Computing Similarity in a
Reuse Library System: An Al-based Approach

by E.J. Ostertag,] A. Hendler,
R. Prieto-Dianz and C. Braun

TECHNICAL
RESEARCH
REPORT

SYSTEMS
RESEARCH
C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

TR91-6

Computing Similarity in a
Reuse Library System: An Al-based approach

Eduardo J. Ostertag
James A. Hendler
Computer Science Department
University of Maryland
College Park, MD 20742

Rubén Prieto-Diaz
Software Productivity Consortium
2214 Rock Hill Rd.
Herndon, VA 22070

Christine Braun
Contel Technology Center
15000 Conference Center Drive
Chantilly, VA 22021

Abstract

This paper presents an Al-based library system for software reuse, called AIRS, that
allows a developer to browse a software library in search of components that best meet
some stated requirement. A component is described by a set of (fearure,term) pairs. A
feature represents a classification criterion, and is defined by a set of related terms. AIRS
also allows for the representation of packages, that is, logical units that group a set of
related components. As with components, packages are described in terms of features.
Unlike components, a package description includes a set of member components.

Candidate reuse components (and packages) are selected from the library based on the
degree of similarity between their descriptions and a given target description. Similarity is
quantified by a non-negative magnitude (called distance) that represents the expected effort
required to obtain the target given a candidate. Distances are computed by functions called
comparators. Three such functions are presented: the subsumption, the closeness, and the
package comparators.

We present a formalization of the concepts on which the AIRS classification approach
is based. The functionality of a prototype implementation of the AIRS system is illustrated
by application to two different software libraries: a set of Ada packages for data structure
manipulation, and a set of C components for use in Command, Conirol, and Information
Systems. Finally, we discuss some of the ideas we are currently exploring to automate the
construction of AIRS classification libraries.

1 Introduction

A major problem in software development is the need for greater productivity in the development
process. Complex computer programs such as large communications network controllers and
command and control systems place a growing demand on the talents of software programmers.
This increasing need for complex computer systems has caused a significant gap between the code
that can be developed using today’s technology and the need for new software.

One aspect of the projected solution to this growing demand for new software is the
development of a support technology which allows greater reuse of existing software components
[1]. Rather than starting from scratch in new development efforts, an emphasis must be placed on
using already available components. This approach avoids the duplication of work and lowers the
overall development costs associated with the construction of new software applications.

The ability to reuse existing code requires four steps: definition, retrieval, adaptation, and
incorporation. The definition step describes the component which needs to be constructed (the
target) in terms of its functionality and relation to the rest of the environment. The retrieval step
takes this description, and retrieves from the software library a list of components with similar
characteristics (the candidates) and selects one of these. The adaptation step generates the target,
usually through a modification process. The new component is then used in the application under
development. In addition, the incorporation step takes newly constructed components and inserts
them back into the software library. As new software components are created and added to the
library, they in turn can be used in later development efforts.

This paper presents an Al-based library system for software reuse called AIRS. This system
was originally designed to reuse Ada packages [10], but has evolved into a general tool for reuse.
It allows a software developer to browse a software library in search of components that best
approximate some design specifications. AIRS relies heavily on several Al related data structures,
techniques, and algorithms [4]. The internal representation of the software library is constructed
using a frame system with multiple inheritance [5], while the procedures used to find reuse
candidates are based on A*-like search algorithms [12]. A highly interactive prototype of the
system has been implemented using Common Lisp in a Macintosh computer [13].

2 The Retrieval Process

This section presents, by means of an example, a high-level overview of the main steps involved in
the process of retrieving components using AIRS. This process selects from the AIRS library a list
of candidate components that best approximate the required properties of a target component 7,
which is described informally as follows.

Component T is required to print a spreadsheet on some printer. The spreadsheet is
stored in computer A, and the printer is connected to computer B. Both computers
are connected via a high speed network.

For this example, component T will be separated in two subcomponents: 7,, which transfers a

spreadsheet from one computer to another, and T,, which prints the spreadsheet. These informal
descriptions are used as a basis to describe the functionality of each required component in terms of

a predefined set of features.

T, = component T, = component
Function = Transfer Function = Print
ObjectType = SpreadSheet ObjectType = SpreadSheet
SourceType = Computer-A DeviceType = Printer
DestinationType = Computer-B ControllerType = Computer-B
end component end component

AIRS selects the best reuse candidate component for each target description (e.g., T, and T,). The
candidates are selected based on the degree of similarity between the target and existing library
component descriptions. Assume that 7; and T, are not in the software library, but that ;" and T,
have been selected their best reuse candidates, respectively.

T, = component T, = component
Function = Copy Function = Display
ObjectType = File ObjectType = SpreadSheet
SourceType = Computer-A DeviceType = Terminal-V
DestinationType = Computer-B ControllerType = Computer—-B
end component end component

The selected component Tl‘ can “copy” (not “transfer”) a “file” (not a “spreadsheet”) between
computers of different types. Component T, can “display” (not “print”) a spreadsheet on a
“terminal” (not a “printer”). Each candidate component can be examined by either reading its
documentation or obtaining implementation specifics. If it proves to be unsuitable, other candidates
can be obtained by using alternative descriptions of the target.

The candidates selected (e.g., T, and T,) could be used directly to construct the required
component 7. An alternative would be to use a unit that grouped the functionalities of both
candidates in a single common environment. This kind of unit is called a package, which is also
described in terms of features. Unlike components however, package descriptions include a list of
member components. Packages are stored in the AIRS library, and their descriptions can be
compared for similarity based on their features and/or member sets.

In our example, T, and T, could be grouped together to define a target package — that is, it is
hoped by the user that a single package could be found in the library which might help provide
both functionalities. Assume there is no package in the library containing exactly 7" and T, . AIRS
could then suggest an alternative package which contains two functions 7, and 7, that are similar
to 7, and 7T, , respectively.

T," = component T, = component
Function = Copy Function = Display
ObjectType = Matrix ObjectType = Matrix
SourceType = Matrix-File DeviceType = Terminal-V
DestinationType = Matrix-File ControllerType = Computer-B
end component end component

There are now two alternatives to construct component 7. The user could try to group 7, and T,
into their own package (requiring the overhead of creating joint data structures, definitions, etc.),

or T;" and T, which belong to the same package. This might be preferable as these components
already belong to the same package and therefore presumably share certain properties (e.g.,
memory management or programming language) that may help construct T by reducing the effort
required to merge both 7, and 7, into a single unit.

The use of such similarity-based reasoning to browse and choose through a library of
components and packages is at the heart of the AIRS system. It is enabled by a frame-based
knowledge representation and by the use of heuristic similarity computations, based loosely on
techniques developed for case-based reasoning systems. In this paper we describe the similarity
metrics and show that this Al approach can be used successfully in the design of browsers for
software engineering components. First, however, we discuss some related work in software
engineering and artificial intelligence.

3 Related Work

In a broad sense, software reuse can be defined as “the use of a software component more than
once” [3]. A software component may be any product of the software development process — a
unit of code, a design specification, a test case, etc. Use of a component more than once can mean
anything from informal reuse of a design by its designer to the widespread use of a large software
package such as a DBMS. The component can be used unchanged, or it can be modified to fit the
new application.

Recent research focuses on exploring new directions aimed at formalizing and standardizing the
activities and procedures necessary for reuse. Significant contributions have been reported in the
areas of software cataloging and retrieval, program synthesis from reusable components, reuse
measurement, and domain analysis. Research in these areas is laying the basis for development of
tools and methods to make reuse practical and effective.

Cataloging and retrieval in software libraries has been one of the classical problems in reuse.
Different classification approaches have been proposed for organizing software collections into
software library systems to facilitate query and retrieval. The approaches reported are essentially of
three types: free-text keywords, faceted index, and semantic-net based.

The CATALOG System of Frakes and Nejmeh [8] is an example of a free-text keyword based
library system. CATALOG automatically extracts keywords from software documentation and
creates an index by associating each item in the library with a set of keywords. It uses proven
information retrieval (IR) and indexing technology. The retrieval mechanism takes a user-supplied
set of keywords and attempts a match against index keyword sets. Frakes and Nejmeh report good
performance when dealing with unambiguous sets of keywords. Two features that make this
approach attractive are its simplicity and the fact that it is an automatic process. A limitation of this
approach, however, is the lack of semantics associated with keywords. The meaning of a set of
keywords can neither be inferred nor can these systems determine whether two different keywords
represent the same concept. More recently, Maarek [11] has proposed the concept of lexical
affinities among pairs of words as an effective means to extract some semantic information from
software documentation. Results from her experimental system (GURU) demonstrate that this
approach may be able to substantially improve keyword based library systems.

The faceted index approach proposed by Prieto-Diaz [16] relies on a predefined set of
keywords extracted by experts from program descriptions and documentation. These keywords are

arranged by facets into a classification scheme and used as standard descriptors for software
components. A thesaurus is derived for each facet to provide vocabulary control and to add a
semantic component to retrieval. Keywords can only be used within the context of the facet they
belong to and ambiguities are resolved through the thesaurus.

An important component of the faceted index approach is the use of a conceptual distance
graph. Conceptual distances between items of each facet are used to evaluate their similarity,
which is used in turn to evaluate the similarity between required software specifications and
available components. Although reported to be very effective in retrieving software components for
reuse the faceted approach is labor intensive. Construction of a conceptual graph, moreover, has
not been formalized yet. Conceptual distances are assigned based on experience, intuition, and
common sense. More recently, Gagliano et al [9], have proposed a method to compute conceptual
closeness based on statistical analysis. Frequencies of “perceived similarity” obtained by running
experiments with controlled groups of individuals are used to compute a “dissimilarity coefficient”.
This coefficient is then used to build conceptual distance graphs for a set of users.

An approach that borrows from both faceted and free-text method has been proposed by
Embley and Woodfield [7]. They propose a library of abstract data-types (ADT) which are
classified using special descriptors. A descriptor defines an ADT using keywords, facets, and list
of aliases. The system allows the user to define explicit relations among different ADT’s, and
provides some built-in relations such as “depends-on”, “close-to”, and *“generalizes” which can be
derived automatically from the values of the ADT’s, facets, and keywords.

Semantic-net based approaches have been proposed by Wood and Somerville [18] and by
Devanbu, Brackman, and Selfridge [6]. These systems provide a structured representation of
knowledge with some inferencing capability on semantics. Wood and Somerville propose a library
system with a limited number of generic classes represented by simple semantic nets. Each
semantic net provides a template-like structure to represent all possible instances of components of
that class. By selecting one of these classes, the user can rapidly browse and retrieve components
belonging to that class. Devanbu, Brachman,and Selfridge developed LaSSIE, a classification-
based software information system. LaSSIE incorporates a large knowledge base, a semantic
retrieval algorithm based on logical inference, a powerful user interface with a graphical browser,
and a natural language parser. LaSSIE 1s intended to help programmers find useful information
about large software systems like AT&T’s System 75 PBX with over one million lines of C code.
Semantic-based library systems are very powerful but share a similar disadvantage with the faceted
approach. Creating a knowledge structure of any significant size is extremely labor intensive.
Another disadvantage is rigidity. They usually support a very narrow application domain.

The AIRS system is essentially a hybridization between the faceted index and semantic network
approaches. The domain information inherent in the facets is used largely to reduce the rigidity and
the laborious creation of a semantic structure. A hierarchical frame system 1s used to maintain
information about which of the objects in the reuse libraries have which features, how these objects
are grouped, and how the features are related. Procedural attachment in the frame system is used to
make the AIRS browsing system more efficient. In addition the features of the frame system are
used to facilitate the integration of new components into the AIRS system, allowing a programmer
to bootstrap its knowledge structures from a basic set of existing components.

The frame system used by AIRS is a modification of the system described in [5]. It is
implemented in Common Lisp and is a separate module from the rest of the system — it maintains
the AIRS knowledge base. Thus, details of the use of the frame system are not integral to an
understanding of the functioning of AIRS and therefore in this paper we concentrate instead on the

techniques used in AIRS most relevant to software reuse in a classification library.

One important aspect of AIRS, discussed in some detail in this paper, is the ability to reason
heuristically about the similarities between desired components and components residing in the
existing knowledge-base (software library). In this respect, AIRS is similar to the case-based
reasoning approach currently being explored as a solution to many Al problemsl. In this
approach, memory of previous solutions is used as heuristic knowledge to guide the processing of
a novel problem. An important aspect of case-based reasoning systems is the ability to ascertain the
information in memory most similar to the current situation. To retrieve relevant memories, these
systems typically use a “domain theory” — that is, a knowledge-base of information about the
particular situations the system is expected to handle. The domain theory is largely used to control
the search in memory for information relevant to the situation at hand.

The AIRS system is similar to a case-based reasoner in that it uses a set of heuristic estimators
(the distance computations described below) based on a knowledge-base of information about
particular sets of components and their relations to derive an estimate of the similarity between
components2. In the remainder of this paper, we describe the similarity metrics computed by
AIRS and discuss how they are used in the process of software reuse. Examples from two
domains, a set of ADA data structure packages and a command and control information system
written in C, are also presented to demonstrate the efficacy of our approach. In addition, we
discuss some directions we are currently exploring to facilitate the creation and update of AIRS
knowledge bases.

4 The AIRS Classification Model

Software objects are described in AIRS based on terms, features, components, and packages.
These descriptions can be compared for similarity using the concept of distance. This section
presents a formalization of these concepts and their interrelations.

4.1 Features and Components

Features are the basic unit in the AIRS classification system. They are used to characterize the
different aspects of a software component. Some examples of features are “functionality”, “source
language”, and “required operating system environment”. A feature is defined by a finite set of
related values called rerms. For example, a feature named source-language can be defined as
the set of terms {Pascal, Fortran, Ada, C}. The set of features used to classify a collection of
components within a certain domain defines a feature space.

A component is modeled by a finite set of (f,f) pairs, where f is a feature in a given feature
space and ¢ is a term of f. In other words, a component defines a mapping from features to terms.
The notation “A.f” represents the term ¢ associated to the feature f of component A. If a feature fis

not relevant for describing a component A, then A maps f to a special value called the null term

1 A review of the literature in case-based reasoning is beyond the scope of this paper. The interested reader is
directed to the Proceedings of the DARPA workshops in case-based reasoning (1989 and 1990), which contain many
papers on the subject.
2 A departure of AIRS from most case-based systems is the numerical naturc and efficient computation of these
heuristic estimations.

(denoted by 6). For example, consider two features source-language and project -name.
The description of the standard I/O function “printf” would map the feature source-language
to the term C, but project-name would be mapped to 6 because this function does not belong
to any specific software project.

To compare components based on their descriptions, AIRS quantifies their degree of similarity
by computing a distance between their corresponding descriptions based on two criteria: the
closeness and subsumption relations. These are described in detail below.

4.2 The Closeness Relation

The closeness relation is intended to capture the idea that a component can be constructed by
modifying another component. If a component B can be constructed by modifying certain portions
of a component A, we consider A to be a suitable reuse candidate for B if the extent of these
modifications is small. In general, it is impossible to determine if a component has been
constructed by modifying another one, much less to determine the nature and size of such a
modification. However, it has been argued [14][16] that a good heuristic for determining the
differences between two components is to consider the differences between their corresponding
terms.

Distance between Feature Terms

To estimate the difference between terms of a feature, we arrange the terms in a weighted directed
graph called a feature graph, where each node corresponds to a particular term. The weight w
associated to an arc connecting a node ¢, to a node ¢, is a non-negative magnitude that represent the
expected effort required to obtain the target term ¢, given the candidate term 7.

A feature graph also includes an additional node for the null term 6, and all other terms in the
graph are connected to 6 with an associated weight of zero. The rational behind this decision is that
when the null term is used as a target we want it to represent the “don’t care” value. On the other
hand, the distance from the null term to a term ¢ in the graph may be greater than zero. This
distance is called the creation distance of term f, meaning the expected effort to obtain ¢ from
scratch.

Some pairs of nodes in a feature graph may not be connected by an arc, meaning there is no
known method to directly obtain one from the other. Yet, to compare components we need a
method to estimate distances between all possible pairs of terms. We define the distance from two
different terms ¢, and ¢, as the weight of the shortest path from ¢, to z, in the graph. If no such path
exists, the distance is set to be infinity (denoted by o). If ¢, and r, are the same, the distance is
Zero.

For example, consider the feature language = {assembler,pascal,common-lisp} and its
associated graph, shown in Figure 1. According to this graph, the distance from assembler to
pascal is 5, while the distance from pascal to common-1isp is 10, corresponding to the
intuition that transforming an assembler source file to pascal might be easier than recoding pascal to
common-lisp. The creation distance for assembler is 30, given by the arc connecting 6 to
assembler. The creation distance for pascal and common-1isp is 35 and 45 respectively,
given by the weight of the shortest path from 0. Similarly, the distance from pascal to
assembler is 30, since the path pascal — 6 — assembler yields the smallest distance
from pascal to assembler.

s
hO%
10 30
9
*Gommon—Lis;D

Figure 1: Sample feature graph

Closeness Distance between Components

We say that a component A is close to a component B if the overall difference between their
corresponding terms is small. This difference is quantified by a non-negative magnitude called
closeness distance, which represents the expected effort required to obtain component B given
component A. This distance is computed as the sum of the efforts required to obtain each feature
term of B given the corresponding feature term of A. That is, the closeness distance from target
component A to a candidate component B is given by the following expression.

d:.(A,B)= Y d,(A.f,B.f)

fe¥

where ¥ is a feature space, and d ; (t,,t,) is the distance from term ¢, to term ¢, as defined by the
feature graph of f. Function d, is called closeness comparator, and the functions d, are called
feature comparators.

For example, consider the following two component descriptions: pop removes an element
from the head of a structure, while append inserts a set of elements at the tail of a structure.

pop = component append = component
operation = remove operation = insert
object = element object = element-set
position = head position = tail
end component end component

The closeness distance from pop to append is given by the following expression which
computes the sum of the distances between their corresponding feature terms.

closeness-distance (pop, append) = operation-comparator (remove, insert) +
object-comparator (element, element-set) +
position-comparator (head, tail)

where operation-comparator, object-comparator, and position-comparator
are the feature comparator functions of features operation, object, and position
respectively. These functions are computed using their corresponding feature graphs.

4.3 The Subsumption Relation

The subsumption relation is intended to capture the idea that certain components can be built by
composing several other components. If the functionality of a component A is partially provided by
a component B, then B (the subsumer) is considered to be a suitable reuse candidate to construct A
(the subsumee). As opposed to the closeness relation, the subsumer is used to construct the
subsumee as a subfunction without modification. For example, consider the abstract data types
stacks and lists. The stack operation push is subsumed by the list operation cons, because push
can be constructed using cons as a subfunction.

We represent the subsumption relation between components using a weighted directed acyclic
graph (DAG) called subsumer graph (there is one subsumer graph for each software library.) Each
component is represented by a node in the graph, and an arc indicates that the source node
subsumes the destination node. The weight w of an arc is a non-negative magnitude that represents
the expected effort required to obtain the subsumee given the subsumer.

In general, we define the subsumer distance from a component ¢, to a component ¢, as the
weight of the shortest path from ¢, to ¢, in the subsumer graph. If this path does not exist, the
distance is infinity, meaning c, is not subsumed by c,. If ¢, and ¢, are the same, the distance is
Zero.

For example, consider the subsumer graph shown in Figure 2. According to this graph,
component append-element can be used to implement (subsumes) component push with an
expected effort (subsumer distance) of 7. Component append-1ist also subsumes push with a
subsumer distance of 9.

7 9

(append-—element) 3 (append-list)

3 10

N\ /
Cadd—element—to-—list)

Figure 2: Sample subsumer graph

We denote by dg(c,,c,) the subsumer distance from component ¢, to component ¢, as defined by
the subsumer graph. This function is called the subsumer comparator.

4.4 Packages

Packages are like components in the sense that they can be described in terms of features, but while
a component represents a particular object, a package represents a collection of components which
are tightly coupled, that is, each component in the collection is defined to be used in conjunction
with the others. This set of components are called members of the package. For example, consider
an abstract data type list, which has been implemented in Pascal using arrays of fixed size to store

the elements. This software object could be described in AIRS as follows.

list = package
source-language = Pascal
maximum-size Bounded
member-set = {Head, Tail,Cons, Append, Length}
end package

it

The names head, tail, cons, append, and 1length are not terms, but the names of
components that must be defined separately as explained in Section 4.1. As with components, the
description of a package defines a mapping from features to terms. Unlike components, a package
is defined using a special feature named “member-set”, which is mapped to the set of member
components of the package.

Distance between Packages

A candidate package p, is said to be similar to a target package p, if the overall difference between
their features and member sets is small. This difference is quantified by a non-negative magnitude
called package distance, which represents the expected effort required to obtain p, given p;. This
distance is computed as the sum of the distances between their corresponding feature terms (as
defined by their feature graphs), plus the distance between their member sets.

The distance from a member sets m, to a member set m, represents the expected effort required
to obtain each component in m, given the components in m,. This distance is computed by
mapping each component in m, to its best reuse candidate component in m, as defined by either the
closeness of subsumption relation, and then summing up the distances between these pairs of
components.

In summary, the distance from a candidate package p, to a target package p, is defined by the
following function called package comparator.

dy(P1p) = 24, (pr-fopp)+ 3, mind(c,c)

fe¥ c €my

where ¥ denotes the feature space, d, is the feature comparator of feature f, m, and m, are the
member sets of p, and p, respectively, and d(c,,c,) is a user-selected component comparator
function, namely the subsumer comparator (d;) or the closeness comparator (d,.).

5 Examples of the use of AIRS

A prototype of the AIRS classification system has been implemented using Common Lisp in a
Macintosh computer. This prototype has been used to classify two different software libraries. The
first is the EVB GRACE library (part I) developed by EVB corporation, which contains a
collection of Ada packages that implement data structures such as stacks and undirected graphs.
The second is the Contel CCIS software library developed at Contel Technology Center, which
contains a collection of C modules for implementing the basic functionalities of Command,
Control, and Information Systems. The GRACE application demonstrates AIRS’ applicability to a
highly-structured, dense collection. The CCIS application shows that AIRS also works with a

10

more loosely-structured sparse collection more representative of those arising in industry.

In general, to create a software library for reuse it is necessary to perform a Domain Analysis,
defined by Prieto-Diaz [15] as the process of identifying, collecting, organizing, analyzing, and
representing a domain model and software architecture from the study of existing systems,
underlying theory, emerging technology, and development histories within the domain of interest.
This analysis is important for software classification because it provides (1) a software architecture
describing the different relations among the components of the architecture, and (2) a dictionary
where the components are defined. These two elements are the basis for software classification
processes.

In the particular case of an AIRS software library, the process of domain analysis includes
defining the features and terms to describe both packages and components. The programmer also
has to define the necessary feature and subsumer graphs. This allows AIRS to select from its
library candidate packages and components for reuse based on their degree of similarity to a user-
supplied target description (as described above).

5.1 Classification of the GRACE package

The EVB GRACE library (part I) is a collection of generic Ada packages that implement the
following data structures: binary search trees, circular doubly linked lists, doubly linked lists,
singly linked lists, queues, stacks, and undirected graphs. This library contains several Ada
packages that implement the same conceptual data structure, but differ on their functional
behaviour, as well as time and space characteristics. These differences are classified based on a
subset of Booch’s taxonomy [2]. The features used are control, manager, allocation and iterator.
For example, the following is a description of an Ada package which implements an unbounded
size binary tree using a user-supplied memory management system, and which provides both
concurrent access to its elements and a function for traversing the structure.

binary-tree = package

allocation = Unbounded
manager = User
control = Concurrent
iterator = Supplied

member-set
end package

{depth-first, insert, retrieve, ...}

Member components such as depth-first, insert, and retrieve are classified using the
following set of features.

+ optype = {insert,remove, create,select,traverse}:kind of action performed
by the operation either to the data structure or to its elements. The term create is used to
describe operations that initialize structures. The term select is used for operations that read or
modify the state of an element or the structure.

* count = {zero,one,two,several,all}: number of elements produced, consumed,
or selected by the operation. The term several is used to represent an unknown number of
elements between zero and the size of the structure.

11

s type = {element, link, structure}:kind of element produced, consumed, or selected
by the operation. The term st ructure is used when the operation acts on both elements and
links at the same time.

+ position = {first,second, rest, last, root,keyed}: position of an element or
set of elements relative to which the operation is applied. The term keyed is used when the
position of an element is implicitly defined by the feature key.

+ key = {pointer,index, field-value, fixed}: key type used by the operation to
determine the position of an element or set of elements. The term fixed is used when the
position of an element is explicitly defined by the feature position.

e direction = {left,right,breadth-first,depth-first, self}: direction of
application of the operation relative to the position of an element. The term self is used when
the operation acts directly on an element whose position is defined either by the position or
key features.

Whenever a feature is not relevant for the description of a component, it is mapped to the null term.
For readability, this term has been given different names such as no-key and no—-type. For
example, the following is the description of an “append” operation of a “singly linked list” data
structure.

append = component
optype = Insert
count = One
type = Element
direction = Right
position = Last
key = No-key

end component

This component description characterizes an operation which “inserts one element to the right of
the last position of a structure. No key value is required to perform this action.”

The last phase in the design of the AIRS classification scheme for EVB GRACE library was
the definition of the feature and subsumer graphs. The construction of these graphs requires access
both to the documentation and implementation of the components and packages being classified. In
this case, we only had access to the documentation of the library, so to obtain these graphs we had
to complement this information with our own experience and intuition. The process of constructing
feature and subsumer graphs is a knowledge intensive operation which must be performed by an
expert analyst. We are currently exploring an approach to create these graphs in terms of a semi-
automatic, user-guided process (see section 6).

Using the AIRS system to retrieve reusable EVB GRACE components

The AIRS browser [13] is a highly interactive tool which allows to search for software
components that satisfy some stated requirements. This section presents a sample user/system

12

interaction to help get a better understanding of how AIRS is used and the kind of information it
provides. Assume a software developer is interested in finding a data structure Ada package
capable of performing the following operations.

- OPER1: insert an element at the front of a structure.
« OPER2: select an element based on a given key value.
» OPER3: remove an element given a pointer to the element.

To accomplish this task, the developer uses AIRS to perform the following steps: (1) describe each
target operation (i.e., OPER1, OPER2, and OPER3) in terms of the set of features explained in the
previous section. (2) for each target select a candidate operation from the library. (3) describe the
target (desired) package using the selected candidates and a set of package features. (4) retrieve the
best reuse candidate for the target package. What follows is a description of how these steps are
performed using the AIRS library browser.

&€ File Edit Eval Tools Windows AIRS

FeatulEL/=—-—————= Search for OPLRI1
ALLOCK (Feature name Term name
CONTR| [CouNT NO-COUNT iy
ITERAT 1pjRECTION LEFT i
MANAC |kEy NO-KEY

OPTYPE ' INSERT ;
oPER1| [POSITION FIRST
oPER2| LTYPE ELEMENT
OPER3| |(Eract Match)(Closeness)

(0) INSERT-ELEMENT-LEFT

(___Ne [(2) INSERT-ELEMENT |
(5) INSERT-SET-LEFT

@ Sy |(6) REMOUE-ELEMENT-FIRST
(8) SELECT-ELEMENT-FIRST
(12) INSERT-ELEMENT-DALUE
(13) INSERT-ELEMENT-RIGHT |
(13) INSERT-LINK
(13) CREATE-ELEMENT i
(17) REMODE-ELEMENT-DALUE

13

The front window of Figure 3 (Search for OPER1) is used to define the feature terms of OPER1
(Insert, No-Count, No-Key, First, Left, and Element). This window can also be used to obtain the
list of component names which match exactly the given terms, or to obtain a list of reuse
candidates based on the closeness relation. In this case, the closeness relation option was selected
producing a list of class names and their associated closeness distance (shown in parenthesis to left
of the name). Each name in this list can be selected (like INSERT-ELEMENT-LEFT) to obtain
detailed information about the class (Figure 4). Note the distance from INSERT-ELEMENT-LEFT

to OPERI is zero, meaning the description of OPER1 matches exactly the descriptions of the
components of this class.

Search for Package

Featur Search for OPER1
: ALLOC(E[J==—== Class INSERT-ELEMENT-LEFT £
EEE’;THBT Feature name Term name
MANA COUNT NO-COUNT {_}
DIRECTION LEFT
KEY NO-KEY
OPER1 OPTYPE INSERT
OPER2 POSITION FIRST
OPER3 TYPE ELEMENT
(Subsumption) Closeness

C:E (2) INSERT-ELEMENT

(5) INSERT-SET-LEFT
S (6) REMOUE-ELEMENT-FIRST
(8) SELECT-ELEMENT-FIRST

1 HolUJ| [l

(12) INSERT-ELEMENT-URLUE
(13) INSERT-ELEMENT-RIGHT 5
Package name Component name
STACK-B PUSH i)
SINGLY-LNK-LIST-B INSERT-FIRST
BOUBLY-LNK-LIST-B INSERT-FIRST
CIRCULAR-LNK-LIST-B BLNITHEILNE

{},

Figure 4: Information of a class of components in the AIRS library.

3 The set of components described using the same set of feature terms is called a class.

14

The topmost window of Figure 4 gives detailed information about the class INSERT-ELEMENT-
LEFT, which includes the list of components that belong to the class and the set of features they
share. This window can also be used to obtain a list of reuse candidates based on either the
subsumption or the closeness relations (in this case closeness was used). The list of components of
the class (bottom) is divided in two columns: name of a component (right), and the name of the
package (left) that contains the component. If a component name is selected, its Ada code or
documentation can be obtained (not shown). If a package name like CIRCULAR-LNK-LIST-B is
selected, its features and member set can be obtained (Figure 5).

t File Edit Eual Tools wlndows HIRS

Search for Package v_
Package CIRCULAR-DOUBLY-LINKED-LIST-B ==

Feature name

ALLOCATION
CONTROL
ITERATOR
MANAGER

FeatulzLI=
ALLOC
CONTR
ITERAT
MANR{

Term name

BOUNDED
NO-CONTROL
NO-ITERATOR
NO-MANAGER

OPER1

OPER2

OPER3

N

(C_Ne
c

Class name

Component name

QUERY-SET-SIZE
QUERY-SET-FULL
QUERY-SET-EMPTY
SELECT-ELEMENT-LAST

SELECT-ELEMENT-FIRST
SELECT-ELEMENT-INDEH

BRERKUP-SET
CREATE-SET-ALL
CREATE-ELEMENT

SELECT-ELEMENT-SECO...

SELECT-ELEMENT-POI ...

LENGTH-0F
IS-FULL
IS-EMPTY
PREVIOUS
NEHT
HEAD-OF
POSITION
CONTENTS-OF
BREAK-UP
COPY

GET

Flgure 5: Information of a package in the AIRS hbrary

The front window of Figure 5 shows information associated with the Ada package CIRCULAR-
LINKED-LIST-B, which includes its feature terms (No-Control, No-Manager, Bounded, and No-
Iterator), and a list of its member components. This list shows the name of each component (right)
and the name of the class (left) to which it belongs. If a component name is selected, its Ada code

or documentation can be obtained (not shown). If a class name is selected, the user obtains a
window like the one shown in Figure 4.

15

The window shown in Figure 6 is used to define both the features of the required package
(BOUNDED) and its member set (OPER1, OPER2, and OPER3). Once each of the operations in
its member set have been defined (Figure 3), the user can obtain a list of candidate packages based
on its features, its member set, or both. In this case, the list of packages (bottom) was obtained
using both criteria. Features with an associated term named “Any” are not considered in the
computation of package distances. The resulting list shows that the best alternative for
implementing the required package is using a bounded SINGLY-LINKED-LIST data structure.

&€ File Edit Eval Tools Windows AIRS

Search for Package

Feature name Term name

ALLOCATION BOUNDED

CONTROL Any

ITERATOR Any

MANAGER Any |

Required Components

OPERT ity

OPER2

OPER3 N
W4

(New Component){ Remove Component |

CSuggestpackages) Py romoers
SINGLY-LINKED-LIST-B
DOUBLY-LINKED-LIST-B
CIRCULAR-DOUBLY-LINKED-LIST-B
BINARY-SEARCH-TREE-BI
UNDIRECTED-GRAPH-BI

STACK-B

Figure 6: Obtaining a candidate reuse package.
5.2 Classification of the Contel CCIS library

The construction of a reuse library for the EVB GRACE collection shows the applicability of AIRS
to a highly-structured, dense collection of software components. To test the effectiveness of AIRS
on a software collection more representative of those arising in industry, we decided to use this
technique on the Contel CCIS library developed at Contel Technology Center (CTC). This library
contains a collection of C packages for implementing the basic functionalities of a Command and

16

Control Information System.

To improve reusability of the components of the CCIS library, CTC developed an interactive
reuse browser based on Prieto-Dfaz’s faceted scheme [16]. In this system, both source files4 and
functions were classified according to three facets: area, function, and object. Conceptual
distance graphs were not supported, so components could not be retrieved based on their degree of
similarity but solely on partial matches among facet terms. A thesaurus allowed a user to retrieve
components described using term synonyms.

To test the AIRS system we built an AIRS knowledge-base for the CCIS library using as a
basis both the documentation of the library and the CTC taxonomy (defined by the facets, terms,
and synonyms used to construct the CTC browser). The resulting AIRS browser took one person
less than a week to build, and provided all the functionality of the CTC browser plus those unique
to AIRS, namely: (1) to represent packages, (2) to retrieve components based on the closeness and
subsumption relations, and (3) to retrieve packages based on the package relation.

Description of the CCIS library and the CTC taxonomy
The following is a description of the different modules that compose the CCIS library.

+ general (GEN): collection of general purpose functions that do not belong to any specific
module. These functions are typically extensions to the ones contained in the standard C library.

» memory file (MF): collection of functions that implement sequential files allocated in main
memory (RAM). These files are created and exist only during the execution of a program.

+ set structure (SET): collection of functions that implement unbounded sets of elements. The
elements of a particular set must be of the same type.

+ database interface (IDB): collection of functions that provide a simplified interface to the most
commonly used operations of a relational database system.

+ database file (DBF): collection of functions that implement database files. These files are flat
structures stored in a relational database processor.

+ mail service (MS): collection of functions that implement the basic functionalities of an
electronic mail system.

« man-machine interface (MMI): collection of functions that implement user/system interfaces
based on windows, predefined keys, and menus.

+ free text file (FTF): collection of functions that implement text files. These files are regular text
files but are stored on a relational database processor.

* parametric database display (PPD): collection of parametric functions to retrieve and display
information contained in a relational database.

4 A source file name is used to represent the collection of C functions contained in the file.

17

Some of the C source files that compose these modules and all their functions were classified at
CTC according to three facets: area, function, and object. The following is a description of
these facets and their corresponding terms.

+ area: general problem area the components belongs. Each of the modules previously defined
presents a solution to well defined problem, therefore module names are used as synonyms of
problem areas. The terms of this feature are the following.

* database-interface * database * free-text-file
*» general * mail-service * memory-file
*» man-machine-interface » parametric-database~display + set

« function: to discriminate among the different operations that belong to a same problem area in
terms of its functionality. The list of terms of this facet follows. The functionality represented by
each term is that which is normally associated with its name.

» add * assign ¢« clear * close e convert * copy * count
* create » delete * display -+ enable * execute « £find * goto

*» intersect =+ log * map * measure * modify * open * parse
* process * query * read * rename * replace * retrieve -+ search
* suspend e terminate -+ test « transfer ¢ union * write

+ object: describe the kind of input used by the operation or the kind of output generated by the
operation, which ever is more relevant for the operation. The terms of this facet follows. The
object represented by each term is that which is normally associated with its name.

* SQL-command * address * code * column-type * column

* control-variable * descriptor + directory * element * event

+ file + function-key ¢ group » interface * keyboard
* menu * name + offset * owner * pdd-page
+ pdd-descriptor * ppd-table * permission * pointer e printer
* queue-entry * queue + record * set * string

* subset ¢ substring « list * text * tuple

Each of the terms of a facet has an associated list of synonyms names which can be used to query
the CTC library. This thesaurus facility allows users of the CTC browser to describe the required
components using the terminology they are most familiar with.

Construction of the AIRS browser

Component descriptions used in the CTC browser were mapped almost identically to the AIRS
library, with the exception of the area facet. Since each term in this facet represents a module in
the CCIS library, they were mapped to packages in the AIRS library, so instead of describing
components using the area facet, they became members of a package. For example, consider the

18

CTC description of the CCIS component st rstr which returns the location of a string within a
string: [area=general, function=find, object=substring]. This description was
mapped to the AIRS system as follows.

general = package strstr = component
member-set = {strstr, .} function = find
end package object = substring

end component

The next step in the construction of the AIRS library requires the definition of feature and
subsumer graphs. Based on our intuition and experience, each term ¢ of a feature f was assigned
distances to a small set of terms in f that are considered similar to ¢. These assignments defined
groups of closely related terms. For example, figure 7 shows the groups associated with the terms
copy, assign, and add.

b4 transferl x createl
10 -log
7 createl 2, map l 3{" —
; 50
assign 1Y add

"\ [replace

15
_COPY —ASSIGN ADD p-10»|assign
OMwrite Waitransfer L{

retrieve replace

e
i

modify

i

15
read A| modify

Figure 7: Defining groups of closely related terms.

When these groups are integrated in the AIRS library, they define a combined feature graph which
allows the user to compare terms that are not related by a group. Figure 8 shows a partial feature
graph defined by the three groups of figure 7. Based on this graph, for example, we could estimate
the degree of similarity between copy and 1og as the weight of the path copy — assign —
add — log for a weight of 55.

writel€ I ADD 30—)[log l
20 T N\
10
| modify | \
30

50
modify
10
read 30 15]3 101
15
'

k30 kZO 40)\

retrieve transfer map

Figure §8: Part of the feature graph for feature function.

To handle synonyms, we set the distances between a term and its synonyms to zero (not shown in
Figure 8). This has the effect that the closeness distance from a candidate component A described
using terms which are synonyms to the ones used to describe a target component B will be zero,

therefore making A the best reuse candidate for B. That is, A and B become synonym descriptions.

To complete the definition of components, their documentation and source code was included
in the AIRS library. This allows users of the AIRS browser to obtain specific implementation
details of components (see Figure 9).

(

€ File Edit Eval Tools Windows AIRS
Search for Package
Search for OPER1
Class FIND-SUBSTRING
£[|=———=—= Component STRSTR
(Show Code](Show Documentation k]

Name:
strstr - locate a substring within a string

Synopsis:

char *strstr(string1, string2)
char *stringl1, *string2;

Description:

strstr returns a pointer to the first character
occurence of string2 within stringt.

Returns:

Successful: Char pointer to located string.
Unsuccessful: A NULL pointer.

P

||

Figure 9: Documentation of the CCIS component strstr.

6 Future Research Directions

The classification model described in the previous sections show how the AIRS approach can be
used to retrieve components for reuse, but little has been said of how to construct a classification
library for a given domain. Currently, this is a knowledge intensive operation which must be
performed by an expert analyst. In this section we present an overview of some of the methods we
are currently exploring to further automate this construction.

20

Semi-Automatic Classification

A method is needed to classify components and packages in terms of a feature space. In general,
this involves analysis of the different parts of a component (e.g., source code, documentation,
etc.), and the use of heuristics to extract features based on this analysis. We are currently
examining a heuristic method called feature aggregation, which extracts information from the
source code implementation of a component A to predict its features. The source code of A is
scanned to obtain the list of component names used as subfunctions in its implementation. For
example, consider the following implementation of the function “minimum of a set of numbers”.

min (list-of-numbers) = first-element (sort-ascending(list-of-numbers))

Function “min” is implemented by sorting in increasing order of magnitude the list of numbers it
receives as argument, and then returning the first element of the sorted list. This implementation
uses a set of two subfunctions to accomplish its task, namely first-element and sort-
ascending. This set is called reference set. Feature aggregation is defined as the method for
predicting the features of a yet unclassified component A with a reference set B, by using the
feature descriptions of those components in B which are stored in the AIRS library.

Refining Subsumer and Feature Graphs

A method is needed to test whether the reuse candidates proposed by the system are truly the best
ones available in the software library. For example, if we classify a new component A known to be
similar to a previously classified component B, we would expect the library system to propose B
as a reuse candidate for A. Failure to do this could arise due to errors in classification of
components A or B, or because of errors in the definitions of feature and subsumer graphs. If both
A and B are classified correctly, then we need to adjust both the links and weights of the graphs
used to compute their degree of similarity (i.e., distance).

We are currently examining a semi-automatic refinement process which will modify the links
and weights of these graphs based on feedback provided by the users of the software library. This
process works as follows: Let T be the description of a test component, and E the description of a
component in the software library known to be T’ s best reuse candidate. The AIRS system is used
to retrieve a proposed candidate P for T. If the distance from the proposed candidate (P) to the
expected candidate (E) is greater than a certain value K, the descriptions of T, E, and P are used to
adjust the feature and subsumer graphs. A value K of zero forces P to be equal to E. In general,
K’s value may need to be greater than zero to avoid undoing adjustments of the graphs done for
other test components.

Expanding the Feature Space
One obvious requirement for any library system is the ability to incorporate components which
have little or no relation to the ones currently stored in the library [17]. Classification of these new

components may include adding new terms to an existing feature, as well as adding new features to
the feature space. A restriction currently imposed by AIRS is that components must be described in

21

terms of all features in the feature space, therefore adding ncw features would involve modifying
all the components already stored in the library.

We are currently examining a method to automate the process of expanding a feature space.
This method uses a new concept called expansion rules. For example, consider a feature space ¥
(defined by two features f, and f,) which needs to be expanded by adding a new feature f;. A rule
for this expansion would be defined as follows.

rule-name = component

f1 = t1l
f2 = t2
£f3 - t3

end component

The description of a rule is similar to that of a component in the sense it defines mappings from
features to terms (denoted with a =), therefore we can compute distances from components to rules
using the closeness relation. Unlike components, a rule is defined using one or more projections
(denoted with a —). To determine the classification of a component C in ¥ in terms of the new
feature f;, we find the rule R whose distance from C is smallest, and then use R’s projections to
expand C’s definition. In this case, C would map f; to ¢,.

7 Conclusions

We have presented AIRS, an Al-based classification system for software reuse. We argue that
such a system is an important aspect of general problem of software reuse and that it has the
potential to reduce the cost of software development. This system uses a classification model to
describe software objects based on three different concepts: features, components, and packages.
These descriptions plus the concepts of subsumption and closeness are used to select candidate
components from the library based on their degree of similarity to a given target component.
Similarity is quantified by a non-negative magnitude (distance) representing the expected effort
required to obtain the target given a candidate. We have demonstrated AIRS using two different
software libraries, and presented an overview of our current research on methods to automate the
construction of AIRS software libraries.

Acknowledgements

Funding for this work was provided by Contel Corporation in a grant awarded through the
University of Maryland Foundation and the UM Systems Research Center. Additional support was
provided to Eduardo Ostertag by Orden S.A., Chile. Yu Chung Wong, A. Vinciguera, and J.
Mogilensky participated in the first design of AIRS. We are also grateful to Pablo Straub whose
comments helped formalize the concepts underlying the system.

22

References

[1]

(2]

[3]

(4]

(5]

[6]

[7]

[8]

(9]

[10]

(11]

[12]

[13]

[14]

T.J. Biggerstaff and C. Richter. Reusability framework, assessment, and directions. /EEE
Software, 4(2), March, 1987. Also in T.J. Biggerstaff and A.J. Perlis, eds., Software
Reusability, Volume I, ACM Press, 1990.

G. Booch. Software Components with Ada: Structures, Tools, and Subsystems. The
Benjamin/Cummins Company, Inc., Menlo Park, California, 1987.

C.L. Braun and A.B. Salisbury. Software Reuse in Command and Control Systems.
Technical Report, Contel Technology Center, Chantilly, Virginia, 1990.

E. Charniak and D. McDermott. Introduction to Artificial Intelligence. Addison-Wesley,
Reading, Massachusetts, 1985.

E. Charniak, C.K. Riesbeck, D.V. McDermott, and J.R. Meehan. Artificial Intelligence
Programming. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey, 1987.

P.T. Devanbu, R.J. Brachman and G.S. Peter. LaSSIE - A Classification-Based Software
Information System. In Proceedings of the 122 ICSE, Nice, France, March, 1990.

D.W. Embley and S.N. Woodfield. A Knowledge Structure for Reusing Abstract Data
Types. In Proceedings of the Ninth Annual Software Engineering Conference, Monterey,
California, 1987.

W.B. Frakes and B.A. Nejmeh. An Information System for Software Re-Use. In
Proceedings of the Tenth Minnowbrook Workshop on Software Re-Use, pp. 142-151,
1987.

R.A. Gagliano et. al. Issues in Reusable Ada Library Tools. In Proceedings of the 6
EFISS Symposium, Atlanta, Georgia, 1989.

J.A. Hendler, Y.C. Wong, A. Vinciguerra, and J. Mogilensky. AIRS: an Al-based Ada
Reuse Tool. Proceedings of the AIDA Conference, October, 1987.

Y.S. Maarek and D.M. Berry. The Use of Lexical Affinities in Requirements Extraction. In
Proceedings of the 5* International Workshop on Software Specification and Design,
Pittsburg, Pennsylvania, pp. 196-202, May, 1989.

N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, California, 1980.

E.J. Ostertag and J.A. Hendler. An Al-based reuse system. Technical Report CS-TR-2197,
UMIACS-TR-89-16, University of Maryland, Dept. of Computer Science, February 1989.

R. Pricto-Diaz. A Sofiware Classification Scheme. Ph.D. dissertation, Dept. of Information

23

[15]

[16]

[17]

(18]

and Computer Science, University of California at Irvine, 1985.

R. Prieto-Diaz. Domain Analysis for Reusability. In Proceedings of COMPSAC ‘87, Tokyo,
Japan, pp. 23-29, October, 1987.

R. Prieto-Diaz. Classifying of Reusable Modules. In T.J. Biggerstaff and A.J. Perlis, eds.,
Software Reusability, Volume I, ACM Press, 1990.

P.A. Straub and E.J. Ostertag. Semantics of the Extensible Description Formalism.
Technical Report CS-TR-2561, UMIACS-TR-90-137, University of Maryland, Dept. of

Computer Science, November, 1990.

M. Wood and I. Somerville. An Information System for Software Components. ACM
SIGIR Forum, 22:3, Spring/Summer 1988.

24

