can be obtained

when the data are missing completely at random (MCAR). However, when data

are missing at random (MAR) but not MCAR, the CC method will produce bi-

ased estimates. As a result, several approaches have been proposed to improve CC

analysis. These are likelihood-based methods (Little and Rubin, 2002), imputa-

tion methods (Rubin, 1987; Schafer, 1997), and the inverse probability weighting

(IPW) method and its efficient version (Zhao and Lipsitz, 1992; Robins, Rotnitzky

and Zhao, 1994; Carpenter, Kenward, Vansteelandt, 2006). In the likelihood-based

method, the marginal likelihood of the observed data is maximized. In the impu-

tation method, the incomplete cases are imputed with the conditional mean of the
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missing part given the observed part. It’s also possible to impute random values.

The regular analysis model then can be applied. In the IPW method, the inverse of

the probability that a record is missing given the observed values is used to adjust

the estimating equation; thus a model for the missingness indicator R is needed,

where R = 1 if an outcome is observed and R = 0 otherwise.

Longitudinal studies are characterized by a sample design which specifies re-

peated observations on the same experimental unit. Failure to obtain a full set of

observations on a given subject results in incomplete data and/or unbalanced de-

signs. Such missingness is a common problem in longitudinal studies. The analysis

of non-Gaussian longitudinal data is difficult partly because few models for the joint

distribution of the repeated observations for a subject are available. On the other

hand, longitudinal data offer the advantage that data from distinct subjects are

independent. In longitudinal studies, outcomes that are repeatedly measured over

time may be correlated and some may be missing. Liang and Zeger (1986) proposed

the generalized estimating equation (GEE) approach for longitudinal data, whose

solutions are consistent. Their methods make assumptions about the mean and

variance but not necessarily about the full distribution of a random variable. The

estimates obtained from solving the GEE are consistent under MCAR, but might

be biased under MAR. Robins, Rotnitzky and Zhao (1995) proposed a weighted

generalized estimating equation (WGEE) method, which is in essence an applica-

tion of the IPW method to repeated measures, for obtaining unbiased estimates in

analyzing incomplete longitudinal data under MAR.

A crossover study is distinguished from a parallel group study by each subject
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receiving a sequence of experimental treatments. The main advantage is that the

treatments are compared within subjects. Therefore, every subject provides a direct

comparison of the treatments that he or she has received, eliminating many unknown

confounders. Crossover studies have been extensively used in clinical studies. As in

longitudinal studies, repeated measures are taken on the same subject, and therefore

missing data is also a common problem in crossover studies. However, few research

results have been reported in this area.

We propose a new weighting approach for GEE to estimate the regression pa-

rameters in crossover studies. Simulations and asymptotic efficiency results indicate

that the proposed estimators are more efficient than both regular GEE and WGEE.

Applications of the proposed method to real data are also discussed.

This dissertation is organized as follows. In Chapter 2, we review the complete-

case method and other conventional approaches to missing data analysis. Missing

data methods used in repeated measures, especially for longitudinal data, are de-

scribed in Chapter 3. A new weighted estimator for improvement of estimation

efficiency is introduced in Chapter 4. In Chapter 5, simulation studies are per-

formed to validate the theoretical results. Applications to real data are also shown

in Chapter 5. In Chapter 6, we summarize the results and also give the potential

direction of future work.
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Chapter 2

Methods to Handle Missing Data

2.1 Notation and Terminology

The following terminology is based on the standard framework coined by Rubin

(1976) and Little and Rubin (2002). Assume that for each independent unit in

the study, we have observations Yij, i = 1, ..., n, j = 1, ..., T , written in vector no-

tation as Yi = (Yi1, ..., YiT )
′, where i indicates the subject and j the measurement

occasion. Define Xi as covariates, which throughout this dissertation are always

observed. Generally, Xi can have missing values as well. Let Rij denote missing

data indicators, where Rij = 1 if Yij is observed, and 0 otherwise. Define the vec-

tor Ri = (Ri1, ..., RiT )
′, parallel to Yi. Let πij denote the observation probability.

Define the vector πi = (πi1, ..., πiT )
′. One can partition Yi into two subvectors: Y o

i ,

the vector of observed values, and Y m
i , the vector of missing values. The full data

(Xi, Yi, Ri) i = 1, ..., n, consist of the covariates, the complete data, together with

the missing data indicators.

A nonresponse process is said to be missing completely at random (MCAR) if

the missingness is independent of observed and unobserved data. That is,

P (Rij = 1|Xi, Yi) = P (Rij = 1). (2.1)

The nonresponse process is said to be missing at random (MAR) if the miss-
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ingness is independent of the unobserved data conditional on the observed data.

That is

P (Rij = 1|Y o
i , Y

m
i , Xi) = P (Rij = 1|Y o

i , Xi). (2.2)

The third missingness mechanism is called missing not at random (MNAR) where

the probability that a measurement is missing depends on unobserved data.

2.2 Complete-Case Method

A commonly used treatment of missing data in many statistical software sys-

tems is complete-case (CC) analysis, where the records with missing values are

simply deleted. Then the data used in the analysis only includes the complete cas-

es. When the density of Y , denoted by P (Y |X; θ), is known, where θ is the vector

of parameters, the maximum likelihood method can be applied. The likelihood

function is:

LCC(θ) =
n∏
i=1

P (Yi|Xi; θ)
Ri . (2.3)

The corresponding estimating equation is:

UCC(θ) =
n∑
i=1

RiU(Yi|Xi; θ) = 0, (2.4)

where U(Yi|Xi; θ) = (∂/∂θ)logP (Yi|Xi; θ)

When the missingness mechanism is missing completely at random (MCAR),

that is, πi is independent of Y andX, then the above estimating equation is unbiased
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as shown below:

E[UCC(θ)] =
n∑
i=1

E[E{RiUi(Yi|Xi; θ)|Yi, Xi}]

=
n∑
i=1

E[Ui(Yi|Xi; θ)E(Ri|Yi, Xi)]

=
n∑
i=1

E[Ui(Yi|Xi; θ)]E(Ri|Xi)

= 0. (2.5)

Thus, the estimator obtained from CC analysis, θ̂CC , is consistent (Lehmann and

Casella, 1998), and
√
n(θ̂CC − θ0) is asymptotically normally distributed with mean

zero and variance:

ΣCC = E

[
Ri
∂Ui(Yi|Xi, θ)

∂θ

]−1

E[RiUi(Yi|Xi, θ)U
T
i (Yi|Xi, θ)]E

[
Ri
∂UT

i (Yi|Xi, θ)

∂θ

]−1

= π−1
i E[Ui(Yi|Xi, θ)U

T
i (Yi|Xi, θ)]

−1.

When the missingness mechanism is not MCAR, E(Ri|Yi, Xi) will depend on Yi.

Thus equation (2.5) will not hold and the estimator θ̂CC will be biased (Little and

Rubin, 2002). On the other hand, even if the complete-case method yields a con-

sistent estimator when R is independent of Y , discarding incomplete cases seems to

be an unnecessary waste of information.
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2.3 Likelihood-based Method

Compared to the complete-case method, an obviously improved approach is

the maximum likelihood (ML) method. The likelihood can be written as follows:

L(θ) =
n∏
i=1

[P (Ri = 1|Y o
i , Y

m
i , Xi)Pθ(Y

o
i |Y m

i , Xi)P (Y
m
i |Xi)]

Ri

×
[∫

P (Ri = 1|Y o
i , y

m
i , Xi)Pθ(Y

o
i |ymi , Xi)P (y

m
i |Xi)dy

m
i

]1−Ri

. (2.6)

Under MAR, P (Ri|Y o
i , Y

m
i , Xi) = P (Ri|Y o

i , Xi), and P (Ri|Y o
i , Y

m
i , Xi) and

P (Y m
i |Xi) contain no information on θ. Thus the above joint distribution becomes

L(θ) ∝
n∏
i=1

[Pθ(Y
o
i |Y m

i , Xi)]
Ri [

∫
Pθ(Y

o
i |ymi , Xi)P (y

m
i |Xi)dy

m
i ]

1−Ri

=
n∏
i=1

[Pθ(Y
o
i |Y m

i , Xi)]
Ri [Pθ(Y

o
i |Xi)]

1−Ri . (2.7)

The MLE θ̂ML for θ can be obtained by solving the following estimating equa-

tion:

UML(θ) =
n∑
i=1

[Ri(Y
o
i |Y m

i , Xi; θ) + (1−Ri)U(Y
o
i ; θ)] = 0, (2.8)

where

U(Y o
i |Y m

i , Xi; θ) = (∂/∂θ)logPθ(Y
o
i |Y m

i , Xi),

and

U(Y o
i |Xi; θ) = (∂/∂θ)logPθ(Y

o
i |Xi).

This is an unbiased estimating equation. Therefore, the estimator θ̂ML is consistent

and
√
n(θ̂ML− θ0) is asymptotically normally distributed with mean 0 and variance

ΣML ={
E[π(Y o

i , Xi)(−
∂

∂θ
U(Y o

i |Y m
i , Xi; θ)) + (1− π(Y o

i , Xi))(−
∂

∂θ
Uθ(Y

o
i |Xi))]

}−1
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If the fully parametric models can be correctly specified, the estimators are

usually more efficient. Generally it’s straightforward to fit a multivariate normal

model using standard statistical packages. However, likelihood-based estimation

relies heavily on parametric model assumptions and the ignorability assumption,

which generally cannot be jointly checked from the observed data. Thus estimates

are sensitive to model misspecification. In addition, even with complete data, if the

focus is on models for the marginal distribution of the response, then fully parametric

models for certain non-Gaussian data that preserve the marginal expectation of

Yit given Xi can often be cumbersome and computationally difficult when Xi is

multivariate with continuous components (Prentice, 1988).

2.4 Multiple Imputation (MI) Method

Multiple imputation is a Monte Carlo approach to the analysis of incomplete data.

Multiple imputation shares the same underlying philosophy as the EM algorithm

and data augmentation: solving an incomplete-data problem by repeatedly estimat-

ing and solving the complete-data version (Molenberghs and Kenward, 2007). In

multiple imputation, the unknown missing values of Ym are replaced by simulated

values Y m
(1), Y

m
(2), ..., Y

m
(D). Each of the D completed data sets is analyzed by standard

complete-data methods. The variability among the results of the D analyses pro-

vides a measure of the uncertainty due to missing data, which, when combined with

measures of ordinary sample variation, lead to a single inferential statement about

the parameters of interest.
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Theoretical Justifications

At the heart of the MI method is a Bayesian argument. The idea, first proposed by

Rubin (1978), is to relate the observed-data posterior distribution to the complete-

data posterior distribution that would have been obtained if we had observed the

missing data. Then the posterior distribution for θ, the parameter of interest, is

given by:

P (θ|Y o) =

∫
P (θ, Y m, Y o)

P (Y o)
dY m

=

∫
P (θ, Y m|Y o)dY m

=

∫
P (θ|Y o, Y m)P (Y m|Y o)dY m

= EYm|Y o [P (θ|Y o, Y m)]. (2.9)

When the posterior mean and variance are adequate summaries of the posterior

distribution, the content of equation (2.9) can be effectively represented by the

posterior mean and variance. The former is given by:

E(θ|Y o) =

∫
θ

∫
P (θ|Y o, Y m)P (Y m|Y o)dY mdθ

=

∫
P (θ|Y o)

∫
θP (θ|Y o, Y m)dθdY m

= EYm|Y o [E[θ|Y o, Y m]]

≈ 1

D

D∑
i=1

θ̂d = θ̂MI , (2.10)

where D is the number of imputations and θ̂d is the maximum likelihood estimate of

θ calculated by using the dth completed data set, and θ̂MI is the multiple imputation

estimator of θ. The value of D varies, but typically researchers set D = 5 (Schafer,

1999).
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The posterior variance is approximated by:

var(θ|Y o) =

∫
θ2
∫
P (θ|Y o, Y m)P (Y m|Y o)dY mdθ

− [P (θ|Y o, Y m)P (Y m|Y o)dY mdθ]2

=

∫
P (Y m|Y o)

[∫
θ2P (θ|Y m, Y o)dθ −

(∫
θP (θ|Y m, Y o)dθ

)2
]
dY m

+

∫
P (Y m|Y o)

[∫
θP (θ|Y o, Y m)dθ

]2
dY m

−
[∫

P (θ|Y m|Y o)

(∫
θP (θ|Y o, Y m)dθ

)
dY m

]2
= E[V ar(θ|Y m, Y o)|Y o] + V ar[E(θ|Y m, Y o)|Y o]

≈ 1

D

D∑
d=1

Vd +
1

D − 1

D∑
d=1

(θ̂MI − θ̂d)
2 = V̄ +B, (2.11)

where Vd is the complete-data posterior variance calculated from the dth data

set, V̄ = 1/D
∑D

d=1 Vd is the average of Vd over the imputed data sets and B =

[1/(D − 1)]
∑D

d=1(θ̂MI − θ̂d)
2 is the between-imputation variance.

Making Proper Imputations

Multiple imputation is attractive because it can be highly efficient even for small

values of D. The efficiency of an estimate based on D imputations is approximately

(1 + γ/D)−1, where γ is the fraction of missing information for the quantity being

estimated. Therefore, there is thought to be little advantage in producing and

analyzing more than a few imputed data sets (Little and Rubin, 2002).

For general missing data patterns with a multivariate normal imputation mod-

el, small-sample draws can be constructed using Markov Chain Monte Carlo (MCM-

C) methods (Schafer, 1997, Section 5.4). Schafer (1997), along with many software
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packages including SAS/STAT, uses data augmentation, one type of MCMC, to get

random draws from the posterior distribution of the parameter of interest θ. Closely

related to Gibbs sampling, data augmentation is an iterative method of simulating

the posterior distribution of θ. Start with an initial draw from an approximation

to the posterior distribution of θ. The EM estimate of θ is usually a good starting

value. Given a value of drawn at iteration t:

I-Step: Draw Y m
(t+1) from density p(ym(t+1)|Y o, θ(t));

P-Step: Draw θ(t+1) from density p(θ|Y o, Y m
(t+1)).

The iterative procedure can be shown eventually to yield a draw from the joint

posterior distribution of (Y m, θ) given Y o in the sense that as t tends to infinity,

this sequence converges to a draw from the joint distribution of (Y m, θ) given Y o .

Specifically, in our example the model for p(Y m|Y o) is known as the imputation

model. For the resulting estimates of θ to have the correct frequentist properties,

in terms of consistency and correct coverage of confidence intervals, careful choice

of p(Y m|Y o) is crucial. Additionally, the variables that are included in Y o must

include all the variables that make the response missing at random.

Single imputation methods are simple to use, but in general they might not

conform to statistical principles for making inferences, particularly when sources of

uncertainty are concerned in determining treatment effect.

Multiple imputation (MI) methods allow using large amounts of information

about auxiliary variables that are not included in the analysis model but can be

used in the imputation model. This generally would lead to more accurate im-

putations. In addition, MI methods are easy to use and are available in many

11



standard statistical software packages, such as PROC MI and MIANALYZE in

SAS. However, MI does rely on parametric assumptions, which generally cannot be

verified from the observed data. Furthermore, the data model P (Y |X, θ) may be

incompatible with the imputation model P (Y |V,X;ϕ), where V are the auxiliary

variables. Compatible models have the property that the data model is what is

left when auxiliary variables are integrated out of the imputation model, that is,∫
P (Y |V,X;ϕ)P (V |X;ϕ)dV = P (Y |X;ϕ).

As the number of imputations (D) increases, the results from the likelihood

method and multiple imputation method should converge (Molenberghs and Ken-

ward,2007). When the number of imputations is finite, the MLE are actually more

efficient although the differences may be very small.

When covariates are missing, MI offers an intuitively attractive and very man-

ageable method for dealing with potentially very complex problems for which like-

lihood analyses maybe impracticable or, at least, very awkward.

As Meng (1994) shows, it is one of the great strengths of MI that the impu-

tation and substantive models do not have to be the same (usually the imputation

model is more general than the analysis model). Meng introduces the term ‘uncon-

genial’ for an imputation model which is not consistent with the substantive model.

It’s with these that MI has much to offer in the current setting.
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2.5 Inverse Probability Weighting Method

As we know, random selection of the available data may yield biased estima-

tors. A similar problem occurs when the observations come from a complex survey

design wherein the subjects are sampled from a finite population with unequal se-

lection probabilities. Analyzing such design-based data as a simple random sample

can also introduce bias. To reduce selection bias, the inverse probability weighting

(IPW) idea was introduced by Horvitz and Thompson (1952). The key idea of IPW

is straightforward and intuitively attractive; that is, by weighting each subject in

the data with inverse selection probability, one can produce unbiased estimators.

Based on the IPW idea, Zhao and Lipsitz (1992) proposed a weighted estimating

equation for general regression.

2.5.1 Inverse Probability Weighting (IPW)

The estimating equation of Zhao and Lipsitz (1992) has the following form:

UW (θ) =
n∑
i=1

Ri

πi(Yi, Xi)
U(Yi|Xi; θ) = 0, (2.12)

where πi(Yi, Xi) is the observation probability and U(Yi|Xi; θ) is the quasi-score

function of P (Yi|Xi; θ) .

Zhao and Lipsitz (1992) showed that the estimator θ̂W is consistent and asymp-

totically normal with variance ΣW = I−1
v ΣθI−1

v , where Iv = E[−(∂/∂θ)U(Yi|Xi; θ)],

and Σθ = E
[
1/π(Y,X)U(Y |X; θ)U(Y |X; θ)T

]
.

When πi is unknown, which is the case in many situations, it can be estimated

13



in conjunction with estimating θ. A parametric model (Zhao, Lipsitz and Lew 1996)

can be built for πi, for example, πi(α) = f(R|Y o
i , Xi;α), where f is a known function

indexed by unknown parameter α. Then θ and α can be estimated simultaneously

by solving the following estimating equations:

UW (θ, α) =
∑ Ri

πi(Y o
i , Xi;α)

U(Yi|Xi; θ) = 0,

and

U(α) =
n∑
i=1

U(Ri|Y o
i , Xi;α)

=
∑ Ri − πi

πi(α)(1− πi(α))

∂πi(α)

∂α
= 0. (2.13)

Zhao, Lipsitz and Lew (1996) showed that (θ̂W,α, α̂) has the following asymp-

totic distribution

√
n

 θ̂Wα − θ0

α̂− α0

 d→ N (0,Σθ,α) , (2.14)

where Σθ,α has the form of I−1ΣI−1,

I =

 (∂/∂θ)UW
i (Y |X; θ, α) (∂/∂α)UW

i (Y |X; θ, α)

(∂/∂θ)Ui(R|Y o
i , Xi;α) (∂/∂α)Ui(R|Y o

i , Xi;α)



=

 Iv Ω12

0 Iα

 = I(θ, α),

and

Σ = var

(
1√
n
(UW (θ, α), U(α))T

)
=

 Σθ Ω12

ΩT
12 Iα

 .

Thus we have

√
n

 θ̂Wα − θ0

α̂− α0

 d→ N

0,
 Iv Ω12

0 Iα


−1 Σθ Ω12

ΩT
12 Iα


 Iv Ω12

0 Iα


−1 ,
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and

√
n(θ̂Wα − θ0)

d→ N [0, I−1
v (Σθ − Ω12I−1

α Ω12)I−1
v ]. (2.15)

Hence, θ̂Wα is more efficient than θ̂W , which assumes the observation distribution is

known.

Alternatively, a nonparametric model of πi can be constructed. Wang et al

(1997) considered nonparametric kernel smoothers for the selection probability πi.

The nonparametric estimate avoids the nonrobustness of parametric methods men-

tioned above. However, the nonparametric method encounters another problem of

bandwidth selection. The selection of a good value of bandwidth is crucial to ensure

the asymptotic unbiasedness of the estimation.

2.5.2 Improved IPW (Augmented IPW)

The IPW method does not use all observed information. Therefore θ̂W is not

efficient but can be improved by incorporating all available information in incomplete

cases. Robins, Rotnizky and Zhao (1994) showed that the efficiency of IPW can be

improved by subtracting the projection of the estimating function onto the nuisance

tangent space, which is the closed span of nuisance scores. Lipsitz, Ibrahim and

Zhao (1999) further explored the properties of this approach.

The resulting estimating function has the following form:

UAW =
∑
i

[
Ri

πi
Uθ,i(Y |X)−

(
Ri

πi
− 1

)
E [Uθ,i(Y |X)|Y o

i , Xi]

]
. (2.16)

Since E(UAW ) = 0, the estimate θ̂AW is consistent. Using the followings

− 1

n

∂

∂θ
UAW (θ)

p→ Iv,
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var(
1√
n
UAW (θ)) = E

[
1

π
Uθ(Y |X)Uθ(Y |X)T

]
− E

[
1− π

π
Uθ(Y |X)Uθ(Y |X)T

]
= Σθ − E

[
1− π

π
Uθ(Y |X)Uθ(Y |X)T

]
= ΣAW .

Therefore,
√
n(θ̂AW − θ0) is asymptotic normally distributed with mean 0 and vari-

ance I−1
v ΣAWI−1

v . It is clear that the improved inverse probability weighting method

reduces the variance of the IPW method.

Often, P (Y m|Y o, X) and P (R = 1|Y o, X) are unknown. As shown in previous

sections dealing with the imputation methods, P (Y m|Y o, X), the imputation model,

needs to be correctly specified. In the inverse probability weighting method, P (R =

1|Y o, X), the model for the probability of observing the data, needs to be correct.

However, in the augmented IPWmethod, a consistent estimator of θ can be obtained

if either, not necessarily both, of P (R = 1|Y o, X) or P (Y m|Y o, X) is correctly

specified. This property is called double robustness. Therefore, these estimators

enjoy greater robustness against model misspecification than both imputation and

IPW estimators.

Specifically, efficient IPW estimators require three models: (1) The substantive

model which relates the outcome to explanatory variables/covariates of interest. (2)

A model for the probability of observing the data. This is usually a logistic model of

some form. (3) A model for the joint distribution of the partially and fully observed

data, which is compatible with the substantive model in (1).

The interesting property of (2.16) is that if either model (2) or (3) is misspec-

ified, but not both, the estimators in model (1) remain consistent. By contrast, if

model (2) is wrong, the inverse probability weighting estimator will be inconsistent,
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whereas multiple imputation will generate inconsistent estimators if model (3) is

not correctly specified. Lipsitz et al. (1999) proposed parametric approaches to

specify those distributions under the assumption of MAR. The steps to improve the

efficiency are also discussed in Rotnitzky and Robins (1997).

Inverse probability weighting is generally simple to implement and available

in standard statistical packages with weighted analyses. It’s in essence a semipara-

metric method, making assumptions only about the mean and variance. Thus it

tends to be more robust than the likelihood-based method, which requires assuming

a parametric model for the full-data response distribution. An important advantage

of the IPW method is that under a correctly specified model for observation, many

auxiliary variables can be accommodated, including information on previously ob-

served outcomes. This would generally improve the prediction of future outcomes

being observed or missed. It’s able to handle reasonably well the missing data in dis-

crete variables. In addition, IPW method can be extended to estimating quantities

other than the mean, such as the median.

Generally the IPW estimator is not efficient. But its efficiency can be signifi-

cantly improved by AIPW, which also possesses the doubly-robust property. Anoth-

er potential disadvantage of the IPW method is that it needs to make assumptions

about the observation probability. Usually a logistic regression model is assumed.

However, the possibility of correctly specifying a probability model for observations

is much greater than specifying a correct response model.
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Chapter 3

Missing Data Analysis in Longitudinal Study

3.1 Notation and Assumptions

Consider a repeated measure study where subjects are assessed over a fixed

interval from time 1 to T . Let Yi = (Yi1, Yi2, . . . , YiT )
T be the vector of outcome

variables corresponding to subject i, i = 1, 2, . . . , n, measured at each time t. Let

Xi = (XT
i1, X

T
i2, . . . , X

T
iT )

T , where Xit is a vector of explanatory variables associated

with Yit and includes the constant 1 as a component. Here Xit may be a vector of

baseline explanatory variables X∗
i , such as, treatment indicator, gender, age, and

possibly pretreatment clinical status, or a deterministic function of time and the

baseline variables, e.g., Xit = X∗
i t. It’s assumed that Xi is completely observed for

every subject. The marginal distribution of Yit given Xi is

E(Yit|Xi) = g−1(ηit) = g−1(XT
i θ), (3.1)

where θ is a vector of unknown parameters and g is a known link function.

Due to various reasons, the full vector Yi is not always observed. Define

Ri = (Ri1, Ri2, ..., RiT )
T to be the observation indicator for Yi. Let Rit = 1 if

subject i is observed at time t and Rit = 0 otherwise. The missing data pattern is

assumed to be monotone, that is, Yik is not observed if Yij is missing, where k > j,

which is often the case in repeated measure studies, such as longitudinal studies and
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crossover studies. Let W̄it = {Xi, Yi1, . . . , Yi(t−1)} be the entire history of subject i

before time t.

A nonresponse process is said to be missing completely at random (MCAR) if

the missingness is independent of both observed and unobserved data. That is,

P (Rit = 1|Ri(t−1) = 1, W̄it, Yit) = P (Rit = 1|Ri(t−1) = 1). (3.2)

The nonresponse process is said to be missing at random (MAR) if the miss-

ingness is independent of the unobserved data conditional on the observed data,

that is

P (Rit = 1|Ri(t−1) = 1, W̄it, Yit) = P (Rit = 1|Ri(t−1) = 1, W̄it). (3.3)

Another missingness mechanism is missing not at random (MNAR) where the prob-

ability of a measurement being missing depends on unobserved data.

Throughout, we shall assume MAR without stating otherwise and that the

observation probability is bounded away from zero:

P (Rit = 1|Ri(t−1) = 1, W̄it) > σ > 0 (3.4)

3.2 Last Observation Carried Forward (LOCF)

LOCF has been a commonly used single imputation method in longitudinal

study for the last few decades. It’s based on the strong assumption that the outcome

of a participant does not change after dropout, which is generally not the case in

reality. Although using LOCF relies on the plausibility of the assumptions under-

pinning these estimators, the pragmatic justification often stems from the sometimes
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mistaken view that it provides a simple and conservative imputation that will help

prevent approval of ineffective treatments (National Research Council, 2010). How-

ever this is not necessarily the case, since, for example, LOCF is anticonservative in

situations where participants off study treatment generally do worse over time. In

such cases, if many participants discontinue study treatment due to problems with

tolerability, the treatment can be made to look much better than the control by

such an imputation strategy.

3.3 Generalized Estimating Equations (GEE)

The analysis of non-Gaussian longitudinal data is difficult partly because few

models for the joint distribution of the repeated observations for a subject are avail-

able. On the other hand, longitudinal data offers the advantage that data from

distinct subjects are independent. In longitudinal studies, outcomes that are re-

peatedly measured over time may be correlated and some may be missing. Liang

and Zeger (1986) proposed the generalized estimating equation (GEE) approach to

longitudinal data, whose solutions are consistent for θ provided only that the model

for the marginal means of the outcomes at each occasion is correctly specified. This

approach is an extension of quasi-likelihood methods (McCullagh and Nelder, 1989)

to the multivariate regression setting and results in reweighted least squares esti-

mators of the parameter θ. Assuming that the marginal mean µi has been correctly

specified as g(µi) = ηi = XT
i θ, where g is a known link function, the estimating
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equation for θ in the presence of missing data is

U(θ, α) =
n∑
i=1

∂µTi
∂θ

Vi(θ, α)
−1Ci(Yi − µi) = 0, (3.5)

where Vi(θ, α) = ϕAi(µi)
1/2Ωi(ρ)Aiµi

1/2, Ai = diag{var(yi1), var(yi2), ..., var(yiT )},

α = (ϕ, ρ), Ωi(ρ) is a “working” correlation matrix of Yi, and

Ci = diag{Ri1, Ri2, ..., RiT}.

One can choose Ωi(ρ) as the identity matrix or the equicorrelation matrix and

the specified correlation structure need not be the correct correlation structure of Yi.

The GEE estimator, θ̂G, is the root of U(θ, α̂) = 0, where α̂ satisfies
√
n(α̂− α∗) =

Op(1). θ̂G is asymptotically normally distributed with mean θ and variance:

ΣG =

(
n∑
i=1

DT
i V

−1
i Di

)−1{ n∑
i=1

DT
i V

−1
i var(Yi)V

−1
i Di

}(
n∑
i=1

DT
i V

−1
i Di

)−1

, (3.6)

whereDi = ∂µTi /∂θ.

Note that the consistency of θ̂G and ΣG depends only on the correct specifi-

cation of the mean, not on the correct choice of the “working” correlation matrix.

However the correct specification of the “working” correlation matrix will help im-

prove the efficiency. In addition, when the “working” correlation matrix represents

the true correlation, the assumption of MCAR can be unnecessary. In summa-

ry, Liang and Zeger (1986) proposed the generalized estimating equation (GEE)

approach to longitudinal data, whose solutions are consistent under MCAR. The

methods avoids the need for multivariate distributions by only assuming a function-

al form of the marginal distribution at each occasion.
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3.4 Weighted Generalized Estimating Equations (WGEE)

Liang and Zeger (1986) pointed out that θ̂G, the solution by solving the GEE,

is consistent under MCAR but not under MAR. Robins, Rotnitzky and Zhao (1995)

proposed a weighted generalized estimating equation (WGEE) for obtaining unbi-

ased GEE estimates under MAR.

Let λ̄it = P (Rit = 1|Ri(t−1), W̄it) be the probability of observing a response at

time t. Typically, λ̄it(α) could be a logistic function. Let α̂ be the partial maximum

likelihood estimator (MLE) that maximizes the partial likelihood estimator,

L(α) =
∏
i

Li(α) =
∏
i

∏
t

[λ̄it(α)
Rit{1− λ̄it(α)}1−Rit ]Ri(t−1) . (3.7)

The contribution to the score for α from the ith subject is

Si(α) =

{
∂

∂α
Li(α)

}
=

T∑
t=1

(Rit − λ̄it(α)Ri(t−1))
∂

∂α
logitλ̄it{(α)}. (3.8)

Let Σ = var{Si(α)} be the asymptotic variance of
√
n(α̂ − α). Then Si(α)

simplifies to
∑T

t=1(Rit − λ̄it(α)Ri(t−1))h(W̄it) if λ̄it follows the logistic regression

model logit(λ̄it) = αTh(W̄it) for some vector function h(·). Define π̄it(α) = λ̄i1(α)×

· · ·× λ̄it(α), where π̄it(α) is the conditional probability of observing subject i at the

tth occasion given the entire vector W̄i(T+1). Define

△i(α) =



Ri1π̄i1(α)
−1 0 · · · 0

0 Ri2π̄i2(α)
−1 · · · ·

· · · · · ·

0 0 · · · RiT π̄iT (α)
−1


(3.9)
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as the T ×T diagonal matrix with diagonal elements △it(α) = Ritπ̄it(α)
−1 Then the

WGEE has the following form:

U(θ, α̂) = n−1/2

n∑
i=1

DiV
−1
i △i(α̂)(Yi − µi) = 0, (3.10)

where Di = ∂µTi /∂θ, Vi is the “working” covariance matrix. Robins, Rotnitzky

and Zhao (1995) showed that the solution to estimating equation (3.10), θ̂WG, is

consistent and asymptotically normal.
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Chapter 4

Proposed Reweighted Generalized Estimating Equations Method

4.1 Motivation

While the WGEE method offers a very useful alternative to consistently esti-

mating the repeated measures with missing observations, it does have serious disad-

vantages. When the observation probability π̄it in WGEE is small, WGEE estimates

become very unstable. Additionally, the efficiency of a WGEE estimate is sacrificed

for the robustness by assuming only the mean and variance of a distribution. In

order to improve upon the WGEE method, especially the efficiency of WGEE, moti-

vated by the methods of handling missing data in survey research (Brick and Kalton,

1996), we developed a new weighted estimating equation, a reweighted approach, for

repeated measures in the presence of missing observations. The proposed method

handles missing observations under the MAR assumption. The basic idea of the

reweighted method is first to weight each subject by the inverse of the observation

probability to correct the selection bias created by missingness and then to impose

a simpler selection probability on each subject. Here we suggest setting the im-

posed simpler selection probability as a marginal probability at each time point for

longitudinal study or each period for crossover study. The selection probability is

modeled parametrically. Generally it can be a logistic regression model that regress-

es only on the covariates of the subject. We show that the reweighted GEE (RGEE)
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estimates are asymptotically consistent and normal and that RGEE estimates are

asymptotically more efficient than WGEE estimates.

4.2 Reweighted GEE Estimators

Denote the newly derived weight as qit = ωit/π̄it, where π̄it = λ̄i1 × . . .× λ̄iT ,

λ̄it is the conditional probability of observing subject i at the tth occasion given the

entire history of subject i, and ωit is an observation probability for subject i at time

point t by a logistic regression model that only regresses on the covariates. That is,

logit(ωi) = α0 + αTXi, where Xi are the covariates.

Hence, the reweighting estimating equation is

U(θ) = n−1/2

n∑
i=1

Ui(θ) = n−1/2

n∑
i=1

DiV
−1
i △∗

i (Yi − µi) = 0, (4.1)

where Di = ∂µTi /∂θ, Vi is the “working” covariance matrix, and △∗
i = diag{1, Ri2×

qi2, · · · , RiT × qiT}.

Let Z∗
i (ψ) = (UT

i (θ, α), S
T
i (α))

T , where ψT = (θT , αT ), UT
i (θ, α) is the contri-

bution to the score for θ, α from the ith subject, and STi (α) is the contribution to

the score for α from the ith subject. The following regularity conditions are needed

for Theorems 1 and 2:

Regularity Conditions

1. θ0 and α0 lie in the interior of compact sets of θ and α.

2. (R̄T
i(T+1), W̄

T
i(T+1))

T , i = 1, . . . , n, are i.i.d.
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3. λ̄it(α) > c > 0 for all α ∈ A, t = (1, . . . , T ) for some c.

4. Eψ0 [Z
∗
i (ψ)] ̸= 0 if ψ ̸= ψ0.

5. var[Z∗
i (ψ0)] is finite and positive definite.

6. E[(∂/∂ψT )Z
∗
i (ψ)] exists and is invertible.

7. E[sup
ψ∈ψ

∥Z∗
i (ψ)∥], E[sup

ψ∈ψ
∥(∂/∂ψT )Z∗

i (ψ)∥], E[sup
ψ∈ψ

∥Z∗
i (ψ)Z

∗
i (ψ)

T∥] are all finite where

∥A∥ ≡ {ΣijA
2
ij}1/2 for any matrix A with elements Aij and ψ is the Cartesian

product of α and θ.

8. Li(ψ) is a parametric model for the observed data, where Li(ψ) is a density

that differs from the true density only in that ψ replaces ψ0.

9. For all ψ∗ in a neighborhood N of ψ0, Eψ∗ [Z∗
i (ψ)] and Eψ∗ [sup

ψ∈ψ
∥Z∗

i (ψ)Z
∗
i (ψ)

T∥]

are bounded, where Eψ∗ refers to expectation with respect to Li(ψ
∗)

Theorem 1. Under regularity conditions (1-9) and assumptions (3.3), (3.4), the

solution to the reweighted estimating equations (4.1), θ̂RG, is consistent and asymp-

totically normal for estimating θ. That is,

√
n(θ̂RG − θ0)

d→ N(0,Γ−1ΣθΓ
−1), (4.2)

where Γ = E{(∂Ui(θ)/∂θT )} and Σθ = E[1/π(Y,X)U(Y |X; θ)U(Y |X; θ)T ].

When π̄it is unknown, which is often the case in practice, it can be estimated

in conjunction with estimating θ. Let the new weight be qit(α) = ωit/π̄it(α), where

π̄it(α) = λ̄i1(α)×· · ·×λ̄iT (α), and λ̄it(α) is the corresponding conditional probability.
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Then the reweighting estimating equations are

U(θ, α) = n−1/2

n∑
i=1

Ui(θ, α) = n−1/2

n∑
i=1

DiV
−1
i △∗

i (α)(Yi − µi) = 0, (4.3)

and

S(α) =
n∑
i=1

Si(α) =
n∑
i=1

T∑
t=1

(Rit − λ̄it(α)Ri(t−1))
∂

∂α
logitλ̄it{(α)}, (4.4)

where △∗
i (α) = diag{1, Ri2× qi2(α), · · · , RiT × qiT (α)} and Si(α) is the contribution

to the score for α from the ith subject.

Theorem 2. The solution to the reweighted estimating equations (4.3), θ̂RGα, under

regularity conditions (1-9) and assumptions (3.3), (3.4), is consistent and asymp-

totically normal for estimating θ. That is,

√
n(θ̂RGα − θ0)

d→ N(0,Γ−1(Σθ −BΩBT )Γ−1), (4.5)

where Γ = E{∂Ui(θ, α)/∂θT},Σθ = E{Ui(θ, α)Ui(θ, α)T}, B = E{∂Ui(θ, α)/∂αT} =

E{Ui(θ, α)Si(α)T}, and Ω = E{Si(α)Si(α)T}. Moreover Γ,Σθ, B,Ω can be estimat-

ed by

Γ̂ = (1/n)
∑

(∂µi(θ̂)
T/∂θ)Vi(θ̂)△i(α̂)(∂µi(θ̂)

T/∂θ),

Σ̂θ = (1/n)
∑

Ui(θ̂, α̂)Ui(θ̂, α̂)
T ,

B̂ = (1/n)
∑

Ui(θ̂, α̂)Si(α̂)
T ,

and

Ω̂ = (1/n)
∑

Si(α̂)Si(α̂)
T ,

respectively.
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4.3 Proofs

Proof of Theorem 1

When π̄it is known, the reweighted estimator, θ̂RG, the estimator obtained by

solving estimating equation (4.1), is consistent (Lehmann and Casella, 1998) because

E[Ui(θ)] = E[E{Ui(θ)|Yi, Xi}]

= E

[
∂µTi
∂θ

V −1
i E(△∗

i |Yi, Xi)(Yi − µi)

]
= E

[
∂µTi
∂θ

V −1
i Wi(Yi − µi)

]
= 0,

where Wi = diag{1, ωi1, . . . , ωiT}. This follows because given covariate value Xi, π̄it

doesn’t depend on the outcome Yi.

Under regularity conditions (1 − 9), Theorem (3.4) of Newey and McFadden

(1994) implies that with probability approaching 1, θ̂RG exists, is unique and satisfies

√
n(θ̂RG − θ0) =

[
− 1

n

∂

∂θT
U(θ0)

]−1
1√
n
U(θ0) + op(1).

Using large sample theory, under regularity conditions (1− 9), it follows that

− 1

n

∂

∂θ
U(θ0)

p→ E

[
− ∂

∂θ
U(Y1|X1; θ0)

]
= Γ,

and

1√
n
U(θ0)

d→ N(0,Σθ0),

where

Σθ0 = E

[
1

π(Y,X)
U(Y |X; θ0)U(Y |X; θ0)

T

]
.
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Thus we have

√
n(θ̂RG − θ0)

d→ N(0,ΣRG),

where ΣRG = Γ−1Σθ0Γ
−1.

Proof of Theorem 2

As in Robins, Rotnizky and Zhao (1995) and in Newey and McFadden (1994),

under regularity conditions (1− 9) and by applying Taylor expansion, we have

√
n(α̂− α0) =

{
−E∂Si(α)

∂α

}−1

Si(α0) + op(1),

and

√
n(θ̂RGα−θ0) =

{
−E∂Ui(θ0, α0)

∂θ

}−1

[U(θ, α)+

{
E
∂Ui(θ, α)

∂α

}−1 √
n(α̂−α0)]+op(1).

As E{∂Ui(θ, α)/∂α} = −E{Ui(θ, α)Si(α)T}, which is the “Generalized Infor-

mation Equality” (Pierce, 1982), and

var{Si(α)} = −E{∂Si(α)∂α} = E{Si(α)Si(α)T},

we then obtain

√
n(θ̂RGα − θ0) = Γ−1

n∑
i=1

Resid{Ui(θ, α), Si(α)}+ op(1),

where Γ−1 = −E{∂Ui(θ, α)/∂α}, and

Resid{Ui(θ, α), Si(α)} = Ui(θ, α)− E{Ui(θ, α)Si(α)T}[E{Si(α)Si(α)T}]−1Si(α)

is the residual from the population least squares regression of Ui(θ, α) on Si(α).
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Therefore,

var {Resid[Ui(θ, α)Si(α)]} = Σθ0 −BΩ−1BT ,

where B = E{Ui(θ, α)Si(α)T},Ω = E{Si(α)Si(α)T}. From the central limit the-

orem, the asymptotic distribution of
√
n(θ̂RGα − θ0) is normal with mean 0 and

variance Γ−1(Σθ0 −BΩ−1BT )Γ−1.

If some components of Xi are grouping indicators, the proofs in this section

can be extended to this case, provided that ng, the number of subjects in group g,

goes to infinity and ng → Cg ∈ (0, 1) for g = 1, . . . , G.
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Chapter 5

Application of the Proposed Method in Crossover Study Setting

5.1 Crossover Study and Designs

In a parallel group study, each experimental unit is randomized to receive one

experimental treatment. A crossover study is distinguished from a parallel group

study by each subject’s receiving a sequence of experimental treatments. Note

that typically the aim is still to compare the effects of individual treatments, not

the sequences themselves. The main advantage is that the treatments are com-

pared “within-subject”. Therefore, every subject provides a direct comparison of

the treatments that he or she has received, eliminating many unknown confounders.

Crossover designs remove from the treatment (and period) comparisons any quanti-

ty that is related to the differences between the subjects as it is well known that the

variability of measurements taken on different subjects is far greater than the vari-

ability of repeated measurements taken on the same subject (Jones and Kenward,

2003). Crossover studies have been extensively used in clinical studies, particularly

in the chronic diseases.

Although the use of repeated measurements on the same subject provides great

advantages, it also brings one potential disadvantage, which is the possibility that

the effect of a treatment given in one period might still be present at the start of

the following period. This phenomenon, called “carryover effect”, can be reduced by
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Table 5.1: Orthogonal Latin Square Design for Four Treatments

Period

Sequence 1 2 3 4

1 A B C D
2 B A D C
3 C D A B
4 D C B A

5 A D B C
6 B C A D
7 C B D A
8 D A C B

9 A C D B
10 B D C A
11 C A B D
12 D B A C

wash-out, in which the active effects of a treatment given in the previous period to

be washed out of the body before each subject begins the next period of treatment,

and by the choice of designs and combinations of them, among other methods.

In the presence of carryover effects, in order to have the highest possible effi-

ciency the design must be balanced. The term “balance” refers to the combinatorial

properties that the design must possess: (a) In a balanced design, not only does

each treatment occur once with each subject, but also (b), over the whole design

each treatment occurs the same number of times in each period, and (c) the number

of subjects who receive treatment i in one period followed by treatment j in the

next period is the same for all i ̸= j. This can be achieved by using a complete set

of orthogonal Latin squares.

A complete set of t × t orthogonal Latin squares contains t − 1 squares and

32



Table 5.2: Williams Designs for Four and Three Treatments

Period

Sequence 1 2 3 4

4×4 Williams Design

1 A B D C
2 B C A D
3 C D B A
4 D A C B

3×3 Williams Design

1 A B C
2 B C A
3 C A B
4 A C B
5 B A C
6 C B A

complete sets exist for values of t that are prime or are powers of a prime. A notable

exception is therefore t = 6. Although using orthogonal Latin squares has additional

advantages, they require more subjects and is generally more difficult to execute in

clinical trials. Also, the loss of subjects from the complete set is likely to be more

damaging as its combinatorial structure is more complex.

It was shown that balance could be achieved by a Williams design (Williams,

1949) using only one particular Latin square if t is even and by using only two

particular squares if t is odd. In a Williams design, each treatment precedes every

other treatment, excluding itself, equally often and thus a balance for carryover

effects is achieved. For more than three treatments, a Williams design, therefore,

33



requires fewer subjects than complete sets of orthogonal squares. It’s a design

commonly used in crossover clinical trials.

As in longitudinal studies, repeated measures are taken on the same subject in

crossover studies. Similarly, missing data is also a common problem. However, few

studies have been reported in this area. We would like to compare the incomplete

data analysis of both simulated data and industry submitted crossover clinical trial

data using various approaches including full cohort, complete-case analysis, WGEE

and RGEE, our proposed method. Full cohort are the full data without missing

observations while the complete-case method only analyzes the subjects with obser-

vations in every period.

Let p and t denote the number of periods and treatments, respectively. Here

we focus on the crossover designs with p = t.

5.2 Simulations

Simulations were conducted for a 2×2 crossover study and the Williams design

for a 3× 3 crossover study to evaluate the performances of the proposed reweighted

GEE (RGEE) along with full cohort, complete-case and WGEE approaches. The

primary model of interest is the marginal mean of Yit conditional on Xit,

E(Yit|Xit) = µit = g−1(η) = g−1(XT
itθ), (5.1)

where θ is a vector of unknown parameters, g is a known link function, and Xi are

covariates used in the simulations. In this chapter, the response variable is assumed
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Table 5.3: Simulation Settings for 2× 2 Crossover Design

Missing Prop. Sample Size Treatment Effect Table

20− 30% 1000 Large vs Small 5.4

40− 50% 1000 Large vs Small 5.5

20− 30% 500 vs 1000 Large 5.6

10− 15% 1000 Large vs Small B.4

60− 70% 1000 Large vs Small B.5

to follow a normal distribution so that g is the identity function.

2× 2 Crossover Study

For 2 × 2 crossover simulation study, we generated 500 replicated study data

sets with sample sizes of N = 500 or 1000. The covariates are treatment, period,

and baseline. It’s assumed that the outcome in period 1 of each subject is always

observed, while the response at period 2 outcome is observed at random according

to a logistic regression model

logit {P (Ri2 = 1|Xi, Yi1)} = α0 + αTxXi + αyYi1, (5.2)

where Xi is the baseline covariates of subject i in period 2 and Yi1 is the observation

in period 1.
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Asymptotic variances of the estimators were estimated using the “sandwich”

estimators, and the efficiency of the RGEE estimators was evaluated relative to

other approaches, particularly relative to those estimated by the WGEE method.

Also studied were the effects of sample size and choice of “working” covariance on

the performances of each approach. Specifically, for studying the effect of sample

size, the performances of the estimators were evaluated for sample sizes of 500 or

1000.

The influence of missing proportions is explored for the 2× 2 crossover study.

The following proportions of missing data were generated under the missing at

random mechanism: 10 − 15%, 20 − 30%, 40 − 50%, and 60 − 70%. It’s generally

known that a large treatment effect is easily detected. To study how the proposed

method performs with small treatment effects, simulations were also run on drug

with small treatment effect coefficient while the other factors were held constant.

As shown in the following Q-Q plots and histograms, the estimates produced

by all the methods generally follow normal distributions. All approaches except

CC analysis produce consistent estimates. Not surprisingly, the full cohort analysis

yields the best estimates in terms of consistency and efficiency. The RGEE esti-

mates are the best among those estimated by all the other approaches. The bias of

the CC analysis becomes more problematic as the missing proportion increases. It’s

also shown that the “sandwich” estimators of standard errors are close to the corre-

sponding true standard errors for each approach across all the missing proportions

(Tables 5.4, 5.5, 5.6, B.4, B.5).

The RGEE estimates are consistently more efficient than WGEE estimates for
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Table 5.4: Simulation Setting 1
2x2 Crossover Study: comparison of the reweighted estimators with WGEE and other methods

estimators under monotone missingness, where 20− 30% of the subjects were missing
observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect respectively,

and the sample size is 1000.

Bias Sample SE Mean Theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Large Treatment Effect (mis. pct., 20− 30%)

Full cohort .002 .007 .005 .644 .286 .412 .645 .287 .416 .954 .955 .957
Complete-Case -.134 -.128 .026 .739 .347 .499 .750 .357 .513 .918 .925 .938

WGEE(α) .020 .029 .007 .830 .399 .439 .847 .413 .446 .943 .945 .952
WGEE(α̂) .019 .025 .007 .812 .396 .438 .828 .407 .444 .944 .948 .954

RGEE(α̂) .018 .023 .007 .717 .347 .431 .727 .353 .435 .943 .947 .952

Small Treatment Effect (mis. pct., 20− 30%)

Full cohort .002 .007 .005 .648 .288 .415 .649 .289 .419 .954 .955 .957
Complete-Case -.136 -.130 .026 .748 .351 .505 .759 .361 .519 .917 .924 .937

WGEE(α) .020 .029 .007 .837 .402 .443 .854 .417 .450 .943 .945 .952
WGEE(α̂) .019 .025 .007 .818 .399 .441 .834 .410 .447 .944 .948 .954

RGEE(α̂) .018 .023 .007 .722 .349 .433 .732 .355 .438 .943 .947 .952

all missing proportions. Specifically, as shown in Table 5.4, the variance of RGEE

improves as much as 25% over WGEE for the treatment effect in the case where

20−30% of the subjects have missing observations in period 2. The improvement for

the intercept is also significant, about 20%, whereas the improvement for baseline

effect is modest. As the missing percentage increases to 40 − 50% (Table 5.5) and

60−70% (B.5), the magnitude of improvement increases to approximately 35% and

40% for the treatment effect respectively. It indicates that the proposed method is

more stable than WGEE as the observation probability becomes small. As expected

from the findings above, with missing proportion dropping to 10 − 15% (B.4), the

improvement decreases correspondingly. The influence of missing observations on

baseline effect is quite limited. Not only is the bias small, but also the variations
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Table 5.5: Simulation Setting 2
2x2 Crossover Study: comparison of the reweighted estimators with WGEE and other methods

estimators under monotone missingness, where 40− 50% of the subjects were missing
observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect respectively,

and the sample size is 1000.

Bias Sample SE Mean Theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Large Treatment Effect (mis. pct., 40− 50%)

Full cohort .005 .007 .005 .645 .287 .413 .646 .288 .417 .953 .954 .957
Complete-Case -.733 -.250 .031 .923 .438 .524 1.01 .478 .563 .855 .915 .927

WGEE(α) .031 .037 .009 1.08 .518 .461 1.21 .578 .495 .921 .935 .943
WGEE(α̂) .028 .034 .009 1.04 .508 .460 1.15 .545 .493 .935 .937 .945

RGEE(α̂) .022 .032 .009 .887 .409 .453 .949 .436 .476 .934 .935 .943

Small Treatment Effect (mis. pct., 40− 50%)

Full cohort .005 .007 .005 .650 .289 .416 .651 .290 .420 .953 .954 .957
Complete-Case -.747 -.255 .032 .937 .445 .532 1.02 .485 .571 .854 .914 .926

WGEE(α) .032 .038 .009 1.09 .523 .465 1.22 .583 .500 .920 .934 .942
WGEE(α̂) .028 .035 .009 1.05 .512 .464 1.16 .549 .497 .935 .937 .945

RGEE(α̂) .022 .033 .009 .894 .412 .456 .956 .439 .479 .934 .935 .943

between sampling variance and sandwich estimator variances are negligible.

The magnitude of improvement in efficiency of RGEE relative to WGEE is

rather remarkable for the treatment effect, which also happens to be the primary

interest of the study. One of the possible explanations might be that unlike other

covariates whose effect can be estimated from early periods, the treatment is dis-

tinctive in each period for a specific subject, and thus the missing information for

the corresponding treatment would be difficult to replace and tends to be more dam-

aging. As a result, it would be more difficult to estimate the treatment effect more

precisely without proper adjustment. Our study also showed that the estimates

from the data generated using small treatment coefficients showed trends similar to

those from the large treatment effect.
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Table 5.6: Simulation Setting 3
2x2 Crossover Study: comparison of the reweighted estimators with WGEE and other methods
estimators under monotone missingness, where approximately 20− 30% of the subjects were
missing observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect

respectively with large treatment effect and different sample size.

Bias Sample SE Mean theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Cohort size 500

Full Cohort .002 .009 .005 .685 .303 .427 .691 .306 .431 .943 .945 .952
Complete-Case -.149 -.131 .030 .852 .403 .512 .873 .411 .520 .806 .838 .840

WGEE(α) .035 .031 .013 .955 .475 .455 .972 .483 .463 .852 .857 .873
WGEE(α̂) .033 .029 .011 .938 .469 .453 .955 .477 .462 .855 .861 .887

RGEE(α̂) .031 .027 .009 .839 .397 .444 .853 .403 .452 .861 .875 .893

Cohort size 1000

Full cohort .002 .007 .005 .644 .286 .412 .645 .287 .416 .954 .955 .957
Complete-Case -.134 -.128 .026 .739 .347 .499 .750 .357 .513 .918 .925 .938

WGEE(α) .020 .029 .007 .830 .399 .439 .847 .413 .446 .943 .945 .952
WGEE(α̂) .019 .025 .007 .812 .396 .438 .828 .407 .444 .944 .948 .954

RGEE(α̂) .018 .023 .007 .717 .347 .431 .727 .353 .435 .943 .947 .952

Compared to the estimators generated from data with 500 patients, those

from the data with 1000 patients showed approximately 20 − 30% improvement in

variances for treatment effects for all the methods other than full cohort analysis,

where the reduction is 10−15%, shown in Table 5.6. The large sample size case, the

RGEE approach is more efficient than WGEE method even when only half of the

patients were enrolled, where the improvements are about 20 − 30% for intercept

and the treatment effect.

Consistent with findings by Robins, Rotnitzky and Zhao (1995), we found that

even when the nonresponse probabilities λ̄it are known, the estimator θ̂, produced

by WGEE(α̂) that uses the estimated probabilities λ̄it(α̂) is at least as efficient as

θ̂∗, the estimator produced by WGEE(α) that uses the true λ̄it.
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3× 3 Williams Design

For Williams design of 3 × 3 crossover study, we generated 500 replicated

study data sets with sample sizes of N = 900 or 1800. As in the 2 × 2 crossover

study, the period 1 outcome of each subject is always observed and the missingness

is monotone. That is, period 3 is missing if period 2 is not observed. Covariates

used in simulating the data include treatment, period, sex, and age and were never

missing. The responses at period 2 and period 3 are observed at random according

to the following logistic regression models:

logit {P (Ri2 = 1|Xi, Yi1)} = α0 + αT1xXi2 + α1yYi1, (5.3)

logit {P (Ri3 = 1|Ri2 = 1, Xi, Yi1, Yi2)} = α0 + αT2xXi3 + α1yYi1 + α2yYi2, (5.4)

where Xi2, Xi3 are covariates of subject i in period 2 and period 3, respectively, and

Yi1, Yi2 are the observed responses in period 1 and period 2, respectively.

We focused on data set with 40 − 50% missing observations in the Williams

3x3 crossover study. Estimators generated by full cohort, CC, WGEE and RGEE

are compared in terms of consistency, efficiency, and the coverage probability. Ad-

ditionally, in order to evaluate the influence of the “working” covariance matrix,

we compared the estimates by analyzing the data using compound symmetry and

unstructured “working” variance-covariance respectively while the true variance-

covariances between observations of period 1, period 2, and period 3 are compound

symmetry. Also compared is the effect of sample size on the estimates. Specifically,

performances of the estimators are evaluated for sample size of 900 or 1800.

The following matrix displays the compound symmetry covariance structure,
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Table 5.7: Simulation Settings for 3× 3 Crossover Design

Missing Prop. Sample Size Treatment Effect Working Cov. Table

40− 50% 900 vs 1800 Large CS 5.8

40− 50% 900 Large CS vs UN 5.9

which implies that the outcome of each time point or period assumes the same

variance and the correlation between any two time points or periods is also the

same.

Compound Symmetry (CS) : σ2


1
ρ 1
...

...
. . .

ρ ρ · · · 1



The more complicated unstructured variance-covariance structure is shown below,

which specifies a completely general T ×T covariance matrix parameterized directly

in terms of variances and covariances.

Unstructured (UN) :


σ2
1 σ12 · · · σ1T

σ12 σ2
2 · · · σ2T

...
...

. . .
...

σ1T σ2T · · · σ2
T


The efficiency improvements of RGEE over WGEE vary depending the sample

size and “working” covariance structure used. The variance reduction tends to be

greater for the data of bigger sample size and a “working” covariance that is close to

the true covariance, which is compound symmetry structure in this case. Specifically,

the performance of RGEE is better than WGEE with 25− 30% improvement when
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Table 5.8: Simulation Setting 4
Williams design of 3x3 crossover study: comparison of the reweighted estimators with WGEE

and other methods estimators under monotone missingness, where overall approximately
40− 50% of the subjects were missing observations in period 2, period 3 or both, and θ1, θ2, θ3, θ4

are treatment 1, treatment 2, age, and sex effect respectively, the “working” covariance is
compound symmetry (CS) structure while the true covariance structure is compound symmetry .

Bias Sample SE Mean theoretical SE 95% CP

Approach θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

Cohort size 900

Full Cohort .008 .002 -.048 .009 .351 .368 .391 .891 .385 .409 .431 .987 .960 .934 .940 .948

Complete-Case -1.04 -.332 -.145 -1.87 .517 .530 .541 1.14 .569 .591 .591 1.26 .586 .832 .838 .685

WGEE(α̂) .117 .034 -.044 -.312 .491 .487 .509 1.11 .551 .543 .569 1.19 .786 .870 .900 0.901

RGEE(α̂) .035 -.010 -.023 -.191 .459 .457 .471 1.03 .506 .507 .536 1.11 .818 .905 .912 .908

Cohort size 1800

Full Cohort .006 .017 -.047 .009 .289 .306 .323 .743 .315 .335 .357 .813 .948 .938 .958 .952

Complete-Case -1.02 -.260 -.121 -1.82 .435 .443 .452 .959 .478 .489 .497 1.07 .603 .903 .915 .752

WGEE(α̂) .090 .028 -.033 -.299 .413 .413 .429 .937 .449 .453 .471 1.03 .874 .906 .938 .902

RGEE(α̂) .014 -.009 -.017 -.172 .355 .353 .373 .819 .388 .391 .409 .897 .906 .914 .941 .918
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Table 5.9: Simulation Setting 5
Williams design of 3x3 crossover study: comparison of the reweighted estimators with WGEE

and other methods estimators under monotone missingness, where overall approximately 40% to
50% of the subjects were missing observations in period 2, period 3 or both, and θ1, θ2, θ3, θ4 are
treatment 1, treatment 2, age, and sex effect respectively, and the sample size is 900 with true

covariance structure as compound symmetry.

Bias Sample SE Mean theoretical SE 95% CP

Approach θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

Compound Symmetry Covariance (CS)

Full Cohort .008 .002 -.048 .009 .351 .368 .391 .891 .385 .409 .431 .987 .960 .934 .940 .948

Complete-Case -1.04 -.332 -.145 -1.87 .517 .530 .541 1.14 .569 .591 .591 1.26 .586 .832 .838 .685

WGEE(α̂) .117 .034 -.044 -.312 .491 .487 .509 1.11 .551 .543 .569 1.19 .786 .870 .900 0.901

RGEE(α̂) .035 -.010 -.023 -.191 .459 .457 .471 1.03 .506 .507 .536 1.11 .818 .905 .912 .908

Unstructured Covariance (UN)

Full Cohort .008 .002 -.005 .010 .365 .385 .403 .928 .413 .443 .457 1.03 .960 .934 .940 .948

Complete-Case -1.04 -.334 -.145 -1.87 .546 .557 .571 1.19 .613 .632 .641 1.35 .586 .832 .838 .686

WGEE(α̂) .160 .035 -.046 -.330 .519 .515 .539 1.17 .582 .587 .603 1.34 .776 .874 .904 .898

RGEE(α̂) .031 -.013 -.028 -.206 .497 .495 .512 1.12 .558 .563 .583 1.27 .836 .902 .919 .904

the sample size is 1800 and “working” covariance is compound symmetry (Table 5.8),

followed by 10 − 15% improvement for the study with 900 patients and compound

symmetry covariance, and by 5− 10% improvement for the study with 900 patients

and unstructured covariances (Table 5.9).

We observe that the efficiency improved approximately 30 − 40% for all ap-

proaches when the sample size doubles. We also observe that the estimators are

more efficient when the “working” covariances are closer to the true covariances of

the data. Specifically, we observed that the estimators produced by the approaches

using the compound symmetry covariance structure, which is the true covariance
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of the simulated data, as “working” covariance are 10 − 15% more efficient than

the estimators that are obtained using the unstructured covariance as “working”

covariance.

5.3 Application to Data

In this section, we illustrate the proposed method using the QTc study data.

In cardiology, the QT interval is a measure of the time between the start of the

Q wave and the end of the T wave in the heart’s electrical cycle. In general, the

QT interval represents electrical depolarization and repolarization of the left and

right ventricles. QTc is the QT interval corrected for heart rates. A lengthened

QT interval is a biomarker for ventricular tachyarrhythmias like torsades de pointes

(TdP), which is a risk factor for sudden death. TdP was merely an esoteric diagnosis

until the 1980s and 1990s when it was recognized as a major cause of drug-induced

sudden cardiac death. Its recognition prompted the withdrawal of several popular

medications from the market, including Sertindole, an antipsychotic drug, Cisapride,

a GI prokinetic agent, Astemizole, a non-sedating antihistamine, and Grepafloxacin,

an antibiotic. The regulatory guidance for pharmaceutical industry, ICH E14 clinical

evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-

antiarrhythmic drugs, requires all sponsors submitting new drug applications to

conduct a thorough QT/QTc study. A QT study often uses structured crossover

designs such as Latin squares or Williams squares. When ignoring missing data,

the structured design falls back into a random crossover design that suffers loss of
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efficiency in addition to the sample size reduction. The replacement method, the

commonly used method by pharmaceutical companies, replaces a missing subject

with a newly recruited patient, but it is at odds with the idea of intention to treat

(ITT). The data used here is a Williams design of 3×3 crossover study. It has three

arms: placebo, tested drug, and the positive control, 400 mg Moxifloxacin, which is

known to induce QT prolongation.

The primary model is:

E(Yit|Xit) = µit = η = XT
itθ, (5.5)

where Yit is the QTc outcome at period t, t = 1, 2, 3, and Xit are covariates. The

MAR missing mechanism is assumed. We use a logistic model for the conditional

probability λ̄it at period t given that it is observed at period t− 1. That is,

λ̄it = logit−1(αT W̄it), (5.6)

where W̄it is the entire history of subject i before time t.

Complete-case, WGEE and RGEE methods are used to analyze the data,

where about 36 patients are assigned to one of six treatment sequences with 6

patients in each treatment sequence. Approximately 20 − 30% observations were

missing. The coefficients estimated by fitting the model (5.6), shown in Table (5.10),

are used to compute the observation probability. The estimates of the parameters

in model (5.5) and their standard errors as calculated by the complete-case, WGEE,

and RGEE methods are listed in Table 5.11.

Analysis of the QTc data with missing observations showed that the estimators

of RGEE and WGEE methods were much more efficient than those produced by
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Figure 5.1: Schematic representation of Electrocardiogram (ECG)

Table 5.10: Estimated Logistic Model of the Observation Probability

Period 2 Period 3

Parameters Estimate SE Estimate SE

Treatment -2.908 1.489 1.364 0.938

Age -0.075 0.133 0.080 0.069

Sex (Male) 1.517 3.022 0.860 2.014

Race (White) 6.871 5.812 -2.021 2.383

Height -0.942 1.071 -0.624 0.777

Weight 0.821 1.544 0.777 0.928

BMI -0.656 5.277 -2.995 2.872

Y1 (outcome of Period 1) 0.535 0.964 0.319 0.804

Y2 (outcome of Period 2) NA NA 10.404 9.009
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Table 5.11: Analysis of QTc Study Using Various Approaches

Complete-case WGEE RGEE

Effects θ SE θ SE θ SE

Drug 3.980 1.179 3.540 0.193 3.480 0.134

Moxi 11.95 3.534 10.390 0.711 8.640 0.658

Age 0.283 0.215 0.149 0.030 0.220 0.028

Sex (Male) -1.21 3.376 -3.740 0.487 -3.990 0.478

Race (White) 0.051 3.381 -0.862 0.597 -1.213 0.558

BMI 0.211 0.588 0.595 0.107 0.560 0.101

complete-case analysis, and that RGEE consistently performed better than WGEE

with the magnitude of improvement being greater for some effects. Specifically,

for the drug coefficient estimate, the variance improvement of the RGEE method

relative to the WGEE method is approximately 50%, and 14% for Moxi, the positive

control.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have proposed the RGEE method, an approach that is more stable and effi-

cient than WGEE. The estimates by the RGEE method have been shown consistent

and asymptotically normal. We applied the RGEE method along with full cohort,

complete-case, WGEE methods to simulated 2 × 2 crossover and 3 × 3 Williams

design studies, and to real data. Both WGEE and RGEE estimates are consistent

while complete-case estimates are biased, and the bias becomes more problematic as

the missing proportion increases. Our study shows that the RGEE estimators are

consistently more efficient than the WGEE estimators, and that the improvement

is unequivocal and substantial although the magnitude of efficiency improvement

differs as the sample size, missing proportion, or “working” covariance varies. Addi-

tionally, we find that for 2×2 crossover study, the estimates in the cohort size of 500

are fairly unbiased compared to those in the cohort size of 1000 while the estimates

in the cohort size 900 of 3 × 3 Williams design are more biased than those in the

cohort size of 1800. However the variance efficiency improves in both 2×2 and 3×3

simulations with the improvement being greater in 3 × 3 crossover study as sam-

ple size increases. Our study also shows that the efficiency improvement of RGEE

relative to WGEE increases as the missing proportion becomes greater. Among
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other findings is that the RGEE method performs better than the WGEE method

regardless of the choice of “working” covariance. Choosing the “correct” covariance

structure, however, does generally produce more efficient estimators. Consistent

with findings by Robins, Rotnitzky and Zhao (1995), we found that even when the

nonresponse probabilities λ̄it are known, the estimator θ̂, produced by WGEE(α̂)

that uses the estimated probabilities λ̄it(α̂) is at least as efficient as θ̂∗, the estimator

produced by WGEE(α) that uses the true λ̄it. Application to real data also showed

that the RGEE method is more efficient than the WGEE method.

6.2 Future Work

Unlike longitudinal studies where a patient receives just one treatment and

measured multiple times, crossover studies are more complicated because a patient

receives a different treatment in each period. The reweighted generalized estimating

equations method, although proposed for the crossover studies, can be applied to

other longitudinal studies with slight modifications. As the methods of generalized

estimating equations class have potential to handle the discrete variables well, it will

be interesting to see how the proposed method performs when the missing outcome

follows binary or other discrete distributions. Crossover studies where multiple

measures are taken within each period are particularly difficult to deal with as

the correlations also exist between the time points within each period in addition

to the correlations between periods. It will be valuable to apply the proposed

method to the studies of this nature. Further research regarding the performance
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of the method under the missing not at random mechanism or the nonmonotone

missingness pattern will be certainly informative.
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Appendix A

Q-Q Plots and Histograms

A.1 Full Cohort Analysis

A.2 Complete-Case Analysis

A.3 WGEE Analysis

A.4 RGEE Analysis
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Figure A.1: Q-Q Plots of Full Cohort Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.
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Figure A.2: Histograms of Full Cohort Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.

53



Intercept

−3 −2 −1 0 1 2 3

98
99

10
0

10
1

10
2

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

Treatment

−3 −2 −1 0 1 2 3

9.5
10

.0
10

.5
11

.0
11

.5

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s
Period

−3 −2 −1 0 1 2 3

−1
.0

−0
.5

0.0
0.5

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

Baseline

−3 −2 −1 0 1 2 3

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

Figure A.3: Q-Q Plots of Complete-Case Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.
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Figure A.4: Histograms of Complete-Case Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.
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Figure A.5: Q-Q Plots of WGEE Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.
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Figure A.6: Histograms of WGEE Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.
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Figure A.7: Q-Q Plots of RGEE Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.
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Figure A.8: Histograms of RGEE Analysis

2x2 crossover study, where 20 − 30% of the subjects have missing observations in period 2 under

monotone missingness. Coefficient estimates are for intercept, treatment, period, and baseline

effects respectively. The sample size is 1000.
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Appendix B

Simulation Results

B.1 2× 2 Crossover Design

B.1.1 Simulation Setting 1

B.1.2 Simulation Setting 2

B.1.3 Simulation Setting 3

B.1.4 Simulation Setting 6

B.1.5 Simulation Setting 7

B.2 3× 3 Williams Design

B.2.1 Simulation Setting 4

B.2.2 Simulation Setting 5
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Table B.1: Simulation Setting 1
2x2 Crossover Study: comparison of the reweighting estimators with WGEE and other methods

estimators under monotone missingness, where 20− 30% of the subjects were missing
observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect respectively,

and the sample size is 1000.

Bias Sample SE Mean Theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Large Treatment Effect (mis. pct., 20− 30%)

Full cohort .002 .007 .005 .644 .286 .412 .645 .287 .416 .954 .955 .957
Complete-Case -.134 -.128 .026 .739 .347 .499 .750 .357 .513 .918 .925 .938

WGEE(α) .020 .029 .007 .830 .399 .439 .847 .413 .446 .943 .945 .952
WGEE(α̂) .019 .025 .007 .812 .396 .438 .828 .407 .444 .944 .948 .954

RGEE(α̂) .018 .023 .007 .717 .347 .431 .727 .353 .435 .943 .947 .952

Small Treatment Effect (mis. pct., 20− 30%)

Full cohort .002 .007 .005 .648 .288 .415 .649 .289 .419 .954 .955 .957
Complete-Case -.136 -.130 .026 .748 .351 .505 .759 .361 .519 .917 .924 .937

WGEE(α) .020 .029 .007 .837 .402 .443 .854 .417 .450 .943 .945 .952
WGEE(α̂) .019 .025 .007 .818 .399 .441 .834 .410 .447 .944 .948 .954

RGEE(α̂) .018 .023 .007 .722 .349 .433 .732 .355 .438 .943 .947 .952
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Table B.2: Simulation Setting 2
2x2 Crossover Study: comparison of the reweighting estimators with WGEE and other methods

estimators under monotone missingness, where 40− 50% of the subjects were missing
observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect respectively,

and the sample size is 1000.

Bias Sample SE Mean Theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Large Treatment Effect (mis. pct., 40− 50%)

Full cohort .005 .007 .005 .645 .287 .413 .646 .288 .417 .953 .954 .957
Complete-Case -.733 -.250 .031 .923 .438 .524 1.01 .478 .563 .855 .915 .927

WGEE(α) .031 .037 .009 1.08 .518 .461 1.21 .578 .495 .921 .935 .943
WGEE(α̂) .028 .034 .009 1.04 .508 .460 1.15 .545 .493 .935 .937 .945

RGEE(α̂) .022 .032 .009 .887 .409 .453 .949 .436 .476 .934 .935 .943

Small Treatment Effect (mis. pct., 40− 50%)

Full cohort .005 .007 .005 .650 .289 .416 .651 .290 .420 .953 .954 .957
Complete-Case -.747 -.255 .032 .937 .445 .532 1.02 .485 .571 .854 .914 .926

WGEE(α) .032 .038 .009 1.09 .523 .465 1.22 .583 .500 .920 .934 .942
WGEE(α̂) .028 .035 .009 1.05 .512 .464 1.16 .549 .497 .935 .937 .945

RGEE(α̂) .022 .033 .009 .894 .412 .456 .956 .439 .479 .934 .935 .943
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Table B.3: Simulation Setting 3
2x2 Crossover Study: comparison of the reweighting estimators with WGEE and other methods
estimators under monotone missingness, where approximately 20− 30% of the subjects were
missing observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect

respectively with different sample size and large treatment effect size.

Bias Sample SE Mean theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Cohort size 500

Full Cohort .002 .009 .005 .685 .303 .427 .691 .306 .431 .943 .945 .952
Complete-Case -.149 -.131 .030 .852 .403 .512 .873 .411 .520 .806 .838 .840

WGEE(α) .035 .031 .013 .955 .475 .455 .972 .483 .463 .852 .857 .873
WGEE(α̂) .033 .029 .011 .938 .469 .453 .955 .477 .462 .855 .861 .887

RGEE(α̂) .031 .027 .009 .839 .397 .444 .853 .403 .452 .861 .875 .893

Cohort size 1000

Full cohort .002 .007 .005 .644 .286 .412 .645 .287 .416 .954 .955 .957
Complete-Case -.134 -.128 .026 .739 .347 .499 .750 .357 .513 .918 .925 .938

WGEE(α) .020 .029 .007 .830 .399 .439 .847 .413 .446 .943 .945 .952
WGEE(α̂) .019 .025 .007 .812 .396 .438 .828 .407 .444 .944 .948 .954

RGEE(α̂) .018 .023 .007 .717 .347 .431 .727 .353 .435 .943 .947 .952
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Table B.4: Simulation Setting 6
2x2 Crossover Study: comparison of the reweighted estimators with WGEE and other methods

estimators under monotone missingness, where 10− 15% of the subjects were missing
observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect respectively,

and the sample size is 1000.

Bias Sample SE Mean Theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Large Treatment Effect (mis. pct., 10− 15%)

Full cohort .002 .007 .005 .640 .285 .410 .641 .286 .414 .954 .956 .958
Complete-Case -.081 -.017 .012 .662 .313 .494 .673 .319 .499 .939 .941 .948

WGEE(α) .010 .010 .005 .726 .370 .431 .739 .385 .443 .948 .951 .952
WGEE(α̂) .009 .011 .006 .712 .369 .430 .725 .373 .438 .949 .952 .955

RGEE(α̂) .008 .012 .005 .678 .334 .419 .691 .341 .435 .948 .951 .954

Small Treatment Effect (mis. pct., 10− 15%)

Full cohort .002 .007 .005 .644 .286 .412 .645 .287 .416 .954 .956 .958
Complete-Case -.082 -.017 .012 .669 .316 .499 .680 .322 .504 .939 .941 .948

WGEE(α) .010 .010 .005 .732 .373 .434 .745 .388 .447 .948 .951 .952
WGEE(α̂) .009 .011 .006 .717 .372 .433 .730 .376 .441 .949 .952 .955

RGEE(α̂) .008 .012 .005 .682 .336 .422 .695 .343 .438 .948 .951 .954

64



Table B.5: Simulation Setting 7
2x2 Crossover Study: comparison of the reweighted estimators with WGEE and other methods

estimators under monotone missingness, where 60− 70% of the subjects were missing
observations in period 2, and θ1, θ2, θ3 are intercept,treatment and baseline effect respectively,

and the sample size is 1000.

Bias Sample SE Mean Theoretical SE 95% CP

Approach θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Large Treatment Effect (mis. pct., 60− 70%)

Full cohort .005 .007 .005 .650 .289 .416 .651 .290 .420 .952 .954 .955
Complete-Case -2.12 -.825 -.015 1.16 .617 .78 1.23 .621 .793 .575 .720 .828

WGEE(α) .071 .052 .017 1.57 .798 .521 1.78 .868 .512 .917 .925 .933
WGEE(α̂) .065 .047 .014 1.46 .779 .505 1.65 .848 .505 .927 .937 .942

RGEE(α̂) .062 .045 .011 1.23 .609 .491 1.32 .661 .485 .923 .938 .945

Small Treatment Effect (mis. pct., 60− 70%)

Full cohort .005 .007 .005 .653 .291 .418 .654 .292 .423 .952 .954 .955
Complete-Case -2.16 -.840 -.015 1.18 .627 .792 1.25 .631 .806 .574 .719 .827

WGEE(α) .072 .053 .017 1.58 .805 .526 1.79 .876 .517 .916 .924 .932

WGEE(α̂) .066 .048 .014 1.47 .785 .509 1.66 .855 .509 .926 .936 .941

RGEE(α̂) .063 .046 .011 1.23 .613 .495 1.33 .666 .489 .923 .938 .945
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Table B.6: Simulation Setting 4
Williams design of 3x3 crossover study: comparison of the reweighted estimators with WGEE

and other methods estimators under monotone missingness, where overall approximately
40− 50% of the subjects were missing observations in period 2, period 3 or both, and θ1, θ2, θ3, θ4

are treatment 1, treatment 2, age, and sex effect respectively, the “working” covariance is
compound symmetry (CS) structure while the true covariance structure is compound symmetry .

Bias Sample SE Mean theoretical SE 95% CP

Approach θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

Cohort size 900

Full Cohort .008 .002 -.048 .009 .351 .368 .391 .891 .385 .409 .431 .987 .960 .934 .940 .948

Complete-Case -1.04 -.332 -.145 -1.87 .517 .530 .541 1.14 .569 .591 .591 1.26 .586 .832 .838 .685

WGEE(α̂) .117 .034 -.044 -.312 .491 .487 .509 1.11 .551 .543 .569 1.19 .786 .870 .900 0.901

RGEE(α̂) .035 -.010 -.023 -.191 .459 .457 .471 1.03 .506 .507 .536 1.11 .818 .905 .912 .908

Cohort size 1800

Full Cohort .006 .017 -.047 .009 .289 .306 .323 .743 .315 .335 .357 .813 .948 .938 .958 .952

Complete-Case -1.02 -.260 -.121 -1.82 .435 .443 .452 .959 .478 .489 .497 1.07 .603 .903 .915 .752

WGEE(α̂) .090 .028 -.033 -.299 .413 .413 .429 .937 .449 .453 .471 1.03 .874 .906 .938 .902

RGEE(α̂) .014 -.009 -.017 -.172 .355 .353 .373 .819 .388 .391 .409 .897 .906 .914 .941 .918
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Table B.7: Simulation Setting 5
Williams design of 3x3 crossover study: comparison of the reweighted estimators with WGEE

and other methods estimators under monotone missingness, where overall approximately 40% to
50% of the subjects were missing observations in period 2, period 3 or both, and θ1, θ2, θ3, θ4 are
treatment 1, treatment 2, age, and sex effect respectively, and the sample size is 900 with true

covariance structure as compound symmetry.

Bias Sample SE Mean theoretical SE 95% CP

Approach θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

Compound Symmetry Covariance (CS)

Full Cohort .008 .002 -.048 .009 .351 .368 .391 .891 .385 .409 .431 .987 .960 .934 .940 .948

Complete-Case -1.04 -.332 -.145 -1.87 .517 .530 .541 1.14 .569 .591 .591 1.26 .586 .832 .838 .685

WGEE(α̂) .117 .034 -.044 -.312 .491 .487 .509 1.11 .551 .543 .569 1.19 .786 .870 .900 0.901

RGEE(α̂) .035 -.010 -.023 -.191 .459 .457 .471 1.03 .506 .507 .536 1.11 .818 .905 .912 .908

Unstructured Covariance (UN)

Full Cohort .008 .002 -.005 .010 .365 .385 .403 .928 .413 .443 .457 1.03 .960 .934 .940 .948

Complete-Case -1.04 -.334 -.145 -1.87 .546 .557 .571 1.19 .613 .632 .641 1.35 .586 .832 .838 .686

WGEE(α̂) .160 .035 -.046 -.330 .519 .515 .539 1.17 .582 .587 .603 1.34 .776 .874 .904 .898

RGEE(α̂) .031 -.013 -.028 -.206 .497 .495 .512 1.12 .558 .563 .583 1.27 .836 .902 .919 .904
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