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Abstract

The presence of constraints in the on-line optimiza-
tion problem solved by Model Predictive Control al-
gorithms results in a nonlinear control system, even
if the plant and model dynamics are linear. This
is the case both for physical constraints, like satu-
ration constraints, as well for performance or safety
constraints on outputs or other variables of the pro-
cess. This paper discusses how constraints affect the
stability properties of the closed-loop nonlinear sys-
tem. In particular we concentrate on presenting a
formulation that allows one to relate hard as well as
soft constraints to stability. The degree of softening
can be determined to guarantee stability.

1 Introduction

Model Predictive Control (MPC) encopasses a large
class of process control algorithms sharing the com-
mon characteristic of explicitly using a model of the
process to predict future behavior and take control
action by optimizing some performance objective. A
performance measure made popular because of its
simplicity and its successful use in industrial applica-
tions is a quadratic objective function that includes
the predicted deviation from desired setpoint values
over a future horizon. In the Quadratic Dynamic Ma-
trix Control (QDMC) formulation (Garcia and Mor-
shedi, 1986), the objective function also includes a
penalty term on excessive control moves and its mini-
mization is carried out on-line at each sampling point,
subject to satisfaction of hard constraints on several
process variables.

The great attraction of QDMC is that the straight-
forward formulation of an optimization problem will
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result in satisfaction of the control specifications. Sat-
uration constraints on the manipulated variables, as
well as performance and safety constraints on out-
puts and other state variables can be taken care of
by simply listing them and minimizing the quadratic
objective function subject to their satisfaction. When
the model used for prediction is linear, the on-line
optimization is a Quadratic Program (QP), for which
efficient algorithms exist, especially if the similarity
of the optimization problems that are solved at suc-
cessive sampling points is taken into account (Ricker,
1985). Formulations that use nonlinear models for
prediction have also been developed. In this case, the
on-line optimization is a Nonlinear Program, which
with appropriate mathematical techniques and / or
approximations can be transformed into a series of
QPs (Li and Biegler, 1989; Peterson et al.,, 1990).
Eaton and Rawlings (1990) also consider the para-
metric sensitivity of the optimal solution. An indus-
trial application of QDMC that utilizes a nonlinear
model is described in Garcia (1984).

There are, however, certain issues that make the use
of QDMC more complex than it is apparent. The on-
line optimization solves an open-loop control prob-
lem, given the information available up to that point.
The control action that is calculated at a sampling
point is optimal only if the sequence of control moves
found by the optimization is implemented uninter-
rupted. This will not happen, though, because a new
optimization problem will be solved at the next sam-
pling point utilizing in the prediction the newly ac-
quired information from the measurements. The fact
that QDMC is implemented as a closed-loop control
system is not incorporated in the on-line optimiza-
tion. Closed-loop stability cannot be assumed sim-
ply because the on-line optimization finds a solution.
This issue of closed-loop stability is complicated by
two facts: first, there is always uncertainty associated
with the model used in the prediction; second, the
presence of constraints in the optimization problem
results in a nonlinear closed-loop system even if the



model and plant dynamics are assumed linear. In the
unconstrained case, robust linear control theory can
be used to study robustness with respect to modeling
error (see, e.g., Prett and Garcia, 1988). For the con-
strained case, Zafiriou (1989) suggested a framework
that allows the translation of the robust stability of
the constrained, and therefore nonlinear, closed-loop
system into robustness conditions for a set of linear
systems.

This paper mainly looks at the effect of output con-
straints on the closed-loop stability of QDMC. The
ability to include output constraints in the on-line op-
timization distinguishes QDMC from other efficient
methods that deal with constraints on the manipu-
lated variables only (e.g., Campo and Morari, 1990).
Zafiriou and Marchal (1991) showed in detail how
output constraints can result in very aggressive con-
trollers. Ricker et al.(1989) suggested that soften-
ing such constraints may help avoid these problems.
Since not all constraints can be softened, as is the
case, e.g., for saturation constraints, one needs a
framework that can deal with a mix of hard and soft
constraints. This is accomplished in this paper by ex-
tending the framework discussed in Zafiriou {1990) to
include the effect of softening on closed-loop stability.

2 Closed-Loop Stability

We focus on Quadratic Dynamic Matrix Control,
which is a popular MPC algorithm, extensively used
in the industry (Prett and Garcia, 1988). An impulse
response model is used (see, e.g., Garcia and Morari,
1982):

(k) = Hyu(k—1)+Hyu(k—2)+...+ Hyu(k—N) (1)

where § is the model output vector, u is the input vec-
tor and N the truncation number, i.e., it is assumed
that H; = 0 for ¢ > N. The plant is assumed to be
open-loop stable, but it may be non-square. Other
types of models can also be used, e.g., step response
models (Garcia and Morshedi, 1986) or state space
descriptions (Li et al., 1989; Ricker, 1990). The z-
transfer function, p*(z), describing the process model
is related to (1) through

N .
p'(2) = Z Hiz™" (2)

At sampling point k, QDMC minimizes:
P
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The minimization of the objective function is car-
ried out over the values of Au(k), Au(k + 1),...,
Au(k+M-1), where M is a specified parameter. The
minimization is subject to possible hard constraints
on the inputs u, their rate of change Au, the outputs
y and other process variables usually referred to as
associated variables. The details on the formulation
of the optimization problem can be found in Prett
and Garcia (1988). Note that the standard form of
QDMC does not include the term corresponding to a
penalty on u, i.e, B = 0. We have incuded the case
B # 0 in this paper in order to also cover the exten-
sion studied in Garcia and Morari (1982). After the
problem is solved on-line at k, only the optimal value
for the first input vector Au(k) is implemented and
the problem is solved again at k£ + 1. The optimal
u(k) depends on the tuning parameters of the opti-
mization problem, the current output measurement
y(k) and the past inputs u(k — 1),..., u(k — N) that
are involved in the model output prediction. Let f
describe the u(k) that is obtained by adding u(k —1)
to the Au(k) that is the result of the optimization
solved at sampling point & :

u(k) = f(y(k),u(k = 1),...,u(k = N);rp(k), d(k))
(4)
where rp(k) includes all the values of the reference
signal (setpoint) during the prediction horizon from
k+1 to k+ P and d(k) is the disturbance effect at
the output at k.

The optimization problem of the QDMC algorithm
can be written as a standard Quadratic Programming
problem:

rr})inq(v) = %vTGv + g7 (5)
subject to
ATy > b (6)
where
v = Au(k) Auk+M -1 1T  (7)

and the matrices G, A, and vectors g, b are func-
tions of the tuning parameters (weights, horizon P,
M, some of the hard constraints). The vectors g, b are
also linear functions of y(k), u(k —1),..., u(k — N).
Efficient algorithms exist for solving this optimiza-
tion, especially if the similarity between the problems
solved at successive sampling points is taken into ac-

count (Ricker, 1985). For the optimal solution v* we
have (Fletcher, 1981):

[ % A=) e



where AT, b consist of the rows of AT, b that corre-
spond to the constraints that are active at the opti-
mum and A* is the vector of the Lagrange multipli-
ers corresponding to these constraints. The optimal
Awu(k) corresponds to the first m elements of the v*
that solves (8), where m is the dimension of u.

The special form of the LHS matrix in (8) allows the
numerically efficient computation of its inverse in a
partitioned form, as discussed in detail in Fletcher

(1981):
A g1
G -4 H -T
e B B O
Then
v' = —Hg+Th (10)
X =TTg_Ub (11)
and
uk)=u(k-1)+[I 0 ... 0]v"
M

L fly(k),u(k — 1), ...,u(k— N),rp(k))  (12)

For linear model dynamics, Zafiriou (1990) showed
that the constrained QDMC is piece-wise linear,
meaning that the dynamics of QDMC for a certain
constraint set J; active, are those of a discrete linear
controller. This linear controller, denoted cy,(z), de-
pends explicitly only on J;; it depends only implicitly
on the past and current values of the plant inputs and
outputs. These values together with external inputs
(setpoints, disturbances) determine the J; that corre-
sponds to a sampling point. However, if at different
sampling points the QP solution results in the same
Ji, the QDMC dynamics at those points are those of
the same linear controller.

Define:
zj(k) Su(k—j), 1<i<N  (13)

and let f describe the QP solution given by (12) for
a particular J; (which determines the rows of AT, b
that are included in AT, B):

Fy(k), u(k = 1),..., u(k — N);rp(k), d(k))J,

2110 ... 015, +u(k—1) (14)
Zafiriou (1990) showed that the ¢z, controller is given
by:
JAN
c1.(z) =

_[I - (Vzlf)-hz—l el (erf)J;z_N]_l (Vyf)l.'
(15)

Let us define the “state” of the system as z(k) 2
[z1(k),...,zn(k)]T where the z;s are those of (13).
Knowledge of (k) and of the external inputs rp(k),
d(k), allows the computation of z(k + 1) by applying
the plant and controller equations on it. Let us denote
by F' the operator that maps z(k) to z(k + 1):

z(k + 1) = F(z(k); rp(k), d(k)) (16)
Define the transfer functions:

Qui(2) & ~[I-(¥1)5. 27 = ..~ (¥ ), ::-N]-%vyf)J);
17

where

)5 £ (Vo, s + (Vo HoH;, 1<j< N (18)

Then the following theorem holds:

Theorem 1 (Zafiriou, 1990) F can be a contrac-
tion for all plants in a set I, only if all feedback con-
trollers cj,(2), 1 © (Vyf)s, # 0, stabilize all uncon-
strained plants in the set Il and all transfer functions
QR1:(2), 15 (Vyf)s, =0, are stable.

Theorem 1 allows one to handle any set II that robust
linear control theory can (for a discussion of common
types of II see Morari and Zafiriou, 1989). One should
note that F being a contraction implies stability of
the closed-loop nonlinear system. However, a viola-
tion of the necessary contraction condition does not
always imply instability, but it must be considered
as a warning that the control parameters should be
modified. A sufficient condition (Zafiriou, 1990) can
be derived but it is often conservative.

3 Effect of Constraint Soften-
ing on Stability

The issue examined in this section is whether 1t is pos-
sible to stabilize a closed-loop unstable QDMC algo-
rithm by softening some or all hard constraints. Let
us consider the case whera a particular ¢;, results in
an unstable control system if applied to the process.
Let us then proceed and soften the hard constraints
included in this set J;. How will that affect the pa-
rameters, and therefore the stability, of c;,?

The set J; corresponds to a constraint matrix A in

(6). These constrainst are softened by changing them
to

ATv4+Te>b (19)

and adding a term W?2¢? in the objective function,
where W is a weighting matrix and ¢ a vector of non-



negative variables corresponding to the constraint vi-
olations. Let us look at a situation where at the opti-
mal of the on-line optimization all of the constraints
in J; had to be softened, i.e., all the elements of the
optimal € are nonzero and (19) satisfied as an equality.
In this case, the system of equations (8) is expanded
to:

G 0 —A v*
0 w2 I € = —
AT 1 0 A*

(20)

oo O W

Solving for €* results in

G —A v* g
5 5]l
The effect that softening has on the behavior of the
control system can be examined by comparing the
solution of (21) to that of (8) and through them the

effect on the corresponding cy;, by using (14) and
(15). We can write:

G -A1_[ ¢ -A
-AT —w-r || AT 0
0 -2
#[§]ew o 1) (22
The following Lemma (Horn and Johnson, 1988; p.

18) can be used to proceed:

Lemma 1 Let Ay, Aq, R, X, Y, be mairices of di-
Menstons nXn, n XN, rXr, nXr, rxn, respectively,
wheren > r. If Ay = A1 + XRY, and Ay, Ao, R are
nonsingular, then:

A2—1 - Ai—l _ Al—lX(R—l +YA1—1X)—-1YA1—1

Use of Lem. 1 on (22) and some algebra result in:
G -A 1" [ H -T
~AT _w-? “1-TT U

I 0
[ (W24 U7 - (-W2+U)"'U ] (23)

where H, T, and U are defined in (9). From (21),
(23) it follows that:

v} = —H,g+Tyb (24)

where
Hy=H-T(-w?4+0u) 17 (25)
T, =T -T(-W*+U)"'U (26)

and the subscript s indicates that the constraints have
been softened.

The effect of the softening on closed-loop stability can
be evaluated by using H, and T in (12) instead of H,
T. This affects the coefficients in (15) and stability
through Thm. 1.The limiting situations are relatively
simple to see. For W — oo, (25), (26) yield H, = H
and T, = T, which means that the constraints become
hard. For W = 0 we easily get T, = 0. By substitung
in (25) the expressions for H, T', U, given in Fletcher
(1981) and doing some algebra we obtain H, = G~ 1,
which corresponds to the unconstrained case.

In the case, where at the optimum some of the con-
straints that are active at the optimum (set J;) are
hard and some constraints have been softened by al-
lowing nonzero e—violations, we can proceed in a sim-
ilar manner. Assume, without loss of generality, that
the rows of A have been reordered so that

) AT
AT - [ 4 ] ]
A7

where AT corresponds to the hard constraints and
AT to the softened. Then, after solving for €, we find
that the optimal v satisfies:

G —Al -—Az v* A!]
AT 0 0 N ]=—|b| e
AT 0 —wr il b,

We can then compute the effect of softening on closed-
loop stability as in the previous case.

4 Special Case

In this section we use the simple case of a SISO pro-
cess with an output constraint to demonstrate the
effect of softening on closed-loop stability. The sim-
plicity of this case allows us to obtain analytic expres-
sions for the sufficient condition developed in Zafiriou

(1989).

In the formulation here, the same violation variable
€ > 0 is used for all the points in the constraint win-

dow. Hence the output constraints are softened to
be:

yr—e<ylk+D)<yw+e wy<I<w, (28)

The term W?2e? is added to the objective function,
where W is the weight that determines the extent
of softening. For W = oo we get hard constraints.
W = 0 corresponds to completely removing the con-
straints. For a nonzero finite W, and when the on-line
QP results in a nonzero ¢, then at the optimum for at
least one of the points in the constraint window, say
for N, € [ws, we}, we will have y(k + N;) = yy + € or



y(k + Nqg) = yr — €. Otherwise a smaller ¢ would re-
duce the objective function, while still satisfying the
constraints. This point is the one for which satisfac-
tion of the constraint presents the greatest difficulty.

We will consider the case M = 1, which in Zafiriou
and Marchal (1991) was shown to be a risky one,
when output constraints are used. Let the subscripts
u and h correspond to the unconstrained and hard
constrained cases, respectively, and f,, fr the result
of the QDMC optimization for these cases as defined
in (12). Then by using the results of section 3, it can
be shown that when the constraint is softened, we
have for the coefficients of the c¢;; (from (15)) that
corresponds to the softened constraint at k 4 Nj:

1

Veihs = Tremg e

va:jfu

G153, W*

S/ RASEN, v 2
+1+G-1512VGW2V ifn (29)

for j =1,..., N and also for V,, where the subscript

s stands for soft. Sy, is the value of the open-loop

unit-step response of the process model at the N,

sampling point. From (29) and (18) it follows that

1 G185 W2

vis = Trgmig e e Y T oSy we

s h

(30)
From Zafiriou (1990) we know that a sufficient con-
dition for closed-loop stability for a ¢y, is:

1]+ -+ [¥n]| < 1 (31)

For the hard constraint case, we cannot influence the
value of the s, since, as shown in Zafiriou and Mar-
chal (1991) we have:

[Wral+ -+ [l

= (|HNupr| + -+ 1 HND/ IS8 2 an (32)

For a system with inverse response, «, is greater than
1 for small N, and therefore stability cannot be guar-
anteed.

For the unconstrained QDMC though, we have meth-
ods for obtaining values for the tuning parameters
that result in a stable control system. Hence we can
obtain ay < 1, where

0w B [Pl + o+ [Unl (33)
Then it follows from (30) that for closed-loop stability

after softening the output constraints, it ic sufficient
that

1 G-18%, W
T+ G155, w2 T Ty G153 w?

ap <1 (34)

Hence we can obtain a value for W:

1 —a,

W <G (e D)

(35)

Example 1

Consider the model for a multi-effect evaporator given
in Ricker (1985), relating concentration to steam flow:

2.69(—6s + 1)e~1:5
(205 + 1)(5s+ 1)

p(s) = (36)
The sampling time is selected 7" = J and the trun-
cation number N = 25. This system has an “un-
stable” zero and exhibits inverse response character-
istics. Zafiriou and Marchal (1991) showed for this
type of systems, hard output constraints at early fu-
ture points result in instability. This is predicted by
Thm. 1; a more detailed analysis of the theoretical
reasons behind the instability can be found in the
reference.

By using (35) we can find a value for W that defines
a degree of softening sufficient to guarantee stability.
The table below shows the relevant values for an out-
put counstraint window consisting of the first 5 future
sampling points. Weuwse M =1, I'=1, B=D = 0.
The horizon P is computed to make o, small. It is
possible to do so, by selecting a relatively large P.
The algebraic expressions in the proof of that theo-
rem in Garcia and Morari (1982) can be used to get
a value for P. We use P = 30 > N -+ M — 1, which
yields o, = 0.136.

N, 1 2 3 4 3

ap 16.29 12.04 35.29 13.73 4.69

Sn, |-0.1744 | -0.2312 | -0.07444 | 0.1733 | 0.4485

W 14.86 13.19 23.25 16.39 | 11.76

From the table we see that by selecting W = 11.76
or smaller, closed-loop stability is guaranteed, regard-
less of which of the 5 points in the constraint window
presents the greatest difficulty in satisfying the con-
straint during the on-line optimization. Simulations
confirm this prediction. o

5 Concluding Remarks

This paper extends a framework that has been devel-
oped for the study of the nominal and robust stability
of constrained MPC algorithms to the case where all
or some of the constraints are softened. A major ad-
vantage of this approach is that the stability of the




constrained system has been translated into stability
conditions for a set of linear controllers. Hence all the
results of robust linear control theory can be used in
the study of constrained MPC. The effect of softening
the hard constraints was discussed. It was demon-
strated how the degree of softening can be directly
related to closed-loop stability. A sufficient condition
for SISO processes with output constraints was given
for illustration purposes.
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