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ABSTRACT

In (5], the authors showed that threshold policies solve an optimal flow control problem
for discrete-time M|M]|1 queues, where the decision-maker seeks to maximize the system
throughput subject to a bound on the long-run average queue size. In this paper, attention
focuses on a non-Bayesian adaptive version of this problem when the arrival and service rates
are assumed to be unknown constants. By invoking the Certainty Equivalence Principle,
adaptive threshold policies are generated by substituting maximum likelihood estimates for
the rate parameters in the definition of the optimal threshold policies. Under such policies, the
maximum likelihood estimates are shown to be strongly consistent through an indirect method
of analysis that combines ideas from stochastic ordering, a study of the rates of convergence via
the theory of Large Deviations and absolutely continuous changes of measures. The optimality

of the adaptive threshold policies follows as a byproduct of this consistency result.
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1. Introduction

In a companion paper [5], the authors recently considered a flow control model for discrete
M|M|1 queues with infinite buffer capacity. The selection of flow control strategies with de-
sirable performance properties was addressed by formulating an optimal flow control problem
where the decision-maker seeks to maximize the throughput with a bound on the long-run av-
erage number of customers in the system. The corresponding constrained optimal flow control
policy was identified to be of threshold type with a simple structure completely determined by
a critical acceptance level L (in IN) and an acceptance probability n (0 < # < 1). Under a
threshold policy (L,7), at the beginning of each time slot, a new customer is accepted (resp.
rejected) if the buffer content is strictly below L (resp. strictly above L), while if there are ez-
actly L customers in the buffer, this new customer is accepted (resp. rejected) with probability
n (resp. 1 —n).

The constrained optimal threshold policy (L,7n) is determined solely by its acceptance
parameters, which in turn are functions of the service and arrival rate parameters. However,
in many applications, these model parameters are not available to the decision-maker and the
optimal threshold policy cannot be implemented in its given form. This model uncertainty
leads naturally to the formulation of adaptive versions of the optimal flow control problem
[6,7].

In this paper, a non-Bayesian version is discussed in the event arrival and service rates are
assumed to be unknown constants. By invoking the Certainty Equivalence design principle, an
adaptive threshold policy is proposed as a possible implementation of the optimal threshold
policy. More specifically, at the beginning of any time slot, a joint maztmum likelihood estimate
of the arrival and service rates is computed on the basis of the available information which
includes past and present history of the arrival, service completion and control processes. The
flow control action to be implemented for that slot is then generated in accordance with the

optimal threshold policy where the estimate is substituted for the true parameter value.

The situation discussed here cannot be handled by earlier work [1,8] on the adaptive
control of Markov chains, and it is the purpose of this paper to outline a brief discussion of
the estimation and control properties of this adaptive threshold policy. For details and proofs,
the interested reader is refered to [7] where several information patterns (in addition to the

one defined earlier) are considered. It is noteworthy that although explicit expressions are
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easily derived for the maximum likelihood estimates under the adopted information pattern,
there does not seem to be simple arguments to establish the strong consistency of the these
estimates under the adaptive threshold policy. This can be traced back to the tight interaction

that arises between estimation and control in the system under consideration here.

An indirect method of analysis is proposed for establishing strong consistency of the
estimates. It combines ideas of stochastic ordering, a study of rates of convergence via the
theory of Large Deviations and absolutely continuous change of measures. Roughly speaking,
parameter identification is first established for a class of auxiliary policies. The probability
measure induced by the adaptive threshold policy is then shown to be absolutely continuous
to the one induced by one of the auxiliary policies, thus yielding the result. The proposed
approach is believed to be of independent interest, and could prove useful in studying other

problems of parameter estimation and adaptive control for Markov chains.

2. The model

The model of interest here is essentially the one introduced by the authors in the com-
panion paper [5] to which the reader is refered for additional information concerning notation

and terminology.

As indicated there, take the sample space to be Q:= IV x ({0, 1}3)00 and define the
information spaces {IH,}3° by Hpq1:= H, x {0,1}3 for all n =0, 1,..., with I[Ho: = IN. An
element w of {1 is viewed as a sequence (z,wp,wy,...) with z in IN and w, in {0,1}? for all
n =0,1,.... Each block component w,, is written in the form (u,,an,by), with u,,, a, and
b, being all elements in {0,1}. An element h,, in IH, is uniquely associated with the sample
w by hp:= (z,wo,...,wn—1) With ho:= 2. The random variables (RV) E, {U(n)}3, {A(n)}&,
{B{n)}§° and {H(n)}§ are then defined on the sample space 2 by posing E(w): =z, U(n,w): =
Up, A(n,w):= @y, B(n,w):= b, and H(n,w):= hy, for all n = 0,1,... and for every w in (1.
These RV’s take values in IN, {0,1}, {0,1}, {0,1} and IH,, respectively, whereas the queue
sizes {X(n)}5° are IN-valued RV’s recursively defined by

X(n+1) = X(n) + U(n)A(n) — 1{X(n) # 0|B(n) n=0,1,...(2.1)

with X(0):=E.



Foreachn =0,1,..., let IF,, be the o-fleld generated by the RV H(n) on the sample space
Q. Clearly, IF,, C IF,+1, and with standard notation, IF: = V2 ,IF,, is simply the o-field on
Q1 generated by the RV’s E and {U(n), A(r), B(n) }&.

Since randomization is allowed, an admissible policy = is defined as any collection {m,}$
of mappings my,: IH, — [0, 1], with the interpretation that the potential arrival during the slot
[n,n + 1) is admitted (resp. rejected) with probability m,(ky) (resp. 1 — mpn(hn)) whenever
the information h,, is available to the decision-maker. The collection of all such admissible
policies is denoted by P. With the terminology developed in [5], a stationary policy g is said
to be of threshold type if there exists a pair (L,7), with L an integer in IN and # in [0, 1], such
that

n if z=1L; (2.2)
0 if z> L.

1 if 0<z<L;
9(Z)={

Such a threshold policy is denoted by (L,7), and by extension, the Markov stationary policy
that admits every single customer, i.e., g(z) = 1 for all z in IN, is denoted by (oo, 1)

Let g(e) be a probability distribution on IV, and let § = (A, 1) be an element in [0, 1]%.
Given any policy 7 in P, there exists an unique probability measure P%™ on IF, with corre-
sponding expectation operator E%", satisfying the requirements (R1)-(R3) below, where

(R1): For all z in IN,
P2 = z] = q(2),

(R2): For all @ and bin {0,1},

PO,‘rr[A(n) — a,B(n) = bIFn \Y U{U(n)}]

n=0,1,
= (e + (1= a)(1 = X)) (bu + (1 — b)(1 — u))
and
(R3):
Pa’"[U(n) = 1|IF,,] = mn(H(n)). n=0,1,...
Throughout this paper, it is assumed that for every 7 in P,
E"[E] = Z zq(z) < oo. (2.3)
=0
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3. A constrained optimal control problem

Let 6§ be a fixed element in [0,1]? held fixed throughout this section. For any admissible

policy m in P, pose

st 1 0, -
T(r,8):=liminf, mE tgzo pl[X(t) # 0] (3.1)
and
1 1 0, .
N(m,0):= limsup, 1 E tgzo X(¢). (3.2)

The quantities T'(m, §) and N(m, 8) have the interpretation of throughput and long-run average

queue size, respectively, when the policy = is used.

Given V > 0, consider the following constrained optimization problem (Py,¢), where
(Pv,s): Maximize T'(m,8) over Py

with
Prg:={re P :N(m0) <V} (3.3)

The reader is refered to [5| for a complete solution to this problem, the main features of which
are summarized below.

Theorem 3.1 If N((00,1),8) <V, then the policy (o0, 1) solves problem (Py ). If N((c0,1),6)
V, then there exists a threshold policy (L(V,0),n(V,0)) which solves problem (Py ) and the
pasr (L(V,0),7(V,0)) is the only solution to the equation

N((L,n),8)=V, L=0,1,...and0<9 <1 (3.4)

4. The adaptive threshold policies

Since the solution to the constrained problem described in Theorem 3.1 is parametrized
by #, implementing it requires knowledge of the actual value of this parameter. In some
situations, this information may not be available to the decision-maker who is then faced with
an adaptive version of the constrained control problem. In this paper, a non-Bayesian version

of the adaptive control problem of Section 3 is considered, with 6* in (0,1)® denoting the
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true value of the service rate vector, which is assumed to be a fized constant unknown to the

decision-maker.

This adaptive control problem can be approached through the Certainty Equivalence
Principle by coupling the control process with a parameter estimation scheme. Here, the esti-
mation scheme is based on the Principle of Maximum Likelihood (ML) and the corresponding
adaptive threshold policy (denoted by ) is defined by substituting the ML estimates for the
actual value of the parameter in the definition of the threshold policy described in Theorem

3.1.

This is now formalized as follows. The information available to the decision-maker is

encoded in the RV’s {H (»)}5° defined recursively by

~

H(n+1) = (H(n),U(n), A(n), D(n)) n=0,1,...(4.1)
with H(0) = B, where the departure (or service completion) sequence {D(n)}& is given by
D(n):=1[X(n) # 0]B(n). n=0,1,...(4.2)

At each time n, the ML estimate (n): = (A(n), u(n)) of the true parameter §* = (A*, u*)
is used in the interval [n,n + 1) and is generated from the information H(n) by maximizing a
ltkelihood functional evaluated on this observed data trajectory. The corresponding Certainty

Equivalence policy & in P is then defined by

1 if 0< X(n) < L(n);
an(H(n)) = n(n) if X(n)=L(n); n=0,1,...(4.3)
0 if X(n)> L(n)
with
L(n)=L(V,8(n)) and n(n)=n(V,0(n)). n=0,1,...(4.4)

The ML estimate 0(n) = (A(n), u(n)) of the service rate vector is then determined by

0(n) = arg oér[loa,xllz Pe,a[ﬁ(n) = hn]hn=f1(n) n=0,1,... (4.5)

with a tie-breaker if necessary. The procedure described by (4.3)-(4.5) is well defined when
performed sequentially starting with 6(0) arbitrary in [0, 1]? (6(0) = arg maxye[o,1)2 ¢(E))-

6



The Certainty Equivalence policy a defined above constitutes an implementation of the
threshold policy (L(V,8*),7(V,8*)) based on the estimates {#(n)}$° for 8*. The RV’s {L(n)}
and {7(n)}§° can be viewed as estimates of the threshold parameters L(V,6*) and n(V,8*).

5. The main results

Fix V > 0 and from now on denote the threshold parameters L(V,8*) and n(V, 6*) by L*
and n*, respectively. In order to simplify the presentation, the probability measure P '™ and
its expectation operator E? ", associated with any admissible policy 7 in P, are denoted by

P7™ and E™, respectively.

The results reported here all hinge on the following key strong consistency result for the

parameter estimates {6(n)}§° under the policy a.

Theorem 5.1 - Parameter identification. The convergence
lim, A(n) =X* and lim, u(n)=p* P — a.5.(5.1)

takes place.

The proof of Theorem 5.1 is outlined in Sections 6 and 7, and represents the main technical
contribution of this paper since the strong consistency reported here is not subsumed by earlier
results on the non-Bayesian adaptive control of Markov chains [1,8]. The specific arguments
given here are of independent interest and could probably be tailored to other situations as
well [7].

The definition of the threshold parameters L* and n* through (3.4) easily yields the

following result on the asymptotic agreement of the policies (L*,7*) and c.

Theorem 5.2 - Control identification. The convergence

limy, |a,(H(n)) — (L*,n*)(X(n))|=0 P® — a.5.(5.2)
takes place, and in particular, if 0 < n* < 1, then

lim,L(n) = L* and limpn(n) =n". P%* — q.5.(5.3)

The optimality of the adaptive policy « for the problem (Py,¢-) is now a consequence of

Theorem 5.2 and of an argument originally proposed by Mandl [8,9].
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Theorem 5.3 - Cost identification. The adaptive policy o solves the problem (Pys+). In
particular, of N((c0,1),60*) <V, then T(a,8*) = T((00,1),8*) = X*, while if N((c0,1),8*) >
V, T(a,0*) = T((L*,n*),0*) and N(e,0*) = N((L*,n*),0*) = V.

6. The ML estimates

Explicit expressions can be derived for the ML estimates {#(n)}5° defined through (4.5).
In order to state the results, it is notationally convenient to define the IN-valued RV’s { N(n)}&°
by

n—1

N(n):= ) 1[X(¢) # 0] n=12,...(6.1)

t=0
with N(0) = 0; the RV N(n) counts the number of slots over [0,n) during which the queue is
non-empty.

Theorem 6.1 The ML estimates {6(n)}3° defined through (4.5) are given by

An) = %nX::IA(t) n=12,...(62)

and
NyLo D) i N(n)>o;
p(n) =
arbitrary in [0,1] if N(n)=0,
with 6(0) = (A(0), (0)) arbitrary in [0,1)2.
The strong consistency of the ML estimates {A(n)}§°> under P is an immediate conse-
quence of the Law of Large Numbers, since the RV’s {A(n)}3° form a Bernoulli sequence with
rate \* under P®. However, establishing the strong consistency of the estimates {u(n)}&

is a much more challenging task to which the remainder of this paper is devoted. The next

proposition provides a preliminary yet useful characterization for this convergence.

Theorem 6.2 For any policy © in P, with the estimates {u(n)} defined by (6.8), the con-

vergence

lim,, p(n)=p* P™ — a.5.(6.4)

takes place whenever the condition

liminan—(@ >0 P™ — a.s.(6.5)
n



holds.

Proof. On the set Oy = [liminfnﬁg') > 0], the quantity N(n) becomes positive for n

sufficiently large, at which time the relation

u(w) - = 23 1x(0) £ 0BE) - ). | (6:5)

holds. It is plain from (R1)-(R3) that for any x in P, the RV’s {V (£)[B(t) — 1°|}§° form an

uncorrelated zero-mean sequence under P7, and their variance satisfies the bound
ET [|1[X(t) # 0][B(t) — ;/,*”2} < p*(1—p*). n=0,1,...(6.7)

A version of the Law of Large Numbers [2] now implies the convergence

n—1

1
lim,, > 1X(t) #0][B(t) — p*] =0 P™ — a.s.(6.8)
t=0
and the result follows from (6.6) and the definition of f. O

7. Outline of the proof of Theorem 5.1

In view of Theorem 6.2, strong consistency of the estimates {¢(n)}& can be established by
showing that P*[{}] = 1. However, the tight interaction between the estimation and control
processes makes it difficult to show this fact in a straightforward way. An indirect approach
is thus proposed below that uses auxiliary policies and combines ideas of stochastic ordering,

rate of convergence via Large Deviations and absolutely continuous change of measures.

7.1. An auxiliary policy

The form of (6.3) suggests an interpretation of the estimates {1(n)}§° as rate estimates
for the Bernoulli sequence {B(t)}$° when sampled only at the times where the system is not
empty. In fact, Theorem 6.2 clearly shows that (6.5) will fail if there are not enough sampling
instants and therefore not enough information collected in the long run. However, there does

not seem to be any obvious argument to guarantee that under a the queue is not empty often
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enough over the infinite horizon. To remedy to this difficulty, consider the auxiliary policies

at in P for € in the interval (0, 1—;,{5], where

: n=0,1,...(7.1)
with

n(n) if L(n)>1.

In contrast with what is happening under @, in the worst possible case, namely L(n) =
X (n) = 0, there is a (uniformly) positive probability that the learning process will be activated
under af, and strong consistency of the parameter estimates should thus be expected under

this auxiliary policy. This is made precise in what follows.

Since (0, €)n(H(n)) < a&(H(n)) and A*(0,€),(0) = A*e < 1 —p*, for all n =0,1,..., it

follows from the comparison results developed in {5, Thm. A.3| that
({X ()35, PO < ({X (n)}5°, P™). (7.3)
It is now easy to see from (7.3) [10, Thm. 4.1.2, pp. 61] that
1= P9[N] < P¥ 0] < 1 (7.4)

and therefore P*‘[lg] = 1 for all € in the interval (0, I—XE:] The equality in (7.4) is a simple

consequence of the fact that under P(%¢), the RV’s {X(n)}$° form a Markov chain with {0, 1}

as its single positive recurrent class and therefore limn%ﬁ)— > 0 P(%€¢) _ g.s. by the strong

Ergodic Theorem for Markov chains.
7.2. An absolutely continuous change of measures

In view of the fact that P*"[Q}y] = 1 for every € in the interval (0, 1",\—”], the condition

P2[Q6] = 1 necessarily holds if it could be shown that for some such e,

P* << P* on FF. (7.5)
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To proceed with this line of arguments, first notice that for every e in (0, -1—;—”‘—— ,

P* << P* onTF, n=1,2,...(7.6)

while routine calculations show that the corresponding Radon-Nykodym derivative L¢(n) sat-

isfies the inequality

n—1

L(n) < H{1+B|n(k)~n€(k)l} n=1,2,...(77)

k=0

for some positive constant B independent of e.

Fix € in the interval (0, 7*A25£). ;From (7.4) and the characterization result of Theorem
A

6.2, the convergence lim,u(n) = p* takes place P*°.as. and since n* > 0, it is then easy to
see that lim,n(n) = n* P* — a.s. The condition on € now implies that lim,n¢(n) = n* also

P — g.5. and therefore n(n) = n¢(n) after a number 7. slots given by

Te:=max{n > 0:7%(n) # n(n)} (7.8)

with 7, being a.s. finite under P°°,

All these remarks now combine with (7.7) to yield

Lé(n) < ﬁ {1 + Bln(k) — ne(k)l} < expleB(r + 1)] n=12,...(7.9)
k=0

where the fact
n¢(n) — n(n) = 1[L(n) = 0,n(n) < €|(e — n(n)) n=0,1,...(7.10)

has been used.
7.3. Rate of convergence via Large Deviations Theory

The absolutely continuity (7.5) will be obtained for some ¢ in the interval (0,7* A 1—}”—)
whenever the RV’s {L¢(n)}$° are uniformly integrable under P*°. This will be the case if the

integrability condition

E*[exp[eBr.]] < oo (7.11)
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holds, i.e., if the RV 7. has ezponential moments. This will established by showing that the

RV 7, has an exponential tail, namely that there exists positive constants a. and C, such that
P*[r. > n] < acexp[-nC] n=0,1,...(7.12)

with lim.C. = o0 as € | 0.

This in turn can be established with the help of the Theory of Large Deviations by a
careful analysis of the rate of convergence of the estimate sequences {u(n)}§° and {A(n)}.

More precisely, for every § > 0 it can be shown that there exist positive constants a;, a2,

K1(6) and K3(6) such that

P*[|A(n) — X*| > 6] < a1 exp[—nK1(6)) n=0,1,...(7.13a)
and

P"‘CH;L(n) — p*| > 8] € ag exp[—nK,(6)] n=0,1,...(7.13b)
It is easy to see from these exponential bounds that the sequence {n(n)}§° also exhibits a

similar exponential behavior and the result (7.12) readily follows.

The first exponential bound (7.13a) follows by a simple application of Cramer’s Theorem

[4,11] to the Bernoulli sequence {A(t)}§°. The derivation of the second exponential bound

(7.13b) is more involved and takes as point of departure the fact that p(n) = ﬂl%%)l where
t—1

S(t):=)Y_ B() t=1,2,...(7.14)
=0

with S(0) = 0. With this in mind, it is plain that for 0 <a <1,

N(n)

n

S(N(n)) .
T(;L)——ﬂ|>5a
)

P [|u(n) — p*| > 6] < P“e[ >a

n=0,1,...(7.15)
4 Pas [N(n a:l
n

The first term on the right handside of (7.15) is easily seen to decay exponentially fast to 0 as

IA

a result of Cramer’s result applied to the Bernoulli sequence {B(t)}§°. For the second term,

note from (7.3) that

po [N (»)

<al < P(°'€)[£V(—n) < a n=0,1,...(7.16)
n n
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and recall that the RV’s {lr(tﬁl}go also obey a Large Deviations Principle as discussed by

Donsker and Varadhan [3,4]. Therefore, if a is chosen small enough, namely 0 < a < 1imn_1§’_’(ml‘l
where the a.s limit is taken under P(%:€), the second term on the right handside of (7.15) can

be shown to go to 0 exponentially fast. [

8. Comments on information patterns

The information pattern implicit in the RV’s {H(n)}$° is coarser than the information
pattern associated with the information RV’s { H(n)}¢° that was used in the formulation of the
constrained flow control problems of Section 3. Indeed, knowledge of H (n) contains knowledge

of D(n) but not necessarily of B(n).

To understand why this coarser information pattern was selected, recall that the Bernoulli
RV’s {B(n)}$ were introduced for modelling purpose and that only the actual departures
{D(n)}& have a physical meaning and are thus observable. Moreover, it is also worth pointing

out that the ML estimate §(n) = (A(n), u(n)) of the rate vector on the basis of the information
H(n) (instead of H(n)) is given by A(n) = A(n) and

ﬁ(n)=%23(t). n=0,1,...(8.1)

Obviously the estimates {#(n)}& are strongly consistent under P® by virtue of the Law of
Large Numbers, since both sequence of RV’s {A(n)}$° and {B(n)}3° are Bernoulli sequences

with rates A* and p* under P®. This situation is clearly not too interesting.
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