
Dynamic Dispatching of Cyclic Real-Time Tasks with Relative

Constraints

�

Seonho Choi Ashok K. Agrawala

Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland

College Park, MD 20742

fseonho,agrawalag@cs.umd.edu

Index Terms: Real-time, operating systems, scheduling, dispatching, relative constraints.

Abstract

In some hard real-time systems, relative timing constraints may be imposed on task executions, in addition

to the release time and deadline constraints. A periodic task may have jitter constraints between the start

or �nish times of any two consecutive executions. Relative constraints such as separation or relative deadline

constraints may be given between start or �nish times of tasks [4].

One approach is to �nd a total order on a set of N jobs in a scheduling window, and cyclically use this

order at run time to execute the jobs. However, in the presence of the relative constraints, if the job execution

times are nondeterministic with de�ned lower and upper bound, it is not always possible to statically assign

start times at pre-runtime without sacri�cing the schedulability [4].

We develop a technique called dynamic cyclic dispatching to enforce relative constraints along with release

time and deadline constraints. An ordered set of N jobs is assumed to be given within a scheduling window

and this schedule(ordering) is cyclically repeated at runtime. An o�-line algorithm is presented to check the

schedulability of the job set and to obtain parametric lower and upper bounds on the start times of jobs, if

the job set is schedulable. Then, these parametric bounds are evaluated at runtime to obtain a valid time

interval during which jobs can be started. The complexity of this o�-line component is shown to be O(n

2

N

3

)

where n is the number of jobs in a scheduling window that have relative constraints with jobs in the next

scheduling window. An online algorithm can evaluate these bounds in O(N) time. Especially, for a certain

class of relative constraints, it is shown that the o�-line component requires O(N

3

+ n

5

) computation time.

Unlike static approaches which assign �xed start times to jobs in the scheduling window, our approach

not only allows us to exibly manage the slack times with the schedulability of a task set not a�ected, but

also yields a guaranteed schedulability in the sense that, if other dispatching mechanism can schedule the job

sequences satisfying all given constraints, then our mechanism can also schedule them.
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1 Introduction

A common approach to characterize hard real-time tasks with repetitive requests is to use periodic task model [7].

In the model, every task needs to be executed once during each of its periods, and the executions, called jobs,

of the same task in di�erent periods are independent. However, in some hard real-time systems, relative timing

constraints should be satis�ed between event occurrence times. as well as release time and deadline constraints

on jobs. For example, control output events in two successive jobs of a periodic task may have to occur with

the jitter requirement satis�ed. That is, the di�erence of two event occurrence times, called jitter, should lie

between a lower and an upper bound. The occurrences of events in di�erent tasks may also be constrained from

the requirements and characteristics of the environment by separation or relative deadline constraints [4]. These

relative constraints have to be enforced in many real-time control systems such as process control systems and

ight control systems [1], etc. For example, in process control systems, it has been shown that jitter constraints

have more inuence on control systems performance than the frequency constraints [6].

Usually, these relative constraints between events are transformed into relative constraints between start or

�nish times of the jobs to make feasible the process of scheduling and dispatching of jobs [5, 4]. In [5] a preemptive

�xed priority scheduling algorithm is developed to schedule periodic tasks with relative deadline constraints

between �nish times of two successive jobs of periodic tasks. However, other types of relative constraints are

not allowed in that work and it is not possible to exibly manage slack times at runtime for dynamic tasks. In

[4] dispatching of a totally ordered non-preemptive job set with any min/max constraints is studied and a new

scheduling mechanism called parametric scheduling is developed. In that paper, it is also shown that a traditional

static scheduling approach, in which job start times are statically scheduled under the assumption that every

job spends its worst case execution time, doesn't work any more for job sets with general min/max constraints

even when a total ordering among jobs is given. Furthermore, in parametric scheduling scheme, it is possible to

e�ectively schedule aperiodic tasks at run-time by dynamically managing job start times. However, the job set in

parametric scheduling scheme consists of a �nite number of jobs with a �nite number of constraints. This implies

that the approach cannot be applied to a periodic task model, since periodic tasks may invoke an in�nite number

of jobs with an in�nite number of relative constraints. In a traditional time-based scheduling scheme the job

start times are statically decided in a scheduling window, and this static schedule is cyclically used at run-time.

In the presence of jitter constraints between start times of non-preemptive jobs, the problem of �nding a static

schedule has been addressed in [2]. However, this static cyclic scheduling approach only allows certain types

of min/max constraints to be speci�ed, and it only works under low utilization. Moreover, it is very di�cult to

exibly manage job start times at run-time to incorporate any dynamic tasks such as aperiodic tasks into the

schedule.

In this paper, we develop a new job dispatching scheme, called dynamic cyclic dispatching, that overcomes the

above-mentioned limitations of previous approaches. Every job is assumed to be non-preemptive, and a totally

ordered N cyclic jobs, < �

1

; �

2

; : : : ; �

N

>, are assumed to be given on a scheduling window [0; L] where L is a
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scheduling window size

1

. This schedule is cyclically repeated at runtime. Let �

j

= f�

j

1

; : : : ; �

j

N

g, j � 1, denote a

set of N jobs to be scheduled in a j-th scheduling window [(j�1)L; jL]. Relative constraints may be given in the

form of standard relative constraints

2

between the start or �nish times of the jobs in two consecutive scheduling

windows, i.e., in �

j

and �

j+1

, as well as the jobs within one scheduling window �

j

. These relative constraints

as well as the release time and deadline constraints need to be satis�ed throughout the system operation time.

Figure 1 shows an example job set with their constraints, where each job set, �

j

, consists of N = 2 jobs and the

relative constraints are de�ned across the boundaries of the job sets as well as within a job set. In the �gure, s

j

i

and f

j

i

are runtime variables denoting the actual start and �nish times of a job �

j

i

, respectively.
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Figure 1: Example Job Sequence

In this paper, we �nd an o�-line algorithm to check the schedulability of job sets, �

1

, �

2

, : : :. And, if they

are schedulable, the parametric lower bound and upper bound functions for each job start time are found in

terms of the start or �nish times of the previous jobs. These bounds are evaluated at runtime within O(N ) time.

Suppose that �

j

i

belongs to �

j

, then the parametric lower and upper bound functions of s

j

i

, are parameterized

in terms of the start and �nish times of already executed jobs in �

j�1

and �

j

. Another important result is

that only N pairs of parametric bound functions have to be stored and cyclically used at runtime. The o�-line

algorithm has a pseudo-polynomial complexity O(n

2

N

3

), where n is the number of jobs in one scheduling window

that have relative constraints with jobs in the next scheduling window. Especially, if only jitter constraints on

periodic tasks are allowed, it can be shown that the o�-line and online components require O(n

4

N ) and O(n)

times, respectively. Also, it is shown that, for a certain subset of standard constraints, called restricted standard

constraints, the o�-line algorithm requires at most O(N

3

+ n

5

).

The dynamic cyclic scheduling scheme not only enables us to check the schedulability of the cyclically-

constrained job set in the presence of relative constraints, but also makes it possible to exibly manage the

slack times at runtime without a�ecting the schedulability of the jobs, which is not possible in static scheduling

approach.

The rest of the paper is organized as follows. In Section 2, we present a formal de�nition of the parametric

1

It is allowed in this paper that the deadline of a job to be greater than the end of a scheduling window to which the job belongs.

2

Standard constraints are de�ned in Section 2.
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scheduling problem. In Section 3, we summarize the related works on scheduling task sets with relative constraints.

And then, in Section 4, the parametric scheduling approach is developed by using the quanti�er elimination

techniques, and by transforming the constraint set into an equivalent graph. In Section 5, example task instance

sequences are given with parametric calendars found from the o�-line algorithm. Finally, a conclusion of the

paper follows in Section 6.

2 Problem Description

Let �

j

= f�

j

i

j i = 1; : : : ; Ng denote an ordered set of N jobs to be dispatched sequentially in a j-th scheduling

window [(j � 1)L; jL] where L is a positive integer denoting a scheduling window size.. The jobs are executed

non-preemptively in this order. At runtime, this job set will be cyclically scheduled in consecutive scheduling

windows. In other words, �

j

i

and �

k

i

are jobs of the same task.

Then, let �

1;k

= �

1

[ �

2

[ : : :[ �

k

denote a set of jobs to be executed in a time interval [0; kL]. Each job �

j

i

(j � 1, 1 � i � N ) has the following set of parameters that may have integer values:

� A runtime variable s

j

i

denoting the actual start time of �

j

i

� A runtime variable e

j

i

representing the actual execution time spent for �

j

i

� A runtime variable f

j

i

= s

j

i

+ e

j

i

denoting the actual �nish time of �

j

i

� A constant l

j

i

corresponding to the minimum execution time of �

j

i

� A constant u

j

i

denoting the maximum execution time of �

j

i

.

Note that it is simply assumed that execution times of jobs are nondeterministic and bounded from above

and below, which is a realistic assumption in many real-time systems.

Standard constraints are de�ned next that may be imposed on fs

j

i

; e

j

i

j 1 � j � k; 1 � i � Ng for �

1;k

.

De�nition 1 (Standard Constraints) A standard constraint involves the variables of at most two jobs, �

j

a

and

�

l

b

(1 � a � b � N , j j � l j� 1), where s

j

a

(or s

j

a

+ e

j

a

) appears on one side of \�," and s

l

b

(or s

l

b

+ e

l

b

) appears on

the other side of the \�." For two jobs, �

j

a

, �

l

b

, the following constraints are permitted(where c

i

is an arbitrary

constant) and called relative standard constraints:

s

j

a

� s

l

b

� c

1

s

j

a

� (s

l

b

+ e

l

b

) � c

2

s

j

a

+ e

j

a

� s

l

b

� c

3

s

j

a

+ e

j

a

� (s

l

b

+ e

l

b

) � c

4

s

l

b

� s

j

a

� c

5

s

l

b

� (s

j

a

+ e

j

a

) � c

6

s

l

b

+ e

l

b

� s

j

a

� c

7

s

l

b

+ e

l

b

� (s

j

a

+ e

j

a

) � c

8

(1)

In addition, each job has release time and deadline constraints. These constraints are called absolute standard

constraints. A job �

j

a

has the following absolute constraints:
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c

9

� s

j

a

s

j

a

+ e

j

a

� c

10

(2)

We also include as standard any constraint that can be rewritten in one of the above forms; e.g., s

j

a

�

s

l

b

+ e

l

b

� e

j

a

+ c falls into this category.

Next, the k-fold cyclically constrained job set is formally de�ned.

3

Any �

1;k

considered in this paper belongs

to this class.

De�nition 2 (k-fold Cyclically Constrained Job Set) A job set �

1;k

= �

1

[ �

2

[ : : : [ �

k

(k = 1; 2; : : : ;1)

is classi�ed as a k-fold cyclically constrained job set if it has the following linear constraints:

1. The set of standard relative constraints:

8j 2 [1; k) :: A

1

x

j

+ A

2

x

j+1

� a (3)

where x

j

is a 2N -dimensional column vector [s

j

1

; e

j

1

, s

j

2

; e

j

2

, : : :, s

j

N

; e

j

N

]

T

. A

1

, A

2

are m

1

� 2N(m

1

� 0)

matrices of 0, 1, or �1, and a is an m

1

-dimensional column vector whose elements are integers. Included

in the m

1

constraints are those denoting the total ordering on jobs:

8j 2 [1; k] :: 8i 2 [1; N ) :: s

j

i

+ e

j

i

� s

j

i+1

8j 2 [1; k) :: s

j

N

+ e

j

N

� s

j+1

1

2. The set of release time and deadline constraints:

8j 2 [1; k] :: Bx

j

� b

j

(4)

8j 2 [1; k] :: Dx

j

� d

j

(5)

where b

j

is an m

2

-dimensional column vector of non-positive integers satisfying:

b

j

= b

1

+ (1� j)L

and d

j

is an m

3

-dimensional column vector of non-negative integers satisfying:

d

j

= d

1

+ (j � 1)L

3

Note that k may be equal to 1.
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We de�ne C

1;k

to represent the logical conjunction of the constraints induced by each row of (3), (4), and

(5).

In the above de�nition, the same matrices A

1

, A

2

, B, D are cyclically used to represent the standard constraints

on consecutive job sets.

The example job set shown in Figure 1 is presented here with corresponding matrices and vectors de�ned in

(3), (4), and (5).

Example 1 Consider the example job set depicted in Figure 1. Each job set �

j

, 1 � j � k, consists of two

jobs, �

j

1

and �

j

2

(i.e. N = 2), whose execution time bounds are:

l

j

1

= 5 u

j

1

= 8

l

j

2

= 8 u

j

2

= 10

The standard relative constraints de�ned within �

j

or within �

j+1

are:

5 � s

j

2

� (s

j

1

+ e

j

1

)

s

j

1

+ e

j

1

� s

j

2

5 � s

j+1

2

� (s

j+1

1

+ e

j+1

1

)

s

j+1

1

+ e

j+1

1

� s

j+1

2

(6)

Similarly, the set of standard relative constraints across the boundary of �

j

and �

j+1

are:

s

j

1

+ e

j

1

+ 15 � s

j+1

1

+ e

j+1

1

s

j+1

1

+ e

j+1

1

� s

j

1

+ e

j

1

+ 25

s

j

2

+ e

j

2

� s

j+1

1

s

j

2

+ e

j

2

+ 18 � s

j+1

2

+ e

j+1

2

s

j+1

2

+ e

j+1

2

� s

j

2

+ e

j

2

+ 22

(7)

Finally, the absolute constraints on �

j

and �

j+1

are:

20(j � 1) � s

j

1

20(j � 1) � s

j

2

s

j

1

+ e

j

1

� 20j

s

j

2

+ e

j

2

� 20j

20j � s

j+1

1

20j � s

j+1

2

s

j+1

1

+ e

j+1

1

� 20(j + 1)

s

j+1

2

+ e

j+1

2

� 20(j + 1)

(8)

All standard relative constraints can be denoted by the following inequality:

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 �1 0

1 1 �1 0

0 0 0 0

0 0 0 0

1 1 0 0

�1 �1 0 0

0 0 1 1

0 0 1 1

0 0 �1 �1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

4

s

j

1

e

j

1

s

j

2

e

j

2

3

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0

0 0 0 0

1 1 �1 0

1 1 �1 0

�1 �1 0 0

1 1 0 0

�1 0 0 0

0 0 �1 �1

0 0 1 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

4

s

j+1

1

e

j+1

1

s

j+1

2

e

j+1

2

3

7

7

5

�

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�5

0

�5

0

�15

25

0

�18

22

3

7

7

7

7

7

7

7

7

7

7

7

7

5

And, the set of absolute constraints is represented by the following inequality:

2

6

6

4

�1 0 0 0

0 0 �1 0

1 1 0 0

0 0 1 1

3

7

7

5

2

6

6

4

s

j

1

e

j

1

s

j

2

e

j

2

3

7

7

5

�

2

6

6

4

�20(j � 1)

�20(j � 1)

20j

20j

3

7

7

5
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One traditional approach for scheduling with complex timing constraints is a time-based scheduling scheme

that assigns static start times to the jobs in the scheduling window such that the relative constraints are satis�ed

if the static schedule is cyclically repeated at runtime. However, this approach can't be used in the presence of

arbitrary relative constraints between start or �nish times of jobs [4]. Also, this approach su�ers from the loss of

schedulability problem. Some task sets are not schedulable in this approach, even though they are schedulable

if our approach is employed. This will be explained through an example later. To cope with some of the above

limitations the parametric scheduling scheme was developed in scope of real-time transaction scheduling [4].

However, as far as we know, the solution approach has not been found for general periodic task models where

jobs in di�erent scheduling windows may have relative constraints. The objective of this paper is to develop a

schedulability test for �

1;1

, and to develop a exible job dispatching mechanism for schedulable job sets, �

1;1

.

3 Prior Work

In this section, we briey describe two scheduling schemes closely related to ours. The �rst one is the static cyclic

scheduling scheme [2] and the second one is the parametric scheduling scheme [4].

3.1 Static Cyclic Scheduling

The static cyclic scheduling problem has been studied in [2]. The periodic task model is used, which means that

every job has a release time and a deadline constraints, and only the jitter constraints between two job start

times are allowed. An important assumption made in the work is that the start times of jobs in �

j

are statically

determined as o�sets from the start of the j-th scheduling window [(j � 1)L; jL], and this schedule is invoked

repeatedly by wrapping around the end point of the current schedule to the start point of the next. In other

words, s

j+1

i

= s

j

i

+ L holds for all 1 � j.

In the presence of jitter constraints, the job start times should be chosen carefully such that the jitter con-

straints are satis�ed at run-time as well as the absolute constraints. Obtaining the ordering and job start times

is an NP-hard problem, since non-preemptive scheduling problem with release time and deadline constraints is

NP-hard. Several priority based non-preemptive scheduling algorithms are presented and their performances are

compared in [2].

Suppose that a job �

j

i

1

belongs to �

j

, and a job �

j+1

i

2

belongs to �

j+1

, and they have jitter constraints

c

1

� s

j+1

i

2

�s

j

i

1

� c

2

(0 < c

1

� c

2

� L). From the above assumption, s

j+1

i

2

= L+s

j

i

2

holds. Thus, a new constraint

is created, c

1

� L � s

j

i

2

� s

j

i

1

� c

2

� L, which is again equal to L � c

2

� s

j

i

1

� s

j

i

2

� L � c

1

. Therefore, the

jitter constraints across the boundary of �

j

and �

j+1

are transformed into jitter constraints between two jobs in

�

j

. As a consequence, if we can �nd a static schedule for �

j

that satisfy the above transformed constraints and

the constraints between jobs within �

j

, it is clear that all timing constraints will be satis�ed if that schedule is

repeatedly used at run-time. This approach is depicted in �gure 2.

However, this approach su�ers from the following limitations:
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Figure 2: Static Cyclic Scheduling

� The relative constraints allowed are limited to jitter type constraints between start times of two jobs.

� The schedulability of job sets are reduced due to the static start time assignments.

� It is very di�cult to e�ectively incorporate dynamic tasks, such as aperiodic tasks, into a schedule by

dynamically adjusting the start times of the jobs.

In some real-time applications, the jitter constraints may be imposed between the �nish times of the jobs rather

than between the start times [5]. Furthermore, a periodic task may be decomposed into several subtasks and

any kind of standard constraints may be de�ned between these subtasks [4]. In these cases this static scheduling

approach is no more applicable without sacri�cing the schedulability [4].

By transforming the jitter constraints across the boundary of �

j

and �

j+1

into those between jobs within �

j

,

we are a�ecting the schedulability of job sets. We will show that, under our new scheduling scheme in which this

transformation is not necessary, the schedulability of job sets is increased, i.e., some job sets are not schedulable

according to this scheme whereas it is schedulable by our scheme.

3.2 Parametric Scheduling

Gerber et al. [4] proposes a parametric scheduling scheme in the scope of transaction scheduling, in which any

standard constraints may be given between jobs in one transaction. Let � =< �

1

; : : : ; �

N

> denote a sequence of

jobs constituting one transaction with a set of standard constraints, C. Then, a schedulability of � is de�ned as

follows:

Sched � 9s

1

:: 8e

1

2 [l

1

; u

1

] :: : : : :: 9s

N

:: 8e

N

2 [l

N

; u

N

] :: C (9)

From this Sched predicate, parametric lower and upper bound functions for each start time s

i

are obtained by

eliminating the variables in an order e

N

, s

N

, : : :, e

i

. The parametric lower and upper bound functions, denoted

as F

min

s

i

and F

max

s

i

, are parameterized in terms of the runtime variables, s

1

, e

1

, : : :, s

i�1

, e

i�1

of already executed

jobs. The parametric calendar structure is shown in �gure 3.
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F

min

s

1

() � s

1

� F

max

s

1

()

F

min

s

2

(s

1

; e

1

) � s

2

� F

max

s

2

(s

1

; e

1

)

.

.

.

.

.

.

F

min

s

N

(s

1

; e

1

; s

2

; e

2

; : : : ; s

N�1

; e

N�1

) � s

N

� F

max

s

N

(s

1

; e

1

; s

2

; e

2

; : : : ; s

N�1

; e

N�1

)

Figure 3: Parametric Calendar Structure

This parametric calendar is obtained from an o�-line component of the algorithm by applying variable elim-

ination techniques that will be given later in this section, and the actual bounds of s

i

are found at runtime by

evaluating the parametric functions in the parametric calendar by using the start times and the �nish times of

already executed jobs, �

1

, : : :, �

i�1

. The actual form of these parametric functions are given in the following

proposition.

Proposition 1 (Parametric Bound Functions [4]) A parametric lower bound function for s

j

is of the fol-

lowing form:

F

min

s

j

(s

1

; f

1

; : : : ; s

j�1

; f

j�1

)

= max(p

1

+ c

1

; p

2

+ c

2

; : : : ; p

a

+ c

a

; �

min

j

) (10)

where each p

i

, 1 � i � a, belongs to fs

1

; f

1

; : : : ; s

j�1

; f

j�1

g, and c

i

is an arbitrary constant.

4

And, �

max

j

is a

non-negative integer.

Similarly, a parametric upper bound function for s

j

is of the following form:

F

max

s

j

(s

1

; f

1

; : : : ; s

j�1

; f

j�1

)

= min(q

1

+ d

1

; q

2

+ d

2

; : : : ; q

b

+ d

b

; �

max

j

) (11)

where each q

i

, 1 � i � b, belongs to fs

1

; f

1

; : : : ; s

j�1

; f

j�1

g, and d

i

is an arbitrary constant..

The main result obtained by the paper is that, for an arbitrary set of standard constraints on � = f�

1

; : : : ; �

N

g,

we can �nd the parametric calendar in O(N

3

) time and the run-time evaluation of each bound function can be

carried out in O(N ) time.

By applying this parametric scheduling scheme, we are not only able to schedule any sequence of jobs with

standard constraints, but also able to take advantage of the exibility o�ered by the scheme. That is, the job

start times may be decided dynamically at runtime to incorporate other dynamic activities in the system. Even

though this scheme is directly applicable to our k-fold cyclically constrained job sets, if the number of jobs in �

1;k

becomes large, the bounds need to be found on the size of parametric functions and for the memory requirements

for them.

In the rest of this section, the parametric scheduling scheme in the paper is presented with an example.

4

Note that f

i

= s

i

+ e

i

.
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3.2.1 Elimination of Quanti�ed Variables

Consider a set of linear constraints C in n variables (x

1

; x

2

; : : : ; x

n

),

C � Hx � h

which must be satis�ed with respect to some de�ned existential and universal quanti�cation over the variables.

In this section we show how an innermost universally quanti�ed variable x

n

, with associated lower (l

n

) and upper

(u

n

) bounds can be eliminated to obtain a new set of equivalent constraints. The set of constraints C may be

partitioned into three subsets, depending on whether the coe�cient of x

n

is positive, negative or zero. Thus,

C � C

P

^ C

N

^ C

Z

where

C

P

� fx

n

� D

i

(x

0

); 1 � i � pg

C

N

� fx

n

� E

j

(x

0

); 1 � j � qg

C

Z

� f0 � F

k

(x

0

); 1 � k � rg

D

i

(x

0

); E

j

(x

0

); F

k

(x

0

) are linear functions of x

0

= [x

1

; � � � ; x

n�1

]

T

. The elimination of variable x

n

leads to a new

system of constraints C

0

obtained from C by substituting x

n

with l

n

or u

n

, depending on its coe�cient:

C

0

� (C

P

)

x

n

l

n

^ (C

N

)

x

n

u

n

^ (C

Z

)

Lemma 1 ([4]) Let C be a system of linear constraints and let C

0

be the resulting set of constraints after

eliminating a universally quanti�ed variable x

n

with lower bound l

n

and upper bound u

n

. Then the sentence

8x

n

2 [l

n

; u

n

] :: C holds if and only if C

0

holds.

The existential quanti�er can be eliminated by using Fourier-Motzkin variable elimination technique [3].

Fourier-Motzkin Elimination. Consider a system of linear constraints C in n variables (x

1

; x

2

; : : : ; x

n

). We

wish to �nd a system of linear constraints C

0

over x

0

= [x

1

; : : : ; x

n�1

]

T

, such that x

0

is a solution to C

0

if and

only if x

0

is a solution to 9x

n

:: C . As before, the constraints in C may be partitioned into three subsets.

C �

8

>

>

<

>

>

:

x

n

� D

i

(x

0

); 1 � i � p

x

n

� E

j

(x

0

); 1 � j � q

0 � F

k

(x

0

); 1 � k � r

The elimination of variable x

n

leads to a new system of constraints:

C

0

� 9x

n

:: C �

8

<

:

D

i

(x

0

) � E

j

(x

0

); 1 � i � p; 1 � j � q

0 � F

k

(x

0

); 1 � k � r

9



The correctness of this procedure is stated in the following lemma.

Lemma 2 ([4]) Let C be a set of linear constraints. Let C

0

represent the set of constraints as a result of

eliminating x

n

using Fourier Motzkin elimination as described above. Then,

9x

n

:: C

holds if and only if C

0

holds.

3.2.2 Example

Here, the variable elimination technique is applied to

9s

1

:: 8e

1

2 [5; 8] :: 9s

2

:: 8e

2

2 [8; 10] :: 9s

3

:: 8e

3

2 [5; 8] :: 9s

4

:: 8e

4

2 [8; 10] :: C

1;2

where C

1;2

is a constraint set given on �

1;2

in Example 1. Initially, since e

4

is the innermost universally quanti�ed

variable, it can be eliminated �rst. The constraints involving e

4

in C

1;2

are:

s

4

+ e

4

� 40

s

4

+ e

4

� (s

2

+ e

2

) � 22

18 � s

4

+ e

4

� (s

2

+ e

2

)

The elimination of e

4

from these constraints results in the following derived constraints:

s

4

� 30 (e

4

:= u

4

= 10)

s

4

� (s

2

+ e

2

) � 12 (e

4

:= u

4

= 10)

10 � s

4

� (s

2

+ e

2

) (e

4

:= l

4

= 8)

Therefore, these three constraints are substituted for the original constraints containing e

4

. Thus, the complete

set of constraints is given below:

0 � s

1

s

2

+ e

2

� 20

20 � s

3

s

4

� 30

s

1

+ e

1

� s

2

s

2

+ e

2

� s

3

s

3

+ e

3

� s

4

s

2

� (s

1

+ e

1

) � 5

15 � s

3

+ e

3

� (s

1

+ e

1

)

s

3

+ e

3

� (s

1

+ e

1

) � 25

10 � s

4

� (s

2

+ e

2

)

s

4

� (s

2

+ e

2

) � 12

s

4

� (s

3

+ e

3

) � 5

(12)

Next, an existentially quanti�ed variable s

4

, which is the innermost one, is eliminated. The constraints

containing s

4

in the above constraint set are:

s

2

+ e

2

+ 10 � s

4

s

3

+ e

3

� s

4

s

4

� s

2

+ e

2

+ 12

s

4

� s

3

+ e

3

+ 5

s

4

� 30

(13)

From these constraints, the parametric lower and upper bound functions are obtained as follows:

F

min

4

(s

1

; e

1

; s

2

; e

2

; s

3

; e

3

) = max(s

3

+ e

3

; s

2

+ e

2

+ 10)

F

max

4

(s

1

; e

1

; s

2

; e

2

; s

3

; e

3

) = min(s

2

+ e

2

+ 12; s

3

+ e

3

+ 5; 30)

10



And, as a result of eliminating s

4

, the constraints in (13) are replaced by the following constraints:

10 � 12

s

2

+ e

2

+ 10 � s

3

+ e

3

+ 5

s

2

+ e

2

+ 10 � 30

s

3

+ e

3

� s

2

+ e

2

+ 12

0 � 5

s

3

+ e

3

� 30

;

s

2

+ e

2

� 20

s

2

+ e

2

+ 5 � s

3

+ e

3

s

3

+ e

3

� s

2

+ e

2

+ 12

s

3

+ e

3

� 30

(14)

If we continue this process until s

1

is eliminated, then we will obtain all the parametric bound functions, or the

predicate will turn out to be false during the process. Figure 4 shows the obtained parametric bound functions.

0 � s

1

� 2

max(8; s

1

+ e

1

) � s

2

� min(10; s

1

+ e

1

+ 5)

max(20; s

1

+ e

1

+ 10; s

2

+ e

2

) � s

3

� min(22; s

1

+ e

1

+ 17; s

2

+ e

2

+ 4)

max(s

3

+ e

3

; s

2

+ e

2

+ 10) � s

4

� min(30; s

2

+ e

2

+ 12; s

3

+ e

3

+ 5)

Figure 4: Parametric Calendar for Example

4 Dynamic Cyclic Dispatching

As in the parametric scheduling approach developed for transaction scheduling [4], we want to devise a schedulabil-

ity test and an e�cient dispatching mechanism when an1-fold cyclically constrained job set, �

1;1

, is given with

its constraint matrices and vectors. We say �

1;k

, is schedulable if there exists any method which can successfully

dispatch the jobs in �

1;k

.

De�nition 3 (Schedulability of �

1;k

) The k-fold cyclically constrained job set �

1;k

(1 � k) is schedulable if

the following predicate holds:

sched

1;k

� 9s

1

1

:: 8e

1

1

2 [l

1

1

; u

1

1

] :: 9s

1

2

:: 8e

1

2

2 [l

1

2

; u

1

2

] :: : : :

9s

k

N

:: 8e

k

N

2 [l

k

N

; u

k

N

] :: C

1;k

(15)

where C

1;k

is a set of standard constraints de�ned on fs

1

1

; e

1

1

; : : : ; s

k

N

; e

k

N

g.

Then, the following proposition holds for all k � 1.

Proposition 2

8k � 1 :: sched

1;k+1

=) sched

1;k

Proof: Obvious from the de�nition of a cyclically constrained job set and from the de�nition of sched

1;k

in

(15).

Hence, once sched

1;k

turns out to be False, then all sched

1;j

, k � j, are False, too. By this proposition, the

schedulability of �

1;1

is de�ned.

11



De�nition 4 (Schedulability of �

1;1

) �

1;1

is schedulable if and only if

lim

k!1

sched

1;k

= True

In [4], it is shown that checking Predicate (9) is not trivial because of the nondeterministic job execution times

and because of the existence of standard relative constraints among the jobs. This applies to the above sched

1;k

predicate, too. The variable elimination techniques are used in [4] to eliminate variables from Predicate (9). At

the end of the variable elimination process parametric bound functions for s

i

, that are parameterized in terms of

the variables in fs

1

; e

1

; : : : ; e

i�1

g, are found as well as the predicate value.

However, if we want to apply the variable elimination technique to sched

1;k

, the following problems have to

be addressed �rst:

1. On which subset of fs

1

1

; e

1

1

; : : : ; s

j

i�1

; e

j

i�1

g does the parametric bound functions for s

j

i

depend?

2. Is it required to store parametric bound functions for every job in �

1;k

?

3. What parametric bound functions have to be used if k is not known at pre-runtime and dynamically decided

at runtime?

Let F

min;k

s

j

i

and F

max;k

s

j

i

denote parametric lower and upper bound functions for s

j

i

, respectively, that are found

after the variable elimination algorithms are applied to sched

1;k

. If the number of variables is unbounded with

which F

min;k

s

j

i

or F

max;k

s

j

i

is parameterized, then it is not possible to evaluate them at run-time within bounded

computation times. Also, if it is required that parametric bound functions for every job in �

1;k

be stored at

runtime, the scheme is not implementable for large k because of memory requirements. Finally, if the value of k

is not known at pre-runtime and is decided dynamically at runtime, which is true in most real-time applications,

parametric bound functions to be used have to be selected.

In this section, the answers to the above questions are sought by �rst transforming sched

1;k

into a constraint

graph and by investigating the properties of such graphs. In section 4.1 the transformation rule is presented with

lemmas showing the equivalence relationship between sched

1;k

and its constraint graph with respect to variable

elimination process. In section 4.2 several terminologies are de�ned for constraint graphs, and in section 4.3 the

properties of constraint graphs are investigated. Then, in section 4.4 a complete o�-line algorithm is presented

to check sched

1;1

and to obtain parametric bound functions for job start times if it is schedulable. In addition,

for a certain class of standard constraints, it is shown in section 4.5 that the o�-line algorithm can be executed

within O(N

3

+ n

5

) time by pre-eliminating certain nodes from the constraint graph.

4.1 Transforming a Constraint Set into a Constraint Graph

Let � = f�

1

; �

2

; : : : ; �

N

g be a �nite set of jobs with a set of standard constraints, C. Consider eliminating

quanti�ed variables from the following predicate:

Sched � 9s

1

:: 8e

1

2 [l

1

; u

1

] :: : : :9s

N

:: 8e

N

2 [l

N

; u

N

] :: C

12



Then, predicates on subsets of fs

1

; e

1

; : : : ; s

N

; e

N

g are de�ned next that are found after eliminating variables.

De�nition 5 Sched(s

a

)(1 � a � N) is de�ned to be a predicate on a set of variables fs

1

; e

1

; : : : ; s

a

g that are

found after eliminating variables of < f

N

; s

N

; : : : ; f

a

> from Sched. Sched(e

a

) is de�ned similarly.

That is, Sched(s

a

) can be expressed as

Sched(s

a

) � 9s

1

:: 8e

1

2 [l

1

; u

1

] :: : : :9s

a

:: C(s

a

)

It will be shown that Sched(or Sched(s

a

), or Sched(e

a

)) can be transformed into a directed graph, which is

called a constraint graph, such that the variable elimination process can be mapped into a corresponding node

elimination operation in the graph. Note that, in the following de�nition of a constraint graph, semi-exclusive-

ORed edges are de�ned, which will be used in de�ning restricted paths in constraint graphs. Also, v

1

w

�! v

2

denotes an edge from a node v

1

to a node v

2

with a weight w, and < v

1

w

1

�! v

2

w

2

�! : : :

w

i�1

�! v

i

> denotes a path

from a node v

1

to a node v

i

with a weight sum w =

P

i�1

j=1

w

j

. If no confusion is caused, a brief notation, v

1

w

; v

i

,

will be used to denote such a path.

De�nition 6 (Constraint Graph) A constraint graph G(V;E) is found from Sched (or Sched(s

a

), or Sched(e

a

))

as follows:

1. node set V is obtained as follows:

� v

0

2 V

� s

i

, f

i

2 V for 1 � i � N where f

i

= s

i

+ e

i

.

2. edge set E is obtained as follows:

� For each tuple < s

i

; f

i

>, add the following semi-exclusive-ORed edges to E:

(a) s

i

l

i

�! f

i

(b) f

i

�u

i

�! s

i

� For each constraint in C that can be converted to:

(a) v

i

� v

j

� c (v

i

; v

j

2 fs

i

; f

i

j 1 � i � Ng): add v

j

c

�! v

i

to E.

(b) v

i

� c: add v

0

c

�! v

i

to E.

(c) �v

i

� c: add v

i

c

�! v

0

to E.

De�nition 7 The constraint graph found from Sched(s

a

) is denoted as G(s

a

).

5

Similarly, G(f

a

) represents a

graph found from Sched(e

a

).

Figure 5 shows a graph created from the example job set �

1;2

de�ned in Example 1. Note that v

0

is an extra

node created to represent a constant 0 that is used to specify absolute constraints such as the release time and

the deadline constraints. In the �gure, the edges connected by � are semi-exclusive-ORed edges.

5

The full notation would be G(s

a

)(V;E). But, if no confusion is caused, G(s

a

) will be used in this paper.
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Figure 5: Constraint Graph for �

1;2

Note that there may exist only one edge from one node to another from the uniqueness of inequality in the

constraint set. For example, if there are two constraints v

1

� v

2

� c

1

and v

1

� v

2

� c

2

in C, then one of them is

redundant. Therefore, we can denote an edge from v

1

to v

2

in a constraint graph as v

1

! v

2

without its weight

speci�ed. Also, note that any edge from f

i

to s

i

is semi-exclusive-ORed to any edge from s

i

to f

i

. That is, even

if any of these two edges is created from another constraint in C rather than from the minimum or maximum

execution time constraint, they are semi-exclusive-ORed.

De�nition 8 (Restricted Path) In a constraint graph, a path, < v

1

w

1

�! v

2

w

2

�! : : : v

i�1

w

i�1

�! v

i

>, is called a

restricted path from v

1

to v

i

if the following is satis�ed:

� If f

j

! s

j

appears in the path, then its semi-exclusive-ORed edge s

j

! f

j

may appear at most once in the

path, and vice versa.

� If two semi-exclusive-ORed edges, f

j

! s

j

and s

j

! f

j

, appear in the path, then they belong to a sub-path

< f

j

! s

j

! f

j

>.

Note that if a sub-path < f

j

! s

j

! f

j

> appears once in the path, then neither f

j

! s

j

nor s

j

! f

j

should

appear at another place in the path, and vice versa.

De�nition 9 (Restricted Cycle) A restricted cycle in a constraint graph is de�ned to be a cycle

6

such that

1. it satis�es the de�nition of a restricted path.

2. it is not a sub-path of < f

j

! s

j

! f

j

> for any 1 � j � N .

For example, a path < f

j

! s

j

! f

j

! s

l

! f

j

> is a restricted cycle while a path < f

j

! s

j

! f

j

> is not.

Also, a restricted path without any restricted cycle in it is called an acyclic restricted path.

The elimination algorithm of a node f

a

from a graph G(f

a

) is presented next.

Algorithm 1 (Elimination of f

a

from a Graph G(f

a

)) Elimination of f

a

from G(f

a

) is performed by the

following algorithm.

1. For each edge pair, < y

w

1

�! f

a

; f

a

w

2

�! s

a

>, that are not semi-exclusive-ORed in G(f

a

):

6

A cycle is de�ned to be a path < y ! v

1

: : :! v

i

! y > where i � 1, or to be a path < y ! y >.
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� create an edge y

w

1

+w

2

�! s

a

.

(a) If y = s

a

and w

1

+ w

2

< 0, then return False.

7

(b) If y = s

a

and w

1

+ w

2

� 0, then remove this edge.

8

(c) If there already exists an edge y

w

0

�! s

a

before creating y

w

1

+w

2

�! s

a

, then the edge with less weight

remains, while the other is removed.

2. For each edge pair, < s

a

w

1

�! f

a

; f

a

w

2

�! z >, z 6= s

a

, that are not semi-exclusive-ORed in G(f

a

):

� create an edge s

a

w

1

+w

2

�! z.

(a) If there already exists an edge s

a

w

00

�! z before creating s

a

w

1

+w

2

�! z, then the edge with less weight

remains, while the other is removed.

3. Set V = V � ff

a

g and remove all edges to or from f

a

in G(f

a

).

Let Elim(G(f

a

); f

a

) denote a new graph created after eliminating f

a

from the graph G(f

a

) according to

Algorithm 1 in case False is not found. In this case, the following lemma proves the equivalence, with regards

to the graph transformation rule, between the elimination of an universal quanti�er from the predicate and the

elimination of a node, f

a

, from the constraint graph.

Lemma 3 Elim(G(f

a

); f

a

) is equal to G(s

a

).

Proof: Given in appendix.

Next, we show how a node corresponding to an existential quanti�er s

a

may be eliminated from the graph

G(s

a

).

Algorithm 2 (Elimination of s

a

from a Graph G(s

a

)) Elimination of s

a

from G(s

a

) is performed by the

following algorithm.

1. For each edge pair, < y

w

1

�! s

a

; s

a

w

2

�! z >, in G(s

a

):

� create an edge y

w

1

+w

2

�! z.

(a) If y = z and w

1

+w

2

< 0, then return False.

(b) If y = z and w

1

+w

2

� 0, then remove this edge.

(c) If there already exists an edge y

w

0

�! z before creating y

w

1

+w

2

�! z, then the edge with less weight

remains, while the other is removed.

2. Set V = V � fs

a

g and remove all edges to or from s

a

in G(s

a

).

7

This is because y � y = 0 � w

1

+ w

2

< 0 is a contradiction.

8

This is because y � y = 0 � w

1

+ w

2

is a tautology.
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Again, let Elim(G(s

a

); s

a

) denote a new graph created after eliminating s

a

from the graph G(s

a

) according to

Algorithm 2 in case False is not found. Then, the following lemma shows the equivalence between the elimination

of a node in the graph and the elimination of an existential quanti�er from the constraint set.

Lemma 4 Elim(G(s

a

); s

a

) is equal to G(f

a�1

).

Proof: Given in appendix.

By inductively applying Lemma 3 and 4, the equivalence relationship between node elimination and variable

elimination processes can be established. This relationship is shown in Figure 6 with respect to the constraint

graph derivation rules.

q)

Sched(e q

G(s

)

Node Elimination

Sched(s q

G(f q)

)

Sched(e q-1 ) G(f q-1)

Graph Transform

Variable Elimination

Figure 6: Equivalence between Predicates and Graphs

The elimination process of nodes, f

a

and s

a

, from the graph G(f

a

) can be viewed as preserving the connectivity

between any two nodes in fv

0

; s

1

; f

1

; : : : ; s

a�1

; f

a�1

g through f

a

and s

a

in G(f

a

). That is, if there exists any

restricted path from y to z only through s

a

and f

a

in G(f

a

), then a new edge from y to z is created to maintain

the connectivity from y to z even after f

a

and s

a

are eliminated. This is formally proved in Lemma 5.

Figure 7 shows a graph and its node elimination processes for sched

1;2

that is derived from �

1;2

in Example

1.

The following proposition describes a necessary condition for Sched to be true in terms of its constraint graph.

Proposition 3 If a constraint graph for Sched has a negative weight restricted cycle, then Sched = False.

Proof: Given in appendix.

The following lemma shows how the connectivity is maintained during the node elimination process, which is

quite an useful property that will be frequently used throughout the paper.

Lemma 5 Let fv

0

; s

1

; f

1

; : : : ; s

a

; f

a

g, 1 � a � N , denote a node set of G(f

a

) that is found after eliminating

nodes of < f

N

; s

N

; : : : ; f

a+1

; s

a+1

> from G(f

N

). Also, assume that no contradiction has been found yet. Then,

the following two conditions are equivalent:

1. y

w

�! z 2 G(f

a

)
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Figure 7: Elimination of f

2

2

and s

2

2

from �

1;2

2. there exists a minimum weight acyclic restricted path y

w

; z in G(f

N

) where all intermediate

9

nodes of the

path belong to fs

a+1

; f

a+1

; : : : ; s

N

; f

N

g.

10

Proof: Given in appendix.

In the next corollary it is assumed that v and v

0

denote any two nodes that are located consecutively in a

sequence < v

0

; s

1

; f

1

; : : :s

N

; f

N

>.

Corollary 1 Let fv

0

; s

1

; f

1

; : : : ; vg, denote a node set of G(v) that is found after eliminating nodes of < f

N

; s

N

; : : : ; v

0

>

from G(f

N

). Also, assume that no contradiction has been found yet. If an edge from y to z exists in G(v), then

there exists a path from y to z in G(f

N

) whose intermediate nodes belong to fv

0

; : : : ; s

N

; f

N

g.

Proof: Given in appendix.

For example, in the example shown in �gure 7, after eliminating ff

2

2

; s

2

2

g an edge f

1

2

12

�! f

2

1

is created since, in

the initial graph, there exists a minimumweight acyclic restricted path < f

1

2

22

�! f

2

2

�10

�! s

2

2

0

�! f

2

1

> whose weight

sum is 12 and whose intermediate nodes belong to fs

2

2

; f

2

2

g. Also, an edge f

1

2

2

�! f

1

2

is created in G

1;2

(f

2

1

), since

9

fv

1

; v

2

; : : : ; v

i

g is a set of intermediate nodes of a path < y ! v

1

! v

2

: : : v

i

! z > where i � 1, or fg is an intermediate node

set if the path consists of one edge.

10

y ! z may also be considered as a path whose intermediate nodes belong to fs

a+1

; f

a+1

; : : : ; s

N

; f

N

g.

17



there exists a minimum weight restricted path < f

1

2

22

�! f

2

2

�10

�! s

2

2

8

�! f

2

2

�18

�! f

1

2

> without any intermediate

restricted cycle.

4.2 De�nitions for Constraint Graphs

In this section, we de�ne several terminologies regarding constraint graphs. They will be used in investigating

properties of constraint graphs in the next section. In this section, it is assumed that an initial graph is obtained

from the predicate sched

1;k

that is de�ned in (15) for �

1;k

.

Before de�ning terminologies for constraint graphs, the following function is de�ned on node sets of constraint

graphs.

De�nition 10 (g



) g



is an one-to-one mapping

fs

j

i

; f

j

i

j 1 � i � N ^max(1;� + 1) � jg

�! fs

j

i

; f

j

i

j 1 � i � N ^max( + 1; 1) � jg

by the following rule:

g



(v) =

8

>

>

<

>

>

:

v

0

if v = v

0

.

s

j+

i

if v = s

j

i

where 1 � i � N .

f

j+

i

if v = f

j

i

where 1 � i � N .

g



(V ) on a node set V is de�ned to be a set of g



(v) where v is an element of V .

For example, s

j

1

i

in �

j

1

can be related to a node s

j

2

i

in �

j

2

by

s

j

2

i

= g

(j

2

�j

1

)

(s

j

1

i

)

In this case s

j

2

i

is called a corresponding node of s

j

1

i

in a job set �

j

2

, and vice versa.

As in De�nition 5, sched

1;k

(s

j

i

) (1 � i � N ^ 1 � j � k) is de�ned to be a predicate on a set of variables

fs

1

1

; e

1

1

; : : : ; s

j

i

g that is obtained after eliminating the variables, e

k

N

, s

k

N

, : : :, e

j

i

, from sched

1;k

. That is, it can be

expressed as

sched

1;k

(s

j

i

) � 9s

1

1

:: 8e

1

1

2 [l

1

1

; u

1

1

] :: : : :9s

j

i

:: C

1;k

(s

j

i

)

where C

1;k

(s

j

i

) is a set of standard constraints obtained after variable elimination. sched

1;k

(e

j

i

) is de�ned similarly.

Also, as in De�nition 7, the graphs found from the above predicates are denoted as follows:

� G

1;k

(s

j

i

) denotes a graph constructed from sched

1;k

(s

j

i

).

� G

1;k

(f

j

i

) denotes a graph constructed from sched

1;k

(e

j

i

).

Note that, from C

1;k

(s

j

i

)(or G

1;k

(s

j

i

)), we can �nd out the parametric lower and upper bound functions for s

j

i

in the forms presented in Proposition 1.
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First, several terms are de�ned for constraint graphs. Let E denote a subset of edges in a graph G

1;k

(s

j

i

), (or

G

1;k

(f

j

i

)) in the following two de�nitions.

De�nition 11 (Node Set from E) Node(E) denotes a set of nodes that are connected by any edge in E .

De�nition 12 (Preceding Node Set from E) PrecNode(E) is de�ned to be a subset of Node(E) in the graph

such that v 2 PrecNode(E) if and only if

� there exists a node v

0

that lies after v in the sequence < v

0

; s

1

1

; f

1

1

; : : : ; s

j

i

(; f

j

i

) > satisfying:

v ! v

0

2 E _ v

0

! v 2 E

In the example constraint graph shown in Figure 5 let E be ff

1

2

! f

2

2

, s

2

2

! f

2

2

, v

0

! f

2

2

g. Then, a node set

from E , Node(E) is found to be fv

0

; f

1

2

; s

2

2

; f

2

2

g. Also, the preceding node set, PrecNode(E), is fv

0

; f

1

2

; s

2

2

g.

In the following de�nition, let < v

0

; s

1

1

; f

1

1

; : : : ; y; z; : : : ; s

k

N

; f

k

N

> denote a sequence of nodes in the initial

graph G

1;k

(f

k

N

), where y, z denote any two consecutive nodes in the sequence.

De�nition 13 (Crossing Edge Set over a Node y) A crossing edge set �

1;k

(y) is de�ned to be a set of edges

v

1

! v

2

in G

1;k

(f

k

N

) satisfying either of the following two conditions:

1. v

1

2< v

0

; s

1

1

; f

1

1

; : : : ; y > and v

2

2< z; : : : ; s

k

N

; f

k

N

>.

2. v

2

2< v

0

; s

1

1

; f

1

1

; : : : ; y > and v

1

2< z; : : : ; s

k

N

; f

k

N

>.

For example, in Figure 8, �

1;2

(f

1

2

) is shown with dashed edges. Informally speaking, any edges created in

G

1;k

(y) after eliminating nodes < z; : : : ; s

k

N

; f

k

N

> may connect only the nodes that belong to PrecNode(�

1;k

(y)).

This is proved in Proposition 5.

v

+ + + +sss s

0
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Figure 8: �

1;2

(f

1

2

) is denoted as dashed edges meeting with a vertical line.

De�nition 14 (Created Edge Set in G

1;k

(f

j

i

)) A created edge set 	

1;k

(f

j

i

), 1 � j � k � 1, is de�ned to be a

set of edges v

1

w

�! v

2

in G

1;k

(f

j

i

) where v

1

, v

2

satisfy the following condition:

� there exists a path v

1

; v

2

in G

1;k

(f

k

N

) such that

1. it has at least one intermediate node.
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2. all of its intermediate nodes belong to fv

0

; s

1

1

; f

1

1

; : : : ; s

k

N

; f

k

N

g � fv

0

; s

1

1

; f

1

1

; : : : ; f

j

i

g.

	

1;k

(s

j

i

) is de�ned similarly.

That is, a created edge set in G

1;k

(f

j

i

) contains edges that have possibilities of being newly created during the

variable elimination process. Note that, if a newly created edge is implied by an already existing edge in G

1;k

(f

k

N

)

with a less weight and thus removed during the elimination process as explained in Algorithm 1 and 2, then the

already existing edge is included into the created edge set instead of the removed one that is actually created

during the variable elimination process. In �gure 9, the constraint graph is shown corresponding to Example 1.

Dashed edges are used to represent 	

1;3

(s

3

2

) and 	

1;3

(s

2

2

).

Next, the semi-homogeneity and homogeneity relationships are de�ned between two edge sets in two constraint

graphs that are found during variable elimination processes from two job sets, �

1;k

and �

1;l

(k � l), respectively.

De�nition 15 (Semi-homogeneous Edge Sets) Let E

1

and E

2

be subsets of edges in G

1;k

(f

j

1

i

) and G

1;l

(f

j

2

i

)

(or, G

1;k

(s

j

1

i

) and G

1;l

(s

j

2

i

)), respectively, where k � l ^ j

1

� k ^ j

2

� l. Then, E

1

is semi-homogeneous to E

2

if

and only if

j E

1

j=j E

2

j ^ (v

1

! v

2

2 E

1

) =) (g

(j

2

�j

1

)

(v

1

)! g

(j

2

�j

1

)

(v

2

) 2 E

2

)

Here, note that, if E

1

is semi-homogeneous to E

2

, then

(v

3

! v

4

2 E

2

) =) (g

(j

1

�j

2

)

(v

3

)! g

(j

1

�j

2

)

(v

4

) 2 E

1

)

holds, too, since j E

1

j=j E

2

j and E

1

is mapped onto E

2

under the index function g

(j

2

�j

1

)

which is one-to-one.

The homogeneity relationship is de�ned next which is stronger than semi-homogeneity relationship. Again,

let E

1

and E

2

be subsets of edges in G

1;k

(f

j

1

i

) and G

1;l

(f

j

2

i

) (or, G

1;k

(s

j

1

i

) and G

1;l

(s

j

2

i

)), respectively, where

k � l ^ j

1

� k ^ j

2

� l.

De�nition 16 (Homogeneous Edge Sets) E

1

is homogeneous to E

2

, denoted as E

1

� E

2

, if and only if

1. E

1

and E

2

are semi-homogeneous.

2. For two nodes v

1

( 6= v

0

), v

2

( 6= v

0

), (v

1

w

�! v

2

2 E

1

) () (g

(j

2

�j

1

)

(v

1

)

w

�! g

(j

2

�j

1

)

(v

2

) 2 E

2

)

3. For two nodes v

0

, v

2

, where v

2

6= v

0

, (v

0

w

�! v

2

2 E

1

) () (v

0

w+(j

2

�j

1

)L

�! g

(j

2

�j

1

)

(v

2

) 2 E

2

)

4. For two nodes v

1

, v

0

, where v

1

6= v

0

, (v

1

w

�! v

0

2 E

1

) () (g

(j

2

�j

1

)

(v

1

)

w�(j

2

�j

1

)L

�! v

0

2 E

2

)

Homogeneity relations are commutative and transitive, i.e.,

E

1

� E

2

() E

2

� E

1

(E

1

� E

2

) ^ (E

2

� E

3

) =) E

1

� E

3
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which can be easily proved from the de�nition of homogeneity. Two homogeneous created edge sets, 	

1;3

(s

3

2

) and

	

1;3

(s

2

2

), are shown in Figure 9 with dashed edges where L = 20.

A constant, n, is de�ned next that will be used in obtaining a complexity bound of our algorithm.

De�nition 17 (n) n =j PrecNode(�

1;k

(f

1

N

)) j; k � 2

Note that j PrecNode(�

1;k

(f

j

N

)) j is same for all 2 � k and all 1 � j � k � 1 from the de�nition of a cyclically

constrained job set and the de�nition of a preceding node set. n � 1 is the number of jobs in one scheduling

window that have standard relative constraints with jobs in the next scheduling window.

4.3 Characteristics of Constraint Graphs

From now on, the properties of constraint graphs will be examined that remain true during the node elimination

process. Note that, from Proposition 3 if a negative weight restricted cycle exists in the constraint graph,

Algorithm 1 or 2 will detect it and return False. In this case the predicate sched

1;k

is false and the job set �

1;1

is not schedulable as well as �

1;k

. If a constraint graph appears in any of the following propositions, it is assumed

that no contradiction has been found in the process of obtaining that graph. First, it is shown that the parametric

bound functions for s

j

i

found from a constraint graph G

1;k

(s

j

i

) depend on the start or �nish times of the jobs in

�

j�1

and �

j

that are already executed. This means that the number of jobs it may actually be dependent on is

shown to be bounded by O(N ). This bounds the number of variables to O(N ) that have to be used in evaluating

parametric bound functions at runtime.

Proposition 4 In a graph G

1;k

(s

j

i

), if s

j

i

is connected to a node v, then

v 2 PrecNode(�

1;k

(s

j

i

)) [ P

where P = fy j y 2< v

0

; s

j�1

1

; f

j�1

1

; : : : ; f

j

i�1

> ^ (y ! s

j

i

2 G

1;k

(f

k

N

) _ s

j

i

! y 2 G

1;k

(f

k

N

))g

Proof: Given in appendix.

Similar result holds for a graph G

1;k

(f

j

i

).

Then, the following proposition implies that the set of nodes, to which additionally created edges in G

1;k

(s

j

i

)(or

G

1;k

(f

j

i

)) may be connected, is a subset of PrecNode(�

1;k

(s

j

i

))(or PrecNode(�

1;k

(f

j

i

))).

Proposition 5

Node(	

1;k

(s

j

i

)) � PrecNode(�

1;k

(s

j

i

))

Node(	

1;k

(f

j

i

)) � PrecNode(�

1;k

(f

j

i

))

Also, j 	

1;k

(f

j

N

) j � n(n � 1) holds.

Proof: Given in appendix.
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Figure 9: Homogeneous edge sets, 	

1;3

(s

3

2

) and 	

1;3

(s

2

2

)

These two propositions give an upper bound on the actual number of nodes s

j

i

may be connected to in G

1;k

(s

j

i

),

which is O(N ). If only jitter constraints are allowed from periodic tasks, it is easy to see that s

j

i

in G

1;k

(s

j

i

) is

connected to at most O(n) number of jobs. This is because j PrecNode(�

1;k

(s

j

i

)) j� n and j P j� 2.

Then, an interesting property of an additionally created edge set, 	

1;k

(f

j

N

), is given in the following proposi-

tion. After eliminating 4N variables of the last 2N jobs (belonging to �

k

and �

k�1

) from sched

1;k

, we periodically

obtain semi-homogeneous created edge sets once eliminating each 2N variables for �

j

, 2 � j � k � 2.

Proposition 6 An edge set 	

1;k

(f

j

N

) is semi-homogeneous to 	

1;k

(f

j�1

N

) for 2 � j � k � 2.

Proof: Given in appendix.

In addition, the edge weight change patterns between two semi-homogeneous edge sets, 	

1;k

(f

j�1

N

) and

	

1;k

(f

j

N

), are presented in the following proposition.

Proposition 7 Consider two semi-homogeneous created edge sets, 	

1;k

(f

j�1

N

) and 	

1;k

(f

j

N

), where 2 � j � k�2.

Suppose v

1

w

�! v

2

2 	

1;k

(f

j

N

) and g

(�1)

(v

1

)

w

0

�! g

(�1)

(v

2

) 2 	

1;k

(f

j�1

N

). Then, the following is satis�ed:

1. If v

1

6= v

0

and v

2

6= v

0

, w

0

� w

2. If v

1

= v

0

and v

2

6= v

0

, w

0

� w � L

3. If v

1

6= v

0

and v

2

= v

0

, w

0

� w + L

Proof: Given in appendix.

Once we �nd two homogeneous created edge sets, 	

1;k

(f

j

N

) and 	

1;k

(f

j�1

N

) for some j, then the following

proposition enables us to stop the variable elimination process, since homogeneous created edge sets will be found

to the ones already obtained, if the node elimination process continues.
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Proposition 8 If an edge set 	

1;k

(f

j

N

) is homogeneous to an edge set 	

1;k

(f

j�1

N

), where 2 � j � k � 2, then

8l : 2 � l � j � 1 :: 8i : 1 � i � N :: 	

1;k

(f

l

i

) � 	

1;k

(f

j

i

) ^ 	

1;k

(s

l

i

) � 	

1;k

(s

j

i

)

Proof: Given in appendix.

More generalized result is presented next which holds whenever two homogeneous edge sets, 	

1;k

(f

j

N

) and

	

1;k

(f

j�1

N

), are found during the variable elimination process.

Proposition 9

	

1;k

(f

j�1

N

) � 	

1;k

(f

j

N

) =) (8i : 1 � i :: 	

1;k+i

(f

(j�1)+i

N

) � 	

1;k+i

(f

j+i

N

))

Proof: This is obvious from the cyclic structures of constraint graphs, G

1;k

(f

k

N

) and G

1;k+i

(f

k+i

N

), and from

Proposition 7 and 8.

From the de�nition of homogeneity between edge sets in constraint graphs, the following proposition is derived.

Proposition 10 Suppose 	

1;k

1

(s

j

i

) � 	

1;k

2

(s

l

i

) holds. Then,

1. the set of edges to s

j

i

in G

1;k

1

(s

j

i

) is homogeneous to the set of edges to s

l

i

in G

1;k

2

(s

l

i

).

2. the set of edges from s

j

i

in G

1;k

1

(s

j

i

) is homogeneous to the set of edges from s

l

i

in G

1;k

2

(s

l

i

).

Note that from the set of edges to s

j

i

in G

1;k

1

(s

j

i

) we can obtain the parametric upper bound function F

max;k

1

s

j

i

for s

j

i

, and from the set of edges from s

j

i

in G

1;k

1

(s

j

i

) we can obtain the parametric lower bound function F

min;k

1

s

j

i

for s

j

i

by inversely transforming the edge set into constraints. Two parametric lower (upper) bound functions for

s

j

i

and s

l

i

are de�ned to be homogeneous if they satisfy condition 1(2) in the above proposition. If F

min;k

1

s

j

i

and

F

min;k

2

s

l

i

are homogeneous, it is denoted as:

F

min;k

1

s

j

i

� F

min;k

2

s

l

i

We have the following lemma from Proposition 8 and 9.

Lemma 6 If 	

1;k

(f

j�1

N

) � 	

1;k

(f

j

N

) holds for 2 � j � k � 2, then

1. 8l : 2 � l � j � 1 :: 8i : 1 � i � N :: F

min;k

s

l

i

� F

min;k

s

j

i

^ F

max;k

s

l

i

� F

max;k

s

j

i

2. 8a : 1 � a :: F

min;k+a

s

(j�1)+a

i

� F

min;k+a

s

j+a

i

^ F

max;k+a

s

(j�1)+a

i

� F

max;k+a

s

j+a

i

This lemma enables us to obtain asymptotic

11

parametric bound functions, F

min;1

s

j

i

and F

max;1

s

j

i

, once we

�nd two homogeneous created edge sets during node elimination process from the constraint graph. By using

11

\Asymptotic" means \converging" in the sense that homogeneous parametric bound functions will be found to the ones already

obtained, if the variable elimination process continues.
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asymptotic parametric bound functions at run-time we can guarantee that the constraint set C

1;k

will be satis�ed

with any arbitrary value of k.

Note that asymptotic parametric bound functions, F

min;1

s

j

i

and F

max;1

s

j

i

, are parameterized in terms of the

variables in fs

j�1

1

; f

j�1

1

; : : : ; f

j

i�1

g and in terms of the index variable j. By knowing the scheduling window(job

set) index j at run-time, only one pair of asymptotic parametric bound functions need to be stored for all s

j

i

where i is �xed and j � 2. In addition to this, another pair of parametric bound functions needs to be stored for

s

1

i

.

4.4 O�-line Component

In this section, a 4N -node graph, called basis graph, is obtained to which we can cyclically apply variable elimina-

tion algorithm without explicitly obtaining a large constraint graph G

1;k

(f

k

N

) for large k. That is, by recursively

applying variable elimination algorithm to this smaller graph, it can be decided whether the created edge set

sequence, 	

1;k

(f

j

N

), j = k; k� 1; : : :, will converge or not.

De�nition 18 (Basis Graph) A basis graph G

b

(V

b

; E

b

) is de�ned as a subgraph of G

1;2

(f

2

N

) as follows

12

.

1. V

b

= V

b;1

[ V

b;2

[ fv

0

g where:

V

b;1

= PrecNode(�

1;2

(f

1

N

)) � fv

0

g

V

b;2

= fs

2

1

; f

2

1

; : : : ; s

2

N

; f

2

N

g

2. All edges in G

1;2

(f

2

N

) connecting any two nodes in V

b

are included into E

b

.

Then, the variable elimination process for a graph G

1;k

(f

k

N

) can be transformed into an equivalent one by

using a basis graph as follows:

Algorithm 3 Cyclic algorithm to obtain G

1;k

(f

2

N

).

� Input: k, Basis Graph G

b

(V

b

; E

b

)

� Output: G

1;k

(f

2

N

)

1. Initialize i = 1.

2. Initialize G

1

in

(V

b

; E

1

in

) = G

b

(V

b

; E

b

).

3. From i = 1 to i = k � 2 repeat the following:

(a) Eliminate, from G

i

in

(V

b

; E

i

in

), the nodes of V

b;2

by alternately using Algorithm 1 and 2.

(b) If False is returned from Algorithm 1 or 2, then return False.

(c) Let G

i

out

(V

b;1

[ fv

0

g; E

i

out

) denote the resulting graph.

12

G

1;2

(f

2

N

) is found from �

1;2

.
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(d) If i � 2 and G

i

out

(V

b;1

[ fv

0

g; E

i

out

) = G

i�1

out

(V

b;1

[ fV

0

g; E

i�1

out

), then return G

i

in

(V

b

; E

i

in

).

(e) Let G

i+1

in

(V

b

; E

i+1

in

) = G

b

(V

b

; E

b

)

(f) For each edge v

1

w

12

�! v

2

in G

i

out

(V

b;1

[ fv

0

g; E

i

out

),

i. If v

1

6= v

0

and v

2

6= v

0

, add an edge g

(1)

(v

1

)

w

12

�! g

(1)

(v

2

) to G

i+1

in

(V

b

; E

i+1

in

).

ii. If v

1

= v

0

, add an edge g

(1)

(v

1

)

w

12

+L

�! g

(1)

(v

2

) to G

i+1

in

(V

b

; E

i+1

in

).

iii. If v

2

= v

0

, add an edge g

(1)

(v

1

)

w

12

�L

�! g

(1)

(v

2

) to G

i+1

in

(V

b

; E

i+1

in

).

(g) Set i = i+ 1.

At step 3 � (d) the graph G

i

in

(V

b

; E

i

in

) is returned. By utilizing Proposition 8, this graph can be shown to

be equal to G

1;k

(f

2

N

). Once we �nd homogeneous created edge sets on V

b;1

[ fv

0

g at step 3 � (d), asymptotic

parametric bound functions for job start times can be found from the graph G

1;k

(f

2

N

). From this graph the

variables in the sequence < f

2

N

; s

2

N

; : : : ; f

2

1

; s

2

1

> are eliminated to obtain the parametric bound functions for each

s

2

i

, 1 � i � N . During this elimination process, the weights of edges connected to or from v

0

have to be modi�ed

appropriately to reect scheduling window index j � 2 as well as the node index of the graph. For example,

� if an edge v

0

w

�! s

2

i

is obtained after eliminating < f

2

N

; s

2

N

; : : : ; f

2

i

>, then a formula s

j

i

� w + (j � 2)L

must be used in deriving asymptotic parametric bound functions for s

j

i

.

� if an edge s

2

i

w

�! v

0

is obtained after eliminating < f

2

N

; s

2

N

; : : : ; f

2

i

>, then a formula �w + (j � 2)L � s

j

i

must be used in deriving asymptotic parametric bound functions for s

j

i

.

� if an edge s

1

a

w

�! s

2

i

, is obtained after eliminating < f

2

N

; s

2

N

; : : : ; f

2

i

>, then a formula s

j

i

� s

j�1

a

� w must

be used in deriving asymptotic parametric bound functions for s

j

i

.

After obtaining asymptotic parametric bound functions for s

j

i

, 2 � j, we can also �nd parametric bound functions

for �

1

by eliminating nodes from G

1;k

(f

1

N

).

Note that, at each iteration in the above algorithm, no explicit transformation of node indices are performed

by using g

(�1)

. This is because our purpose is to check the schedulability and obtain asymptotic parametric

bound functions, and this may be done without explicit knowledge of node indices. The key property that this

algorithm makes use of is that the basis graph is recursively used and transformed until the schedulability is

checked. It is clear that this algorithm produces exactly the same result (True or False) and graph as the node

elimination algorithm applied to G

1;k

(f

k

N

) does.

The following theorem provides an upper bound on the number of loop iterations in Algorithm 3 that have

to be performed before the schedulability is checked.

Theorem 1 If Algorithm 3 doesn't terminate within n

2

�n+2 loop iterations, then sched

1;1

is not schedulable.

Proof: Given in appendix.

Therefore, we obtain the �nal algorithm for checking sched

1;1

and deriving asymptotic parametric bound

functions if �

1;1

is schedulable. The overview of o�-line component is shown in Figure 10.
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Eliminate variables 

from 

Parametric Bound Functions

for s
i

1

Not Schedulable

Yes

Figure 10: Overview of o�-line component

From Theorem 1 the total complexity of the o�-line algorithm is O(n

2

N

3

), since each loop iteration of

Algorithm 3 may take at most O(N

3

) computation time [4]. If only jitter constraints are allowed from periodic

tasks, then the o�-line algorithm will be �nished within O(n

4

N ) time where n is the number of periodic tasks

that have jitter constraints, since each loop iteration in this case takes at most O(n

2

N ) time. This is because

j PrecNode(�

1;k

(s

j

i

))[P j � n+2 holds, and because from Proposition 4 we know that at most O(n) number of

edges exist in G

1;k

(s

j

i

) that are connected to or from s

j

i

. This implies that the elimination of s

j

i

from the graph

G

1;k

(s

j

i

) will require at most O(n

2

) time, and eliminating nodes of one job set requires O(n

2

N ) time. Also, the

on-line component in this case requires at most O(n) execution time.

4.5 O�-line Component with Restricted Standard Constraints

For a certain class of standard constraints, called restricted standard constraints, it will be shown that the o�-line

component can be carried out in O(N

3

+ n

5

) time instead of O(n

2

N

3

) time.

De�nition 19 (Restricted Standard Constraints) For two jobs, �

j

a

and �

l

b

, where (j = l�1)_(j = l^a < b),

the following constraints are de�ned as restricted standard constraints:

s

j

a

� s

l

b

� c

1

s

j

a

+ e

j

a

� s

l

b

� c

2

s

l

b

� s

j

a

� c

3

s

l

b

+ e

l

b

� s

j

a

� c

4

(16)

Also, as in the de�nition for standard constraints, release time and deadline constraints can also be classi�ed

as restricted standard constraints. We also include as restricted standard any constraint that can be rewritten in

one of the above forms.
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For this class of constraints the following lemma makes it possible to pre-process the basis graph and to

obtain a smaller graph that can be used in the o�-line algorithm instead of the basis graph. This graph is called

a compact basis graph.

Lemma 7 ([8]) If �

1;k

is constructed with restricted standard constraints, it is schedulable if and only if it is

schedulable for the maximum execution times of the jobs.

Let the following be a predicate representing a schedulability for a job set �.

Sched � 9s

1

:: 8e

1

2 [l

1

; u

1

] :: : : :9s

i

:: 8e

i

2 [l

i

; u

i

] :: 9s

N

:: 8e

N

2 [l

N

; u

N

] :: C

From Lemma 7 this predicate is equivalent to the following predicate where C only consists of restricted standard

constraints.

9s

1

:: : : : :: 9s

i

:: : : : 9s

N�1

:: 9s

N

:: C[e

j

=u

j

: 1 � j � N ]

where e

j

=u

j

denotes a substitution of u

j

for a variable e

j

. In other words, Sched can be checked by �rst replacing

every universally quanti�ed variable e

j

with u

j

for 1 � j � N , and then by eliminating existentially quanti�ed

variables s

N

, : : :, s

1

.

However, eliminating the existentially quanti�ed variables, s

N

, s

N�1

, : : :, s

i+1

, in any order will produce

the same constraint graph G(s

i

). This is because there exists no exclusively-ORed edges between nodes in

fv

0

; s

i+1

; s

i+2

; : : : ; s

N

g after substituting the maximum execution times for the variables e

j

, 1 � j � N , and

because any minimum weight acyclic restricted paths through the nodes of fs

i+1

; : : : ; s

N

g are preserved in the

remaining constraint graph after eliminating the variables s

j

, i + 1 � j � N , regardless of the elimination order.

This property is used to �nd a compact basis graph from sched

1;2

(f

2

N

) as follows:

Algorithm 4 (Compact Basis Graph) Algorithm to obtain a compact basis graph.

� Input: sched

1;2

(f

2

N

)

� Output: Compact Basis Graph G

cb

(V

cb

; E

cb

)

1. Let G

0

(V

0

; E

0

) denote a graph from a predicate that is found by substituting u

j

for each universally quanti�ed

variable e

j

in sched

1;2

(f

2

N

).

2. Let �

0

(s

1

N

) denote a crossing edge set of s

1

N

found from G

0

(V

0

; E

0

).

3. Let G

00

(V

00

; E

00

) denote a graph found after eliminating the following nodes from G

0

(V

0

; E

0

).

fs

2

1

; s

2

2

; : : : ; s

2

N

g � g

(1)

(PrecNode(�

0

(s

1

N

)))

4. Let G

cb

(V

cb

; E

cb

) be a subgraph of G

00

(V

00

; E

00

):
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(a) V

cb

= V

cb;1

[ V

cb;2

[ fv

0

g where:

V

cb;1

= fs

1

1

; s

1

2

: : : ; s

1

N

g \ PrecNode(�

0

(s

1

N

))

V

cb;2

= g

(1)

(V

cb;1

)

(b) All edges in G

00

(V

00

; E

00

) connecting two nodes of V

cb

de�nes E

cb

.

We can apply Algorithm 3 to this compact basis graph instead of the basis graph. This limits the complexity

of obtaining homogeneous created edge sets to O(N

3

+ n

5

) instead of O(n

2

N

3

). Once we �nd homogeneous

created edge sets on V

cb;1

, asymptotic parametric bound functions can be found by �rst unrolling the �nal graph

from the algorithm to obtain G

1;1

(f

2

N

) and then by eliminating from this graph the nodes in the sequence

< f

2

N

; s

2

N

; : : : ; f

2

1

; s

2

1

>. During this elimination process, as in Section 4.4 the weights of edges connecting v

0

have

to be modi�ed appropriately to reect scheduling window index as well as the node indices of the graph.

5 Example

The asymptotic parametric bound functions are found for the job set, �

1;1

, in Example 1. Figure 11 shows the

parametric bound functions found from �

1;4

, and Figure 12 shows asymptotic parametric bound functions for

sched

1;1

.

0 � s

1

1

� 2

max(8; s

1

1

+ e

1

1

) � s

1

2

� min(10; s

1

1

+ e

1

1

+ 5)

max(20; s

1

2

+ e

1

2

; s

1

1

+ e

1

1

+ 10) � s

2

1

� min(22; s

1

1

+ e

1

1

+ 17; s

1

2

+ e

1

2

+ 4)

max(28; s

2

1

+ e

2

1

; s

1

2

+ e

1

2

+ 10) � s

2

2

� min(30; s

1

2

+ e

1

2

+ 12; s

2

1

+ e

2

1

+ 5)

max(40; s

2

2

+ e

2

2

; s

2

1

+ e

2

1

+ 10) � s

3

1

� min(42; s

2

1

+ e

2

1

+ 17; s

2

2

+ e

2

2

+ 4)

max(48; s

3

1

+ e

3

1

; s

2

2

+ e

2

2

+ 10) � s

3

2

� min(50; s

2

2

+ e

2

2

+ 12; s

3

1

+ e

3

1

+ 5)

max(60; s

3

2

+ e

3

2

; s

3

1

+ e

3

1

+ 10) � s

4

1

� min(62; s

3

1

+ e

3

1

+ 17; s

3

2

+ e

3

2

+ 4)

max(s

4

1

+ e

4

1

; s

3

2

+ e

3

2

+ 10) � s

4

2

� min(70; s

3

2

+ e

3

2

+ 12; s

4

1

+ e

4

1

+ 5)

Figure 11: Parametric bound functions found from sched

1;4

F

min

s

1

1

= 0

F

max

s

1

1

= 2

F

min

s

1

2

= max(8; s

1

1

+ e

1

1

)

F

max

s

1

2

= min(10; s

1

1

+ e

1

1

+ 5)

F

min

s

j

1

= max(20 + (j � 2)20; s

j�1

2

+ e

j�1

2

; s

j�1

1

+ e

j�1

1

+ 10)

F

max

s

j

1

= min(22 + (j � 2)20; s

j�1

1

+ e

j�1

1

+ 17; s

j�1

2

+ e

j�1

2

+ 4)

F

min

s

j

2

= max(28 + (j � 2)20; s

j

1

+ e

j

1

; s

j�1

2

+ e

j�1

2

+ 10)

F

max

s

j

2

= min(30 + (j � 2)20; s

j�1

2

+ e

j�1

2

+ 12; s

2

1

+ e

2

1

+ 5)

Figure 12: Asymptotic parametric bound functions for sched

1;1
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It is clear from this �gure that the following hold:

F

min;4

s

2

1

� F

min;4

s

3

1

F

max;4

s

2

1

� F

max;4

s

3

1

F

min;4

s

2

2

� F

min;4

s

3

2

F

max;4

s

2

2

� F

max;4

s

3

2

Note that n =j PrecNode(�

1;4

(f

1

2

)) j= 3, and n

2

� n + 2 = 8 is the iteration bound given in Theorem 1. But,

Algorithm 3 found homogeneous created edge sets after 3 loop iterations. This shows that the upper bound on

the number of loop iterations given in Theorem 1 is not tight in general, and the schedulability may be checked

within less amount of time.

6 Conclusion

In this paper, we proposed a dynamic cyclic dispatching scheme that may be applied to real-time systems with

complex timing constraints, such as relative constraints between start or �nish times of jobs. A schedule(ordering)

of N jobs is assumed to be given on a scheduling window, and it is required that this schedule be repeated at run

time. The relative constraints may be cyclically de�ned across the boundaries of the scheduling windows as well

as between jobs in one scheduling window.

Unlike static approaches which assign �xed start times to jobs in a scheduling window, our approach not

only allows us to exibly manage the slack times with the schedulability of a job set not a�ected, but also yields

an guaranteed schedulability in the sense that, if other dispatching mechanism can dispatch the job sequences

satisfying all given constraints, then our mechanism can also schedule them.

A pseudo-polynomial time o�-line algorithm is presented to check the schedulability of a cyclically constrained

job set and to obtain parametric lower and upper bound functions for each job start time. The o�-line algorithm

requires at most O(n

2

N

3

) time where n is the number of relative constraints de�ned across the boundary of

two consecutive scheduling windows. Then, the parametric bound functions for each start time can be evaluated

by an on-line algorithm within O(N ) time. Especially, with restricted standard constraints it is shown that the

o�-line component requires at most O(N

3

+ n

5

) execution time.

We believe that the dynamic cyclic dispatching scheme can be applied to many real-time applications that

have complex timing constraints and provide more exibility in managing system resources at runtime.
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A Proofs

Proof of Lemma 3: It is obvious that there exists an one-to-one correspondence between an edge pair set in

G(f

a

) from which a new edge will be created after f

a

is eliminated, and a constraint in Sched(e

a

) to be changed

after eliminating e

a

. Also, it is clear that a new constraint created in Sched(s

a

) will correspond to a new edge

created in G(s

a

). Therefore, Elim(G(f

a

); f

a

) is equal to G(s

a

).

Proof of Lemma 4: The proof for this lemma is similar to that of Lemma 3, and is omitted.

Proof of Proposition 3: Let � be a negative weight restricted cycle in G(f

N

) satisfying:

� no restricted cycle appears as a proper sub-cycle of �.

If there exists a negative weight restricted cycle in G(f

N

), then � also exists in G(f

N

). Also, let y be a node in

� that appears �rst in a sequence < v

0

; s

1

; f

1

; : : : ; s

N

; f

N

>. Then, � can be denoted as

< y

w

1

�! v

1

w

2

�! v

2

: : : v

i

w

i+1

�! y >

where

P

i+1

j=1

w

j

< 0. By eliminating nodes that lie after y in the node sequence < v

0

; s

1

; f

1

; : : : ; s

N

; f

N

>, we

will obtain a negative weight edge y

w

0

�! y where w

0

< 0. This is clear from the path preserving property of

node elimination algorithms. Then, from the equivalence relationship between constraint graphs and predicates, a

contradiction is obtained during the elimination of the variables from Sched. Therefore, Sched is equal to False.

Proof of Lemma 5: Claim 1: If y

w

�! z 2 G(f

a

) holds where y 6= z, then there exists an acyclic

13

restricted

path y

w

0

; z in G(f

N

) where w

0

� w and all its intermediate nodes belong to fs

a+1

; f

a+1

; : : : ; s

N

; f

N

g.

If v = f

N

, then the claim holds. Suppose that there exists an edge y

w

�! z in G(f

a

) where 1 � a � N � 1.

Assume that there exists an acyclic restricted path in G(f

b

) with a weight sum w, a � b � N � 1,

< y

w

b;1

�! v

1

w

b;2

�! v

2

: : :

w

b;i

�! v

i

w

b;i+1

�! z > (17)

where i � 0, and v

j

2 fs

a+1

; f

a+1

; : : : ; s

b

; f

b

g for 1 � j � i. If all edges constituting this path exist in G(f

b+1

)

with same weights, then there exists an acyclic restricted path in G(f

b+1

) with a weight sum w where all its

intermediate nodes belong to fs

a+1

; f

a+1

; : : : ; s

b+1

; f

b+1

g. So, assume that at least one of these edges is created

in G(f

b

) just after eliminating f

b+1

and s

b+1

from G(f

b+1

). Let J = fj

1

; j

2

; : : : ; j

k

g, where 1 � k � i + 1 and

1 � j

l

� i + 1 for 1 � l � k, denote an index set of edges in the above path which are newly created in G(f

b

).

The indices in J is assumed to be increasing. Each edge v

j

l

�1

w

b;j

l

�! v

j

l

, for 1 � l � k, is created

14

just after f

b+1

and s

b+1

are eliminated from G(f

b+1

).

13

For a case when y = z, it can be similarly shown that a restricted path without any intermediate restricted cycle(i.e., excluding

y and z) is obtained, even though the resulting restricted path is not acyclic.

14

For the purpose of convenience v

0

denotes a node y, and v

i+1

denotes a node z.
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Fact 1: In G(f

b+1

) the weight of an edge s

b+1

! f

b+1

is equal to l

b+1

, and the weight of f

b+1

! s

b+1

is equal

to �u

b+1

.

If the fact is not true, then a contradiction should have been derived, which is against the assumption.

From the node elimination algorithm we know that the edge v

j

l

�1

w

b;j

l

�! v

j

l

is created from one of the following

restricted paths in G(f

b+1

) whose weight sum is w

b;j

l

:

1. < v

j

l

�1

w

1

b+1;j

l

�! s

b+1

w

2

b+1;j

l

�! v

j

l

>

2. < v

j

l

�1

w

1

b+1;j

l

�! f

b+1

�u

b+1

�! s

b+1

w

2

b+1;j

l

�! v

j

l

>

3. < v

j

l

�1

w

1

b+1;j

l

�! s

b+1

l

b+1

�! f

b+1

w

2

b+1;j

l

�! v

j

l

>

4. < v

j

l

�1

w

1

b+1;j

l

�! f

b+1

�u

b+1

�! s

b+1

l

b+1

�! f

b+1

w

2

b+1;j

l

�! v

j

l

>

We can extend the path in (17) into a path in G(f

b+1

) by replacing each edge in (17) with an index j

l

by one

of the above paths via s

b+1

and f

b+1

.

If k = 1, i.e., only one edge is created after eliminating f

b+1

and s

b+1

from G(f

b+1

), then it is obvious that

the extended path is also a restricted path with a weight w in G(f

b+1

). So, assume that k � 2. In this case, there

exists a cycle in the extended path.

First, consider two edges, v

j

1

�1

w

b;j

1

�! v

j

1

and v

j

2

�1

w

b;j

2

�! v

j

2

. For all 16 possible combinations of the above 4

paths from which these two edges will be created, a restricted cycle is obtained after extending these two edges

in (17). For example, if both of these two edges are created from the paths of the form 4, then the extended path

will be of the following form:

< y ! v

1

! v

2

: : : v

j

1

�1

!

< f

b+1

! s

b+1

! f

b+1

! v

j

1

: : : v

j

2

�1

! f

b+1

>

! s

b+1

! f

b+1

! v

j

2

: : : v

i

! z >

The inner path, < f

b+1

! s

b+1

! f

b+1

! v

j

1

: : : v

j

2

�1

! f

b+1

>, is a restricted cycle, since the sub-path

< v

j

1

: : : v

j

2

�1

> is a restricted path and neither s

b+1

nor f

b+1

appears in this sub-path. Then, from Proposition 3

the weight sum of this restricted cycle is non-negative. If it is negative, then a False should have been derived

during eliminating the nodes in ff

N

; s

N

; : : : ; f

a+1

; s

a+1

g, which is a contradiction to the assumption. Therefore,

if we reduce this restricted cycle into a single node f

b+1

, then we obtain the following restricted path whose weight

sum is less than or equal to w:

< y ! v

1

! v

2

: : : v

j

1

�1

! f

b+1

! s

b+1

! f

b+1

! v

j

2

: : : v

i

! z >

As a result, two edges, v

j

1

�1

w

b;j

1

�! v

j

1

and v

j

2

�1

w

b;j

2

�! v

j

2

, are merged into one sub-path

v

j

1

�1

! f

b+1

! s

b+1

! f

b+1

! v

j

2
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Similarly, for other combinations for two edges, v

j

1

�1

w

b;j

1

�! v

j

1

and v

j

2

�1

w

b;j

2

�! v

j

2

, the similar results can be

obtained.

If we continue this merging process for an edge, v

j

3

�1

w

b;j

3

�! v

j

3

, and for the sub-path < v

j

1

�1

! f

b+1

!

s

b+1

! f

b+1

! v

j

2

> found above, we will obtain a merged acyclic sub-path from v

j

1

�1

to v

j

3

through f

b+1

or

s

b+1

.

Therefore, after k � 1 iterations of the above process, we will obtain an acyclic restricted path in G(f

b+1

)

whose intermediate nodes belong to fs

a+1

; f

a+1

; : : : ; s

b+1

; f

b+1

g and whose weight sum is less than or equal to w.

Therefore, by inductively applying the above argument, we know that there exists an acyclic restricted path

in G(f

N

) whose intermediate nodes belong to fs

a+1

; f

a+1

; : : : ; s

N

; f

N

g and whose weight sum is less than or equal

to w.

Claim 2: If there exists an acyclic

15

restricted path y

w

; z in G(f

N

) whose intermediate nodes belong to

fs

a+1

; f

a+1

; : : : ; s

N

; f

N

g, then y

w

0

�! z 2 G(f

a

) holds where w

0

� w.

The proof for this claim is similar to that for Proposition 3, and is omitted.

From claim 1 and 2 the lemma is proved.

Proof of Corollary 1: Suppose that an edge y ! z exists in G(v). If v = f

a

for some a, then from Lemma 5

it is obvious that there exists a path y ; z in G(f

N

) whose intermediate nodes belong to fv

0

; : : : ; s

N

; f

N

g. So,

assume that v = s

a

for some a in [1; N ].

If there exists an edge from y to z in G(f

a

), then the condition 2 holds. Hence, further assume that an edge

y ! z is created just after eliminating f

a

from G(f

a

). From the node elimination algorithm, the edge is created

from either of the following paths:

1. y ! f

a

! s

a

2. s

a

! f

a

! z

From Lemma 5 we know that there exist two acyclic restricted paths whose intermediate nodes belong to

fs

a+1

; f

a+1

; : : : ; s

N

; f

N

g. By merging these paths, we obtain a path from y to z whose intermediate nodes

belong to ff

a

; s

a+1

; f

a+1

; : : : ; s

N

; f

N

g.

Proof of Proposition 4: If there exists an edge connecting s

j

i

and v in G

1;k

(f

k

N

), then it is obvious that v

belongs to a node set P . So, assume that there exists no such edge in G

1;k

(f

k

N

).

Two cases must be considered.

Case 1: v

w

�! s

j

i

2 G

1;k

(s

j

i

)

From Corollary 1 there exists a path from v to s

j

i

in G

1;k

(f

k

N

) whose intermediate nodes belong to

ff

j

i

; : : : ; s

N

; f

N

g. Note that this path has at least one intermediate node. From the de�nition of a crossing

edge set �

1;k

(s

j

i

), it is clear that v 2 PrecNode(�

1;k

(s

j

i

)).

15

For a case when y = z, it can be similarly shown that the claim holds for a restricted path without any intermediate restricted

cycle(i.e., excluding y and z).
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Case 2: s

j

i

w

�! v 2 G

1;k

(s

j

i

)

Similarly, the proposition can be proved in this case.

Proof of Proposition 5: Suppose that v belong to Node(	

1;k

(s

j

i

)). Then, there exist an edge v

0

2

fv

0

; s

1

1

; f

1

1

; : : : ; s

j

i

g such that an edge v ! v

0

exists in G(s

j

i

). Then from Corollary 1, we know that there

exists a path v ; v

0

in G

1;k

(f

k

N

) where all intermediate nodes in the path belong to ff

j

i

; : : : ; s

k

N

; f

k

N

g. From

the de�nition of 	

1;k

(s

j

i

) there exist two edges v ! v

1

and v

2

! v

0

in v ; v

0

where v

1

and v

2

belong to

ff

j

i

; : : : ; s

k

N

; f

k

N

g. Note that v

1

may be equal to v

2

. This means that v is an element of PrecNode(�

1;k

(s

j

i

)). Thus,

Node(	

1;k

(s

j

i

)) � PrecNode(�

1;k

(s

j

i

)) is proved. The second assertion, Node(	

1;k

(f

j

i

)) � PrecNode(�

1;k

(f

j

i

)),

can be proved in a similar way. Also, from these we know that a maximum number of edges in 	

1;k

(f

j

N

),

1 � j � k � 1, is less than or equal to n(n� 1), since n is the number of nodes in PrecNode(�

1;2

(f

1

N

)).

Proof of Proposition 6: Claim 1: If there exists an edge from v

1

to v

2

in 	

1;k

(f

j�1

N

), then there also exists

an edge from g

(1)

(v

1

) to g

(1)

(v

2

) in 	

1;k

(f

j

N

).

First suppose that v

1

! v

2

2 	

1;k

(f

j�1

N

) where 1 � j � 1 � k� 3. Then, from the de�nition of a created edge

set, there exists a path from v

1

to v

2

that has at least one intermediate node and whose intermediate nodes belong

to fs

j

1

; f

j

1

; : : : ; s

k

N

; f

k

N

g. By applying a technique similar to the one used in the claim 1 of the proof for Lemma 5,

we can reduce this path into an acyclic restricted path from v

1

to v

2

that has at least one intermediate node.

Let this reduced path be denoted as < v

1

! x

1

! x

2

: : :! x

l

! v

2

>, l � 1, where every intermediate node x

h

(1 � h � l) belongs to < s

j

1

; f

j

1

; : : : ; s

k

N

; f

k

N

>. If all nodes x

h

, 1 � h � l, belong to fs

j

1

; f

j

1

; : : : ; s

k�1

N

; f

k�1

N

g, then

it is clear from the cyclic nature of constraint graphs that there exists an acyclic restricted path from g

(1)

(v

1

) to

g

(1)

(v

2

) in G

1;k

(f

k

N

) whose intermediate nodes belong to fs

j+1

1

; f

j+1

1

; : : : ; s

k

N

; f

k

N

g.

Hence, assume that there exists at least one x

m

, 1 � m � l, that belongs to fs

k

1

; f

k

1

; : : : ; s

k

N

; f

k

N

g. Note that

x

1

; x

l

2 fs

j

1

; f

j

1

; : : : ; s

j

N

; f

j

N

g. There are two possible cases to be considered:

1. x

1

is located later than x

l

in the node sequence < s

j

1

; f

j

1

; : : : ; s

j

N

; f

j

N

>.

� In this case there exists an acyclic restricted path < v

1

! x

1

; x

l

! v

2

> whose intermediate

nodes belong to fs

j

1

; f

j

1

; : : : ; s

j

N

; f

j

N

g. This is because every node in constraint graphs has an edge to

its previous node in the node sequence < s

1

1

; f

1

1

; : : : ; s

k

N

; f

k

N

>. In other words, g

(1)

< v

1

! x

1

;

x

l

! v

2

> is an acyclic restricted path from g

(1)

(v

1

) to g

(1)

(v

2

) in G

1;k

(f

k

N

) whose intermediate nodes

belong to fs

j+1

1

; f

j+1

1

; : : : ; s

k

N

f

k

N

g.

16

Hence, from Lemma 5 there exists an edge g

(1)

(v

1

) ! g

(1)

(v

2

)

in G

1;k

(f

j

N

). Because there exists a path from g

(1)

(v

1

) to g

(1)

(v

2

) satisfying the condition given in

de�nition of a created edge set, this edge belongs to 	

1;k

(f

j

N

)

2. x

1

is located before x

l

.

� Let the reduced path be denoted as < v

1

! x

1

; x

i

; x

m

! x

l

! v

2

> where x

i

is a �rst node

appearing in this path that lies after x

1

in the node sequence < s

j

1

; f

j

1

; : : : ; s

k

N

; f

k

N

>. Note that

16

g

(a)

< y

1

! y

2

: : :! y

i

> is de�ned to be < g

(a)

(y

1

)! g

(a)

(y

2

) : : :! g

(a)

(y

i

) >.
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x

i

2 fs

j

1

; f

j

1

; : : : ; s

j+1

N

; f

j+1

N

g. Again, since j + 1 � k � 1 and every node has a path to its predecessor

in the node sequence, there exists an acyclic restricted path < v

1

! x

1

; x

i

; x

l

! v

2

> that

doesn't have a node for a job in �

k

. Hence, there exists an acyclic restricted path g

(1)

< v

1

!

x

1

; x

i

; x

l

! v

2

> whose intermediate nodes belong to fs

j+1

1

; f

j+1

1

; : : : ; s

k

N

; f

k

N

g. This means that

g

(1)

(v

1

)! g

(1)

(v

2

) 2 G

1;k

(f

j

N

). Also, because the above path satis�es the de�nition for a created edge

set, this edge belongs to 	

1;k

(f

j

N

)

Claim 2: If there exists an edge from v

3

to v

4

in 	

1;k

(f

j

N

), then there also exists an edge from g

(�1)

(v

3

) to

g

(�1)

(v

4

) in 	

1;k

(f

j�1

N

).

Suppose that there exists an edge from v

3

to v

4

in 	

1;k

(f

j

N

). Then, from the de�nition of a created edge

set, there exists a path from v

3

to v

4

that has at least one intermediate node and whose intermediate nodes

belong to fs

j+1

1

; f

j+1

1

; : : : ; s

k

N

; f

k

N

g. By applying the technique in the claim 1 of the proof for Lemma 5, we

can reduce this path into an acyclic restricted path from v

3

to v

4

that has at least one intermediate node. Let

this path be denoted as < v

3

; v

0

; v

4

> where v

0

belongs to fs

j+1

1

; f

j+1

N

; : : : ; s

k

N

; f

k

N

g. In this case, the

path g

(�1)

< v

3

; v

0

; v

4

> is also an acyclic restricted path in G(f

k

N

) whose intermediate nodes belong to

fs

j

1

; f

j

N

; : : : ; s

k�1

N

; f

k�1

N

g. Then, from Lemma 5 there exists an edge g

(�1)

(v

3

) ! g

(�1)

(v

4

) in G

1;k

(f

j�1

N

). Also,

because the path g

(�1)

< v

3

; v

0

; v

4

> satis�es the condition in the de�nition of a created edge set, this edge

belongs to 	

1;k

(f

j�1

N

), too.

From Claim 1 and 2, we conclude that 	

1;k

(f

j

1

N

) is semi-homogeneous to 	

1;k

(f

j

2

N

) for 1 � j

1

� j

2

� k� 2.

Proof of Proposition 7: From Lemma 5 there exists a minimum weight acyclic restricted path �

1

=< v

1

w

;

v

2

> whose intermediate nodes belong to fs

j+1

1

; f

j+1

1

; : : : ; s

k

N

; f

k

N

g, and a minimum weight acyclic restricted path

�

2

=< g

(�1)

(v

1

)

w

0

; g

(�1)

(v

2

) > whose intermediate nodes belong to fs

j

1

; f

j

1

; : : : ; s

k

N

; f

k

N

g. Three cases must be

examined:

Case 1: v

1

6= v

0

and v

2

6= v

0

In this case it is clear that w

0

is less than or equal to w, since the set of acyclic restricted paths from v

1

to v

2

in G

1;k

(f

k

N

) whose intermediate nodes belong to fs

j+1

1

; f

j+1

1

; : : : ; s

k

N

; f

k

N

g is a subset of a set of acyclic restricted

paths from v

1

to v

2

in G

1;k

(f

k

N

) whose intermediate nodes belong to fs

j

1

; f

j

1

; : : : ; s

k

N

; f

k

N

g.

Case 2: v

1

= v

0

The path g

(�1)

�

1

is also an acyclic restricted path. The weight of a path g

(�1)

�

1

is equal to w � L, since

every edge weight in this new path is the same as that of corresponding edge in �

1

except for the �rst edge

v

0

! g

(�1)

(x

1

) of g

(�1)

�

1

where x

1

denotes the �rst node appearing after v

0

in �

1

. The weight of this edge is L

less than that of v

0

! x

1

which is the �rst edge of �

1

. This implies w

0

� w � L from Lemma 5.

Case 3: v

2

= v

0

The path g

(�1)

�

1

is also an acyclic restricted path. The weight of a path g

(�1)

�

1

is equal to w + L, since

every edge weight in this new path is the same as that of corresponding edge in �

1

except for the last edge

g

(�1)

(x

l

)! v

0

of g

(�1)

�

1

. The weight of this edge is L more than the weight of x

l

! v

0

which is the last edge of

�

1

. This implies w

0

� w + L from Lemma 5.
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Proof of Proposition 8: Note that two created edge sets, 	

1;k

(f

j�1

i

) and 	

1;k

(f

j

i

), can be shown to be

semi-homogeneous by employing similar proof to that for Proposition 6 where 2 � j � k � 2

The following claim is proved where i is any integer satisfying 1 � i � N .

Claim 1: 	

1;k

(f

j�1

i

) � 	

1;k

(f

j

i

)

First, suppose that v

1

w

1

�! v

2

2 	

1;k

(f

j�1

i

), where v

1

6= v

0

,v

2

6= v

0

. Consider a graph G

1;k

(f

j�1

N

).

From Lemma 5, we can �nd a minimum weight acyclic restricted path within this graph, �

1

=< v

1

w

1

; v

2

>

whose intermediate nodes belong to fs

j�1

i+1

; f

j�1

i+1

; : : : ; s

j�1

N

; f

j�1

N

g. From the assumption of homogeneity between

	

1;k

(f

j

N

) and 	

1;k

(f

j�1

N

), every edge x

1

! x

2

in G

1;k

(f

j�1

N

), where x

1

; x

2

2 fs

j�1

i+1

; : : : ; s

j�1

N

; f

j�1

N

g, has the same

weight as an edge g

(1)

(x

1

) ! g

(1)

(x

2

) in G

1;k

(f

j

N

). This one-to-one correspondence between created edge sets

implies that an acyclic restricted path g

(1)

�

1

has the same weight w

1

as that of �

1

, and g

(1)

�

1

is a minimum

weight acyclic restricted path among the acyclic restricted paths in G

1;k

(f

j

N

) whose intermediate nodes belong

to fs

j

i+1

; : : : ; s

j

N

; f

j

N

g. Hence, g

(1)

(v

1

)

w

1

�! g

(1)

(v

2

) 2 G

1;k

(f

j

i

) holds from Lemma 5. Because 	

1;k

(f

j�1

i

) and

	

1;k

(f

j

i

) are semi-homogeneous, this edge also belongs to 	

1;k

(f

j

i

).

Second, suppose that v

3

w

2

�! v

4

2 	

1;k

(f

j

i

), where v

3

6= v

0

,v

4

6= v

0

. Consider a graph G

1;k

(f

j

N

). From

Lemma 5, we can �nd a minimum weight acyclic restricted path within this graph, �

2

=< v

3

w

2

; v

4

> whose

intermediate nodes belong to fs

j

i+1

; f

j

i+1

; : : : ; s

j

N

; f

j

N

g. Again, from the one-to-one correspondence between cre-

ated edge sets, a path g

(�1)

�

2

has the same weight w

2

as that of �

2

, and the path is also a minimum weight

acyclic restricted path among the acyclic restricted paths in G

1;k

(f

j�1

N

) whose intermediate nodes belong to

fs

j�1

i+1

; : : : ; s

j�1

N

; f

j�1

N

g. Hence, g

(�1)

(v

3

)

w

2

�! g

(�1)

(v

4

) 2 G

1;k

(f

j�1

i

) holds from Lemma 5. Because 	

1;k

(f

j�1

i

)

and 	

1;k

(f

j

i

) are semi-homogeneous, this edge also belongs to 	

1;k

(f

j�1

i

).

Therefore, the following is proved where v

1

6= v

0

and v

2

6= v

0

:

(v

1

w

�! v

2

2 	

1;k

(f

j�1

i

)) () (g

(1)

(v

1

)

w

�! g

(1)

(v

2

) 2 	

1;k

(f

j

i

))

For cases where one of v

1

or v

2

is equal to v

0

, the condition 3 or 4 in the de�nition of homogeneous edge sets

may be proved in a similar way to the above one by using the de�nition of homogeneity between created edge

sets and Lemma 5.

Therefore, the Claim 1 is proved. Then, from the transitivity of homogeneous relations, it is clear that the

following holds:

8l : 2 � l � j � 1 :: 8i : 1 � i � N :: 	

1;k

(f

l

i

) � 	

1;k

(f

j

i

)

Claim 2: 8l : 2 � l � j � 1 :: 8i : 1 � i � N :: 	

1;k

(s

l

i

) � 	

1;k

(s

j

i

)

For �xed l and i, we know that 	

1;k

(f

l

i

) � 	

1;k

(f

j

i

) holds from claim 1. From this homogeneity, it is clear

that 	

1;k

(s

l

i

) � 	

1;k

(s

j

i

) holds from node elimination algorithms. That is, 	

1;k

(f

l

i

) is obtained after eliminating

f

l

i

from G(f

l

i

), and 	

1;k

(f

j

i

) is obtained after eliminating f

j

i

from G(f

j

i

).

Proof of Theorem 1: Let G

b

(V

b

; E

b

) denote a basis graph obtained from an initial constraint graph for a

cyclically constrained job set.
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Claim: If the Algorithm 3 applied to G

b

(V

b

; E

b

) doesn't terminate within n

2

�n+2 loop iterations, then there

exists a negative weight cycle in G

1;k

(f

k

N

) for k � n

2

.

Suppose that the algorithm doesn't terminate within n

2

�n+2 loop iterations. From Proposition 6, we know

that 	

1;k

(f

k�2

N

), 	

1;k

(f

k�3

N

), : : :, 	

1;k

(f

1

N

) are semi-homogeneous. Thus, G

i

out

(V

b;1

[fv

0

g; E

i

out

), 2 � i � n

2

�n+2,

are semi-homogeneous, too. This means that after each loop iteration for i � 3 in the algorithm, there exists

at least one edge in G

i

out

(V

b;1

[ fv

0

g; E

i

out

), 3 � i � n

2

� n + 2, whose weight has been reduced from the

corresponding one in G

i�1

out

(V

b;1

[ fv

0

g; E

i�1

out

). If not, then the algorithm should have been completed within

n

2

� n + 2 loop iterations at step 3 � (d), because homogeneous created edge sets are already found, which is

against the assumption. For the purpose of clarity, each node v

i

(2 V

b

) used in this proof will be denoted as v

j

i

to represent that v

i

belongs to a node set V

b

in a graph G

j

in

(V

b

; E

j

in

), or to a node set V

b;1

[ fv

0

g of a graph

G

j

out

(V

b;1

[ fv

0

g; E

j

out

).

Let v

n

2

�n+2

1

�! v

n

2

�n+2

2

, v

1

; v

2

2 V

b;1

[fv

0

g(v

1

6= v

2

), denote one such edge in G

n

2

�n+2

out

(V

b;1

[fv

0

g; E

n

2

�n+2

out

)

whose weight is less than that of the corresponding edge in G

n

2

�n+1

out

(V

b;1

[ fv

0

g; E

n

2

�n+1

out

). Equivalently, from

the cyclic operation performed at step 3� (f) in Algorithm 3 we can say that v

n

2

�n+2

1

�! v

n

2

�n+2

2

is an edge in

G

n

2

�n+2

out

(V

b;1

[ fv

0

g; E

n

2

�n+2

in

) whose weight is less than or equal to

� w � 1, if the edge doesn't connect v

0

.

� w � L � 1, if the edge is from v

0

.

� w + L � 1, if the edge is to v

0

.

where w is a weight of an edge (g

(1)

(v

1

))

n

2

�n+2

�! (g

(1)

(v

2

))

n

2

�n+2

of G

n

2

�n+2

in

(V

b

; E

n

2

�n+2

in

).

Let p

1

denote a minimum weight acyclic restricted path from v

n

2

�n+2

1

to v

n

2

�n+2

2

with a weight w

12

in

G

n

2

�n+2

in

(V

b

; E

n

2

�n+2

in

) whose intermediate nodes belong to V

b;2

. Note that no intermediate node, if there exists

any, is equal to v

0

. p

1

exists from Lemma 5. Then, after (n

2

� n+ 2)-th loop iteration, the weight of v

n

2

�n+2

1

!

v

n

2

�n+2

2

will be changed to w

12

in G

n

2

�n+2

out

(V

b;1

[ fv

0

g; E

n

2

�n+2

out

).

sub-claim 1: In G

n

2

�n+2

in

(V

b

; E

n

2

�n+2

in

), p

1

has at least one edge connecting two di�erent nodes that belong to

g

(1)

(V

b;1

) [ fv

0

g.

Suppose the claim is not true. Then, p

1

is also a minimum weight acyclic restricted path from v

n

2

�n+1

1

to

v

n

2

�n+1

2

with a weight w

12

in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

), since only the weights of edges connecting two di�erent

nodes of g

(1)

(V

b;1

) [ fv

0

g may be reduced after each loop iteration of the algorithm. This contradicts to the

de�nition of the path p

1

.

Then, the following is proved. Here, it is assumed that v

3

; v

4

(v

3

6= v

4

) belong to g

(1)

(V

b;1

) [ fv

0

g, and thus

g

(�1)

(v

3

), g

(�1)

(v

4

) belong to V

b;1

[ fv

0

g.

sub-claim 2: There exists at least one edge in p

1

, v

n

2

�n+2

3

w

34

�! v

n

2

�n+2

4

, v

3

; v

4

2 g

(1)

(V

b;1

) [ fv

0

g, satisfying

w

34

< w

0

34

where w

0

34

is a weight of an edge v

n

2

�n+1

3

�! v

n

2

�n+1

4

in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

).
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Suppose that the claim is not true. Then, all edges lying in p

1

that connect two nodes of g

(1)

(V

b;1

) [ fv

0

g

don't satisfy the above condition. In other words, all edge weights of p

1

in G

n

2

�n+2

in

(V

b

; E

n

2

�n+2

in

) are not reduced

compared to the edge weights of p

1

in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

). This means that p

1

is also a minimum weight

acyclic restricted path with a weight w

12

in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

), which is clear from Proposition 7. From

Lemma 5 this implies that the weight of v

n

2

�n+1

1

! v

n

2

�n+1

2

in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

) is equal to w

12

. This

contradicts to the de�nition of the path p

1

. Therefore, sub-claim 2 is proved.

Hence, we know that in path p

1

there exists an edge v

3

w

34

�! v

4

whose weight is less than that of the corre-

sponding edge v

n

2

�n+1

3

w

0

34

�! v

n

2

�n+1

4

in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

).

From the cyclic operation performed at step 3� (f) in Algorithm 3 and from Lemma 5, we know that there

exists a minimum weight acyclic restricted path from g

(�1)

(v

3

) to g

(�1)

(v

4

) in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

) whose

intermediate nodes belong to V

b;2

and which is equal to one of the following forms:

1. If v

3

6= v

0

and v

4

6= v

0

,

(g

(�1)

(v

3

))

n

2

�n+1

w

34

; (g

(�1)

(v

4

))

n

2

�n+1

2. If v

3

= v

0

and v

4

6= v

0

,

v

n

2

�n+1

0

w

34

�L

; (g

(�1)

(v

4

))

n

2

�n+1

3. If v

3

6= v

0

and v

4

= v

0

,

(g

(�1)

(v

3

))

n

2

�n+1

w

34

+L

; v

n

2

�n+1

0

Note that, if any edge weight in the above minimum weight acyclic restricted path is reduced, the weight of

an edge v

3

! v

4

in G

n

2

�n+2

in

(V

b

; E

n

2

�n+2

in

) will also be reduced by at least the same amount after (n

2

� n+ 1)-th

loop iteration of Algorithm 3.

Hence, p

1

can be denoted as:

< v

n

2

�n+2

1

; v

n

2

�n+2

3

w

34

�! v

n

2

�n+2

4

; v

n

2

�n+2

2

>

where the edge v

n

2

�n+2

3

w

34

�! v

n

2

�n+2

4

can be replaced by one of the above minimum weight paths. Then p

1

can

be denoted as:

< v

n

2

�n+2

1

;< (g

(�1)

(v

3

))

n

2

�n+1

; (g

(�1)

(v

4

))

n

2

�n+1

>; v

n

2

�n+2

2

>

where the inner path, < (g

(�1)

(v

3

))

n

2

�n+1

; (g

(�1)

(v

4

))

n

2

�n+1

>, will be reduced to an edge v

n

2

�n+2

3

w

34

�!

v

n

2

�n+2

4

after (n

2

� n+ 1)-th loop iteration if Algorithm 3 is applied to the above extended path.

Note that applying Algorithm 3 to this new path will produce an edge v

n

2

�n+2

1

w

12

�! v

n

2

�n+2

2

, and if some

edge weight is reduced, w

12

will be reduced, too.

From the above result and from w

34

< w

0

34

, we know that the edge weight of g

(�1)

(v

3

)! g

(�1)

(v

4

) in a graph

G

n

2

�n+1

out

(V

b;1

[ fv

0

g; E

n

2

�n+1

out

) is:

� w

0

34

� 1 or less, if v

3

6= v

0

and v

4

6= v

0

.
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� w

0

34

� L � 1 or less, if v

3

= v

0

.

� w

0

34

+ L � 1 or less, if v

4

= v

0

.

where w

0

34

is an edge weight of v

3

! v

4

in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

).

This enables us to repeatedly apply the same procedure to a new minimum weight acyclic restricted path

g

(�1)

(v

3

); g

(�1)

(v

4

) in G

n

2

�n+1

in

(V

b

; E

n

2

�n+1

in

). Therefore, we obtain the following extension of path p

1

:

< v

n

2

�n+2

1

;< (g

(�1)

(v

3

))

n

2

�n+1

; < (g

(�1)

(v

5

))

n

2

�n

; (g

(�1)

(v

6

))

n

2

�n

>

; (g

(�1)

(v

4

))

n

2

�n+1

>; v

n

2

�n+2

2

>

where the intermediate nodes of < (g

(�1)

(v

5

))

n

2

�n

; (g

(�1)

(v

6

))

n

2

�n

> in the above path belong to V

b;2

of

G

n

2

�n

in

(V

b

; E

n

2

�n

in

).

And, this extension may be continued until the following is obtained:

< v

n

2

�n+2

1

; < (g

(�1)

(v

3

))

n

2

�n+1

;< (g

(�1)

(v

5

))

n

2

�n

; : : :

; < (g

(�1)

(v

2(n

2

�n+1)�1

))

2

; (g

(�1)

(v

2(n

2

�n+1)

))

2

>;

: : : ; (g

(�1)

(v

6

))

n

2

�n

>; (g

(�1)

(v

4

))

n

2

�n+1

>; v

n

2

�n+2

2

>

Consider the following set of node pairs in V

b;1

[ fv

0

g of G

j

in

(V

b

; E

j

in

), 2 � j � n

2

� n + 2, that have been

included in the extension of path p

1

at each iteration of the process.

f(v

n

2

�n+2

1

; v

n

2

�n+2

2

); ((g

(�1)

(v

3

))

n

2

�n+1

; (g

(�1)

(v

4

))

n

2

�n+1

); : : : ;

((g

(�1)

(v

2(n

2

�n+1)�1

))

2

; (g

(�1)

(v

2(n

2

�n+1)

))

2

)g

Note that this set has n

2

� n + 1 node pairs. Because there exist n nodes in V

b;1

[ fv

0

g, there may exist only

n

2

� n distinct node pairs. Hence, there should exist at least one node pair that appears twice in the above node

pair set. Let (v

j

i

1

; v

j

i

2

); (v

l

i

3

; v

l

i

4

), l < j, denote two such node pairs where i

1

= i

3

^ i

2

= i

4

. Therefore, in the

extension process of p

1

performed above, we should have encountered the following path:

< v

j

i

1

;< v

l

i

1

!v

l

i

2

>; v

j

i

2

> (18)

Because the extension process choose an edge v

j

i

1

! v

j

i

2

in G

j

in

(V

b

; E

j

in

) whose weight is less than v

j�1

i

1

! v

j�1

i

2

at the (n

2

� n+ 2� j + 1)-th iteration of Algorithm 3, we know that the weight of an edge v

l

i

1

! v

l

i

2

is greater

than the weight of the edge v

j

i

1

! v

j

i

2

since j > l.

This implies that there exists a path that reduces the the edge weight of v

j

i

1

! v

j

i

2

from that of v

l

i

1

! v

l

i

2

after j-th loop iteration in Algorithm 3. Then, from Proposition 7 we know that, after l + k(j � l) loop iteration

in Algorithm 3 where k � 1, the edge weight of v

i

1

! v

i

2

in the resulting graph will be reduced from the

corresponding edge weight in the graph found after l + (k � 1)(j � l) loop iteration. This means that the edge

weight of v

i

1

! v

i

2

will be in�nitely decreased. But, since every job has a release time and a deadline constraints,
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this repeated process will eventually create a negative weight cycle during the variable elimination process applied

to a constraint graph for sched

1;1

.

This contradicts to the assumption, and proves Claim 1 and the theorem.
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