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Abstract

The presence of constraints in the on-line optimization problem solved by Model
Predictive Control algorithms results in a nonlinear control system, even if the plant
and model dynamics are linear. This is the case both for physical constraints, like sat-
uration constraints, as well for performance or safety constraints on outputs or other
variables of the process. Performance constraints can usually be softened by allowing
violation if necessary. This is advisable, as hard constraints can lead to stability prob-
lems. The determination of the necessary degree of softening is usually a trial-and-error
matter. This paper utilizes a theoretical framework that allows to relate hard as well
as soft constraints to closed-loop stability. The problem of determining the appropri-
ate degree of softening is addressed by treating the parameters (weights) affecting the
amount of softening as one-sided real-valued uncertainty and solving a robust stability
problem.

1 Approach

Model Predictive Control (MPC) algorithms solve on-line a constrained optimization prob-
lem at each sampling time. Standard formulations include hard constraints on inputs and
outputs of the process. The optimization is carried out over a future horizon assuming no
feedback is used during this future period. However, only the first in a sequence of "optimal”
future inputs is implemented and the problem is solved again at the next sampling point
with new information from feedback used to modify it. This fact often results in closed-loop
behavior quite different from the one predicted by the optimal solution of the on-line opti-
mization, which assumes uninterrupted open-loop implementation. In particular, we have
shown that output constraints can result in instability for processes with model error or
discrete models with unstable zeros (Zafiriou and Marchal, 1991). The framework that has
been developed has allowed us to show that constrained MPC algorithms with linear models
give rise to piece-wise linear control systems (Zafiriou, 1990). This framework can be used
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for tuning the MPC parameters to guarantee robust stability by simultaneous design of a set
of linear feedback controllers each of which corresponds to a constraint combination. How-
ever, the use of hard constraints restricts the degrees of freedom available to the designer.
When a particular combination of constraints is shown to result in instability, often the only
course of action is to remove them from the on-line optimization. This is usually the case
with output constraints placed on the first few points of the future constraint window of the
on-line optimization. Removal is equivalent to infinite softening of these constraints. This
“binary” choice between hard and infinitely softened constraints can be shown to be unsat-
isfactory in many cases, where the resulting closed-loop performance often is no better than
that of the unconstrained algorithm. An alternative is to allow those constraints that are
not physically hard to be softened by a “finite” amount. Such is usually the case for output
constraints. This can be accomplished by allowing the constraints to be violated by an ¢
amount, while new terms of the form W?2¢? are added to the standard quadratic objective
function (Ricker et al, 1989). Removal of a constraint is equivalent to using W=0, while the
constraint becomes hard as W becomes infinite. The tuning question is that of determining
the appropriate values for the various W weights. The framework that was developed for
hard constraints has been extended to the case of mixed hard and soft constraints (Zafiriou,
1991). However, the effort required to tune all parameters via a simultaneous design is too
great. A different approach has been followed by starting with the tuning of the uncon-
strained algorithm first, so that it is robustly stable. This is a task that is relatively simple
to accomplish via linear robust control techniques. The next step is to concentrate on the
tuning of the Ws. It can be shown that the stability problem can be formulated as one
where the Ws are treated as “uncertain” real-valued parameters with nominal value W=0.
The task is to find the largest value for which the system remains stable. For the case of one
output, relatively simple conditions can be derived for both nominal and robust stability of
the constrained MPC algorithm. For the general case, recent developments in the area of
robust stability conditions for one-sided real-valued parameter uncertainty can be used to
carry out the necessary computations.

2 Closed-loop Stability

An state space model is used to describe the process:

z(k+1) = 0a(k) + Ou(k)
y(k) = Ca(k) +d(k)

where z(k) is the state vector; u(k) and y(k) are the input and output vectors of the model
respectively; d(k) is the disturbance effect at the output at k; @, ©, C are the coefficient
matrices. The plant is assumed to be open-loop stable. Other types of models can also be
used, e.g., step response models (Garcia and Morshedi, 1986).

At sampling point k, the following optimization is carried out on-line:

f)[e(k + DTT%(k + 1) + Au(k + 1 — 1) D*Au(k + 1 — 1)] (1)

min
Au(k),... Au(k+M-1) &



The minimization of the objective function is carried out over the values of Au(k), Au(k +
1),..., Au(k + M — 1), where M is a specified parameter. The minimization is subject to
possible hard constraints on the inputs w, their rate of change Au, the outputs y and other
process variables usually referred to as associated variables. The details on the formulation
of the optimization problem can be found in Prett and Garcia (1988). After the problem is
solved on-line at k, only the optimal value for the first input Au(k) is implemented and the
problem is solved again at k 4+ 1.

The optimization problem can be rewritten as the standard quadratic programming prob-
lem:

1
min J(v) = -2-'UTG1) + gTv (2)
subject to
ATy > b,

where v = [u(k),...,u(k + M — 1)]%; the matrices G, A and vectors g, b are functions
of the MPC tuning parameters (P, M,I', D); the vectors ¢, b are also linear functions of
z(k), d(k), u(k —1). Then, the optimal solution v* corresponding to an active constraint
situation is computed from the following equation (Fletcher, 1987):

G -—A v* g
Rl ¥
where AT, b consist of the rows of AT, b that correspond to the constraints that are ac-
tive at the optimum and A* is the vector of the Lagrange multiplier corresponding to the

active constraint situation. The coefficient matrix is referred to as Lagrangian matrix and is
symmetric but not positive definite. If the inverse exists, then (Fletcher, 1987):

¢ Al [ H -T n
—AT 0 I
From (3),(4) we obtain u(k) in a state feedback form corresponding to a particular set J; of
constraints that are active at the optimum of the optimization solved at k:

wk) = [10...0)(—Hg+Th)
= @12(k) + @2d(k) + pau(k — 1) + ¢4

when J; is the empty set (unconstrained), H = G™':

uw(k) = —=[10...0]G™ g
= ¢@rz(k) + @ad(k) + @su(k — 1)

P1, P2, P3,P1, P2, P3, pa are functions of the MPC tuning parameters, state space model
coeflicient matrices, and J;. I 1s the identity matrix.

For linear model dynamics, Zafiriou (1990) showed that the constrained MPC is piece-wise
linear, meaning that the dynamics of MPC for a certain constraint set J; active, are those of
a discrete linear controller. This linear controller, denoted ¢y, (), depends explicitly only on
J;; it depends only implicitly on the past and current values of the plant inputs and outputs.
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These values together with external inputs (setpoints, disturbances) determine the J; that
corresponds to a sampling point. However, if at different sampling points the Quadratic
Program (QP) solution results in the same J;, the MPC dynamics at those points are those
of the same linear controller. For the case with the same number of inputs and outputs (for
other cases, cj, also can be derived from the above control laws), ¢j, as computed from the
above control laws, is given by:

~ -1,
ci(z)=P(z) (B -1 (5)
where P*(z) is the discrete model of the process = C'(zI — ®)~'0, and
B=Clzl = (®+ 0 —z7"p3) "o1)| 0T — 27 p3) T + 1

A necessary condition for the closed-loop operator mapping the states of the system (plant
+ controller) from one sampling point to the next, is that each of these linear controllers
yields a closed-loop stable system. Note that the contraction property implies closed-loop
stability. For more details and discussion the reader is referred to Zafiriou (1990).

In this paper we consider the case of output constraints only. These are defined over a
future prediction horizon:

yLSy(k+l)§yUa wbSlSwe (6)

where yr., yu are the lower and upper limits respectively. In Zafiriou and Marchal (1991) the
expressions for the cj, are given for special cases of combinations of points in the horizon, at
which the hard constraints may become active at the optimum of the on-line optimization.
It is also shown that for many important cases, the corresponding ¢y, result in an unstable
closed-loop system, regardless of the values of the tuning parameters of the objective function.
In such cases the only option is to soften the constraints by allowing violation by an amount
€. In the formulation here, the same violation variable € > 0 is used for all the points in the
constraint window. Hence the output constraints are softened to be:

yr—e<ylk+l)<yv+e, w <I<w. (7)

The term W?2e? is added to the objective function, where W is the weight that determines the
extent of softening. For W = oo we get hard constraints. W = 0 corresponds to completely
removing the constraints. For a nonzero finite W, and when the on-line QP results in a
nonzero €, then at the optimum for at least one of the points in the constraint window, say
for N, € [wy, we], we will have y(k+ N,) = yuv+ e or y(k+ N,) = yr, — e. Otherwise a smaller
¢ would reduce the objective function, while still satisfying the constraints. This point is the
one for which satisfaction of the constraint presents the greatest difficulty. The objective
function that allows for output softening can be written as:

min J(v, ¢) = %vT(k)Gv(k) + R0 (k) + %eTWTWe (8)

v,€

where € is the violation vector and W is the diagonal weight matrix. The output hard
constraints are described by (7).



Rewrite the objective function as:

mind(0) = 3070) | § iy | o0+ 67 oo )

where 97 (k) = [v(k) ¢].

Then, by following the same procedure as in the hard constraint case, we can set up the
stability analysis method by setting the diagonal entries of W (> 0) as one-sided uncertainties
in the ¢y, . The nominal value is W = 0 (unconstrained). The control law for the case with
active output constraint can be written as:

w(k)=[I 0...0](—Hg + Th) (10)
where

= G 4 GA[-(WTW) ™ — ATGL AT ATG!
= —G'A[-(WTW)™ — ATG1A]!

Ry

From this control law, we can construct the ¢y, as that in the hard contraint case (5) but
with the diagonal entries of W as one-sided uncertainties. The design task consists of two
steps. First design a stable unconstrained MPC (W = 0) with linear control theory. Then
use robust control theory to find the largest W for which stability is maintained.

3 Example

We consider a Multi-Effect Evaporator modeled by Ricker et al(1989):

5 2.69(—6s 4 1)e '
P = 0s 70 s + 1)

For a sampling time of 3 minutes,the discrete model is:

_ —0.174(2* — 1.0837z — 0.88585)z "

i)*
(2) 22 — 1.4095z + 0.47237

We select the following tuning parameters:
M=1,P=30,I'=1, D=0

These result in a stable unconstrained controller. Constraints are set on predictive outputs
y(k+1) and y(k +2). The controller that corresponds to the case that these two constraints
are active with softening weights is:

. _ (p/a) + (p2/ )WY + (ps/ 1) W
* 1+ (g2/ )W + (g3/ ) W4




where Wy, W, are the softening weights for the hard constraints of y(k + 1), y(k + 2)
respectively. And,

p1 = papa(877.632° — 2188.282* + 978.122° + 646.192° — 367.152)

pr = —2.89z°4+7.192* —3.222° — 2.122* 4 1.2z

ps = —3.832° +9.542% —4.262° — 2.822% 4+ 1.6z

o = ¢2q2(1978.862° — 47282* + 1786.472% + 1351.732%2 — 508.71z + 119.80)
g2 = 0.5z°—1.59z* +0.792% + 1.262% — 0.57z — 0.39

gs = 0.882° —3.472* +2.972° + 1.692% — 1.562 — 0.52

We treat the weights Wy, W, as uncertainties in the control system which are real-valued
numbers and greater than zero. We search for their upper bound such that the control
system remains stable.(The nominal value is W; = W, = 0, which corresponds to a closed-
loop stable system.) The control block diagram is shown in figure A and it can be rearranged
as shown in the figure B. The A, is the uncertainty matrix which is:

W2 0 0 0
0 W2 0 o0
0 0 W2 o0

0 0 0 W
And, M, is:

=P (p/ ) —P*(p2/q)b P*(p2/0)b(2/ar) P*(p2/a1)(gs/q1)
~P*(ps/q1 )y —P*(pa/q)p P*(ps/q1)¥(%2/11) P*(ps/q1)¥(q3/q1)
() P _¢’(‘I2/‘Z1) —¢‘(q3/(I1)
0 02 —(q2/q1) —(g3/q1)

where ¥ = (14 (p1/q1)P*)~ L.

We compute the structured singular value (Doyle, 1982) corresponding to the block di-
agram in figure B, and we can get the maximum value over the frequencies 0 to #/7" (T is
the sampling time) from figure C. The maximum value is equal to 0.0077. The computation
of the structured singular value is made according to Lee and Tits (1992). The maximum
softening weight can be computed from this value, and it is equal to 11.396.

4  Conclusions

This paper provides a method for obtaining the weights used in softening output constraints
of MPC algorithms. The technique results in the largest weight (hardest constraint) that
will not cause any stability problems. The task can be carried out as a second design step
following the design of the unconstrained MPC algorithm. Thus, although the control system
is nonlinear because of the constraint, the methods that have been developed in the literature
for designing unconstrained controllers can still be used in the first step.

The method is based on the idea of handling the weights as “uncertain” parameters.
Finding their largest value can be thought of as a robust stability problem, in which the
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uncertain parameters are real-valued with their nominal value at one end of the uncertainty
interval.
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