
Abstract

Title of Dissertation: SCALABLE STATISTICAL MODELING AND QUERY
PROCESSING OVER LARGE SCALE UNCERTAIN
DATABASES

Bhargav Kanagal Shamanna
Doctor of Philosophy, 2011

Dissertation directed by: Dr. Amol Deshpande
Dept. of Computer Science

The past decade has witnessed a large number of novel applications that
generate imprecise, uncertain and incomplete data. Examples include moni-
toring infrastructures like RFIDs, sensor networks and web-based applications
such as information extraction, data integration etc. In my dissertation, I ad-
dressed the challenges in managing uncertain data and developed algorithms
for efficiently executing queries over large volumes of such data.

First, for meaningful analysis of such data, we need the ability to remove
noise and infer useful information from uncertain data. To address this chal-
lenge, I developed a declarative system for applying probabilistic models to
databases and data streams. The output of such probabilistic modeling is
probabilistic data, i.e., data annotated with probabilities of correctness. Of-
ten, the data exhibits strong correlations. To manage such data, I built a
probabilistic database system that can manage large-scale correlations and
developed algorithms for efficient query evaluation.

My system allows users to provide uncertain data as input and to specify
arbitrary correlations among the entries in the database. In the back end, we
represent correlations as a forest of “junction trees”, an alternative represen-
tation for probabilistic graphical models (PGM). We execute queries over the
probabilistic database by transforming them into message passing algorithms
(inference) over the junction tree. Traditional algorithms over junction trees
typically require accessing the entire tree, making them infeasible for large-
scale correlated databases. Hence, I developed an index data structure over
the junction tree called INDSEP that allows us to circumvent this process and
scalably evaluate inference queries, aggregation queries and SQL queries over
the probabilistic database.

Next, I augmented the existing query evaluation model so that users can
better understand query results. The existing query evaluation model returns
output tuples along with their probability values, which provides very little
intuition to the users: for instance, a user might want to know “Why does this
output tuple have such high probability?” or “Which are the most influential
input tuples for my query ?” Hence, I developed algorithms to compute expla-
nations for query results and perform sensitivity analysis for users to better
understand query results.

SCALABLE STATISTICAL MODELING AND QUERY

PROCESSING OVER LARGE SCALE UNCERTAIN

DATABASES

by

Bhargav Kanagal Shamanna

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland, College Park in partial

fulfillment of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:

Professor Amol Deshpande, Chair
Professor Lise Getoor
Professor David Jacobs
Professor Hector Bravo
Professor Mark Austin

Contents

1 Introduction 1
1.1 Motivating Applications . 3

1.1.1 Event Monitoring & Complex Event Processing 3
1.1.2 Information Extraction/Integration System 7
1.1.3 Probabilistic Modeling of Data Streams [60] 13

1.2 Problem/Research Challenges 16
1.2.1 Probabilistic Modeling of Uncertain Data 16
1.2.2 Query Processing over Correlated Probabilistic Data . 17

1.2.2.1 Challenges in dealing with Correlations 20
1.2.3 Robust query processing: Sensitivity & Explanations . 22

1.3 Our Approach . 23
1.4 Outline & Research Contributions 27

2 Background and Related Work 33
2.1 Background . 33

2.1.1 Probabilistic Modeling of Uncertain Data 35
2.1.1.1 Hidden Markov models (HMMs) 35
2.1.1.2 Linear Dynamical Systems 37
2.1.1.3 DPMs: Graphical Representation 38
2.1.1.4 Inference in DPMs 40

2.1.2 PGM Representation 40
2.1.3 Query Processing over PGMs 42
2.1.4 Junction Tree Representation of PGMs 46
2.1.5 Query Processing over Junction Trees 50
2.1.6 Special Case 1: Markovian streams 56
2.1.7 Special Case 2: Tuple Indpendent Probabilistic Databases 56

2.1.7.1 Queries . 57
2.1.7.2 Detecting read-once lineages 59
2.1.7.3 Shannon Expansions 61

2.2 Related Work . 62
2.2.1 Probabilistic Databases 62
2.2.2 Inference in Graphical Models 65

ii

2.2.3 Indexes for Probabilistic Databases 67
2.2.4 Sensitivity Analysis . 68

3 PrDB System Overview 70
3.1 Relational Storage System . 72
3.2 Parser and Language . 74

3.2.1 Parser Implementation 77
3.2.2 Factor Semantics . 78

3.3 Junction tree & INDSEP . 79
3.4 Query Processor . 79
3.5 Probabilistic Modeling System 81

3.5.1 Specifying DPM-based Views 82

4 Probabilistic Modeling of Uncertain Data 86
4.1 DPMs as Database Views . 87
4.2 Design . 91
4.3 Update Manager: Particle Filtering 91
4.4 System Evaluation . 93

4.4.1 Experimental setup . 94
4.4.2 Experimental Results 97

5 INDSEP 100
5.1 INDSEP Data Structure . 101

5.1.1 Overview of the INDSEP Structure 102
5.1.2 Shortcut Potentials . 104

5.2 Index Construction . 107
5.2.1 Hierarchical Partitioning 107
5.2.2 Variable Renaming . 109
5.2.3 Assigning Range Lists and Add Lists 110

5.3 Query Processing . 110
5.3.1 Inference/Extraction Queries 110
5.3.2 Aggregate Queries . 113

5.4 Handling Updates . 115
5.4.1 Updates to Existing Potentials 116
5.4.2 Inserting New Data . 119
5.4.3 Deletions . 121

5.5 Experimental Evaluation . 121
5.5.1 Implementation Details 121
5.5.2 Experimental Setup . 122
5.5.3 Results . 125

iii

6 Lineage Processing over INDSEP 130
6.1 Lineage Processing Algorithms over Junction trees 131

6.1.1 Message Passing for Lineage Processing 132
6.1.2 Pivot Selection . 137
6.1.3 Dealing with Disconnections 138

6.2 Lineage Processing using INDSEP 139
6.2.1 Recursive Approach . 140
6.2.2 Shortcomings . 143

6.3 Lineage Planning & Evaluation 145
6.3.1 Lineage Planning . 146
6.3.2 Lineage Plan and Execution 149
6.3.3 Approximation Technique 151

6.4 Experimental Evaluation . 152
6.4.1 Implementation Details 152
6.4.2 Experimental Setup . 152

7 Query Processing on Markovian Sequences 159
7.1 Markovian Sequences . 160
7.2 Probabilistic Sequence Algebra 162
7.3 Operator Algorithms . 165
7.4 Query Evaluation . 174

7.4.1 Query Syntax . 174
7.4.2 Query Planning and Optimization 175
7.4.3 Approximation Strategies 178

7.5 Experiments . 178
7.5.1 Experimental Setup . 179
7.5.2 Experimental Results 180

8 Robust Query Processing for Probabilistic Databases 187
8.1 Formal Problem Statement . 188

8.1.1 Sensitivity Analysis . 188
8.1.2 Explanation Analysis 190
8.1.3 Warmup: SUM/COUNT 191
8.1.4 Relation to Meliou et al. [77] 191

8.2 Sensitivity Analysis . 192
8.2.1 Value queries . 192

8.2.1.1 Boolean conjunctive queries 193
8.2.1.2 Conjunctive queries 198
8.2.1.3 Aggregation queries 199

8.2.2 Set queries . 201
8.2.2.1 Probabilistic Threshold Queries 201
8.2.2.2 Top-k queries by probability 204

iv

8.2.3 How is ε assigned? . 204
8.3 Explanation Analysis . 205

8.3.1 Boolean Conjunctive Queries 205
8.3.2 Aggregation queries . 208

8.4 Incremental Recomputation 209
8.4.1 Conjunctive Queries 210
8.4.2 Aggregation . 212

8.5 Experimental Evaluation . 215
8.5.1 Experimental Results 216

9 Conclusions 220

v

List of Figures

1.1 RFID Event Monitoring Application 4
1.2 Data extracted by an information extraction engine. The CarAds

table in part(a) is extracted by the engine. It has both tuple
uncertainty and attribute uncertainty. In part(b), we show an
equivalent representation of the CarAds table by converting the
attribute uncertainty to tuple uncertainty. The correlations are
indicated in part (c). 9

2.1 Graphical representations of DPMs. (i) Using an HMM for fault
detection; (ii) Using a KFM for velocity and location estimation.
(iii) Parameters of the HMM model. (iv) Parameters of the
KFM model. 36

2.2 Example: (a) A probabilistic database Dp on two relations R1

and R2 exhibiting both tuple-existence and attribute-value un-
certainties (e.g. a indicates the random variable corresponding
to the existence of the first tuple in R1); (b) The directed PGM
that captures the correlations in Dp, and (c) the junction tree
representation of the PGM. 41

2.3 Query processing over probabilistic databases using graphical
models: (a) a graphical model over 4 attributes; (b) an exam-
ple set of CPDs for the graphical model (bold-faced variables
indicate the child nodes); (c, d) to execute a query over the
probabilistic database, we add new variables to the PGM and
introduce additional CPDs; (e) PGM for evaluating the lineage
query (f) AND factor for variable E; (g) OR factor for variable O 43

vi

2.4 Figure shows the various steps in the construction of the junc-
tion tree from the original PGM representation in part(a). In
part(b) we moralize the PGM by “marrying” (connecting) nodes
C and D. In part(c) we triangulate the resulting graph by
adding an edge between nodes C and B. Note that an edge
between A and D would also work. In part(d), we construct
the clique graph. The weight of each edge is indicated and the
maximum spanning tree is also shown. The final junction tree
is shown in part(e). 47

2.5 Path constructed for query {e,o} 50
2.6 Figure shows (i) a tuple uncertain probabilistic database (ii)

the graphical model that captures the correlations among the
various tuples . 54

2.7 Example of a Markov sequence 56
2.8 (i) Boolean formula (x1x2+x3x4)(x5x6+x7) represented using an

AND/OR tree. Leaves denote variables of the formula, internal
nodes are intermediate expressions. (ii, iii, iv) Steps involved
in generating the read-once formula for (x1 ∧ x2) ∨ (x2 ∧ x3) ∨
(x3 ∧ x4) ∨ (x4 ∧ x1) . 57

3.1 Various components of the PrDB system. Probabilistic data
is inserted by the user via the parser. The correlations are
stored in the factor tables in the system. We propose a junction
tree-based materialized view representation of the database and
index it using the INDSEP data structure. The query processor
interacts with the INDSEP and the underlying user tables. . . 71

3.2 Schema of the PrDB model. User tables are shown in (a). In-
ternal system tables are shown in (b) 75

3.3 Various constructs to insert data and correlations in PrDB . . 76
3.4 List of statements to generate the database of Figure 3.2 . . . 77
3.5 (i) Conventions used in specifying the DPM; (ii) Configuration

file for HMM-based view in Figure 2.1(i) 83

4.1 (i) DPM-based views contain probabilistic attributes; (ii) Particle-
based representation of the view (only particles corresponding
to the second tuple, time = 4, are shown for clarity) 88

4.2 Graphical representation of the BBQ DPM used for modeling
Intel Lab data (Section 6.4) 88

vii

4.3 (i) Queries used in Experiments; (ii) % of missed intersections as
a function of δ on the raw data and the KFM-based view; (iii)
Observed temperatures and the working status inferred using
an HMM; (iv) Same as (iii) with simulated faults inserted; (v)
Plot of mean-squared error vs number of particles for Dataset I
and Dataset II. Mean squared error falls off as (1/N); (vi) Time
taken for one inference step for various values of Smoothing
Lag(L). 95

5.1 (a) shows a hierarchical partition of the junction tree shown
in Figure 2.2(c). Note that the separator nodes separating two
partitions are replicated in both the partitions. The correspond-
ing INDSEP data structure is shown in (b).The contents of the
index node I2 is shown in part(c). 101

5.2 Illustrating overlays and shortcut potentials. Using the cached
potential p(C,D) allows us to shortcut the clique C2 completely. 106

5.3 The Steiner trees generated at different index nodes while exe-
cuting the inference query {e,o} on the junction tree in Figure
2.2(c) is shown in (a), (b), (c). (d) shows the final graphical
model generated as a result of the extraction query {e,o}. The
junction tree generated by the aggregation query is shown in (e) 116

5.4 We generate the Markovian sequence database using the schema
shown in (a). The junction tree structure of the Markovian
sequence is shown in (b) . 122

5.5 Illustrating query performance in terms of number of blocks
accessed and cpu time for workloads W1, W2, W3 and W4 when
index data structure is absent, index is present without shortcut
potential, both index and shortcut potential are present. (a) &
(b) correspond to the event database, while (c) & (d) correspond
to the Markovian sequence database. We note that the graph
is in logarithmic scale, so the gains are substantially more than
what is apparent. 124

5.6 As shown in part (a), the time taken to bulk load the index
is linear in the size of the database. Part (b) shows that the
height of the tree increases in a logarithmic-like fashion as the
size of the database increases. Part (c) shows that as the disk
block size increases, the amount of approximation reduces, i.e.,
less than 20% for 4kB block size. 125

viii

5.7 Graph in part (a) shows that the query performance (as function
of number of blocks) improves when block size is increased. The
bar graphs in parts (b) & (c) show that the query performance
falls as the percentage of shortcut potentials that are out-of-date
increases. Part (d) shows the update times – as we can see,
the overheads for updating INDSEP data structure are quite
minimal. 127

6.1 Different stages in the simplification process 132
6.2 Figure shows (i) a tuple uncertain probabilistic database (ii)

the graphical model that captures the correlations among the
various tuples (iii) its equivalent junction tree (iv) the INDSEP
data structure corresponding to the junction tree in (iii) and
(v) Steiner tree computed while evaluating the inference query
{a, k}. Pivot clique (ac) is shaded. (vi) The childTree stored
in the root is shown here. Note that I2 is connected to I1 via c
and to I3 via j as indicated in (iii). Note that (i),(ii) and (iii)
are repeated from Chapter 2 for convenience. 133

6.3 (a) Illustrating the order of multiplication and simplification in
Eager+Order heuristic. Initially, we multiply pdfs p(f, h) and
p(c, f, g) since that edge has the maximum weight. (b) When
pivot = (cfg), the sequence of messages passed is indicated above
the graph (right arrows). When pivot = (ab), the sequence of
messages is indicated below the graph (left arrows). 138

6.4 (i) illustrates the computation of subexpressions (ii) shows an
intermediate junction tree generated in the root node while pro-
cessing ((d ∨ e) ∧ (n ∨ o)) ∨ (b ∧ c) 140

6.5 PrDB’s lineage processing component overview: Input conjunc-
tive query is first executed by the relational engine which com-
putes lineages of output tuples. Lineage Planner then computes
an optimal plan for processing these lineages, which is executed
by the Lineage Processor. 145

6.6 Lineage Plan for lineage λ = (d ∨ e)(n ∨ o) ∨ (b ∧ c) 149
6.7 Results: (a) Processing lineages using INDSEP is more scalable.

(b) and (c) Illustrating benefits of EAGER+ORDER heuristic
over the EAGER and naive approaches for datasets D2 and
D1. (d) As the correlations increase, lineage processing times
increase. Special purpose technique (SPT) performs better for
the independent dataset D1. (e) and (f) Illustrating benefit of
batch lineage processing. (g) Sampling errors can be reduced
by increasing number of samples. (h) INDSEP improves the
quality of our approximations significantly. 158

ix

7.1 (a) Example of a Markovian sequence Sp on attributes X and
Y ; (b) Schema graph and (c) clique list of Sp; (d) Representing
Sp using one relation per CPD. 162

7.2 (a) Executing a selection predicate (X > Y) entails adding new
exists variables (Ei); the dotted edges show the changes to the
schema. (b) Projection may result in a non-Markovian sequence
– if Y nodes are eliminated, the resulting X sequence (shown
through dotted edges) is not Markov. 167

7.3 Constructing CPDs for new nodes for (a) selection, (b) aggre-
gate, and (c) aggregate with selection (dom(X) = dom(Y) =
{0, 1}). 168

7.4 Illustrating aggregate computation. Gi = Agg(X1, X2, . . . , X i).
In each get next() call, dotted variables are added to the PGM,
and the boxed nodes are eliminated, continuously maintaining
state p(X i, Gi) and p(X i, Gi, Ei) respectively. Also, note the
dependence of Gi on Ei in (b). 170

7.5 (a) PGM for sliding window aggregate. Gi’s denote the aggre-
gates that we have to compute. (b) After eliminating the X i

variables, we obtain a clique on the Gi variables, which is #P-
hard. (c) Hence, we split the PGM into components as shown.
Unmarked nodes are intermediate aggregates. (d) For tumbling
window aggregates, we only eliminate boxed nodes to obtain
the Markovian sequence shown in (e). Removing nodes X3 and
X6 is postponed to a later projection. 173

7.6 The set of queries and the schemas used in the experiments. . 180
7.7 (a) We plot the % error in query processing for various op-

erators when temporal correlations are ignored, (b) We show
performance (throughput) of the windowing operators, (c) We
show the throughput of aggregate operators for different cases. 182

7.8 Figures (a),(b),(c),(d) illustrate query optimization. (a),(b) show
the need for determining the correct location for the projection
operator. (c) demonstrates gains made by deleting redundant
edges in the model. Note that this is not drawn to scale, only
used for comparison. (e),(f) demonstrate advantages of our sys-
tem over previous approaches. Notice that the y-axis is in the
log scale, so our gains are substantial. (g),(h) describe accuracy
and performance for the approximate map operator 183

x

8.1 Results: (a) Top-k queries by probability are sensitive to input
probabilities. As we modify the probability p(x), the output
probabilities and the top-k output change as shown. (b,c) Here
we demonstrate that sensitivity analysis can be implemented
very efficiently. The overhead above computing output proba-
bilities for TPC-H queries is at most 5%. (d) The break up of the
times spent in the different components of the algorithm. S.A
refers to sensitivity analysis. (e) Same as part(d) for Boolean
TPC-H queries (f) Illustration of the benefits of pruning algo-
rithms. (g) Explanation analysis is efficient. (h) Incremental
recomputation for boolean conjunctive queries is efficient. . . 219

xi

Chapter 1

Introduction

As we continue to advance in the Information Age, massive amounts of data

are being generated at a rapidly increasing rate by a large number of appli-

cations. While database systems were developed to successfully manage large

amounts of data and query them efficiently, they are incapable of dealing with

the array of new types of data being generated by new and emerging applica-

tions. The past decade has witnessed various such types of data generated in

arenas like sensor networks and other distributed monitoring infrastructures,

which collect measurements using tiny low-cost sensors [2], and in emerg-

ing applications like information extraction and data integration which gather

data by crawling the countless numbers of web sites on the web [36, 54, 46].

Other data sources include Bioinformatics [38], social networks [1], mobile data

sources [18, 104, 57], images and video data [84, 85, 83] and so on. Apart from

the extensive scale at which these applications continue to deliver data, these

applications also share a very important property: much of the data gener-

ated in these applications is imprecise and uncertain. The imprecision in the

data is due to a variety of reasons. For instance, the push for mass produc-

1

ing very low cost sensing devices has led to them being inaccurate and failure

prone – this leads not only to inaccurate measurements, but also incomplete

measurements when the sensors fail. Extracting structured information from

web data involves natural language processing [36, 48], which is error prone –

i.e., we might either extract wrong information from natural language text or

fail to extract correct information. Similarly, in Bioinformatics, ambiguities in

computation of genome sequences arise due to the experimental noise and the

sheer complexity of DNA sequencing experiments [47]. Finally, the current

state of the art in computer vision [41] does not allow us to precisely recog-

nize objects and extract corresponding events from images and video, thereby

resulting in uncertain data.

While traditional database systems can manage deterministic data effi-

ciently and provide declarative methods for querying them using SQL, they

currently cannot support uncertain data, even more so when the data is cor-

related. However, the end-users of the applications mentioned above still want

to be able to analyze such data and obtain interesting and novel information

from them: for instance, the scientists in a wireless sensor networking applica-

tion would be interested to know whether a remote sensor is failing (perhaps

by looking at the signature of the measurements made by the sensor) or in

an RFID-based inventory management system, the store owners might be in-

terested to know if a product (which is associated with an RFID tag) has

been successfully checked out of the store, or in other words, the likelihood

of a theft. Hence, there is a need for developing novel database systems that

can efficiently manage large-scale uncertain data and provide query processing

support. However, building such a system can be quite challenging. We illus-

trate this with a few motivating applications next. We start by describing a

2

real world application that requires us to reason about correlated probabilistic

data in an event processing application.

1.1 Motivating Applications

1.1.1 Event Monitoring & Complex Event Processing

Consider an RFID-based event monitoring application [91, 71, 103] that

uses RFID tags and readers in order to monitor various entities such as per-

sonnel and hardware in a building. A building is instrumented with RFID

devices that detects RFID tags in its vicinity. Using these readings, the ap-

plication detects the occurrence of different types of events in the building.

Raw RFID data is typically noisy and incomplete. RFID tags sometimes go

undetected by the tag readers, or sometimes they are detected multiple times.

Therefore, it is subjected to probabilistic modeling to remove such noise and

also to infer the missing values from the data. This application is schematically

indicated in Figure 1.1. As shown in the figure, raw RFID data is subjected to

probabilistic modeling. For instance, if we detect the presence of a computer

PC at RFID device X and subsequently at Z, then clearly we must have also

detected the PC either at Y1 or Y2 at an intermediate time - this information

may be missing however in the raw RFID readings, due to noise.

The output of the above probabilistic modeling is a set of uncertain events

associated with occurrence probabilities. For instance, the event entered(Mary,

conf-room, 2:10pm), which says that Mary was found near the conference

room at 3:10pm, may be assigned a probability of 0.6 of actually having oc-

curred (Figure 1.1). Similarly, the event coffee(Bob, 2:05pm), which indi-

3

Room BRoom A Room C

Room
F

Conference RmLounge

Y1 Y2

X

Z

Entered (Bob,
lounge, 2 pm)

Entered (Bob,
conf, 2pm)

Business Meeting
at conf room

coffee (Bob,
2:05pm)

Entered (Mary,
conf, 2:10pm)

Left (John,
conf, 3pm)

... ...

...

...
...

...

...

found (PC, X1, 2:00 pm)

found (PC, Y1, 2:04 pm)

found (PC, Z1, 2:06 pm)

found (PC, Y2, 2:04 pm)

Y4

X1 X2 X3 X4

Y1 Y2 Y3

B

A

C

D

E
Probabilistic Modeling

Event detection

Raw RFID Data Stream

Figure 1.1: RFID Event Monitoring Application

cates that Bob was making coffee at 2:10pm, may be assigned another proba-

bility. These uncertain events are naturally highly correlated with each other.

For example, the event coffee(Bob, 2:05pm) is strongly positively correlated

with the event entered(Bob, lounge, 2:00pm) since the coffee machine is

present in the lounge. However, the events entered(Bob, lounge, 2pm) and

4

entered(Bob, conf-room, 2pm) must be mutually exclusive since Bob can-

not be found at the same time in two different locations. This situation oc-

curred due to inaccurate detection by the RFID device. Additional correla-

tions arise when compound events are inferred from basic events. For instance,

the occurrence of the event business-meeting(conf-room) is directly depen-

dent on the events entered(Mary, conf-room, 2:10pm) and entered(Bob,

conf-room, 2:00pm). Such correlations are typically indicated by drawing

a graph over the events and adding (possibly directed) edges between corre-

lated events as shown in Figure 1.1. The nature of the correlation itself can

be quantified by associating probability distributions or constraints over the

corresponding events.

Given such a large collection of uncertain data, the monitoring applications

and the users may ask a wide variety of queries.

1. (Inference) “What is the likelihood that Bob and Mary attended a

meeting given that John did not attend?”. This is an example of a

inference query. As has been observed in much work before [96, 61, 71,

66], ignoring the correlations can result in highly inaccurate results to

such queries.

2. (Aggregation) “How many business meetings occurred over the last

week”. This is an example of an aggregation query. Since there is a

probability of occurrence for each business meeting, we need to compute

and return a probability distribution on the aggregate value. Although

the expected value of the aggregate can be computed efficiently, com-

puting a probability distribution over the result requires reasoning about

the correlations.

5

3. (Lineage/Boolean Formula) Other queries in such a system involve

computing the probabilities of compound events expressed as composi-

tions of simple events. For instance, a query of interest is: What is the

probability that the PC was transferred correctly from its starting location

at Room A to the final location at the conference room? Since there are

three RFID devices X1, X2 and X3 between Room A and the conference

room, the compound event corresponding to the successful transfer of

the PC is given by the boolean conjunction:

obs(X1,‘PC’,10:00) ∧ obs(X2,‘PC’,10:05) ∧ obs(X3,‘PC’,10:10)

We now need to compute the probability of the above boolean formula.

We call such a query, where we have to compute the probability of a

boolean formula, a lineage query.

After evaluating the query, the user is provided with the output probabil-

ities, for example, the likelihood that the PC was correctly transferred is 0.2.

On receiving the output, the user may have additional concerns. For instance,

the user may have the following concerns:

1. (Explanations) Why is the probability of having correctly transferred

the above PC so low ? Here, the user is interested to know the cause/explanation

for the output tuple. Note that due to large-scale correlations, the ex-

planations for a certain output tuple may involve input tuples that are

not explicitly part of the boolean formula.

2. (Sensitivity Analysis) What are the most sensitive input tuples for the

output probability. In this case, the user is interested to know the most

sensitive input tuples that can alter this probability. The reason for this

6

is because the user may be unsure about certain input probabilities and

would be interested to know which tuples can influence the probability

the most. Just as with explanations, due to the presence of large-scale

correlations, the sensitive input tuples need not be the tuples forming

the boolean formula.

3. (Re-evaluation) How will the output probabilities change if I alter some

of the input probabilities, e.g., by resolving the uncertainty of obs(X2,

‘PC’, 10:04). After determining the sensitive input tuples and choosing

to resolve them (e.g., by querying an expert), the user would be interested

to re-evaluate the query and obtain results quickly.

1.1.2 Information Extraction/Integration System

Consider an Information extraction/integration system [46, 54, 78, 36] that

scans used car advertisements from multiple different sources like cars.com,

craigslist.com, and autotrader.com and populates a relational database

with structured data, shown in Figure 1.2. To cope with the enormous amounts

of data on the web, the system may employ automatic extractors to detect

potential tuples. Since most web data is in natural language format, it is im-

possible to extract only the correct tuples: there may be tuples that do not

necessarily belong to the database. Also, tuples may be extracted from web

sites that may be out of date. In order to handle such uncertainty, the IE

system may choose to assign weights to the extracted tuples that denote the

degree of correctness or validity of the tuple. These weights are interpreted

as probabilities of existence of the tuples. The information extraction system

uses entity recognition (e.g., identifying people, locations, companies), rela-

7

tionship detection (e.g., affiliations), sentiment analysis (e.g., from reviews),

entity resolution (e.g., “Y! Labs” and “Yahoo! Labs” refer to the same en-

tity), and other complex machine learning algorithm to compute probabilities.

These probabilities are shown in Figure 1.2(a) under the column labeled ‘?’.

The probabilities can be obtained via machine learning algorithms based on

CRFs [46] or Bayesian inference techniques [54]. Larger probability values

indicate that the tuple is extracted correctly and has a better chance of be-

longing to the table, while smaller probabilities indicate that the tuple has

a lower chance of belonging to the table. Uncertainties can also occur in the

values of the attributes. For instance, for tuple x3 in Figure 1.2(a), the value of

the attribute Model is unknown. It can either be ‘Honda’ with probability 0.5

or ‘Toyota’ with probability 0.4 or ‘Ford’ with probability 0.1. This might have

happened either due to the fact that the model was missing in the advertise-

ment, or the information extraction system could not extract the information

corresponding to the model of the car. Figure 1.2(a,c,d) shows three relations

extracted automatically from the web, along with the probability attached to

each tuple.

In addition, the tuples in such a database may exhibit significant corre-

lations; e.g., both tuples x1 and x2 in Figure 1.2(a) cannot belong to the

relation simultaneously, since they correspond to the same car (since the VIN

is same), but their prices/sellers are different. This situation occurred since we

gleaned the data from different sources with conflicting information, only one

of which is really correct. This corresponds to a mutual exclusion correlation

between the two tuples, where the presence of one tuple necessarily implies

the absence of the other tuple. We may denote such correlations using a graph

(Figure 1.2(e)). Note that x1 is connected to x2 indicating that they are cor-

8

tid VIN Seller Model Price ?

x1 1A0 239 Honda 3500 0.3

x2 1A0 231 Honda 4500 0.8

x3 2B1 231 {Honda 0.5,
Toyota 0.4,
Ford 0.1}

4500 1

tid VIN Seller Model Price ?

x1 1A0 239 Honda 3500 0.3

x2 1A0 231 Honda 4500 0.8

x3 2B1 231 Honda 4500 0.5

x4 2B1 231 Toyota 4500 0.4

x5 2B1 231 Ford 4500 0.1

(a) CarAds (tuple/attribute uncertainty) (b) CarAds (only tuple uncertainty)

lid Seller Name Address ?

y1 239 Honda of College Park 12345 0.3

y2 239 Honda Company, College Park 12345 0.3

y3 231 Ford Company 12207 0.8

y4 340 Toyota Car Company 12209 0.9

rid Seller Reputed ?

z1 239 Good 0.3

z2 231 Bad 0.7

z3 340 Good 0.9

(c) Location (d) Reputation

x1 x2

x4 x5

x3

y1 y2

239 x1(y1 + y2) 0.8

(e) Correlations (f)Result for query Q1

Figure 1.2: Data extracted by an information extraction engine. The CarAds
table in part(a) is extracted by the engine. It has both tuple uncertainty and
attribute uncertainty. In part(b), we show an equivalent representation of the
CarAds table by converting the attribute uncertainty to tuple uncertainty.
The correlations are indicated in part (c).

related. Additional correlations occur due to attribute uncertainty. A possible

approach to handle attribute uncertainty is by converting it into tuple uncer-

tainty: if the attribute ‘Model’ was missing for the extracted tuple, the system

9

adds separate tuples for each possible Model offered by the seller, along with

a mutual exclusion dependency among the alternatives. For example, suppose

that the tuple x3 in Figure 1.2(a) has three possible alternatives for the Model

attribute. In this case, the system adds three tuples x3, x4, x5 as shown in Fig-

ure 1.2(b), along with a mutual exclusion dependency among them (x3, x4 and

x5 in Figure 1.2(e)). In general, complex correlations can arise in any appli-

cation that uses sophisticated learning and inference techniques like Bayesian

networks [60, 91, 71].

Given such a database, the users can pose several interesting queries. We

provide examples of queries below. As before, we include aggregation, lineage

and inference queries.

1. (Aggregation) “How many Honda cars are available for sale ?” This is

an aggregation query that requires us to compute the probability distri-

bution of the number of Honda cars available for sale. While computing

an expected value of the output is easy via linearity of expectation, com-

puting the entire probability distribution is non-trivial in the presence

of correlations.

2. (Lineage) “Give me the list of all reputed auto dealerships near the zip

code 12345”. In a deterministic database, this corresponds to executing

the relational algebra query, expressed in SQL:

SELECT Location.Seller FROM Location, Reputation

WHERE Location.Address = ‘12345’

This basically corresponds to a join between the relations Location and

Reputation preceded by the selection of appropriate zip code (12345)

in Location and the appropriate reputation. This is commonly known

10

as a conjunctive query in database query evaluation. However, how to

process the query is not immediately clear in our example since tuples

do not exist with certainty, i.e., they need not belong to the relation.

Consequently, some of the tuples need not participate in the join de-

scribed above, leading to different possible results in different scenarios.

A careful observation of the probabilistic database tables tells us that

the only possible answer to the above query is the tuple with seller id

239 since that is the only seller in the 12345 zip code. However, the

output is 239 if and only if tuple z1 exists and at least one of the tuples

y1 or y2 exist in the database. Therefore, we need to compute the prob-

ability of the boolean formula: (exists(y1) ∨ exists(y2)) ∧ exists(z1),

where exists(t) indicates the (random) variable corresponding to the

event that tuple t exists. Complex queries may require us to compute

the probability of non-trivial boolean expressions. For instance, if we

want the list of reputed sellers offering Honda cars in the 12345 area,

then, we will need to compute the probability of the boolean formula

exists(x1)∧ (exists(y1)∨ exists(y2))∧ exists(z1) – which is again an ex-

ample of a lineage query. Note that more complex queries may generate

several output tuples in which case we need to compute the probability

of each of the output tuples. Computing the probability of the above for-

mula requires us to reason about dependencies and correlations among

all the variables in the (potentially large) formula efficiently, which is a

challenging task.

The query evaluation model that we have illustrated so far requires us to

compute the output probability distributions for each tuple and its associated

11

values. However, output results are not very intuitive to the users, who are

interested to know why they actually obtained the result. Currently, if a user

poses the query: Q : “List reputed car sellers in the College Park (12345)

area who offer Honda cars”. Existing systems provide answers as shown in

Figure 1.2(f) (Q’s result shown). This output relation, however, is not very

informative for the user since it does not provide any intuition about two

important issues.

1. (Explanations) First, existing systems do not provide explanations for the

query results – e.g., “Why is tuple t in the output result?” or “Why does

output tuple t1 have such a high probability, as compared to tuple t2?”. As

noted by Re et al. [92], even in a biological domain, where scientific decisions

are made based on several uncertain hypotheses, it is critical to know the

input hypotheses that contribute significantly to the output decision. Hence,

it is essential to provide this information in addition to the actual results,

to the users of the system.

2. (Sensitivity Analysis) Second, current systems do not provide the sen-

sitive input tuples for a query, i.e., the set of tuples that can potentially

modify the result probabilities the most. This information is critical in most

application domains that need to handle uncertain data, because of the in-

exact nature of the probability values. The algorithms rely on probabilistic

models such as Bayesian networks, CRFs and similarity logics to assign prob-

abilities to the extracted tuples. Bayesian inference is #P-hard, therefore

the probabilities computed are usually approximate (with no guarantees on

bounds [25]), and further, similarity metrics are usually ad-hoc. Hence, the

probabilities assigned to the tuples are often noisy, imprecise, and erroneous.

12

Hence, the users would be interested to know the input tuples that are likely

to change the output probabilities significantly, when their probabilities are

modified. In other words, we need to find the set of input tuples which

highly influence the output probability values. Providing this information

helps the user to focus his/her effort in procuring more accurate probabilities

for that particular set of input tuples.

3. (Re-evaluation) Finally, since input tuple probabilities may be modified

several times, the system also needs to solve the ensuing problem of sup-

porting incremental updates to the query results by exploiting previously

executed computation. For example, the users may choose to resolve uncer-

tainty using data cleaning techniques based on Cheng et al. [14] or by using

techniques based on value of information [68]. Or the users may procure more

accurate values for the probabilities, e.g., by running more iterations [90] or

by querying an expert.

1.1.3 Probabilistic Modeling of Data Streams [60]

Another real-world scenario where uncertain probabilistic data is generated

is when probabilistic modeling is performed on data, especially in the context

of continuously generated data streams. Enormous amounts of such stream-

ing data are being generated everyday by measurement infrastructures that

continuously monitor a variety of things from environmental properties using

sensor networks [75] to behavior of large computational clusters [51]. To fully

harvest the benefits of this extensive monitoring, there is a need to process

and analyze such data streams in real-time. Probabilistic modeling of such

streams is typically used for:

13

• Inferring hidden variables: In several real-world data streams, the at-

tributes of interest may not be directly observable (e.g., working status

of a remotely located wireless sensor), or it may be very expensive to

measure them (e.g., light on a Berkeley Mote [34]). A common task

over such data streams is to continuously infer the value of the hidden

variables using the observed data.

• Eliminating measurement noise: Data Streams generated by distributed

measurement infrastructures like sensor networks or GPS devices are in-

variably noisy; this could be because of calibration effects, poor coupling

or analog-to-digital conversion, inaccuracies due to non-robust measure-

ment techniques, or inherent flaws with mass-produced sensing devices.

Removing measurement noise is perhaps the most important first step

when analyzing such data streams or processing user queries over them.

• Probabilistically modeling high-level events from low-level sensor readings:

Automatically recognizing higher level events such as user activities

through use of unobtrusive sensing technologies is considered a key in

the field of ubiquitous computing [19, 83, 73]. For instance, Patterson et

al. [83] demonstrate how the transportation mode of a user can be learned

using GPS readings, which they then use to design a guiding device for

cognitively impaired people.

All the tasks described above are examples of applying probabilistic models

such as dynamic Bayesian networks [80, 79] to the raw data. These models

allow us to combine prior domain knowledge about the system behavior with

the actual observations to compute the most likely values for the variables

being modeled. As a result of such probabilistic modeling, confidence/beliefs

14

are assigned to the raw measurements. For example, in the first task described

above, the hidden variables cannot be inferred exactly, instead a probability

distribution is associated with the hidden variable. Similarly, by removing

measurement noise, we associate degrees of confidence with the measurements

obtained by the sensor network. While extracting higher level events from

low level sensor data, probabilities of occurrence of the higher level events

are inferred. Hence, probabilistic modeling tasks generate highly correlated

probabilistic streams. On these probabilistic streams, users and applications

may be interested in several types of queries, as shown below:

1. (Inference) “What is the probability the temperature was more than

50 at 3pm today”. This is an inference query that requires us to compute

the probability distribution of the temperature random variable.

2. (Aggregation) “What is the maximum temperature recorded by the

sensor so far ?”. This is an example of an aggregation query, that requires

us to compute the probability distribution of the maximum temperature

recorded by the sensor.

3. (Sliding window aggregation) “Specify the weekly average humidity

measured by the sensor”. Sliding window queries are specific to stream-

ing data sources. In this example, we need to compute the average

humidity measured by the sensor in each week. Sliding window queries

are much more challenging since we also need to capture the temporal

correlations among the output values. In the above example, we need to

capture the correlations between the humidity values in each week.

15

4. (Lineage/Boolean formula) “What is the probability that the tem-

perature was below 50 today, increased to 75 the next day and was again

below 50 the following day ?”. In this example, we need to compute the

probability of observing the pattern.

As with the previous applications, the output of query evaluation is just

the probability value, which provides little intuition to the user. Hence, we

need to additionally provide more information pertaining to explanations,

sensitivity analysis to the users.

1.2 Problem/Research Challenges

In this dissertation, we address the problem of query evaluation over large-

scale uncertain data. In the following sections, we detail the main problems

that we have worked on and the research challenges that we faced.

1.2.1 Probabilistic Modeling of Uncertain Data

As illustrated earlier, the first step involved in analyzing and querying un-

certain data is to remove noise and infer hidden variables by using probabilistic

modeling. Typical probabilistic modeling tasks use a wide range of models in-

cluding Kalman filters, hidden Markov models (see Chapter 2 for a general

overview) and other special purpose models. In order to support such model-

ing we not only need to develop declarative query languages using which the

users can specify such complex models, but also develop algorithms that are

general purpose, i.e., they can handle many kinds of probabilistic models. In

addition, since the input data is in streaming fashion, our modeling algorithms

16

have to be very efficient, i.e., the time for modeling each item of the data is

should be much smaller than the input data rate.

1.2.2 Query Processing over Correlated Probabilistic

Data

The major focus of this dissertation is on efficient execution of a variety

of declarative queries over large volumes of correlated uncertain datasets. In

recent years, many probabilistic database systems have been developed to

handle large-scale uncertain data [27, 95, 92, 5, 4, 96, 15]. While this prior

work has made great strides in our understanding of how to manage large-scale

uncertain data and how to evaluate the above types of queries on them, only

a handful of these systems can handle correlated data. Sen et al. [96, 97] and

Antova et al. [5, 4] have addressed issues in representing and querying complex

correlations in probabilistic databases. However, their proposed techniques are

not scalable to large databases. Letchner et al. [91, 71] developed techniques

for processing simple queries over probabilistic event streams that have special

correlation structure. However, many of their queries were limited to simple

event detection queries (corresponding to 1 level boolean formulas). Also,

their approach does not generalize to arbitrary correlations that we often find

in real-world datasets. We illustrate the central challenge that is posed by

presence of correlations in the following section. Here we first summarize the

types of queries that we need to handle, and then discuss the challenges in

executing them.

Types of Queries:

1. Inference queries (also called What-If queries): As we explained in Sec-

17

tion 1.1.1, what-if queries require us to compute the probability distri-

bution over a set of uncertain entities in the database. Inference queries

may be an end unto themselves, but are more often are a precursor to

further analysis.

2. Aggregation queries: Aggregation queries are very common in OLAP/Data

Warehousing applications and they require us to compute the probabil-

ity distribution of the aggregate value. A typical aggregation query is

specified using SQL. Suppose we want to compute the number of Honda

cars that are available for sale. We would issue the SQL query:

SELECT COUNT(*) FROM CarAds WHERE Model=‘Honda’

Other common aggregates that we need to compute are SUM, AVG, MIN

and MAX.

3. Lineage queries: As illustrated in Section 1.1.2, conjunctive queries are

quite common in applications that generate probabilistic data. Conjunc-

tive queries are specified using SQL syntax. These are essentially SPJ

(Select-Project-Join) queries and Select-From-Where queries which are

restricted to equality joins and conjunctions in the WHERE clause. For

instance, if we are interested to know the list of reputed auto dealerships

near zip code 12345 offering Honda cars, we issue the SQL query:

SELECT CarAds.Seller

FROM CarAds, Location, Reputation

WHERE (CarAds.Seller = Location.Seller) AND (CarAds.Seller =

Reputation.Seller)

AND (Reputed = Good) AND (Location = ‘12345’) AND (CarAds.Model

18

= ‘Honda’)

As explained in Sections 1.1.1 and 1.1.2, to evaluate the conjunctive

query, we need to compute the probability of one or more boolean for-

mulas (lineages), subject to the underlying set of correlations in the input

database.

4. Extraction Queries: An Extraction query is a new type of query which

we introduce here. The output of an extraction query is a small portion

of the database that is relevant to the execution of the query and that

affects the answer to the query. An extraction query is specified using a

set of random variables and it is useful when we need to perform further

query processing and analysis on the selected portion. Here, extracting

a small portion of the database, while at the same time retaining all the

correlation information, would be crucial for performance.

5. Sliding Window Queries: As illustrated in Section 1.1.3, sliding window

aggregate queries are commonly posed in data stream management sys-

tem. As mentioned in Section 1.1.3, we may be interested to monitor

the sliding window average of temperature every week. We also consider

a special case of a sliding window query, which we call as tumbling win-

dow queries, in which the length of the sliding window is equal to the

skip length, e.g., weekly aggregates. In general sliding window queries

are much harder than mere aggregates since we also need to capture the

correlations in the output.

19

1.2.2.1 Challenges in dealing with Correlations

Correlations present in a probabilistic database make query evaluation chal-

lenging. We illustrate a few of these below.

1. There can be several types of correlations in a probabilistic database. A

tuple can be correlated with another tuple (e.g., via mutual exclusion, cf.

Section 1.1.2) or a set of tuples. Similarly, an attribute may be correlated

with a set of other attribute values (e.g., temperature and humidity in

a sensor network, cf. Section 1.1.3). This raises the first challenge: how

to represent correlations in their most general form very efficiently.

2. The presence of correlations significantly influences the results of query

evaluation. Computing the probabilities of output tuples when the base

data tuples are correlated is a challenging task. Each tuple in a proba-

bilistic database can be correlated with another tuple, or a set of tuples,

which in turn may be correlated with several other tuples and so on. In a

large probabilistic database, this correlation information corresponds to

a very large graph (entities are connected based on correlations) where

even searching for the relevant correlations in the graph can be quite

inefficient.

3. Although the user specified correlations may be local in the graph (1-

hop neighborhood), since the tuples are mutually connected to a number

of other tuples in the graph, each tuple is correlated with every other

tuple in the same connected component in the graph. This leads to the

one of the most important challenges involved in supporting large-scale

correlations, i.e., simple queries on few variables (2 or 3 variables) might

20

need to access the complete database. This is because two variables

can be correlated with each other via a long chain of other random

variables. To capture the joint probability between these variables we

need to access the complete chain. However, this is a very expensive

operation and we cannot afford to access the complete database each

time a simple two variable query is posed. Hence, we need techniques

for efficiently handling this issue.

4. The presence of correlations also influences the complexity of boolean

formula queries. For instance, to compute the probability of a simple

boolean formula (a1 ∨ a2 · · · ∨ a100) exactly, where a1, a2, . . . , a100 are

boolean random variables denoting the occurrence of events, we need to

capture all possible dependencies that exist among these random vari-

ables efficiently. Specifically, we need to do this without constructing the

full joint distribution among the set of random variables, which would

be of size 2100, and subsequently infeasible to compute.

5. The presence of correlations significantly increases the query evaluation

complexity for probabilistic data streams. Traditional query evaluation

algorithms are typically not incremental and are hence not suitable for

high throughput probabilistic streams. Hence, we need to develop effi-

cient incremental algorithms for query evaluation.

21

1.2.3 Robust query processing: Sensitivity & Explana-

tions

As we illustrated earlier, providing just output tuples along with their

probabilities may not be intuitive to the user. Hence, we need to augment

the query evaluation model with two additional features: namely sensitivity

analysis and explanations. Providing such information makes it more intuitive

to the user to reason about the query results.

Sensitivity Analysis: As described earlier, this requires us to determine the

top-` input tuples that most influence the results. Using sensitivity analysis,

the users can focus their attention on procuring more accurate probabilities

for these tuples.

Explanations: The explanations problem requires us to determine, for each

query, the set of input tuples that most contribute to the answer. Note that the

explanations problem is quite different from the sensitivity analysis problem.

A tuple with high probability may contribute a high probability to the result

(on account of its high probability), but may be very insensitive to the output

probability value.

Re-evaluation: Since we allow the user to interactively modify input prob-

abilities, we need to support fast re-evaluation of queries, i.e., faster than

re-evaluating the query from scratch, preferably by exploiting previous com-

putation.

22

1.3 Our Approach

To manage large-scale uncertain data, we first address the problem of mod-

eling the uncertain data. As described in Section 1.1.3, there are three types

of tasks that we typically need to do over uncertain data, i.e., inferring hidden

variables, eliminating noise and discovering high level events from low level

measurements. All the tasks described above are examples of applying prob-

abilistic models such as dynamic Bayesian networks [80, 79] to the raw data.

We use the abstraction of model-based views [35] to push the application of

a wide range of probabilistic models to data inside a relational DBMS, thus

enabling easy application of these tasks. By exploiting the structure of particle

filters (a widely applicable sequential Monte Carlo technique), we efficiently

implement probabilistic models and represent them as sets of weighted sam-

ples (called particles) in relational tables. Probabilistic models combine prior

domain knowledge about the system behavior with the actual observations to

compute the most likely values for the variables being modeled. As a result of

such probabilistic modeling, confidence/beliefs are assigned to the raw mea-

surements. For example, in the first task described above, the hidden variables

cannot be inferred exactly, instead a probability distribution is associated with

the hidden variable. Similarly, by removing measurement noise, we associate

degrees of confidence with the measurements obtained by the sensor network.

While extracting higher level events from low level sensor data, probabili-

ties of occurrence of the higher level events are inferred. Hence, probabilistic

modeling tasks generate probabilistic data. Further, owing to the temporal

dependencies, the output probabilistic data is also highly correlated.

Next, we build a probabilistic database system for managing large-scale

23

correlated probabilistic data and develop algorithms for query processing over

such data. To capture probabilistic databases in their most general form, we

represent them using probabilistic graphical models (PGMs) [86, 24] devel-

oped in the machine learning community. PGMs allow us to represent joint

probability distributions efficiently by exploiting the independences and the

conditional independences in the data. The current literature on probabilistic

database research [27, 95, 92, 5, 4, 96, 15] has considered the following two

types of uncertainty in probabilistic databases.

1. Tuple Uncertainty: Here, there is uncertainty as to whether a tuple be-

longs to the database or not. For instance, the tuples in the Information

Integration application (Figure 1.2(b)) had tuple uncertainty. We intro-

duce a boolean random variable for each such tuple that takes value 1

when the tuple belongs to the table and 0 otherwise.

2. Attribute Uncertainty: Here, the value of an attribute is uncertain. For

instance, in the probabilistic modeling application (Section 1.1.3), the

value of the sensor temperature after the modeling process is complete

is an uncertain attribute. To represent this, we introduce a random

variable to denote the value of the attribute.

We capture correlations among these random variables by adding relevant

edges between the correlated variables. The correlations are quantified by

defining functions called factors over the random variables, that essentially

constrain the values of the variables according to the correlation. We will

discuss these issues in detail in Chapter 2. Using PGMs, we can capture all

possible correlations that may be present in a probabilistic database. While

the PGM representation is general, it is quite useful to use an alternative

24

representation of a PGM called a junction tree [40]. Queries posed on the

probabilistic database can be seen as inference operations on the PGM as

shown by Sen et al. [96]. We exploit this property for query processing.

Central to our technique is our proposed data structure, called INDSEP,

which is an index data structure that provides orders of magnitude improve-

ments in the query evaluation. INDSEP builds upon the well-known junction

tree framework, designed to answer inference queries over large-scale proba-

bilistic graphical models. Although such a junction tree over the probabilistic

database can be adapted to answer queries directly (as we will discuss in

Chapter 2), this naive approach can not avoid the critical problem mentioned

above (Challenge 3, Section 1.2.2.1), and hence to answer a simple query, we

may have to access and manipulate the entire junction tree. Our proposed

INDSEP data structure provides the indexing support to answer these queries

efficiently. In essence, the INDSEP data structure can be seen as a hierarchy

of junction trees, each level subsuming the one below it, arranged in the form

of an n-ary tree with appropriate shortcut potentials maintained at different

levels of the index. The shortcut potentials are the key to the performance of

INDSEP, using which we can answer queries in time logarithmic in the size of

the database in most cases, depending on the correlation structure (as opposed

to linear time or worse for the naive approach). Intuitively, the shortcut po-

tentials allow us to skip over large portions of the database when computing

joint distributions over variables that are correlated through long chains of

other variables. Using INDSEP, we develop efficient algorithms for inference

and aggregation queries.

For conjunctive query evaluation, we adopt a two-step process: In the first

step, we determine the lineage of each output tuple, which is a boolean for-

25

mula that denotes the different possible derivations of the output tuple. In

the second step, we evaluate the probability of the lineage over the junction

tree corresponding to the probabilistic database. We show that, even for the

restricted class of read-once boolean formulas (these are boolean formulas in

which each term appears exactly once), the problem of evaluating the prob-

abilities is #P-complete. Hence, we propose a number of heuristics for this

problem. In addition, we scale our algorithms to large probabilistic databases

using the INDSEP data structure. For each output lineage, we initially pre-

compute the complexity of evaluating its probability by using a novel quantity

called lwidth, a quantity similar to the notion of graph treewidth [94]. We show

that the complexity is exponential in the lwidth. For lineages with large lwidth,

we develop approximation algorithms based on Monte Carlo techniques.

A peripheral module of our system is a unit for query processing over prob-

abilistic streams, treated specially because of their ubiquity. We observe that

although most real world probabilistic streams are highly correlated in both

space and time, they obey a highly structured correlation structure. We observe

that such streams are typically Markovian, with the same set of dependencies

and independences repeating over time, i.e., the state at time “t+1” is indepen-

dent of the states at previous times given the state at time “t” (in some cases,

the state at time “t+1” may depend on a fixed number of states in the recent

past [20]). Examples of such streams include the RFID data streams generated

by the RFID Ecosystem application [103] and the RFID-based inventory man-

agement application [106]. Usually this is a result of the underlying physical

process itself being Markovian in nature. In most applications, this is already

encoded in the mechanism that generates the probabilistic streams; in our

sensor network example (Section 1.1.3), the probabilistic stream would typi-

26

cally be generated by the application of dynamic Bayesian networks [60, 80] to

sensor data, which by their nature generate Markovian and structured corre-

lations. We exploit the knowledge of such structured correlations to efficiently

evaluate queries over probabilistic streams. Firstly, we compactly encode the

correlations in the Markovian stream by decoupling the correlation structure

(the set of dependencies) from the probability values. Secondly, we develop

techniques for incrementally processing several classes of queries. However,

not all queries admit incremental evaluation; for such queries we provide poly-

nomial time approximation strategies.

Finally, we develop a robust query processing framework for probabilistic

databases by augmenting our probabilistic database system with support for

performing low overhead sensitivity analysis and by providing explanations for

query answers. Our system provides an option for the user to mark a query for

performing either sensitivity analysis or explanation analysis over the results

of the query. When a query is marked for sensitivity analysis, we provide the

set of top-` (where ` is a user specified parameter) influential input tuples for

the query and when a query is marked for explanations analysis, we provide

the set of input tuples of size ` which provides the best explanation for the

query results.

1.4 Outline & Research Contributions

The outline and research contributions of the dissertation are as follows.

• In the next chapter, we begin by discussing prior related work. The

research work described in the document relates and contributes to a

number of different fields of research. We list the relevant references,

27

organized by the appropriate research area. In addition, we also provide

background for the various concepts that we use throughout the dis-

sertation. We describe our representation of probabilistic databases as

probabilistic graphical models (PGMs). We also discuss the junction tree

representation. Finally, we illustrate how to execute the queries posed

over the probabilistic database directly over the junction tree represen-

tation.

• In Chapter 3, we provide an overview of the PrDB system that we have

developed in the dissertation. We provide details regarding the declar-

ative query language with which users can provide probabilistic data as

input along with the correlations. We also discuss the data structures

we use to store these correlations. We conclude with a discussion of the

query processor.

• The first step in dealing with uncertain data is to apply probabilistic

models over them. In Chapter 3.5 we develop algorithms for applying

arbitrary probabilistic models over uncertain data streams. This chap-

ter is based on our work which appeared in Kanagal et al. [60]. The

contributions of this work include:

1. We use the abstraction of model-based views [35] to push the ap-

plication of a wide range of probabilistic models to streaming data

inside a relational DBMS, thus enabling easy application of these

tasks.

2. We exploit the structure of particle filters (a widely applicable se-

quential Monte Carlo technique), to implement probabilistic mod-

28

eling and represent them using sets of weighted samples (called par-

ticles) in relational tables. This representation of DPMs naturally

captures many of the correlations present in the data.

• After modeling the uncertain data using probabilistic models, we obtain

correlated probabilistic database, which is represented using a junction

tree. In Chapter 5, we introduce the INDSEP data structure that we

build over the junction tree representation. This chapter is based on our

work which appeared in Kanagal et al. [62]. Specifically, the research

contributions of this chapter are:

1. We propose a novel hierarchical index structure, called INDSEP,

for large correlated probabilistic databases, and introduce the idea

of shortcut potentials which can result in orders of magnitude per-

formance improvements.

2. We show how to answer inference queries, extraction queries and

aggregation queries efficiently using INDSEP.

3. We develop algorithms for constructing a space-efficient index for a

given database, using ideas developed in the tree partitioning liter-

ature. We also design techniques for keeping the index up-to-date

in presence of updates.

4. We present a comprehensive experimental evaluation illustrating

the performance benefits of our data structure.

• In Chapter 6, we provide algorithms to efficiently execute conjunctive

queries over the probabilistic database using INDSEP. As stated earlier,

we use a two step process in which we compute the lineage of the output

29

tuples as a boolean formula, in the first step and subsequently compute

the probability of the boolean formula. The research contributions of

this chapter are:

1. We develop a novel algorithm for computing the probabilities of

boolean formulas over a forest of junction trees, a fundamental prob-

lem that has not been considered before.

2. We show how to process a batch of lineages efficiently by exploiting

the common subexpressions in the formulas.

3. We devise Monte Carlo approximation algorithms for estimating

the probabilities of boolean formulas over correlated junction trees.

• In Chapter 7, we consider probabilistic data streams that have a special

Markovian correlation structure. We develop incremental algorithms for

query processing over Markovian streams to enable scalable evaluation.

The details in this chapter were originally published in Kanagal et al. [61].

The research contributions outlined in this chapter are:

1. We present an algebra for operating on probabilistic sequences (us-

ing the possible worlds semantics) and introduce the notion of

Markovian sequences.

2. We develop efficient data structures for representing Markovian se-

quences and develop query processing techniques that exploit the

repeated correlation structure.

3. We develop incremental algorithms for the query processing op-

erators based on the get next() framework to efficiently support

streaming data.

30

4. We characterize queries that have exponential data complexity and

provide approximation algorithms for them.

• In Chapter 8, we develop our robust query processing framework for

probabilistic databases. We consider the case of tuple-independent prob-

abilistic databases and a large class of queries including SPJ queries,

aggregation queries and top-k queries. The main contributions of this

chapter are:

• We provide definitions for influence of tuple(s) on a query result and

explanations that are applicable to a wide range of database queries

including conjunctive queries, aggregation queries and top-k queries.

• Sensitivity Analysis

1. We show that the problem of identifying top-` influential variables

for conjunctive queries is #P-complete.

2. For conjunctive queries that lead to read-once / 1OF lineage for-

mulas [98, 45, 81], we provide linear time algorithms (in size of the

lineage). For the general case, we provide algorithms that are expo-

nential in the treewidth [39] of the boolean formula.

3. We develop algorithms for identifying influential variables for aggre-

gation (SUM/ COUNT/ MIN/ MAX) queries.

4. We develop novel pruning rules to speed up the computation of in-

fluential variables for top-k queries (by probability).

• Explanation Analysis

1. We show that the problem of determining the top-` explanations

for conjunctive queries is NP-hard in general. As with sensitivity

31

analysis, we develop algorithms for identifying the best explanations

for queries that lead to read-once lineages.

2. We develop novel techniques for computing explanations for aggre-

gation (SUM/ COUNT/ MIN/ MAX) queries.

• For conjunctive queries and aggregation queries, we provide incremen-

tal algorithms for re-evaluating query results when input probabilities

are modified.

32

Chapter 2

Background and Related Work

In the first part of the chapter, we provide background for the various con-

cepts used in the dissertation. Research in probabilistic modeling and proba-

bilistic databases is highly multi-disciplinary with ideas from several areas in

computer science ranging from machine learning, databases and graph theory

being used. In the latter part of the chapter we discuss some of the related

work in this area and provide references to the most relevant literature.

2.1 Background

As shown in Chapter 1, one way probabilistic databases are naturally gener-

ated is by applying probabilistic models to uncertain data. In this first part of

the chapter, we provide background for dynamic probabilistic models (DPMs)

such as hidden Markov models and Kalman filters. We illustrate inference

algorithms over such models in Chapter 3.5.

Probabilistic databases can be equivalently represented using probabilistic

graphical models (PGMs) [86], which is a useful tool developed to capture

33

uncertainty in the machine learning community. This result was originally

shown by Sen et al. [96]. PGMs allow us to capture probabilistic databases in

their complete generality. Any probabilistic database with tuple uncertainty,

attribute uncertainty and arbitrary correlations can be represented as a proba-

bilistic graphical model. In Section 2.1.2, we provide a brief overview of PGMs

and illustrate how to represent a generic probabilistic database using PGMs.

Next, in Section 2.1.3, we provide algorithms for evaluating queries posed

over the probabilistic database directly over its PGM representation. These al-

gorithms are based on inference [86, 24] operations in PGMs. As we show later

in the chapter, inference algorithms in PGMs do not scale to large probabilistic

databases and it is more advantageous to use another equivalent representa-

tion of a PGM called a junction tree [40]. Junction trees, also known as tree

decompositions, have been studied widely in several disciplines in computer

science, including query optimization [10], constraint satisfaction [32], matrix

decomposition algorithms and graph theory [94, 8, 7]. We describe the junc-

tion tree representation of PGMs in Section 2.1.4 and subsequently describe

techniques for evaluating queries over junction trees in Section 2.1.5.

Finally, we discuss two special cases of probabilistic databases that have

specialized correlation structures and allows for more efficient query evalua-

tion. First, we introduce Markovian streams, i.e., probabilistic data streams

which obey a special (linear) correlation structure, and discuss an alternative

representation structure for Markovian streams. Second, we discuss tuple-

independent probabilistic databases, which are essentially databases with only

tuple uncertainty and no correlations.

34

2.1.1 Probabilistic Modeling of Uncertain Data

Dynamic probabilistic models are widely used in practice to model and to

reason about complex real-world stochastic processes [56, 80, 79]. The simplest

and most widely used examples of DPMs are hidden Markov models (HMMs)

and linear dynamical systems (better known as Kalman filter models (KFMs)).

We start by illustrating HMMs and then describe more general DPMs. A more

detailed illustration of DPMs can be found in the technical report [59].

2.1.1.1 Hidden Markov models (HMMs)

HMMs have been applied in a variety of areas like speech recognition,

bioinformatics, and fault detection [88, 67, 112]. They are used to infer the

values of unobservable (hidden) state variables from imprecise observations

about related variables. We illustrate HMMs using a fault detection applica-

tion. Consider a single sensor, possibly faulty, that is measuring temperatures

in a room and transmitting them to a central database server. We wish to

know if the sensor is working correctly (so we can ignore erroneous readings).

The only information we have about the sensor are the temperature readings

it transmits.

We can use an HMM to solve this problem as follows. We show the HMM

in Figure 2.1(i). The hidden variable in this case (which we cannot measure), is

the working status of the sensor, St, which takes two values: Working (Wo) or

Failed (Fa) (t denotes the time). The observed readings are the temperatures,

Tt, measured by the device, which may contain noise.

The prior knowledge about the system behavior (that is used to determine

whether the sensor has failed) can be captured by two conditional probability

35

(i) AR-HMM 1 (ii) KFM

p(Tt|Tt−1, St) =

{
N(Tt−1, σ) St = Wo
U(min,max) St = Fa

p(St+1|St) =

Wo Fa

Wo 0.99 0.01
Fa 0.01 0.99

p(Vt+1|Vt) = N(Vt, σV)
p(Xt+1|Xt, Vt+1) =

N(Xt + Vt+1, σX)
p(Zt+1|Xt+1) = N(Xt+1, σY)
Priors : p(V0) and p(X0)

(iii) (iv)

Figure 2.1: Graphical representations of DPMs. (i) Using an HMM for fault
detection; (ii) Using a KFM for velocity and location estimation. (iii) Param-
eters of the HMM model. (iv) Parameters of the KFM model.

distributions (Figure 2.1(iii)) :

• P (Tt+1|Tt, St+1): This distribution captures the behavior of the sensor based

on its working status. For instance, from prior knowledge about the process,

we expect that if the sensor is working correctly (St+1=Working), then the

sensor temperature measured at time t+1 should be around Tt (temperature

measured at t) plus a small (Gaussian) noise. If the sensor is faulty, then a

simple assumption is that the sensor arbitrarily returns any value between 0

and 100, independent of the real temperature. Clearly, the faulty behavior

depends on the nature of the sensor.

• P (St+1|St): Figure 2.1(iii) shows a possible table for this that captures the

prior knowledge that the sensor has a small probability of failing. The table

indicates that if the sensor was working at time t, then the probability that

36

it will fail in the next time instant is 0.01 and if the sensor has failed now,

the probability that it will work the next time instant is 0.01. Once again,

the actual probabilities depend on the nature of the sensor and possibly the

manufacturing process; for most devices, this type of information is typically

available.

These conditional distributions form the parameters of the HMM. By com-

bining them with the observed temperatures from the data stream using an

HMM inference algorithm like forward-backward or the Vitterbi algorithm [88],

we can infer the best possible estimate of the hidden variables (in our case,

the status of the sensor at various times). We note here that the above model

is not suitable for temperature prediction, but only for fault detection (since

it does not capture the temporal trends in the temperature).

2.1.1.2 Linear Dynamical Systems

A linear dynamical system, more commonly known as the Kalman filter

model (KFM), is another widely used dynamic probabilistic model. We illus-

trate KFMs using the following application. We are interested in computing

the position and velocity of a car based on continuous observations of the

position of the car made by an inaccurate GPS device.

Here, velocity is a hidden variable that is not being measured directly.

Furthermore, the actual position is also not known because of the inherent

measurement noise in GPS data. In this case the state of the car at time t is

denoted by [xt, vt], where xt denotes the true location of the car (assuming one-

dimensional motion) and vt denotes the velocity. Let zt denote the observed

location of the car.

1AR-HMMs (Auto-Regressive HMMs) are a specific class of HMMs.

37

Figure 2.1(ii) shows a pictorial representation of the KFM that can be used

in this application. (This model was described by Murphy [80]). Similar to the

earlier example, we can summarize our prior knowledge about the process using

the following equations; these equations can be easily recast as conditional

probability distributions (shown in Figure 2.1(iv)).

zt = xt +N (0,W1)

xt+1 = xt + vt+1 +N (0,W2)

vt+1 = vt +N (0,W3)

The first equation specifies how the measurement noise (which is assumed to

be a zero-mean Gaussian with covariance W1) affects the observed locations,

whereas the latter two equations encode the movement of the object and the

random perturbations that the location and velocity might be subject to.

Kalman filter actually refers to a specific analytical inference algorithm

for the LDS model [109]. Given the observed variables and the conditional

distributions, this algorithm can be used to obtain a distribution over the

hidden variables (velocity and true location in our case) and once again, it can

be seen as a special case of general inference algorithms for DPMs [72]. We

will continue to call this model the Kalman filter model (KFM).

2.1.1.3 DPMs: Graphical Representation

DPMs generalize the basic models described above. They are represented

using a directed graphical structure (Figure 2.1), where the graph captures the

dependencies between the process variables. Figure 2.1(i) shows the graphical

representation for the HMM described above and (ii) shows a KFM model

38

for velocity and location estimation (used in Experiments, Section 6.4). The

details of the graphical representation are as follows.

Nodes of the graph represent the attributes of the system being modeled (as

random variables). In Figure 2.1(i), the attributes of the system being mod-

eled are the temperature (Tt) and status (St) variables. By convention, the

observed nodes are shaded while the hidden nodes are clear.

Time is represented in a DPM through use of vertical slices. Each vertical

slice of the graphical model corresponds to the state of the system at a given

time instant. As time advances, we can unroll the model by repeating the

structure and parameters of the model as shown in Figure 2.1 (iii).

Edges/CPDs: The directed edges represent “causality”. In Figure 2.1(i), the

working status at time t influences the measured temperature at time t. The

degree of causality is indicated by the conditional probability distribution func-

tion (CPD) described above. The CPD of node X is indicated by P (X|Pa(X))

where Pa(X) denotes the parents of node X. We need three sets of CPDs to

fully specify a DPM:

• The prior (unconditional) probability distributions over the variables in the

first slice (that may not have any parents).

• The CPDs that encode the knowledge about how the state at time t + 1

depends on the state at time t.

• The CPDs that encode the knowledge about how the observations at time t

depends on the state at time t.

Typically it is assumed that the variables at time t depend directly only on

the variables at time t and t − 1 (Markov assumption), and hence a 2-slice

representation (as shown in Figures 2.1(i) and (ii)) is usually sufficient. The

39

parameters of the DPM may be input from prior knowledge or may be learned

from training data. We use Maximum Likelihood Estimation (MLE) for learn-

ing parameters of the CPDs, if needed. Details of the learning algorithm can

be found in [59].

2.1.1.4 Inference in DPMs

The ultimate goal of modeling a stochastic process using a DPM is to ob-

tain a posterior distribution over the hidden variables of the model, given the

observed measurements. This task is called inference. Several inference algo-

rithms have been developed for efficient inference in special cases (e.g. Kalman

Filters), and many general purpose inference techniques (e.g. junction tree al-

gorithm) are also known. We present one such general purpose algorithm,

based on Monte Carlo techniques, in Section 4.3.

2.1.2 PGM Representation

In this section, we describe how to represent a probabilistic database gener-

ically using a PGM. Consider a simple probabilistic database on two relations

R1 and R2 shown in Figure 2.2(a). The relation R2 exhibits attribute un-

certainty, i.e., both the attributes V1 and V2 are uncertain. The relation R1

exhibits both attribute uncertainty in the attribute V0 and tuple uncertainty

since it has a column marked ‘?’. The random variables corresponding to the

uncertain entities are also shown in the figure. For instance, the tuple with

gid = 2, (2, h, f) in R2 has two random variables h and f that denote the

values of the uncertain attributes V1 and V2. Similarly, the tuple (1, b) in R1

denotes the value of the attribute V0 using the random variable b. In addition,

40

gid V0 ?

1 b a
2 c a
3 k 1
4 d e
5 n 1
6 o 1

gid V1 V2

1 h i
2 h f
3 g j
4 l j
5 l m

R1 R2

a

b

i
h

gf

e

d
c

n

m

l

k

j

o

(a) Probabilistic Database (b) PGM representation

gjk

hifh

cfg

de

ad
ac

ab
jlm

ln

lo

g

h

j
l

f
a
a c

d

l

(c) Junction Tree for the PGM in part (b)

Figure 2.2: Example: (a) A probabilistic database Dp on two relations R1 and
R2 exhibiting both tuple-existence and attribute-value uncertainties (e.g. a
indicates the random variable corresponding to the existence of the first tuple
in R1); (b) The directed PGM that captures the correlations in Dp, and (c)
the junction tree representation of the PGM.

to denote the tuple uncertainty, we use a binary random variable a to denote

the presence of the tuple, i.e., if a = 1, then the tuple belongs to the relation,

otherwise, if a = 0, then the tuple does not belong to the relation. Notice

the perfect correlation between tuples 1 and 2 in R1, i.e., either both of them

belong to the database together, or neither of them appears, depending on

the value of the random variable a. Further, many more complex correlations

can occur among the random variables. We represent these correlations using

a graphical structure as shown in Figure 2.2(b). The PGM in the figure is

an example of a Bayesian Network, a class of directed probabilistic graphi-

cal models. Although our system is not restricted to directed PGMs, we use

the example of directed graphical models for simplicity of exposition. Figure

41

2.2(b) depicts a directed PGM on a set of random variables {a, b, . . . , o} corre-

sponding to the probabilistic database shown in Figure 2.2(a). Every node v in

the PGM is associated with a conditional probability distribution P (v|Pa(v))

(Pa(v) is the set of parents of v), which denotes how the value of v depends

on the values of its parents. For example, node g in Figure 2.2(b) is associated

with the conditional probability distribution p(g|k, j) since the parents of g are

k and j; similarly, the node f is associated with the conditional probability

distribution p(f |g). Nodes with no parents have prior marginal probabilities

attached to them. In Figure 2.2(b), the nodes l and m have no parents and

are associated with the prior probability functions p(l) and p(m) respectively.

The overall joint distribution over all the variables can be computed by mul-

tiplying the conditional probability distributions of all the nodes in the PGM

as shown in the equation below.

p(a, b, . . . , o) = (p(m)p(l)p(n|l)p(o|l)p(j|m, l)p(g|k, j)p(k|j)p(c|f, g)

p(f |g)p(h|f)p(i|h)p(a|c)p(b|a)p(d|a)p(e|a))

Missing edges in the graph encode the conditional independences between

the random variables. For example, in Figure 2.2(b), e is independent of a if

we know the value of the random variable d. Similarly, b is independent of c

if we know the value of the random variable a.

2.1.3 Query Processing over PGMs

In this section, we describe how to execute queries on probabilistic databases

represented as PGMs. We use the example of a simple PGM shown in Fig-

42

B

A

C

D

A p

0 0.3
1 0.7

B A p

0 0 0.5
1 0 0.5
0 1 0.2
1 1 0.8

D B C p

0 0 0 0.2
1 0 0 0.8
0 0 1 0.1
1 0 1 0.9
0 1 0 0.4
1 1 0 0.6
0 1 1 0.3
1 1 1 0.7

C A p

0 0 0.4
1 0 0.6
0 1 0.1
1 1 0.9

(a) A simple PGM (b) CPDs for the PGM

B

A

C

D

S

S B C p

0 0 0 1
1 0 0 0
0 0 1 0
1 0 1 1
0 1 0 0
1 1 0 1
0 1 1 0
1 1 1 0
2 1 1 1

(c) PGM for aggregate query (d) p(S|B,C)

B

A

C

D

E

F

O

E A B p

0 0 0 1
1 0 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 1 0 0
0 1 1 0
1 1 1 1

O E F p

0 0 0 1
1 0 0 0
0 0 1 0
1 0 1 1
0 1 0 0
1 1 0 1
0 1 1 0
1 1 1 1

(e) PGM for lineage query (f) p(E|A,B) (g) p(O|E,F)

Figure 2.3: Query processing over probabilistic databases using graphical mod-
els: (a) a graphical model over 4 attributes; (b) an example set of CPDs for
the graphical model (bold-faced variables indicate the child nodes); (c, d) to
execute a query over the probabilistic database, we add new variables to the
PGM and introduce additional CPDs; (e) PGM for evaluating the lineage
query (f) AND factor for variable E; (g) OR factor for variable O

ure 2.3 to illustrate the query processing algorithms. Figure 2.3 depicts a

PGM on four binary valued random variables A, B, C and D. According to

this model, the random variable D is conditionally independent of A given the

value of the random variables B and C. The CPDs for our example graphical

43

model are shown in Figure 2.3(b).

To evaluate a query over such a database, Sen et al. [96] propose adding

new random variables to the graphical model to capture the intermediate result

tuples generated during query processing. We consider the following queries.

1. Inference query: As indicated earlier (Chapter 1), this query requires us

to compute a joint probability distribution or a conditional probability

distribution among a set of random variables. For instance, suppose we

want to compute the probability distribution of random variable D, i.e.,

p(D). For this query we consider the original PGM (Figure 2.3(a)) and

eliminate the non query variables B, C and D using the same inference

algorithm described above. To compute conditional distributions such

as P (D|A), we first compute the joint distribution p(A,D) and subse-

quently convert this into a conditional distribution by dividing by p(A).

2. Aggregation query: We illustrate aggregation with an example. Suppose

that we would like to determine the sum of random variables B and C

in the PGM. To compute the sum, we introduce a new random variable

S in the PGM that represents the sum of B and C, and we add edges

from B and C to S since they influence the value of S. The modified

PGM is shown in Figure 2.3(c). The exact dependence itself is captured

using the CPD p(S|B,C) shown in Figure 2.3(d); the CPD encodes the

fact that S is the sum of B and C. Now, the query evaluation problem is

reduced to the computation of the marginal distribution of the random

variable S.

Computing the marginal distribution is a well studied problem on PGMs

called inference. There are a number of algorithms for performing in-

44

ference on PGMs such as variable elimination [113], belief propagation

[86] etc. We illustrate variable elimination using the above example. To

determine the marginal distribution of node S, in essence we need to

perform the following computation:

p(S) =
∑

A,B,C,D

p(A,B,C,D, S)

From the joint distribution of the random variables, we need to sum out

(eliminate) the variables that we do not require, in this case A, B, C and

D. The variable elimination algorithm takes in the order of elimination

as input and sums out the variables in the order specified. The first two

steps of the elimination (to eliminate A) are as follows:

p(S) =
∑
B,C,D

p(D|B,C)p(S|B,C)
∑
A

p(A)p(B|A)p(C|A)︸ ︷︷ ︸
=

∑
B,C,D

p(D|B,C)p(S|B,C) f(B,C)

The order of elimination affects the complexity of the computation. A

bad ordering can potentially result in an exponential computation (in the

number of nodes in the graph) while a good ordering can make inference

polynomial-time computable. Some PGMs may not have a good ordering

at all, in which case, the inference problem is #P-hard. We can visualize

the reasons for such scenarios by observing the changes that occur to

the PGM while eliminating variables. In the above example, when A is

summed out from the expression, a new dependency between B and C is

created, which is quantified by the function f in the equation. In other

words, eliminating A introduces an edge between B and C in the graph.

45

In general, edges are introduced between every pair of neighbors of the

node that is being eliminated. If during the elimination process, a node

gets connected to a large fraction of the other nodes in the graph, it

would result in the creation of a very large joint probability distribution

(possibly exponential in the number of nodes in the graph) since the

dependencies between all the nodes need to be captured.

3. Lineage query: We illustrate this with the same PGM as shown in Fig-

ure 2.3. Suppose that we want to compute the probability of the boolean

formula (A∧B)∨ (C ∧D). As with the aggregation query, we introduce

additional random variables to denote the intermediate results of the

query. Here, we introduce three new random variables E and F and O

as shown in Figure 2.3(e). Here, E = A ∧ B and F = C ∧ D. Finally,

the output O is given by O = E ∨F . The exact dependence is captured

using truth tables for the AND and OR logic. For example, the factor

for p(E|A,B) is shown in Figure 2.3(f) and the factor for p(O|E,F) is

shown in Figure 2.3(g). As before, query evaluation is reduced to the

problem of computing the marginal distribution for the variable O.

2.1.4 Junction Tree Representation of PGMs

A PGM can be equivalently described using a junction tree representation

[40], also commonly known as a clique tree in the graph theory literature.

We refer the reader to Darwiche et al. [52] for full details involved in the

construction of a junction tree and only discuss this briefly here. Constructing

the optimal junction tree for a PGM has been shown to be NP-hard [40].

Building a junction tree consists of 3 main steps explained below. We illustrate

46

B
A

D

C
E

B
A

D

C
E

(a) PGM (directed) (b) PGM (after moralizing)

B
A

D

C
E

(c) PGM (after triangulation)

CED

CDB
CAB

CED CDB CABCD CB

2

2

1

(d) Clique graph (Max. Spanning
 tree is shown in bold)

(e) Final Junction tree

Figure 2.4: Figure shows the various steps in the construction of the junction
tree from the original PGM representation in part(a). In part(b) we moralize
the PGM by “marrying” (connecting) nodes C and D. In part(c) we triangu-
late the resulting graph by adding an edge between nodes C and B. Note that
an edge between A and D would also work. In part(d), we construct the clique
graph. The weight of each edge is indicated and the maximum spanning tree
is also shown. The final junction tree is shown in part(e).

with an example in Figure 2.4.

1. Moralizing the PGM: This step is required for directed PGMs. It in-

volves 2 steps. Suppose that we start with a directed PGM denoted by

G. In the first step, we create a copy of G denoted by Gu which is an

undirected version of G simply by dropping the direction from the edges.

47

Next we create the moralized graph GM as follows. For each vertex v,

we identify its parents Π(v) in G. Then, we connect all the nodes in the

set Π(v) with each other in Gu. The resulting graph is the moralized

graph GM . In Figure 2.4, the PGM in 2.4(a) is moralized by adding an

edge between nodes C and D.

2. Triangulating the moralized PGM: An undirected graph is triangulated

if and only if every cycle of length greater than or equal to 4 has a chord

(edge that connects non-adjacent vertices). The minimum triangulation

problem is known to be NP-complete [111]. Hence, we will use a heuristic

proposed by Kjaerluff et al. [64] which we describe briefly. We go through

the nodes of GM and for each node v, we select its neighbors and add

additional edges to convert them into a clique. Clearly, the ordering

of the vertices influences the number of additional edges added. The

heuristic here is to pick the next node such that we add as few additional

edges as possible, breaking ties by choosing the node that introduces the

smallest clique. In Figure 2.4, we triangulate the graph by adding an

edge between nodes C and B as shown in 2.4(c).

3. Building the junction tree: Next, we identify the maximal cliques in the

graph. Maximal cliques are those cliques which are not properly con-

tained in a larger clique. Next we create a new clique graph by introduc-

ing a new vertex for each maximal clique. We introduce edges between

the cliques that share a common vertex in the original graph GM . The

edges are assigned weights equal to the number of vertices they have

in common. The junction tree is obtained by constructing a maximum

spanning tree of this graph. A maximum spanning tree ensures the run-

48

ning intersection property of the junction tree, which is discussed below.

The clique graph and the junction tree for our running example is shown

in Figure 2.4(d,e).

The nodes in the junction tree which correspond to the maximal cliques

in the undirected PGM are called clique nodes. In addition, for each edge in

the tree, we create a new node, called a separator node which corresponds to

the set intersection between the adjacent clique nodes. We connect this new

node to the end points of the original edge. Separator nodes correspond to

the cut vertex sets that separate the maximal cliques in the undirected PGM.

A junction tree satisfies the running intersection property: for a variable v,

if v ∈ C1 and v ∈ C2, then v is present on all the cliques and separators in

the path joining C1 and C2. After the tree is constructed, we assign each of

the conditional and prior probability distributions corresponding to the nodes

of the PGM into a relevant clique in the junction tree. We then multiply all

the probability distributions within a single clique and store it in the clique

as its clique potential. Following this, we run a message passing algorithm [52]

on the tree, during which the cliques locally transmit information about their

distributions (also called beliefs) to neighboring cliques, which the neighboring

cliques use to modify their potentials; the neighboring cliques in turn send

their beliefs to their neighbors and so on. Typically the process is started with

choosing a pivot node from which the messages are first sent outward, and

then collected back inward. After this step, the clique potential of a clique

node will be equal to the joint distribution of all the variables present in the

clique. Similar condition applies to the separator nodes as well.

49

gjkcfg

de

ad

ac jlm

lo

g j
la

c

d

1

2

3 4 5 6

7

Figure 2.5: Path constructed for query {e,o}

The overall joint distribution represented by the junction tree can be com-

puted as follow. Suppose we denote the joint probability distribution of clique

Ci by p(Ci) and that of separator Sk by p(Sk). Then the overall joint distri-

bution is given by the equation:

p =
p(C1)p(C2)...p(Cn)

p(S1)p(S2)..p(Sk)

which is basically the product of all the clique potentials, divided by the prod-

uct of all the separator potentials. For the junction tree shown in Figure 2.2(c),

the value of the joint distribution is:

p(ab)p(ac)p(ad)p(de)p(cfg) . . . p(ln)p(lo)

p(d)p(a)2p(c) . . . p(l)2

2.1.5 Query Processing over Junction Trees

We now provide algorithms for query processing over junction trees. As

indicated earlier, we consider the four types of queries specified in Section 1.2.2.

Extraction Queries: The output of an extraction query in the context of

the junction tree representation is defined (informally) as a junction tree that

includes all the query variables and all the correlations that exist among the

50

variables. In other words, we are interested in extracting the most relevant

part for the query variables from the huge junction tree. Extraction queries

are useful when we need to perform further query processing and analysis on

the selected random variables. Here, extracting a small portion of the junction

tree, while at the same time retaining all the correlation information, would

be crucial for performance.

A naive algorithm to execute an extraction query is by computing the

smallest Steiner tree on the junction tree that connects all the query variables

of interest. Note that a Steiner tree can be computed on a tree structured graph

in polynomial time. Consider an extraction query {g, k} on the junction tree

in Figure 2.2(c). On examining the junction tree, we find that the clique g, j, k

contains both the query variables g and k. Hence the output to this query is

just the clique gjk. Note that since the clique contains the joint distribution

of gjk, it encodes all the correlations between g and k. Now consider an

extraction query {e,o} on the same junction tree. For this case, we observe

that e is contained in clique de and o is contained in clique lo. The Steiner

tree for this query reduces to a simple path, which is shown in Figure 2.5.

If a query variable is present in multiple cliques, then we choose the clique

that reduces the overall size of the Steiner tree. This can be performed as a

post processing operation after computing the Steiner tree by exploiting the

running intersection property – we can remove a leaf node from the Steiner

tree if its neighbor (in the tree) has all the query variables present in the leaf

node.

We note that the answer to an extraction query is not unique – in fact, a

major focus of our work here is developing a technique that efficiently extracts

the smallest possible junction tree that still captures all the correlations among

51

the query variables.

Inference Queries: The output of an inference query is the joint distribution

over all the variables present in the set. The answer to a what-if query can be

computed by executing the inference query and later conditioning it to obtain

the required conditional distribution.

To execute an inference query, we first run the extraction query over the set

of variables and obtain a junction tree over them. We then execute the HUGIN

algorithm [24] for computing the required joint distribution. We illustrate this

with two examples. Consider the inference query {g,k}. After executing the

extraction query, we receive the clique gjk as shown above, and then simply

eliminate (sum out) the variable j from the joint distribution p(g, j, k) and

return p(g, k) to the user. In other words, we compute:

p(g, k) = Σj p(g, j, k)

Now consider the inference query {e,o}. As before, we run the extraction

query and obtain the path shown in Figure 2.5. Using such a path, we can

compute the joint distribution over all the variables present in the path using

the formula discussed above, following which we can eliminate the non-query

variables and determine the answer, p(e, o). However, the intermediate joint

distribution computed will be extremely large. We can instead execute the

query more efficiently by eliminating the unnecessary variables early on using

message passing. We now show the sequence of steps for determining p(e, o).

We first establish the direction of message passing and the pivot node – the

node to which all the messages are sent. In this example, we assume that the

pivot is node lo, and the messages are sent along the path from de to lo as

52

shown in Figure 2.5. In the first step, clique de sends a message m12 (See

Figure 2.5) to clique ad which is basically the value of the joint distribution

p(d, e). After receiving this message, the clique ad multiplies the message

with its potential p(a, d) and divides by p(d) to obtain the joint distribution

p(a, d, e). However, since d is not required for future computation, it eliminates

d from this distribution to determine the probability distribution p(a, e). The

clique ad sends message m23 = p(a, e) to clique ac to continue the message

passing. Note that e is needed since it is part of the query variables and

also that a is required for correctness of the algorithm since it appears in

the next edge. Each clique determines the variables that are necessary by

looking at the neighbor to which it has to send a message and the set of query

variables. Once clique ac receives message m23, it uses its potential p(a, c)

to determine the joint distribution p(a, c, e) and then eliminates a, generating

message m34 = p(c, e). This process is continued until we reach the clique lo

at which point, we eliminate all the non-query variables and determine the

value of p(e, o).

Aggregation Queries: For computing aggregation queries, we perform the

extraction query and obtain a small junction tree on the relevant variables

from the underlying junction tree. We can then construct the appropriate

graphical model for the aggregation function and use an inference algorithm

as described by Sen et al. [96] for computing the probability distribution of

the aggregate value. We discuss aggregate query evaluation in more detail in

Section 5.3.2.

Lineage Queries: Lineage queries are important in the context of probabilis-

tic databases. Lineage or Provenance [95] of a tuple in a database is a boolean

53

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM(i) Prob DB

A B E
α1 β1 a
α1 β3 b
α2 β4 d
. . .
. . .
α1 β9 l
α5 β1 p
α2 β8 q

R1

A C E
α1 γ1 c
α2 γ2 m
α3 γ3 k

R2

C D E
γ1 δ g
γ2 δ n
γ3 δ1 h
γ4 δ1 o

R3

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM (iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(iv) INDSEP

(v) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

A B E
α1 β1 b
α1 β3 c
α2 β4 d
. . .
. . .
α1 β9 l
α5 β1 p
α2 β8 q

R1

A C E
α1 γ1 a
α2 γ2 m
α3 γ3 k

R2

C D E
γ1 δ g
γ2 δ n
γ3 δ1 n
γ4 δ1 o

R3

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM

(iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(v) INDSEP

(iv) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

(i)

Figure 2: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) the equivalent junction tree and (iv) the INDSEP data structure corresponding to the junction tree in (iii)

In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(a) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(b)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [10]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [14]. After

fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(b)) is shown in Figure 2(c). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
pdfs. The joint distribution for the above example is shown
below:

p(ab)p(ac)p(pd)p(de)p(cfg) . . . p(ln)p(oq)

p(a)p(d)p(c) . . . p(l)

Definition 1. Lightly Correlated Probabilistic Databases:
We denote probabilistic databases that can be efficiently rep-
resented as junction trees as being lightly correlated, i.e.,
the cliques are of small size. Examples of lightly correlated
junction trees include Markovian sequences [21, 18].

2.3 Why Junction trees ?
In the machine learning community, junction trees are

considered as a very useful tool since they can be used to
compute all marginals, i.e., the probability distributions of
each random variable independently, in two passes over the
tree. Hence, in a data warehousing context such as ours,
where we have few updates and several queries, a junction
tree is a natural intermediate structure to build since it
speeds up query evaluation by orders of magnitude. While
junction trees can be built efficiently for lightly correlated
probabilistic databases, there have been concerns about the
feasibility of building a junction tree over highly correlated
probabilistic databases, that generate large cliques. Since

(i) Prob DB

(i)

Figure 2: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) the equivalent junction tree and (iv) the INDSEP data structure corresponding to the junction tree in (iii)

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM (iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(iv) INDSEP

(v) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

A B E
α1 β1 b
α1 β3 c
α2 β4 d
. . .
. . .
α1 β9 l
α5 β1 p
α2 β8 q

R1

A C E
α1 γ1 a
α2 γ2 m
α3 γ3 k

R2

C D E
γ1 δ g
γ2 δ n
γ3 δ1 n
γ4 δ1 o

R3

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM

(iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(v) INDSEP

(iv) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

(i)

Figure 2: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) the equivalent junction tree and (iv) the INDSEP data structure corresponding to the junction tree in (iii)

In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(a) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(b)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [10]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [14]. After

fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(b)) is shown in Figure 2(c). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
pdfs. The joint distribution for the above example is shown
below:

p(ab)p(ac)p(pd)p(de)p(cfg) . . . p(ln)p(oq)

p(a)p(d)p(c) . . . p(l)

Definition 1. Lightly Correlated Probabilistic Databases:
We denote probabilistic databases that can be efficiently rep-
resented as junction trees as being lightly correlated, i.e.,
the cliques are of small size. Examples of lightly correlated
junction trees include Markovian sequences [21, 18].

2.3 Why Junction trees ?
In the machine learning community, junction trees are

considered as a very useful tool since they can be used to
compute all marginals, i.e., the probability distributions of
each random variable independently, in two passes over the
tree. Hence, in a data warehousing context such as ours,
where we have few updates and several queries, a junction
tree is a natural intermediate structure to build since it
speeds up query evaluation by orders of magnitude. While
junction trees can be built efficiently for lightly correlated
probabilistic databases, there have been concerns about the
feasibility of building a junction tree over highly correlated
probabilistic databases, that generate large cliques. Since

(i) Prob DB

Figure 3: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) its equivalent junction tree (iv) the INDSEP data structure corresponding to the junction tree in (iii) and (v) Steiner
tree computed while evaluating the inference query {a, k}

In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(i) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(ii)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [11]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [15]. After
fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(ii)) is shown in Figure 2(iii). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator

OR

AND AND

c g m n

(iii) Lineage Formula

Figure 2.6: Figure shows (i) a tuple uncertain probabilistic database (ii) the
graphical model that captures the correlations among the various tuples

formula, which represents all possible derivations of the tuple. Suppose that

we want to execute query R = ΠD(R2 ./C R3) over the database in Fig-

ure 2.6(i). Note that all the relations in the database have tuple uncertainty,

but no attribute uncertainty. For simplicity of exposition, we only consider

lineage queries in the context of tuple uncertainty probabilistic databases.

The correlation among the random variables in the database is shown in Fig-

ure 2.6(ii). Consider the tuple (δ) ∈ R. It is generated by the projection of tu-

ples (α1, γ1, δ) and (α2, γ2, δ) which are present in (R2 ./C R3). If either of the

tuples are present in the join, then the output will contain (δ). Hence, the lin-

eage of (δ) is written as the boolean OR of the lineages of the tuples (α1, γ1, δ)

and (α2, γ2, δ). λ(δ) = λ(α1, γ1, δ) ∨ λ(α2, γ2, δ). The tuple (α1, γ1, δ) itself is

dependent on the presence of both tuples (α1, γ1) and (γ1, δ) in relations R2 and

R3 respectively. Hence, the lineage of (α1, γ1, δ) is written as the boolean AND

of the tuples (α1, γ1) and (γ1, δ) as: λ(α1, γ1, δ) = λ(α1, γ1) ∧ λ(γ1, δ) = c ∧ g.

Similarly, λ(α2, γ2, δ) = m ∧ n. Hence, we can write the overall lineage of the

output tuple (δ) as the following boolean formula ((c ∧ g) ∨ (m ∧ n)). This

formula is an example of a read-once boolean formula [45], i.e., each boolean

54

variable appears exactly once in the formula. It can be represented as a parse

tree, as illustrated in Figure 2.6(iii). The root node of the tree corresponds to

the entire boolean formula. Intermediate nodes correspond to subformulas, i.e.,

they represent the formula of the subtree below them, e.g., in Figure 2.6(iii),

the intermediate node 1 corresponds to (c ∧ g) and the node 2 corresponds to

(m ∧ n).

A lineage query requires us to evaluate the probability of the lineage for-

mula given the probability distribution of the input variables. A naive method

is to use the joint probability distribution over the variables in the lineage.

Suppose we need to compute the probability distribution of (a ∧ b). We first

compute the joint pdf over the variables a and b, i.e., p(a, b). Then, we use the

conditional distribution, p(a ∧ b|a, b) which specifies how the random variable

a∧ b depends on a and b. In this case, it is just the truth table of the boolean

AND logic. We multiply p(a, b) with p(a ∧ b|a, b) and obtain p(a, b, a ∧ b).

Following this, we eliminate a and b from p(a, b, a∧ b) and determine p(a∧ b).

Note that a ∧ b is just another boolean variable with domain {0,1}.

Expressions: We collectively refer to lineages (e.g., b∧c, d∧e) and singleton

random variables (e.g., a, f) as expressions. As we describe later, we will often

need to compute the joint probability distribution of a set of expressions, e.g.,

{a, b ∧ c, d ∨ e} – we call them ExpressionSets.

The algorithm described above does not scale to large expressions since

the initial step computes a huge joint distribution. Even a simple formula of

size 25 needs to compute a joint pdf of size 225, which is very inefficient. We

develop better algorithms for processing lineages over junction trees, based on

message passing in Chapter 6.

55

X1 X4X3X2

Y1 Y4Y3Y2

Xt

Yt

Figure 2.7: Example of a Markov sequence

2.1.6 Special Case 1: Markovian streams

So far, we have taken a look at representing a generic probabilistic database

with arbitrary correlations. We can extend the PGM and the junction tree

representation to probabilistic data streams as well. However, as we ob-

served, most real world data streams obey very structured correlations with

the same set of dependences and independences repeated across time. These

data streams obey the Markovian conditional independence property, i.e., the

random variables corresponding to the tuple at time t − 1 is independent of

those at time t + 1, given the value of the tuple at time t. An example of a

Markovian stream is shown in Figure 2.7. As we can see from the figure, the

dependencies repeat over time, i.e., for all values of i, Xi influences Yi and Xi

influences Xi+1. Similarly for all values of i, Xi+1 and Yi influence Yi+1. Also

note the Markovian property: Given the values of Xi and Yi, Xi+1 and Yi+1

are independent of all the previous random variables. We will discuss how to

represent and query these probabilistic streams efficiently in Chapter 7.

2.1.7 Special Case 2: Tuple Indpendent Probabilistic

Databases

In this section, we provide background for tuple uncertainty probabilistic

databases and the various concepts discussed in Chapter 8. In a tuple un-

56

(i) (ii) (iii)

YX

Z
AND

OR OR

x1 x2

x3x4
x1 x2

x1

x3

x2

x4
x3 x4

x1 x2 x3 x5x4

q6

x6

o

q1 q2

q3
q4 q5

AND AND AND

OR OR

AND

(iv)

Figure 2.8: (i) Boolean formula (x1x2 + x3x4)(x5x6 + x7) represented using
an AND/OR tree. Leaves denote variables of the formula, internal nodes are
intermediate expressions. (ii, iii, iv) Steps involved in generating the read-once
formula for (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) ∨ (x4 ∧ x1)

certainty probabilistic database, (Dalvi et al. [27]), each tuple ti exists with

probability pi. Also, the existence of a tuple is independent of the existence of

the other tuples in the database. We associate each tuple ti in the database

with a binary random variable xi such that xi = 1 if ti belongs to the database

and xi = 0 otherwise. Note that pi = Pr(xi = 1). Let P = {p1, p2, . . . , pn} be

the set of input probabilities.

2.1.7.1 Queries

In this section, we consider conjunctive queries, top-k queries (by proba-

bility) and aggregation queries. We describe each in turn.

Conjunctive queries: A conjunctive query is a fragment of first-order logic

restricted to ∃ and ∧. In SQL, they correspond to select-project-join

queries, restricted to equi-joins and conjunctions in the where clause. As

shown by Das Sarma et al. [95], a conjunctive query can be evaluated over

a probabilistic database by first computing the lineage/provenance for each

output tuple, which is a boolean formula that represents all possible derivations

of the output tuple, and subsequently evaluating the probabilities of the lineage

57

formulas. The general problem of conjunctive query evaluation has been shown

to be #P-complete [27]. However, if the lineage formula can be represented

using a read-once or 1-OF form [81, 98] (a boolean formula in which each literal

appears exactly once), then the probability of the lineage can be computed in

polynomial time. For example, the boolean formula (x1 ∧ x2) ∨ (x2 ∧ x3) can

be rewritten as x2∧(x1∨x3) which is a read-once formula. On the other hand,

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1) cannot be rewritten as a read-once formula.

A read-once formula can be represented as an AND/OR tree as shown in

Figure 2.8. The probability of a read-once formula can be computed using a

bottom up algorithm over the AND/OR tree, which computes probabilities of

intermediate nodes using the following equations. Suppose that z is a node

with children x1 and x2:

if z = x1 ∧ x2 p(z) = p(x1)p(x2) (2.1)

if z = x1 ∨ x2 p(z) = 1− (1− p(x1))(1− p(x2)) (2.2)

Given a boolean formula in DNF form, we can check whether it can be rep-

resented using a read-once representation in time linear in the size of the

formula using the co-graph recognition algorithm of Golumbic et al. [45]. We

illustrate this algorithm with an example in Section 2.1.7.2. If the boolean

formula cannot be represented in a read-once format, we use Shannon expan-

sions as described by Olteanu et al. [81] in order to compute its probability

(See Section 2.1.7.3).

Probabilistic Threshold/Top-k Queries: We consider:

1. Probabilistic threshold queries: A conjunctive queryQ is specified along with

a threshold probability value τ ; the output is the set of the output tuples

58

of Q whose probabilities exceed τ . We assume that the output probabilities

are not part of the result.

2. Top-k queries by probability: This query requires us to return the set of

top-k tuples sorted by probability. This is different from threshold queries

because in this case, we only return k tuples, whereas threshold queries are

not restricted to k output tuples.

Aggregation Queries: The final class of queries we consider are aggregation

queries such as SUM, MIN, MAX and AVG. In this chapter, we only consider

aggregates over a single table containing a set of independent base tuples.

Each base tuple has a real valued score attribute A and the above aggrega-

tion functions operate on the scores. We use ai as a shorthand notation for

ti.A, the score of tuple ti. For both the sensitivity analysis problem and ex-

planation analysis problem, we consider the expected values version where the

output of the query is the expected value of the aggregate. For example, the

answer to SUM is E[
∑

i aixi], where xi is the binary random variable defined

in Section 2.1.7.

2.1.7.2 Detecting read-once lineages

In this section, we describe Golumbic’s algorithm [45] which takes as in-

put, a DNF boolean expression λ and determines if λ can be rewritten using

a read-once representation. It also returns the read-once rewriting if it ex-

ists. The algorithm is complete, i.e., if it cannot determine a rewriting, then it

does not exist. The algorithm starts by constructing a co-occurrence graph of

the boolean formula. The co-occurrence graph of the formula is an undirected

graph in which the nodes are literals of the formula and an edge exists between

59

2 literals if they occur together in some clause in the DNF formula. In the next

step, the algorithm checks if the co-occurrence graph is a co-graph [23]. If yes,

then the algorithm computes the co-tree representation of the co-occurrence

graph, which is the required read-once representation. We illustrate the algo-

rithm with an example.

Suppose we have a boolean formula: (x1∧x2)∨(x2∧x3)∨(x3∧x4)∨(x4∧x1).

The co-occurrence graph G for the formula is shown in Figure 2.8(ii). Since

the graph is connected, the algorithm creates an AND node (Z) in the co-tree

(Figure 2.8(iv)) and constructs the complement of G, Gc as shown in part(iii).

If Gc is connected, then the formula does not have a read-once representation.

Otherwise, it considers each component separately. It creates an OR node

in the co-tree for each component, which are made the children of (Z). The

algorithm recursively continues until we reach singleton graphs, which are

added as leaves, or we reach a termination due to non-existence of a read-once

representation.

A small caveat with this approach is that the algorithm works only for

normal boolean formulas. A boolean formula is normal if we can reconstruct

it from its co-occurrence graph. For example, x1 ∧ x2 ∧ x3 is normal but

(x1∧x2)∨(x2∧x3)∨(x3∧x4) is not normal. Note that the co-occurrence graphs

for both formulas are the same. In recent work, Sen et al. [98] have shown

that lineage formulas are always normal (for conjunctive queries without self-

joins), hence we do not need to make this check. Next, we discuss Shannon

expansions of a boolean formula, which we use for handling non-read-once

lineages.

60

2.1.7.3 Shannon Expansions

Shannon expansions is a technique for representing a boolean formula as a

XOR of two smaller sub-functions of the formula. Using Shannon expansions,

we can express a non-read-once formula using a number of (exponential, in the

worst case) read-once formulas and thereby compute its probability. Given a

boolean formula λ, and a variable x that appears in λ, we can represent λ by

means of the identity:

λ = (x ∧ λx=1)⊕ (x ∧ λx=0)

λx=1 and λx=0 are called the Shannon co-factors of λ w.r.t. x. λx=1 is the

boolean formula obtained by setting x = 1 in the formula and λx=0 is the

boolean formula obtained by setting x = 0 in the formula. x denotes the

negation of variable x. The XOR between the terms is because the assignments

satisfying the first term are mutually exclusive of the assignments satisfying

the second term.

Consider the boolean formula λ = (x1∧x2)∨ (x2∧x3)∨ (x3∧x4). Suppose

we want to expand the formula along x2. The expansion we get is:

x2(λx2=1)⊕ x2(λx2=0) = x2 ∧ (x1 ∨ x3)⊕ x2 ∧ (x3 ∧ x4).

Note that both (x1 ∨ x3) and (x3 ∧ x4) are read-once and hence their proba-

bilities can be evaluated easily. Also, since the two terms in the expansion are

mutually exclusive, we can simply add their probabilities to get the probability

of the original boolean formula.

61

2.2 Related Work

The broad field of probabilistic databases has seen a lot of work in recent

years. In this section, we attempt to list the literature which is highly relevant

to our work and contrast them to the contributions made by us. Owing to the

inter-disciplinary nature of the research, the work described in the dissertation

relates to various areas of computer science including machine learning and

graph theory. Here, we classify the related work according to the various fields

of research and within each field, we describe how this work relates to the prior

work.

2.2.1 Probabilistic Databases

Efforts to represent uncertainty in relational databases have been around

for a fairly long period of time, thereby generating a wide variety of tech-

niques. Perhaps the earliest work in this field was by Barbara et al. [9], which

explored attribute uncertainty models, where the value of an attribute can take

multiple different values, each value weighted with a probability. The work

by Fuhr and Rolleke [42] was one of the earliest works that proposed a simple

model of a probabilistic database based on tuple uncertainty. They used it in

order to incorporate information retrieval into database systems. Each tuple

was assigned a probability, which specified the likelihood that it belongs to the

database. Probview [70] was another early research project which proposed

using a probability range instead of a single number (since an actual value

for the probability itself may be uncertain). They develop query processing

techniques based on Linear Programming. A renewed interest in the field of

probabilistic databases began after Dalvi et al. [27] proposed a simple prob-

62

abilistic database model based on tuple uncertainty, and used possible world

semantics [42], an intuitive semantics for query evaluation. Dalvi et al. [27]

proved that general query evaluation over probabilistic databases, based on

possible world semantics is #P-complete and characterized the class of con-

junctive queries that allow polynomially computable plans, which was termed

as safe plans. In further work [26], they also prove the dichotomy of query

evaluation, i.e., hierarchical conjunctive queries are polynomially computable,

while the non-hierarchical queries are #P-complete.

Following the work of Dalvi et al. [27], several other research literature, fo-

cusing on query evaluation in probabilistic databases [110, 95, 92, 5, 4, 96, 15]

was developed, based on possible world semantics. One example is the Trio

system at Stanford [110, 95] which proposed a two step process for query eval-

uation in probabilistic databases. In the first step, the system keeps track of

the lineage of the output tuples as a boolean formula. In the second step, the

system evaluates the probability of the lineage. We adopt the same strategy to

evaluate conjunctive queries as we show in Chapter 6. Sen et al. [96] propose to

represent arbitrary probabilistic databases using probabilistic graphical mod-

els [86]. They also propose query evaluation techniques based on inference

algorithms in graphical models. We will discuss this work in detail in Sec-

tion 2.1. Sen et al. [96] also showed the connection between safe plans and

probabilistic graphical models by proving that safe plans correspond to tree

structured PGMs, for which inference is known to be polynomially computable.

While this prior work has made great strides in our understanding of how

to manage large-scale uncertain data and how to evaluate various types of

queries on them, only a handful of these systems can handle correlated data

effectively. Sen et al. [96, 97] and Antova et al. [5, 4] have addressed issues

63

in representing and querying complex correlations in probabilistic databases.

However, their proposed techniques are not scalable to very large databases

that we would like to handle in our applications. In our work, we extend the

work of Sen et al. [96] by developing an index data structure called INDSEP

that enables scalable query processing over large-scale correlated probabilistic

databases.

Another related work is that of Bravo et al. [12], who address the prob-

lem of evaluating What-If queries (which they call as MPF queries) using

relational database techniques. They represent each conditional probability

distribution as a separate relation, and show how to scalably evaluate what-if

queries using relational operators. Our approach towards evaluating what-if

queries is largely complementary to their approach since we focus on directly

evaluating what-if queries on the junction tree. They focus on a special kind

of probabilistic database where the number of uncertain entities is small, but

the conditional probability distributions (that quantify the correlations) are

large. We address the complementary problem where the size of the database

is very large, but the probability distributions encoding the correlations are

relatively small.

Also related to our research is the literature on aggregate query processing

over probabilistic streams. Jayram et al. [55] and Cormode et al. [22] present

algorithms for computing expected values of aggregates such as MIN, MAX,

AVG etc over probabilistic data streams. Our work differs from this in two

aspects. First, our focus is on computing the exact probability distribution

of the aggregates rather than just the expectations. Second, our techniques

can handle the strong spatial and temporal correlations present in real-world

probabilistic data streams, which this prior work ignores.

64

2.2.2 Inference in Graphical Models

As shown by Sen et al. [96], query evaluation in probabilistic databases is

a specific instance of the problem of inference in probabilistic graphical mod-

els (PGMs). Therefore, much of the work on that topic in machine learning

is highly related to our research. As discussed in Section 2.1, a probabilistic

graphical model is a concise representation of a large joint probability distribu-

tion among many random variables that exploits the conditional independence

relationships that exist in the data. The class of PGMs contain Bayesian net-

works [86] and Markov networks [24] as special cases. Bayesian networks only

include directed dependencies and Markov networks only allow undirected de-

pendencies among the random variables.

Efficiently evaluating inference queries over PGMs has been a major re-

search area in the probabilistic reasoning community for many years. Pearl’s

belief propagation algorithm [86] was one of the earliest algorithms that has

been proposed for inference in graphical models. However, this algorithm was

designed primarily for exact inference in tree structured graphical models [86].

In the presence of loops, there is no guarantee that the algorithm works cor-

rectly. A number of exact algorithms were developed following this work such

as variable elimination [113], cutset conditioning [76] and junction trees [40].

Each of these algorithms proposed are exponential in the treewidth [94] of the

graphical model. We discussed variable elimination and junction tree methods

in detail in Section 2.1. Our work in the dissertation builds upon the junction

tree algorithm. The INDSEP data structure which we propose in Chapter 5

improves the traditional junction tree inference algorithms by orders of mag-

nitude. We expect our techniques to be useful in answering inference queries

65

over large-scale graphical models as well.

More recent work in machine learning has focused on a new class of PGMs

called first-order graphical models (FO-models). FO-models are essentially

PGMs with an additional layer of specification that uses first-order rules to

specify correlations among classes of random variables. Essentially, the same

correlation applies to all random variables belonging to the respective classes.

This allows FO-models to be compactly represented. Examples include Prob-

abilistic Relational Models [44] and Markov logic networks [93]. A new class

of inference algorithms called lifted inference algorithms aims to exploit the

symmetry provided by FO-models to achieve more efficient inference. The

basic idea behind lifted inference is to develop inference algorithms that sum

over sets of random variables and multiply sets of factors, instead of summing

over each random variable and multiplying each of the factors individually.

Poole [87] was the one of the first to show that variable elimination can be

modified to directly work with FO-models to avoid grounding out the PGM

during inference. Wang et al [108] developed the BayesStore probabilistic

database system that exploits the use of FO-models proposed by Poole et

al [87] to compactly store and query probabilistic databases. Subsequently,

Braz et al. [30, 31] further developed on Poole’s work and introduced two

techniques for lifted inference known as inversion elimination and counting

elimination. Sen et al. [97] develop a general algorithm for lifted inference

based on the graph theoretic concept of bisimulation [82, 63] to exploit shared

correlations that frequently occurs in a probabilistic database.

66

2.2.3 Indexes for Probabilistic Databases

Indexes such as B-trees and R-trees have long been used in the database

community for speeding up query evaluation in relational databases. In the

probabilistic database research, there has been recent work on developing in-

dexes for improving the efficiency of query processing. The earliest works

in this area [17, 102, 101] develop indexing techniques based on R-trees and

inverted indices for the efficient execution of nearest neighbor queries and prob-

abilistic threshold queries. However, most of these approaches assume inde-

pendence between different data tuples and do not work for the data in our

application.

Perhaps the most closely related work to ours is the recent work on indexing

Markovian streams by Letchner et al. [71]. The authors exploit the correlation

structure exhibited by such streams to design a Markov chain index. In Chap-

ter 5, we illustrate the similarities and differences between the Markov chain

index and INDSEP. The concept of shortcut potentials, which we illustrate in

Chapter 5 is loosely based on this idea. The authors show how to efficiently

execute pattern identification queries over Markovian streams using this index.

The proposed index structure however requires the Markovian property which

significantly limits the types of correlations that can be handled. Our index

structure, on the other hand, can handle arbitrary types of correlations (as

long as inference is not intractable).

There has been work on indexing graphical models in the machine learning

community as well. Recently Darwiche et al. [28] proposed a data structure

called DTree that has superficial similarities to our approach. A DTree specifies

a recursive decomposition of a PGM into its constituent probability functions,

67

and provides a recursive framework for executing inference queries. However

the types of queries supported are limited to computing evidence probabilities

(e.g., p(X1 = x1, X2 = x2, . . . , Xn = xn)). Also, DTrees are in-memory data

structures and cannot handle large, disk-resident databases. Finally, a DTree

is by definition a binary tree, which significantly restricts its performance

benefits; specifically, we may still need to access the entire tree to answer an

inference query (as the authors note, the key benefit of a DTree over a junction

tree is its lower memory footprint and not necessarily lower querying times).

2.2.4 Sensitivity Analysis

Sensitivity Analysis in Bayesian networks

Sensitivity Analysis problems in graphical models have been studied by Chan

et al. [13] and Kjaerluff et al. [65]. Van der Gaag et al. [65] show that sensitivity

of an output variable in a Bayesian network with respect to each input CPT

parameter can be computed in O(n) time (n is the size of the network) using

techniques similar to junction tree belief propagation. The number of CPT

parameters is typically exponential in the size of the largest factor in the

Bayesian network. Chan et al. [13] have continued this line of work to compute

influences of pairs of input parameters. These analyses are more general than

our methods since we make assumptions regarding (1) tree structured nature

of the Bayesian network , (2) boolean input variables, implying much fewer

input parameter and, (3) we are only interested in measuring the sensitivity of

one designated child-less output node. Owing to the simplified nature of our

problem, we have been able to provide more efficient algorithms in our case.

Further, in our work we estimate influences of the input tuple probabilities over

68

Boolean formulas and complex aggregation functions, which are not considered

in prior work.

Sensitivity Analysis in Probabilistic Databases

Re et al. [92] originally considered the problem of computing influential in-

put tuples and explanations for boolean conjunctive queries. They propose

alternative forms of approximate lineage and develop algorithms to recover in-

fluential tuples from them, while our focus is on efficient exact computation

based on the original lineage itself. Our proposed definitions of influence and

explanations (in Chapter 8) generalize Re et al.(Section 8.1)’s definition (which

is restricted to boolean conjunctive queries) and are applicable to a variety of

queries. Our techniques also handle aggregation and top-k queries in addition

to conjunctive queries.

Causality in Databases

In recent work, Meliou et al. [77] develop the notion of causality of input tuples

on the result tuples of a query, based on the fundamental notion of causality

proposed by Halpern and Pearl [49, 50]. Informally, a tuple t is a cause for

a query result if there exists a possible world in which the presence/absence

of t changes the query result for that world. The responsibility of a tuple t

on the query result, as defined in Meliou et al. [77] relates to the number of

possible worlds that are affected by the presence/absence of the tuple. We

describe the connection between responsibility as defined here and influence is

Section 8.1.4.

69

Chapter 3

PrDB System Overview

In this chapter, we briefly provide an overview of the PrDB system. We

start by describing the various components of the system. The main compo-

nents of the PrDB system are

• Relational storage system, which stores the tuples and the associated

correlations.

• INDSEP, which is an index built on top of the junction tree correspond-

ing to the probabilistic database.

• Parser, that is used to insert new tuples into the probabilistic database.

• Query Processor, which is used to evaluate extraction queries, inference

queries, aggregation queries and lineage queries over the probabilistic

database.

• Probabilistic modeling system, which applies dynamic probabilistic mod-

els to uncertain data and subsequently generates correlated data.

70

User
Tables

Factor
Tables

RELATIONAL DATABASE
STORAGE SYSTEM

gjk

hifh

cfg

de

ad

ac
ab

jlm
ln

lo

g

h

j
l

f
a

a c

d

l

JUNCTION TREE
Materialized View

INDSEP
Index

PARSER

Y4

X1 X2 X3 X4

Y1 Y2 Y3

Markov
Streams

QUERY PROCESSOR

Correlated
Probabilistic Data

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

Conjunctive queries
Aggregation queries

Lineage Expressions
Sets of random

variables

USER
APPLICATION

SELECT Count(*)
FROM CarAds

WHERE Model='Honda'

tid VIN Seller Model Price prob

x1 1A0 239 Honda 3500 0.3
x2 1A0 231 Honda 4500 0.8
x3 2B1 231 Honda 4500 0.8
x4 2B1 231 Toyota 4500 0.8
x4 2B1 231 Ford 4500 0.8

x
1

x
2

x
4

x
5

x
3

y
1

y
2

(a) CarAds (b) Correlation

tid Seller Address prob

y1 239 12344 0.3
y2 239 12345 0.3
y3 231 12207 0.8
y4 340 12209 0.9

tid Seller Reputed prob

z1 239 Good 0.3
z2 231 Bad 0.7
z3 340 Good 0.9

(c) Location (d) Reputation

Figure 1.2: Data extracted by an information extraction engine. The correlations are indicated in part (b).

1. “Give me the list of all reputed auto dealerships near the zip code 12345”. In a deterministic database, this
corresponds to executing the relational algebra query, expressed in datalog:

q(Sel) := Loc(lid, Sel,′ 12345′), Rep(rid, Sel,′ Good′)

This basically corresponds to a join between the relations Location and Reputation preceded by the selection
of appropriate zip code (12345) in Location and the appropriate reputation. This is commonly known as a
conjunctive query in database query evaluation. However, the query processing is not immediately clear in our
example since tuples do not exist with certainty, i.e., they need not belong to the relation. Consequently, some
of the tuples need not participate in the join described above, leading to different possible results in different
scenarios. A careful observation of the probabilistic database tables tells us that the only possible answer to the
above query is the tuple with seller id 239 since that is the only seller in the 12345 zip code. However, the output
is 239 if and only if both tuples y1 and z1 exist in the database. Therefore, we need to compute the probability of
the conjunction exist(y1)∧exist(z1). Complex queries may require us to compute the probability of non trivial
boolean expressions. For instance, if we want the list of reputed sellers offering hondas in the 12344/12345 area,
then, we will need to compute the probability of the boolean formula exist(x1)∧(exist(y1)∨exist(y2))∧exist(z1)
- which is again an example of a boolean formula query. Note that more complex conjunctive queries may
generate several output tuples in which case we need to compute the probability of each of the output tuples.
Computing such probabilities, especially in the presence of correlations in the input data is a non-trivial task.

2. Other queries that are of interest to the users are aggregation queries. For instance, the user might want
to know the number of Hondas being available for sale. This query requires us to compute the probability
distribution of the number of hondas which is available for sale. As explained earlier, this is a non trival task,
especially in the presence of correlations.

1.1.3 Probabilistic Modeling of Data Streams [50]

Another real-world application that generates uncertain probabilistic data is probabilistic modeling. Enormous
amounts of streaming data are being generated everyday by measurement infrastructures that continuously monitor
a variety of things from environmental properties using sensor networks [61] to behavior of large computational
clusters [41]. To fully harvest the benefits of this extensive monitoring, there is a need to process and analyze such
data streams in real-time. Key data stream processing tasks include:

4

QUERY RESULT

Figure 3.1: Various components of the PrDB system. Probabilistic data is
inserted by the user via the parser. The correlations are stored in the factor
tables in the system. We propose a junction tree-based materialized view
representation of the database and index it using the INDSEP data structure.
The query processor interacts with the INDSEP and the underlying user tables.

The different components of the system are schematically shown in Figure 3.1.

We start by discussing the relational storage system. We illustrate the proba-

bilistic modeling system in detail in Chapter 3.5.

71

3.1 Relational Storage System

We use a relational DBMS to store the tuples and the associated uncer-

tainty. In this section, we describe the relational database schema that we

use for this purpose. We also discuss the language that we have developed for

the users to interact with the system. We illustrate the storage system with

an example. Consider the probabilistic database shown in Figure 3.2(a). It

has two relations S and T both of which have tuple uncertainty and attribute

uncertainty. For instance, the tuple s1 in relation S has tuple uncertainty

since it has a column marked ‘?’. Also, the attribute B is uncertain for both

tuples. Further, there are correlations in the model, between tuples t1 and t2

in relation T and between attributes t1.B and t1.C in T . The correlations are

shown as a graph in Figure 3.2(a). In order to store all of the uncertainty

and the correlation information in our system, we have developed a relational

schema with 5 relations as shown in Figure 3.2(b). We now explain the tables

in the schema.

1. The rvs (random variables) table stores the list of random variables in

the probabilistic database along with information corresponding to its

domain. As we discussed in Chapter 2, there are 2 types of random

variables in PrDB – the boolean random variables corresponding to tuple

uncertainty and the random variables corresponding to attribute uncer-

tainty. Each random variable name is assigned using the key attribute of

the corresponding relation and the column attribute name. For exam-

ple, the uncertain attribute corresponding to the tuple s2 in S is given

the name s1.B. Tuple uncertainty random variables are given the spe-

cial name EU (exists uncertainty). Note that although we indicate the

72

uncertainty attribute using ‘?’ symbol, we use the column name “EU”

in our system implementation. The table also stores the information

corresponding to the domain of the random variable. For instance, the

domain of a tuple uncertainty attribute is given by {true,false}. How-

ever, instead of storing the same domain for several variables separately

which can be quite inefficient for large domain random variables, we nor-

malize and store the actual domain in another relation domains. In rvs,

we store the pointer to the actual domain using a domainId (domID) as a

foreign key. Note that the domains of s1.B, s2.B and t1.B are all denoted

as carDomain, which corresponds to the actual set {Honda, Toyota}. As

we will describe later, these domIds can either be specified by the user

or they can be assigned automatically by the system.

2. We store the information corresponding to the factors in the relations

sharedfactors, factors and factorrvs. Again, to exploit the fact that mul-

tiple tuples can have the same factor associated with them, we store the

actual numbers corresponding to the factors separately. In the shared

factors relation, we store the names of all the factors/correlations in the

probabilistic database. For instance, the factor ft1.EU,t2,EU , which corre-

sponds to the mutual exclusion correlation between tuples t1 and t2, is

stored here. Note that the actual mutex correlation is stored the factors

relation. We store the actual factor numbers using a varchar attribute

type. For instance, we store the mutual exclusion factor using the string

“0 0 1; 0 1 1; 1 0 1; 1 1 0”. This is a string version of the tabular factor

with four rows (separated by semicolons). The ordering of variables in a

factor is stored in a separate relation called factorrvs.

73

We note here that the values in the above tables are not populated by

the user. The user interacts with a system using a declarative language with

useful constructs. We now describe the language that we have developed for

this purpose.

3.2 Parser and Language

We start by describing the declarative syntax using which the users can

insert uncertain data and specify the correlations in the data. We have devel-

oped constructs that allow the users to specify shared correlation structures,

i.e., users can assign correlations associated with multiple tuples using a single

input statement provided they share the same correlation. We illustrate the

language and the schema of the internal database with simple examples. The

parser allows users to define correlations as factor objects and also insert them

against corresponding tuples in the database.

Further, traditional SQL insert statements for inserting tuples into tables

and the create table statements are also supported. The complete list of lan-

guage constructs we support is as follows.

[1] DEFINE DOMAIN <dom name> (<v1>, <v2>, ..., <vn>)

[2] INSERT DOMAIN (<dom name> | (<v1>, <v2>, ..., <vn>)) IN <table> ON <attr>

[WHERE <predicate>]

[3] DEFINE FACTOR <function name> (..;..;..)

[4] INSERT FACTOR (<function name> | (..;..;..)) IN <tables> ON <rvlist>

[5] INSERT FACTOR (<function name> | (..;..;..)) IN <tables> ON <attr list>

[WHERE <predicate>]

74

id A B ?

s1 a1 ? ?

s2 a2 ? 1

id B C ?

t1 ? ? ?

t2 b2 ? ?

t1.EU t2.EU

t1.B

t1.C

s1.B

s2.B

s1.EU

t2.C

fs1.B

fs2.B

fs1.EU

ft2.C

ft1.EU,t2.EU

ft1.B,t1.C

S T Correlations
(a) User Tables

RV domId

s1.B carDomain
s1.EU existsDomain
s2.B carDomain
t1.B carDomain
t1.C dom1
t1.EU existsDomain
t2.C dom2
t2.EU existsDomain

domId domain

carDomain {Honda, Toyota}
existsDomain {True, False}

dom1 {Civic, Prius}
dom2 {Civic, Prius}

rvs domains

fid sfid

fs1.B 1
fs2.B 1
fs1.EU existsFactor
ft1.EU existsFactor
ft2.EU existsFactor

ft1.EU,t2.EU mutex
ft1.B,t1.C 2
ft2.C 3

sfid args probs

existsFactor 1 0 0.5; 1 0.5
mutex 2 0 0 1; 0 1 1; 1 0 1; 1 1 0

1 1 Honda 0.5, Toyota 0.5
2 2 Honda Civic 0.4 ; Toyota Prius 0.6
3 1 Civic 0.7; Prius 0.3

sharedfactors factors

RV fid pos

s1.B fs1.B 1
.

t1.EU ft1.EU,t2.EU 1
t2.EU ft1.EU,t2.EU 2
.

factorrvs

(b) System Tables

Figure 3.2: Schema of the PrDB model. User tables are shown in (a). Internal
system tables are shown in (b)

75

Construct/Example Meaning

define domain carDomain
(“Honda”, “Toyota”)

This statement defines a new domain given
by {“Honda”, “Toyota”}, which can now
be assigned to the relevant random vari-
ables.

insert domain carDomain
in S on B

This statement assigns the domain carDo-
main to the random variables s1.B, s2.B.
Note that we can exploit common domains
between random variables by using only
statement. Note that since we explicitly
specify the name of the domain to be in-
serted, the name “carDomain” is inserted
in the RV table. However, if we had speci-
fied the domain directly, an arbitrary name
is automatically assigned by the system.

define factor mutex (0 0
0.4, 0 1 0.3, 1 0 0.3, 1 1 0)

This statement defines a new factor. The
example shown here defines a mutual ex-
clusion factor with the given probabilities,
which can now be inserted to the corre-
sponding tuples.

insert factor mutex in T
on t1.EU , t2.EU

This statement is used to assign factors to
the relevant tuples. The example shown
here assigns a factor on tuples t1 and t2.

insert factor (“Honda”
“Civic” 0.4 ; “Toyota”
“Prius” 0.6) IN T ON B,C
WHERE id = t1

We can also perform the above statement
on multiple tuples by including a <where>

predicate. This allows us to specify shared
factors on to multiple tuples very easily.

Figure 3.3: Various constructs to insert data and correlations in PrDB

[6] INSERT VALUES (...)

[7] CREATE TABLE (..)

The list of statements to generate the database of Figure 3.2 is shown in Fig-

ure 3.4.

76

create table R (id varchar(20), A varchar(100), B varchar(100), EU char) ;
create table S (id varchar(20), B varchar(100), C varchar(100), EU char) ;
define domain existsDomain (1, 0) ;
define domain carDomain (Honda, Toyota) ;
insert into S values(“s1”, “a1”, ?, ?) ;
insert into S values(“s1”, “a1”, ?, ?) ;
insert into T values(“t1”, ?, ?, ?) ;
insert into T values(“t2”, “b2”, ?, ?) ;
insert domain existsDomain IN T on EU ;
insert domain existsDomain IN S on s1.EU ;
insert domain {“Civic”,“Prius”} IN T on t1.C ;
insert domain {“Civic”,“Prius”} IN T on t2.C ;
define factor existsFactor (0 0.5, 1 0.5);
define factor mutex (0 0 1; 0 1 1; 1 0 1; 1 1 0);
insert factor (“Honda” 0.5, “Toyota” 0.5) on B ;
insert factor existsFactor in S on s1.EU ;
insert factor existsFactor on T.EU ;
insert factor mutex IN T ON t1.EU,t2.EU ;
insert factor (“Honda” “Civic” 0.4 ; “Toyota” “Prius” 0.6) IN T ON B,C
WHERE id = t1 ;
insert factor (“Civic” 0.7; “Prius” 0.3) in T on t2.C ;

Figure 3.4: List of statements to generate the database of Figure 3.2

3.2.1 Parser Implementation

The define domain statement requires us to insert a new domain tuple

in the domain table. We use the name given by the user as the domID for

this domain. The insert domain statement requires us to insert tuples into

the rvs table. Note that the statement can either specify an already defined

domain, which is inserted into the table, or indicate a new set in which case,

the parser assigns a new name to the domain. The more interesting state-

ment is the insert factor statement which requires us to insert tuples into sev-

eral tables. Consider the statement insert factor ("Honda" "Civic" 0.4

; "Toyota" "Prius" 0.6) IN T ON B,C WHERE id = t1. To implement this,

we first run the SQL query with the given predicate on the given relation T

77

and compute the list of output tuples. We assign the factor to each output

tuple’s B and C attributes. Just as before, to insert the factor, we need to

insert into both the factors and the sharedfactors tables.

3.2.2 Factor Semantics

Now, we discuss the semantics of the inserted factors. Consider a tuple t.

There are two sets of factors that may get associated with the tuple.

1. Tuple-specific factors defined for this tuple alone using [4].

2. Shared factors defined over portions of the relations satisfying the WHERE

predicate using [5].

In general the factors supplied by the users may not be consistent. We illus-

trate this with an example. For instance, suppose that the user provides the

following statements.

insert factor ("Honda" 0.5; "Toyota" 0.5) in S on B where id = s1

insert factor ("Honda" 0.7; "Toyota" 0.3) in S on s1.B

Although neither of the statements are problematic by themselves, each state-

ment assigns a different prior factor on the variable s1.B. More severe incon-

sistencies can occur such as: (1) a mutex factor on two tuples t1 and t2 (2) and

a perfect correlation factor between t1 and t2. A couple of workarounds for

this include ignoring the second statement since the first statement, which is

already parsed is contrary to the second statement. Another option is to sim-

ply multiply the factors together without examining the contents of the factor.

In our system, we take the approach of multiplying the factors provided by

the user. However, we take care to ensure that the multiplication operation

does not result in zero valued factors.

78

3.3 Junction tree & INDSEP

After the user specifies the probabilistic database, the system builds the

PGM corresponding the user specified correlations. The PGM is constructed

by extracting all the factors from the disk. We do this by first performing

a join between the factors and the sharedfactors table (equating the sfid col-

umn). Next, for each of the tuples in the resulting relation, we look for the

corresponding tuples in the factorrvs relation and determine the ordering of

the variables in the factor. Using all of this information, we can construct

all the factors in the PGM. After constructing the PGM corresponding to the

database, we build the junction tree of the PGM using the algorithm shown

in Chapter 2. Following this, we build our index structure, INDSEP over the

junction tree. We will discuss INDSEP in detail in Chapter 5. Note that since

the user is allowed to specify correlations over arbitrary sets of random vari-

ables, the marginals defined by the different correlations need not agree are

hence ambiguous. In this work, we simply assume that such ambiguities do

not arise. Both the junction tree and its corresponding INDSEP are currently

implemented as in-memory objects.

3.4 Query Processor

The system currently supports three kinds of queries:

1. Extraction Queries: These are specified using a set of random variables.

An example of an extraction query was shown in the Introduction (Sec-

tion 1.2.2).

2. Inference Queries: These are specified by a set of random variables. For

79

instance, {t1.EU, t2.EU} specifies an inference query and requires us to

evaluate the probability distribution p(t1.EU, t2.EU).

3. Aggregation Queries: These are specified using SQL queries over the

probabilistic database (user tables). An example of such a query was

shown in the Introduction (Section 1.2.2).

4. Conjunctive/Lineage Queries: These are specified using Select-Project-

Join SQL queries over the probabilistic database (user tables). An ex-

ample of such a query was shown in the Introduction (Section 1.2.2).

Inference queries and Extraction queries can be directly evaluated over the

junction tree since they are specified in terms of random variables. However,

aggregation queries and conjunctive queries are specified using SQL queries

over the probabilistic database. They need to be translated to queries over

the random variables. Hence, the query processor employs a two step process

for computing the output results. For aggregation queries, the query processor

first determines the set of random variables over which it needs to aggregate.

In addition, it also needs to determine if any of the tuples being aggregated

also exhibit tuple uncertainty, since this influences the value of aggregates like

AVERAGE and SUM. In the second step, the value of the aggregate is actually

computed. We will discuss the algorithms for evaluating aggregates in Chap-

ter 5.

For conjunctive queries, the query processor first determines the output

tuples of the query evaluation and simultaneously keeps track of the lineages

of the output tuples. In the second step, the probability of the lineage formula

is evaluated on the junction tree. This step is discussed in detail in Chap-

ter 6. The lineages of the output tuples are constructed using a query rewrite

80

procedure as shown below.

We use a simple query rewrite to track the lineages of the result tuples of a

conjunctive query by exploiting the concat and the group concat constructs

of SQL. Given an SPJ query such as, SELECT <S> FROM <F> WHERE <W>. We

rewrite this query as:

SELECT <S>, GROUP CONCAT (SEPARATOR ‘+’) AS EU

FROM

 SELECT <S>, CONCAT(t1.EU,‘*’,t2.EU,‘*’,.. AS EU

FROM <F> WHERE <W>


GROUP BY <S>

Here, ti’s are the tables that are contained in the FROM clause of the input query.

We also assume that each of the input tables has an attribute named “EU”

that represents the random variable corresponding to its tuple uncertainty.

We note here that this technique is designed for tuple uncertainty probabilis-

tic databases. To handle an attribute uncertainty probabilistic database, we

can covert it into a tuple uncertainty probabilistic database as described in

Section 1.1.2 and then use the same rewriting routine.

3.5 Probabilistic Modeling System

In this section, we provide details of the probabilistic modeling system.

The input to the system is an uncertain data stream and the user specified

probabilistic model (DPM) to be applied over the data. The output of the

system is a model-based-view [35] that represents the correlated probabilistic

data generated by the modeling process. We built the probabilistic modeling

system using Java, and we use the open source Apache Derby (Java embedded

81

database system) [6] to store the particle tables. Our prototype implemen-

tation is currently an application level software that lies above the Derby

abstraction layer. The application accesses the particle tables using JDBC

calls. In addition, we cache the particles that belong to the last L time steps

(smoothing lag, Section 4.3) in memory for efficient access; the particles are

written to the database in background. We start by describing how to create

DPM views from uncertain data in Section 3.5.1.

3.5.1 Specifying DPM-based Views

To create a DPM-based view over a stream, the user is required to specify the

following details:

– The schema of the view.

– The data stream to be modeled.

– The DPM to be used to model the data.

The generic view definition statement to create a DPM-based view is as follows.

CREATE VIEW <name of view> <Schema> AS

DPM <DPM config in file>

<TRAINING DATA <SQL query for training data>>

STREAMING DATA <SQL query for streaming data>

The first line of the statement specifies the schema of the view, including its

name and its attributes, just as a traditional database view. The fourth line

specifies the data stream to be modeled using an SQL query. The structure

and the parameters of the DPM itself are specified using a configuration file

that is provided with the view definition. Figure 3.5 shows an example of such

configuration files for the HMM presented in Section 2.1.1. The configuration

82

val(i) Variable modeled by node i

cpd(i) CPD of node i

N(µ, σ) Normal distribution with mean µ and variance σ

U(a, b) Uniform distribution with range [a, b]

[p1; p2; p3] Discrete distribution that has probability p1 of being in first
state, p2 in the second state and p3 in the third state.

(val(i), [s1; s2]) Discrete CPD with 2 possible states that takes state s1 if val(i)
is in the first state and state s2 if val(i) is in the second state

(i)

Node Properties |# CPDs of Nodes

numNodes: 4 |cpd(1):[1;0];

hidden: {1,3} |cpd(2):(val(1),[N(50,0.05);

discrete: {1,3} | U(0,100)]);

node(1): [’Wo’ ’Fa’] |

node(3): [’Wo’ ’Fa’] |cpd(3):(val(1),[[0.99;0.01];

Graph adjacency matrix | [0.01;0.99]]);

graph: [0 1 1 0; |

0 0 0 1; |cpd(4):(val(3),[N(val(2),0.05);

0 0 0 1; | U(0,100)]);

0 0 0 0] |

(ii)

Figure 3.5: (i) Conventions used in specifying the DPM; (ii) Configuration file
for HMM-based view in Figure 2.1(i)

file consists of:

Properties of attributes in the DPM – whether they are hidden or observed,

continuous or discrete, and the set of values they can take if they are

discrete. Attributes corresponding to two slices of the DPM are typically

specified.

Adjacency matrix of the graphical representation of DPM. The edges are

assumed to be directed from the node corresponding to the row to the

83

node corresponding to the column. This graphical representation is re-

quired to be acyclic.

CPDs Prior and conditional probability distributions (Section 2.1.1.3) for

each of the nodes in the graph. This is perhaps the most complex part

of the DPM specification. We allow the users to specify CPDs using one

of two ways.

• Using a set of pre-defined probability distributions: Figure 3.5(i) shows

the distributions we currently support. For example, N(µ, σ) repre-

sents a normal distribution with mean µ and standard deviation σ.

The CPD for node 2 in Figure 3.5(ii) indicates that, based on the

state of node 1 (Wo/Fa), node 3 is either normally distributed with

mean 50 and standard deviation 0.05 or uniformly distributed (be-

tween 0 and 100). Node 3 of the HMM, in Figure 3.5(ii) has a discrete

distribution that was specified using a transition probability matrix in

Figure 2.1(iii).

• By providing a java module file that supports an appropriate API: If the

probability distribution to be specified is not among the ones supported

above, then we allow the user to provide the distribution in the form

of a java class file. The class must be implemented to support the

pre-defined API shown below.

• Object getSampleFromCPD(ArrayList pVals):

This function produces a new sample value for the node given the value of

its parents (supplied in the ArrayList).

• double getProbability(double val, ArrayList pVals):

This function returns the probability that the node variable takes the value

84

val, given its parents values (in pVals).

• addSample(double val, ArrayList pVals): This function adds a new

data sample to the repository of samples used to learn this particular CPD.

• computeParams(): This function, invoked after training samples are added,

is used to “learn” parameters of the CPD.

Finally, instead of specifying the parameters explicitly using the configuration

file or the API, the user may instead specify a training dataset from which to

learn the parameters (line 3 in the view creation syntax).

85

Chapter 4

Probabilistic Modeling of

Uncertain Data

Dynamic probabilistic models are widely used in practice to model and to

reason about complex real-world stochastic processes [56, 80, 79]. The simplest

and most widely used examples of DPMs are hidden Markov models (HMMs)

and linear dynamical systems (better known as Kalman filter models (KFMs)).

In this chapter, we illustrate how to apply generic DPMs to uncertain data and

uncertain data streams. We do so, via the abstraction of a model-based-view,

as shown in Section 4.1. Subsequently, we discuss how to efficiently represent

model-based-views in a relational database and how to evaluate simple queries

over them. We discuss how to keep the views up-to-date in response to updates

to the input data stream in Section 4.3. We use an MCMC technique based on

particle filters for view maintenance. Finally, we conclude with experiments in

Section 4.4.

86

4.1 DPMs as Database Views

The abstraction of model-based view, proposed in [35], allows creating

database views using statistical models. Examples of model-based views based

on non-parametric statistical models like linear regression and interpolation are

described in [35]. Here, we extend this abstraction by allowing views to be

defined using DPMs instead. Figure 4.1(i) shows the schema of the view that

could be presented to the user with the BBQ DPM model (Figure 4.2). We

briefly explain the BBQ DPM before providing details about the DPM-based

view.

BBQ DPM [34]: Figure 4.2 depicts the DPM that we use as a running exam-

ple in this chapter. Here the observed variables are noisy humidity readings,

Mt, and the hour of day, ht. The hidden variables are true humidity, Ht, and

true temperature, Tt, both of which are inferred using Mt; more precisely, at

any time t, given the sequence of measurements M0, · · · ,Mt, the DPM can

be used to infer probability distributions over values of Ht and Tt. Here, the

CPD of node Tt+1 depends on Tt and the hour of the day ht+1 (since how

temperature changes depends on the time of the day).

As we can see from Figure 4.1(i), the schema contains all the hidden state

variables in the DPM as attributes along with a time attribute (the observed

attribute M may be included as well). It must be noted that we in fact

maintain joint distributions (across all schema attributes) although the figure

indicates only marginals (for illustration). As with traditional database views,

this is a virtual table that may or may not be materialized.

Although the above DPM-based view shows only continuous variables,

DPM-based views can also have discrete variables. (e.g. status attribute in

87

t temp Tt humid Ht

...
...

...

3

4

5

...
...

...

SID t Tt Ht weight

...
...

...
...

...

1 4 21.43 40.60 0.40

2 4 21.48 40.50 0.20

3 4 21.49 40.51 0.05

4 4 20.21 41.51 0.15

5 4 21.62 40.29 0.20

...
...

...
...

...

(i) DPM-based view (ii) Associated Particle Table Architecture

Figure 4.1: (i) DPM-based views contain probabilistic attributes; (ii) Particle-
based representation of the view (only particles corresponding to the second
tuple, time = 4, are shown for clarity)

Figure 4.2: Graphical representation of the BBQ DPM used for modeling Intel
Lab data (Section 6.4)

HMM-based view presented to the user in the fault detection example (Section

2.1.1.1)).

The nature of DPMs forces these to be probabilistic views since the at-

tributes of this virtual table may be probabilistic (both Tt and Ht are proba-

bilistic attributes here). 4.1 (i), the temperature attribute is not known with

88

certainty The issue of querying and representing such probabilistic data has

received much attention in recent years [9, 70, 16, 110, 27, 3, 96], and some of

the challenges we face form active research focuses in that area. We plan to

utilize the techniques developed in that work to a large extent in building our

system. We currently allow querying single table DPM-based views using an

extended version of SQL with the following features:

• µ(X): We allow the users to specify operations on expected values of prob-

abilistic attributes. A predicate such as µ(temp) > 30 indicates that the

condition is on the mean value of the temperature attribute.

• with confidence c: This allows the users to specify a minimum confidence

in the result tuples returned.

In addition, we support SQL queries with aggregates such as AVG, MIN, MAX

and NN (Nearest Neighbor).

DPM-based views exhibit complex and strong attribute correlations that

can not be ignored during query processing. Most of the probabilistic databases

proposed above either assume independence or severely restrict the correlations

that can be represented. We differentiate between two types of correlations:

• intra-tuple correlations: that exist between attributes of a single tuple

(e.g., Tt and Ht above). example, in Figure 4.1 (i), humidity and the tem-

perature attributes are correlated.

• inter-tuple correlations: that exist between attributes of different tuples

(e.g., Tt and Tt+1). example, temperatures at times t and t+ 1 are likely to

be highly correlated with each other.

Our internal representation (that we discuss next) currently captures the intra-

tuple correlations, and the query results are also affected by it. Inter-tuple

89

correlations, on the other hand, are harder to capture and we currently ignore

those during query processing. In Chapter 5, we develop intuitive ways of

representing and querying such correlations.

Particle-based representation

We use a representation based on weighted samples (called particles) to

store DPM-based views internally. This not only allows us to handle the

complex continuous probability distributions that may be generated during

probabilistic modeling, but also forms the basis for our inference technique.

Definition: A particle is a weighted sample drawn from a probability dis-

tribution. The weight associated with the sample represents its likelihood of

occurrence in the distribution.

To represent a DPM-based view as a relational table with deterministic at-

tributes, we essentially maintain a set of particles for each tuple in the view

in a separate table called particle table. This table is initialized and then

constantly updated using the inference algorithm (Section 4.3). The set of

particles represents the joint distribution over the attributes in the view. Fig-

ure 4.1(ii) shows a set of particles corresponding to one of the tuples in the

view. The schema of particle table consists of the attributes of the view along

with a SampleID attribute (SID), and a weight attribute. Given such a parti-

cle table, the expected (or most likely) values of the attributes are computed

by taking weighted averages over the particles. For example, the expected

value of the temperature attribute at time 4 is given by (Figure 4.1(ii)) as

T4 =
∑N

i=1(T
i
4 × wi4) = 21.28. Note that, since the particles represent the

joint distribution, the intra-tuple correlations are naturally captured in this

representation.

90

The accuracy of this representation depends on the number of particles

used (N , a system parameter). It has been shown theoretically that the error

in the representation is proportional to 1/N [37].

4.2 Design

To model a data stream using an appropriate probabilistic model, the fol-

lowing sequence of steps take place:

1. The user uses the create view command to specify the DPM and to

create the view (Section 3.5.1).

2. If the user specifies that the CPDs are to be learned using training data,

an MLE-based learning module (see [59]) is invoked over the training

data.

3. A particle table is created and initialized using the prior distributions

(Section 4.3).

4. The particle table is continuously updated by the Update Manager in

response to the incoming data stream measurements (Section 4.3).

4.3 Update Manager: Particle Filtering

The update manager is in charge of keeping the particle table updated and

consistent with the incoming data stream. We use a sequential Monte Carlo

technique called particle filtering [37] for this purpose. Particle filtering is a

well known sequential Monte Carlo algorithm for performing state estimation

in DPMs, and has been shown to be effective in a wide variety of scenarios.

91

In short, the algorithm computes and constantly maintains sets of particles

to describe the historical and present states of the model. As discussed in

Section 4.1, this is exactly the internal representation that our system uses to

maintain DPM-based views. Next we briefly describe the five routines of the

particle filtering technique using the BBQ DPM (Figure 4.2). Pseudocodes for

these routines and a more comprehensive illustration is presented in [59].

Initialization: At the beginning of the process, an initial set of particles is

created by randomly sampling from the prior distributions on the attributes.

Prediction: The prediction step is invoked to advance time. During this

step, the state at time t+ 1 is predicted using the state at time t. Specifically,

for each existing particle at time t, a new particle for time t + 1 is created

by sampling from the relevant CPD. If (T it , H
i
t) denotes the ith particle at

time t, the corresponding particle at time t + 1, (T it+1, H
i
t+1), is created by

sampling from the distributions p(Tt+1|Tt, hourt+1) and p(Ht+1|Ht, hourt+1)

where hourt+1 is the hour at time t+ 1.

Filtering: The filtering procedure involves using the data that arrives at time

t+ 1 to update the state estimate at time t+ 1. Each new particle is assigned

a weight based on the values of the observed variables at time t + 1. These

weights are computed using the CPDs of the observed nodes. In our example,

the weights are assigned to the predicted particles based on the CPD of the ob-

served node Mt, p(Mt|Ht). At the end of this step, the weights are normalized

so they sum up to 1.

Re-sampling: Particle filtering may sometimes degenerate to the case where

a single particle has all the weight. This is handled through a re-sampling step,

where the current set of particles are re-sampled among themselves (based on

92

weight) to generate a new set of particles. The re-sampling step creates a new

set of particles, all with the same weight, thus taking care of the degeneracy.

Note that the same particle may be repeated multiple times in the resulting

set of particles. This is not a problem as the next prediction step will generate

different new particles from these identical particles.

Smoothing: This routine uses the current state distribution to “correct” the

state at previous times. Consider a scenario where the temperature being

modeled changes suddenly. However, the first reading that contains this change

may not affect the inferred temperature because the model would attribute the

reading to noise. Over time, as new readings arrive confirming the change, the

inference process becomes more certain of the change in temperature. The

earlier change that was attributed to noise, is now re-attributed to an actual

change in the temperature. This is done using the smoothing procedure which

recomputes the weights of the particles at earlier times. This effect typically

diminishes after a few steps, and we backward update the distribution of those

steps that are at most L time units away (where L is called the smoothing lag).

The Smoothing step also reduces the variance of the filtering output. However,

it is a very expensive operation - O(N2L) where N is the number of particles;

and is hence not performed at every time step. This offers a trade-off between

accuracy and performance wherein we can control the smoothing operation

and its lag in order to meet user requirements.

4.4 System Evaluation

In this section we present results from the experimental evaluation of our

prototype implementation. Our experimental evaluation illustrates the need

93

for using DPMs when dealing with erroneous and incomplete data streams,

and demonstrates that our system is effective and efficient at applying DPMs

to streaming data. Furthermore, our results also show that the mean squared

errors obtained in the inference process follow the theoretically expected 1/N

behavior [37].

4.4.1 Experimental setup

Dataset I: Moving Objects Dataset

Moving objects databases have received much attention in recent years [89,

105, 16]. We consider a moving objects scenario where a number of point ob-

jects with GPS devices constantly transmit their location to a central server.

This data stream is assumed to be noisy and incomplete, and we would like to

model it to infer the true locations and the velocities of the objects. Lacking

a real-world dataset with GPS traces over multiple objects, we generate simu-

lated data with the properties described above. We simulate a random linear

trajectory for each object and add white Gaussian noise with a standard devi-

ation of 2 units to the data. In addition, we randomly drop 5% of the readings

to simulate incompleteness.

We use a KFM to infer the true locations and velocities (Figure 2.1(ii)).

We enable the smoothing routine with a lag of 2. We model each moving

object separately using a different KFM (different parameters), but store the

information about all objects in a single table. The schema of this view is:

kfview(time, OID, x, y, vx, vy)

Dataset II: Sensor Data

There has been much work recently [34, 83, 16] on managing noisy and incom-

94

(a) SELECT u.OID, v.OID, u.time

FROM kfview u, kfview v

WHERE (u.time = v.time)

AND (|u.µ(x) - v.µ(x)| < δ)
AND (|u.µ(y) - v.µ(y)| < δ)

(b) SELECT kfview.x, kfview.y
FROM kfview

WHERE kfview.OID = 4

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2

%
 m

iss
ed

 in
te

rs
ec

tio
ns

Delta

Raw GPS data
Kalman filter based view

(i) (a) Intersection query (b) Trajectory query (ii) kfview captures all intersections

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

Te
m

pe
ra

tu
re

Time

Temperature acquired by Sensor
Working/Faulty (DPM-based View)

 10

 15

 20

 25

 30

 35

 0 400 800 1200 1600 2000

Te
m

pe
ra

tu
re

Time

Temperature recorded by sensor
Working/Faulty (DPM based view)

(iii,iv) Faulty readings removed by HMM-based view.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 100 1000 10000

M
ea

n
Sq

ua
re

d
Er

ro
r

Number of particles(log scale)

GPS from KF View
Raw GPS data

Temperature from DPM View

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
pe

r I
nf

er
en

ce
 S

te
p(

se
c)

Number of particles

LAG L = 0, (Only Filtering)

L = 1

L = 2

L = 4

(v) Accuracy of Inference (vi) Smoothing performance

Figure 4.3: (i) Queries used in Experiments; (ii) % of missed intersections
as a function of δ on the raw data and the KFM-based view; (iii) Observed
temperatures and the working status inferred using an HMM; (iv) Same as
(iii) with simulated faults inserted; (v) Plot of mean-squared error vs number
of particles for Dataset I and Dataset II. Mean squared error falls off as (1/N);
(vi) Time taken for one inference step for various values of Smoothing Lag(L).

plete sensor data and inferring useful information from them. We attempt to

use our system to perform similar tasks. We use the publicly available Intel

Lab dataset [74] that consists of traces from a 54-node sensor network deploy-

95

ment that measured light, humidity and temperature readings collected in a

lab. The readings collected are extremely noisy and incomplete. Also, sen-

sors that failed midway through deployment continued to transmit erroneous

values. In our experiments, we attempt to accurately infer the temperature

based on the observed humidity values. This is a common query processing

strategy [34] in power-aware sensor networks, where acquiring all attributes is

expensive. We run a series of processing tasks over this data.

Step 1: Remove Incorrect Data Detect failure times of sensor nodes us-

ing an HMM-based view (Figure 2.1(i)) and remove all readings gener-

ated after this time.

Step 2: Learn DPM Split the resulting data into training and testing datasets.

Use training dataset (data collected for 6 days) to learn all CPDs of the

DPM.

Step 3: Infer Temperature values Use the humidity readings in the test

dataset (data collected for 3 days) to infer the temperatures using the

BBQ DPM (Figure 4.2).

Step 4: True Temperature Values Determine exact temperature values

by cleaning the observed temperatures using another DPM based view

(not shown).

The resulting correct temperatures from Step 4 are compared with the tem-

peratures inferred from Step 3 to evaluate the accuracy of the inferred tem-

peratures.

96

4.4.2 Experimental Results

1. Applying DPMs to data is critical

Dataset I: The intersection query in Figure 4.3(i) measures the number of

times at which two particles are closer than a specified distance δ. We execute

this query on the raw GPS data and kfview and compare the number of correct

intersections that are measured in both cases. Figure 4.3(ii) shows the plot

comparing the percentage of missing intersections in the raw data and kfview.

As we can see, a large number of the intersections are missed while executing

the query on the raw data, especially for smaller values of δ. kfview on the

other hand, is able to capture most of the real intersections.

Dataset II: Figures 4.3(iii),(iv) show the results of executing Step 1, i.e., de-

tecting the failure times for sensors. As we can see from Figure 4.3(iii), there

are several incorrect values in the data after 500 hours (20 days approx), that

need to be removed before we can use the data for learning. We also added a

few simulated faults (iv) in order to further verify that the HMM-based view

correctly identifies the faulty readings.

2. Inference using particle filtering is accurate

Dataset I: We execute the trajectory query shown in Figure 4.3(i), that re-

turns the path traced by object 4, on the raw data and on kfview. The accuracy

of the result is measured by computing the deviation of the path from its ac-

tual path using the sum-squared error function. We plot the estimate of the

error as a function of the number of particles (N) in Figure 4.3(v). From the

plots, we can see that the error in the KFM-based views for GPS datasets is

much less than that in the raw data. (Error in raw data is indicated by the

97

straight line.)

Dataset II: We compare the value of temperatures that were inferred in Step

3 (with just filtering, no smoothing) to the true temperature values gener-

ated in Step 4. We compute a mean square error estimate and plot the mean

squared error as a function of the number of particles. We obtain the graph

shown in Figure 4.3(v). For low values of N , the error reduces drastically in

the beginning, however, for higher values of N (more than 100 particles), it

remains fairly constant. The mean square error obtained on the test data with

just Filtering alone is less than 0.25 units (≤1% error) when just 100 parti-

cles are used. We note here that queries over temperature (or other hidden

variables) cannot be posed on the raw data as it was not explicitly measured.

We can see that the error graphs for both datasets follow the theoretically

estimated (1/N) which validates our experiments.

3. Inference using particle filtering is efficient

Learning: Given data to be modeled and a DPM, time is initially spent for

learning the CPDs. Learning the CPDs for the Temperature and Humidity

nodes in the BBQ DPM from about 430000 tuples(each of dimension 3) took

7.5 seconds.

Inference: After the CPDs are learnt and we receive data continuously, time

is spent on performing the Inference procedure. The inference procedure,

performed at each time instant, results in addition of several new rows and

modification of already existing rows. We measure the time taken for one

inference step as a function of the number of particles. We carry out this

experiment for different values of the smoothing lag parameter, L = 0, 1, 2, 4.

98

The results obtained are shown in Figure 4.3(vi). We find that the execution

time increases linearly with increase in the number of particles (as y-axis is

in log scale, this cannot be explicitly seen). If we perform only filtering, the

inference time is very small; we process more than 1000 particles in just 20ms

(which means we can handle streams with 50 updates/second). However, if

we continuously perform smoothing, the time taken for inference increases

drastically as shown in the graph. However, even with a smoothing lag of 4

time steps, we can process 100 particles in less than 100ms (still reasonable

for most common streams). As the accuracy graph shows in Figure 4.3(v),

this may be enough to achieve sufficient accuracy. We are considering “lazy”

smoothing strategies where we perform smoothing ocassionally (not at every

time step) and only when it is essential.

99

Chapter 5

INDSEP

In this chapter we introduce our data structure called INDSEP for junction

trees that enables scalable query processing over junction trees. INDSEP is a

hierarchical tree based data structure that is based on a hierarchical partition-

ing of the junction tree. Its benefits are two fold. Not only does it function

as an index in a database context: i.e., it enables selectively reading only rel-

evant disk blocks into the memory for answering the required query, it also

enables reduction in the query processing time itself, by orders of magnitude

by using shortcut potentials. The outline of the chapter is as follows. We

first provide an overview for shortcut potentials and illustrate how they can

be used to improve the efficiency of query processing in Section 5.1.2. We

then formally define the INDSEP data structure and provide an example for

it, based on the junction tree of Figure 2.2(c). Next, we describe how to

construct INDSEP using our hierarchical tree partitioning algorithm in Sec-

tion 5.2. Next, we describe algorithms for evaluating inference queries and

aggregation queries scalably over INDSEP in Section 5.3. Finally, we illustrate

the mechanisms for keeping INDSEP up-to-date in response to updates to the

100

j

f

c P3

P4

(c) Induced child tree
 stored in I2

I3

gjk

hifh

cfg

de
ad

ac
ab

jlm
ln

lo

g

h

j
lfa

a c

d

l

I1 I2

P1

P2

P3

P4

P5

P6

(a) Hierarchical Partitioning
 of the junction tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(b) Corresponding index
 data structure

Figure 5.1: (a) shows a hierarchical partition of the junction tree shown in
Figure 2.2(c). Note that the separator nodes separating two partitions are
replicated in both the partitions. The corresponding INDSEP data structure
is shown in (b).The contents of the index node I2 is shown in part(c).

database in Section 5.4. We postpone the algorithms for processing lineage

queries to Chapter 6.

5.1 INDSEP Data Structure

In this section, we describe our INDSEP data structure for indexing the

junction tree that represents a probabilistic database. To build the INDSEP

data structure, we hierarchically partition the junction tree into connected

subtrees and subsequently construct the index. Before discussing the exact

101

algorithm for doing this, we specify the information stored in the different

nodes of our INDSEP data structure.

5.1.1 Overview of the INDSEP Structure

At a high level, INDSEP is a hierarchical data structure that is built on top

of the junction tree. Each index node in INDSEP corresponds to a connected

subtree of the junction tree. Suppose we hierarchically partition the junction

tree of our running example in Figure 2.2(c) as shown in Figure 5.1(a). Here,

we first split the tree into three parts denoted I1, I2 and I3 (partitions are

shown using large circles). After this, each part is further subdivided into

smaller partitions. For instance, I1 is partitioned into parts P1 and P2 as

shown in the figure with oval boundaries. The INDSEP data structure for

such a hierarchical partitioning is shown in Figure 5.1(b). Here, the node I2

corresponds to the subtree spanning the cliques cfg, gjk, fh and hi along with

the separator nodes c and j. Similarly, the node P5 corresponds to the subtree

spanning the cliques jlm and ln along with separator nodes j and l. Note

that separator nodes joining two partitions together are included in both the

partitions. At a high level, each node in the data structure stores the following

information about the subtree that it represents.

• (C1) Set of variables of PGM that are present in the subtree below this

node. For example, I2 would store the set {c, f, g, h, i, j, k}. We note here

that we are storing the random variables that are part of the PGM and not

the clique identifiers of the junction tree.

• (C2) Pointers to index nodes of the children and parent pointers for index

traversal.

102

• (C3) The set of separator potentials that join the children together. The

set stored in I2 is {p(c), p(f), p(j)}.

• (C4) The graph induced on its children. Note that the separators that

connect the children are also stored in this graph. The graph stored in I2 is

shown in Figure 5.1(c).

• (C5) Set of shortcut potentials corresponding to the children of this node.

We describe shortcut potentials in Section 5.1.2.

We describe each of the constituent components in more detail in turn.

(C1) Each node in the index structure needs to store the list of variables

present in the subtree of each of the children of the node. The naive method

of storing the list of elements of the set or even storing them as a bitmap is not

feasible; if we had 1 million variables in the PGM, then each index node would

occupy at least 125KB (> 30 disk blocks) of space just to store the variables,

which is a huge overhead. Instead, we store the set of variables under each child

node using two data structures - a range [min,max] and an addList, i.e., the

node contains all the random variables whose ids are either within the range

[min,max] or if it is present in the addList. This contiguous variable name

property is the key idea in reducing the amount of space taken by our index

structure. We achieve this property in the index using a variable renaming

step, which we illustrate while describing the index construction algorithm. In

fact, we also preserve this property even while updates occur to the database,

i.e., when new random variables are added to the database.

(C2) A node stores the pointers to the disk blocks that contain the child nodes

of that node. Since a child node could either be another index node or a leaf,

we also store the type of the child along with its pointer. In Figure 5.1(b),

103

the root node stores pointers to index nodes I1, I2 and I3. Similarly, I2 stores

pointers to the disk blocks containing P3 and P4. A node also stores a pointer

to its parent node.

(C3) A node stores the joint distributions of all the separators that are con-

nected to its child nodes. This includes both the separators that separate the

children of the node from each other, and the separators that separate a child

node from a child node of the node’s sibling. For instance, the node I2 stores

the set {p(c), p(f), p(j)}.

(C4) In order to be able to perform path computation on the junction tree,

we need to store, in each node, the graph induced on the child nodes. Since we

are partitioning trees into connected subtrees, the induced graph is also singly

connected. For simplicity, we also store the separator cliques that separate the

child nodes from each other. The node I2 in Figure 5.1(b) stores the induced

tree shown in Figure 5.1(c). As shown in the figure, each child subtree is

treated as a virtual node and then the edges are determined between the

virtual nodes and the separator nodes, i.e., P3 and P4 are treated as virtual

nodes and they are connected via the separator node f . A path between i ∈ P3

and k ∈ P4 should necessarily pass through f .

5.1.2 Shortcut Potentials

In this section, we describe shortcut potentials, a novel caching mechanism

which we have developed, that can provide orders of magnitude reduction in

query time. Consider the graph shown in Figure 5.2, which represents a path

connecting the variables X and Y in a junction tree. As shown earlier, we can

compute p(X,Y) using the following sequence of messages from the clique C1

104

towards C3.

m12(C,X) =
∑

A,B p(A,B,C,X)

m23(D,X) =
∑

C,E,F p(C,D,E, F)m12(C,X)

p(X, Y) =
∑

Dm23(D,X)p(D, Y)

However, there is some unwanted computation going on above, which can

be avoided. For instance, the variables E,F in the above equations are merely

summed out in the message m23 and are not required to pass information

about the interesting variable X to C3. Since the size of the probability distri-

butions are exponential in the number of the operands, the presence of these

unnecessary variables can lead to increase in query processing times. Instead,

if we had the joint distribution p(C,D) stored in the above example, the com-

putation can be faster: we would replace the computation of the message m23

with

m23(D,X) =
∑

C p(C,D)m12(C,X)

p(C,D) worked well for this example because it was the joint distribution of

all the separators of the clique C2, i.e., it had enough information to shortcut

the clique C2 completely. While the above example was trivial and the savings

quite minimal, we realize the full power of these caches by introducing the

notion of shortcut potentials. We define the following notion of a shortcut

potential that would be beneficial for our purposes.

Shortcut Potential:

The shortcut potential for a node I in the index data structure is defined as

the joint distribution of all the separator nodes that are adjacent to the node

I. A shortcut potential for I allows us to short cut the subtree represented by

105

CDEFABCX DYC D

CD

Figure 5.2: Illustrating overlays and shortcut potentials. Using the cached
potential p(C,D) allows us to shortcut the clique C2 completely.

I completely.

For example, in Figure 5.1(b), the shortcut potential for the node I2 is given by

the joint distribution p(c, j). Similarly, the shortcut potential for the partition

P3 is the joint distribution p(c, j, f). The separator nodes adjacent to a node

are exactly the leaves in the induced child tree stored in the node. The size of a

shortcut potential is the product of the domains of all the variables belonging to

the set. Every index node stores the shortcut potentials for all of its children.

Node I2 stores the shortcut potentials for P3 (p(c,f,j)) and P4 (p(f)). Note

that storing the shortcut potentials for a node in its parent allows us to avoid

accessing the node when the shortcut potentials have enough information.

Whenever the size of a shortcut potential is larger than the size allotted for

the index node (which is 1 disk block), we resort to approximating the shortcut

potential, described next.

Approximate Shortcut Potentials:

We provide 3 levels of approximations of shortcut potentials. Suppose the

separators of node I are {s1, s2, . . . sk}. In the approximation scheme A2 we

store the joint distributions of every pair of separators, i.e.,
⋃
i 6=j p(si∪ sj) (for

a total of
(
k
2

)
joint distributions). In the approximation scheme A3 we store

106

the set of joint distributions of every triple of separators. When the exact

shortcut potential is larger than the block size, we try to use scheme A3; when

A3 also exceeds the block size, we resort to A2. When A2 also exceeds the

block size, we store a random subset of pairwise separators (scheme A1). For

example, in partition P3, we may choose to maintain the set {p(c, j), p(j, f),

p(c, f)} if joint distribution over all the three variables is larger than the block

size. We note here that using the approximation scheme A3 will only enable us

to shortcut the subtree for 3 variable queries and A2 will enable us to shortcut

the subtree only for 2 variable queries. In Section 5.4, we describe how to

update shortcut potentials efficiently when updates occur to the database.

5.2 Index Construction

We now describe the steps involved in constructing the INDSEP data struc-

ture, given a junction tree and a target disk block size (each INDSEP node

must fit in one disk block).

5.2.1 Hierarchical Partitioning

Our first step is to partition the junction tree into subtrees, each of which

are smaller than the size of a disk block. We first assign a weight to each

clique and each separator in the junction tree as the product of the domains

of its constituent variables (i.e., the size of its joint distribution). The size of

a partition is given by the sum of the sizes of the cliques and separator nodes

that are present in the partition. Our objective function is to find the fewest

number of partitions such that each partition can fit in a disk block (i.e., the

space required to store the joint probability distributions corresponding to the

107

partition is less than the size of the disk block). This problem is identical to

the tree partitioning problem considered in Kundu et al. [69].

We directly use the linear algorithm presented in their paper for construct-

ing the partitions. At a high level, the algorithm first performs a depth first

search on the tree and assigns level numbers to each node. After this, the

algorithm iterates through the nodes starting from the lowest level (highest

level number) of the tree and each node computes the weight of the subtree

below itself. Once the weight of some node u exceeds the block size, we start

removing the children below this node (children with highest subtree weight

are removed first) and create a new partition for each of them, subsequently

reducing the subtree weight of u. The algorithm continues until we reach the

root. Kundu et al. [69] prove that the number of partitions generated using

this algorithm is minimum.

After partitioning the junction tree, we treat each partition created as a

virtual node and construct an overlay graph that is created on the virtual

nodes. We also add the separator nodes that connect the partitions with each

other to the overlay graph, and it is weighted as before. Each virtual node

is weighted with the sum of the size of its shortcut potential (See Section

5.1.2) and the set of separator potentials that belong to it. At this point, we

approximate the shortcut potential with approximation schemes A1, A2 or A3

if necessary.

We now perform Kundu’s tree partitioning algorithm again on the overlay

tree and recursively continue this process until we are left with exactly 1

virtual node, at which point, we create the root index node and complete

the hierarchical partitioning. During the construction of the new partitions

and index nodes, we also remember the disk blocks in which they were written

108

and fill out the parent and child block pointers for each node in the data

structure accordingly.

5.2.2 Variable Renaming

We perform a variable renaming step after the hierarchical partitioning step

in order to achieve the contiguous variable name property described earlier.

We sort the leaves of the index tree (which correspond to tree partitions) in

an in-order fashion and assign ids to the variables in the leftmost partition

and proceed further to the next partition. Starting from 0, whenever we

identify an unassigned variable, we give it an id equal to 1 higher than the

previously assigned variable. After this step, each partition contains variables

that are either contained in a closed interval [min, max] or belong to the set of

previously numbered variables, which we store in the addList. The variables

in the addList are exactly equal the set of variables in the separator that

connected the previous partition with this. (The proof for this is quite trivial:

Each partition is assigned a sequence of ids from min to max for the newly seen

variables in the partition, the already existing variables will be in the addList,

these are exactly the ones in the separator. The running intersection property

of the junction tree guarantees this.) The number of variables in the addList

are therefore much smaller when compared to the clique sizes. By performing

variable renaming, we have effectively reduced the space consumed by the

index node from 125 kB (for storing 1 million variables, see Section 5.1.1) to

just a few bytes. We note here that we store the mapping between the old

variable names and the new names in another relation, which may be indexed

using B+-trees or hash indexes.

109

5.2.3 Assigning Range Lists and Add Lists

After each leaf of the index data structure is assigned the range lists and

the add list, we recursively update the index. For each internal node in the

index data structure, we assign its range list by merging the range lists of its

children. Also, we scan the addLists of the child nodes and include the nodes

which do not belong to the range of the node in its addList. In addition, we

assign the shortcut potentials of child nodes to the current node. We continue

this recursion till we reach the root, at which point all the index nodes have

been updated.

Note that once the index is constructed using the above approach, it is

guaranteed to be balanced, owing to the bottom-up nature of the algorithm.

However, when updates occur to the database, it is difficult to guarantee that

the index remains balanced. We currently propose to periodically reorganize

the index to keep it balanced.

5.3 Query Processing

In this section, we provide algorithms for executing inference queries, ag-

gregation queries and extraction queries over a probabilistic database by ex-

ploiting the INDSEP data structure.

5.3.1 Inference/Extraction Queries

As illustrated earlier, inference queries can be solved by constructing a tree

joining all the query variables and then running the HUGIN algorithm over

it. We use our INDSEP data structure to determine a small tree joining the

110

query variables by exploiting the relevant shortcut potentials that are present

in INDSEP, i.e., we replace large sections of the trees with shortcut potentials

whenever possible.

Our query processing algorithm is shown in Algorithm 1. It is a recursive

algorithm on the INDSEP data structure. We first access the root block of the

index and search for the query variables in the separator potentials. If they

are not all present here, then we look for the query variables in the child nodes

by making use of the range lists and the addLists present in the root. At this

step, each query variable is assigned to a child node of the root. We mark

each of these child nodes as Steiner nodes and compute the smallest Steiner

tree S connecting the Steiner nodes in the induced child tree of the root node.

Now we recurse along each node of the Steiner tree, and concatenate their

outputs together to compute the temporary graphical model as follows. For

each index node I in the Steiner tree, we compute the set of query variables

that have been assigned to it, denote by I(V). We also compute the quantity

neighbors(I), which represents the set of random variables that belong to the

separators adjacent to node I in the Steiner tree. If I(V) = φ, we determine

if there is a shortcut potential P which contains all the variables present in

neighbors(I). In that case, we just marginalize the shortcut potential to in-

clude only neighbors(I) and return it. Otherwise, we recurse along that node

with query variables I(V) ∪ neighbors(I). After constructing the temporary

graphical model, we eliminate the non-query variables from it and return the

joint distribution over the query variables.

The algorithm for extraction queries is almost identical to that of inference

queries, the only difference being that we do not execute step 18 of the algo-

rithm described above, i.e., we do not eliminate the non-query variables inside

111

the recursion.

Algorithm 1 query(inode,vars)

1: for i = 1 to vars.length() do
2: found[i] = search(vars[i], inode.children)
3: if ∀i, found[i] = c then
4: if inode.children[c].type = separator then
5: return p(vars) from the separator clique
6: else
7: return query(inode.children[c], vars)
8: else
9: Tree t = SteinerTree(inode.childTree, found)

10: Initialize: GraphicalModel gm = null
11: for every index node I in t do
12: nrs = neighbors(I)
13: I(V) = query variables in I
14: if I(V) = φ & ∃ shortcut P s.t. nrs ∈ P then
15: gm.add(I.shortcutpotential(nrs))
16: else
17: gm.add(query(I, I(V) ∪ nrs))
18: Eliminate non-query variables from gm & compute probability distribu-

tion p(vars)
19: return p(vars)

Example: Suppose we are given the inference query {e,o} on the junction

tree in Figure 2.2(c). We now describe the sequence of steps followed in the

recursive procedure. In the first step, we discover that e ∈ I1 and o ∈ I3,

hence we determine the Steiner tree joining I1 and I3. This is shown in Figure

5.3(a). After this, we pose the query {e,c} on node I1, query {c,j} on node I2

and {j,o} on node I3 to continue the recursion. When the query {e,c} is posed

on I1, we again compute the Steiner tree joining the cliques containing e and

c, shown in Figure 5.3(b), after which the query {a,c} is posed on partition P1

and {a,e} is posed on partition P2. When the query {c,j} is posed on node I2,

we discover that it is present in the shortcut potential of the root and hence,

112

we can directly compute the probability distribution of {c,j}. When the query

{j,o} is posed on the node I3, we obtain the Steiner tree shown in Figure 5.3(c),

following which we pose query {j,l} on P5 and query {l,o} on P6. The final

graphical model computed for the corresponding extraction query is shown in

Figure 5.3(d). Notice that the graphical model is much smaller than the one

shown in Figure 2.5 (which was constructed without the index).

5.3.2 Aggregate Queries

Aggregate queries are specified using a set of variables S and the aggregate

function f . Our aggregate semantics is based on possible world semantics.

Suppose that f is MIN. In each possible world, values are assigned to all the

random variables, and we determine the value of the minimum in each world.

Then we sum up the probabilities of all the worlds which yield this value to

the minimum and compute the probability distribution of the minimum. We

currently support decomposable aggregates - f is a decomposable aggregate

for a set of random variables S = {s1, s2, . . . sn}, if it satisfies the following

condition.

f(s1, s2, s3, . . . , sn) = f(f(s1, s2), s3, . . . , sn))

Informally, if we can apply the aggregate function piece by piece incrementally

over the set of random variables, then the aggregate function is decomposable.

In previous work [61], we showed how to exploit decomposability of aggregates

to efficiently execute aggregation queries for the special case of Markovian

sequences. Here, we develop an extension of that technique for probabilistic

data with arbitrary correlations.

The naive method of executing aggregate queries is by first running the ex-

113

traction query, thereby obtaining the graphical model containing all the input

variables and in the second step, constructing the graphical model correspond-

ing to the aggregate function and inferring the value of the aggregate. However,

this approach does not exploit the conditional independences that might exist

among the input variables. Instead we propose the following approach, where

we push the aggregate computation inside the index.

We describe the intuition behind our algorithm for aggregation by illustrat-

ing it with an example. Suppose we want to compute the sum of the values

of the attribute V1 in the relation R1 in Figure 2.2(a). This corresponds to

computing the aggregate of the random variables {b,c,d,k,n,o}. In the naive

method, we run an extraction query over these random variables and extract a

junction tree containing these variables. However, the junction tree extracted

in this case is almost as big as the original junction tree. On carefully an-

alyzing the graph, we see that b, c, and d are independent of k, n, and o

given the value of c. Similarly n & o are independent of k given the value

of j. Suppose we first define random variables Y1 = b + c + d, Y2 = k and

Y3 = n + o. Then, if we know the distributions of each of these random vari-

ables along with the separators, i.e., p(Y1, c), p(c, Y2, j) and p(j, Y3), then we

can construct the aggregate value exactly from these functions. In essence,

our algorithm is going to “push” the aggregate computation inside the index,

extracting only probability functions such as above.

The algorithm we have designed is a recursive algorithm just as for infer-

ence queries. We illustrate the working of our algorithm for the above query.

In the first step, the algorithm determines that b, c and d are present in node

I1 and that k is present in I2 and that n, o are present in I3. A recursive

call is made on I1 with two sets of parameters: {b,c,d} and {c} which means

114

that we need to compute and return the distribution between b + c + d and

c, we denote this by agg-inf(I1,{b,c,d},{c}). Now, this induces further recur-

sive calls on the partitions agg-inf(P1, {b,c}, {c,a}) and agg-inf(P2,{d},{a}).

The final call is just an inference query on P2. We perform the aggregation

algorithm on the partition simply by first doing the inference query and then

using the joint probability distribution function to determine the distribution

of the aggregate. The results from P1 and P2 are then multiplied to obtain

the probability distribution p(b + c, d, c), which is then processed to obtain

p(b+ c+d, c) = p(Y1, c). The recursive call from I2 leads to an inference query

agg-inf(P3, {k}, {c,j}). Similarly the recursive call on I3 leads to two inference

queries agg-inf(P5, {n}, {j,l}) and agg-inf(P6, {o}, {l}), which are then pro-

cessed as before to obtain the probability distribution function p(j, Y3). The

final top-level junction tree that we obtain as result is shown in Figure 5.3(e).

The size of this output graphical model constructed is much smaller than the

naive model generated from the inference query, resulting in significant savings

in query processing times.

5.4 Handling Updates

In this section, we describe the algorithms that we have developed for

modifying the index in response to updates to the underlying probabilistic

database. Our system supports the following two kinds of updates to the

probabilistic database.

• The first is a modification of the existing data, i.e., modification of a proba-

bility distribution, or the assignment of a deterministic value to an existing

random variable. For instance, if we verify the occurrence of the tuple with

115

Y1c Y2cj Y3j

ac

ea cj

jl

lo

j P5

P6

P1

P2

I1 I2 I3

(a) (b)

(d) (e)

(c)

j

c

l

c

a

c j

ca j l

Figure 5.3: The Steiner trees generated at different index nodes while executing
the inference query {e,o} on the junction tree in Figure 2.2(c) is shown in (a),
(b), (c). (d) shows the final graphical model generated as a result of the
extraction query {e,o}. The junction tree generated by the aggregation query
is shown in (e)

gid=2 in the probabilistic database of Figure 2.2(a), then we need to set the

value of random variable a to 1 in the database.

• The second is an insertion/deletion of a new tuple into the probabilistic

database. This occurs when we need to add a new compound event, which

is correlated with already existing events in the database. Here, we need

to construct a new clique for the new random variable and add it to the

database.

5.4.1 Updates to Existing Potentials

Updating the potential of a random variable v requires us to appropri-

ately modify the potentials of all the cliques in the junction tree. The naive

technique for updating a junction tree involves the message passing algorithm

in which we transmit the knowledge of the update to every node in the tree

through messages that are sent from the modified node to every other node. In

116

the first step, we identify a clique, say C, to which the random variable belongs

and modify its clique potential to reflect the knowledge of the update. In the

next step, the clique sends out a message to inform all of its yet uninformed

neighbors about the update. Each of the neighbors then uses the message re-

ceived, updates its potential and recursively sends messages to its neighbors;

the process continues until all of the nodes have the knowledge of the update.

After having completely updated the cliques in the junction tree, we can now

update the shortcut potentials of every index node in the database. Since

this algorithm spans the entire junction tree, it is clearly infeasible to perform

this for large trees for every new update. Instead, we exploit the presence of

shortcut potentials to develop a lazy strategy for efficiently updating both the

index and the junction tree. This enables a pay-as-you-go framework in which

future queries over the probabilistic data bear the cost for the updates. We

illustrate our approach below.

In the first step, we use the index structure to efficiently identify a clique

that contains the random variable to be updated and the partition containing

it. Suppose we receive an update for a variable in the partition P . We load

that partition into memory and perform the message passing algorithm over P

alone and determine the correct probability distributions for every clique in P .

In addition, we also update the shortcut potential of P based on the HUGIN

algorithm (Chapter 2). Next, we load the parent node I of P and update the

shortcut potentials of all the children of the node I and the separator potentials

stored in I. We then load I ′s parent and continue the same process recursively

until we reach the root node. Updating the rest of the index and the junction

tree is carried out whenever we get new queries on the database. When a

query is posed on an index node, it verifies that the separator potentials and

117

the shortcut potentials stored in the index node is up-to-date. Otherwise, it

updates them first using the message passing algorithm and then continues

with the query processing. We note here that each query only updates those

index nodes and only those partitions that are required for computing the

answer to the query. We illustrate our algorithm with the following example.

Example: Suppose we receive an update i = 0 in our running example. We

will now indicate the sequence of updates we perform for this case. In the first

step, we locate and load partition P4 into memory, following which, we update

the probability distributions of the cliques hi and fh. In the next step, we

update the shortcut potential p(f) of partition P4. We then load the index

node I2 and using p(f), we update the shortcut potential of P3, p(c, j, f) and

the separator potentials p(g), p(j) and p(c). After this, we determine the new

shortcut potential of I2, p(c, j). We then load the root node and determine

the new shortcut potentials of I1 and I3. Suppose we now receive a query

on variable e. When we recurse along the index node I1, we first update

the shortcut potential of P1, p(a, c) and that of P2, p(a) and then load the

partition P2 into memory. We then update P2 completely and determine the

probability p(e) as required by the query. Note here that we have only updated

the partition P2. We did not even need to update the partition P1, we just

updated its shortcut potential. This provides us with an efficient approach for

updating the index. The gains are even more substantial when the partitions

are much larger.

118

5.4.2 Inserting New Data

We now consider the problem of adding new data tuples to the database.

In our setting, this problem corresponds to the problem of adding new random

variables to the junction tree, given its correlated variables. Formally, we are

given a node X and the set of edges that connect this node to its correlated

variables S = {s1, s2, . . . , sk}, and a joint distribution of all the nodes in

S ∪ {X}. In the underlying PGM, this corresponds to just modifying the

graph by adding a new node to the graph along with the edges. On the

junction tree, we have to create a new clique node for the new variable X and

update the cliques that are modified as a result of the addition of new edges.

We propose a two step process for this. In the first step, we modify the

junction tree to reflect the addition of this new data tuple and in the subse-

quent step, we make the junction tree consistent using message passing using

the lazy approach described in the previous section.

Creating a new clique for the new node: The algorithm first searches for

the neighbor s1 of the new random variable using the index data structure. Af-

ter loading the relevant partition into memory, it computes the relevant clique

containing s1. We make a new clique containing the new random variable and

s1. But we first need to assign an id for the new random variable introduced.

Assigning a new Id to the new variable: To add a new variable to the

junction tree, we need to first issue a unique id to the variable. We can extend

the range of the partition by 1 and assign this value to the new variable. But

this does not work since another variable could already possibly have this id

assigned to it. The alternative is to assign the id equal to one higher than the

previously assigned highest variable id. However, assigning such an new id to

119

this variable results in the violation of the contiguous variable name property

(See Section 5.1), i.e., the id of the new variable will exceed the max value of

the range lists for this partition. In order to deal with this problem, while we

assign ids to the variables after the hierarchical partitioning, we add gaps in the

ranges between one partition to the next, these gaps act as holes for subsequent

addition of newer variables. Also we increase amount of gap exponentially (in

the number of children in the index structure) as we go to higher levels in

the index structure (if we cross an index node). Whenever the gap between

two partitions P1 and P2 is filled completely, we go to their parent index node

and request more gap between the partitions and renumber the variables in

the partition P2 to account for the newly inserted gap. If no more gaps are

available in the parent, then we recursively go up the tree looking for a node

that has sufficient gaps. Note that we also have to update the range lists and

addLists for every index node that had its ids modified, hence we recursively

update the index (range lists, add lists, separators) starting from the partition

in which the new variable was inserted. Now, we modify the junction tree to

reflect the addition of edges between the new variable and its neighbors.

Adding neighbors: To reflect the addition of the new neighbors of the vari-

able, we use the following approach. For each neighbor si, we compute the

shortest path joining the clique containing si to the new clique. We add the

new variable to every clique and every separator along this path. In addition,

we remove any clique that becomes a subset of a newly created clique. The

resulting graph is a valid junction tree as shown in Berry et al. [11]. To update

the index, we only need to add the new variable id to every partition along

the path.

120

Writing partitions back to disk: As more and more insertions happen to

our database, the sizes of the partitions will increase since the sizes of every

clique that had a new variable inserted increases. Hence, whenever we write

back an index node or a partition back to disk, we determine its size and if

it exceeds the block size, we use the partitioning algorithm and split it into

smaller subtrees which fit into a disk block. We construct a new index node in

place of the disk block and accordingly assign the parent and child pointers.

5.4.3 Deletions

Deletions can also be viewed as insertions of new data elements. For in-

stance, deleting a tuple X from the database is equivalent to adding a new

boolean random variable VX that specifies whether to consider X or not. For

this, we connect the random variable VX to every random variable which is

connected to X in the PGM. We set VX to zero to delete X, in case we need

to insert X again, we set the variable back to 1. This particular method of

deletion is not efficient since over time, deletions would continuously increase

the size of the database. We are currently developing more efficient methods

for deleting variables from the database.

5.5 Experimental Evaluation

5.5.1 Implementation Details

We implemented the INDSEP component of PrDB (Figure 3.1) to test its

benefits on the query processing performance. As described in Chapter 3,

INDSEP is implemented in main memory. The disk is simulated as an array

121

Xt+1

Yt+1

Xt

Yt

Xt Xt+1 Yt

Xt+1 Yt Yt+1
Xt+2 Yt+1 Yt+2

Xt+1 Xt+2 Yt+1

Xt+1 Yt+1Xt+1 Yt Xt+2 Yt+1

(a) Schema (b) Junction tree

Figure 5.4: We generate the Markovian sequence database using the schema
shown in (a). The junction tree structure of the Markovian sequence is shown
in (b)

of disk blocks, each of size BLOCK SIZE, a user defined parameter. INDSEP is

stored in this virtual disk. Each index node (leaf or interior) is stored in a single

disk block. We also implemented a DiskManager, a singleton module that

runs constantly and manages the disk blocks. All accesses (read,write,modify)

to the virtual disk is made via the DiskManager. This also enables us to

keep track of the exact number of accesses made to the disk. We will use

these counts heavily in demonstrating the benefits of INDSEP in the following

section.

5.5.2 Experimental Setup

All of our experiments were carried out on a machine with a 2.4 GHz Intel

Core 2 Duo processor and 2GB memory. We evaluate the performance of our

index on the following two probabilistic databases.

• General probabilistic database: We generate a probabilistic database on

2 relations that is representative of a typical event monitoring application

(see Section 1.1.1). The database contains a total of about 500,000 tuples

corresponding to detected events. It exhibits attribute uncertainty, tuple

uncertainty and tuple correlations. We simulate arbitrary correlations in

122

the PGM, by connecting each random variable to k neighbors, where k

itself is randomly chosen between [1, 5]. We then construct the junction tree

equivalent of the PGM and then bulk-loaded the database and the index

blocks. We also allow continuous updates to the database corresponding to

the new events being detected.

• Markovian Sequence database: We generate a Markovian sequence

database [61] with schema shown in Figure 5.4(a). We bulk load the database

with a total of 1 million time slices, which corresponds to 3 million nodes

in the junction tree. Updates continue to occur periodically in the database

with the new node Xt+1 being inserted with neighbor Xt, and Yt+1 being

inserted with neighbors Yt and Xt+1.

Query & Update Workloads:

We generated 4 different workloads of queries based on the size of the spanning

tree that needs to be constructed for executing the query. Each query is over

2 to 5 variables. Each workload consists of a total of 25 queries. We use the

information from the partitioning of the tree in order to generate the workload.

• W1: Shortest-range queries. These are queries that have a span of about

20% of the junction tree.

• W2: Short-range queries. These have a span of 40% of the junction tree.

• W3: Long-range queries. These have a span of 60% of the junction tree.

• W4: Longest-range queries. Each query in W4 spans at least 80% of the

tree.

We use each of the above workloads for both inference and aggregate queries.

Similar to the above query workloads, we generate 4 different update workloads

(for the first probabilistic database). Each newly added variable has a set of

123

100

101

102

103

104

105

W1 W2 W3 W4

di

sk
 b

lo
ck

s
ac

ce
ss

ed

no index
with Index

with indexCache

100

101

102

103

104

105

W1 W2 W3 W4

av
er

ag
e

C
P

U
 ti

m
e

(m
s)

with index
with index-cache

(a) # disk blocks accessed (b) Average CPU time

100

101

102

103

104

105

106

W1 W2 W3 W4

di

sk
 b

lo
ck

s
ac

ce
ss

ed

no index
with Index

with indexCache

100

101

102

103

104

105

W1 W2 W3 W4

av
er

ag
e

C
P

U
 ti

m
e

(m
s)

with index
with index-cache

(c) # disk blocks accessed (d) Average CPU time

Figure 5.5: Illustrating query performance in terms of number of blocks ac-
cessed and cpu time for workloads W1, W2, W3 and W4 when index data
structure is absent, index is present without shortcut potential, both index and
shortcut potential are present. (a) & (b) correspond to the event database,
while (c) & (d) correspond to the Markovian sequence database. We note that
the graph is in logarithmic scale, so the gains are substantially more than what
is apparent.

neighbors, the size of which is uniformly chosen between 2 and 4. Based on the

distances between the neighbors, they are classified into 4 update workloads

W1, W2, W3 and W4 just as described above.

Comparison Systems:

We compare our INDSEP data structure against two other approaches:

124

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 150 200 250 300 350 400 450 500

Ti
m

e
to

 c
on

st
ru

ct
 in

de
x

(s
ec

)

number of nodes (thousands)

Time

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 50 100 150 200 250 300 350 400 450 500

H
ei

gh
t o

f t
he

 In
de

x

number of nodes (thousands)

400 bytes
2 kB
4 kB
8 kB
20kB

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40

%
 o

f a
pp

ro
x.

 s
ho

rtc
ut

 p
ot

s

BLOCK SIZE (in kB)

Complete joint
First Approximation

Second Approximation
Third Approximation

(a) Time for bulk loading
the index

(b) Height of the index as
a function of block size

(c) % of shortcut potentials
that are approximate

Figure 5.6: As shown in part (a), the time taken to bulk load the index is
linear in the size of the database. Part (b) shows that the height of the tree
increases in a logarithmic-like fashion as the size of the database increases. Part
(c) shows that as the disk block size increases, the amount of approximation
reduces, i.e., less than 20% for 4kB block size.

• No index: In this case, we do not maintain any indexes in the database

and perform query processing using the naive technique described in

Chapter 2.

• Index without caches: In this case we maintain the index over the

junction tree, but do not maintain any shortcut potentials. The key

advantage of this approach over the naive approach is that we can re-

duce the number of disk blocks accessed significantly, but the overall

performance remains linear.

5.5.3 Results

Effectiveness of the Index:

For our first experiment, we ran each of the query workloads W1, W2, W3 and

W4 for the three comparison systems and computed the average number of disk

blocks accessed in order to answer the inference query. We also measured the

average wall clock CPU times for each of the workloads. We plot our results

125

as a bar graph in Figure 5.5(a) & (b). As shown in the figure, we obtain an

order of magnitude improvement both in the number of disk blocks accessed

as well as in the CPU cost. Notice that the y-axis is in logarithmic scale, so

the gains are substantially more than what is apparent.

We also note the benefit of our shortcut potentials for workloads W3 and

W4, which are primarily responsible for reducing the number of disk blocks

accessed and the CPU cost in this case. Using indexes alone does prove useful

for short range queries in the workloads W1 and W2, but for longer range

queries, using shortcut potentials reduces the computational time even further.

In fact, for the Markov Sequence database which generates a junction tree with

very large diameter (graph-theoretic) of about a million, using just the index

can actually be more expensive for long range queries as shown in Figure

5.5(c). The overhead occurs since the query processor needs to traverse every

disk block in the database along with almost all the index blocks. Augmenting

the index with shortcut potentials reduces the number of disk blocks accessed

and the CPU time by more than a factor of 1000 (Figure 5.5(d)).

Study of the Index Structure:

Here, we study the structure of the INDSEP data structure and provide details

of its shortcut potentials. We first generate 10 different event datasets ranging

from 50,000 cliques to 500,000 cliques and construct the index data structure

for each of the data sets. We first measure the time take to construct the index

as a function of the size of the database. Using a block size of 1 kB, we measure

the amount of time it takes to fully construct the index. We plot our results

in Figure 5.6(a). As shown in the figure, the time taken increases linearly as

the size of the database increases as expected. We attribute the sudden jump

126

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

di

sk
 b

lo
ck

s
ac

ce
ss

ed

Block size (in kB)

W4
W3
W2
W1

100

101

102

103

104

105

106

0 25 50 75

di

sk
 b

lo
ck

s
ac

ce
ss

ed

% of out-of-date shortcut potentials

0%
25%
50%
75%

(a) Query performance as a function of
block size

(b) Query performance as a function of %
absent shortcut potentials (disk blocks)

100

101

102

103

104

105

106

0 25 50 75

av
er

ag
e

C
P

U
 ti

m
e

(m
s)

% of out-of-date shortcut potentials

0%
25%
50%
75%

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

W1 W2 W3 W4

di

sk
 b

lo
ck

s
(th

ou
sa

nd
s)

no index
with Index

with indexCache

(c) Query performance as a function of %
absent shortcut potentials (cpu cost)

(d) Update performance

Figure 5.7: Graph in part (a) shows that the query performance (as function
of number of blocks) improves when block size is increased. The bar graphs
in parts (b) & (c) show that the query performance falls as the percentage of
shortcut potentials that are out-of-date increases. Part (d) shows the update
times – as we can see, the overheads for updating INDSEP data structure are
quite minimal.

in the time taken to build the index for 500,000 nodes to thrashing.

We now determine the height of the hierarchical index structure as a func-

tion of both the size of the database and the block size. We use a range of

block sizes starting from 0.4kB to 40kB. We plot the results in Figure 5.6(b).

As shown in the figure, the height of the index structure increases with the size

of the graph, but quite slowly. Also, for a reasonable block size of 4kB-8kB,

127

the height of the tree is about 7 even for quite a large tree of around 500,000

nodes.

We now study the structure of the shortcut potential, i.e., we want to

identify the percentage of shortcut potentials in the index structure that use

approximations, as a function of block size. We construct our index data

structure on a junction tree of size 500,000 nodes for different values of block

size and compute the percentage of index nodes that store the complete joint

distribution (no approximation), the first, second and third approximations to

the shortcut potentials. The results are plotted in Figure 5.6(c). As shown

in the figure, for smaller values of block sizes below 4kB, only about 40% of

the index nodes contain the full joint distribution, while larger block sizes

allow many more index nodes to store the complete joint distribution in their

shortcut potentials. For a reasonable block size between 4-8kB, less than 20%

of the index nodes approximate their shortcut potentials.

Study of Query Processing Performance:

In this section, we take a closer look at the performance of inference queries

for different values of the index parameters. We first vary the block size and

analyze the performance of the query for each case. We used block size values

between 0.4 kB and 16 kB. The results are plotted in Figure 5.7(a). As the

size of each disk block increases, we observe that the number of disk blocks

that needs to be accessed reduces as expected, but it remains fairly constant

after the block size exceeds a certain size.

In the next experiment, we study the effect of the shortcut potentials on

the query performance. As described earlier, updates to a variable need to

be propagated to the entire database. In our lazy update implementation, we

128

modify only the shortcut potentials of certain nodes in the tree while updating

the other potentials on demand from the queries. To formally study this case,

we arbitrarily set x% of the shortcut potentials in the Markovian sequence

database to be out of date and then measure the query processing performance

as a function of x. We plot the results in Figure 5.7(b) & (c). As shown in

the Figure, as the value of x increases, more blocks need to be updated by the

query which results in drop in the query performance. But we note here that

once the first query subsequent to the update, updates the index nodes and

shortcut potentials relevant to it, further queries that access the same data

can again use the valid shortcut potentials and obtain a performance closer to

the ones shown in Figure 5.5(a),(b).

Study of Update Performance:

Here, we study the performance of index when the database is subjected to

updates. For each of the update workloads, we determine the average number

of disk blocks that need to be read and modified in order to completely update

the database (not the lazy version). We compare the performance of our

INDSEP data structure with the comparison systems (1) & (2). We plot the

results in Figure 5.7(d). As shown in the figure, with minimal overhead, we can

update the index data structure - particularly the add lists, this is indicated

by the middle bars. Updating the shortcut potentials requires us to read in all

the index blocks, since all the shortcut potentials need to be updated, which

is also quite small compared to the size of the database.

129

Chapter 6

Lineage Processing over

INDSEP

In this chapter, we develop algorithms for evaluating conjunctive queries

over correlated probabilistic databases. As we showed in Chapter 2, we follow

a 2 step process: in the first step, we determine the lineage of the output

tuples, which is a boolean formula that denotes the condition for the existence

of the output tuple, and in the second step, we compute the probability of the

lineage formula. The outline of the chapter is as follows. In the first part of

the chapter (Section 6.1), we develop algorithms for computing the probability

of lineage formulas over junction trees. Following this (Sections 6.2,6.3), we

describe how to scale these algorithms to large-scale probabilistic databases via

the INDSEP data structure which we developed in Chapter 5. We conclude

the chapter with an experimental evaluation of the proposed algorithms in

Section 6.4.

130

6.1 Lineage Processing Algorithms over Junc-

tion trees

In this section, we develop algorithms for processing lineage formulas over

junction trees. Although our focus is on read-once lineages, our algorithms

for lineage processing can be applied even to non-tree structured lineages.

While it has already been shown that read-once lineages can be processed

in polynomial time for tuple independent probabilistic databases [27, 96], we

show that the problem of processing them on lightly correlated probabilistic

databases is #P-complete.

Theorem 1. Processing read-once lineages on correlated junction trees is #P-

complete. In fact, processing them on Markov chains is also #P-complete.

Proof. (Sketch) We start with the problem of counting the number of satis-

fying assignments to a monotone DNF formula φ, which is known to be #P

complete [107]. Convert φ into a read-once formula, by replacing each repeat-

ing literal in φ, by a new literal. Suppose the new formula obtained is φ′.

Keep track of the equivalent literals. Now, construct a graphical model for φ,

- create a node for each literal in φ′ and create a node for each of the clauses.

Finally, create a node for the φ′ value itself. For each literal, draw a directed

edge from the node containing the literal to the clause that contains the lit-

eral (Since φ′ is read-once, each literal is contained in exactly once clause).

In addition, draw 1 edge between each literal and its successive alias (Note

that we are creating a chain among all the “equal” literals and not a clique).

Assign factors to the nodes of the graphical model as follows. To each leaf,

assign the factor [1 0.5, 0 0.5]. To each of the OR clause nodes, assign an OR

131

OR

AND AND

c g m n

OR

AND

m n

OR

c ∧ g c ∧ g m ∧ n

(i) simplifying c ∧ g
(iii) simplifying
 (c ∧ g)∨(m ∧ n)

1 2

(ii) simplifying m ∧ n

Figure 6.1: Different stages in the simplification process

factor and to each of the AND clauses, assign an AND factor (use associative

property to decompose the clauses if required). Finally to each of the equality

nodes, assign equality factors [1 1 1, 0 0 1]. It is quite easy to see that the

above construction is polynomial in the size of the input. Now, we compute

the marginal probability of the φ′ node. The solution to the original problem

can be obtained by multiplying p(φ′) by 2N .

However, most real world datasets do not exhibit this worst case behavior.

The junction trees are often disconnected, which allows us to perform exact

computation.

6.1.1 Message Passing for Lineage Processing

Before discussing the message passing algorithms, we introduce a param-

eter called lwidth that captures the complexity of processing a lineage for-

mula. We illustrate lwidth using the naive method we described in Section

2.1.5. Suppose that we want to compute the probability of the lineage formula

(c∧ g)∨ (m∧n). In the first step, we evaluate the inference query {c, g,m, n}

and determine p(c, g,m, n). In the next step, called simplification, we evaluate

the probability of the lineage. As described earlier, we first multiply the pdf

with p(c ∧ g|c, g) to get p(c, g,m, n, c ∧ g) and then eliminate c and g to get

132

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM (iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(iv) INDSEP (v) Steiner Tree

cfgac c g gjk

m2 = p(c,k) m1 = p(g,k)

(i) Prob DB

A B E
α1 β1 a
α1 β3 b
α2 β4 d
. . .
. . .
α1 β9 l
α5 β1 p
α2 β8 q

R1

A C E
α1 γ1 c
α2 γ2 m
α3 γ3 k

R2

C D E
γ1 δ g
γ2 δ n
γ3 δ1 h
γ4 δ1 o

R3

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM (iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(iv) INDSEP

(v) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

A B E
α1 β1 b
α1 β3 c
α2 β4 d
. . .
. . .
α1 β9 l
α5 β1 p
α2 β8 q

R1

A C E
α1 γ1 a
α2 γ2 m
α3 γ3 k

R2

C D E
γ1 δ g
γ2 δ n
γ3 δ1 n
γ4 δ1 o

R3

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM

(iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(v) INDSEP

(iv) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

(i)

Figure 2: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) the equivalent junction tree and (iv) the INDSEP data structure corresponding to the junction tree in (iii)

In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(a) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(b)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [10]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [14]. After

fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(b)) is shown in Figure 2(c). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
pdfs. The joint distribution for the above example is shown
below:

p(ab)p(ac)p(pd)p(de)p(cfg) . . . p(ln)p(oq)

p(a)p(d)p(c) . . . p(l)

Definition 1. Lightly Correlated Probabilistic Databases:
We denote probabilistic databases that can be efficiently rep-
resented as junction trees as being lightly correlated, i.e.,
the cliques are of small size. Examples of lightly correlated
junction trees include Markovian sequences [21, 18].

2.3 Why Junction trees ?
In the machine learning community, junction trees are

considered as a very useful tool since they can be used to
compute all marginals, i.e., the probability distributions of
each random variable independently, in two passes over the
tree. Hence, in a data warehousing context such as ours,
where we have few updates and several queries, a junction
tree is a natural intermediate structure to build since it
speeds up query evaluation by orders of magnitude. While
junction trees can be built efficiently for lightly correlated
probabilistic databases, there have been concerns about the
feasibility of building a junction tree over highly correlated
probabilistic databases, that generate large cliques. Since

(i) Prob DB

(i)

Figure 2: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) the equivalent junction tree and (iv) the INDSEP data structure corresponding to the junction tree in (iii)

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM (iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(iv) INDSEP

(v) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

A B E
α1 β1 b
α1 β3 c
α2 β4 d
. . .
. . .
α1 β9 l
α5 β1 p
α2 β8 q

R1

A C E
α1 γ1 a
α2 γ2 m
α3 γ3 k

R2

C D E
γ1 δ g
γ2 δ n
γ3 δ1 n
γ4 δ1 o

R3

a

b ih

g

f

e
d

c

n ml

k

j

oq

p

(ii) PGM

(iii) Junction Tree

Root

P5P3 P4P2P1

I1 I2 I3

P6

(v) INDSEP

(iv) Steiner Tree

cfgac c g gjk

p(c,k) p(g,k)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1
I2

P1

P2

P3

P4

P5

P6

I3

(i)

Figure 2: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) the equivalent junction tree and (iv) the INDSEP data structure corresponding to the junction tree in (iii)

In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(a) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(b)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [10]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [14]. After

fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(b)) is shown in Figure 2(c). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator
pdfs. The joint distribution for the above example is shown
below:

p(ab)p(ac)p(pd)p(de)p(cfg) . . . p(ln)p(oq)

p(a)p(d)p(c) . . . p(l)

Definition 1. Lightly Correlated Probabilistic Databases:
We denote probabilistic databases that can be efficiently rep-
resented as junction trees as being lightly correlated, i.e.,
the cliques are of small size. Examples of lightly correlated
junction trees include Markovian sequences [21, 18].

2.3 Why Junction trees ?
In the machine learning community, junction trees are

considered as a very useful tool since they can be used to
compute all marginals, i.e., the probability distributions of
each random variable independently, in two passes over the
tree. Hence, in a data warehousing context such as ours,
where we have few updates and several queries, a junction
tree is a natural intermediate structure to build since it
speeds up query evaluation by orders of magnitude. While
junction trees can be built efficiently for lightly correlated
probabilistic databases, there have been concerns about the
feasibility of building a junction tree over highly correlated
probabilistic databases, that generate large cliques. Since

(i) Prob DB

Figure 3: Figure shows (i) a tuple uncertain probabilistic database (ii) the graphical model that captures the correlations among the
various tuples (iii) its equivalent junction tree (iv) the INDSEP data structure corresponding to the junction tree in (iii) and (v) Steiner
tree computed while evaluating the inference query {a, k}

In this section, we explain the tuple uncertain probabilis-
tic database model that we use in the paper. Also, we de-
scribe its equivalent representation as junction trees, which
is a central concept in the rest of the paper. Following this,
we illustrate how to execute queries over junction trees and
how we can speed up the query evaluation using the IND-
SEP index data structure.

2.1 Tuple Uncertain Model
Although we focus on the tuple uncertain probabilistic

database model, many of the concepts in the paper general-
ize to probabilistic databases with attribute uncertainty as
well. In a Tuple Uncertain probabilistic database each tu-
ple is annotated with an existence probability (Figure 1(a)).
We model such uncertainty by introducing a boolean ran-
dom variable Et for each tuple t that denotes the existence
of the tuple, i.e., Et takes value 1 if t belongs to the database
and 0 otherwise. Figure 2(i) shows a tuple uncertain prob-
abilistic database on three relations R1, R2 and R3. The
random variables corresponding to the existence of each of
the tuples is indicated in the column E.

As described in the motivating application, correlations
naturally exist among the tuples. For example, tuples x1 and
x2 in Figure 1(a) are correlated via mutual exclusion, which
means that the presence of one of the tuples precludes the
presence of the other tuple. Such a probabilistic database
can be represented in a generic manner by constructing a
Probabilistic Graphical Model (PGM) on the tuple existence
random variables as shown by Sen et al. [28]. All the cor-
relations in the probabilistic database can be captured by
adding appropriate edges to the PGM (Figure 2(ii)). Owing
to space constraints, we do not discuss PGMs here. PGMs
can be equivalently represented using Junction trees, which
we discuss next.

2.2 Junction Trees
A junction tree is an equivalent representation of a PGM [11]

and is also known as a tree decomposition, or a clique tree.
It is a concise representation of the joint probability distri-
bution of a set of random variables. We will not discuss the
actual construction of the junction tree owing to space con-
straints; however we describe some of its main properties.
In a junction tree, there are 2 types of nodes, clique nodes
(represented by circles) and separator nodes (represented by
square). The clique nodes correspond to maximal cliques in
the triangulated PGM and the separator nodes correspond to
the cut vertices that separate the maximal cliques [15]. After
fully constructing the junction tree, each clique/separator in
the tree stores the joint probability distribution of the vari-
ables in the clique/separator. An example of a junction tree
(for the PGM in Figure 2(ii)) is shown in Figure 2(iii). In
this junction tree, clique (ab) stores the probability distri-
bution p(a, b) and separator c stores the probability distri-
bution p(c). The variables in a clique are directly correlated
with each other and the separators encode the conditional
independences that are present among the variables in the
junction tree. For example, variables a and b are directly
correlated since they belong to the same clique (ab). Given
the knowledge of variable a, variable b becomes independent
of c (i.e., conditional independence) since a is the separator
between cliques (ab) and (ac). The conditional indepen-
dence relationship can be mathematically expressed as:

p(a, b, c) = p(a,b)p(a,c)
p(a)

Also note the disconnection between clique (oq) and the rest
of the tree. Disconnection implies independence, i.e., o and
q are correlated with each other but are independent of the
other variables in the junction tree. The overall joint distri-
bution among all the random variables in the junction tree
can be computed by multiplying the probabilities of all the
clique pdfs and dividing by the product of all the separator

I1 I2 I3c j

(vi) Child Tree (Root)

gjk

hifh

cfg

de

pd

ac

ab
jlm

lnoq

g

h

j

f

a

c

d

l

I1 I2

P1

P2

P3

P4

P5

P6

I3

Figure 6.2: Figure shows (i) a tuple uncertain probabilistic database (ii) the
graphical model that captures the correlations among the various tuples (iii)
its equivalent junction tree (iv) the INDSEP data structure corresponding to
the junction tree in (iii) and (v) Steiner tree computed while evaluating the
inference query {a, k}. Pivot clique (ac) is shaded. (vi) The childTree stored
in the root is shown here. Note that I2 is connected to I1 via c and to I3 via
j as indicated in (iii). Note that (i),(ii) and (iii) are repeated from Chapter 2
for convenience.

p(c ∧ g,m, n). We proceed in similar fashion to compute p(c ∧ g,m ∧ n), and

finally the probability p((c∧g)∨(m∧n)). We pictorially illustrate the simplifi-

cation process in Figure 6.1. The above algorithm creates several intermediate

pdfs, the size of the largest intermediate pdf being 25 = 32. The time taken

by the algorithm is influenced by the size of the maximum pdf created. We

call this parameter as the lwidth induced by the lineage formula. Although

lwidth has superficial similarities with the graph theoretic treewidth [94], we

distinguish them since lwidth depends on the actual algorithm we use, unlike

treewidth. Also, treewidth corresponds to the optimal junction tree and is

133

in general NP-hard to compute exactly [94]. Lwidth can be considered as

an upper bound to treewidth. The size of the biggest probability distribu-

tion is 2lwidth and hence, the computational time is exponential in the lwidth

induced by the formula. Next, we develop an improved recursive algorithm

based on message passing. The trick is to create smaller intermediate pdfs by

performing the simplifications eagerly, whenever we detect a message that can

be simplified. We illustrate our Eager strategy by showing how to reduce the

lwidth of the above formula from 5 to 4.

Improvement 1 (Eager): As with the HUGIN algorithm (Chapter 2), we

first select a pivot and construct a Steiner tree over the variables referred in

the lineage formula. At each clique, we multiply all the incoming messages and

the clique’s pdf to get an intermediate pdf, and then eliminate the non-query

variables. However, we try to simplify the pdf as much as possible based on

the given input lineage, before sending the resulting pdf as a message. Now,

we compute p((c ∧ g) ∨ (m ∧ n)) using the Eager strategy. We will use the

same probabilistic database from Chapter 2, it is repeated in Figure 6.2(i) for

convenience. Suppose that we select as pivot, the clique (cfg). The Steiner

tree for this lineage is the path connecting the clique (ln) to the clique (cfg)

in Figure 6.2(iii). The algorithm proceeds as follows:

• The clique (ln) sends message p(l, n) to the clique (jlm).

• Now, clique (jlm) multiplies the incoming message p(l, n) with its pdf p(j, l,m)

to get p(j, l,m, n) (it also divides by p(l)). It eliminates l since it is no longer

required to get p(j,m, n). Since m and n are together (and do not appear

elsewhere in the junction tree), it simplifies p(j,m, n) here itself, to get

p(j,m ∧ n) and sends it to clique (gjk).

134

• Clique (gjk) multiplies p(j,m ∧ n) with its pdf p(g, j, k), eliminates k & j,

sends p(g,m ∧ n) to clique (cfg).

• Clique (cfg) eliminates f from its pdf p(c, f, g) to get p(c, g) and multiplies

it with p(g,m ∧ n) to get p(c, g,m ∧ n). After relevant simplifications, the

clique (cfg) computes the final result p((c ∧ g) ∨ (m ∧ n)).

In this approach, the maximum intermediate pdf size generated is 24. This

reduction is small for the above toy example, but it can be very large for larger

lineages, since the computational complexity is exponential in the lwidth.

We can reduce the lwidth induced by the lineage even further by perform-

ing the simplification even before we multiply all of the incoming messages at

a clique node. Suppose that we want to compute the probability of another

boolean formula (c ∧ h) ∨ (m ∧ n) and we pick the clique (cfg) as the pivot.

We can use the Eager strategy as before and determine the messages and the

intermediate probability distributions that will be generated during the algo-

rithm. Consider the last step in the operation in which the message p(g,m∧n)

is sent to (cfg) via the separator g and the message p(f, h) is sent to (cfg) via

the separator h. In the Eager strategy, we first multiply p(c, f, g), p(f, h) and

p(g,m ∧ n) to get p(c, f, g, h,m ∧ n). Then we eliminate f , g and simplify it

to get p((c ∧ h) ∨ (m ∧ n)). The biggest pdf created by this strategy is of size

25.

Alternatively, we can multiply the three pdfs incrementally and simplify

when possible, i.e., we first multiply the pdfs p(c, f, g) and p(f, h) to get

p(c, f, g, h). Then, we eliminate f and simplify to get p(g, c ∧ h) (Note that

we can do this since both c and h do not appear in the remaining mes-

sage p(g,m ∧ n)). Now, we can multiply p(g, c ∧ h) with p(g,m ∧ n) to get

135

p(c ∧ h,m ∧ n, g), eliminate g and simplify to get the output. In this case, we

would only create a pdf of size 24. Note that the ordering of multiplications

is important: if we had chosen to multiply p(c, f, g) and p(g,m ∧ n) first, we

would not be able to reduce the lwidth. Next, we present a heuristic to select

a good ordering.

Improvement 2 (Eager+Order): We construct a complete graph in which

each node corresponds to the probability distribution which is to be multiplied.

We then set the weights to each of the edges in the graph as follows. The

weight of an edge is equal to the amount of simplification that is possible

if we multiply the pdfs corresponding to its adjacent nodes. The amount of

simplification while multiplying two probability distributions f1 and f2 is given

by |f1 ∪ f2| − |f |, where f is the simplified output after multiplying f1 and

f2. For instance, in the example above, when we multiply p(c, f, g) and p(f, h)

the final output is p(g, c ∧ h), hence the simplification is given by 4 − 2 = 2.

We greedily pick the edge with the largest weight and multiply the probability

distributions together. We then perform simplification and update the graph,

by clustering the 2 nodes together and recomputing the weights of all edges

incident on the newly created node. We continue this process until all the

probabilities have been multiplied, i.e., when there are no more edges in the

graph. The order of multiplication for the above example is illustrated in

Figure 6.3(a). The edges that are selected by the heuristic are darkened. In

the first step, we multiply p(c, f, g) and p(f, h) to obtain p(g, c ∧ h). In the

second step, there is only one edge left, hence we multiply this with p(g,m∧n).

136

6.1.2 Pivot Selection

Another factor influencing the lwidth induced by the lineage formula is the

pivot selected by the algorithm. Suppose we want the probability of (b∧c)∨g.

The Steiner tree corresponding to this query is shown in Figure 6.3(b). As

shown in the figure, there are 3 choices of pivot selection, i.e., one of (ab), (ac)

or (cfg). We will evaluate the lwidth for two different pivot locations - clique

(ab) and clique (cfg).

Case 1: Pivot = (ab): The sequence of messages passed in this case are

indicated in Figure 6.3(b). Clique (cfg) sends message p(c, g) to clique (ac).

Now, (ac) multiplies it with its pdf p(a, c) to get p(a, c, g), which is sent to

clique (ab). (ab) multiplies p(a, c, g) with p(a, b) to get p(a, b, c, g). Then it

eliminates a to get p(b, c, g) from which we get p((b ∧ c) ∨ g). The maximum

intermediate pdf for this pivot location is 24.

Case 2: Pivot = (cfg): In this case, the clique (ab) sends the message p(a, b)

to clique (ac). Now, (ac) multiplies it with its pdf p(a, c) to obtain p(a, b, c).

It also eliminates a since it is not required and simplifies p(b, c) to p(b ∧ c, c),

which is then sent to clique (cfg). (cfg) first computes p(c, g) by eliminating

f from its joint pdf and then multiplies with p(b ∧ c, c) to get p(b ∧ c, c, g)

which is then simplified to the result p((b∧ c)∨ g). Note that in this case, the

maximum pdf size generated in this case is just 23.

Hence, given a lineage formula, we need to come up with the optimal pivot

location in order to process it efficiently. Since there are only n choices, (n

is the number of clique nodes in the Steiner tree) for the pivot position, we

use the naive approach in which we measure the lwidth induced for each pivot

location. We then select the node which induces the smallest lwidth as the

137

p(c,f,g)

p(f,h)
p(g,m∧n)

1

2

0

p(c∧h,g)

p(g,m∧n)

2 acab a c cfg

p(a,b) p(b ∧ c,c)

p(c,g)p(a,c,g)

(a) Eager+Order heuristic (b) Pivot selection

Figure 6.3: (a) Illustrating the order of multiplication and simplification in
Eager+Order heuristic. Initially, we multiply pdfs p(f, h) and p(c, f, g) since
that edge has the maximum weight. (b) When pivot = (cfg), the sequence of
messages passed is indicated above the graph (right arrows). When pivot =
(ab), the sequence of messages is indicated below the graph (left arrows).

pivot.

6.1.3 Dealing with Disconnections

Until now, we have assumed that the junction tree is a single tree that

connects all the variables. However, the random variables may be correlated

as a forest of junction trees. Here, we adapt our lineage processing algorithms

to deal with these disconnections. In the first step, we split the query into

subqueries over each of the components in the junction forest. For instance,

consider the query Q = (d ∨ e) ∧ (b ∨ c ∨ q). We see that the variables in

the lineage formula belong to three different connected partitions {d, e} in one

partition P2, {b, c} in the second partition, P1 and q in the third partition

P6. Hence, we split Q into three subqueries, one for each connected partition.

However, we see that instead of posing an inference query {d, e} on P2, we

can actually pose a lineage query d ∨ e on P2. Similarly, we can pose query

b ∨ c on P1 and query q on P6. After executing each query independently on

each of the components in the junction forest, we get 3 pdfs, namely p(d∨ e),

p(b∨ c) and p(q). We combine the result pdfs together using the Eager+Order

138

heuristic as described before.

Comparison with Special Purpose Techniques

We now discuss the special case in which every variable in the junction tree

is independent of the other variables, i.e., our database is a tuple independent

probabilistic database. Since there are a number of probabilistic databases

that perform lineage processing over tuple independent probabilistic databases,

we now perform a comparison of the query processing techniques in the two

approaches. Given a read-once lineage formula of size k, since our heuristic

Eager+Order constructs a complete graph on k nodes and then uses the edge

weights to decide the order of multiplication, the complexity of the operation

is O(k2). However, existing special purpose techniques such as Mystiq [27] &

Sen et al. [96] can perform lineage processing in O(k) time. This factor of

k corresponds to the overhead involved in supporting correlated probabilistic

databases.

6.2 Lineage Processing using INDSEP

In the previous section, we described efficient techniques for processing

lineage formulas on junction trees. However, they do not scale to large junction

trees, since performing a lineage query over few variables may require the

algorithm to access the entire junction tree [62]. Hence, we use the recursive

query processing framework called INDSEP, developed by Kanagal et al. [62],

to scale our lineage processing algorithms. As we show in the experimental

study, using INDSEP is not only advantageous for performance, but also for

improving accuracy of our approximations.

139

OR

AND AND

OR OR

d e n o

b c
cj

(d∨e),(b∧c),c

c

j
j, (n∨o)

(i) Lineage Tree for
((d∨e)∧(n∨o))∨(b∧c)

(ii) Intermediate
 junction tree (IJT)

Figure 6.4: (i) illustrates the computation of subexpressions (ii) shows an
intermediate junction tree generated in the root node while processing ((d ∨
e) ∧ (n ∨ o)) ∨ (b ∧ c)

6.2.1 Recursive Approach

Recall that INDSEP is a hierarchical, tree-like data structure built on

top of a junction tree (or a forest of junction trees). Lineage processing on

INDSEP, analogous to any hierarchical index proceeds by recursion. Now, we

describe the key recursion step for processing lineage formulas. During lineage

processing, each index node involved is given as input, a set of expressions

ExpressionSet which has two types of expressions contained in it: (1) Lineage

formulas, which we denote by ~λ, (2) Singleton random variables, which we

denote by ~V . The Index node is required to compute as output, the joint

probability distribution between the expressions in the set, i.e., p(~λ∪ ~V). The

complete lineage processing algorithm is shown in Algorithm 2. We explain

the algorithm using a simple example.

Suppose we need to compute the probability of lineage formula λ = ((d ∨

e)∧ (n∨ o))∨ (b∧ c) (shown in Figure 6.4(i)) over the INDSEP data structure

shown in Figure 6.2(iv). In the first step, we determine the random variables

contained in λ, in our case this is {b, c, d, e, n, o}. For each variable here,

140

Algorithm 2 process lineage(inode, ~λ, ~V)

1: qvars = ~V ∪ variables(~λ)
2: for all v ∈ qvars do
3: found[v] = search(v, inode.vars)
4: Graph tree = inode.childTree.Steiner tree(found)
5: {found = set of child inodes that contain qVars}
6: JunctionTree jtree = null
7: for each node ∈ tree do
8: lvars = node.vars ∩ vars(~λ)

9: ivars = node.vars ∩ ~V
10: nrs = neighboring separator variables of node
11: if lvars = φ then
12: if ivars = φ then
13: jtree.add(inode.shortcutPotential(nrs))
14: else
15: jtree.add(inference(nrs ∪ ivars))
16: else
17: ~λ′ = getSubExp(~λ, lvars)

18: ~V ′ = nrs ∪ ivars ∪ (lvars− vars(~λ′))
19: if node is a leaf then
20: jtree.add(node.junctionTree.process lineage(~λ′, ~V ′))
21: else
22: jtree.add(process lineage(node,~λ′, ~V ′))

23: return jtree.process lineage(~λ, ~V)

we search for the child index node to which it belongs (pick arbitrarily if a

variable belongs to multiple child nodes) (Steps 1-3). We then collect the

variables present in each of the child nodes (Steps 8-9). In our example, the

child node I1 contains the set of random variables {b, c, d, e} and I2 contains

the set {n, o}. We now construct a Steiner tree over the childTree of the

node (Section 5.1), joining all the child nodes which contain query variables

(Step 4). In our example, we construct the Steiner tree connecting I1 and I3,

over the childTree of the root (Figure 6.2(vi)). Now, we need to determine

the recursive calls to be made over the nodes in the Steiner tree, i.e., the

ExpressionSet (~λ′ ∪ V ′) that needs to be posed to continue the recursion.

141

Determining Recursive Calls: We scan the set of random variables allotted

to a child node and check if we can group the variables present in the child

to form subformulas of the input lineage. These are added to λ′ (getSubExp,

Step 17). The remaining variables, which could not be grouped are collected

in V ′. In our example, in child I1, the random variables b,c,d,e can be grouped

into {d ∨ e, b ∧ c} (Figure 6.4(i)) and is therefore added to ~λ′, and there are

no more variables, hence V ′ is empty. Note that we still need to capture the

correlations among the variables b ∧ c, d ∨ e and the rest of the variables in

the query. Hence, we add the list of variables in the relevant separators of the

child node to V ′ to capture all correlations (Step 15, 18). In our example, we

add random variable c to V ′ since it is the separator of I1 (Figure 6.2(vi)).

Hence, the complete ExpressionSet for child I1 is given by {b ∧ c, d ∨ e, c}.

Recursion: Now, we proceed with recursive calls on the child nodes using the

ExpressionSet assigned to them. In the special case when the ExpressionSet

contains only separator variables, we can obtain the probability distribution

directly from the shortcut potential (Step 13). In our example, since I2 does

not contain any query variables, the only variables added to its Expression-

Set are its separator variables (Figure 6.2(vi)), given by {c, j}. This can be

answered directly using the shortcut potential of I2. To bottom out the re-

cursion at the leaf nodes of the index, we use the algorithm of Section 6.1 to

process the issued ExpressionSet over the junction trees contained in the leaf

nodes (Step 20). Although the algorithms in Section 6.1 were designed for a

single lineage formula, we can adapt them to process ExpressionSets easily, by

ensuring that we do not eliminate the random variables that belong to other

terms in the set.

142

Assembling Child Results: After obtaining the results from the child nodes,

they are assembled as a junction tree - we call this as the intermediate junction

tree (IJT). We now evaluate the remaining portion of the lineage over the IJT

and return the result to the parent node. In our example, the child node

I1 returns p(b ∧ c, d ∨ e, c), I2 returns p(c, j), I3 returns p(j, n ∨ o), which is

assembled as the junction tree shown in Figure 6.4(ii). Note that the cliques

in the IJT contain newly created boolean variables d ∨ e, n ∨ o and b ∧ c. We

now compute the probability of ((d ∨ e) ∧ (n ∨ o)) ∨ (b ∧ c) over this junction

tree using the algorithms of Section 6.1.

6.2.2 Shortcomings

Although the above algorithm works correctly, it has a few shortcomings

which we describe here.

Feasibility: The complexity of the above algorithm is not entirely evident

from the algorithm itself and is highly dependent on the nature of the under-

lying junction tree, and the structure of the lineage formula. If the random

variables in the junction tree are independent, the algorithm runs quickly even

for large lineage formulas. If the variables are correlated, then the complexity

depends on the placement of the variables of the lineage in the junction tree

i.e., if the lineage formula can be decomposed over the junction tree such that

the subexpressions are present locally, the algorithm is efficient. In the worst

case, when the variables are spread out arbitrarily, the algorithm can take time

exponential in the size of the formula. This high variance in the processing

time is troubling and must be mitigated.

Redundant Variables: Since our underlying data model is a forest of junc-

143

tion trees, there are a number of independence relationships that are present

among the random variables. However, Algorithm 2 is currently unaware of

these independence relationships and might perform unnecessary computation.

We illustrate this with an example. Consider the index shown in Figure 6.2(iv).

Suppose we are interested in to compute the probability of a∧ o. The efficient

way to process this lineage is to compute p(a) and p(o) separately since they

are independent, and use them to determine the probability of a ∧ o. How-

ever, Algorithm 2 proceeds by making the following recursive calls on the child

nodes I1: {a, c}, I2: {c, j} and I3: {j, o}, which is significantly more compu-

tation since we have to maintain joint probability distributions p(a, c), p(c, j)

and p(j, o). The reason behind this is that the knowledge of the disconnection

is “hidden” in the leaf of the INDSEP and can only be discovered when the

recursion reaches the leaf. Clearly, this computation is redundant since a and

o are actually independent.

Multiple Lineage formulas: Many output tuples of a conjunctive query

share common subexpressions in their lineage. Instead of computing the prob-

ability of the same expressions repeatedly, we can exploit this commonality

by reusing the previously computed results. This could bring down computa-

tion time by a large fraction. We note here that such sharing is possible not

only when the lineages share terms, it is quite useful even otherwise when the

Steiner trees corresponding to the lineages share large paths. For instance,

consider the lineages c∧n and b∧m. In this case, the lineage c∧n recursively

generates ExpressionSets {c, j} on I2 and {j, n} on I3. Similarly, the lineage

b∧m generates ExpressionSets {b, c} on I1, {c, j} on I2 and {j, n} on I3. The

ExpressionSet {c, j} is common to both lineages and it needs to be computed

144

select VIN from Ads, loc,
rep where ads.seller =

loc.seller = rep.seller and
reputed = good and

address = 12345

Relational
Engine

x1∧y1 ∨ x2∧y2
x1∧y3 ∨ x3∧y3

Lineage Fomulae

Lineage
Planner

Lineage
Processor

Q1: [!], {dore}

Q2: [!], {bandc, n}

Q3: [!], {o}

Q: [(dore " (n#e)) # bandc]

Q1: [!], {dore}

Q2: [!], {bandc,c}
Q2: [!], {c, j}

Q2: [!], {j, n}

Q3: [!], {o}

Q1: [d#e], ! Q2: [b"c],{c} Q2: [!], {j,n} Q3: [!], {o}

Root

I1 I2 I3

P1 P2 P5 P6

Lineage Plan

Probabilistic Database

INDSEPINDSEP

Figure 6.5: PrDB’s lineage processing component overview: Input conjunctive
query is first executed by the relational engine which computes lineages of
output tuples. Lineage Planner then computes an optimal plan for processing
these lineages, which is executed by the Lineage Processor.

only once.

To effectively handle all the three issues discussed above, we introduce a

lineage planning phase to our algorithm, which we describe in the next Section.

6.3 Lineage Planning & Evaluation

We use a two-pass approach to lineage processing - in the first step, we work

through the index and formulate a plan for the lineage and in the next step, we

execute the formulated lineage plan. We illustrate the complete sequence of

query processing operations in Figure 6.5. As shown in the figure, a conjunctive

query is first executed by a relational query processor and lineages of the

output tuples are computed (Using query rewriting. See Chapter 3). Following

this, the lineage planning and the lineage processing phases occur; we describe

these here.

145

6.3.1 Lineage Planning

In this phase, we determine the lineage plan, i.e., the set of recursive calls

to be made in each index node in the INDSEP data structure. In addition, we

optimize the lineage plan by (a) identifying common subexpressions across a

batch of lineages and sharing such computation. (b) identifying redundancies

(c) determining the lwidth induced by lineage formula at the intermediate

nodes in INDSEP.

Naive Plan: We first describe how to compute a naive lineage plan. Note that

we are given a batch of lineages as input to the system. Just as in Algorithm 2,

we determine the ExpressionSet corresponding to each child node. However,

in this case, we have a list of ExpressionSets corresponding to each index node.

We denote this list by the notation Enode. The expression set corresponding

to the ith lineage is given by Enode
i . The lineage plan is a hierarchical data

structure (corresponding to INDSEP) that essentially stores the Enode list

against each node. Now we discuss how to optimize the naive lineage plan.

Batch/Multiple Lineage Processing: The INDSEP data structure natu-

rally allows the sharing of computation between lineage formulas that share

subformulas. This results not only in reduced number of disk accesses but also

cpu processing time. Here, we look for duplicate ExpressionSets in each node

in the lineage plan and remove them. After computing the naive lineage plan,

each node N in the lineage plan stores the list EN as described above. Now,

we modify this list by removing the duplicate entries of ExpressionSets. This

ensures that we will only execute distinct ExpressionSets. However, we need

to maintain additional bookkeeping information corresponding to the dupli-

cation to execute the plan correctly. Specifically, we need a mapping from

146

the list EP to the list EN (P is the parent of N). This mapping helps the

lineage processor to correctly identify the parent recursive calls generating the

ExpressionSets.

However, even more aggressive sharing can be performed. Suppose that

processing lineage λ1 generates ExpressionSet {j,m, n} on child I3 and pro-

cessing λ2 generates ExpressionSet {m,n} on child I3. The above technique

would treat the two ExpressionSets separately since they are different. How-

ever, a more useful technique here is to first compute p(j,m, n) by evaluating

ExpressionSet {j,m, n} and then using this result to compute p(m,n) (by

eliminating j) which is the result of evaluating ExpressionSet {m,n}.

Redundancy Detection: For simplicity, we discuss the case of removing re-

dundancies for a single lineage λ (The discussion extends to batch of lineages

as well). We take care of detecting redundancies at the root level of the index

itself. Given a lineage formula λ as input, we split it into multiple Expression-

Sets, where each ExpressionSet corresponds to a connected component, just

as we described in Section 6.1.3. We modify INDSEP to additionally store the

knowledge of the components in the junction tree. For each random variable,

INDSEP stores the id of the component to which it belongs in a hash table.

The hash table is constructed while building the index and we use a Union-

Find data structure [21] to maintain this data structure up-to-date in response

to updates (inserting new tuple involves adding a new random variable). By

splitting the input lineage in this manner, we guarantee that none of the nodes

in the lineage plan contain an ExpressionSet with two independent variables.

Hence, we never compute a joint pdf between a pair of independent variables.

After splitting the lineage as described above, we use the previously described

147

multiple lineage planning algorithm to determine the lineage plan. In addi-

tion, we mark the root so as to combine the results of each of the lineages to

produce the final result.

Lwidth Computation: After modifying the lineage plan as discussed above,

we evaluate the feasibility of executing each step of the plan. The feasibility

is determined by computing the lwidth value at each node in INDSEP, since

we process ExpressionSets at each node. At the leaf nodes of the tree, which

correspond to the disk partitions, we process ExpressionSets on the junction

tree corresponding to the disk partition.(Step 20 in Algorithm 2). At each in-

ternal node of INDSEP, after building the IJT, we process ExpressionSets on

it (Step 23 in Algorithm 2). To compute the lwidths, we use the eager+order

heuristic described in Section 6.1. In addition, we also compute the optimal

pivot locations. Note that we need not know the actual pdfs, but only the

sets of variables over which they are defined. Hence, the time for computing

lwidths and pivots is quite small, compared to the lineage processing times.

When the junction tree is disconnected, we compute the lwidth and pivot for

each partition separately along with the lwidth involved in combining the re-

sults from the different partitions together. We enforce an lwidth threshold on

the computation in order to bound the lineage processing time. If the com-

puted lwidth at a given node exceeds the threshold, then we mark the relevant

node in the lineage plan to indicate that we need to perform approximations

(Section 6.3.3). Our method ensures that we use approximations only for the

portions of the lineage formula that have large lwidths and not for the com-

plete formula as a whole. As we show in our experiments, this significantly

improves the quality of our approximations.

148

Q1: {d∨e}
Q2: {b∧c, n}

Q3: {o}
Q: (d∨e ∧ (n∨o)) ∨ b∧c

Q1: {d∨e}
Q2: {b∧c,c}

Q2: {c, j} Q2: {j, n}
Q3: {o}

Q1: {d∨e} Q2: {b∧c,c} Q2: {j,n} Q3: {o}

Root

I1 I2 I3

P1 P2 P5 P6

Figure 6.6: Lineage Plan for lineage λ = (d ∨ e)(n ∨ o) ∨ (b ∧ c)

6.3.2 Lineage Plan and Execution

Lineage Plan: As specified earlier, the lineage plan data structure specifies

the list of ExpressionSets to be executed at each index node in INDSEP.

The lineage plan is a tree based data structure, where each node in the tree

corresponds to one of the index nodes in INDSEP. Each lineage plan node N

(with parent P) in the lineage plan contains the following which were computed

in the previous section:

• (C1) Id of the index node to which it corresponds

• (C2) List of ExpressionSets: EN ={EN
1 , E

N
2 , . . . }

• (C3) Optimal pivot(s), lwidth(s) - do we approximate ?

• (C4) Can we get results from shortcut potentials ?

• (C5) Pointers to children, Hashtable (EP → EN)

• (C6) Whether to combine multiple lineage results ? (e.g., due to disconnec-

tions)

An example of a simple lineage plan, for the lineage λ = (d∨ e)(n∨ o)∨ (b∧ c)

is shown in Figure 6.6. Notice that we have indicated the INDSEP node to

149

which each plan node corresponds. Owing to disconnections, λ is initially

split into three ExpressionSets {d ∨ e}, {b ∧ c, n} and {o}. Hence, the root

has 3 ExpressionSets, and an additional ExpressionSet while tells the lineage

processor to combine the results together. Q1 introduces recursive calls {d∨e}

over I1 as shown in the figure. Also Q2 introduces recursive calls {b ∧ c, c},

on I1, {c, j} on I2 and {j, n} on I3 as shown. Note that the ExpressionSet

corresponding to I2 is marked, since it can be directly obtained from the

shortcut potential of I2. Q3 introduces recursion over I3 as shown in the

figure.

Executing the Plan: We execute the lineage plan via recursion over the

lineage plan structure. We explain the key recursive step here. Given a lineage

plan P on an index node I, we recursively assign children of P to the respective

child nodes of I. We collect the results of the executions of each of the child

nodes and construct the IJTs (Section 6.2) using the hashtable mappings.

Now, we execute the ExpressionSets contained in I over the IJTs using the

optimal pivot locations, and return the result to I ′s parent. We have 2 special

cases to take care of: (1) when the lineage plan is marked, we directly obtain

the result from the shortcut potential (2) Whenever the lwidth exceeds the

threshold, we perform approximations while processing lineage (Section 6.3.3).

Whenever the index node corresponds to a leaf, we execute the ExpressionSets

on the junction trees corresponding to the leaf and return the results to the

parent node.

150

6.3.3 Approximation Technique

In this section, we describe how we deal with lineage formulas that induce

large lwidths on the underlying junction tree. Currently, we use a simple

Monte Carlo technique which is based on Gibbs sampling [43]. The accuracy

of the estimates can be improved by using more samples. In our ongoing work

we are developing new techniques based on modifying lineage formula to allow

efficient processing, similar to the approximate lineage computation of Re et

al. [92].

The central idea behind this technique is to use samples of the probability

distributions and pass them around as messages, instead of the complete pdfs.

We modify the Eager and the Eager+Order message passing algorithms of

Section 6.1 in order to support sampling techniques.

The algorithm we present is a recursive algorithm on the junction tree. We

illustrate it with a simple example. Suppose that we want to compute the

probability of (a ∧ k) ∨ h in the Junction tree of Figure 6.2(iii). We construct

the Steiner tree corresponding to a, k and h as before and also select a pivot

node. Suppose we select clique (ac) as pivot. In the first step, the clique (ac)

constructs N samples from the pdf p(a, c) and sends it to clique (cfg). The

clique (cfg) now computes p(g, f |c), (dividing p(g, f, c) by p(c)) and uses the

samples (ci) from (ac) to generate samples (gi, fi) from p(g, f |c). Now clique

(cfg) recursively sends samples gi to clique (gjk) and samples fi to clique (fh).

These cliques, return samples corresponding to k and h respectively to clique

(cfg). Now (cfg) combines these samples and returns them (ci, hi, ki) to clique

(ac), which now evaluates the probability of (a ∧ k) ∨ h.

151

6.4 Experimental Evaluation

6.4.1 Implementation Details

We implemented the lineage processing component of the query processor

module in PrDB (Figure 3.1) for our experimental analysis. As discussed in

Section 3.4, we use a query rewriting approach to construct the lineages of the

output tuples. Subsequently, we use INDSEP to compute the probability of

the lineages. We note here that lineages computed by the query rewriting may

not be in the read-once format. Hence, we implement the co-graph recognition

algorithm of Golumbic et al. [45] to rewrite a boolean formula as a read-once

function. This algorithm is known to be complete, i.e., if the boolean formula

has a read-once form, then it will find one such representation.

6.4.2 Experimental Setup

The main objectives of our experimental analysis are to show the bene-

fits of (1) our heuristics for processing lineage formulas over junction trees

(2) our lineage planning algorithms to improve lineage processing times (3)

our approximation algorithms to generate accurate results. We begin with a

discussion of the experimental setup.

Dataset: We generated a synthetic dataset with 3 relationsR1, R2, R3, each of

size 100,000 tuples that correspond to the Car Ads application (Section 1.1.2).

All tuples are uncertain. In addition, each tuple in the relation was correlated

with a random number (between 2-10) of other tuples in the database. The

correlations are randomly generated factors that correspond to the conditional

probability distributions. After populating the database, we build the junction

152

forest (set of junction trees) and use the algorithms from [62] to construct

the INDSEP data structure. To generate databases with varying amounts

of correlations, we vary the sizes of the connected partitions in the junction

tree. We generate 3 different datasets, each with different partitioning sizes.

Database D1 has single node partitions, i.e., it is a tuple independent database.

D2 has partitions of size 100, i.e., it is lightly correlated. D3 is a moderately

correlated database with partitions of size 1000. In addition, we generate a

Markovian sequence denoted by M [61], which is a single junction tree.

Query Workload: We used the query Q from the introduction as part of

our experiments. We carefully vary the data in the join columns in order to

create lineages of different sizes. In addition, we also generate artificial lineage

boolean formulas of the form A1∧A2∧A3 as required to illustrate the results.

Each of the Ai’s are disjunctions of the tuple uncertain random variables.

Our most important experimental findings are as follows:

Suitability of INDSEP for Lineage queries: In this experiment, we eval-

uate the benefits of INDSEP for processing lineage queries. As noted before,

INDSEP is extremely useful for inference and aggregation queries. We run the

lineages of various sizes on the Markovian sequence database M alternatively,

using (a) INDSEP (b) directly on the underlying junction tree. We measured

the wall-clock times for processing the lineage formulas for both cases. The

bar graph containing these results is shown in Figure 6.7(a). The results are

plotted as a function of the size of the formula. As noted before, we observe

exponential decrease in the amount of time required to process lineage formu-

las. Note that the y-axis is in log scale, so the benefits of INDSEP are more

substantial than apparent.

153

Performance of the heuristics: We now evaluate the performance of our

heuristics Eager and Eager+Order for evaluating boolean formulas over a junc-

tion tree as opposed to the Naive approach. We used both the heuristics alter-

natively to bottom out the recursion (Section 6.2). We used both independent

database D1 and the lightly correlated database D2 for this experiment. We

compare the time taken to evaluate a lineage formula for both the heuristics

as a function of the size of the formula. In addition, we also compared the

above heuristics with the Naive approach (Section 6.1). We performed the

experiment for lineages of different sizes varying from very small 10 to very

large lineages 150. The time taken for lineage processing is plotted in Fig-

ures 6.7(b) & (c). Notice that the y-axis is in log-scale. As shown in the

figures, the Naive and the Eager approaches perform very poorly as compared

to our Eager+Order heuristic. Even for small lineages below 30, the amount

of processing time is very large, since very large intermediate pdfs are created

by the heuristic. In contrast, even for large lineage formula, the heuristic Ea-

ger+Order performs very efficiently as shown in the figure (taking less than

0.4 seconds for lineage of size 30 and about 7 seconds for lineage of size 100).

Study of Lineage Processing Performance: With this experiment, we il-

lustrate the performance of our lineage processing algorithm as a function of

the size of lineage. For each of the databases D1, D2 and D3, we evaluate the

time taken for exact lineage processing (we set the lwidth threshold to be ∞)

for different lineage sizes. The times are plotted in Figure 6.7(c). As shown in

the figure, the lineage processing time increases as the database becomes more

correlated owing to the larger intermediate pdfs generated during lineage pro-

cessing. As we can see from the figure, once the lwidths generated exceed 20,

154

(the intermediate pdfs = 8MB) the algorithm is largely unusable. The expo-

nential blow-up due to the large intermediate pdfs is evident from the figure.

Hence we introduce the lineage planning phase in our approach and introduce

the lwidth threshold parameter to characterize such cases and resort to ap-

proximation techniques for them. In addition, the figure also shows the time

taken by a special purpose technique such as Mystiq [27] and Sen et al. [96]

to process lineages on the dataset D1. As shown earlier (Section 6.1.3), our

algorithm is quadratic in the size of the formula, while special purpose tech-

niques are linear. Not surprisingly, our system performs poorly with respect

to a special purpose technique for tuple independent probabilistic databases.

Lineage Planning (Batch Lineages): With this experiment, we show the

benefits of processing multiple lineages together using our batch processing

algorithm (Section 6.3.1). We use correlated database D2 for our experiments

and we measure the time taken to process a workload using the batch lineage

processing algorithm and for comparison, we process each lineage in the work-

load individually. We perform the comparison for both small lineages (< 20)

and large lineages (> 50) which were chosen randomly. The results are plotted

in Figure 6.7(e). As shown in the figure, the time taken by the batch lineage

processing algorithm is less than the time taken for processing each lineage

individually and add them up. Notice that even for randomly generated lin-

eages without any explicit sharing between the formulas, we obtain significant

reduction in the lineage processing time. In addition, as the workload sizes get

very large > 1000, we gradually lose the benefits of the batch lineage process-

ing. This is because of the overheads that arise in the lineage planning, i.e.,

removing duplicates. We now evaluate the performance of the batch lineage

155

processing algorithm as a function of the amount of sharing that is present

between the lineages. This way, we create workloads with a sharing coefficient

of 0.0 (no overlapping variables) to 0.6 (60% repetitions of variables). We now

evaluate these workloads on both datasets D1 and D2. We plot the ratio of

the time taken for batch lineage processing to the time taken for processing

each lineage separately (Smaller ratios are better). As shown in Figure 6.7(f),

for both datasets D1 and D2, we can see that the lineage processing time

reduces as the sharing coefficient increases. Also, we find that the batch lin-

eage processing is more beneficial for correlated datasets than for completely

independent datasets. In fact, it induces an overhead for D1 at low sharing co-

efficients. This occurs due to the blowup of the workload size at the beginning

of the algorithm where we split the lineage into multiple ExpressionSets for

each component in the junction forest (the splitting is biggest for D1 since it

is disconnected). We also found that the batch processing algorithms is quite

beneficial for sharing across inference queries.

Approximate Lineage Processing: Now, we evaluate the accuracy of our

approximate lineage processing algorithms. We use the Markovian sequence

dataset M , i.e., the fully connected junction tree. We first compute the

error in the output probability as a function of the number of samples used

in our Monte Carlo algorithm. We compute the exact probabilities by setting

the lwidth threshold to ∞. Since we were using the fully connected junction

tree, we had to limit the size of the formula to less than 20. We used three

workloads depending on the size of formula - (5-10), (10-15) and (15-20).

The results are shown in Figure 6.7(h). As shown in the figure, for each of

the three workloads, we observe that the accuracy rate improves with the

156

number of samples. In fact, when we use more than 500 samples, we only

notice a difference in the second decimal position. With 2000 samples, we

notice an error in the third decimal position. Next, we illustrate the benefit

of using INDSEP for our approximation. In this experiment, we carry out the

approximation algorithm, first directly on the underlying junction tree and

then using INDSEP(1000 samples). We used three kinds of lineage formula,

short range, medium range and long range lineages - which have varying spans

on the underlying junction tree. Span of a lineage is the size of the Steiner

tree induced by the lineage formula. As shown in Figure 6.7(i), the amount

of error using INDSEP is smaller than the error without it. This is due to

2 reasons: First, this is because of selectively approximating only portions of

the formula that lead to large lwidth. Second, due to the shortcut potentials

in INDSEP, the size of the effective junction tree is small. Also, the difference

in the errors is more pronounced for long range lineages. This is because the

errors continuously add up sequentially for large span lineages when we process

the lineage without INDSEP.

157

100

101

102

103

104

105

106

2118151296

tim
e,

 m
illi

se
co

nd
s

N
O

TE
: L

O
G

 S
C

AL
E

no index
with Index

 0.1

 1

 10

 0 20 40 60 80 100 120 140

tim
e,

 s

Dataset D2

N
O

TE
: L

O
G

 S
C

AL
E

Naive
EAGER

EAGER+ORDER

 0.1

 1

 10

 0 20 40 60 80 100 120

tim
e,

 s

Dataset D1

N
O

TE
: L

O
G

 S
C

AL
E

Naive
EAGER

EAGER+ORDER

(a) Time vs Lineage size (b) and (c) Heuristic performance vs Lineage Size

 0.1

 1

 10

 20 40 60 80 100 120

tim
e,

 s

N
O

TE
: L

O
G

 S
C

AL
E

D3
D2
D1

D1-SPT 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000

tim
e,

 m
s

Naive(small)
Sharing(small)

Naive(large)
Sharing(large)

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6

ra
tio

D2D1

(d) Time vs Lineage size (e) Time vs Workload size (f) Ratio vs sharing factor

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22
 0.24

 0 500 1000 1500 2000

Ab
so

lu
te

 e
rro

r

Small (5-10)
Medium(10-15)

Large(15-20)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

ShortMediumLong

ab
so

lu
te

 e
rro

r

INDSEP
No Index

(g) Error vs Sample size (h)Error vs Range of lineage

Figure 6.7: Results: (a) Processing lineages using INDSEP is more scalable.
(b) and (c) Illustrating benefits of EAGER+ORDER heuristic over the EA-
GER and naive approaches for datasets D2 and D1. (d) As the correlations
increase, lineage processing times increase. Special purpose technique (SPT)
performs better for the independent dataset D1. (e) and (f) Illustrating benefit
of batch lineage processing. (g) Sampling errors can be reduced by increasing
number of samples. (h) INDSEP improves the quality of our approximations
significantly.

158

Chapter 7

Query Processing on Markovian

Sequences

So far in the dissertation, we have focused on representing general proba-

bilistic databases and developing efficient algorithms for query processing over

them. However, uncertainty is also highly prevalent in data streams. As dis-

cussed in Chapter 1, probabilistic modeling of large-scale data generated by

sensor networks and other measurement infrastructure is one of the primary

applications that generates uncertain probabilistic streams. In this chapter,

we address the problem of efficient query evaluation over such probabilistic

streams. We observe that although probabilistic streams tend to be strongly

correlated in space and time, the correlations are usually quite structured,

with the same set of dependences and independences repeated across time.

Furthermore, most real-world probabilistic streams are Markovian in nature,

with the state at time “t+1” being independent of the states at previous times

given the state at time “t” (in some cases, the state at time “t+1” may de-

pend on a fixed number of states in the recent past [20]). Now, we describe

159

how to represent these sequences efficiently and design algorithms for query

processing over these sequences. The outline of the chapter is as follows. In

Section 7.1, we formally define a Markovian sequence/stream. Following this,

we develop an algebra of operators on Markovian streams in Section 7.2 and

develop algorithms for them in Section 7.3. In Section 7.4 we discuss query

planning algorithms and the associated optimizations. We conclude with an

experimental evaluation of the stream processing component of the PrDB sys-

tem.

7.1 Markovian Sequences

Although several probabilistic streams that occur in real world applications

are highly correlated in both space and time, we observe that the correlations

are very structured with the same set of dependences and independences re-

peated across time. Further, the correlations are Markovian, which means

that the tuple at time t + 1 is independent of the tuple at time t − 1 if we

know the value of the tuple at time t. We can store such Markovian sequences

very efficiently by treating the correlation structure of the PGM as a schema

and decoupling it from the probability distribution numbers. We formally

illustrate it below.

Definition 1. A Markovian Sequence, Sp = S1,S2, . . . , is a probabilistic se-

quence that satisfies the Markov property, i.e., the set of random variables St+1

is conditionally independent of St−1 given the values of the random variables

in St (denoted St−1 ⊥⊥ St+1|St).

Because it obeys the Markov property, any Markovian sequence is com-

pletely determined by the joint probability distributions between successive

160

sets of random variables, p(St,St+1),∀t. Therefore, we can represent a Marko-

vian sequence as a sequence of joint probability distributions. p(S1,S2),

p(S2,S3), . . . , p(St,St+1). The repeating structure in the Markovian se-

quences can be captured using a combination of two components:

• The first component, called the schema graph, is the PGM representation

of the two step joint distribution that repeats continuously throughout

the sequence.

• The second component, called clique list, is the set of direct dependencies

that are present in the sequence between two successive sets of random

variables.

The schema graph and the clique list of the example Markovian sequence

discussed above are shown in Figures 7.1(b,c).

This repeating structure also allows us to compactly represent a Markovian

sequence as a sequence of tuples, each of which is an ordered list of CPDs

corresponding to the clique list. Furthermore, since the CPDs for each time

instance, and the domains of the random variables are known in advance, we

can also remove the schema information and simply transmit the numbers

comprising the CPDs.

For the example shown above, the list of CPDs at time t is:

{p(X t), p(Y t|X t), p(X t+1|X t), p(Y t+1|X t+1, Y t)}. Assuming all variables are

binary, we instead represent these CPDs as an array of numbers: {p(X t =

0), p(X t = 1), p(Y t = 0|X t = 0), p(Y t = 1|X t = 0), . . . , p(Y t+1 = 1|X t+1 =

1, Y t = 1)} (total 18 numbers). This allows us to efficiently transfer the

tuples between the operators, and minimize the memory requirements of our

operators.

161

X1 X4X3X2

Y1 Y4Y3Y2

Xt+1

Yt+1

Xt

Yt

(a) Markovian sequence Sp (b) Schema Graph

{(X t), (X t, Y t), (X t, X t+1), (Y t, X t+1, Y t+1)}
(c) Clique List

t p(X t)

1 [0.5,0.5]

.

t p(X t+1|X t)

1 [0.3,0.7,0.1,0.9]

. . . .

t p(Y t|X t)

1 [0.2, 0.8, 0.5, 0.5]

. . . .

t p(Y t+1|X t+1, Y t)

1 [0.7, 0.3, 0.6, 0.4
0.4, 0.6, 0.9, 0.1]

(d) Data in the relations

Figure 7.1: (a) Example of a Markovian sequence Sp on attributes X and
Y ; (b) Schema graph and (c) clique list of Sp; (d) Representing Sp using one
relation per CPD.

7.2 Probabilistic Sequence Algebra

The probabilistic sequence algebra underlying our system is a probabilistic

extension of the sequence algebra model proposed by Seshadri et al. [100] (with

some minor changes). The result of the application of an operator on a proba-

bilistic sequence is equivalent to applying the operator to each of the possible

sequences separately, and then adding the result sequences to a result set. If

two sequences return the same result, then we just add up the probabilities of

the sequences together. The result set is also a set of possible sequences and

is therefore a probabilistic sequence. Formally, applying operator op to prob-

162

abilistic sequence Sp results in a probabilistic sequence Rp = op(Sp) where,

Prob (Rp = x) =
∑

PSi∈Sp|op(PSi)=x

pi

We use this definition to extend the sequence algebra operators such as project,

set union, aggregates to probabilistic sequences. However, two of the operators

deserve further discussion:

• Selection: The selection operator for a sequence is different from rela-

tional selection because we cannot drop tuples in our deterministic sequence

model [100]. If we drop tuples, then the sequence loses the property that

the tth tuple corresponds to the set St. If a tuple in a deterministic sequence

does not satisfy a predicate, rather than deleting the tuple, we make note

that tuple does not exist by creating a new binary valued attribute AtP ,

where P is the selection predicate. AtP is assigned a value 1 if the tuple St

satisfies the predicate and 0 otherwise. If the selection predicate is over a

probabilistic attribute, then AtP itself would be a probabilistic attribute. We

discuss this further when we present our operator algorithms.

• Join: We currently restrict our implementation to equi-joins on time. To

join two probabilistic sequences, Sp and T p, we compute the results of join

between every possible sequence PSi of Sp and every possible sequence PTj

of T p; the probability of the result is the product of the probabilities of PSi

and PTj.

Along with the standard sequence operators, we introduce two new opera-

tors specific to probabilistic streams. Both these operators take probabilistic

sequences as input and return deterministic sequences as output.

163

1. MAP: The MAP operator returns the sequence in the set of possible

sequences that has the highest probability.

MAP (Sp) = {PSi ∈ Sp|∀PSj ∈ Sp, p(PSi) ≥ p(PSj)}

2. ML: The ML operator constructs a new deterministic sequence whose tth

tuple is the most likely tth tuple over all the possible sequences. Suppose

we denote the tth tuple in the deterministic sequence D by Dt. Then,

formally, ML(Sp) = D, where:

Dt = argmax
x∈Xt

f t(x),

where Xt =
⋃

PSi∈Sp

PSti and f t(x) =
∑

i|PSt
i=x

pi

We note that the selection operator commutes with both the MAP and

ML operators. Similarly, the join operator commutes with both selection and

projection operators. We prove these results in our technical report [58]. These

properties help us in designing more efficient query plans for queries. We

also notice that in general, the projection operator does not commute with

the MAP and ML operators. However, for the restricted case of Markovian

sequences which we describe next, we can still establish the commutativity of

the projection operator with the aggregation and the windowing operators,

which is very crucial for query optimization.

Operating on Markovian Sequences

Since Markovian sequences are a special case of probabilistic sequences, the

operators defined in Section 7.2 can be used to operate upon Markovian se-

quences. However, Markovian sequences are not closed under that set of oper-

ators. Several of the operators take Markovian sequences as input and return

non-Markovian sequences as output depending on the input schema. We for-

malize this observation by defining the notion of a safe operator-input pair.

164

Definition 2. A safe operator-input pair is a combination of an operator

and an input sequence schema such that the operator returns a Markovian

sequence as output when applied to a Markovian sequence with the specified

input schema.

Identifying safe operator-input pairs is crucial because we can evaluate

such operators very efficiently; on the other hand, if an operator is not safe

for an input schema, then we may have to resort to approximation schemes.

Safe operator-input pairs can also be chained together with other safe pairs in

a sequence to form polynomial-time query plans for complex queries. In our

query optimization framework (Section 7.4.2), we design an operator ordering

algorithm that avoids non-safe operators as much as possible.

We remark that despite the similarity of this concept to safe plans [27],

there are several differences between the two concepts. Safe plans were de-

veloped for probabilistic databases with only independent tuple-level uncer-

tainty; whereas Markovian sequences exhibit high degrees of correlations.

Further, safe plans require global reasoning over the database schema and

the query, whereas safe operator-input pairs are defined locally without any

global consideration. We also note that query processing over Markov se-

quences is intractable even if we don’t allow joins, in contrast to independent

tuple databases where single relation queries are trivially answerable.

7.3 Operator Algorithms

In this section, we present detailed description of our algorithms for op-

erating on Markovian sequences in accordance with the semantics defined in

the previous section. Our system also supports sliding window variants of the

165

aggregate operators, a pattern operator that identifies user specified patterns

in the stream, and we present the details of that as well. Our operators are

designed to be incremental and treat the Markovian sequence tuples as a data

stream, operating on one tuple (corresponding to a joint distribution between

the variables at two consecutive positions in the Markovian sequence) at a

time. If the operator-input pair is safe, then the output is also produced in

the same fashion (a tuple at a time). If an operator-input pair is not safe, then

we resort to approximations.

Each operator that we have designed implements two high-level routines:

(1) a schema routine, which is invoked when the operator is instantiated,

examines the schema of the input sequence and deduces the schema of the

output sequence (to be fed to the input of the next operator); (2) a get next()

routine that is invoked every time a tuple is routed through this operator. We

describe only the high level details of the algorithms here, a comprehensive

description can be found in our technical report [58].

Selection In the schema routine, we first start with the PGM corresponding

to the input schema. Then we add a new node corresponding to the exists

variable (AP) to both time steps of the PGM. We connect this node to the

variables that are part of the selection predicate through directed edges. In

addition, we update the clique list of the schema to include the newly created

dependencies. An illustration of this operation is shown in Figure 7.2(a). Here,

we have as input, the Markovian sequence Sp shown in Figure 7.1(a), and a

predicate X > Y . We add a new node E corresponding to the new exists

variable, and directed edges from X and Y to E. Also, we add (Et, X t, Y t) to

the clique list. In the get next() routine, we determine the CPD of the newly

166

E2

X1 X2

Y1 Y2

E1

Y4

X1 X2 X3 X4

Y1 Y2 Y3

(a)Selection predicate (X > Y) (b) Projection is unsafe

Figure 7.2: (a) Executing a selection predicate (X > Y) entails adding new
exists variables (Ei); the dotted edges show the changes to the schema. (b)
Projection may result in a non-Markovian sequence – if Y nodes are eliminated,
the resulting X sequence (shown through dotted edges) is not Markov.

created node, add it to the input tuple’s CPD list and return the new tuple.

A typical example of a CPD for such a case (predicate: X > Y) is shown in

Figure 7.3(a).

As we can see, the algorithm does not alter the Markovian property of the

sequence, and therefore every sequence can be paired safely with this operator.

Projection

In this operator, we need to remove the nodes that are not in the projection

list. This corresponds to an elimination operation on the graphical model. To

determine the schema of the output sequence, we need to determine if any new

edges need to be added to the schema graph (as a result of the elimination).

We do this by performing a dummy inference operation on the input schema

graph and determine the new edges to be added to the graphical model. We

then derive the output sequence schema from the graphical model. In the

get next() routine, we perform the actual variable elimination procedure to

eliminate the nodes that are not required.

The projection operator is not always safe for all input sequences. In certain

cases, even if the input is a Markovian sequence, after projection, the output

167

X iY iEi f

0 0 0 1
0 0 1 0
1 0 1 1
1 0 0 0
0 1 0 1
0 1 1 0
1 1 0 1
1 1 1 0

G1X2G2 f

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
. . . .
1 1 2 1

G1E2X2G2 f

0 0 1 0 1
0 1 1 0 0
.
1 0 1 2 0
1 0 1 1 1
1 1 1 2 1
1 1 1 1 0
.

(a) X > Y (b)G2 = X2 +G1 (c)G2 = X2.E2 +G1

Figure 7.3: Constructing CPDs for new nodes for (a) selection, (b) aggregate,
and (c) aggregate with selection (dom(X) = dom(Y) = {0, 1}).

may not be a Markovian sequence. An example of such a sequence is shown

in Figure 7.2(b). Here, if the nodes denoted by Y 1, Y 2 . . . Y n are eliminated

from the sequence (i.e., if Y is removed), edges will be introduced between

every pair of nodes (X i, Xj) in the graph, which results in a non-Markovian

sequence.

We characterize the schema of the input probabilistic sequence which re-

sults in unsafe projection as follows. Consider the connected subgraph G of the

schema that contains the set of nodes E being eliminated. If there is an edge

between the set of nodes Et and Et+1 and there exists node x ∈ vertices(G)\E,

then after projection, the resulting sequence will not be Markov and the projec-

tion operation is unsafe. In Section 7.4.2, we present an algorithm to identify

such scenarios and to postpone the projection operation if it is unsafe.

Joins

In the schema routine, we concatenate the schemas of the two sequences in

order to determine the resulting output schema, i.e., we combine the schema

graphs, and concatenate the clique lists. Similarly, in the get next() routine,

we concatenate the CPD lists of the two tuples, whenever both tuples have the

168

same time value. Thus, a join can be computed incrementally, and is always

safe.

Aggregation

We support decomposable aggregates, SUM, AVG, MAX, MIN, COUNT, in our

system. When computing aggregates, the output schema is just a single at-

tribute corresponding to the aggregate (note that these are not sliding window

aggregates, but rather one-time aggregates). The more complicated routine

is the get next() routine for which we have developed incremental algorithms.

We consider two cases based on the query, the first when there are no selection

predicates in the query, the second when there are selection predicates. We

illustrate both cases with examples.

Case 1: No selection predicates

Consider a single attribute Markovian sequence X1, X2, X3 . . . , and say we

wish to determine the SUM of all the variables in the sequence, in an online

fashion. Let Gk denote the sum of all the X i’s from 1 to k. The trick we

use here, is to incrementally compute the distribution p(X i, Gi) as input tu-

ples arrive. p(X i+1, Gi+1) can be incrementally computed from p(X i, Gi) as

follows:

p(X i+1, Gi+1) =
∑
Xi,Gi

p(X i, Gi)p(X i+1|X i)p(Gi+1|Gi, X i+1)

At the end of the sequence, we get p(Xn, Gn), from which we can obtain

p(Gn) by eliminating Xn. The PGM corresponding to this operator is shown

in Figure 7.4 (a). The CPD p(Gi+1|Gi, X i+1) is determined based on the nature

of the aggregate (Figure 7.3(b) shows a SUM CPD).

169

iG G

X X

i+1

i+1i

i

X

G G

E

X

i+1

i+1

i+1E i

i

(a) Case 1 (no selection predicates) (b) Case 2 (with selection predicates)

Figure 7.4: Illustrating aggregate computation. Gi = Agg(X1, X2, . . . , X i).
In each get next() call, dotted variables are added to the PGM, and the
boxed nodes are eliminated, continuously maintaining state p(X i, Gi) and
p(X i, Gi, Ei) respectively. Also, note the dependence of Gi on Ei in (b).

Case 2: With selection predicates

When selection predicates are present, the PGM that we construct is slightly

more complex. An example is shown in Figure 7.4(b). This is because of the

presence of the Ei (exists) attributes: a value X i contributes to the aggregate

only if Ei is 1 and not otherwise. This information is added to the CPD of

the aggregate node, an example of which is shown in Figure 7.3(c). In this

case, we maintain the distribution p(X i, Gi, Ei) for all time instants i and

determine the p(X i+1, Gi+1, Ei+1) from p(X i, Gi, Ei) using a similar operation

as described earlier. The PGM for doing this is shown in Figure 7.4(b).

In general, we have to maintain the distribution of all random variables in

one time instance to enable incremental computation of aggregates. For AVG,

we maintain the joint distribution of SUM and the COUNT aggregates for each

time instant, and determine the distribution of AVG based on this.

The time complexity of the aggregate operator is O(D3) for MIN and MAX ag-

gregates and O(nD3) for SUM, COUNT and AVG aggregates, where D = |dom(X i)|

and n is the length of the sequence. This is because the domains of the Gi

170

variables for SUM and COUNT increase as i increases (|dom(Gn)| = nD). Hence

the CPD sizes increase resulting in high per tuple processing time as we receive

more and more tuples. In order to keep the per tuple processing time for SUM

and COUNT small, we use constant-time approximation algorithms for domains

larger than a threshold parameter. We discuss these strategies in Section 7.4.3.

In addition, we also support entity based aggregates [16], for example, to

determine the time instances at which a variable value was maximized. Details

of the entity aggregate operator can be found in [58].

Sliding Window Aggregates

A sliding window aggregate query asks to compute the aggregate values over

a window that shifts over the stream. It is characterized by the length of the

window, the desired shift, and the type of aggregate. Sliding window operator

is unsafe for all input sequences, since the output of the operator is always non-

Markovian (illustrated in Figure 7.5(a) and (b), formal proof in [58]). This is

because the aggregate value for a sliding window influences the aggregates for

all of the future windows in the stream. Therefore, the exact answer to the

sliding window aggregate query has exponential data complexity, which forces

us to use approximations.

One approach to handling this, that we adopt, is to ignore the dependen-

cies between the aggregate values produced at different time instances, and to

compute the distribution over each aggregate value independently. We achieve

this by splitting the sliding window PGM into separate graphical models (one

for each window), run inference on each of them separately and compute the

results. Figure 7.5(c) shows a simple illustration of the operation that com-

putes the marginal probability distributions of each of the nodes G1, G2, G3,

171

G4. The unmarked nodes in the figure denote the intermediate sums (we have

used the decomposability property of our aggregates here).

However, for the special case of tumbling windows, where the length of

the sliding window is equal to its shift, we can compute exact answers in a

number of cases. We use a similar trick that we used for aggregates, i.e., we

maintain the distribution of all the random variables in the last step of each

window. By doing so, we can guarantee that the output sequence is Markovian.

However, this still requires a final unsafe projection operation; we postpone

that for as long as possible, and resort to approximation when the projection

must be done. As shown in Figure 7.5(d), we eliminate only the boxed nodes

and end up with a Markovian sequence with schema shown in Figure 7.5(e).

Eliminating X3 and X6 is postponed to a later projection step.

Pattern operator

A pattern is a list of predicates on the attribute values, with the ordering

of the predicates defining a temporal order on the sequence. For instance,

(A = 3, B > 5, A < 3) is a pattern that looks for a sequence of time instants

such that the value of attribute A is 3 in the first instant, the next B has

value more than 5, and the following A has value less than 3. We currently

only handle consecutive patterns. To compute the probability of a consecutive

pattern, we need to compute the product of the corresponding conditional

distribution functions. If the user specifies a threshold parameter, we can prune

out those time steps that do not contribute to the result. For instance if we

want a pattern with probability greater than 0.7, then each of the contributing

CPDs must be at least 0.7.

MAP operator

172

G1

X4 X5 X6X1 X2 X3

G3

G4G2

G1 G3

G4G2

(a) Sliding window model (b) Exact sliding window

G
4

X
3

X
1

X
2

G
1

X
4

X
2

X
3

G
2

X
5

X
3

X
4

G
3

X
6

X
4

X
5

(c) Approximate Sliding Window

X3 X4 X5

G4 G5 G6

X6X1 X2

G1 G2 G3

G6

X3 X6

G3

(d) Boxed nodes are eliminated (e) Output

Figure 7.5: (a) PGM for sliding window aggregate. Gi’s denote the aggregates
that we have to compute. (b) After eliminating the X i variables, we obtain
a clique on the Gi variables, which is #P-hard. (c) Hence, we split the PGM
into components as shown. Unmarked nodes are intermediate aggregates. (d)
For tumbling window aggregates, we only eliminate boxed nodes to obtain the
Markovian sequence shown in (e). Removing nodes X3 and X6 is postponed
to a later projection.

The MAP operator takes in a Markovian sequence and returns a deterministic

sequence. It is usually the last operator in the query plan, and hence it does

not have a schema routine. The get next() routine uses the dynamic program-

ming based approach of Viterbi’s algorithm [88] on Markovian sequences to

determine the sequence that has the maximum probability. We have designed

and implemented an incremental version of this algorithm by maintaining ap-

propriate state in memory. For each value in the domain, we maintain the

best sequence that ends in that value. After receiving the CPD list of the new

173

tuple, we extend each of the sequences that we have maintained in memory, by

concatenating one additional value to it and computing its probability. After

this, we update our memory state by recomputing the best sequences. We

store these sequences in memory using a circular list of finite size. When the

size of the sequence exceeds the length of the list, we remove the head of the

list and continue our algorithm using the part of the sequence present in the

list.

Most Likely operator

In order to determine the most likely value of a variable at each time step, we

first compute the marginal probability distribution for each time instant from

each tuple. Based on this, we eliminate the variables that are not required

and determine the most likely values for the variables. Further details can be

found in [58].

7.4 Query Evaluation

We begin with a brief discussion of our query language, and then present

our overall query processing and optimization algorithms for evaluating queries

over Markovian sequences.

7.4.1 Query Syntax

In our system, queries can be specified either in an SQL-style language or it

can be specified using the probabilistic sequence algebra described in Section

7.2. The SQL-style syntax is as follows:

<SELECT-MAP/ML> <Agg<attrs>>

174

FROM <tables>, ..., <tname>[size,shift]

WHERE <predicates>, <attr> like <pattern> (p)

The main extensions to SQL that we support are: (1) the user has the choice

between using MAP or ML operators for converting the final probabilistic an-

swer to a deterministic answer; (2) support for specifying sliding window pa-

rameters, and (3) support for pattern queries (including specifying the thresh-

old probability).

7.4.2 Query Planning and Optimization

The key challenge in designing a query plan for a given query is avoiding

unsafe operators. The two operators that are potentially unsafe (among the

operators described in the previous section) are projection and the window

aggregate operators. As we discussed above, the sliding window aggregates

are always unsafe (since the output itself is of exponential size) and we only

compute an approximate answer to those queries (by not computing the cor-

relations in the output sequence). For the tumbling window operator, we

separate the final projection step (which may be unsafe) into a separate pro-

jection operator. Because of this, the projection operator is the only unsafe

operator in our system, and the query planning reduces to determining the cor-

rect position for the projection operators in the query plan. Next we present

a sketch of our query planning algorithm.

For a given query, we first convert it to a probabilistic sequence algebra

expression. We then construct the query plan by instantiating each of the

operators with the schemas of their input sequences. Each operator then

executes its schema routine and computes its output schema, which is used as

175

the input schema for the next operator in the chain. While doing this, we also

check the input to the projection, and determine if the projection operator is

safe (see Section 7.3). If a projection-input pair is not safe, we pull up the

projection operator through the aggregate and the windowing operators and

continue with the rest of the query plan. If the operator we find after the

projection is ML, then we can determine the exact answer, however if we find

a MAP operator, we replace both the projection and the MAP operator with the

approximate-MAP operator (Section 7.4.3) and notify the user that a safe plan

cannot be found for the query. After generating a safe query plan as shown

here, we optimize it in the next step.

Example Suppose that the user issues the query Q0 : SELECT MAP MAX(X) FROM SEQ

WHERE Y < 20 on the Markovian sequence shown in Figure 7.1(a). The PSA ex-

pression for this query can be written as MAP (Gp(Πp
X(σpY <20SEQ))). While

running the query planning algorithm on this query, we see that the projection

operator immediately after the selection predicate is not safe (illustration is

shown in Figure 7.2(b)). Hence, we postpone the projection and execute it af-

ter the aggregate operator, to obtain the new planMAP (Πp
MAX(A)(G

p(σpB>2SEQ))),

which is now safe, because the aggregate operator returns a single value.

Our query planning algorithm is both sound and complete, i.e., we guar-

antee that the above procedure returns a safe plan if it exists for the query.

This is trivial to see because the only reason for not finding safe plans is when

the data complexity of the output sequence is #P-hard (which happens with

unsafe projections and sliding windows).

We optimize the query plan generated above by applying various rules to

rearrange operators and to simplify the PGMs generated during query pro-

176

cessing:

1. Projection push-down: If possible (i.e., safe), we push the projections

down the query plan. For instance, if the input data streams have no

temporal correlations, we can safely execute projections early on.

2. Exploiting operator commutativity: If we drop the probabilities (CPDs)

in the tuples early, we can reduce the memory cost incurred in storing

and routing tuples through the query plan; so we try to push the MAP

and the ML operator down the query plan as much as possible. This is

in contrast to a traditional database, where we try to push the selection

predicate as far down the query plan as possible. Recall that the se-

lection operator commutes with both MAP and ML operators (Section

7.2); hence we can push it down the query plan without affecting the

correctness.

3. Dropping correlations when ML values are requested: When only the

ML values are requested by the user, then we only need to determine

marginal distributions for every time instant. Hence, we can drop certain

edges in the PGMs of operators that will not influence query results.

Suppose that a most likely sequence of the tumbling window aggregate

is required by the user. In this case, we can drop edges that exist in

the PGM between the first window and the second window because the

most likely value sequence is not affected by these edges. For instance,

in Figure 7.5(d), if ML values are required, we can drop the dotted edges

in the Figure.

177

7.4.3 Approximation Strategies

To execute unsafe operators and to improve the throughput of the aggre-

gate operators, we employ the following two approximation strategies:

Approximate MAP operator

We use the Mini-Bucket elimination algorithm of Dechter et al. [33] to approx-

imate the MAP operator. The main idea here is to bound both the dimension-

ality of the CPDs and the number of CPDs generated during inference. Using

this algorithm, we can bound the complexity of a potentially exponential MAP

task to be polynomial in the number of tuples. We present results from using

this approximation in the Section 7.5.

Approximate Aggregates

As described earlier, when the domains of the SUM and COUNT aggregates

become large, the throughput of the aggregate operator falls. To counter this,

we perform simple approximations beyond a threshold domain size. One such

approximation for aggregates/sliding window aggregates is based on simply

computing expected values. Using the linearity of expectation, we can compute

the expected value of SUM and COUNT of aggregates in just O(1) time. Our

system currently does not support approximating AVG aggregate.

7.5 Experiments

In this section, we evaluate the efficiency of using our PrDB system for man-

aging and query probabilistic streams. Our experimental results demonstrate

that probabilistic stream query processors must incorporate support for tem-

poral correlations, otherwise the query results can be highly inaccurate. We

178

illustrate the effectiveness of our query processing and optimization algorithms,

especially for evaluating aggregate queries over probabilistic streams. We also

discuss the trade-offs between accuracy and performance for our approximate

MAP operator.

7.5.1 Experimental Setup

Markovian sequence generator:

We implemented a Markovian sequence generator that generates Markovian

sequences for a given input schema. Figure 7.6(a) shows the four schemas that

we use in our experiments. Consider the third schema (iii) shown in Figure

7.6(a). For this schema, the generator starts by creating random CPDs for the

first time instant - p(X1), p(X1, Y 1), p(X1, X2) and p(X1, X2, Y 2). For each

time instant t after that, it recursively computes p(X t) and p(X t, Y t) using

the previous CPDs and then randomly generates new CPDs p(X t, X t+1) and

p(X t, X t+1, Y t+1) for the current time instant. By doing this, we ensure that

continuity is maintained for all time instants, i.e., marginals over overlapping

random variables in successive joint distributions match up. We also control

the amount of spatial and temporal correlations in the sequence using a corre-

lation coefficient parameter, which is input to the generator. The domains of

the random variables we considered ranged from 3 ({0,1,2}) to 10 ({0, 1, . . . ,

9}).

We generated such sequences for all schemas shown in Figure 7.6(a). We

constructed schema (iv) specifically to denote the sequence generated by our

habitat monitoring application with 5 sensor locations and with complex spa-

tial and temporal correlations. We use the notation Si to denote the sequence

179

A1 A2
A2

B1 B2

A1
Xt+1

Yt+1

Xt

Yt

A2A1

B1

E1 D1

C1

B2

C2

D2E2

(i)S1 (ii) S2 (iii) S3 (iv)S4

(a) Different schemas used in the experiments

Q1: SELECT MAP Agg(A) FROM S;

Q2: SELECT MAP Agg(A) FROM S WHERE B > 1;

Q3: SELECT MAP MAX(A) FROM S[size,size]

Q4: SELECT MAP MAX(A) FROM S[size,1]

Q5: SELECT ML A FROM S2

Q6: SELECT MAP X FROM S1[size], S3[size]

WHERE S1.A > S3.Y

Q7: SELECT ML Agg(A) FROM S[10,10]
Q8: SELECT MAP X FROM S3

(b) Queries

Figure 7.6: The set of queries and the schemas used in the experiments.

generated from the corresponding schema.

Figure 7.6(b) shows the 8 queries that we use in our experimental evalua-

tion.

7.5.2 Experimental Results

Query Processing that is aware of temporal correlations is important

We generate Markovian sequences based on the schema shown in Figure 7.6(ii)

for different values of the correlation coefficient parameter f ranging from 0

180

to 1. We ensured that the marginal probability of variable A is {0.5, 0.5} for

all time instants. We measure the amount of error for each of our operators

when temporal correlations are ignored. For the MAP operator, we measure

the difference between the probability of the answer returned and the correct

probability (the probabilities match only when f = 0, i.e., when there are no

correlations). We plot the error as a function of the correlation coefficient in

Figure 7.7(a). We also measured the errors encountered for various aggregates.

We plot the error in the expected values of MIN and MAX and also the errors in

the variance of the SUM aggregate in the figure (expected value in SUM had 0 error

as expected). The Pattern operator also suffers lot of error if temporal corre-

lations are ignored (not shown here). As shown in the figure, for correlation

coefficients beyond 0.2, the amount of error for all operators is very large if

the temporal correlations are ignored.

Study of Streaming Performance of Aggregates Here, we measure the

throughput of our aggregate and windowing operators. We execute queries

Q1 & Q2 for all aggregates and measure the time take to process each new

tuple completely. From this, we estimate the throughput of our aggregate

function. For MAX and MIN aggregates, the amount of time taken to process

new tuples is constant (as expected), however the per tuple processing time

increases continuously for SUM and COUNT as the domains of intermediate results

keep increasing. For SUM and COUNT, we switch to returning expected values

(Section 7.4.3) when the domain size exceeds 200. We measure the throughput

for both sequences S3 and S4. The results of this experiment are tabulated

in Figure 7.7(c). As we can see from the table, our system can support up

to 500 tuples/second even with our habitat monitoring schema, which is quite

181

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

%
 E

rr
o

r

Correlation Coefficient

Accuracy Experiment

E [MAX]
E [MIN]

Var [SUM]
MAP

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

T
im

e
 p

e
r

w
in

d
o

w
 m

ill
is

e
c
)

Window size

Window Aggregate performance

TW: Schema S3
TW: Schema S4
SW: Schema S3
SW: Schema S4

(a) Errors in operators (b) Window throughput

Operator S3 S4

Q1 Q2 Q1 Q2

agg max 2762 1201 509 220
agg min 2802 1271 559 260
agg sum 34.5 30.3 15.7 15.6

(c) Aggregate throughput (tuples per second)

Figure 7.7: (a) We plot the % error in query processing for various operators
when temporal correlations are ignored, (b) We show performance (through-
put) of the windowing operators, (c) We show the throughput of aggregate
operators for different cases.

impressive for a system that handles temporal correlations. The value shown

for SUM is the lowest throughput we encountered in the experiment. We can

improve this number by switching to approximations earlier.

We also measured the throughput of our tumbling window and sliding

window operators. We executed queries Q3 and Q4 for each of sequences S3

and S4 as a function of the size of the window and measured the time taken

to process a window of tuples. The results are shown in Figure 7.7(b). As we

can see, the processing time increases linearly as a function of the window size.

Sliding window processing takes much less time as we perform approximations

(Section 7.4.3).

182

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0 20 40 60 80 100 120 140 160 180 200

Q
u
e
ry

 t
im

e
 (

µ
s
e
c
),

 l
o
g
 s

c
a
le

Size of the table

QP1
QP2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Q6Q5

Q
u
e
ry

 p
ro

c
 t
im

e
,
m

s

8.130

4.307

12.685

9.347

QP1
QP2 (proj. pushed down)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

S3-SUMS1-SUMS3-MAXS1-MAX

A
v
e
ra

g
e
 t
im

e
 p

e
r

w
in

d
o
w

19.2

12.6

32.28

19.02

7.1
4.54

29.8

13.20

with edge
edge removed

(a) Pulling up projections is good (b) Pushing down safe projections (c) Deleting redundant edges is good

 0

 2

 4

 6

 8

 10

ML queryMAP query

Q
u
e
ry

 p
ro

c
 t
im

e
,
m

s 8.535

4.870

3.697

1.688

QP1
QP2

10
0

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000

Q
u
e
ry

 p
ro

c
 t
im

e
 (

m
s
),

 l
o
g
 s

c
a
le

Size of the table

Prior work - Q1
Our system - Q1

Prior work - Q3
Our system - Q3

 0.001

 0.01

 0.1

 1

 10

 0 100 200 300 400 500

R
a
ti
o
 o

f
m

e
m

o
ry

Size of the table

Q1
Q3

(d) Exploiting operator commutativity(e) Exploit Markovian structure (time)(f) Exploit Markovian structure (memory)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

A
c
c
u
ra

c
y
 (

%
)

Bound on CPD size

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

Q
u
e
ry

 p
ro

c
 t
im

e
 (

s
)

lo
g
 s

c
a
le

Bound on CPD size

(g) Approximate MAP accuracy (h) Approximate MAP performance

Figure 7.8: Figures (a),(b),(c),(d) illustrate query optimization. (a),(b) show
the need for determining the correct location for the projection operator. (c)
demonstrates gains made by deleting redundant edges in the model. Note
that this is not drawn to scale, only used for comparison. (e),(f) demonstrate
advantages of our system over previous approaches. Notice that the y-axis is
in the log scale, so our gains are substantial. (g),(h) describe accuracy and
performance for the approximate map operator

Query Optimization Strategies With this set of experiments, we demon-

strate the need for query optimization and effectiveness of our query optimiza-

tion strategies in choosing efficient query plans.

• Projections: Determining the correct position for the projection operator

in the query plan is very critical to the query performance. We run query

183

Q0 shown in Section 7.4.2 with two query plans, QP1, which is obtained

by our query optimizer - ΠMAX(A)(AggA(TBL)) (projections pulled up) and

the näıve query plan, QP2 - AggA(ΠA(TBL)) (projections pushed down, as

in a standard query optimizer). As Figure 7.8(a) shows, QP2 is extremely

inefficient when compared to QP1. In fact, QP2 runs out of memory (1GB)

for just 20 tuples. Also note that QP1 is incremental and works well for

streams while QP2 requires all the input data at once. Pushing down safe

projections also helps significantly improve performance (reduced data flow

among operators) in many queries. We run queries Q5 and Q6 with query

plans QP1 and QP2 (projections pushed down – for Q6 we push the pro-

jection below join) and compute the total query processing time, which are

plotted in the Figure 7.8(b).

• Dropping edges for ML values: As we illustrated in Section 7.4.2, we

can drop redundant edges in the PGM to improve query performance. We

run the ML query Q7 for SUM, MAX aggregate using two query plans for

each query - first one with all edges, the second with edges removed. For

analysis, we use both the sequences S1 and S3. The query processing times

are plotted in the bar chart in Figure 7.8(c). (We scaled down the query

processing times for SUM by 10 to fit the figure). As we can see, we can

reduce the query processing time to about half of its value. We observed

that even with the habitat monitoring sequence S4, we reduced the query

processing time by half.

• Exploiting commutativity of operators: We examine the amount of

savings that we obtain by exploiting the operator commutativity discussed

in Section 7.2. We execute query plans QP1 - ML(σp(PS)) and QP2 -

184

σ(ML(PS)) and determine the amount of savings in this case. Similarly,

we execute query plans MAP (σp(PS)) and σ(MAP (PS)). First, we veri-

fied that the answers returned by both the query plans is indeed the same.

Second, we observe about 40% saving in the query processing time if we

execute the ML/MAP operator first, as shown in Figure 7.8(d).

Comparison with previous techniques (Sen et al. [96]) We illustrate

that the get next() query processing framework that we have developed is

much more efficient than previous approaches. By performing incremental op-

erations, we can not only reduce amount of memory consumed, but also the

query processing time. The advantage is magnified while computing aggre-

gates, which create large PGMs. We use queries Q1 and Q3 from Figure 7.6

for our experiments. We run the incremental version using our system and

then use techniques from Sen et al. [96] to fully construct the PGM for the

query. We plot the query processing times, as a function of the table size in

Figure 7.8(e). As we can see from the figure, the incremental algorithm is

comparable with the previous approaches for small tables, but does better as

the size of the table increases. We also have an order of magnitude reduction

in the total memory consumed (7.8(f)).

Approximation Performance and Accuracy Here, we describe the trade-

offs between accuracy and performance provided by the approximate MAP

operator (Section 7.4.3). For this experiment, we use Query Q8 and fix the

correlation coefficient to be 0.5. We run the exact version of the query plan

first, without any approximations. Since this is exponential, the algorithm

could only handle 25 tuples before running out of memory. Then we run the

185

query plan with the approximate-MAP operator for different bounds on the

CPD size. We measure the accuracy of the results by comparing the resulting

sequence against the exact MAP sequence computed earlier. The accuracy

and the performance benefits of the approx-MAP operator is shown in Figure

7.8(g) and (h). As we can see from the plots, the approximate-MAP operator

can be used to obtain fairly accurate query answers.

186

Chapter 8

Robust Query Processing for

Probabilistic Databases

So far in the dissertation, we have focused on a simple query evaluation

model: given a probabilistic database and a query, we compute the set of

output tuples and their probabilities. However, the output provides little or

no intuition to the user – for instance, the reason we obtained a given output

tuple and why its probability is so low. Providing this information is critical in

a probabilistic database since the users may not be sure about the input prob-

abilities and correlation values, and are hence interested to know what tuples

are most influential for the output. In this chapter, we augment the existing

query evaluation model with two additional features: first sensitivity analysis

and second causes/explanations. Further, we also allow the user to alter input

probability values (e.g., if the user resolves uncertainty in some tuple or if the

user procures more accurate probabilities) and quickly recompute the query

results by exploiting previous computation. The outline of the chapter is as

follows. We start with some preliminaries in Section 2.1.7 and formally define

187

the sensitivity and the explanations problem in Section 8.1. In Section 8.2 and

8.3, we develop algorithms for sensitivity analysis and explanations for vari-

ous queries. We provide algorithms for incrementally re-evaluating queries in

Section 8.4. Finally, we conclude with experimental evaluation in Section 8.5.

8.1 Formal Problem Statement

In this section, we formally state the sensitivity analysis and the explana-

tion analysis problems.

8.1.1 Sensitivity Analysis

We start by defining the notion of influence of a given input probability on

a query result. Queries on a probabilistic database can be of two categories

based on the type of output: value queries and set queries. We define influence

for each query type in turn.

Value queries: The output of a value query is either a single numerical

value v or a set of numerical values {v1, v2, . . . , vn}. Examples of value queries

include boolean conjunctive queries (output value is a probability) and aggre-

gation queries (output value is the expected value of the aggregate).

Definition 3. The influence of an input tuple t on a value query with output

v is given by the derivative ∂v
∂p

, where p is the probability that t exists. If the

output is a set of values, then the influence is the sum of the influences of t

on each output value.

For conjunctive queries, even if we change the probabilities of the input

tuples, the output set of tuples remains the same, only the probabilities of

188

the output tuples change. Thus, the sensitivity of an input probability on

a boolean conjunctive query result represents how the output probability

changes when the input probability is changed. Influence of an input tuple

t on the output tuple with lineage formula λ, denoted by inflt(λ) is given by

the derivative ∂p(λ)
∂p

. An alternate definition of influence of a tuple on a con-

junctive query, was proposed by Re et al. [92]. Re et al. define influence of a

tuple as the difference between the output probabilities obtained in two cases,

first by assuming that the tuple exists and second by assuming that the tuple

does not exist. As we show in Theorem 2 in Section 8.2.1.1, the two definitions

are equivalent.

For aggregation queries, we measure how the expected value of the aggregate

changes when the input probability is modified, i.e., for the AVG aggregate, we

define influence of ti to be the derivative ∂E[AVG]
∂pi

.

Set Queries: Examples of Set queries are probabilistic threshold queries and

top-k queries. If we change the probability of an input tuple, either new tuples

enter the result set or existing tuples leave the result set. To define influence

over discrete sets such as these, we introduce the notion of ε-influence.

Definition 4. Input tuple t with probability p is ε-influential on the output

set S if using p + ε in place of p modifies the result from S to S ′, where

S ′ 6= S. The degree of influence is the cardinality of the symmetric difference

S∆S ′ = (S \ S ′) ∪ (S ′ \ S).

Note that ε is a parameter this is provided by the user. In Section 8.2.3,

we show how to provide hints to the user to set ε.

Formal Problem: Sensitivity Analysis

Given a probabilistic database and a query, determine the set of top-` influential/ε-

189

influential variables for the query. We use ` to distinguish it from conventional

top-k queries.

8.1.2 Explanation Analysis

Intuitively, an explanation for a query result is a set of tuples which pro-

vides the best reason for obtaining the particular result tuple and its associated

probability. It is critical to consider a set of tuples and their combined con-

tribution rather than contributions by each individual tuple individually. For

example, consider an output tuple with lineage (a∧ b)∨ (c∧ d). Suppose that

probability of a and b are very high compared to that of c. The contributions

of a and b treated individually are very high compared to that of c. However,

the contribution of the set {a, c} is higher than the contribution of {a, b} since

we can bring the output probability down to 0 by setting a and c to false

(which is not possible with {a, b}). Hence we define the contribution for a set

of tuples as follows.

Definition 5. A contribution of a set of input tuples S is defined as the change

in the output obtained when we set the probabilities of all tuples in S to zero.

For value queries, the change in the output is simply the difference between

the two resulting values. For example, in the case of boolean conjunctive

queries, this corresponds to the set of tuples which cause the maximum change

in the output probabilities if their probabilities are set to 0. For set based

queries, the change is the cardinality of the symmetric difference between the

resulting sets, as we did with sensitivity analysis. For explanation analysis, we

only consider value queries in the rest of the chapter.

Formal Problem: Explanation Analysis

190

Given a probabilistic database and a value query, determine the set of input

tuples of size ` which has maximum contribution among all subsets of size `.

8.1.3 Warmup: SUM/COUNT

As a warmup, we illustrate the concepts we just introduced using SUM/COUNT

queries. Using linearity of expectation, we can see that SUM = E[
∑

i aixi] =∑
i aipi. COUNT is just a special case of SUM where ai = 1∀i. Therefore, the

influence of tuple ti is simply ∂SUM
∂pi

= ai. We can just sort the input tuples by

their attribute values (i.e., ai) and return the top-` influential tuples.

It is also easy to see the contribution of the set S of tuples is
∑

ti∈S aipi.

Therefore, the explanations for COUNT correspond to the ` tuples with max-

imum aipi values.

Recomputing the results for SUM/COUNT queries is also straightforward.

For instance, if we change pi, the probability ti, to p′i, then the new query

answer is E[SUM]− aipi + aip
′
i, which can be done in constant time.

8.1.4 Relation to Meliou et al. [77]

Meliou et al. [77] define the notion of responsibility of a tuple t for a query

answer/non-answer as the inverse of the size of the smallest contingency set

for the tuple. A contingency set is a set of conditions that need to be satisfied

for the tuple t to cause a difference to the output. The bigger the contingency

set, the smaller is the set of possible worlds that the tuple can influence. If

the size of the contingency set is s, then the total number of possible worlds

that can be influenced is of the order of: O(2n

2s−1), n being the number of input

tuples. In our definition of influence, we measure the sum of the probabilities

191

of all possible worlds that are influenced by the given input tuple since all

possible worlds need not have the same probability. Hence, for the case of

probabilistic databases, the concept of influence is more meaningful, although

the two concepts are closely related.

8.2 Sensitivity Analysis

In this section, we discuss our algorithms for solving the sensitivity analysis

problem, i.e., computing the top-` influential variables for a given query. In

the first part, we discuss value queries and subsequently we discuss set-based

queries.

8.2.1 Value queries

We start by developing algorithms to compute influential variables for

boolean conjunctive queries and extend the algorithms for arbitrary conjunc-

tive queries. For ease of exposition, we list the following straightforward lemma

that is used throughout the chapter. Suppose q is a value query and suppose

that the input tuple probabilities are P = {p1, p2, . . . , pn}. Let Ppi←a be the

same vector as P except the ith entry being replaced by a.

Lemma 1. If q(P) = q(p1, . . . , pn) is a linear function of pi, i.e., q(P) =

c · pi + d where c, d are constant w.r.t. pi, then

∂q(P)

∂pi
=
q(Ppi←a)− q(Ppi←b)

a− b .

for any a, b ∈ [0, 1] and a 6= b.

192

8.2.1.1 Boolean conjunctive queries

We first show our definition of the influence of a tuple is equivalent to the

definition proposed by Re et al. [92]. Recall that they define influence of a

tuple to be the difference between the output probabilities obtained in two

cases, first by assuming that the tuple exists and second by assuming that the

tuple does not exist.

Theorem 2. (1) Given a boolean formula λ, which is a function of input

variables x1, x2, . . . , xn, p(λ) is linear in each pi treated individually, i.e.,

p(λ) = (cipi + c′i) for each i.

(2) Our definition of the influence is equivalent to the one proposed by Re

et al. [92], i.e., ∂Pr[λ(t)]
∂p(t)

= Pr[λxi=1]− Pr[λxi=0].

Proof. Consider a boolean random variable xi which appears in the formula

λ. Using Shannon expansion,

λ = (xi ∧ λxi=1) ∨ (xi ∧ λxi=0)

=⇒ p(λ) = p(xi = 1)p(λxi=1) + p(xi = 0)p(λxi=0)

(This is because the two terms are mutually exclusive)

=⇒ p(λ) = pip(λxi=1) + (1− pi)p(λxi=0)

=⇒ p(λ) = pici + c′i

Here, ci and c′i are constants, i.e., independent of pi. The second part is a easy

consequence of the first part and Lemma 1.

As indicated in Section 2.1.7, conjunctive queries are evaluated by first

computing the lineages of the output tuples. In the case of boolean queries,

193

we have a single output lineage for which we need to compute the influential

variables. According to Theorem 2, the probability of a boolean formula is

linear in each input tuple treated individually, i.e., p(λ) = cipi + c′i. Hence, it

is enough to determine ci values for each input tuple and then select the top-`

among them. However computing the influence values for all input tuples is

#P-complete as shown in Theorem 3.

Theorem 3. The problem of computing the influences of all variables for a

non-read-once lineage is #P-complete.

Proof. We prove via a counting reduction from the problem of computing p(λ)

where λ is a k-DNF formula, which is a well known #P-complete problem.

Assume that we can indeed compute the influence of all variables on a non-

read-once boolean formula λ of size n in polynomial time. Suppose that the

variables in λ are x1, x2, . . . , xn. Using Theorem 2, can write the probability

of λ as:

p(λ) = p(x1)p(λx1=1) + (1− p(x1))p(λx1=0)

= p(x1)(p(λx1=1)− p(λx1=0)) + p(λx1=0)

= p(x1)inflx1(λ) + p(λx1=0)

Note that λx1=0 is a boolean formula with n− 1 variables.

It can be expanded further.

= p(x1)inflx1(λ) + p(x2)inflx2(λx1=0) + p(λx1=x2=0)

= p(x1)inflx1(λ) + p(x2)inflx2(λx1=0) + . . .

=
∑
i

p(xi)inflxi(λx1=...=xi=0)

Hence, computing the influences of a variable for an arbitrary DNF is at least as

194

hard as computing the probability of the formula λ (#P-hard). Moreover, since

inflxi(λ) =
p(λ)−p(λxi=0)

p(xi)
, our problem is in #P. Therefore, it is #P-complete.

Although the general problem is hard, we can devise algorithms for the

special case when the boolean formula is read-once. We discuss this case first.

Read-once lineage: In this case, we develop a recursive algorithm for com-

puting the influences of all input tuples in O(n) time (n is the size of the

lineage formula). Consider the lineage shown in Figure 2.8(i). In order to

compute the influence of x1 on the output probability, i.e., ∂o
∂x1

, we can use the

chain rule from calculus,

∂o

∂x1
=

∂o

∂q1

∂q1
∂q3

∂q3
∂x1

(8.1)

The terms on the RHS can be obtained by taking appropriate derivatives of

Equations 1 and 2. Suppose z is a node with two children x1 and x2. Then,

if z = x1 ∧ x2:
∂z

∂x1
= x2 &

∂z

∂x2
= x1

if z = x1 ∨ x2:
∂z

∂x1
= 1− x2 &

∂z

∂x2
= 1− x1

Algorithm 3 deriv(x), Read as derivative w.r.t x

1: if parent(x) = null {x is root} then
2: deriv(x) = 1
3: else
4: if parent(x) is an AND node then
5: deriv(x) = deriv(parent(x)) * Pr(sibling(x))
6: else
7: deriv(x) = deriv(parent(x)) * (1 - Pr(sibling(x)))

Using the chain rule and the above equations, we develop a recursive algo-

rithm as follows. Each node in the AND/OR tree stores the derivative of the

195

output probability with respect to itself. We use this to compute the deriva-

tives of its children using the above recursive equations in a top-down manner

to finally get the derivative with respect to the leaf nodes (input tuples). Note

that the probabilities of all the nodes are precomputed in a single O(n) pass

as a preprocessing step. The relevant snippet of the algorithm is shown in

Algorithm 3. After computing the influences of each of the input variables,

we determine the top-` influential variables either by sorting O(n log n) or by

making a linear scan over the input tuples O(n`), based on the value of the

input `. We also cache the computed influence values for the input tuples –

those can be used for quickly recomputing results in certain cases. Although

we illustrated the algorithm for binary trees, our implementation can be easily

extended to handle k-ary AND/OR trees.

Non-read-once lineage: Next, we consider the sensitivity analysis for non-

read-once formulas. We propose a heuristic for evaluating the influences, which

is similar to the Dtree construction algorithm of Olteanu et al. [81]. Essen-

tially, we perform a sequence of Shannon expansions to expand a non-read-once

lineage to a set of mutually exclusive read-once formulas. The complexity of

the operation is exponential in the treewidth [39] of the boolean formula. The

complete algorithm is shown in Algorithm 4. We now explain the main aspects

of the algorithm.

In Step 1, we check if the boolean formula has a read-once representation

using Golumbic’s algorithm (Section 2.1.7.3). If it has a read-once represen-

tation, then we use the previous algorithm itself. Otherwise, we expand the

boolean formula using Shannon expansion, selecting the variable that appears

the most number of times. The expansions of the boolean formula are stored

196

Algorithm 4 infl(λ, ~I)

Require: Boolean formula λ, influence vector ~I
1: if λ is read-once then
2: return infl read once(λ)
3: else
4: Select boolean variable x in λ that repeats most times
5: Shannon expansion: λ = (x ∧ λx=1)⊕ (x ∧ λx=0)

6: ~I = (1− p(x)) infl(λx=0, ~I) + p(x) infl(λx=1, ~I)

7: ~I[x] = Pr(λx=1)− Pr(λx=0) {influence of x itself}
8: return ~I

in a binary tree data structure which we call as a Dtree (after Olteanu et

al. [81]). Each node in the Dtree corresponds to a boolean formula. Once we

obtain a read-once formula, we stop expanding and compute the influences

(local) of all the variables in the formula (Step 2). Over the nodes we execute

the Shannon expansion, we also compute the influence for the variable over

which using Step 7. Each node in the tree has an influence vector of size n,

where n is the total number of variables in the input lineage. The values in

the vector correspond to the local influences of the variables on the boolean

formula corresponding to the node. This vector is recursively updated, based

on the childrens’ vectors in Step 6. Finally, the influence vector at the root of

the tree has influences of all the variables in the formula.

We illustrate the above algorithm using an example.

Example 1. Consider the boolean formula given by λ = a1b1c1 + a1b2c2 +

a2b3c1 + a3b4c1. It cannot be represented as a read-once formula. Hence,

the algorithm first performs Shannon expansion around c1 (since it appears

3 times) as shown below.

λ = c1(a1b1 + a1b2c2 + a2b3 + a3b4) + c1(a1b2c2) = c1λ1 + c1λ2

197

We can easily see that both λ2 = a1b2c2 and λ1 = a1(b1 +b2c2)+a2b3 +a3b4 are

already in read-once format and no more expansion occurs. Now, the influence

vectors at λ1 and λ2 are computed based on Algorithm 3. In addition, the

influence of c1, p(λ1)− p(λ2) is computed. Following this, the influence vector

at the parent node is updated. Note that since a1 appears in both λ1 and λ2

nodes of the tree, its influence on λ is available at the influence vector of the

root node.

8.2.1.2 Conjunctive queries

Here, we consider arbitrary conjunctive queries which return multiple out-

put results. As defined earlier (Section 2.1.7), the influence of an input variable

is the sum of its influences on each of the output tuples. Note that even though

the output tuples may be in read-once format, the set of output tuples may be

correlated with each other, since the input tuples may be shared among the

lineages of the output tuples [27]. Hence, we cannot use the näıve approach

of looking at the top-` set of influential tuples for each output tuple and use

them to determine the overall top-`. For example, suppose we are interested

in determining the top-3 influential tuples for a set of correlated output tuples.

A single input tuple might be influential for the output tuples combined, but

it may not be enough to appear in the top-3 lists of influential tuples for each

of the individual output tuples. However, summing up all the influences would

be large enough for it to be in the top-3 list; since the näıve approach does

not consider this tuple at all, it fails. Instead, we use a brute force approach

where we sum up the influences of a given input tuple on each of the output

tuples and pick the top-` input tuples based on this value. We are currently

working on developing more efficient algorithms for conjunctive queries based

198

on extensional techniques.

8.2.1.3 Aggregation queries

Here, we determine the influence of each input variable on the expected

value of the aggregate. We provide algorithms for determining the top-` influ-

ential variables for MIN/MAX and AVG aggregates.

MIN/MAX: We only consider MAX here. The algorithm for MIN is very similar

and we omit it here. We assume all ais are positive and there is a dummy tuple

with value 0 and probability 1 to avoid the empty possible world where MAX

is undefined. We assume tuples are sorted in a non-increasing order of their

scores. Recall xi is the indicator variable of the existence of ti. It is easy to

see that

MAX = E[max
i
xiai] =

∑
i

aipi
∏
j<i

(1− pj).

It is easy to see from the above formula that MAX is a linear function of

pi for any i. Recall Ppi←a is the same vector as P except the ith entry being

replaced by a. By Lemma 1, we have

∂MAX(P)

∂pi
=

MAX(P)−MAX(Ppi←0)

pi
.

Now, we describe our algorithm. We first show how to compute MAX in

linear time. Suppose we denote by max[i, j] the maximum of the random

tuples ti, ti+1, . . . , tj. If we assume ai ≥ ai+1 ≥ . . . ,≥ aj, then, max[i, j] = ai

with probability pi and max[i, j] = max[i+1, j] otherwise. Therefore, we have

199

that

E[max[i, j]] = piai + (1− pi)E[max[i+ 1, j]]. (8.2)

When we compute MAX, we store all values E[max[i, n]] for all i. We can also

easily compute
∏i

j=1(1− pj) values for all i in linear time. Now, we show how

to quickly compute MAX(Ppi←0) for each i in constant time, provided we have

already computed MAX, E[max[i, n]]∀i and
∏i

j=1(1 − pj)∀i. In fact, it is not

hard to see that

MAX(Ppi←0) =
∑
j<i

ajpj
∏
k<j

(1− pk) +
∑
j>i

ajpj
∏

k<j,k 6=i
(1− pk)

=MAX−
∏
j≤i

(1− pj)E[max[i, n]]

+
∏
j<i

(1− pj)E[max[i+ 1, n]]

Therefore, the overall running time for finding the top-` influential tuples is

O(n).

AVG: Now we consider the problem of computing top-` influential variables for

AVG. Formally, AVG is defined to be

AVG = E
[∑

i aixi
1 +

∑
i xi

]
.

Note that we have included a dummy tuple with value 0 and probability 1 to

keep the denominator non-zero. The following theorem plays a central role for

the streaming algorithm in [53] and is also crucial for computing the influence.

Theorem 4. ([53]) For the probabilistic tuples t1, . . . , tn, let pi and ai be

the existence probability and the value of ti, respectively. Define function

200

hAVG(x) =
∑

i aipix ·
∏

j 6=i(1− pj + pjx). Then, AVG =
∫ 1

0
hAVG(x)dx.

From the above theorem, it is easy to see that hAVG(x) is linear in pi. Since

the integral is over x, AVG is also linear in pi. Thus, from Lemma 1, we have

∂AVG(P)

∂pi
=

AVG(P)− AVG(Ppi←0)

pi
.

It is known that computing AVG for a dataset of size n (in particular, expand-

ing hAVG(x)) can be done in O(n log2 n) time [53]. Computing AVG(Ppi←0) once

AVG is already computed additionally takes only linear time given the expan-

sion of hAVG(x) (see Section 8.4 on recomputing query results). For each tuple

ti, we need to compute ∂AVG
∂pi

. Therefore, the overall running time is O(n2).

8.2.2 Set queries

In this section, we discuss set-based queries and we develop techniques for

computing ε-influential variables for these queries. We start with probabilistic

threshold queries.

8.2.2.1 Probabilistic Threshold Queries

To evaluate a probabilistic threshold query PT (Q, τ), we first run the con-

junctive query Q and subsequently select all output tuples with probability

more than τ . Since the lineage formulas generated by conjunctive queries

are monotone and positive [92], increasing the probability of an input tuple

can only increase the probability of the output tuples, thereby increasing the

number of output tuples; similarly, decreasing the probability of an input tu-

ple might remove those output tuples whose probabilities become less than

τ . We only consider the case when the input probabilities are increased. The

201

symmetric case of decreasing the input probabilities is analogous and is not

discussed here. Our objective is to compute the top-` ε-influential variables

(Section 2.1.7). We rank an input tuple by its degree of ε-influence, i.e., the

number of output tuples that will be added to the output set, if we increase

its probability by ε (Definition 4).

We briefly discuss the naive algorithm before presenting techniques for

improving it. In the first step, we compute the output tuple lineages and

subsequently, the influences of each input tuple on each output tuple. In the

second step, we go over each input tuple (ti) and determine the number of

output tuples (Ci) that would cross the threshold if we increase its probability

by ε. Finally, we compute the top-` influential input tuples from this list. This

technique is quite inefficient as the complexity of the first step is O(no), where

o is the number of output tuples and n can potentially include all input tuples.

We reduce the complexity of this operation by considering only those output

tuples which contribute to the Ci values, by developing three pruning rules.

Rule 1: Ignore output tuples with probability > τ – increasing the probability

of its input tuples will not change the output.

Rule 2: Restrict attention to output tuples with probability > τ − ε. The

influence of an input tuple over a single output tuple for conjunctive queries

is always less than 1, since influence is defined as a difference between two

probability values. Therefore, the probability of an output tuple can at most

increase by ε and output tuples with probability values less than τ − ε cannot

get into the result set.

Next, we propose another pruning rule which works only for read-once lin-

eages. Consider output tuple Oi. Suppose it has probability oi < τ . The input

202

tuples that can drive this probability to τ must have influence at least equal

to θ = (τ − oi)/ε. So, we only need to increment Cj values of those input

tuples whose influences exceed θ. We modify the infl read once routine of Sec-

tion 8.2.1.1 to only return the input tuples that satisfy the above requirement

by exploiting the following property:

Theorem 5. The derivatives of the nodes in an AND/OR tree monotonically

decrease as we go down the AND/OR tree.

Proof. The proof is very easy to see using recursion. Recall the recursive

equations used to update the probabilities of internal nodes in the AND/OR

tree.

if z = x1 ∧ x2
∂z

∂x1
= x2 < 1

if z = x1 ∨ x2
∂z

∂x1
= (1− x2) < 1

Now, using Equation (3), we can see that the values of the derivatives decrease

as we go down the tree since we continuously multiply by a number less than 1

at each level. The derivative of the root with respect to itself is 1 by definition.

Rule 3: In infl read once, if the value of the derivative is less than θ, we do not

recurse along the branch. We only recurse along the portion of the tree whose

derivative is more than θ. Since the derivatives are computed in a top-down

manner, pruning via this rule can provide several benefits for large data sets.

203

8.2.2.2 Top-k queries by probability

The output of a top-k query is a list of output tuples sorted in decreasing

order by their probabilities. Therefore, modifying input tuples can cause new

tuples to enter the output while simultaneously removing the same number

of existing output tuples. Suppose we treat the probability of the kth output

tuple (in order) as the threshold τ . As with probabilistic threshold queries,

the only tuples that can enter the result are the set of output tuples with

probabilities in the range [τ − ε, τ]. Hence, we can apply the pruning rules 1

and 2 work here also. Hence the only input tuples which are influential are the

ones that appear in the lineages of these tuples. The algorithm for computing

influential variables here is similar to the one for probabilistic threshold queries.

The difference between top-k and probabilistic threshold queries is that, for

an input tuple t to force the output tuple Oi into the top-k output, it is not

enough that its influence value exceed (τ − oi)/ε. The reasons are two fold.

First, by increasing the probability of an input tuple, we may be increasing

the threshold τ itself, i.e., if the input tuple appears in the lineage of the kth

ranked tuple. Second, once a new tuple enters the top-k, the value of τ needs

to be increased. Hence, we have to explicitly check the number of new tuples

entering the top-k for each input tuple and then compute the top-` influential

input tuples.

8.2.3 How is ε assigned?

Until now, we assumed that ε was provided by the user. However, it is

unlikely to expect the user to know the value of ε. Firstly, a user might know

the margin of error that might be present in the input probabilities. For

204

instance, if the application generating the input probability reports that there

may be ±δ error in the probabilities, then the user can pick ε between [0, δ].

Another way to pick a reasonable ε value might be through a visualization

tool. Given an input tuple t with probability p, the output probabilities are

linear in p and can be visualized as straight lines. The user can now pick ε

using this visualization, e.g., a region with several intersections.

8.3 Explanation Analysis

In this section, we provide algorithms for computing the top-` explanations

for value queries.

8.3.1 Boolean Conjunctive Queries

Recall that computing explanations requires us to determine the set of `

input tuples, whose probabilities when set to 0, causes the maximum decrease

in the output probabilities.

Theorem 6. The problem of computing the top-` explanations for boolean

conjunctive queries (even without self-joins) is NP-hard.

Proof. We use a reduction from vertex cover on 3-uniform 3-partite hyper-

graph [99] similar to Theorem 4.1 of Meliou et al. [77]. Consider a 3-uniform

3-partite graph G with partitions R, S and T . Every hyperedge contains

exactly one vertex from each partition. We construct a database D with 4

relations R(x), S(y), T (z) and U(x, y, z). For each vertex in R, S and T , we

introduce a tuple (with tuple-uncertainty) in R(x), S(y) and T (z) respectively.

For each hyperedge in G, we introduce a new deterministic tuple in U(x, y, z).

205

Consider the boolean conjunctive query:

q() : −R(x), S(y), T (z), U(x, y, z)

We can easily see there is a vertex cover of size at most ` in G, if and only if

we can determine an explanation of size ` that reduces the probability of the

output tuple to zero (maximum possible reduction) in the probability.

Although the problem is hard in general, for queries that lead to read-

once lineage formulas, there exists an optimal algorithm. We describe this

algorithm next.

Read-once formulas

For the case of read-once functions, we use a dynamic programming algorithm

to compute the explanation. Consider a lineage formula λ with two subtrees λl

and λr. Suppose the function OPT (λ, k) represents the smallest possible value

for probability of λ by setting k input probabilities to 0 (i.e., maximum possi-

ble reduction in the probability). The appropriate recursion for the dynamic

program is shown below.

If λ = λl ∧ λr,

OPT (λ, k) = min
k1

(OPT (λl, k1)×OPT (λr, k − k1))

If λ = λl ∨ λr,

OPT (λ, k) = min
k1

 OPT (λl, k1) +OPT (λr, k − k1))

−OPT (λl, k1)×OPT (λr, k − k1)



206

We modify the above program to also include the top-` input tuples at

each step. The proof of correctness of the above program can be seen via con-

tradiction. Assume, for the sake of contradiction that there exists a different

solution S ′ (set of ` variables) which is better than the solution obtained by

the algorithm S. We consider two cases. Suppose the root node is an AND

node with two children λl and λr. Also suppose S ′ has l1 variables on the left

child and l− l1 variables on the right child, which are different from S. Denote

Pr(λ, S) the probability of the boolean formula λ by setting the probabilities

of variables in S to 0. According to our assumption Pr(λ, S ′) < Pr(λ, S). This

means that Pr(λl, S
′
l)Pr(λr, S

′
r) < Pr(λl, Sl)Pr(λr, Sr). However, this state-

ment is false since the sets Sl and Sr were chosen such that their product was

minimum (according to our update rule).

The complexity of the above program is O(n`2) since at each step we spend

time O(`) to determine OPT (λ, `) and we need to compute OPT for different

values from {1, 2, . . . , `}.

Non-read-once formulas

We propose two greedy heuristics for this problem.

First Approach: For each input tuple ti, we compute its influence αi for

the output tuple and sort the tuples by the value of αipi. We select the top-

` tuples as the best explanation for our purpose. The motivation for this

heuristic is that the product of the influence and the probability corresponds

to the “individual contribution” made by the tuple (to a first approximation).

Note that this ignores the pairwise and higher order contributions.

Second Approach: Now, we propose a slightly better approximation. In the

first step, we select the tuple with the highest contribution, i.e., αipi value.

207

Next, we set this tuple probability to zero and recompute the contributions

for the remaining tuples. We pick the tuple with the highest contribution and

repeat the process ` times.

8.3.2 Aggregation queries

We describe how to compute explanations for MAX and MIN efficiently.

For AVG, we leave it as an open problem.

MAX Again, we assume all values are positive and the maximum value is 0 if no

tuple exists. We first note here that greedy algorithms do not work in this case,

i.e., selecting the tuples sorted by score ai or sorted by probability pi or sorted

by aipi values. For example, consider the set of four tuples X1 = 10, X2 = 9,

X3 = 5.1 and X4 = 3 with probabilities 0.1, 0.9, 0.2 and 0.3 respectively.

Choosing the greedy heuristic based on the aipi value would force us to choose

X2 and X3, however it can be seen that the optimal solution here is by choosing

X1 and X2.

We propose a dynamic program for this problem. Firstly, note that in

the MAX case, the expected value can only reduce if we set probability values

to zero. Also, if we set more tuple probabilities to zero, the expectation can

only come down. Hence, the optimal solution will have exactly ` tuples. The

following recursive relationship is particular useful to us. Suppose we denote

max[i, j] as the maximum of the random tuples ti, ti+1, . . . , tj. We also assume

a1 ≥ a2 ≥ . . . , an.

Now, we describe our dynamic program. Let OPT (i, j) denotes the mini-

mum expectation for the maximum of {ti, . . . , tn} by reducing the probabili-

ties of j tuples to zero. Suppose we had optimal solutions to the sub-problem

208

{ti+1, ti+2, . . . , tn} for all different values of k, i.e., OPT (i+1, j) for j = 1 . . . `.

Then, we update the optimal solution using the following recursive equation.

OPT (i, j) = min{OPT (i+ 1, j), (1− pi)OPT (i+ 1, j − 1) + piai }

The first term in the right hand side of the recursion corresponds to that ti is

not chosen while the second corresponds otherwise. The second holds because

of (8.2). The optimal solution is simply OPT (1, n).

The dynamic program maintains an array of size n×`, which maintains the

optimal solution OPT (i, j) for each value of i starting from n to 1. Computing

each entry needs constant time. Therefore, the overall running time is O(n`+

n log n).

MIN: We make the same assumption as MAX that all values are positive

and the minimum value is 0 if no tuple exists. The dynamic programming

recursion is very similar to the case for MAX. The only difference is that the

expected value can either increase or decrease by setting certain probabilities

to 0. Therefore, we use two tables, one for computing the maximum increase

and the other for the maximum decrease. Then, we pick the one with larger

absolute value as the final answer.

8.4 Incremental Recomputation

In this section, we describe how our techniques for computing influences

can be used to recompute the results of a query when some of the input

probabilities are modified. Note that in addition to query results, we need

to update the influences of the input tuples also. It is desirable that the

209

cost for recomputing query results be less than executing the query again

from scratch. We propose efficient incremental algorithms for recomputing

query results which exploit previous computation. We start by describing the

algorithm for updating conjunctive query results.

8.4.1 Conjunctive Queries

We consider boolean conjunctive queries. Handling set-based conjunctive

queries is a very simple extension and we do not explain this case, owing

to space constraints. To recompute answers to conjunctive queries, we use

the values of the gradient that we computed while determining the influential

variables. For instance, if the user changes the value of a single input tuple Xi

from pi to p′i, then we can use the previously computed derivative to compute

the new answer probability in O(1) time :

pnew = pold +
∂p

∂pi
(p′i − pi)

Obviously, this works only when exactly one input tuple probability is modi-

fied. When multiple input tuple probabilities are modified, we can efficiently

update the results for read-once lineages.

Read-once Lineages: Suppose that the user modifies c input tuple proba-

bilities. Then, we can update the output probabilities in time O(c log(`)),

where ` is the size of the lineage. We illustrate this algorithm below. As we

mentioned before, we store the AND/OR tree which was initially generated

for executing the query. We first construct a Steiner tree in the AND/OR tree

connecting the input tuples that are modified by the user and the root of the

tree. We subsequently update the probabilities of each of the nodes contained

210

in the AND/OR tree using a bottom-up algorithm. Each node sends its old

probability and new probability to its parent, based on which the parent de-

termines its new probability and sends its old and new probability values to

its parents recursively. The update procedure is given below: Suppose that p

is the parent of node x, which sends xold and xnew to it. Then node p executes

the following routine.

Algorithm 5 update(xnew, xold)

1: if p is an AND node then
2: pnew = pold x

new

xold

3: else
4: pnew = 1− (1− pold)1−xnew

1−xold
5: Send pold and pnew to parent of p

We illustrate the algorithm with a simple example. Suppose that the user

updates the probabilities of the input tuples x1 and x4 in Figure 2.8. In that

case, a Steiner tree is constructed, connecting x1, x4 and o. After this, the

probabilities of nodes q3 and q4 are updated using the equations described

above. Following this, the probabilities of the nodes q1 and o is updated. The

complexity of the above operation is O(ch) where c is the number of nodes

that are updated and h is the height of the tree. If a substantial number

O(n) of input probabilities are updated, we instead use the linear algorithm

of Section 2.1.7.1.

Once we modify the probability of a tuple, the derivatives corresponding to

each of the other nodes change and we also need to update them. We propose a

lazy technique for updating the probabilities. For simplicity, suppose that only

one variable is updated. As described earlier, after computing the path from

the modified node towards the root, we update their probabilities. However,

211

note that the derivatives for each of these nodes remain the same. We need to

update the derivatives for the other nodes in the tree, which is at least linear

in the size of the tree. Instead, we simply mark those nodes, whose children’s

derivatives are inconsistent. To actually update the derivatives, we adopt a

recursive top-down strategy where we update the derivative of the node based

on the probability of the parent. If several tuples are modified, we batch

together multiple updates and perform the derivative update simultaneously

in O(n) time.

Non-read-once Lineage: To update the probability of a non-read-once lin-

eage, we exploit the binary tree data structure that we generated while com-

pute the influences (See Section 8.2.1.1). For simplicity, suppose that the user

modifies the input probability of a tuple t. Since the variable x corresponding

to t might appear in several portions of the tree, we need to essentially update

all portions of the tree that contain x. Hence, we recurse over the binary tree

top-down over the nodes that contain x. Note that we can use the influence

vector in order to determine whether a node contains x by simply checking if

its influence value is 0. Once the children update the probabilities, we update

the probabilities of the parent. We also update the influences of the variables.

We exclude the details of updating the influences owing to space constraints.

8.4.2 Aggregation

Now, we discuss the problem of incrementally re-evaluating the results of

aggregation queries, specifically MIN/MAX and AVG.

MAX: For MAX queries, our result is a dynamic data structure DS such that

1. The MAX query can be answered from DS in constant time,

212

2. We need O(n) time to build DS from scratch.

3. If the probability of a tuple gets changed, we need O(log n) time to update

DS.

Recall the notation max[i, j] denotes the maximum of the random tuples

ti, ti+1, . . . , tj. We assume a1 ≥ a2 ≥ . . . ≥ an where ai is the score of tuple ti.

Let P [i, k] =
∏k

x=i(1− px). We can easily show the following generalization of

(8.2) by induction (proof omitted here): For any i ≤ k ≤ j,

E[max[i, j]] = E[max[i, k]] + P [i, k]E[max[k + 1, j]]. (8.3)

DS makes use of interval trees (see e.g., [29]) which we briefly describe as

follows. An interval tree T is a binary tree where each node represents an

interval [i, j] for some integer i ≤ j. The root corresponds [1, n]. For a node

[i, j], its left child and right child represent [i, b i+j
2
c], [b i+j

2
c+1, j], respectively.

The leaves of T correspond to singletons. It is easy to see that such a tree

with n nodes has height O(log n).

DS consists of two interval trees TP and TE, the first used for maintaining

the information of E[max[i, j]]s and the second for P [i, j]s. In other words,

node [i, j] in TP (TE) stores the value of P [i, j] (E[max[i, j]]). Assuming we

have constructed TP and TE, the answer to the MAX query is just E[max[1, n]]

which can be retrieved in constant time. It is also not hard to show that both

TP and TE can be constructed in linear time. We just start from leaves and

build the trees bottom up using formulas P [i, j] = P [i, k]P [k+ 1, j], i ≤ k ≤ j

and (8.3). Now, we describe how to do updating operation in O(log n) time

for TP . Suppose we update the probability of a leaf v (which corresponds to

a singleton tuple). The new P value for that node is trivial to compute. The

213

key observation is only the nodes on the path from v to the root need updates

and the P values for any other nodes remain the same because their intervals

do not intersect with that of v. The updates can be done bottom up from v

to the root and take at most O(log n) times. The updating operation for TE
is the same as for TP , except that in each update we need some value P [i, j]

(recall we use (8.3) to update the values). But fortunately, such a P [i, j] can

be readily retrieved from the corresponding node in TP in constant time (for

this purpose, we need for each node [i, j] in TE a pointer to node [i, j] in TE).

The procedure for MIN is similar to that of MAX and is omitted.

AVG: Now, we discuss how to recompute the query result for AVG query. Our

algorithm needs an O(n log2 n) preprocessing time and O(n) time for each

probability update. Recall function hAVG(x) =
∑

i ai ·
∏

j 6=i(1− pj + pjx) and

AVG =
∫ 1

0
hAVG(x)dx (see Theorem 4). The algorithm maintain the expansions

of the two polynomials hAVG(x) and P (x) =
∏

j(1 − pj + pjx). Initially, the

expansion of hAVG(x) can be computed in O(n log2 n) time using the algorithm

from [53]. The expansion of
∏

j(1− pj + pjx) can be computed similarly using

the same time. For each update of pi, we recompute P (x) as follows: Suppose

the the old and new probabilities of ti are pi and p′i, respectively.

P (x)← P (x)
1− p′i + p′ix

1− pi + pix
.

hAVG(x) can be recomputed as follows:

hAVG(x)←
(
hAVG(x)− aipix

∏
j 6=i

(1− pj + pjx)

)
1− p′i + p′ix

1− pi + pix

+ aipix
∏
j 6=i

(1− pj + pjx)

214

where
∏

j 6=i(1− pj + pjx) can be computed from P (x) in linear time. We can

easily see other operations also run in linear times. Thus the overall updating

time is O(n).

8.5 Experimental Evaluation

The main objectives of our experimental analysis are to show:(1) sensitiv-

ity analysis is critical for probabilistic databases, (2) sensitivity analysis can

be performed at low overhead, (3) explanations can be performed efficiently

and (4) incremental recomputation of query results is efficient. We focus on

conjunctive queries to illustrate the above points. We implement our system

using JDK 1.6. We use MySQL to store the relations in our database. All

experiments were run on a 2.4Ghz Core 2 Duo machine with 2GB of main

memory. We begin with a discussion of the experimental setup.

Dataset: We synthesized a 100 MB TPC-H dataset augmented with tuple

uncertainty for each tuple (lineage is stored as a separate column). The prob-

abilities of existence were chosen uniformly between [0, 1]. To speed up com-

putation, we build indexes on the primary and foreign key attributes of each

of the relations.

Queries: For experiments on conjunctive queries and probabilistic threshold

queries, we used TPC-H queries Q2,Q3,Q5,Q7,Q8 and Q10. We omitted the

queries over one relation because of their simplicity. For each of these queries,

we removed all aggregation constructs. In addition, we generated boolean

versions of these queries by projecting the final outputs to 1, the resulting

queries are respectively labeled R2, R3, R5, R7, R8 and R10. Lineages for the

output tuples are computed using a query rewrite-based approach shown in

215

Chapter 6.

8.5.1 Experimental Results

Sensitivity analysis is essential and critical: Queries over probabilistic

databases are highly sensitive to input tuple probabilities. The sensitivity is

even more pronounced for queries that return sets. We use a top-k query by

probability to illustrate this point. We first execute the corresponding con-

junctive query and compute the influences of all the input tuples on the output

tuples. Then we extract a fragment of the set of output tuples and plot their

probabilities against a particular input tuple probability x in Figure 8.1(a).

As shown earlier, all output probabilities are linear functions of x. Tuple O4

did not contain x. Therefore, its probability was constant. As we vary the

probability of x, notice that the top-k list changes significantly. If the p(x) is

near 0.6, then the top-k list changes if we increase or decrease its probability

by a small amount. Hence there is a need for sensitivity analysis to verify

query results and provide robust query processing capability.

Overhead of sensitivity analysis is small: Now, we want to show that

sensitivity analysis can be performed efficiently. When a user marks a query

for sensitivity analysis, we not only have to compute query results, but also

the influential variables. We measure the overhead of computing influential

variables over computing just the query result probabilities. We measure this

overhead for the set of TPC-H queries mentioned before, and their boolean

versions. The results are shown in Figures 8.1(b), (c) and (d). As shown in

Figure 8.1(b), the overhead involved in computing influential variables is very

small, less than 5% in all queries considered. Note that this is true even for un-

216

safe queries Q7 and Q8. We now study the time taken for different components

of the sensitivity analysis. The breakdown of the times for different compo-

nents is shown in Figure 8.1(c). As shown in the figure, one of the significant

time consuming steps is the computation of the lineage itself (indicated by red

bars with large crossings) and the time for building the Dtree (Section 8.2.1.1,

indicated by green bars with tiny squares). The time taken for computing

output probabilities and for sensitivity analysis (S.A.) are mostly comparable.

Note that for read-once lineages (Q2,Q3,Q8,Q10), the time taken for lineage

computation is the most dominating factor. For queries generating non-read-

once lineages, the time taken to compute the appropriate Dtree is the most

dominating factor (Exponential complexity). Once the Dtree is constructed,

computing the probability and the influential variables is fairly quick. We ob-

serve similar results for boolean conjunctive queries in Figure 8.1(d). Except

for R2, every boolean query generated a non-read-once lineage. The overheads

are slightly higher for boolean queries since we only need to compute a single

probability (unlike conjunctive queries), but multiple influence values (one for

each input tuples).

Pruning: In this experiment, we study the performance of our pruning rules.

We used the probabilistic threshold query:TPC-H query Q2 with threshold 0.7

and selected different values of epsilon, from 0.1 to 0.7. We evaluate the naive

query+influence times versus the query+influence times obtained by using all

the three pruning rules of Section 8.2.2. The results are shown in Figure 8.1(e).

As shown in the figure, for small values of ε, our pruning rules bring down the

evaluation time by about 50%. When the value of ε increases beyond a point,

we need to look at every output tuple, hence the performance drops, ultimately

217

to that of the naive strategy.

Computing explanations is efficient: In this experiment, we study the

performance of our algorithms that compute explanations. We vary the size

of the lineage and measure the time taken to compute the explanations. We

experiment with different sizes of explanations from 2 to 10. Our results

are shown in Figure 8.1(f). We note here that we only considered read-once

lineages for the experiment since the greedy heuristics that were proposed

(Section 8.3) for non-read-once lineages are very efficient. According to Sec-

tion 8.3, computing explanations is linear in the size of the lineage. This was

experimentally verified as shown in Figure 8.1(f) (we plot the figure after fit-

ting a line over the data points, actual points are not shown). As we can see

from the figure, even for fairly large lineage formulas, computing explanations

is quite fast and is comparable to the actual query execution times.

Study of incremental recomputation of output probabilities: In this ex-

periment, we study the performance of incremental re-evaluation of output

tuple probabilities when input probabilities are modified. For lineage formulas

of different sizes, we modify the input tuple probabilities and compute the

time (a) for completely re-evaluating the probability from scratch, and (b)

incrementally recomputing the probabilities as described in Section 8.4. We

evaluate three cases in which we modify 10, 20 and 50 input tuple proba-

bilities. The results are shown in Figure 8.1(h). As shown in the figure, the

time taken for incremental recomputation is an order of magnitude lesser, even

when we modify upto 50 input tuple probabilities (Please note that the y-axis

is a log plot). This illustrates the advantages of our incremental re-evaluation

approach.

218

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ob

ab
ili

ty

O1
O2
O3
O4

 0

 10

 20

 30

 40

 50

 60

 70

Q10Q8Q7Q5Q3Q2

Q
ue

ry
 p

ro
ce

ss
in

g,
 s

Probability
Sensitivity

(a) top-k queries (by prob) are very sensitive (b) Overheads for TPC-H queries

10-1

100

101

102

103

104

105

Q10Q8Q7Q5Q3Q2

Q
ue

ry
 p

ro
ce

ss
in

g,
 m

s

Lineage
Dtree
Prob
S.A

10-1

100

101

102

103

104

105

106

R10R8R7R5R3R2
Q

ue
ry

 p
ro

ce
ss

in
g,

 m
s

Lin
Dtree
Prob
S.A

(c) Query proc time break-up (TPC-H) (d) Query proc time break-up (boolean)

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

tim
e,

 m
s

No pruning
With Pruning

-10

 0

 10

 20

 30

 40

 50

 60

100 104 105 105 105 105

tim
e

(s
ec

)

Explanations (size 2)
Explanations (size 4)
Explanations (size 6)
Explanations (size 8)

Explanations (size 10)

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
4

10
5

10
5

10
5

10
5

10
5

ti
m

e
 (

m
ic

ro
s
e

c
)

N
O

T
E

:
L
O

G
 S

C
A

L
E Complete re-evaluation

Incremental (10 updates)
Incremental (20 updates)
Incremental (50 updates)

(e) Pruning helps when ε is small (f) Explanations vs lineage size (g) Incremental recomputation

Figure 8.1: Results: (a) Top-k queries by probability are sensitive to input
probabilities. As we modify the probability p(x), the output probabilities and
the top-k output change as shown. (b,c) Here we demonstrate that sensitivity
analysis can be implemented very efficiently. The overhead above computing
output probabilities for TPC-H queries is at most 5%. (d) The break up
of the times spent in the different components of the algorithm. S.A refers
to sensitivity analysis. (e) Same as part(d) for Boolean TPC-H queries (f)
Illustration of the benefits of pruning algorithms. (g) Explanation analysis
is efficient. (h) Incremental recomputation for boolean conjunctive queries is
efficient.

219

Chapter 9

Conclusions

Advances in miniaturization technology and sensing have resulted in a rapid

increase in the number of large-scale deployments of measurement infrastruc-

tures that continuously generate tremendous volumes of priceless data. In

addition, web-based applications such as information extraction, data inte-

gration, sentiment analysis and other machine learning applications generate

increasing amounts of data. Much of it however, is uncertain and incomplete

due to a number of reasons including inaccuracies in measurements, sensor

node failures and so on. Developing scalable query processing techniques over

such data has become an important task in database research. In this disser-

tation we identified the challenges involved in managing large-scale correlated

probabilistic data and developed a few tools and techniques for building a

database system for managing such data. In this chapter, we briefly outline

the main contributions made by the dissertation.

• We started with a description of probabilistic modeling, which is a (nec-

essary) pre-processing step for querying uncertain data. We presented

an approach to build an extensible database system for enabling users

220

to apply general purpose dynamic probabilistic models to such data in

real-time, thus significantly enriching the functionality and the appeal

of databases for managing such data. We developed intuitive interfaces

to declaratively specify the models to be applied. The output of such

probabilistic modeling is a probabilistic database which we store using a

probabilistic graphical model.

• Next, we developed a representation for correlated probabilistic databases

using junction trees and adapted the message passing algorithms (belief

propagation) for evaluating queries directly over junction trees. We de-

veloped algorithms for inference/what-if queries, aggregation queries and

conjunctive queries. While the general problem of conjunctive query

evaluation is #P-complete, we developed heuristics that scale to large

junction trees.

• Next, we developed an index data structure (INDSEP) for correlated

probabilistic databases which allows for efficient query evaluation. The

key component of INDSEP is the shortcut potential, which allows us to

speed up belief propagation by shortcutting across large sections of the

junction tree. Using INDSEP we not only scaled up query evaluation

algorithms to work for very large-scale junction trees, but also provided

orders-of-magnitude reduction in query processing times. Further, we

developed algorithms to keep INDSEP up-to-date in response to updates

to the database.

• We considered a specific class of correlated probabilistic data called

Markovian streams. Markovian streams, which constitute a large class

of naturally occurring correlated probabilistic data, have a repeated cor-

221

relation structure. We show how to exploit the structured nature of

correlations in such sequences, which enables us to build an efficient

query processing architecture. We also developed incremental query op-

erator algorithms that can reuse the previous computation during query

processing.

• Finally, we proposed an alternative query evaluation model for proba-

bilistic databases that also provides information about explanations for

query answers and sensitivity analysis. The current query evaluation

model in probabilistic databases provides very little intuition to the user

about the query results. Existing systems assume query processing over

probabilistic database queries as a one-shot process. However, proba-

bilistic databases need to be designed as an interactive application in

which users have flexibility to identify relevant input probabilities for

a given query and re-evaluate the query with the new values for the

probabilities of these tuples. We extend a probabilistic database sys-

tem to support sensitivity analysis and explanation analysis. Providing

such functionality enables a robust framework for query evaluation in

probabilistic databases.

222

Bibliography

[1] E. Adar and C. Re. Managing uncertainty in social networks. IEEE
Data Eng. Bull., 30(2):15–22, 2007.

[2] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks:
research challenges. In Ad Hoc Networks, 2004.

[3] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty
databases. In ICDE, 2006.

[4] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple rela-
tional processing of uncertain data. In ICDE, 2008.

[5] L. Antova, C. Koch, and D. Olteanu. From complete to incomplete
information and back. In SIGMOD, 2007.

[6] The Apache Derby Project. Web Site. http://db.apache.org/derby/.

[7] S. Arnborg. Efficient algorithms for combinatorial problems with
bounded decomposability - a survey. BIT, 25(1), 1985.

[8] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2), 1987.

[9] D. Barbara, H. Garcia-Molina, and D. Porter. The management of prob-
abilistic data. IEEE TKDE, 4(5):487–502, 1992.

[10] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database schemes. J. ACM, 30(3), 1983.

[11] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach
for maintaining chordality. Discrete Mathematics, 2006.

[12] H. C. Bravo and R. Ramakrishnan. Optimizing mpf queries: decision
support and probabilistic inference. In SIGMOD, 2007.

[13] H. Chan and A. Darwiche. Sensitivity analysis in markov networks. In
IJCAI, pages 1300–1305, 2005.

223

http://db.apache.org/derby/

[14] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality
guarantees. PVLDB, 2008.

[15] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, 2003.

[16] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, 2003.

[17] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient
indexing methods for probabilistic threshold queries over uncertain data.
In VLDB, 2004.

[18] H. D. Chon, D. Agrawal, and A. E. Abbadi. Query processing for mov-
ing objects with space-time grid storage model. In Third International
Conference on Mobile Data Management, 2002.

[19] T. Choudhury, M. Philipose, D. Wyatt, and J. Lester. Towards activity
databases: Using sensors and statistical models to summarize people’s
lives. IEEE Data Eng. Bull., 29(1):49–58, 2006.

[20] M. Collins. A new statistical parser based on bigram lexical dependen-
cies. In ACL, pages 184–191, 1996.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[22] G. Cormode and M. N. Garofalakis. Sketching probabilistic data
streams. In SIGMOD, pages 281–292, 2007.

[23] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm
for cographs. SIAM J. Comput., 14(4):926–934, 1985.

[24] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhater.
Probabilistic Networks and Expert Systems. Springer, 1999.

[25] P. Dagum and M. Luby. Approximating probabilistic inference in
bayesian belief networks is np-hard. Artif. Intell., 60(1):141–153, 1993.

[26] N. Dalvi and D. Suciu. Management of probabilistic data: foundations
and challenges. In PODS, 2007.

[27] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, 2004.

224

[28] A. Darwiche and M. Hopkins. Using recursive decomposition to con-
struct elimination orders, jointrees, and dtrees. In ECSQARU, 2001.

[29] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Com-
putational Geometry: Algorithms and Applications (Third Edition).
Springer-Verlag, 2008.

[30] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic
inference. In IJCAI, pages 1319–1325, 2005.

[31] R. de Salvo Braz, E. Amir, and D. Roth. Mpe and partial inversion in
lifted probabilistic variable elimination. In AAAI, 2006.

[32] R. Dechter. Constraint Networks (Survey). John Wiley & Sons, 1992.

[33] R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded
inference. J. ACM, 50(2):107–153, 2003.

[34] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[35] A. Deshpande and S. Madden. MauveDB: supporting model-based user
views in database systems. In SIGMOD, pages 73–84, 2006.

[36] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.
In VLDB, 2007.

[37] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo meth-
ods in practice. Springer, 2005.

[38] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
Univ Press, 1999.

[39] A. Ferrara, G. Pan, and M. Y. Vardi. Treewidth in verification: Local
vs. global. In LPAR, 2005.

[40] J. Finn and J. Frank. Optimal junction trees. In UAI, 1994.

[41] D. Forsyth and J. Ponce. Computer Vision. Prentice Hall, 2003.

[42] N. Fuhr and T. Rolleke. A probabilistic relational algebra for the inte-
gration of information retrieval and database systems. ACM Trans. Inf.
Syst., 15(1):32–66, 1997.

[43] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE PAMI, 1984.

225

[44] L. Getoor. Learning probabilistic relational models. In SARA, pages
322–323, 2000.

[45] M. C. Golumbic, A. Mintz, and U. Rotics. Factoring and recognition of
read-once functions using cographs and normality. In DAC, 2001.

[46] R. Gupta and S. Sarawagi. Creating probabilistic databases from infor-
mation extraction models. In VLDB, 2006.

[47] R. I. H. Corrada Bravo. Model-based quality assessment and base-calling
for second-generation sequencing data. Biometrics, 2009.

[48] A. Y. Halevy. Learning about data integration challenges from day one.
SIGMOD Rec., 32(3):16–17, 2003.

[49] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model
approach - part ii: Explanations. In IJCAI, 2001.

[50] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model
approach: Part 1: Causes. In UAI, 2001.

[51] E. Hoke, J. Sun, and C. Faloutsos. Intemon: Intelligent system moni-
toring on large clusters. In VLDB, 2006.

[52] C. Huang and A. Darwiche. Inference in belief networks: A procedural
guide. Int. J. Approx. Reasoning, 1996.

[53] T. S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for
probabilistic data. In SODA, pages 346–355, 2007.

[54] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar information extraction system. IEEE Data Eng. Bull.,
29(1), 2006.

[55] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating
statistical aggregates on probabilistic data streams. In PODS, pages
243–252, 2007.

[56] M. I. Jordan. Learning in Graphical Models (ed). MIT Press, 1998.

[57] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking for
smart dust. In Proceedings of ACM MOBICOM, Seattle, WA, August
1999.

[58] B. Kanagal and A. Deshpande. Efficient query evaluation on tempo-
rally correlated probabilistic streams. Technical Report CS-TR-4916,
University of Maryland.

226

[59] B. Kanagal and A. Deshpande. Online filtering, smoothing and prob-
abilistic modeling of streaming data. Technical Report CS-TR-4867,
Univ. of Maryland, 2007.

[60] B. Kanagal and A. Deshpande. Online filtering, smoothing and proba-
bilistic modeling of streaming data. In ICDE, 2008.

[61] B. Kanagal and A. Deshpande. Efficient query evaluation over tempo-
rally correlated probabilistic streams. In ICDE, 2009.

[62] B. Kanagal and A. Deshpande. Indexing correlated probabilistic
databases. In SIGMOD, 2009.

[63] P. C. Kanellakis and S. A. Smolka. Ccs expressions, finite state processes,
and three problems of equivalence. In PODC, 1983.

[64] U. Kjaerulff. Triangulation of graphs — algorithms giving small total
state space. Technical Report R-90-09, Aalborg University, 1990.

[65] U. Kjærulff and L. C. van der Gaag. Making sensitivity analysis com-
putationally efficient. In UAI, 2000.

[66] C. Koch and D. Olteanu. Conditioning probabilistic databases. PVLDB,
2008.

[67] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. On-line
fault detection of sensor measurements. IEEE Sensors, 2003.

[68] A. Krause and C. Guestrin. Optimal nonmyopic value of information in
graphical models - efficient algorithms and theoretical limits. In IJCAI,
2005.

[69] S. Kundu and J. Misra. A linear tree partitioning algorithm. SIAM J.
Comput., 1977.

[70] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian.
Probview: a flexible probabilistic database system. ACM TODS, 22(3),
1997.

[71] J. Letchner, C. Re, M. Balazinska, and M. Philipose. Access methods
for markovian streams. In ICDE, 2009.

[72] B. Levy, A. Benveniste, and R. Nikoukhah. High-level primitives for
recursive maximum likelihood estimation. IEEE Trans. on Automatic
Control, AC-41(8), 1996.

227

[73] D. Lymberopoulos, A. Ogale, A. Savvides, and Y. Aloimonos. A sensory
grammar for inferring behaviors in sensor networks. In IPSN, 2006.

[74] S. Madden. Intel lab data, 2004. http://berkeley.intel-research.

net/labdata.

[75] A. M. Mainwaring, D. E. Culler, J. Polastre, R. Szewczyk, and J. An-
derson. Wireless sensor networks for habitat monitoring. In WSNA,
2002.

[76] R. Mateescu and R. Dechter. And/or cutset conditioning. In IJCAI,
2005.

[77] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity
of causality and responsibility for query answers and non-answers. In
PVLDB, 2011.

[78] E. Michelakis, R. Krishnamurthy, P. J. Haas, and S. Vaithyanathan.
Uncertainty management in rule-based information extraction systems.
In SIGMOD, 2009.

[79] V. Mihajlovic and M. Petkovic. Dynamic bayesian networks: A state of
the art. University of Twente Document Repository 2001.

[80] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learnig. PhD thesis, UC Berkeley, 2002.

[81] D. Olteanu, J. Huang, and C. Koch. Approximate confidence computa-
tion in probabilistic databases. In ICDE, 2010.

[82] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM
J. Comput., 16(6), 1987.

[83] D. Patterson, L. Liao, D. Fox, and H. Kautz. Inferring high level behavior
from low level sensors. In UBICOMP, 2003.

[84] D. J. Patterson, L. Liao, D. Fox, and H. A. Kautz. Inferring high-level
behavior from low-level sensors. In A. K. Dey, A. Schmidt, and J. F.
McCarthy, editors, Ubicomp, volume 2864 of Lecture Notes in Computer
Science, pages 73–89. Springer, 2003.

[85] D. J. Patterson, L. Liao, K. Gajos, M. Collier, N. Livic, K. Olson,
S. Wang, D. Fox, , and H. Kautz. Opportunity knocks: a system to
provide cognitive assistance with transportation services. In Sixth In-
ternational Conference on Ubiquitous Computing, Nottingham, England,
2004.

228

http://berkeley.intel-research.net/labdata
http://berkeley.intel-research.net/labdata

[86] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, 1988.

[87] D. Poole. First-order probabilistic inference. In IJCAI, pages 985–991,
2003.

[88] L. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. 77:257–286, 1989.

[89] K. Raptopoulou, M. Vassilakopoulos, and Y. Manolopoulos. Towards
quadtree-based moving objects databases. Lecture Notes in Computer
Science, Volume 3255, Jan 2004, 2004.

[90] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In ICDE, pages 886–895, 2007.

[91] C. Re, J. Letchner, M. Balazinska, and D. Suciu. Event queries on
correlated probabilistic streams. In SIGMOD, 2008.

[92] C. Ré and D. Suciu. Approximate lineage for probabilistic databases.
PVLDB, 2008.

[93] M. Richardson and P. Domingos. Markov logic networks. Machine Learn-
ing, 62(1-2), 2006.

[94] N. Robertson and P. D. Seymour. Graph minors. iii. planar tree-width.
Journal of Combinatorial Theory, Series B, 36(1), 1984.

[95] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom. Working
models for uncertain data. In ICDE, 2006.

[96] P. Sen and A. Deshpande. Representing and querying correlated tuples
in probabilistic databases. In ICDE, 2007.

[97] P. Sen, A. Deshpande, and L. Getoor. Exploiting shared correlations in
probabilistic databases. In VLDB, 2008.

[98] P. Sen, A. Deshpande, and L. Getoor. Read-once functions and query
evaluation in probabilistic databases. In PVLDB, 2010.

[99] P. Senellart and G. Gottlob. On the complexity of deriving schema
mappings from database instances. In PODS, pages 23–32, 2008.

[100] P. Seshadri, M. Livny, and R. Ramakrishnan. Seq: A model for sequence
databases. In ICDE, 1995.

[101] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. E. Hambrusch.
Indexing uncertain categorical data. In ICDE, 2007.

229

[102] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar.
Indexing multi-dimensional uncertain data with arbitrary probability
densityfunctions. In VLDB, 2005.

[103] The RFID Ecosystem, University of Washington.
http://rfid.cs.washington.edu/.

[104] G. Trajcevski. Probabilistic range queries in moving objects databases
with uncertainty. In MobiDe ’03: Proceedings of the 3rd ACM inter-
national workshop on Data engineering for wireless and mobile access,
pages 39–45, New York, NY, USA, 2003. ACM Press.

[105] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing
uncertainty in moving objects databases. ACM Trans. Database Syst.,
29(3):463–507, 2004.

[106] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. J. Shenoy. Prob-
abilistic inference over rfid streams in mobile environments. In ICDE,
pages 1096–1107, 2009.

[107] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM J. Comput., 8(3), 1979.

[108] D. Z. Wang, E. Michelakis, M. N. Garofalakis, and J. M. Hellerstein.
Bayesstore: managing large, uncertain data repositories with probabilis-
tic graphical models. PVLDB, 2008.

[109] G. Welch and G. Bishop. An introduction to the Kalman filter. http:

//www.cs.unc.edu/~welch/kalman/kalmanIntro.html, 2002.

[110] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In CIDR, 2005.

[111] M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM
Journal on Algebraic and Discrete Methods, 2(1):77–79, 1981.

[112] X. J. Ying. A hidden markov model-based algorithm for fault diagnosis
with partial and imperfect tests. IEEE Trans. on Systems, Man, and
Cybernetics, Part C, 2000.

[113] N. L. Zhang and D. Poole. Exploiting causal independence in bayesian
network inference. J. Artif. Intell. Res. (JAIR), 5, 1996.

230

http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

	Introduction
	Motivating Applications
	Event Monitoring & Complex Event Processing
	Information Extraction/Integration System
	Probabilistic Modeling of Data Streams DBLP:conf/icde/KanagalD08

	Problem/Research Challenges
	Probabilistic Modeling of Uncertain Data
	Query Processing over Correlated Probabilistic Data
	Challenges in dealing with Correlations

	Robust query processing: Sensitivity & Explanations

	Our Approach
	Outline & Research Contributions

	Background and Related Work
	Background
	Probabilistic Modeling of Uncertain Data
	Hidden Markov models (HMMs)
	Linear Dynamical Systems
	DPMs: Graphical Representation
	Inference in DPMs

	PGM Representation
	Query Processing over PGMs
	Junction Tree Representation of PGMs
	Query Processing over Junction Trees
	Special Case 1: Markovian streams
	Special Case 2: Tuple Indpendent Probabilistic Databases
	Queries
	Detecting read-once lineages
	Shannon Expansions

	Related Work
	Probabilistic Databases
	Inference in Graphical Models
	Indexes for Probabilistic Databases
	Sensitivity Analysis

	PrDB System Overview
	Relational Storage System
	Parser and Language
	Parser Implementation
	Factor Semantics

	Junction tree & INDSEP
	Query Processor
	Probabilistic Modeling System
	Specifying DPM-based Views

	Probabilistic Modeling of Uncertain Data
	DPMs as Database Views
	Design
	Update Manager: Particle Filtering
	System Evaluation
	Experimental setup
	Experimental Results

	INDSEP
	INDSEP Data Structure
	Overview of the INDSEP Structure
	Shortcut Potentials

	Index Construction
	Hierarchical Partitioning
	Variable Renaming
	Assigning Range Lists and Add Lists

	Query Processing
	Inference/Extraction Queries
	Aggregate Queries

	Handling Updates
	Updates to Existing Potentials
	Inserting New Data
	Deletions

	Experimental Evaluation
	Implementation Details
	Experimental Setup
	Results

	Lineage Processing over INDSEP
	Lineage Processing Algorithms over Junction trees
	Message Passing for Lineage Processing
	Pivot Selection
	Dealing with Disconnections

	Lineage Processing using INDSEP
	Recursive Approach
	Shortcomings

	Lineage Planning & Evaluation
	Lineage Planning
	Lineage Plan and Execution
	Approximation Technique

	Experimental Evaluation
	Implementation Details
	Experimental Setup

	Query Processing on Markovian Sequences
	Markovian Sequences
	Probabilistic Sequence Algebra
	Operator Algorithms
	Query Evaluation
	Query Syntax
	Query Planning and Optimization
	Approximation Strategies

	Experiments
	Experimental Setup
	Experimental Results

	Robust Query Processing for Probabilistic Databases
	Formal Problem Statement
	Sensitivity Analysis
	Explanation Analysis
	Warmup: SUM/COUNT
	Relation to Meliou et al. gatterbauer:vldb11

	Sensitivity Analysis
	Value queries
	Boolean conjunctive queries
	Conjunctive queries
	Aggregation queries

	Set queries
	Probabilistic Threshold Queries
	Top-k queries by probability

	How is assigned?

	Explanation Analysis
	Boolean Conjunctive Queries
	Aggregation queries

	Incremental Recomputation
	Conjunctive Queries
	Aggregation

	Experimental Evaluation
	Experimental Results

	Conclusions

