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In a typical air traffic control environment, the precise landing times of en route 

aircraft are not set until each aircraft approaches the airspace adjacent to the 

destination airport. In times of congestion, it is not unusual for air traffic controllers 

to subject arriving aircraft to various maneuvers to create an orderly flow of flights 

onto an arrival runway. Typical maneuvers include flying in zig-zag patterns, flying 

in circular holding patterns and tromboning. These maneuvers serve to delay the 

arrival time of the flight while also burning additional fuel. On the other hand, if the 

arrival time was established much earlier, then such delay could be realized by simply 

having flights fly slower while still at a higher altitude, which would incur much less 

fuel burn than the described maneuvers. Yet despite its potential benefit, thus far little 

has been done to promote the management of flights using speed control in the 

presence of uncertainty.  



  

This dissertation presents a set of models and prescriptions designed to use the 

mechanism of speed control to enhance the level of coordination used by FAA 

managers at the tactical and pre-tactical level to better account for the underlying 

uncertainty at the time of planning. Its models deal with the challenge of assigning 

delay to aircraft approaching a single airport, well in advance of each aircraft’s entry 

into the terminal airspace. In the first approach, we assume control of all airborne 

flights at a distance of 500 nm while assuming no control over flights originating less 

than 500 nm from the airport. We propose a set of integer programming models 

designed to issue arrival times for controlled flights in the presence of the uncertainty 

associated with the unmanaged flights. In the second approach, we assume control 

over all flights by subjecting flights to a combination of air and ground delay. Both 

approaches show strong potential to transfer delay from the terminal to the en route 

phase of flight and achieve fuel savings. Building on these ideas we then formulate an 

approach to incorporate speed control into Ground Delay Programs. We propose 

enhancements for equitably rationing airport access to carriers and develop a revised 

framework to allow carriers to engage in Collaborative Decision Making. We present 

new GDP control procedures and also new flight operator GDP planning models. 

While the ability to achieve all the benefits we describe will require NextGen 

capabilities, substantial performance improvements could be obtained even with a 

near-term implementation. 
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1 Introduction 
In the United States, air carriers are free to design and operate their flight 

schedule at whatever times best suit their own business objectives. While this policy 

works well in many instances, occasionally the demand for certain resources within 

the National Airspace System (NAS) well exceeds the capacity of the system to 

accommodate it. For example, bad weather can severely impact the capacity of an 

airport to land arriving aircraft.  These imbalances can be grouped into two 

categories: those that occur at the pre-tactical level and those occurring at the tactical 

level. At the pre-tactical level, congestion is forecast hours in advance of its 

occurrence and in these situations, the Federal Aviation Administration (FAA) 

develops a plan to mitigate the potential congestion in the affected area. At the 

tactical level, such imbalances may only be known minutes before they materialize. 

Here, air traffic controllers reactively modify the trajectories and speeds of the 

incident flights to ensure safety is maintained within the system. 

Despite the differences in dealing with the two situations, they are often 

intertwined. Severe weather patterns will often emerge near airports and the 

surrounding regions, causing the FAA to impose some sort of advance delay. Yet, due 

to uncertainty in departure times, turbulent weather en route and runway availability, 

flights may also deviate from their planned arrival times imposed by the FAA. When 

this happens, air traffic controllers are left to handle the additional delay. The lack of 

coordination between parties can cause the affected flights to burn additional fuel due 

to airborne holding. Previous research has not addressed the issue of coordination 
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between stakeholders at the pre-tactical and tactical level, nor its effect on the 

workload of the air traffic controllers.  

This dissertation presents a set of models and prescriptions designed to use the 

mechanism of speed control to enhance the level of coordination used by FAA 

managers at the pre-tactical level to better account for the underlying uncertainty at 

the time of planning. While spatial deviations and circular holding patterns are well-

known tools used to occupy aircraft queued up for a congested airport, the idea of 

speed control is much less common, and requires significantly more advanced 

planning.  The basic idea is that, armed with good forecasts of the situation at the 

airport, the speeds, and hence arrival times, of en route flights can be planned 

systematically to best condition the arriving traffic stream for smooth integration with 

the airport operation. 

In the next section, we describe in more detail programs and mechanisms 

currently used to issue issued planned delays to the affected flights. Subsequently, we 

present the set of models and systems that have been used to date to provide better air 

traffic management and speed control guidelines to flights.  

1.1 Air Traffic Management 

Modern Air Traffic Management (ATM) consists of two components: traffic 

flow management and air traffic control. Air traffic control functions at the tactical 

level and affects flights over a period of seconds to 30 minutes. Air traffic control 

aims to ensure safe separation between aircraft through rerouting, speed control, 

navigational vectoring and airborne holding. The traffic flow management component 

operates at the strategic level where flights are managed over a horizon of 30 minutes 
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to 19 hours and are sometimes planned days in advance. It seeks to ensure the smooth 

flow of aircraft through airspace by balancing the demand for air traffic with the 

capacity of the available air traffic resources (Ball, et al., 2007; De Neufville & 

Odoni, 2003). In this section, we describe the relevant mechanisms used to facilitate 

traffic flow management and highlight the challenges with incorporating some the 

underlying principles in the Next Generation Air Traffic Management System 

(NextGen).   

1.1.1 The Need for Coordinated Planning 

In recent years, heightened levels of congestion at major airports across the 

U.S. have cost carriers billions of dollars in lost revenue. By one estimate, these 

delays cost the airline industry $8.178 billion in 2012. The extent of such a loss can 

be quite severe considering that in the same year, the top 10 carriers only made a 

profit of $5.31 billion (U. S. Department of Transportation, 2015). The impact of 

these delays, however, is not solely felt by the airlines, as the effect on passengers in 

some years can be just as much. In 2007, it is estimated that flight delays cost 

passengers an estimated $16.7 billion in lost time in a year where airlines delay costs 

totaled $8.3 billion (Ball, M.; Barnhart, C.; Dresner, M.; Hansen, M.; Neels, K.; 

Odoni, A.; Peterson, E.; Sherry, L.; Trani, A., Zou, B., 2010).  

In 2013, 16.65% of all flights in the United States were delayed by 15 minutes 

or more (Bureau of Transportation Statistics, 2015). Of these delays, weather 

accounted for 58.69% of the delay, while volume accounted for 28.3%. Additionally, 

1.29% of all flights were cancelled. In both cases the delay is caused by persistent 

mismatches between capacity and demand (Airlines for America, 2015).  The 
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problem will likely be exacerbated if demand continues to increase, as its effect on 

delay is nonlinear. A 1% increase in demand can often lead to a 10% increase in 

delay when an airport is operating at or near capacity (Odoni, 2009).  

There are a number of prescriptions for dealing with rising demand, and 

almost all fall into one of three types of approach. The first type of approach seeks to 

increase the physical capacity by creating more airports and runways. This is quite a 

difficult undertaking, as it requires considerable time, funding and buy-in from 

government, industry and community stakeholders. The second approach attempts to 

manage demand by imposing administrative and/or economic measures on carriers to 

convince them to reduce their demand or shift it to less congested periods of time. 

Such mechanisms include schedule coordination, congestion pricing, slot auctions 

and slot trading. Irrespective of the success of these long-term measures, the NAS 

will continue to be affected by periodic perturbations arising from inclement weather 

and runway closings. Air traffic flow management offers a means to deal with these 

eventualities on a more granular level; the FAA has developed a number of Traffic 

Management Initiatives to coordinate traffic in affected areas to better match capacity 

to demand. These tools have proven essential in ensuring continued functionality 

within the NAS.  

1.1.2 Traffic Management Initiatives 

The Air Traffic Control System Command Center (ATCSCC) in Warrenton, VA 

monitors Air Traffic Flow Management (ATFM) operations on an on-going basis. 

Projections are periodically made to forecast the delays in the airspace and at airport 

resources throughout the country. When the projected demand for a resource exceeds 
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its capacity by a sufficient amount, the ATCSCC uses a traffic management initiative 

(TMI) to manage the demand. These strategic-level TMIs include ground delay 

programs (GDPs), airspace flow programs (AFPs) and ground stop programs. Less 

programmatic measures also include Miles-in-Trail (MIT) restrictions, rerouting and 

airborne holding. These initiatives are described below. 

• Ground Delay Program: When the number of flights scheduled to arrive at an 

airport over a sustained period of time exceeds its forecast capacity, the flights 

scheduled to arrive at that airport are delayed on the ground at their origin 

airport(s) prior to departure, with assigned delays cascading according to their 

scheduled arrival times at the destination airport. The resulting flight delay 

reduces the rate of flight arrivals to a level that the affected airport can 

accommodate. Flights are given a controlled time of departure (CTD) that is 

often later, but certainly no earlier, than their scheduled departure times, based 

on the order that they appear in the flight schedule. The rationale behind the 

program lies in the fact that it is cheaper and safer for the airline and the 

system to absorb a flight delay on the ground than by holding it in the air. The 

duration of a GDP is typically a few hours; however, programs occasionally 

exceed 19 hours.  Carriers occasionally prefer to cancel flights rather than 

absorb these delays; presumably this is done in cases where those passengers 

could easily be accommodated on other flights, and the airframe in question is 

not needed downstream. 

• Airspace Flow Program: When the capacity of the airspace is insufficient to 

deal with the predicted number of flights that will fly through it, the capacity 
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is rationed. As with GDPs, flights are delayed on the ground to stem the flow 

of traffic into the affected airspace. Flights also receive a CTD that is 

reflective of their order in the flight schedule. Again, carriers can cancel 

flights to avoid this, but they can also re-route their flights around the bad 

weather (with permission from the FAA), which is not commonly done during 

ground delay programs. 

• Ground Stop Program: When the capacity of an airport is diminished to the 

point that it is unable to accommodate incoming flights, departing flights are 

delayed on the ground until the affected airport can again begin to accept new 

flights. Additionally ground stops are also initiated to allow time for the 

implementation of a more long-term solution such as a GDP. 

• Airborne Holding: When a sector or airport is unable to accommodate the 

number of incoming flights and the level of demand was not sufficiently 

reduced on the ground, controllers will often hold flights in the air until they 

can be accommodated. This type of delay is generally undesirable because it 

is more expensive for the airlines to incur and it imposes an additional burden 

on air traffic controllers. 

• Miles-in-Trail (MIT) Restrictions: Another means of controlling sector and 

airport demand is to delay flights as they move en route. MIT restrictions 

impose spacing limits on succeeding aircraft to reduce the rate of arrival at the 

affected resource. In effect, MIT restrictions impose delay on flights by 

slowing the aircraft. While such restrictions are typically less efficient than 

time-based speed control initiatives, the resulting delay produced is generally 
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less expensive than airborne holding as flights do not have to travel significant 

additional distances to acquire the delay, and they can incur the delays at 

higher altitudes where fuel consumption is lower.  

• Rerouting: When a sector or region of airspace encounters bad weather, it is 

often desirable to allow flights to move along an adjusted trajectory where it 

can more easily be managed. In these situations, flights are routed onto 

alternative routes through areas that are not affected by weather. This 

rerouting can produce additional congestion in the areas of routing due to the 

additional traffic. Thus, these areas often require MIT restrictions in order to 

ease the ensuing congestion. 

1.1.3 Collaborative Decision Making 

The decision-making duties involved with managing ATFM operations are 

performed by the both the airlines and the FAA. While the FAA can impose oversight 

to ensure the safe operation of NAS resources, it does not decide whether to schedule 

or cancel flights. As such, effective coordination of TMI requires input from both sets 

of stakeholders. For example, the FAA could impose a GDP at Boston Logan Airport 

due to severe weather only to find out that many of the airlines had decided to cancel a 

substantial number of their flights. These cancellations might have reduced the 

demand to a level that the airport could accommodate; however, the carrier does not 

have any incentive to inform the FAA that those cancellations were made (thereby 

freeing up capacity for its competitors).  As a result, without some collaboration 

mechanism, lack of shared information can cause inefficient use of constrained 

resources, and thereby produce significant delays.  To enhance the level of cooperation 
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and information sharing between stakeholders, the FAA adopted a philosophy known 

as Collaborative Decision Making (CDM) at beginning of the 21st century (Ball, et al., 

2007; Wambsganss, 1996). This philosophy put more of the decision-making 

responsibilities in the hands of the carriers instead of the FAA. By allowing carriers to 

participate more actively in the process, CDM allows airlines to better determine how 

the delays get allocated across the flights that they operate. The goals of CDM are 

summarized below; for a more detailed description see Ball et al, (2007).   

• Generate better information by combining the data collected through airspace 

monitoring with flight data for carriers. 

• Ensure common situational awareness by disseminating shared information 

between the FAA and carriers. 

• Provide tools and procedures that allow carriers to respond to capacity/demand 

imbalances while working in concert with the FAA to prescribe flow 

management of aircraft. 

The CDM resource allocation mechanism for GDP planning consists of three 

components: capacity allocation, schedule adjustments and slot exchange. While 

control is executed based on a CTD, planning is done based on a controlled time of 

arrival (CTA). Specifically, arrival capacity is allocated to carriers using a mechanism 

known as Ration-by-Schedule (RBS). To improve throughput, an inter-airline 

substitution procedure known as compression is used facilitate trades. A notional 

diagram of the process is shown in Figure 1.1. 
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Figure 1.1 Flight Assignment during CDM 

Ration-by-schedule (RBS) served as an initial mechanism for the FAA to assign 

capacity to airlines. Delayed flights are assigned arrival times based on the order that 

they appear in the schedule but no earlier than their scheduled time of arrival (STA). 

An example of the RBS procedure is shown in Figure 1.2. This assignment procedure, 

known as RBS, has become widely accepted by stakeholders as a standard for 

equitable allocation (Vossen & Ball, 2006a; Vossen & Ball, 2006b). The presumption 

is that the scheduled order was acceptable to the carriers, because they determined it 

when they scheduled their flights.  Under a ground delay program, although the arrival 

times cannot be maintained, the order can, and this is deemed an equitable starting 

point.   

 

Figure 1.2 An example of an RBS allocation. 
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 Once the capacity has been initially allocated through RBS, the carriers are 

free to substitute their allocation on an intra-airline basis. They may also cancel 

flights that they no longer wish to operate. After these substitutions and cancellations 

have been made, and announced to the FAA, the FAA runs a process of inter-airline 

slot trading known as compression. Compression fills the open slots that were made 

available by airline cancellations by allowing flights to move up in the queue. By 

allowing carriers to substitute their own flights whenever possible before giving other 

airlines access to the slots, the process rewards carriers for reporting cancellations. An 

illustration of the compression algorithm is shown in Figure 1.3.  

 

 

Figure 1.3 An example of the compression algorithm. 

In this example, United Airlines has cancelled two flights after they received 

an allocation through RBS. The FAA is then able to fill these open slots with flights 

that would have otherwise received longer delays. Note that flight UA551 is able to 

receive the slot that was previously allocated to UA359 because the airline “owned” 
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the slot. It cannot however, receive the slot that belonging to UA482 because it 

cannot receive a slot earlier than its STA. 

When used in the context of CDM, RBS has several significant properties that 

have led to its adoption and popularity in practice: 

1. In a single-resource setting, it minimizes the total delay (Ball, et al., 2007). 

2. It lexicographically minimizes delay thereby ensuring standard of fairness 

that has been widely accepted by stakeholders (Ball, et al., 2007). 

Meaning that if A is a vector with the distribution of flight delays, N is the 

maximum number of minutes of delay assigned to any flight, and aj is the 

set of flights receiving j minutes of delay, then for j = 0, 1, 2, …, N, RBS 

will order the flights as A=(aN, …, a1, a0). 

3. It avoids assigning a “double penalty” to airlines that are delayed due to 

other factors such as aircraft maintenance and crew availability. Thus it 

encourages accurate reporting of information (Vossen & Ball, 2006a). 

There are, however, a few flaws associated with the RBS practice that have 

been identified over the course of its adoption. In a multi-resource setting, RBS does 

not necessarily yield the most efficient allocation of slots (Lulli & Odoni, 2007). If 

the affecting weather clears before the end of the planned GDP horizon, flights that 

are further away from the airport may be needlessly delayed (Ball, et al., 2010). To 

deal with this issue, the FAA allows flights beyond a specified radius to be exempt 

from the GDP. These exempted flights may arrive at whatever time best suits the 

needs of their operators. These exemptions can compromise the notion of equitability 

of the procedure. In some cases, the exemptions can produce biases that favor certain 
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carriers over others (Vossen, et al., 2003). In Chapter 4, we discuss some methods for 

curbing this exemption bias using en route speed control and later propose removing 

the radius entirely to facilitate more airline-centric rescheduling through cancellation 

and substitution procedures.  In practice, the setting of the exemption radius is a 

subjective exercise conducted during a strategic telecon between the FAA, carriers, 

and others.  It is not done systematically, predictably, or objectively.  As a result, 

some have suggested alternative methods of determining TMI parameters Swaroop 

and Ball (2013); Evans et al., (2014); Liu and Hansen (2013). 

In AFPs the picture is a bit more complex. In these TMIs, traffic managers 

create a Flow Constrained Area (FCA) to reduce flow through the airspace. Once the 

FCA is defined to a set space and time flights that are scheduled to pass through it are 

assigned CTDs using RBS. The operators of these flights can then take the ground 

delays as given, substitute and cancel flight based on their internal priorities and/or 

reroute certain flights around the FCA. One issue with this process is that carriers can 

only assert their preference after the FCA has been defined by the FAA. This can lead 

to significant inconsistencies between what the allocated capacity and interests of 

carriers. To provide more opportunities for rerouting the FAA has developed the 

Collaborative Trajectory Options Program (CTOP).  The initiative will introduce a 

few significant changes to the current set of practices: (Vlachou, 2014) 

• Allow carriers to express their preferences for flight reroutes before the FCA 

is defined  

• Allow the FAA and carrier to communicate electronically 
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• Use algorithms and automation in decision making to limit the impact of 

human error. 

The system has been implemented by the FAA, however, carriers have yet to make 

the necessary changes to comply with the new framework. Once programs have fully 

adopted the changes will aim to provide carriers with better planning during the initial 

stages of the AFP and better communication and situational awareness throughout the 

programs. 

1.1.4 Trajectory Based Operations and Collaborative Management 

In recent years, much of the development in air traffic management has been 

oriented towards revamping the national air traffic management system, in order to 

produce a new technological paradigm, often referred to as NextGen. While a number 

of improvements have fallen under the guise of its development, the goals of the 

project include developing a platform to facilitate collaborative capacity and flow 

management, efficient trajectory management and flexible separation management. 

Powered by the additions of global position systems (GPS), onboard Flight 

Management Systems (FMS), enhanced navigational capability and better 

communication of information through datalink, the innovations of NextGen seek to 

improve access to airspace while increasing safety, capacity, efficiency and 

sustainability (Joint Planning and Development Office, 2011). 

Leveraging the success of CDM in GDPs/AFPs, collaborative capacity and 

trajectory management attempts to foster an environment of greater shared situational 

awareness of available and active NAS routes and resources. In this paradigm, 

operators would share information with the FAA as they plan their flights. The FAA 
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can then provide feedback about the viability of those plans. When plans are revised, 

the FAA managers and controller are updated with new information. This increased 

information sharing allows carriers to execute more control and flexibility over their 

flights while increasing the capacity of airspace available to flight operators.    

In addition to improved collaborative decision-making, NextGen aims to 

provide greater involvement for ATC through a mechanism called Trajectory Based 

Operations (TBO). In this framework, flights would fly negotiated 4D trajectories, 

which allow for more precise active management across all phases of flight. Unlike the 

current environment, which relies heavily on voice communication, information 

exchange will take place increasingly over datalink communication. The negotiated 

trajectories will reduce the likelihood of conflict between flights, thereby increasing 

safety and reducing residual delay and fuel burn. In order to facilitate this NextGen 

development, the ATM community needs to define new ways to implement TMI over 

shorter time frames with ground delays, speed control and rerouting.  

1.2 Literature Review 

1.2.1 The Use of Speed Control 

Air traffic flow management represents a problem domain where implicit or 

explicit modeling of uncertainty is crucial due to the strong roles played by 

fluctuations in weather, the human elements involved in air traffic control, mechanical 

delays, delays in aircraft turnaround, crew arrival and the complexity of airport surface 

operations. Thus, it is critical for decision support tools and models to implicitly or 

explicitly take uncertainty into account in producing recommended actions.  Until 

recently in the U.S., there was no operational coordination of the arrival times of 
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flights until the traffic management advisor (TMA) system exercises control in the 

general vicinity of the airport (starting approximately 200 nm out) (Swenson, et al., 

1997). Additionally, the FAA has begun to deploy its Time-Based Flow Metering 

system. The system assigns speed advisories to flights along their trajectories every 

200 nm and sets a freeze horizon inside of which the assigned arrival times are fixed. 

While these systems impose a high degree of control on flights arriving at these 

metering fixes they do not control flights originating inside the freeze horizon. This 

can impose considerable uncertainty on the system (Miller, et al., 2014). Even under 

departure controls such as Ground Delay Programs (GDPs), while departure times 

may be fairly well regulated, research has shown that there can still be considerable 

uncertainty in the arrival times of the aircraft, as measured against what the program 

expected them to do (Ball, et al., 2001). As a result, flights set their own speed 

profiles, and can even accelerate to attempt to make their scheduled arrival times, only 

to be subjected to maneuvers in terminal airspace to temporarily stem the flow of 

traffic into the destination airports, wasting a considerable amount of time and fuel. In 

this dissertation we present stochastic optimization models to determine delay transfer 

strategies. The long-term vision for air traffic management in both the U.S. (NextGen) 

and Europe (SESAR) calls for a move to trajectory based operations (TBO) under 

which trajectory timing would be set well in advance, leading, in concept, to a solution 

to the problem of excessive terminal area delays. However, the full implementation of 

TBO remains 15 to 20 years in the future and there are many research questions that 

must be answered in order to accomplish it. Our models can be viewed as a solution to 
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this problem that could be implemented in the near-term or, alternatively, as an initial 

step toward TBO implementation.  

The use of en route speed adjustments to achieve fuel savings and throughput 

benefits has been studied for over two decades. Neuman and Erzberger (1991) present 

a number of sequencing and spacing algorithms designed to reduce fuel consumption 

and en route/arrival delay. Carr (1998) later studied the effect of a priority-based 

scheduling algorithm in reducing the allocated deviations from the preferred airline 

arrival times. While these contributions demonstrated improvements in the capacity of 

the Traffic Management Advisor (TMA) system currently in place to improve fuel and 

throughput performance, their impact was limited since the system only operated out 

to a range of 200 nm.  The aircraft sequencing problem attempts to deal with the 

congestion issue by improving terminal airspace throughput. The problem was first 

examined by Dear (1976), who studied the effect of constraining the movements of 

aircraft through constrained position shifting (CPS). More recent work Beasley et al 

(2000); Balakrishan and Chandan (2010) has resulted in efficient dynamic 

programming, integer programming, and heuristic approaches. Despite these advances, 

the focus of the aircraft sequencing problem has been oriented towards eliminating 

delay. Due to the heavy degree of congestion, optimal flight sequencing is very often 

insufficient to eliminate the need for the complex maneuvers described previously. In 

these cases it can be beneficial to transfer some of that delay to other phases of flight. 

An enhanced version of the TMA system called The Terminal Area Precision 

Scheduling and Spacing System (TAPSS) was then proposed (Swenson, et al., 2011). 

The technology has also been used cooperatively in Traffic Flow Programs (Grabbe, et 
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al., 2012). Efforts with TMA have most recently been focused on an effort known as 

the Advanced Technology Demonstration (ATD-1) (Baxley, et al., 2013). The concept 

links TMA with Flight deck Interval Management Systems (FIMs) on-board the 

aircraft and Ground based Interval Management Systems (GIM-S) and Controller 

Managed Spacing (CMS) tools available to the controller. These systems interact to 

create greater situational awareness for both the controllers and pilots to better enable 

them to meet the desired spacing both en route and in the terminal. Carrier-centric 

approaches such as the Airline Based En route Sequencing and Spacing (ABESS) tool 

have also been proposed. The tool sends speed advisories to the Airline Operations 

Centers (AOCs) to allow crews to more actively manage their speeds en route (Moertl, 

2011). To function effectively, these methods require reliable avionics algorithms that 

will enable flights to meet their arrival times. To that end, Tino (2013) proposed an 

algorithm that incorporated wind forecast into a multi-stage stochastic programing 

model to aid Flight Managements Systems (FMSs) in meeting the Required Times of 

Arrival (RTAs). The use of speed control has also been considered in the descent 

phase of flight to provide improved sequencing and spacing of flights along optimal 

profile descent maneuvers (Lowther, et al., 2008). While these approaches represent 

significant steps toward application of speed control, they do not account for the role 

uncertainty plays in perturbing flight assignments. Our approach attempts to mitigate 

the effect of such perturbations by accounting for the presence of uncertainty prior to 

the assignment of CTAs. 

Building on many of the same concepts, practitioners within industry have 

developed speed control programs to enhance their operational performance. 
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Airservices Australia developed the ATM Long Range Optimal Flow Tool (ALOFT) 

to allow pilots to control speeds out to 1000 nm away from the airport. In so doing, 

they achieved an estimated fuel savings of nearly 1 million kg in 2008 Airservices 

Austrailia (Airservices Austrailia, 2008). Since then, they have also used additional 

metering fixes to better manage trajectory and arrival time uncertainty (McDonald & 

Bronsvoort, 2012). Delta Airlines achieved an estimated $8 million in fuel savings 

over a 20-month period using a dispatch monitored speed control program known as 

Attila (Leib, 2008). At Schiphol Airport in Amsterdam, a ground-based planning 

system that interfaced with aircraft through datalink was used to remove airborne 

holding in their nighttime operations (Nieuwenhuisen & de Gelder, 2012). Knorr 

(2011) identified substantial inefficiencies in the terminal phase of flight and 

characterized the benefit pool that could be achieved by “transferring” terminal 

delays to the en route phase of flight. Jones (2013) developed a bi-criteria integer 

programming model to facilitate delay transfer away from terminal airspace and 

demonstrated that a substantial proportion of the potential delay transfer benefit could 

be realized through this approach. In that study, the model objective attempted to 

explicitly account for en route flight fuel burn at various speeds and balance that with 

a need it did not directly address: the role conflicting flight arrival times can have in 

producing airborne holding. McClain (2013) examined a similar problem proposed a 

stochastic programming model that accounted for arrival time uncertainty due to wind 

and disturbances related to pop-up flights. Unlike our approach, the solution 

presented did not, however, address the role the departure delay distributions plays in 

contributing to airborne queuing near the terminal.  
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Speed control measures have also been considered at the pre-tactical level. 

Delgado and Prats (2012) showed that it was possible to absorb some of the delay 

assigned to flights within a Ground Delay Program (GDP) while en route and 

maintain the planned level of fuel consumption. The same research team also showed 

that by departing earlier but flying at a slower speed, a considerable portion of the 

imposed delay could be recovered in the event of an early GDP cancellation (Prats & 

Hansen, 2011; Delgado & Prats, 2012; Delgado & Prats, 2014). These studies 

proposed various methods for dealing with capacity uncertainty but did not address 

the role demand uncertainty plays in affecting arrival times. Delgado and Prats (2013) 

also considered the effect of wind forecast errors on the ability of flights to meet their 

assigned arrival times. The authors proposed adjusting calibrated flight speeds from 

their original assignments as a means of recourse when the actual winds differed from 

the forecast; however, they did not incorporate predictions of wind uncertainty into 

the planning process. While these studies introduced some important ideas toward 

improving the functionality of the National Airspace System, their intended use was 

oriented toward situations in which the airport capacity is significantly compromised. 

In many instances, an airport can operate closer to standard capacity yet the demand 

from flights can slightly outstrip airport capacity, leading to less severe but still 

significant delay. Speed control can also be useful in these situations; in Chapter 2 we 

attempt to address this system deficiency.  

1.2.2 Air Traffic Flow Management Models 

The first instance of the air traffic flow management model was proposed by 

Odoni (1987). It examined the single airport ground holding problem (GHP). Since 
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then the scope of research on this type of problem has been expanded to account for a 

number of different facets of the problem. These facets are: adaptability, connectivity, 

control, rerouting, equity, speed control, and uncertainty. A taxonomy of models is 

shown in Table 1.1. 

Table 1.1: Classification Metrics for ATFM models 

Feature Classification 

Adaptability Static Dynamic 

Connectivity Single Resource Multiple Resource 

Control Central Decision Maker Collaborative Decision Making 

Rerouting without Reroutes with Reroutes 

Equity Equity not Considered Equity Considered 

Speed Control without Speed Control with Speed Control 

Uncertainty Deterministic Stochastic 

 
In addition to the ground holding problem, single-resource ATFM models 

have been developed to study airports in the Single Airport Ground Holding Problem 

(Terrab & Odoni, 1993; Richetta & Odoni, 1993). These models minimized the 

ground holding costs for flights over a single airport. Extensions to this work have 

been formulated by Hoffman and Ball (2000) to include banking constraints which 

require that groups of flights arrive within specified time windows. 

Multiple resource models later evolved from the work on single airports models to 

consider flight ground holding (Vranas, et al., 1994). The model considered the 

connections between aircraft operating multiple flights. Modeling in this area quickly 

evolved to consider both ground and airport holding in a network setting. The 

Bertsimas and Stock-Patterson (1998) model used novel variable definitions to extend 

the work to the regional air traffic management system. This variable definition was 

useful in that it led to flight and network connectivity constraints that were in many 

cases facet defining. The model proved a significant advancement and allowed 
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ground and airborne holding as well as speed control but due to computational 

limitations, it was not able to perform rerouting. The model was later revised by 

Bertsimas, Lulli and Odoni (BLO model) using a stronger formulation in that it was 

closer to the convex hull of feasible solutions (Bertsimas, et al., 2011). This update 

allowed rerouting to be incorporated into the model. Agustín et al., (2012a) developed 

a deterministic model which incorporated flight cancellations as well as speed 

control, rerouting, and airborne and ground holding. A companion paper Agustín et 

al., (2012b) also proposed a stochastic version of the model that accounts for capacity 

uncertainty as well as flight demand uncertainty in the form of flight cancelations 

from carriers. The model did not, however, consider flight arrival time uncertainty. A 

separate line of models attempt to optimize aircraft trajectories by incorporating 

equity, controller workload and probability of conflict (Sherali, et al., 2003; Sherali, 

et al., 2006).  

The aforementioned models each attempt to manage resources from the point 

of view of a single decision maker. Another line of models incorporates CDM 

philosophy into their decision-making. Vossen and Ball have sought to improve the 

compression aspect of CDM by proposing a model to facilitate inter-airline slot 

trading (Vossen & Ball, 2006a; Vossen & Ball, 2006b) in a single airport setting. 

These models allow airlines to submit at-most/at-least offers meaning if an airline 

controls two flight f1 and f2 will delay flight f1 at-most n slots in exchange for the 

ability to move up flight f2 at-least m slots. The mechanism allows airlines to trade 

slots and improve the airlines’ ability to optimize their cost functions. The model 

structure was later extended to a network setting by Gupta (2012). The APCDM 
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model has also been extended to create opportunities to for slot trading between 

airlines (Sherali, et al., 2011). 

The Vossen and Ball, BLO and APCDM models each consider equity in their 

approach. In Vossen and Ball (2006a), the authors show that their OPTIFLOW 

integer programming model, which uses cost coefficients that grow super-linearly 

with delay, has properties similar to RBS. The BLO model incorporates similar cost 

coefficients in their model to incorporate equity. The APCDM model includes a term 

in the objective function that penalizes/rewards airlines for assigning flights that 

deviate from some mean value of collaborative efficiency (Sherali, et al., 2003). Lulli 

and Odoni (2007) demonstrated that in some cases, when attempting to use RBS in a 

network setting, it may not be possible to achieve the most efficient solution. To 

address this issue, Churchill (2010) proposed a model designed to balance the need 

for equity with efficiency. Barnhart et al., (2012) proposed two other models designed 

to accomplish the same end. 

There has also been significant development in the realm of stochastic ATM 

models. This work began with formulation of the static stochastic single airport 

ground holding problem by Richetta and Odoni (1993). Ball et al, (2003) proposed 

another model for the problem to determine the optimal planned airport arrival rate 

under uncertainty. Mukherjee and Hansen (2007) later formulated a dynamic 

stochastic integer program to solve the problem. Gupta (2012) used a robust 

optimization framework to address capacity uncertainty in the ATFM problem. Ball 

et al., (2010) proposed an algorithm known as Ration-by-Distance, wherein the 

authors show that the algorithm minimizes the expected delay if a GDP is cancelled 
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before its planned end time. Glover and Ball (2010) formulated a two-stage multi-

objective optimization model to address trade-offs between efficiency and equity. 

Another model designed to address capacity uncertainty in AFPs was presented in 

Ganji et al., (2009). A stronger formulation of the same problem was shown in (Ball, 

et al., 2011). Churchill and Lovell (2011) proposed a model to address capacity 

uncertainty in a network setting.  

 On the adaptability axis, the problem can be view in either a static sense in 

which the problem is solved once and any new information that materializes after the 

solution is obtained is ignored, or a dynamic case in which the problem is continually 

resolve to incorporate new information. While there has been some work in the 

dynamic area, there have been far fewer contributions than in the static case. The 

Mukherjee and Hansen model examines GDPs from a dynamic perspective; however 

the model does not leverage speed control as a mechanism for improvement. The 

APCDM model uses speed control to plan for conflict uncertainty. This model is 

largely intended for strategic planning; however, it can be used for tactical planning. 

It seeks to identify trajectories that minimize fuel and delay while accounting for 

controller workload, equity and safety constraints. While the model manages 

departure times and can be solved iteratively, it does not incorporate speed control for 

en route flights.  

1.3 Background 

1.3.1 Fuel Savings Assumptions  

As discussed above, it is not unusual for a variety of flight maneuvers to be used in the 

terminal area of an airport in order to organize the flow of traffic into the airport into 
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an efficient pattern. The most typically used maneuvers are vectoring in which a flight 

veers off course to a waypoint and the return to its initial planned trajectory and the 

race track shape patterns mentioned earlier, as well as long “downwind” approach 

paths (also called “tromboning” – see Figure 1.4). All of these techniques, which are 

used to delay the arrival time of a flight, represent path extensions; i.e. they add to the 

total distance flown by the aircraft. The extra distance was not the goal, however; 

rather the goal was to add extra time to the trajectory. Another way to accomplish the 

same thing is to reduce the aircraft speed as it approaches the airport.  Our contention 

is that this action can be taken when the aircraft is at a higher altitude, which leads to a 

reduction in fuel consumption.  

 

Figure 1.4 "Downwind" trajectory to absorb terminal area delay 

 Figure 1.5 illustrates notionally the relationship between the fuel efficiency (specific 

range) of an aircraft and its Mach number – the ratio of the speed of the aircraft to the 

speed of sound in air (Airbus, 2004). As the aircraft’s Mach number increases from 

zero, its fuel efficiency increases up to a point known as the maximum range, beyond 

which it begins to decline. The shape of this curve, importantly, is relatively flat in the 
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vicinity of the optimum. This implies that one could fly at any speed within the flat 

part of the curve and use nearly the same amount of fuel for a given distance traveled.  

Shorter distances, therefore, imply less fuel burn.   

Note also from Figure 1.5 that as altitude increases the specific range curves move 

markedly upward. Since the magnitude of the upward shift of the specific range is 

large relative to the increases along an individual curve at constant altitude, fuel 

efficiency at a high altitude is greater regardless of whether the Mach number changes 

significantly. This implies that if, as is typical, excess distance in the terminal airspace 

is taken at lower altitudes, then the fuel burn rate is higher than would be the case for a 

similar distance at a higher altitude. Thus, there are two effects at work that produce 

fuel cost savings when delay is transferred from the terminal area to the en route 

portion, though the reduction or elimination of path extension is more profound.  

 

Figure 1.5 Notional variation in aircraft fuel efficiency with speed at various 

altitudes. 

A significant feature of speed control assignment is that it may not be necessary to 

always impose delay on flights to achieve the benefits. Consider the following 
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example depicted in Figure 1.6 and Figure 1.7. Here a group of flights in arriving is a 

set of consecutive slot times such that the rate of arrival exceeds the capacity of the 

airport. In the absence of speed control the flights would be forced to incur a delay of 

9 minutes. By incorporating speed control into the set of control options we can assign 

each flight one slot earlier we and eliminate 6 minutes of delay.  

 

 

Figure 1.6 Potential Assignment in the Absence of Speed Control. 

 

 

 

Figure 1.7 Potential Assignment with Speed Control. 
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1.3.2 Operational Concept 

In the proposed operational scheme, CTAs are assigned to flights once they reach 

an approximate distance of 500 nm from the destination airport. Once a CTA has been 

assigned to a flight, it proceeds to the assigned metering fix 150 nm from the airport 

while exercising the appropriate speed control guidelines. When the flight reaches the 

metering fix, TMA would issue adjustments to controllers to effectively guide the 

flight on its assigned STAR trajectory. Under this concept, the system does not require 

close coordinate with TMA.  

It is important to recognize that this is not a static problem. The changing 

environmental conditions necessitate that any assignment algorithm make use of 

revised information as it is presented. As flights travel en route, their estimated times 

of arrival (ETAs) are updated on an ongoing basis to account for factors such as 

changing winds, convective weather and rerouting. As flights get closer to their 

destinations, these ETAs become increasingly reliable. The ETAs provide a forecast of 

the degree of congestion and the resultant excess flight time and maneuvering that will 

occur in the terminal area. The assignment of CTAs effectively adjusts the ETAs to 

provide a more orderly flow of traffic into the terminal area, thereby injecting an 

increased level of predictability into the flow of traffic. In the longer term, the 500 nm 

horizon could be lengthened and also could vary by flight.  

Under this approach, the Air Navigation Service Provider (ANSP) would update the 

list of flights that were available for scheduling every 15-30 minutes. At each period, 

the ANSP would set the number of “slots” at the metering fix based on the capacity of 

the airport and each metering fix. When the number of slots has been determined, an 

optimization model assigns a CTA to each flight once it reaches the 500 nm boundary. 
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These CTAs could be assigned using the various communications tools discussed in 

the following section. When the pilot receives this CTA he/she would enter this time 

into the Flight Management System (FMS) onboard the aircraft. The aircraft then 

calculates the preferred route and speeds en route and proceeds to the metering fix 

where it receives TMA-based controller instructions. It is important to note that the 

assignment process is iterative and dynamic. At each period, a new set of flights 

between 1-30 minutes away from the 500 nm boundary is evaluated by the assignment 

algorithm. Once the set of CTAs has been decided based on our model’s logic, the 

flights receive a CTA only once they approach the 500 nm boundary. Note that there 

will generally be overlap between the set of flights considered from one iteration to the 

next as only the closest-in flights are given the computed CTAs. Thus, the CTAs 

computed for the further-out flights are temporary; these flights are included to 

provide an assignment procedure with a more global perspective of total flight 

demand.  

1.3.3 System Description 

For U.S. implementation, we anticipate that the Air Traffic Control Systems 

Command Center – ATCSCC – would have responsibility for determining the CTAs 

due to need for coordination across sectors. It is also the case that the data required to 

support these decisions are already readily available to the Command Center. The 

existing traffic flow management system (TFMS) integrates real time flight 

information such as estimated arrival times, scheduled arrival times, landing times, 

flight, aircraft positions and flight cancellations. The Command Center also has rich 

weather feeds and through consultation with airport Air Traffic Control Towers 
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(ACTs) and Terminal Radar Approach Control facilities (TRACONs), up-to-date 

information on airport and terminal area capacities. 

In the longer term, CTAs would certainly be transferred to aircraft using datalink. 

However, this option will most likely not be possible in the shorter term. Thus, after 

examining the existing communications technology between pilots and command 

centers, we see two options for assigning CTAs. In the first, the Command Center 

passes CTA assignments to the Air Route Traffic Control Center (ARTCC), who 

informs the pilots of these assignment times via controllers / radio communication 

link.  In the second approach, the Command Center communicates CTAs to 

appropriate airline operational control centers (AOCs). It is possible (at least in the 

longer term) that CTAs could be adjusted based on Command Center / AOC 

negotiation.  Once a CTA was finalized, the AOC would send it to the appropriate 

aircraft over the Aircraft Communications Addressing and Reporting System 

(ACARS). Notionally this approach has the advantage of very naturally supporting the 

inclusion of (future) Collaborative Decision Making (CDM) features. The system may 

also integrate the TBFM and the extended metering system that has recently been 

adopted by the FAA. (Witzberger, et al., 2014) 

The first approach offers a significant advantage from a compliance standpoint. 

Since assignments are issued directly by air traffic controllers, they will likely be taken 

quite seriously. Further, this approach would by necessity offer a degree of 

coordination between the CTA directives and other controller directives, e.g. those 

emanating from TMA. This approach could, however, impose an additional workload 

burden on some air traffic controllers and increase training needs at certain control 
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centers. The second approach minimizes the burden on ATC staff by limiting their 

direct involvement in the assignment process. Although the ATC staff may issue 

resource capacity guidelines and updates to command centers to inform them in their 

decision-making, the assignments would be made jointly by carriers and the Command 

Center. This process allows the carrier to actively voice their priorities during the 

assignment process and potentially adjust their assignments through CDM 

mechanisms. The price of such accommodation, however, may be borne at the 

expense of operational effectiveness. If compliance is sufficiently low, it will likely 

prove quite challenging to realize a substantial portion of the potential benefit pool. 

Thus, it is critical that carriers actively enforce CTAs on their flights. Figure 1.8 and 

Figure 1.9 illustrate the flow of data between systems and stakeholders. 

 

Figure 1.8 Information flow between databases, aircraft and command centers under 

a centralized approach 
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Figure 1.9 Information flow between databases, aircraft and command centers with 

collaboration from carriers. 

1.4 Issues with current CDM Practices 

1.4.1 Issues with collaboration 

When a GDP is issued at an airport, air traffic managers at the ATCSCC decide the 

planned capacity and duration of the GDP based on the predicted conditions over the 

course of the day. They also determine the radius of exemption for the GDP. This 

exemption radius defines the set of flights that will receive ground delays. Thus there 

are three pools of flights to consider: flight inside the exemption radius receive ground 

delays based on their order in the schedule. Flights on the ground outside of the radius 

are exempted from the GDP and receive no delays. In addition, all flights already in 

the air and international non-Canadian flights, regardless of their origin, are exempted 

from the GDP.  

Figure 1.10 illustrates an example RBS allocation where the two exempt flights 

identified on the left are both airborne at the time of allocation. After the RBS 

allocation, carriers may freely substitute flights based on their own priorities. They 
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may also choose to cancel flights and make substitutions using the vacated slots. A 

notional example of this process is shown in Figure 1.11. Here, AA has chosen to 

cancel AA561 and move AA321 into its slot. AA alternatively could have chosen to 

swap the slots of the two flights. In either case, once the appropriate arrival changes 

were made, the arrival times (CTAs) would be converted to departure times (CTDs) 

and appropriate ground delays. Although DAL and UA both also have two slots, they 

are unable to make any changes since in each case, one of their two slots is occupied 

by an airborne flight whose arrival time cannot be adjusted.  If DAL and UA could 

reassign the slots of their airborne flights, then each airline could improve the number 

of flights arriving less than 15 minutes after their scheduled arrival time. An example 

of this exchange is shown in Figure 1.12.  

 

 

Figure 1.10 An example of flight allocation in Distance Based RBS. Exempt flights 

receive priority. 
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Figure 1.11 Cancellation and substitution procedure in the current CDM framework. 

 

Figure 1.12 Cancellation and substitution process without exemptions. Delta and 

United can substitute and improve their on-time performance. 

The advantages illustrated by these examples underlie the one component of the 

benefits that can be achieved by combining control by CTA with dynamic speed 

adjustments. Similar improvements to the performance of the compression algorithm 

can be achieved by allowing adjustments to airborne flights. We note a second source 

of benefits have the same origin as those investigated by Delgado and Prats (2012) and 

Delgado and Prats (2014), namely the ability of airborne flights to more quickly react 

to increases in arrival capacity resulting from weather changes 

1.4.2 Issues with information and control 

While RBS serves as a standard for equity within the system, it is not widely 

adopted once a flight leaves the ground. Indeed, controllers are allowed to use their 

own discretion to route flights between sectors. These judgment calls may often have 
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no relation to the actual schedule. The algorithm, however, does not account for the 

uncertainty in meeting arrival times. Flights often deviate from their schedule for a 

host of reasons including convective weather, wind uncertainty and the availability of 

direct routing. These deviations can lead to scheduling conflicts when the flights reach 

the airports.  

Consider the example depicted in Figure 1.13 and Figure 1.14. Here, three flights 

with scheduled times of arrival (STAs) within the immediate vicinity of flight F4all 

approach the airport at the same time. When this happens, three of the four flights will 

need to hold in the air until the airport can accommodate them. This additional holding 

leads to excess fuel burn on flights. Moreover, since air traffic controllers are not 

involved in managing TMIs, the actual order of precedence between the four flights 

could deviate from the assigned order. To make matters worse, since carriers will often 

cancel flights to reduce the delays on the other flights they operate the lack of 

predictability in slot availability increases the risk of such activity and lowers the 

incentives for the behavior CDM was designed to promote. 

 

Figure 1.13 An illustration of scheduling conflict due to uncertainty in flight arrival 

times. 
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Figure 1.14 The effect of scheduling conflicts on flight arrival times 

1.5 Research Contributions and Contents 

 
This dissertation makes a number of contributions oriented towards advancing 

the use of en route speed control in air traffic management in the presence of 

uncertainty. This problem assumes an operational environment with less centralized 

control over system actors than what is assumed in the network-based Bertsimas 

(1998), (2011) and Agustin (2012a), (2012b) models, and assumes greater system 

uncertainty and more rapidly evolving conditions than in previous single-resource 

models which allow for greater decentralization. Thus, neither model is appropriate to 

solve this sort of problem. To bridge the gap, we provide a set of solutions to support 

both time-based metering and GDPs. Our contributions are as follows:  

• To the best of our knowledge, this dissertation presents the first integer 

programming models to consider the role of both departure and arrival 

time uncertainty in coordinating flights en route. In this effort, we 

develop both a scenario-based and a value function-approximation based 

model, and we demonstrate their ability to transfer delay under dynamic 
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environmental conditions. We show that value function approximation 

displays strong efficient solutions while achieving superior delay transfer, 

making it a particularly well-suited solution to the problem.  

• The previous approach assumes a system in which the Air Navigation 

Service Provider (ANSP) assumes control of airborne flights but no 

ability to control flights prior to take-off. To add versatility, we introduce 

three new models which allow the ANSP to assign ground delay to flights 

prior to take-off. The models are stochastic and account for the 

uncertainty in departure delay. The first model is a two-stage scenario-

based integer program that utilizes the “by-variables” originally 

introduced in (Bertsimas & Patterson, 1998) whose solutions to the LP 

relaxation were shown to be facet defining for the ATFM problem. The 

second model adapts to the functional approximation model presented in 

Chapter 2 into a system with stronger control over ground-based flights. 

We also explore an alternative functional approximation model that 

incorporates the by-variables and present some valid inequalities to 

improve the computational performance. The models demonstrate strong 

delay transfer with relatively little imposition of ground delay on short-

haul flights.  

• We propose the concept of applying speed control to reduce the GDP 

exemption bias. To support our claim, we modify the current models and 

conditions to reflect the proposed changes within our GDP procedure.  
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• The three previous approaches examine the problem of en route speed 

control from the perspective of the FAA. In a more decentralized version 

of the NAS, carriers are likely to play a more active role in managing 

their flights with speed control. To that end we propose a new GDP 

architecture that controls flights through CTAs as opposed to CTDs and 

gives carriers an increased level of responsibility over the flights they 

operate. To aid the carriers in their new planning responsibilities, we 

introduce a stochastic model to support airline decision-making during 

GDPs. The model allows carriers to hedge between the possibility of 

delay and the likelihood of early weather clearance. We show that by 

moving to this new architecture carriers could realize significant cost 

savings. 

Chapter 2 presents three optimization models for en route speed control that can 

be used in concert to address the inherent uncertainty in flight arrival times. In 

Chapter 3, we add the ability to control ground based flights and propose a set of 

alternative models to the ones discussed in Chapter 2. In Chapter 4, we present two 

approaches designed to curb the exemption bias in GDPs using en route speed 

control. We later remove the exemption radius entirely and provide carriers with 

capability of using speed control to control arrival times and propose a stochastic 

model to support airline decision-making during GDPs. In Chapter 5, we present our 

conclusions and ideas for future work. 
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2 Transferring Delay through Control of Airborne 
Flights  
In a typical aviation environment today, the precise landing times of en route 

aircraft are not set until each aircraft approaches the airspace adjacent to the 

destination airport. In times of congestion it is not unusual for air traffic controllers to 

subject arriving aircraft to various maneuvers so as to create an orderly flow of 

aircraft onto an arrival runway. Typical maneuvers might include flying in zig-zag 

patterns, flying in circular holding patterns, as well as others. These maneuvers serve 

to delay the arrival time of the flight. On the other hand, if the arrival time was 

established much earlier, then such delay could be added by simply having the flight 

fly slower while still at a higher altitude, which would incur much less fuel burn than 

the described maneuvers.  

In this section we propose three integer programming models to assign delay to 

aircraft approaching a single airport, well in advance of each aircraft’s entry into the 

terminal airspace. The baseline model is deterministic and seeks to maximize the 

available throughput at the runway over a rolling-horizon. The latter two models are 

stochastic and account for uncertainty regarding the status and controllability of 

certain flights. The first stochastic model is scenario-based, while the second relies on 

a functional approximation of uncertainty. The results of computational experiments 

show that these stochastic model approaches can transfer a considerable portion of the 

delay that would otherwise occur in the terminal area to the en route phase of flight 

and also that the stochastic models are noticeably more effective. The model relying 

on functional approximation shows particular promise due to its efficient run time. 

The delay transfer yielded by each model resulted in significant predicted fuel 
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savings. The functional approximation model performed particularly well under 

declining operational conditions, demonstrating itself to be a promising means of 

achieving delay transfer. 

2.1 Operational Approach 

The goal of our approach is to adjust the speed of a flight during the en route 

portion of the flight so that when it arrives in the terminal area it will be able to land at 

the airport with little or no trajectory adjustment. This is accomplished by issuing to 

each approaching flight a controlled time of arrival (CTA). CTAs would be assigned at 

a notional boundary well in advance of the destination airport. This boundary imposes 

a limit on both the number of flights that can be controlled and the amount of delay 

that can be transferred through en route speed control. When the radius is too large, we 

cannot control a sufficient number of flights to make a strong impact. When the radius 

is too small, it is not possible to fly at the appropriate speed long enough to transfer 

much delay. With these factors in mind, we selected a boundary 500 nm from the 

destination airport. The CTA represents the time at which the aircraft should pass a 

metering fix (a defined point in the airspace) approximately 150 nm from the airport. 

When the flight reaches the metering fix, the controllers, using advice from TMA, 

would take over the final spatial and temporal control of the flight. Under this concept 

the system does not require close coordination with TMA.  

It is important to recognize that this is not a static problem. The changing 

environmental conditions necessitate that any assignment algorithm incorporate new 

information as it is presented. Under this approach, the air navigation service provider 

(ANSP) would update the list of flights that were available for scheduling every 15-30 
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minutes. At each period the ANSP would set the number of “slots” at the metering fix 

based on the capacity of the airport and the capacity at each metering fix. When the 

number of slots has been determined, an optimization model assigns a CTA to each 

flight once it reaches the 500 nm boundary. When the pilot receives this CTA, he/she 

would enter this time into the Flight Management System (FMS) on board the aircraft. 

The aircraft could then calculate the preferred route and speeds and proceed to the 

metering fix, where it would then receive TMA-based controller instructions. 

In our approach, flights can be grouped into two classes: long-haul flights 

originating at airports greater than 500 nm from the destination, and short-haul flights 

originating at closer distances. Long-haul flights are managed by assigning arrival 

times at 500 nm. Short-haul flights cannot be managed by the process until they reach 

a distance of 150 nm, at which time they begin to follow TMA-initiated instructions. 

At this radius of 500 nm, short-haul flights can compose a substantial portion of the 

flight pool, and at many airports make up the majority of the flights. As such, the 

uncertainty associated with the arrival times of these unmanaged flights plays a 

considerable role in determining the ability of managed flights to make their assigned 

arrival times. For example, if an unmanaged flight arrives a few minutes later than its 

ETA, its arrival time can overlap with that of a managed long-haul flight. When this 

occurs and the airport does not have the capacity to accommodate both flights, air 

traffic controllers are forced to hold one of the flights until it can be accommodated. 

An example is shown in Figure 2.1. Our aim in this dissertation, and the key factor 

distinguishing this work from other related published work, is to show that by 



 

 41 
 

accounting for the presence of demand uncertainty, it is possible to issue CTAs that 

are more effective in limiting the excess delay taken in the terminal area. 

 

 

Figure 2.1 Short-haul flight (SH710) arrives 2 minutes late, delaying the arrival of 

two long-haul flights (LH390,LH34) 

The approach taken herein is generally applicable to a wide array of demand 

conditions. On fair weather days when no Traffic Management Initiatives (TMIs) are 

in effect at the subject arrival airport, flight arrival times are affected by a wide array 

of factors beyond the control or knowledge of the controllers. During Ground Delay 

Programs and Airspace Flow Programs, while the initial plan is constructed using 

evenly spaced arrival time slots as a notional goal, the controls are executed at the 

departure stage of the flight, beyond which time many key flight parameters can still 

change. Thus, the arriving traffic stream, even under a TMI, can still be quite 

unpredictable and could benefit from final coordination. There is a limit to the 

magnitude of the incoming traffic flow; any serious imbalance between demand and 

capacity would be mitigated by the FAA instituting a TMI in response. 

A natural extension of this work might be to also control the short-haul flights. In 

fact, this could potentially be done, although the characteristics of the control would be 

different; e.g. it could include delaying the flight’s departure time. Our current goal, 

however, is to operate with very limited changes to existing air traffic management 

procedures so that the only new control required is the issuance of CTAs to flights 
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when they are 500 nm from their destination airport. Accordingly we decided to limit 

the scope of intervention in this study to the flights originating at distances beyond 500 

nm. 

The stochastic models described in the next section explicitly model the uncertainty 

associated with short-haul flights. There are other sources of uncertainty related to the 

timing of the arrival of flights. First, there will be some variability in the speed and 

arrival time of the flights issued CTAs.  This variability could be due to a number of 

factors, such as the inaccuracy in the estimate of wind characteristics over the course 

of the trajectory. Another, perhaps more significant source, is the degree of 

compliance with the issued CTAs and also the degree to which it will be feasible for 

the pilot to employ the CTAs calculated by the model. Depending on the manner in 

which the CTAs are conveyed to the pilot, he/she might not be obligated to comply 

with the CTA and other priorities might be given preference over adhering to the CTA 

provided. It is also the case that the technology on the aircraft might make it difficult 

to communicate the CTA and/or for the pilot to accurately make use of it.  Of course, 

there could also simply be delays in the CTA communication and implementation. 

These sources of uncertainty are not explicitly incorporated into the models presented 

in the next section; however, certain experiments and model changes are used to study 

their impact in sections 2.3, 2.4 and 2.5. 

2.2 Methodology 

In this section we describe the structure of the three models introduced in this paper 

to assign arrival times to flights. All models assume a multi-resource framework in 

which the assignment times are issued at metering fixes 150 nm away from the airport 
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and are compatible with available runway arrival times. The models iteratively re-

solve the problem, in rolling-horizon fashion, to accommodate the changing conditions 

within the airspace.  Each model aims to transfer delay away from the terminal; 

however, our first model assumes conditions are deterministic while the latter two 

incorporate different versions of a stochastic framework.  

2.2.1 Basic Model Structure 

As discussed in the previous section, the ultimate control variable of the system, a 

speed adjustment, is determined implicitly by assigning each flight a slot at a fix. As 

Figure 2.2 illustrates, however, the model must specify both a flight-to-fix assignment 

and a flight-to-runway assignment. Specifically, each fix will have a capacity 

(maximum flow rate) and similarly each runway will have a certain capacity 

(maximum arrival rate).  These capacities are converted into slots; e.g., if a runway 

capacity was 45 arrivals every hour then 45 slots would be created in each hour, 

equally spaced.  In general multiple fixes can feed multiple runways.  Thus, all of our 

models include assignment variables that assign flights to both a fix and a runway. Of 

course, there are multiple ways to model these assignments within an integer 

program: one could employ two different sets of flight-to-slot variables with 

constraints ensuring compatibility between the fix and runway assignments, or one 

could use a single variable to assign the flight to a slot at both a fix and a runway. We 

experimented with both approaches but chose the latter because it produced superior 

computational performance.  This is not surprising since the use of such “composite” 

variables is equivalent to moving from an “arc-based” formulation of a routing 

problem to a “path-based” or set-partitioning approach. Such formulations are known 
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to be stronger (see, for example Chapter 11 of Wolsey, 1998). The usual disadvantage 

of such a transformation is that the formulations become very large; however, since 

we are effectively dealing with paths of length two (500 nm boundary-to-fix-to-

runway), the number of variables in the composite formulation is quite manageable.  

In our formulation, we use a set of parallel slot lists, each slot corresponding to a 

single fix-runway pair. As mentioned above, each slot can be occupied by at most one 

flight. Therefore, by assigning flights to these slots, we automatically ensure that the 

capacity constraints are enforced. Furthermore, as will be seen later, each runway 

queue is accounted for separately, and the objective function is to minimize the total 

queuing delay. This results in an assignment that is as closely balanced across fixes as 

possible. 

   

 

Figure 2.2 A notional representation of our model assignment structure. 

2.2.2 Model Uncertainty 

There are three principle dimensions along which the presence of demand 

uncertainty can affect traffic: (1)Flight cancellation uncertainty which related to 
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whether a flight operates or not can affect the overall demand for an airport and 

influence the need to limit the capacity at the affected airport to curb imbalances. 

(2)Trajectory uncertainty relating to the ability flights to adhere to their 

planned/predicted route can alter arrival times both at the airport and metering fix, as 

well as introduce additional conflicts between aircraft. (3)Finally timing uncertainty 

regarding when flights depart from their origin airport and how long a flight takes to 

travel between waypoints and airports can significantly influence the level of airborne 

holding and produce additional conflict in airspace. While all forms of uncertainty can 

prove significant in controlling flights in the presence of convective weather, we shall 

limit the scope of the analysis to focus on timing uncertainty. 

There are a number of ways to approach the uncertainty associated with the arrival 

time of the short-haul flights. Perhaps the most obvious deterministic model would 

involve using mean flight times to calculate fix arrival times for all short-haul flights. 

These flights would be pre-assigned to appropriate slots. The remaining slots would 

then be available for assignment to the long-haul flights. An alternative deterministic 

approach would be to ignore the short-haul flights in making the long-haul 

assignments so that the short-haul arrivals would simply be a stochastic event dealt 

with after the fact.  While the first approach might seem more appealing, the second 

approach provided superior performance (in preliminary experiments not reported 

here) so it will be used as our baseline deterministic model.  

Our baseline stochastic model is a scenario-based, stochastic, integer programming 

model that employs samples from a representative distribution of short-haul flight 

times. Of course, the accuracy of this model depends on the number of scenarios 
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generated, with larger numbers of scenarios leading to increased model run times. For 

some static problems this increased solution time may not be an issue, as models do 

not often need to reach a solution over a short time horizon. In more dynamic cases the 

solution time becomes increasingly critical. In our application we need to achieve 

solutions and issue CTAs over a 15 minute time horizon. Some amount of buffer time 

is necessary to execute the instructions, after which we must move on to the next 

iteration of the problem. This time criticality raises the question of whether a scenario-

based approach is most appropriate to our application. While we want to achieve a 

high quality solution, it may not be possible to do so by incorporating a large number 

of scenarios into the model. 

To deal with this issue we propose a second approximate stochastic model. 

Specifically, the two stochastic models both employ a decision vector, y, which 

assigns long-haul flights to slots. Both models take into account the anticipated arrival 

times of short-haul flights captured by the variable vector n, which gives the number 

of short-haul flights whose planned trajectory and speed would result in arrival to the 

fix at each time slot.  We denote by ( ),f y n  the excess delay taken in the terminal area 

for a specific y and n. The first model is based on a set of short-haul flight arrival time 

scenarios, with each scenario s, characterized by a vector ns. This model minimizes the 

expected excess terminal area delay, ( ),E f y n   , where the expectation is taken over 

the sampled scenario distribution. For the second approximate model, we compute a 

priori the expected value of n, [ ]E n , and then minimize [ ]( ),f y E n . We note that this 

model can be viewed as a functional approximation of the scenario-based model as 
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( )f  is not linear and the vector [ ]E n  can be non-integer. Thus, while the decision 

vector y is integer and explicitly assigns long-haul flights to slots, there is not an 

explicit assumption regarding when each short-haul flight arrives (as there would be in 

a more standard deterministic approximation).   Conceptually, the first model is more 

accurate than the second since it explicitly minimizes the expected value, while the 

second, by moving [ ]E n  inside ( )f , employs an approximate objective function. On 

the other hand, the accuracy of any scenario-based model depends on the degree to 

which the scenarios generated accurately represent the true distribution.  Of course, to 

get more accuracy, more scenarios must be generated (leading to larger models).  We 

explore these tradeoffs in our computational experiments and in fact show that the 

second model can be very effective. 

The objective functions in the stochastic models described in the previous 

paragraphs deal with characterizing expected value. In some contexts the worse-case 

scenarios can cause significant impact to the system under study to the point at which 

it becomes more helpful to consider objective functions that use risk-based measures 

such as Value-at-Risk and Conditional Value-at-Risk (Gaivoronski & Pflug, 2005; 

Rockafellar & Uryasev, 2000). In air traffic management there are a number of 

measures put in place to prevent such incidents from occurring. It is also not our intent 

to develop a set of models to aid stakeholders under such catastrophic conditions. For 

these reasons we shall refrain from presenting any risk-oriented models and limit our 

discussion to the aforementioned models oriented toward expected value. 
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2.2.3 The Deterministic Model 

Our deterministic integer programming model employs an objective function that 

minimizes total system delay. Since it assumes no variability in flight times and it 

ignores short-haul flights, it assigns each long-haul flight to a unique slot and thus is 

able to transfer all delay from the terminal area to the en route portion of the flight 

(each flight adjusts its speed so that it arrives exactly at the time of its assigned slot). 

This model considers flight assignments over a rolling two-period horizon by 

discounting the second period to a marginally lower level to account for a lower 

degree of confidence in more distant events. We know the information about the first 

period with more certainty, and we only make decisions about the first period. To the 

extent that decision variables are used for the second period, their role is to facilitate 

the assignment of aircraft whose ETAs were in the second period into first-period 

slots. The notation used to describe the data in the two periods is identical, but 

functionally the two periods play quite different roles. 

In order to limit the number of constraints in our model, certain restrictions were 

imposed on some of the sets. Since it may be impractical for aircraft to periodically 

change their designated approaching corner posts throughout the course of flights, we 

restricted the assignment of each flight to its planned fix at 500 nm from the airport. In 

order to ensure that flights did not operate at unsafe speeds we also restricted the range 

of slots over which each flight could be assigned to times corresponding to either 

Mach 0.72-0.85 or the performance of the aircraft, whichever criterion was more 

restrictive. We define our variables and parameters as follows: 

Parameters 

F ≡ The set of all flights 
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Sif  ≡ The set of all slots available to flight f at fix i 

Yrf  ≡ The set of all slots available to flight f at runway r 

Ωf  ≡ The set of all fixes available to flight f 

T ≡ The set of all periods  

R ≡ The set of all runways 

tsr
j ≡ the time corresponding to slot s at runway r during period j 

efsr 
j≡ the earliest possible time flight f can be assigned to slot s  runway r during 

period j 

cfsr
j ≡ the cost of assigning flight f to slot s at runway r during period j 

 β ≡ the discount factor for the second period of the rolling-horizon, where 1β ≤   

Variables 

1 if flight  is assigned to slot  at fix  and slot  at runway  during period  

0  otherwise

irj

fks

f k i s r j
x


= 
  

The deterministic model can then be stated as follows:
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Equation (2.2) states that every flight is assigned to one slot over the two time 

periods. Equation (2.3) states that each slot at each fix can be assigned to at most one 

flight. Equation (2.4) states that each slot at each runway can be assigned to at most 

one flight. Equation (2.5) states that the decision variables are binary. 

Equation (2.1) seeks to minimize system delay over two periods and discounts the 

second period. The throughput coefficients will vary based on the amount of time 

between their corresponding slots and earliest possible arrival times. A more explicit 

expression of the cost coefficients is shown in equation (2.6). 

)6.2(j

fsr

j

sr

j etc
fsr

−=
 

There are a number of indices on our parameters and variables which could imply that 

the size of our problem is relatively large. We are able to reduce the size substantially 

through the manner in which we populate our sets. The aircraft performance and fuel 

cost curves limit the range of speeds at which the flight can travel to a small subset 

within the vicinity of the nominal aircraft speed. Thus when a flight reaches the 500 

nm boundary, the range of reachable arrival times and correspondingly slots at the 

fixes and runways is fairly small. Using the real time ETAs collected when the flight 

reaches the 500 nm boundary and assuming that the flight would meet its ETA by 

traveling at the nominal aircraft speed, we can project the earliest possible arrival 

time by measuring the deviation between the travel times at the nominal and fastest 

aircraft speeds and subtracting that deviation from the ETA. 

Theoretically, one could imagine pushing this model until it was infeasible, by 

introducing more demand than the available capacity could accommodate, over an 

extended period of time. The same can be said of the following two stochastic 
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models.  In reality, if this or any such model were implemented in the real system, 

such events would not come to pass, because controllers are on guard for such 

demand-capacity imbalances. If they threaten to appear, then Ground Delay 

Programs, Ground Stops, and other Traffic Management Initiatives are available to 

rectify the imbalance. Our models would be able to function with the reduced demand 

any such program would permit, providing speed control adjustments to coordinate 

arriving traffic. 

2.2.4 The Scenario-based Model 

While the deterministic model presented in the previous section treated the 

problem as one of assigning flights to slots, we could also view this problem in the 

context of lot-sizing. One can imagine an inventory holding problem in which the user 

is trying to determine a production plan over a set of periods. In this framework we 

can produce inventory (flights) in a specific period and store inventory over a period 

(airborne holding). In each period the resource (runway slot) has a demand of one 

flight. Since the flight schedules are defined prior to our involvement we can view the 

production costs as negligible. Thus we are challenged with the task of determining a 

production schedule that will minimize the airborne holding costs over all periods 

subject to our stock conservation constraints in each period. If we could completely 

control the number of flights assigned to each period we could solve this inventory 

holding problem using a deterministic model and determine a CTA schedule that 

would minimize airborne holding. Since we have no control over the short-haul 

flights, however, the number of flights in each period is a stochastic quantity. As such 

we decided to turn to stochastic programming to handle the problem.  
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We developed a scenario-based model designed to explicitly take into account the 

impact of the (non-controlled) short-haul flights. Since the arrival times of the short-

haul flights are uncertain, the model must explicitly consider terminal area delay. In 

fact, the objective function of the model is to minimize expected terminal area delay 

and thereby maximize the expected amount of delay transferred to the en route portion 

of the flights. The model samples from a set of scenarios that represent the arrival 

times of the short-haul flights. The number of short-haul flights that arrive in each slot 

is computed for each scenario. The model includes constraints that calculate the 

number of flights queued under each scenario – the sum of these queue lengths over 

time represents the total delay the model would have assigned in the terminal area 

under that particular scenario. The objective function represents the expected value of 

this measure over all scenarios, which is the total expected terminal area delay. Note 

that the scenario-based model no longer employs two periods, since the randomness 

associated with short-haul flight arrival times has been encapsulated in the scenarios. 

To the extent that any remaining equation references previous equations, any 

dependence on the subscript representing time period should be suppressed. The 

resulting stochastic integer program can be seen below: 

Additional Parameters 

pq ≡ The probability of scenario q 

Yr ≡ The set of all slots on runway r 

sr

qn ≡The number of short-haul flights arriving in slot s at runway r in period j under 

scenario q 
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Note that while 
sr

qn  is a non-negative integer, it can take on values larger than one. 

Since we cannot control them, more than one short-haul flight can arrive in time to 

occupy the same slot. Furthermore, that particular slot may be assigned to a long-haul 

flight, in which case none of the short-haul flights will be able to use it. Thus, one can 

expect a queue to form, and we would like to make the delay impact of this queue as 

small as possible. 

Additional Variables 

1 if slot  at runway  is assigned a long haul flight

0  otherwise
sr

s r
y


≡ 

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Equation (2.8) ensures that if a flight is assigned to a slot at a runway, then the 

occupancy variable y for that runway is set accordingly. Equations (2.9) define the 

overflow of flights into each slot, which ultimately defines the level of airborne 

queueing delay in each runway slot. An intuitive way to understand equation (2.9a) is 

to reorganize it to represent the queue dynamics: 

 ( )1, 1sr s r sr

q q q srW W n y−− ≥ − −   
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This version of the equation highlights how the queue can change size from one slot to 

the next. In each new slot, the number of new short-haul flights arriving contributes to 

the queue length. If that slot had been reserved for a long-haul flight, then 1sry = , so 

nothing subtracts from the queue length. If, on the other hand, 0sry = , then that slot 

was not reserved for a long-haul flight, so it can be used for one of the queued flights, 

and the queue length is decremented by one. Equation (2.9b) assures that the starting 

queue length for any iteration of the problem is equal to the ending queue length from 

the previous horizon, with ˆ 0r

qW ≡  at the beginning of the day. Equation (2.10) says 

that our indicator variable is binary. Equation (2.11) requires that the queuing delay in 

each slot be non-negative. Our objective function seeks to minimize the queueing 

delay over all scenarios. 

As will be seen in a later section, we were able to test different versions of the 

scenario-based model, with the number of scenarios ranging from a few hundred up to 

nearly 2000.  Because each scenario coded in the IP represents a single sample path 

from the set of underlying distributions, the probabilities assigned to the scenarios are 

all uniform.  One could imagine different processes for generating scenarios, however.  

For example, it would be possible to generate a large number of sample paths but then 

cluster those into “representative” scenarios, with their resulting probabilities.  This 

approach is typically motivated by run time considerations; a stochastic description 

with just a handful of scenarios is better than none.  In our case, however, we were 

able to embed hundreds or thousands of scenarios into the stochastic IP and maintain 

reasonable solution times.  Our notation for the objective function (2.7) includes the 

probabilities associated with the scenarios, although, as was already mentioned, we 
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used uniform probabilities.  The notation is useful because other users of the model 

might prefer a different method for generating scenarios, in which case differing 

probabilities might be appropriate. 

2.2.5 The Functional Approximation Model 

The Scenario model explicitly accounts for the uncertainty of the unmanaged flights 

by modeling its behavior through monte carlo sampling. If the simulation presents an 

accurate depiction of the arrival process for the short-haul flights, it can serve as an 

effective means of incorporating demand uncertainty into the model. It could, 

however, require a substantial number of scenarios to model the processes accurately. 

Thus, it is worth exploring the possibility that other representations of the uncertainty 

may serve as better proxies. Specifically, we propose a functional approximation of 

uncertainty that uses the same distributions used in the scenario model to compute the 

probability that a given flight will be in each slot and sums the probabilities to 

compute the expected number of unmanaged flights in each slot. This value can then 

be used to calculate the queuing delay. The proposed model is shown below: 

Additional Parameters 

srn ≡The expected number of short-haul flights arriving in slot s at runway r  

Additional Variables 

1 if slot  at runway  is assigned a flight

0  otherwise
sr

s r
y


≡ 


 

The expected number of flights in slot  on runway srW s r≡  

)10.2(),8.2(),5.22.2(s.t.

)12.2(  min
,

−

∑
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Equations (2.13) track the queueing delay in each slot, with the correct accounting 

across adjacent time horizons. Equation (2.14) ensures that this queuing delay is non-

negative. Our objective seeks to minimize the aggregated expected queueing delay. 

One might ask why this particular approximation for the expected delay was used. 

The function has two significant properties: when the number of runways is limited to 

one, the expected delay represented in the objective function as well as equation 

(2.13) serves as an exact transformation of the expected delay when all slots are 

occupied. When some slots are unoccupied, the functional approximation serves as a 

lower bound on the expected delay at optimality. A justification for these properties is 

provided in Appendix A. In instances where multiple runways are considered, the 

model only provides an approximation of the true expected delay. This discrepancy is 

due to the fact that the approximation evenly distributes the expected number of 

short-haul flights arriving during a given time interval (slot) over each runway. In the 

operational environment these short-haul flights are managed and controllers assign 

these short-haul flights to runways along with the long-haul flights. Thus the expected 

delay is a function of the decisions made on both the short-haul and long-haul flights. 

This treatment is captured in the scenario models at the expense of additional 

computational time; however, it only approximates the expected number of flights 

arriving in the given time interval.  
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2.3 Managing Flights with Certainty 

A computational experiment was constructed to compare the performance of our 

models. A scenario set was constructed using historical flight data to study the effect 

of speed control measures at a single airport in the presence of demand uncertainty. As 

discussed at the end of section 2.1, there are other sources of uncertainty not explicitly 

incorporated into the models discussed in section 2.2. We investigate the impact of 

these sources of uncertainty as part of our experiments. In this section, we outline our 

procedure for generating the uncertainty, describe the scenarios and the associated 

assumptions, we present our experimental results, and we provide some analysis to 

compare the tested models. 

2.3.1 Experimental Description 

The basis of our experiment is a dataset collected from Atlanta Hartsfield-Jackson 

Airport (ATL) on May 1, 2011. This day could be described as a “fair weather day” 

since no Traffic Management Initiatives were deployed at the airport. The dataset was 

obtained by merging data from two sources: a Traffic Flow Management System 

(TFMS) file and an ASDX file (surface surveillance data). The key fields included:  

flight number, collection time stamp, expected time of arrival (ETA), origin airport 

and actual time of departure, current aircraft position, aircraft type, runway arrival 

time, and cornerpost fix. We assumed an airport acceptance rate of 100 flights per 

hour. This assumption is consistent with ATL operating practice under the weather 

conditions for the time in question (full use of 2 runways and partial use of a third). 

The experiment was run over a 4-hour period from 1:00-5:00 EST.  

ATL has 4 cornerposts at the northeast, northwest, southeast and southwest 

corners of the airport. Arriving flights commonly fly through one of these cornerposts 
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and are sent to one of 3 runways: 2 runways are used full time and another runway is 

partially used. The runway capacity is bound by the wake vortex separation 

requirement between classes of aircraft. Based on the general fleet mix present in the 

data we found that we could assign uniform slot sizes that could be adjusted later to 

achieve tighter spacing. 

We developed a simulation intended to model the basic effects of TMA and more 

generally the manner in which the CTAs produced by our model would impact 

operations in practice. An illustration of the simulation framework is shown in Figure 

2.3.  The simulation assumes that each long-haul flight is assigned an arrival fix and a 

CTA by the integer program. The flight then proceeds to the metering fix and 

attempts to arrive at the assigned CTA. Additional uncertainty was applied to the 

travel times between the boundary and the metering fix so that flights arrive within 

the vicinity of their CTAs but not necessarily at that specific time. Short-haul flights 

were randomized based on samples from an empirical CDF based on historical 

departure delay data for ATL over the month of May, 2011. The short-haul 

unmanaged flights were merged with the CTA assigned flights outside 500 nm to 

create an integrated stream of flights based on the arrival times adjusted after 

randomization. The simulation then processed the flights into vacant slots according 

to a first-in, first-out (FIFO) queuing process. When the demand for the runway space 

exceeded capacity, the flights were held and the resulting delay was measured. A 

baseline run was used to evaluate the delay performance with no intervention. This 

trial used flight ETAs and projected them backward to get the approximate arrival 
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time at the metering fix. Once the baseline run was completed each model was tested 

under the same simulation conditions. 

 

Figure 2.3 An illustration of the Model Simulation Framework. 

2.3.2 Generating the Uncertainty 

We developed a distribution of fix-to-runway flight times by sampling those data 

from the historical record for this airport on May 1, 2011. Those data should be 

equally applicable whether arrival time controls are in effect or not. The departure 

delay distributions for short-haul fights were derived using historical departure delays 

for all airports serving Atlanta during the month of May 2008. It turns out that no 

Ground Delay Programs were executed during this month at Atlanta. This is important 

because we suspect that departure delays for short distance flights under a GDP would 

have significantly less variance than if no GDP were run. It should be cautioned, 

therefore, when conducting experiments such as these, to take care not to mix data 

from GDP days and non-GDP days if doing so would bias the distribution of delays. 
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These data were first used to generate the scenarios and associated probabilities for 

the stochastic IP.  The same distributions were used in the monte carlo simulation test 

environment to evaluate the solutions. In the case of the FA model the continuous 

delay distribution was used to generate the expected number of short-haul flights in 

each slot. We assumed that the distribution was centered at the ETA of each flight. A 

density function was generated from the samples and the probability of a flight landing 

in each given slot was calculated by summing between the appropriate time intervals. 

These probabilities were aggregated to calculate the expected number (rounded to an 

integer) of flights in a given slot. 

For the scenario-based model an empirical CDF was used to calculate the slot 

arrival times. In each scenario a sample was taken from our distribution and used to 

calculate the deviation from the ETA. This deviation was then added to the ETA to 

place the flight in the appropriate slot. This process was repeated until all ETAs were 

appropriately adjusted. This distribution was also used to generate the uncertainty in 

the simulation environment. Samples were collected from each short-haul flight and 

were added to the ETA. 

In addition to the large source of uncertainty originating from the variation in short-

haul departure times, we also accounted for the variation in travel times from the 

metering fixes to the runways. A normal distribution centered at the ETA was 

generated by sampling from historical data. These samples were tailored to each 

metering fix. The simulation assumes that each flight uses the same cornerpost it flew 

to in the historical data.  
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2.3.3 Measuring the Delay Savings 

A simulation of the whole system was run to evaluate the ability of our model to 

transfer delay away from the terminal. A baseline measurement was performed to 

gauge the amount of delay present in the terminal without our intervention. In the set 

of runs constituting the baseline measurement, we recorded the amount of time that 

each flight spent in terminal airspace while waiting for a runway. If a flight arrived in 

the queue and could not receive a runway slot when it was within the allotted travel 

time, it then waited until a space opened up. This waiting time was measured and 

averaged. We then configured our model to assign CTAs to flights near 500 nm of the 

airport in 15 minute intervals using the IP model under test. We repeated the runs with 

the assigned CTAs and measured the average delay per flight. This delay was 

compared to the average delay without intervention to calculate the delay savings. For 

clarity, an expression for calculating transferred delay is shown in equation (2.15). 

)15.2(___ CTAbaseline

dtransferre DAvgDAvgDAvg −=  

Figure 2.4 shows an example of the delay curves yielded by the model along with the 

resulting delay transfer. The solid curve reflects the delay accrued with no model 

intervention. The dot-dash curve reflects the portion of the delay that was transferred 

away from the terminal. The gap between the two curves shows the residual delay left 

in the terminal area after model intervention. Note that while the model does not 

reduce the overall minutes of delay per flight, it significantly altered the level of delay 

absorbed during the cruise and terminal phases of flight. 
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Figure 2.4 An example of the delay and delay transfer levels over a 4-hour period. 

2.3.4 Model Performance 

Each of our three models was tested in our simulation environment using data 

collected over a 4-hour period. Figure 2.5 shows the delay transfer of our models 

relative to the total delay. The figure suggests that all of our models show some ability 

to transfer delay away from the terminal. All delay transfer curves mimic the shape of 

the terminal delay curve.  The deterministic model was ineffective, transferring 3.83% 

of the delay. This indicates model actually adds delay to the flights on an aggregate 

basis. We did, however, find substantial improvement when we attempted to account 

for the demand uncertainty using our stochastic models. The Functional 

Approximation model transferred 19.17% of the delay. The delay transfer resulting 

from the scenario-based approach ranged from 12.58% to 19.53% based on the 

number of scenarios used. 

In order to make the comparisons most meaningful, we used the same random 

number seed for any given iteration of the three models.  This ensured that the 
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underlying realization of the flight delays was common between the three optimization 

models.  Any difference in performance, therefore, is related only to the behavior of 

the optimization models, and not to a happenstance of the random variables.  Different 

iterations of the simulation, of course, used different and independent random number 

seeds. 

 

Figure 2.5 The delay transfer performance for all three models over a 4-hour period. 

The upper bound of the resulting delay transfer from the scenario-based approach 

exceeds that of the Functional Approximation model.  However, this comes at a 

significant cost in computation time. To understand the full extent of the performance 

we tested the computation run time of each model using a dual-core system with four 

Intel Xeon X5535 processors and 12 GB of memory in a 64 bit environment. The 

models were coded in Python 2.7 using a GUROBI solver. Each test case was 

generated using 100 trials. The results of the runs are shown in Table 2.1. 

Table 2.1 A Summary of Model Performance 
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Model
Number of 

Variables

Number of 

Constraints

Mean Delay 

Transfer

Std Dev. 

Delay 

Transfer

Average Solution 

Time (seconds)

Std. 

Dev.Solution 

Time (seconds)

Deterministic 191 386 -3.8266 9.6163 0.1022 0.0277

FA 291 628 19.1679 7.2377 0.0904 0.0196

Scen 100 5643 5676 12.5843 7.3585 0.6853 0.0722

Scen 500 27243 26076 18.0990 7.3459 4.1022 0.3081

Scen 750 40743 38826 18.6516 6.6373 7.5442 0.7264

Scen 1000 54243 51576 19.4714 6.7288 9.5569 1.1395

Scen 1500 81243 77006 19.5005 6.6536 13.9108 1.0639

Scen 2500 135243 128076 19.5254 5.6868 24.9520 2.0245

Scen 5000 270243 255576 19.0537 6.1001 64.1577 8.0384  

The table shows that when a small number of scenarios is used, the scenario-based 

model cannot account for the uncertainty well enough to match the delay transfer 

performance achieved by the FA model when the number of samples is small. When a 

larger number of scenarios is used to model demand uncertainty the delay performance 

exceeds that of the FA model; however, it does so at a significant computational cost. 

In the instance of the 1000 scenario test case the model runs 2 orders of magnitude 

slower than the FA model. If we needed to add additional scenarios to account for the 

effect of capacity uncertainty or attempted to extend the model over multiple airports, 

thereby increasing the problem size, this would only compound the problem from an 

implementation standpoint. Thus the FA model proves a stronger candidate to deal 

with the various facets of the problem. It should be noted that, for the third model, 

scenario generation must take place whenever a problem instance is solved, e.g. at 

each 15-minute time interval in the rolling-horizon implementation. Further scenario 

and problem instance generation can take a considerable amount of time (more than IP 

solution time) when a larger number of scenarios is used. Since we did not use a 

particularly efficient means for implementing this step, we do not report those results 

here.  
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2.3.5 Fuel Burn Savings 

While we have focused on the mechanics of transferring delay away from the 

terminal, our primary objective is to save fuel. We would like to understand how such 

delay savings translates into fuel conservation. In order to measure the average fuel 

savings we needed to conceptualize how the savings occurs. Transferring delay on a 

given flight from the terminal area to the en route phase of flight can save fuel. While 

some of this savings results from transferring the site of the delay from a lower to a 

higher altitude, the majority of the benefit is attributable to the reduction in distance 

traveled. As we discussed in section 1.3.1, terminal delay is applied largely by 

extending the paths of flights. By transferring the delay to the en route airspace we 

are able to eliminate a considerable portion of the extended path. Since the fuel burn 

rates en route are nearly equivalent for the standard and speed controlled flights, the 

conservation of fuel achieved through the reduction in path extension in terminal 

airspace is essentially free.  

In order to explicitly calculate the average savings rate incurred on a per flight 

basis, we measured the fuel burn rate near the terminal at various altitudes. We 

assumed that the aircraft vectoring inside the terminal would do so at altitudes over a 

range of FL100 to FL250. With this range we sampled altitudes from an empirical 

inverse CDF derived from flight trajectories in the terminal airspace of ATL. These 

altitudes were then used to measure the average fuel burn rate at a given speed based 

on values obtained from the BADA (Base of Aircraft Data) database (Eurocontrol, 

2014). The results of these computations can be seen in Figure 2.6 below. 
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Figure 2.6 Average Fuel Burn Rates Savings Rate (kg) from the total fleet mix vs. 

Speed (CAS). 

Given the inherent fuel burn savings rate associated with moving small amounts of 

delay away from the terminal it is illustrative to examine how the delay transfer curve 

translates directly into fuel savings. Figure 2.7 shows the fuel burn savings made 

possible by the delay transfer relative to five different vectoring speeds at the 

terminal. A comparison of the plots shows that the savings is considerable regardless 

of vectoring speed. Although the savings is largest when vectoring at 300 knots, in 

every case in this example we are able to save an average of 54.65 kg per flight over 

the 4=-hour period.  
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Figure 2.7 Average Fuel Burn Savings per flight vs. time over a 4-hour period using 

the Functional Approximation model. 

2.4 Managing Flights with Restrictions 

In the previous two sub-sections we assumed that flights will make a good faith 

effort to arrive at their CTAs. There are, however, a number of operational constraints 

that may inhibit some flights from even attempting to meet their prescribed arrival 

times. Flights do not operate in a vacuum. The arrival flows of flights operate in 

streams insomuch as the aircraft generally follow each other on a successive path. As 

a result, when the arrival time of one flight is changed, it can alter the arrival times of 

a number of other successive flights. Since these flights are often not going to the 

same airport and therefore not coordinated together, assigning to one flight a CTA 

that is substantially different than its original ETA could negatively impact the ability 

of the other flight to arrive at its ETA. For this reason it may be impractical in certain 

instances to compel a flight to meet its CTA.  
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In addition, flight operators have other operational constraints that may influence 

their desire to comply with CTA assignments. For example if a flight has a number of 

passengers on a connecting flight leaving shortly after the ETA and it is assigned a 

CTA which effectively delays the flight, it may wish to ignore the CTA and arrive at 

its ETA. While this behavior is not desireable and one would ultimately aim to work 

with air carriers to better suit their preferences, under this proposed set of models it is 

not unreasonable to expect some flights to deliberately disregard their CTAs and 

arrive near their ETAs. As a side note, this is exactly the kind of situation and 

behavior that a Collaborative Decision Making (CDM) implementation of these ideas 

would seek to prevent.  In this section we explore the implications of these two 

scenarios. We present a revised functional approximation model and test its 

performance in the presence of restrictions on the set of allowable CTAs. 

2.4.1 Functional Approximation Model with Restrictions 

The prior two functional approximation models assumed that flights were capable 

of arriving over a range of CTAs that were governed by the set of allowable speeds of 

the aircraft. In this model we assume that some flights must not deviate from their 

ETAs. When this occurs the set of arrival time restrictions is known prior to the 500 

nm boundary and this information can be incorporated into the assignment process. 

Accordingly, flights that must arrive at their ETAs are restricted to the CTA slots 

nearest their ETAs. Flights that have no restrictions are free to be assigned CTAs that 

can be met based on the performance of the aircraft. To simplify our test case and to 

isolate the effect of this modification, we reverted back to our assumption that 

managed flights will meet their CTAs with certainty.   
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To incorporate the appropriate CTA restrictions, the model assumes that a pool of 

flights is randomly chosen from a set of unmanaged flights on each iteration. Once this 

pool is identified, these flights are then restricted to the slots nearest to their ETAs. A 

description of our slot restriction model is given below:  

Additional Parameters 

Vif- ≡ The set of all slots available to flight f at fix i when flight f has restricted 

movement 

P≡ The set of flights restricted to their ETA 

ℤ+≡ The set of positive integers 

)15.2(),14.2(),10.2(),8.2(),5.22.2(s.t.

)16.2(  min
,

−

−∑
∈∈

MvW
RrYs

sr

r  

1 2

, ,

,

, ,

, ,

,

 1    (2.17)

1    , , (2.18)

1     , , (2.19)

(2.20)

if f

rf

rf

if

f

ir ir

fks fks

k V i

s Y r R

irj

fks if f

f F Y

r R

irj

fks rf

f F k S

i

x x f P

x v k S i j T

x v s Y r R j T

v

∈ ∈Ω
∈ ∈

∈ ∈
∈

∈ ∈
∈Ω

+

+ = ∀ ∈

≤ + ∀ ∈ ∈Ω ∈

≤ + ∀ ∈ ∈ ∈

∈

∑

∑

∑

Z

 

As in our first two functional approximation models our objective minimizes the total 

queueing delay. In equation (2.17) we introduce a set of constraints that forces flights 

in the restricted pool of flights to adhere to their ETAs. The additional constraints 

introduced due the added flight restrictions rendered the problem infeasible in a few 

instances. To account for this complication we introduced a relaxation by adding a 

variable v to equations (2.3) and (2.4).  
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2.4.2 Performance with Restrictions and Limited Compliance 

To evaluate the performance of our interventions we performed two computational 

experiments. In the first we repeated the experiment described in section 2.3.4 using a 

pool of restricted managed flights. The percentage of managed restricted flights was 

varied from 0% to 30%. The uncertainty on all flights entering the terminal was 

generated using the same normal distribution as in section 2.3.4. A plot of the 

resulting average delay transfer over the 4-hour period versus the percentage of 

restricted flights is shown in Figure 2.8. The performance remains relatively 

consistent when the percentage of managed unrestricted flights ranges between 80% 

and 100%. When the percentage of unrestricted flights drops to 75% there is a 

noticeable decline in performance. This drop suggests that the level of intervention on 

the part of air traffic controllers could have a noticeable impact on performance. Even 

with this drop, however, the model performance still exceeds 8% of the total delay, 

suggesting that the model can transfer modest amounts of delay in a restrictive 

environment.   
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Figure 2.8 The Percentage Delay Transfer vs. Percentage of Unrestricted Flights. 

An additional experiment was conducted to evaluate the performance when some 

flights choose to willingly disregard assigned CTAs to meet their internal objectives. 

In this test case flights were assigned CTAs using the functional approximation model 

presented in section 2.2.4. We then identified a certain percentage of these flights and 

moved their arrival times to their ETAs. Uncertainty near the terminal was added to 

the flights using the normal distribution employed in our previous experiments.  In 

this experiment the percentage of compliance was varied from 100% to 30%. Figure 

2.9 presents the mean delay transfer over the 4-hour period versus the percentage of 

restricted flights. As expected, the system performance increases with compliance. 

The precipitous drop at 75%, suggests that like the variation in the number of 

restrictions there is a threshold level below which the model exhibits a substantial and 

dramatic decline. At 35% the performance drops to levels at which the intervention is 

ineffective, however, the stability up to this point suggests that the model is able to 

transfer a considerable amount of delay, even in the presence of less than ideal 

compliance.  
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Figure 2.9 The Percentage Delay Transfer vs. Level of Compliance. 

2.5 Sensitivity Analysis 

The analysis thus far was performed using data taken on a single day at one airport 

over a 4-hour period. While the proposed methods have shown noticeable 

improvement under these circumstances, the effectiveness could be more conclusive 

if tested under a broader range of conditions. There are a number of ways in which 

the conditions could differ from those tested. The airport could be operating at 

reduced capacity, the estimated arrival times could differ and the departure delay 

distribution of short-haul flights could vary. To address these issues we performed 

three additional tests to evaluate our model performance.  

In our first test case we examined the effect of the departure delay distributions of 

the short-haul flights on delay transfer. We examined two additional distributions 

both of which are delayed relative to the STAs of the short-haul flights. A plot of all 

three distributions is shown in Figure 2.10. The delay distribution generated based on 

the May 2008, Atlanta airport data sample indicates that in the absence of TMIs the 
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vast majority of flights depart prior to their STAs. While this may be largely true it is 

conceivable that in some instances flights may depart later than their STAs. To test 

the impact of these later departures we applied gamma distributions such that all 

flights departed later than the STA. In each instance the functional approximation 

model was fitted with the distribution of short-haul flight departure times. 

 

Figure 2.10 Departure delay distributions for short-haul flights. 

 

It is also possible that the airport will operate at a reduced capacity in some 

instances. If this capacity is sufficiently large, Traffic Flow Managers may seek to 

implement a GDP. In other situations Traffic Managers may wish to use both 

mechanisms in concert.  While still in other instances the capacity may be substantial 

yet not at the level at which a GDP is necessary. To gauge the effect in situations in 

which the capacity of the airport is slightly more compromised, we explored two test 

cases where the capacity was reduced to increasing levels. Since there is no assumed 

ground delay applied to the flights the impact of this additional capacity must be 
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absorbed through increased airborne holding. Thus the pool of delay available is 

significantly larger. To deal with this issue the slot size in the model was adjusted to 

match the reduced capacity of the airport.  

It is quite likely that the scheduled and estimated arrival times will differ from 

those seen in the single day of data we examined. In some instances the STAs of 

flights may clump more closely together to create larger peaks in demand while in 

other instances the demand may be more evenly spread. To investigate the impact of 

STAs on our model we randomized the arrival times from our baseline sample. A 

sample from a uniform distribution with maximum and minimum times of +/-10 

minutes was used to perturb the data. 

For each of the test cases described the simulation was run 100 times. A summary 

of our results is shown in Table 2.2.  

Table 2.2 Percentage of delay transfer under alternative conditions 

Test Case mean std

Original 

Distribution
19.1679 7.2377

Distribution 1 25.61968097 6.79249189

Distribution 2 24.79977414 7.414530151

10% Capacity 

Reduction
30.16903728 6.043011608

5% Capacity 

Reduction
28.19081126 6.546273671

ETA1 23.44633691 6.916352094

ETA2 16.29709966 5.828945401

ETA3 18.23657348 5.785250686

ETA4 18.20156288 6.811964605

ETA5 18.48333541 7.020638307  

The table suggests that delay transfer performance should improve in the presence of 

the alternate short-haul flight delay distributions. This follows from the fact that in 

our original distribution flights are biased to arrive ahead of their ETAs. Since these 
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flight are entering an arrival stream that is already backed-up they need to wait longer 

before the airport can accommodate them. Thus when this assumption is relaxed 

flights experience less airborne delay. The capacity reduction also acts to improve the 

amount of delay transferred. In this case the reduced capacity of the airport induces 

longer delays. This allows our model to operate more effectively because the 

opportunity for delay transfer relative to the uncertainty in the arrival times is greater. 

Variation in ETAs induced some variability in the percentage of delay transfer but did 

not prove a significant contributor to altering the gain experienced from the use of our 

model. Overall, the experiments lend increasing evidence to our model’s ability to 

perform effectively under a wider range of conditions.  

2.6 Conclusions 

In this chapter, we presented three models to transfer aircraft delay away from the 

terminal airspace. The first was a deterministic model that sought to maximize 

throughput, and that serves primarily as a baseline against which to measure more 

realistic stochastic variants. The second model was stochastic and incorporated 

scenarios to account for assumed demand uncertainty. A third model used a functional 

approximation of the expected number of flights to minimize the expected excess 

delay in the terminal area. While all approaches demonstrated an ability to transfer 

delay from the terminal area to the en route airspace, the two stochastic models proved 

more effective. An analysis of the computational performance of each model showed 

that the functional approximation model demonstrated efficient run times relative to 

higher fidelity scenario models while achieving comparable delay transfer. This 
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translated into significant fuel savings on a per flight basis when fuel burn was 

analyzed. 

The chapter also analyzed the performance of our functional approximation model 

under a set of declining operational conditions. In some instances the model was 

adapted to better suit the changes to the operational environment. When uncertainty 

was introduced into managed flights, a revised model was able to achieve performance 

at a level comparable to that achieved when there was no uncertainty introduced on 

managed flights. When flight restrictions were introduced, the model was able to 

perform at a comparable level until the number of restricted flights reached 25% of the 

total flow. Even when the compliance level dropped, the model demonstrated 

substantial delay transfer. The resilience of the model suggests that it could prove a 

strong candidate to achieve delay transfer.  

The work in this chapter presents a couple of promising opportunities for future 

research. Along with demand uncertainty, capacity uncertainty also poses significant 

challenges in its effect on holding within the terminal. The efficient run times of the 

functional approximation model indicate that it could be extended to deal with both 

types of uncertainty even if additional scenarios were used to model capacity. 

Furthermore, the model could also prove effective in a multi-airport setting in which 

more resources are utilized.  Finally, in this paper we have made the assumption that 

the intervening ANSP has no active control over the short-haul flights. A version of 

the model that assumes greater control over short-haul flights could also be studied. 
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3 Transferring Delay through Control of Airborne and 

Ground-based Flights 
In the previous chapter, we proposed a set of integer programming models 

designed to transfer the delay away from the terminal. One of the most challenging 

aspects of that problem is that we did not know when a substantial portion of the 

flights were going to arrive and assumed no control over their operation. While this 

may be a realistic constraint, it is also certainly possible to envision an environment 

in which the ANSP (FAA) assumes a more active role in coordinating all flights. 

While issuing speed changes to a short-haul flight will do little in and of itself to 

delay its arrival time, it may be possible to assume additional control through the use 

of ground delay assignments. In such a system, short-haul flights could be assigned a 

combination of ground delays and relatively small airborne delays, while long-haul 

flights could continue to be assigned airborne delays through en route speed control. 

In this chapter, we explore the concept and propose three new stochastic integer 

programming models to deal with this revised set of controls and uncertainty. In 

section 3.1 we present our conceptual revisions to the problem. In section 3.2 we 

provide a description of the model. In section 3.3 we discuss our experimental results. 

In section 3.4 we provide some concluding remarks and suggest extensions to the 

work presented. 

3.1 Conceptual Revisions 

In the previous chapter, we stated that our goal was transfer the delay from the 

terminal to the en route phase of flight. We showed that by assigning delays to flights 

en route, a considerable portion of the delay could be moved. While this delay 

transfer largely benefits all flights involved, the extent of the benefits is not equally 
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realized. The models presented assign CTA to the pool of flights outside of a fixed 

radius. The remaining flights inside of the radius are allowed to proceed unimpeded 

towards their destination, yet their time spent in airborne holding is reduced.  

If the pool of flights were equally distributed amongst the carriers that use that 

airport, one could argue that they were all being treated fairly. In reality, however, the 

pool of short-haul flights favors regional carriers, which puts them in a slightly better 

position. It is considerably more invasive to issue delays to control flights that have 

not left the ground due to the uncertainty associated with their departure times, 

however, it is still possible to delay these grounded flights on an aggregate basis 

while accounting for variation in departure time.  While the pilots and crew may need 

to be given some notice in order to adhere to the ground delays, since the magnitude 

of the delays is significantly smaller than the type of delays typically taken during 

GDPs, the impact on gate occupancy should not be nearly as severe. Eventually such 

instructions could be given to crew over datalink, however, in the nearer term one 

might utilize tower control or airline dispatch to provide guidelines. A revised 

overview of our information transfer process is shown in Figure 3.1 and Figure 3.2.  
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Figure 3.1 Information Flow under a Central Control Architecture 

 

Figure 3.2 Information flow under a Collaborative Architecture. 

 One potential issue with incorporating ground delay intervention is that 

holding flights on the ground could have significant adverse impact on inbound 

flights and induce significant additional runway holding at the originating airport. If 

this concept were to be implemented, one would need to thoroughly understand the 

ability of airports to accommodate widespread ground delays in a network setting. If 

the scope of intervention were limited to a couple of destination airports, the effect 

would likely be marginal; however, were the concept to be extended over several 

airports, stakeholders may have to begin to prioritize flight delays at the origin or 

destination airports. One means of dealing with this issue is to incorporate 

collaborative decision making into the planning process. While a comprehensive 

examination of such questions lies beyond the scope of this dissertation we do 

attempt address some of these issues in chapter 4. In this chapter, however, we will 

consider the effect of applying ground delays in a single-airport context ignoring the 

larger effects on the network. 
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 Operationally, there are a number of open questions regarding how ground 

and airborne delay should be administered. Since flights originate from different 

distances, they will have varying degrees of uncertainty associated with their travel 

times. Typically, flights that are in the air when a CTA is assigned will be more able 

to meet that CTA by virtue of the fact that they do not have to deal with potential 

departure delays. Additionally, CTA that are assigned to airborne flights at distances 

further away from the airport are less likely to be adhered to than CTA assigned to 

flights closer to the airport. Typically, GDPs address this problem by assigning 

capacity to carriers through slots of uniform width. Due the varying degrees of 

uncertainty associate with ability of the flight to meet its arrival time, some flights 

will be able to arrive during the slot window while others will deviate. When the 

deviations occur, flights assigned to one window may arrive in another thereby 

causing airborne holding. The resulting airborne queueing delay can be reduced by 

incorporating stochastic models of the queuing delay in the decision making process 

such as those described in the previous chapter. One drawback to this approach, 

however, is that such decisions are made hours in advance of the time the flights 

reach the runway. As such, our intervention may be overly aggressive or conservative 

depending on when the flights actually arrive. Such situations are likely to become 

more apparent between the time that the decision is made and the time the flight 

reaches terminal airspace. In these situations, it may be appropriate to issue an initial 

assignment at an earlier time and issue a recourse decision as flights get closer to the 

airport and more information becomes apparent. In the presence of this diminished 
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uncertainty, it may be preferable to adopt a more opportunistic throughput oriented 

approach. An example of this approach is depicted in Figure 3.3. 

 

Figure 3.3 The proposed strategy for issuing CTAs to flights. 

In this chapter, we investigate the viability of this strategy. In the next section, we 

present two stochastic models that could be used to assign the initial CTAs to flights. 

In the following section, we pair these models with the deterministic throughput 

model and examine the effect of using the two models in series. 

3.2 Methodology 

In this section, we present three stochastic integer programming models 

designed to achieve comprehensive control over all arriving flights. As in the 

previous chapter, we describe one scenario-based model and two models which relies 

on a functional approximation. The first builds off the scenario-based model 

introduced in the previous chapter by incorporating ground and airborne flight into 

the set of controllable flights. The model also adopts the Bertsimas “by” variables 

which have been shown to perform well in other integer programming ATFM 

problems. The second and third model each track probability of deviation from the 

assign time and use this information to reduce the airborne queueing delay. 
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3.2.1 Scenario-Based Air-Ground Speed Control 

The first approach considered in this chapter is a scenario-based model that 

assigns arrival times to flights located in both the air and ground. In order to 

determine which flights will get delayed in the air and on the ground, we group the 

flights into three separate pools. Flights originating outside an outer-fixed radius 

receive airborne delay once they approach the radius. Flights originating inside some 

inner-radius will be issued solely ground delay. Flights originating between the inner 

and outer radii are issued a mixture of air and ground delay. An example of the 

notional access pools is shown in Figure 3.4.  

 

Figure 3.4 The partitioning of flights into assignment pools. 

The objective of the model is to apportion access to a single airport while 

minimizing the total delay in the air and on the ground. As there is considerable 

amount of uncertainty associated with the ability of some flights to meet their arrival 

times, we utilize a stochastic programming model to manage the airport demand. The 
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model assigns arrival times to flights into two stages. In the first stage flights are 

assigned an initial arrival time. This represents an initial CTA that would be assigned 

approximately two hours in advance of the arrival. While the pilot may make a good 

faith effort to ensure that he/she meet this CTA, there are a number of factors that 

could influence the outcome including: wind uncertainty, convective weather, 

departure delays and the availability of direct routing. Due to these and other factors, 

it is not unreasonable to conclude that there will be some deviation from the assigned 

arrival time. Since these times are issued well in advance of the flight’s arrival, there 

is time to make a recourse decision and take corrective action. Our model maps the 

outcomes of the scenarios into its decision-making and uses them to issue the best 

recourse decision for each outcome. As we did not want to inject additional 

uncertainty into gate availability at the origin airport, we assumed that once a flight 

was delayed on the ground, the ground delay was fixed. Thus for a flight originating 

inside the inner radius, the initial delay would remain in place. For flights originating 

outside the inner radius, however, a recourse decision could be used to revise the 

CTA in order to reduce the amount of airborne holding due to conflicting arrival 

times. 

 When the decision is made, the set of time slots available for potential 

assignment are set based on a direct mapping of the feasible aircraft speed and the 

distance from origin to destination at the time of assignment. The recourse decision is 

also bound by this mapping. Thus a flight assigned to arrive 5 minutes ahead of 

schedule, for example, cannot be revised to arrive 15 minutes ahead of schedule if it 

cannot reach the destination while traveling at the fastest possible aircraft speed. It 
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may, however arrive at time later than what could be achieved by traveling at the 

slowest possible aircraft speed. In these situations, it is assumed that the aircraft will 

fly as slow as possible and begin holding in the air once it nears the airport. In 

addition, flights originating within the inner radius could arrive no earlier than their 

scheduled time of arrival. Since flights within the inner radius cannot be adjusted at 

the time of recourse, we also require that the slots which are occupied by these short-

haul flights may not be filled by airborne flights. The assignment process is depicted 

for three situations in Figure 3.5, Figure 3.6 and Figure 3.7. 

 

 
Figure 3.5 Flight assignment of an airborne flight over two stages. 
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Figure 3.6 Flight assignment of an airborne flight over two stages with restrictions 

due to the presence of ground-based flights. 

 

 
Figure 3.7 Flight assignment of a ground-based flight. 

In each scenario, the model identifies the best slot from a set of reachable slots 

based on the initial CTA assignment using a weighted objective of air and ground 

delay. These components differ substantially in the way they are represented in our 

model. The ground delay realized by each flight is a function of both the assigned 
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delay and the uncertainty in the departure time, as there is no means for recovering 

the ground delay at a later stage of the problem. Although we could incorporate the 

ground delay uncertainty directly into this portion of the objective function using 

scenarios, we also account for it in terms of its effect on the airborne holding. Thus to 

avoid double-counting the effect, we therefore use only the deterministic component 

of the ground delay to affect the objective. On the other hand, the airborne delay is 

assigned and reassigned over two stages. To deal with the reassignment, we use the 

sum of airborne delay over each scenario to estimate the queuing delay within the 

system. 

For each scenario, there is a probability pq associated with the probability of 

that outcome occurring. If we had considerable information about the environment, it 

might be possible to incorporate factors such as the variation in departure delay of 

similar days, the likelihood of weather and wind impacting specific fights routes and 

the level of congestion and time-varying capacity of various fixes into these 

probabilities. In our case, we have little information specific to the day of operation 

so we shall assume uniform probabilities.  

 We would like to make assignments to flights roughly two hours prior to 

arrival. Due to the time scale, it may be considerably more difficult to make 

assignment decisions that are specific to airport runways. As such, we chose to treat 

the system as a single server queuing system. The length of the queue will be the sum 

of delay carried over from the previous period plus the number of flights arriving in a 

slot minus the capacity of the slot. For the purposes of this chapter, we shall assume a 
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time slot capacity of 1. A formulation of our stochastic integer program is shown 

below. 

Parameters 

F≡ The set of all flights 

V≡ The set of all flights originating inside the outer radius 

S≡ The set of all slots 

C ≡ The capacity of each slot  

Yf≡ The set of all slots available to flight f 

Sftq≡ The set of all slots available to flight f upon reassignment given it is initially 

assigned to arrive by time t under scenario q. Note that for flights inside the inner 

radius the set is restricted to 1 slot. 

�� ≡ The assigned arrival time of flight f from slot t 

λ≡ A coefficient used to weight the convex combination in the objective function 

toagf
 ≡The scheduled arrival time flight f 

tsf ≡The travel time flight of f  in cruise at slot s 

 pq≡ The probability of scenario q occurring  

Variables 

��� = �1 if flight � is assigned to arrive by time t
0 otherwise  

 �� 
! = �1 if flight � arrives by time s in scenario q 

0 otherwise   

$� 
! = �1 if flight � holds at time s in scenario q 

0 otherwise  
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Equation (3.2) states that every flight has been assigned to a time period. 

Equation (3.3) states that no time period can be filled by more than one flight. 

Equation (3.4) ensures that if a flight is assigned by the preceding time period, it is 

also assigned in the current time period. Equation (3.5) enforces connectivity between 

the two sets of variables and says that if a flight is assigned by a time period in the 

first stage it also must be assigned to a reachable slot in the second stage in each 

scenario. Equation (3.6) tracks the airborne hold in each time period for each 

scenario. Our objective function in (3.1) aims to minimize a convex combination of 

air and ground delay for all flights.  

3.2.2 Air-Ground Control through Functional Approximation 

In the previous section, we defined a scenario-based integer programming 

model that could ration the access to the airport by controlling air and ground delay. 

In the previous chapter, we saw that we could accomplish the same ends with a model 

that relies on a functional approximation. While our objective is slightly different, the 

challenge remains: can we achieve comparable accuracy at a reduced run time? 
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Unlike before, however, we now exert some level of control over the ground-based 

flights. Thus, our aim is to cohesively assign the all flights to time slots given the 

varying levels of uncertainty associated with each flight’s ability to meet its CTA.  

Our functional approximation of the expected queuing delay exhibits a similar 

structure to the one in the previous chapter. There is one notable difference, however, 

in the fact that the number of short-haul flights is now a set of decision variables, 

rather than parameters that is governed by the number of assigned flights arriving in 

each slot in each scenario. To model the uncertainty in our flight assignments, we 

used a triangular probability density function. We assume that, should a flight be 

assigned to a specific slot, the probability that it will arrive in a specific slot is 

governed by the density function and the slot where the flight was assigned. Our 

model formulation is shown below.  

Parameters 

F≡ The set of all flights 

Y ≡ The set of all slots 

N ≡ Maximum number of slots that can be assigned within the neighborhood of a fix 

as’sf- ≡ The probability of flight f arriving in slot s’ given that it was assigned to slot s. 

λ≡ A coefficient used to weight the convex combination in the objective function 

toagf
 ≡The scheduled arrival time flight f 

tsf ≡The travel time of flight f  in cruise at slot s 

Additional Variables 

�� % = �1 if flight � is assigned to slot s through fix k
0 otherwise  

$ ≡ The expected number of flights arriving in slot + 
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sW ≡ The number of flights arriving in slot + 
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Equation (3.10) assures that every flight is assigned to one slot. Equation (3.11) 

ensures that each slot can be assigned to no more than one flight. Equation (3.12) 

forces the number of flights assigned within a neighborhood of a given slot at a fix to 

not exceed a threshold value N. Equation (3.13) dictates the value of our continuous 

variable used to track the number of flights expected to arrive in a given slot. 

Equations (3.14) tally the expected number of flights in the queue during each slot 

interval. The objective function in equation (3.9) features a term for both ground and 

airborne delay and tries to minimize the sum of the two values. The terms are 

weighted using a convex combination to reflect the relative cost of air and ground 

delay. As in the previous problem, the model is intended to operate in a dynamic 

context and is solved iteratively every 15 minutes. 

One potential drawback to the model is that it does not explicitly consider 

fairness in the allocation process. While it is difficult to justify imposing fairness in 

airborne holding because it is hard to predict exactly what the controllers might do 
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when they have to issue allocation, there is some precedent for enforcing fairness 

with respect to ground delay during GDPs and AFPs. By utilizing coefficients that 

grow super-linearly, we can impose increasing penalties for issuing larger ground 

delays. An alternative objective is shown in equation (3.16). 
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The first term in the objective function grows super-linearly and makes it increasingly 

costly to assign each unit of delay. Due the different growth rates of the two terms in 

the objective function, it is questionable whether the interaction will produce an 

assignment that will yield strong delay transfer; however, given the potential to better 

accommodate carriers with “fairer” assignments, we choose to examine the effect 

when integrated into the functional approximation model.   

The formulation above presents a baseline model that has the potential to transfer 

delay using far fewer variables and constraints than almost any instance of a scenario-

based model. Yet the formulation could potentially be strengthened by adopting the 

by-variables presented in the previous section. To that end, we present an alternative 

formulation design to improve upon the computation performance of functional 

approximation. We shall refer to this model as the FA-by model. 

Additional Parameters 

Tf ≡ The final slot available to flight f for assignment  

Additional Variables: 

�� % = �1 if flight � is assigned arrive by the timestamp of slot s through fix k
0 otherwise  
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Equation (3.18) states that every flight must be assigned by its last available 

slot. Equation (3.19) states if flight has been assigned by its previous slot it is also 

assigned by its subsequent slot. Equation (3.20) states the number of flights arriving at 

a slot cannot exceed the capacity of the slot. Equation (3.21) says that the sum the 

flights in the neighborhood of slot through a fix cannot exceed some threshold value. 

Equation (3.22) defines the expected number of flights in a slot. Equations (3.23) track 

the number of flights in the queue.  

It is also conceivable that we may gain some benefit by adding the following 

valid inequalities formulation in (3.9-3.15): 
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The equations state that the number of flights in the queue during a given slot must 

exceed the greater of the number of flights occupying the queue of the previous slot 

minus 1 and number flights entering the queue minus 1. This relationship could be 
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further generalized to include references from earlier time slots. In this form one might 

use the relationship: 
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Where m is the number of slots back that we wish to reference. It is unclear to what 

extent these inequalities will prove helpful, however, so we need to determine a 

number through trial and error. 

3.3 Results and Discussion 

 
A computational experiment was performed using the same short-haul flight delay 

distributions described in the in the previous chapter. A scenario composed using 

historical data was used to study the effect of speed control measures at a single 

airport. In this section, we describe the scenario and associated assumptions, we 

present our experimental results, and we provide some analysis. 

3.3.1 Experimental Description 

To conduct our studies we selected data collected from Atlanta Hartsfield-Jackson 

Airport on May 1, 2011. The weather conditions were clear and sunny and all 

runways were active. The data was obtained from an ADL file in conjunction with an 

ASDX file, the combination of which listed flight numbers, collection time, ETA, 

scheduled time of arrival (STA), the origin airport, actual time of departure, aircraft 

position, aircraft type, runway arrival time, STAR routes and last available fix.  
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The airport has 4 corner posts at the northeast, northwest, southeast and southwest 

corners of the airport. Arriving flights commonly fly through these corner post fixes 

and are sent to one of 3 runways, 2 primary runways that are used full time and 

another runway that is partially used.  

The data was tested over a 4-hour period from 1:00-5:00 EST. CTAs were 

assigned using slot window sizes designed to accommodate the planned airport 

capacity at the time of arrival. To model the problem, we developed a simulation 

intended to mimic the basic effects of TMA. The simulation assumes flights proceed 

on their trajectories with the goal of meeting their CTAs. Once a CTA is issued, 

flights proceed to their assigned metering fix. When the flights reach their fixes, the 

simulation accepts flights for vacant runway slots on a first-come-first-served basis.  

A baseline run was used to evaluate the delay performance with no intervention. 

This trial used flight ETAs and projected them backward to get the approximate 

arrival time at the metering fix. The travel times between each fix and runway were 

modeled by fitting flight data with separate normal distributions and sampling from 

these distributions.  Additional uncertainty was imposed to model the variability of 

flights in arriving at their metering fix on time. Flights were grouped into 4 pools: 

Airborne flights beyond 1000 nm, airborne flights within 1000 nm, grounded flights 

between 500 and 1000 nm and grounded flights within 500 nm. Each pool was 

perturbed by sampling from a different distribution to represent the variation in travel 

time and received a different range of permissible arrival times. Flights beyond 500 

nm were allowed to take any arrival time that could be realized solely through speed 

control. Flights inside of 500 nm were controlled exclusively through ground delay. 
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The performance was evaluated on a PC with four Intel i7-4790 dual-core processor 

with 8 GB of memory in a 64 bit environment. The models were coded in Python 2.7 

using a GUROBI solver. 

3.3.2 Results and Discussion 

As we have proposed several models that feature bi-criteria objectives, we needed 

to identify appropriate weights for our two terms. One means of identifying the levels 

is to vary the weights of the term and generate a Pareto frontier. This technique is 

commonly referred as the weighting method. One drawback to this approach is that 

when the method is applied to integer programs, it can often miss points along the 

frontier and may generate a somewhat misleading curve. In our case, however, the 

stakeholders have commonly agreed upon a cost ratio of 2:1 of air to ground delay. 

We therefore set our weights to that level during our runs. A 15-minute look-ahead 

window was used on all run to better account the impact an set of assignments has on 

the subsequent period. 

To gain a better sense of how the performance varied we ran the model at two 

different airport capacities and varied the maximum level of permissible ground delay. 

We tested four different versions of the functional approximation model: a baseline 

model, a model which account for equity in the objective, a model that used the by-

variables and a by-variable model that incorporated our valid inequality. Our models 

were tested in a simulation environment using 100 monte carlo trials. The results of 

our tests are shown in Table 3.1. The table reports average delay transfer and the 

longest run time over the 4-hour assignment period for each model. 
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Table 3.1: A summary of model performance 

Model

Max 

Ground 

Delay 

slots

Slotsize 

(min)

Number of 

Variables

Number of 

Constraints

Percentage 

Delay 

Transfer 

mean

Percentage 

Delay 

Transfer std

Ground-

Air Ratio

 Run Time 

(s)

FA 5 0.75 481 305 43.00 2.98 5.03 1.71

FA 7 0.75 608 327 43.73 2.43 6.13 7.77

FA 10 0.75 534 314 51.73 3.25 8.17 102.91

FA 5 0.875 425 276 26.08 3.54 4.31 0.56

FA 7 0.875 476 287 22.83 3.15 5.57 0.61

FA 10 0.875 508 288 32.25 2.52 7.38 0.84
FA with 

VI 5 0.75 563 520 40.31 2.77 5.11 1.98
FA with 

VI 7 0.75 505 508 43.70 2.55 6.47 7.21
FA with 

VI 10 0.75 534 511 51.14 2.88 7.66 56.97

FA-by 5 0.75 584 838 36.39 2.13 6.18 5.68

FA-by 7 0.75 594 786 43.49 2.84 7.06 88.43

FA-by 10 0.75 534 724 51.77 2.76 8.07 40.97

FA equity 5 0.75 647 324 17.90 1.29 2.51 0.30

FA equity 10 0.75 708 333 17.30 1.33 2.37 0.44

FA equity 20 0.75 801 327 16.69 1.27 2.52 0.49  

The table suggests that all of our models show some ability to transfer delay away 

from the terminal. By allowing each flight inside of 500 nm to receive up to 5 minutes 

of ground delay and imposing speed control at 1000 nm we can eliminate up to 50% of 

the delay when the capacity is set to 80 flights per hour. Moreover, the imposed 

ground delay only amounts to 8% of total the airborne queuing delay in the terminal 

without intervention, suggesting that such flights are not inordinately penalized 

relative to airborne flights.  

One notable facet of the results is that the different versions of the functional 

approximation model exhibited different levels of delay transfer when tested under 

identical simulation conditions. This can be attributed to the coupling between 
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solutions as the model runs. In each instance of the problem the models solves 

dynamically in 15-minute intervals. Since many flights can be assigned during 

multiple periods, the choice of the initial solution can impose some bias on the 

subsequent solutions. If there are multiple optimal solutions, as is the case during the 

first time period, the different models may draw from different sets of assignments 

within the feasible region. As a result, some models will perform better than others. 

This difference is relatively small, however, so seemingly arbitrary choices during the 

initial stage will not prevent the model from transferring considerable amounts of 

delay. An illustration of this phenomenon is shown in delay transfer curves in Figure 

3.8. 

 

Figure 3.8  Delay Transfer Performance for each model. 

One drawback to the baseline functional approximation model is that its 

computation time grows significantly as we impose more ground delay and a higher 
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AAR. While it may be impractical to impose large amount of additional ground delay 

on flights outside the context of a GDP or AFP it is conceivable that one might with to 

apply this model over multiple airports. In practice, we would only have 15 minutes to 

solve the problem and execute the appropriate course of action. While one could 

reduce the size of the look-ahead window this is not ideal as it may have a slightly 

negative impact on performance. Even so for this problem the solution times are not 

excessive. In the worst case a solution can be obtained in just over three minutes. 

Since the reported run times are applied to different instances of the problem it is 

difficult to make an apples-to-apples comparison between models, however, we may 

draw certain general conclusions. The introduction of the valid inequality to the by-

variable model demonstrated noticeable improvement, cutting the computation time 

down by roughly one half. Absent this inequality the model performs worse than the 

baseline model. This may be due to the strong influence the “W” variables play in 

influencing the solution time. The use of a scenario-based model in this context seems 

largely impractical due the lengthy computation time associated with the run. An effort 

was made to generate results, however, the results suggest that model could not be run 

inside of 15 minutes. 

The equity-based model demonstrated stronger computational performance with 

decisively lower rates of delay transfer.  This performance suggests that indeed the 

growth rate of the competing terms within the objective function do not blend well 

with one another. This result does not imply, however, equity could not play a factor 

in assigning ground delay within the system. The model could be used to generate a 
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set of slots available to carriers within 500 nm. Once the slots were identified, a 

version of ration-by-schedule could be used to allocate delay to carriers.  

3.4 Conclusion 

In this chapter we presented three models designed to move airborne holding delay 

in terminal airspace to the ground and en route phase of flight. The first model was 

stochastic and incorporated scenarios to account for the assumed demand uncertainty. 

A second model used a functional approximation of the expected queuing delay that 

accounted for the uncertainty from multiple pools of flights. An objective which 

incorporated equity into the assignment of ground delay was also introduced. A third 

model used the Bertsimas/Stock-Patterson by-variables to assign delay an introduced a 

valid inequality to reduce computation time. While the first model did not meet the 

required computational performance the latter two models showed strong promise. 

Each of these two models were able to transfer up to 50% of the delay away from the 

terminal while not imposing significant ground delay on short-haul flights. The 

effectiveness was also demonstrated to a lesser extent at lower AARs.  

The work in this chapter suggests that there are a number potential avenues for 

future study. The success in assigning a mixture of air and ground delay may prove 

helpful in improving GDP and AFP planning. In particular the model could be used in 

concert with GDPs as a measure of recourse to correct imbalances over the duration of 

the TMI. To do so, however, the model may need to grow some additional capability. 

In GDPs and AFP the airport/sector arrival rates often vary with time. A stochastic 

programming model could be built to handle this variation in capacity. In this context 

the model could be viewed as a means of dynamically adjusting the delay assigned to 
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flights as new information evolves over the course of the TMI. From a CDM 

standpoint such a model could also be use facilitate additional trades between carriers. 

These concepts are explored in more detail in Chapter 4. 
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4 Delay Transfer in GDPs with Airline Control  
Historically, traffic management initiatives have relied solely on ground delay to 

transfer delay away from the airport during inclement weather. As we have seen in the 

previous chapter, ground delays can effectively be used in concert with speed induced 

airborne delay to provide a more comprehensive balance of delay transfer to carriers. 

Moreover, during TMIs the need for such transfer is arguably more critical as flights 

participating in GDPs and AFPs often experience long delays that can produce missed 

connections and cancelled flights. In this chapter we studied the effect such action 

could have on GDPs. In section 4.1, we examine the extent to which the exemption 

bias between ground delayed and exempt flights can be curbed through the use of 

speed control. In section 4.2 we propose a more sweeping change in which we remove 

the exemption radius, issue CTAs to air carriers in lieu of CTDs, and allow air carriers 

to substitute, cancel and use speed control on the flight they operate. To study the 

problem, we introduce a stochastic programming model for airline decision making 

that allows carriers to hedge between the prospect of early weather clearance and the 

weather remaining in place over the duration of the GDP. 

4.1 Curbing the Exemption Bias through Speed Control 

Ground delay programs allow flights originating beyond a specified distance to 

become exempt from any delay imposed by the program. This exemption leads to a 

biased allocation that favors longer flights over shorter ones and alters an otherwise 

fair allocation. In this section we present two algorithms to reduce this exemption bias 

through speed control. The first algorithm attempts to assign the maximum possible 

delay achievable through speed control to the exempt flights. The second algorithm 

begins by prescribing the maximum possible delay to exempt flights, but works to 
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improve on this allocation by acting to fill holes in the schedule with speed-controlled 

exempt flights whenever possible. We then present a set of experimental designs to 

characterize the benefit of employing such speed control algorithms to alleviate 

ground delay on flights. 

4.1.1 Methodology 

In this section we describe our methodological approach used to transfer the 

exemption bias to a pool of ground delayed flights. We present our two algorithms 

and illustrate the impact they may have on existing GDPs. The first algorithm uses 

two integer programming models to successively assign controlled times of arrival to 

exempt flights and ground delayed flights. The second algorithm simultaneously 

assigns arrival times to both exempt and ground delayed flights.  

4.1.1.1 Delayed Exemption 

There are two considerations we examined while formulating our model. As our 

primary goal was to aggressively transfer delay away from ground delayed flights to 

exempt flights, we sought to assign the maximum amount of airborne delay to exempt 

flights whenever possible. We also wanted to ensure the overall equitable standard 

was promoted by our model. While it was not possible to achieve a result as equitable 

as that attained in a pure RBS algorithm, we did seek to create a process in which 

large ground delays were discouraged whenever possible.  

In order to present our model we need to define the list of sets, parameters and 

variables that it uses. These terms are described below.   

Sets 

F ≡set of all flights 

Identify applicable sponsor/s here. (sponsors) 
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E ≡set of all speed controlled flights 

P ≡set of all ground delayed flights 

Sf ≡ set of all slots available to flight f 

K ≡ set of all slots assigned to speed controlled flights 

D ≡ set of all slots assigned to ground delayed flights 

Parameters 

toagf ≡The scheduled arrival time flight f 

ts ≡The travel time flight of f  in cruise at slot s 

tf ≡The travel time flight of f in cruise at nominal fuel burn level 

, ≡A parameter between 0 and 1 

Variables 





=
otherwise 0

slot   toassigned is flight  if 1 sf
x fs  
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Our model objective shown in equation (4.1) looks to maximize the total delay for all 

exempt flights. Equation (4.2) states that all exempt flights are assigned to a slot. 

Equation (4.3) states that no slot is occupied by more than one exempt flight. 

Equation (4.4) restricts our decision variables to binary values.  

IP 2: 
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In our second IP model the objective shown in equation (4.5) aims to equitably 

assign delays to the pool of flights within the GDP. The coefficients of the objective 

are super-linear and thus they increase exponentially with large delays. This feature 

ensures that the model will prefer to assign small levels of delay to more flights, 

rather than a single large delay. Equation (4.6) states that all ground delayed flights 

are assigned to a slot. Equation (4.7) ensures that no slot is occupied by more than 

one ground-delayed flight. Equation (4.8) restricts our decision variables to binary 

values.  

The delayed exemption algorithm uses our two integer programming models in 

sequential fashion. It starts by using our first model to assign delay to the exempt 

flights. It then uses these assignments to restrict the assignment of ground delayed 

flights to those that have not been assigned to the exempted flights. It then uses the 

second model to assign delays to flights inside the GDP radius. A description of the 

algorithm is shown below: 
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Assignment with Integer Programming Optimization 

Step 1: Use IP 1 to solve for the optimal delay allocation for flights beyond the 

exemption radius 

Step 2: Group the slots assigned to flights in IP 2 into a set of restricted slots 

Step 3: Use IP 2 to solve for the optimal GDP allocation over the set of unrestricted 

slots 

Step 4:  Take K ∪ D and assign to flights in F based on the solutions to IPs 1 and 2 

This algorithm can achieve a different allocation than the DB-RBS algorithm, as 

illustrated in Figure 4.1 and Figure 4.2. Under DB-RBS the two exempt flights will be 

assigned to the earliest available slot to their scheduled time of arrival. This results in 

additional delay for every flight that succeeds them even though in some cases the 

scheduled time of arrival for the ground delayed flights is earlier than that of the 

exempt flights. In the case of the delayed exemption algorithm the exempted flights 

receive a delay consistent with the travel at the minimum acceptable speed of the 

aircraft. When this delay is incurred some ground delayed flights will be allocated to 

slots closer to their scheduled arrival time. 
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Figure 4.1 An example of flight allocation in Distance Based Ration-by-Schedule. 

Exempt flights receive priority. 

 
Figure 4.2 An example of flight allocation under Speed Controlled optimization 

procedure. Exempt flights receive the maximum possible delay and ground delay slots 

receive available slot based on their order in schedule. 

4.1.1.2 RBS with Speed Control Exemptions 

The algorithm presented in the previous section attempted to transfer delay by 

aggressively assigning airborne delay to exempt flights utilizing two integer 

programming models. While this approach certainly acts to reduce the overall level of 

delay for flights inside the GDP radius imposed by exemptions, it might not always 

yield the most efficient allocation. Moreover the transparency to stakeholders of the 

integer programming model it uses is questionable relative to the DB-RBS algorithm 

currently in place. Given these challenges we deem it worthy to present another 

candidate algorithm. The Speed Controlled Exemption Ration-by-Schedule 
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Algorithm works by initially assigning exempt flights to the maximum feasible delay 

and then assigning all flights to the earliest feasible slot based on their order in the 

schedule. When an exempt flight is assigned to a slot earlier than the maximum delay, 

the initial maximal delay slot enters the set of slots available for assignment. A 

description of the algorithm is presented below.   

SCE-Ration-by-Schedule Algorithm 

Step 1: Order flights in F by increasing scheduled time of arrival 

Step 2: Select the first flight f ∈E that has not been assigned to a slot 

a. If all flights have been assigned, group the slots into a new set R and go to Step 

3 

b. Otherwise, assign the flight to its last available slot in Sf 

Step 3: Select the first flight in F that has not been assigned to a slot in step 2 

a. If all flights have been assigned, stop and go to b. 

b. Select the first available f∈E move f from its previous slot s to the first 

available slot a∈Sf. If all flights have been assigned stop and exit. 

c. Otherwise, assign the flight to the earliest possible unassigned slot 

In addition to transferring delay this algorithm has another significant feature. Since 

the slot assignments of the exempted flights are not explicitly tied to the maximum 

possible airborne delay achievable through speed control, the model can in some 

instances be used to improve throughput within the system. When the call rate of the 

GDP is sufficiently high, gaps can sometimes emerge in which no flight can be 

assigned to a slot using the DB-RBS algorithm. Since DB-RBS does not assign flights 
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to slots ahead of their scheduled time of arrival it can sometimes create situations in 

which some slots go unused and others are heavily desired, creating additional delays 

within the system. This could potentially be avoided through speed controlled flights 

by assigning flights ahead of their scheduled time of arrival when they are traveling at 

speeds below their practical limit. An example of this situation is shown in Figure 4.3 

and Figure 4.4. In Figure 4.3 the DB-RBS algorithm cannot assign flights to slots that 

occur before their scheduled time of arrival and since there are gaps in the schedule the 

first slot goes unused and more delay is imposed on later flights. In the Figure 4.4 this 

situation is rectified by assigning exempt flights to earlier arrival times and the 

additional delay is avoided.  

 
Figure 4.3 Potential slot assignment using DB-RBS under a high call rate GDP. 

 
 

 

Figure 4.4 Potential slot assignment using SCE-RBS under a high call rate GDP. 
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4.1.2 Results and Discussion 

In this section we describe a computational experiment designed to test our 

algorithms. The delay transfer is categorized by GDP call rate and GDP radius at three 

different levels. Recognizing that the compliance rate to any modification will play a 

crucial role in its perceived success we also examine its effect on performance.  

4.1.2.1 Scenario Description 

A dataset was obtained for the day of May 1, 2011 from Atlanta Hartsfield-

Jackson Airport (ATL). The dataset was created by merging data from an ADL file 

(obtained from the FAA’s Traffic Flow Management System) and an ASDX file 

(surface surveillance data). The key fields included: flight number, collection time 

stamp, expected time of arrival (ETA), scheduled time of arrival (STA), origin 

airport, actual time of departure, aircraft position, aircraft altitude and aircraft type.  

The airport acceptance rates on an hour-by-hour basis varied from 56 to 101 flights 

per hour. Since this dataset was not taken on a day that an actual GDP was issued, a 

hypothetical GDP was superimposed on the data. A 6 hour GDP was assigned to the 

airport over the hours of 15:00-21:00 GMT. Flights inside the exemption radius were 

assigned ground delays. Flights on the ground that originated from airports outside of 

the radius as well as flights in the cruise phase of flight at the start of the GDP were 

allocated slots over the range achievable by the aircraft. The model used flight 

trajectories observed in the data over the day of operations. Speed control directives 

were issued over the period of time that the aircraft reached an altitude of 35,000 ft. 

Based on these trajectories we calculated the distance traveled while the aircraft was 

above 35,000 ft. As a baseline case flights were given a nominal cruise speed based 

on the aircraft performance listed on the BADA database. This database was also 
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used to derive a set of speeds at which each aircraft could fly. In general we used 

these speeds as guidelines; however, speeds on all aircraft were restricted to +/-0.02 

of their performance maximum/minimum. Also, when aircraft were capable of flying 

above Mach 0.83 or below 0.72, aircraft speeds were restricted to a maximum of 0.83 

or a minimum 0.72 respectively. CTAs for ground delayed flights could correspond to 

any time at or following the scheduled time of arrival of the flight. 

4.1.2.2 Delayed Exemption Performance 

The Delayed Exemption algorithm was tested using our historical datasets. The 

exemption radii assumed distances of 800, 1000 and 1200 nm. These values are 

consistent with typical radii observed at the airport in recent years. The call rate of the 

GDP was examined at values of 50, 60 and 70 flights per minute. All call rates 

remained consistent over the lifetime of the GDP. The exemption delay was measured 

as the difference between the delay achieved with DB-RBS and RBS no exemptions. 

The delay transferred was measured as the difference in performance between DB-

RBS and the Delayed Exemption algorithm. The results of our test are shown in 

Figure 4.5.   

The algorithm performs better as the size of the exemption radius increases 

regardless of the call rate. This phenomenon can be explained by the change in 

demographics of the exempt flights. As the radius increases, the pool of flights exempt 

from the GDP is more likely to include transcontinental and cross country flights that 

have to travel significantly longer distances. These flights will spend a longer time in 

the air when their speed is reduced and thus more delay can be transferred.    
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The best performance on a percentage basis, irrespective of exemption radius, is 

achieved at a call rate of 60 flights/hr. This result is attributable to the arrival rate in 

the dataset. If the level of traffic were lighter or heavier a different call rate may have 

performed better.  

  

 

Figure 4.5 Percentage of delay transferred with Delayed Exemption algorithm at 

various GDP radii and call rates. 

While it would be beneficial from a delay transfer standpoint to achieve near 100% 

compliance with speed control assignments, it is probably unrealistic to expect such a 

consistently high level of adherence among flights. For various reasons including 

making connecting flights, insufficient fuel or customer satisfaction, carriers may need 

to fly faster than the speed prescribed by the algorithm. As such we decided to study 

how the level of compliance affected performance. In this test carriers were given the 

option of opting out of the assigned speed controlled CTA and back into their original 

scheduled time of arrival.  Compliance levels ranging between 0 and 100% were 

examined using a call rate of 60 flights/hr. The results are depicted in Figure 4.6. 
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Not surprisingly, the performance increases with compliance. The figure suggests 

that in all cases when the compliance is above 60% at least 10% of the exemption bias 

can be transferred. When the exemption radius is greater than 1000 nm, upwards of 

20% of the delay can be transferred provided compliance remains above 80%. These 

results imply that a reasonable delay transfer can be achieved at suboptimal values of 

compliance.  

 

Figure 4.6 Variation in percentage of delay transferred with Delayed Exemption with 

carrier compliance rate. 

4.1.2.3 SCE-RBS Performance 

The tests performed in the previous sub-section were repeated on the SCE-RBS 

algorithm. The performance of the two algorithms is shown in TABLE I for 

comparison. The two algorithms perform comparably for call rates below 60 flights/hr. 

When the call rate assumes a value of 70 flights/hr the SCE-RBS algorithm 

outperforms the Delayed Exemption algorithm by a significant margin. This jump in 
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performance is attributable to the fact that the algorithm is not always restricted to 

assigning the maximum delay to exempt flights. By occasionally speeding up flights 

the algorithm acts to fill gaps in the schedule and fill unused slots.  In the case of the 

1200 nm exemption radius the algorithm works so well it even outperforms traditional 

RBS. It also achieves comparable performance to the Delayed Exemption algorithm 

when compliance drops, as evident in Figure 4.7. 

This improvement of the algorithm, however, comes with a price. In order to 

achieve better results some flights need to be willing to travel at faster speeds. This 

change may be problematic for a variety of reasons, including gate availability, as well 

as congestion in the terminal or en route airspace. These speed adjustments can also 

lead to less efficient fuel burn and while the change in small on a percentage basis it 

can serve as a significant cost driver. It may also be viewed as somewhat unfair to ask 

an airline to make the necessary accommodations to enable the flight of interest to fly 

at a faster speed without compensation. Mechanisms could be established, however, to 

reward the airline for dealing with the imposed inconvenience. 

Table 4.1 Performance Exemption Delay Transferred for SCE-RBS and Delay 

Exemptions Algorithms. 

Delayed Exemption SCE-RBS 

Call Rate 

(flights/hr) 800 nm 

1000 

nm 

1200 

nm 800 nm 

1000 

nm 1200 nm 

50 10.8 15.0 17.3 11.0 15.0 17.4 

60 13.9 29.0 34.3 21.3 28.5 33.8 

70 10.2 14.4 31.23 58.3 81.4 100.5 
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Figure 4.7 Variation in percentage of delay transferred with SCE-RBS with carrier 

participation rate. 

4.2 Combining Speed control with CTAs in GDPs 

In this chapter, we consider replacing the use of a CTD with a CTA in GDP 

planning and control. The principal change is conceptually quite simple: flights and, 

by association, flight operators, are assigned CTAs rather than CTDs. When a GDP is 

revised, the assigned CTAs rather than the assigned CTDs are adjusted. Because of the 

added flexibility provided by the use of CTAs, we also propose the elimination of 

GDP flight exemptions, instead allowing flight operators to effectively make 

exemption decisions regarding their own flights. To effect these changes, we only 

need to make minor changes to the existing CDM/GDP allocation procedures. We 

propose a new flight operator GDP planning model, specifically a scenario-based 

stochastic integer programming model that determines a cancellation and substitution 

plan for each carrier. The model matches the carrier’s flights to the assigned arrival 

capacity (CTAs). In doing this, it takes into account the ability to adjust flight speeds 

en route, e.g. the model might assign a flight an “early” departure time, consistent with 
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a relatively slow speed but anticipate the ability for the flight to increase its speed 

should the weather clear at the destination and additional capacity be assigned to the 

carrier. The integer programming models builds on the prior literature on stochastic 

models for GDP planning and the use of speed control extends the work of Delgado 

and Prats. We describe our CTA-based architecture in section 4.2.1, present our new 

airline optimization model to support the airline cancellation and substitution process 

in section 4.2.2 and describe the model used to represent compression and revisions in 

our experiments in section 4.2.3.   

4.2.1 Architecture 

The previous two sections have described in general terms the modifications that 

we envision to major components of the process. Here, we more specifically define 

the architecture and explain some of the important changes. While the new process 

uses the RBS mechanism, the exemption radius is eliminated. Once capacity is 

allocated to carriers, each carrier can use both speed control and ground delays to 

manage their substitution and cancellation decisions. Since no exemption radius has 

been imposed, carriers must be more strategic about their substitution process because 

in the event of an early weather clearance they will want to take advantage of 

capacity increases, e.g. by speeding up airborne flights. Our scenario-based stochastic 

model is designed to facilitate that end. Each scenario accounts for a possibility of the 

weather clearing at different times and the associated increase in capacity. The goal is 

to position the flights in slots that allow carriers to make the best use of capacity 

under all scenarios. The fact that slot assignment and the effective use of speed 

control are key to evaluating the impact of this new approach implies that proper 
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evaluation of its effectiveness requires experiments that involve GDP revisions. The 

manner in which we model revisions is discussed both later in this section 4.2.2 and 

in section 4.2.3. Table 4.2 gives the basic steps in our CTA-based architecture.  

Table 4.2 CTA-Based Flight Assignment Architecture 

Step 1 [FAA].  
1a: Assign a slot to each airborne flight based on 
the flight’s expected time of arrival. 
1b. Assign a slot to all flights on the ground using 
RBS. 
1c. Create a list of slots (and CTAs) owned by each 
airline based on the allocation from both steps 1a 
and 1b.  
Step 2 [Airlines]. Execute cancellation and 
substitution processes and adjust flight-to-CTA 
assignments. Assign a departure time to each flight 
Step 3 [FAA]. Execute compression, adjusting 
assignments and filling any unusable slots.  

      This process looks almost identical to the existing process illustrated in Figure 

1.1, however, there are some subtle differences. First, none of the flights on the 

ground at the start of the GDP are exempted. Second, when the airlines perform their 

cancellations and substitutions, and also when the FAA performs compression (steps 

2 and 3), both airborne flights and flights on the ground should be considered in 

decision-making. The consideration of flights in the air imposes a substantial new 

information requirement: the (possibly very tight) limits on the degree to which their 

arrival times can be adjusted. Third, today, the assignment of a departure time (CTD) 

is performed by subtracting a nominal flight time from the CTA. Under this new 

approach, the airlines have substantial flexibility in assigning the departure time, e.g., 

as in Delgado and Prats (2012) and Delgado and Prats (2014), assuming an initial 

“slow” speed while anticipating possible speed-ups if weather conditions change. 

This added airline flexibility implies that when the airlines perform their cancellation 
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and substitution process, they have a rich set of alternatives to consider and the 

opportunity to improve performance. In the next section, we present an optimization 

model to address this new airline decision problem. 

      Another very important challenge associated with this new approach is the 

manner in which GDP controls are dynamically updated over time. Today, a variety 

of possible GDP revisions might take place as weather conditions change at the 

destination airport. Perhaps the simplest is a cancellation of the GDP in the event of 

clearance of poor weather. If this occurs, all issued ground delays are immediately 

rescinded and the impacted flights can immediately take off. An equivalent action in a 

CTA-based architecture would be to allow flights on the ground to immediately 

depart and flights in the air increase their speed, to the extent feasible, in order to 

arrive at an earlier time if this is desired. It is difficult to assess a priori whether such 

a complete cancellation might ever be appropriate under a CTA-based system. 

However, it is clear that new GDP revision models and controls will be required. In 

particular, it is likely that “revisions” will be required not only based on major 

changes in conditions at the destination airport but also more minor disturbances that 

impact the flight times of en route flights. It is likely that such models could build on 

the recent experience with airborne speed control Grabbe et al (2012); Moertl (2011); 

Airservices Austrailia (2008); McDonald and Bronsvoort (2012); Leib (2008); 

Nieuwenhuisen and de Gelder (2012) and the growing body of research Knorr et al., 

(2011); Jones et al., (2013); Delgado and Prats (2012); Prats and Hansen (2011); 

Delgado and Prats (2014) on the topic. Of course, this also relates to current efforts 

on time-based metering and TBO.  
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In the current research, we have not attempted to address all the nuances of GDP 

revisions under CTA controls. This would certainly represent another significant 

research contribution. Rather, to estimate the benefits of this new architecture, we 

evaluate a relatively simple scenario in which weather clears at a random time and 

use an optimization model (Vossen & Ball, 2006a) that represents the combined 

effect of RBS and compression in reassigning CTAs based on the newly available 

capacity. This model is described in section 4.2.3.    

4.2.2 Models to Support Airline Substitution and Cancellation 

Under the new architecture and considering both the possibility of en route speed 

adjustments and no flight exemptions, each airline has more control over the 

disposition of its own flights. Since GDPs are often cancelled prior to their planned 

end time, it behooves airlines to hedge between the prospect of early and on-time 

cancellation. Such hedging is effectively done today by the FAA through the 

exemption radius. The challenge for an airline lies in positioning flights in the 

appropriate slots to best deal with all possibilities. To do so we adapt stochastic 

models developed earlier from an FAA/ANSP perspective to the perspective of a 

specific airline (Richetta & Odoni, 1993; Ball, et al., 2003; Ball, et al., 2010).   

To understand this model, consider the deterministic case where the set of available 

slots, i.e. the CTAs assigned to that airline, is known with certainty, e.g. as described 

in (Vossen & Ball, 2006b). This is a simple assignment problem where flights are 

assigned to slots, allowing for the possibility that some flights may be canceled at a 

cost. Since this model is solved by a specific airline, we can assume the availability of 
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a rich cost function that takes into account various factors regarding flight, crew and 

passenger status, passenger count, etc.    

Capacity uncertainty is modeled using a set of scenarios: each scenario is 

characterized by the time at which that scenario becomes known, the revised set of 

slots, i.e. additional capacity represented by the augmentation of the existing slots with 

a set of additional slots, and a probability. An additional set of variables indicates how 

the initial assignment is adjusted when the new capacity becomes available. In 

defining the data underlying this model, the differences in constraints underlying 

airborne flights and flights on the ground must be taken into account. For example, if a 

flight was assigned a CTA of 4:00 and, at the time the new scenario was effective that 

flight was airborne, then the flight might be restricted to revised CTAs not earlier than 

3:50 based on limitations on speedup options (no more than 10 minutes). On the other 

hand, if a flight on the ground was assigned a CTA of 4:00 and that flight still had one 

hour to serve on its ground delay, then that flight could be assigned any departure time 

within the next hour and in order to meet any new assigned CTA between 3:00 and 

4:00. The air carriers should assign both a CTA and departure time to each flight. For 

the present experiments, we assume the departure time assigned is the earliest possible 

departure time that can meet the assigned CTA. This approach provides maximum 

flexibility where weather scenarios only allow for capacity increases. We recognize 

that ideally the optimization model should contain both departure time and arrival time 

variables – we leave such a model to future research.    

This model certainly has some substantial data requirements, most notably the 

scenario information. There are two aspects to generating the slot lists for each 
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scenario. The first is defining the set of slots available to all carriers and the second is 

how those slots are assigned to each carrier. There has been prior research on the first 

aspect, but this certainly would have to be adapted to this new context. For the 

purposes of this paper, we use representative/stylized information that captures the 

essential aspects of the problem setting. Regarding the second aspect, we use a basic 

RBS reallocation that (by necessity) cannot take into account the status (and slot 

assignment) of each carrier’s flights. Thus, this reallocation must be viewed as an 

approximation; however, it only impacts cost assigned to the initial slot assignment 

and so it impacts only the quality of the solution and not its feasibility. We can judge 

the overall quality of our approach by the results of our simulation experiments. We 

also note that some air carriers might wish to use other processes; thus, this model 

could be viewed as a surrogate for any number of internal airline decision support 

processes.     

The specific integer programming problem formulation is given below. Note that 

this model includes a subscript for airlines – in practice, each airline will solve its own 

model. 

Parameters: 

Fa ≡ The set of all flights available to airline a 

A ≡ The set of all airlines 

Sa ≡ The set of all slots available to airline a 

Sfa ≡ The set of all slots available to flight f of airline a 

Efa≡ The set of all slots available to flight f at stage 1 prior to first probable end of the 

GDP available to airline a 
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Pfa≡ The set of all slots available to flight f at stage 1 following the first probable end 

of the GDP available to airline a 

Kfsq≡ The set of all slots available to flight f at stage 2 in scenario q from slot s 

available to airline a 

dfsa
q≡ Cost of delaying flight f to slot s owned by airlines a in scenario q  

cfa≡The cost of cancelling flight f operated by airline a 

qp ≡  The probability of scenario q occurring  

Variables: 
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Constraint (4.10) ensures that for each airline, every flight is either assigned to a 

slot or cancelled. Constraint (4.11) ensures that no more than one flight is assigned to a 
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slot in the first stage of the problem. Constraint (4.12) ensures that no more than one 

flight is assigned to a slot in the second stage of the problem for all scenarios. 

Constraint (4.13) ensures that if a flight is assigned to a slot in the first stage prior to 

the first feasible weather clearance time, it must be assigned to the same slot in the 

second stage for all scenarios. Constraint (4.14) ensures that if a flight is assigned to a 

slot in the first stage after the first feasible weather clearance time, it must be assigned 

to a slot that is reachable from that slot in the second stage. Note that this constraint, 

through the definition of Kfsqa, restricts the set of slots to which a flight can be 

reassigned based on flight status and the various timing restrictions. Constraint (4.15) 

reflects that our assignment variables are binary. Our objective is to minimize the 

expected cost of the flight delays over all scenarios plus the cost of flight 

cancellations.  

4.2.3 Compression and GDP Revisions 

To carry out our experiments, we must both execute compression as part of the 

initial allocation process (see Table 4.2) and also perform a slot reallocation for the 

case of a GDP revision. Under current practices, revisions are performed using a 

modified application of RBS that takes into account both flight status and the new set 

of available slots. Compression is also typically performed. Very often a combined 

RBS/compression process is executed called RBS++. In Vossen and Ball (2006b), an 

optimization model is defined that provides both the functionality of compression and 

RBS++.  We use this model in our experiments for both the initial compression step 

and also the revision process. This model actually provides carriers with more 

flexibility in the application of compression. However, for our purposes here, we only 
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wish to mimic the basic processes.  Specifically, the model employs a set of “goal 

slots,” with one such slot assigned to each flight to be assigned. To mimic 

compression, the goal slot assigned to each flight is the RBS slot for that flight. Other 

assignments can be used by carriers to implement various flight prioritization schemes. 

Parameters: 

F ≡ The set of all flights 

A ≡ The set of all airlines 

S- ≡ The set of all slots 

T ≡ The set of all time periods 

Fa ≡ The set of all flights belonging to airline a 

Ia ≡ The set of all goal slots belonging to airline a 

Rf≡ The set of slots within acceptable for flight f 

Sft ≡ The set of all slots available to flight f in period t 

s
t ≡  The time corresponding to slot s 

f
τ ≡  The time corresponding to the goal slot of flight f 

Variables 

1 if flight  of airline  is assigned to slot  

in time period 

0  otherwise 

fsat

f a s

x t


= 


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Equation (9) ensures that every flight is assigned to exactly one slot. Constraint (10) 

ensures that each slot is assigned to no more than one flight. Constraint (11) reflects 

that our assignment variables are binary. The objective of the model is to 

lexicographically minimize the distance of the flights from their goal slots. It 

accomplishes this minimization by using coefficients that grow super-linearly. This 

mimics the impact of compression, which seeks to find a slot as close as possible to 

the flight’s RBS slot in the case where that flight cannot be feasibly assigned to its 

RBS slot.  

4.2.4 Results and Discussion 

4.2.4.1 Experimental Description 

To conduct our studies we selected data collected from Atlanta Hartsfield-Jackson 

Airport on May 1, 2011. The weather conditions were clear and sunny and all 

runways were active. The data were obtained from a file generated by TFMS in 

conjunction with an ASDX file, the combination of which listed flight numbers, 

carrier, collection time, ETA, scheduled time of arrival (STA), the origin airport, 

actual time of departure, aircraft position, aircraft type, arrival time. 
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The airport acceptance rates on an hour-by-hour basis varied from 56 to 101 flights 

per hour. Since this dataset was not taken on a day on which a GDP was issued, a 

hypothetical GDP was superimposed on the data. A 5-hour GDP was assigned to the 

airport over the hours of 16:00-21:00 GMT. Flights inside the exemption radius were 

assigned ground delays. Flights on the ground that originated from airports outside of 

the radius as well as flights in the cruise phase of flight at the start of the GDP were 

allocated slots over the range achievable by the aircraft. The model used flight 

trajectories observed in the data during the day of operations. Speed control directives 

were issued during the period of time that the aircraft reached an altitude of 35,000 ft. 

Based on these trajectories, we calculated the distance traveled. As a baseline, case 

flights were given a nominal cruise speed based on the aircraft performance listed on 

the BADA database. This database was also used to derive a set of speeds at which 

each aircraft could fly. In general, we used these speeds as guidelines; however, 

speeds on all aircraft were restricted to +/-0.02 of their performance 

maximum/minimum. Also, when aircraft were capable of flying above Mach 0.85 or 

below 0.72, aircraft speeds were restricted to a maximum of 0.85 or a minimum of 

0.72, respectively. CTAs for ground-delayed flights could correspond to any time at 

or following the scheduled time of arrival of the flight. 

A baseline run was used to evaluate the delay performance with no intervention. On 

these runs, capacity was allocated to airlines using DB-RBS. A deterministic version 

of the substitution and cancellation model was used; it did not account for the 

possibility of early clearance. A compression model was then adopted to improve 

throughput. To understand the full extent of the performance, we tested the 
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computation run time of each model using a dual-core system with four Intel Xeon 

X5535 processors and 12 GB of memory in a 64 bit environment. The models were 

coded in Python 2.7 using a GUROBI solver.  

4.2.4.2 The Cost of Delay and Cancellations 

If this proposed scheme were implemented, each airline would compute the cost of 

delay based on their internal cost measures; however, to perform a computational 

experiment we needed to find a suitable proxy. In this paper we chose to start with the 

cost model presented in Pourtaklo and Ball (2009), which draws from ATA data and 

models from Metron Aviation. The model assumes that the direct operating cost per 

minute of block time is free during the first 15 minutes. After 15 minutes the cost 

jumps to $64 in the air and $32 on the ground. Since our airborne delay is essentially 

free from a fuel cost standpoint and fuel typically accounts for roughly half the delay 

costs we decided to use an equal cost for ground and air delay. Updating for yearly 

changes in delay costs we found the cost on both the ground and the air was $40 

(America, 2015). The Pourtaklo and Ball approach also assumes that the cost per 

minute of passenger delay is $34.88 per hour or $34.88/60 = $0.5813 per minute.  

Since the airlines do not suffer the same degree of impact as customers on a per 

minute basis the approach approximates the cost by multiplying passenger cost by 1/6 

and uses a cost of $0.1 per minute. Adopting the same process using 2013 passenger 

costs we find that the additional airline cost is $0.125 per minute, per passenger. An 

expression for the cost function is show below: 
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where P is the number of passengers on the flight and Mp is the maximum amount of 

time before the delay cost levels off. When the cost levels off it does not matter 

whether the airline delays the flight an additional minute or a day. Thus we assume the 

cost to cancel a flight is the cost at level off. Aircraft specifications were used to 

determine the number of passengers on a given aircraft. Using the 2013 average 

reported in IATA our analysis assumed a load factor 0.8 on all flights (IATA, 2014).  

4.2.4.3 Cumulative Effect to Airline Cost 

To evaluate the effect of the proposed GDP changes on airline costs we evaluated 

our expected costs in 6 different cancellation scenarios. Since seasonal variations in 

weather can significantly affect the probability of early GDP cancellation, we 

conducted a separate run with different cancellation probabilities for winter/fall, 

spring and summer. We assumed a cancellation threshold of 2 hours of delay. The 

seasonal GDP cancellation probabilities were taken from Innis and Ball (2004). A 

summary of our result is shown in Table 4.3. The results indicate that the potential 

savings ranges between 7% and 14%. The potential benefit during the spring season 

is more favorable due to an increased probability of early cancellation. 
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Table 4.3: Percentage Seasonal Cost Savings to Airlines 

Cancellation 

Hour 

Winter/Fall Spring Summer 

0 19.56 22.32 22.32 

1 19.46 22.21 22.21 

2 17.47 19.87 19.09 

3 5.51 6.25 5.72 

4 1.75 1.72 1.23 

>=5 1.57 1.54 1.06 

Expected Cost 7.94 13.07 10.84 

 

4.2.4.4 Effect on Airlines with no Cancellation 

To better study the effect of our revision on individual airlines, we reduced the 

number of flights to just the 5 largest carriers. A baseline run was performed using a 

conventional GDP procedure. Capacity was allocated with DB-RBS and cancellations 

and substitutions were made using a deterministic model. Our cost function was also 

revised by setting Mp to a value of 90. The resulting performance for a GDP with a 

Planned Airport Arrival Rate (PAAR) of 40 is shown in Table 4.4. The percentage of 

cancellations remained relatively consistent across carriers, ranging between 25% and 

33.33%. Delta and AirTran, however, exhibit stronger delay performance in traditional 

GDPs. This is understandable as Delta and AirTran both control a larger pool of 

exempt flights than regional carriers and those with a smaller presence at the airport.  

To evaluate CTA-based architecture and new planning modes, we used 5 capacity 

profiles. The set consisted of a complete GDP and weather clearances of 15, 30, 45 

and 60 minutes early. Each scenario was assumed to be equally probable. The results 

of our test are shown in Table 4.5.  The tests yielded noticeably different results 

relative to the baseline. All carriers reduced their number of cancellations except for 

American Airlines, which only controlled 3 flights.   
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Table 4.4 Airline Performance with a Conventional GDP model. 

 
 

Table 4.5 Airline Performance with a CTA-Based Architecture. 

 

The performance data suggest that airlines will approach the two GDP procedures 

in remarkably different fashions. In the current framework carriers are more likely to 

cancel flights to create additional capacity and flexibility as well as reduce delay. In 

our modification, carriers have more opportunity for intra-airline substitution both 

Airline 

Percentage 

of Flights 

Cancelled 

Passenger 

Delay 

Number of 

Flights 

Delta (DAL) 
 

27.78 11.14 108 

AirTran (TRS) 32.14 12.37 28 

American Southest 
Airlines (ASQ) 

27.59 18.29 58 

American (AAL) 

 

33.33 46.50 3 

Pinnacle (FLG) 25.00 29.25 4 

Airline Percentage 

of Flights 

Cancelled 

Passenger 

Delay 

Number of 

Flights 

Delta (DAL) 
 

24.07 25.40 108 

AirTran (TRS) 28.57 18.02 28 

American Southest 
Airlines (ASQ) 

 

17.24 19.24 58 

American (AAL) 
 

33.33 25.00 3 

Pinnacle (FLG) 0 37.75 4 
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through speed control and the lack of an exemption radius. The scheme also provided 

additional benefits in the event of an early cancellation. This is not something that is 

assumed in the deterministic planning case.  Thus carriers will choose to keep a 

greater portion of their slots. Since there are far fewer cancellations, the carriers are 

less affected by actions of other carriers during compression. This allows carriers to 

have more direct control over their performance.  

While the example above reveals some information regarding the relative effect of 

our CDM modification, it does not provide us with a sense of how strong the 

possibility of early clearance needs to be to affect the decision. We ran the model 

with another set of scenarios in which the early clearance intervals were 7.5 minutes 

apiece. The resulting performance of both models is shown in Figure 4.8 and Figure 

4.9. In nearly all cases, the prospect of an early clearance reduced the number of 

cancellations while increasing the passenger delay for carriers with more long-haul 

flights. The magnitude of the reduction is not quite as prominent, however, as that of 

the 15 min scenarios. 
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Figure 4.8 Percentage Flight cancellation level of Airlines with Conventional and 

Early Clearance. 

  

 

 

 

 

 

 

 

 

 

Figure 4.9 Passenger Delay of Airlines for Conventional and Early Clearance 

Models in minutes. 

While the previous graphs demonstrate modified behavior on the part of airlines, it 

is unclear what portion of the change is attributable to the possibility of early 
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cancellation vs. the lack of an exemption radius. To isolate the effect we tested our 

models both with and without a radius. In the former case, RBS was used to generate 

capacity while the later used the DB-RBS algorithm. The performance is shown in 

Figure 4.10 and Figure 4.11. The results suggest that when a radius is present large 

carriers such as Delta will reduce the number of cancellations they impose on their 

flights; this is also the case with Air Tran. This is likely attributable to the larger 

number of exempt eligible flights they have relative to other carriers. Regional 

carriers such as American Southeast Airlines are negatively affected by the presence 

of the radius and are more likely to cancel more flights to create substitution 

opportunities. 

      

 

 

 

 

 

 

 

 

 

Figure 4.10 Effect of the Exemption Radius on Percentage of Flight Cancellations. 
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Figure 4.11 Effect of the Exemption Radius on Passenger Delay 

4.2.4.5 Delay Recovery with no GDP Cancellation 

We also wanted to study the potential benefit our changes could achieve in delay 

recovery in the event of an early GDP cancellation. To test our model we used 5 

scenarios in which we assumed early clearance times of 0, 15, 30, 45 minutes and 1 

hour. The performance in each case is shown in Figure 4.12 below. Delta and AirTran 

both experience a noticeable reduction in the overall delay as early cancellation 

reaches one hour. This is not entirely surprising in the case of Delta because they 

have a greater number of cross-continental and international flights are in a better 

position to recover the delay in the event of cancellation.  While one might argue that 

carriers such as Delta operate more flights and are therefore more likely to experience 

more minutes of recovery, when these results are normalized on a per flight basis as 

shown in Figure 4.13, the benefits to long-haul carriers are still present. Thus we can 

conclude that our proposed revisions are beneficial to regional carriers when there is 

no early cancellation and beneficial to dominant and major carriers when the GDP is 

cancelled early. 
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Figure 4.12 Minutes of Passenger Delay in each Scenario. 

 

 
 

Figure 4.13: Minutes of Passenger Delay Recovered in each Scenario. 

4.2.5 Conclusions and Perspectives 

In this paper we proposed a new strategy for managing ground delay programs. The 

strategy incorporated both Controlled Departure and Arrival Times as well as en route 

speed control. It also eliminated the use of an exemption radius which provides 

incentives for carriers to create their own hedging strategies. To model performance 

under our new framework we adapted a stochastic model to account for airline 

hedging. Our analysis suggests that under our new set of GDP controls airlines are 
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significantly less likely to cancel flights because they hope to recover delay in the 

event of early cancellation. Below we discuss implementation and also suggest 

implications on NextGen. 

4.2.5.1 Near Term Implementation 

The two biggest challenges to near-term implementation are i) insuring CTA 

compliance (as was mentioned at the outset) and ii) modifying the various GDP 

procedures to support the proposed architecture. Two types of enforcement can be 

envisioned. First, violations could be monitored and flight operators with poor 

records penalized in various ways. Second, as time-based metering methods are 

implemented CTA information could be communicated to these systems so that they 

could be “CTA-aware” and aid in insuring compliance. Regarding ii), the research in 

this chapter as well as the work on various speed control measures could be adapted 

to provide revision and dynamic CTA adjustment methods applicable to this context. 

It is probably safe to say there are no major roadblocks, just the requirement for 

further development and experimentation with the existing concepts. The research in 

this chapter also should provide a starting point for airline decision support models. A 

variety of approaches (some simpler, some more complex) are possible. There will be 

new information exchange requirements including the need for information on the 

limits to which CTAs can be changed for airborne flights. Of course integration with 

time-base metering tools would also induce new information requirements. 

It should be admitted that in the near term the full benefits envisioned could not be 

achieved as they require complete flexibility on the part of each flight to 

independently adjust its speed. This limitation suggests certain NextGen goals as 

discussed below.  
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4.2.5.2 Far Term Implementation and Implications for NextGen 

NextGen and Sesar both express a TBO vision in which flight timing will be 

closely monitored and controlled. Implicit in this vision is the ability to insure some 

degree of CTA compliance. In fact, one can view the architecture we have described 

as a (partial) vision of how GDPs would be migrated to a TBO-based NAS. NextGen 

and SESAR technologies also should provide the ability for flights to more 

independently adjust their speeds. This in turn should allow for the benefits described 

in this paper to be more completely realized. It is perhaps instructive to consider the 

underlying operational concept of our architecture. Note that, while there is a high 

degree of control over en route flight timing, there is also an assumption of a high 

degree of flexibility. This is not compatible with a TBO vision in which a 4D 

trajectory is set at the time of flight departure and then rigorously adhered to for the 

remainder of the flight. Our vision calls for a high degree of control and system-wide 

coordination among 4D trajectories coupled with the ability to dynamically adjust 

those trajectories to achieve flight operator and ANSP objectives. We feel it is 

important to incorporate this vision into future TBO architectures. 
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5 Conclusions 

This dissertation made a number of contributions to further advance the use of 

speed control in air traffic management. First, we developed a set of strategies for 

transferring delay away from terminal airspace through en route speed control. To 

deal with the issue of uncertainty we developed a set of stochastic integer 

programming models that significantly increased the amount of delay transfer. These 

solutions were shown to work under multiple levels of system intervention. We 

proposed a more equitable means of allocating delay to carriers by incorporating 

speed control into the distance based RBS algorithm. Finally, we introduced a new 

architecture for GDP planning. This architecture allowed carriers to receive CTAs in 

lieu of CTDs and gave additional responsibilities to carriers in CDM planning. We 

saw that these architecture changes had the ability to noticeably reduce the expected 

cost of the GDP to carriers.   

From an integer programming standpoint we introduced a number of models to 

support the application of speed control in air traffic management. The first set of 

models presented in chapter 2 examined transferring terminal delay when a 

considerable number of flights could not be controlled. To deal with the problem we 

proposed a model that used a value function to approximate the airborne queuing 

delay. The model demonstrated delay transfer levels comparable to more traditional 

scenario-based approaches while running two orders of magnitude faster. In chapter 3 

we used a similar functional approximation model to issue a mixture of air and 

ground delay to a broader population of flights. The greater control of the system 

allowed higher levels of delay transfer with little imposition of additional ground 
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delay. While the larger problems sizes presented some measure of stress to our 

computational performance, the functional approximation models were able to solve 

within a feasible about of time unlike the scenario-based model to which we 

developed as a point of comparison. In chapter 4 we adapted the use of speed control 

to aid in GDP planning. In section 4.1 we offered an alternative means of assigning 

capacity to carriers to reduce the exemption bias inherent in the current allocation 

method. In section 4.2 we introduced a new GDP planning procedure that allowed 

carriers to use both speed control and ground delay determine their preferred arrival 

strategies. We also proposed a new optimization model to aid carriers in determining 

how to most effectively reschedule their flights given an uncertain planning horizon. 

We then demonstrated the potential to lower the expected cost to carriers. 

Through our work on these efforts we have learned a number of things regarding 

the effectiveness of various approaches. At the tactical level departure time 

uncertainty serves as a significant challenge in delivering reliable CTAs in a 

coordinated fashion. The presence of this uncertainty means that stochastic IP models 

will almost certainly significantly outperform deterministic models. While scenario-

based models can prove helpful in realizing delay transfer, value function 

approximation models may provide comparable delay transfer at a reduced 

computation time. While it may be practical to develop scenarios by applying 

simulation tools and historical data, given the difficulty in generating large numbers 

of realistic scenarios, functional approximation models might offer a more practical 

means of reducing terminal airborne holding. Given the rich set of historical data 

available to practitioners, the tuning of model parameters will be instrumental in any 
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implementation. By fitting parameter values associated with various airports and 

regions of airspace practitioners can gain added insight and better inform their 

decisions as to what situations to apply any proposed intervention.  

In examining its implications on GDPs, we have also seen that speed control may 

be used to improve TMI operations. From the standpoint of equity, relatively simple 

changes to the standard allocation process could be had by modifying current 

allocation procedures at relatively minimal additional fuel cost to carriers. Taking 

such changes further and moving from CTDs to CTAs offers a more comprehensive 

set of system-wide benefits to carriers. These benefits include greater flexibility to 

carriers, a more equitable distribution of delay, fewer flight cancellations and a 

reduction in the expected cost to carriers. While some of these benefits will require 

extensions to the current time-based metering capability and an increased level of 

automation within the NAS, these measures could be married with TMIs as they are 

progressively phased in over time. Such incremental change may allow stakeholders 

to better adapt to the changes and implications associated with the introduction new 

technologies.  

While we have presented some initial models aimed at addressing the use of 

speed control to deal with flight delay within the NAS, there are number of areas in 

which researchers can build upon our efforts. The functional approximation models 

presented in chapters 2 and 3 could be adapted to simultaneously address both 

demand and capacity uncertainty at the airport. In a more system-wide context, the 

models could also be expanded to handle the assignment of flights to multiple airports 

within a region. Like many other models better information at the input stage will 
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often translate into better performance at the output stage. Along those lines, a more 

thorough study of departure delay characteristics at specific airports could be used to 

inform the level of uncertainty assumed within our models. Such information could 

be effectively incorporated into our model with little if any impact on our 

computational performance. Additionally, our study ignores the possibility of reroutes 

to manage delay. In practice, such reroutes are an essential component of air traffic 

control and offer a particularly promising area to achieve significant reductions in 

fuel. We eventually seek to include this capability within the model in order to 

provide a more comprehensive set of options to serve the needs of traffic flow 

managers and controllers.  

There are a number of issues yet to be studied to address the need for CTAs and 

speed control within TMIs. Notionally the ideas we proposed to facilitate intra-airline 

exchange and inter-airline exchange could be paired with any number of allocation 

schemes including RBS, RBD and system delay oriented throughput models while 

injecting the use of speed control into all phases of CDM. We have assumed in our 

analysis that carriers and traffic flow managers and controllers conduct assignments 

in batches. It is quite possible and perhaps likely that stakeholders may favor a more 

decentralized transactional approach. Such a framework could be explored and 

compared as an alternative to our proposed approach. In this dissertation, we 

examined the use of speed control in GDPs, however, such techniques could also be 

used during AFPs. This added capability would provide traffic flow managers and 

carriers with a more rich set of options during sector-related weather events. 
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The notion of compliance was explored as a driver of our model performance, 

however, we did not take much action to more actively facilitate higher rates of 

compliance. One might envision a means of tracking carrier compliance and 

rewarding or punishing carriers that choose to heavily violate instructions by issuing 

them less favorable allocations in subsequent periods. Recently, flight operators and 

ANSPs have begun to migrate away from issuing control times of arrival toward 

target interval windows. In principle, one could extend our model to incorporate this 

idea by assigning flights to overlapping time periods. In principle these ideas could 

also be extended by moving away from discrete time intervals and adopting 

assignment using a continuous time framework. Finally, while the functional 

approximation model offers significantly faster solution times that scenario-based 

approaches the issues raised in chapter 3 suggest that if the model is to be applied to a 

larger setting additional steps may need to be taken to improve the computational 

performance. Other proxies for airborne queuing delay may aid in this endeavor.  
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6 Appendix A 
Proposition 1: In the single runway case the expression of expected delay shown in 

equations (14) and (15) serves as a lower bound of the true delay at optimality. 

Assuming we are dealing with a single period and runway, we shall define our 

parameters as follows: 

Q ≡ The set of all possible outcomes 

S ≡ The set of all slots 

The exact expression for the expected number of arrivals in slot s can be written as 

. /!0! 
!∊2

= 03  (51) 

For a given outcome we can express the delay at slot s as 

0! = max 789! + 0! ;< + $ − 1>, 0@ (52) 

At optimality we have 

0! ∗ = max 789! + 0! ;<∗ + $ ∗ − 1>, 0@ (53) 

V ≡ The set of all outcomes where 9! + 0! ;<∗ + $ ∗ − 1 is positive 

U ≡ The set of all outcomes where 0! ∗ is zero 

Substituting the A3 into A1 we have 

03  = . /!0! =
!∊2

. /! Dmax 789! + 0! ;<∗ + $ ∗ − 1>, 0@E
!∊2

(54) 

03  ∗ = . /!9! + . /!0! ;<∗ + $ ∗ . /! −
!∊G!∊G!∊G

. /!(1)
!∊G

+ . /!(0)
!∊H

(55) 

03  ∗ = . /!9! + . /!0! ;<∗ + $ ∗ . /! −
!∊G!∊G!∊G

. /!(1)
!∊G

(56) 

Since 9! + 0! ;<∗ + $ ∗ − 1 is non-positive for all K ∊ L, 
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03  ∗ ≥ . /!9! + . /!0! ;<∗ + $ ∗ . /! −
!∊2!∊2!∊2

. /!(1)
!∊2

(57) 

03  ∗ ≥ 9O + 03  ;<∗ + $ ∗ − 1 (58) 

where 9O  is the expected number of short-haul arrivals during slot s. We also require 

that the expected number of arrivals be non-negative and  

03  ∗ ≥ 0 (59) 

So we have  

03  ∗ ≥ max 8(9O + 03  ;<∗ + $ ∗ − 1), 0> (510) 

Since 03  ∗ will always be greater than or equal to the left and right operands the 

expressions in equations (14) and (15) serve as a lower bound on the true expected 

delay. 

Corollary 1: In the single runway case the expression of expected delay shown in 

equations (14) and (15) serves as an exact representation of the true delay when all 

at least 1 flight arrives in a time interval (slot). 

The expression for the true expected delay was 

0! = max 789! + 0! ;< + $ − 1>, 0@ (52) 

When at least 1 flight arrives in every time interval (slot) the left operand is always 

greater than or equal to the right operand and the expression can be rewritten as 

0! = 9! + 0! ;< + $ − 1 (511) 

Linearity of (A11) allows the following expectations to be taken: 

03  = 9O + 03  ;< + $ − 1 (512) 

where 9O!  is the expected number of short-haul arrivals during slot s. Thus 03   is an 

exact transformation of the true expected delay.  
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