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Quantum computers can solve certain problems more efficiently compared to

conventional classical methods. In the endeavor to build a quantum computer,

several competing platforms have emerged that can implement certain quantum al-

gorithms using a few qubits. However, the demonstrations so far have been done

usually by tailoring the hardware to meet the requirements of a particular algorithm

implemented for a limited number of instances. Although such proof of principal

implementations are important to verify the working of algorithms on a physical

system, they further need to have the potential to serve as a general purpose quan-

tum computer allowing the flexibility required for running multiple algorithms and

be scaled up to host more qubits. Here we demonstrate a small programmable quan-

tum computer based on five trapped atomic ions each of which serves as a qubit. By

optically resolving each ion we can individually address them in order to perform a

complete set of single-qubit and fully connected two-qubit quantum gates and also



perform efficient individual qubit measurements. We implement a computation ar-

chitecture that accepts an algorithm from a user interface in the form of a standard

logic gate sequence and decomposes it into fundamental quantum operations that are

native to the hardware using a set of compilation instructions that are defined within

the software. These operations are then effected through a pattern of laser pulses

that perform coherent rotations on targeted qubits in the chain. The architecture

implemented in the experiment therefore gives us unprecedented flexibility in the

programming of any quantum algorithm while staying blind to the underlying hard-

ware. As a demonstration we implement the Deutsch-Jozsa and Bernstein-Vazirani

algorithms on the five-qubit processor and achieve average success rates of 95 and

90 percent, respectively. We also implement a five-qubit coherent quantum Fourier

transform and examine its performance in the period finding and phase estimation

protocol. We find fidelities of 84 and 62 percent, respectively. While maintaining

the same computation architecture the system can be scaled to more ions using

resources that scale favorably (O(N2)) with the number of qubits N .
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Chapter 1: Introduction

Quantum computers can be used to solve certain problems much more ef-

ficiently than conventional computers. The idea of using a quantum system to

process information could be dated back to the early 1980’s when proposals made

by Feynman [1] and Deutsch [2] showed how the quantum mechanical evolution of a

system can be used as a powerful tool for performing computations. In his proposal

Feynman suggested the use of a small well controlled quantum system to emulate

the behavior of a larger poorly understood quantum system. The advantage of this

method becomes apparent when calculations of even moderate size quantum sys-

tems becomes exponentially harder to solve using classical computing methods. It

is relatively easier to address this problem using a quantum simulator which can

be programmed to have nearly the same features as the emulated quantum system.

The other proposal made by Deutsch, which intends to solve a mathematical prob-

lem, is based on evaluating unknown ‘oracle’ functions in order to learn about the

behavior of the function. Due to the availability of quantum superposition as an

intrinsic feature of any quantum system, it was shown how this could be used for

evaluating the function for all possible inputs simultaneously and therefore learn

global properties of the unknown function in a single run. At the heart of such ideas
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lies the fundamental properties that are unique to quantum systems alone: namely

quantum superposition and quantum entanglement. The first one allows a system to

be in many possible states at once. Once a system is initialized to such a superpo-

sition, each state can be made to evolve in parallel under the influence of quantum

operations (gates). The elegance of solving a physical or mathematical problem lies

in mapping such a problem to the quantum operation that effects the evolution of

all possible input states therefore leading to an exponential speedup in information

processing due to this quantum parallelism. Such quantum evolutions can often lead

to quantum entanglement. When the final state exhibits such entanglement it can

correlate the different physical parts of the quantum system in a fashion that is not

possible classically.

In order to process information in a quantum system an analog of a classical

bit (0 or 1) is defined in the quantum world as the qubit. The computational

power of a quantum computer is given by its capability of hosting large numbers

of such qubits and having high degree of precision in the manipulation of each of

the qubits in the system. A quantum system of N such qubits spans a Hilbert

space of 2N basis states. Such exponential growth of states is a prime motivation

of using a quantum computer since it makes it possible to evolve an exponentially

large number of states under a single quantum evolution operator. A large part

of the research in quantum information involves finding efficient methods to map

interesting problems into such unitary quantum evolutions. In cases where this can

be successfully done, the quantum parallelism evolves all the basis states together

therefore showing how such an evolution effects all the states. The information
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describing the outcome therefore ideally consists of a set of 2N numbers. However,

a measurement of the system following the computation can collapse the system

probabilistically and irreversibly into one of the basis states. This strange quality

is native to quantum systems and does not happen in classical systems. The effect

of measurement can therefore result in a complete loss of information about the

system evolution. This problem could in principal be circumvented by making an

exponential number of measurements to probe all the 2N values which implies that

the computation also needs to be repeated 2N times. Therefore, at first glance one

might feel that the overall efficiency of a quantum computer only matches that of a

classical computer since the quantum algorithm will have to be run an exponential

number of time which is also how a classical algorithm would solve the problem (by

running it for all 2N possibilities) in the first place. However, this is not entirely true

since most of the information about all the 2N outcomes can be recovered in only a

few runs of the quantum computation if the final superposition state of the system

before measurement primarily consists of only a few basis states and to which the

system collapses on measurement with high probability. In the context of adiabatic

quantum computing this can happen when the system starts in a superposition state

that follows a quantum evolution to converge into only a few possible outcomes that

defines the natural ground states of a physical system [3,4]. Therefore, it takes only

a few measurements to characterize the final quantum state of the system. In the

context of evaluating mathematical functions, the set of 2N numbers that define the

outcome could (for certain function types) have a pattern across them that serves

as an imprint of the functions property. This pattern can then be efficiently derived
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by interfering all the 2N numbers using the quantum version of a discrete Fourier

transform. Due to such interference it is possible to obtain a computation result

where the final outcome consists of single or a superposition of a few possible basis

states (much smaller than 2N). Therefore, the computation needs to be run only

for a few times to obtain a global property of the function [5].

A device is a quantum computer if it meets a set of criteria originally proposed

by DiVincenzo [6]. These conditions can be summarized as follows,

• A scalable physical systems with well characterized qubits

• The ability to initialize the qubits to a simple fiducial state

• Long coherence times compared to the time scale of gate operations

• A universal set of quantum gates

• A qubit-specific measurement capability

Over the years several systems have been developed to serve as a potential

quantum computer. They are based on photonic, solid state or molecular and atomic

systems. Among these, trapped ions are the oldest and most mature technology and

have been shown to satisfy all qualities required to implement a large scale quantum

computer. A qubit in this system is defined by the internal electronic states of an

atomic ion that can be prepared in an initial state, manipulated using external

electromagnetic fields and measured with high precision [7–10]. In this thesis we

will show how one of the candidates (among many other ion species): the 171Yb+ion

makes a very high quality qubit by exhibiting long coherence times compared to the
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time scales of performing quantum gates. Trapped ions are also inherently scalable.

This is given by the fact that the qubit characteristics are defined by the atomic

structure which is the same for all ions of the same element. Therefore increasing

the system size merely requires adding more ions to the system where the same set of

controls for qubit manipulation applies to each one of them. Increasing the system

size by hosting chains of several trapped ions is further aided by the improvement

in the trapping technologies. Atomic ions being charged can be trapped with strong

confinements provided by electromagnetic fields. An ion trap that provides such

fields can be miniaturized to micro-scale sizes with capabilities of fast shuttling

ions [11] and directing laser beams at them using integrated optics [12, 13], both

of which are important for performing computations. Trapped ion systems also

come with a repository of techniques to control and manipulate the qubit with

electromagnetic fields in the microwave [14] as well as the optical regime [15, 16].

Individual addressibility of qubits can be based on optical resolution, shelving of

qubits to auxillary states and spectral resolution of qubits using field gradients

across a linear chain of trapped ions [17–19].

Any quantum computation is executed by applying coherent quantum oper-

ations on the qubits. The fundamental operations required for implementing any

computation could be listed as : a) single qubit rotation, and b) the two-qubit en-

tangling gate [20, 21]. A system of trapped ions can be individually addressed by

laser beams where single qubit rotations can be implemented. For two-qubit gates

a spin-spin interaction needs to be induced that leads to the entanglement of the

two qubits spin states. In order to mediate such interaction a communication line is
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required that connects all the qubits to each other. In trapped ions, strong Coulomb

forces between the ions behave like a connection between them. This influences the

motion of each ion in the chain as the system can now be considered as a set of

harmonic oscillators (one for each ion) that are coupled to each other via the elec-

trostatic repulsion. This results in normal modes of motion of the entire ion chain

where all of them oscillate in sync. It is this motional mode that can be used as a

quantum bus which behaves like an additional degree of freedom outside the spin

Hilbert space where each qubit in the chain can interact with it. Since the normal

modes are distributed over the entire ion chain it can be used to exchange informa-

tion between any two qubits in order to effect two-qubit entangling operations [22].

However, there might be a limitation on the number of ions inside a single ion trap

that can be entangled reliably using such local Coulomb interactions. This limits

the size of a single computation register, often referred to as a module. For systems

that are expected to be larger than a single module the computer can in principle be

distributed over several computational modules. A photonic bus can then be used

to connect these processing units thereby allowing quantum gates to be performed

remotely between modules [23–25].

A quantum computer is scalable when the system size can be increased to have

more qubits available for computations without an exponential overhead of the cost

of doing so. This is only guaranteed when both the multi-qubit system as well as

the multi-qubit control are also scalable. Performing quantum computations on a

multi-qubit system can follow one of two possible methods:

a) The hardware and software of the system is tailored to meet the requirements
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of running a specific quantum algorithm. Early demonstrations of small scale com-

putations have used this method. See for example NMR systems [26–28], photonic

systems [29–31], trapped ions [16,32,33], and solid state systems [34]. A system that

is designed to run specific algorithms by definition does not provide any flexibility

as required for a general purpose machine

b) The execution of a quantum algorithm follows a computation architecture that

decomposes any algorithm into fundamental quantum operations that are executed

on a fixed hardware. Performing computations using this method is more universal

since multiple algorithms can be executed in the same system. However, the scal-

ability in multi-qubit control of such systems strongly depends on the underlying

computation architecture. Using trapped ions as the computing platform already

gives us an advantage on reducing the control parameters since all qubits in the pro-

cessor are identical unlike solid state fabricated “artificial atom” like qubits [35,36]

where qubit characteristics vary due to inadvertent inconsistencies in the fabrication

of the qubits. A versatile quantum computer requires control at the individual qubit

level but it should also minimize the overhead that is required for this control. For

example while driving a two-qubit entangling operation it is preferable to apply the

gate in a modular fashion only on the participating qubit pair using controls that

are only specified by the pair and does not depend on other qubits in the system.

Although it seems straightforward to carry this out, it is hard to completely satisfy

this criteria in a quantum system since there might be inherent interactions of a

qubit with other qubits or with the bath that cannot be completely removed from

the system. Moreover without proper individual addressing of qubits, quantum
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gates applied on targeted qubits might affect spectator qubits due to crosstalk.

The prime objective of the work reported in this thesis is the development of

a programmable quantum computing system with a well defined computing archi-

tecture that supports the reconfigurability required to run arbitrary quantum algo-

rithms in the system. The computation architecture of our system is represented in

figure 1.1 [37]. At the highest level of the computer a user can program a quantum

algorithm using sequences of standard logic gates (high-level commands). These

gates are then decomposed into single-qubit (R) and two-qubit (XX) rotations that

are native to the multi-qubit trapped ion system. This compiler is internal to the

software that follows a specific set of instructions in order to calculate such decom-

positions. In the next step the software calculates optimized pulse shapes that are

used to drive the appropriate XX- and R- gates on the qubits (low-level operations).

This sequence of gates are then effected on the hardware that contains five trapped

171Yb+ions as qubits. The hardware is also setup for individual qubit control using

an array of Raman laser beams that address respective qubits by optically resolving

them in space. This allows us to apply sequences of single- and two-qubit gates that

are optically gated and therefore reconfigurable. By using a static Raman beam ar-

ray to address individual qubits we also achieve a complete set single and two-qubit

rotations that are implemented with a dramatically reduced overhead as compared

to contemporary techniques of shuttling [38,39] and spectral addressing [16,40].

In this thesis we elaborate on the workings of the system. In order to benefit

future members of the lab a didactic tone is maintained throughout where the un-

derlying theory of each experiment is stated in order to corroborate the observations.
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Figure 1.1: Computation architecture. a) Hierarchy of operations from software
to hardware. b, Hardware setup. A linear chain of trapped ion qubits along the
Z axis is shown at the centre of the panel (‘Ion chain’). An imaging objective
(‘Detection optics’) collects ion fluorescence along the Y axis and maps each ion
onto a multichannel photo-multiplier tube (PMT) for measurement of individual
qubits. Counterpropagating Raman beams (‘Global’ and ‘Individual’) along the X
axis perform qubit operations. A diffractive beam splitter creates an array of static
Raman beams that are individually switched using a multi-channel acousto-optic
modulator (AOM) driven by radio frequency (‘Control radio-frequency signals’) to
perform qubit-selective gates. By modulating appropriate addressing beams, any
single-qubit rotation or two-qubit Ising (XX-) gate can be realized. For the two-
qubit gates between qubits i and j, we can continuously tune the nonlinear gate
angle χij. This represents a system of qubits with fully connected and reconfigurable
spin-spin Ising interactions (inset). 9



The thesis is structured in the following way:

In chapter 2 we discuss the theory behind ion trapping that leads to methods

of optimizing the trapping parameters. We describe the ion-trap and give an account

of methods used in assembling the one and the construction of the vacuum system

around it that allows a high optical access for high resolution individual addressing

and detection.

In chapter 3 we discuss the method of qubit manipulation using Raman tran-

sitions. We derive general principles of the process and apply it to pulsed laser

frequency combs and discuss the unique properties that are important for perform-

ing coherent operations.

In chapter 4 we elaborate on the technological side of individual addressing of

ions with Raman beams as well as individual detection of ions using custom designed

high resolution optics. We further quantify the performance of both these processes.

In chapter 5 we discuss the theory behind single qubit R−gates and two qubit

XX−gates and show how a variety of composite modular logic gates can be con-

structed from these native rotations. We quantify the performance of both the

native and logic gates.

In chapter 6 we report the implementations of various quantum algorithms

that are implemented on the 5-qubit processor. The way that these algorithms are

based on the quantum Fourier transform is explained. We also report on a fully

coherent five-qubit quantum Fourier transform and examine its performance in the

protocols of period finding and quantum phase estimation.
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Chapter 2: Experimental System

2.1 Introduction

The trapped ion serves as a pristine quantum system since it can be easily

isolated from the environment. This is due to the fact that it is trapped in ultra

high vacuum (UHV) where the collisions with the background gas are negligible.

This can give a considerable advantage over solid state quantum systems where

the system is in contact with bulk material that forms a thermal bath and leads

to decoherence [36]. Although a trapped atomic ion is free from such a bath, it is

nonetheless not immune to background electric and magnetic fields that can perturb

the energy levels also causing decoherence. However, the strong interaction of an ion

with well controlled electromagnetic fields can give the necessary tools for trapping

and manipulation of the ions.

In this chapter we will discuss the theory behind ion-trapping where static and

dynamic electric fields are used to trap a linear chain of ions that form a Coulomb

crystal due to the joint action of the harmonic trapping potential and the strong

repulsion due to the Coulomb forces between the ions. With the correct engineering

of the harmonic potential using a segmented linear rf-Paul ion-trap [41] a chain of
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many ions can be trapped in a linear configuration with almost uniform spacing

between adjacent ions [42]. For such an arrangement of qubits (ions) an obvious

method to address and detect each one of them is using linear arrays of optics

or optical elements, one assigned to each ion. This will be discussed in detail in

chapter 4. Another advantage of such a linear Coulomb crystal is that they have

normal modes of motion that are common to the entire chain and excite all ions

at once. This is particularly interesting in the context of spin-spin interaction as

one can devise methods to turn on interactions between any pair of qubits (ions)

of the chain by using these common modes of motion as a medium to propagate

perturbations. Since Coulomb interactions are very strong between particles and

are long range therefore the spin-spin interaction between qubits in a chain that are

also strong and long range (chapter 5). This is essential in performing entangling

gate operations between any subsets of qubits in a chain and is one of the prime

motivators for developing traps that can hold and manipulate large linear chains of

ions [43, 44].

In our experimental setup we hold a chain of five trapped 171Yb+ions inside

an ultra-high vacuum (UHV) chamber using a linear rf-Paul trap. In principal, it

should be possible to trap and manipulate a chain that is longer than 5 qubits,

however, there are challenges in scaling up the system using a macroscopic (hand

assembled) trap. Most of these problems arise from the fact that a macroscopic trap

does not provide enough controls to engineer perfect trapping potentials as a micro-

trap can [13] and also have imperfections in fabrication that can cause heating of

ions in the trap due to the fact that there might be uncompensated electrical noise

12



that gives rise to excess micromotion [45]. However, a macroscopic trap, as reported

here, can provide the easy optical access necessary for high resolution control and

measurement of individual qubits and also give deep harmonic trapping potentials

that allow long trapping lifetimes. In this chapter we will discuss the construction

of the ion trap and the vacuum chamber around it and the usual methods of cooling

and trapping of ion crystals. We will also characterize properties of the trap such

as heating rates, micromotion and drifts in the trapping strength; all of which are

critical for the coherent manipulation of the qubits.

2.2 Ion trapping theory

Intuitively, since an ion carries a charge it should be possible using electric

fields that confine it in all three dimensions in space. Implementing this is a bit

more tricky since, in practice, it is not possible to have electric field lines point

inward to a point without either having a charge at the point or having them leave

away from that point in some direction thereby causing anti-trapping. This rule,

also known as the Earnshaws theorem [46], can be encapsulated in the equation

∇̄ · Ē = 0 (2.1)

for the electric field barE in vacuum much like the kind of ultra high vacuum envi-

ronment in which we intend to trap an ion.

In order to create trapping for charged particles, oscillating (rf) electric fields
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Figure 2.1: RF quadrupole field for ion trapping. The RF electric field is gen-
erated by four cylindrical rods running parallel to each other along the Z. Electrodes
2 and 3 are driven by a rf source at voltage V and frequency Ω whereas electrodes
1 and 4 are grounded. The figure shows the electric field projection in the X-Y
plane. The quadrupole field has zero magnitude at (x0, y0). The pseudopotential
confinement of an ion happens at this position with a harmonic confinement in the
radial direction (XY plane). While trapping multiple ions, the ion chain is aligned
along the trapping axis which is parallel to Z and passes through the quadrupole
null point (x0, y0). Here R is the distance of any of the four trap electrodes from
the quadrupole null. We assume that the cylindrical rods have very small diameter
compared to R.
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are used instead of static ones as proposed by Wolfgang Paul and Hans Dehmelt

[41,47] for which they shared the 1989 Nobel prize. The idea is illustrated in figure

2.1. A quadrupole electric field is created using four electrodes, two of which are

driven by an oscillating rf voltage V cos(Ωt) at the angular frequency Ω. As a result

of this an oscillating potential is created near the trapping zone (x0, y0) whose spatial

dependence is of the form,

φ(x, y, t) = V

2 cos(Ωt)
(

1 + x2 − y2

R2

)
(2.2)

where R is the distance of (x0, y0) from the electrodes and we have limited this

treatment to be in the X-Y plane only. This is appropriate in the case of a truly

linear ion trap with axial (Z) homogeneity since there will not be any potential

gradient (or electric field) along the Z direction. Therefore, the idea behind this

derivation is to derive the (radial) confining pseudopotential in the X-Y and hence

prove that this scheme works for trapping ions. Here, we assume that the position

x and y are measured along the X and the Y axes respectively from the quadropole

null (x0, y0) which we define to be the origin (x0 = 0, y0 = 0). Note that this

expression of the potential satisfies the boundary condition at the electrode surfaces

(φ = V cos(Ωt) for rf electrodes and φ = 0 for ground electrodes).

In the next step lets write the electric field as a negative divergence of the

potential,

Ē(x, y, t) = −∇̄φ(x, y, t) = − V

R2 (xx̂− yŷ)cos(Ωt) = Ē0(x, y)cos(Ωt). (2.3)
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Note that the electric field agrees with Earnshaws theorem (equation 2.1). In order

to understand how this field causes a pseudopotential attracting an ion towards

(x0, y0) through a harmonic pseudo potential we Taylor expand the electric field

about this origin,

Ē0(x, y, t) = Ē0(x0, y0)cos(Ωt) + ∂E

∂x

∣∣∣
x0

(x(t)− x0) + ∂E

∂y

∣∣∣
y0

(y(t)− y0) (2.4)

We can substitute (x(t) − x0) and (y(t) − y0) by integrating the force equation

obtained from equation 2.3,

mẍ = eĒx = −eV
R2 cos(Ωt)x (2.5a)

mÿ = eĒy = +eV
R2 cos(Ωt)y (2.5b)

where ẍ = ∂2x/∂t2, ÿ = ∂2y/∂t2. Ēx and Ēy are the X and Y components of the

electric field, respectively. We use the following initial conditions that x(0) = x0

and ẋ(0) = 0 for integrating equation 2.5 where we assume that the variation of

x is small such that the spatial variation of the field eV x
R2 is negligible over the

integrated time and can be considered independent of time on the right hand side

of the equation. We can also apply this rule while calculating (y(t)− y0). We then

obtain the following solutions,

x(t)− x0 = eV

mΩ2R2 cos(Ωt)x (2.6a)

y(t)− y0 = − eV

mΩ2R2 cos(Ωt)y (2.6b)
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Now we can use equation 2.6 and equation 2.3 to rewrite equation 2.4. Additionally

we can also multiply the electric field Ē(x, y, t) with the charge of the 171Yb+ion e

to obtain the force acting on the ion,

F̄ (x, y, t) = e

[
Ē0(x0, y0)cos(Ωt)− eV 2

mΩ2R4 cos2(Ωt)xx̂− eV 2

mΩ2R4 cos2(Ωt)yŷ
]

(2.7)

In order to find the overall effect of the force on the ion over long time scales we

can average it over time by integrating equation 2.7 over a time period that is

much longer than the oscillation period of the rf-electric field (1/Ω). Here, the first

term averages to 0 and we are left with an average force that acts towards the trap

axis (x0, y0) and the strength is proportional to the displacement like a harmonic

potential,

F̄ (x, y) = − e2V 2

2mΩ2R4xx̂−
e2V 2

2mΩ2R4yŷ (2.8)

Comparing this to the force equation of a harmonic potential F (r) = −mω2r, we

obtain the oscillator frequency (or the secular frequency) of the harmonic trap as,

ω = eV

21/2mΩR2 (2.9)

2.3 Ion trapping in practice

In the experiment we trap ions using a four blade linear rf-Paul trap. The

computer design is shown in figure 2.2. The four blades are analogous to the four

cylindrical electrodes shown in figure 2.1 where the diagonally opposite DC elec-
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Figure 2.2: Linear rf-Paul trap using segmented blades. In practice we use
four blades as the electrodes of the linear Paul trap. These blades are segmented
along the trap axis Z. a) A view of the segmented blades of each of the four electrodes
that form the ion trap. Each of the five segments of each DC electrode (front up
and bottom back) are driven by independent DC voltage sources. By applying
appropriate voltages in these segments confinement along the trap axis (along Z)
can be achieved. b) XY cross section of the four blades that form the radial (XY)
quadrupole potential. Opposite blades (RF1 and RF2) are driven at an rf voltage to
create the oscillating quadrupole near the trap axis thereby radially confining ions
in XY. The DC electrodes are rf-grounded using shunt capacitors (such that they
behave as grounded electrodes 1 and 4 as shown figure 2.1). Although rf electrodes
are mechanically segmented, they are electrically connected and carry the same
applied voltage.
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trodes behave as rf ground electrodes as they are connected to ground through a

large capacitance (∼ 1nF). Each blade is segmented along the trap axis (Z) direc-

tion such that different DC voltages may be applied to individual segments. Each

segment is 250µm in length along Z with a spacing of about 50µm between adjacent

segments. The distance of the trap axis from each electrode (R, see fig 2.1) is about

250 µm.

Both the RF electrodes are driven by the rf voltage V cos(Ωt), where Ω =

2π × 23.83 MHz. This provides strong radial harmonic confinement in the X and Y

direction with a secular frequency that approximately follows equation 2.9. In the

experiment we measure the secular frequency to be ωx,y ≈ 2π × 3 MHz which gives

the approximate value of the rf amplitude V ≈ 400 V.

Although the rf electrodes are segmented, they share a common voltage such

that a uniform rf quadrupole potential can be maintained along the trap axis and

with no projection of Ē along Z. This is necessary since trapped ions align them-

selves along the trap axis and they should all see a translationally invariant radial

confinement: a property of the linear ion trap. However, in practice it is hard

to achieve a truly linear trap unless the electrodes are translationally invariant as

well. In our blade-trap the segmentation of the electrodes leaves room for imperfect

fabrication which might lead to deviations from the trap behaving linearly.

The segmentation of the electrodes, particularly in the DC electrode, is nec-

essary for confinement of the ions in the axial (Z) direction. The confinement is

achieved by applying relatively high potentials at segments that are on either side

of the trapping zone compared to the segments in the trapping zone. For example,
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in order to trap in the middle zone DC3 and DC8 are kept at a negative potential

while a positive potential is applied to electrodes DC2, DC7, DC4 and DC9. This

creates a ‘direct’ harmonic confinement potential due to a DC quadrupole along the

Z axis, which is usually an order of magnitude weaker (ωz ≈ 0.3 MHz) than the

radial (a bit more ‘indirect’) harmonic psedopotential confinement.

An ion trap needs to be characterized before use in trapped ion manipulation.

One of the things to be checked is whether it behaves as a linear trap and if not

whether it might be possible to tune the trapping voltages to create the most stable

and close to linear behavior. We perform a series of measurements using a single

trapped ion in order to answer these questions. However, in order to corroborate

experimental observations (shown in section 2.6) with theory, we need to consider

the most general treatment of the motion of an ion in the presence of static and

oscillating potentials at the trapping zone of the blade trap [48,49].

In the presence of the rf and the DC voltages of the segmented blade trap as

discussed above the most general form of the potential near the trapping zone is

quadrupole in nature and can be written down in the following form [10],

φq = κ
V

R2

(
αx2 + βy2 + γz2

)
cos(Ωt) + κ′

U

R2

(
α′x2 + β′y2 + γ′z2

)
+ V0cos(Ωt) + U0

(2.10)

where (x, y, z) is the displacement from the quadrupole null position (x0 = 0, y0 =

0, z0 = 0) where the electric field strength is 0. U and V are the applied DC and RF

voltages, respectively with values U0 and V0 at the quadrupole null position. From

Earnshaws theorem (equation 2.1), note that α + β + γ = 0 = α′ + β′ + γ′. The
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constants κ and κ′ are geometric factors that take into account the specific shape

and orientation of the RF and DC electrodes of the ion trap, respectively and are

fixed values for a given ion trap. In figure 2.1 the null position of the quadrupole is

at (x0, y0) in the XY plane. In the case of the blade ion-trap the application of the

DC voltages on the segments now creates a null position z0 in the third dimension

along the trap axis as well (fig 2.2).

Under ideal conditions γ = 0 and α+β = 0. In equation 2.10, we have included

a static quadrupole potential proportional to U that arises due to the application of

unequal voltage values to the DC segments. For confinement along Z we need to set

the voltage values such that γ′ > 0, which as a result creates a static anti-trapping

potential in the XY plane as α′+β′ = −γ′ < 0. However, this DC anti-confinement

is weak so that when it is added to the radial pseudopotential the net potential is

still confining. Another effect of the DC quadrupole on that radial confinement is

that it can break the degeneracy of the radial confinement where ωx = ωy = ω (eqn.

2.8 and 2.9) by setting different anti-trapping strengths along X and Y such that

α′ 6= β′.

In order to explain the trap behavior, as observed experimentally, we are going

to assume that the trap is not linear (α, β, γ 6= 0). Under this condition, the trap

in principle will successfully provide confinement in all three directions even if no

DC quadrupole is applied (α′, β′, γ′ = 0). Given the geometry of the blade trap

we expect γ to be very small thereby only providing a very weak pseudopotential

confinement along Z. Hence we find it necessary to apply a DC quadrupole by setting

voltages on the DC electrodes such that α′ + β′ = −γ′ < 0 in order to trap along
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Z. We could also assume without loss of generality that there is a background static

field given by the potential φb. We can write this background electric field potential

as,

φb = Exx+ Eyy + Ezz + φ0 (2.11)

In the absence of this field the ion is most likely to be trapped at this quadrupole

null position (x0, y0, z0). However, in practice such stray uniform electric fields are

present in the system which then shifts the quadrupole null to a different position

[45]. Therefore the total force acting on the ion is now given from equation 2.10 and

2.11 as follows,

F̄ (x, y, z) = −e∇̄(φq + φb) (2.12)

We can use this to write down the equation of motion in all the three directions [45],

üi + [ai + 2qicos(Ωt+ θ)]Ω
2

4 ui = eEi
m

(2.13)

where ui is the displacement of the ion from the rf null position along the i-th

direction where i = {x, y, z}. The term ai is a dimensionless quantity that represent

the strength of the DC quadrupole along the i-th direction.

ax = α′
8κ′eU
mR2Ω2 , ay = β′

8κ′eU
mR2Ω2 , az = γ′

8κ′eU
mR2Ω2 (2.14)

The term qi is a dimensionless quantity that represent the strength of the rf quadrupole
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along the i-th direction.

qx = α
4κeV
mR2Ω2 , qy = β

4κeV
mR2Ω2 , qz = γ

4κeV
mR2Ω2 (2.15)

The equations of motion resembles Mathieu equations with a general solution sug-

gested by the Floquet theorem [50]. The solution to the equations of motion, there-

fore, is of the following form,

ui(t) = [Ai +Bicos(ωit)]
[
1 + qi

2 cos(Ωt+ θ)
]

(2.16)

Note that the displacement has a fast oscillating component at the rf drive frequency

Ω. This is referred to as micromotion. The term Ai is the displacement of the ion

from rf null due to the background electric field Ei and ωi is the net secular frequency

of the harmonic trap confinement given by the combination of both the static dc

potential and the dynamic rf pseudopotential. When the ion is at equilibrium the

force due to the harmonic trap is equal and opposite to the force from the background

static field. This can be used to evaluate Ai to be,

Ai = eEi
mω2

i

(2.17)

where,

ωi = 1
2Ω

(
ai + q2

i

2

) 1
2

(2.18)

We can clearly see that in the absence of a background field Ai = 0 the displacement
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nearly follows a harmonic oscillation at a slow secular frequency with an amplitude

Bi that determines the average energy of the harmonic oscillator. In order to make

the trap more harmonic one should reduce the parameter qi which also can be

written as qi = 2
√

2ωi/Ω in the limit where |ai| � q2
i (which is true since the

axial confinement is usually much weaker than radial confinement). In any trapped

ion experiment it is usually preferable to have a high radial confinement where the

secular frequency can be set to have a higher value by increasing the amplitude of

the rf voltage V and decreasing Ω. However, in order to keep the micromotion low

it is necessary to have the trap secular frequency much smaller than the rf drive

frequency Ω.

Figure 2.3a shows a simulation of the ion motion for Ai = 0. It is clear that

the ion follows a fast micromotion at the frequency Ω with an amplitude that is

directly proportional to the displacement of the ion from the rf null. Therefore for

trapped ions, such micromotion always exist on top of the slower oscillation from

the harmonic pseudo potential confinement. In the presence of the background field,

however, there is a finite displacement of the equilibrium ion position from the rf null.

In such a scenario the ion motion is mostly dominated by the micromotion. This

‘excess micromotion’, as shown in figure 2.3b, can be eliminated by compensating for

background electric fields by providing appropriate DC voltage bias to the segmented

electrodes of the trap. In section 2.6 we will discuss the techniques of measuring

such ‘excess micromotion’ and eliminating the stray background field in order to

position the trapped ion at the real rf null of the blade trap.
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Figure 2.3: Simulated radial motion of an ion in a linear trap a) Normal
micromotion on top of the secular oscillation is simulated for the radial secular trap
frequency of ωr = 2π×3.0 MHz and rf drive frequency Ω = 2π×23.83MHz. The solid
blue line shows actual ion motion. The dashed red curve shows oscillation at the
same secular frequency for a perfect harmonic confinement. b) Excess micromotion
due to background electric field causing a displacement of the ion from rf null that
is 10 times the secular oscillation amplitude (Ai = 10×Bi). This roughly magnifies
the micromotion to 10 times that of the normal micromotion.
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2.4 The 171Yb+qubit

There are many competing trapped ion systems that can be used for quantum

information processing such as Ba+, Ca+, Mg+, Hg+, Sr+, Cd+, Y b+ etc. [51].

Each system has its own sets of advantages and disadvantages. 171Yb+, which is

one of the heavier ions is our system of choice. It has a ground state hyperfine

manifold, much like a hydrogen atom, that serves as a qubit. More specifically, the

(F = 0,mF = 0) and the (F = 1,mF = 0) hyperfine levels of the 2S1/2 ground state

forms the qubit. The relevent level structure of 171Yb+is shown in figure 2.4.

There are several advantages of this system that can be deduced from the

171Yb+level structure [52]. The hyperfine qubit has an energy splitting of ωHF =

2π × 12.6428 GHz at zero applied magnetic field where the only way state |1〉 can

decay to |0〉 is through a magnetic dipole transition. At this energy splitting this

spontaneous emission rate is virtually zero [53,54]. In the lab frame the 171Yb+qubit

evolves as

|ψ〉 = α|0〉+ ei(ωHF+δ)tβ|1〉 (2.19)

where amplitudes α and β are real. Since qubit splitting energy is in the microwave

regime, microwave synthesizers and Raman laser beams that coherently manipulate

the qubit can all be synchronized by a single microwave synthesizer which is locked

to a pristine frequency standard 1. The hyperfine qubit is also quite stable against

dephasing noise that can be caused by fluctuations in the hyperfine splitting. For
1Stanford Research Systems FS725 Rubidium Frequency Standard
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Figure 2.4: The 171Yb+energy level diagram. The partial level structure of
171Yb+shows the transitions that are pertinent to the experiment. The solid arrows
shows lasers that are used in inducing spontaneous emission in 171Yb+as is necessary
for dissipative processes such as doppler cooling of the ion, state preparation and
detection of the qubit. The blue (dotted) arrow shows an off-resonant 355 nm mode
locked laser that is used to perform coherent manipulations on the qubit using
Raman transitions.
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example the variation of the qubit splitting δ near zero magnetic field only varies

in a quadratic way with the applied field as δ = 2π × 310.8B2 where the shift is in

Hertz and the magnetic field is in Gauss. The smallness of δ makes the qubit not

only long lived but also fairly stable with a coherence time usually of the order of a

few seconds which can be extended to several thousands of seconds with shielding

from magnetic field fluctuations. This is why the qubit levels are often referred to as

“clock” states [55]. In our setup we achieve coherence times of the order of 1 second

and is typically limited by the coherence of the driving laser field rather than the

qubit itself. This coherence time is ∼ 103 times longer than the duration of typical

experiments.

The ground 2S1/2 and the excited 2P1/2 state can be coupled with a UV laser at

369.5 nm that is resonant with this electric dipole transition. Even though there is

a small branching ratio to the 3D3/2 state this transition is nearly cyclic and allows

one to perform dissipative processes like doppler cooling, qubit state preparation

and measurement quite efficiently (fig. 2.4) [53, 56]. Another added benefit to

this is that the optical addressing techniques (if necessary) for the aforementioned

processes is naturally more resolved at this shorter (UV) wavelength. This can help

in high fidelity state preparation or measurement of individual qubit within a chain

of multiple ions.
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2.4.1 Loading 171Yb+ions

The first step towards trapping 171Yb+ions is photo-ionization where one of

the outer electrons of a neutral atom is stripped using a two photon process to

create singly ionized Ytterbium. This involves two transitions, the first being the

excitation of the electron from the 1S0 to the 1P1 level in neutral Ytterbium. This

is accomplished by applying a continuous-wave (c.w.) laser light at 398.5 nm. Once

the electron is excited to the 1P1 level it requires a second photon that has enough

energy to excite it to the continuum thereby forming the 171Yb+ion. Since the

second photon is required to have a wavelength less than 394 nm, we can either use

c.w. light at 369.5 nm that is already used for the 2S1/2 to 2P1/2 transition or pulsed

laser light at 355 nm (used for Raman transitions).

During the loading of ions an oven containing small fragments of enriched

171Yb (about 95% isotope purity) within a stainless steel tube is resistively heated by

passing a current (2.4 A) such that an atomic beam of neutral Ytterbium is created

and directed towards the ion trap. About 600µW of 398.5nm light (ionization beam)

and 500 µW of 369 nm (or > 1 mW of 355 nm) light are focused to a beam waist

of 50 µm and overlapped at the trapping zone during loading. The temperature

of the atomic beam is above room temperature and the velocity distribution of

neutral Ytterbium is peaked at several hundred meters per second. This gives rise

to Doppler shifts of the frequency of the ionizing laser beams as seen by the moving

neutral atom. Therefore the frequency of the ionization beam is shifted by ±500

MHz range depending upon the angle of the beam k-vector with the atomic beam.
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Additionally, the radial confinement of the trap is also lowered by a factor of 10 in

order to trap ions that are at the lower velocity rage of the velocity distribution.

This allows the slow moving ions to be cooled easily such that they can form a

Coulomb crystal. In the experiment, it is the combination of both reduced trapping

rf amplitude and the appropriate shift of the frequency of the ionization beam that

optimizes the trapping rate.

2.4.2 Doppler cooling

Once a neutral Ytterbium atom is ionized within the trapping zone it ‘sees’

the trapping potential. Initially the ion is at a much higher temperature due to its

initial velocity and needs to be rapidly cooled down nearer to the ground state of

the harmonic well. This is achieved by doppler cooling of the ion using a laser that

is detuned from an optical transition between two electronic levels of the atom [53].

The scattering rate in this case is given by,

Γs =
sΓ

2
1 + s+ 4∆2

Γ2

(2.20)

where the saturation parameter s = I/Is is the ratio of the beam intensity to

the saturation intensity. The saturation intensity Is = πhc/3λ3τ depends on the

wavelength λ of light resonant with the transition and the lifetime of the excited

state τ . The parameter Γ is the natural radiative linewidth of the decay from the

excited state to the ground state and ∆ is the detuning of the excitation laser

frequency from resonance.
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Figure 2.5: 171Yb+Doppler cooling, optical pumping and state detection
schemes. The solid arrows indicate applied frequency and polarization components
in the 369.5nm beams and gray lines show the possible routes for spontaneous emis-
sion to the ground state manifold. a) Doppler cooling frequencies and polarization.
b) Optical pumping frequencies and polarization required for qubit state preparation
in |0〉, c) Frequency and polarization components for qubit state detection .
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In 171Yb+the 2S1/2 and 2P1/2 levels form a nearly cyclic two-level system con-

nected by optical transitions, where there is a high probability for the ion to be

in these two levels during repeated scattering events of excitation and spontaneous

emission (fig. 2.4). The only minor variation from the ideal two-level system is the

hyperfine splitting of both levels. This might require additional frequencies to be ap-

plied during doppler cooling in order to prevent the population from getting trapped

(pumped) to some auxiliary state and prevent any further scattering. Figure 2.5a

shows that the light resonant with the 2S1/2, F = 1 to 2P1/2, F = 0 transition also

requires a second frequency that is higher by 14.7 GHz to excite population that

might be trapped in the |0〉 state. This additional frequency of the 369.5 nm cooling

beam is obtained from a second-order sideband generated by an electro-optic modu-

lator (EOM) 2 that is resonant at 7GHz and driven with ∼ 1W of rf power. In figure

2.4 we also note that there is a 0.5% chance of the 2P1/2 state to fall into the 3D3/2

manifold. In order to depopulate from this state an IR laser at 935.2 nm is used to

excite from the 3D3/2 to the bracket state 3[3/2]3/2. Due to the nuclear spin I = 1/2

of 171Yb+both these levels also have a hyperfine structures which then requires an

additional frequency on the 935.2 nm beam that is higher by 3.07 GHz. This com-

ponent is given by the first-order sideband created by modulating the beam using a

fiber EOM 3 that is resonant at 3.07 GHz and driven by ∼ 10 mW of rf power. The

polarization of the beams are also critical as seen in figure 2.5a and needs to have

both linear along π̂ and circular σ̂ components. This can be achieved by adjusting
2EOM from New Focus, model 4857 with resonance at 7.37 GHz
3EOSpace
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the angle between the polarization vector of the beams with the quantization axis for

the ion, that is defined by a magnetic field B = 5.2 G applied along the X direction

of the trap (as shown in fig. 2.2). This magnetic field also removes the degeneracy

between the mF = ±1 and mF = 0 states of the ground state 2S1/2, F = 1 manifold

by increasing the Zeeman splitting between the levels. This prevents the ion from

getting pumped into a coherent dark state that, depending on the cooling beam

polarization, is such a coherent superposition of the Zeeman states that it can have

zero net coupling to the excited 2P1/2, F = 0 level [57]. The applied magnetic field

helps to destabilize this dark state by evolving the phase the constituent Zeeman

states at different rates. Nonetheless, due to a presence of this approximate dark

state there is a reduction in the overall scattering rate compared to a pure two-level

system as suggested in equation 2.20. Additionally the rate also suffers from the

branching to and the subsequent depumping from the 3D3/2 manifold. This however,

might be substantial if either the polarization or the frequency of the 935.2 nm laser

is not optimized to efficiently depopulate this state. This is due to the fact that the

3D3/2 state has a life time of 52.7 ms which being much longer that the 2P1/2 life

time of 8.12 ns can temporarily trap the ion in this dark state (see fig. 2.4) [58].

Once the system of lasers are optimally tuned to make an 171Yb+ion to contin-

uously scatter light like a two-level system, we can perform doppler cooling by red-

detuning the 369.5 nm cooling laser from resonance (decreasing the laser frequency)

[10,59]. The scattering is mostly from the transition between the {2S1/2, F = 1} and

{2P1/2, F = 0} levels. At this point we can write the detuning in equation 2.20 as

∆ = δ− k̄.v̄ where δ < 0 is the detuning of the cooling laser from resonance and k̄.v̄
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gives the first order doppler shift of the ion with velocity v̄ scattering a cooling beam

photon with k-vector k̄. Therefore, while traveling towards the incident photon the

ion has a higher rate of scattering a photon since k̄.v̄ < 0 . This process leads to a

higher likelihood of absorption of a low energy photon by the atom thereby reducing

its momentum by ~k. In order to find the overall change in the momentum of the

ion the recoil momentum from the spontaneous emission of a higher energy photon

should also be taken into account. Fortunately the effect from the latter process

averages to zero over several scattering events, since the spontaneous emission is

isotropic and both π̂ and σ̂ photons are emitted with equal likelihood. Therefore,

the net effect of this scattering process is the loss of kinetic energy of the ion along

the k̄ direction of the doppler cooling beam which leads to the eventual cooling of

the ion.

During the loading of 171Yb+ions in the trap the initial kinetic energy of an ion

is relatively higher and needs to be reduced by doppler cooling using a beam that is

far detuned from resonance (by δ = −2π × 300 MHz) compared to the natural line

width of the transition Γ = 2π × 19.7 MHz, such that higher scattering rates are

achieved (∆ is small) even for large doppler shifts seen by a fast moving ion. This

beam is the same as the one used in the photo-ionization process discussed earlier.

Furthermore, the atomic transition is power broadened by increasing the intensity

beyond saturation s � 1. Once the ion has scattered enough photons from this

beam and lost sufficient energy, it can now be more efficiently cooled with a weaker

cooling beam that is detuned by δ = −Γ/2 ≈ 2π×10MHz from resonance. With the

power set close to saturation the ion is now efficiently cooled down to close to the
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motional ground state. We apply ∼ 10 µW of power to this beam with its ∼ 50 µm

beam waist at the trapping zone.

2.4.3 Qubit state initialization

At the beginning of every experiment the qubit needs to be initialized to a pure

state. We choose the state |0〉 where the qubit is prepared through optical pumping.

In any experimental sequence this qubit initialization follows doppler cooling which

resulta in the population being spread over all the ground state hyperfine manifold.

In order to remove population from the {2S1/2, F = 1} manifold a laser is tuned to

resonance on the {2S1/2, F = 1} and {2P1/2, F = 1} transition . This is achieved by

modulating the original 369.5nm beam with an EOM4 that is driven by ∼ 0.5W of rf

power at 2.1GHz. As shown in figure 2.5b this leads to spontaneous emission with a

high branching ratio to the state |0〉. Since the laser frequencies are detuned enough

not to excite from this state there is near a 100% probability of all the population

to accumulate in this state after only a few scattering events. In the experiment the

optical pumping takes less than 5µs duration to transfer > 99.7% of the population

to the state |0〉.

2.4.4 Qubit state detection

The state detection of the 171Yb+qubit is performed at the end of an experi-

ment and therefore is an important step in determining the fidelity of gate operations

preceding it. In other words, the detection fidelity is required to be high in order to
4EOM from New Focus, model 4431 with resonance at 2.105 GHz
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make a good estimate of the process fidelity of gate operations on the qubits in the

chain. The detection scheme of the 171Yb+qubit is based on state dependent fluo-

rescence. Basically, if the qubit is in the state |1〉 (bright state) it scatters photons

when illuminated by the ‘detection’ laser beam at 369.5 nm. This is accomplished

by tuning the laser to be resonant with the transition from {2S1/2, F = 1,mF = 0}

to {2P1/2, F = 0,mF = 0}. As shown in figure 2.5c this also requires both σ̂ and

π̂ polarizations due to the eventual participation of all the Zeeman levels of the

{2S1/2, F = 1 ground state manifold. Although the Zeeman splitting between the

levels of the {2S1/2, F = 1} manifold is about 7 MHz it is well within the line width

of the transition and any population in these states gets excited thereby forming

a cyclic process where many photons are scattered. For the state |0〉 (dark state),

however, the frequency of the laser is off resonant by about 14.7 GHz for the dipole

allowed transitions to the {2P1/2, F = 1} manifold and therefore does not result in

any photon scatter.

In the experiment an imaging objective with a numerical aperture (NA) of

0.37 collects fluorescence from the ions during state detection and images them on

single channels of a multi-channel photo-multiplier tube (PMT). We will discuss the

optical and electrical design of the imaging system in more detail in chapter 4. The

detection beam intensity is maintained close to saturation and is actively stabilized

using a digital PID-lock (noise eater) while monitoring the beam intensity using a

fast photo diode and feeding back by regulating the power of the rf signal driving

the acousto-optic modulator (AOM) that is used to switch the detection beam. We

use an FPGA with on board ADC and DAC to readout the intensity from the
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photo diode, calculate the PID response and output the analog voltage to a voltage

variable attenuator (VVA) that regulated the power of the driving rf signal.

Although the detection scheme has excellent fidelity as transitions from |0〉are

far off resonance and the nearly cyclic nature of the scatter, it is still not a 100%

due a several reasons. These are

• Branching from the excited {2P1/2, F = 0} state to the long lived {3D3/2, F =

1} state as shown in figure 2.4 requires the 935.2 nm de-pump laser to be opti-

mally tuned to depopulate efficiently from this manifold and bring it back to

the ground state {2S1/2, F = 1} within the detection time. In the experiment

we observe that the polarization of the de-pump laser is critical and requires

readjusting on a regular basis in order to maximize fluorescence scatter from

a ‘bright’ ion.

• It is important to have a high count of collected photons in a short duration

during detection. This is due to the fact that an off resonant excitation to

the {2P1/2, F = 1} manifold might inadvertently pump the atom to state |0〉

on emitting a photon. Hence, even if the qubit originally collapsed to state

|1〉 at the onset of the detection process it could be detected as a dark state

|0〉. The off-resonant excitation that gives rise to this error is only 2.1 GHz

(or 100 natural line widths of the transition) away from resonance and has

a higher probability of happening for a longer detection duration or due to

excess intensity in the detection beam that can cause power broadening of

this transition.
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• Background scatter of the detection beam from ion-trap features near the

trapping zone can give false photon ‘clicks’ at the PMT and must be removed

by using high NA imaging objective along with spatial filters in the optical

system in order to selectively collect photons from a very small (real) space

containing the trapped ions. This affects the detection fidelity of the dark

state |0〉 since ideally, no photons should be scattered in this case.

During the design of the trap and imaging optics the second and third points

can be addressed by making appropriate provisions in the design. For example, the

trap assembly must allow short working distance between the ion and the imaging

objective that collects fluorescence from the ion. Given that in most traps the

objective is placed outside the vacuum chamber this can be achieved by the use of

re-entrant windows and an optically open trap such that the Numerical aperture

(NA) of light collection can be maximized. This is useful not only in reducing the

detection duration but also in achieving shallow depth of focus of the objective that

acts like a spatial filter along the optical axis thereby dramatically reducing the

collection of background scatter. An optically open trap with sufficient clearence

between the detection beam and the trap electrodes also reduces the background

scatter.

In the experiment the detection beam is turned on for a duration of 150 µs

during which the ion scatters light based on the collapsed state. The probability

distribution of detecting a certain number of photons for a typical experimental run

is shown in figure 2.6 for both the dark |0〉 and the bright |1〉 state. For state |1〉 on
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Figure 2.6: Distribution of collected fluorescence from a single ion. The
probability distribution of collecting a certain number of scattered photons per ex-
perimental shot is plotted for the bright |1〉 and the dark |0〉 state over a 150µs state
detection. Each histogram nearly follows a Poisson distribution with an expectation
value close to 0 for the dark state and 9 for the bright state. By discriminating
events based on > 1 collected photons during the detection cycle, single shot state
detection of the qubit can be performed with reasonably high fidelity.
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an average 9 photons are scattered while for state |0〉 no photons are detected. In

order to measure the qubit state one can employ a discriminator technique which sets

a threshold on the number of detected photons such that if > 1 photons are detected

for an experimental run the measured state is assigned to be |1〉 and |0〉 otherwise.

This single shot detection is critical for several quantum algorithms and protocols

where measurement-based quantum gates are performed. In these processes single

shot measurements are performed within a sequence of gate operations and therefore

need to be of high fidelity such that errors do not accumulate while performing

repeated measurements along the sequence. In our system we achieve a fidelity of

99.66(3)% for the preparation and measurement of state |0〉 and 99.04(5)% for state

|1〉.

In principle, the discrimination technique works for single as well as multiqubit

detection by using multiple channels of a PMT array The details will be discussed in

chapter 4. We will see that besides the usual error (< 1%) in the single qubit detec-

tion, for two or more qubits additional errors arise due to signal cross-talk between

neighboring channels of a multi-channel PMT as well as higher rates of background

scatter as we bin together more channels of the PMT array for state detection. In

order to circumvent these errors a second method can be adopted based on the his-

togram of scattered photons. Usually this distribution is Poissonian which centers

around a value ≈ 0 or 10 or 20 photons for two qubit states in |00〉, (|01〉or|10〉)

and |11〉, respectively. A state detection in this case can be performed by fitting

the measured histogram to known basis histograms. We verified this procedure by

detecting two qubit states initialized in |00〉 after performing an XX-gate entangling
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Figure 2.7: Two-qubit state detection using histogram fitting. Measurement
of a two-qubit state using histogram fitting. a) Basis histograms are obtained by
preparing two qubits in one of the four basis states and subsequent measurement of
fluorescence. b) Output state histogram is obtained after performing an XX-gate on
two qubits initially in |00〉 and measuring the detection fluorescence. The expected
output state is 1√

2(|00〉 + eiφ|11〉). c) The population in the four basis states is
obtained from fitting the measured histogram to a linear combination of the basis
histograms.
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operation [60, 61]. As shown in figure 2.7a, a set of basis histograms are obtained

for each of the four basis states, which can be prepared with high fidelity (using

microwave Rabi rotations). The basis histograms can be distinguished from one

another as they are centered around different values of the average photon number.

These basis states can then be used for a two-qubit state detection. Figure 2.7b

shows one such example where a histogram obtained from measuring a two-qubit

entangled state 1√
2(|00〉 + eiφ|11〉). This histogram can then be fitted to a liner

combination of basis distributions,

H(n) = P0B0(n) + P1B1(n) + P2B2(n), (2.21)

where H(n) is the measured histogram obtained from several experimental repeti-

tions with n as the number of photons detected for single runs of the experiment.

The Bi(n) are the basis histograms for i bright ions (in state |1〉). The fitted pa-

rameters Pi correspond to the diagonal elements of the two qubit density matrix ρ

as P0 = ρ00,00, P1 = ρ10,10 + ρ01,01 and P2 = ρ11,11. Figure 2.7 is one such example

illustrating the fitting process where, 2.7c shows the measured population obtained

from fitting the output histogram in Fig.2.7b to the basis histograms in Fig.2.7a.

Histogram fitting is a very useful technique that can be used for the calibra-

tion of an XX-gate where the variation of populations in the |00〉 and |11〉 state

is observed as a function of the intensity of the laser that drives the gate. A low

population for single bright states (or low value of P1) suggests a high gate fidelity.

In principle this technique provides a better, than might be expected, estimate of
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the gate fidelity as the basis histograms already include the state preparation and

measurement (SPAM) errors. For example, non zero photon counts due to back-

ground scatter or imperfect optical pumping to the dark state |00〉 is reflected in

the basis histograms as photon counts are sampled over thousands of experimental

repetitions. This also applies to histograms of single or double bright ions that

contain events with zero photon scatter due to a small but non-zero probability of

off-resonant pumping to the dark state and due to the fact that the Poisson distri-

bution also gives a small but non-zero probability of events where ≤ 1 photon is

detected . Therefore the final measurement of state populations exclude the SPAM

errors. The down side to this technique, however, is that the basis histograms can

only be used for fitting as long as the system is sufficiently stable to maintain the

same rate of fluorescence scatter from the ions. A number of factors such as drifts

in laser power/polarization and optical alignment of the imaging system can lead

to deviations. A practical approach to tackling this problem is characterizing time

scales for systematic drifts and recalibrating the basis histograms accordingly.

2.5 Ion trap assembly and vacuum system

Trapped ion experiments require extreme isolation of the trapped ion from col-

lisions with background gas molecules. Such collisions, when elastic, can cause the

heating of the ion thereby reducing its lifetime in the trap. In case of 171Yb+, col-

lisions can also cause transition to the 2F7/2 manifold, which has a long lifetime for

spontaneous decay to the ground state and therefore requires an additional laser to
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depopulate. In addition chemical reactions occur due to inelastic collisions between

the ion and a background Hydrogen molecule forming the hydride ion YbH+ [62].

This is our most likely way of ion loss even at our ultra high vacuum (UHV) condi-

tions. A low pumping rate and residual leakage of Hydrogen through the chamber

walls and fused silica windows is to blame. It is therefore desirable to produce a

vacuum environment, which is as good as one can reach with efficient pumping for

Hydrogen.

2.5.1 Chamber assembly

The vacuum chamber constructed for the experiment is shown in figure 2.8. It

is designed to achieve ultra-high vacuum (UHV) pressures of∼ 10−11Torr. Achieving

such low pressure is non trivial and requires special attention during the assembly of

the vacuum chamber. All components (see table 2.5.1) are chosen such that they are

UHV compatible, which implies that the rate of outgassing and leakage is very low.

We choose ConFlat (CF) flanges for all stainless steel components, which allows

all-metal seals with joints formed by stainless steel knife edges pressing into soft

copper gaskets permanently deforming it to form a high quality vacuum seal. All

windows and electrical feedthroughs have UHV compatible metal to glass seals. It

is also necessary to carry out the assembly in a clean room environment to prevent

contamination of the vacuum parts from dust particles. Special care is taken to

remove and prevent any bodily oils, skin contact, hair etc. from the parts. Each

stainless steel component is cleaned in an ultrasound bath of Acetone followed by
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Figure 2.8: Vaccum system for trapping ions. A computer design of the vac-
uum system that contains the ion trap. All components have standard ConFlat (CF)
flange connections deigned to operate at ultra-high vacuum (UHV). Once assembled
the chamber is baked at 200◦C, it is pumped externally through the bakeable valve.
The pressure is monitored using an ion gauge. Under normal operation the bake-
able valve is closed. Pumping using an internal NEG-Ion pump keeps the chamber
pressure at 10−11 Torr. The chamber is fitted with fused-silica windows for optical
addressing of ions using laser beams. All electrical feedthroughs are UHV compatible
and allow electrical connections to the trap as well as the Ytterbium ovens.
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wiping with Methanol using cleanroom compatible wipes.

As shown in figure 2.8 the ion trap is hosted inside a ‘spherical-cube’ chamber

with several 4.5” and 1.33” diameter CF flanges. There are two custom designed

40 mm re-entrant windows with a clear aperture of 38 mm that are installed for

the delivery of Raman beams 5. A third 48 mm re-entrant window 6 with a clear

aperture of 32 mm is installed to collect ion fluorescence along the vertical (Y)

direction using an imaging objective with 0.37 NA. The main chamber hosting the

ion-trap is connected to an NEG-Ion pump (internal to the chamber) via a 5-way

cross that also has a 15-pin d-sub feedthrough for DC voltage delivery to the trap.

The feedthrough is connected to the DC electrodes through 28AWG Kapton coated

cables that are about 30 cm in length. The rf feedthrough with two solid copper

wires on the other hand is mounted on the main chamber such that relatively short

16AWG Kapton coated cables (of about 7 cm length) can carry the rf voltage to the

trap. Each segment of the blades have gold ribbons that are wire bonded to them.

The DC ribbons are additionally rf grounded by bonding in-vacuum capacitors to

them as shown in 2.9. The cables from the feedthroughs are then connected to the

blades by spot welding both the ribbon and the cables to a common constantan foil.

2.5.2 Yb oven

In order to produce an atomic beam of Ytterbium, an oven is constructed using

a stainless steel tube that contains a few shards of enriched 171Yb (1 mm in size).
5Thickness: 3.5mm. Material: UV-Fused silica (Spectrosil). BBAR coated: 350-700nm. Sur-

face irregularity: λ/8.
6Thickness: 3.0mm. Material: UV-Fused silica (Spectrosil). BBAR coated: 350-700nm. Sur-

face irregularity: λ/8.
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Figure 2.9: The assembly of the blade trap. a) Blades are mounted on a Macor
trap holder using stainless steel screws. Each blade is pressed against a thin kapton
film which prevents it from sliding during alignment. Each DC segment is grounded
to the chamber body through a capacitor using gold ribbons. b) The trap holder
is mounted on stainless steel adapters that secure it to the vacuum chamber. The
adapters also form the ground connection of the trap to the chamber. The figure
also shows the routing of the kapton coated RF and DC cables near the trap. .
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Part Quantity Vendor Part number
Spherical Cube-4.5” 1 Kimball Physics MCF450-SphCube-E6A8

Groove grabbers 2 Kimball physics MCF450-GrvGrb-C02
Trap mount (SS) 2 Maryland machining N/A

Trap mount adapter (SS) 1 Maryland machining N/A
Ion trap DC blades 2 Laser micromachining N/A
Ion trap rf blades 2 Laser micromachining N/A

Blade holder (Macor) 1 Maryland machining N/A
In vacuum capacitors 10 ATC 116UL821M100TT

5-Way cross 4.5” 1 MDC 406004
Conical reducer -6” to 4.5” 1 Kurt J. Lesker CRN600X450
6” to 4.5” reducer flange 1 Kurt J. Lesker RF600X450

4.5” to 2.75” reducer flange 1 Kurt J. Lesker RF450X275
Mounting brackets 2 Kimball Physics MCF450-ExtBrkt-LS
Mounting flange 3 Kimball Physics MCF450-MtgFlg-E2

Tee-standard 2.75” 1 Kurt J. Lesker T-0275
Full nipple 2.75” 1 Kurt J. Lesker FN-0275S
UHV Ion gauge 1 MDC 432004

Bakeable all metal angle valve 1 Kurt J. Lesker VZCR40R
Zero length viewport 2 Kurt J. Lesker VPZL-450Q

1.33” Window 2 Kurt J. Lesker VPZL-133Q
Recessed viewport 1 UKAEA-CCFE N/A

Reentrant Raman window 2 UKAEA-CCFE N/A
Reentrant Imaging window 1 UKAEA-CCFE N/A

rf power feedthrough 1 MDC 9422010
15 D-sub DC feedthrough 1 Accu-Glass 100210

Yb oven feedthrough 2 Accu-Glass 10600
1.33” Blank 2 Kurt J. Lesker F0133X000N

NEG-Ion pump 1 SAES getters NEXTorr D-300-5
NEG-ribbon 2’ long SAES getters 4F0280D

Isotropically enriched 171Yb few mg ORNL N/A

Table 2.1: List of important parts for the vacuum chamber construction. Standard
accessories such as copper gaskets, bolts, cables, vented screws etc. are excluded.
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During loading of ions a spray of atomic Yb is created when this tube is resistively

heated by passing a current. The temperature reached depends on the current and

the duration it is turned on. If either of these are too high or long it causes rapid

evaporation of Yb thereby forming a spray dense enough to coat surfaces in its way

(such as the ion trap electrodes or vacuum windows). In order to prevent this, each

oven is tested beforehand by putting them inside a bell-jar under vacuum (10−7Torr)

and calibrating the current value for which it forms a mild spot of Yb on the glass

surface when it is run for 10 minutes. This sets an upper limit to the current that

is allowed to run through the oven. We prepared two ovens with current thresholds

of 3.4 A and 4.9 A, respectively. Each oven is mounted such that the atomic beam

coming out is directed towards the trapping zone. The ovens are constructed using

of a 10 mm long stainless tube. On one side of this tube a Tantalum wire (0.5 mm

diameter) is inserted and the tube is crimped to form an electrical contact. The

other end of the tube is left open with another Tantalum wire spot welded to it.

Each of the Tantalum wires are then connected to copper wires that connect the

oven to the feedthrough pins. The choice of these dissimilar materials is made in

order to maintain the stainless steel tube at a higher temperature than the copper

wires. Both Tantalum and steel have a much lower thermal conductance (and higher

electrical resistivity) than copper.
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2.5.3 Blade trap assembly

The blade trap as illustrated in figure 2.2 consists of four blades. Each blade

is a 50 µm thick Alumina plate that is segmented along the tapered edge with a

spacing of 50 µm between segments. In the trapping zone each segment is 250 µm

long except the end segments which are ≈ 10 mm long. The blades are coated with

gold such that they behave as trap electrodes. The coating on the DC blades is such

that each segment is electrically isolated from the other. The rf blades on the other

hand have all segments electrically connected. In order to assemble the ion trap each

of the blades is mounted on a specially designed holder that is made of Macor as it

has low thermal coefficient of expansion. The design of the holder is based on the

desired orientation and spacing between the trap electrodes. During assembly, the

blades are first mounted on the holder and then adjusted under a microscope such

that the segments from all four blades are aligned with each other along the Z-axis

where they run parallel to each other and the desired spacing is achieved between

the blades. Each blade is then secured to the holder using stainless steel screws.

The holder also has provisions for routing gold ribbons that are wire bonded to the

blade segments. This prevents them from coming in contact with the electrically

grounded re-entrant windows.

As shown in figure 2.9 each DC ribbon is bonded to a in-vacuum 800 pF

capacitor. The other terminal of each capacitor is bonded to a common gold ribbon

that is electrically grounded to the chamber. Since, Macor has ceramic like qualities

it is good for machining but at the same time is quite brittle. Therefore, additional
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strain relief rods are used to secure the DC cables (5 cables per blade) which are

then spot welded to the DC ribbons. The holder is then mounted on a stainless

steel adapter that mechanically attaches it to the rest of the chamber via a pair of

groove grabbers at the bottom flange of the spherical-cube chamber.

2.5.4 Chamber bake-out

Once the chamber is assembled it is baked at a high temperature to remove

any water from the surface. This also expels Hydrogen that is in the bulk of the

stainless steel components. In principle a higher temperature is preferable during

the bake as it reduces the duration of the process. However, there is a practical

limit to this temperature due to the fragile glass to metal seals of vacuum windows

and feedthroughs. Considering all the constraints, we bake the vacuum chamber at

200◦C over several days. Since the internal ion pump is not used during most of the

bake-out the magnets attached to it 7 are removed to protect them from thermal

demagnetization. The bake-out is periodically monitored.

In the beginning the chamber is pumped using a roughing pump and a turbo-

molecular pump through a bakeable valve. After initial pumping over a few hours

a pressure of 10−7 Torr is reached. At this point the Yb ovens are degassed by

running current through them (below threshold value). The internal ion gauge is

also degassed several times before running it continuously for pressure monitoring.

The chamber is then gradually heated at a rate of 0.5◦C/min using an industrial

oven with a closed loop temperature stabilization. When the chamber temperature
7maximum allowed temperature for the ion pump magnets is 150◦C
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reaches 200◦C the NEG element (of the NEG-Ion pump) is ‘activated’ by heating it

to 550◦C using a power supply 8 that monitors and controls the NEG temperature.

During this process the adsorbed molecules on the the surface of the NEG is dissolved

into the bulk thereby renewing the surface. The process also expels a substantial

amount of Hydrogen from the bulk of the NEG. The Hydrogen partial pressure then

rises and needs to be pumped out efficiently. Figure 2.10 shows the spike in pressure

during activation. At other times the NEG element is held at a temperature of 300◦C

which is slightly higher than that of the chamber (200◦C). This ‘conditioning’ mode

of the NEG is maintained in order to prevent pumping of Hydrogen by the NEG

thereby saturating it. After activation the chamber is baked for several days under

pumping by an external ion pump (500 litres/sec).

Although the NEG is held at 300◦C during the bake-out it still pumps by

absorbing Hydrogen into its bulk. This is evident from the observation of increased

chamber pressure due to the release of this absorbed Hydrogen when the NEG

temperature in increased during the bake-out. Due to this residual pumping of

Hydrogen it is possible to saturate the NEG9 during a prolonged bake-out. In this

case we need to recover the pumping speed of the NEG which is why it is activated

several times during the bake out, each time for a duration of ∼ 2 hours. During

activation both the TMP and the external ion-pump is used for pumping.

When the bake-out is over, the chamber is cooled down slowly in order to

prevent stress from building up due to thermal gradients in the glass to metal
8NIOPS-04-Power supply
9pumping speed of the NEG falls by 10% when saturated
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Figure 2.10: Temperature and pressure plot vs. chamber bake-out time.
The vacuum chamber is baked at ∼ 200◦C for several days while externally pumping
using a turbo molecular pump (TMP) and an ion pump (500 l/sec). The non-
evaporable getter (NEG) is constantly maintained at 300◦C during the bakeout
(conditioning) with occasional activation at 550◦C when the surface of the getter is
renewed and Hydrogen is expelled from the bulk of the getter and pumped using
the external ion-pump and TMP. Here the NEG is activated three times during the
bake-out. The pressure displayed in the plot is measured at the ion-gauge inside the
vacuum chamber.
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seals. At 150◦C the magnets for the internal ion pump is mounted and the pump

is started. At this point the chamber is pumped using the NEG-ion pump alone as

the bakeable valve is closed (hand tightened). At room temperature the chamber

reaches a pressure of 7× 10−11 Torr as read by the ion gauge. However, the pressure

at the ion gauge is possibly higher than that at the ion trap. This is due to local

heating of the nipple (which is at 60◦C) that surrounds the ion gauge and the

poor vacuum conductance to the NEG-ion pump. Once the system reaches thermal

stability the bakeable valve is closed by applying the appropriate (operating) torque

and a pinch-off valve is installed that helps to maintain a pressure of ∼ 10−6 Torr

on the non-UHV side of the valve.

2.6 Micromotion compensation

While trapping an ion in a linear Paul trap, it is important to move it to the

rf quadrupole null position (x0, y0, z0) where it does not have excess micromotion.

We can apply combinations of DC voltage values that drive individual segments

of the DC blades and a DC offset on the RF blades to move the ion in the three

orthogonal directions independently and obtain the rf-null position. In order to

accomplish this knowledge of the excess micromotion is necessary. According to

equation 2.16 excess micromotion in direction i is proportional to the displacement

of the ion from the null position in that direction. In the case of trapping using the

blade trap we find that it is not an ideal linear rf-Paul trap. This is confirmed by

detecting micromotion along the axial Z direction of the trap, which implies γ 6= 0.
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We can therefore apply equation 2.16 in the Z direction to obtain,

uz(t) = [Az +Bzcos(ωzt)]
[
1 + qz

2 cos(Ωt+ θ)
]

(2.22)

where uz(t) is the displacement of the ion along Z and Az is the displacement of the

ion from axial rf null position along Z. In order to set Az = 0 we need to probe uz(t)

and minimize its micromotion. One way to probe uz(t) is to align a cooling laser

beam along the Z direction and scatter light as given by the rate equation 2.20 [45].

Since the detuning of the beam is velocity dependent ∆ = δ − k̄.(∂ūz(t)/∂t) this

gives rise to a perioding modulation of the scatter rate at frequency Ω. The phase

and amplitude of this modulation relative to the trap rf signal is plotted in figure

2.11. Here a single trapped ion is displaced along the Z direction to vary Az. As the

ion position moves through z0 the displacement Az changes sign (from positive to

negative) which leads to a change in phase (by π) of the correlation signal as well.

Near the null position the amplitude of the oscillations also goes to a minima (zero).

By tracking the patterns of this micromotion signal we find the null position z0 to

be in the trapping zone nearest to DC segments 4 and 9. The same exercise can be

repeated in the X and Y directions to find (x0, y0). However, since the quadrupole

potential {qx, qy} is of much higher strength in these directions the micromotion

signal is almost an order of magnitude more sensitive to displacements Ax/y. This

implies that it is more important to position the ion chain closer to the radial

rf-null (x0, y0) in order to have an overall lower value of the micromotion. The

axial positioning on the other hand is more forgiving where the axial micromotion
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increases at a relatively smaller rate with the ion displacement from axial rf-null

position z0. We take advantage of this fact while trapping a chin of five ions where

there is residual axial micromotion of the ions since they spatially separated along

the Z direction.

2.7 Secular frequency stabilization

The secular trap frequency in the radial direction is important for performing

certain quantum operations where the qubit spin is coupled to the motional mode

of the ion defined by the radial or transverse harmonic confinement. One such

example is the two qubit entangling XX−gate which will be discussed in chapter 5.

Therefore, it is essential to stabilize the radial secular frequency in order to achieve

a high fidelity of such gate operations. According to equation 2.9 or 2.18, this can

be achieved if we stabilize the amplitude of the applied RF voltage V while keeping

the rf drive frequency Ω constant [63]. Figure 2.12 shows a schematic of the analog

electrical circuit used for this purpose. We use a capacitive divider to pick-off a

fraction of the rf voltage V cos(Ωt) at the rf feedthough followed by a rectifier in

order to obtain a DC signal. This can then be stabilized against a reference voltage

Vref as explained in the figure.

The necessity of the secular frequency stabilization stems from the fact that

the RF signal that drives the trap has drifts in the amplitude. This can happen

due to several reasons. Like any RF circuit, this one has a reactive impedance

that depend on the physical dimensions of the distributed circuit which can change
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Figure 2.11: Measurement and compensation of micromotion. a), b), c), d)
Photon scattering rate from a doppler cooling beam along Z. The plots correspond
to four ion positions indicated by the (colored) vertical lines in panel (e) and (f).
Since the scatter rate is correlated with micromotion the time scan is triggered by
the trap rf signal. The amplitude of the oscillating scatter rate shows the magnitude
of micromotion and the phase reversal is indication of the ion crossing the rf null
position. e) As the ion is moved along the Z-direction of the trap the amplitude of
the micromotion signal is measured. The minimum amplitude corresponds to the
axial pseudopotential null position z0. f) The measured phase of the micromotion
signal which flips by π across z0. Panel (d) shows the micromotion signal from the
ion at the axial rf-null position.
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due to slow temperature changes thereby changing the impedance. One example is

the quarter wave resonator [64–66] that is used to amplify and deliver a higher RF

voltage to the trap. Other components in the circuit such as rf power amplifiers can

have drifts in their gain due to thermal effects as well. It is therefore, necessary to

probe the value of the rf voltage at the trap and stabilize it by comparing it to a

stable reference.
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Figure 2.12: Stabilization of transverse trap frequency. a) Circuit schematic
for amplitude stabilization of trap RF voltage V . A DDS generates the RF signal
which is sent to a resonator that amplifies the signal and delivers it to the trap rf-
blades. A capacitive divider ‘picks-off’ a small fraction (C2/C1 = 100) of this voltage
at the rf-feedthrough which is rectified to give a DC signal. The signal is compared
to a programmable reference voltage Vref and locked using a PID (servo controller)
that sends a feed back to a voltage variable attenuator (VVA). By programming a
value of Vref the trap rf potential is stabilized. By programming linear ramps in time
the trap confinement can be lowered for ∼ 1 sec as is required during the loading of
171Yb+. b) The drift in the secular transverse trap frequency ωx in the X direction
over time without the amplitude lock. The transient drift occurs when the rf is
turned off (set to very low value) for 5 mins and then set back to the normal (high)
value. The data points show secular frequency measured using a single ion and
Raman sideband spectroscopy (section 3.5). c) Same as (b) but with the amplitude
lock. The drift is suppressed by a factor of ≈ 6 but still remains due to thermal
effects that might be affecting the capacitive divider or the rectifier itself. The long
term stability of the trap frequency, however, is within 0.3 kHz. In order to avoid
these transient effects the trap rf amplitude is lowered for a short duration of 1 sec
during loading which helps in maintaining a thermal equilibrium in spite of large
ramps in the rf power. 59



Chapter 3: Coherent Control of Qubits

Quantum gates are nothing but coherent rotations of qubits. Common tech-

niques of such qubit manipulation involve perturbing the qubit two-level system

with electromagnetic radiation that is resonant with the energy splitting of the

qubit levels. In 171Yb+the hyperfine qubit has an energy splitting of 12642.821 MHz

and we can implement coherent rotations of the qubit by performing Rabi flopping

by directly applying resonant microwave radiation. In practice, the microwave horn

that generates such a field is usually situated outside the vacuum chamber several

centimeters from the trap. Due to the spread of this microwave field over the entire

trap, the microwave Rabi rotations do not provide spatial selectivity of individual

qubits in a chain of multiple trapped 171Yb+ions. Microwaves also do not provide

the spin-motion coupling necessary for implementing two-qubit entangling XX-gates

due to their relatively long wavelength (2.4 cm at 12.6 GHz). For these reasons the

alternative method of stimulated Raman transition is preferred where a pair of laser

beams from a 355nm mode-locked pulsed laser is used to perform coherent rotations

of the qubit. By tightly focusing the laser beam on single ions in a chain, individual

optical addressing can also be achieved. In this chapter we will discuss the theory

behind Raman transitions and provide experimental details of implementing and
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characterizing this technique of qubit manipulation using optical fields.

3.1 Raman transitions

A stimulated Raman transition can be described as a two photon process

where a two level system is coupled via a third auxiliary state thereby forming a

Λ− system as shown in figure 3.1 [56]. For this derivation, we can assume that the

electric fields are generated from continuous wave (c.w.) laser beams and can be

written as

−→
E0 = −→ε0 cos(−→k0 · −→x − ωL0 t+ φ0), (3.1a)

−→
E1 = −→ε1 cos(−→k1 · −→x − ωL1 t+ φ1), (3.1b)

where −→ε0 and −→ε1 are the field vectors of the two Raman beams, respectively. Also

the beams have a wave vectors −→k0 and −→k1 , respectively that sets spatially-dependent

phase offsets. The ion position−→x is classical and fixed for this treatment. Additional

phase offsets φ0 and φ1 can be added to each field using acousto-optic modulators

(AOMs). These phases can be varied by simply changing the the RF signal that

drives the AOM responsible for switching each of the Raman beams during an

experimental sequence.

The first step toward analyzing a Raman process is to recognize the unper-

turbed Hamiltonian of the system in the absence of any external fields. We can
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write this as

H0 = ω0|0〉〈0|+ ω1|1〉〈1|+ ωe|e〉〈e|, (3.2)

where the qubit levels |0〉 and |1〉 have energies ~ω0 and ~ω1, respectively and the

auxiliary sate |e〉 has energy ~ωe. In this expression and henceforth we set ~ = 1 for

simplicity.

We can write down the time varying wave function of this three level system

in the following manner

ψ(t) = c0(t)|0〉+ c1(t)|1〉+ ce(t)|e〉 (3.3)

where the complex amplitudes cj(t) of the basis states |j〉 are time varying and j =

{0, 1, e}. Integrating the Schrödinger equation i∂ψ(t)
∂t

= H0ψ(t) for the unperturbed

Hamiltonian H0 we obtain

cj = cj(0)e−iωjt (3.4)

where cj(0) are the respective amplitudes of the basis states |j〉 at time t = 0.

When a perturbation is applied using a pair of Raman beams, the laser fields

as expressed in equation 3.1 interact with the atomic dipole. This gives rise to the

following interaction Hamiltonian

HI = −−→d ·
−−→
E(t) (3.5a)

= −[d̄0e|0〉〈e|+ d̄1e|1〉〈e|+ d̄e0|e〉〈0|+ d̄e1|e〉〈1|] · [
−→
E0 +−→E1]. (3.5b)
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Figure 3.1: Stimulated Raman transition using c.w. laser beams. a) Raman
beam setup.A pair of Raman laser beams with wave vector k̄, electric field vector ε̄
and frequency ωL. b) Stimulated Raman transition as a two-photon process. Two
laser beams with frequencies ωL0 and ωL1 couple the qubit levels |0〉 and |1〉 to the
auxiliary state |e〉, respectively. The couplings are given by single-photon Rabi
frequencies g00 and g11 for the two Raman beams detuned by ∆ from excited state
|e〉 and ∆ � {g00, g11}. Coherent Rabi flopping between state |0〉 and |1〉 happens
at a Rabi frequency Ω = g00g

∗
11/2∆ when the beat-note between the Raman beams

is tuned close the qubit splitting ω01. Here the detuning of the beat-note µ is set
according to the requirements of a quantum gate.
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Here, −→d is the electric dipole moment operator that gives the dipole moment

vector of the atom and has the following matrix elements:

d̄0e = 〈0|−→d |e〉, (3.6a)

d̄1e = 〈1|−→d |e〉, (3.6b)

d̄e0 = d̄∗0e = 〈e|−→d |0〉, (3.6c)

d̄e1 = d̄∗1e = 〈e|−→d |1〉. (3.6d)

In order to solve for the system dynamics we can apply the Schrödinger equation for

the total Hamiltonian H = H0 + HI and find the time dynamics of the coefficients

cj(t) of the wave function.

This gives the following relations:

iċ0(t) = ω0c0(t)− d̄0ece(t) · [−→ε0 cos(−→k0 · −→x − ωL0 t+ φ0) +−→ε1 cos(−→k1 · −→x − ωL1 t+ φ1)],

(3.7a)

iċ1(t) = ω1c1(t)− d̄1ece(t) · [−→ε0 cos(−→k0 · −→x − ωL0 t+ φ0) +−→ε1 cos(−→k1 · −→x − ωL1 t+ φ1)],

(3.7b)

iċe(t) = ωece(t)− [d̄e0c0(t) + d̄e1c1(t)] · [−→ε0 cos(−→k0 · −→x − ωL0 t+ φ0) +−→ε1 cos(−→k1 · −→x − ωL1 t+ φ1)].

(3.7c)

In order to solve the above equations we first transform to a rotating frame

with respect to the unperturbed Hamiltonian H0, as interaction term HI leads to

dynamics that is much slower than those due to H0. We define slowly varying
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amplitudes C0,C1 and Ce as,

C0(t) = c0(t)eiω0t, (3.8a)

C1(t) = c1(t)eiω1t, (3.8b)

Ce(t) = ce(t)eiωet. (3.8c)

and insert into equation 3.7. We further expand each cosine term of the electric

fields as exponentials and obtain

iĊ0(t) =− 1
2 d̄0eCe(t)e−iω0et · [−→ε0

(
ei(
−→
k0·−→x−ωL0 t+φ0) + e−i(

−→
k0·−→x−ωL0 t+φ0)

)

+−→ε1

(
ei(
−→
k1·−→x−ωL1 t+φ1) + e−i(

−→
k1·−→x−ωL1 t+φ1)

)
],

(3.9)

iĊ1(t) =− 1
2 d̄1eCe(t)e−iω1et · [−→ε0

(
ei(
−→
k0·−→x−ωL0 t+φ0) + e−i(

−→
k0·−→x−ωL0 t+φ0)

)

+−→ε1

(
ei(
−→
k1·−→x−ωL1 t+φ1) + e−i(

−→
k1·−→x−ωL1 t+φ1)

)
],

(3.10)

iĊe(t) =− 1
2[d̄e0C0(t)eiω0et + d̄e1C1(t)eiω1et] · [−→ε0

(
ei(
−→
k0·−→x−ωL0 t+φ0) + e−i(

−→
k0·−→x−ωL0 t+φ0)

)

+−→ε1

(
ei(
−→
k1·−→x−ωL1 t+φ1) + e−i(

−→
k1·−→x−ωL1 t+φ1)

)
].

(3.11)

Then we can apply the Rotating Wave Approximation (RWA) to the above

equations, where we ignore terms that oscillate at a much higher rate than others.

In order to do this we first note that there are terms on the right-hand side, which

oscillate at sums and differences of two large optical frequencies. For a Λ−system

implemented on 171Yb+, the qubit energy splitting ω01, the detuning of the Ra-

man laser frequency ∆ and the Raman beatnote detuning µ are chosen such that
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{ω01, µ,∆} � {ωL0 , ωL1 , ω0e, ω1e}. Keeping terms that oscillate at {ω01, µ,∆} equa-

tion 3.9,3.10 and 3.11 can then be written as

iĊ0(t) = 1
2Ce(t)

(
g00e

−i∆t + g01e
−(∆+µ+ω01)t

)
, (3.12)

iĊ1(t) = 1
2Ce(t)

(
g10e

−i(∆−ω01)t + g11e
−(∆+µ)t

)
, (3.13)

iĊe(t) = 1
2C0(t)

(
g∗00e

i∆t + g∗01e
(∆+µ+ω01)t

)
+ 1

2C1(t)
(
g∗10e

i(∆−ω01)t + g∗11e
(∆+µ)t

)
.

(3.14)

Note that the above equations also represent the Schrödinger equation showing the

evolution of the system in the rotating frame instead of the lab frame. Each term on

the right-hand side corresponds to an off-diagonal coupling term of the Hamiltonian.

These terms are proportional to single-photon couplings gαβ, where α represents one

of the qubit levels (|0〉, |1〉) coupled to |e〉 by field −→εβ , (β = 0, 1). These couplings

are position dependent single-photon Rabi frequencies. Assuming that the electric

field vector is real valued we can explicitly write down the single photon couplings

as

g00 =d̄0e · −→ε0e
−i(
−→
k0·−→x+φ0), (3.15a)

g01 =d̄0e · −→ε1e
−i(
−→
k1·−→x+φ1), (3.15b)

g10 =d̄1e · −→ε0e
−i(
−→
k0·−→x+φ0), (3.15c)

g11 =d̄1e · −→ε1e
−i(
−→
k1·−→x+φ1). (3.15d)
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Next, we approximately solve equations 3.12-3.14 by the method of adiabatic

elimination. To apply this method we first we consider equation 3.14 under the

assumption that coefficients C0(t) and C1(t) slower than Ce(t). This is true since

the states |0〉 and |1〉 are not directly coupled. This allows us the integrate equation

3.14 keeping C0(t) and C1(t) constant and find

Ce(t) =− i

2C0(t)
∫ t

0

(
g∗00e

i∆t + g∗01e
i(∆+µ+ω01)t

)
dt

− i

2C1(t)
∫ t

0

(
g∗10e

i(∆−ω01)t + g∗11e
i(∆+µ)t

)
dt

=− 1
2C0(t)

[
g∗00

ei∆t − 1
∆ + g∗01

ei(∆+µ+ω01)t − 1
∆ + µ+ ω01

]

− 1
2C1(t)

[
g∗10

ei(∆−ω01)t − 1
∆− ω01

+ g∗11
ei(∆+µ)t − 1

∆ + µ

]

≈− 1
2∆[C0(t)

(
g∗00e

i∆t + g∗01e
i(∆+µ+ω01)t − g∗00 − g∗01

)
+ C1(t)

(
g∗10e

i(∆−ω01)t + g∗11e
i(∆+µ)t − g∗10 − g∗11

)
].

(3.16)

when Ce(t = 0) = 0. In the last step we use that ∆ � {µ, ω01}. We can then use

equation 3.12 and 3.16 to obtain

Ċ0(t) = i

4∆
(
g00e

−i∆t + g01e
−(∆+µ+ω01)t

)
[C0(t)

(
g∗00e

i∆t + g∗01e
i(∆+µ+ω01)t − g∗00 − g∗01

)
]

+ C1(t)
(
g∗10e

i(∆−ω01)t + g∗11e
i(∆+µ)t − g∗10 − g∗11

)
].

(3.17)

Here, we apply RWA again and ignore terms ei∆t and ei(∆+µ+ω01)t that oscillate much
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faster and hence average out to zero. Therefore, the expression for C0(t) is

Ċ0(t) = i

4∆[C0(t)
(
|g00|2 + |g01|2 + g00g

∗
01e

i(µ+ω01)t + g∗00g01e
−i(µ+ω01)t

)
+ C1(t)

(
g00g

∗
11e

iµt + g00g
∗
10e
−iω01t + g01g

∗
10e
−i(µ+2ω01)t + g01g

∗
11e
−iω01t

)
].

(3.18)

We can make another RWA to this expression where we assume that the beat-note

between the two Raman beams ω01 + µ is tuned close to qubit resonance such that

µ � ω01. This is a valid assumption since ω01 = ωHF = 2π × 12.642 GHz is

the qubit splitting energy and in the experiment we usually set the value of the

detuning parameter µ in the range 0 ≤ |µ| < 3.1 MHz while performing coherent

gate operations on the qubit. Therefore, equation 3.18 becomes

Ċ0(t) = i

4∆
[
C0(t)

(
|g00|2 + |g01|2

)
+ C1(t)g00g

∗
11e

iµt
]
. (3.19)

Similarly, we can calculate the dynamics of coefficient C1(t) and find

Ċ1(t) = − i

4∆[C0(t)
(
g10g

∗
00e

iω01t + g11g
∗
00e
−iµt + g10g

∗
01e

i(µ+2ω01t) + g11g
∗
01e
−iω01t

)
+ C1(t)

(
|g10|2 + |g11|2 + g10g

∗
11e

i(ω01+µ)t + g11g
∗
10e
−i(ω01+µ)t

)
],

(3.20)

which can be simplified using the RWA by removing the fast oscillating terms to

give

Ċ1(t) = − i

4∆
[
C0(t)g∗00g11e

−iµt + C1(t)
(
|g10|2 + |g11|2

)]
. (3.21)

Equations 3.19 and 3.21 can now be used to calculate the evolution of the qubit
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in the interaction picture. In fact, the Hamiltonian in this frame can be written as

Hint = 1
4∆

(|g00|2 + |g01|2) g00g
∗
11e

iµt

g∗00g11e
−iµt (|g10|2 + |g11|2)

 , (3.22)

where the diagonal terms cause rotation of the qubit about the Z-axis of the Bloch

sphere (see section 5.1). This is the well known light shift (AC-Stark shift) due to

off-resonant electric-dipole coupling of the qubit states to the auxiliary state |e〉 [56].

We will discuss this in more detail in the following sections. The off-diagonal term

in the Hamiltonian, on the other hand, is responsible for rotating the qubit state

about an axis on the equator of the Bloch sphere (see section 5.1). This is the more

important evolution as it coherently transfers population between the basis states

|0〉 and |1〉 at a (Rabi-)rate which is proportional to the magnitude of the product

of the single photon dipole couplings g00g11 and indicate a two photon process.

3.2 355nm pulsed laser for Raman transitions

In order to perform Raman transitions in the 171Yb+qubit one can choose

c.w. lasers with two frequency components as discussed in the previous section.

In order to obtain the two laser beams that are (optically) phase locked to each

other and have frequencies separated by 12.6 GHz from one another, one could

modulate the beams with an AOM or EOM, both of which is difficult to implement

at the required frequency due to the limited bandwidth of these devices. We can

circumvent this problem by using a train of pulses from a mode-locked laser where
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the pulses have a bandwidth in the optical domain [68]. We use a 355nm mode-

locked pulsed laser (Nd:YVO4)1. With a pulse duration of ∼ 10ps its full bandwidth

is about δBW = 200 GHz [69]. This is sufficient for bridging the hyperfine gap

between the two levels of the qubit. However, it is not straightforward to implement

Raman transitions because a) the central wavelength of the laser (355nm) couples

the ground state to both the 2P1/2 and 2P3/2 state with a detuning of ∆ = 33 THz

and ∆ = −66THz, respectively as shown in figure 2.4, and b) in the frequency comb

regime there are multiple frequency components in the optical spectrum that can

potentially drive resonant and off-resonant Raman transitions between the qubit

levels.

3.2.1 The frequency-comb picture

As a first step towards understanding Raman transitions caused by a pulsed

laser let us assume a setup as in figure 3.2a, where a pair of Raman beams from the

same mode-locked laser is split into two beams propagating along different paths,

and modulated with AOMs driven at frequencies ωAOM1 and ωAOM2. The electric

field as seen by the ion from one of the beams (say Raman beam 1) is

Ē(t) = Ē0

N∑
n=0

f(t− nT )e−i(ωc+ωAOM1)t+φ, (3.23)

where f(t) is the pulse shape in the time domain, T is the time separation between

successive pulses, and ωc is the carrier frequency of the laser (this is at a wavelength
1Coherent Palladin. Average power power: 4 Watts
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of 355 nm). Here φ is the spatially dependent phase of the field. For the next step of

this derivation to be valid, we keep the intensity of the laser low enough such that a

single pulse only perturbs the qubit by a small amount. This implies that, in order

to perform any kind of coherent transition on the qubit, the ion needs to be hit by

many pulses (N →∞). Mathematically, this allows us to describe the electric field

in the frequency domain [60], where there are frequency components spaced by the

repetition rate of the laser ωr = 2π/T (see figure 3.2b).

By taking the Fourier transform of equation 3.23 and assume large N we find

E = E0

+∞∑
j=−∞

f̄(jωr)e−i(jωr+ωc+ωAOM1)tei(k
0
j ·x+φ0) (3.24)

where f̄(ω) is the Fourier transform of the pulse envelope f(t) and k0
j is the wave

vector for the j-th frequency component. ωAOM1 and φ0 are the angular frequency

and phase respectively, of the rf driving AOM1. We can write down a similar

expression for the second Raman beam. The total electric field is then given by

ĒT = Ē0

+∞∑
j=−∞

aje
−i(jωr+ωc+ωAOM1)t + Ē1

+∞∑
j=−∞

bje
−i(jωr+ωc+ωAOM2)t, (3.25)

where Ē0 and Ē1 are the electric field vectors for Raman-1 and Raman-2, respec-

tively. We define variables aj and bj as

aj =f̄(jωr)ei(k
0
j ·x+φ0), (3.26a)

bj =f̄(jωr)ei(k
1
j ·x+φ1). (3.26b)
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Raman1
frequency comb

Raman2
frequency comb

Frequency

b)

AOM1 AOM2

Raman1 Raman2

Ion

355nm Pulsed Laser

RF input RF input

a)

Figure 3.2: Raman transitions driven by pulsed laser. a) A 355nm pulsed
laser output is split equally into two beams that are modulated using AOMs that
are driven at frequencies ωAOM1 and ωAOM2, respectively. The beam paths have
equal lengths such that pulses are temporally overlapped at the ion position. b)
The frequency comb as seen by the ion. Comb-lines are separated by the rep-rate
of the laser ωr ≈ 119 MHz. The frequency offset of each comb is adjusted by the
AOMs such that a beat-note arising from the interference between the jth combline
of Raman1 and j + kth combline of Raman 2 is tuned close to qubit resonance
where the detuning µ is controlled to drive either a carrier or a motional sideband
transition of the qubit.
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We need to find out the dynamics of C0(t), C1(t) and Ce(t) again for this

frequency comb picture. For this derivation we assume a Λ-system like in figure 3.1

and follow the same series of equations as discussed in the c.w. case. However, now

we have an electric field that is a sum over the entire set of c.w. components of the

frequency comb. In fact instead of separating the frequencies of two c.w. Raman

beams by ωHF = ω01 = 12.6 GHz like in figure 3.1 we are going to find many pairs

of comb-lines of the total electric field ET that give ‘beat-notes’ resonant with the

qubit splitting ωHF .

We go to the rotating frame and applying the RWA to obtain a set of equations

similar to Eqn. 3.12 -3.14

iĊ0(t) = 1
2Ce(t) (G00 +G01) e−i∆t, (3.27)

iĊ1(t) = 1
2Ce(t) (G10 +G11) e−i(∆−ωHF )t, (3.28)

iĊe(t) = 1
2C0(t) (G∗00 +G∗01) ei∆t + 1

2C1(t) (G∗10 +G∗11) ei(∆−ωHF )t. (3.29)

Here the single photon coupling terms are

G00 =d̄0e · Ē0

+∞∑
j=−∞

aje
−i(jωr+ωAOM1)t, (3.30a)

G01 =d̄0e · Ē1

+∞∑
j=−∞

bje
−i(jωr+ωAOM2)t, (3.30b)

G10 =d̄1e · Ē0

+∞∑
j=−∞

aje
−i(jωr+ωAOM1)t, (3.30c)

G11 =d̄1e · Ē1

+∞∑
j=−∞

bje
−i(jωr+ωAOM2)t. (3.30d)
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The difference of these equations of motion from the c.w. case (equation 3.13-

3.15) is that the single photon coupling terms Gij are not time independent. Next

step we can adiabatically eliminate the excited state. Here, we assume that the

coefficients C0(t) and C1(t) vary slowly compared to Ce(t). We integrate equation

3.29 with initial condition Ce(t = 0) = 0. We find

Ce(t) =− 1
2C0(t)d̄∗0e · (Ē∗0

∑
j

a∗j
ei(∆+jωr+ωAOM1)t − 1
∆ + jωr + ωAOM1

+ Ē∗1
∑
j

b∗j
ei(∆+jωr+ωAOM2)t − 1
∆ + jωr + ωAOM2

)

− 1
2C1(t)d̄∗1e · (Ē∗0

∑
j

a∗j
ei(∆−ωHF+jωr+ωAOM1)t − 1
∆− ωHF + jωr + ωAOM1

+ Ē∗1
∑
j

b∗j
ei(∆−ωHF+jωr+ωAOM2)t − 1
∆− ωHF + jωr + ωAOM2

).

(3.31)

Now we substitute Ce in equations 3.27 and 3.28 and get the equations of

motion. At this point it is important to expand the Gij in order to apply the RWA

and ignore all terms that oscillate too fast. For the sake of cleanliness let us write

the equations of motion

iĊ0(t) = αC0(t) + βC1(t), (3.32)

iĊ1(t) = γC0(t) + δC1(t), (3.33)

where the coefficients α and δ correspond to terms that shift the qubit levels |0〉

and |1〉, respectively. The coefficients β and γ on the other hand correspond to the

coupling strength between the two levels, also known as the Rabi frequency. For the

interaction Hamiltonian (as suggested by equations 3.32 and 3.33 ) to be Hermitian

these off-diagonal terms should satisfy the relation β = γ∗.

We can now calculate the coefficients based on the frequency comb picture in

figure 3.2b. We assume that the frequencies of the AOMs are such that ωAOM1 6=
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ωAOM2 and kωr + ωAOM2 − ωAOM1 = ωHF + µ. Here we assume that the detuning

µ � ωr, ωAOM1, ωAOM2 and for all practical purposes are nearly 0. From equation

3.27 we can write down the DC terms in the expression of α as,

α = 1
4

|d̄0e.Ē0|2
∑
j

|aj|2

∆ + jωr + ωAOM1
+ |d̄0e.Ē1|2

∑
j

|bj|2

∆ + jωr + ωAOM2

 . (3.34)

Similarly we find

δ = 1
4

|d̄1e.Ē0|2
∑
j

|aj|2

∆− ωHF + jωr + ωAOM1
+ |d̄1e.Ē1|2

∑
j

|bj|2

∆− ωHF + jωr + ωAOM2


(3.35)

We note that the main difference between the two light shift terms is in the

denominator with the presence of the finite energy splitting of the qubit states (ωHF ).

Assuming that the qubit energy splitting is much smaller than the bandwidth of the

laser we have |aj| ≈ |aj+k|. Also the detuning ∆ and the AOM drive frequencies

are much larger than the laser bandwidth. This allows us to Taylor expand the

denominator in equations 3.34 and 3.35 in terms of jωr
∆ and ωHF+jωr

∆ , respectively .

From equations 3.26 we also note that |aj|2 = |bj|2. Using these relations we obtain

approximate light shift terms

α = 1
4
(
|d̄0e.Ē0|2 + |d̄0e.Ē1|2

) 1
∆ (3.36)

and

δ = 1
4
(
|d̄1e.Ē0|2 + |d̄1e.Ē1|2

) 1
∆

(
1 + ωHF

∆

)
, (3.37)
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as the terms containing jωr add up to zero (∑∞j=−∞ jωr
∆ = 0) and ∑j |aj|2 = 1.

Next we can calculate the terms β and γ. If we choose to write equation 3.32

and 3.33 in the standard form of the Schrödinger equation i~ ∂
∂t
|ψ〉 = HI |ψ〉 then

these terms are the off diagonal terms of the interaction Hamiltonian H that couple

the qubit levels |0〉 and |1〉. This gives rise to coherent rotations of the qubit in

a Bloch sphere [53, 56]. Unlike the diagonal terms α and β, which correspond to

light shifts, the off-diagonal terms contain products of dipole couplings that have

contributions from both Raman beams or more specifically two different frequency

components of the frequency combs (Fig. 3.2b). We first expand Ce in equations

3.27 and 3.28 to obtain the expressions

β =1
4(G00 +G01)e−i∆t×

d̄∗1e · (Ē∗0
∑
j

a∗j
ei(∆−ωHF+jωr+ωAOM1)t − 1
∆− ωHF + jωr + ωAOM1

+ Ē∗1
∑
j

b∗j
ei(∆−ωHF+jωr+ωAOM2)t − 1
∆− ωHF + jωr + ωAOM2

)

(3.38)

γ =1
4(G10 +G11)e−i(∆−ωHF )t×

d̄∗0e · (Ē∗0
∑
j

a∗j
ei(∆+jωr+ωAOM1)t − 1
∆ + jωr + ωAOM1

+ Ē∗1
∑
j

b∗j
ei(∆+jωr+ωAOM2)t − 1
∆ + jωr + ωAOM2

)
(3.39)

In order to expand the single photon coupling terms Gij in β and γ and perform

a RWA, we need to consider two scenarios.

Case 1: Coherent rotations with a single Raman beam frequency

comb. Let’s assume a situation where the qubit levels can be coupled using a single

frequency comb. This implies that kωr = ωHF +µ where k is an integer and µ� ωr

is a small detuning from resonance. If we have control over the rep-rate ωr of the

pulsed laser then we might as well set µ to zero in order to drive resonant Rabi-flops
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of the qubit. We make another assumption that ωAOM1 6= ωAOM2 6= 0. Now we can

inspect equation 3.38 and apply the RWA and find

β =e
iµt

4 (d̄∗1e.Ē∗0)(d̄0e.Ē0)
∑
j

a∗j+kaj
1

∆ + jωr + ωAOM1 + µ

+ eiµt

4 (d̄∗1e.Ē∗1)(d̄∗0e.Ē1)
∑
j

b∗j+kbj
1

∆ + jωr + ωAOM2 + µ
.

(3.40)

Similarly, for γ we use equation 3.39 and applying the RWA to find

γ =e
−iµt

4 (d̄∗0e.Ē∗0)(d̄1e.Ē0)
∑
j

aj+ka
∗
j

1
∆ + jωr + ωAOM1

+ e−iµt

4 (d̄∗0e.Ē∗1)(d̄1e.Ē1)
∑
j

bj+kb
∗
j

1
∆ + jωr + ωAOM2

.

(3.41)

At this point we can ignore µ in the denominator since it is much smaller than ∆

and zero when the qubit is resonantly driven.

Case 2: Coherent rotations with two Raman beams. This scenario fits

best to our experimental setup since the rep-rate of the pulsed laser is non-adjustible

and a single beam cannot drive resonant transitions. This implies kωr 6= ωHF for

any integer k. The frequency comb picture of the two Raman beams in figure

3.2 closely resembles the system in this case, where the frequency of the AOMs

ωAOM1 and ωAOM2 are adjusted to create a beatnote between sets of comb-lines

belonging to both Raman beams. This beat-note can then be tuned to be resonant

with the hyperfine qubit splitting ωHF . This resonant condition is satisfied when

kωr + ωAOM2 − ωAOM1 = ωHF + µ. We can now keep the ‘DC’ terms in equation
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3.38 and applying the RWA. This leads to

β = eiµt

4 (d̄∗1e.Ē∗1)(d̄0e.Ē0)
∑
j

ajb
∗
j+k

1
∆ + jωr + ωAOM1 + µ

. (3.42)

Applying the RWA to equation 3.39 gives the following expression

γ = e−iµt

4 (d̄∗0e.Ē∗0)(d̄1e.Ē1)
∑
j

a∗jbj+k
1

∆ + jωr + ωAOM1
. (3.43)

Like in case 1, we can ignore µ in the denominator.

We note that the diagonal terms of HI that provide the light shift are ‘scalar’

quantities that depend on the strengths of the coupling between the qubit levels

and the excited state and are the same for the two scenarios (case -1 and -2),

where the Raman transition is resonantly driven by a single beam or both Raman

beams. We also note that the light shifts are controlled by the intensities (∝ |Ei|2 =

Ii) of each Raman beam. However, for practical purposes we are interested in

the differential light shift, which is the measure of how much the qubit hyperfine

splitting changes due to the unequal shift of the levels. To have a rough idea of

the magnitude of this shift, lets consider case-1 where Rabi flopping is performed

by each beam and is also ∝ |Ei|2 = Ii of each beam. We can write the Rabi

rate of this case as Ωs = 1
4(|d̄.Ē0|2 + |d̄.Ē1|2) 1

∆ , where we assume d̄0e = d̄1e = d̄

and the sum ∑
j a
∗
j+kaj

1
∆+jωr+ωAOM ≈

∑
j |aj|2 1

∆ = 1
∆ . Under these assumptions

α = 1
4(|d̄.Ē0|2 + |d̄.Ē1|2) 1

∆ and δ = 1
4(|d̄.Ē0|2 + |d̄.Ē1|2) 1

∆(1 + ωHF
∆ ). Therefore the
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1

2

Figure 3.3: Relevant Clebsch-Gordon coefficients in 171Yb+for Raman tran-
sition. Here we show the relative dipole coupling strengths for the allowed transi-
tions that couple the qubit levels to excited P levels.

differential light shift is

∆diff =δ − α = 1
4(|d̄.Ē0|2 + |d̄.Ē1|2) 1

∆
ωHF
∆

=Ωs
ωHF
∆ ≈ Ωs × 4× 10−4

(3.44)

for ∆ = 2π × 33 THz. This implies that while performing coherent single qubit

rotations using a pair of Raman beams with equal power the Stark shift causes a

residual Z-rotation in the Bloch sphere at a rate that is ∼ 10−4 times slower than

the rate the qubit is rotated around an axis on the equator of the sphere.
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3.2.2 Raman transitions via multiple excited states

In 171Yb+, the hyperfine qubit levels are coupled to more than one excited

state by the 355 nm Raman laser. The relevent excited states are in the 2P1/2 and

the 2P3/2 manifold as shown in Fig. 2.4 where the detuning of the Raman laser from

the virtually excited states are ∆ = 33 THz and ∆′ = −67 THz, respectively. It

is straightforward to extend the results of Raman processes obtained using a single

excited state (as discussed in the previous section) to the one having multiple excited

states. In order to do so we first need to define the excited states as |e1〉, |e2〉, |e3〉

etc. all of which couple to the qubit levels via single-photon coupling terms G00e1,

G00e2, G10e1, G10e2 etc. From left to right the indices of these terms depend on the

qubit level (|0〉 or |1〉), the coupling electric field (E0 or E1) and excited state (|e1〉,

|e2〉 etc.). For example coupling term G00e1 can be explicitly written as

G00e1 = d̄0e1.Ē0

+∞∑
j=−∞

aje
−i(jωr+ωAOM1)t, (3.45)

where the dipole matrix element d̄0e1 is between |0〉 and |e1〉. Using these terms we

can modify equation 3.27 and 3.28 which will now contain more terms each corre-

sponding to the amplitude of the excited states Ce1(t), Ce2(t), Ce2(t) etc. Addition-

ally we also get more equations like equation 3.29 for the excited state amplitudes.

We can adiabatically eliminate each excited state and substitute their amplitudes

in 3.27 and 3.28 to obtain equations of motion for the two level system.

Next we can evaluate the total light shift α and δ and the off diagonal terms β
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and γ that give the net coupling between the qubit levels. From the solution of the

general set of equations (that are similar to equation 3.27, 3.28 and 3.29) we find

that these terms are simply a sum of the contributions of all the Λ− systems that

are formed from each of the excited states that contribute to the Raman transition.

This is shown in figure 3.3 where Clebsch-Gordan coefficients are represented for

each dipole coupling term along with the electric field polarizations required for each

coupling. Now we can expand the dipole coupling term d̄0e1.Ē0 in the expression of

G00e1 as d̄0e1.Ē0 = −|Ē0|〈0|µ.ε̂0|e1〉 where ε̂0 is the unit vector of the electric field

and µ is the dipole moment of the atom. We can rewrite the term 〈0|µ.ε̂|e1〉 in

terms of the Clebsch-Gordan coefficient to give the following expression [49]

d̄0e1.Ē0 =
√
I0C(0, e1)(ε̂0 · σ̂±) Γ√

2Isat
, (3.46)

where C(0, e1) is the Clebsch-Gordan coefficient for angular momentum coupling

between |0〉 and |e1〉, Γ is the natural radiative linewidth of the transition, and Isat

is the saturation intensity. I0 = |E0|2 and ε̂0 are the intensity and unit vector of the

electric field, respectively. The unit vector σ̂± defines pure right and left circular

polarization, respectively whereas σ̂π defines (π-)polarization along the quantization

axis.

Using equations 3.45 and 3.46 we evaluate the diagonal terms of the interaction

Hamiltonian

α = 1
4∆(1

3)(I0 + I1) Γ2
1

2Isat1
+ 1

4∆′ (
2
3)(I0 + I1) Γ2

2
2Isat2

, (3.47)
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δ = 1
4∆(1 + ωHF

∆ )(1
3)(I0 + I1) Γ2

1
2Isat1

+ 1
4∆′ (1 + ωHF

∆′ )(2
3)(I0 + I1) Γ2

2
2Isat2

, (3.48)

where Isat1 and Isat2 and Γ1 and Γ2 are the saturation intensities and natural line

widths of the 2S1/2 to 2P1/2 and 2S1/2 to 2P3/2 transitions, respectively.

Next we can calculate off diagonal terms β and γ. However, for the sake of

completeness we will consider the two cases as discussed before:

Case 1: Coherent rotation with single Raman beam frequency comb. We

can calculate β from equation 3.40 by substituting the terms that contain the dipole

interaction with the electric field using expressions that are of the form as shown in

equation 3.46. The expression is

β =I0e
iµt

12

(
Γ2

1Ak,∆
Isat1

− Γ2
2Ak,∆′

Isat2

)
(−|σ0+|2 + |σ0−|2)

+ I1e
iµt

12

(
Γ2

1Bk,∆

Isat1
− Γ2

2Bk,∆′

Isat2

)
(−|σ1+|2 + |σ1−|2)

(3.49)

where we have defined the electric field in terms of angular momentum-1 polarization

vectors which consists of components of circular σ− and π− polarizations with

respect to the quantization axis (defined by the magnetic field B). We define the

component of electric field Ē0 that is right circularly polarized as σ0+ = ε̂0.σ̂+ and

similarly the component that is left circularly polarized σ0− = ε̂0.σ̂−. The electric

field in these coordinates can be expressed as

E0 =
√
I0 (σ0+σ̂+ + σ0−σ̂− + π0π̂) , (3.50a)

E1 =
√
I1 (σ1+σ̂+ + σ1−σ̂− + π1π̂) (3.50b)
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and terms Ak and Bk are defined as

Ak,∆ =
∑
j

aja
∗
j+k

∆ + jωr + ωAOM1
, (3.51a)

Bk,∆ =
∑
j

bjb
∗
j+k

∆ + jωr + ωAOM2
, (3.51b)

where we have removed the detuning µ from the denominator. Since we already

showed in equation 3.41 that γ = β∗ we do not need to explicitly write down its

expression. At this point we also can expand the terms aj and bj as in equation 3.26

and extract the phase offsets to write down β as

β = Ω
2 e

iµtei(∆k̄.x+∆φ), (3.52)

where ∆k̄ = k̄j − k̄j+k which is independent of j and ∆φ = 0. Here Ω is defined as

the Rabi frequency.

Case 2: Coherent rotation with two Raman beams. From equation 3.42

we can obtain the off diagonal term β in the case where coherent Raman transition

is performed by tuning frequency combs of two Raman beams. We find

β =
√
I0I1e

iµt

12

(
Γ2

1Dk,∆

Isat1
− Γ2

2Dk,∆′

Isat2

)
(−σ0+σ

∗
1+ + σ0−σ

∗
1−), (3.53)

where

Dk,∆ =
∑
j

ajb
∗
j+k

∆ + jωr + ωAOM1
(3.54)

and we use γ = β∗. At this point we also can expand the terms aj and bj as in
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equation 3.26 and extract the phase offsets to write down β as

β = Ω
2 e

iµtei(∆k̄.x+∆φ), (3.55)

where ∆k̄ = k̄0
j − k̄1

j+k is the same for all pairs of comblines separated by k × ωr.

Assuming that the pulse shape envelope in the frequency domain is real (f̄(jωr)) the

Rabi frequency Ω is real. The phase offset ∆φ = φ0 − φ1 is set by the phase of the

rf that drives the two Raman beam AOMs. Here Ω is defined as the Rabi frequency

and contains terms that are static in time and independent of the ion position.

Now that we have obtained the values of α, β, γ and δ for the 171Yb+qubit

we can obtain the interaction Hamiltonian. By inspecting equations 3.32 and 3.33

and comparing it to the Schrödinger equation i∂ψ(t)
∂t

= Hψ(t) we can write down

the Hamiltonian as,

H =

 α β

β∗ δ

 = ∆cI + ∆s2σz + Ω
2 e

iµtei(∆k̄.x+∆φ)σ+ + Ω∗
2 e−iµtei(∆k̄.x+∆φ)σ− (3.56)

where ∆c = (α + δ)/2, ∆s2 = (α − δ)/2 and σ+ and σ− are the spin raising and

lowering operators. Here ∆c is a shift common to both qubit levels and therefore

adds an overall phase during the evolution of the state which can then be ignored.

We need to keep the remaining three terms to calculate the evolution of the qubit

state. We define the state ψ(t) as,

ψ(t) =
∑
n

(C0,n(t)|0〉|n〉+ C1,n(t)|1〉|n〉) (3.57)
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where |n〉 is the motional number (Fock) states of the ion. When the qubit is not

entangled with the motion Ci,n = Cifn. In chapter 2 we discussed the harmonic

confinement of the 171Yb+ion in the trap. The motional state of the ion is a result

of this confinement. In principal there are three orthogonal axes (two radial and

one axial) along which the motional state can be decomposed. However, we will be

mostly concerned with the radial mode that is aligned with the ∆k̄ vector of the two

Raman beams since it can be coherently excited. Since this mode does not couple

to the other radial and axial modes (at least in the regime in which the ion trap

operates) we can ignore the state of the other mode.

The dependence of the Rabi frequency Ω, derived above on the two cases of

Raman transitions indicates a few properties that are important to keep in mind

while setting up the Raman beams in the experiment. For example, if we want to

drive coherent rotations using a single Raman beam frequency comb (eq. 3.49, case

1) it is important to use circularly polarized light for maximizing Rabi-frequency.

We also note that the Rabi frequency depends linearly on the beam intensity. A π̂

polarization component does not contribute to coupling between the qubit levels.

Therefore, it is useful to have the B field parallel to the Raman beam. For case 2

where we use two frequency combs to drive coherent rotations the Rabi rate can be

maximized by choosing a “lin-perp-lin” configuration of the Raman beams and the

B field. Here the beams are setup counterpropagating to each other and parallel

to the B field. Their linear polarizations are orthogonal to each other and to the

field. This is relatively easy to do since the output of the laser is linearly polarized

and the AOMs also prefer linear polarization. We also note that the contributions
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to the Rabi frequency from the 2P1/2 and 2P3/2 excited states ‘add up’ since the

detunings from the states are such that Dk,∆ and Dk,∆′ have opposite signs. On

the other hand the two-photon differential Stark shift ∆s2 have contributions from

the two excited levels that partially cancel each other due to opposite signs of the

detunings and are weaker by an extra factor of ωHF
∆ .

3.3 The fourth-order Stark shift

The differential AC-Stark shift ∆s2 in the Hamiltonian of equation 3.56 is

important in the evolution since it effects a σz rotation on the qubits and therefore

needs to be taken into account while driving coherent rotations. This light shift

simply arises from the fact that the qubit levels are coupled to the excited states

through the off resonant Raman beams. A similar shift would occur between the

qubit levels themselves if they were to be coupled through a off-resonant microwave

field near the qubit frequency ωHF . A single frequency comb from a single pulsed

laser beam can also provide a perturbation near the qubit frequency [70]. Case 1 as

defined in the previous section precisely encapsulates this concept, where Equations

3.40 and 3.49 give the expression of the Rabi frequency from the beat note between

the j−th and the (j + k)−th frequency comb line

Ωk = I0(−|σ0+|2 + |σ0−|2)
(

Γ2
1Ak,∆
6Isat1

− Γ2
2Ak,∆′

6Isat2

)
. (3.58)
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Figure 3.4: Fourth order stark shift from a single Raman beam. a) The light
shift from a single individual addressing Raman beam is measured using Ramsey
spectroscopy. The net shift is negative and its magnitude varies quadratically with
the Raman beam intensity verifying it to be the fourth order Stark shift. The shaded
area shows the range of power used for performing gate oprations. b) Light shift on
five ions are measured for different λ/4 wave-plate positions. At waveplate positions
+500 or −400 the polarization of the beam is mostly circular which results in large
shifts (see eqn. 3.58 and 3.59).
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This Rabi frequency is zero when the polarization is purely linear. However, if there

is an imbalance in the |σ0+| and |σ0−| component of the Raman beam the Rabi

frequency is non zero which off resonantly couples the qubit states. This leads to a

fourth order stark shift given by,

∆s4 = −
∑
k

|Ωk|2

4µk
(3.59)

where k defines the the pair of of comb lines that provide the off-resonant beatnote.

The detuning in this case is given by µk = kωr − ωHF .

The repetition rate of the pulsed laser used used in the experiment is ωr = 2π×

118.314MHz which gives us a set of detunings {µk} = 2π×{+16.7,−101.5,+135.1,−219.8, · · · }

MHz arranged in increasing order of the detuning magnitude. We observe that the

leading contribution to the total shift comes from a beatnote that has a positive

detuning which causes the net shift to be negative. We measure this shift using

Ramsey spectroscopy as a function of the beam intensity and polarization (figure

3.4). A quarter waveplate is installed in each of the Raman beams to remove any

circular component of the polarization as shown in figure 4.5. However, there are

some uncompensated fourth order shifts that come from residual circularly polar-

ized light (probably due to mixed polarization) from each Raman beam. In the

following sections we will include both the second and fourth order stark shifts in

the σz terms of the Hamiltonian and denote it as the total light shift seen by a qubit

∆s = ∆s2 + ∆s4.
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3.4 Locking the Raman beat-note

The 355 nm pulsed laser used is a Coherent Palladin2 with average power of

4 Watts. It has a repetition rate of ωr = 2π × 118.314 MHz. In order to perform a

stimulated Raman transition we choose to use pairs of frequency comb-lines that are

separated by nearly ωHF = 12.642 GHz. The repetition rate of the laser is chosen to

be such that a single frequency comb does not drive any resonant transition. In the

experiment this is true as the closest beat note from a single comb is detuned from

resonance by |107× ωr − ωHF | ≈ 2π × 17 MHz. Therefore in this setup we perform

coherent operations using the technique discussed in case 2 in the previous section.

The frequency comb picture in this case is shown in figure 3.2 where we will satisfy

the following condition,

ωAOM1 + kωr(t)− ωAOM2(t) = ωHF + µ (3.60)

In figure 3.2a AOM2 is a speciality multi-channel AOM which has a rf drive fre-

quency at 210MHz. Therefore, in order to satisfy the resonance condition we choose

the parameters: a) k = 108 and b) ωAOM1 = 75 MHz. Note that the repetition rate

of the laser is a time varying. This is because the internal cavity of the laser is not

actively stabilized and therefore has slow drifts in its length. This causes ωr to vary

in time. This drift is monitored and fed back to the frequency of AOM2 such that

the beat-note is stable [71]. We accomplish this by directly probing the term kωr(t)
2Palladin compact 355-4000; S/N: 99627610188
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in equation 3.60 using an ultra fast photo-diode3 where we measure the frequency of

the 108th comb-line and implement a phase-locked feed back loop that modulates

the frequency of ωAOM2 to compensate for the drift. The schematic of the lock is

shown in figure 3.5.

While performing coherent rotations on the qubit AOM1 is driven by an ar-

bitrary waveform generator (AWG) that can be programmed to produce sinusoidal

waveforms with a time step resolution of 1 ns and an a 12-bit resolution of the am-

plitude. By varying the AWG frequency (ωAOM1) we can also change the beatnote

detuning µ from qubit resonance.

In figure 3.5 a large bandwidth photo detector is used to directly measure the

rf frequency comb of the pulsed laser. The 108th comb-line can be isolated from the

others using band pass filters. It is then referenced to a stable synthesized RF signal

(at 12.567 GHz). This is done by mixing them together to extract the difference

frequency between the two, which is then isolated using filters. Ideally this is the

frequency at which AOM2 should be driven in order to produce a stable beatnote

between the two Raman beams at the ion (Eq. 3.60). However, due to spectral noise

on the signal it is important to filter it further. To achieve this we drive AOM2 with

a separate signal generator (HP8640B) and phase lock its frequency to that signal

generated from the laser comb line. This is accomplished using a phase-locked loop

which modulates the frequency produced by the generator. However, in this case a

“tunable low pass filter” sets the modulation bandwidth. By setting this to a lower

threshold ωAOM2 can be made to have a spectral linewidth narrow enough while it
3UPD-30-VSG-P; rise time < 30 ps; band-width > 10 GHz
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varying frequency ωAMO2. A frequency modulated rf signal from a signal generator
is phase locked to this signal using a phase-locked loop (PLL) as showed in the
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slowly changes its value to keep up with the drift in the frequency comb line. In

the end it works out such that the optical beatnote that drives the qubit is phase

locked to the reference provided by the synthesizer which in turn is referenced to a

stable Rubidium signal.

3.5 Single qubit Rabi flopping

The interaction Hamiltonian in equation 3.56 can be transformed to another

rotating frame where the qubit splitting is additionally shifted by the stark shift

which is ω1 − ω0 + ∆S. The interaction Hamiltonian in this frame is then given by

HI = eiH0tHe−iH0t where H0 = ∆Sσz. We can write it as

HI =

 0 Ω
2 e

i(µ−∆s)tei(∆k.x+∆φ)

Ω
2 e
−i(µ−∆s)te−i(∆k.x+∆φ) 0

 . (3.61)

This interaction coherently transfers population between the |0〉|n〉 and |1〉|n′〉 states

and can be strongly dependent on the motional state of the ion. This comes from

the fact that the ion may seem a modulation of the beatnote phase based on its

position. The equations of motion of the state amplitudes in this case are given by

Ċ0,n =− i

2e
i(µ−∆s)tei∆φΩn,n′C1,n′ , (3.62a)

Ċ1,n′ =− i

2e
−i(µ−∆s)te−i∆φΩ∗n,n′C0,n, (3.62b)
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where the Rabi frequency is

Ωn,n′ = Ω〈n′|eiη(a+a†)|n〉 = Dn,n′Ω. (3.63)

We expand the term ∆k̄.x = η(a + a†) where η is the Lamb-Dicke parameter and

a is the motional mode lowering operator. The Debye-Waller factor Dn,n′ gives the

strength of the coupling based on the motional states involved [10,72]. Here we can

tune the detuning such that µ−∆S = 0 such that there are no time varying terms in

the off diagonal terms. This gives rise to resonant Rabi flopping between the states

|0〉|n〉 and |1〉|n〉 that coherently transfers the population between the states. This

is usually referred to as a carrier transition as it does not change the motional state

of the ion and only changes the qubit spin. In this case the Debye-Waller factor can

be derived to be

Dn,n = e−
η2
2 L0

n(η2), (3.64)

where L0
n(η2) is the generalized Laguerre polynomial. For the ion near the motional

ground state and η2 � 1 we get Dn,n ≈ 1.

In figure 3.6a we perform rabi flopping using co-propagating beams where

η � 1 and therefore the Rabi frequency is practically insensitive to the ion motion.

However, since the polarization of the beams is mostly linear hence the Rabi fre-

quency is much smaller compared to the counterpropagating geometry (fig. 3.6b).

For this Raman beam geometry η ≈ 0.12 and therefore the the Rabi frequency has

a strong dependence on the motional state of the ion. As shown in the figure the
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Figure 3.6: Carrier Rabi flopping. a) Rabi flopping using co-propagating Raman
beam geometry. Due to relatively small ∆k̄ the Rabi frequency Ω has no dependence
on the motional state of the ion which leads to the high contrast. b) Rabi flopping
using counter propagating Raman beams. Here ∆k̄ is relatively large such that Ω
has n dependence. The fit shows a carrier Rabi-flop when the ion is in a thermal
state with n̄ ≈ 2
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rabi flopping is not as clean since the ion is in a thermal state with average phonon

number n̄ = 2 which varies the Rabi frequency over the different Fock state compo-

nents of the qubit. This causes a decay in the Rabi flopping due to interference of

the different Rabi rates.

In order to couple spin to the motion of the ion we can change the detuning

µ such that µ − ∆s = ±ωx, where ωx is the secular frequency of the radial mode

of motion along the ∆k vector of the Raman beams. This coherently transfers

population between the |0〉|n〉 and the |1〉|n ± 1〉 state. This is commonly referred

to as the sideband Rabi flop where that is ‘blue’ when the motional phonon number

is increased by 1 and ‘red’ when the phonons number is decresed by 1 while flipping

the qubit spin from |0〉 to |1〉. As discussed earlier the secular trap frequency is

≈ 3 MHz which gives a Lamb-Dicke parameter η = 0.12 for counterpropagating

Raman beams. Rabi rate in this case is given by Ωn,n±1 = Dn,n±1Ω where the

Debye-Waller factor is

Dn,n+1 =e−
η2
2

ηΩ√
n+ 1

L1
nη

2 ≈ ηΩ√
n+ 1

, (3.65a)

Dn,n−1 =e−
η2
2
ηΩ√
n
L1
nη

2 ≈ ηΩ√
n
. (3.65b)

Here we have considered η2 = 0.014� 1 which gives an approximate Rabi frequency

that depends on the motional Fock state |n〉. In figure 3.7 we plot theoretical Rabi

flops for various thermal states of the ion (n̄ = 0.1 and n̄ = 2). The carrier rabi

frequency is faster than the sideband by the factor η. We also find out that when

the ion is not cooled near to the motional ground state there is significant loss
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Figure 3.7: Carrier and sideband Rabi flopping for thermal states a) Sim-
ulation of a carrier Rabi flopping at two photon Rabi frequency Ω = 40 kHz at
n̄ = 0.1. The red and blue sideband rabi-rates are weaker by a factor of η ≈ 0.12
which is the Lamb-Dicke parameter for a radial trap frequency of ωx = 3.0 MHz.
The red sideband transition is suppressed when the ion is initialized to the state
|0〉|n〉 where motional phonon number n → 0. b) Simulated Rabi flopping for the
ion in thermal state with n̄ = 2. The decay in the carrier Rabi flopping is due to the
n−dependence of Ω which leads to the interference of slightly different Rabi rates
over the thermal distribution of n.
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of contrast in the Rabi flops due to the variation of Ωn,n′ . Therefore, we choose to

perform Raman sideband cooling to initialize the qubit close to the motional ground

state before performing any coherent rotations on it.

For a counter propagating beam geometry as shown in figure 3.2a the wave

vector difference between the Raman beams is of the order ∆k̄ = 2π( 1
λj
x̂− −1

λj+k
x̂) ≈

4π
355 x̂ nm−1. Since the two Raman beams propagate along separate beam paths it

is possible to have differential optical path lengths δx in the two arms causing the

phase of the beatnote to change by δx 2π
355 where δx is expressed in nm. This can be

caused by air currents that give rise to local changes in the refractive index or can

occur due to vibrations in optical elements (mirrors) in each path. A good way to

quantify this ‘phase jitter’ is by performing a Ramsey interferometry experiment as

shown in figure 3.8. Any phase jitter due to the interferometric instability of the

two Raman beams can reduce contrast of Ramsey fringes when the qubit and the

beatnote are allowed to evolve with respect to each other for sufficient amounts of

time such that the relative phase coherence between the two is lost due to either

‘phase jitter’ or fluctuation is the qubit energy splitting (due to magnetic field noise

etc.). The measured coherence in the counter propagating geometry is quantified as

the coherence time which is measured to be Tc = 400 ms. In order to achieve this

we put an enclosure around the Raman beams in order to reduce air currents on

the optics table. By using stable configurations of mounting mirrors beam pointing

errors can be reduced as well.

It is important to note that a co-propagating geometry is less sensitive to

interferometric instability due to two reasons:
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Figure 3.8: Coherence measurement. a) A Ramsey interferometry sequence for
coherence measurement. The qubit is initialized to state |0〉 and near the motional
ground state. Counterpropagating Raman beams drive Rabi flop between the qubit
levels. A π

2 pulse drives the qubit to the equator of the Bloch sphere where it
evolves during the delay time τ at the difference frequency between the beatnote
and the qubit splitting ωHF . A π

2 pulse at the end maps this evolution to the bright
state probability Prob |1〉. b) Ramsey fringes observed as an oscillation of Prob |1〉.
The fringe contrast indicates a high degree of coherence between the freely evolving
qubit and the driving beatnote. The contrast should exponentially decay when the
driving beatnote (or qubit splitting) has noise that destroys the coherence. The time
constant for the decay is exterpolated to be Tc = 400 ms where Tc is the coherence
time at which the contrast goes to 1/e.
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a) Both the Raman beams share the same optical path due to which any variation

in the optical paths of the two presents itself as a ‘common mode’ noise that affects

both the beams equally therefore canceling the effects. This implies that δx→ 0.

b) The difference in the k̄ vectors of copropagating beams is given by ∆k̄ = 2π( 1
λj
x̂−

1
λj+k

x̂) ≈ 2π×12.6 GHz
c

x̂ which is the inverse of a 12.6GHz microwave wavelength which

in free space is 2.4 cm. Usually variations in the optical path lengths of the Raman

beams are much smaller than this length scale.

Despite the obvious advantages of interferometric stability of copropagating

beams we will use the counterpropagating geometry due to the large value of ∆k̄

achieved in this case. This allows us to excite the motional modes of the ions with

a force that is proportional to ηΩ by increasing the value of η. Using the counter

propagating geometry we can probe the motional state of the ion in the radial

direction. By tuning the Raman beatnote at the blue and red sideband frequencies

we can rabi flop between |0〉|n〉 and |0〉|n ± 1〉 accordingly. By fitting this to a

thermal state we can extract the average phonon number of the mode. We use

this technique in order to find the motional heating rate ( ˙̄n) of the ion in the trap

which is an important figure of merit for the ion trap and also sets a limit on the

duration of coherent operations that can be performed before re-cooling it to the

ground state. Figure 3.9 shows an experimental sequence that initializes a single

ion close to the motional ground state and probes its temperature at different times

by performing sideband Rabi flopping.
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Figure 3.9: Measurement of trap heating rate using sideband spectroscopy
a) Experimental sequence. The ion is prepared in the |0〉|n = 0〉 ground state. A
red or blue sideband rabi flop is implemented by spectrally addressing the |0〉|n〉 →
|0〉|n − 1〉 or |0〉|n〉 → |0〉|n + 1〉 transition respectively. b)-f) Red and blue side
band Rabi flopping after different wait times after side band cooling. Due to a finite
heating rate of the trap the ion heats up to a thermal state with n̄ 6= 0. By fitting
the Rabi flopping the average phonon number n can be determined as a function
of time. g) Linear fit to phonon number vs. time plot. This gives a heating rate
˙̄n = 101 phonons/s.
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Chapter 4: Individual Qubit Addressing

The implementation of quantum algorithms require control and readout of

individual qubits. In order to do so, naively one might consider placing qubits far

from each other such that they can be manipulated separately with high isolation.

However, this also prevents them from interacting with each other specially when

such interactions occur though local couplings when they are physically placed close

to each other. Using trapped ions a multi-qubit system is often prepared by trapping

several ions (each representing a qubit) in a single harmonic trap such that they

can strongly interact with each other through electrostatic Coulomb repulsion. By

taking advantage of these interactions we can implement two qubit quantum gates

between any pairs of ions. By setting trap parameters one might arrange the ions

as a linear chain Coulmb crystal. With the ion separation usually of the order of a

few microns in this configuration it is challenging to address each one of them.

A few techniques well known for individual addressing are based on spectral

resolving of qubits using field gradients [17–19], shelving of qubit states to other

electronic levels [16] and spatially resolving individual ions through optical resolu-

tion [73]. In our experiment we use the technique of optically (spatially) resolving

individual ions for control as well as readout. Unlike spectral resolution, using spa-
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tial resolution is not limited by a frequency bandwidth and spectral crowding for

more qubits. It also does not interfere with the qubit levels as in shelving techniques.

Also, since no two ions can be at the same position, optical resolution techniques

are inherently scalable for larger ion chains.

In this experiment we use five 171Yb+ions that are trapped in a linear chain

configuration with approximately 5 µm spacing between adjacent ions. We imple-

ment readout using state dependent fluorescence that is collected by a 0.37 numerical

aperture (NA) objective. The state detection is an incoherent process where the fi-

delity of the measurement is determined by the amount of collected fluorescence.

Using a high NA objective not only ensures this but also improves the resolution of

imaging individual ions which in turn minimizes errors due to the optical crosstalk

between the light collected from different ions in the chain. The coherent qubit con-

trol on the other hand is implemented by tightly focussing individual Raman beams

on each ion in the chain. Since qubit manipulation is a coherent process therefore

there is a trade off between maintaining high optical resolution during addressing

while maintaining a high phase and intensity stability of the Raman beams. In the

following sections we will discuss how we implement high optical resolution in both

individual qubit control and measurement.

102



4.1 Individual qubit state detection

In order to improve state detection we improve the numerical aperture from

0.23 1 to 0.37 by designing a custom objective lens. The lens design is shown in

figure 4.1 with the design parameters shown in table 4.1. Due to high NA the light

collection is increased almost by a factor of 3. The lens is designed at 369.5 nm

which is the wavelength for the 2S1/2 to 2P1/2 transition in 171Yb+. Therefore, the

expected resolution for the imaging of a single ion is 0.5 µm.

The design of the objective is based on the constraints given by the vacuum

chamber and the trap(see section 2.5.1). In order to have high NA access in both

the detection and Raman beams directions re-entrant windows are used to reduce

the working distance of the lens from the trap. However, due to the dimensions of

the ion trap and the re-entrant windows the shortest working distance available for

imaging is ∼ 20 mm. We use a 32 mm clear aperture on the light collection window

which allows a window thickness of about 3 mm. The lens assembly is chosen to be

composed of standard 1” singlets with a lens holder that attaches to standard SM-1

lens tubes 2.

The objective lens assembly is designed and optimized in OSLO. In this ap-

proach we start by setting the NA of the system to be low and simulate spherical

aberrations. As the NA is gradually increased aberrations also increase which can

then be reduced by adding more singlets to the assembly [74]. The lens assembly
1CVI objective used in previous version of the experiment
2Thorlabs
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Figure 4.1: Lens design for light collection. A 6-element lens design for a 0.38
NA light collection from a trapped ion. The design is adapted for a 3mm thick fused
silica vacuum widow. The outer diameter of the lens tube agrees with a 1”-SM1
(Thorlabs) lens tube system and is fitted in a re-entrant viewport with 38mm inner
diameter. Lens-1 and Lens-2 are custom designed elements. The remaining singlet
lenses in the assembly are commercially available. The design can be optimized to
be near diffraction limited for a different window thickness by adjusting the position
of Lens 1.
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SRF Radius Thickness Aperture Glass Description
(mm) (mm) radius (mm)

OBJ – ∞ – AIR x
AST – 0 6.800 AIR x

2 -22.299 V 4.230 V 7.000 HK9L Custom Lens-1
3 ∞ 2.055 V 8.000 AIR **
4 -82.200 3.600 12.700 HK9L Thorlabs
5 -32.100 0.500 12.700 AIR LE1234-A
6 353.300 4.000 12.700 HK9L Thorlabs
7 -60.020 0.500 12.700 AIR LBF254-100-A
8 60.020 4.000 12.700 HK9L Thorlabs
9 -353.300 0.500 12.700 AIR LBF254-100-A
10 32.100 3.600 12.700 HK9L Thorlabs
11 82.200 0.500 12.700 AIR LE1234-A
12 13.782 V 3.000 8.000 HK9L Custom Lens-2
13 33.693 V 1.500 6.575 AIR x
14 ∞ 3 17.000 UVFS Vacuum
15 ∞ 0 17.000 VACUUM window

IMS – 14.276 – – x

** This spacing can be adjusted to correct for variable vacuum window thickness.
SRF- Surface
OBJ- Object
AST-Aperture stop
IMS- Image stop
V- Variable parameter for optimizing the design for minimal aberration
S- Aperture radius calculated from ray tracing
HK9L - Also knows as N-BK7 Borosilicate crown glass is manufactured by CDGM.
It has internal transmittace of 0.993 at 370 nm for 10 mm glass thickness.

Table 4.1: Lens design for a 0.38NA objective lens assembly for collecting fluo-
rescence from ions for imaging and detection. It is designed to compensate for
aberrations introduces by a 3mm fised silica vacuum window. Each surface is spher-
ical and is characterized by its radius of curvature, aperture size and the thickness
of glass following it.
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is divided in three parts: a) positive meniscus lens close to the window (Lens-2) ,

b) a symmetric arrangement of 4 singlets (positive) and c) a negative lens (Lens-1).

This design has the following properties:

• Due to several components the peripheral rays are gradually bent over several

surfaces thereby keeping the spherical aberration to the lowest order.

• Each singlet with a positive focal length adds a positive aberration component

where as Lens 1 and the vacuum chamber window adds a negative aberration

component.

• The four singlets in the middle are symmetrically arranged such and the rays

bend symmetrically as well across the elements. This minimizes the aberration

from this section of the assembly.

• The two lenses in the center of the assembly are chosen to be best form lenses

which are optimal since the rays bend around them in an infinite conjugate

fashion. The two lenses next to these on either side are positive meniscus

lenses that are used to further bend the rays that are already converging on

either side of this section.

• Since the spherical aberration contribution from each singlet is in the lowest

order therefore we can nearly cancel the positive against the negative aberra-

tions. In order to do so we simply vary the thickness and surface curvatures

of Lens-1 and Lens-2 in the design to reach an aberration minima.

• Any excess aberration due to a different vacuum window thickness can be
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reduced simply by changing the position of Lens-1.

In this design we use BK-7 glass which is of higher refractive index than UV-

grade fused silica. This helps in reducing spherical aberrations. Singlets in the

middle section are commercially available3 whereas Lens-1 and Lens-2 are custom

designed. One advantage of this design is that it can be adapted for a thicker window

using the same lens stack. Due to a infinite conjugate performance the objective

forms an image at infinity. This gives flexibility in setting a variable first stage

magnification of the imaging system using a singlet ‘tube lens’ that allows for easy

alignment of the system. Before mounting the objective it is experimentally verified

to operate near the diffraction limit (see Appendix A for theoretical simulation and

experimental verification of lens performance).

Figure 4.2 shows the setup used for the imaging of ions. Fluorescence from

each ion is collected using the objective lens. Collimated output is focussed using

a 200 mm focal length best form lens4 to form an intermediate image with roughly

×10 magnification. Figure 4.2a shows the first stage with an aperture at the image

plane. This is used to spatially filter out any background scattered light outside the

desired field of view of the objective. Figure 4.2b shows the second stage where a

doublet 5 with effective focal length of ∼ 22 mm is used to form an image on an

intensified charged couple device (ICCD) camera. The doublet is mounted such that

its position can be varied in order to image the aperture onto the camera.

Although the objective is designed to be near diffraction limited there can still
3Thorlabs best-form and positive meniscus lenses
4Thorlabs LBF254-200-A
52 Thorlabs LA4765-UV singlets
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Figure 4.2: Imaging system for individual detection. a) First stage imaging
using a +200 mm tube lens. A 200 µm ×1000 µm aperture is placed at the image
plane as a spatial filter. The field of view is set to be 20×100µm at the ion. b) Second
stage imaging used to image the aperture to a camera or a PMT. c) Defocussed (top)
and focussed (bottom) image of an ion when astigmatism is undercompensated
(D=164 mm). d) Image of the ion when astigmatism is perfectly compensated
(D=167mm). e) Image when astigmatism is overcompensated (D=169 mm).
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be aberrations introduced from imperfections of the vacuum window and other op-

tical elements in the imaging system. However, since the beam is weakly converging

(or diverging) after the tube lens it has a relatively much lower NA and therefore

aberrations introduced by the subsequent lens elements are negligible. Therefore,

the main contribution of aberration comes from the vacuum window which is situ-

ated between the ion and the objective. Due to an NA of 0.37 of the beam at this

place very slight misalignments or deviation of the window glass from being perfectly

flat can introduce considerable aberrations. We expect to see spherical aberrations

due to bending of the window glass in a away that is cylindrically symmetric about

the principal axis of the optics. We expect to see ‘coma’ if the ion is placed off axis

and finally ‘astigmatism’ if the window is not perfectly perpendicular (tilt) to the

axis or has a bend that is not cylindrically symmetric. Out of these three aberra-

tions we rule out ‘coma’ because the ion has to be very close to the principal axis in

order to form an image at the aperture (which it does) and the aperture is very well

aligned to the principal axis of the objective by mounting them both to a common

lens tube.

Since the vacuum window is mounted independently it is more likely to have a

tilt which introduces astigmatism in the ion image. This is shown in figure 4.2 c)-e)

where we place a slowly focussing cylindrical lens 6 between the tube lens and the

aperture and vary its position to perfectly compensate astigmatism. In this figure

we show defocussed images of the ion that gives a elliptical or circular halo that

is more prominently indicative of uncompensated and compensated astigmatism,
6Thorlabs LJ4530RM-A
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respectively. After correcting for aberrations the ion image is resolved to 0.55 µm.

For implementing individual state detection of ions we use an array of photo-

multiplier tubes 7 which has a quantum efficiency of ∼ 40% at UV. Each channel

of the PMT is 0.8 mm wide with a 0.2 mm deadzone between adjacent channels.

Due to non trivial electronic signal crosstalk between adjacent channels of the PMT

array we map adjacent ions on alternate channels of the PMT. In order to regulate

this mapping we implement a third magnification stage for imaging of the ion to the

PMT. By changing the position of lens L3 we adjust the magnification to optimize

photon counts from each of the five ions on their respective PMT channel.

Figure 4.3 a shows the imaging of individual ions on the channels of a PMT.

In this case alternate channels with relatively high photon counts are are the ones

that are assigned for state detection for each ion. When a photon is incident on a

given channel it generates a photo-electric current which produces a ∼ 10 mV signal

with about 1 ns rise time across a 50 Ω load. This signal is amplified by a factor

of 100 and discriminated against a reference of ∼ −1 V which produces a digital

TTL signal. This circuit is shown in figure 4.3 b. We use a two stage amplifier

that is capacitively coupled to remove any DC signal. The reference voltage on

the discriminator is adjusted to remove background noise from a) secondary pulses

from internal reflection in the cable b) dark counts that has lower signal strength.

Additionally each TTL is stretched to a 40 ns pulse using an FPGA to prevent

double counting.

Next we consider the possible sources of measurement cross talk. The cross
7Hamamatsu: H7260-200
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Figure 4.3: Individual detection using 32-channel PMT array. a) A linear
chain of 5 trapped 171Yb+ions imaged on a camera and a PMT. The PMT signal is
in terms of photon counts for each channel. The optical imaging maps adjacent ion
images to alternate channels of a 1D PMT array. b) An analog circuit for amplifying
signal from each PMT channel followed by a discriminator that generates a TTL
pulses for each incident photon signal. The circuit for one (out of eight) of the
amplifier modules is shown that is used for channel-1 through -4 of the PMT array.
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talk between photon counts of adjacent ions are dominated by intrinsic signal cross

talk between PMT channels where the nearest neighbor cross talk is about 3% where

as the to the next to nearest neighbor is about 0.5 %. The second contribution to

crosstalk comes from the resolution of the optical imaging system. It is important

to remove aberrations that can cause such spillover. After removing all aberrations

we achieve a near diffraction limited image with a ratio of the resolution to the inter

ion distance being 0.55 µm
5 µm . Although this is within a reasonable limit it is important

to note that there is always some residual error due to the outer rings of the point

spread function (PSF) which describes the intensity spread of the ion image. This

is shown in appendix 1. By choosing alternate PMT channels for mapping the ions

we measure a ∼ 1% total spill over in photon counts between nearest ion channels.

In order to experimentally determine the single qubit state detection fidelity

and effect of cross on the state detection we look at three relevant scenarios. a)

Spillover to neighboring ion channels when an ion is prepared in the |0〉 state (figure

4.4a). We apply the discriminator method to measure the probability of detecting a

bright state (|1〉) state in all three channels and the 0.26 % is the state preparation

and measurement (SPAM) error for dark state |0〉. Since the ion does not scatter

many photons in this state the spillover does not affect the nearest channels. b)

Spillover to neighboring ion channels when an ion is prepared in the bright state |1〉

(figure 4.4b). Here we see that the SPAM error for the bright state |1〉 is 0.91 %.

Since the bright ion scatters an average of 10 photon during the detection cycle there

is higher spillover to neighboring channels. We find that measuring the neighboring

ion channels gives a false positive for a bright state with a probability of 0.3 % and
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Figure 4.4: Detection fidelity with crosstalk between PMT channels. a)
Single shot probability (using discriminator method) of detecting bright state |1〉 in
three adjacent PMT channels with a dark ion in the middle channel (prepared in
state |0〉). b) Probability of detecting a bright state with a bright ion in the middle
channel. Probability of detecting bright state with the middle ion dark and outer
ions bright in a three ion chain. d) State preparation and measurement (SPAM)
fidelity for 5-qubit states. e) SPAM cross talk matrix with only off diagonal terms
for 5-qubit states.
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0.8 %, where the asymmetry comes from the inherent asymmetry of the signal cross

talk between neighboring channels of the PMT array itself. c) Spillover from two

adjacent bright ions when the middle one is in the dark state (figure 4.4c). This gives

rise to maximum error due to spillover from bright ions on both side. By comparison

with fig. 4.4a we see an additional error of 1.4 % in the dark state detection of the

middle ion on top of the SPAM error.

Now we can go ahead and measure the SPAM error matrix for five ions by

measuring photon counts from each of the five corresponding PMT channels and

applying a discriminator to perform single shot 5-qubit state detection. Figure 4.4

d) and e) shows the SPAM fidelity for each of the 32 states and the probability

of measuring the wrong state for each prepared state, respectively. By observation

we can deduce that the high SPAM fidelity of state |00000〉 is due to high single

qubit SPAM fidelity of the state |0〉 and due to to the fact the ideally no photon is

scattered by the ions which removes any cross talk issues. On the other hand the

SPAM fidelity of state |11111〉 is 95 % is much lower and is dominated by the single

qubit SPAM fidelity (99 %) of state |1〉 (0.95 ≈ 0.995). The signal cross talk does

not play a major part in the SPAM since all the ions are in the bright state. The

lowest SPAM fidelity is for the state |10101〉 where both the single qubit (bright

state) SPAM and maximal spillover crosstalk (as in fig. 4.4c) plays a part.
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4.2 Individual qubit manipulation

Individual addressing of qubits is necessary for implementing quantum algo-

rithms. We use counterpropagating Raman beams for qubit manipulation. Individ-

ual qubit addressing is achieved by focussing independent Raman beams on single

ions in a chain. The layout of the optical path of the Raman beams is shown in

figure 4.5 where a single beam from a 355nm pulsed laser is split using a 50/50 beam

splitter. One of these beams is shaped to globally address all five qubits uniformly.

This is modulated using a single channel AOM which is driven by an arbitrary wave-

form generator. The second beam is used for individual addressing where it is split

into ten beams using a diffractive optic element (DOE) which acts as a 10-way beam

splitter. Each beam is focussed onto individual channels of a 32-channel AOM 8. By

driving each AOM channels with rf signal we can selectively switch on individual

Raman beams and drive Raman transitions on corresponding qubits.

In order to optically resolve single ions in the chain for in individual addressing

Raman beam is tightly focussed to a 2 µm bean diameter at the ion position. This

requires the beam to be of relatively high NA (0.15-0.2 NA) compared to the global

Raman beam which is shaped to have gaussian width of 75 µm and 10 µm in the

Z- and Y-direction, respectively. Figure 4.6a shows the gaussian picture [75] of

beam shaping of a single individual Raman addressing beam where the gaussian

beam width is shown at various beam positions. In order to minimize crosstalk

between adjacent channels of the 32-channel AOM each beam is focussed to< 100µm
8Harris- Model H-601 Series 32-Channel UV Acousto-Optic Modulator, PN: 66948-226460-G01
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Figure 4.6: Raman beam individual optical addressing. a) The Gaussian
picture of a single Raman beam. The beam forms a focus at AOM crystal and at
the ion position. The beam is magnified by a factor of m = m1m2m3 ≈ 40 using
a three stage telescope and forms a ∼ 0.15NA after the final focussing triplet. b)
Three adjacent rays from the diffractive optic element (DOE) are traced as they go
through the optics. The three stage telescope reduce the angular separation between
the rays by a factor of m before they hit the final focussing triplet. The spacing of the
focussed beam spots at the ion chain is decided by this angle and the effective focal
length of the triplet. The distances between optics are d1 = 65.7; d2 = 81.5; d3 =
67; d4 = 87.5; d5 = 62.2; d6 = 417 mm. d7 ∼ 40 mm is the working distance that is
adjusted to focus the beam at the ion position.
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diameter inside the AOM crystal. This is followed by successive telescopic expansion

of the beam by a factor of ≈ 40 which is then focussed to a tight spot using a focusing

triplet with a working distance of ∼ 40 mm.

Figure 4.6b shows three adjacent rays out of the ten from the DOE. The

angular separation between adjacent rays is θ = 4.3 mrad which sets the focal

length of lens L1 (f1 ≈ 91 mm) such that each of the rays are mapped to adjacent

channels of the AOM which are spaced by ≈ 400 µm. Once the rays travel through

the succesive telescopes with magnification m ≈ 40 the angular separation between

the rays is decreased by a factor of m. Therefore at the focal point of the final

focussing lens (which is also the ion chain position) the spacing between adjacent

focussed spots is given by,

∆z = fθ

m
(4.1)

where f is the focal length of the final focussing triplet L7.

Since the individual addressing beam has an NA of 0.15-0.2 slight optical mis-

alignment can introduce aberrations in the beam. This gives rise to higher intensity

and phase noise on the Raman beat-note that drives coherent qubit rotations. Ide-

ally one can improve beam alignment by profiling it on a camera which is particularly

hard for small spot sizes due to a resolution limit (2.2 × 2.2 µm) set by the pixels.

Therefore, it is preferable to use the ion for this purpose as it not only useful in

profiling the intensity but also the phase of the beam.
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Figure 4.7: Raman individual addressing beam amplitude profiling. a)
A Z-Y beam profile for the individual Raman beam is made by rotating a single
qubit form dark state |0〉 to bright state |1〉 and measuring the average number of
scattered photons. As the X (focus) direction is scanned the profile shows ‘coma’
and ‘astigmatism’. b) Beam profiles with ‘coma’ as the tilt between the wave-vector
of the beam and the optical axis is reduced thereby reducing ‘coma’. c) Beam
profiles with ‘astigmatism’ showing focus in the Z- and Y-direction that occur at
two different focal points along the beam direction X. d) Amplitude profiles of 5
individual addressing beams after reducing aberrations and measured by scanning
all the beams with a single stationary ion.



Since the Rabi frequency if single qubit rotations is dependent on the Raman

beam intensities as Ω ∝
√
I0I1 = |E0||E1| we can use this to measure the electric

field amplitude of the individual Raman beam. A single beam is translated in the

Z and Y direction in steps as small as 20 nm while rotating a single qubit prepared

in state |0〉. The relative amount of rotation is given by the probability of the qubit

in state |1〉 which in turn is proportional to the field amplitude of the individual

Raman beam. Figure 4.7 a-c shows beam profiles for a single beam with aberrations:

mainly ‘coma’ and ‘astigmatism’. We expect ‘coma’ because the wave vector of the

beam is not parallel to the optical axis. We expect ‘astigmatism’ due to a tilt in

the vacuum window with respect to the high NA beam after the focussing triplet

L7. Both this aberrations are eventually corrected by aligning the optical axis of

the lens system to that of the vacuum window and subsequently aligning the beam

wave-vector to this axis. It is important to note that the optical path from L3 to L7

(fig. 4.6) has the beam expanding along a path that is not a straight line (fig. 4.5)

which leaves room for aberrations that can be introduced from mirror curvatures

and decentration of lenses (specially lenses L5 and L6 in telescope m3).
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Figure 4.8: Amplitude and phase profiling of an individual addressing Ra-
man beam. a) The relative field amplitude across the width of an individual
addressing Raman beam given by position dependent Rabi frequency Ω(z). b) A
Ramsey sequence with two π

2 pulses applied at two beam positions. The phase dif-
ference of Raman beat-note as a function of beam position is indicative of a ∆k
vector projection along Z (linear gradient) and also wavefront distortion due to par-
tial beam clipping (non-linear gradient at the beam edge). This creates distortion
is both phase(b) and amplitude(a). c),d),e) Measured Ramsey fringes at different
shuttled ion positions showing different phase offsets.



Besides amplitude, a single ion can also be used to profile the phase of the

Raman beat-note. In this case we need to shuttle the ion across the Raman beam

to sample the position dependent beat-note phase. For this we first tune the beat

note to drive ‘carrier’ Rabi flops as discussed in section 3.4. We note that the off

diagonal terms of the interaction Hamiltonian (equation 3.60) has a phase that is

given by ∆k̄ · x + ∆φ where ∆k̄ · x is the position dependent phase and ∆φ is

a static phase set by the AOM. In a counterpropagating Raman beam geometry

the value of ∆k̄ is 2π
355nm−1 in the radial direction (X) and should ideally be zero

along the axial direction Z. However, a small projection of ∆k̄ along Z or optical

aberration (wavefront distortion of individual Raman beam) can give rise to weak

phase gradients in Z.

In figure 4.8 a we first look at an amplitude profile of a Raman beam by

measuring the position dependent Rabi rate Ω(z). In order to measure the Z-

dependent phase profile we perform a Ramsey interferometry where we fist apply

a π
2 rotation at the center of the beam and then shuttle the ion to a different Z-

position to perform a second π
2 rotation. The position dependent beat-note phase

in this case changes the axis of the second π
2 rotation with respect to the first one

in the Bloch sphere picture (chapter 5) which fails to rotate the qubit from |0〉 to

state |1〉 in two successive π
2 pulses. However, we can figure out the the difference in

these two phases by scanning ∆φ of the second π
2 pulse (using AOM1) and obtain

Ramsey interferometric fringes of the probability of preparing state |1〉 as a function

of ∆φ. Figure 4.8b shows this sequence and the relative phase difference across the

beam which are calculated at each position using Ramsey fringes (fig. 4.8c-e).
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Figure 4.9: Rabi flopping on individual ions using individual channels. a)
Experimental sequence where we perform carrier Rabi flopping on each ion without
side band cooling. b) If the crosstalk die to Raman beam spillover is low enough
then all the qubits except for the one addressed stays in state |0〉. The addressed
qubit performs Rabi flopping. The decay is due to Rabi rates interfering due to the
ions being in a thermal state with n̄ > 0. See figure 3.6. The fit is an exponentially
decaying sine function that is used to extract the qubit specific Rabi rate Ωi
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In order to individually address ions, each individual addressing Raman beams

are focussed to a 2µm gaussian beam diameter as shown in figure 4.7 d. We choose

five (out of ten) beams from the DOE that are modulated by five adjacent channels

of the multi channel AWG. The individual channels are driven by rf signal that is

generated from the beat-note lock setup (it drives AOM 2 as in figure 3.4). The

global beam is switched by the global AOM (AOM1 as in figure 3.2) which is driven

by an arbitrary waveform generator (AWG) that is used to tune the beat-note

detuning from carrier resonance µ (as in equation 3.60) and the phase in the off-

diagonal terms of the interaction hamiltonian ∆φ = φ0−φ1. Here, φ1 is static where

as φ0 can be varied by changing the phase of the rf that drives the global AOM

(AOM1). For any given ion i in a the chain, the beat-note offset phase ∆ki ·xi+∆φ

is set to 0 at φ0 = 0. This defines rotation of the qubit about the X−axis in the

Bloch sphere (to be discussed in the next chapter). By simply changing φ0 = π
2 the

rotation axis can be change to Y . However, it is important to note that since it

is most likely that the beat-note wave vector ∆ki varies slightly across ions along

with their positions xi, the X−axis of rotation is not the same across the ions in

the absolute frame (lab frame) but relative to their fixed positions and the time t0

at which coherent rotations start, the X-axis of rotation Xi for each qubit is well

defined. As far as the magnitude of the Rabi frequency on a single ion is concerned,

it can be expressed as,

Ω = KP

√
p(1− p)ηGηIηDOE

2bAIAG
(4.2)
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where P is the average power from the pulsed laser, p is the fraction of power that

goes to the global Raman beam, ηG and ηI are the diffraction efficiencies of the

global and individual AOMs respectively, ηDOE is the diffraction efficiency of the

beamsplitter (see figure 4.5) and b is the number of beams it splits into. The effective

area of the spot size of the individual and global beams at the ion are given by AI

and AG, respectively where AG
AI
≈ 200. K is a proportionality constant that depends

on the single photon coupling terms in the Raman transition and the pulsed laser

characteristics, both of which are constants in the experiment (as shown in equation

3.54). It also depends on the polarization of the Raman beams which although may

slightly vary across the individual Raman beams are nonetheless static as long as

the optics is not modified. Figure 4.9 shows Rabi flopping on individual ions in a

five ion chain performed by switching individual channels of the AOM.

In order to measure the crosstalk due to optical spillover we turn on one of

the AOM channels to drive carrier Rabi flopping on one of the ions in the chain.

Any residual optical spillover can cause neighboring (non addressed) ions to un-

dergo much slower Rabi flopping. By measuring the ratio of the Rabi frequency of

unaddressed ions to that of the one addressed we obtain the crosstalk matrix for

individual Raman addressing. This data is shown in figure 4.10.
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Figure 4.10: Crosstalk in Rabi frequency due to individual Raman beam
spillover. a) Rabi flopping duration scans on all five qubits. The addressed ion
flops quicker and damps to 50% bright state over a long duration scan. The flopping
on other ions indicate that this damping is related to the ion temperature and not
the qubit coherence. b) Ratio of Rabi rates that give the Raman spillover matrix
elements for five addressing beams (switched by five AOM channels) over five qubits.
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Chapter 5: Quantum Gates

In order to implement a quantum algorithm the first step is to express it as

a sequence of gate operations. Usually algorithms are constructed out of sequences

of logic gates that have roots in classical computing. For example, the controlled

not gate which is analogous to a two bit addition (modulo 2) or an XOR operation

is frequently used as a two-qubit gate. In a physical quantum computing platform

such as trapped ions, these standard gates are not available by default. However,

one could in principal construct them using a collection of more fundamental uni-

tary operations that are native to the system. In trapped ion chains single qubit

Rabi-rotations and two qubit entangling gates forms the basis of constructing any

modular logic gate such as the controlled-NOT, conditional-phase, Hadamard etc.

In this chapter we will discuss the implementation of these native operations and

the subsequent construction of standard logic gates using them.

5.1 Native single qubit R-gate

It is usually quite useful to represent a single qubit wave function as a Bloch

vector. In this picture this is the vector position of a point on the surface of the
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Figure 5.1: Single qubit representation on a Bloch sphere A single qubit
can be in a superposition of |0〉 and |1〉 which being the eigen states of σz and are
situated at the poles of the Bloch sphere. The angle θ gives the relative amplitude
of the coefficients where |C0| = sin(θ/2), |C1| = cos(θ/2). The angle φ gives the
relative phase between C0 and C1.

Bloch sphere (figure 5.1) with the center of the sphere as the origin. Here we can

conveniently describe the qubit using the angles θ and φ as,

|ψ〉 = sin(θ/2)|0〉+ eiφcos(θ/2)|1〉 (5.1)

In this picture single qubit gates are nothing but rotation of this vector |ψ〉 about an

axis that passes through the origin of the Bloch sphere. In order to implement this

we can apply the single-qubit rabi flopping Hamiltonian as discussed in section 3.4

(equation 3.60) such that it resonantly drives the carrier Rabi flopping by setting

µ − ∆s = 0. In this case the Bloch vector rotates about an axis that is on the

equator of the Bloch sphere. The relative position of this axis with respect to the
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X̂ axis is then given by the off-diagonal phase of the Hamiltonian,

HI =

 0 Ω
2 e

iφ

Ω
2 e
−iφ 0

 = Ω
2 σφ (5.2)

Here φ = ∆k̄ · x + ∆φ defines the Pauli spin operator σφ = cos(φ)σx + sin(φ)σy,

where σx and σy are the Pauli matrices. In order to define an axis of rotation we

assign φ = 0 for the fixed ion position x and for φ0 − φ1 = ∆φ = 0 (where we

have individually set φ0 = 0 and φ1 = 0). The Hamiltonian in this case is given by

HI = Ωσx. By simply setting φ0 = π/2 we can rotate about the Y axis in which

case the Hamiltonian is HI = Ωσy. This is implemented by shifting the phase of the

rf that drives the global AOM.

In the general form the rotation about an arbitrary axis along the equator can

be expressed as the unitary evolution U(t) = e−iHI t = e−i
Ω
2 tσφ = e−i

θ
2σφ . This gives

us the single qubti native R-gate that is defined as,

Rφ(θ) =

 cos
(
θ
2

)
−isin

(
θ
2

)
e−iφ

−isin
(
θ
2

)
eiφ cos

(
θ
2

)
 (5.3)

where a rotation of the qubit about X axis by an amount θ is denoted by Rφ=0(θ) =

Rx(θ). Similarly we can also define Ry(θ) where θ = Ωt. The rotation angle in this

case is decided by the duration t of the carrier pulse and the Rabi frequency Ω which

is pre-calibrated for each of the five qubits in the trap (figure 5.2).
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Figure 5.2: Calibration of Single qubit Rabi-frequencies for 5 ions. A chain
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the carrier transition and all ions are driven simultaneously. The Rabi frequencies
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ion (P|1〉 =sin2(Ω

2 t)).
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5.2 Native two qubit XX-gate

Besides single qubit gates, a quantum algorithm also requires two qubit gates.

These gates can be considered as a conditional R-gate where a rotation is performed

on one of the qubits based on the state of the second one. As a result of this

operation they tend to entangle the two qubits. In a chain of trapped atomic ions a

conditional gate can only be performed if the state of one qubit affects another one

through a spin-spin interaction [76, 77]. 171Yb+‘clock’ qubits are naturally isolated

from the environment and from other qubits in a linear chain which makes them

good quantum memories. Therefore, invoking the interaction between the spins of

any two qubits in a chain is a complicated problem.

In order to address this problem it was proposed that the qubit information

could be transferred to the motional mode of the trapped ion chain [22, 40]. The

motional modes being distributed through the entire length of the chain serves as a

quantum information bus that can now be used to mediate the spin-spin interaction

between any two ions in the chain [78, 79]. We can understand how this works by

first looking at the spatial and spectral structure of the normal modes of motion of

an ion chain [43].

5.2.1 Normal modes of motion

As discussed in chapter 2 an ion is trapped using a harmonic confinement

in all the three directions. With multiple ions in the trap we can make a liner
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chain configuration by making the axial trap frequency ωz much smaller than the

transverse trap frequencies ωx and ωy. The ions form a liner chain due to the

combined effect of the trap confinement and the Coulomb repulsion between the

ions. The equilibrium positions of the ions are then given by the minimum energy

configuration of the system where the attractive potential of the harmonic trap

balances the Coulomb repulsion between the ions [43]. Now, if we displace the

ions from their equilibrium positions then they not only experience a restoring force

from the harmonic trap (−mω2∆x) but also from the strong Coulomb force from

other ions in the trap due to a slight change in the distance between them. In the

regime where this displacement is small this can be imagined as a system of coupled

harmonic oscillators [80]. This gives rise to a set of normal modes of motion of

the entire ion chain where each mode oscillates at a unique frequency and has a

displacement vector that defines the relative movement of each ion of the chain. By

treating each of the orthogonal trapping directions (x,y,z) independently we can

obtain a set of normal modes for each direction of the harmonic trap. Here the

modes along the ion chain direction z are the axial modes whereas those along the

x and y are referred to as the radial (transverse) modes. For N ions in the trap

there are N normal modes along each direction. In the experiment we have N = 5

ions where we use the transverse modes along x as the quantum bus. On order to

find the normal modes it is sufficient to know the positions of each ion (zi) along

the axial direction and the trap frequencies ωx and ωz which can be experimentally

measured by driving axial and radial motional sideband transition using a single

trapped ion. The transverse mode eigen frequencies ωk =
√
λkωz and the normal
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Figure 5.3: Transverse normal modes of motion for 5 ions. a) A lin-
ear chain of 5 trapped ions. The normalized axial positions {ui} are mea-
sured using the camera image to be {−1.80738,−0.840048, 0., 0.857019, 1.79889}
where the axial trapping frequency is ωz/2π = 0.270 MHz. b) Ex-
perimentally measured frequencies of the transverse normal modes along
the X−direction using Raman sideband spectroscopy. Here {ωi}/2π =
{3.0692(2), 3.0522(2), 3.0344(2), 3.0127(2), 2.9867(2)} MHz. c) The normal mode
vectors bk showing the collective displacements of ions (shown in magnitude and
direction by arrows) from their equilibrium position x0.

mode eigen vectors bk can be obtained by the diagonalization of the matrix A with

Abk = λkbk. Here, the matrix A is given by [78],

Am,n =


(ωx
ωz

)2 −∑N
p=1,p 6=j

1
|un−up|3 if n = m

1
|un−um|3 if n 6= m

(5.4)

Here we use the normalized ion positions ui = zi/l0 where the length scale

l0 = (e2/4πε0Mω2
z)1/3. The eigen vector bk corresponds to the transverse mode k

with a relative displacement of the j−th ion given by the j−th component of the
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vector bjk. Figure 5.3 shows the experimentally measured normal mode frequencies

for 5 trapped ions. The normal mode vector b1 is the common mode of motion

where all the ions have the same amplitude. This is equivalent to the case of a

single trapped ion which is why the common mode frequency is the same as the

trap frequency (ω1 = ωx).

5.2.2 The spin-spin interaction

In a chain of trapped ions a two qubit spin-spin interaction is mediated by the

normal modes of motion of the ion chain. In this scheme a qubit spin is coupled to

a normal mode of motion of the chain (using a sideband transition) which leads to

an entanglement of the spin state to the motional state. Since the motional mode

is common to the entire chain we can now apply another set of sideband rotations

that imprints the motional state back to the spin state of a second qubit leaving the

motional mode in its original state and the two spins entangled. This method was

originally proposed in reference [22] which used discrete rotations at the sideband

transitions in order to implement the entangling gate operation. However, this

requires the motional state to be initialized to the ground state (n=0) with high

fidelity which is a challenging task when there are many modes of motion with non

zero heating rates. Therefore, for practical reasons it is convenient to choose a second

scheme, originally proposed in reference [76, 81, 82] where the spins of two qubits

are continuously coupled and decoupled from the motional mode by simultaneously

driving an off resonant red and blue sideband transition on each of the qubits. To
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show how this works we can start with the generic Hamiltonian of the single spin

Rabi flopping as derived in chapter 3 (equation 3.62) and apply it to the i−th ion

in the chain. If we shift the detuning µ by the same amount as the stark shift ∆s

we can set (µ−∆s)→ µ where µ is now the detuning from the Stark shifter carrier

transition. We rewrite the Hamiltonian as,

HI = Ωie
iµtei(∆k̄.xi+∆φi)σ+

i +H.c. (5.5)

where we are interested in expanding the term ∆k̄.xi. First we recall that ∆k̄ =

k̄0
j − k̄1

j+l is the difference in wave vectors of the j−th combline of Raman beam-1

and (j + l)−th combline of Raman beam-2 which is considered a constant for all

pairs of comb lines separated by a frequency of l × ωr. Since the ∆k̄ is directed

along X we express the position operator xi in terms of the X transverse normal

modes (fig 5.3) as xi = ∑N
p X

0
i,p(ap+a†p) where ap and a†p are the lowering and raising

operator of the p−th normal mode and X0
i,p = bip

√
~

2Mωp
is the zero point spread of

the ion. Now we can write the term ∆k̄.xi as,

∆k̄.xi =
N∑
p=1

ηip
(
ap + a†p

)
(5.6)

where the Lamb-Dicke parameter ηip = |∆k̄|X0
i,p. In the so called Lamb-Dicke limit

the spatial extent of the ion motion in vibrational level n does not see much variation

of the driving beatnote phase which is aptly described by the relation (ηip)2(n+1)�

1. This allows us to expand the term ei∆k̄.x only upto the first order and give an
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approximate expression ei∆k̄.x ≈ 1 + i∆k̄.x. By substituting this in the Hamiltonian

in equation 5.5 and going to the motional rotating frame with respect to H0 =
∑N
p=1 ωpa

†
pap we get.

HI =
Ωiσ

+
i + i

N∑
p=1

ηipΩi(ape−iωpt + a†pe
iωpt)σ+

i

 e−i(µt+∆φi) +H.c. (5.7)

In order to achieve spin-spin interaction we need to drive the red and blue

sidebands off-resonantly. To implement this we can tune the beatnote close to the

blue sideband such that µ = ωp + δp where δp is a small detuning from the p−th

mode. The resulting Hamiltonian drives an off-resonant blue sideband transition.

For the red sideband we can apply a beatnote with an equal and opposite detuning

−µ. When both the beat notes are applied simultaneously the resulting Hamiltonian

is of the form,

HMS =Ωi

2

1 + i
N∑
p=1

ηip(ape−iωpt + a†pe
iωpt)

 (e−i(µt+∆φbi ) + e−i(−µt+∆φri )
)
σ+
i +H.c.

=Ωi

1 + i
N∑
p=1

ηip(ape−iωpt + a†pe
iωpt)

 cos(µt− φmi )σ+
i e
−iφsi +H.c.

=Ωicos(µt− φmi )σiφsi + Ωi

N∑
p=1

ηipcos(µt− φmi )(ape−iωpt + a†pe
iωpt)σiφsi−π/2

(5.8)

where we define φis = (∆φri +∆φbi)/2 and φim = (∆φri−∆φbi)/2. The first term of the

Hamiltonian shows the off resonant carrier transition where the spin operator σiφsi =

cos(φsi )σix + sin(φsi )σiy. Here φis defines the axis of rotation in the Bloch sphere(see

equation 5.2). The second term in the Hamiltonian defines a spin dependent force

on the ion. The spin operator in this term is defined by σiφsi−π/2 = cos(φsi −π/2)σix+
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sin(φsi − π/2)σiy. It is important to note that the spin phase φis is simply defined by

the phases (φ0 and φ1) of the rf frequencies that drives the Raman beam AOMs [83].

By setting the phase of the global AOM φ0 = π/2 we get φsi = ∆φri = ∆φbi = π/2

and φmi = 0, which results in the following Hamiltonian,

HMS =
∑
i

Ωicos(µt− φmi )σiy +
∑
i

N∑
p=1

Ωiη
i
pcos(µt− φmi )(ape−iωpt + a†pe

iωpt)σix (5.9)

where the summation over i indicates multiple qubits driven with the strength Ωi.

In the limit where Ωi � µ the off resonant carrier transition is weak and hence can

be neglected [84, 85]. The resulting Hamiltonian that is responsible for the qubit

evolution is,

HMS(t) =
∑
i

N∑
p=1

Ωiη
i
pcos(µt− φmi )(ape−iωpt + a†pe

iωpt)σix (5.10)

which can be exponentiated using the Magnus formula to obtain the evolution op-

erator,

U(τ) = exp
[
−i
∫ τ

0
dtHMS(t)− 1

2

∫ τ

0
dt2

∫ t2

0
dt1[HMS(t2), HMS(t1)]

]
(5.11)

The higher order terms of the expansion essentially go to zero due to the commuta-

tion relations of ap and a†p. From the above expression we observe that the first term

has a single-spin operator σix where as the second term contains two-spin operators

of the form σixσ
i
x = I (which adds an unimportant global phase) and σixσ

j
x (which

is the spin-spin interaction term between two qubits i and j). On evaluating the
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integrals we get,

U(τ) = exp

∑
i

N∑
p=1

(
αi,p(τ)a†p + α∗i,p(τ)ap

)
σix + i

∑
i,j

χi,j(τ)σixσjx

 (5.12)

The motional part of the first term has the exact form of the displacement operator

D̂(α) = exp(αa† − α∗a). This leads to a spin-motion entanglement of i−th qubit

due to a spin (σix) dependent displacement αi,p(τ) of the ion. For a more generalized

time dependent Rabi frequency Ωi(t) the displacement of the p−th mode is given

by,

αi,p = −
∫ τ

0
ηipΩi(t)cos(µt− φmi )eiωptdt (5.13)

The spin-spin interaction term χi,j(τ) is given by,

χi,j(τ) =
N∑
p=1

ηipη
j
p

∫ τ

0

∫ t2

0
dt2dt1[Ωi(t2)Ωj(t1)sin(ωp(t2−t1))cos(µt2−φmi )cos(µt1−φmj )]

(5.14)

In order to achieve a pure spin-spin coupling the spin-motion coupling term of

equation 5.12 must be zero. This implies that αi,p(τ) = 0 at the end of the Molmer-

Sorensen interaction thereby decoupling the motion from the spin at the end of the

gate. For a constant pulse where Ωi(t) = Ω the displacement of the p−th normal

motional mode is approximately given by,

αi,p(τ) ≈
Ωηip

2

(
1− e−iδpτ

δp

)
e−iφ

m
i (5.15)

where δp = µ − ωp is the detuning of the beatnote from the motional mode. It
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is apparent from this expression that αi,p(τ) = 0 when δpτ = 2nπ (n being an

integer). Note that this spin motion decoupling is solely decided by the motional

mode frequency ωp which in the single sideband resolved limit [68, 79] is the only

mode that the spin couples primarily to. In this case the gate duration τ can

be tuned such that this condition is satisfied for the given mode. However, for

multiple ions there are several modes (fig. 5.3) of motion that can be simultaneously

excited. This happens as a result of reduced gate duration and higher spin dependent

force Ωiη
i
p. This implies that equation 5.15 needs to be satisfied for all values of

p = {1, 2, 3, 4, 5} where we have five sets of detunings {δp}. It is highly unlikely that

there is a solution for τ that can decouple all motional modes.

In order to circumvent this problem we implement a pulse shaping technique

[86,87] where the spin dependent force is modulated in time as a piecewise constant

segmented pulse defined by,

Ωi(t) = Ω(t) =



Ω1 0 < t ≤ τ/P

Ω2 τ/P < t ≤ 2τ/P

...

ΩP (P − 1)τ/P < t ≤ τ

(5.16)

where the indices on the right hand side of the equation refers to the pulse segment

(and not the ion) with a total of P segments in the pulse shape. While inducing

spin-spin coupling among multiple ions all of them are subjected to the same pulse

shape. The displacement of the motional modes can be recalculated for a given
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pulse shape vector Ω = {Ω1,Ω2, · · · ,ΩP} as,

αi,p(τ) =− ηip
P∑
j=0

Ωj

∫ jτ/P

(j−1)τ/P
cos(µt)eiωptdt

=
P∑
j=1

Ci
p,jΩj = (CiΩ)p

(5.17)

where we have ignored phase φmi since it only adds a global phase to the motion (eqn.

5.15). Here, Ci is a rank-2 tensor whose elements are pre-calculated for the i−th

ion in the chain. For different ions i and j excited simultaneously in the chain the

relationship between the rows of the two tensors is given by Ci
p/C

j
p = ηip/η

j
p = bip/bjp.

The spin-spin interaction phase can also be calculated to be,

χi,j(τ) =
P∑

k,k′=1
ΩkΩk′D

i,j
k,k′ = ΩTDi,jΩ (5.18)

where Di,j is a rank-2 tensor defined by,

Di,j
k,k′ =

N∑
p=1

ηipη
j
p

∫ kτ/P

(k−1)τ/P
dt2

∫ k′τ/P

(k′−1)τ/P
dt1sin(ωp(t2 − t1))cos(µt2 − φmi )cos(µt1 − φmj )

(5.19)

In order to implement a pure spin-spin interaction of the ion pair {i, j} we

have to satisfy the following conditions,

• All motional modes should be decoupled from the spin at the end of the

gate. This implies CiΩ = 0, which gives a set of N linear equations with

complex coefficients Ci
a,b. One can separate the real and imaginary parts of the

equations to give a set of 2N equations instead, which implies 2N constraints
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that have to be satisfied by the pulse solution Ω. The trivial solution Ω = 0

must be ignored. It is important to note that the solution Ω for Ci also works

for the tensor Cj (for ion j) due to the relation between the corresponding

rows of the two tensors as mentioned before.

• The resultant spin-spin interaction phase between the ions χi,j(τ) = ΩTDi,jΩ 6=

0, which is why Ω = 0 is not a valid solution.

Taking a simple look at the constraints we find that for a total number of

partitions P = 2N+1 of the pulse shape Ω all constraints should ideally be satisfied

giving a unique solution. However, it is important to note two properties of the

constraint equations: a) The linear equations (equation 5.17) does not give 2N

entirely independent set of equations on separating the real and imaginary parts of

Ci
p,j since <(Ci

p,j) and =(Ci
p,j) are related. b) Equation 5.18 expressing χi,j(τ) is

a non linear equation which can be satisfied to be of non-zero value automatically

if Ω 6= 0. Therefore, this constriant does not change the pulse shape but only

magnifies it by a constant factor 0 < s < smax in order to set χi,j(τ) = θi,j. Here θi,j

is a finite two qubit rotation angle which is usually set to ±π
4 in order to generate a

maximally entangled two qubit GHZ state (|00〉+ eiφ|11〉)/
√

2 from an initial state

|00〉. In order to clarify this point, lets assume that Ω is a solution to CiΩ = 0

as well as CjΩ = 0. This means that the normalized vector ΩNorm = Ω
|Ω| is also a

solution. Now lets assume that the driving Rabi-frequency of ion i and j are Ωi and
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Ωj, respectively then,

χi,j = ΩiΩj

[
(ΩNorm)TDi,jΩNorm

]
= ΩiΩjχ

0
i,j (5.20)

Since χ0
i,j 6= 0 we can tune Ωi and Ωj to achieve the desired two qubit phase χi,j.

Therefore, although we might start with P = 2N + 1 segments to solve for Ω the

number of independent parameters in the pulse shape is truly N . Hence, a pulse

shape with fewer segments could also give an exact solution.

The pulse shapes for the two-qubit interaction could be as simple as solving

the 2N set of linear equations which then gives you a solution set of 2N vectors.

However, the gate the fidelity for these different solutions might differ especially

when the Rabi-frequencies Ωi and Ωj are adjusted to satisfy χi,j = π/4 (lets say).

therefore, an optimization needs to be done in order to maximize the gate fidelity

for the minimum amount of laser power (lower values of Ωi and Ωj) which results

in one of the solutions to be optimal. The details of this method is described in

reference [61].

The implementation of pulse shaped Molmer-Sorensen interaction [81, 82] is

shown in figure 5.4. The modulation of Rabi frequency is achieved using an AWG

that drives the global beam which illuminates both the participating ions in the

chain selected by switching the appropriate individual addressing Raman beams.

For each value of detuning µ, an optimal pulse shape can be calculated (Appendix

B) for the chosen gate duration of τ = 235 µs. In the figure we have shown a pulse

shape that drives a two-qubit gate between ions 1 and 5. From the trajectory of all
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Figure 5.4: XX-gate pulse shaping. a) Calibration of the Rabi frequency as a
function of the applied AWG amplitude of rf driving the global Raman beam. The
Rabi frequency is obtained for various (11-bit) amplitude values by Rabi flopping at
the carrier transition of a single ion. During a Molmer-Sorensen interaction each of
the two beatnotes (detuned by µ and −µ from the carrier) is driven upto a maximum
amplitude of 1023 (10-bit).b) The detuning µ chosen for a two-qubit gate on ions
{1, 5}. c) The pulse solution for τ = 235 µs at this detuning. d)-h) The spin-
dependent force on each qubit displaces the motional wavepacket for each of the
normal modes of motion 1-5, respectively. αp(t) is the time dependent displacement
in phase space where the color coded paths correspond to the pulse segments in (c).
Modes 2 and 3 are excited more since the beatnote is tuned closer to these modes.
All trajectories are plotted in the same scale. i) Mode-4 trajectory magnified 3×. j)
Mode-5 trajectory magnified 5×.
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the five transverse modes it is clear that all modes are excited during the gate and

have to be decoupled at the end. Even with 9 segments (N < 9 < 2N + 1) this is

possible where the symmetry of the pulse solution hints at the fact that the number

of independent variables describing the the pulse shape is less than 9. The pulse

shape solution are discussed in appendix 2 which shows that the symmetry of the

solution holds for almost the entire range µ that span the spectral bandwidth of all

the five modes.

When the optimal pulse is applied that decouples all motional modes the

unitary evolution operator (equation 5.12) takes the form of the spin-spin (σixσjx)

coupling between the two qubits. This operation, also dubbed as the XX-gate, can

be expressed as,

XX(χi,j) = exp[iχi,jσixσjx] =



cos(χij) 0 0 −i sin(χij)

0 cos(χij) −i sin(χij) 0

0 −i sin(χij) cos(χij) 0

−i sin(χij) 0 0 cos(χij)


(5.21)

In figure 5.5 we show the action of XX(±π
4 ) on an initial state that creates a

maximally entangled state (|00〉 ∓ i|11〉)/
√

2, respectively. Here, the sign of χi,j

depends on the participating ions due to its dependency on the product of the

Lamb-Dicke parameters ηipηjp (equation 5.14), which in turn depends on the normal

mode vectors bp. The final set of solutions of XX-gates for all 10 possible qubit

pairs in the 5 ion chain therefore has an additional parameter αi,j = sgn(χi,j) which
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Figure 5.5: XX-gate characterization. The fidelity of an XX-gate is measured
for an entangling operation where |χi,j| = π

4 . The ideal output state is expected
to be |ψid〉 = (|00〉 − ieiφ′ |11〉)/

√
2. a) Shows the gate operation followed by single

qubit π/2 rotations about variable axis φ followed by measurement.b) An XX-gate
on qubits {3, 4} is performed leading to population distributed nearly equally in
output states |00〉 and |11〉. A sequence as in (a) is also implemented where the two
qubit parity is measured for various values of 0 ≤ φ ≤ 2π. The parity sinusoidally
oscillates with a periodicity of 2 and a phase offset of φ′/2. Here φ′/2 = 0 which
indicates that α3,4 = +1. The gate fidelity is given by the measured probabilities
P00 and P11 of states |00〉 and |01〉, respectively and the contrast Πc of the parity
curve. The fidelity expression is F = (P00 + P11 + Πc) /2 [77]. c) Same as (b) where
the XX-gate is performed on qubits {3, 5}. The offset phase of the parity curve is
φ′/2 = π/2 which gives α3,5 = −1. For calculating gate fidelity the populations are
measured using basis histogram fitting (see section 2.4.4) and hence SPAM errors
are excluded. However, the sine function obtained from the least squares fit slightly
overestimates the parity contrast Πc and hence the measured value for F is an
upper bound (but close) to the actual fidelity. The error in the last significant digit
is statistical. 145
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Figure 5.6: Calibration of two-qubit XX gate. Two-qubit population variation
with the scale parameter s where the XX-gate pulse shape on on qubits i and j are
sΩiΩNorm and sΩjΩNorm, respectively. Here the gate is between qubits 1 and 5 and
a rotation of χ1,5 = −π/4 is achieved for s = 0.56. The theory curves, based on the
relation χi,j = Ri,js

2, are fitted to the data to obtain Ri,j for each ion pair {i, j}.

is important to take into account while constructing modular two-qubit composite

gates. It can be probed using a parity scan as shown in figure 5.5 b) and c).

Just like a single qubit rotation a two-qubit XX-gate on an initial state |00〉

can also be visualized as a rotation on a Bloch sphere. In this case the poles

represent |00〉 and |11〉. However, unlike the single qubit rotation angle θ the two

qubit rotation angle χi,j does not linearly grow with time. In fact the duration of

the XX-gate is fixed to be τ = 235 µs for all qubit pairs. The value of |χi,j| is

varied using the relationship in equation 5.20. In order to implement this we scale

both the Rabi frequencies Ωi and Ωj by a factor s (0 ≤ s ≤ 1) by changing the

AWG amplitude according to the calibration shown in figure 5.4a. This leads to a
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quadratic variation of |χi,j| with s. The effect of this continuous tuning of the two

qubit rotation is shown in figure 5.6.

5.3 Composite gates

A quantum algorithm is usually written as a sequence of standard logic gates

[88, 89]. These gates are by definition modular which allows them to be simply

programmed in a reconfigurable sequence irrespective of the underlying hardware.

In order to understand what this means in the context of the five qubit trapped

ion quantum processor, lets take an example of an elementary (native) two qubit

XX-gate that we have discussed in the previous section. We observe that the native

form of the quantum gate as shown in equation 5.21 has real and imaginary parts

usually not seen in a standard two qubit logic gate such as the CNOT gate. Also it

is dependent of the qubit pair {i, j} that define the calibration constant Ri,j (fig5.6)

and the sign of the spin-spin interaction αi,j (fig. 5.5).Programming algorithms

directly in the form of native R− and XX− is challenging due to the difficulty in

the ‘book keeping’ of many qubit dependent paramaters. Therefore, it is most useful

to construct a compiler that translates standard logic gates (Hadamard, CNOT,

controlled-phase etc.) into native rotations. We refer these standard logic gates as

composite gates as they are comprised of several R− and XX− gates in order to a)

execute the desired operation of the standard logic gate and b) remove qubit specific

parameters allowing them to be invoked in a ‘modular’ fashion in an algorithm

sequence.
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5.3.1 Single qubit composite gates

The single qubit composite gates that we are required to implement in the

experiment are the Rz gate and the Hadamard gate (H).

Single qubit Z-rotation: The single qubit Z-rotation can be easily imple-

mented through controlled Stark shifts that changes the qubit energy splitting which

causes rotation of the qubit around the Z axis of the Bloch sphere. This is a bit diffi-

cult in our experimental setup since it requires the use of additional Π− polarization

of the 355nm Raman beam that can cause a light shift to effect the Z-rotation [70].

One could also perform a Z− rotation by simple advancing the phase of the Raman

beatnote that drives all the coherent operations on the qubits. This is only possible

if beat notes driving individual qubits can be phase shifted independently. IN our

setup the beat note phase and only be set using the global Raman which implies

that individual qubit selectivity is not possible. As a result, it is necessary to effect

the Rz rotation using sequence of three single qubit R−rotations

Rz(θ) = R−y(
π

2 )Rx(θ)Ry(
π

2 ). (5.22)

Hadamard gate (H): The Hadamard gate is similar to a Ry(π/2) gate and

sometimes can even be replaced by it. However, unlike the Ry(π/2) rotation, a

Hadamard applied twice is equivalent to an identity operation (H · H = I) which

could be a necessary property required by some algorithms thereby prohibiting the

substitution of the Hadamard with a Ry(π/2) rotation. Hence we implement the
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Figure 5.7: CNOT gate circuit. A controled not operation is implemented
between control qubit i and target qubit j. The sign of the two-qubit rotation
α = sgn(χi,j) = ±1 for χi,j > 0 and χi,j < 0, respectively. The value of |χi,j| = π/4.
We define Rαijy(θ) = R±y(θ) for αij = ±1, respectively.

Hadanard gate as

H = R−x(π)Ry(
π

2 ). (5.23)

5.3.2 Two qubit composite gates

Two qubit logic standard logic gates such as the controlled-NOT (CNOT) and

the controlled-phase (CP) gates both require a single XX−gate along with several

R−gates. The optimal decomposition of each logic gate is obtained such that the

number of R−gates can be minimized. The inherent sign αi,j of the two qubit

rotation χi,j is taken into account in the decomposition by adjusting the axis of the

single qubit R−gates such that the final gate operation is independent of the ion

pair {i, j} thus making them modular. The details circuits and gate properties are

discussed below.

CNOT gate: The circuit for the CNOT gate is shown in figure 5.7. The two

qubit rotation is set to |χi,j| = π/4. The single qubit Ry rotations that sandwich

the XX−gate are executed about an axis defined by αi,j which leads to the final
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Figure 5.8: CNOT-15 gate fidelity. A CNOT gate is applied between qubits 1
and 5 for each of the four input states and the corresponding output populations
are measured. The fidelity in each case is give by the probability of expected output
state (as shown in bold on top of bars). The overall gate fidelity is F=0.979(5)
where the error is a statistical estimate.

150



operation independent of the sign as,

CNij =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(5.24)

where i is the control qubit and j is the target qubit. The circuit for contructing a

CNOT gate is shown in figure 5.11. Figure 5.8 shows a CNOT gate between qubits

1 and 5 and the associated fidelity of the gate. We implement the CNOT gate on

all ten pairs of qubits and obtain the mean fidelity for each as shown in table 5.3.2.

Ion pair Fidelity (%) Ion pair Fidelity(%)
1,2 96.4(6) 2,4 98.5(7)
1,3 97.6(7) 2,5 96.8(7)
1,4 95.9(7) 3,4 96.6(5)
1,5 97.9(5) 3,5 97.6(6)
2,3 95.6(6) 4,5 97.2(5)

Table 5.1: CNOT gate fidelity for various ion pairs.

In section 3.2.2 and 3.5 we discussed about the second and fourth order Stark

shifts that change the qubit energy splitting when it is illuminated by the 355nm

pulsed laser during Raman transitions. The measurement of the CNOT gate fidelity

(as shown in figure 5.8 for CN15) is based on the output populations and discounts

the phase in front of the states which ideally is supposed to be zero. However, in

the presence of a Stark shift which is small compared to the gate duration (say

ε � 1/τCN) the CNOT operation is modified to CNijRi
z(ε.τCN)Rj

z(ε.τCN) where

Rj
z(ε.τCN) is a Z rotation on qubit j and τCN is the CNOT gate duration. In order
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Figure 5.9: CNOT gate fidelity variation with gate detuning. CN15 is im-
plemented on the initial state |10〉. The fidelity is measured from the probability
of the expected output state |11〉 after 1×CNOT or 3×CNOT. The fidelity has a
higher sensitivity with the beat-note detuning in the latter case due to the relatively
more number of gates that accumulate effects of the Stark shift. As the detuning
is scanned the fidelity peaks at a value where the beatnotes of the constituting R−
and XX−gates correspond to the qubit splitting that is Stark shifted by ≈ −200Hz
as shown by the blue lines. a) Shows the variation of fidelity of the CNOT gate
where the XX−gate used has a pulse shape at a detuning µ (fig 5.4b) that requires
low laser power. b) Same as (a) but using an XX−gate at a different detuning µ′
that uses higher laser power. This results in a slightly higher magnitude of the Stark
shift (peak position of fidelity). The measured value of Stark shift in either case (a)
and (b) is |∆s| ≈ 200 Hz which is small enough ( 1

|∆s| = 5 ms � τCN ≈ 300 µs) to
accumulate a substantial error only when multiple CNOT gates are executed in an
algorithm sequence.
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Figure 5.10: Controlled-phase gate circuit. A controlled phase (CP) gate with
i as the control and j as the target qubit. The CP gate has two parameters in its
decomposition. β = sgn(θ) = ±1 when θ > 0 and θ < 0 respectively. Similarly
the sign of the two qubit rotation is given by αij = sgn(χij). The value of χij is
determined by θ as |χij| = |θ|/4.

to circumvent this problem it is important to shift the frequency of all the beatnotes

involved in driving the constituting R− and XX−gates by the same amount as the

Stark shift experienced by the qubit. The workings of this is illustrated in figure 5.9

where we apply a CNOT gate on qubits 1 and 5 with beatnotes shifted by various

amounts from the ‘zero point’ (non-Stark shifted qubit). The peak of the fidelity at

one such detuning indicates the magnitude and sign of the Stark shift experienced by

the qubit. Since Stark shift is much smaller than the R− and XX−gate durations

it is particularly useful to use composite gates (and sometime many of them) in a

sequence to amplify this effect and therefore calibrate the driving beatnotes in order

to follow the shifted qubit while the Raman lasers are on.

CP gate: The two qubit controlled-phase gate is constructed as a composite

gate as shown in figure 5.10. It is important to point out that in this case the

controlled phase θ decides the value of the two qubitXX−gate rotation |χij| = |θ|/4.

This implies that in order to span −π ≤ θ ≤ +π we require a maximum laser power

that allows |χij| = π/4. For example, according to figure 5.6 the scaling parameter
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for the XX−gate pulse has to be varied in the range 0 ≤ s ≤ 0.56 for implementing

any value of the controlled phase θ between ions 1 and 5. The controlled phase gate

has the following form,

CNij =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ


(5.25)

where i is the control qubit and j is the target qubit.

In order to characterize the gate we need to perform a series of measurements

as shown in figure 5.11 and 5.12. Here we perform a CP gate between ion 1 and

3 that have been initialized to the state (|0〉 + |1〉)|0〉/
√

2 (fig. 5.11a and 5.12a).

A final Ry(π/2) rotation on qubit 1 takes it to the state |1〉 leaving qubit 3 in the

initial |0〉 state. This outcome holds true for all values of θ thereby validating the

first three rows of the CN gate (equation 5.25). For probing the controlled phase θ

a CP gate is applied on the initial state (|0〉+ |1〉)|1〉/
√

2 (fig. 5.11b,c and 5.12b,c).

The resulting state is of the form (|0〉+eiθ|1〉)|1〉/
√

2 where we can apply a Ry(π/2)

gate on the first qubit to make an X−basis measurement of the first qubit (fig. 5.11b

and 5.12b) or we can apply a Rx(π/2) gate on it to make a Y−basis measurement

(fig. 5.11c and 5.12c). By doing this tomography on the first qubit for both cases

where the control and the target is flipped (fig. 5.11 is for CP13 and fig. 5.12 is

for CP31) we prove that the operation is symmetric under qubit swap and that the

desired phase φ is achieved.

The sequence as shown in figure 5.12c is implemented an all 10 pairs of qubits
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Figure 5.11: Two qubit partial tomography after CP13 gate. a) A CP gate
is performed for a range of −π ≤ θ ≤ π between 1 and 3 (color coded) after
preparing them in the state (|0〉 + |1〉)|0〉/

√
2 with qubit 1 as control. Since the

state is left unchanged by the gate an analysis Ry(π/2) takes the first qubit to |1〉.
b) A CP is performed on the initial state (|0〉 + |1〉)|1〉/

√
2 which changes it to

(|0〉 + eiθ|1〉)|0〉/
√

2. The Ry(π/2) measures the first qubit in X−basis. The blue
line shows the ideal value. c) Same as (b) with the first qubit being measured in
the Y−basis. Blue curve shows ideal value.
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Figure 5.12: Two qubit partial tomography after CP31 gate. a) A CP gate
is performed for a range of −π ≤ θ ≤ π between 1 and 3 (color coded) after
preparing them in the state (|0〉 + |1〉)|0〉/

√
2 with qubit 3 as control. Since the

state is left unchanged by the gate an analysis Ry(π/2) takes the first qubit to |1〉.
b) A CP is performed on the initial state (|0〉 + |1〉)|1〉/

√
2 which changes it to

(|0〉 + eiθ|1〉)|0〉/
√

2. The Ry(π/2) measures the first qubit in X−basis. The blue
line shows the ideal value. c) Same as (b) with the first qubit being measured in
the Y−basis. Blue curve shows ideal value.
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Figure 5.13: Controlled-phase gates for 5 ions. The sequence in fig.5.12c is
implemented for all ion pairs. The theory curves in red and blue show the ideal
value of the probability P (|1〉) for the control and target qubit, respectively. The
data points have statistical error bars for a 95% confidence interval.
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in the 5 ion chain (figure 5.13). The final Ry(π/2) rotation on the first qubit projects

the conditional phase θ to the population of the target qubit 1 as P (|1〉) = (1 −

sin(θ)/2)), where P (|1〉) is the probability of the qubit state being |1〉. We measure

the fidelity of the CP gates at the conditional phases θ = ±π/2, which correspond to

the geometric phase χij = ±π/8. It is particularly simple to measure the fidelity at

these points since the ideal output state is |01〉 and |11〉, respectively. It will also be

shown in the next chapter that while performing a QFT or QFT−1 the conditional

phase lies within the range −π/2 ≤ θ ≤ π/2. Within this range, the maximum

deviation of the measured state probability from the ideal occurs at the extremes

θ = ±π/2 (see fig. 5.13). Therefore, the fidelity measure at these points is probably

the lower bound for the gate fidelity for all the values of θ within this range. Table

5.2 shows the CP gate fidelites for all ion pairs as measured for θ = ±π/2.

Ion pair Fidelity at θ = π
2 (%) Fidelity at θ = −π

2 (%)
1,2 91.1(6) 96.1(4)
1,3 93.6(5) 93.3(6)
1,4 91.6(6) 93.3(6)
1,5 95.9(4) 95.3(3)
2,3 90.7(6) 93.2(5)
2,4 94.2(5) 90.8(6)
2,5 95.8(4) 91.7(6)
3,4 91.0(6) 94.7(5)
3,5 96.0(4) 96.0(4)
4,5 93.5(6) 95.8(4)

Table 5.2: Controlled-phase gate fidelity for various ion pairs. The errors in the last
significant digit is statististical showing a cofidence interval of 95%.
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Chapter 6: Quantum Algorithms

The quantum algorithms that we choose to implement on the five qubit sys-

tem are based on the quantum version of the discrete Fourier transform [88]. These

algorithms illustrate how speedup is achieved when investigating global properties

of mathematical functions using quantum parallelism where parallel function eval-

uations for all possible classical input states is carried out. In order to understand

the way this works we can first portray this class of algorithms as the more generic

quantum phase estimation problem as represented in figure 6.1 [5]. Here we start

with a measurement register that has N = 5 measurement qubits all initialized

to the state |0〉. By applying a Hadamard gate on each qubit we prepare a state

that has a uniform superposition of all possible 5−bit classical inputs 0 ≤ x ≤ 31

represented as

|ψin〉 = 1√
32

31∑
x=0
|x〉, (6.1)

where x is the decimal representation of the binary 5-qubit state. For example,

|5〉 = |00101〉.

The next step in the algorithm is to apply a controlled unitary U to an an-

cilla register that has been initialized to the state |ψa〉. This implies that U has a
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Figure 6.1: Algorithm circuit for a generic quantum phase estimation

different effect on the ancilla for each of value of x = {X1, X2, X3, X4, X5} where

X1 − X5 represent each of the bits in the measurement register. The reason this

step is important is because we can solve some mathematical problems by judi-

ciously choosing the unitary U and the ancilla state |ψa〉. In order to see how this

works lets say that we have a mathematical function f(x) that takes a 5-bit input

x = {X1, X2, X3, X4, X5} and gives a real valued output. This can formally be rep-

resented as f : {0, 1, 2 . . . 31} → R. Lets say that the explicit form of the function

is unknown (black box or an ‘oracle’) and the only way to understand some of its

global properties is by evaluating it for each of the 25 = 32 input values of x. Now

it might be possible to choose the unitary U and the ancilla state |ψa〉 in such a way

that the controlled-U results in a ‘phase-kickback’ to each of the basis states |x〉.

That is the transformation of |x〉 → eiπf(x)|x〉. This means that for the input state
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|ψin〉 the controlled-U produces the output state

|ψ1〉 = 1√
32

31∑
j=0

eπif(j)|j〉 = 1√
32

31∑
j=0

Cj|j〉. (6.2)

This is equivalent to a parallel evaluation of the function for all values of j (0 ≤ j ≤

31). Now that we have the function evaluated we need to probe for its properties. A

simple measurement of each of the coefficients is impossible to carry out in a single

step since any attempt at measuring this would collapse the wavefunction to any

of the basis states |x〉 thereby erasing the phase information [67], whereas in the

superposition form the information about f(x) is still preserved in the coefficients

of the state. Therefore, one of the smart things one can do is to apply a quantum

Fourier transform (QFT) to the state that might reveal the periodicities of the

function f(x).

In this context we first need to define the QFT [90]. A quantum Fourier

transform (QFT) is the quantum version of the discrete Fourier transform which is

the following unitary transformation for a N−qubit state

|x〉 QFT−−−→ 1√
2N

2N−1∑
y=0

e2πixy/2N |y〉. (6.3)

For a single qubit this operation is none other than the Hadamard gate

|0〉 QFT orH−−−−−→ 1√
2

1∑
y=0

ei2π0.y/2|y〉 = 1√
2

(|0〉+ |1〉)

|1〉 QFT orH−−−−−→ 1√
2

1∑
y=0

ei2π1.y/2|y〉 = 1√
2

(|0〉 − |1〉).
(6.4)
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In practice we use the Ry(π/2) single qubit rotation instead of the Hadamard (H)

gate, as it is easier to implement and also because it follows a unitary evolution that

closely resembles that shown in eqn. 6.3 and is of the form

|0〉 Ry(π/2)−−−−→ 1√
2

1∑
y=0

ei2π0.ȳ/2|y〉 = 1√
2

(|1〉+ |0〉)

|1〉 Ry(π/2)−−−−→ 1√
2

1∑
y=0

ei2π1.ȳ/2|y〉 = 1√
2

(|1〉 − |0〉),
(6.5)

where ȳ is the bit wise inversion of y.

Now we can express the resulting state after applying a QFT on the input

state |ψ1〉

|ψ1〉
QFT−−−→

31∑
j=0

Dj|j〉, (6.6)

where the coefficient Dj could be expressed as,

Dj = 1
32

31∑
k=0

e2πij.k/32Ck = 1
32

31∑
k=0

e2πi(jk/32+f(k)/2). (6.7)

In the final step of the algorithm we measure the state of the register. Here,

the probability of measuring any of the basis states |j〉 is given by |Dj|2, which

depends on f(x). It might be possible that f(x) is periodic with period y. In that

case |Dy|2 = 1 for state |y〉 and zero otherwise. This means that upon measurement

we would observe the state |y〉 with unit probability thereby confirming that the

function is periodic. This leads to a single shot determination of this property of

the function [91]. Other properties of f(x) can also be measured if it can reduced to

a periodic phase modulation in the superposition state of the measurement register.
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In the following sections we will describe the implementation of a few algo-

rithms all of which follow the rules of the quantum phase estimation protocol. We

will define function f(x) and their respective properties that we will probe using

this protocol. Although the size of the mesurement and ancilla register will be

redefined in order to fit the algorithms into the five qubit system, the underlying

circuit structure shown in figure 6.1 will stay the same. For the Deutsch-Jozsa and

Bernstein-Vazirani algorithms will use single qubit QFTs on the measurement regis-

ter whereas for the phase estimation algorithm we will employ a fully-coherent five

qubit QFT.

6.1 Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is used to determine whether a function f(x)

(the ‘oracle’) is constant or balanced [91]. A function with a N−bit input and a

1-bit output (f : {0, 1, 2, . . . , 2N − 1} → {0, 1}) is balanced when exactly half of its

inputs result in the output 0 and the other half in the output 1, while a constant

function returns a single value (0 or 1) irrespective of the input. Figure 6.2a shows

the implementation of the algorithm for a balanced function. The function has a

three bit input x = {X1, X2, X3} and its value is stored in the function register X4.

Here we program 7 out of 70 possible oracles of three-qubit balanced functions by

using seven different sequences of CNOT gates between each of the qubits in the

control register and the function register initialized to the state |0〉 (see Fig 6.2a).

This leads to implementing balanced functions that are the sum (modulo 2) of one
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Ancilla
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b)

Balanced
function

0 or 1

Figure 6.2: Algorithm circuit for implementing Deutsch-Jozsa algorithm.
a) The oracle for balanced function is implemented through CNOT gates shown
in the shaded regions of the circuit. For balanced function oracles we apply each
of the seven possible CNOT combinations, indicated in light grey. The Ry(π/2)
rotations are applied to qubits X1, X2, X3 at the beginning and to all the qubits
before measurement. b) The constant function oracle is implemented by simply
initializing X4 to 0 or 1 by applying a Ry(π) pulse on it. Ry(π/2) rotations are
applied on each qubit of the control register X1, X2, X3 and the ancilla X5 in the
beginning. Also Ry(π/2) gates are applied on all qubits in the end to implement
single qubit QFT on them. The ancilla only provides a phase kick-back but is not
entangled to the first four qubits which is why it is discarded while measuring the
outcome of the algorithm.
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or more control bits.

For the implementation of the algorithm we prepare all five qubits to state |0〉.

This is followed by aRy(π/2) rotations on the qubits in register x = X1X2X3 in order

to create a superposition of all possible inputs to the function. The ancilla register

is defined by single qubit X5 that is initalized using a R−y(π/2). The resulting five

qubit state is given by

|ψ〉0 = 1√
8

7∑
x=0
|x〉123 ⊗ |0〉 ⊗

|0〉5 − |1〉5√
2

. (6.8)

The function evaluating oracle is then applied in the form of a set of CNOT gates

between X1X2X3 and the function register X4 which write the corresponding bal-

anced function value to X4. In order to program constant functions we do not apply

CNOT gates. Instead, we set X4 to either 0 or 1 as shown in figure 6.2b. The

resulting state of all the qubits is given by,

|ψ〉1 = 1√
8

7∑
x=0
|x〉123|f(x)〉4 ⊗

|0〉5 − |1〉5√
2

(6.9)

A controlled unitary is now applied on the ancilla qubit. In this algorithm it

is between X4 and the ancilla X5 which flips the ancilla qubit based on the function

value f(x). This results in ‘phase kick-back’ to produce the state,

|ψ〉2 = 1√
8

7∑
x=0

(−1)f(x)|x〉123|f(x)〉4 ⊗
|0〉5 − |1〉5√

2
(6.10)

After the ‘phase kick-back’ is achieved the final step of the algorithm is to
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perform a single qubit QFT on all qubits. Then we measure the state of the first

four and can ignore the ancilla qubit, since it is not entangled with the other qubits.

The state of qubits X1X2X3X4 before measurement can be written as

|ψ〉3 = 1
8

7∑
y=0

7∑
x=0

(−1)f(x)(−1)ȳ·x|y〉123 ⊗
|1〉4 + (−1)f(x)|0〉4√

2

= D0000|0000〉+D0001|0001〉+ . . .

. . .+D1110|1110〉+D1111|1111〉,

(6.11)

where ȳ is the bit-wise inversion of y.

If f(x) = a is a constant function (with a = {0, 1}), the coefficients of the

basis states |1110〉 and |1111〉 are

D1110 = 1
8
√

2
(−1)a

7∑
x=0

(−1)000·x = (−1)a√
2

(6.12)

D1111 = 1
8
√

2

7∑
x=0

(−1)000·x = 1√
2
. (6.13)

If f(x) is a balanced function, then the coefficients are

D1110 = 1
8
√

2

7∑
x=0

(−1)000·x(−1)f(x)(−1)f(x) = 1√
2

(6.14)

D1111 = 1
8
√

2

7∑
x=0

(−1)000·x(−1)f(x) = 0. (6.15)

Here we use the property that f(x) = 0 for exactly half of the values of x and

1 for the rest. Conditioned upon X4 = 1, there is unit probability of measuring

X1, X2, X3 = 111 for a constant function and 0 probability of measuring the same
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Figure 6.3: Results of Deutsch-Jozsa algorithm. Measured populations of the
output state for various functions, conditioned upon measuring X4 = 1. The two
constant functions f = 0 and f = 1 are indicated in dark grey, and the seven
balanced functions given by particular CNOT gate combinations are indicated in
light grey. Measurement of the output {X1X2X3} = 111 = 7 indicates a constant
function, while any other value (0− 6) indicates a balanced function.
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outcome when the function is balanced (Eqn. 6.13 and 6.15). In equation 6.11, note

that the probability of measuring X4 = 1 is 0.5 irrespective of the number of qubits

in the input (control) register of the function. The data shown in figure 6.3 shows

the algorithm outcome for different instances of balanced and constant functions.

For these specific set of function implementations the average success probability

of detecting a constant function in a single shot correctly is 0.967(2) and that of

detecting a balanced function is 0.932(3).

6.2 Bernstein-Vazirani algorithm

The Bernstein-Vazirani algorithm is a variant of the Deutsch-Jozsa algorithm

[92, 93]. The black-box (oracle) function in this algorithm is known to perform the

inner product of two N−bit strings. The function can be written as

fc(x) = c · x = c1 · x1 ⊕ c2 · x2 ⊕ . . .⊕ cN · xN , (6.16)

which is a modulo-2 dot product of the bit strings c and x. The aim of this algorithm

is to find the bit string c = {c1c2 . . . cN} in a single trial.

In order to implement this algorithm in the five qubit system we define the

function to take a four bit input x = {X1X2X3X4} and therefore can be defined as

f : {0, 1, . . . , 15} → {0, 1}. The bit string c that defines the function therefore is

also a four bit number. The circuit for the algorithm is shown in figure 6.4 where

an input superposition of all possible four bit classical states in created by applying
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Oracle

Qubit

Ancilla

Figure 6.4: Algorithm circuit for implementing Bernstein-Vazirani algo-
rithm. The circuit consists of Ry(π/2) rotations in the beginning to prepare the
superposition of the measurement register and are also applied in the end to effect
a single qubit QFT on each of the qubits. The shaded region (oracle) contains pro-
grammed CNOT gate combinations used to implement different oracle states c that
define the function fc(x) = c · x.
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a Ry(π/2) rotation on X1X2X3X4 and preparing the ancilla X5 using a R−y(π/2).

The state of all the qubits after initialization is given by

|ψ〉0 = 1√
32

15∑
x=0
|x〉1234 ⊗ (|0〉5 − |1〉5). (6.17)

The action of the oracle is then to evaluate fc(x) and add it to the ancilla qubit.

This is achieved by applying a particular pattern of CNOT gates, determined by c,

between the qubits x = {X1X2X3X4} and the ancilla X5 = |0〉−|1〉√
2 . For example if

c = {1010} then CNOT gates are appled between X1 and X5 and between X3 and

X5. The action of the oracle could be considered as a controlled-NOT gate on the

ancilla where the control is the function value fc(x). This leads to the state

|ψ〉1 = 1√
16

15∑
x=0
|x〉1234 ⊗ |fc(x)⊕X5〉

= 1√
16

15∑
x=0

(−1)fc(x)|x〉1234 ⊗
|0〉5 − |1〉5√

2
.

(6.18)

Here we obtain ‘phase kick-back’ eπifc(x) in the coefficients since the ancilla is pre-

pared in the state X5 = |0〉−|1〉√
2 . In the final step of the algorithm we perform

Ry(π/2) rotations on all the qubits in order to apply a single qubit QFT on them

which results in the state

|ψ〉2 = 1
16

15∑
x,y=0

(−1)c.x(−1)ȳ.x|y〉1234 ⊗ |1〉5

= (D0000|0000〉+D0001|0001〉+ . . .+D1111|1111〉)⊗ |1〉5,

(6.19)

where ȳ is the bit wise inversion of y and ȳ.x is also the modulo-2 dot product of
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the bit strings ȳ and x. Now if we calculate the coefficient Dc̄ we get,

Dc̄ = 1
16

15∑
x=0

(−1)c.x(−1)¯̄c.x = 1
16

15∑
x=0

(−1)2c.x = 1 (6.20)

Therefore, there is a unit probability of obtaining the state |c̄〉 when we mea-

sure the measurement qubits X1X2X3X4, which is nothing but the bit wise inverted

value of c. In the experiment we construct the ‘oracle’ function for all 16 possi-

ble values of c by choosing different CNOT combinations between the measurement

qubits and the ancilla. The outcome for each function is shown in figure 6.5. We find

an average success probability of 0.903(2) of finding the correct c in a single shot.

The error within parenthesis is a statistical estimate for a 1σ confidence interval.

6.3 Quantum phase estimation protocol

The quantum phase estimation protocol has a closer resemblence to the circuit

shown in figure 6.1 since it involves the application of a N− qubit QFT where N > 1

unlike the algorithms discussed above. The phase estimation algorithm is mainly

used in solving the eigen-value problem of the form

A|φ〉 = e−iφ|φ〉, (6.21)

where A is a unitary operator that operates on an eigen state |φ〉 to yield a phase

term e−iφ as the eigen value. In a quantum phase estimation protocol a N−qubit

measurement register sets the resolution of the phase measurement, and the size
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Figure 6.6: Circuit for the implementation of quantum Fourier transform
A five qubit QFT is tested by applying it to states prepared (denoted by ‘state
preparation’) with predetermined amplitude or phase modulation of the coefficients
Cx of the input state ∑31

x=0Cx|x〉. This is followed by applying the fully coherent
5-qubit QFT (shaded grey) followed by a measurement of the output state where
the qubits are read out in reverse order.
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of φ determines the size of the matrix operator A. In order to find the eigenvalue

controlled unitary (A) operations are performed on an ancilla register initialized to

|φ〉. This requires a good guess of the eigen vector |φ〉. As a result of the controlled A

operation, a ‘phase kick-back’ is obtained on the state of the measurement register.

The final step is the implementation of an N−qubit QFT which then can measure

the value of φ with N−bit precision.

Before delving into the math of the phase estimation algorithm we first need

to discuss the implementation of the N−qubit QFT. Unlike the single qubit version

of the QFT which only requires single qubit rotations, the N = 5 qubit QFT is

relatively more complicated. In the circuit of the multi-qubit QFT as shown in

figure 6.6 we note that there are
(
N
2

)
= 10 controlled-phase gates that need to be

performed along with the composite Hadamard (H) gates in order to implement

the fully coherent version of the QFT. Although a semi-classical version of the QFT

could also be implemented with single qubit rotations based on measurement and

classical feed-forward [38,94], we implement the coherent version. The main reason

for this is to exploit all the two qubit gates in the system and evaluate their combined

performance in a relevant algorithm and also due to the fact that being coherent

this version of the QFT is truly reversible and can be concatenated in an algorithm

sequence. The fully coherent QFT as shown in figure 6.6 is implemented on five

qubits using a total of 80 native gates (10 XX−gates and 70 R−gates).

Following the algorithm circuit in figure 6.1 a controlled unitary operator A⊗x

is applied based on the state of the measurement register x. Therefore, the mea-
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surement register state is similar to equation 6.2. More specifically it is of the form

|ψ〉1 = 1√
32

31∑
k=0

e−ikφ|k〉. (6.22)

This shows a linear phase modulation of the coefficients Ck. We also note that this

state is not an entangled state and can be represented as a product state of the

five qubits as |ψ〉1 = 1√
32 ⊗

5
j=1 (|0〉 + e−i2

j−1φ|1〉). Therefore, in the experiment we

prepare the phase modulation by simply performing single qubit R−gates on each

of the qubits about an appropriate axis on the Bloch sphere without reference to the

ancilla space. The application of the QFT on this state follows equation 6.6 where

the coefficient Dj of the state |j〉 is now given by

Dj = 1
32

31∑
k=0

e2πijk/32−ikφ. (6.23)

This clearly shows that Dj = 1 if 2πj/32 = φ. In this case the phase φ is mapped to

the output state |j〉 which is measured with unit probability. This makes the phase

estimation protocol a single-shot measurement protocol.

Figure 6.7 shows the results of applying a QFT in order to estimate φ by

mapping its value to the population of the output state. This is repeated for several

cases of φ where it is incremented in steps of 2π/64 over the range of 0 to 2π. Values

of φ that are integral multiples of 2π/32 result in the output state |32φ/2π〉 ideally

with unit probability. In the experiment this is achieved with a success probability

of 0.619(5). For those values of φ that are non-integer multiples of 2π/32, the
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Figure 6.7: Performance of QFT in phase estimation Quantum phase estima-
tion using five measurement qubits. The plot shows populations in the output state
that estimates the given phase modulation φ of the input state amplitudes {Ck} of
the input state ∑31

k=0Ck|k〉. Probabilities in the output state population are colour
coded. We observe the correct value of the phase in each case with a probability
> 0.6. The experiment is repeated 8,000 times for each value of φ. The insets
show explicitly the population in the measured output state for various values of
φ = {0, π/2, π, 3π/2}. The sharp peaks in probability of the expected output state
|j〉 show that the five qubit QFT truly provides a 5−bit resolution.
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population is distributed mainly between the nearest 5-bit approximate states. For

a useful demonstration of the 5-qubit phase estimation problem one might consider

an acilla space which is large enough such that solving the eigen value (Eqn. 6.21)

problem is classically not feasible. In this case one might also prolong the application

of the unitary A = exp[−iHt] by increasing t such that higher resolution of φ might

be obtained while keeping the size of measurement register the same.

6.4 Quantum period finding protocol

The quantum period finding algorithm is the application of the five qubit QFT

to a superposition state ∑31
j=0Cj|j〉 where the coefficients Cj exhibit a type of pe-

riodic modulation of their amplitude. In the previous algorithms discussed so far

the coefficients Cj exhibited phase modulations that was picked up by the QFT.

The period finding protocol on the other hand serves as an indispensable part of

the Shor’s [95] factorization algorithm where the periodicity of the amplitude of co-

efficients leads to efficiently finding the ‘order’: a critical step that is exponentially

harder to implement on a classical computer [88]. In this section we will not elab-

orate on the Shor’s algorithms since we only implement the period finding protocol

(a subroutine of the original algorithm) to examine the performance of the QFT.

The circuit for the period finding protocol follows that of figure 6.6 where sin-

gle qubit rotations prepare the five qubits in a way such that the coefficients mimic

the kind of amplitude modulation as would be expected in a Shor’s factorization

algorithm. Table 6.4 shows the various prepared states with their respective peri-
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Input state Period
1√
32(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉) 1
1√
16(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)|1〉 2
1√
32(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ ei6.2π/16|1〉)(|0〉+ i|1〉) 3

1√
8(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)|11〉 4

1
2(|0〉+ |1〉)(|0〉+ |1〉)|111〉 8
1√
2(|0〉+ |1〉)|1111〉 16
|11111〉 32

Table 6.1: A list of input states that are prepared in the QFT-period finding pro-
tocol. Each input state is theoretically calculated to give a certain periodicity as
indicated in the right column.

odicity. We see that the modulation of the amplitudes is such that the input state

is of the form,

|ψ〉1 = C(|j〉+ |j + r〉+ |j + 2r〉+ . . .) (6.24)

where C is the common coefficient (and normalizing constant) to all the basis states

and r is the periodicity. The only exception to this construction is the state prepared

for periodicity 3. From table 6.4 we see that this state has both amplitude and phase

modulation which was numerically found to give a periodicity of three and therefore

used as one of the input state due to the ease of preparation by using R−gates only.

A purely amplitude modulated period-3 state on the other hand is complicated

to contruct using single qubit gates only but can be created by using two qubit

entangling gates [38]. The results from the period finding protocol are shown in

figure 6.8 where it is compared with the theoretical populations. We evaluate the

squared statistical overlap [96] between the experimental and theoretical populations

to quantify the fidelity of the protocol.
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Figure 6.8: Performance of QFT in period finding. Input states are prepared
using single-qubit rotations to modulate the 32 state amplitudes with periods 1,
3, 4, 8, 16, and 32 (see table6.4). The squared statistical overlap (SSO) [38, 96]
signifies the fidelity of the protocol where the error is a statistical estimate over 8,000
experimental repetitions. The grey and red bars represent populations calculated
from theory and measured in the experiment, respectively.
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Chapter 7: Outlook

7.1 Improving gate fidelity

In the experiments the overall fidelity of any algorithm is limited mainly due

to the native gate errors (< 2%) which can then propagate into the composite logic

gate errors (< 5%). These errors are dominated by the imperfections in the Raman

beams. The individual addressing Raman beam has a high NA which can lead to

intensity noise at the qubit since the beam size is small and also due to gradients in

the refractive index across the beam that can occur due to air currents. In order to

prevent this an active stabilization of the Raman beams can be adopted that prevents

beam steering and stabilizes intensity. These techniques have recently been proven

to work while implementing high fidelity single and two qubit gates using Raman

beams [8, 9]. We can also minimize addressing cross talk by improving the optical

resolution by using ever higher NA lenses as has been recently demonstrated for a

171Yb+system using 355nm Raman lasers [73].

Stark shifts of the second and fourth order also affects the gate fidelity. In this

case the applied beat-note during the gate is detuned from the intended frequency by

∆s = ∆s2 +∆s4. Since the stark shift is dependent on the Raman beam intensities it
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is usually unequal across the chain. Ideally it can be compensated entirely by shifting

the driving beat-note of the gate according to pre-calibrated Stark shifts on each

ion. However, this is not possible in the current system since the Raman beatnote

frequency is decided by the global Raman beam which is common to all the qubits

and cannot compensate for the individual and unequal Stark shifts experienced by

the qubits.

7.2 Scaling up the system

The algorithms presented here illustrate the computational flexibility provided

by the trapped-ion quantum architecture. Within a single module, this system can

be scaled to dozens of qubits by linearly increasing the number of radio-frequency

controls and AOM and PMT-channels at the hardware level. In software, the num-

ber of XX− and R−gate calibrations required to compile any logic gate scale as

O(N2) and O(N1) since there are N possible single qubit rotations operators and(
N
2

)
= N(N − 1)/2 possible XX−gates.

As more ions are added to a chain, the ratio of axial-to-transverse confinement

must be weakened to maintain a linear crystal (ωz/ωx < 0.6N−0.86) [44]. For con-

stant transverse confinement, this means that the minimum ion spacing remains the

same. However, this will slow the gates down. In our setup (for N = 5) two-qubit

XX-gates for any ion pair {i, j} have a duration of τ = 235 µs, which depends on

the spectral splitting of the transverse modes (τ ∼ ωx/ωz ∼ N1.7). As more ions are

added to the chain, the axial confinement must be weakened to maintain a linear
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crystal. This will slow down the XX−gate duration roughly as N1.7 [44], but the

crosstalk is not expected to get worse since the inter ion distance is maintained. Fi-

nally, implementing this architecture on multi-zone ion traps such as surface traps

will provide further control over the connectivity of qubits though fast shuttling

for scalable computation [11, 97]. This will also enable selective measurement of

qubits that can be fed-forward classically to perform conditional operations in the

module [39] as required for fault-tolerant computing [51,98].
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Appendix A: Imaging objective characterization

Figure A.1a shows the simulation of the objective lens assembly in OSLO. The

optical path difference is within λ/4 for a field angle of 0.350 which shows that he

objective is nearly diffraction limited for a field of view of±100µm. The point spread

function (PSF) indicated the resolution with which a single ion is imaged. The PSF

near diffraction limit is given by a Airy function. The theoretical diffraction limit

is set by the radius of the first Airy ring which in this case is 0.5 µm. Figure A.1b

shows the fractional energy within a certain radius of the PSF. This corresponds to

the number of photons collected from a single ion. Outside a radius of 5µm there is

a few percent of the total intensity that gives an inherent optical crosstalk between

PMT channels of neighboring ions that cannot be completely removed.

Figure A.2 shows an experimental setup for studying the performance of the

objective. A ×10 magnified image is formed with an NA of 0.38. The expected

resolution in the imaging is obtained from the sharpness of the edges of the test

pattern mask.
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Figure A.1: Simulated performance of objective lens design. a) Optical path
difference in units of λ for various field angles. b) Point spread function or the
impulse response of the optical system. c) Integrated fractional energy (fraction of
collected photons) as a function of the radius.
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Figure A.2: Experimental characterization of imaging objective. a) A setup
to image a test pattern using a 0.37 NA objective with a ≈ 10x magnification
stage. b) Test pattern as imaged on a camera. Features in the center has a 2.2 µm
thickness. Resolving the patterns in both horizontal and vertical direction indicates
near diffraction limited performance. A slight tilt of the UVFS window along the
horizontal axis is hard to eliminate and therefore creates aberration in the vertical
direction as seen from the blurring of horizontal edges of the test pattern. The
CCD is adjusted such that patterns are overexposed at the brightest spots. This
makes the ripples at the edges more prominent. The rapidly decreasing intensity of
these ripples as we move away from the edge is a characteristic of the point spread
function at near-diffraction limit.
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Appendix B: XX-gate pulse shape solution

In order to apply a two-qubit XX−gate it is important to choose a pulse shape

at a certain gate detuning µ. We try to find an optimal solution for a 9-segmented

pulse. The duration of the gate is fixed to 235 µs and pulse shape is obtained for

a two-qubit rotation |χij| = π/4. The solution is obtained for each detuning value

as it is scanned across the five transverse modes. The criteria for choosing a pulse

shape are: a) the pulse solution requires low power, and b) the pulse solution is

relatively insensitive to the detuning over a small range (say ±1 kHz).

Figure B.1 and B.2 shows pulse shape solution for an XX−gate on ions 1 and

5 and on ions 1 and 3, respectively. We observe a symmetry in the pulse shape

at almost every value of the detuning µ. There are potentially two values of the

detuning where the gate requires lower Rabi frequency and the solutions are ‘flat’.

Although it is favorable to have such detuning insensitive pulse shapes it is not

necessary if the transverse trap frequencies are fairly stable. The fidelity is very

close to 1 for almost all detuning values. The phase of the two-qubit rotation χ15

and χ13 is shown in fig. B.1c and B.2c, respectively as a function of detuning where

it takes the value π/4 at some regions and −π/4 at other.
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Figure B.1: Pulse shaping solution for XX15. a)Solution for a 9-segment pulse
for performing a XX(±π/4) gate on ions 1 and 5. A solution is obtained at every
value of the detuning parameter µ. The gate detuning is chosen such that the pulse
shape is relatively insensitive to detuning errors that may rise due to fluctuations
in mornal mode frequencies of the ion chain. b) The theoretical gate fidelity is
neary 1 for all detuning values. c) The sign of the rotation (χij) can be positive or
negative depending on the detuning value and the ions participating in the XX-gate.
(compare with fig. B.2c)
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Figure B.2: Pulse shaping solution for XX13. a)Solution for a 9-segment pulse
for performing a XX(±π/4) gate on ions 1 and 3. A solution is obtained at every
value of the detuning parameter µ. The gate detuning is chosen such that the pulse
shape is relatively insensitive to detuning errors that may rise due to fluctuations
in mornal mode frequencies of the ion chain. b) The theoretical gate fidelity is
neary 1 for all detuning values. c) The sign of the rotation (χij) can be positive or
negative depending on the detuning value and the ions participating in the XX-gate.
(compare with fig. B.1c)
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