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In NASA’s past, targeting to a Mars landing site has required iteration between

the Entry, Descent and Landing (EDL) analysts at NASA Langley Research Center and

the interplanetary navigators at the Jet Propulsion Laboratory (JPL). JPL would develop

thousands of arrival states at Mars based on an assumed, constant entry flight path angle

and down range angle from entry to landing. Langley would perform the EDL analysis

using the arrival states from JPL. Feasible trajectories developed by Langley had varying

flight path and down range angles over the entire launch/arrival window forcing an

iteration of the trajectory design between JPL and Langley. The iteration process was

inefficient, stretching out the design phase while introducing the possibility for error.

The purpose of this study is to develop a method that calculates an interplanetary

trajectory from Earth to Mars and seamlessly couples the tool with Langley’s EDL

analysis. The method will show a novel extension to current Lambert solution methods

while incorporating a multiple revolution capability.
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1 Introduction

With President Bush’s new ‘Vision for Space Exploration’, Mars should no

longer be a fantasy of exploration. For aspiring students and engineers that wish to

develop bold new ideas for human travel to Mars, new systems need to be researched in

the realms of thermal, power, communication, propulsion, and most importantly, entry,

descent and landing (EDL) technologies. All these systems are critically linked to the

interplanetary trajectory traveled from Earth to Mars by variables such as atmospheric

entry velocity, flight path angle, Sun angle, Earth angle, time of arrival, etc. The linking

of these interplanetary trajectories to the required systems, particularly EDL, is often the

most overlooked aspect of the design.

The interplanetary trajectory is commonly conceptualized by a patched conic

method utilizing physical and planetary ephemerides in the early mission design phases.

During actual mission operations, a reference, integrated trajectory is used for

navigational purposes. However, the patched conic interplanetary trajectory provides an

acceptable reference for the preliminary mission studies in EDL systems. The question is

how to seamlessly link the EDL system to the patched conic interplanetary trajectory.

From the Mars Science Laboratory (MSL) mission study performed at NASA, the

Jet Propulsion Laboratory (JPL) would generate the interplanetary trajectories to reach

Mars. The results were then given to NASA Langley Research Center (LaRC) to

perform the EDL analysis required to accomplish the mission. Because MSL is

introducing new and revolutionary technology in the realm of entry, descent, and landing

at Mars, a large subspace of arrival dates had to be analyzed by LaRC, and then relayed

back to JPL for fine-tuning of the interplanetary trajectory design. This costly relay of
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information between JPL and LaRC is inefficient and introduces the possibility for error.

Having the capability to perform the interplanetary analysis along with the EDL analysis

would allow for much greater insight to the mission window constraints than the current

iterative method.

The purpose of this research is to develop a simplified, two-body, patched conic

trajectory with B-plane targeting that will yield results that will be adequate enough to

define and explore the EDL capability upon arrival. The method developed by this

research will be shown to closely correspond to data from JPL for the MSL mission

study. A variety of planetary and physical ephemerides are introduced by the method and

weighted with respect to their accuracy to the JPL data.

The fundamental ideas used in this research are Lambert’s Problem, Physical and

Planetary Ephemerides, Patched Conic Analysis, and B-plane Targeting. Substantial

discussion of each will be presented, explaining the advantages and disadvantages of

each and the overall effect on precision. Special attention will be given to Lambert’s

problem where a novel solution method will be presented that covers some of the

difficulties often encountered by traditional Lambert solutions. A method will also be

shown for optimizing the solution according to set constraints to achieve a ‘best guess’

interplanetary trajectory according to mission specifications. The method developed will

be utilized for future launch dates and mission scenarios using the same entry, descent,

and landing analysis from MSL. The results will show that a simplified, patched-conic

method of interplanetary trajectory development linked with an EDL analysis can

reproduce comparable results in entry speed, heat rate, maximum acceleration and
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altitude at parachute deploy to that of a high fidelity precision analysis by the Mars

Science Laboratory study.
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2 Fundamental Astrodynamics in Interplanetary Travel

Along an interplanetary trajectory from one point to another, a spacecraft will

spend the majority of the flight time moving under the gravitational influence of the sun,

and only brief periods under the influence of a planet. The assumption can be made that

the planet perturbations to the spacecraft heliocentric trajectory are negligible. This

allows the heliocentric trajectory to be considered as a separate, two-body problem about

the sun without the inclusion of the gravitational attraction of the planets. However, the

heliocentric trajectory will only yield the necessary velocities required by the spacecraft

to complete the interplanetary trajectory. A planetocentric trajectory is required to define

the launch and arrival characteristics of the spacecraft trajectory. A patch assumption is

made to connect the heliocentric trajectory to two separate, planetocentric trajectories at

the point in time when the planetocentric and heliocentric trajectories coincide, thus

assuring continuity in time of position and velocity, but not acceleration. This is the

fundamental idea in using the patched conic method for interplanetary trajectory design.

The first step in utilizing the patched conic method is introducing the necessary

astrodynamic fundamentals: trajectory types, spherical trigonometry, time, and

coordinate systems.

2.1 Trajectory Types

The trajectories designed for interplanetary analysis may all contain varying

degrees of precision. For mission design studies, two-body motion combined with the

patched conic method is adequate. For mission operations that will require precise orbit

determination, numerical integration of the equations of motion is recommended. When
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the highest degree of precision is required, general relativity is used as the underlying

model. For purposes of developing the interplanetary trajectories to link with the EDL

analysis, the patched conic method is adequate.

The two-body motion in patched conic analysis can theoretically fall into 5

different categories of conic sections: ellipses, circles, parabolas, hyperbolas and

degenerate sections. For the heliocentric trajectory, the ellipse is used. Although

heliocentric trajectories are possible using hyperbolic motion, elliptical motion is much

more feasible as energy costs in launching a spacecraft along a hyperbolic trajectory is

impractical. However, hyperbolic motion has been achieved by a planetary gravity assist

flyby.

During interplanetary transfer, planetocentric motion is usually hyperbolic. The

reason is explained by the energy of a spacecraft’s motion. If the spacecraft energy (E) is

negative, the motion will be bounded to the spherical region of radius, ( )E-µ/ . Only

when the energy is positive, does the orbit retain an excess velocity, also known as v∞,

beyond the spherical region mentioned. If a spacecraft is to leave the Earth along an

interplanetary trajectory, the spacecraft must have positive energy so that an adequate v∞

is maintained for injection along the interplanetary trajectory. Two-body motion with

positive energy is defined by a hyperbola, thereby confirming its use for planetocentric

motion.

The patching of the hyperbola to the ellipse in the patched conic method will use

the sphere of influence to help define the geometry of the planetocentric hyperbola. For

purposes of discussion, the method will be related to the arrival hyperbola at Mars, but is

equally valid for defining the hyperbola at the departure planet, Earth. First, the sphere of
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influence is defined as the location where the ratio of perturbation due to Mars with

respect to the central attraction of the sun, equals the ratio of perturbation exerted by the

sun with respect to the central attraction of Mars. Equating these two ratios leads to the

approximation for the sphere of influence radius [1]:

5

2

2

1
21SOI µ
µ

rr 







= 2.01

In the case of Mars, the variable r1/2 would be the distance from the sun to Mars. The

variables µ1 and µ2 are the gravitational constants of Mars and the sun respectively.

Assuming Mars is in a circular orbit of 1.5 AU, the radius of the sphere of influence

would be approximately 5.7x105 kilometers. To define the patch, the ∞v
v

vector is first

calculated as the vector difference between the spacecraft heliocentric velocity and the

Mars heliocentric velocity at the time of arrival where the two orbits intersect. The patch

then places the ∞v
v

vector at a position, R
v

that is equal in distance to the radius of the

sphere of influence from the center of Mars, along the negative direction of the ∞v
v

vector. This position R
v

can then be slightly displaced perpendicular to the ∞v
v

vector to

tailor the hyperbolic orbit about Mars. The sphere of influence is useful as it helps to

define the position ( R
v

) around Mars, while the patched conic method defines the

spacecraft velocity ( ∞v
v

) at R
v

, thereby defining the planetocentric hyperbola.

2.2 Spherical Trigonometry

Spherical trigonometry will be used to relate the planetocentric hyperbola to

specified targeting constraints. These constraints are typically latitude and longitude, but
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can also apply to the central angle of an entry, descent, and landing atmospheric entry

point to impact.

The celestial sphere is a fundamental concept in spherical trigonometry. The

celestial sphere is defined as a spherical surface of infinite radius. The center of the

sphere is arbitrary. Figure 2.1 shows a representation

of the celestial sphere where the symbols denote

angles. All angles are measured along great circles

in the range of 0 to π. Any two points on a plane that

intersects the center of the celestial sphere defines a

great circle. The distance between two points on the

surface of the sphere, also known as a ‘side’, is the

central angle subtended by the two points, i.e. γ in Figure 2.1. The points can be

representative of a planet pole, or target latitude and longitude. Three great circles create

a spherical triangle as denoted by the bold solid lines in Figure 2.1. The angles (α,β,γ)

between the planes of the great circles and the sides (a,b,c) of the great circles define the

spherical triangle. The spherical triangle has the following properties.

πγβαπ 3<++<

π2cba0 <++<

etc.c,ba >+

Given three parts of a spherical triangle, spherical trigonometry is used to

determine the other parts. As in plane trigonometry, there is the law of sines.

γβα sin

csin

sin

bsin

sin

asin
== 2.02

Figure 2.1: Celestial Sphere

α

β

ε

γ

b

a

c
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There are two laws of cosines. The first law relates one angle to three sides. The second

law relates one side to three angles.

αcoscsinbsinccosbcosacos += 2.03

acossinsincoscoscos βγβγα +−= 2.04

When there are 4 adjacent parts on the spherical triangle, the four-part formula is useful.

( ) ( ) ( ) ( ) ( ) ( )OAcotIAsinOScotISsinIAcosIScos −= 2.05

The variables of the four-part formula are the inner side, inner angle, outer side, and outer

angle. For example, these variables are c, β, a, and α respectively in Figure 2.1. There

are other relations, but with these formulae most spherical triangle problems can be

solved.

The primary benefit of spherical trigonometry to the planetocentric hyperbola is

the ability to relate the angular locations on the celestial sphere to the hyperbolic orbital

elements. These elements will include true anomaly, inclination, and argument of

perigee. These orbital elements will be used in developing an arrival targeting method

for the planetocentric hyperbola.

2.3 Time

Ephemeris time is the independent variable in the motion of a spacecraft, planets,

and other heavenly bodies. Ephemeris time is the most common time system used

throughout literature when referencing interplanetary travel and coordinate systems.

Ephemeris time is precisely defined according to a standard of measurement that defines

a time system with respect to the coordinate system of the body included in the

ephemeris. For the JPL planetary ephemeris DE405, barycentric coordinate time (TCB)

is mathematically equivalent to the independent variable in the equations of motion of the
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ephemeris, only differing by a constant offset and constant rate to the actual time used

[2]. However, because TCB is beyond the scope of this document to calculate, the

closest approximation is barycentric dynamical time (TDB), which will be used instead

for querying of the planetary ephemeris. Note that even though ephemeris time is not the

time system used in ephemeris creation, it will be used here for all references to time as

ephemeris time is commonly used throughout literature. Using units of days, an

approximate value [3] for barycentric dynamical time can be calculated from ephemeris

time by:

( )
2csin0.000014csin0.001658ETTDB

2451545.0ETday0.9856003357.53c

++=
−°+°=

2.06

For querying physical and planetary ephemerides, ephemeris time (as used in

equation 2.06) must be in units of Julian days. Julian days is simply a means of

calculating the number of days past the epoch in time, noon, November 24, 4713 BC as

defined by the Bureau International des Poids et Measures in Sèveres, France. For

physical ephemerides, time must be in Julian days past noon, January 1, 2000, also

known as the epoch of J2000. Since time of departure and arrival is typically given as a

Gregorian date, a simple transformation is needed to convert to Julian days. An excellent

algorithm is given by Jean Meeus [4],

( ) ( ) 1524.4BD1M30.60014716Y365.25JD

4AA2B100YA

−+++++=

+−==

2.07

where Y is the integer Gregorian year, M is the integer month and D is the number of

days, including any fractional part. The carrot-brackets are used to denote integer part of
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the argument. The term JD is the Julian day of date. For example, the epoch of J2000,

January 1.5, 2000, is 2,451,545.0 Julian days using Meeus’s algorithm.

2.4 Coordinate Systems

The coordinate systems used in interplanetary mission design are the perifocal,

heliocentric, IAU, B-plane, Earth mean equator and mean equinox of J2000 (EME) and

Earth mean ecliptic and mean equinox of J2000. The primary conventions used when

defining and referencing coordinate systems are the location of the origin, orientation of

the fundamental plane, and orientation of the fundamental direction.

2.4.1 Perifocal

The perifocal coordinate system is used commonly to define the motion of a

spacecraft orbit. The origin is at the center of gravitational attraction located at the

primary focus of the respective two-body conic section. The fundamental plane is the

plane of motion. The fundamental direction is towards periapse measured from the origin

of the perifocal system. An example of the perifocal system is shown in Figure 2.2.

The variable v is the true anomaly of the spacecraft’s position, measured

counterclockwise from the fundamental direction (P) along the fundamental plane. The

Figure 2.2: Perifocal Coordinate System

Periapse
P

W

Q

Spacecraft
Position

v
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axis W points in the direction of the spacecraft’s angular momentum. The axis Q

completes the right-handed system. The perifocal system’s relationship to the orbital

parameters true anomaly and angular momentum, among other parameters, make it useful

when targeting the heliocentric and planetocentric trajectories to specified locations.

2.4.2 Earth Mean Equator and Mean Equinox of J2000 (EME)

The International Astronomical Union (IAU) has recommended a common

coordinate system from which all precision coordinates are measured, known as the Earth

mean equator and mean equinox of J2000 (EME). The reference to a ‘mean’ value is

used to define a system that ignores the small variations of short period in the motions of

the equator and is only affected by the average precession of the equator [3]. For

purposes here, the origin of the EME of J2000 system is at the Earth center of mass. The

fundamental plane is the Earth mean equator of J2000. The Earth mean equator is the

plane perpendicular to the Earth axis of rotation at the epoch of J2000. Note that the

equator is not fixed in space, but moves over time. The fundamental direction is the

vernal equinox of J2000. The vernal equinox is the point where the direction of motion

of the sun along the ecliptic moves from the southern hemisphere to the northern

hemisphere. The unit vector defining this point in the EME system is from the Earth

center of mass to the Sun center of mass at the time of the vernal equinox. The EME

coordinate system is shown in Figure 2.3.
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The EME system is closely related to the Earth mean ecliptic system of J2000 as

shown in Figure 2.3. For purposes here, the Earth mean ecliptic system shares the same

origin and fundamental direction as the EME system, but has a different fundamental

plane. The fundamental plane is the Earth mean ecliptic at the epoch of J2000. The

EME and Earth mean ecliptic system can be related by one angle, the obliquity. The

Earth mean ecliptic system can however be considered as a heliocentric coordinate

system. The Earth mean ecliptic system will be the coordinate system used for the

calculation of the interplanetary trajectory from Earth to Mars.

2.4.3 IAU Physical Ephemerides

The IAU physical ephemeris system defines the planet mean equator and prime

meridian of date. Hence, the fundamental plane is the mean planet equator. The

fundamental direction is the prime meridian. The origin is located at the center of mass

of the planet. The IAU provides the physical ephemeris parameters by cataloguing the

motion of the planets and planetary features with respect to the epoch January 1.5, 2000.

The IAU coordinate system is defined relative to the EME coordinate system. To

determine the IAU coordinate system’s orientation, a 3-1-3 Euler angle rotation is used

Figure 2.3: Earth Mean Equator and Earth
Mean Ecliptic Coordinate Systems

Vernal Equinox of
J2000 (γ)

Ecliptic North
Pole

Equatorial
North Pole

Earth Mean
Equator of J2000

Mean Ecliptic of J2000

Obliquity
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beginning at the orientation of the EME system. The first rotation is about the z-axis or

North Pole of the EME system. This rotates the coordinate system by ( )πα 5.0+ where

α is the right ascension of the planet pole of date, bringing the new x axis to the

ascending node of the planet equator with respect to the EME system. The second

rotation of ( )δπ −5.0 is about the new x-axis where δ is the declination of the planet

pole of date. At this point fundamental plane of the coordinate system is the planet mean

equator of date (⊥ to z-axis), and the fundamental direction (x-axis) is the IAU vector of

date. The IAU vector lies in both the Earth and planet equators. The third rotation is

about the new z-axis by the number of revolutions the planet makes about the planet

north pole at the specified time. Specifically, the third rotation is the angle traveled from

the IAU vector to the position of the prime meridian of date. The rotation matrix used to

transform from the EME to the IAU frame is given by

[ ] ( ) ( )
( ) ( )

( ) ( )
( ) ( )
















++−
++

















−−−
−−
















−=

100

05.0cos5.0sin

05.0sin5.0cos

5.0cos5.0sin0

5.0sin5.0cos0

001

100

0cossin

0sincos

R παπα
παπα

δπδπ
δπδπWW

WW

IAUEME

2.08

The variable W represents the angle to the prime meridian from the IAU vector. Figure

2.4 shows the IAU coordinate system along with angles α, δ, and W in equation 2.06.

Figure 2.4: IAU Coordinate System

δ

(π/2 - δ)

γ

Planet Mean
Equator of Date

Earth Mean
Equator of

J2000

IAU Vector
of Date

North Pole of
EME J2000

α
π/2

Prime
Meridian
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2.4.4 B-plane Coordinate System

The B-plane coordinate system origin is often assumed to be in one of two

locations. For purposes here, the origin is located along the incoming/outgoing

asymptote at a distance equal to the radius of the sphere of influence from the attracting

body. The other location is the center of mass of the attracting body. Recall that the ∞v
v

vector defines the direction of the radius vector to the sphere of influence in the patched

conic method. Hence, the fundamental plane, also called the B-plane, is perpendicular to

the ∞v
v

vector. The fundamental direction is in the plane of the planet equator, oriented

perpendicular to the ∞v
v

vector.

The B-plane coordinate system is shown in Figure 2.5. The incoming hyperbolic

trajectory, denoted ‘Trajectory’, has asymptote

perpendicular to the fundamental plane (B-plane).

The point of intersection of the asymptote (parallel

to Ŝ ) with the B-plane is the location of entry

measured with respect to the origin by B and θ. The

orientation of the trajectory plane with respect to the

planet equator defines the B-plane angle, θ. The

fundamental direction T̂ is in the same plane as the

reference equator. The direction R̂ completes the right hand system.

The B-plane coordinate system is used to target the planetocentric hyperbola at

arrival. Since the fundamental plane is defined by the orientation of the ∞v
v

vector, the B-

plane orientation is a function of the velocity at arrival on the heliocentric ellipse, which

T̂

R̂

θ
B

Trajectory

B-Plane

Ŝ

Trajectory
Plane

Figure 2.5: B-Plane
Coordinate System
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is a function of the launch and arrival dates. Hence, the B-plane coordinate system

provides an important link to the interplanetary trajectories and planetocentric hyperbolas

on any given launch and arrival date.

The hyperbola is defined in the B-plane coordinate system by B, the ∞v
v

vector

and B-plane angle θ. The value B is the small displacement perpendicular to the ∞v
v

vector at the sphere of influence described by the patched conic method. Since the

displacement is perpendicular to the ∞v
v

vector, only θ is needed to define the entry

location on the B-plane. Furthermore, because the ∞v
v

vector is perpendicular to the B-

plane, the angular momentum of the hyperbola is the product, ∞= Bvh . The magnitude

of B can therefore be related to position and velocity of the hyperbola by rvcosγBv =∞ .

If the flight path angle is set to zero, the magnitude of B can be related to periapsis by

1
µ
rv

1
v

µ
B

2

p
2

2
−










+= ∞

∞

2.09

where the variable µ is the planet gravitational constant. Therefore, by knowing just the

magnitude of ∞v
v

, one can target the planetocentric hyperbola to a specified periapse

radius by displacing the entry location on the sphere of influence by B.

By knowing the B-plane coordinate system orientation with respect to the planet

equator, the B-plane parameters θ and B can be used to target the desired hyperbolic

trajectory about the planet. B is used to target the radius of periapse of the hyperbola. To

target inclination, the B-plane orientation with respect to the planet equator is utilized.

Since the fundamental direction T̂ is in the plane of the equator, the B-plane coordinate

system can be rotated about T̂ by the declination of the ∞v
v

vector (δ) plus 0.5π to align
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the B-plane fundamental plane with the planet equator. The alignment of the B-plane

fundamental plane with the equator is an arbitrary planet equator coordinate system and

is only used for the derivation of the equation for inclination. The B vector is defined in

the B-plane coordinate system by [ ]0sinθcosθBB =
v

. By rotating about T̂ , the B

vector becomes

( ) ( )[ ]2πδsinsinθ-2πδcossinθcosθBB ++=
v

in the arbitrary planet equator system. From the 2-body equations, inclination is

h

h
cosi z= , where the angular momentum is the cross product of the ∞v

v
vector and the B

vector in the arbitrary planet equator system.
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By substituting the z component of the angular momentum vector and the angular

momentum magnitude into the 2-body equation for inclination, the B-plane angle θ

becomes a function of only the inclination and the declination of the ∞v
v

vector.

cosδ
icos

cosθ = 2.10

Note that since the absolute value of ( )θcos must be less than 1, the lowest inclination is

the declination of the launch asymptote, δ.

Equations 2.09 and 2.10 can be used in conjunction with the B-plane coordinate

system to target the planetocentric hyperbola to a specified inclination and periapse

radius. With the B-plane coordinate system being used to provide the link between the
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heliocentric and planetocentric trajectories, equations 2.09 and 2.10 provide a realization

of how the two trajectories are linked.

2.5 Hohmann Transfer

The Hohmann transfer is a minimum fuel

transfer between two, circular, coplanar orbits.

The transfer is elliptical and utilizes two impulsive

maneuvers, one at periapsis and one at apoapsis of

the transfer orbit (Figure 2.6). Since many of the

planets in the solar system exhibit orbits with low

eccentricity, the Hohmann transfer can be a good

starting point in defining an interplanetary trajectory. The Hohmann transfer places strict

conditions on time of flight and the orientation of the planes of the orbits. Therefore,

application of the transfer is rarely feasible in the real world. Regardless, the Hohmann

transfer will be utilized to approximate optimal times for interplanetary trajectories.

The primary focus in interplanetary travel is the trajectory taken from Earth to

Mars over the specified time interval. The patched conic method utilizes a heliocentric

trajectory calculated in the Earth mean ecliptic system of J2000 to describe the motion

taken from Earth to Mars with the Hohmann transfer being the ideal trajectory. The

difference of the heliocentric trajectory velocity and the heliocentric planet velocity

provides the ∞v
v

vector to be used in the B-plane coordinate system. The B-plane

coordinate system can then be used to determine the properties of a planetocentric

hyperbola about the target planet. From the planetocentric hyperbola, the perifocal,

Figure 2.6: Hohmann Transfer

∆v1

∆v2
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EME, and IAU coordinate systems are used in conjunction with spherical trigonometry to

target to the desired location on Mars. The details of these calculations will be described

next, starting with Lambert’s problem.
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3 Lambert’s Problem

In interplanetary calculations, trajectories from planet to planet are determined by

selecting a launch (departure) and arrival date. From a planetary ephemeris, the positions

of the launch and arrival planets are determined for the selected launch and arrival date.

With position and time known, the determination of the trajectory connecting the two

points is commonly referred to as a two-point boundary value problem. The solution to

this problem is covered by Lambert’s theorem.

Lambert’s theorem, initially formulated in 1761, states that the time of flight

between two points, P1 and P2, is only a function of the semi-major axis, sum of the

distances from the primary focus to each of the two points, and the chord length between

P1 and P2:

( ) ( )crraftt ,, 2112 +=−µ 3.01

In 1802, Carl Friedrich Gauss reformulated the problem to practical applications, stating

that only two position vectors, the direction of motion, and the time of flight between the

two points are required for a solution. The term ‘direction of motion’ refers to selecting

the transfer trajectory that traverses an angular distance in the same plane either less than

or greater than π radians for the same two points. Ever since Gauss’s restatement of

Lambert’s problem, solutions have proliferated throughout literature. Since there has

been no direct solution of Lambert’s problem, iterative methods and series expansions

have become the accepted solutions.
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3.1 Selection of Method to Solve Lambert’s Problem

Bate, Mueller, White[5], and Battin[1] have provided some of the more popular

techniques for solving Lambert’s problem because of their elegance and robustness for a

large variety of transfer orbits. Thorne [6] has derived a series solution to Lambert’s

problem using series reversion and inversion that works for hyperbolic and elliptic orbits.

Prussing and Conway [7] present the classical Lambert solution by iterating on the semi-

major axis. Other Lambert solutions have been derived that iterate on the orbital

elements including, but not limited to, semi-latus rectum, true anomaly, and eccentricity.

Each of these solutions possesses different advantages and disadvantages. The

classical solution to Lambert’s problem, by Prussing and Conway [7], develop a method

that introduces two auxiliary angles, α and β that represent the change in eccentric

anomaly and allow multiple revolutions. The auxiliary angles α and β introduce

difficulty though in the determination of the quadrants. Gedeon [8] has presented a

method for determining the solution using a Newton iteration scheme that also takes care

of the quadrant ambiguities using α and β. Gedeon’s method however utilizes numerous

checkpoints in the solution causing unneeded complexity. Battin’s solution has been

shown to converge quickly and efficiently but becomes troublesome when implementing

multiple revolutions. The Bate, Mueller and White universal variables solution provides

an ideal method for multiple-revolution transfers. For the purposes of interplanetary

trajectory design, the Bate, Mueller and White universal variables solution is chosen as it

provides an elegant and robust algorithm that accommodates multiple revolution

transfers.
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The advantage of the multiple revolution capability is that the solution may be used

to reduce the eccentricity of an elliptic transfer while still achieving the final destination

in the desired flight time, in effect reducing the propulsive ∆v required at the expense of

longer flight times. This is illustrated in Figure 3.1, where the 2-revolution transfer is

advantageous as the v∞ required at injection is one-third of the 0-revolution transfer.

The examples shown in Figure 3.1 are unrealistic for missions to Mars. However, the

multiple revolution capability is important as the interplanetary trajectories considered

can occur near 360 degrees true anomaly. For the trajectories that slightly exceed a true

anomaly of 360 degrees, the solution needs to account for one revolution plus the extra

bit required to reach Mars. If the solution method does not include multiple revolutions,

the resulting trajectory would likely be a highly eccentric ellipse, like the zero-revolution

and one-revolution trajectories seen in Figure 3.1.

Figure 3.1: Multiple Revolution Orbits
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Another advantage to multiple revolutions can be noted in cycler trajectories. For a

cycler trajectory, a supply craft is left in a multiple revolution orbit about the sun that is

utilized by other spacecraft en-route. The multiple revolutions Lambert capability

permits targeting nearby planets while remaining in a multiple revolution cycler

trajectory.

The universal variables Lambert solution accommodates multiple revolutions

because the variable of iteration is the difference in eccentric anomaly. This allows a

simple approach to determine a multiple revolution Lambert solution because the desired

number of revolutions explicitly defines the bounds of the feasible regions of the variable

of iteration, i.e. a 1 revolution trajectory is bounded by a difference in eccentric anomaly

of 2π to 4π. This is a substantial advantage over the other Lambert solution methods, as

a multiple revolution capability becomes difficult to implement in the other methods due

to the variables of iteration being in terms of orbital parameters that do not account for an

angle that is greater 2π. To explain this advantage over the other methods, begin with

Kepler’s equation.

( ) esinEEτtnM −=−= 3.02

With Kepler’s equation, time from periapse is defined by t-τ. The variable n is the mean

Figure 3.2: Two Point Time of Flight Representation

t2-t1+P

ν2

ν1
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motion, e is the eccentricity, and E is the eccentric anomaly. From Figure 3.2, the time of

flight spent during multiple revolutions can be represented as:

( ) ( )τtτtkPtt 1212 −−−+=− 3.03

P is the orbital period, k is the number of revolutions taken, and τ is the time of periapse.

Orbital period is given by

µ
a

2πP
3

= 3.04

where a is the semi-major axis and µ is the gravitational constant. By substituting

Kepler’s equation (3.02) for each of the time from periapse terms in equation 3.03, and

including equation 3.04, the time of flight between two points is:

( ) ( )[ ]1122

3

12 esinEEesinEE2kπa
tt −−−+=−

µ
3.05

Equation 3.05 represents the start of the classic formulation of Lambert’s

problem. If 4 of the 5 variables, i.e. semi-major axis, eccentricity, time of flight and

eccentric anomaly of the two points are known, the remaining variable may be

determined. The universal variables formulation uses equation 3.05 to accommodate

multiple revolutions by using the difference of the two eccentric anomaly terms and the

2kπ term. The other variables, as used by the other Lambert methods, become much

more difficult to incorporate the 2kπ term due to quadrant ambiguities. This makes the

universal variables multiple revolution solution simple and effective in comparison to the

other Lambert methods.
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Since equation 3.05 is transcendental, it is impossible to solve directly for the

change in eccentric anomaly between the two points. Thus an iterative solution is

required.

3.2 Lambert Solution Method

The derivation of the universal variable time of flight equation is given in

Appendix A and is shown here as

yASχt 3 +=µ 3.06

where t is the time of flight between the two points. The variables S, A, y, and χ are

derived in Appendix A as equations 9.14, 9.17, 9.18, and 9.19 respectively.
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The variable C is derived in Appendix A as equation 9.13.
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The variable A is a function of the given constants in Lambert’s problem: the radius of

the two points and angle between the two position vectors. The variable A is very

powerful as it defines the quadrant of the ellipse by inclusion of the sine and cosine terms

for a right handed coordinate system, thus removing the quadrant ambiguity seen in

Prussing and Conway’s Lambert solution. If the transfer between the two points is to be

retrograde, A is negative. The remaining variables are only functions of the difference in

the square of the eccentric anomalies denoted by ( )2
12 EE −=z . The variable z is equally

valid for hyperbolic orbits as the change in hyperbolic anomaly, as is utilized in equations

9.13 and 9.14 if z is less than zero. From Bate, Mueller, and White [5], it is shown that

the eccentric and hyperbolic anomalies are related by EcosFcosh = . By using the

identity iθcosθcosh = , it is seen that iFE ±= . Therefore, the change in hyperbolic

anomalies can be denoted by ( )2
12 FF −−=z , and is therefore always negative.

To solve for the change in eccentric anomaly (z) a Newton iteration scheme is

implemented. When implementing the Newton iteration scheme, the guess generated by

the Newton iteration can possibly result in a negative y, creating an imaginary solution.

Care must be taken so that the guess does not place y below zero. If y is found to be

negative, the solution method should step back towards the previous z in the Newton

iteration until y becomes positive.
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Before implementing the Newton iteration solution, properties of the bounds of

the variable of iteration need to be considered. Multiple revolution orbits can be

calculated for the same time of flight, as shown in Figure 3.1. This means that there are

multiple solutions to equation 3.06. This forces a requirement to place bounds on the

variable of iteration, z. The bounds on the variable of iteration for a specified number of

revolutions is the square of the difference in eccentric anomaly for the specified number

of revolutions, i.e. if 1 revolution is specified, ( )2
lower 2π=z and ( )2

upper 4π=z . The

multiple revolution bounds will be incorporated into the Newton iteration as a

convergence check for the correct solution.

The behavior of equation 3.06 is shown in Figure 3.3 for two positions utilizing

solutions across a range of z and time of flight. Although the interplanetary transfers are

Figure 3.3: Behavior of Universal Variables Time of Flight
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nominally elliptical, hyperbolic transfers are possible, as denoted in Figure 3.3 for

negative change in hyperbolic anomaly squared. The x-axis in Figure 3.3 is the variable

of iteration (z), the y-axis is the time of flight from position 1 to position 2, and the blue

line represents equation 3.06 evaluated for the range of z and time of flight.

Figure 3.3 shows that a starting point anywhere in the 0 Revolutions region will

be located in a region of only one possible change in eccentric anomaly for a specified

transfer time. A starting point in the 1 Revolution region has the possibility to converge

to either of two changes in eccentric anomalies. This leads to the need of setting a

starting point in the multiple revolutions cases to converge to the desired change in

eccentric anomaly. For Newton iteration, convergence will occur along the side of the

blue line in the multiple revolution cases if a starting point is selected near the bounds of

orbitn2π× ; the red solid line in Figure 3.3 demonstrates this convergence where starting

point was placed near the bound at ( )24π . Therefore, the starting point should be

designated at a small offset from the bounds for multiple revolution cases to converge on

the desired solution.

The difference between the two, equal time of flight solutions on the multiple

revolution curves, is the eccentricity of the transfer orbit. For clarification, the difference

between the two solutions is shown as the dotted and dash-dot lines in Figure 3.4. The

dash-dot orbit is a solution that converges from the left of the multiple revolution curves

in Figure 3.3, while the dotted orbit is the solution that converges from the right of the

multiple revolution curves. The solid black orbit represents the minimum time of flight

solution of equation 3.06 in the 1 revolution region. The blue orbit represents the orbit of
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the launch planet (Earth) and the red orbit represents the orbit of the arrival planet (Mars).

The direction of motion of each orbit is counter clockwise.

It is interesting to note the arrival vector for the solutions have different angles of

approach at the target planet. This will cause a different time of day at arrival. In

interplanetary mission planning, time-of-day at arrival is often an important factor.

Designing a multiple revolution trajectory is one way to tailor the time of day at arrival

according to the mission specifications.

Now that the bounds and regions of convergence are identified, the iterative

solution to equation 3.06 can be explained. The first derivative of equation 3.06 is

required for the Newton iteration. From Appendix A, the first derivative is:
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Figure 3.4: Dual Solutions of the Same Transfer Time
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The variables C´ and S´ are the derivatives of C and S with respect to the variable z,

derived as equations 9.31 and 9.32 in Appendix A.

( )2CS1
2

1

d
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−−= z

zz
9.31
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zz
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The Newton iteration for solving Lambert’s problem is set up as:
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As seen from equation 3.08, the Newton iteration will converge by a series of linear

iteration steps. This presents a problem for convergence because of the presence of

multiple solutions. In Figure 3.3, if the desired time of flight exceeds 570 days the

Newton iteration can place the solution in the 1 revolution region, yielding an undesirable

answer. Since the solution is bounded, the algorithm should recognize that this is not a

correct answer. There are many remedies to this problem, however, only two will be

presented. The first remedy is to use a bisection iterative method. The second remedy is

to modify the algorithm to select a new point when the bounds are violated from which to

continue the Newton iteration.

The bisection solution method is very stable as it guarantees convergence in the 0

revolution region. Bisection is performed by setting initial bounds on the solution, as has

already been done for the variable z according to the number of revolutions, and taking

the average of the two bounds. If the average value yields a transfer time that is larger

than the desired time, the lower bound is retained, and the upper bound is set to the

previous average. If the transfer time is smaller than the desired time, the upper bound is
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retained and the lower bound is set to the previous average. This continues in a loop until

the solution is bounded to within a specified convergence criterion. This method is costly

in terms of computation (over 40 iterations are typically required), but does guarantee

convergence for the 0 Revolution elliptical case. The difficulty of using a bisection

technique for all cases is in the multiple revolution cases where the variable z has

multiple solutions for the same time of flight. Also, hyperbolic cases have difficulty

because the solution may not be captured by the initial bounds of the bisection method.

The multiple revolution curves require knowledge of the minimum time of flight

on the selected multiple revolution curve so that the bisection technique may be bounded

correctly. From Kepler’s equal area in equal time law, the minimum time of flight for

multiple revolutions is related to the minimum amount of area swept out with respect to

the variable of iteration.

( )
( ) 0

d

Aread
=

z
, 2π>z

Finding the minimum area with respect to orbital parameters semi-major axis, semi-latus

rectum, and eccentricity is non-applicable since such a solution will always assume zero

revolutions. The solution will need to be derived in terms of difference in eccentric

anomaly that is greater than 2π to accommodate multiple revolutions (difference in true

anomaly is also applicable). Since Kepler’s time of flight equation is derived from

Kepler’s equal area law and is transcendental for eccentric anomaly, it follows that the

solution to differentiating the area with respect to the eccentric anomaly would be

transcendental. Two possible methods for finding the minimum time of flight can be

curve fitting the multiple revolution region of the curve in Figure 3.3 and solving for the

minimum, or finding the point at which the first derivative of equation 3.06 is equal to
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zero by implementing another Newton iteration method using the second derivative of

equation 3.06. This is costly and ineffective though, giving reason to return to the

original Newton algorithm while making the appropriate changes to fix the convergence

problem for multiple revolution regions.

The proposed solution for the universal variables Lambert algorithm is to

incorporate both the Newton iteration method and the bisection method so that when the

bounds are violated by the Newton iteration, bisection iteration is used to select a new

point from which to continue. As stated earlier, the Newton iteration will always

converge along the sides of the blue curves in Figure 3.3 and therefore on the desired

multiple revolution solution if the starting point is placed at a small offset from the

multiple revolution bounds. Therefore, the bisection iteration that is incorporated will

only need to address zero revolution transfers. Furthermore, because the interplanetary

transfer is assumed to be elliptical, the bisection iteration will only have bounds from

zero to ( )22π . Just as the bisection algorithm explained above replaces either the lower

or upper bound after each iteration, so will the bounds be changed in the same manner for

the combined Newton-bisection algorithm.
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Using the same positions by the Lambert solution in Figure 3.3, Figure 3.5 details

the computational efficiency of the bisection Lambert algorithm (red) and the combined

Newton-bisection Lambert algorithm (black). The time of flight is plotted along the x-

axis, number of iterations is plotted along the primary y-axis, and change in eccentric



32

anomaly (green) is plotted along the secondary y-axis. The dotted green line separates

the hyperbolic solutions from the elliptic solutions. The variable of iteration was started

at a value of zero. The solutions are all located in the 0 revolution region of Figure 3.3.

By analyzing Figure 3.5, a direct rise in computational effort is seen for both

algorithms as the change in eccentric anomaly rises from zero. The performance of the

Newton-bisection solution of equation 3.06 can be seen to spike in the 200 to 300 day

time of flight region before bisection is required. This is inefficient, especially in the

calculations required by interplanetary transfers from Earth to Mars, as transfer times are

typically on the order of 180 to 270 days. The lack of performance of the solution can be

attributed to the starting point of the iteration. The current starting point for z has been

arbitrarily selected as zero. Since the bisection corrects the iteration from ‘jumping’ to

Figure 3.5: Lambert Solution Computational Cost
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multiple revolution curves, as is done at the spikes by the black lines in Figure 3.5, the

ideal starting point would be where the solution will have the least likelihood of

‘jumping’ to the multiple revolution curves. Figure 3.6 explains this jump, where the red

lines represent the region of the curve where the next iteration will be placed on the

multiple revolution curve and the blue lines represent where the next iteration will be

placed on the zero revolution curve. Figure 3.6 is for a 0 revolution solution with desired

time of flight equal to 850 days, where the green line shows the solution progress. The

green stars are the steps in the Newton iteration while the red star represents a step taken

by the bisection iteration. The large time of flight is impractical but is selected to plainly

show the possibility of the iteration jumping to the multiple revolution curves from the

zero revolution curve. Note that the iteration can return to the zero revolution curve from

Figure 3.6: Regions of Suitable Newton Iterations
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the multiple revolution curve because the desired-time-of flight is greater than the

minimum time of flight for multiple revolutions.

To reduce the number of bisection iterations necessary, a valid starting point is

desired that will not place the iteration on a multiple revolution curve. The point where

the solution switches from the correct curve to the one revolution curve is represented by

the following equation:

( )( )z
z

−=− 2
tof 2π

d

dt
tt

The variable ttof is the desired time of flight, t is the universal variables time of flight

(equation 3.06), dt/dz is the first derivative of the time of flight (equation 3.07), and z is

the square of the change in eccentric anomaly. The variables t and z represent the

location of the blue-red transition point in Figure 3.6. By direct substitution of equations

3.06 and 3.07 into the above equation, a transcendental equation in z is determined:
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Since the above equation is transcendental for z, an iterative procedure is required. Since

it is inefficient to iteratively solve for the variable z at the blue-red transition point, other

methods should be explored to find an effective starting point.

Instead of trying to formulate the location of the transition point, the problem’s

relation to interplanetary trajectories will instead be considered. For interplanetary

calculations, the trajectories considered are typically idealized by the Hohmann transfer,

as showed in section 2.5. The minimum energy transfer is well defined by two position

vectors, as shown by Prussing and Conway [7]. This minimum energy transfer, when

evaluated at a 180-degree separation for coplanar positions, are the same as the Hohmann
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transfer. This commonality offers an excellent recommendation for the initial starting

point in interplanetary calculations as the minimum energy transfer represents a solution

that is close to the ideal interplanetary transfer, and therefore close to the solutions of

interest.
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The variables r, ro, and ∆ν are the two position magnitudes and the angle between

the two positions. By implementing the new starting position, the numbers of iterations

are reduced for the 200 to 300 day transfer time solutions, as seen in Figure 3.7.

Figure 3.7: Lambert Solutions Incorporating Minimum-Energy
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By reducing the number of iterations for solutions in the regions of common

transfer times for Earth-Mars interplanetary trajectories, the overall computation time is

reduced greatly. This will aid the overall performance of the algorithm when calculating

thousands of interplanetary trajectories for mission analyses.

Now that the time of flight equation has been satisfied for the convergence and

performance criterion, the interplanetary trajectory can be calculated. For this, the f and

g expressions are used, as derived in Appendix A:

1r
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y
−= 9.22

µ
y

Ag = 9.23

2r
1g

y
−=& 9.24

Since the f and g functions define planar motion from a starting point, the velocity

of the first and second points can be determined from:
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An important subtlety in equations 3.11 and 3.12 needs to be addressed when the

transfer between the two points is 180 degrees, causing A in equation 9.17 to be zero.

For a zero A, the g function in equation 9.23 becomes zero, causing equations 3.11 and

3.12 to be undefined for a 180-degree transfer. Therefore, the universal variables

algorithm does not handle 180-degree transfers. This subtlety is acceptable though, as

180-degree transfers will not be considered by the interplanetary trajectories calculated.
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From equations 9.22 through 9.24, 3.12 and 3.13, the interplanetary trajectory is

determined. The following steps outline the universal variables Lambert solution:

1. Determine a starting point, zo, using equation 3.09.

2. Determine z using the Newton iteration algorithm (3.08) combined with the

bisection algorithm (3.09).

3. Determine A from equation 9.17.

4. Determine y from equation 9.18.

5. Determine the f, g, and g& expressions using equations 9.22 through 9.24.

6. Determine the velocities v1 and v2 from equations 3.12 and 3.13.

The Lambert solution that has been derived here provides a robust algorithm for

interplanetary calculations. The multiple revolution capability has been presented along

with a Newton-bisection iterative method that provides efficient convergence. In the next

section, the application of the Newton-bisection Lambert solution to targeting will be

shown.
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4 Interplanetary Trajectories

In the patched conic method, the assumption is made that the heliocentric conic is

only influenced by the sun’s gravity. Such interplanetary trajectories are not

characteristic of a real spacecraft, but the overall error in doing such an approximation

will be shown to be minimal.

In calculating the interplanetary trajectory, inputs of launch and arrival dates are

first required. The final output of interest in the trajectory is the ∞v
v

vectors of the

planetocentric hyperbolas in the IAU frame of date. The following interim steps are used

in calculating the interplanetary trajectory:

1. A launch and arrival date is selected.

2. The planetary ephemeris of choice is called to retrieve the positions and

velocities of the respective planets.

3. The coordinate frame of the planet position and velocity is rotated to the Earth

mean ecliptic frame.

4. The Lambert algorithm is used to obtain the f and g functions of the transfer

trajectory using the planet position from the planetary ephemeris and

difference in time between the launch and arrival dates.

5. The orbital elements are evaluated at the two known positions to yield the

transfer velocity vector.

6. The transfer velocity vector is subtracted from the planet velocity vector to

yield the ∞v
v

vectors of the planetocentric hyperbolas.
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7. A final coordinate transformation is performed to rotate the ∞v
v

vectors of the

planetocentric hyperbolas from the Earth mean ecliptic frame to the IAU

frame of date.

4.1 Launch and Arrival Date Considerations

Assuming coplanar circular planetary orbits, the minimum ∆v transfer between

two planets is the Hohmann transfer. For real planetary orbits, the 180° Hohmann

transfer requires the launch and arrival to occur on the line of intersection of the orbit

planes of the two planets, which is not feasible. However, near 180° transfers are feasible

due to the small angles between most of the planet orbit planes and the ecliptic plane,

requiring only small plane changes out of the ecliptic by the interplanetary trajectory. A

region of dates are therefore selected about the Hohmann transfer, allowing exploration

of the trajectories in the vicinity of the minimum ∆v.

To determine the times for a potential Hohmann transfer, some orbital geometry

needs to be introduced. Since Earth and Mars

are in elliptic orbits with low eccentricity and

inclination, the orbits are assumed to be

circular-coplanar, as shown by the solid

(circular) and dotted (elliptical) lines in Figure

4.1. Therefore, the mean motion is the

constant angular rate of the planet,
3a

µ
n =

where µ is the gravitational constant of the sun and a is the semi-major axis. Using the

Figure 4.1: Lead Angle
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orbital period,
n

2π
P = , and the geometry from Figure 4.1, an expression relating the lead

angle (LA) required for a launch and arrival that is 180° apart can be derived as,

TnLAπ 2+= , where T is the time of flight for the Hohmann transfer, or half the transfer

orbit period and n2 is the constant mean motion of Mars. Since only the semi-major axis

of the transfer needs to be known for the time of flight of the Hohmann transfer, the

orbital period can be represented as a function of the two semi-major axes, a1 and a2 of

Earth and Mars. From the above equations, the expression for the lead angle is






















 +
−=

3

2

21

2a

aa
1πLA 4.01

For Earth and Mars, the lead angle is about 43°. To find an appropriate launch and arrival

date, the planetary ephemeris needs to be called successively until Mars leads Earth by

the lead angle. At this time, the Hohmann transfer is possible under the circular, coplanar

assumption for Mars and Earth.

When a suitable launch and arrival date combination has been found, a synodic

period may be added to the launch/arrival date combination so that the planets are aligned

in the correct lead angle position for subsequent mission windows. The proper lead

angle alignment period is moving at a rate equal to the difference in mean motion of the

two planets, ( )EarthMarssynodic nnn −= . The resultant mean motion can be used to calculate

the synodic period.

synodic
synodic n

2π
P = 4.02
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Expected regimes that are possible for interplanetary trajectories can be explored by

multiplying the synodic period by an integer number of future mission windows and

adding to the time of the lead angle transfer alignment for the circular, coplanar Mars and

Earth. The synodic period for Earth-Mars is about 26 months.

Although the launch and arrival dates have been predefined for the comparison

case of this study, it is important to know how to predict future mission windows. The

process of selecting a mission window using the described method above has been

validated versus the 2009-2010 dates in the JPL comparison data. Note that the method

does not actually predict a mission window, but rather a point in time from which the

mission window is selected. With the method developed for mission window time

selection, an example case will be shown for a 2013-2014 Earth-Mars mission window in

chapter 7. This completes step 1 in the interplanetary trajectory calculation, selecting a

launch and arrival date. The next step is calculating the planetary positions in time from

the planetary ephemeris.

4.2 Ephemerides

There are numerous types of ephemerides that may be used in retrieving planetary

positions. High precision ephemerides will use Einstein’s theory of relativity as the

underlying premise in calculating planetary positions. Many ephemerides are tabulated,

while others have been fit to a curve, or are calculated using specialized formulae.

Currently, NASA’s Jet Propulsion Laboratory maintains the most accurate ephemerides.

The simplest ephemeris used is a least squares fit of the JPL DE200. The

ephemeris is given in orbital elements and includes a constant centennial rate for each

element. The ephemeris is stated to be accurate to within 25 arc-seconds over the interval
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of 1800 AD to 2050 AD. The ephemeris’ coordinate system is in the Earth mean ecliptic

system of J2000. This ephemeris offers great flexibility and use in the astrodynamic

community due to its simple model and reasonable precision. The DE200 least squares

fit ephemeris can be downloaded from the JPL website at

http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt.

A second ephemeris is Van Flandern’s Low Precision Formulae for Planetary

Positions [9]. This ephemeris was generated for such applications as automatic telescope

pointing, tidal theory, and planetarium projector settings, where overall accuracy is not as

important as computational time. The planets are calculated using a set of trigonometric

series that include the mean longitude, mean anomaly, argument of latitude, and their

time derivatives. The data tables for these series have been tabulated which reduces

computation time greatly. The overall accuracy of Van Flandern has been shown to be

within one arc-minute of the actual planetary position over a range of ± 300 years from

the year 1978 [9]. All coordinates are given with respect to the Earth mean equator

system.

The final ephemeris is the DE405 planetary ephemeris from JPL. At the time of

writing, DE405 is the most accurate ephemeris that is freely available to the public. JPL

does generate other ephemerides for mission specific needs and long-term planetary

estimation, but this is the best ephemeris for general-purpose applications making it ideal

for the purposes of this research. The equations of motion for DE405 were integrated

forward from 1600 AD to 2200 AD offering a generous range of data to sample from.

The ephemeris is tabulated using Chebyshev polynomials and coefficients to interpolate

the planetary positions. All coordinates are given with respect to the International
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Celestial Reference frame (ICRF). The ICRF frame only differs from the Earth mean

equator of J2000 system by 78 ± 10 micro arc seconds [20]. Therefore, the position and

velocity from the DE405 ephemeris is assumed to be in the Earth mean equator system of

J2000. The DE405 ephemeris may be downloaded from the anonymous ftp server:

ftp://ssd.jpl.nasa.gov/pub/eph/export/DE405.

For consistency, the coordinates of each ephemeris are transformed to the Earth

mean ecliptic system of J2000. To perform the necessary conversion, the following

rotation matrix is used.
















−=

εε
εε

cossin0

sincos0

001

R ECLEME 4.03

The variable ε is the obliquity of the Earth equator and ecliptic. The obliquity is 230 26’

21.448” at J2000 [3].

The ephemerides described above will be compared to each other when

calculating step 2 of the interplanetary trajectory, the determination of the position and

velocity of the planets. The transformation to the ecliptic given by equation 4.03

completes step 3 in the interplanetary trajectory calculation, rotating from the EME

system to the Earth mean ecliptic frame.
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4.3 Lambert Solution

As described in chapter 3, the Lambert solution is utilized to solve the

interplanetary transfer from planet to planet. Interplanetary transfer terminology needs to

address three main points: multiple revolution orbits, orbit geometry and the angle

traveled between the two points. These main points distinguish 4 separate transfers, Type

I, Type II, Type III and Type IV transfers.

As explained in reference [10], a Type I trajectory has the true anomaly at arrival

bounded by 0° to 180°. A Type II trajectory has the true anomaly at arrival bounded by

180° to 360°. If the transfer takes multiple revolutions about the central attracting body

the trajectory is called a Type III and Type IV trajectory. Type III, multiple revolution

trajectories have the true anomaly at arrival bounded by 0° to 180°. Type IV, multiple

revolution trajectories have the true anomaly at arrival bounded by 180° to 360°.

Typically, the multiple revolution transfer trajectories are denoted with a "–" and "+" to

designate the left and right side approach in the Lambert solution. For example, a highly

elliptic, multiple revolution transfer with true anomaly at arrival less than 180° is called a

Type –III. It should be noted that these terms are not uniformly accepted definitions.

However, for purposes in this report, the definitions presented will be used.

The Lambert solution developed in chapter 3 is valid for all types of transfers.

From equations 3.12 and 3.13, the appropriate velocity vectors of the interplanetary

transfer are determined. This completes steps 4 and 5 of the interplanetary trajectory

calculation, the Lambert solution and launch and arrival velocity calculation.
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4.4 Calculation of the Interplanetary Trajectory

The inputs generated so far have been the launch and arrival dates, and the

planetary position and velocity at those times. The Lambert solution was utilized to

determine the transfer between the two planet positions. As stated by step 6, the transfer

velocity vectors are subtracted from the planetary velocity vector to yield the direction

and magnitude of ∞v
v

.

planetlambert vvv
vvv −=∞ 4.04

The result of equation 4.04 will later be shown to be

the Ŝ axis of the B-plane coordinate system. Figure

4.2 depicts the resultant ∞v
v

vector that is in the Earth

mean ecliptic coordinate system.

The final phase in calculating the interplanetary trajectory, step 7, is rotating the

∞v
v

vector to the planet IAU coordinate frame of date. The transformation to the IAU

coordinate frame is first accomplished by rotating the Earth mean ecliptic coordinate

system to the Earth mean equator system of J2000 by using the transpose of the rotation

matrix in equation 4.03. Then, by using the physical ephemeris of date for the planet, the

rotation matrix in equation 2.06 can be utilized to rotate the ∞v
v

vector from the Earth

mean equator system of J2000 to the IAU coordinate system of date. This transformation

is done for both the launch and arrival ∞v
v

vectors.

Figure 4.2: Arrival Geometry
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The interplanetary transfer trajectory is depicted in Figure 4.3 for a launch date of

November 1st 2011, and arrival date of September 1st 2012. The steps given at the

beginning of chapter 4 have been included for reference. The x and y axes are in the

plane of the ecliptic of J2000 in units of kilometers. The blue curve is the orbit of the

Earth, the red curve is the orbit of Mars and the green curve is the transfer trajectory with

the dashed magenta lines connecting the location of Earth and Mars at the given points in

time.

Following the steps outlined in this chapter, the interplanetary trajectory may be

calculated between two planets. From just the transfer velocities at launch and arrival,

the v∞ may be determined for the selected window of launch and arrival dates. The

Launch

Arrival

Figure 4.3: Ballistic Trajectory
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launch v∞ is commonly referenced by C3, which is the velocity at infinity squared

(equation 4.04)2. By plotting the necessary launch C3 and arrival v∞, the necessary

transfer velocities can be explored for the mission window. Such plots are commonly

called porkchop plots because of their shape. A porkchop plot for launch C3 and arrival

v∞ for a 2009-2010 Earth-Mars mission window is shown in Figure 4.4.

The next goal is to couple the interplanetary trajectory with the EDL analysis. To

do this, the patched conic approximation is used to link the EDL analysis to the

interplanetary analysis. Although patching the two trajectories will inherently introduce

errors, the end result is acceptable for mission design purposes, and will be shown to

correlate well with the JPL data.

Figure 4.4: Porkchop Plot
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5 Launch and Arrival Space Synthesis

The window of available launch and arrival dates about the optimum time of

launch will affect the shape of the interplanetary trajectory that can in turn affect the EDL

analysis. The planetocentric hyperbola that is defined by the patched conic

approximation will be used to link the EDL analysis to the interplanetary trajectory. The

synthesis of closed form, analytical solutions to the planetocentric hyperbola from the

interplanetary trajectory are therefore useful when targeting to specified constraints.

5.1 Launch Space

The launch space is critical to mission designers for two reasons. The first reason

is the launch energy required to get from planet to planet. Second is the launch vector

orientation with respect to the Earth tracking stations that will determine the trajectory of

the departing spacecraft. The derivation of the launch energy and orientation will be

presented and showed for application to interplanetary trajectories.

Launch vehicle companies such as Lockheed Martin and Boeing define the

capability of their launch vehicle by the launch energy (C3) versus the amount of payload.

For the impulsive ∆v required by the launch vehicle from a parking orbit, the energy

integral can be used to calculate the velocity requirement at any radius from the planet.

r

2µ
vv 22 += ∞ 5.01

This is the velocity the spacecraft must attain at the specified radius, r. By knowing a

specified circular parking orbit radius, the tangential ∆v to the orbit may be calculated by

subtracting the velocity of the parking orbit from the velocity calculated in equation 5.01.
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The orbital geometry must also be considered by the launch space. The

declination of the launch asymptote, or DLA, is very important to mission navigators.

For example, an initial orbit

determination of the interplanetary

trajectory depends strongly on DLA.

This is because of the location of

tracking stations on Earth having the

ability to accurately track spacecraft

within a specific band of DLA. A

DLA that falls outside of the band

could result in a poor orbital

determination by the various tracking stations causing misalignment in the interplanetary

trajectory injection.

DLA (δ) can be computed from the direction of the launch asymptote, Ŝ, which is

the unit vector of the velocity at infinity in the IAU coordinate frame, as determined from

equation 4.04.















++
= −

2
z

2
y

2
x

z1

ŜŜŜ

Ŝ
sinδ 5.02

5.2 Arrival Space Synthesis

The arrival space is another critical regime. Orbit inclination, latitude, argument

of periapse, declination, time of day, and planet season are all parameters of interest.

Each parameter is in part responsible for the performance of the EDL system. Therefore,

Launch
Asymptote

Ŝ
Parking
Orbit

DLA

Planet
Equator

Launch Injection

Figure 5.1: Launch Asymptote Declination
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the calculation of each parameter is necessary in developing a linked interplanetary and

EDL analysis.

5.2.1 B-plane

The coordinate system that is of primary concern in the arrival space synthesis is

the B-plane. B-plane coordinates are very useful in targeting scenarios, and are used here

to determine injection properties at Mars. Targeting in the B-plane system can be done

from only three input variables: the magnitude of the ∞v
v

vector (equation 4.04), right

ascension of the approach asymptote and declination of the approach asymptote (equation

5.02). The right ascension of the approach asymptote is calculated as:

( )xy Ŝ,Ŝatan2α = 5.03

Note that the right ascension and declination are both calculated with respect to the IAU

coordinate frame of date. The B-plane coordinate system relation to targeting is shown in

Figure 5.2.

The variables B and θ are used to target the approach hyperbola. B represents the

magnitude of the miss distance with respect to the center of Mars perpendicular to the

Ŝ

V∞

rSOI ρ
B-Plane

θ
B
v

T̂ Note: T̂ is ⁄⁄ to equator

R̂ is ⊥ to arrival asymptote

R̂

Figure 5.2: B-Plane Targeting System

Periapse
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arrival asymptote. The variable ρ is the turn angle of the approach hyperbola,

e

1
cosρ 1−= . The variable θ is the B-plane angle, measured clockwise in Figure 5.2.

Note by rearranging

equation 2.10 to

cosδcosθicos =

inclination will have a minimum

bound equal to the asymptote

declination. Figure 5.3 shows

the achievable inclination with

respect to the declination of the

approach asymptote (x-axis) and

B-plane angle (y-axis). For a B-plane angle of -90° or 90°, the approach hyperbola will

pass over the North or South Pole of Mars as long as the two-body assumptions are

maintained. The benefits of B-plane targeting can be seen from the simplicity of

equation 5.04, as orbit inclination and B-plane angle are easily related.

The interplanetary trajectory has been patched to the B-plane coordinates, a

targeting method can begin to be developed. The next section will detail how B-plane

targeting is employed in determining the maximum latitude capability.

5.2.2 Maximum Latitudes

The variables used to determine the maximum achievable latitudes, λNorth and

λSouth, are the declination of the launch asymptote (δ) and the spherical side subtending

the point of impact to the point where the arrival asymptote intersects the sphere of

Figure 5.3: Inclination for Varying θ and δ
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influence at arrival (f´). From Figure 5.4 and spherical trigonometry, the equation for

latitude at impact is:

( )o90θcosfsincos δfcossin δsin λ +′+′= 5.05

The maximum latitudes, assuming constant f´ and δ, occurs when B-plane angle θ is

±90°, i.e. when the approach trajectory passes over one of the poles. Thus, the

expressions for the maximum achievable northern

and southern latitudes are given by:

( )
( )f-δsinsinλ

fδsinsinλ

South

North

′=

′+=
5.06

The next step is determining the variable f´, which

consists of three components, the angle (ψ)

subtended by B and the arrival asymptote, change in

true anomaly from SOI to entry (∆f) and the central

angle from entry to impact (ξ), all shown in Figure

North Pole

90−δ

90+θ 90−λ

Entry
B-Plane

Impact

λ

Planet Equator

Figure 5.4: Latitude Targeting

f ′

Figure 5.5: Spherical Side f´
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5.5. The central angle variable ξ is a user defined first guess that is to be refined by the

entry, descent and landing analysis. The variable ψ represents the angle between the

approach asymptote and point of entry on the sphere of influence as measured from the

center of the target planet. To calculate this angle, plane trigonometry will be used as

opposed to spherical. Therefore, the radius of the sphere of influence and the magnitude

of B are needed.

The radius of the sphere of influence is calculated from equation 2.01. To

calculate B, the angular momentum of the arrival hyperbola must be defined according to

the targeting parameters, target radius (rtarget) and flight path angle (γ).

targettargettargettarget γcosvrh = 5.08

Typically, the target radius is defined at atmospheric entry, as this is the location that the

EDL analysis will start. For Mars, atmospheric entry is defined at 3,522.2 kilometers.

The flight path angle is initially a first guess that is to be later refined by the EDL

analysis.

The approach hyperbola angular momentum can also be defined by the position at

entry on the B-plane and the ∞v
v

vector. As explained in section 2.4.4, the angular

momentum is ∞= Bvh . By rearranging, the variable B is

∞

=
v

h
B target 5.09

By using the radius of the sphere of influence and B, ψ is determined from Figure 5.5 as,

SOIr

Bψsin = 5.10
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Now that ψ is determined, the only variable remaining is the true anomaly (f)

from entry on the sphere of influence to atmospheric entry. True anomaly is calculated

from the hyperbolic eccentricity, semi-latus rectum, semi-major axis and eccentric

anomaly. The semi-latus rectum is
µ

2h
p = . The semi-major axis comes from the vis-

viva integral evaluated at the target radius conditions, 









−= 2

target
target

v
r

2µµa . Finally,

eccentricity is ap1e −= . The true anomaly from the sphere of influence to

atmospheric entry is defined by the hyperbolic eccentric anomaly.

OutboundForF0

InboundFor0F

e

ar1
coshF 1

∞<<
<<∞−







 −

= − 5.11

The sign of the hyperbolic eccentric anomaly at the sphere of influence will

always be negative because dtdr is assumed to always be less than zero. From the

hyperbolic eccentric anomaly, true anomaly can be calculated.










 −
= −

coshF-e

1esinhF
tanf

2
1 5.12

Equation 5.12 will be used to calculate the change in true anomaly from the

sphere of influence encounter to atmospheric entry.

SOIentry fff −=∆ 5.13

Equation 5.06 can now be used to solve for the extremes of latitude for various

arrival conditions and targeting parameters. To be accurate when calculating the

maximum latitudes, an oblate planet model should be used. The IAU defines the

oblateness of the planets by their flattening, a parameter that specifies the degree by
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which a planet’s figure differs from that of a sphere. The IAU definition is known as the

reference ellipsoid. An iterative approach is used when calculating the maximum

latitudes on the reference ellipsoid. First, the problem is defined by using the equation of

an ellipse to represent the ellipsoid in 2-D coordinates:

1
b

y

a

x
2

2

2

2

=+

From Figure 5.4, the variable y for the

ellipse is tanλx and the semi-minor axis, b , is

( )f-1a . Substituting both into the equation for the

ellipse, and solving for x yields,

( )
2

1

2

2

f1

λtan
1ax

−
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







−
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The radius of the ellipse is cosλxr = . By substituting x into the equation for r,

the equation for the radius of an oblate planet is determined as a function of the equatorial

radius (a), latitude (λ) and flattening (f). .

( )
2

1

2

2
2

f1

λsinλcosar
−










−
+= 5.14

Iteration is now used because the impact radius that has been redefined by the

oblate model will yield a different angle, f´. The iteration then proceeds as follows:

1. Select a target entry radius, flight path angle, and central angle ψ.

2. Determine the angle f´ using equations 5.07 through 5.13.

3. Determine the latitude λ by equation 5.05.

4. Determine the oblate radius by equation 5.14.

y
Impact

b r

λ x
a

Figure 5.6: Oblate Modeling

a
b

1f −=
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5. Check the difference between the previous impact radius, and the oblate radius.

For the first iteration, use an impact radius equal to the equatorial radius. For

subsequent iterations, reset impact radius to the calculated oblate radius. When

the difference falls below a specified tolerance, the correct impact radius and

latitude has converged for the oblate model.

In mission planning, determining the maximum achievable latitudes is an

important part of the interplanetary analysis. For example, if a 2009 Earth to Mars

mission targets a latitude of 60N, only a certain set of launch and arrival combinations

will be viable solutions, as shown by the shaded blue regions in Figure 5.7. The red

contours show the maximum southern latitude. Note that Figure 5.7 assumes a central

angle from entry to impact of 12.6 degrees, meaning that the shaded blue region may

expand or contract if the central angle assumed for the EDL system is either increased or

Figure 5.7: Achievable Latitudes for 2009’-10’ Earth-Mars Missions
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decreased from 12.6 degrees. This type of insight allows a preliminary view, before any

EDL analysis is required, of what capabilities the mission may have for the given launch

and arrival dates and EDL system.

5.2.3 Targeting Latitudes

Targeting to specified latitudes can be accomplished in the same way as done for

the maximum latitudes, but will now include the EDL analysis using POST 2 [21]. The

POST 2 analysis will be shown in chapter 7. The POST 2 analysis begins at atmospheric

interface, thus defining the target radius. The variables flight path angle, B-plane angle

and B magnitude will be used to target the desired latitude.

Since flight path angle is initially guessed, B-plane angle and B are the only

inputs remaining to target to the defined requirements. By rearranging equation 5.05, the

solution for B-plane angle (θ) as a function of target latitude becomes:

NorthSouth

1

λλλ

90
sincos

cossinsin
cosθ

<<

−



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


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′−
= − o
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5.15

Equation 5.15 is only valid for the maximum target latitudes determined by equation

5.05. The magnitude of B is calculated from equation 5.09. Although B-plane angle and

B have been developed to target the landing site, position and velocity are still needed for

comparison to the JPL data. The conversion from B-plane coordinates to position and

velocity will be covered in the next section.
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5.2.4 Arrival State

Now that the necessary targeting variables have been determined, the conversion

from the targeting parameters to position and velocity must be addressed. The position

and velocity unit vectors are first defined in the perifocal system of chapter 2.3.1 using

the true anomaly of entry (fentry), eccentricity and flight path angle. The unit vectors for

position and velocity in the perifocal system are:
















=

0

fsin

fcos

r̂PQW 5.16

( )































+
+

+
−

=

0

fecos1

fcosecosγ

fecos1

fsincosγ

v̂PQW 5.17

The next step is to rotate the perifocal coordinate system to the B-plane

coordinate system. This is performed by first rotating about the perifocal W-axis by the

turn angle of the hyperbola as shown in Figure 5.8. This will place the P-axis along the

approach asymptote, Ŝ in the B-plane coordinate system.

Trajectory
Plane

Figure 5.8: 1st Rotation

P̂ 1Ŝρ

2Ŝ

Q̂

3Ŝ,Ŵ
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A rotation about the

intermediate x-axis is then made by

the negative of the B-plane angle θ

to align the axes with the B-plane

system and the equator of the

planet, Figure 5.9. Note that the B-

plane angle rotation does not place

the axes of the coordinate system directly on the B-plane system, but only aligns the axes.

The next rotation is about the y-axis by the declination of the approach asymptote (δ) to

align the z-axis with the north pole of the planet equator and x-axis with the planet

equator, shown in Figure 5.10. The notation for this intermediate rotation denotes the

axes as the unit vectors b1, b2 and b3. The final rotation is about the z-axis by the

negative of the right ascension of the approach asymptote, shown in Figure 5.10. A

vector undergoing these four rotations will be in the IAU coordinate system of date.

These four rotations yield the following rotation matrix,

North Pole

R̂- ẑ 3b̂

x̂ T̂- ,

1b̂ α 2b̂

δ ŷ

Ŝ

Figure 5.10: 3rd & 4th Rotation
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2Ŝ 1Ŝ

T̂- 3Ŝ

T̂
Note: T̂ is ⁄⁄ to equator

R̂ B
v

Ŝ is ⊥ to arrival
asymptote

Figure 5.9: 2nd Rotation
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Applying this rotation matrix to equations 5.16 and 5.17 will yield the proper position

and velocity vectors in the IAU coordinate system of date.

The method for targeting the arrival latitude has been developed for position and

velocity. Other variables that are of specific interest in arrival space targeting are the

time of day and solar longitude. These variables are calculated by use of the positions of

the planets around the sun from the planetary ephemeris.

Solar longitude (Ls) is defined as the celestial longitude of the planet measured

from the planet vernal equinox of date. To determine Ls, first calculate the location of

the north pole of the planet equator in the Earth mean ecliptic system of J2000. This is

accomplished by rotating the north pole from the IAU coordinate system of date to the

Earth mean ecliptic system. The rotation matrix operates on a unit z vector that

represents the north pole of the planet.

ze
v

IAU/ECLequ Rû = 5.19

Next, the inclination and node of the planet about the sun is determined using the

position and velocity vector of the planet in the Earth mean ecliptic system.

vrh
vvv

×=
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The unit vector representing the pole of the planet orbit is:


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−=
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isinΩsin
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The cross product of unit vectors along the ecliptic north pole (equation 5.20) and

the planet equator north pole (5.19) will yield the vernal equinox of date. From the

vernal equinox, solar longitude is measured along the direction of rotation of the planet

about the sun to the planet position vector in the Earth mean ecliptic system.

Just as the vernal equinox symbolizes spring on Earth, the solar longitude (Ls) of

other planets represent the season. This is especially important on Mars, as history has

shown the Mars atmosphere to be more active in the northern or southern hemispheres

depending on the season.

The time of day is also important if a nighttime landing is not desired. Type I

trajectories will arrive on the sun lit side of the planet and vice versa for Type II

trajectories. Type III and IV trajectories can provide extremes on time of day if desired.

Therefore, because of the advantage in time of day a Type II trajectory may be favored

over a Type I trajectory.

To determine the local solar time, the position vector of the sun and position

vector at the target and flight path angle are used. Both vectors are in the IAU coordinate

system of date. The sun position vector is determined by using the rotation matrices from
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equations 4.03 and 2.06 to rotate the negative of the planet position vector, as retrieved

from the planetary ephemeris, from the Earth mean ecliptic system to the IAU coordinate

system of date. The position vector at the targeted radius is calculated from equation

5.16 and rotated to the IAU coordinate system by equation 5.18. The longitude of the

position vector subtracted from the longitude of the sun vector is the local solar time.

Now that the launch and arrival space characteristics have been defined, the entry,

descent, and landing analysis may be performed. But first, the comparison with the JPL

data needs to be considered to verify the method. The next section will use the methods

described by chapters 4 and 5 to retrieve the results for the comparison data.
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6 Results

By comparing the simplified interplanetary calculation results to the JPL data,

accuracy will be seen to greatly depend on the accuracy of the ephemeris used. To show

this, porkchop plot data sets have been generated for the JPL mission window using the

method outlined thus far for 3 different ephemerides. There are two significant parts to

this method, the first being outlined in chapter 4: the interplanetary trajectory. The

second has been outlined in chapter 5: the patched conic, arrival space synthesis. The

data sets representing the two portions of the method will be differenced with the JPL

data set and the percent difference will be plotted for the mission window range. The

launch dates covered by the JPL data are from July 30th, 2009 to December 27th, 2009.

The arrival dates covered are from March 20th, 2010 to February 13th, 2011. The

interplanetary trajectory error results will be shown first. The patched conic, arrival

space error will be shown second.

The first step in validating the process described herein is to solve for the

targeting conditions of the JPL data. This includes the target radius, flight path angle,

latitude, and central angle. The JPL data was found to have a target radius of 3,522.2

kilometers, a flight path angle of –14.5 degrees, target latitude of 0 degrees, and a central

angle of 12.6 degrees. Using these targeting variables, a common targeting scenario for

the analysis of the launch and arrival dates may be considered.

A grid of 157 launch dates and 176 arrival dates were generated using the

targeting variables listed above. Three variables were selected for comparison, the arrival

v∞, solar longitude and launch C3, and plotted with respect to the launch and arrival dates,

as shown in Figure 6.1.
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To understand the effects by the velocity at infinity, C3 and solar longitude at

arrival, a set of constraints were imposed on the mission window considered in Figure

6.1. Although lower velocities are desirable, the C3 begins to grow where v∞ is low.

Since launch vehicles for MSL had a maximum C3 around 30 km2/s2, a mission designer

can bound the launch space by the contour curves of C3 and the arrival space by the

contour curves of v∞. In Figure 6.1, the blue shading represents the bounded regions.

The reason for using arrival v∞ is that it is a test of the accuracy of the planetary

ephemeris used, as ∞v
v

is calculated directly from the Lambert solution that only uses the

positions and times of the planets. The arrival position vectors are useful because they

test the accuracy of the physical ephemeris, as the position vectors from JPL were given

in the Mars prime meridian coordinate system, which is determined from the physical

ephemeris.

Figure 6.1: C3 and V∞ Contours for Earth-Mars 2009-2010 Transfers
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6.1 Planetary Ephemeris Comparison

The planetary ephemeris used is directly correlated to the accuracy of the

interplanetary trajectory calculated from the Lambert algorithm because it provides the

position of the planets. The ∞v
v

magnitude is related by equation 4.04 to the

interplanetary trajectory and will therefore be considered the variable of comparison to

the JPL data. At the time of this research, it was unknown what planetary ephemeris JPL

utilized to generate the data. The velocity at infinity for the JPL position and velocity

data is calculated from equation 5.01. Using three different planetary ephemerides for

the generation of the planetary positions will show the interplanetary trajectory accuracy.

These ephemerides were presented in section 4.3.

The first ephemeris used is Van Flandern’s Low Precision Formulae. This is

considered to be the most inaccurate ephemeris of the three used, as accuracy is stated to

only be reliable to one arc-minute. Figure 6.2 shows the percent difference in v∞ for Van

Flandern with respect to the JPL data. Since the difference is so small, the contour plots

of v∞ are all visually identical. Therefore, a contour plot of v∞ difference is more

illustrative for these purposes. The plot shows that v∞ difference varies widely across the

spectrum of dates, and is not biased towards any regimes. Even with such a low

precision ephemeris, the v∞ difference is nearly negligible from the JPL data and is

acceptable for preliminary mission design. There is no advantage that the Van Flandern

ephemeris holds over the other ephemerides. It is simply used to show that even for low

precision ephemerides, interplanetary trajectories can still be calculated with relatively

high accuracy.
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The next ephemeris used is the DE200 least squares fit. The DE200 ephemeris is

very fast to compute and has a precision more than twice that of Van Flandern. The

percent difference in v∞ is shown in Figure 6.3. A ridge of improved accuracy is seen to

appear along the green line. The dispersion of v∞ difference is smoother than Van

Flandern, but is still large at the extremities.

Figure 6.2: Van Flandern Difference in V∞
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The final ephemeris used is the DE405 ephemeris. JPL releases this ephemeris to

the public for general use and is considered to be a very accurate prediction of planetary

positions and velocities. DE405 is applicable from the years 1600 to 2200 AD. JPL has

recently released DE410, which holds more accurate positions for Mars and Saturn due to

the Mars Exploration Rover and Cassini missions respectively. The improved accuracy

is not discernable though for this analysis. Figure 6.4 shows the percent difference in v∞

for the DE405 ephemeris versus the JPL data. The dispersion of v∞ difference is seen to

vary periodically along the x-axis with a frequency of one month. The periodicity is

likely due to the motion about the Earth-Moon barycenter is accounted for in the DE405.

The Earth-Moon motion is less apparent in the other ephemerides as they are curve fits to

the planetary positions and thus smooth out the period of motion seen by the Earth-Moon

motion.

Figure 6.3: DE200 Difference in V∞
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The method used in the synthesis of the interplanetary trajectory from the

planetary ephemeris has now been validated by the comparison of v∞. This validates the

assumptions used in the interplanetary calculation method. Furthermore, the results show

that the selection of the ephemeris is not a large driver in retrieving accurate results. For

a simplified interplanetary analysis, the DE200 ephemeris provides more than enough

resolution of the planetary positions for determining the interplanetary trajectory.

The next step is to validate the position at arrival with respect to the JPL data.

Remember that a patched conic method was used to retrieve the orbital elements about

the planet and error will be inherent due to the patch. The next section will show the

validity of the patch assumption along with the respective differences due to the planetary

ephemeris used.

Figure 6.4: DE405 Difference in V∞
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6.2 Position Comparison

To determine the accuracy of the targeted position, the method detailed in chapter 5

will be used to calculate position at arrival according to the targeting constraints of

radius, central angle, flight path angle and latitude. For this analysis, the position vector

from the JPL data is subtracted from the calculated position vector, and the magnitude of

the difference is evaluated is plotted.

The position difference for the Van Flandern ephemeris is shown in Figure 6.5,

with contours given in units of kilometers difference. Accuracy is seen to be limited in

the shaded region of interest in Figure 6.1. Though accuracy is validated for the physical

ephemeris as the position difference is relatively close to the form exhibited by Figure

6.2, implying that the inaccuracy is translated from the planetary ephemeris differences

and not the position differences.

Figure 6.5: Van Flandern Position Difference
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The DE200 ephemeris is evaluated next for position difference at arrival, Figure

6.6. Relative difference does not improve greatly over the differences encountered by

Van Flandern. Although the DE200 ephemeris may have improved accuracy over the

Van Flandern ephemeris for the interplanetary leg, target position difference is found to

not increase as would be expected.

Figure 6.6: DE200 Position Difference
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The position difference of the DE405 ephemeris is shown in Figure 6.7. The

periodic variation is once again seen. Furthermore, since the variation remained periodic,

the physical ephemeris used is also validated. If the physical ephemeris were inaccurate,

contours would not have been similar to the periodic contours of the v∞ difference seen in

Figure 6.4. Position difference is also reduced considerably from the DE200 and Van

Flandern ephemeris.

Figure 6.7: DE405 Position Difference
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7 Linking the Entry, Descent, and Landing Analysis to

the Interplanetary Calculations

The analysis performed up to this point has all been based upon the assumption of

a constant target flight path angle and central angle. To refine these parameters, an entry,

descent, and landing analysis is performed. The software generated up to this point is

excellent for general cases, as it provides a simple understanding of the requirements of

interplanetary travel and the ability to reach a designated landing site. When the entry,

descent, and landing phase of the mission must be considered to a greater extent, a

program with greater accuracy must be employed. The program POST 2 (Program to

Optimize Simulated Trajectories II) is

therefore utilized for the entry, descent

and landing analysis. POST 2 provides

a flexible amount of input to the

trajectory analysis and can be used for a

variety of missions. The mission that

was analyzed for purposes here is the

Mars Science Laboratory, which will

utilize new technology in the areas of

supersonic parachutes and a sky-crane

landing system, as shown in Figure 7.1.

For such a mission like this, various

parameters such as heat rate, max g’s,Figure 7.1: Parachute and Sky-Crane
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and altitude at parachute deploy are of obvious interest. For instance the maximum heat

rate is important for thermal protection system consideration. Max g’s is important due

to mission constraints on Mars Science Laboratory structural capabilities. The altitude at

parachute deploy is of concern as well, as the altitude is directly linked to the ability of

the vehicle to effectively slow itself for landing. The input deck for the POST 2 analysis

has been included in Appendix C.

Since POST 2 can vary any parameters to optimize the trajectory, sets of four

independent parameters were selected to reach the dependent conditions of the

simulation. The independent variables were B-plane angle, flight path angle, time on

parachute, and initial time. The initial time is used to target the longitude by artificially

rotating the planet before entry, in turn causing the simulation to not brute force the entry

to either inaccurately extend or decrease the central angle to reach the target. This

assumption is acceptable because it was assumed that the actual time of arrival would be

targeted well before arrival of the spacecraft. This change in time will only have a

maximum variance of one Mars day, which is negligible to the change in declination and

right ascension of the arrival asymptote for different arrival dates. The simulation

dependent variables were latitude, longitude, landing radius, and a specified bank angle

profile at entry. The input variables to the POST 2 simulation are the right ascension and

declination of the approach asymptote, Julian day of arrival, and magnitude of velocity at

infinity, all derived from the simple interplanetary analysis developed herein. The POST

2 optimizer would then optimize the flight path angle, B-plane angle, and central angle

for the trajectory analysis.
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As with any optimization method, the better the initial guess is, the quicker the

optimization will proceed. For the EDL analysis, over 14,000 optimization cases were

necessary to run. By supplying a decent first guess, the processing time could be

significantly reduced. Therefore, the simulation initially ran a single case at 6 km/s entry

velocity to yield a first guess for two of the independent variables, flight path angle and

time on parachute. The entry velocity was chosen to 6 km/s because the majority of the

cases of interest were in the range of 5.5 to 6.5 km/s. For this case, the initial flight path

angle was optimized to –13.43 degrees and the time on parachute was optimized to 68.27

seconds.

Entry velocities above 7 km/s were disregarded, as they would not likely be

considered due to extreme g’s and heat loads. A total of 14,484 cases were then selected

out of the 27,632 total cases generated from the launch/arrival space grid. The cases

were run on a 64-node, 3.2 GHz Intel Xeon processors, Linux cluster taking

approximately 14 hours to complete. If such computing power and time is not available,

the grid used does not have to be as fine to yield similar results. A grid containing 1/8th

of the 14,484 cases that is equally spaced will yield nearly the same results and reduce

computation time greatly. However, at the time of this research, the aforementioned

cluster was undergoing testing as it had just been completed. Therefore, the 14,484 cases

were all run as they provided an excellent test suite.

From the EDL analysis, performance characteristics were retrieved at specified

events along the trajectory from each case. These events included the conditions at

atmospheric entry and parachute deploy. In Figures 7.2 and 7.3, the inertial entry



75

velocity at atmospheric entry and altitude at parachute deploy is plotted using the same

axes in Figure 6.1.

Figure 7.2: Inertial Entry Velocity at Atmospheric Entry

Figure 7.3: Altitude at Parachute Deploy
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The parachute deploy trigger activates when the entry capsule slows to Mach 2.1. This

trigger location will depend on the atmospheric density used. For these cases, the Mars

Global Reference Atmospheric Model (MarsGRAM) is used. The atmospheric density in

MarsGRAM, depends on time of day and solar longitude. One can note the nearly

horizontal lines that run along Figure 7.3, just as solar longitude runs in Figure 6.1. Such

correlation implies that solar longitude can have a great impact on the atmospheric

density. This produces targeting inaccuracy of the entry, descent and landing system due

to the increased drag. If the mission requires an altitude greater than 9.25 kilometers at

parachute deploy, the targeting region is bounded even tighter than that of Figure 6.1.

Only by running the EDL optimization analysis has further insight been obtained for the

solar longitude or time of day effect.

As in all missions there are further constraints that need to be considered for

mission designer. Max g’s and heat rate are important when characterizing the physical

limits of the entry vehicle. Max g’s is plotted in Figure 7.4 and heat rate in Figure 7.5.

Figure 7.4: Max g’s
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Figure 7.5: Max Heat Rate

Figures 7.4 and 7.5 both show a direct correlation to entry velocity. By running a

sweep of entry velocities, one can determine the max capability of the mission for such

variables as g-load and heat rate. Using such knowledge, one can effectively reduce the

number of cases while still achieving the required results. This was done for the cases

analyzed, as 12 g’s was the max limit, therefore excluding all results over ~7 km/s entry

velocity. The direct correlation of the EDL analysis to the entry velocity leads to the

conclusion that entry conditions can greatly affect the mission requirements and need to

be known to a fair degree of accuracy if the EDL analysis is to be accurate. The

comparison of the generated entry conditions to the JPL entry conditions has verified the

validity of the method and hence the validity of the entry results.

The applicability of this tool will now be shown for other dates. A launch grid

ranging from September, 2013 to February, 2014 and arrival grid ranging from May,

2014 to March, 2015 was generated and plotted in Figure 7.6. The results from the

simplified interplanetary method were then input to the EDL simulation. The results for
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C3, v∞, and altitude at parachute deploy are overlaid on Figure 7.6. Altitude at parachute

deploy is a necessary constraint, as altitude affects the time spent on the parachute. Time

on chute is crucial for the navigation software and its ability to analyze the landing

environment. Without adequate altitude, the entry system will be unable to accurately

navigate to the desired landing site. For this case, the altitude at parachute deploy

constraint has been set to 11.5 kilometers. The velocities at infinity are constrained to 7

km/s and lower due to its relation to max g’s and heat rate (Figures 7.4 and 7.5 are

directly correlated to Figure 6.1). The C3 is constrained to 10 km2/s2 to simulate a small

launch vehicle.

Figure 7.6: Interplanetary/EDL Combined Porkchop Plot
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The importance of doing an EDL analysis is seen to be important when selecting a

mission window. Without such insight, the development of an interplanetary mission can

be greatly hindered and in some cases nullified by the overlooked conditions imposed by

entry, descent and landing, i.e. if the proposed mission cannot reach an adequate altitude

at parachute deploy, it will be impossible to safely land on the surface. The conclusion

presented by this research is that a greater degree of understanding in interplanetary

mission planning is possible through EDL analysis combined with a simplified

interplanetary analysis method. Another pertinent conclusion is the direct transformation

of entry velocity to specific variables such as max g’s and heat rate. Since entry velocity

is derived from the interplanetary analysis, the results must be held to a high degree of

accuracy for the EDL analysis to be correct. The verification of the interplanetary

analysis in chapter 6 proves the validity of the EDL results.

7.1 Selecting the Optimal Mission

For any interplanetary mission proposal, an optimal mission according to specific

mission parameters is necessary. As mentioned earlier, the altitude at parachute deploy

can create a constraint. By selecting such bounds and an objective function to minimize,

a constrained optimization problem can be created that will converge on the optimum

mission according to the design specifications. To perform this optimization, the

constraints and objective function to minimize must first be selected.

The objective function to minimize is max g’s. From Figure 7.4, entry velocity is

a surrogate of max g’s, and will thus be used. The constraints will be C3, declination of

the launch asymptote, and the altitude at parachute deploy. The objective function and

constraints are shown on the next page.
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Design Variables:





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

=
teArrival.da

eLaunch.dat
x
v

Objective Function: ( ) ( ) minimumvelocityissurrogatesg'maxxf ⇒=v

Constraint 1: ( ) 11.5kmdeployparachuteataltitudexg1 ≥=v

Constraint 2: ( ) 2
2

s
km

2 10C3xg ≤=v

Constraint 3: ( ) ov
40ndeclinatioxg3 ≤=

The optimization uses a sequential quadratic programming method to find the

minimum velocity subject to the constraints. Data were generated from the interplanetary

method for the C3, entry velocity and declination of the approach asymptote for the

launch and arrival date combination used in Figure 7.6. The data for altitude at parachute

deploy were generated previously by POST 2 and was tabulated and linearly interpolated

for the dates desired.

The optimization proceeds as shown in Figure 7.7 along the black line, starting at

the red star, ending at the blue star. A minimum entry velocity converged at 5.88 km/s in

19 iterations for a launch date of December 4th, 2013 and an arrival date of October 2,

2014. The optimum from this type of analysis is seen in Figure 7.7, although the shaded

region represents all the dates that may be considered according to the given constraints.
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The importance of finding the optimum is obvious from a mission perspective.

The optimum is the trajectory that satisfies the specified mission constraints while

minimizing the objective function (max g’s). Often, the mission analysis will use a

nominal trajectory in designing the various components of the mission. With the

presented method, the relay of interplanetary trajectories and EDL analysis between two

teams is no longer necessary and the analysis can find the nominal trajectory without an

EDL-interplanetary iteration.

Figure 7.7: Finding the Optimum Mission
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8 Conclusion

A link that removes the iteration between interplanetary trajectory design and

EDL design has been the goal of this research. An effective tool has been presented that

couples both of these analyses. The tool resolves a planetary landing site location from

the interplanetary trajectory using patched-conic analysis and B-plane methodology.

From this tool, results were generated and validated versus JPL data for a 2009-2010

Mars mission opportunity. An EDL simulation was then integrated to analyze the

constraints placed on the mission by the EDL analysis. By coupling these analyses,

conclusions can be made about the effectiveness of coupling the interplanetary

calculations to the EDL analysis.

For the interplanetary calculations, a variety of ephemerides were investigated

and reviewed for accuracy. Lower precision planetary ephemerides were found to yield

comparable results to higher precision ephemerides when calculating the velocity at

infinity upon arrival. Thus, a lower precision planetary ephemeris is adequate for the

scope of interplanetary analysis presented. For the physical ephemeris, differences were

found to neither grow nor shrink dramatically.

An in-depth review was given to the solution of Lambert’s problem, resulting in

an improved solution method that is ideal for interplanetary calculations. Furthermore,

the Lambert solution was extended beyond normal textbook solutions, which neglects the

possibility of the Newton iteration jumping to the multiple revolution curves. This

Lambert extension led to a combined Newton-bisection algorithm that removed the

possibility of convergence on a multiple revolution solution.
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The primary conclusion from this research is that top-level interplanetary and

EDL analysis should be performed together in an effort to reduce analysis time. For

example, the interplanetary trajectory analysis might recommend the minimum entry

velocity cases. From the EDL analysis, it may be discovered that even though heat rate

and g loads were minimized at the minimum entry velocity, the altitude at parachute

deploy could be unacceptable depending on the constraints of the mission. An iterative

process would then have to be performed between the two analyses until an

interplanetary trajectory is found that satisfies the EDL constraints. By the coupling of

both analyses, the EDL analysis is overlaid to the interplanetary analysis seamlessly,

yielding the necessary capability in defining the mission window while reducing the

number of iterations between the two. When the interplanetary calculations are

integrated with the EDL analysis, only one iteration is effectively needed to determine the

ideal trajectory, versus the frequent iterations encountered by traditional analysis.

The next step to be taken in this research is to generalize the EDL analysis for a

variety of missions. Specific parameters should be commonplace in this kind of analysis.

For example, the only inputs for the entry capsule parameters could be the ballistic

coefficient, mass, and cross sectional area assuming a ballistic entry trajectory. Using

these inputs, a ballistic trajectory could be analyzed that would allow one to generate

porkchop plots including max g loads and heat rate. Verification and validation would

need to be performed on such a generalized analysis with respect to a specialized analysis

like the Mars Science Laboratory.

Interplanetary mission analysis is a very important regime of study. The

simplifications presented herein and the assumptions made have shown that even a basic
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understanding of the principles can yield a solution that is adequate for top-level mission

analysis and planning. Furthermore, the method detailed by this research substantially

reduces the time that has been previously required between interplanetary and EDL

analysis. This reduction in time will be a key element in developing exciting and new

concepts in support of NASA’s new "Vision for Space Exploration".
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9 Appendices

9.1 Appendix A – Derivation of the Time of Flight Equation via Universal Variables

The derivation of the universal variable z starts with the angular momentum and

orbital energy equations:

pv µ== &2rh

a2r2

v2 µµε −=−=

where v& is the rate of change of the true anomaly with respect to time, r the radius, v the

velocity, a the semi-major axis, p the semi-latus rectum, and µ the gravitational constant.

First, introduce the radial and transverse components of velocity,

2222 rrv v&& +=

and eliminate v& using a relationship derived from the angular momentum,
r

r
p

v
µ

=& .

Substitute the expression for 2v into the energy integral to get,
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Note that if r is unbounded, then a must be less than zero.

The goal now becomes to develop a general solution for r. To accomplish this, a

new independent variable, χ (also known as the universal variable), is introduced by,

rt

µχχ ==
d

d
& 9.02

Dividing equation 9.01 by (9.02)2 and simplifying yields,
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Integrating the above equation yields,
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where the variable co is the constant of integration and the variable a must always be

greater than zero. For an ellipse, the eccentricity is ap1e −= , so that when

substituted into equation 9.03 and simplified, a solution for r is obtained.
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With the solution of r, the physical importance of χ is defined by comparing equation

9.04, to the classical representation of radius, ( )cosEe1ar −= , yielding,

cosE
a
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+

The sine term can be transformed to a cosine term,
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
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Combining the above two equations yields the eccentric anomaly in terms of the

universal variable χ,

a

cχ
2

π
E o+

+= 9.05

To evaluate the constant of integration, an expression for the initial eccentric anomaly is

developed. To do this, the expression for time is derived by substituting equation 9.04

into equation 9.02, and separating out the derivatives,
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Then by integration,
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As can be seen from equation 9.06, at time t=0, the variable χ must equal zero as well

because semi-major axis (a) must be greater than zero. Equation 9.05 at time t=0 for

initial Eo must then be,

a

c

2

π
E o

o +=

By subtracting the two equations, the definition of the variable χ is,

( )oEEaχ −= 9.07

From equation 9.07, the variable χ is the difference in eccentric anomaly. Generalizing

the variable χ to be only in terms of eccentric anomaly, the new variable z is introduced,

( )2
o

2

EE
a

χ
−==z 9.08

The variable z is equally valid for hyperbolic orbits as the change in hyperbolic anomaly.

From Bate, Mueller, and White [5], it is shown that the eccentric and hyperbolic

anomalies are related by EcosFcosh = . By using the identity iθcosθcosh = , it is seen

that iFE ±= . Therefore, the change in hyperbolic anomalies can be denoted by

( )2
12 FF −−=z , and is therefore always negative.

Now that the universal variable χ has been defined, the definition of the f and g

functions via universal variables needs to be determined. These expressions have been

developed in Bate, Mueller, and White [5],
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Where the variables S and C are both functions of the variable z,
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The goal now is to reduce these equations to a function of time of flight and change in

eccentric anomaly. First, start by solving for χ in equation 9.09,

( )
C

cos1rrχ 21

p
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Substitute equation 9.15 into equation 9.11 to yield,
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Multiplying by r1r2 on both sides, and simplifying yields,

( ) ( )
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cos1

sinrr
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cos1
rr 21

2121
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v
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v −
∆−

∆
−+=

∆−
9.16

To simplify things further, the variable A is introduced as a function of r1, r2, and ∆v,

v

v

∆−

∆
=

cos1

sinrr
A 21 9.17

The variable y is also introduced as,

( ) ( )
C

S1
Arr

cos1
rr 2121

z

p

v
y

−
−+=

∆−
= 9.18

As the left side of equation 9.16 is identical to part of equation 9.15, a new expression for

χ becomes,

C
χ y

= 9.19

Now, solving for t in equation 9.10,

p

v∆
+=

sinrr
Sχt 213µ 9.20

To simplify equation 9.20 into functions of only z, the square root of y is determined

from equation 9.19 and substituted into equation 9.18 to yield,

( )
p

v
y

∆−
=

cos1rr 21

Then multiply both sides by equation 9.17 and simplify to get,

p

v
yA

∆
=

sinrr 21

The above equation is equal to the last term of equation 9.20, so that the time of flight

equation is,
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yASχt 3 +=µ 9.21

By using equations 9.19 and 9.21, the f, g and g-dot expressions are simplified to,

1r
1f

y
−= 9.22

µ
y

Ag = 9.23

2r
1g

y
−=& 9.24

To solve the f and g expressions, the unknown variable z in equation 9.21 must be

determined. To do this, a Newton Iteration scheme is implemented that requires the

derivative of equation 9.21 with respect to z. To do this, first differentiate equation 9.21

with respect to z to get,
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dt 32 ++= χ 9.25

The derivatives with respect to z are obtained from equations 9.18 and 9.19 to give,
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Substituting equations 9.28 and 9.29 into equation 9.25 and simplifying yields,
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The derivatives with respect to C and S are given by,
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Equation 9.30 can then be implemented in the Newton iteration scheme for the solution

of z.
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9.2 Appendix B – Simplified Interplanetary Targeting Tool: Manual
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9.3 Appendix C – Mars Science Laboratory POST 2 Input Deck

*no seq

problem = 1

c -------------------------------

c Macro Names

c -------------------------------

*declare GC 9.8066

*declare LANDSITERAD 3394987.7972110 /m

*declare DIAM 3.75 /m

*declare TARGLAT 0.33 /deg

*declare TARGLON 46.19; /deg

*declare HEATSHIELD 290 /kg

*declare BACKSHELL 122.85 /kg

*declare SUPCTDIA 16.15 /m

*declare SUPCTMASS 55 /kg

ndepv = 4 /2

indxi = 1,2,3,4,

depvr( 1) = gclat long gcrad dgenv2

depph( 1) = 840 840.0 840 200

deptl( 1) = 0.2 0.2 0.5 0.00001

depval(1) = {TARGLAT} {TARGLON} {LANDSITERAD+22} 0

nindv = 4

indxi = 1,2,3,4

indvr( 1) = bpang timeo gamei critr

indph( 1) = 1.0 1.0 1.0 800.0

indvmn(1) = -180 -50000 -20.0 25.0

indvmx(1) = 180 50000 -8.5 150.0
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pert( 1) = 1.0 500.0 -0.5 -1.0

indval(1) = -1 {-25000+240} -14 80

vehicle = 1

cdww --------------------------------------------

cdww ###### EVENT 1 #######

cdww Initial Event

cdww Cruise Stage Separation (EI-10 min)

cdww --------------------------------------------

event = 1,

title(50:99) = 'Exo-atmospheric',

dof = 3,

ioflag = 3, // Metric-Metric units

npc(1) = 1, // Calculate Conics and print

npc(2) = 1, // Runge Kutta integration

fesn = 999, // final event number

pinc = 10, // print interval

npc(40) = 3, // Calculate 'RV' angles

genvlim = 12 // need this if genv table go past2

maxtim = 1500,

altmax = 1.0e+09,

altmin = -4.0e+3,

lsflag = 1

lstflag = 2

nspc(21) = 2

// -----------------------

// Mass Properties

// -----------------------

npc(30) = 0, // N-stage weight model
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npc(9) = 0, // Rocket engines

* include '../includes/mass_props.dat' // MSL-0407, mass = 1883

pi1t = "pi1t" constant 0 180.0

tvc1m = {6*(cosd(25))}, 'one'

tvc1t = 'TD_thr' constant,0, 3000.00,

// -----------------------

// Planet Model

// -----------------------

npc(16) = 5, // 85x85 Mars gravity model (MGS85F2)

gravdata='/app/production/mars/grav_data/jpl85x85'

* include '../includes/mars_constants.dat'

// -----------------------

// Atmosphere inputs

// -----------------------

* include '../includes/mars_gram.dat'//Mars Gram Inputs for later

npc(5) = 0, // No Atmos -- exoatmospheric

npc(6) = 0, // No winds -- exoatmospheric

npc(15) = 0, // No aeroheating -- exoatmospheric

// -----------------------

// Aerodynamic inputs

// -----------------------

npc(8) = 0, // No Aero -- exoatmospheric

itrim = 0, // No trim

lref = DIAM, // Reference length (m)

drefr = DIAM, // Reference length (m)

drefp = DIAM, // Reference length (m)

drefy = DIAM, // Reference length (m)

sref ={DIAM*DIAM*pi/4}, // Reference area (m^2)
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// ---------------------------------------

// Initial Conditions

// NAV Filter & State Initialization

// ---------------------------------------

npc(3) = 1,1, // Cartesian States

xi = 0,0,0, // Ensure milestone bombs

iguid(12) = 1 // Initialize attitude with aero angles

alpha = -15,

beta = 0.0,

bnkang = 0.0,

alppc(1) = -15,

betpc(1) = 0.0,

bnkpc(1) = 0.0,

iguid(22) = 0 // Intialize with body attitude rates

rolbd = 0.0,

pitbd = 0.0,

yawbd = 0.0,

inav = 4, // Using FSW NAV filter

azl=0,latl=0,lonl=0,// Align I- and L-frames

// ---------------------------------------

// Guidance

// ---------------------------------------

iguid(1) = 0,0,1, // 3-DoF: Aero angle polynomials

iguid(14) = 0,// No POST guidance -- Using FSW Apollo Guidance

nspc(20) = 0, // don't use velocity trigger for parachute

spcv(4) = 3.e6// Effectively NO supersonic parachute floor

npc(12) = 1, // use relative great circles for xrng & drng
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nspc(88) = 1 //Used as flag for output vars at epoch

* include '../includes/trim_alpha.dat'// Alpha Command -> genv6

* include '../includes/targ.dat' // parachute deploy target

// ---------------------------------------

// GN&C FSW BUS

// ---------------------------------------

hz_fsw_bus = 500,

sf_frame_mode = 0, // hold current frame

sf_targ_mode = 0, // hold current target

tercorr_mode = 0, // no terrain correction

hz_sens = 0,

imuavg_mode = 0, // use IMU averaging

hz_nav = 50,

navigation_mode = 0, // JPL Kalman Filter

hz_guid = 0,

guidance_mode = 0, // unguided exoatmospheric

bank_cmd = {-70.0*3.14159265/180}, // pre-bank command

hz_ctrl = 0,

controller_mode = 0, // 6-DoF LQR Entry Controller

pitratefdbk_flag = 0,

yawratefdbk_flag = 2,

alpest_flag = 0,

hz_act = 0,

// ---------------------------------------

// Set Integration Variables

// ---------------------------------------

npc(24) = 1 // Use general integration

gderv='gvrc26', gint =0, // aeroheating indicator

// ---------------------------------------



109

// Gamma table

// ---------------------------------------

genv11t = "initial inertial vel" monovar veli 0 lin_inp xtrap

0, 0

1e6 1e6

genv3t = "genv3t" monovar gamei 0 lin_inp noxt /current gamirv

-1e6 -1e6

1e6 1e6

genv4t = "genv4t" monovar genv11 0 lin_inp noxt /entry gamma(veli)

5500 -13.45

6000 -13.40

6500 -13.35

7000 -13.30

cdww --------------------------------------------

cdww ###### EVENT 100 #######

cdww holds initial inertial velocity

cdww --------------------------------------------

event = 100,

critr = tdurp, value = 0, mdl = 1,

genv11t = "genv11" monovar genv11 0 lin_inp xtrap

0, 0

1e6 1e6

cdww --------------------------------------------

cdww ###### EVENT 200 #######
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cdww Entry Interface

cdww Activate Atmosphere

cdww Turn on Apollo Guidance

cdww --------------------------------------------

event = 200,

critr = 'gcrad', value = 3522200, mdl = 1,

title(50:99) = 'Hypersonic Entry'

npc(8) = 5, // user aero subroutine

npc(15) = 1, // turn on Aeroheating calc

heatsg = 1.90270e-04, // Sutton-Graves constant

rn = 1.112, // M. K. Lockwood, 13 Feb 2003

npc(6) = 0, // No winds

npc(5) = 13, // use Mars-GRAM 2001

itrim = 3, // 3-DoF: trim

npc(10) = 5, // 3-DoF: calc c.g. for trim

guidance_mode = 0, // Apollo Entry Guidance

// --------------------------------------------

// set monitor variables

// --------------------------------------------

monx( 1) = 'dynp',

monx( 2) = 'asmg',

monx( 3) = 'heatrt',

monx( 4) = 'rdot',

monx( 8)='gvrc26', /monitor max LAURA heat rate indicator

mony( 8)= time,time

monx( 9)='gvrc27', /monitor max REtheta indicator
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genv2t = "genv2t" multi genv11 0 lin_inp noxt / bank angle profile

vs velr

6000 1

7000 2

genv2t = "entry vel=6000" monovar velr 1 lin_inp xtrap

0.0 0.939692621 /20 deg

900.0 0.939692621

900.1 0.707106781 /45 deg

2000.0 0.707106781

5500.0 0.258819045 /75 deg

11000 0.258819045

genv2t = "entry vel=7000" monovar velr 2 lin_inp xtrap

0.0 0.939692621 /20 deg

900.0 0.939692621

900.1 0.707106781 /45 deg

3500.0 0.573576436 /55 deg

3900.0 0.173648178 /80 deg

11000 0.173648178

igf(3) = 1 /nspc(90) = 1

cdww --------------------------------------------

cdww ###### EVENT 300 #######

cdww Supersonic Parachute Deploy

cdww Fire Parachute Mortar Pyro

cdww --------------------------------------------

event = 300,

critr = mach, value = 2, mdl = 1,
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monx( 7)='mach',

mony( 7)='dynp',

npc(6)=2,

dtimr(3) = 1

timrf(3) = 0

igf(4) = 1 /nspc(91) = 1

cdww --------------------------------------------

cdww ###### EVENT 400 #######

cdww Supersonic Parachute Deploy

cdww Parachute Line Stretch Phase

cdww --------------------------------------------

event = 400,

critr = 'times', value = 0.0, mdl = 1,

npc(32)=1,

parif=0,

drgpk(1)=1.0,

diamp(1)=SUPCTDIA,

spci(81)=30.73 / combined line length

(ls+lb+lr)

spci(82)={SUPCTDIA*1.7} / suspension line length

(ls)

*include '../includes/chuteaero_msl_v1.dat'

timrf(1)=0,

dtimr(1)=1,

itrim=0,

nspc(22)=1 /turn on inflation model-time btwn mortar fire and line

stretch

spci(80)=0
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alppc(1)=0.0,betpc(1)=0.0,bnkpc(1)=0.0,

dt = 0.05,

cdww --------------------------------------------

c ###### EVENT 410 #######

c Supersonic Parachute Deploy

c * Line Stretch Complete

cdww --------------------------------------------

event=410,critr='time',valnam=gvrc36,mdl=8,

nspc(22)=2 / inflation model - time btwn line stretch and peak load

dt=0.005,

cdww --------------------------------------------

c ###### EVENT 420 #######

c Supersonic Parachute Deploy

c * parachute Fully Inflated

cdww --------------------------------------------

event=420,critr='time',valnam=gvrc34,mdl=8,

c full deploy after peak load

dt = 1 /0.1

nspc(22)=-1 / turn off inflation model and calculate

peak load

cdww --------------------------------------------

cdww ###### EVENT 500 #######

cdww Heatshield Jettison

cdww Fire Heatshield Pyro

cdww --------------------------------------------
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cinp ---- for input deck control of event:

heatshield_active = 0, // de-activate CinC event

monitor

event = 500, // prior to this event

critr = mach, value = 0.8, mdl = 1,

wjett = {HEATSHIELD * GC}, // OptionM2-System_Parameter 1.xls

nspc(51)=1, // use terminal descent aero

dtimr(2)=1,

timrf(2)=0.0,

igf(5) = 1 /nspc(93) = 1

cdww --------------------------------------------

cdww ###### EVENT 800 #######

cdww Terminal Descent Engine Start

cdww Begin 2-second Warm-up at 25%

cdww Fire Engine Pyro

cdww --------------------------------------------

event = 800,

critr = tdurp, value = 90, mdl = 1,

title(50:99) = 'Descent Engine Warm-up'

weicon= 0.0

etapc = 0.25 / set engines to 25% throttle setting

iwdf = 3

neng = 1

npc( 9) = 1

npc( 22) = 2

dtimr(4)=1, timrf(4)=0,

monx( 6)='hgtagl',
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monx(7)= '', '', '',

monx(10)='etapc1', /monitor average throttle setting

npc(9)=1,

nspc(1)=1, /flag to indicate engine started

spci(51)=0,

spci(52)=0,

spci(53)=0,

iguid=9,0,1,

alppc(1) = 0, betpc(1) = 0,bnkpc(1) = 0

gvri(2)=1, / initialize prop (with or without trim)

gvri(3)=0, / don't use prop trim

sf_frame_mode = 0, // hold current frame

tercorr_mode = 0, // no terrain correction

cdww --------------------------------------------

cdww ###### EVENT 810 #######

cdww Jettison Supersonic parachute and Backshell

cdww Fire Backshell Pyro

cdww --------------------------------------------

cinp ---- for input deck control of event:

land_sep_active = 0, // de-activate CinC event

monitor

event = 810, // prior to this event

critr = 'timrf4', value = 1.999, mdl = 8,

backshell_pyro = 3, // set pyro to appropriate value

land_sep_event = 3, // set pyro to appropriate value

dt = 0.1

title(50:99) = 'Terminal Descent'

npc(32)=0,
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wjett = {(SUPCTMASS+BACKSHELL)*GC} / {177.85 * GC},

nspc(1)=2, /flag to indicate parachute sep, unlock throttle

controller_mode = 0, // POST uncontrolled

etapc = 0.8

depvrs = velrdt

igsai = 2

indvrs = etapc1

maxits = 10

ndepvs = 1

us = 0.5

perts=.2

deptls=.001

dtimr(3) = 0 //time on supersonic parachute

timrf(3) = 0

nspc(41)=1 / Use max throttle limit in GSA

gvrc(93)=0.8 / Max throttle limit for eta in GSA

depvls1t = "depvls1t" monovar velr 0 lin_inp xtrap

0.0 -6.0

10.0 -6.0

10.1 -6.0

300 -6.0

cdww --------------------------------------------

cdww ###### EVENT 840 #######

cdww Start of Skycrane Phase,

cdww Disable Center Engines

cdww Begin GSA Descent

cdww --------------------------------------------

event = 840,
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critr = 'wr', value = 3.0, mdl = 1, tol = 0.01

dt = 0.1

title(50:99) = 'Skycrane Phase'

guidance_mode = 0, // Turn off JSC Terminal Guidance

controller_mode = 0,// Turn off POST Terminal Descent Controller

rover_pyro=3,

rover_sep_event=3,

etapc = 0.25

tvc1m = {4*(cosd(25))}, 'one'

c General Data for Vehicle 1 in Problem 1 and Event 85.000:

depvrs = velrdt

igsai = 2

indvrs = etapc1

maxits = 10

ndepvs = 1

us = 0.5

perts=.2

deptls=.001

nspc(40)=1 / Initialize Skycrane descent phase

nspc(41)=1 / Use max throttle limit in GSA

gvrc(93)=0.8 / Max throttle limit for eta in GSA

gvrc(90)=0.75 / target relative velocity in constant velocity phase

gvrc(91)=10 / altitude to start constant velocity phase

gvri(30)= 12 / delta altitude for skycrane approach phase

iguid(1) = 9,0,1, // 3-DoF: Relative Aero angle polynomials

alppc(1)=0, betpc(1)=0,bnkpc(1)=0,

cdww --------------------------------------------

cdww ###### EVENT 845 #######
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cdww Constant Vel phase

cdww --------------------------------------------

event = 845,

critr = dgenv4, value = 0, mdl = 1, tol = 0.01

nspc(40) = 0

depvls1t = "depvls1t" monovar velr 0 lin_inp xtrap

0.0 1.0

0.75 0.0

1.75 -1.0

cdww --------------------------------------------

cdww ###### EVENT 850 #######

cdww Rover Touchdown

cdww First Contact

cdww --------------------------------------------

event = 850,

critr = dgenv4, value = 5, mdl = 1, tol = 0.01

igf(6) = 1 /nspc(95) = 1

cdww --------------------------------------------

cdww ###### EVENT 999 #######

cdww

cdww --------------------------------------------

event = 999,

critr = tdurp, value = 0.0, mdl = 1
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