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The work presented in this thesis focusses on two topics: functional commu-

nities and epidemic spreading on dynamic networks. The first part of the thesis

focuses on a functionally-based definition of community structure for complex net-

works. In particular, we consider networks whose function is enhanced by the ability

to synchronize and/or by resilience to node failures. For networks whose functional

performance is dependent on these processes, we propose a method that divides

a given network into communities based on maximizing a function of the largest

eigenvalues of the adjacency matrices of the resulting communities. We also ex-

plore the differences between the partitions obtained by our function-based method

and the structure-based modularity approach. A major finding is that, in many

cases, modularity-based partitions do almost as well as the function-based method

in finding functional communities, even though modularity does not specifically in-

corporate consideration of function. We also discuss the spectral properties of the



networks with community structure, relevant for the case of functional communities

studied in this thesis.

In the second part of the thesis, we study a discrete time SIR model on dy-

namic networks. In our dynamic network model, we consider the case where the

nodes in the network change their links both in response to the disease and also due

to social dynamics. We assume that the individuals trying to make new connections

mix randomly, and, with a certain probability, we also allow for the formation of

new susceptible-infected links. We find that increasing the social mixing dynamics

inhibits the disease’s ability to spread in certain cases. This occurs because suscep-

tibles who randomly disconnect from infected individuals preferentially reconnect

to other susceptibles, inhibiting the disease spread. Finally, we also extend our dy-

namic network model to take into account the case of hidden infection. Here we find

that, as expected, the disease spreads more readily if there is an initial time period

during which an individual is infectious but unaware of the infection.
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tween community edges for Erdős-Rényi type directed networks with
four equal sized communities. Squares (� for predicted, ✷ for actual)
correspond to λ1. Data points for predicted values overlap with the
actual ones. The symbols > show the actual radius of the non-Perron-
Frobenius eigenvalue cloud. Rest of the data points correspond to to
λ2, λ3 and λ4 which are all approximately equal. Here, the data
points for predicted λ2, λ3 and λ4 lie on top of each other and overlap
with the actual ones. All data points are averaged over 20 simulated
networks. Error bars are smaller than the symbol sizes. Lines are
just a guide to the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Plots of the real and imaginary parts of the eigenvalues of adjacency
matrix of real networks. (a) Political books network. (b) Political
blogs network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Eigenvalue plots for (a) a directed Erdős-Rényi type network , and
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Chapter 1

Introduction

Many dynamical processes occur on top of networks, where the networks pro-

vide the underlying topology representing the interaction pattern of the fundamental

units called nodes. In a broad range of systems, the changing structure of the net-

works over time (dynamics of the networks), by itself, is also an important feature.

When a system includes interplay between both dynamics on the networks and dy-

namics of the network, its characteristics become intricate but show rich behavior.

The problem is then not only to determine how the structure influences dynamics,

but also how the dynamical criterion constrain the topological properties of the net-

work. We expect these co-evolving networks to show behavior that may be quite

different from the models without co-evolution.

In many studies, static topology of the networks is considered. While it can

be argued that almost all real-world networks are co-evolving to a certain extent,

considering network connectivity to be static can be a good assumption in various

cases. An extensive research effort is focused on the effect of static connectivity

pattern on the dynamical processes occurring over the networks and linking network

topology to some dynamical or functional criterion.

The first part of this thesis considers a dynamical definition of communities

in which we consider static networks and assume that the communities form such
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that they have a functional (and hence dynamical) meaning. In general, a commu-

nity is understood as a group of network nodes that “interact” more strongly with

each other than with nodes outside their community. Our problem is to identify

and characterize communities based on a functional criterion. The second part of

this thesis focuses on epidemic spreading over complex network. Here, we consider

dynamic networks with infection spreading over them. Thus, in this case, network

structure is dynamically changing which influences and is influenced by the disease

spread on the network.

1.1 Functional Communities

As discussed later in Chap. 3, the usual methods to define and identify commu-

nities are based on the structural criterion of the networks. A widely used example

of this case is modularity [1, 2], which bases its definition of communities on the

assumption that a community is significant when the nodes belonging to a commu-

nity have more links to nodes in their own community than what is expected when

the connections in the network form at random. While there has been a significant

research effort devoted to defining communities using structural methods, there may

be cases where the communities form to maximize a dynamical function. In this

thesis, we specifically consider the case where the communities are thought to form

so that they have better synchronizability and/or robustness to random node fail-

ures. In previous work, it has been shown that the largest eigenvalue of the network

adjacency matrix determines the onset of both synchronization [3,4] and percolation
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transitions [5]. Specifically, it has been shown that higher the largest eigenvalue,

better the synchronizability of the network and/or robustness to random node fail-

ures. We use this observation in Chap. 3 to identify communities by maximizing a

function of the largest eigenvalues of their adjacency matrices.

In our method to find functional communities, the number of communities is

an input to the algorithm. We determine the number of communities in the net-

works from the eigenspectra of their adjacency matrices. A consequence of Perron-

Frobenious theorem [6] for non-negative matrices is that for connected undirected

networks and directed networks with a strongly connected component, the eigen-

value of largest magnitude of the network adjacency matrix is real and positive. We

use this result in Chap. 2 to argue that, in many cases, the number of communities

in a network can easily be determined from the eigenspectrum of its adjacency ma-

trix. Specifically, when a network has Nc number of communities, the eigenspectrum

shows Nc eigenvalues that are substantially larger than the bulk of the rest of the

eigenvalues.

1.2 Epidemic Spreading on Dynamic Networks

Real human contacts change over time which can have significant influence

on the spread of diseases. To study the effect of time varying contacts, we need to

consider dynamic network models in which links are constantly being formed and

dissolved. The model considered in this thesis tries to capture some of the essential

features found in real social networks. In our model, we allow the nodes in the
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network to change their links both in response to the disease (evasion of infected

individuals by the susceptible individuals) and also due to social dynamics (individ-

uals delete their links independent of their disease status and seek new partners).

We study discrete time SIR model where R is considered removed from the process.

In our studies, we focus on how network dynamics influence the threshold value

of transmission probability above which the disease infects a finite fraction of the

population in the limit of infinite system size.

We also extend the above model to take into account the case of hidden in-

fection. In the case of hidden infection, for some period of time, a newly infected

individual is not known to have the disease although he or she is already able to

infect susceptible individuals. Thus, the evasion of infected individuals in such a

state can not occur and hence the disease spreads more aggressively through the

population.

1.3 Outline of Thesis

Each of the main chapters in this thesis (Chaps. 2, 3 and 4) are self contained

and can be read independently. In Chap. 2, we discuss the eigenspectra of networks

with community structure. In Chap. 3, we discuss the function based communities.

In Chap. 4, we discuss epidemic spreading on our dynamic network model.

These chapters are based on the following published, submitted and in prepa-

ration articles:

• Chapter 2: S. Chauhan, M. Girvan and E. Ott, Spectral properties of networks
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with community structure, Phys. Rev. E 80, 056114 (2009).

• Chapter 3: S. Chauhan, M. Girvan and E. Ott, Detecting functional commu-

nities in complex networks, under review.

• Chapter 4: S. Chauhan and M. Girvan, Epidemic spreading in dynamic social

networks, in preparation.

• Appendix B: S. Chauhan, Estimating the maximum and minimum degree cor-

relations in large directed networks, in preparation.
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Chapter 2

Spectral Properties of Networks with Community Structure

2.1 Introduction

Many real complex networks are characterized by the presence of community

structure; i.e., there are groups of network nodes that have relatively stronger rela-

tionship with nodes in their own group than with nodes outside. Such structures can

have significant influence on the functional characteristics of the network. There has

been considerable research on developing techniques for finding community struc-

ture [7–9], and this continues to be an active area of research. Many community

finding algorithms are based on the concept of modularity [10–13] which divides a

network into communities by maximizing this quantity.

Spectral properties of the Laplacian matrix of networks with communities

have also been studied quite intensively. These properties can be used to detect

community structure in complex networks [14, 15]. There has been work that uses

synchronization dynamics to find community structure and relate it to the spectral

information of the Laplacian matrix [16, 17]. The eigenspectra of undirected “real-

world” networks without community structure has been studied in Ref. [18, 19].

Here, by eigenspectrum of a network we mean the spectrum of its adjacency matrix.

Farkas et al. [18] studied the spectral density of the sparse uncorrelated random

graphs, the small-world graph and the scale-free graph, and their deviation from
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the well know semi-circle law [20,21]. Goh et al. [19] analyzed the eigenspectra and

eigenvectors of the evolving Barabasi-Albert scale-free networks [22–24]. Random

uncorrelated graphs have been used by physicists to study various physical phe-

nomenon, and much work has been done exploring the spectral properties of such

matrices [25].

To our knowledge, the eigenspectra of networks, directed or undirected, with

community structure has gained little or no attention. The objective of this chapter

is to study the spectral properties of network adjacency matrix with community

structure. In particular, we propose a method for finding the number of communities

in a network from the eigenspectrum of the network adjacency matrix.

Any given network can be represented by its adjacency matrix, A. In the

case of unweighted networks treated here, Aij = 1 if there is a link from node j

to node i, and Aij = 0 otherwise, where i, j = 1, 2, ..., N , and N is the number of

network nodes. In the case of directed (undirected) networks, in general, Aij 6=Aji

(Aij = Aji). Our interest is primarily in the case where N is large and A is sparse.

As we shall show, the eigenspectrum of the adjacency matrix of a network with

communities has the interesting property that it has multiple eigenvalues that are

well separated from the rest of the eigenvalues. Our main point in this chapter is

that in many cases, the number of such eigenvalues often gives a clear indication of

the number of communities in the network.

The organization of this chapter is as follows. As background, in Sec. 2.2,

we discuss the pattern formed by plots in the complex plane of the eigenvalues of

the adjacency matrix of a network with no communities, illustrating the generic oc-
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currence of a cloud of (N − 1) eigenvalues of magnitude substantially less than the

maximum eigenvalue which is real and positive. Section 2.3 discusses the eigenspec-

tra of networks with communities. We show how the number of communities can

be obtained from the eigenspectra of the network adjacency matrix. In Sec. 2.4 we

apply our method to some real world networks. In Sec. 2.5 we discuss limitations

of our method.

2.2 Eigenvalue Spectra of Networks without Communities

2.2.1 The Perron-Frobenius Eigenvalue

The Perron-Frobenius theorem for matrices with non-negative entries implies

that the eigenvalue of A of largest magnitude, here denoted λ∗, is real and positive

[6]. As an example, Fig. 2.1(a) shows a plot of the location of all the eigenvalues

of the adjacency matrix of a N = 500 node Erdős-Rényi directed network with

〈din〉 = 〈dout〉 = 20, where 〈...〉 denotes the average over all nodes (i = 1, 2, 3, ..., 500)

and dini (douti ) denotes the number of incoming (outgoing) network links at node i

[these numbers are also called the in-degree (out-degree) of node i]. Note that

since every out-link originating from a node is also an in-link for some other node,

we necessarily have 〈din〉 = 〈dout〉; thus we use the notation 〈d〉 to denote both

〈din〉 and 〈dout〉. For the example in Fig. 2.1(a), we have taken din and dout at

a node to be uncorrelated. By uncorrelated in/out degrees, we mean that the

joint in-degree/out-degree probability distribution function, P̃ (din, dout), giving the

8
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Figure 2.1: Plots of the real and imaginary parts of the adjacency matrix eigenval-
ues for computer generated directed networks with no community structure.
The largest eigenvalue, λ∗, can be seen outside the cloud of the rest of the
eigenvalues. (a) Erdős-Rényi network with N=500, 〈d〉=20. (b) scale-free
network with N=500, γ=2.5, 〈d〉=20.

probability of (din, dout) at a randomly chosen node, factors

P̃ (din, dout) = Pin(d
in)Pout(d

out), (2.1)

and as a consequence 〈dindout〉 = 〈din〉〈dout〉 = 〈d〉2.

We see in Fig. 2.1(a) that there is a single real positive eigenvalue λ∗
∼= 20,

while all the other 499 eigenvalues fall in a circular cloud centered approximately

at the origin and entirely enclosed within a radius, denoted λ0, of about 4, which is

substantially less than the maximum eigenvalue λ∗
∼= 20. Thus, there is a large gap

between the Perron-Frobenius eigenvalue, λ∗, and the other eigenvalues. Assuming

that, aside from the in-degree/out-degree correlation at a node, the network corre-

lations are otherwise random, the mean field approximation to λ∗ is (see Ref. [26])

λ∗
∼=

〈dindout〉

〈d〉
. (2.2)

For an uncorrelated case, i.e., 〈dindout〉 = 〈d〉2, as in Fig. 2.1, the mean-field ap-

proximation to λ∗ is λ∗
∼= 〈d〉, in agreement with the numerically found value.

On the other hand, as shown in Sec. 2.2.2 the root mean square radius of the
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cloud has an upper bound given by 〈d〉1/2 thus explaining the separation of λ∗ from

the other eigenvalues. Figure 2.1(b) is a plot similar to that in Fig. 2.1(a), but

for the case of a scale-free network with degree distribution as in Eq. (2.1) with

Pin(d) = Pout(d) ∼ d−2.5; as for the case illustrated in Fig. 2.1(a) the network is

again randomly connected with N = 500, 〈d〉 = 20. Again we see a strong sepa-

ration between the Perron-Frobenius eigenvalue and the cloud formed by the other

499 eigenvalues.

In networks that are undirected (i.e., Aij = Aji), all eigenvalues are real, but

a similar result still often applies: All the non-Perron-Frobenius eigenvalues lie in

an interval approximately centered at zero with root mean square radius which, as

shown in next subsection, scales no stronger than 〈d〉1/2, and λ∗ − λ0 can be large.

As can be seen from Eq. (2.2),

λ∗
∼=
〈d2〉

〈d〉
(2.3)

for undirected networks. Note that 〈d2〉
〈d〉

> 〈d〉 (by the Schwartz inequality).

Ref. [18,19] have also given some results concerning separation between the largest

eigenvalue and the bulk of eigenvalue cloud for certain undirected networks.

2.2.2 Size of the Cloud of non-Perron-Frobenius Eigenvalues

In case of undirected Erdős-Rényi networks, the semi-circle law predicts the

size of the eigenvalue cloud as ∼ 2
√

Np(1− p) [18], where p is the probability of

connection between two nodes. The distribution of eigenvalues in the cloud in this

case is symmetric. For undirected scale-free networks, the spectral density deviates
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from the semi-circle law. It resembles a symmetric triangle like distribution with

power law tail of the density of the eigenvalues [18, 19].

For any given network, directed or undirected, we now show that the root

mean square radius of the cloud of non-Perron-Frobenius eigenvalues has an upper

bound given by 〈d〉1/2, independent of whether the degrees are correlated or not.

Since A has entries either 1 or 0 for the edges, the trace of ATA, where AT is the

transpose of A, is equal to the total number of directed edges, sayM , in the network,

Tr(ATA) = M. (2.4)

The matrix A can be expressed in Schur decomposition form [27] as

A = UQU∗, (2.5)

where U is a unitary matrix and U∗ denotes its conjugate transpose. Q is an upper

triangular matrix which can be written as D+T , where D is a diagonal matrix with

the eigenvalues of A being the diagonal entries, and T is a strictly upper triangular

matrix. From this, since A is real,

A∗ = AT = UQ∗U∗. (2.6)

Thus for Tr(ATA), we obtain

Tr(ATA) = Tr(UQ∗U∗UQU∗) = Tr(Q∗Q), (2.7)

where we have used the fact that trace is invariant under a similarity transformation

and U is unitary.

11



In Eq. (2.7), Tr(Q∗Q) is equal to Tr(T ∗T ) +
N
∑

k=1

|λk|
2. Since Tr(T ∗T ) is real

and positive, Eq. (2.4) yields
N
∑

k=1

|λk|
2 ≤ M. (2.8)

For large N ,

〈|λk|
2〉k 6=1 ≤ (M − λ2

∗)/N, (2.9)

where 〈...〉k 6=1 denotes the average over all eigenvalues with λ1 ≡ λ∗ not included.

The equality holds when the network is undirected. Since, in large sparse networks,

M >> λ∗ and M = N〈d〉, we get an upper bound on the root mean square radius

of the eigenvalue cloud as

〈|λk|
2〉1/2k 6=1 ≤ (M/N)1/2 = 〈d〉1/2. (2.10)

Figure 2.2 shows a plot of the largest eigenvalue, λ∗, and the actual radius of the

cloud, λ0, with changing network sizes for random computer-generated, directed,

in/out-degree-uncorrelated networks. Plots for both Erdős-Rényi and scale-free net-

works are shown. Figure 2.2(a) is for the case where 〈d〉 = 20 is held constant as

N increases. Figure 2.2(b) is for the case where 〈d〉/N = 1/20 is held fixed as N

increases. The upper solid lines in Fig. 2.2(a) and Fig. 2.2(b) correspond to 〈d〉,

while the lower ones correspond to 〈d〉1/2. We see that λ∗
∼=〈d〉 for uncorrelated di-

rected networks, in agreement with Eq. (2.2). The actual radius of the cloud (not

the root mean square radius), on the other hand, for this particular case of uncorre-

lated directed networks is approximately equal to 〈d〉1/2. Thus we see that, for the

cases shown, the largest eigenvalue is well-separated from the cloud of the rest of

the eigenvalues, and, as the average degree of the network increases, the separation
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Figure 2.2: Plot of the largest eigenvalue, λ∗, and the actual radius, λ0, of the
eigenvalue cloud for networks with no communities versus the number of nodes
in the network. All networks are directed with no degree correlations. (a)
Erdős-Rényi and scale-free networks with constant degree, 〈d〉 = 20. (b)
Erdős-Rényi and scale-free networks with degree increasing in proportion to
N such that 〈d〉/N = 0.05. In plots (a) and (b), the data points for Erdős-
Rényi and scale-free networks overlap.

between them increases. Figure 2.3 shows a similar plot for undirected networks. In

this case too, we see the large separation between λ∗ and λ0. All scale-free networks

considered in Fig. 2.2 and Fig. 2.3 have degree distribution, Pin(d) = Pout(d)∼d−γ,

with the exponent γ = 2.5.

We note that, although we have only presented illustrative numerical results

for random networks, we have also conducted extensive tests for networks with other

structures (e.g., assortative and disassortative networks) obtaining similar results.
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Figure 2.3: Plot of the largest eigenvalue and the actual radius of the cloud for
networks with no communities versus the number of nodes in the network.
All networks are undirected. (a) Erdős-Rényi and scale-free networks with
constant degree, 〈d〉 = 20. (b) Erdős-Rényi and scale-free networks with
〈d〉/N = 0.05.

2.2.3 Shape of the Cloud of non-Perron-Frobenius Eigenvalues

For a network with zero or few number of bidirected edges, the cloud of non-

Perron-Frobenius eigenvalues is circular. Here by a bidirected edge we mean a pair

of directed edges corresponding to Aij = Aji = 1 for nodes i and j. However, for

a network where the number of bidirected edges is comparable to M , numerical

computations show that the cloud shape becomes elliptical. In the limiting case

where we have all bidirected edges, i.e. the case of undirected networks (Aij = Aji),

the cloud collapses to a line interval on the real axis. This transition from circle

to ellipse to line interval can be understood by considering the trace of A2 which
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is equal to the sum of the squares of the eigenvalues of A. Topologically, the trace

of A2 is equal to the number of directed cycles of length two, which in turn equals

twice the number of bidirected edges in the network. Thus,

N
∑

k=1

{[ℜ(λk)]
2 − [ℑ(λk)]

2} = 2Mb. (2.11)

where Mb is the number of bidirected edges in the network, and ℜ(.) and ℑ(.),

respectively, denote the real and imaginary parts of their arguments. In above

equation, we have used the fact that complex eigenvalues occur in conjugate pairs.

Now for the networks with no self loops, 〈ℜ(λk)〉 = 〈ℑ(λk)〉 = 0, since Tr(A) = 0.

Thus for Mb >> λ2
∗, the difference in the spread of real and imaginary parts of the

eigenvalues in the cloud is given by

σ2[ℜ(λk)]k 6=1 − σ2[ℑ(λk)]k 6=1
∼=
2Mb

N
, (2.12)

where σ2[.] denotes the variance of the corresponding entries. The size of the term

on the right hand side of Eq. (2.12) determines the ellipticity of the eigenvalue cloud

for networks with zero or very small number of self loops. Thus, the ellipticity of the

eigenvalue cloud measures the number of pairs of nodes in the network that have

direct mutual relationship with each other (i.e., are joined by bidirected links). In

the normalize form, for the large sparse networks, we can write the ellipticity of the

eigenvalue cloud as 2Mb

M
which has the property that 0 ≤ 2Mb

M
≤ 1.

In general, the distribution of eigenvalues in the cloud of non-Perron-Frobenius

need not be symmetric and the cloud may be asymmetric. This happens when the
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odd moments (Mj, j = 3, 5, 7, ...) of the graph spectral density are non-zero, where

Mj =
1

N

N
∑

k=1

λj
k =

1

N
Tr(Aj). (2.13)

Topologically, Tr(Aj) counts the number of j−hop closed paths in the network.

Farkas et al. [18] consider the case of undirected small-world networks in which M3

is high because of high value of clustering (density of graph triangles). Accordingly,

they find high skewness in the spectral density of the small-world graphs.

2.3 Networks with Communities

In order to see how the phenomenon of Fig. 2.1 (i.e., the appearance of λ∗

well outside the cloud of other eigenvalues) is affected by the presence of community

structure, we give several numerical examples in Sec. 2.3.2. Analytical results

describing the behavior of largest eigenvalues observed in Sec. 2.3.2 are given in

Sec. 2.3.3. Before presenting our numerical results in Sec. 2.3.2, we give our

method of generating directed networks with community structure.

2.3.1 Generating directed networks with communities

In our numerical experiments in Sec. 2.3.2, we consider two types of net-

works. One of them is the Erdős-Rényi type directed network with communities

with random placement of both within community and between community links.

The second type of network is the scale-free network with communities with power

law degree distribution. To generate Erdős-Rényi type directed networks with com-

munities, we divide the N nodes in the network into the desired number of communi-
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ties, say Nc. Communities could have equal or unequal number of nodes as required.

Elements Aij of the adjacency matrix corresponding to links between nodes within

the same community are set to 1 with some chosen probability (else they are zero),

while elements corresponding to links between nodes in different communities are

made 1 with some other, smaller, probability. By changing these probabilities we

can tune the strength of community structure and the average degree in the network.

To generate scale-free directed networks with community structure, we again

start by dividing the nodes into the desired number of communities. For making

connection between nodes in the same community, we generate power law degree

distribution, P (d) ∝ d−γ, for both the in-degrees and the out-degrees of the nodes

in the community. Say the kth community has Nk nodes. We generate Nk numbers

using the formula [28]:

b(m+m0 − 1)−1/(γ−1) (2.14)

for m = 1, 2, 3, ..., Nk. Here, the constants b and m0 determine the maximum degree

and node averaged degree. We randomly assign these Nk numbers to the Nk nodes in

community k and call these assigned numbers the target within community in-degree

of the corresponding node i. We denote this number tini,k. We then repeat the random

assignment of these numbers and call the result the target within community out-

degree of node i, touti,k . Note that t
in
i,k and touti,k are assigned independently at random,

so that they are uncorrelated. From these target degree sequences, we obtain the

(i, j)th entry of the adjacency matrix A, where i and j are in community k, by
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setting Ai,j = 1 with probability

pkij =
1

Mk

tini,kt
out
j,k , (2.15)

where Mk is the target number of edges between nodes in community k. Note that

Mk =
∑

i

tini,k =
∑

i

touti,k . Links between communities are assigned in a similar manner.

For example, say we want to generate links pointing from nodes in community l to

nodes in community k. For Nk nodes in community k, we generate Nk numbers

using Eq. (2.14). We assign these Nk numbers to nodes in community k, and call

them the target in-links from nodes in community l to nodes in community k, tini,kl for

the ith node in community k. We repeat this procedure to get target out-links from

nodes in community l to nodes in community k, toutj,kl for the j
th node in community

l. For a link from node j to node i we then use the probability,

pklij =
1

Mkl

tini,klt
out
j,kl, (2.16)

where Mkl is the target number of between community links pointing from nodes in

community l to nodes in community k. While generating these target degrees, we

choose our constants b and m0 in Eq. (2.14) such that Mkl =
∑

i

tini,kl ≈
∑

j

toutj,kl. We

repeat this procedure for all pairs of communities. While assigning the target values

for the number of links to each node, we assign higher tini,kl and toutj,kl to nodes with

higher tini,k and toutj,l , respectively. Similarly, nodes with smaller within community

target links get smaller between community target links. Using this procedure,

we get power law distribution for both within community and between community

in-degrees and out-degrees.
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2.3.2 Numerical results

In this subsection, we will verify numerically that, when the network has Nc

communities, the eigenvalue plot shows Nc eigenvalues outside the cloud of non-

Perron-Frobenius eigenvalues. We consider two cases of networks with N = 2000

nodes consisting of four communities:

case (i): The communities have different sizes; Nc = 700, 600, 400 and 300.

case (ii): All the communities are of equal size; Nc = 500 for each of the

four communities.

For the case where the average degree of nodes in a community is proportional

to the number of nodes in a community, case (i) leads to the situation where the

largest eigenvalues of communities that are ‘disconnected’ (i.e., there are no between

community links) are non-degenerate, while for case (ii) the largest eigenvalues will

be approximately degenerate. Figure 2.4 shows the eigenvalue plot for a computer

generated Erdős-Rényi type network and for a scale-free network for case (i). Figure

2.4(a) is for the Erdős-Rényi type network, and Fig. 2.4(b) is for the scale-free

network with γ = 2.5 in Eq. (2.14). For the Erdős-Rényi type network used to get

the eigenvalue plot in Fig. 2.4(a), the probability of connection between pairs of

nodes within same community was 0.04. With this, the average degree of nodes in a

community is proportional to the number of nodes in the community. For between

community edges, the probability of connection between pairs of nodes was 0.015.

With these parameters, the sum of the number of edges within all communities

equals the number of all between community edges. The average degree of nodes in
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the network is 〈d〉 ≈ 44. For generating the scale-free network for the plot in Fig.

2.4(b) the number of edges within communities and between pairs of communities

was the same as the number of edges for the Erdős-Rényi type network described

above. For within community links, the maximum degree in the sequence from Eq.

(2.14) was one fifth of the total number of nodes in the community. For between

community links for a pair of communities, the maximum degree was one tenth of

the number of nodes in the smallest community from the pair.

In both cases in Fig. 2.4, it is evident that there are four real positive eigen-

values that occur outside a circular shaped cloud formed by the remaining 1996

non-Perron-Frobenius eigenvalues. For comparison, we indicate by vertical dashed

lines the four largest (real) eigenvalues that would result if the between community

links of these networks were removed. For the smallest community, the number of

in-links (and also out-links) from other communities was approximately twice the

number of within community links. In this case, we still see the perturbed largest

eigenvalue of this community outside the cloud of non-Perron-Frobenius eigenvalues.

Figure 2.5 shows the eigenvalue plot of a computer generated Erdős-Rényi

type (Fig. 2.5(a)) and a scale-free (Fig. 2.5(b)) network with γ = 2.5 in Eq.

(2.14) for case (ii). For Erdős-Rényi type and scale-free networks, the network

generation parameters are chosen such that the nodes on an average have 20 within

community in/out links and 20 in/out links to nodes not in their community. Again,

it is clearly evident that there are four eigenvalues occurring outside the cloud of

1996 non-Perron-Frobenius eigenvalues. If the between community links of these

networks are removed, the four eigenvalues are nearly degenerate with an average
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Figure 2.4: Plot of real and imaginary parts of eigenvalues of computer gener-
ated directed networks with unequal sized communities. (a) Erdős-Rényi type
network and (b) scale-free network. The average number of within commu-
nity and between community links are equal in the two cases. We see four
eigenvalues corresponding to four communities outside the cloud of rest of the
eigenvalues.

value indicated by the vertical dashed line. In both Figs. 2.5(a) and 2.5(b) we see

that three of the eigenvalues outside the cloud cluster tightly together, while the

larger of the four eigenvalues outside the cloud has a substantially bigger value. This

largest eigenvalue is always real and positive (by Perron-Frobenius theorem). The

triplet of other three larger eigenvalues, in general, could have a complex conjugate

pair. Furthermore, when we take the average of these four eigenvalues, this average

turns out to be very nearly equal to the degenerate value obtained with the between

community connections removed. This observed structure will be explained further

in our analysis in Sec. 2.3.3.2.

2.3.3 Perturbation theory

As verified numerically in the subsection above, when the network has Nc

communities, the eigenvalue plot shows Nc eigenvalues outside the cloud formed by

the rest of the eigenvalues. In order to understand this, consider the simple limiting
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Figure 2.5: Plot of the real and imaginary parts of the eigenvalues of the adjacency
matrix of computer generated directed networks with four equal sized commu-
nities. The four largest eigenvalues can be seen outside the cloud formed by
of the rest of the eigenvalues. (a) Erdős-Rényi type network and (b) scale-free
network.

case of a directed network with multiple communities where all the links exist within

the communities, and there are no links between communities. In this case, with the

proper labeling of the nodes, the adjacency matrix shows block diagonal structure

(i.e., there are Nc blocks along the matrix diagonal with Aij ≡ 0 for (i, j) not in

a block). Thus, the eigenvalues of the adjacency matrix are simply the union of

the eigenvalues of the individual blocks. Hence, a plot of the real and imaginary

parts of the eigenvalues of the adjacency matrix then has the largest eigenvalues

of each of the communities outside the cloud of its other eigenvalues. In addition,

these eigenvalues outside their community clouds are all positive and real. In the

case where the smallest community Perron-Frobenius eigenvalue exceeds the largest

of the radii of the community clouds, the adjacency matrix of the whole network

will have Nc Perron-Frobenius eigenvalues outside the aggregate cloud formed by

the individual community clouds. Furthermore, we claim that when links between

communities are added, provided that the number of added links is not too great,

the eigenspectrum still shows that the number of eigenvalues outside the cloud
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Figure 2.6: Adjacency matrix of a network with Nc communities, in block matrix
form. Each diagonal block corresponds to the adjacency matrix of a commu-
nity, while the off diagonal blocks correspond to links between communities.

corresponds to the number of communities Nc.

In order to analytically address the above claim, we will use perturbation the-

ory by considering links between communities as a perturbation to the adjacency

matrices of originally disconnected communities. First we consider the case of net-

works that have non-degenerate largest eigenvalues of disconnected communities,

which corresponds to case (i) in Sec. 2.3.2. Following that, we consider networks

that have degenerate (or nearly degenerate) largest eigenvalues of disconnected com-

munities, which corresponds to case (ii) in Sec. 2.3.2.

2.3.3.1 The non-degenerate case

In this subsection, we analyze the case of networks that have non-degenerate

largest eigenvalues of disconnected communities. We will show that the largest

eigenvalues of the disconnected communities have lowest nonzero perturbative cor-

rection of second order when addition of between community links is treated as a

perturbation.
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Consider the case of networks that have Nc unequal sized communities, each

having unequal (i.e., non-degenerate) largest eigenvalues when the communities are

disconnected. Let A denote the adjacency matrix of such a network. With proper

labelling of the nodes, the matrix A will have block matrix structure with Nc ×Nc

number of blocks. Blocks on the diagonal correspond to the adjacency matrices of

the individual communities, while the off-diagonal blocks correspond to the pertur-

bation (connections between communities). Let us denote by (I, J) the block of A

(Fig. 2.6). When I = J , the block is the adjacency matrix of community I, while if

I 6= J then A(I,J) corresponds to the block of the adjacency matrix in which links

pointing from community J to community I are stored. Now, let us write A as

A = A0 + δA, (2.17)

where A0 is a matrix whose diagonal block elements are the diagonal block elements

of A and whose off-diagonal block elements are zero. δA is a matrix with zeros on its

diagonal blocks, and with off-diagonal block elements being the off-diagonal blocks

of A. For the case where between community connections are sufficiently sparser

than within community link, we regard δA as a perturbation to A0.

We denote the Nc non-degenerate largest eigenvalues of A0 by λ∗k, where k =

1, 2, ..., Nc. Let Uk be the right eigenvector of A0 corresponding to the eigenvalue λ∗k,

where entries in Uk are zero except for those elements corresponding to community

k in A0. Write the perturbations of Uk and λ∗k due to δA in Eq. (2.17), as

U ′
k = Uk + δUk,1 + δUk,2, (2.18)

λ′
∗k = λ∗k + δλ∗k,1 + δλ∗k,2, (2.19)
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where the subscripts 1 and 2 denote first and second order corrections. Letting Vk

denote the left eigenvector ofA0 corresponding to the eigenvalue λ∗k, and multiplying

AU ′
k = λ′

∗kU
′
k from the left by Vk, we obtain

δλ∗k,1 + δλ∗k,2 = VkδAδUk,1, (2.20)

where we have made use of VkδAUk = 0 which follows from the facts that δA is

zero on its diagonal blocks, while both Vk and Uk are non-zero only for their entries

corresponding to community k. Since we assume δA to be small, the right side of

Eq. (2.20) is of second order, and hence, δλ∗k,1 is zero. Therefore, the lowest nonzero

correction to the largest eigenvalues is of second order,

δλ∗k,2 = VkδAδUk,1. (2.21)

This shows that the largest eigenvalues of disconnected communities that have non-

degenerate largest eigenvalues are perturbed more weakly than the perturbation

applied.

First order correction, δUk,1, to the eigenvector Uk is given by [29]

δUk,1 =
N
∑

r 6=k

(VrδAUk)

(λ∗k − λr)
Ur, (2.22)

where Ur and Vr are, respectively, the right and left eigenvectors of A0 corresponding

to its eigenvalue λr. Here, Vr is the row vector and Ur is the column vector with the

normalization condition VrUr = 1 ∀ r and VrUs = 0 for r 6= s (r, s = 1, 2, ..., N).

We tested our calculations, specifically Eq. (2.21), by comparing with actual

eigenvalues of some computer generated Erdős-Rényi type directed networks with

four unequal sized communities. In Fig.2.7, we show comparison between actual and
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Figure 2.7: Comparison of the actual and predicted four largest eigenvalues with
increasing between community edges for Erdős-Rényi type directed networks
with four unequal sized communities. Squares (�,✷) correspond to λ′

∗1, circles
(•, ◦) to λ′

∗2, triangles (N,△) to λ′
∗3 and diamonds (�,♦) correspond to λ′

∗4.
Open symbols correspond to actual values while the filled ones are the esti-
mated values calculated using second order perturbation theory. The symbol
> shows the actual radius of the non-Perron-Frobenius eigenvalue cloud. All
data points are averaged over 20 simulated networks. Error bars are smaller
than the symbol sizes. Lines are just a guide to the eye.

predicted four largest eigenvalues of the network adjacency matrix with increasing

between community links. The networks have N = 2000 with 700, 600, 400 and 300

nodes in each community. The probability of connection between pairs of nodes in

the same community was 0.037 which gives 〈d〉≈20 for the whole network when there

are no between community links. When there are non-zero links between commu-

nities, to get an estimate of the four perturbed largest eigenvalues, we numerically

calculate the four largest eigenvalues of the disconnected communities and add the

lowest order correction given by Eq. (2.21). As can be seen, our perturbation

calculation predicts the four largest eigenvalues well when the number of between

community links is small. The radius of the cloud (the symbol >) given in Fig.2.7

is the actual radius of the disc of the non-Prrron-Frobenius eigenvalues found by
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numerically calculating all the eigenvalues of the network adjacency matrix. Figure

2.7 also shows that when the number of between community links is large, we can

still see the actual perturbed largest eigenvalue of the smallest community outside

the cloud of the non-Perron-Frobenius eigenvalues.

2.3.3.2 The degenerate case

We now consider the case of networks that have Nc initially disconnected

equal sized communities, each with N/Nc nodes and with similar number of within

community edges. In this case, each of these disconnected communities will have

approximately equal largest eigenvalues. We denote this approximately common

eigenvalue by λ∗. As the perturbation is applied by adding between community

links, we find that (Nc − 1) of the Nc perturbed largest eigenvalues will become

approximately equal and smaller than the remaining perturbed largest eigenvalue

(as an example see in Fig. 2.5 for the case Nc = 4). The perturbation of these

eigenvalues is such that the mean distance of all these Nc largest eigenvalues from

their initial value is zero. The adjacency matrix A will have block matrix structure

with Nc×Nc number of blocks of equal sizes of dimension N/Nc×N/Nc. As before,

we write A = A0 + δA, with A0 and δA being same as described in Eq. (2.17).

Let us write a right eigenvector, say U ′, of A which corresponds to one of the

perturbed largest eigenvalues as

U ′ =
Nc
∑

k=1

αkUk + δU, (2.23)

where αk are the coefficients to be determined, δU is a higher order correction,
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and Uk denotes the right eigenvector of the block matrix Ak corresponding to its

maximum eigenvalue. All the blocks in matrix Ak are zero except for the diagonal

block corresponding to community k. As a consequence, the entries in Uk will be

zero except for those elements corresponding to community k in A0. We regard δU

as small since we regard the perturbation to be small. Note that as in Eq.(2.18),

the perturbed eigenvector U ′ in Eq.(2.23) does not have subscript k corresponding

to community k because we will have Nc such eigenvectors for different sets of

coefficients αk. We again denote by Vk the left eigenvector of A0 corresponding to the

maximum eigenvalue of Ak and assume that the eigenvectors of A0 are normalized

such that VkUk = 1.

Multiplying A0 + δA from right by U ′ and from left by Vl, and keeping terms

up to first order we get

∑

k 6=l

ylkαk = αl(λ
′
∗ − λ∗), (2.24)

where λ′
∗ is the perturbed eigenvalue and ylk = VlδAUk. For Nc different Vl eigen-

vectors, we will have Nc such equations corresponding to l = 1, 2, ..., Nc in Eq.

(2.24).

For the case in which we have equal sized communities that have similar num-

ber of within and between community links with the same degree distribution (sim-

ilar perturbation for all the communities), all the ylk coefficients are approximately

the same. Thus, to simplify our calculation and to get qualitative results, we assume

that ylk = y ∀ l, k with y > 0. Equations (2.24) are an eigenvalue problem of the
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form Cα = λ′
∗α with α = [α1, α2, ..., αNc

]T , and

C = y1̃Nc
+ (λ∗ − y)1Nc

, (2.25)

where 1̃Nc
is a Nc×Nc matrix all of whose entries are ones, while 1Nc

is the Nc×Nc

identity matrix. The eigenvectors of C are thus the eigenvectors of 1̃Nc
. One such

eigenvector is [ 1 1 1 .... 1 ]T corresponding to an eigenvalue of C equal to λ∗+(Nc−

1)y. The other Nc−1 eigenvectors of 1̃Nc
correspond to the Nc−1 dimensional space

of vectors [α1, α2, ...., αNc
]T such that

∑

i

αi = 0. For all these vectors, the eigenvalue

of 1̃Nc
is zero, corresponding to Nc − 1 degenerate eigenvalues of C given by λ∗ − y.

This suggests that there is a largest perturbed eigenvalue, approximately given by

λ∗ + (Nc − 1)y, which is larger than the rest of the Nc − 1 degenerate eigenvalues,

approximately given by λ∗ − y, which are clumped together (as can be seen in Fig.

2.5 for Nc = 4). Note that the average of the Nc perturbed eigenvalues is λ∗ (the

unperturbed degenerate eigenvalue). It can be shown with simple argument that y

scales no stronger than N .

Figure 2.8 gives comparison between actual eigenvalues and our calculations

of this subsection. The networks considered are the Erdős-Rényi type directed

networks with four equal sized communities. The networks have N = 2000 with 500

nodes in each community. The within community link probability is 0.04 which gives

〈d〉≈20 when the communities are disconnected. The estimate of the perturbed four

largest eigenvalues was calculated by numerically finding the unperturbed largest

eigenvalues and using the estimate of y, which is calculated by averaging over all

the 12 possible ylk’s. As can be seen in Fig. 2.8, our calculations agree well with
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Figure 2.8: The actual and predicted four largest eigenvalues with increasing be-
tween community edges for Erdős-Rényi type directed networks with four
equal sized communities. Squares (� for predicted, ✷ for actual) correspond
to λ1. Data points for predicted values overlap with the actual ones. The sym-
bols > show the actual radius of the non-Perron-Frobenius eigenvalue cloud.
Rest of the data points correspond to to λ2, λ3 and λ4 which are all approxi-
mately equal. Here, the data points for predicted λ2, λ3 and λ4 lie on top of
each other and overlap with the actual ones. All data points are averaged over
20 simulated networks. Error bars are smaller than the symbol sizes. Lines
are just a guide to the eye.

the actual values.

Thus our numerical results of Sec. 2.3.2 seem to be quite well explained by

our perturbation results of the present subsection (Sec. 2.3.3) even though the

‘perturbations’ for the numerical examples of Sec. 2.3 are not small (e.g., Fig. 2.4

and Fig. 2.5).

2.3.4 Discussion

Based on our perturbation analysis, one might suspect that, since the unper-

turbed eigenvectors Uk and Vk have non-zero element values only for their community

entries, it might be possible to use the eigenvectors of the adjacency matrix A to

obtain the communities, and not just their number. In initiating our research re-
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ported here, we were originally motivated by this possibility. However, as described

below, we found this to be problematic.

In Sec. 2.3.3.1, the eigenvectors of the matrix A corresponding to the largest

eigenvalues of communities are denoted by U ′
k. When δA is small, the entries in

eigenvector U ′
k that are labeled by nodes belonging to nodes in community k will

have larger magnitude compared to entries labeled by nodes not in community k.

For a given node i, by comparing entries labeled by node i in eigenvectors U ′
k,

for k = 1, 2, ..., Nc, we can assign node i to the group of nodes that have largest

magnitude of the corresponding entry in the same eigenvector.

Our experimentation with this method on some computer generated networks

shows that the method works pretty well when the eigenvalues of disconnected

communities are non-degenerate and the perturbation is not too large. This method

fails, however, when the maximum eigenvalues of disconnected communities are

too close and the perturbations are too large. When the maximum eigenvalues of

disconnected communities are nearly degenerate, an indication of the difficulty is

provided by Eq. 2.23 which shows that the perturbed eigenvector can have almost

equal contribution from all the unperturbed Uk eigenvectors (k = 1, 2, ..., Nc).

2.4 Application to Real Networks

We now test our prediction on two real networks for which we show eigenvalue

plots in Fig. 2.9. The networks considered are the political books network [30] and

the political blogs network [31]. These two examples are convenient for our purpose
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since we naturally have the division of the network into two major groups based on

left/liberal or right/conservative orientation of the book or the blog. The political

books network is an undirected network. The nodes represent books on politics

available from the online retailer Amazon.com. There is an edges between two

nodes when the same buyer(s) buys books represented by the nodes. The Political

blogs network, on the other hand, is the compilation of network data on US political

weblogs as recorded by Adamic and Glance [31] in 2005. It is a directed network

where the edges represent hyperlinks between the weblogs on US politics.

The total number of nodes in the political books network is 105. We show

the eigenvalue plot of the adjacency matrix of the political books network in Fig.

2.9(a). Since it is an undirected network, the adjacency matrix is symmetric, and

all eigenvalues are consequently real. We ‘estimate’ the size of the eigenvalue cloud

by the magnitude of the most negative eigenvalue. The vertical dashed line in Fig.

2.9(a) corresponds to this value. Consistent with the prediction in this chapter,

we see that there are two eigenvalues substantially to the left of this dashed line

(λ=11.9, 11.6).

The political blogs network is a relatively larger network as compared to the

political books network. It is a directed network with 1224 nodes. The eigenvalues

of the adjacency matrix of this network are in general complex since this is a directed

network (Fig. 2.9(b)). The cloud of eigenvalues is substantially contracted towards

the real axis. For this network we haveMb = 2307 andM = 19022. The difference in

the spread of real and imaginary parts of eigenvalue cloud (left hand side of Eq.(2.12)

with two largest eigenvalues excluded) is 2.22. Again we ‘estimate’ the cloud size
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from the magnitude of the most negative eigenvalue (vertical dashed line). The two

eigenvalues of magnitude 34.5 and 26.9, corresponding to the two communities, can

be seen separated from the rest of the cloud by a large amount.

In Fig.2.9(a) and (b), we see that there are few eigenvalues that lie just outside

(to the right of) the vertical dashed line. These eigenvalues lying close to the vertical

dashed line can not be said to belong to any particular community with any degree

of certainty. For networks where the eigenvalue cloud is symmetric, as can be seen

for the computer generated networks considered in this chapter, the size of the

cloud can be well estimated by looking at the eigenvalue of largest magnitude with

negative real part. However, for many real networks, as discussed in subsection

2.2.3, the eigenvalue cloud may not be symmetric. For the political books network

we calculated the clustering coefficient, given in Ref. [32], which we found to be

relatively high (a value of 0.348). For the political blogs network, we found relatively

high values of first few odd moments of the spectral density, an order of magnitude

higher, compared to the randomly generated scale-free networks with similar degree

distribution and two communities. These findings suggest that the clouds are right-

skewed and should actually extend past the vertical dashed line.

2.5 Limitations in determining the number of communities

The method we propose in this chapter for finding the number of communities

works best when the node average degrees within communities are of same order.

Limitation to this method occurs when one or more of the communities are much
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Figure 2.9: Plots of the real and imaginary parts of the eigenvalues of adjacency
matrix of real networks. (a) Political books network. (b) Political blogs net-
work.

smaller compared to the largest community, or when a community has sparser within

community connections compared to other communities. In particular, even in the

absence of perturbation (δA = 0 in Eq. (2.17)), the maximum eigenvalue of the

smaller community can lie inside the cloud of non-Perron-Frobenius eigenvalues of

the largest community. This puts a limitation on the sizes of the communities that

can be detected using our method. For example, in the simplest case where the in

and out-degrees are uncorrelated and δA = 0, this happens when, 〈d〉s ≤ 〈d〉1/2l ,

where 〈d〉s is the average degree of a smaller community and 〈d〉l is the average

degree of the largest community. In the case of network communities where the

average degree of nodes is proportional to the number of nodes within communities,

this condition roughly translates to the statement that when Ns ≤ N
1/2
l , we will not
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be able to detect smaller communities with Ns nodes when the number of nodes in

one of the largest community is Nl.

As discussed in subsection 2.2.3, in case of networks that have non-zero odd

moments of the spectral density, the cloud of non-Perron-Frobenius eigenvalues may

not be symmetric. As can happen in small-world networks without community struc-

ture with large clustering, the largest eigenvalue of the network adjacency matrix

may not be well separated from the cloud of the non-Perron-Frobenius eigenval-

ues [18]. In case of networks with community structure, the skewed eigenvalue

cloud may even overlap with the largest eigenvalues of the smaller communities.

Thus, we may not be able to see them well separated from the eigenvalue cloud.

2.6 Conclusions

We studied the eigenspectra of adjacency matrix of large sparse networks. The

eigenspectrum gives a clear indication of the number of “dominant” communities in

the networks in certain cases. Here, by dominant we mean the communities whose

eigenvalues lie outside the cloud of the non-Perron-Frobenius eigenvalues. We ex-

amine the eigenvalues of the network adjacency matrix and infer the number of

communities by finding the number of eigenvalues falling outside a typically occur-

ring dense cloud of eigenvalues. For the example of uncorrelated in/out-degrees,

we argued that there is a large gap between the non-Perron-Frobenius eigenvalues

and the Perron-Frobenius eigenvalue. Owing to this large gap (also seen more gen-

erally with in/out-degree correlation and assortative/disassortative networks), we
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can determine the number of communities in a network, even when the community

structure is not strong.

In this chapter, we have not specified exactly the radius of the eigenvalue

cloud. While there are results on the spectral density of the eigenvalue cloud for

Erdős-Rényi and scale-free undirected networks when the distribution of eigenvalues

is symmetric, we still need to deal with the case when the odd moments of the

spectral density are non-zero resulting in an asymmetric eigenvalue distribution.

Finding the number of communities from the eigenvalue plot could be help-

ful in some community finding algorithms (as in Chap. 3), where the number of

communities is an input to the algorithm. The method has a limitation based on

the relative sizes of the communities, and, in general, it may miss smaller or weaker

communities (Sec. 2.5). Further limitations in determining the number of commu-

nities from the eigenvalue plot may occur when the eigenspectra is highly skewed

because of non-zero odd moments.
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Chapter 3

Detecting Functional Communities in Complex Networks

3.1 Introduction

Complex networks have received much attention from researchers in diverse

disciplines. Networks serve as the structural underpinning of models for under-

standing properties of many real complex systems. They provide insight into the

dynamical behavior and functional attributes of such systems. Over the last decade,

interest in networks has grown substantially, partly spurred by the discovery of pre-

viously under-appreciated properties seen in real-world networks, e.g., small world

behavior [33], scale-free degree distribution [22], assortative mixing [34], etc. The

properties of networks have been studied at all levels, ranging from microscopic

to mesoscopic to macroscopic. At the mesoscopic level, one potentially important

property of networks is community structure. Roughly, a community can be defined

as a group of network nodes that “interact” more strongly with each other than

with nodes outside their community. Community structure has been shown to exist

in many real networks [7, 31, 35–37]. Such structures can have significant influence

on the organization and dynamics of the network as a whole. For example, commu-

nities might be substructures that represent functional units, as in some biological

systems [38].

Much of the research related to community structure in networks has been
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directed toward finding the “best” possible community partition of a network. Direct

application of traditional computer science and sociological approaches for finding

community structure in complex networks has been shown to be problematic [7,

8, 10]. Various methods have been proposed for detecting community structure in

complex networks, e.g., the edge betweenness method [7], the eigenvector method

[10], methods based on simulated annealing [12], synchronization dynamics [16,

39], spectral analysis [14, 15], k-clique percolation [40], link communities [41], etc.

Many community finding methods are based on modularity [1], which, for a given

partition of nodes into communities, gives a structural measure of the goodness

of that partition. In the definition of modularity, a community is considered to

be a group of nodes within which connections are relatively dense compared to a

suitable expectation. Reviews of structural based methods for dividing networks

into communities (with most based on modularity) can be found in Refs. [8, 9]. An

excellent overall review on community structure can be found in Ref. [42].

Our motivation for this chapter is that, as discussed above, in the past, the def-

inition of a community has often been based on the structural features of networks,

e.g., modularity. In this chapter, we will adopt the view that, in many situations,

the most appropriate way of defining a community may depend on the application

that the resulting division will be used for, which, in turn, depends on the function

of the network. For instance, we may desire a different definition of community

structure if we are trying to find clusters of friends in a social network than if we

are trying to find metabolic pathways in a biochemical network. One expects that

a method designed for a particular consideration may not necessarily work in other
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situations. In this chapter, as an example, we consider a particular network func-

tion and propose an alternate definition of communities for this kind of function.

Specifically, we consider networks whose function is enhanced when the maximum

eigenvalue, λ∗, of their adjacency matrix is large. Examples where this applies in-

clude synchronization of network coupled phase oscillators [3,4] and percolation on

directed networks [5]. Although we specifically consider directed networks in this

chapter, the method can also be used to find communities in undirected networks.

It is not obvious that the partitions obtained using a structure based method

will also correspond to good functional partitions. To analyze this, we explored

the difference between the method presented in this chapter and the widely used

modularity method, which is based purely on consideration of network structure.

Although, we find cases where the two methods yield significantly different results

(Sec. 3.5.2), we also find that, in many situations (Sec. 3.5.1), the partitions

that maximize modularity also tend to score highly according to our functional

measure, which we found rather surprising. Our results suggest that, in many cases,

modularity maximization is effective in identifying functional communities.

The organization of this chapter is as follows. In Sec. 3.2, we review the

largest eigenvalue of the adjacency matrix of networks without community structure

and its relation to network functional properties. In Sec. 3.3, we define a largest-

eigenvalue-based measure that can be used to determine community structure in

networks. In Sec. 3.4, we describe the method used to detect community structure

given our functional definition. The construction of networks with eigenvalue based

communities is also discussed. In Sec. 3.5, we give results for the method proposed
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in this chapter and compare these results with results from the modularity approach.

3.2 Network functions and the largest eigenvalue of the adjacency

matrix

The largest eigenvalue of a network’s adjacency matrix in the absence of com-

munity structure can be used to characterize both synchronization and percolation

phenomenon. In this section, as background, we discuss the significance of the

largest eigenvalue of network adjacency matrix for these network functions.

3.2.1 Synchronization

Synchronization is a population effect that emerges in many complex systems

composed of a large number of dynamical components [43]. The classical model

of Kuromoto describes the synchronization of phase oscillators that are uniformly

globally coupled and have natural frequencies drawn from a heterogeneous distri-

bution [44]. In the limit of large network size, a phase transition, separating the

synchronized and the unsynchronized states, is observed for the Kuramoto model.

For synchronization on networks with large average degree and arbitrary degree

distribution, similar results have been reported [3, 4].

For synchronization of phase oscillators in complex networks, the evolution,

θ̇i = ωi +K

N
∑

j=1

Aij sin(θj − θi), (3.1)

is considered, where θi and ωi are the phase and intrinsic frequency of the ith oscilla-

tor, K is an overall coupling strength, and N is the number of nodes in the network.
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Here, Aij is the (i, j)
th entry of the adjacency matrix which has value 1 if there is a

link from node j to node i; otherwise it is 0. The synchronization of nodes in the

network can be characterized by the global order parameter, r, given by

r =

∣

∣

∣

∣

∣

∑N
j=1 eiθj

N

∣

∣

∣

∣

∣

. (3.2)

Perfect synchronization (typically occurring for K → ∞) corresponds to r = 1. For

large N , synchronized and unsynchronized behaviors of the system are signified by

a value of r significantly above zero and close to zero, respectively.

For networks with large average degree and an arbitrary degree distribution,

results based on mean field theory show that the critical value of coupling strength,

which separates the synchronized and unsynchronized states, is determined by the

first two moments of the degree distribution of the nodes [45, 46]. Restrepo et

al. obtained better estimates of the critical coupling strength in the case of directed

networks [3]. In particular, they show that the critical value of the coupling strength,

Kc, is determined by the largest eigenvalue of the network adjacency matrix,

Kc =
K0

λ∗

, (3.3)

where K0 is a constant which depends on the distribution of oscillator frequencies

and is independent of the network characteristics. Thus, the higher the largest

eigenvalue of the network adjacency matrix, the smaller the value of K needed to

attain the phase transition to synchronization for such networks.
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3.2.2 Percolation

Percolation is another network property that has been studied extensively. In

the percolation model, a phase transition separates two phases characterized by the

presence and absence of a giant connected component when nodes (site percolation)

or links (bond percolation) are removed from the network. In undirected networks

that do not have any degree correlations between linked nodes, the percolation

transition has been shown to depend on the second moment of the degree distribution

[47]. Percolation in case of directed networks has also been explored (e.g. see

Refs. [48–51]).

Some approaches focus on a Markovian approach for studying percolation

phenomenon [50–53]. Restrepo et al. [5] studied the percolation problem without

the need of a Markov network model but requiring the knowledge of the network

adjacency matrix. For directed networks that are locally tree like, they found that

the percolation transition occurs when a fraction of nodes,

pc = 1−
1

λ∗

, (3.4)

have been randomly removed from the network. This indicates that when the largest

eigenvalue, λ∗, of the network adjacency matrix is high, the network can tolerate a

large number of node deletions before it disintegrates.

3.3 A functional definition of community structure using eigenvalues

As discussed in Sec. 3.2, in the case of directed networks without community

structure, larger values of λ∗ make the network more resilient to breaking up into

42



many disconnected pieces when nodes are randomly removed (e.g., due to failure

or attack). Furthermore, synchronization in a heterogeneous collection of phase os-

cillators is promoted by increasing λ∗. This suggests that, if a network’s function

depends on synchronization of heterogeneous oscillators and/or robustly maintaining

connectivity, then consideration of the largest eigenvalues of the adjacency matri-

ces of individual communities may provide a natural basis for a useful functional

definition of community structure on such networks.

We propose a measure that is meant to quantify the strength of network divi-

sion into communities that have better synchronizability and robustness to random

node failures. Motivated by the role of the largest eigenvalue in both synchroniza-

tion and percolation, our measure sums a monotonically increasing function of the

largest eigenvalues of the communities. We view this as an example of a functional

definition of communities that might be appropriate in some cases, but we also

emphasise that other definitions would be appropriate for other purposes.

For clarity, we can write the adjacency matrix, A, of networks with community

structure in block matrix form as shown in Fig.2.6. Each diagonal block of A

then corresponds to the adjacency matrix of an individual community, while the

off diagonal blocks correspond to the links between communities. We propose that,

given a network, if we can find a partition of the network into communities that have

higher largest eigenvalues of their corresponding diagonal block adjacency matrices,

then those communities will have enhanced network functions.

Specifically, the definition of community structure that we study is as follows:
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1. Consider a partition of a network into g communities.

2. Calculate the maximum eigenvalues (λ∗1, λ∗2, ..., λ∗g) of the adjacency matrices

of all the communities. Here, λ∗k is the largest eigenvalue of the kth diagonal

block in Fig.2.6.

3. Define the “spectral cohesion”:

Λ =

g
∑

k=1

ln(λ∗k). (3.5)

The spectral cohesion, Λ, provides a functionally based measure of the community

strength of a particular partitioning of the network. We can thus define the best

division into g communities as the one that maximizes Λ, where we think of best as

being with respect to the enhancement of synchronization or resilience. Note that the

definition of communities according to Eq.(3.5) can be used for both symmetric and

asymmetric matrices. In Sec. 3.5, we will demonstrate the utility of this definition

for directed networks, in particular.

As an aside, we emphasize that our choice of the spectral cohesion function

in Eq.(3.5) is somewhat arbitrary; e.g., Λ =
∑

f(λ∗k) for any function f(λ) that

is monotonically increasing with λ might alternatively be considered. However, we

shall, in all of what follows, use f(λ) = ln(λ). This is partly motivated by the

analogy to entropy, and by our studies with f(λ) = λβ, for β = 1 and 2, which, for

several test networks, yielded results that were very similar to those for f(λ) = ln(λ).

While the method of maximizing the spectral cohesion, Λ, gives us the best

division into g communities, it does not tell us how to choose the appropriate value
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Figure 3.1: Eigenvalue plots for (a) a directed Erdős-Rényi type network , and
(b) a directed scale-free network with two equally sized communities. By
construction, the nodes in the network have 〈d〉I = 〈d〉X = 6, but the commu-
nities are defined such that they have maximal directional degree assortativity
within them. The networks have N = 1400 and 〈d〉 = 12. Here, λ1 and λ2

are the largest and the second largest real positive eigenvalues of the network
adjacency matrix.

of g, i.e., the number of communities that the network contains. We have addressed

this problem in Chap. 2, showing that the number of communities may be obtained

from the eigenspectra of the adjacency matrix of the full network. Specifically, we

show that for networks with communities, there typically exists a relatively small set

of Nc positive real adjacency matrix eigenvalues that are significantly larger than,

and well separated from the large number of other eigenvalues. This number of

large positive eigenvalues is shown in Chap. 2 to provide an appropriate choice for

g. Chapter 2 provides examples of eigenvalue plots for networks with community

structure that have high density of links within communities and lower density of

links between communities. In Fig. 3.1, we give examples of the eigenvalue plots for

other types of networks with community structure. Figure 3.1(a) is for an Erdős-

Rényi type directed network, and Fig. 3.1(b) is for a scale-free directed network.

Both networks have two communities of equal sizes, N = 1400 and 〈d〉 = 12, where

〈d〉 for a directed network here denotes average in-degree or out-degree, which are
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both equal. In order to briefly describe our choice of networks for Fig.3.1, we first

note a result for random networks without community structure. In particular, if

there is directional degree assortativity (see Eq. (3.13) for the definition), then a

mean field theory (described in Sec. 3.4.2) [26] shows that, other things being equal,

λ∗ is larger for networks with larger directional degree assortativity. The networks

used to generate the plots of Fig. 3.1 have the property that the average number

of in/out-links that connect a node to nodes in its own community, 〈d〉I , is equal

to the average number of in/out-links that connect the node to nodes in the other

community, 〈d〉X , but the communities are defined such that the communities have

maximal directional degree assortativity within them (see Sec. 3.4.2 for details).

Thus, in the absence of directional degree assortativity, the networks are random

networks with no community structure.

3.3.1 Cycles in the graph and the largest eigenvalue

In this chapter, our aim is to find communities that have enhanced network

functions which in turn depends on the largest eigenvalues of the community ad-

jacency matrices. Although our choice of Λ in Eq.(3.5) to a certain extent was

arbitrary, we can consider a useful interpretation of this function. Eigenvalues of

the community adjacency matrices, Ak, are related to the cycles in the communities.

The number of cycles of length n inside a community k equals the sum of the diag-

onal components of An
k which in turn equals

Nk
∑

i=1

λn
ik, where λik is the ith eigenvalue

of community k. Thus, for large n, the exponential growth of the number of cycles
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with their length is

lim
n→∞

ln (
∑Nk

i=1 λ
n
ik)

n
= ln λ∗k, (3.6)

when the limit exist. Thus, when we use Λ, we expect to find communities that

have high number of cycles within them.

3.4 Methods

3.4.1 Detecting functional communities

Thus far, we have proposed a quantity whose maximization, we hypothesize,

should yield a good division of a network into communities for the network func-

tions we are interested in. In this section, we provide an outline for a simulated

annealing scheme [54] that finds a desirable division of the network. The advantage

of this simulated annealing method is that it can provide a network division whose

spectral cohesion is very close to the true maximal value. The disadvantage is that

it is computationally quite intensive. In order to fairly compare our results with

the modularity approach, we also use simulated annealing to find a network division

that maximizes the modularity function for a fixed number of communities. The

modularity function is based on a comparison between the number of links connect-

ing nodes in the same community to the number expected in a random network

without community structure. For directed networks, the modularity (Q) is defined

as [2, 13]

Q =
1

m

∑

i,j

[

Aij − dini doutj /m
]

δci,cj , (3.7)

47



where dini denotes the in-degree of node i, doutj denotes the out-degree of node j, and

m is the number of edges in the network. ci and cj denote the community indices

of nodes i and j, and δci,cj = 1 (= 0) if ci = cj (ci 6= cj).

In our simulated annealing scheme, we begin by assigning nodes randomly to

Nc different communities, where we findNc as described in Sec. 3.3 and Chap. 2. We

then choose a node at random and pick a random community, to which to consider

moving it. If this move would result in an increase in the value of the function we

are trying to optimize, say F (which could be either Λ or Q) , we perform the move.

If the move would result in a decrease in the value of the function, we perform it

with Boltzmann acceptance probability e∆F/T , where ∆F < 0 is the change in the

function F and T is the ‘temperature’ (this is the basic Metropolis algorithm [55]).

For each temperature value, we repeat this process αN2 times, where N is the

number of nodes in the network and α is a chosen factor ≤ 1. After αN2 iterations,

we reduce the temperature by a factor of 0.99. Using the parameters described, the

whole process is repeated until an asymptotic value of F is reached.

In the case of the spectral cohesion, there is a caveat to the movement of

nodes. In some networks, there are nodes that do not affect the eigenvalue of any

of the communities. If such a node is chosen at a given iteration, it is moved to a

community that is randomly selected at that iteration if it has more links to that

community than its own, without regard to the directionality of the links. If it has

fewer links to the randomly chosen community, the move is accepted with a proba-

bility which depends on the number of links the node has to both the communities.

We expect this strategy to be reasonable only if, as in the numerical examples we
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treated, we have a small number of such nodes in the network.

Since we are interested only in the largest eigenvalues of the matrices, we use

the power method [56] to calculate these eigenvalues. Assuming that λ∗k is well

separated from the other eigenvalues, for a dense Nk ×Nk matrix, where Nk is the

number of nodes in community k, the needed computational time for this approach

to give the dominant eigenvalue of the matrix scales as O(N2
k ). In the case of

sparse matrices, the required number of operations needed to compute λ∗k scales as

O(Mk), where Mk is the number of non-zero entries in the matrix corresponding to

community k. Assuming that we are working with sparse networks with Mk ∼ Nk

(as is the case with many real-world networks) and that the number of required

temperature reductions is independent of N (an optimistic assumption), assuming

Nk ∼ N , this yields an algorithm whose required number of operations scales at

best as O(N3).

When maximizing the spectral cohesion, in many cases, run times of our sim-

ulated annealing program can be further reduced by using perturbation theory [28]

for calculating the estimate of ∆Λ above. We accept or reject a move based on this

estimate of ∆Λ. When a move is accepted, we calculate only the eigenvalues of the

communities involved in the change. When a move is rejected, we go to the next

step. This is much less computationally expensive than recalculating the eigenvalues

at each step of the simulated annealing procedure.

The use of perturbation theory for calculating the estimate of ∆Λ is explained

as follows. When a node, say i, is chosen at random, we consider moving it from its

current community, say k, to another community, say l, the estimated change in the
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largest eigenvalue of the adjacency matrix of the node’s current community, due to

the removal of the node, is calculated using the approximation given in Ref. [28]. Let

Vk and Uk, respectively, be the left and right eigenvectors of the adjacency matrix

of community k corresponding to λ∗k and normalized so that V T
k Uk = 1. Let (Vk)i

and (Uk)i denote the components of the vectors Vk and Uk corresponding to node i.

Then for Nk >> 1 and (Vk)i(Uk)i << 1, removal of node i leads to a change in λ∗k,

which is approximately given by [28]

∆λ∗k = −λ∗k (Vk)i(Uk)i. (3.8)

Similarly, we estimate the increase in the largest eigenvalue of community l, when

we consider adding node i to it to be

∆λ∗l =
(V T

l δAl)i(δAlUl)i
λ∗l

. (3.9)

Here, we assumed ∆λ∗l << λ∗l where λ∗l is the largest eigenvalue of the adjacency

matrix of community l before addition of node i. In Eq. (3.9), δAl is the pertur-

bation applied to the adjacency matrix of community l due to the addition of node

i, Vl and Ul are the left and right eigenvectors of the adjacency matrix of commu-

nity l corresponding to λ∗l that satisfy the normalization condition V T
l Ul = 1, and

(V T
l δAl)i and (δAlUl)i denote the components of the corresponding vectors corre-

sponding to node i. Note that δAl is of dimension (Nl+1)× (Nl+1), because when

we consider moving node i to community l, the number of nodes in community l

becomes Nl + 1. All the elements of δAl are zero except for the row and column

corresponding to node i, which has 1’s at appropriate locations corresponding to

in-links and out-links to and from node i to nodes in community l. The vectors Vl
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and Ul are (Nl + 1) dimensional column vectors, with the entry corresponding to

node i being zero. Thus, for Nk, Nl >> 1, the estimated change in the value of the

spectral cohesion Λ, given by Eq.(3.5), due to the movement of the node is

∆Λ =
∆λ∗k

λ∗k

+
∆λ∗l

λ∗l

. (3.10)

The above time-saving scheme is especially useful for large networks. The larger the

network, the better the perturbation theory in estimating the change in the spectral

cohesion.

Because we use a simulated annealing approach, our method for finding com-

munities is more computationally demanding than many methods that have been

proposed that are based on structural definitions of communities. Our goal here,

however, is not to introduce the most efficient algorithm for finding community

structure, but rather to test the degree to which a functional approach to finding

communities may be appropriate in certain cases. We leave the development of fast

algorithms that identify functional community structure for future work.

3.4.2 Construction of test networks with eigenvalue-based communi-

ties

In this section, we give methods for the construction of networks with eigenvalue-

based communities. We will subsequently use these networks for our numerical ex-

periments in Sec. 3.5.1. As preliminary preparation for explaining how we construct

networks with eigenvalue-based communities, we first note two results relating λ∗

to the topological properties of networks without communities [26].
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3.4.2.1 The effect of node in/out-degree correlations

Considering random directed networks without community structure, if the

network is characterized by a joint in/out-degree probability distribution P (din, dout),

then the expected value of the maximum eigenvalue is [26]

λ∗ = η〈d〉, (3.11)

where 〈d〉 := 〈din〉 = 〈dout〉, 〈...〉 denotes an average over the network nodes, and η

is the in/out-degree correlation coefficient,

η = 〈dindout〉/〈d〉2. (3.12)

Thus, in/out-degree correlation, η > 1 (anticorrelation, η < 1) increases (decreases)

λ∗. Note that in the absence of node in/out-degree correlation, we have η = 1 and

λ∗ ≈ 〈d〉.

In obtaining the estimate in Eq.(3.11), the network is imagined to be con-

structed by first randomly assigning each node values (din, dout) according to P , and

then randomly linking the nodes accordingly as described for the networks discussed

in the Appendix A.

3.4.2.2 The effect of directional degree assortativity

We now consider random directed networks with uncorrelated in/out node

degrees in the distribution P (din, dout) that are assortative by degree according to

the directed degree assortativity coefficient [26],

ρ = 〈douti dinj 〉e/〈d
out
i 〉e〈d

in
j 〉e, (3.13)
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Figure 3.2: An example of one term in the average 〈...〉e where d
in
j = 3 and douti =

2.

Figure 3.3: Illustration of a destination edge interchange.

where 〈...〉e denotes the average over all the edges from node j to node i (Fig.3.2),

but are otherwise random. In this case, the expected value of λ∗ is [26]

λ∗ = ρ〈d〉. (3.14)

Thus assortativity (corresponding to ρ > 1) increases λ∗, while disassortativity

(ρ < 1) reduces λ∗.

Here the network is imagined to be constructed in two stages [26]. First a

non-assortative and node degree uncorrelated network is randomly constructed (see

Appendix A). Such a network will have ρ ≈ 1 for large N . Next, to increase ρ to any

desired target value, we first randomly choose two edges, (j1 → i1) and (j2 → i2)

(see Fig.3.3). We then imagine that we interchange the destinations of these two

links, thus producing two new links, (j1 → i2) and (j2 → i1). If ρ increases, we

implement the change; if ρ decreases, we do not. We then randomly choose two new

links, and successively repeat this process until ρ approximately reaches its target

value.

Test networks : The above results can be used as a basis for the construction

of networks with eigenvalue-based community structure. For example, consider
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networks with two nominally equally sized communities. The communities can

have any ratio of within to between community links but they also have ηc or ρc

greater than one. Here ηc and ρc are defined by Eqs. (3.12) and (3.13) but with

consideration restricted to only those nodes and links that lie within a community

under consideration, and thus only using within community node degrees. That

is, we produce higher maximum eigenvalues for the communities by increasing the

within community in/out-degree correlation or directional degree assortativity. We

consider both directed scale-free and Erdős-Rényi type networks of these types. In

Sec. 3.5.1, we will use such networks in numerical experiments.

All the test networks of the type described above that are used in Section

3.5.1 have N = 1400 with two nominally equally sized communities. In our test

networks in Section 3.5.1, we keep 〈d〉I = 6 while changing 〈d〉X . By doing this

we make sure that the communities have same maximal values of directional degree

assortativity and node degree correlations within them as we change 〈d〉X . For the

scale-free networks, the maximal attainable ηc was approximately 2.12, while the

maximal attainable ρc was approximately 2.05. For the Erdős-Rényi type networks,

the corresponding maximal attainable values were approximately 1.16 for both ηc

and ρc.
1 In Section 3.5.1, we used these maximal situations such that both the

communities either have maximal ρc and ηc ≈ 1, or have maximal ηc and ρc ≈ 1. In

these situations, the values of λ∗k are substantially larger than would be obtained for

a random partition of the network into two equally sized communities. In addition,

1Formulas for estimating the maximum and minimum attainable degree correlations in large

directed Erdős-Rényi and scale-free networks are given in Appendix B.
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for the networks with maximal directional degree assortativity within communities,

in the eigenvalue plots in Fig. 3.1, we see two positive eigenvalues outside the cloud

of the rest of the eigenvalues even with 〈d〉I = 〈d〉X , indicating the presence of

two communities. More details on the methods of constructing test networks with

eigenvalue based communities are given in the Appendix A.

3.5 Results

In this section, we report results from using the functionally motivated defi-

nition of community structure proposed in this chapter. For comparison, we also

present results using the modularity method to find partitions in both artificial and

real networks.

3.5.1 Structural identification

Here we present results from applying our eigenvalue-based measure Λ and

modularity Q to divisions of test networks into two communities via the simulated

annealing procedure described in Section 3.4.1. Results for Erdős-Rényi type net-

works are shown in Fig. 3.4, while results for scale-free networks are shown in Fig.

3.5. Each data point in Figs. 3.4 and 3.5 represents an average over 20 random

network realizations.

Figures 3.4 (a) and 3.5 (a) show the spectral cohesion Λ versus 〈d〉X for three

different sets of network parameters [ρc maximized with ηc ≈ 1; ηc maximized with

ρc ≈ 1; and (ρc, ηc) ≈ (1, 1)] when Λ is maximized (plotted as solid triangles) and
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Figure 3.4: Erdős-Rényi type networks with N = 1400, 〈d〉I = 6 and two commu-
nities. (a) The average value of Λ function (Eq. 3.5) for the partitions obtained
by maximizing the spectral cohesion function and the modularity function. (b)
Average percent of nodes common between communities obtained by maxi-
mizing Λ and Q. (c) Average percent nodes of the labelled partition identified
by Λ and Q. Dark (black) colored curves are for the spectral cohesion function
while the light (green) colored curves are for the modularity function. Data
points represent averages over 20 simulated networks.
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Figure 3.5: Scale-free networks with N = 1400, 〈d〉I = 6 and two communities.
(a) The average value of Λ function (Eq. 3.5) for the partitions obtained by
maximizing the spectral cohesion function and the modularity function. (b)
Average percent of nodes common between communities obtained by maxi-
mizing Λ and Q. (c) Average percent nodes of the labelled partition identified
by Λ and Q. Dark (black) colored curves are for the spectral cohesion function
while the light (green) colored curves are for the modularity function. Data
points represent averages over 20 simulated networks.
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when Q is maximized (plotted as solid squares). Figures 3.4 (b) and 3.5 (b) show the

percent of nodes that are common between the Λ-based and the Q-based community

partitions for the three network parameter sets. Figures 3.4 (c) and 3.5 (c) show

the extent to which the Λ-based and the Q-based community divisions correspond

to the “labelled partition”. By the labelled partition, we mean the partition with

two equally sized communities into which we divide the nodes when we generate

random networks.

Referring to Figs. 3.4 (a) and 3.5 (a), we take the point of view that, essentially

by definition, the Λ-based divisions give the best functional communities. It is

notable from these plots that, although Q-based divisions give lower than optimal

Λ, the Q-division results for Λ are surprisingly close to optimal throughout the

whole range of 〈d〉X plotted. In contrast, Figs. 3.4 (b) and 3.5 (b) show that the

percent agreement on nodal divisions between the Λ-based and the Q-based divisions

can become substantial at large values of 〈d〉X , especially for the networks with ηc

maximized and with (ρc, ηc)≈ 1, while agreement is significantly better for networks

with ρc maximized.

Regarding the difference between Figs. 3.4 (a) and (c) and between Figs.

3.5 (a) and (c), we expect both community finding methods to yield imperfect

identification of the labelled partition. For example, this could result because it

could happen that, in the random realization of a given network, some nodes with

low within-community degrees in the labelled partitions may end up having many

links with nodes in the other community or may get linked to high degree nodes

in the other community. In the test networks, such nodes would reasonably be
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classified as belonging to the community to which they were not originally assigned

in the labelled partition.

3.5.2 Networks with biased links between communities

Here, we consider directed networks with two communities of equal sizes. We

construct these networks so that, when the directionality of links is neglected, we

get undirected random networks without communities. To do this, we start with 32

nodes that are divided into two groups of equal sizes, where each group represent

a community. We then create, say, y number of undirected links between the two

groups of nodes and y/2 randomly oriented directed links within each group. All

the undirected links between the two groups are made directed with a bias such that

more links point from one group of nodes to the other than the other way around.

Thus, when we have x directed links pointing from one group to the other, y − x

directed links point in the opposite direction. Varying x gives us networks with a

varying degree of community strength. The results for these networks corresponding

to N = 32 and N = 64 are shown in Fig.3.6. At low values of x, when we have

more bias, the spectral cohesion does better than modularity. At relatively higher

values of x, both functions give similar results. We find that as we increase the

number of links in the networks, by increasing the value of y, both the methods

show improvement.

Comparing Fig. 3.6 (a) (N=32) and Fig. 3.6 (b) (N=64), we see that in-

creasing the size of the networks keeping the average degree constant, the relative
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advantage of the Λ-based partitions as compared to the Q-based partitions increases

substantially.

Thus, we see that when functional communities are very strongly dependent

on link directionality, modularity may substantially under-perform compared to the

spectral cohesion method. We note, however, that so far we have not been successful

at finding examples of real networks with this property.

3.5.3 Discovering communities in real world networks

To test how well our method finds communities in real networks, we used the

networks of political blogs [31] and jazz bands [37]. The political blogs network is a

directed network of weblogs on US politics during the 2004 US presidential elections.

The edges are the hyperlinks connecting two blogs. The data for the network of jazz

bands was obtained from The Red Hot Jazz Archive digital database. The network

consists of bands that performed between 1912 and 1940. In this network, two bands

are connected if there is a musician that played in both the bands.

The political blogs network has 1224 nodes with 〈d〉 = 15.6. The eigenvalue

plot of the adjacency matrix of this network shows two positive real eigenvalues well

separated from the cloud of the rest of the eigenvalues (Chap. 2). This implies that

there are two well defined communities in this network. The communities apparently

correspond to left/liberals and right/conservatives. We used our simulated annealing

procedure to divide the network into two communities by maximizing Λ and Q.

Results are shown in Table 3.1, which also gives the percent of nodes common
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Figure 3.6: Percent of the labelled partition identified by Λ and Q maximization
vs ‘x’ for the computer generated directed networks as explained in the text.
(a) Networks with 32 nodes. (b) Networks with 64 nodes. All data points
are averaged over 100 network realizations. The inset in figure (a) shows a
particular network realization with N = 32, y = 100 and x = 10. For the sake
of clarity, the 10 directed links that point from community B to community A
are given darker shade. Note that, for the 32 node networks with y = 100 and
x = 0 and the 64 node networks with y = 200 and x = 0, our Λ-based method
does not give 100% identification of the labelled partition. This is because
there are a few nodes in our random network realizations that are not part
of the giant strongly connected component of either of the communities. For
these cases, as we increase the density of links in the networks (y = 150 for the
32 node networks and y = 300 for the 64 node networks), the probability of
such nodes becomes much smaller and the identification rate for the Λ-based
method at x = 0 becomes close to 100%.

61



for the spectral cohesion method and the modularity method. The values of Λ

for the spectral cohesion method and the modularity method are very close. We

believe that this is due to the fact that the two communities have giant strongly

connected components that are well separated from each other. Of the nodes that

belonged to the giant strongly connected components of the network, there were

97.5 percent nodes common between the two community finding methods. In this

network, there were 431 nodes that did not belong to any community’s strongly

connected component. Thus, in the spectral cohesion method, they were assigned

based on the number of links such nodes had to the nodes in the giant strongly

connected components of the communities.

The network of jazz bands is an undirected network with 198 nodes and 〈d〉 =

27.7. The eigenvalue plot of this network shows three positive eigenvalues that are

well-separated from the bulk of the other eigenvalues, thus indicating three strong

communities (Chap. 2). Two strong communities in this network correspond to

predominantly the white bands and the black bands, which shows racial segregation.

The community of black bands divides further into two groups, the bands that

performed in two major US cities, Chicago and New York [37]. Figure 3.7 shows the

comparison between the partitions obtained by maximizing Λ and Q. We see that

for this network, both the methods yield nearly the same network divisions (also see

Table 3.1).
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Figure 3.7: Comparison between the spectral cohesion method and the modularity
method for the jazz bands networks. Different shapes of the nodes correspond
to communities obtained by maximizing Λ, while different colors correspond
to communities obtained by maximizing Q.

Optimizing Λ Optimizing Q

Network Λ Q Λ Q % common nodes

Political blogs 6.817 0.416 6.816 0.431 94.7

Jazz bands 10.095 0.441 10.084 0.444 96.0

Table 3.1: Function values and percent nodes common for the real networks con-
sidered in this section.

3.6 Conclusions

In this chapter, we explored the utility of functional rather than structural

definitions of community structure. Specifically, as an example, we considered a

definition of communities appropriate to cases where the communities are thought

to form to enhance synchronizability and/or robustness to random node failures.

Our method is based upon our introduction of the spectral cohesion function Λ

(Eq. (3.5)) and is motivated by the role played by the maximum eigenvalue of the

adjacency matrix, λ∗, in network functions.

63



Our study finds, perhaps, the unexpected result that for partitions obtained

by maximizing modularity, the spectral cohesion, Λ, values are often close to op-

timal (Figs. 3.4 (a) and 3.5 (a)) even when the modularity maximized partitions

were substantially different from the Λ-maximized partitions (Fig. 3.4 (b) and Fig.

3.5 (b)). Although our eigenvalue based method is computationally intensive, our

analysis shows that [except when communities are strongly dependent on link di-

rectionality (Sec. 3.5.2)] communities obtained using the modularity-based method

often do quite well when evaluated by a functional measure.
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Chapter 4

Epidemic Spreading in Dynamic Social Networks

4.1 Introduction

The spread of communicable diseases in human population is a problem of

major concern. Significant effort and resources are being devoted to understanding

the factors that govern the spread of infections. Modeling is widely employed for

this purpose. Using mathematical models, we can estimate quantities such as: the

number of individuals getting infected and thus requiring treatment; the maximum

number of people needing care at any given time; and the effectiveness of quarantine,

vaccination or other control measures.

As a tool in understanding disease spreading phenomena, network based ap-

proaches can be used to model a wide variety of infection processes. Networks

provide the underlying topology on which epidemics spreads. In a network repre-

sentation, individuals are nodes connected by links that represent possible contacts

through which an infection can propagate from an infected individual to a suscep-

tible individual.

The importance of the contact pattern of individuals on epidemic spreading

has long been acknowledged by researchers [57–59] (see Ref. [60] for a review of use of

networks in epidemiology). Apart from the problems of defining and documenting

contacts that can lead to transfer of infection, and the construction of epidemio-
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logically significant networks from the collected data, it is believed that networks

represent a more realistic interaction pattern in many cases than a random mixing

model. In the absence of actual contact networks for the entire population, simulated

and semi-simulated networks are generally used. The advantage of using networks

in epidemic spreading is that we can take into account heterogeneity in human con-

tacts. Using networks, the effects of other key aspects of connection patterns, such

as correlations in contact patterns can also easily be considered. With the growth

of the field of ‘complex networks’, there has been a surge in the number of papers

that studied infection spreading on networks with non-trivial properties [61–68].

Typically, the underlying network in epidemic spreading models is considered

to be static. One is then interested in the effect of network structure on disease

propagation. While the static network assumption may work well for cases where the

topology of the network does not change significantly during the course of spreading

process, and it may even be a good approximation in certain cases where contacts

are not fixed, in general, we cannot neglect the fact that real human contacts evolve

over time. Depending on the disease and the type of contacts we are interested in,

the time scales for the rate of change of human contacts and the spread of epidemic

may vary. In recent years, there has been an increasing focus on disease spread on

networks for which contacts change over time [69–72]. These networks for which the

topology changes with time are referred to as dynamic networks.

In the epidemiological literature, dynamic models where contacts are con-

stantly being formed and dissolved have been considered. Using models based on

partnership formation [67,73–76], one can study the effect of dynamic contacts due
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to mixing. Although these models ignore most of the network features, the effects of

concurrency of partnerships, degree based assortative or disassortative mixing, clus-

tering, etc. can be included [67, 74]. These models can be understood as departure

from random mixing models in which instantaneous contacts are assumed and the

effects of local structures are absent. The above models do not take into account the

contact networks behind partnership formation and assume that formation occurs

at random. To overcome this ‘drawback’, a model that considers monogamous part-

nerships defined by the underlying network was considered by Eames et al. [77]. In

an another model, Volz and Meyers [72] considered susceptible-infective-recovered

(SIR) model on a full network in which each individual’s contacts change in time.

They provided a low-dimensional system of deterministic equations to predict dis-

ease transmission. In their model, referred to as the neighbor exchange model, the

dynamics of partnership is implemented through edge swapping between two al-

ready connected pairs of nodes. Using a mixing parameter, their model interpolates

smoothly between static network models and mass-action models.

Another class of dynamic network models that has been considered in the

complex network community are the so called adaptive network models. In these

models, a network’s contact change in response to the disease. Gross et al. [69]

studied susceptible-infective-susceptible (SIS) dynamics on adaptive networks where

with a given constant probability, susceptibles break their links to infected neighbors

and reconnect their broken links to randomly chosen susceptibles. With changing

rewiring rates, their model shows interesting behavior where bistable and oscillatory

states are possible. Zanette et al. [71] also considered SIS dynamics on adaptive
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networks where the susceptible-infected links are broken with a constant probabil-

ity. In different versions of their model, the broken links are either removed or

the susceptible nodes reconnect their broken links to randomly chose nodes in the

network. In the later version of their model, they also find regions of bistability

and other dynamics not found in static network models. Shaw et al. [70] analyzed

susceptible-infective-recovered-susceptible (SIRS) dynamics on adaptive networks.

In their model, susceptibles, after breaking their links to infected neighbors, recon-

nect their broken links to randomly chosen non-infected nodes in the network. This

model is also characterized by the presence of bistability of endemic and disease free

states. In this case, the addition of recovered class and resusceptibilty rate allows

control of the width of bistable region. They also found that fluctuations of the

endemic state near the bifurcation point in SIRS models were significantly larger

than in SIS model.

In our study of epidemic spreading, we consider a dynamic network model

which has additional features compared to the simpler models discussed above. Al-

though slightly more complicated, our model tries to capture some of the essential

features found in the dynamics of real networks. In the model studied in this chap-

ter, there are two types of processes that can lead to change in network topology,

social dynamics and evasion. Social dynamics result in the constant evolution of

contacts which is independent of the disease status of the nodes, while evasion causes

susceptible nodes to avoid infected nodes. We study discrete time SIR model on

such a dynamically changing network where at any given time, the nodes could be in

one of the three possible states, namely, susceptible (S), infectious (I) and removed
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(R). Here, R represents the state of the node when it is considered removed from

the network and no longer takes part in any kind of dynamics. We note that this

is different from the case in which R refers to recovered nodes who still maintain

connections but can no longer become infected. In our model, we consider the case

of imperfect evasion where the susceptibles can not avoid infecteds completely when

they form new connections. This is in contrast to other models [69–71] where, af-

ter the susceptible-infected links are broken, the broken links are either removed or

susceptible nodes reconnect the broken links to non-infected nodes in the network.

We also study the case of hidden infection on the dynamic network model

discussed above. Hidden infection occurs if there is a period after an individual

contracts an infection during which he or she is infectious but asymptomatic. Thus,

susceptibles have no way of avoiding infected individuals in such a state. In medical

terminology, occult infection refers to an infection which presents no clinical signs or

symptoms. In our model, we are interested in the case where the infected individual

while being asymptomatic, is infective. In dynamic network models, hidden infection

effects dynamics on and of the network when we have evasion. The effectiveness of

disease intervention measures could also get degraded when they are based on models

that do not incorporate hidden infection for diseases with such characteristics.

In the next section, we describe our dynamic network model that takes into

account change in network topology due to both social dynamics and evasion. We

also describe the model that incorporates hidden infection. In Section 4.3, we give

a mean-field analysis for the model without hidden infection to determine the value

of transmission probability above which the disease infects a finite fraction of the
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population in the limit of infinite system size. In Section 4.4, we give results from

computer simulation of our models. Finally, in Section 4.5, we discuss the implica-

tions of our findings.

4.2 Description of the models

In our analysis, we imagine all individuals begin in the susceptible state. We

then introduce the disease in the network by randomly choosing an individual to

infect. Our goal is to characterize the dynamics which follow after the disease is

introduced in this manner. Below, we give description of the processes involved in

our dynamic models. The set of parameters used in our models are summarized in

Table 4.1.

4.2.1 Model A: A dynamic network model with both social dynamics

and evasion

As stated above, we consider the acyclic process S → I → R, where R repre-

sent the state of the node where it is considered removed from the network. In our

simulations, the dynamics occur in discrete time steps. At any given time step, the

total number of nodes in various states is fixed, i.e., NS(t) + NI(t) + NR(t) = N ,

where N is the number of nodes in the network we started with, NS(t) is the number

of susceptible nodes, NI(t) is the number of infectious nodes and NR(t) is the total

number of removed nodes in the network at time step t. The total number of active

nodes in the population is given by NS(t) +NI(t) ≤ N .
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In our model, there are three dynamical processes that are occurring on the

network: the evasion dynamics, the social dynamics, and the disease dynamics.

At the beginning of each time step, evasion processes and social dynamics occur

together, followed by the disease dynamics. The evasion process and the social

dynamics constitute the topological dynamics of the network in which nodes delete

their old links and form new connections. Due to the evasion of infected individuals

by susceptibles, each existing S − I link in the network is deleted with a constant

probability, η1. Due to social dynamics, we assume that all the nodes delete their

links independent of their disease status. To account for this, each existing link in the

network is deleted with a constant probability, φ. Since in our model, both evasion

process and social dynamics happen together, each S − S and I − I link is deleted

with probability φ while each S−I link is deleted with probability α = η1+(1−η1)φ.

All the nodes have links deleted via the above process search for new partners.

This also include nodes from previous time steps that have deleted links due to other

reasons discussed below. In our model, individuals attempt to maintain the number

of connections specified by their desired degrees (which never changes). Thus the

number of partners that an individual seeks is equal to the number of its deleted

links (henceforth referred to as unmatched links). While searching for new partners,

we assume that the unmatched links mix randomly and any unmatched link has

an equal chance of meeting any other unmatched link, independent of the disease

status of the nodes they belong to. However, we differentiate between unmatched

links meeting each other and actually forming a new link. When unmatched links

of nodes with same disease status meet (i.e., a potential S − S or I − I link), they
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form a new link with probability 1. When unmatched links of nodes with different

disease status meet (i.e., a potential S − I link), due to the evasion of infected

individuals by the susceptible individuals, the link is formed with probability 1−η2,

where η2 is a second evasion parameter. This is the case of imperfect evasion where

the susceptible nodes avoid getting infected by deleting their links with the infected

neighbors but while searching for new partners, the susceptible nodes again have

the chance of forming links with infected nodes. When the S− I pair of unmatched

links is rejected (with probability η2), the unmatched links of the rejected pair move

to the next time step to search for partners.

To keep the dynamics simple, in our simulations we allow the nodes to form

self loops and multiple edges. We interpret self loops as reduced interaction of the

nodes with other nodes in the population while multiple edges could reflect increased

interaction between two nodes.

In each time step, the topological dynamics described above is followed by the

disease dynamics. Disease spreads from an infected node to a susceptible node along

each existing S− I link with transmission probability λ. Thus, the probability that

the susceptible node i with di,I infected neighbors at a particular time step become

infected in that time step is 1 − (1 − λ)di,I . Once a susceptible node gets infected,

while being infective, it remains in infected state for a fixed period of time, say τ ,

after which the node moves to the removed class. The nodes in the removed class

never change their disease status nor do they take part in topological dynamics.

When a node moves to the removed class, the active nodes in the network (nodes

with disease status S and I) delete their links with the removed node. These active
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λ Probability of disease transmission along each S − I link.

φ Social dynamics parameter. Probability with which, independent of the
disease status of the nodes, each existing link in the network is deleted.

η1 Evasion parameter 1. Probability with which an already existing S− I link
in the network is deleted.

η2 Evasion parameter 2. Probability with which a potential S − I link is
rejected.

τ1 Hidden infection period. This is the number of time steps for which a node
is infective but is not known to have the disease.

τ2 The number of time steps for which a node is infective and is known to have
the disease.

τ Total period of infectivity. τ = τ1 + τ2

Table 4.1: Parameters used in the models studied in this chapter. The probabilities
are per unit time step.

nodes then have unmatched links that search for new partners in the next time step.

4.2.2 Model B: A dynamic network model with social dynamics, eva-

sion, and hidden infection

Here we extend the model described above to allow for hidden infection. When

a susceptible node gets infected, prior to moving to state I, it moves to state IH . In

state IH an infected individual does not show symptoms of the infection and thus is

not known to have the disease. Although nodes in this class are asymptomatic, they

are infectious and can infect the susceptible nodes they are connected to. Thus,

the risk of infection spreading in the population increases because the susceptibles

can not avoid nodes with hidden infection. For this model, the flow of individuals

among various disease classes can be depicted as follows:
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S ✲ IH ✲ I ✲ R

In the hidden infection model, after spending a fixed amount of time, τ1, in state

IH , the infected nodes move to state I where they show symptoms of the disease

and are also infective. For this model, the amount of time the nodes spend in state

I is represented by τ2. The total period of infectivity, τ , is thus equal to τ1 + τ2.

In our model, we assume that the nodes in states I and IH infect their susceptible

neighbors with the same probability λ.

For the purpose of topological dynamics, we treat nodes in states S and IH

equally. Thus, during the link deletion process, S − S, IH − IH , S − IH and I − I

links are deleted with probability φ, while S − I and IH − I links are deleted with

probability α. While forming new links, when a potential new link is either S − S

or IH − IH or S − IH or I − I, the new link is formed with probability 1. When the

potential new link is either S − I or IH − I, the new link is formed with probability

1− η2.

4.3 Mean-field analysis for Model A

Before we present simulation results, we give a mean-field analysis explaining

the behavior of the model described in Sec. 4.2.1. We are interested in finding the

transmission probability λ̂, such for λ ≥ λ̂, a significant portion of the population

gets infected. More specifically, we want to find the minimum value λ̂ such that a

finite fraction of the population gets infected in the limit of infinite system size. We

first present analysis for networks in which each node has degree d0. We then discuss
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how the results can be extended to networks with other degree distributions. We

assume that networks are large and sufficiently sparse so that loops can be neglected.

In our analysis, we focus on the spreading process during the early stages of the

epidemic when the number of susceptible nodes is large.

Before analyzing our model, we first review the case of infinite random static

networks with arbitrary degree distributions in cases where loops can be neglected

[47]. Let P (d) denote the probability that a randomly chosen node in the network

has degree d. Let Q(d) denote the probability density function for the degree of a

node at the end of a randomly chosen edge. For random networks, the distribution

Q(d) is given by

Q(d) = d P (d)/〈d〉, (4.1)

where 〈· · · 〉 denotes the expectation over the distribution P (d).

For the SIR model on static networks, assuming that we start with one in-

fected node, we want to find the size of the infected component connected to that

individual. Let zn be the expected number of neighbors getting infected in n steps,

we then have

zn+1 = λzn
∑

d

(d− 1)Q(d) = λ
〈d2〉 − 〈d〉

〈d〉
zn. (4.2)

The critical value λc above which the disease has non-zero probability of propagating

across the system is given by zn+1/zn = 1. Thus, for the SIR model on static

networks,

λc =
〈d〉

〈d2〉 − 〈d〉
. (4.3)

To analyze the dynamic network model proposed in this chapter, we modify
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the above method. Since we start with a sparse network and new connections in our

model are formed randomly, we assume that during the early stages of the epidemic,

the dynamic network still has locally tree like structure. In the following analysis,

we set the period of infectivity of nodes, τ , to be one time step.

We first consider the spreading process on a dynamic large sparse network

where each node has degree d0. Similar to the case of static networks discussed

above, to get an estimate of λ̂ in the mean-field approximation (i.e., neglecting fluc-

tuations), we assume that at the transition point, the expected number of infected

individuals at time step t is equal to the number of infected individuals at time

step t − 1. We expect this approximation to be true during the early stages of the

epidemic when the number of infected individuals is small compared to the initial

size of the population.

Let MSI(t) be the number of S − I links in the network at the beginning

of time step t. During the topological dynamics, each S − I link is deleted with

probability α. Thus, the number of S − I links that get deleted will be binomially

distributed with probability α. In the mean-field approximation, we assume that

the expected number of S− I links that get deleted is αMSI(t). Let I(t− 1) denote

the number of nodes that got infected in time step t− 1. When the infected nodes

from time step t − 2 move to the removed class in time step t − 1, the unmatched

links of newly infected nodes in time step t − 1 that were linked to infected nodes

from time step t − 2, search for partners in time step t. Since we assumed tree

like structure, the number of such unmatched links is equal to I(t − 1). Thus, the

number of unmatched links of infected nodes that will search for partners in time
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step t is

LI = αMSI(t) + I(t− 1). (4.4)

Similarly, the number of unmatched links of susceptible nodes is

LS = αMSI(t) + 2φMSS(t) + η2x(t− 1) + y(t− 1), (4.5)

where MSS(t) is the number of S − S links in the network at the beginning of time

step t. In the third term, x(t− 1) is the number of S − I pairs of unmatched links

that meet while searching for partners in time step t− 1. Out of these, a fraction η2

of them get rejected. The unmatched links of susceptible nodes from those rejected

pairs search for partners in time step t. Finally, the term y(t− 1) accounts for the

fact that when infected nodes from time step t − 2 move to the removed class in

time step t−1, the susceptible nodes previously connected to them have unmatched

links looking for partners in time step t. Here, the time dependence of variables LI

and LS is implied.

When forming new connections, we assume that the unmatched links mix ran-

domly. To keep the dynamics simple, in our simulations, the nodes that disconnected

their links from each other in a particular time step are allowed to create new links

in the same time step. We also allow for self-loops and multiple edges. Under these

assumptions, when we have integer number of unmatched links seeking partners (as

happens in computer simulations), say L̃I and L̃S, the probability of x̃ number of

susceptible-infected pairs meeting, when L̃I + L̃S is even, is given by

2x̃ L̃I ! L̃S!
(L̃I+L̃S)

2
!

x̃! L̃I−x̃
2

! L̃S−x̃
2

! (L̃I + L̃S)!
. (4.6)
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One can show that over the above distribution, the expected value of x̃ is

L̃IL̃S

L̃I + L̃S − 1
. (4.7)

Similarly, when L̃I + L̃S is odd, one can show that the expected value of x̃ is

L̃IL̃S

L̃I + L̃S

. (4.8)

We assume that the number of unmatched links seeking partners is large and ap-

proximate the expected number of susceptible-infected unmatched links meeting

together, x(t), as

LILS

LI + LS

. (4.9)

Of the x(t) pairs of susceptible-infected unmatched links that meet, (1− η2)x(t) is

the number of pairs that actually form link, while η2x(t) pairs get rejected. Thus,

the number of new S − I links that get created is

(1− η2)
LILS

LI + LS

. (4.10)

Since we assume that the number of infected nodes is small and that the networks

are large, this means that MSS(t) is large. Thus, during the early stages of disease

spreading, for φ > 0, at the transition point, LI and αMSI(t)+η2x(t−1)+y(t−1) are

much smaller than φMSS(t). Neglecting terms of higher order, we get the expected

number of new S − I connections in time step t as

(1− η2)
[

αMSI(t) + I(t− 1)
]

. (4.11)
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After the topological dynamics, the total number of S − I links at time step t is

(1− α)MSI(t) + (1− η2)
[

αMSI(t) + I(t− 1)
]

. (4.12)

For each of these susceptible-infected links, the probability of disease transfer is λ.

Thus, the expected number of new infections is

I(t) ≈ λ
[

(1− αη2)MSI(t) + (1− η2)I(t− 1)
]

. (4.13)

Assuming tree like structure of the network, we have, for large networks, MSI(t) =

(d0 − 1)I(t− 1). At the transition point, we assume I(t) ≈ I(t− 1) giving us

λ̂ ≈
1

(d0 − 1)(1− αη2) + (1− η2)
. (4.14)

In terms of φ, η1 and η2, we have

λ̂ ≈
1

(d0 − 1)(1− η2φ− η1η2 + η1η2φ) + (1− η2)
. (4.15)

We derived the above expression assuming that the degrees of nodes are constant.

For large networks with arbitrary degree distribution, we can arrive at the same

expression as above but with d0 − 1 in the denominator replaced by 〈d2〉−〈d〉
〈d〉

. We

expect this assumption to work for cases when the degree distribution of the network

is not highly skewed, because we assumed that the degree distribution of the network

does not change during the early stages of the spreading process. In the case of highly

skewed degree distributions, we expect the high degree nodes in the network to get

infected early on [78], thus changing the degree distribution of the active nodes in

the network.

In Eq. (4.15) (τ = 1 and φMSS large), we consider the following special cases:
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• η1 = 0

λ̂ =
1

(d0 − 1)(1− η2φ) + (1− η2)
(4.16)

In the absence of evasion by neighbors, λ̂ increases with increasing φ when

η2 > 0.

• η2 = 0

λ̂ =
1

d0
(4.17)

In the absence of evasion of infected individuals by the susceptible individuals

during pair formation, the transition point is independent of φ and η1. Note

that this expression differs slightly from Eq. (4.3) because active nodes in the

network reconnect their links to removed nodes to form new connections.

4.4 Simulation results

We simulated the models described in Section 4.2 on various types of networks

with N = 105 and 〈d〉=20. At the beginning of each time step, we start by infecting

a randomly chosen node in the population and study the evolution of the system’s

dynamics. In the results given below, we are primarily concerned with the location

of epidemic transition with varying system parameters. The size of the epidemic is

measured by the final number of R individuals in the population after the disease

has died out.
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Figure 4.1: Average fraction of removed nodes of the network versus the trans-
mission probability λ with varying social dynamics parameter (φ) for an
Erdős-Rényi network with N = 105 and 〈d〉 = 20. The values of other
parameters are η1 = 0.4, η2 = 0.4 and τ = 1. Each data point is an average
over 500 simulation runs for one network realization.

4.4.1 Effect of varying social dynamics and evasion (Model A)

For the results presented in this section we set period of infectivity, τ , to be one

time step. Figure 4.1 shows the average fraction of removed nodes (after the disease

has died out) versus transmission probability, λ, for an Erdős-Rényi network. Curves

for various values of the social dynamics parameter (φ) have been plotted with fixed

values of η1 and η2 (both set to 0.4). For the sake of comparison, results from

simulation on a static network are also shown. For the dynamic network model, the

arrows on the horizontal axis in Fig. 4.1 show the prediction for the transition point

(λ̂) using Eq. (4.15) but after taking into account the effect of degree distribution.

For the static network, the prediction is given by Eq. (4.3). The figure shows that
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our simplified mean-field prediction for the onset of epidemics in dynamic networks

agrees very well with the simulation results.

Figure 4.1 shows that when the social dynamics parameter φ is increased

the value of transmission probability at which epidemics first occur also increases.

Alternately, note that for a given value of transmission probability λ, as φ increases,

fewer individuals in the population get infected. This result is contradictory to the

intuition that with increased mixing, the disease has a better chance of spreading.

In our model, we get this counter-intuitive result because of the presence of the

second evasion parameter, η2. In the model, when φMSS is large and η1 = η2 = 0,

mixing due to social dynamics has no effect on epidemic spreading because τ = 1.

For a given value of the evasion parameter η1 < 1, as φ increases, a larger number

of S − I links get deleted due to social dynamics but as the unmatched links of

those infected nodes seek new partners, they get rejected with probability η2 (when

η2 is non-zero), leading to a reduction in the number of S − I links through which

the disease can spread. Thus, for τ = 1, when η2 is non-zero, increasing the social

dynamics parameter φ actually serves to inhibit the spread of the disease through

the population.

Next we examine the case in which φ is small (thus we have a small value

of φMSS) (Fig. 4.2). For this case, we conduct simulations starting with φ = 0

and increasing φ. As we increase φ, the value of λ̂ first decreases then increases.

To understand this, consider the case when φ = 0. In that case, the number of

unmatched links of S and I that seek for partners are of same order. Thus, the

unmatched links of I have a good chance of forming I− I links leading to a reduced
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Figure 4.2: Average fraction of removed nodes of the network versus the trans-
mission probability λ with varying social dynamics parameter (φ) for an
Erdős-Rényi network with N = 105 and 〈d〉 = 20. The values of other
parameters are η1 = 0.4, η2 = 0.4 and τ = 1. This figure shows results for low
values of φ. Each data point is an average over 500 simulation runs for one
network realization.

number of S − I links. Further, as φ is increased from zero, more unmatched links

of S nodes are available to connect with unmatched links of I nodes to form disease

transmitting pairs, thus leading to a decrease of the transition value. As φ increases

further and φMSS becomes large, an increase in λ̂ occurs due to the reason explained

in the preceding paragraph. We also note that, as expected, our prediction does not

work well for the case when φMSS is small, although it works very well for other

values of φ.

Having explored the role of the social dynamics parameter, φ, we now study

the effect of varying evasion parameters (η1 and η2) with fixed φ(= 0.1) (Fig. 4.3).

The red, green and dark blue curves show the results for a fixed value of η1(= 0.4).
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Figure 4.3: Average fraction of removed nodes of the network versus the transmis-
sion probability λ for fixed social dynamics parameter (φ = 0.1) for an
Erdős-Rényi network with N = 105 and 〈d〉 = 20. The period of infectivity,
τ , is equal to 1. Red, green and dark blue curves are for η1 = 0.4 while dark
and light blue curves are for same values of η2(= 0.6) but different η1. Each
data point is an average over 500 simulation runs for one network realization.

As expected, as η2 increases, the transition point also increases and disease spread

is inhibited. Dark and light blue curves show the effects of increasing η1 for a fixed

value of η2(= 0.6). For the dynamic network model, the arrows on the horizontal

axis correspond to the prediction from Eq. (4.15) after taking into account the effect

of degree distribution, and show good agreement with the transition observed in the

simulations. The grey colored curve in Fig. 4.3 is for the case η1 = η2 = 0 and shows

that epidemic transition for our dynamic network model in this case is smaller than

that for a static network. This is due to the reconnection of the unmatched links of

I nodes, formerly connected to R nodes, to other active nodes in the network.

In Fig. 4.4 we show simulation results for a scale-free network with the degree
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Figure 4.4: Average fraction of removed nodes of the network versus the trans-
mission probability λ with varying social dynamics parameter (φ) for a
scale-free network with N = 105, 〈d〉 = 20, γ = 2.5 and maximum degree
= 1400. The values of other parameters are η1 = 0.4, η2 = 0.4 and τ = 1. Each
data point is an average over 500 simulation runs for one network realization.

exponent, γ, equal to 2.5, N = 105, 〈d〉 = 20 and maximum degree = 1400. For the

scale-free networks, as is well known for the case of static networks, the transition

point is lower than that in Erdős-Rényi networks with same average degree.

To demonstrate the range of applicability of our mean-field predictions, in

Fig. 4.5 we plot λ̂ versus φ for both simulations and predictions (Eq. (4.15)). In

the system, we define the transition point as the minimum value of λ for which a

macroscopic number of nodes get infected (i.e., the epidemic size is a finite fraction

of N as N → ∞). We used this to define λ̂ in simulations as the value of λ for which

the average fraction of R nodes, after the disease has died out, become 0.001. This

value of the threshold is taken in order to calibrate the results for static networks
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Figure 4.5: λ̂ versus social dynamics parameter (φ) for an Erdős-Rényi network

with N = 105 and 〈d〉 = 20. The values of other parameters are η1 = 0.4,
η2 = 0.4 and τ = 1. The dashed line at the bottom shows the prediction for
the epidemic transition for static networks.

to the value given by the prediction in Eq. (4.3). The figure shows that predictions

for the dynamic network model agree very well with simulations as long as φ is not

very small.

4.4.2 The case of hidden infection (Model B)

Here we give results for the case of an epidemic with hidden infection on a

constant degree network. Newly infected nodes in this case do not show any sign of

disease and thus are not identifiable. This means that, the newly infected nodes can

not be alienated by susceptible nodes. Thus, for a given value of the transmission

probability, we expect the epidemic to infect a higher number of nodes compared

to the case when we do not have hidden infection. Fig. 4.6 shows the results with
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Figure 4.6: The case of hidden infection. Average fraction of removed nodes of the
network versus the transmission probability λ with varying hidden infec-

tivity period (τ1) for fixed total infectivity, τ = 5, for a constant degree

network with N = 105 and d0 = 20. The values of other parameters are
φ = 0.2, η1 = 0.4 and η2 = 0.4. Each data point is an average over 500
simulation runs for one network realization.

varying hidden period of infectivity (τ1) but fixed total period of infectivity (τ)

which was set to five time steps. We fixed other parameters of the dynamic network

model as: φ = 0.2, η1 = 0.4 and η2 = 0.4. As expected, with increasing τ1, the

transition point shifts towards lower values of λ. For the chosen parameters, when

τ1 = 0, the transition point is larger than the case for a static network but for τ1 = 5

the transition point in dynamic network is smaller than the static network.
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4.5 Discussion and conclusions

Incorporating the effects of changing network topology due to disease inde-

pendent mixing (social dynamics) as well as disease evasion makes the modeling

more complicated but better able to capture important features of disease spread

across social networks. In our dynamic network model with both social dynamics

and evasion (Model A), we find that the value of transmission probability at which

the epidemics first occurs increases with increased mixing. In other words, as social

mixing increases, disease spread is inhibited. This occurs due to the avoidance of

the infected individuals by the susceptible individuals when new pairs are formed

(η2 > 0). In the model studied, for τ = 1, disease independent mixing by itself has

no effect on the spread of disease, the social dynamics only become important in

the presence of evasion dynamics.

We also studied a model incorporating another class of infective individuals,

IH , who are infectious but show no signs of infection (Model B). In static networks,

class IH has no effect on epidemic spreading. In the dynamic network models, the

addition of the IH class has a large effect in the presence of evasion dynamics. As

shown in the results, if network connections evolve on the timescale of disease trans-

mission, it becomes necessary to include this new class of infectives when studying

a disease with such characteristics.
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Appendix A

Generation of Networks with the Eigenvalue Based Communities

A.1 Scale-free networks with nodal in/out-degree correlation within

communities

To generate these networks, we start by dividing the nodes into two equally

sized communities (labelled by k = 1, 2). For nodes in community k, we then

generate two degree sequences corresponding to the in-degrees (dini ) and the out-

degrees (douti ), according to the power law degree distribution, P (d) ∝ d−γ, by using

the formula Eq. (2.14). For the test networks used in Chap. 3, we used γ = 2.5.

These Nk numbers, where Nk is the number of nodes in community k, corresponding

to both the degree sequences are assigned randomly to the nodes in community k.

Since these numbers are assigned independently at random, dini and douti of the nodes

are uncorrelated. We perform this procedure for each of the communities, separately.

For each of the dini for node i, we then randomly divide dini into two compart-

ments,

dini = (dini )I + (dini )X , (A.1)

choosing 0 ≤ (dini )I ≤ dini from a binomial distribution. Here the subscripts I and

X signify internal and external, and (dini )I signifies the number of links going to

node i from nodes in its own community, while (dini )X signifies the number of links
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going to node i from nodes that are not in its community. In addition, we perform

a similar decomposition for douti ,

douti = (douti )I + (douti )X . (A.2)

In using the binomial distribution in Eq. (A.1) (or Eq. (A.2)), we assume that each

of the dini links (or douti links) has probability 〈d〉I/〈d〉 of being internal. We now

have associated to each node i the four degrees

[(dini )I , (d
in
i )X , (d

out
i )I , (d

out
i )X ]. (A.3)

To create a network with maximal ηc, we now shuffle the node assignments of

[(dini )I , (d
in
i )X ] within each community, while keeping the node assignments of [(douti )I ,

(douti )X ] fixed. In particular, if (doutj )I is the largest internal out-degree of community

k, we reassign [(dini )I , (d
in
i )X ] from node i to node j where node i is also the node in

community k with the largest value of (dini )I . We then do the same for the second

largest, for the third largest, etc. This leads to new assignments of the four degree

quantities (Eq. (A.3)) for each node but only by shuffling degrees of nodes that

belong to the same community. Note than, by construction, our reassignment pro-

cedure leaves the distribution of the dini and douti invariant, and that interchanging

the roles of “in” and “out” (i.e., preserving the “in” node assignments and shuffling

the “out” node assignments) results in an equivalent procedure.

We now construct within community links for each community k. We imagine

drawing (dini )I in-stubs and (douti )I out-stubs at each node i. We then randomly

pair the end of an in-stub to the end of an out-stub and connect them with a link.
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This is done avoiding repeated links and self-links. Finally, we use the analogous

procedure to construct external connections between communities.

When we generate scale-free networks, nodes with high within community

in-degrees (out-degrees) will tend to have high between community in-degree (out-

degree). Similarly, nodes with low within community degrees will tend to have low

between community degrees. We do this with the belief that important nodes that

have high number of links within their own community will, in general, have high

number of links attached to nodes outside their own community. Due to this, when

we generate scale-free networks with maximal node degree correlations within the

communities, they also tend to have higher values of node degree correlations for

the between community degrees, although for each node, we expect the between

community in and out-degrees to be less correlated than the within community in

and out-degrees.

When we generate scale-free networks with the maximal node degree corre-

lations within the communities, we find that the values of the directional degree

assortativity within the communities become slightly less than 1. Since we are in-

terested in looking at the effect of changing nodal degree correlations within the

communities, we use the edge swapping procedure described in Sec. 3.4.2.2 to re-

store ρc to ρc ≈ 1 within the communities.
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A.2 Scale-free networks with directional degree assortativity within

communities

We construct a directed random node degree uncorrelated scale-free network

by using the method given in Appendix A.1 (i.e., without shuffling the degrees of

the nodes). We then use the edge swapping procedure given in Sec. 3.4.2.2 to get

maximal possible ρc within each community by considering only within community

degrees, (dini )I and (douti )I .

A.3 Erdős-Rényi type networks with nodal in/out-degree correlation

within communities

To get these networks, we first divide the nodes into two equally sized com-

munities and create undirected edges within communities with probability, say p.

Considering undirected edges as bidirected links, we randomly reassign links be-

tween nodes keeping their degrees constant. This gives us communities in which the

in-degree of a node equals the out-degree of the node but the edge degree correlations

are absent. Between community directed links are created by creating directed links

between pairs of nodes in different communities with some other chosen probability,

say q.
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A.4 Erdős-Rényi type networks with directional degree assortativity

within communities

To generate these networks, we divide the nodes in the network into two equally

sized communities. Within communities, we create directed links with probability p

while between community directed links are created with some other probability q.

We then use the procedure of Sec. 3.4.2.2 to get maximal ρc within the communities.
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Appendix B

Estimating the maximum and minimum attainable degree

correlations in large directed networks

B.1 Introduction

While studying eigenvalue based communities (Section 3.4.2), we were inter-

ested in cases where adjacency matrices of communities have high values of their

largest eigenvalues (λ∗k). Keeping the average degree and the degree distribution

inside the communities constant, and restricting ourselves to only those nodes and

links that lie within a community, we can increase the largest eigenvalues of the

communities by increasing the directional degree assortativity (ρk) and node de-

gree correlation (ηk) within communities. In computer simulations, we found that

while for communities with power law degree distribution of both in-degrees and

out-degrees, the maximum attainable values of ρk and ηk were large, for the case

of communities that had Poisson degree distribution of both in-degrees and out-

degrees, the maximum attainable values of ρk and ηk were rather small. We can

guess that behavior by considering the nature of the distributions. But, given a

network, it can be useful to estimate the maximum and minimum attainable values

of degree correlations in the network. In this appendix, we give mean-field formulas

for large directed networks for estimating the maximum and minimum attainable
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directional degree assortativity, ρ, and node degree correlation, η. We give results

for directed networks with Poisson and power law degree distributions. For the

scale-free networks, we assume that the degree exponent γ > 2 and that the degree

distribution has a lower cutoff, dmin, while the upper degree is unbounded. Although

we give results for specific network types, the method, in principle, can be applied

to networks with arbitrary degree distributions.

For the sake of interest, we also give mean-field formulas for estimating the

maximum and minimum attainable correlation between out-degree of node j and

in-degree of node i when there is a link from node j to node i. To characterize

this degree correlation (subsequently referred by symbol ν), we will again use the

independence measure similar to that we used to define ρ (Eq. (3.13)). This degree

correlation is closely related to assortativity by degree that is commonly used in

the literature [34] that measures the correlation between excess out-degree of node

j and excess in-degree of node i.

B.2 Formulas for directed networks

We consider directed networks that have N nodes and m edges. We assume

that N is large and no substructures exist within networks so that mean-field de-

scription is applicable. For links from node j to node i, the entry Aij of adjacency

matrix of network is non-zero. The in-degree and out-degree of node i are denoted

by dini and douti , respectively. When not referring to specific nodes in the network,

we will use the notation d̃out and d̃in to refer to the degrees of the nodes that are
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connected to each other. The in-degree and out-degree distributions of nodes in

the network are denoted by Pin(d
in) and Pout(d

out), respectively. For the sake of

simplicity, we will assume that Pin(d
in) = Pout(d

out) = P (d).

B.2.1 Node degree correlation

In this section, we will assume that the in and out-degrees of the nodes are

assigned such that the node degree correlation, as discussed in Section 3.4.2.1, is

given by

η = 〈dindout〉/〈d〉2, (B.1)

where din and dout are the in and out-degrees of a node, and 〈...〉 denotes an average

over the degree distribution in the network.

B.2.1.1 Maximal node degree correlation

When the in and out-degree distributions of the nodes are identical, then for

the network that has maximal node degree correlation, din = dout for a node. For

this case, we can write the formula for maximal node degree correlation as

ηmax =
〈d2〉

〈d〉2
. (B.2)

For networks with Poisson degree distribution, this gives

ηmax,PD =
〈d〉2 + 〈d〉

〈d〉2
= 1 +

1

〈d〉
. (B.3)

For scale-free networks with γ > 3, we get

ηmax,SF =
(γ − 2)2

(γ − 1)(γ − 3)
. (B.4)
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For 2 < γ ≤ 3, the second moment of degree distribution diverges. In that case,

ηmax,SF also diverges.

B.2.1.2 Minimal node degree correlation

The network has minimal node degree correlation when the low in-degree nodes

have high out-degrees and vice versa. To get an estimate of minimal η, let dm be

the median degree such that the number of nodes that have degree greater that dm

is equal to the number of nodes that have degree less than dm.

The Poisson degree distribution is discrete and is non-symmetric about dm.

Numerically, minimal η can be easily calculated by generating the Poisson degree

distribution. To get an analytical estimate for the case when the mean degree of the

network is large, we approximate the discrete Poisson distribution by the continuous

normal distribution with both mean and variance 〈d〉 [79]

Poisson(d; 〈d〉) ∼ N (d; 〈d〉, 〈d〉). (B.5)

The normal distribution, N , is a symmetric distribution, hence, the median degree

in that case is 〈d〉. Then, for a network with minimal node degree correlation, we

can write dout = 2〈d〉 − din for a node. We get this expression by assigning nodes

with high out-degree (in-degree) the low in-degree (out-degree), as we move away

from the median degree. The approximate minimal η for directed networks with
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Poisson degree distribution with large 〈d〉 is then

ηmin,PD ≈
1

〈d〉2

∫

(2〈d〉 − din)dinN (din) ddin

= 1−
1

〈d〉
. (B.6)

For scale-free networks, the median degree is 21/(γ−1)dmin. For the case with minimal

η, for any given node, (dout)−γ+1 = 2(dm)
−γ+1 − (din)−γ+1. Using Eq. (B.1) and

integrating over the scale-free distribution, we get

ηmin,SF =
(γ − 2)2

(γ − 1)2
Γ(b)

Γ(c)
2F1(a, b; c; 1), (B.7)

where 2F1 is the Gauss hypergeometric function, a = 1
γ−1

, b = 1− a and c = 2− a.

2F1 in this case is convergent because c−b−a > 0 [80]. In terms of gamma functions,

we can write [80]

ηmin,SF =
(γ − 2)2

(γ − 1)2
[Γ(b)]2

Γ(2b)
. (B.8)

B.2.2 Directional degree assortativity

In this section, we will assume that the in and out-degrees of the nodes in the

network are uncorrelated but the connections between the nodes form such that the

directional degree assortativity, as discussed in Section 3.4.2.2, is given by

ρ = 〈dinj douti 〉e/〈d
in
j 〉e〈d

out
i 〉e, (B.9)

where 〈...〉e denotes average over all the edges in the network such that the directed

link points from node j to node i.
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B.2.2.1 Maximal directional degree assortativity

For networks with maximal directional degree assortativity, the nodes with

higher in-degree have links pointing to nodes that have higher out-degree (vice versa

for low degrees).

For networks with Poisson degree distribution, we write d̃out = d̃in where the

directed links point from nodes with degree d̃in to nodes with degree d̃out (here, d̃in

and d̃out are degrees of the neighboring nodes). Since we assume that the in and

out-degrees of a node are uncorrelated and that the in and out-degree distributions

are identical, the average number of out-links from nodes with degree d̃in should be

equal to the average number of in-links to nodes with degree d̃out when d̃in = d̃out.

For the maximally correlated case, all the out-links from nodes with degree d̃in point

to nodes with degree d̃out. The total number of links emanating from all the nodes

that have in-degree din and out-degree dout is (here, din and dout are degrees of the

same node)

NP (din)P (dout)dout. (B.10)

In Eq. (B.9), averaging over the links in the network (Eq. (B.10)), we get for

networks with Poisson degree distribution with maximal directional degree assorta-

tivity

ρmax,PD =
1
m

∑

(din)2 NP (din)P (dout)dout
(

1
m

∑

din NP (din)P (dout)dout
)2 . (B.11)

In the expression above, din and dout are the degrees of the same node. This gives

ρmax,PD =
〈d2〉

〈d〉2
= 1 +

1

〈d〉
, (B.12)
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where we used the fact that m = N〈d〉.

For scale-free networks, we write

ρmax,SF =
1
m

∫∫

(din)2 NP (din)P (dout)dout ddin ddout
(

1
m

∫∫

din NP (din)P (dout)dout ddin ddout
)2

=
〈d2〉

〈d〉2

=















∞ for 2 < γ ≤ 3

(γ−2)2

(γ−1)(γ−3)
for γ > 3

(B.13)

B.2.2.2 Minimal directional degree assortativity

In this case, for a link from node j to node i, the in-degree of node j and the

out-degree of node i are negatively correlated.

For networks with Poisson degree distribution, as in Section B.2.1.2, we assume

that mean degree is large and approximate the Poisson degree distribution by the

normal distribution with both mean and variance 〈d〉. For networks with minimal

directional degree assortativity, we write d̃out = 2〈d〉 − d̃in where the links point

from nodes with degree d̃in to nodes with degree d̃out. The approximate minimal ρ

for directed networks with Poisson degree distribution with large 〈d〉, by averaging

over the links in the networks (Eq. (B.10)), is then

ρmin,PD ≈
1
m

∫∫

(2〈d〉 − din)din NN (din)N (dout)dout ddin ddout
(

1
m

∫∫

din NN (din)N (dout)dout ddin ddout
)2

=
1

〈d〉2

∫

(2〈d〉 − din)dinN (din) ddin

= 1−
1

〈d〉
, (B.14)

where in the expressions above, din and dout are the degrees of the same node.
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For scale-free networks with minimal ρ, (d̃out)−γ+1 = 2(dm)
−γ+1 − (d̃in)−γ+1

where the links point from nodes with degree d̃in to nodes with degree d̃out. From

this, we get

ρmin,SF =
1
m

∫∫

[2(dm)
−γ+1 − (din)−γ+1]1/(−γ+1)din NP (din)P (dout)dout ddin ddout
(

1
m

∫∫

din NP (din)P (dout)dout ddin ddout
)2

=
(γ − 2)2

(γ − 1)2
Γ(b)

Γ(c)
2F1(a, b; c; 1)

=
(γ − 2)2

(γ − 1)2
[Γ(b)]2

Γ(2b)
. (B.15)

where, as in Eq. (B.7), a = 1
γ−1

, b = 1− a and c = 2− a.

B.2.3 Assortativity by degree

To characterize assortativity by degree (ν), we use a measure similar to that

used to characterize ρ above,

ν = 〈doutj dini 〉e/〈d
out
j 〉e〈d

in
i 〉e, (B.16)

where, as usual, 〈...〉e denotes average over all the edges in the network such that

the directed link points from node j to node i. In this section also, we will assume

that the in and out-degrees of the nodes in the network are uncorrelated but the

connections between the nodes form such that assortativity by degree is given by

the above expression.

B.2.3.1 Maximal assortativity by degree

In this case, for a link from node j to node i, the out-degree of node j and

in-degree of node i are positively correlated. Thus, d̃out = d̃in where the links point
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from nodes with degree d̃out to nodes with degree d̃in.

For networks with Poisson degree distribution, averaging over the links in the

network (Eq. (B.10)), we write

νmax,PD =
1
m

∑

(dout)2 NP (din)P (dout)dout
(

1
m

∑

dout NP (din)P (dout)dout
)2

=
〈d〉〈d3〉

〈d2〉2
= 1 +

〈d〉

(1 + 〈d〉)2
, (B.17)

where din and dout are the degrees of the same node. Here, we used 〈d3〉 = 〈d〉(1 +

3〈d〉+ 〈d〉2) for the Poisson distribution.

For the scale-free networks, we write

νmax,SF =
1
m

∫∫

(dout)2 NP (din)P (dout)dout ddout ddin
(

1
m

∫∫

dout NP (din)P (dout)dout ddout ddin
)2

=
〈d〉〈d3〉

〈d2〉2

=















∞ for 2 < γ ≤ 4

(γ−3)2

(γ−2)(γ−4)
for γ > 4

(B.18)

B.2.3.2 Minimal assortativity by degree

In this case, for a link from node j to node i, out-degree of node j and in-degree

of node i are negatively correlated.

For scale-free networks with minimal ν, to get relationship between d̃in and

d̃out, where links point from nodes with degree d̃out to nodes with degree d̃in, we

equate the number of out-links from nodes at one extreme of the degree distribution

to the number of in-links to nodes at the other extreme of the degree distribution

∫ ∞

d̃out
xP (x) dx =

∫ d̃in

dmin

xP (x) dx. (B.19)
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From this, we get (d̃in)−γ+2 = (dmin)
−γ+2 − (d̃out)−γ+2 for nodes that are connected

to each other. Thus

νmin,SF =
1
m

∫∫

[(dmin)
−γ+2 − (dout)−γ+2]1/(−γ+2)dout NP (din)P (dout)dout ddin ddout
(

1
m

∫∫

dout NP (din)P (dout)dout ddin ddout
)2 ,

(B.20)

where in the expression above, din and dout are the degrees of the same node. For

γ > 3, this is given by

νmin,SF =
(γ − 3)2

(γ − 2)2
Γ(b)

Γ(c)
2F1(a, b; c; 1), (B.21)

where, in this case, a = 1
γ−2

, b = 1− a and c = 2− a. 2F1 is convergent for γ > 3.

In terms of gamma functions, we can write

νmin,SF =
(γ − 3)2

(γ − 2)2
[Γ(b)]2

Γ(2b)
. (B.22)

For 2 < γ ≤ 3, νmin,SF is zero.

For networks with Poisson degree distribution with large average degree, when

we approximate the degree distribution by the normal distribution, we can not write

d̃in of a node as an explicit function of d̃out of the node it is connected to, because the

relationship between d̃in and d̃out comes out in terms of exponentials and integrals

of normal distribution.

B.3 Discussions and conclusions

We derived mean-field formulas for estimating the maximum and minimum

attainable degree correlations in large directed networks with Poisson and power
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law degree distributions. Although one can determine the values of maximum and

minimum attainable degree correlations using numerical simulations, we gain some

interesting insights when using the above formulas. For example, for infinite scale-

free networks, the maximal values of correlations diverge in certain cases. We also

find that, in the mean-field approximation, the maximal values of ρ and η are given

by the same formulas while maximal ν shows different behavior. Similar observations

apply to minimal degree correlations.
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