
ABSTRACT

Title of Dissertation: ON ALGORITHMS, FAIRNESS, AND INCENTIVES

Seyed A. Esmaeili
Doctor of Philosophy, 2023

Dissertation Directed by: John P. Dickerson and Aravind Srinivasan
Department of Computer Science

Much of decision making is now rendered at least partly through algorithms which were

originally designed to optimize an objective such as accuracy or revenue while mostly ignoring

the possible unfairness or harm that could be caused. As a result several case studies have demon-

strated empirically that deployed algorithmic decision making systems do in fact violate standard

notions of fairness. This has made the issue of fairness an important consideration in algorithm

design. In this thesis we will consider fair variants of fundamental and important problems in

machine learning and operations research.

We start by considering clustering where we focus on a common group (demographic) fair-

ness notion and address important variants of it: (I) We start with the frequent case where group

memberships are imperfectly known. Based on stochastic optimization we propose probabilistic

fair clustering which is a generalization of fair clustering that handles the case of unknown group

memberships. We derive approximation algorithms for this setting and empirically test their

performance. (II) As largely known in fair algorithms achieving fairness mostly comes at the

expense of degrading the value of the optimization objective. In fact, in the case of fair clustering

the degradation (price of fairness) can be unbounded. To handle this, we propose fair cluster-

ing under a bounded cost where we define a measure of unfairness and minimize this measure

subject to a pre-set upper bound on the clustering objective. We derive lower bounds on the ap-

proximation ratio and give approximation algorithms as well. (III) We consider the downstream

effects of clustering where the center (prototype) of each cluster is examined and each cluster is

assigned a label of a specific quality based on its prototype. These labels are shared over a collec-

tion of clusters and as a result traditional fair clustering is too restrictive. We therefore propose

fair labeled clustering where proportional demographic representation is to be preserved over the

labels instead of the clusters and derive algorithms for it. (IV) Motivated by the fact that at least

seven different fairness notions have been introduced so far in fair clustering, we take a step to-

wards understanding how these notions relate to one another. Specifically, we consider two group

representation-based fairness notions and show that an approximation algorithm for one can be

used to satisfy both notions simultaneously at a bounded degradation to the approximation ra-

tio. We further show how these two notions are incompatible with a collection of distance-based

fairness notions in clustering.

We then move to another problem, namely online bipartite matching which in its most

common form involves three interacting entities: two sides (buyers and sellers) to be matched and

the platform operator. Unlike the existing literature we derive online algorithms with competitive

ratio guarantees for the operator’s revenue as well as fairness guarantees for the two sides to be

matched, thus providing utility guarantees for all sides of the market.

Finally, we consider a problem where the incentives of the individuals and organizations

involved is a major consideration. Specifically, we consider the problem of redistricting and

gerrymandering. Inspired by the Kemeny rule for rank aggregation, we introduce a simple and

interpretable family of distances over redistricting maps and define the medoid map which mirrors

the Kemeny ranking. Interestingly, we show that a by-product of our framework is that it can

detect some gerrymandered instances. Specifically, the 2011 and 2016 enacted maps of North

Carolina and the 2011 enacted map of Pennsylvania (all considered to be gerrymandered) are all

shown to be at least in the 99th distance percentile in comparison to an ensemble of redistricting

maps. This gives a significant advantage in gerrymandering detection since the previous methods

relied on election outcomes whereas our method is purely distance-based.

ON ALGORITHMS, FAIRNESS, AND INCENTIVES

by

Seyed Adulaziz Esmaeili

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2023

Advisory Committee:
Associate Professor John P. Dickerson, Chair/Advisor
Professor Aravind Srinivasan, Co-Advisor
Professor S. Raghavan, Dean’s Representative
Dr. Aleksandrs Slivkins
Assistant Professor Laxman Dhulipala

© Copyright by
Seyed Abdulaziz Esmaeili

2023

Dedication

To my family.

ii

Acknowledgments

I would like to express my sincere gratitude to my academic advisors, John P. Dickerson

and Aravind Srinivasan. Their insights and help in various projects and general academic guid-

ance has made this milestone possible and much easier. I would also like to thank them for being

available for meetings and enabling many career opportunities.

I would also like to thank my collaborators for their valuable insights and contributions:

Brian Brubach, Darshan Chakrabarti, Davidson Cheng, Sharmila Duppala, Haley Grape, Chris-

tine Herlihy, Marina Knittel, Jamie Morgenstern, Vedant Nanda, Suho Shin, Alex Slivkins,

Daniel Smolyak, Leonidas Tsepenekas, and Claire Zhang.

I would like to thank S. Raghu Raghavan, Alex Slivkins, and Laxman Dhulipala for taking

the time to serve on my defense committee. In addition, I would like to thank Ian Miers for

serving on my proposal committee.

Tom Hurst has provided me with so much help over the years that have made things much

easier and smoother and I’m very grateful for his assistance. I would like to thank my friends

Shaopeng Zhu and Xuchen You for their advice and encouragement.

Finally, I would like to thank my parents for giving me the upbringing that made this

achievement possible. I am also very grateful for my sister and brothers, their positive influence

over me has been and continues to be immense. I dedicate this thesis to them.

iii

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents iv

List of Tables vi

List of Figures vii

Chapter 1: Introduction 1
1.1 Overview of the Thesis . 2

1.1.1 Fair Clustering . 2
1.1.2 Fairness in Online Bipartite Matching 6
1.1.3 Implications of Distance over Redistricting Maps: Central and Outlier Maps 7

Chapter 2: Fair Clustering 9
2.1 Preliminaries . 9
2.2 Probabilistic Fair Clustering . 11

2.2.1 Approximation Algorithms and Theoretical Guarantees 11
2.2.2 Experiments . 22

2.3 Fair Clustering Under a Bounded Cost . 26
2.3.1 Hardness of FCBC & FABC . 30
2.3.2 Algorithms for FCBC . 39
2.3.3 Fairness Across the Clusters is not Possible 54
2.3.4 Experiments . 56

2.4 Fair Labeled Clustering . 59
2.4.1 Further Definitions for the Labeled Fair Clustering Problem 63
2.4.2 Algorithms and Theoretical Guarantees for LCAL 66
2.4.3 Algorithms and Theoretical Guarantees for LCUL 72
2.4.4 Experiments . 83

2.5 Doubly Constrained Fair Clustering . 90
2.5.1 Preliminary Remarks, Definitions and Symbols 92
2.5.2 Algorithms for GF+DS . 93
2.5.3 Solving GF+DS using a GF Solution 105
2.5.4 Price of (Doubly) Fair Clustering . 108
2.5.5 Incompatibility with Other Distance-Based Fairness Constraints 111

iv

2.5.6 Experiments . 114

Chapter 3: Fairness in Online Bipartite Matching 117
3.1 Related Work . 119
3.2 Preliminaries and Problem Setup . 120
3.3 Main Results . 123
3.4 Algorithms and Theoretical Guarantees . 125

3.4.1 Group Fairness for the KIID Setting: 125
3.4.2 Group Fairness for the KAD Setting: . 137
3.4.3 Individual Fairness KIID and KAD Settings: 143

3.5 Proofs of Impossibility Results . 145
3.6 Experiments . 148

Chapter 4: Implications of Distance over Redistricting Maps: Central and Outlier Maps 152
4.1 Related Work . 154
4.2 Problem Setup . 156

4.2.1 Distance over Redistricting Maps . 158
4.3 Justification for Choosing a Central Map . 159
4.4 Algorithms and Theoretical Guarantees . 162

4.4.1 Obtaining the Sample Medoid . 162
4.4.2 Sample Complexity for Obtaining the Population Centroid 165
4.4.3 Obtaining the Population Medoid . 167

4.5 Experiments . 174

Chapter 5: Remarks and Future Work 179
5.1 Fair Clustering . 179
5.2 Redistricting and Gerrymandering . 180

Bibliography 182

v

List of Tables

3.1 Competitive ratios of TSGFKIID with Greedy heuristics on the NYC dataset at
|U | = 49, |V | = 172. Higher competitive ratio indicates better performance. . . 151

vi

List of Figures

2.1 Network flow construction. 17
2.2 Points 2 and 4 have been selected as centers by the integer solution. Each points

has its probability value written next to. 19
2.3 For pacc = 0.7 & pacc = 0.8, showing (a): #clusters vs. maximum additive viola-

tion; (b): #clusters vs. PoF . 24
2.4 Plot showing pacc vs PoF, (a):δ = 0.2 and (b):δ = 0.1. 24
2.5 Comparing our algorithm to thresholding followed by deterministic fair cluster-

ing: (a)maximum violation, (b) PoF. 25
2.6 Plot showing the performance of our independent sampling algorithm over the

Census1990 dataset for k = 5 clusters with varying values on the cluster size
lower bound:(a)maximum violation normalized by the cluster size, (b)the price
of fairness. 26

2.7 Comparison between group fair (left) and color-blind (right) clustering. Unlike
color-blind clusters, group fair clusters may combine faraway points (bottom-left). 27

2.8 Figure follows the example of [1]. We show the fair assignment resulting graph,
from the given Exact Cover by 3-Sets example where we have U = {a, b, c, d, e, f}
and F = {A = {a, b, c}, B = {b, c, d}, C = {d, e, f}}. 32

2.9 Proportions and bounds for two colors. r1 = 0.25, r2 = 0.75, λi = δri for
i ∈ {1, 2} where δ = 0.1. Notice how if color 1 violates the upper bound by
having p1 = 0.3, then we must have p2 = 0.7, but color 2 is not violating. On the
other hand, a violation for color 1 with p′1 = 0.4 implies p′2 = 0.6 which causes a
violation for color 2. 48

2.10 PoF vs the GROUP-UTILITARIAN objective for the Adult and Census1990 datasets. 57
2.11 PoF versus the proportional violation for different groups (each colored graph is

a group) in the Adult and Census1990 datasets. 58
2.12 Example of the reduction for theorem (2.4.3). This is an instance of the LUCL

problem for an instance U = {a, b, c, d, e, f},W1 = {a, b, c},W2 = {c, d, e} and
W3 = {d, e, f} with q = 2, |U | = 3q and t = 3. 73

2.13 Adult dataset results (a):PoF, (b):∆color . 86
2.14 CreditCard dataset results (a):PoF, (b):∆color 86
2.15 A plot of |ϕ−1(P)| vs the clustering cost (normalized by the maximum cost ob-

tained). 87
2.16 LCUL results on the Adult dataset. (a):PoF, (b):∆color, (c):∆points/label ,(d):∆center/label. 88

vii

2.17 LCUL results on the CreditCard dataset. (a):PoF, (b):∆color, (c):∆points/label ,(d):∆center/label. 89
2.18 Dataset size vs algorithm Run-Time: (left) LCAL, (right) LCUL. 90
2.19 In this graph the distance between the points is the path distance. 94
2.20 Illustration of DIVIDE subroutine. 95
2.21 Figure showing the PoF relation between Unconstrained, GF, DS, and GF+DS

clustering. 108
2.22 An clustering instance made of k “masses” each having n

k
points. Each mass is

seperated from the other by a distance of at least R. 109
2.23 This clustering instance is similar to Figure 2.22 except that the color assignments

follow a different pattern. 110
2.24 Instances to show incompatibility between Proportional Fairness and GF. We

always have n/2 blue points on the left and n/2 red points on the right. For even
k we would have k/2 locations for the blue and red points each. For odd k we
have ⌊k/2⌋ blue locations and ⌈k/2⌉ red locations. For each color, there is always
a location at the center at a distance r from the other locations. Points of different
color are at a distance of at least R from each other. For any value of αAP for the
proportionally fair constraint, we set r < R

2αAP
. 112

2.25 (In)Compatibility of clustering constraints. Red arrows indicate empty feasible
set when both constraints are applied, while green arrows indicate non-empty
feasibility set when both constraints are applied. 113

2.26 Adult dataset results: (a) PoF comparison of 5 algorithms, with COLOR-BLIND
as baseline; (b) GF-Violation comparison; (c) DS-Violation comparison. 115

3.1 Competitive ratios for TSGFKIID over the operator’s profit, offline (driver) fair-
ness objective, and online (rider) fairness objective with different values of α, β, γ.
Note that “Matching” refers to the case where driver and rider utilities are set
to 1 across all edges. The experiment is run with α = {0, 0.1, 0.2, ..., 1}, and
β = γ = 1−α

2
. Higher competitive ratio indicates better performance. 148

4.1 We are given a hypothetical state consisting of 4 vertices V = {v1, v2, v3, v4}
with M1 and M2 being two valid redistricting maps. The adjacency matrices
A1,A2, and edit distance interpretation of dΘ(A1, A2) are demonstrated. Note that
dΘ(A1, A2) = θ(1, 2) + θ(3, 4) + θ(1, 3) + θ(2, 4) which is exactly the minimum
sum of edge weights that need to be deleted and added to obtain A2 from A1. . . 160

4.2 The graph shows a hypothetical state. Blue edges indicate that the vertices are
adjacent geographically. All vertices have a weight (population) of 1, except for
states {a1, b1, a4, b4} which have a weight of 1

2
. 170

4.3 Maps M1,M2,M3, and M4. Vertices in the same district are connected with edges. 171
4.4 The first map is M1 and the last is M3. The middle map shows the edges the

should be deleted from M1 (marked with X) and the edges should be added
to M1 (dashed green edges) to produce M3. The weight of each edge that is
deleted or added is shown next to it in blue. By adding the weights we get that
dΘ(M1,M3) = 6 + 4ϵ. 173

viii

4.5 Distance histograms for NC using the unweighted distance measure. Different
plots correspond to different seeds. For NC the distances of gerrymandered maps
are indicated with red markers whereas the distances of the remedial maps are
indicated with green markers (the ◦ and the X are for 2011 and 2016 enacted
maps, respectively). 174

4.6 Distance histograms for PA, the distances of gerrymandered maps are indicated
with red markers whereas the distances of the remedial maps are indicated with
green markers. 174

4.7 NC medoids, each column is for a specific seed. Top row: Aclosest, Bottom row:
Â∗. 178

ix

Chapter 1: Introduction

Fairness has become an important consideration in algorithm design. An unsurprising fact

given the widespread use of algorithms in decision making systems that have serious consequence

on the lives of individuals. Recidivism prediction [2], kidney exchange [3], loan approval [4],

hiring [5], and many others are examples of real-life situations where algorithms now play a key

role in deciding the outcome. Several studies have documented what can be easily considered

fairness violations done by algorithmic decision making systems, see for example [6,7] for many

instances of algorithmic fairness violations.

Given the undeniable fact that algorithms can indeed violate various notions of fairness,

the recent years have seen a significant surge in the design of fair algorithms. In this thesis we

address fairness issues in a collection of fundamental problems in machine learning and opera-

tions research. We start with clustering –arguably the most fundamental problem in unsupervised

learning– and consider various notions of group fairness. We then move to online bipartite match-

ing where in contrast to previous work we consider the welfare of all three sides of the market:

the platform operator and the two sides to be matched.

In addition to fairness, the incentives of individuals and organizations is also an important

consideration which algorithm design should take into account. In this direction, we consider

redistricting –a problem which dates back to over two centuries– where inspired by the Kemeny

1

rule we introduce a simple and interpretable family of distances over redistricting maps and define

a medoid map which mirrors the Kemeny ranking. Interestingly, we show that a by product of

our framework is that it can detect gerrymandered instances. Specifically, the 2011 and 2016

enacted maps of North Carolina and the 2011 enacted map of Pennsylvania (all considered to be

gerrymandered) are all shown to be at least in the 99th distance percentile in comparison to an

ensemble of redistricting maps.

1.1 Overview of the Thesis

Chapter 2 is dedicated to fair clustering where a collection of group fairness notions are

studied. Chapter 3 is concerned with fairness in online matching. Finally, in chapter 4 we dis-

cuss our work on redistricting and gerrymandering. Finally, in chapter 5 we point out some

remarks and possible opportunities for future work specifically for fair clustering and redistrict-

ing/gerrymandering. Below, we give a more detailed description of the results of chapters 2, 3,

and 4.

1.1.1 Fair Clustering

The fair clustering problem was introduced by [8]. In its most basic form the problem

receives as input a collection of points in a metric space that are to be grouped into k clusters

according to some clustering objective such as the k-means. However, unlike the typical set-

ting each point has a color associated with it which indicates its group membership. Based on

disparate impact [9] the clustering is fair if each cluster contains close to population level pro-

portions of each color. We identify various modifications and generalizations of this setting and

2

give algorithms with theoretical guarantees for them. We consider a collection of problems in

this setting as discussed below.

1.1.1.1 Probabilistic Fair Clustering

In many applications group memberships may not be fully known (see [10–13]). This can

be caused by various factors such as the the group memberships not being available in the dataset,

incorrect or noisy reporting of group memberships. This issue requires a generalization of fair

clustering. We therefore introduce probabilistic fair clustering where the group memberships are

known probabilistically instead of deterministically. More specifically, in the typical fair cluster-

ing setting each point j has a single color associated with it from the set of colors H. However,

in probabilistic fair clustering, each point j now has a set of values phj associated with it where

phj denotes the probability that point j has color h, clearly phj ≥ 0 and
∑

h∈H phj = 1. Having

generalized the color assignments to the probabilistic setting, we also generalize the fairness con-

straint. Specifically, now the fairness constraint is for each cluster to have the right proportions

of colors in expectation instead of deterministically. This setting proves to be much more chal-

lenging then the deterministic setting. For the two color case, we show algorithms with bounded

fairness violations. For the multiple color case, we show a fixed parameter tractable algorithm

under an assumption that the size of each cluster in the optimal solution is lower bounded by

some large enough value.

This work was published in NeurIPS-2020, see [14].

3

1.1.1.2 Fair Clustering under a Bounded Cost

Like most optimization problem once a fairness constraint is imposed, a degradation in

the optimization objective is mostly unavoidable [15, 16]. In fact, in the case of fair clustering

the degradation in the clustering objective, i.e. the price of fairness is unbounded. We there-

fore, introduce the problem of fair clustering under a bounded cost where instead of minimizing

the clustering objective subject to the fairness constraint, we are instead given a pre-set upper

bound on the clustering cost and we are supposed to minimize a measure of “unfairness” instead.

Clearly, the first issue in this problem is to define a suitable measure of unfairness, this is done us-

ing standard notions from welfare economics. Specifically, we define three notions of unfairness

objectives to be minimized based on the utilitarian, egalitarian, and leximin objectives. Having

defined these objectives, we prove that these problems are NP-hard and derive lower bounds

on the approximation guarantees of any algorithm. We then show algorithms with theoretical

guarantees for this setting.

This work was published in NeurIPS-2021, see [17].

1.1.1.3 Fair Labeled Clustering

A lacking issue in fair clustering work and arguably in clustering in general [18] is that the

downstream effects are not often considered. It is natural in a clustering setting to expect that

different clusters will receive different outcomes and that these outcomes will be of a different

quality. Therefore, an individual in a given cluster receives a specific utility for being in that

cluster. Accordingly, it maybe desired to maintain the right demographic proportions not within

4

the clusters but rather across the labels of the clusters. We therefore introduce the problem of fair

labeled clustering. In fair labeled clustering each cluster (center) has a label associated with it

and we minimize the clustering objective subject to having the right proportions across the labels

instead of within the clusters. We further consider other constraints on this problem such as lower

and upper bounds on the number of individuals in each label. Moreover, we consider a setting

where the labels of the centers are assigned and known and where the labels are unknown and

free to be assigned subject to possible lower and upper bounds on the number of centers of each

label.

This work was published in KDD-2022, see [19].

1.1.1.4 Doubly Constrained Fair Clustering

In addition to the group fairness constraint considered in the previous outlined research,

there have been other fairness notions that had been considered in fair clustering. One can count

six more different constraints that had been considered in the literature as well [20]. The issue is

that while each constraint is well-justified, it is considered exclusively in isolation. Therefore, the

relation between these constraints and how one may satisfy more than one constraint simultane-

ously is an important question. We take the first step in this direction. Specifically, we consider

the above mentioned group fairness (GF) notion of [21] and the diversity in center selection (DS)

notion of [22, 23] which essentially states that different groups should be represented in the se-

lected centers according to some pre-set lower and upper bound values specific to each group,

thereby ensuring group diversity in the selected centers. We show that given an approximation

5

algorithm for either problem (GF or DS only) the solution can be post-processed to satisfy both

constraints simultaneously at a bounded degradation to the clustering cost. We also study the

price of fairness –the degradation in the clustering cost due to imposing fairness constraints– and

show that any GF solution can be post-processed at a bounded degradation to the clustering cost

whereas the reverse is not true. Further, we show the GF and DS are each incompatible with a

collection of distance based fairness notions, i.e. having an empty feasible set in general.

This work is currently under review, see [24].

1.1.2 Fairness in Online Bipartite Matching

Matching is among the most fundamental problems in combinatorial optimization and eco-

nomics. The online and bipartite variant of matching [25, 26] has found numerous applications

in many domains including ad allocation, ridesharing, and crowdsourcing to name a few. Since

the vertices on one side of the bipartite graph are often used to represent users, workers, or

drivers and on the other side they represent ads, employers, or riders; the matching outcomes and

their quality have a clear effect on the welfare of the vertices (which are workers or employers,

etc). Therefore, fairness considerations in this setting are well-founded. In most online matching

applications, there are three entities: the platform operator and two sides to be matched. The

previous work has considered fairness/utility in this setting [27–29] but only for one or two sides

simultaneously. In our work, we consider Rawlsian fairness considerations for each side as well

as utility considerations for the platform operator. We consider both individual and group fair-

ness. Moreover, we show hardness results which bound the performance of any algorithm as well

6

as other results that show an intrinsic conflict between individual and group notions of fairness.

This work was published in AAAI 2023, see [30].

1.1.3 Implications of Distance over Redistricting Maps: Central and Outlier

Maps

Redistricting is an important problem in any representative democracy. Given a state, re-

districting is the process of partitioning the state into a collection of districts such that a collection

of rules are satisfied. The most common of these rules are contiguity, equal population, and com-

pactness. Further additional rules are also often imposed and some are state-dependent. The am-

biguity of these rules, leads to a large collection of possible redistricting maps and therefore the

entity in charge of redistricting (often a collection of elected representatives) tend to select maps

that place their political party at an unfair advantage. This phenomenon is well-recognized and

referred to as gerrymandering [31]. As a result, in the last decade a collection of Markov Chain

Monte Carlo (MCMC) methods for sampling valid redistricting maps were introduced [32, 33].

These MCMC based methods could in some situations be used to show that an enacted map is

gerrymandered. For example, a histogram over the set of all possible redistricting maps of the

won seats for each party can be estimated. Using such a histogram, it maybe possible to arrive

at the conclusion that the election outcome is “rare”. That is, it occurs only over a small set of

maps in comparison to the whole set of other possible maps. Arguments of this kind were used

to show that some enacted redistricting maps are in fact gerrymandered [34].

In our work we study the implications of a distance measure over redistricting maps. More

7

specifically, inspired by the Kemeny rule, we introduce a distance measure over redistricting

maps and define the medoid map which mirrors the Kemeny ranking. We discuss computational

and statistical results for obtaining the medoid map. Furthermore, we also define the centroid

map –which is not a valid map but a helpful mathematical object– and discuss some of its im-

portant properties and applications. Finally, we show that our framework can be used to detect

gerrymandered instances. Specifically, the 2011 and 2016 enacted maps of North Carolina and

the 2011 enacted map of Pennsylvania (all considered to be gerrymandered) are all shown to be

at least in the 99th distance percentile in comparison to an ensemble of redistricting maps. Im-

portantly, unlike previous methods for detecting gerrymandered maps our distance based method

does not use election results.

This work is currently under review, see [35].

8

Chapter 2: Fair Clustering

This chapter focuses on fair clustering. Most of the sections are dedicated to generalizations

of the original group fairness definition that was introduced in [8]. Further, we focus on center

based clustering objectives, i.e. k-center, k-median, and k-means clustering.

2.1 Preliminaries

Let C be the set of points in a metric space with distance function d : C ×C → R≥0. The

distance between a point j and a set S is defined as d(j, S) = minj∈S d(j, j). In a k-clustering

an objective function Lk(C) is given, a set S ⊆ C of at most k points must be chosen as the set

of centers, and each point in C must get assigned to a center in S through an assignment function

ϕ : C → S, forming a k-partition of the original set: C1, . . . , Ck. The optimal solution is defined

as a set of centers and an assignment function that minimizes the objective Lk(C). The well

known k-center, k-median, and k-means can all be stated as the following problem:

min
S:|S|≤k,ϕ

Lk
p(C) = min

S:|S|≤k,ϕ

(∑
j∈C

dp(j, ϕ(j))
)1/p

(2.1)

where p equals ∞, 1, and 2 for the case of the k-center, k-median, and k-means, respectively.

For such problems the optimal assignment for a point j is the nearest point in the chosen set of

9

centers S. However, in the presence of additional constraints such as imposing a lower bound on

the cluster size [36] or an upper bound [37, 38] this property no longer holds. In general, this is

also true in fair clustering.

To formulate the fair clustering problem, a set of colorsH = {h1, . . . , h, . . . , hm} is intro-

duced and each point j is mapped to a color through a given function χ : C → H. Previous work

in fair clustering [1, 8, 39, 40] adds to (2.1) the following proportional representation constraint,

i.e.:

∀i ∈ S,∀h ∈ H : lh| Ci | ≤ | Ci,h | ≤ uh| Ci | (2.2)

where Ci,hℓ
is the set of points in cluster i having color hℓ. The bounds lh, uh ∈ (0, 1) are given

lower and upper bounds on the desired proportion of a given color in each cluster, respectively.

Objective 2.1 and constraint 2.2 are essentially the main problem we study in this chap-

ter. In particular, in section 2.2 we consider the problem under probabilistic knowledge of group

memberships. Moreover, in section 2.3 we consider the problem is what is essentially a reverse

format, i.e. the clustering cost is set as a constraint and an unfairness measure is instead min-

imized. Additionally, in section 2.4 we consider fairness while thinking about the downstream

effects of clustering. Specifically, we consider the case where each center has a label assigned

to it and where we are supposed to achieve demographic fairness over the labels not the centers.

Finally, in section 2.5 we consider the constraint of 2.2 and another fair clustering constraint si-

multaneously. Specifically, we consider the diversity in center selection constraint [22, 23]. We

show algorithms that satisfy both constraints simultaneously. Further, we show how both of these

constraints are incompatible with a collection of distance based fair clustering notions.

10

2.2 Probabilistic Fair Clustering

In many applications the group memberships (colors of each point or vertex) are not fully

known (see [10–13]). Therefore, we introduce probabilistic fair clustering where we generalize

the problem by assuming that the color of each point is not known deterministically but rather

probabilistically. That is, each point j has a given value phj for each h ∈ H, representing the

probability that point j has color h, with
∑

h∈H phj = 1.

The constraints are then modified to have the expected color of each cluster fall within the

given lower and upper bounds. This leads to the following optimization problem:

min
S:|S|≤k,ϕ

Lk
p(C) (2.3a)

s.t. ∀i ∈ S,∀h ∈ H : lhℓ
|ϕ−1(i)| ≤

∑
j∈ϕ−1(i)

phℓ
j ≤ uhℓ

|ϕ−1(i)| (2.3b)

Following [40], we define a γ violating solution to be one for which for all i ∈ S:

lhℓ
|ϕ−1(i)| − γ ≤

∑
j∈ϕ−1(i)

phℓ
j ≤ uhℓ

|ϕ−1(i)|+ γ (2.4)

This effectively captures the amount γ, by which a solution violates the fairness constraints.

2.2.1 Approximation Algorithms and Theoretical Guarantees

We essentially have two algorithms although they involve similar steps. One algorithm is

for the two-color case which is discussed in section (2.2.1.1) and the other algorithm is for the

multiple-color case under a large cluster assumption which is discussed in section (2.2.1.2).

11

2.2.1.1 Algorithms for the Two Color Case

Our algorithm follows the two step method of [40], although we differ in the LP rounding

scheme. Let PFC(k, p) denote the probabilistic fair clustering problem. The color-blind cluster-

ing problem, where we drop the fairness constraints, is denoted by Cluster(k, p). Further, define

the fair assignment problem FA-PFC(S, p) as the problem where we are given a fixed set of cen-

ters S and the objective is to find an assignment ϕ minimizing Lk
p(C) and satisfying the fairness

constraints 2.3b for probabilistic fair clustering. We prove the following (similar to theorem 2

in [40]):

Theorem 2.2.1. Given an α-approximation algorithm for Cluster(k, p) and a γ-violating algo-

rithm for FA-PFC(S, p), a solution with approximation ratio α + 2 and constraint violation at

most γ can be achieved for PFC(k, p).

Proof. Let IPFC a given instance of PFC(k, p), SOLPFC = (S∗
PFC, ϕ

∗
PFC) is an optimal solution

of IPFC and OPTPFC is its corresponding optimal value. Also, for Cluster(k, p) and for any

instance of it, the optimal value is denoted by OPTCluster and the corresponding solution by

SOLCluster = (S∗
Cluster, ϕ

∗
Cluster).

The proof closely follows that from [40]. First running the color-blind α approximation

algorithm results in a set of centers S, an assignment ϕ, and a solution value that is at most

αOPTCluster ≤ αOPTPFC. Note that OPTCluster ≤ OPTPFC since PFC(k, p) is a more con-

strained problem than Cluster(k, p). Now we establish the following lemma:

Lemma 2.2.2. OPTFA-PFC ≤ (α + 2)OPTPFC

Proof. The lemma is established by finding the instance satisfying the inequality. Let ϕ′(j) =

12

argmini∈S d(i, ϕ
∗
PFC(j)), i.e. an assignment that routes the vertices from the optimal center to

the nearest center in color-blind solution S. For any point j the following holds:

d(j, ϕ′(j)) ≤ d(j, ϕ∗
PFC(j)) + d(ϕ∗

PFC(j), ϕ
′(j))

≤ d(j, ϕ∗
PFC(j)) + d(ϕ∗

PFC(j), ϕ(j))

≤ d(j, ϕ∗
PFC(j)) + d(j, ϕ∗

PFC(j)) + d(j, ϕ(j))

= 2d(j, ϕ∗
PFC(j)) + d(j, ϕ(j))

stacking the distance values in the vectors d⃗(j, ϕ′(j)), d⃗(j, ϕ∗
PFC(j)), and d⃗(j, ϕ(j)). By the virtue

of the fact that
(∑

j∈C x
p(j)

)1/p is the ℓp-norm of the associated vector x⃗ and since each entry in

d⃗(j, ϕ′(j)) is non-negative, the triangular inequality for norms implies:

(∑
j∈C

dp(j, ϕ′(j))
)1/p ≤ 2

(∑
j∈C

dp(j, ϕ∗
PFC(j))

)1/p
+
(∑

j∈C

dp(j, ϕ(j))
)1/p

It remains to show that ϕ′ satisfies the fairness constraints 2.3b, for any color h and any center i

in S, denote N(i) = {j ∈ S∗
PFC| argmini′∈S d(i

′, j) = i}, then we have:

∑
j∈ϕ′−1(i) p

h
j

|ϕ′−1(i)|
=

∑
j∈N(i)

(∑
j∈ϕ∗−1

PFC(j)
phj

)
∑

j∈N(i) |ϕ∗−1
PFC(j)|

13

It follows by algebra and the lower and upper fairness constrain bounds satisfied by ϕ∗
PFC:

lh ≤ min
j∈N(i)

(∑
j∈ϕ∗−1

PFC(j)
phj

)
|ϕ∗−1

PFC(j)|

≤

∑
j∈N(i)

(∑
j∈ϕ∗−1

PFC(j)
phj

)
∑

j∈N(i) |ϕ∗−1
PFC(j)|

≤ max
j∈N(i)

(∑
j∈ϕ∗−1

PFC(j)
phj

)
|ϕ∗−1

PFC(j)|

≤ uh

This shows that there exists an instance for FA-PFC that both satisfies the fairness constraints

and has cost ≤ 2OPTPFC +αOPTCluster ≤ (α + 2)OPTPFC.

Now combining the fact that we have an α approximation ratio for the color-blind problem,

along with an algorithm that achieves a γ violation to FA-PFC with a value equal to the optimal

value for FA-PFC, the proof for theorem 2.2.1 is complete.

Now we describe the steps of the algorithm:

Step 1, Color-Blind Approximation Algorithm: At this step an ordinary (color-blind) α-

approximation algorithm is used to find the cluster centers. For example, the Gonzalez algo-

rithm [41] can be used for the k-center problem or the algorithm of [42] can be used for the

k-median. This step results in a set S of cluster centers. Since this step does not take fairness into

account, the resulting solution does not necessarily satisfy constraints 2.3b for probabilistic fair

clustering.

Step 2, Fair Assignment Problem: In this step, a linear program (LP) is set up to satisfy

the fairness constraints. The variables of the LP are xij denoting the assignment of point j to

14

center i in S. Specifically, the LP is:

min
∑

j∈C,i∈S

dp(i, j)xij (2.5a)

s.t. ∀i ∈ S and ∀h ∈ H : (2.5b)

lh
∑
j∈C

xij ≤
∑
j∈C

phjxij ≤ uh

∑
j∈C

xij (2.5c)

∀j ∈ C :
∑
i∈S

xij = 1, 0 ≤ xij ≤ 1 (2.5d)

Since the LP above is a relaxation of FA-PFC(S, p), we have OPTLP
FA-PFC ≤ OPTFA-PFC. We

note that for k-center there is no objective, instead we have the following additional constraint:

xij = 0 if d(i, j) > w where w is a guess of the optimal radius. Also, for k-center the opti-

mal value is always the distance between two points. Hence, through a binary search over the

polynomially-sized set of distance choices we can obtain the minimum satisfying distance.

What remains is to round the fractional assignments xij resulting from solving the LP.

Step 3, Rounding for the Two Color Case: Our rounding method is based on calculating

a minimum-cost flow in a carefully constructed graph. For each i ∈ S, a set Ci with |Ci| =⌈∑
j∈C xij

⌉
vertices is created. Moreover, the set of vertices assigned to cluster i, i.e. ϕ−1(i) =

{j ∈ C |xij > 0} are sorted in a non-increasing order according to the associated probability pj

and placed into the array A⃗i. A vertex in Ci (except possibly the last) is connected to as many

vertices in A⃗i by their sorting order until it accumulates an assignment value of 1. A vertex in A⃗i

may be connected to more than one vertex in Ci if that causes the first vertex in Ci to accumulate

an assignment value of 1 with some assignment still remaining in the A⃗i vertex. In this case the

15

second vertex in Ci would take only what remains of the assignment.

Algorithm 1 Form Flow Network Edges for Cluster Ci

A⃗i are the points j ∈ ϕ−1(i) in non-increasing order of pj
initialize array a⃗ of size |Ci| to zeros, and set s = 1

put the assignment xij for each point j in A⃗i in z⃗i according the vertex order in A⃗i

for q = 1 to |Ci| do
a⃗(q) = a⃗(q) + xiA⃗i(s)

, and add edge (A⃗i(s), q)

z⃗i(s) = 0
s = s+ 1 {Move to the next vertex}
repeat
valueToAdd = min(1− a⃗(q), z⃗i(s))

a⃗(q) = a⃗(q) + valueToAdd, and add edge (A⃗i(s), q)
z⃗i(s) = z⃗i(s)− valueToAdd
if z⃗i(s) = 0 then
s = s+ 1

end if
until a⃗(q) = 1 or s > |A⃗i| {until we have accumulated 1 or ran out of vertices}

end for

We denote the set of edges that connect all points in C to points in Ci by EC,Ci
. Also, let

Vflow = C ∪(∪i∈SCi) ∪ S ∪ {t} and Eflow = EC,Ci
∪ ECi,S ∪ ES,t, where ECi,S has an edge from

every vertex in Ci to the corresponding center i ∈ S. Finally ES,t has an edge from every vertex

i in S to the sink t if
∑

j∈C xij >
⌊∑

j∈C xij

⌋
. The demands, capacities, and costs of the network

are:

• Demands: Each v ∈ C has demand dv = −1 (a supply of 1), du = 0 for each u ∈ Ci,

di =
⌊∑

j∈C xij

⌋
for each i ∈ S. Finally t has demand dt = |C| −

∑
i∈S di.

• Capacities: All edge capacities are set to 1.

• Costs: All edges have cost 0, expect the edges in EC,Ci
where

∀(v, u) ∈ EC,Ci
, d(v, u) = d(v, i) for the k-median and d(v, u) = d2(v, i). For the k-

center, either setting suffices.

16

v1

v2

v3

v4

v5

v6

c1i

c2i

c3i

i

i′

t

Figure 2.1: Network flow construction.

See Figure 2.1 for an example. It is clear that the entire demand is | C | and that this is the

maximum possible flow. The LP solution attains that flow. Further, since the demands, capacities

and distances are integers, an optimal integral minimum-cost flow can be found in polynomial

time. If x̄ij is the integer assignment that resulted from the flow computation, then violations are

as follows:

Theorem 2.2.3. (1) The number of vertices assigned to a cluster (cluster size) is violated by at

most 1, i.e. |
∑

j∈C x̄ij−
∑

j∈C xij| ≤ 1. (2) The fairness violation is at most 2, i.e. |
∑

j∈C x̄ijpj−∑
j∈C xijpj| ≤ 2.

Proof. Part (1) follows by the demands and capacities set by the network flow scheme. To prove

part (2), then note that for a given center i, every vertex q ∈ Ci is assigned some vertices and

adds value
∑

j∈ϕ−1(i,q) pjx
q
ij to the entire average (expected) value of cluster i where ϕ−1(i, q)

refers to the subset in ϕ−1(i) assigned to q. After the rounding,
∑

j∈ϕ−1(i,q) pjx
q
ij will become∑

j∈ϕ−1(i,q) pjx̄
q
ij . Denoting maxj∈ϕ−1(i,q) pj and minj∈ϕ−1(i,q) pj by pmax

q,i and pmin
q,i , respectively.

17

The following bounds the maximum violation:

|Ci|∑
q=1

(∑
j∈ϕ−1(i,q)

pjx̄
q
ij

)
−

|Ci|∑
q=1

(∑
j∈ϕ−1(i,q)

pjx
q
ij

)

=

|Ci|∑
q=1

∑
j∈ϕ−1(i,q)

(
pjx̄

q
ij − pjx

q
ij

)

≤ pmax
|Ci|,i +

|Ci|−1∑
q=1

pmax
q,i − pmin

q,i

= pmax
|Ci|,i +

(
pmax
1,i − pmin

1,i

)
+
(
pmax
2,i − pmin

2,i

)
+
(
pmax
3,i − pmin

3,i

)
+ · · ·+

(
pmax
|Ci|−1,i − pmin

|Ci|−1,i

)
≤ pmax

|Ci|,i +
(
pmax
1,i − pmin

1,i

)
+
(
pmin
1,i − pmin

2,i

)
+
(
pmin
2,i − pmin

3,i

)
+ · · ·+

(
pmin
|Ci|−2,i − pmin

|Ci|−1,i

)
≤ pmax

|Ci|,i + pmax
1,i − pmin

|Ci|−1,i

≤ 2− 0 = 2

where we invoked the fact that pmax
k,i ≤ pmin

k−1,i. By a similar argument it can be shown that the

maximum drop is −2.

Our rounding scheme results in a violation for the two color probabilistic case that is at

most 2. We show a lower bound of at least 1
2

for any rounding scheme applied to the resulting

solution.

Theorem 2.2.4. Any rounding scheme applied to the resulting solution has a fairness constraint

violation of at least 1
2

in the worst case.

Proof. Consider the following instance (in Figure 2.2) with 5 points. Points 2 and 4 are chosen

18

as the centers and both clusters have the same radius. The entire set has an expected value of:

2(0)+2(3
4
)+1

2+2+1
=

5
2

5
= 1

2
. If the upper and lower values are set to u = l = 1

2
, then the fractional

assignments for cluster 1 can be: x21 = 1, x22 = 1, x23 =
1
2
, leading to average color

3
4
+0+ 1

2

1+1+ 1
2

= 1
2
.

For cluster 2 we would have: x43 =
1
2
, x44 = 1, x45 = 1 and the average color is (3

4
+ 1

2
)

5
2

=
5
4
5
2

= 1
2
.

Only assignments x23 and x43 are fractional and hence will be rounded. WLOG assume that

x23 = 1 and x43 = 0. It follows that the change (violation) in the assignment
∑

j pjxij for a

cluster i will be 1
2
. Consider cluster 1, the resulting color is 3

4
+1 = 7

4
, the change is |7

4
− 5

4
| = 1

2
.

Similarly, for cluster 2 the change is |5
4
− 3

4
| = 1

2
.

Figure 2.2: Points 2 and 4 have been selected as centers by the integer solution. Each points has
its probability value written next to.

2.2.1.2 Algorithms for the Multiple Color Case Under a Large Cluster Assump-

tion:

First, we point out that for the multi-color case, the algorithm is based on the assumption

that the cluster size is large enough. Specifically:

Assumption 2.2.5. Each cluster in the optimal solution should have size at least L = Ω(nr)

where r ∈ (0, 1).

We firmly believe that the above is justified in real datasets. Nonetheless, the ability to

19

manipulate the parameter r, gives us enough flexibility to capture all occurring real-life scenarios.

Theorem 2.2.6. If Assumption 2.2.5 holds, then independent sampling results in the amount of

color for each clusters to be concentrated around its expected value with high probability.

Proof. The proof follows by invoking a Chernoff bound (see [14] for the full proof).

Given Theorem 2.2.6 our solution essentially forms a reduction from the problem of prob-

abilistic fair clustering PFC(k, p) to the problem of deterministic fair clustering with lower

bounded cluster sizes which we denote by DFCLB(k, p, L) (the color assignments are known

deterministically and each cluster is constrained to have size at least L). Our algorithm (2) in-

Algorithm 2 Algorithm for Large Cluster PFC(k, p)

Input: C, d, k, p, L, {(lh, uh)}h∈H
Relax the upper and lower by ϵ: ∀h ∈ H, lh ← lh(1− ϵ) and uh ← uh(1 + ϵ)
For each point j ∈ C sample its color independently according to phj
Solve the deterministic fair clustering problem with lower bounded clusters DFCLB(k, p, L)
over the generated instance and return the solution.

volves three steps. In the first step, the upper and lower bounds are relaxed since -although we

have high concentration guarantees around the expectation- in the worst case the expected value

may not be realizable (could not be an integer). Moreover the upper and lower bounds could

coincide with the expected value causing violations of the bounds with high probability.

After the color assignments are sampled independently, we have to solve the deterministic

fair clustering with lower bounded cluster sizes problem DFCLB. We can establish the following

theorem for DFCLB:

Theorem 2.2.7. Given an α approximation algorithm for the color blind clustering problem

Cluster(k, p) and a γ violating algorithm for the fair assignment problem with lower bounded

20

cluster sizes FA-PFC-LB(S, p, L), a solution with approximation ratio α + 2 and violation at

most γ can be achieved for the deterministic fair clustering problem with lower bounded cluster

size DFCLB(k, p).

Proof. The proof follows by arguments similar to the proof of Theorem 2.2.1.

Having established the above theorem for DFCLB(k, p) we only have to solve the fair

assignment problem with lower bounded cluster sizes FA-PFC-LB(S, p, L). The approach is

similar to the two color case. Specifically, we have to solve the following LP:

min
S:|S|≤k,ϕ

Lk
p(C) (2.6a)

s.t. ∀i ∈ S : (1− ϵ)lh| Ci | ≤ | Ci,h | ≤ (1 + ϵ)uh| Ci | (2.6b)

∀i ∈ S : | Ci | ≥ L (2.6c)

Note that the bounds are relaxed by ϵ and a lower bound L is required on the cluster size. Since a

center might be assigned no points and the above LP imposes a lower bound on each center, we

run multiple versions of the LP with each closing a set of centers (removing them from S). This

leads to a fixed-parameter tractable solution where the run-time is O(2kpoly(n)). Once the LP is

solved a min-cost rounding scheme from [1] is used. Now we establish the final approximation

ratio of α + 2:

Theorem 2.2.8. Given an instance of the probabilistic fair clustering problem PFC(k, p) where

assumption 2.2.5 holds, then with high probability algorithm 2 results in a solution with violation

at most ϵ and approximation ratio (α + 2) in O(2kpoly(n)) time.

21

Proof. First, given an instance IPFC of probabilistic fair clustering with optimal value OPTPFC

the clusters in the optimal solution would with high probability be a valid solution for the de-

terministic setting, as showed in Theorem 2.2.6. Therefore, the resulting deterministic instance

would have OPTDFCLB
≤ OPTPFC. Hence, the algorithm will return a solution with cost at most

(α + 2)OPTDFCLB
≤ (α + 2)OPTPFC.

For the solution SOLDFCLB
returned by the algorithm, each cluster is of size at least L, and

the Chernoff bound guarantees that the violation in expectation is at most ϵ with high probability.

The run-time comes from the fact that DFCLB is solved in O(2kpoly(n)) time.

2.2.2 Experiments

We now evaluate the performance of our algorithms over a collection of real-world datasets.

We give experiments in the two color case (§2.2.2.1) as well as under the large cluster assumption

(§2.2.2.2). We include experiments for the k-means case here.

Color-Blind Clustering. The color-blind clustering algorithms we use are as follows.

• [41] gives a 2-approximation for k-center.

• We use Scikit-learn’s k-means++ module.

• We use the 5-approximation algorithm due to [43] modified with D-sampling [44] accord-

ing to [40].

Generic-Experimental Setup and Measurements. For a chosen dataset, a given color h

would have a proportion fh = |v∈C |χ(v)=h|
| C | . Following [40], the lower bound is set to lh = (1−δ)rh

and the upper bound is to uh = fh
(1−δ)

. For metric membership, we similarly have f =
∑

j∈C rj

| C | as

22

the proportion, l = (1 − δ)f and u = f
1−δ

as the lower and upper bound, respectively. We set

δ = 0.2, as [40] did, unless stated otherwise.

For each experiment, we measure the price of fairness PoF = Fair Solution Cost
Color-Blind Cost . We also

measure the maximum additive violation γ as it appears in inequality 2.4.

2.2.2.1 Two Color Case

Here we test our algorithm for the case of two colors with probabilistic assignment. We

use the Bank dataset [45] which has 4,521 data points. We choose marital status, a categorical

variable, as our fairness (color) attribute. To fit the binary color case, we merge single and

divorced into one category. Similar to the supervised learning work due to [46], we make Bank’s

deterministic color assignments probabilistic by independently perturbing them for each point

with probability pnoise. Specifically, if j originally had color cj , then now it has color cj with

probability 1− pnoise instead. To make the results more interpretable, we define pacc = 1− pnoise.

Clearly, pacc = 1 corresponds to the deterministic case, and pacc = 1
2

corresponds to completely

random assignments.

First, in Fig. 2.3(a), we see that the violations of the color-blind solution can be as large as

25 whereas our algorithm is within the theoretical guarantee that is less than 1. In Fig. 2.3(b), we

see that in spite of the large violation, fairness can be achieved at a low relative efficiency loss,

not exceeding 2% (PoF ≤ 1.02).

How does labeling accuracy level pacc impact this problem? Fig. 2.4 shows pacc vs PoF for

δ = 0.2 and δ = 0.1. At pacc = 1
2
, color assignments are completely random and the cost is, as

expected, identical to color-blind cost. As pacc increases, the colors of the vertices become more

23

Figure 2.3: For pacc = 0.7 & pacc = 0.8, showing (a): #clusters vs. maximum additive violation;
(b): #clusters vs. PoF .

differentiated, causing PoF to increase, eventually reaching the maximum at pacc = 1 which is

the deterministic case.

Figure 2.4: Plot showing pacc vs PoF, (a):δ = 0.2 and (b):δ = 0.1.

Next, we test against an “obvious” strategy when faced with probabilistic color labels:

simply threshold the probability values, and then run a deterministic fair clustering algorithm.

Fig. 2.5(a) shows that this may indeed work for guaranteeing fairness, as the proportions may be

satisfied with small violations; however, it comes at the expense of a much higher PoF. Fig. 2.5(b)

supports this latter statement: our algorithm can achieve the same violations with smaller PoF.

24

Further, running a deterministic algorithm over the thresholded instance may result in an infeasi-

ble problem.1

Figure 2.5: Comparing our algorithm to thresholding followed by deterministic fair clustering:
(a)maximum violation, (b) PoF.

2.2.2.2 The Large Cluster Assumption

Here we test our algorithm for the case of probabilistically assigned multiple colors under

Assumption 2.2.5, which addresses cases where the optimal clustering does not include patho-

logically small clusters. We use the Census1990 [47] dataset. We note that Census1990 is large,

with over 2.4 million points. We use age groups (attribute dAge in the dataset) as our fairness

attribute, which yields 7 age groups (colors).2 We then sample 100,000 data points and use them

to train an SVM classifier3 to predict the age group memberships. The classifier achieves an accu-

racy of around 68%. We use the classifier to predict the memberships of another 100,000 points

1An intuitive example of infeasibility: consider the two color case where pj = 1
2 + ϵ,∀ j ∈ C for some small

positive ϵ. Thresholding drastically changes the overall probability to 1; therefore no subset of points would have
proportion around 1

2 + ϵ.
2Group 0 is extremely rare, to the point that it violates the “large cluster” assumption for most experiments;

therefore, we merged it with Group 1, its nearest age group.
3We followed standard procedures and ended up with a standard RBF-based SVM; the accuracy of this SVM is

somewhat orthogonal to the message of this paper, and rather serves to illustrate a real-world, noisy labeler.

25

not included in the training set, and sample from that to form the probabilistic assignment of

colors. Although as stated earlier we should try all possible combinations in closing and opening

the color-blind centers, we keep all centers as they are. It is expected that this heuristic would not

lead to a much higher cost if the dataset and the choice of the color-blind centers is sufficiently

well-behaved.

Fig. 2.6 shows the output of our large cluster algorithm over 100,000 points and k = 5

clusters with varying lower bound assumptions. Since the clusters here are large, we normalize

the additive violations by the cluster size. We see that our algorithm results in normalized vio-

lation that decrease as the lower bound on the cluster size increases. The PoF is high relative to

our previous experiments, but still less than 50%.

Figure 2.6: Plot showing the performance of our independent sampling algorithm over the
Census1990 dataset for k = 5 clusters with varying values on the cluster size lower
bound:(a)maximum violation normalized by the cluster size, (b)the price of fairness.

2.3 Fair Clustering Under a Bounded Cost

An acknowledged fact in fair clustering—and, indeed, in many allocation and matching

settings—is that the fairness (e.g., proportion) constraint could cause degradation in the clustering

26

objective [48, 49]. A point may be assigned to a further away center (cluster) to satisfy the

proportion constraint [8]. The degradation in the objective due to the imposed fairness constraint

is called the price of fairness (PoF), mathematically defined as PoF = cost of fair solution
cost of agnostic solution .

Group Fair Color-blind

𝐶!𝐶"

𝐶" 𝐶!

𝐶"

𝐶!

𝐶"

𝐶!

Figure 2.7: Comparison between group fair (left) and color-blind (right) clustering. Unlike color-
blind clusters, group fair clusters may combine faraway points (bottom-left).

Unlike some examples in the literature [48, 50], the price of fairness in the case of fair

clustering is unbounded, as seen in Figure 2.7. By enforcing a form of group fairness requiring

an even split across colors in each cluster, a fair clustering algorithm would perform arbitrar-

ily poorly as the two groups of points separate in space, while a “color-blind” algorithm would

remain unchanged (bottom-left and bottom-right of Figure 2.7, respectively). The possibly un-

bounded increase in the clustering cost (unbounded price of fairness) indicates that fair clustering

can yield clusters consisting of points that are far apart in the metric space instead of combining

nearby points—often the main motivation behind clustering in machine learning and data anal-

ysis. Furthermore, the legal notion of disparate impact does not force an organization to output

a fair clustering if it can justify an unfair one due to “business necessity,” i.e., potential loss in

quality [51,52]. This possible conflict between the clustering objective and the fairness constraint

indicates the need for fair clustering algorithms that operate in a setting where the clustering cost

cannot exceed a pre-set upper bound.

27

The fundamental idea of fair clustering under a bounded cost (FCBC) is to minimize a

measure of unfairness subject to an upper bound on the clustering cost:

min Unfairness (2.7a)

s.t. Clustering Cost ≤ Given upper bound (2.7b)

Next, we transform (2.7a) and (2.7b) above into a clear mathematical optimization problem.

The Constraint (2.7b): The clustering cost is
(∑

j∈C d
p(j, ϕ(j))

)1/p. Let U denote the

exogenous upper bound on clustering cost. Then, (2.7b) becomes
(∑

j∈C d
p(j, ϕ(j))

)1/p ≤ U .

Note that for the case of the k-center where p = ∞, the constraint reduces to a simpler form,

specifically ∀j ∈ C, d(j, ϕ(j)) ≤ U .

The Objective (2.7a): In prior work, a given clustering is considered fair if for each cluster,

the proportions of each color lie within pre-specified lower and upper bounds, i.e.: ∀i ∈ S,∀h ∈

H : βh| Ci | ≤ | Chi | ≤ αh| Ci |. However, bounding the clustering cost may make it impossible to

have a fair feasible solution. Therefore, we instead set a measure of unfairness for each color and

try to minimize this measure. Let ∆h denote the worst proportional violation across the clusters

for a color h. Specifically, for a given clustering, ∆h ∈ [0, 1] is the minimum non-negative value

such that:

∀i ∈ S : (βh −∆h)| Ci | ≤ | Chi | ≤ (αh +∆h)| Ci |. (2.8)

Clearly, if ∆h = 0, then color h is within the desired proportion in every cluster. Having set

∆h to be a measure of the unfair treatment that group h receives, we are faced with the question

of setting the fairness objective, for which there are many reasonable options. We consider two

28

prominent and intuitive fairness objectives [53]:

GROUP-UTILITARIAN = min
∑
h∈H

∆h , GROUP-EGALITARIAN = minmax
h∈H

∆h

The GROUP-UTILITARIAN objective minimizes the sum of proportional violations for all

of the colors, treating all points of a specific color as a single player in a game. The GROUP-

EGALITARIAN objective minimizes the maximum proportional violation across the colors. We

also consider a more generalized version of the GROUP-EGALITARIAN objective, the GROUP-

LEXIMIN objective. Like GROUP-EGALITARIAN, the GROUP-LEXIMIN objective minimizes the

maximum (worst) violation, but it goes further to minimizes the second-worst violation, then the

third-worst violation, and so on until no further improvement can be made. We now state the fair

clustering under a bounded cost problem (FCBC):

min
S:|S|≤k,ϕ

UNFAIRNESS-OBJECTIVE (2.9a)

s.t.
(∑

j∈C

dp(j, ϕ(j))
)1/p ≤ U (2.9b)

where the UNFAIRNESS-OBJECTIVE could equal GROUP-UTILITARIAN, GROUP-EGALITARIAN,

or GROUP-LEXIMIN. Similar to the fair assignment FA problem, we may define the fair assign-

ment under a bounded cost (FABC) problem as:

min
ϕ

UNFAIRNESS-OBJECTIVE (2.10a)

s.t.
(∑

j∈C

dp(j, ϕ(j))
)1/p ≤ U (2.10b)

where similarly the optimization is over the assignment function ϕ while the set of centers S is

fixed.

29

2.3.1 Hardness of FCBC & FABC

We now establish the hardness of fair clustering under a bounded cost FCBC and fair

assignment under a bounded cost FABC. We note that these hardness results follow for all

objectives (GROUP-UTILITARIAN, GROUP-EGALITARIAN, and GROUP-LEXIMIN).

Theorem 2.3.1. Fair clustering under a bounded cost FCBC and fair assignment under a

bounded cost FABC are NP-hard.

Proof. We first start with the following lemma about fair clustering and fair assignment. Note

that fair clustering and fair assignment problems are PFC(k, p) and FA-PFC(S, p) (from the

previous subsection), respectively. Although here we are concerned only with the special case

where the color values are known deterministically:

Lemma 2.3.2. The fair clustering and fair assignment problems are NP-hard.

Proof. Since fair clustering problems, i.e. fair k-(center, median, or means) generalize their NP-

hard classical counterparts, i.e. the k-(center, median, or means) clustering, it follows that fair

clustering problems are also NP-hard.

The hardness of the fair assignment problem was established by [1] for k-center clustering.

Here we show that fair assignment is NP-hard for k-median and k-means clustering as well.

First, following Section 4 of [1], the reduction is from the Exact Cover by 3-Sets (X3C). In

Exact Cover by 3-Sets, we have a universal set of elements U with |U| = 3r where r is a positive

integer and a set F whose elements are subsets of U . The problem is to decide if there exists a

set F ′ such that F ′ ⊆ F and each element in U is included exactly once in one set in F ′.

The reduction is done by creating the following graph (see Figure 2.8 for an example). In

30

the lowest level we have the elements e of the set U each represented with a blue vertex. In the

higher level we have the sets in F each represented with a blue vertex. We draw edges between

vertices in e ∈ U and vertices in F ∈ F if and only if the element e ∈ F . For set F in F we add

3 auxiliary blue vertices which are connected to it through an edge. Finally, we add a set T of

red vertices where |T | = |U|
3

= r in the highest level where each of those vertices is connected

through an edge to every vertex in the set F .

The distance function puts a cost of zero if the distance is between identical vertices and

a cost of one between vertices connected through an edge. For vertices with no edges between

them, the distance is the minimum distance found according to this graph by calculating the

minimum cost path. This means that the distance between the blue auxiliary vertices and a center

which is not their parent center is 3 (the path from the vertex to the associated center to an element

in T , then the specified center).

In fair assignment, the set of centers is already chosen. We choose the set of centers to be

the elements of F . Therefore, the number of centers k = r. Further, it is clear that this is a two

color problem, we set the lower and upper bounds for the red color to βred = αred =
1
4
. It follows

that βblue = αblue =
3
4
, i.e. the ratio of red to blue vertices is 1 : 3.

We note the following claim:

Claim 2.3.3. Given the constructed graph with the set of centers beingF , the minimum clustering

cost is lower bounded by 1 for the k-center problem and n− k for the k-median and k-means.

Proof. First we note the following fact:

Fact 1. ∀u, v ∈ G where u and v are distinct, we have that d(u, u) = d(v, v) = 0 and d(u, v) ≥ 1

if u ̸= v.

31

Figure 2.8: Figure follows the example of [1]. We show the fair assignment resulting graph, from
the given Exact Cover by 3-Sets example where we have U = {a, b, c, d, e, f} and F = {A =
{a, b, c}, B = {b, c, d}, C = {d, e, f}}.

k-center: Since the number of points is greater than the number of centers it follows that there

exists a point u which will be assigned to another vertex v and therefore d(u, v) ≥ 1.

k-median and k-means: Denoting the assignment function (assigning vertices to centers) by ϕ,

the set of centers by S, and the integer p where p = 1 for the k-median and p = 2 for the k-means,

we have that:

∑
v∈G

dp(v, ϕ(v)) =
∑
v∈S

dp(v, ϕ(v)) +
∑

v∈G−S

dp(v, ϕ(v))

≥ 0 +
∑

v∈G−S

dp(v, ϕ(v))

≥ 0 +
∑

v∈G−S

1p

≥
∑

v∈G−S

1

= n− k

32

where the above follows from Fact 1.

Therefore, we have:

Claim 2.3.4. If there exists an exact cover, then the fair assignment problem can have a 1 : 3 red

to blue vertex ratio and at a cost of 1 for the k-center and a cost of n − k for the k-median and

k-means.

Proof. We translate the exact cover by 3-sets solution to the constructed graph. Each chosen set

in exact cover F ′ will have the 3 corresponding elements from U assigned to its center, along

with its 3 auxiliary vertices and 1 vertex from T . If the set was not chosen in the exact cover,

then it will have only its 3 auxiliary vertices assigned to it.

This clearly matches the lower bound on the cost function from claim (2.3.3) for each

clustering objective. Further, it is also clear that the 1 : 3 red to blue color ratio is preserved in

each cluster.

Claim 2.3.5. If there exists a fair assignment solution with 1 : 3 red to blue proportion and whose

cost is 1 for the k-center and (n− k) for the k-median and k-means, there exists a solution to the

exact cover by 3-sets problem.

Proof. The costs of 1 and (n − k) for the k-center and k-median/mean respectively can only be

achieved by assigning elements e ∈ U to a center that they have an edge between. Similarly,

all of the blue auxiliary vertices have to be assigned to their parent. Further to achieve the 1 : 3

red to blue ratio, a center will either choose 3 elements from U and therefore has to choose an

element from T to satisfy the proportion. Or a center will not choose any element from U and in

that case it would not need to pick an element from T to satisfy the proportion.

33

With the above lemma we can now easily prove the theorem. First, the hardness of fair

clustering under a bounded cost FCBC simply follows by setting the upper bound to U =

OPTFC where OPTFC is the optimal value of fair clustering FC. An optimal solution to fair

clustering would achieve the optimal value of 0 for all possible fairness objectives of FCBC and

would have a cost OPTFC ≤ U .

Conversely, an optimal solution for FCBC would have a proportional violation of zero for

all colors (therefore it is fair). Moreover, its cost would not exceed U = OPTFC. Therefore, it is

an optimal solution for fair clustering.

By the above, a solution is optimal for a fair clustering if and only if it is an optimal solution

to the corresponding FCBC instance with U = OPTFC. It follows that since fair clustering is

NP-hard, that fair clustering under a bounded cost FCBC is also NP-hard.

In a similar manner, by setting U = OPTFA the hardness of fair assignment under a

bounded cost FABC can be established from the hardness of fair assignment.

For a given clustering cost U , there are many clusterings (solutions) of cost not exceeding

U . Let SU be the set of those solutions, i.e. if (St, ϕt) ∈ SU , then (St, ϕt) is a clustering with a

cost that does not exceed U . Further, let Lt be the size of the smallest non-empty cluster4 in the

clustering (St, ϕt), then we define L(U) to be the size of the smallest cluster across all clusterings

of cost not exceeding U , i.e. L(U) = min(St,ϕt)∈SU
Lt. Clearly, for U1 and U2 such that U2 ≥ U1,

then L(U2) ≤ L(U1) since SU1 ⊆ SU2 . We can conclude the following fact from the definition of

L(U):

4An empty cluster is a cluster with no points assigned to it. This could happen if for example the assignment
function ϕ does not map any point to a a given center including the center itself.

34

Fact 2. For a given upper bound U , no clustering with cost less than or equal to U can have less

than L(U) many points in a non-empty cluster.

We show that the quantity L(U) plays a fundamental role. In fact, lower bounds on the

additive approximation5 for the proportional violations and fairness objectives are related to L(U)

as shown in the following theorem:

Theorem 2.3.6. For a given instance of the FCBC or FABC problem with an arbitrary upper

bound U , unless P = NP no polynomial time algorithm can produce a solution with a cost not

exceeding U that satisfies any of the following conditions: (a) The proportional violation of any

color h ∈ H is ∆h < 1
8L(U)

. (b) The additive approximation for the GROUP-UTILITARIAN objec-

tive is less than |H |
8L(U)

. (c) The additive approximation for the GROUP-EGALITARIAN objective

is less than 1
8L(U)

.

Proof. We note that our derivation uses the reduction from X3C shown in the proof of Lemma

(2.3.2) and the resulting graph shown in figure (2.8). We start by deriving a collection of useful

claims:

Claim 2.3.7. If U = 1 for the k-center objective or U = n − k for the k-median and k-means

objectives, then L(U) = 4 for all objectives. Further the only set of centers that can lead to a

cost not exceeding U is S = F .

Proof. First it is clear that if we choose the set F to be the centers, i.e. S = F , then if we route

each point to one of its closest centers in F , then we can have for the k-center we would have a

cost of 1 since every point in the graph is at most a distance 1 from a point in F . Further, for the

5An algorithm for a minimization problem with additive approximation µ > 0, returns a value for the objective
that is at most OPT+µ where OPT is the optimal value.

35

k-median and k-means objectives, the points F would be routed to themselves and every other

point would be routed to one of its closest centers in F which is at a distance of 1, this leads to a

cost of (0)k + (1)(n− k) = n− k, therefore choosing the F as the set of centers we can indeed

satisfy the upper bound U for all objectives.

Now, consider another set of centers S ′ such that ∃i ∈ S ′ and i /∈ F , i.e. we have at least

one center not from F . Let f be the point in F not selected in S ′. For the k-center objective

with U = 1, it follows that the blue auxiliary points of f have to be made as centers since every

other point is at least a distance of 2 away from them, but each auxiliary point of f is made

a center, then it follows that |S ′ − F| ≥ 3, i.e. at least two more points of F have not be

selected as centers. We can invoke the argument again on the new auxiliary points to conclude

that |S ′ − F| ≥ 9. Invoking the argument again, we will see get that |S ′ − F| ≥ 3k which is

infeasible since |S ′ − F| ≤ |S ′| ≤ k. Therefore, for the k-center with U = 1, we must have

S = F . Now having proven that S = F and since U = 1, it follows that the smallest cluster

size is 4 formed by mapping the center in S = F to itself along with its auxiliary points, i.e.

L(U) = 4 for the k-center.

For the k-median and k-means objectives with U = n − k, similiar to the k-center it is

clear that every point which has not been selected as a center must have a center at a distance of

at most 1 away. If we exclude one point f ∈ F from the set of centers, then its auxiliary points

will each have to become centers to satisfy the upper bound cost of U = n − k, but this would

mean that there are at least 2 more points in F that have been excluded. Following an argument

similar to that of the k-center, we will have that the set of required centers would be at least 3k

which is a contradiction. Therefore, the only possible choice of centers is S = F . It follows as

well that the smallest cluster size if 4 formed by mapping the center in S = F to itself along with

36

its auxiliary points, i.e. L(U) = 4 for the k-median and k-means objectives.

Further, we define ∆i
red and ∆i

blue as the red and blue violations in the ith cluster, respec-

tively. Then we have the following claim:

Claim 2.3.8. For the two color case of the above reduction, ∆i
red = ∆i

blue and ∆red = ∆blue.

Proof. for cluster i, consider the red and blue violations ∆i
red,∆

i
blue at that cluster, then we have:

∆i
red = |pired −

1

3
| = |(1− piblue)− (1− 2

3
)| = |2

3
− piblue| = ∆i

blue

It is clear then that ∆red = max
i∈[k]

∆i
red = max

i∈[k]
∆i

blue = ∆blue

The following lemma follows immediately from the above:

Claim 2.3.9. For the two color case of the above reduction we have

GROUP-UTILITARIAN = 2GROUP-EGALITARIAN

Proof. GROUP-UTILITARIAN = ∆red +∆blue = 2∆red = 2GROUP-EGALITARIAN.

We also note the following claim:

Claim 2.3.10. For a given cluster i with set of points Ci, if the set of red points in the cluster Cred
i

satisfy ∆i
red = |

|Cred
i |

|Ci| −
1
4
| < 1

4|Ci| , then cluster i has no violation.

Proof. Suppose that | |C
red
i |

|Ci| −
1
4
| < 1

4|Ci| , then it follows that ||C red
i | − 1

4
|Ci|| < 1

4
. Since |Ci| is

an integer it follows that 1
4
|Ci| is of the form m,m+ 1

4
,m+ 1

2
, or m+ 3

4
where m is an integer.

Further since |C red
i | is also an integer, the fact that ||C red

i |− 1
4
|Ci|| < 1

4
implies that |C red

i | = 1
4
|Ci|

37

and we have no violation for the red color in cluster i. Further, from Lemma 2.3.8 the blue

violation equals the red violation and therefore we have no violation in cluster i.

Now we are ready to prove the main claims for the FCBC problem.

For the first claim, assume by contradiction that a polynomial time algorithm gave a so-

lution of violation less than 1
8L

and cost ≤ U . Now, if we consider clusters i of size |Ci|

such that 4 ≤ |Ci| ≤ 8, then it clear that since ∆i
red ≤ ∆red ≤ 1

8L(U)
, ∆i

red ≤ 1
4|Ci| because

|Ci| ≤ 8 ≤ 2L(U), therefore there is no violation in these clusters by Claim 2.3.10.

Now consider a cluster of size greater than 8, (note by Claim 2.3.7 that S = F) because of

the upper bound U such clusters could only add points for the top row set T to the cluster which

are all red, it clear that the more red points are added the greater the violation, if one additional

red point is added, then for the best color proportions the cluster has a total of: 6 blues and 3

reds, which lead to a violation of |1
3
− 1

4
| = 1

12
> 1

8L(U)
= 1

32
, therefore it is impossible for

the algorithm to form such clusters as that would contradict the assumption that the algorithm

obtains a violation < 1
8L(U)

for each color. Therefore such clusters are not possible. This means

that there is no violation in any cluster and that the problem has been solved optimally which by

the NP-hardness is impossible unless P = NP .

Now the two remaining claims follow easily. By definition we have that GROUP-EGALITARIAN =

max
h∈H

∆h. If GROUP-EGALITARIAN < 1
8L(U)

, then it follows that ∆h < 1
8L(U)

for every color

h ∈ H which by the first claim cannot happen unless P = NP .

Further, by Claim 2.3.9 GROUP-UTILITARIAN = 2 GROUP-EGALITARIAN, therefore if

GROUP-UTILITARIAN < |H |
8L(U)

, then GROUP-EGALITARIAN < 1
8L

. which is impossible unless

P = NP .

38

The same claims for the FABC problem can be proven by simply setting the set of centers

S = F and the upper bound U = 1 for k-center and n−k for the k-median/means, then following

similar arguments.

2.3.2 Algorithms for FCBC

Our main result for the FCBC problem is the following theorem which follows as a direct

consequence of the guarantees of Theorems 2.3.12, 2.3.17, 2.3.15, 2.3.14, and 2.3.18:

Theorem 2.3.11. For any clustering objective, given a bound U on the clustering cost, Algo-

rithm 3 solves the fair clustering under a bounded cost FCBC problem at a cost of at most

U ′ = (2 + α)U where α is the approximation ratio of the color-blind clustering algorithm. The

additive approximation is |H |(ϵ + 2
L(U ′)

) for the GROUP-UTILITARIAN objective and ϵ + 2
L(U ′)

for the GROUP-EGALITARIAN objective.

From the theorem above, it is clear that the additive approximation guarantees we have

improve when the cost does not permit small clusters. Indeed, in the absence of outlier points

and for reasonable values of k, small clusters are unlikely to exist. Further, empirically we verify

the smallest cluster size and find that the smallest cluster size is 159 points (see Section 2.3.4.3).

We now provide our general algorithm for fair clustering under a bounded cost FCBC

which we denote by ALG-FCBC(U, UNFAIRNESS-OBJECTIVE) where we have made ex-

plicit reference to the dependence of ALG-FCBC on the given cost upper bound U and the

desired UNFAIRNESS-OBJECTIVE which could either be the GROUP-UTILITARIAN,GROUP-

EGALITARIAN, or GROUP-LEXIMIN objective.

ALG-FCBC(U, UNFAIRNESS-OBJECTIVE) (see Algorithm 3) involves two steps, in step

39

(1): we use a color-blind approximation algorithm to find the cluster centers S, in step (2): we

call the algorithm ALG-FABC(S, U ′, UNFAIRNESS-OBJECTIVE) for the FABC problem. It

should be noted that we have fed ALG-FABC the set of centers S from step (1), further the

cost upper bound for ALG-FABC is set to U ′ = (2+α)U while the UNFAIRNESS-OBJECTIVE

remains unchanged. We further note that ALG-FABC will have the same clustering objective

as ALG-FCBC, e.g. if ALG-FCBC is given the k-median objective so well ALG-FABC.

Clearly, from algorithm ALG-FCBC the FCBC problem is closely related to the FABC

problem. In fact, we establish the following general theorem for all clustering objectives: k-

center, k-median, and k-means that shows that an algorithm which solves the FABC problem

with provable guarantees can be used to solve the FCBC problem with provable guarantees:

Theorem 2.3.12. For any clustering objective and both the GROUP-UTILITARIAN and GROUP-

EGALITARIAN objectives, given an algorithm that solves fair assignment under a bounded cost

FABC with additive approximation µ, the fair clustering under a bounded cost FCBC problem

can be solved with an additive approximation of µ and at a cost of at most (2 + α)U , where α is

the approximation ratio of the color-blind clustering algorithm.

Proof. Let S and ϕ be the set of centers and assignment of the color-blind algorithm. Let S∗

and ϕ∗ be the optimal set of centers and assignment for the fair assignment under bounded cost

FABC. Let ϕ′ be an assignment that routes the vertices from their center in S∗ to the nearest

center in S, i.e. for a given vertex j, ϕ′(j) = argmini′∈S d(i
′, ϕ∗(j)). Based on this setting we

40

can upper bound the objective based on the following:

d(j, ϕ′(j)) ≤ d(j, ϕ∗(j)) + d(ϕ′(j), ϕ∗(j))

≤ d(j, ϕ∗(j)) + d(ϕ(i), ϕ∗(j))

≤ d(j, ϕ∗(j)) + d(j, ϕ∗(j)) + d(j, ϕ(j))

≤ 2d(j, ϕ∗(j)) + d(j, ϕ(j))

It follows then by the triangle inequality of the p-norm and the non-negativity of the compo-

nents, that
(∑

j∈C d
p(j, ϕ′(j))

)1/p
≤ 2

(∑
j∈C d

p(j, ϕ∗(j))
)1/p

+
(∑

j∈C d
p(j, ϕ(j))

)1/p
≤

2U +αU = (2 + α)U . Note that in the last inequality the bounded the color-blind cost as

follows:
(∑

j∈C d
p(j, ϕ(j))

)1/p
≤ αOPTcb ≤ αU , where as noted the optimal color-blind cost

OPTcb is upper bounded by U , i.e. OPTcb ≤ U otherwise the problem would not be feasible.

This proves the upper bound on the objective.

Now we establish guarantees on the proportions. For a given center s in S, let N(s) =

{i′ ∈ S∗|s = argmini∈S d(i, i
′)}, i.e. N(s) is the set of centers in S∗ routing their vertices to s.

Denote the set of points assigned to cluster i′ by ϕ∗−1(i′), i.e. ϕ∗−1(i′) = {j ∈ C |ϕ∗(j) = i′}.

Then for any color h we have that:

min
i′∈N(s)

(∑
j∈ϕ∗−1(i′),χ(j)=h 1

)
|ϕ∗−1(i′)|

≤∑
i′∈N(s)

(∑
j∈ϕ∗−1(i′),χ(j)=h 1

)∑
i′∈N(s) |ϕ∗−1(i′)|

≤

max
i′∈N(s)

(∑
j∈ϕ∗−1(i′),χ(j)=h 1

)
|ϕ∗−1(i′)|

41

That is the final color proportion will be within the lower and upper proportions of the routing

centers. It follows that ∆h does not increase for any color and that the GROUP-UTILITARIAN,

GROUP-EGALITARIAN, and GROUP-LEXIMIN objectives using ϕ′ are not greater than that of

the optimal solution.

The above facts, combined with the premise of having an algorithm that solves the fair

assignment under bounded cost FABC with an additive violation of µ completes the proof.

Algorithm 3 :ALG-FCBC(U, UNFAIRNESS-OBJECTIVE)

1: Choose a set of centers S by running a color-blind clustering algorithm of approximation
ratio α.

2: Set U ′ = (2 + α)U and call ALG-FABC(S, U ′, UNFAIRNESS-OBJECTIVE)

2.3.2.1 Fair Assignment Under a Bounded Cost

Algorithm block 4 shows the steps of our algorithm ALG-FABC for the FABC ob-

jective. In step (1): we search for the optimal proportional violations given the bound on the

clustering cost U using LPs. Having found the near-optimal solution, in step (2): we round the

possibly fractional solution to a feasible integer solution using a netowk flow algorithm. We note

that the details of the search done in step (1) depend on the objective, i.e., GROUP-UTILITARIAN

or GROUP-EGALITARIAN.

Algorithm 4 :ALG-FABC(S, U, UNFAIRNESS-OBJECTIVE)

1: Given the UNFAIRNESS-OBJECTIVE, search for the optimal proportion violation values ∆h

at a cost upper bound of U using the feasibility LPs of (2.11).
2: Apply network flow rounding to the LP solution with the optimal value.
3: return the set of centers S and the assignment function ϕ (resulting from the rounded LP

solution).

We note that in fair assignment under a bounded cost FABC the set of centers S has

42

already been chosen and the optimization is done only over the assignment ϕ of points to centers.

We let xij be a decision variable that equals 1 if point j is assigned to center i ∈ S and 0 otherwise.

Note that the values of xij are a way to represent the assignment function ϕ. Regardless of the

objective that is being minimized, the following set of constraints must hold:

∑
i,j

dp(i, j)xij ≤ Up (2.11a)

∀j ∈ C :
∑
i∈S

xij = 1, xij ∈ [0, 1] (2.11b)

∀h ∈ H : ∆h ∈ [0, 1] (2.11c)

∀h ∈ H,∀i ∈ S : (βh −∆h)
(∑

j∈C
xij

)
≤
∑
j∈Ch

xij ≤ (αh +∆h)
(∑

j∈C
xij

)
(2.11d)

For the k-center problem, the first constraint (2.11a) is replaced by ∀j ∈ C : xij =

0 if d(i, j) > U . Note that in the above we have xij ∈ [0, 1] which is a relaxation of xij ∈ {0, 1},

as the latter would result in an intractable mixed-integer program. With our variables being xij

and ∆h it is reasonable to consider a convex optimization approach. That is, we could choose

to minimize the objective GROUP-UTILITARIAN or the objective GROUP-EGALITARIAN with

our set of constraints being (2.11). Looking at the form of the GROUP-UTILITARIAN and the

GROUP-EGALITARIAN objectives, it is not difficult to see that they are linear (and therefore con-

vex) in the parameters xij and ∆h, however as the following theorem shows, the constraint set

(2.11) is not convex. In fact, either of the proportion bounds alone in constraint (2.11d) would

lead to a non-convex set. The non-convexity of the constraint set implies that the resulting opti-

mization problem would also be non-convex:

43

Theorem 2.3.13. The constraint set (2.11) is not convex.

Proof. The non-convexity of the constraint set (2.11) can be shown even when ignoring the upper

proportionality constraint, i.e. constraint (2.11d) only with the lower bound. Specifically, we

would have the following constraint set:

∑
i,j

dp(i, j)xij ≤ Up (2.12a)

∀j ∈ C :
∑
i∈S

xij = 1, xij ∈ [0, 1] (2.12b)

∀h ∈ H : ∆h ∈ [0, 1] (2.12c)

∀h ∈ H,∀i ∈ S : (βh −∆h)
(∑

j∈C

xij

)
≤
∑
j∈Ch

xij (2.12d)

Now, assume that the upper bound on the cost U is sufficiently large (this would let assignments of

a high cost remain feasible). Consider the case of two colors: red and blue, with βred = βblue =
1
2
.

Let each color constitute half the dataset, i.e. | Cred | = | Cblue | = n
2
, clearly | C | = 2| Cred | =

2| Cblue | = n. Set the number of clusters to two (k = 2), consider the following two feasible

solutions x1
ij,∆

1
red,∆

1
blue and x2

ij,∆
2
red,∆

2
blue with ∆1

blue = ∆2
blue = 1, then the following holds

44

(note that α = 2
3
):

For x1
ij,∆

1
red:

cluster 1:
∑
j∈Cred

x1
1j =

∑
j∈Cblue

x1
1j = α

n

2
=

2

3

n

2
=

n

3

cluster 2:
∑
j∈Cred

x1
2j =

∑
j∈Cblue

x1
2j = (1− α)

n

2
=

1

3

n

2
=

n

6

|C2| =
∑
j∈C

x1
2j =

n

3

∆1
red = 0

For x2
ij,∆

2
red:

cluster 1:
∑
j∈Cred

x2
1j =

n

2
,

∑
j∈Cblue

x2
1j = (1− (α +

1

n/2
))
n

2
=

n

6
− 1

cluster 2:
∑
j∈Cred

x2
2j = 0,

∑
j∈Cblue

x2
2j = (α +

1

n/2
)
n

2
= (

2

3
+

1

n/2
)
n

2
=

n

3
+ 1

|C2| =
∑
j∈C

x2
2j =

n

3
+ 1

∆2
red =

1

2

We now form a simple convex combination of the two solutions xij = 1
2
(x1

ij + x2
ij),∆red =

1
2
(∆1

red + ∆2
red) = 1

4
. Constraints (2.12a), (2.12b), and (2.12c) would clearly be satisfied, but if

45

we consider constraint (2.12d) for the red color and the second cluster, then we have:

RHS =
∑
j∈Cred

x2j =
n

12

LHS = (
1

2
− 1

4
)(
n

3
+

1

2
) =

n

12
+

1

8

It is clear that LHS ≤ RHS does not hold and therefore, the constraint is not satisfied for the

convex combination and therefore the constraint set of the problem is indeed not convex.

A similar assignment of solutions can be used to show that the set is not convex if we were

to consider only the over-representation constraint in (2.11d) instead.

Although the constraint set (2.11) is not convex, if we fix the values of ∆h then we clearly

have a simple feasibility LP with variables xij . We therefore take an approach where for a given

objective (GROUP-UTILITARIAN or GROUP-EGALITARIAN), we search for the corresponding

optimal values of ∆h by running the feasibility LP of (2.11). Note that with a given set of

values for ∆h, we can obtain the corresponding value for the GROUP-UTILITARIAN or GROUP-

EGALITARIAN objectives and therefore the LP does not need an objective: a feasibility check

suffices. Further, since we only use non-trivial values for ∆h ∈ [0, 1], constraint (2.11c) can

be omitted. Below we discuss how we use the feasibility LPs of (2.11) to obtain LP solutions

that are approximately optimal (having bounded additive approximation from the optimal) for the

GROUP-UTILITARIAN and GROUP-EGALITARIAN objectives, respectively. Since these result-

ing LP solutions could contain fractional values, i.e., it is possible to have a value xij /∈ {0, 1},

the approximately optimal LP solution would have to be rounded to an integral solution. This

rounding further degrades the approximation, but we show that this degradation is not large and

46

can be bounded. The details of the rounding scheme are shown below as well. The search al-

gorithm (for the GROUP-UTILITARIAN or GROUP-EGALITARIAN objective), followed by the

rounding scheme, lead to an algorithm for FABC.

Search Algorithm for GROUP-EGALITARIAN and GROUP-LEXIMIN Objectives: The

first step we take is to discretize the space by a parameter ϵ ∈ (0, 1). For convenience, we

set ϵ = 1
r

where r ∈ Z+, i.e., r is a positive integer. Accordingly, instead of interacting

with the continuous interval [0, 1] for the proportional violations, we instead interact with Eϵ =

{ϵ, 2ϵ, . . . , . . . , (1
ϵ
− 1)ϵ, 1}, with |Eϵ | = 1

ϵ
. For all colors, their violation ∆h is set to the same

value and the optimal solution is found simply by doing binary search over the set Eϵ by running

the feasibility LP (2.11).

Theorem 2.3.14. For FABC with the GROUP-EGALITARIAN objective, we can use O
(
log
(

1
ϵ

))
–

many LP runs to get a solution with an additive approximation of ϵ.

Proof. The proof follows directly by using binary search.

We provide a heuristic algorithm for the GROUP-LEXIMIN objective; a rough sketch fol-

lows. In the first step, it obtains the GROUP-EGALITARIAN solution. Then, it proceeds by finding

a color that cannot improve beyond the current optimal violation; if more than one color is found,

then one of these colors is randomly picked. The algorithm then looks for the optimal viola-

tion for the remaining colors, having the violations of the previous colors fixed. These steps are

followed until no color can have its proportional violation improved.

Search Algorithm for the GROUP-UTILITARIAN Objective: We follow the same dis-

cretization step as for the GROUP-EGALITARIAN objective. We describe our algorithm for the

important two-color case with symmetric upper and lower bounds we show a search algorithm

47

that requires only O
(
log 1

ϵ

)
LP runs. The two color case with symmetric upper and lower bounds

is that where the two colors h1 and h2 are present with proportions r1 and r2 in the dataset, and

the proportion bounds are set to αi = ri + λi, βi = ri − λi for i ∈ {1, 2} and some valid

λ1, λ2 ∈ [0, 1]. The key observation for the two-color symmetric case is that the proportion of

one color implies the proportion of the other; hence, we can run binary search over the set Eϵ.

Theorem 2.3.15. For FABC with two colors, symmetric lower & upper bounds, and the GROUP-

UTILITARIAN objective, we can use O
(
log(1

ϵ
)
)

–many LP runs to get a solution with an additive

approximation of |H |ϵ = 2ϵ.

Proof. We first point out the following definition and observations. For the two color case, our

color set is H = {h1, h2}. Further, we denote the proportions for color i by ri where ri =

|{j|j∈C,χ(j)=i}|
| C | = | Ci |

| C | . We use color h1 to denote the color with less points, i.e. r1 ≤ r2. The

upper and lower bounds we consider for each color are: βi = (1− δ)ri and αi = (1 + δ)ri. The

idea behind the algorithm is that the proportions of one color imply the proportion of the other

color.

Algorithm for FABC with two colors and symmetric lower and upper proportion bounds: Our

algorithm is based on the simple observation shown in figure 2.9

Figure 2.9: Proportions and bounds for two colors. r1 = 0.25, r2 = 0.75, λi = δri for i ∈ {1, 2}
where δ = 0.1. Notice how if color 1 violates the upper bound by having p1 = 0.3, then we
must have p2 = 0.7, but color 2 is not violating. On the other hand, a violation for color 1 with
p′1 = 0.4 implies p′2 = 0.6 which causes a violation for color 2.

48

Without loss of generality, let λ1 ≤ λ2, based on the observation in figure 2.9, we have the

following claim:

Claim 2.3.16. If ∆1 < λ2 − λ1, then ∆2 = 0. If ∆1 ≥ λ2 − λ1, then ∆2 = ∆1 − (λ2 − λ1)

Proof. Let color 1 have a ∆1 violating proportion of p1, then in some cluster p1 = α1 + ∆1 or

p1 = β1 −∆1.

Consider the case where p1 = α1 + ∆1, then p2 = 1 − p1 = 1 − α1 − ∆1. Now if

∆1 < λ2−λ1, then we have p2 > 1−α1−(λ2−λ1) = 1−λ2+λ1−α = (1−r1)−λ2 = r2−λ2 = β2

this means that color 2 does not violate the lower bound. If we assume that color 2 violates the

upper bound by an amount ∆2 > 0, then this would imply that p1 = 1−p2 and the lower violation

for color 1 would be β1−p1 = β1−(1−α2−∆2) = β1−1+α2+∆2 = r1−λ1+r2+λ2+∆2−1 =

1+(λ2−λ1)+∆2−1 = (λ2−λ1)+∆2 > (λ2−λ1) which is a contradiction since we assumed

that ∆1 < (λ2 − λ1).

Similarly, if ∆1 ≥ (λ2−λ1), then we have ∆2 = β2− (1−α1−∆1) = β2−1+α1+∆1 =

r2 − λ2 + r1 + λ1 − 1 + ∆1 = λ1 − λ2 + ∆1 = ∆1 − (λ2 − λ1). Now if we assume that color

2 has a violation of the upper bound by an amount ∆′
2 > ∆1 − (λ2 − λ1), this would imply that

color 1 violates the lower bound by β1 − p1 = r1 − λ1 + r2 + λ2 − 1 + ∆2 = (λ2 − λ1) + ∆2

which is a contradiction since ∆1 < ∆2 + (λ2 − λ1), therefore color 2 cannot violate by more

than ∆1 − (λ2 − λ1).

The case of p1 = β1 −∆1 follows similar arguments.

The above observations lead to algorithm 5.

Now we are ready to prove the theorem. From Claim (2.3.16) we can do binary search over

the set Eϵ using ∆1 as done in algorithm (5). Clearly, at most O
(
log(1

ϵ
)
)

many LPs will be run

49

Algorithm 5 GROUP-UTILITARIAN Algorithm for Two Colors with Symmetric Bounds for the
GROUP-UTILITARIAN Objective

Input: set of points C, cost upper bound U , for each color h ∈ H lower and upper proportion
values βh, αh, error parameter ϵ.
Define the set Eϵ = {0, ϵ, . . . , (1ϵ − 1)ϵ}
Binary search ∆1 over the set Eϵ by running the LP (2.11) (if ∆1 < δ(r2 − r1) then ∆2 = 0,
otherwise set ∆2 = ∆1 − δ(r2 − r1)).
return return the LP solution with the minimum ∆1 value.

because of binary search. Further, we know that we will find a solution at most ϵ greater, i.e. we

worst case best LP value is: ∆∗
1 + ϵ,∆∗

2 + ϵ = (∆∗
1 +∆∗

2) + 2ϵ = OPT+2ϵ.

For the general multi-color case, we show a search algorithm of O((1
ϵ
)|H |−1) many LP

feasibility calls, thus improving marginally over the brute force of (1
ϵ
)|H | many calls, see [17] for

the details.

Theorem 2.3.17. For FABC with GROUP-UTILITARIAN objective, we can use O
((

1
ϵ

)|H |−1
)

–

many LP runs to obtain an LP solution with additive approximation |H |ϵ.

The Rounding Scheme and ALG-FABC Guarantees: Having obtained the optimal

LP solutions for either the GROUP-UTILITARIAN or GROUP-EGALITARIAN objectives, we now

round the solutions to integral values at a bounded increase to the additive approximation. To

do the rounding, we apply the network flow method of [1], although other rounding methods

are applicable. Given the LP solution xij and its associated proportional violations ∆h, if we

denote the rounded integral solution by x̄ij and ∆̄h, then network-flow rounding guarantees the

following: (i)
∑

i,j d
p(i, j)x̄ij ≤

∑
i,j d

p(i, j)xij . (ii) ∀i ∈ [k] :
⌊∑

j∈C xij

⌋
≤
∑

j∈C x̄ij ≤⌈∑
j∈C xij

⌉
. (iii) ∀h ∈ H,∀i ∈ [k] :

⌊∑
j∈Ch xij

⌋
≤
∑

j∈Ch x̄ij ≤
⌈∑

j∈Ch xij

⌉
.

Property (i) ensures that the clustering objective will not increase beyond the LP value, and

thus, provided the LP cost does not exceed the upper bound on the cost U , the cost of the rounded

50

assignment will not exceed U as well. Property (ii) guarantees that the total number of points

assigned to a cluster will not vary by more than 1 point. Property (iii) guarantees that the total

number of points of a given color assigned to a cluster will not vary by more than 1 point. We

can use the above properties along with with the lower bound on the size of any cluster L(U) to

establish the following theorem:

Theorem 2.3.18. For the FABC problem, the rounded solution has cost of at most U and an

additive approximation of: (1) |H |(ϵ + 2
L(U)

) for the GROUP-UTILITARIAN objective and (2)

ϵ+ 2
L(U)

for the GROUP-EGALITARIAN objective.

Proof. First we start with the following claim:

Claim 2.3.19. ∆̄h < ∆h +
2

L(U)
, i.e. rounding will increase the violation by at most 2

L(U)
.

Proof. Based on properties (ii) and (iii) from network flow rounding (mentioned above), we can

51

get the following bound for the upper proportion:

∑
j∈Ch

x̄ij ≤

∑
j∈Ch

xij

 (by property (iii))

≤

⌈
min

(
(αh +∆h), 1

)(∑
j∈C

xij

)⌉
(problem constraint)

< min
(
(αh +∆h), 1

)(∑
j∈C

xij

)
+ 1 (ceiling upper bound)

≤ min
(
(αh +∆h), 1

)(∑
j∈C

x̄ij + 1
)
+ 1 (by property (ii))

≤ min
(
(αh +∆h), 1

)(∑
j∈C

x̄ij

)
+min

(
(αh +∆h), 1

)
+ 1

≤ min
(
(αh +∆h), 1

)(∑
j∈C

x̄ij

)
+ 2 (since min

(
(αh +∆h), 1

)
≤ 1)

≤ (αh +∆h)
(∑

j∈C

x̄ij

)
+ 2

This implies that the new violation for the rounded solution ∆̄h satisfies:

αh + ∆̄h =

∑
j∈Ch x̄ij∑
j∈C x̄ij

< αh +∆h +
2∑

j∈C x̄ij

≤ αh +∆h +
2

L(U)

Therefore, we have:

∆̄h−∆h <
2

L(U)

52

For the lower proportions, we also have:

∑
j∈Ch

x̄ij ≥

∑
j∈Ch

xij

 (by property (iii))

≥

⌊
max

(
(βh −∆h), 0

)(∑
j∈C

xij

)⌋
(problem constraint)

> max
(
(βh −∆h), 0

)(∑
j∈C

xij

)
− 1 (ceiling upper bound)

≥ max
(
(βh −∆h), 0

)(∑
j∈C

x̄ij − 1
)
− 1 (by property (ii))

≥ max
(
(βh −∆h), 0

)(∑
j∈C

x̄ij

)
−max

(
(βh −∆h), 0

)
− 1

≥ max
(
(βh −∆h), 0

)(∑
j∈C

x̄ij

)
− 2 (since max

(
(βh −∆h), 0

)
≤ 1)

≥ (βh −∆h)
(∑

j∈C

x̄ij

)
− 2

βh − ∆̄h =

∑
j∈Ch x̄ij∑
j∈C x̄ij

> βh −∆h−
2∑

j∈C x̄ij

≥ βh −∆h−
2

L(U)

Therefore, we have:

∆̄h−∆h <
2

L(U)

Now we are ready to prove the theorem. (1) For the GROUP-UTILITARIAN, by Theorems

(2.3.17) and (2.3.15) the LP solution has a violation of |H | + ϵ, then by Claim (2.3.19) and the

53

definition of the GROUP-UTILITARIAN =
∑

h∈H ∆h, the violation is at most |H |(ϵ+ 2
L(U)

).

(2) For the GROUP-EGALITARIAN, by Theorem (2.3.14) and Claim (2.3.19), the rounded

solution would have a worst case violation of ϵ+ 2
L(U)

across the colors.

Recalling the additive approximation lower bounds of Theorem 2.3.6 for the FABC prob-

lem, we see that we obtain a solution for FABC of cost at most U with near-optimal addi-

tive approximation. Specifically, our additive approximations for the GROUP-UTILITARIAN and

GROUP-EGALITARIAN are 2|H |
L(U)

and 2
L(U)

compared to their lower bounds of |H |
8L(U)

and 1
8L(U)

,

respectively.

2.3.3 Fairness Across the Clusters is not Possible

It is tempting to modify both the GROUP-UTILITARIAN and GROUP-EGALITARIAN (or

GROUP-LEXIMIN) objectives to sum across the clusters instead of taking the maximum vi-

olation across the clusters. More specifically, we can replace the objectives by the follow-

ing: GROUP-UTILITARIAN-SUM, which equals
∑

h∈H,i∈[k]
∆i

h, and GROUP-EGALITARIAN-SUM,

which equals minmax
h∈H

∑
i∈[k]

∆i
h, where ∆i

h is the violation of color h in cluster i; clearly the

previously-considered violation ∆h is max
i∈[k]

∆i
h. It can be seen that such an objective is more

flexible. For example, the maximum violations might occur in a cluster that cannot be improved

within the given bound on the clustering cost, while it may be possible to improve it for other

clusters. The original GROUP-UTILITARIAN and GROUP-EGALITARIAN objectives may bring

no improvement in such a situation but their above modifications could. We prove a negative

result. Specifically, while we were able to approximate FABC by small additive values for the

original objectives (Theorem 2.3.18), for the new objectives we cannot efficiently approximate

54

the FABC problems within even relatively-large additive approximations:

Theorem 2.3.20. For FABC, the objectives GROUP-UTILITARIAN-SUM and GROUP-EGALITARIAN-

SUM that sum across the clusters cannot be approximated in polynomial time to within an addi-

tive approximation of O(nδ) where δ is a constant in [0, 1), unless P = NP .

Proof. We first introduce the following lemma:

Lemma 2.3.21. Any polynomial time approximation algorithm for FABC for a general upper

bound U must have µ > 0, i.e. it must have a strictly greater than zero additive approximation

guarantee.

Proof. The proof follows from the proof of Theorem (2.3.1). Specifically, the proof of The-

orem (2.3.1) shows that hard instances for FABC could have an optimal value of 0 for the

GROUP-UTILITARIAN, GROUP-EGALITARIAN, and GROUP-LEXIMIN objectives, specifically

when U = OPTFC where OPTFC is the optimal value of fair clustering. Therefore, if a polyno-

mial time approximation algorithm with approximation ratio ρ ≥ 1 and additive approximation

µ ≥ 0 is ran over such hard instances, then it would output a solution of value ρOPT+µ =

ρ(0) + µ = µ. If the algorithm has µ = 0, then it would mean that the problem has been solved

optimally which is impossible unless P = NP . Therefore, µ > 0.

By the result of the above lemma we know that we can hard instances with OPT = 0 and

that any polynomial time algorithm should have an additive approximation µ > 0. Further, we

consider the same X3C reduction of Theorem 2.3.1 and Figure 2.8 for FABC with the centers

set to the points of F .

To prove the theorem, suppose by contradiction that an algorithm A exists that guarantees

an additive approximation of O(nδ) for δ ∈ [0, 1). Suppose, we are given an instance of the

55

problem with optimal solution value of OPT and n many points. Note by Lemma 2.3.10 if

∆i
red <

1
|Ci| , then there us no violation. It follows that if

∑
i∈[k](∆

i
red +∆i

blue) <
1
4n

then we have

no violation.

Now, create D many duplicates of the given set of points. Let the distance between the

points belonging to the same duplicate be the same as in the original instance, whereas for points

in different duplicates the distance is infinity. Further, let the number of centers be Dk where

each duplicate has k many centers assigned at the same points as the original instance. Given the

original upper bound on the clustering objective U , the new upper bound U ′ is set to U ′ = U for

the k-center, U ′ = DU for the k-median, and U ′ =
√
DU for the k-means objectives.

If this modified instance is given to A, then the output would have a value of at most

ρDOPT+c(Dn)δ for some c > 0. If D > 1
4δ−1 c

1
1−δn

1+δ
1−δ (which is polynomial in n), then the

average violation across the duplicates is:

ρDOPT+c(Dn)δ

D
= ρOPT+cnδDδ−1

< ρOPT+c
1

4
nδc

δ−1
1−δn

(1+δ)(δ−1)
1−δ = ρOPT+

1

4n
= 0 +

1

4n

This means that there must exist at least one duplicate for which the violation is at most 1
4n

which means that the problem has been exactly in polynomial time which is impossible unless

P = NP .

2.3.4 Experiments

We validate our algorithms on datasets from the UCI repository [54]. The results here are

for k-means clustering.

56

2.3.4.1 GROUP-UTILITARIAN Experiments

We use the Adult and Census1990 datasets with self-reported gender (male or female) as

the attribute. We note that both datasets explicitly use categorical labels for this socially-complex

concept, and acknowledge that this is reductive [55]. Figure 2.10 shows the PoF versus the

achieved GROUP-UTILITARIAN objective, with δ = 0.1. As expected, as the price of fairness

increases (higher bound on the cost), we can further minimize the proportional violations. Even-

tually the GROUP-UTILITARIAN objective becomes less than 0.1 and even very close to zero.

We also observe that at a given cost upper bound, we can achieve lower values for the GROUP-

UTILITARIAN objective when the number of clusters (k) is lower.

Figure 2.10: PoF vs the GROUP-UTILITARIAN objective for the Adult and Census1990 datasets.

2.3.4.2 GROUP-EGALITARIAN and GROUP-LEXIMIN Experiments

We again use the Adult and Census1990 datasets. However, for Adult, we set the fairness

attribute to race which—in this dataset, and with the same inherent social caveats as the catego-

rization of gender—has 5 groups (colors). For Census1990, we set the fairness attribute to age

where we have three age groups.6 We set δ = 0.05 and k = 10 for Adult and δ = 0.1 and k = 5

for Census1990. Figure 2.11 shows the results of our algorithm. We notice that for some colors

6Census1990 actually has 8 age groups. For better interpretability of the results, we merge nearby groups
{0, 1, 2}, {3, 4, 5}, and {6, 7, 8} to form 3 groups.

57

smaller violations are harder to achieve and we need to set the maximum allowable clustering

cost to larger values to reduce their violations.

Figure 2.11: PoF versus the proportional violation for different groups (each colored graph is a
group) in the Adult and Census1990 datasets.

2.3.4.3 Checking the Size of the Smallest Cluster

As mentioned in Theorem 2.3.11 our approximations are dependent on the size of the

smallest cluster in the solution. While it is not tractable to obtain the value of L(U) for a given

U , we can still empirically check the size of the smallest cluster in the cost bounded clusterings

we obtain. We note that, throughout, we do not impose any lower bound on the cluster size in

our algorithm. For the above experiments we considered, we find that the minimum cluster size

(across all choices of k) are as follows: Adult (159 points), Census1990 (171 points). The fact

that the size of the smallest cluster is large means that we are achieving small (accurate) additive

approximations with near-optimal objective values and when we obtain a large objective value it

is because of how stringent the cost upper bound is.

58

2.4 Fair Labeled Clustering

While constraining the demographics of each cluster is appropriate in some settings, it may

be unnecessary or impractical in others. In decision making applications, each cluster eventually

has a specific label (outcome) associated with it which may be more positive or negative than

others. If the same label is applied to multiple clusters, we may only wish to bound the demo-

graphics of points associated with a given label as opposed to bounding the demographics of each

cluster.

To be more concrete, consider the application of clustering for market segmentation in or-

der to generate better targeted advertising [56–59]. In this setting, we select or engineer features

which are informative for targeted advertising and apply clustering (e.g., k-means) to the dataset.

Then, we analyze the resulting centers (prototypical examples) and make decisions for targeted

advertising in the form of recommending specific products or offering certain deals. These prod-

ucts or deals may have different levels of quality, i.e., we may assign labels such as: mediocre,

good, or excellent to each cluster based on the quality of its advertisements. For the clusters of a

given label (treated as one), it is possible that a certain demographic would be under-represented

in the excellent label or that another could be over-represented in the mediocre label. In fact, the

reports in [60–62] indicate that targeted advertising may under-represent certain demographics

for some advertisements. An algorithm that ensures each group is represented proportionally in

each label could remedy this issue. While applying group fair clustering algorithms would also

ensure demographic representation in the clusters and thus the labels, it could come at the price

of a higher deformation in the clustering since points would have to be routed to possibly faraway

centers just to satisfy the representation proportions. On the other hand, ensuring fair represen-

59

tation across the labels, but not necessarily the centers is less restrictive and likely to cause less

deformation to the clustering.

Another similar example is clustering for job screening [63] in which we have a dataset

of candidates,7 and each candidate is represented as a point in a metric space. Clustering could

be applied over this set to obtain k many clusters. Then, the center of each cluster is given

a more costly examination (e.g., a human carefully screening a job application). Accordingly,

the centers would be assigned labels from the set: hire, short-list, scrutinize further, or reject.

Naturally, more than one cluster could be assigned the same label. Clearly, the greater concern

here is demographic parity across the labels, but not necessarily the individual clusters. Thus,

group fair clustering would yield unnecessarily sub-optimal solutions.

While in the above examples the label of the center was decided according to its position

in the metric space. One can envision applications in Operations Research where the label as-

signment of the center is not dependent on its position [64, 65]. Rather, we would have a set of

centers (facilities) of different service types (or quality) and we would have a budget for each ser-

vice type. Further, to ensure group fairness we would satisfy the demographic representation over

the service types offered. In this setting, we would have to choose the labels so as to minimize the

clustering cost subject to further constraints such as budget and fair demographic representation.

The above examples illustrate the need for a group fairness definition at the label level

when clustering is applied in decision-making settings or when the different centers (facilities)

provide different types of services. In addition to being sufficient, evaluating fairness at the

label level rather than cluster level can also be necessary. When the metric space is correlated

7In some countries, such as India, the number of candidates can be in the millions for government jobs: https:
//www.bbc.com/news/world-asia-india-43551719.

60

https://www.bbc.com/news/world-asia-india-43551719
https://www.bbc.com/news/world-asia-india-43551719

with group membership it may be costly, counterproductive, or impossible to get meaningful

clusters that each preserve the demographics of the dataset. For example, if the metric space is

geographic as in many facility location problems, a person’s location can be correlated with their

racial group membership due to housing segregation. The same is true in machine learning when

common features like location redundantly encode sensitive features such as race. In this case,

the more strict approach of group fairness in each cluster could cause a large enough degradation

in clustering quality that the entity in charge chooses a classical “unfair” clustering algorithm

instead. In legal terms, this unfair clustering approach may exhibit disparate impact—members

of a protected class may be adversely affected without provable intent on the part of the algorithm.

However, disparate impact is allowed if the unfair clustering can be justified by business necessity

(e.g., the fair clustering alternative is too costly) [51].

Thus, our work can be seen as a less stringent, less costly, and fundamentally different ap-

proach which still satisfies some similar fairness criteria to existing group fair clustering formula-

tions. In addition, the decision-maker may not be concerned with the demographic representation

in all labels, but rather only a specific set of label(s) such as hire and short-list. It may also be

desired to enforce different lower and upper representation bounds for different labels.

We introduce the problem of fairness in labeled clustering in which group fairness is en-

sured within the labels as opposed to each cluster. Specifically, we are given a set of centers found

by a clustering algorithm, then having found the centers, we have to satisfy group fairness over

the labels. We consider two settings: (1) labeled clustering with assigned labels (LCAL) where

the center labels are decided based on their position as would be expected in machine learning

applications and (2) labeled clustering with unassigned labels (LCUL) where we are free to

select the center labels subject to some constraints. We note that throughout we consider the set

61

of centers to be given and fixed (although in the unassigned setting their labels are unknown),

therefore the problem is essentially a routing (assignment) problem where points are assigned to

centers rather than a clustering problem. We however, refer to it as clustering since we minimize

the clustering cost throughout and since our motivation is clustering based. Moreover, many of

the application cases of the assigned labels setting would not alter the centers as that would not

change the assigned labels which are given manually through further inspection [56,58,63] or in

the case of the unassigned labels we would have a fixed set of centers. Further, the work of [66]

in fair clustering follows a similar setting where the centers are fixed.

For the LCAL (assigned labels) setting, we show that if the number of labels is constant,

then we can obtain an optimal clustering cost subject to satisfying fairness within labels in poly-

nomial time. This is in contrast to the equivalent fair assignment problem in fair clustering which

is NP-hard [1, 17].8 Furthermore, for the important special case of two labels, we obtain a faster

algorithm with running time O(n(log n+ k)).

For the LCUL (unassigned labels) setting, we give a detailed characterization of the hard-

ness under different constraints and show that the problem could be NP-hard or solvable in poly-

nomial time. Furthermore, for a natural specific form of constraints we show a randomized

algorithm that always achieves an optimal clustering and satisfies the fairness constraints in ex-

pectation.

We conduct experiments on real world datasets that show the effectiveness of our algo-

rithms. In particular, we show that our algorithms provide fairness at a lower cost than fair

clustering and that they indeed scale to large datasets.

8In this equivalent problem, the set of centers is given. We seek an assignment of points to these centers that
minimizes a clustering objective and bounds the group proportions assigned to each center.

62

2.4.1 Further Definitions for the Labeled Fair Clustering Problem

The cardinality of the set of colors is R, i.e. |H | = R. We refer to the set of points with

color h ∈ H by Ch. We are given a set S of centers that have been selected, S contains at most

k many centers, i.e. |S| ≤ k. Furthermore, we have the set of labels L where L has a total of

m many possible labels, i.e. | L | = m. The function ℓ : S → L assigns centers to labels. Our

problem always involves finding an assignment from points to centers, ϕ : C → S such that it

is the optimal solution to a constrained optimization problem where the objective is a clustering

objective. Specifically, we always have to minimize the the k-center, k-median, and k-means

objectives. We consider the number of colors R to be a constant throughout. This is justified by

the fact that in most applications demographic groups tend to be limited in number.

As mentioned earlier, we have two settings and accordingly two variants of this optimiza-

tion: (1) labeled clustering with assigned labels (LCAL) where the centers have already been

assigned labels and (2) labeled clustering with unassigned labels (LCUL) where the centers have

not been assigned any labels and can be assigned any arbitrary labels from the set L subject to

(possible) additional constraints.

We pay special attention to the two label case where L = {P,N} with P being a posi-

tive outcome label and N being a negative outcome label, although many of our results can be

extended to the general case where | L | = m > 2.

2.4.1.1 Labeled Clustering with Assigned Labels (LCAL):

In this problem the labels of the centers have been assigned, i.e. the function ℓ is fully

known and fixed. We look for an assignment ϕ which is the optimal solution to the following

63

problem:

min
ϕ

(∑
j∈C

dp(j, ϕ(j))
)1/p

(2.13a)

∀L ∈ L,∀h ∈ H : lLh
∑
i∈S

ℓ(i)=L

| Ci | ≤
∑
i∈S

ℓ(i)=L

| Chi | ≤ uLh
∑
i∈S

ℓ(i)=L

| Ci | (2.13b)

∀L ∈ L : (LB)L ≤
∑

i∈S:ℓ(i)=L

| Ci | ≤ (UB)L (2.13c)

where Ci refers to the points ϕ assigns to the center i, i.e. Ci = {j ∈ C |ϕ(j) = i}. Chi = Ci ∩Ch,

i.e. the subset of Ci with color h. lLh and uL
h are lower and upper proportional bounds for color

h. Clearly, lLh , u
L
h ∈ [0, 1]. Constraints (2.13b) are the proportionality (fairness) constraints that

are to be satisfied in fair labeled clustering. Notice how we have a superscript L in lLh and uL
h ,

this is to indicate that we may desire different proportional representations in different labels.

For example, for the case of two labels L = {P,N}, we may not want to enforce proportional

representation in the negative label so we set lNh = 0 and uN
h = 1 but we may want to enforce

lower representation bounds in the positive label and therefore set lPh to some non-trivial value.

Note that these constraints generalize those of fair clustering, in fact we can obtain the constraints

of fair clustering by letting each center have its own label (m = k) and enforcing the proportional

representation bounds to be the same throughout all labels. However, in our problem we focus on

the case where the number of labels m is constant since in most applications we expect a small

number of labels (outcomes). In fact, a large number could cause a problem in terms of decision

making and result interpretability.

64

In constraints (2.13c), (LB)L and (UB)L are pre-set upper and lower bounds on the number

of points assigned to a given label, clearly (LB)L, (UB)L ∈ {0, 1, . . . , n} . They are additional

constraints we introduce to the problem that have not been previously considered in fair clus-

tering. Our motivation comes from the fact that since positive or negative outcomes could be

associated with different labels, it is reasonable to set an upper bound on the total number of

points assigned to a positive label, since a positive assignment may incur a cost and there is a

bound on the budget. Similarly, we may set a lower bound to avoid trivial solutions where most

points are assigned to negative outcomes and no or very few agents enjoy the positive outcome.

2.4.1.2 Labeled Clustering with Unassigned Labels (LCUL):

In labeled clustering with unassigned labels LCUL, the labels of the centers have not been

assigned. As noted, this captures certain OR applications in which the label of a center is not

related to its position in the metric space.

Similar to the case with assigned labels LCAL, we would also wish to minimize the clus-

tering objective. In general we have the following optimization problem:

min
ϕ,ℓ

(∑
j∈C

dp(j, ϕ(j))
)1/p

(2.14a)

∀L∈ L,∀h ∈ H : lLh
∑
i∈S

ℓ(i)=L

| Ci | ≤
∑
i∈S

ℓ(i)=L

| Chi | ≤ uLh
∑
i∈S

ℓ(i)=L

| Ci | (2.14b)

∀L ∈ L : (LB)L ≤
∑

i∈S:ℓ(i)=L

| Ci | ≤ (UB)L (2.14c)

65

∀L ∈ L : (CL)L ≤ |S
L| ≤ (CU)L (2.14d)

Note how in the above objective ℓ has been added as an optimization variable unlike the objective

in (2.13) for LCAL. Further, we have added constraint (2.14d) where SL refers to the subset of

centers that have been assigned label L by the function ℓ, i.e. SL = {i ∈ S|ℓ(i) = L}. This

constraint simply lower bounds SL by (CL)L and upper bounds it by (CU)L. This constraint

models minimal service guarantees (lower bound) and budget (upper bound) guarantees. Clearly,

(CL)L, (CU)L ∈ {0, 1, . . . , k}. Further, setting (CL)L = 0 and (CU)L = k ∀L ∈ L allows

any label to have any number of centers, effectively nullifying the constraint. We show in a

subsequent section that forcing certain constraints on the problem can make it NP-hard and that

relaxing some constraints would make the problem permit polynomial time solutions.

2.4.2 Algorithms and Theoretical Guarantees for LCAL

2.4.2.1 LCAL is Polynomial Time Solvable:

LCAL is problem (2.13) where we have a collection of centers and we wish to minimize a

clustering objective subject to proportionality constraints (2.13b) and possible constraints on the

number of points each label is assigned (2.13c). Fair assignment9 is a problem which has a very

similar form to our problem; the centers have already been decided and we wish to satisfy the

same proportionality constraints in every cluster, specifically the optimization problem is:

min
ϕ

(∑
j∈C

dp(j, ϕ(j))
)1/p

(2.15a)

9Fair assignment [1, 14, 40] is a sub-problem solved in fair clustering to finally yield a full algorithm for fair
clustering.

66

∀i ∈ S, ∀h ∈ H : lh| Ci | ≤ | Chi | ≤ uh| Ci | (2.15b)

It may be thought that the above optimization is simpler than that of LCAL (2.13), since all

clusters have to satisfy the same proportionality bounds and there is no bound on the total number

of points assigned to a any specific cluster. However, [1,17] show that the problem is in fact NP-

hard for all clustering objectives. We show in the theorem below that LCAL can be solved in

polynomial time for all clustering objectives.

Theorem 2.4.1. Labeled clustering with assigned labels LCAL is solvable in polynomial time

for the all clustering objectives (k-center, k-median, and k-means).

Proof. The key observation is that any assignment function ϕ, will assign a specific number of

points nL to the centers with label L. Further, we have that
∑

L∈L nL = n since all points must be

covered. Now, since | L | = m is a constant, this means that there is a polynomial number of ways

to vary the total number of points distributed across the labels. More specifically, the total number

of ways to distribute points across the given labels is upper bounded by n× n× · · · × n︸ ︷︷ ︸
m−1

= nm−1.

Note that once we decide the number of points assigned to the first (m − 1) labels, the last

label must be assigned the remaining amount to cover all n points, so we have a total of nm−1

possibilities. Since we have established, that there is a polynomial number of possibilities for

distributing the number of points across the labels, if we can solve LCAL optimally for each

possibility and simply take the minimum across all possibilities then we would obtain the optimal

solution.

Now that we are given a specific distribution of number of points across labels, i.e. (n1, . . . , nL, . . . , nm)

where
∑

L∈L nL = n, we have to solve LCAL optimally for that distribution. The problem

67

amounts to routing points to appropriate centers such that we minimize the clustering objective

and satisfy the distribution of number of points across the labels along with the color proportion-

ality. To do that we construct a network flow graph and solve the resulting minimum cost max

flow problem. The network flow graph is constructed as follows:

• Vertices: the set of vertices is V = {s} ∪ C ∪(∪h∈HS
h) ∪ (∪h∈H Lh) ∪ L∪{t}. Vertex s

is the source, further we have a vertex for each point, hence the set of vertices C. For each

color h ∈ H we create a vertex for each center in S and for each label in L, these vertices

constitute the sets ∪h∈HSh and ∪h∈H Lh, respectively. We also have a vertex for each label

in L and finally the sink t.

• Edges: the set of edges is E = Es→C ∪EC→Sh ∪ESh→Lh ∪ELh→L ∪EL→t. Es→C consists

of edges from the source s to every point j ∈ C, EC→Sh consists of edges from every point

j ∈ C to the center of vertices of the same color in Sh, ESh→Lh consists of edges from

the colored centers to their corresponding label of the same color, ELh→L consists of edges

from the colored labels to their corresponding label, finally EL→t consists of edges from

every label in L to the sink t.

• Capacities: the edges of Es→C have a capacity of 1, the edges of ELh→L have a capacity

of
⌊
uL
hnL

⌋
, the edges of EL→t have a capacity of nL.

• Demands: the vertices of Lh have a demand of
⌈
lLhnL

⌉
, the vertices of L have a demand

of nL.

• Costs: all edges have a cost of zero except the edges of EC→Sh where the cost of the

edge between the point and the center is set according to the distance and the clustering

68

objective (k-median or k-means). As noted earlier a vertex j will only be connected to the

same color vertex that represents center i in the network flow graph, we refer to that vertex

by iχ(j) and clearly iχ(j) ∈ Sχ(j). Specifically, ∀(j, iχ(j)) ∈ EC→Sh , cost(j, iχ(j)) = dp(j, i)

where p = 1 for the k-median and p = 2 for the k-means.

We write the cost for a constructed flow graph as
∑

j∈C,i∈S d
p(j, i)xij where xij is the amount

of flow between vertex j and center iχ(j). Since all capacities, demands, and costs are set to

integer values. Therefore we can obtain an optimal solution (maximum flow at a minimum cost)

in polynomial time where all flow values are integers. Therefore, we can solve LCAL optimally

for a given distribution of points.

The above construction are for the k-median and k-means. For the k-center we slightly

modify the graph. First, we point out that unlike the k-median and k-means, for the k-center

the objective value has only a polynomial set of possibilities (kn many exactly) since it is the

distance between a center and a vertex. So our network flow diagram is identical but instead of

setting a cost value for the edges in edges of EC→Sh , we instead pick a value d from the set of

possible distances d(j, i) where j ∈ C, i ∈ S and draw an edge between a point j and a center

iχ(j) only if d(j, i) ≤ d. Also we do not need to solve the minimum cost max flow problem,

instead the max flow problem is sufficient.

2.4.2.2 Efficient Algorithms for LCAL for the Two Label Case:

For the k-median and k-means and the two label case we present an algorithm with O(n(log (n)+

k)) running-time. The intuition behind our algorithm is best understood for the case with “ex-

act population proportions” for both the positive and negative labels. First, we note that each

69

color h ∈ H exists in proportion rh = | Ch |
| C | where we refer to rh as the population proportion.

The case of exact population proportions for the positive and negative labels, is the one where

∀h ∈ H,∀L ∈ {P,N} : lLh = uL
h = rh = | Ch |

| C |

That is, the upper and lower proportion bounds coincide and are equal to the proportion

of the color in the entire set. This forces only a limited set of possibilities for the total number

of points (and their colors) which we can assign to either P or N . For example, if we have two

colors and r1 = r2 = 1
2
, then we can only assign an equal number of red and blue points to

P and likewise to N . For the case of three colors with r1 = 1
3
, r2 = 1

2
, r3 = 1

6
, then we can

only assign points of the following form across the different labels: points for the first color =

2c, points for the second color = 3c, points for the third color = c where c is a non-negative inte-

ger. We refer to this smallest ”atomic” number of points by natomic and the number of color h of

its subset by nh
atomic.

Now we define some notation P (j) = mini∈P d(j, i) and N(j) = mini∈N d(j, i), i.e. the

distance of the closest centers to j in P and N , respectively. Further, ϕ−1(P) and ϕ−1(N) are the

set of points assigned to the positive and negative centers by the assignment ϕ, respectively. We

can now define the drop of a point j as drop(j) = N(j) − P (j), clearly the larger drop(j) the

higher the cost goes down as we move it from the negative to the positive set. We can obtain a

sorted values of drop for each color in O
(
n(log n+ k)

)
run-time.

The algorithm is shown (algorithm block (6)). In the first step we start with all points in N ,

then in step 2 we move the minimum number of nh
atomic for each color h to satisfy the size bounds

for each label (constraint (2.13c)). Finally in the loop starting at step 3, we move more points to

the positive label (in an “atomic” manner) if it lowers the cost and is within the size bounds.

70

Algorithm 6 Exact Preservation for k-median / k-means
1: Find an assignment ϕ0 that assigns all points to their nearest center in N , this means that
|ϕ−1

0 (N)| = n and |ϕ−1
0 (P)| = 0. Set ϕ∗ = ϕ0.

2: Move qh = rh max{(LB)P , n − (UB)N} many points of color h with the highest values in
drop from the negative label to the positive label

3: for i =
(

n∑
h∈H qh

)
to n

natomic
do

4: Take nh
atomic many points from each color h with the highest values in drop, call the new

assignment ϕ′.
5: if ϕ′−1(P) and ϕ′−1(N) are within bounds and cost(ϕ′) < cost(ϕ∗) then
6: update the assignment to ϕ∗ = ϕ′

7: else
8: break
9: end if

10: end for

Theorem 2.4.2. Algorithm (6) finds the optimal solution and runs in O
(
n(log n+ k)

)
time.

Proof. First we prove that the solution is feasible. Constraint (2.13b) for the color proportionality

holds, this can is clearly the case before the start of the loop since the centers with negative labels

cover the entire set which is color proportional and the the centers with positive labels cover cover

nothing which is also color proportional. In each iteration, we move an atomic number of each

color from the negative to the positive label and hence both the negative and the positive set of

centers satisfy color proportionality in the points they cover.

For constraint (2.13b) because of exact preservation of the color proportions, we can always

tighten the bounds (LB)L and (UB)L for each label L such that there multiples of natomic without

modification to the problem, so we assume that (LB)N = a natomic, (LB)P = b natomic, (UB)N =

a′ natomic, (UB)P = b′ natomic where a, a′, b, b′ are non-negative integers and clearly a ≤ b and

a′ ≤ b′. Step 2 satisfies the lower bound on the number of points in the positive label and the upper

bound for the negative set. Note that if this step fails then the problem has infeasible constraints.

Further, since we have moved the minimum number of points from the negative set to the positive

71

set, it follows that the upper bounds on the positive are also satisfied since (LB)P ≤ (UB)P , also

the lower bound on the negative set is also satisfied since (LB)N ≤ (UB)N . Finally in step 5,

the size bounds are always checked fair therefore both labels are balanced.

Optimally follows since we move the points with the highest drop value to the positive set

(these are also the points closest to the positive set). Further, in step 5 we stop moving any points

to the positive if there isn’t a reduction in the clustering cost. Note that since the values in drop

are sorted, another iteration would not reduce the cost.

Finding the closest center of each label for every point takes O(nk) time. Finding and

sorting the values in drop clearly takes O(n log n) time. The algorithm does constant work in

each iteration for at most n many iterations. Thus, the run time is O
(
n(log n+ k)

)
.

The above algorithms can be generalized to give all solution values for arbitrary choices of

label size bounds (constraint(2.13c)) with the same asymptotic run-time. Such a solution would

be useful as it would enable the decision maker to see the complete trade-off between the label

sizes and the clustering cost (quality).

2.4.3 Algorithms and Theoretical Guarantees for LCUL

2.4.3.1 Computational Hardness of LCUL

We note that all of our hardness results use the k-center problem for simplicity. Before we

introduce the hardness result, we note all of our reductions are from exact cover by 3-sets (X3C)

[67] where we have universe U = {u1, u2, . . . , u3q} and subsets W1, . . . ,Wt where t = q + r

and for non-trivial instances r > 0. We form an instance of LCUL by representing each one

the subsetsW1, . . . ,Wt by a vertex and each element in U = {u1, u2, . . . , u3q} by a vertex. The

72

centers are the setsW1, . . . ,Wt and they are given a blue color whereas the rest of the points (in

U) are red. Further, each point ui is connected by a edge to a centerWi if and only if ui ∈ Wj .

The distances between any two points is the length of the shortest path between them. This clearly

leads to a metric. See figure 2.12 for an example. This is essentially a reduction we follow in all

proofs, sometimes changes are introduced and mentioned explicitly in the proofs.

W1 W2 W3

a b c d e f

Figure 2.12: Example of the reduction for theorem (2.4.3). This is an instance of the LUCL
problem for an instance U = {a, b, c, d, e, f},W1 = {a, b, c},W2 = {c, d, e} andW3 = {d, e, f}
with q = 2, |U | = 3q and t = 3.

We start by discussing the hardness of LCUL. In contrast to LCAL, the LCUL problem it

not solvable in polynomial time. In the fact, the following theorem shows that even if we were to

drop one constraint for the LCUL (problem (2.14)) we would still have an NP-hard problem.

Theorem 2.4.3. For the LCUL problem with two labels and two colors, dropping one of the

constraints(2.14b), (2.14c), or (2.14d) still leads to an NP-hard problem.

Proof. We begin with the following lemma:

Lemma 2.4.4. Even if the color-proportionality constraint (2.14b) are ignored10 LCUL is NP-

hard.

Proof. As mentioned we consider an instance of exact cover by 3-sets (X3C) with universe

U = {u1, u2, . . . , u3q} and subsets W1, . . . ,Wt. We construct an instance of LCUL where

10We can simply remove the constraint or set lLh = 0, uL
h = 1,∀h ∈ H, L ∈ L.

73

the proportionality constraints are ignored. Further, we only have two labels L = {N,P}, we

set (CL)P = 0, (CU)P = q,(CL)N = 0, (CU)N = t and (LB)P = 4q, (UB)P = 3q + t,

(LB)N = 0, (UB)N = 3q + t.

A solution for X3C leads to a solution for LCUL at cost 1: Take the collection of q many

subsets that solve X3C and give their corresponding centers in LCAL a positive label. Then it is

clear that |SP | = q and that the number of points covered by the positive centers is 4q and that

this done at a cost of 1. The centers that do not correspond to the solution of X3C will be given a

negative label and assigned no points.

A solution for LCUL at cost 1 leads to a solution X3C: A solution for LCUL cannot assign

more than (CU)P = q many centers a positive label and it has to cover 3q more points to have

a total of 4q points and this has to be done at a distance of 1. By construction, since each center

is connected to 3 points, the LCUL solution cannot have less than q centers. Further, to have

4q points, then each center would have to cover a unique set of 3 points at a distance of 1.

Since points are connected to centers at a distance of 1 only if they are corresponding values are

contained in the subsets corresponding to those centers, it follows that the q subsets in the LCUL

solution are indeed an exact cover for X3C.

Now we instead ignore the constraints on the number of points a label should receive, i.e.

constraints (2.14c) and keep the proportionality constraints. We show that this also results in an

NP-hard problem as demonstrated in the theorem below:

Lemma 2.4.5. Even if we do not specify the number of points a label should receive (con-

straint(2.14c)), LCUL is NP-hard.

74

Proof. Similar to the proof of theorem (2.4.4) we follow the reduction from X3C with two labels

for LCUL, i.e. L = {N,P}, but now we consider the color of the vertices. Vertices of the subsets

W1, . . . ,Wt are blue and all of the vertices of the elements of U are red. For the LCUL instance,

we set (CL)P = q, (CU)P = t,(CL)N = 0, (CU)N = t. The representation for the negative set

is ignored, i.e. lNred = lNblue = 0 and uN
red = uN

blue = 1. For the positive set, we only have set a bound

on the lower proportion for the red color, specifically lPred = 3
4
, uP

red = 1 and lPblue = 0, uP
blue = 1.

As the reduction of theorem (2.4.4) the optimal value of the k-center objective cannot be less than

1.

A solution for X3C leads to a solution for LCUL at cost 1: Take the q subsets in the solution

of X3C and assign their corresponding centers a positive labels, then |SP | = q ≥ (CU)P . Further

since elements of U are represented by red vertices, you will have 3q red vertices covered at a

distance of 1, the red proportion of the positive label would be 3q
4q

= 3
4
≥ lPred. To complete the

solution assign the rest of the centers a negative label.

A solution for LCUL at cost 1 leads to a solution X3C: A solution for LCUL would have

to choose at least (CL)P = q many centers. Since all centers are blue and because there are only

3q many red points in the graph, we would have to choose exactly q centers and cover all of the

3q many red points to satisfy the color proportionality constraints of lPred. Since this is being done

at a cost of 1, these points must be representing elements in U that are contained in the subsets

corresponding to the selected centers. Further, since every center is connected to exactly 3 points

at radius 1, we have found an exact cover.

We then have the following lemma:

Lemma 2.4.6. Even if we do not specify the number of centers of each label (ignoring constraints

75

(2.14d)), LCUL is NP-hard.

Proof. Similar to theorems (2.4.4,2.4.5) we follow the same reduction from X3C. This time we

ignore constraint (2.14d) on the number of centers, i.e. 0 ≤ |SN |, |SP | ≤ k. We set (LB)P =

(UB)P = 4q and (LB)N = 0, (LB)N = n. Further for the color proportionality constraints, we

have for the positive set we set lPred = uP
red = 3

4
, lPblue = uP

blue =
1
4

and for the negative set we have

lNred = lNblue = 0. uN
red = uN

blue = 1.

A solution for X3C leads to a solution for LCUL at cost 1: Simply let the subsets (centers)

in the solution if X3C have a positive label and assign all of the points in U to them. Clearly,

we have (LB)P = (UB)P = 4q and the red color has a representation of 3
4

and the blue has a

representation of 1
4
. Furthe, this is done at an optimal cost of 1.

A solution for LCUL at cost 1 leads to a solution X3C: Since (LB)P = (UB)P = 4q,

lPred = uP
red =

3
4
, and lPblue = uP

blue =
1
4
, it follows that the positive set should cover 3

4
4q = 3q many

red points and that it must also cover 1
4
4q = q many blue points. Since all blue points are centers

and all red points are from U ,it follows that we have to choose q many centers to cover 3q many

points at an optimal cost of 1. This leads to a solution for X3C.

The proof of the theorem now follows immediately from the above lemmas (2.4.4,2.4.5,2.4.6)

above.

Having established the hardness of LCUL for different sets of constraints, we show that it

is fixed-parameter tractable11 for a constant number of labels. This immediately follows since a

given choice of labels for the centers leads to an instance of LCAL which is solvable in polyno-

mial time and there are at most mk many possible choice labels.
11An algorithm is called fixed-parameter tractable if its run-time is O(f(k)nc) where f(k) can be exponential in

k, see [68] for more details.

76

Theorem 2.4.7. The LCUL problem is fixed-parameter tractable with respect to k for a constant

number of labels.

Proof. This follows simply by noting that if the labels are assigned, then we have an LCAL

instance which solvable in time that is polynomial in n and k, since k ≤ n, it follows that the

run time for solving LCAL is O(nc) for some constant c. Now, since there are at most mk many

label choices for the centers, it follows that the run time is for LCUL is O(mknc).

It is also worth wondering if the problem remains hard if we were to drop two constraints

and have only one instead. Interestingly, we show that even for the case where the number of la-

bels m is super-constant (m = Ω(1)) , if we only had the color-proportionality constraint (2.14b)

or the constraint on the number of labels (2.14c), then the problem is solvable in polynomial time.

However, if we only had constraint (2.14d) for the number of centers a label has, the problem is

still NP-hard.

Theorem 2.4.8. Even if number of labels m = Ω(n), the LCUL problem is solvable in poly-

nomial time under constraint (2.14b) alone or constraint (2.14d) alone. However, it is NP-hard

under constraint (2.14c) alone.

Proof. Let us consider the color proportionality constraint (2.14b) alone. To solve the problem

optimally and satisfy the constraint, simply assign all points to their closest center and let all

centers take one label from the set L.

Now, we consider only the constraints on the number of centers for each label (2.14d).

Again we assign each point to its closest center for an optimal cost. To satisfy constraints (2.14d),

assuming the constraint parameters of (2.14d) lead to a feasible problem, then each label L ∈ L,

assign it (CL)L many centers arbitrarily. If some centers have not been assigned any labels, then

77

simply go to label L which has not reached its upper bound (CU)L and assign more labels from

it. We simply keep assigning labels from label values that have not reached their upper bound on

the number of centers until all centers have a label.

Now, we consider only the constraints on the number of points a label receives (2.14c). We

simply follow the same reduction from theorems (2.4.4,2.4.5,2.4.6), see also the beginning of this

subsection for the details of the reduction from X3C. We have t = q + r many subsets, we let

the number of labels of the LCUL instance be m = t = q + r. Further, we partition the set of

labels into two, i.e. L = L1 ∪L2 where | L1 | = q and | L2 | = r, and we set the lower and upper

bounds for the labels according to these sets. Specifically, ∀L ∈ L1 : (LB)L = (UB)L = 4q and

∀L ∈ L2 : (LB)L = (UB)L = 1. Now, clearly a solution for X3C leads to a solution for the

LCUL instance, we simply let the subsets (centers) in the solution of X3C be the centers for the

label set L1. Each center is assigned a label from L1 and covers itself and 3 points from U , this

leads to 4q many points which clearly satisfies the upper and lower bounds. Further, the centers

not the solution are assigned a label from L2 and cover themselves, which is just 1 point and

therefore satisfies the constraints. Now for the reverse direction, consider the set L2 where we

have r many labels each covering 1 point. It clear, the smallest cost would be for a center to be

assigned to itself, it follows that we are looking for r many centers and that each center should

only be assigned to itself. This then leaves us with q many centers, since no center can cover

more than 4q many points at a distance of 1, and since we have q many labels with each having

to cover 4q many points, we clearly have a set cover, i.e. a solution for X3C.

78

2.4.3.2 A Randomized Algorithm for label proportional LCUL:

Here we consider a natural special case of the LCUL problem which we call color and label

proportional case (CLP) where the constraints are restricted to a specific form. In CLP each label

must have color proportions “around” that of the population, i.e. color h has proportion rh in each

label L ∈ L. Further, each label has a proportion αL ∈ [0, 1] and
∑

L∈L αL = 1, this proportion

decides the number of points the label covers and the number of centers it has. I.e., label L covers

around αLn many points and has around αLk many centers. Therefore, the optimization takes on

the following form below where we have included the ϵ values to relax the constraints (note that

for every value of ϵ, we have that ϵ ≥ 0):

min
ϕ,ℓ

(∑
j∈C

dp(j, ϕ(j))
)1/p

(2.16a)

∀L∈L,∀h∈H : (rh− ϵAh,L)
∑
i∈S:

ℓ(i)=L

| Ci | ≤
∑
i∈S:

ℓ(i)=L

| Chi | ≤ (rh + ϵ′
A
h,L)

∑
i∈S:

ℓ(i)=L

| Ci | (2.16b)

∀L ∈ L : (αL − ϵBL)n ≤
∑

i∈S:ℓ(i)=L

| Ci | ≤ (αL + ϵ′
B
L)n (2.16c)

∀L ∈ L : (αL − ϵCL)k ≤ |SL| ≤ (αL + ϵ′
C
L)k (2.16d)

We note that even when the constraints take on this specific form the problem is still NP-

hard as shown in the theorem below:

79

Theorem 2.4.9. The CLP problem is NP-hard even for the two color and two label case.

Proof. We again follow a reduction for X3C. We consider the two label case, L = {N,P}.

Similiar to the previous reductions we will have t many blue centers for the subsetsW1, . . . ,Wt

each being connected to its elements in U at a distance of 1 with all elements in U being red.

Note that |U| = q and that t = q + r. Now we also add 2q many blue centers which are not

connected to anything by an edge, expect for one center which is connected by an edge to a

new 3(r + 2q) many red points, this means that any one of these red points is at a distance of

1 from this new center. Note that the increase in the problem size is still polynomial in the

original X3C problem. We set the color proportionality constraint so that each label should have

exactly 3:1 ratio of red points to blue points. Now the total number of points in the problem is

n = 4q+r+2q+3(r+2q) = 4(3q+r). The number of centers k = q+r+2q = 3q+r. Further,

we set αP = q
(3q+r)

and αN = 1−αP = 2q+r
3q+r

. We set the lower and upper size bounds according

to αP and αN , this leads to (LB)P = (UB)P = αPn = q
(3q+r)

n = q
(3q+r)

4(3q + r) = 4q and

(LB)N = (UB)N = 2q+r
3q+r

n = 2q+r
3q+r

4(3q + r) = 4(2q + r). Further, the number of centers for

each label are (CL)P = (CU)P = αPk = q
(3q+r)

k = q
(3q+r)

3q + r = q and (CL)N = (CU)N =

αNk = 2q+r
3q+r

3q + r = 2q + r.

A solution for X3C leads to a solution for LCUL at cost 1: Simply let the q many centers

representing the solution set in W1, . . . ,Wt be the positive labeled centers and assign them the

points that belong to them and let all other centers be negative and assign the last new center all of

the 3(r+2q) many red children points. We then q many positive centers covering 4q many points

with the color proportionality being 3:1 red points to blue points. Similarly, for the negative set

we have 2q+ r many centers covering 4(2q+ r) many points at a color proportionality of 3:1 red

80

to blue. This is done at cost of 1, so clearly optimal.

A solution for LCUL at cost 1 leads to a solution X3C: Suppe the new blue center with

3(r + 2q) many red children is assigned a positive label, this to achieve an optimal cost all

of its children have to be assigned to it. This means that the positive set would have at least

3(r + 2q) = 6q + 3r many points, but (LB)P = (UB)P = αPn = 4q < 6q < 6q + 3r which

causes a contradiction. Therefore that center can never be positive. Therefore, we are looking for

αPk = q many centers to cover αPn = 4q many points and because of the color proportionality

constraint 3q many of them are red and q are blue. Finding this set at an optimal cost is a solution

for X3C.

We show a randomized algorithm (algorithm block (7)) which always gives an optimal cost

to the clustering and satisfies all constraints in expectation and further satisfies constraint (2.16d)

deterministically with a violation of at most 1. Our algorithm is follows three steps. In step 1

we find the assignment ϕ∗ by assigning each point to its nearest center, thereby guaranteeing an

optimal clustering cost. In step 2, we set the center-to-label probabilistic assignments piL = αL.

Then in step 3, we apply dependent rounding, due to [69], to the probabilistic assignments to find

the deterministic assignments. This leads to the following theorem:

Theorem 2.4.10. Algorithm 7 gives an optimal clustering and satisfies constraints (2.16b,2.16c,2.16d)

in expectation with (2.16d) being satisfied deterministically at a violation at most 1.

Proof. The optimality of the clustering cost follows immediately since each point is assigned

to its closest center. Now, we show that the assignment satisfies all of the constraints. We have

piL = αL for each center i. Now we prove that constraints (2.14b,2.14c,2.14d) hold in expectation

over the assignments P i
L. Note that P i

L is also an indicator random variable for center i, taking

81

label L. Then we can show that using property (A) of dependent rounding (marginal probability)

that:

E[
∑

i∈S:ℓ(i)=L

| Ci |] = E[
∑
i∈S

| Ci |P i
L] =

∑
i∈S

| Ci |E[P i
L]

=
∑
i∈S

| Ci | piL = αL

∑
i∈S

| Ci | = αLn

Clearly, constraint (2.16c) is satisfied. Through a similar argument we can show that the rest of

the constraints also hold in expectation.

We have that ∀L ∈ L : |SL| =
∑

i∈S P
i
L =

∑
i∈S αL = αLk. By property (B) of dependent

rounding (degree preservation) we have ∀L ∈ L : |SL| ∈ {⌊αLk⌋ , ⌈αLk⌉}. Therefore constraint

(2.16d) is satisfied in every run of the algorithm at a violation of at most 1.

Algorithm 7 Randomized LCUL Algorithm
1: Find the assignment ϕ∗ by assigning each point to its nearest center in S.
2: For each center i, set its probabilistic assignment for label L to piL = αL.
3: Apply dependent rounding [69] to probabilistic assignments piL to get the deterministic as-

signments P i
L

We note that dependent rounding enjoys the Marginal Probability property which means

that Pr[P i
L = 1] = piL. This enables us to satisfy the constraints in expectation. While we note

that letting each center i take label L with probability αL would also satisfy the constraints in

expectation. Dependent rounding also has the Degree Preservation property which implies that

∀L ∈ L :
∑

i∈S P
i
L ∈ {

⌊∑
i∈S p

i
L

⌋
,
⌈∑

i∈S p
i
L

⌉
} which leads us to satisfy constraint (2.16d)

deterministically (in every run of the algorithm) with a violation of at most 1. Further, dependent

rounding has the Negative Correlation property which under some conditions leads to a concen-

tration around the expected value. Although, we cannot theoretically guarantee that we have a

82

concentration around the expected value, we observe empirically (section 2.4.4.2) that dependent

rounding is much better concentrated around the expected value, especially for constraint (2.16c)

for the number of points in each label.

2.4.4 Experiments

We run our algorithms using commodity hardware with our code written in Python 3.6

using the NumPy library and functions from the Scikit-learn library [70]. We evaluate the

performance of our algorithms over a collection of datasets from the UCI repository [71]. For

all datasets, we choose specific attributes for group membership and use numeric attributes as

coordinates with the Euclidean distance measure. Through all experiments for a color h ∈ H

with population proportion rh = | Ch |
| C | we set the the upper and lower proportion bounds to lh =

(1 − δ)rh and uh = (1 + δ)rh, respectively. Note that the upper and lower proportion bounds

are the same for both labels. Further, we have δ ∈ [0, 1], and smaller values correspond to more

stringent constraints. In our experiments, we set δ to 0.1. For both the LCAL and LCUL we

measure the price of fairness PoF = fair solution cost
color-blind solution cost where fair solution cost is the cost of the

fair variant the and color-blind solution cost is the cost of the “unfair” algorithm which would

assign each point to its closest center.

We note that since all constraints are proportionality constraints, we calculate the propor-

tional violation. To be precise, for the color proportionality constraint (2.14b), we consider a label

L and define ∆L
h ∈ [0, 1] where ∆L

h is the smallest relaxation of the constraint for which the con-

straint is satisfied, i.e. the minimum value for which the following constraint is feasible given the

solution: (lLh −∆L
h)
∑

i∈S:ℓ(i)=L | Ci | ≤
∑

i∈S:ℓ(i)=L | C
h
i | ≤ (uL

h + ∆L
h)
∑

i∈S:ℓ(i)=L | Ci |, having

83

found ∆L
h we report ∆color where ∆color = max{h∈H,l∈L} ∆

L
h . Similarly, we define the propor-

tional violation for the number of points ∆L
points/label assigned to a label as the minimal relaxation

of the constraint for it to be satisfied. We set ∆points/label to the maximum across the two labels. In

a similar manner, we define ∆center/label for the number of centers a label receives.

We use the k-means++ algorithm [44] to open a set of k centers. These centers are inspected

and assigned a label. Further, this set of centers and its assigned labels are fixed when comparing

to baselines other than our algorithm.

Clustering Baseline: In the labeled setting and in the absence of our algorithm, the only

alternative that would result in. a fair outcome is a fair clustering algorithm. Therefore we

compare against fair clustering algorithms. The literature in fair clustering is vast, we choose the

work of [40] as it can be tailored easily to this setting in which the centers are open. Further,

it allows both lower and upper proportion bounds in arbitrary metric spaces and results in fair

solutions at relatively small values of PoF compared to larger PoF (as high as 7) reported in [21].

Our primary concern here is not to compare to all fair clustering work, but gauge the performance

of these algorithms in this setting. We also compare against the “unfair” solution that would

simply assign each point to its closest center which we call the nearest center baseline. Though

this in general would violate the fairness constraints it would result in the minimum cost.

Datasets: We use two datasets from the UCI repository: The Adult dataset consisting of

32,561 points and the CreditCard dataset consisting of 30,000 points. For the group membership

attribute we use race for Adult which takes on 5 possible values (5 colors) and marriage for

CreditCard which takes on 4 possible values (4 colors). For the Adult dataset we use the

numeric entries of the dataset (age, final-weight, education, capital gain, and hours worked per

week) as coordinates in the space. Whereas for the CreditCard dataset we use age and 12 other

84

financial entries as coordinates.

2.4.4.1 LCAL Experiments

Adult Dataset: After obtaining k centers using the k-means++ algorithm, we inspect the

resulting centers. In an advertising setting, it is reasonable to think that advertisements for ex-

pensive items could be targeting individuals who obtained a high capital gain. Therefore, we

choose centers high in the capital gain coordinate to be positive (assign an advertisement for an

expensive item). Specifically, centers whose capital gain coordinate is ≥ 1,100 receive a positive

label and the remaining centers are assigned a negative one. Such a choice is somewhat arbitrary,

but suffices to demonstrate the effectiveness of our algorithm. In real world scenarios, we expect

the process to be significantly more elaborate with more representative features available. We

run our algorithm for LCAL as well as the fair clustering algorithm as a baseline. Figure 2.13

shows the results. It is clear that our algorithm leads to a much smaller PoF and the PoF is more

robust to variations in the number of clusters. In fact, our algorithm can lead to a PoF as small as

1.0059 (0.59%) and very close to the unfair nearest center baseline whereas fair clustering would

have a PoF as large as 1.7 (70%). Further, we also see that the unlike the nearest center baseline,

fair labeled clustering has no proportional violations just like fair clustering.

Here for the LCAL setting, we compare to the optimal (fairness-agnostic) solution where

each point is simply routed to its closest center regardless of color or label. We use the same set-

ting at that from section 2.5.6. We set δ = 0.1 and measure the PoF. Since the (fairness-agnostic)

solution does not consider the fairness constraint we also measure its proportional violations. Fig-

ures 6 and 7 show the results over the Adult and CreditCard datasets. We can clearly see that

85

although the (fairness-agnostic) solution has the smallest cost it has large color violation. We also

see that our algorithm unlike fair clustering achieves fairness but at a much lower PoF.

Figure 2.13: Adult dataset results (a):PoF, (b):∆color

CreditCard Dataset: Similar to the Adult dataset experiment, after finding the centers

using k-means++, we assign them positive and negative labels. For similar motivations, if the

center has a coordinate corresponding to the amount of balance that is ≥ 300,000 we assign

the center a positive label and a negative one otherwise. Figure 2.14 shows the results of the

experiments. We see again that our algorithm leads to a lower price of fairness than fair clustering,

but not to the same extent as in the Adult dataset but it still has no proportional violation just like

fair clustering.

Figure 2.14: CreditCard dataset results (a):PoF, (b):∆color

86

As mentioned in section 2.4.2.2, algorithm (6) can allow the user to obtain the solutions for

different values of |ϕ−1(P)| (the number of points assigned to the positive set) without an asymp-

totic increase in the running time. In figure 2.15 we show a plot of |ϕ−1(P)| vs the clustering cost.

Interestingly, requiring more points to be assigned to the positive label comes at the expense of

a larger cost for some instances (Adult with k = 15) whereas for others it has a non-monotonic

behaviour (Adult with k = 10). This can perhaps be explained by the different choices of centers

as k varies. There are 5 centers with positive labels for k = 10 (50% of the total), but only 4 for

k = 15 (less than 30%) making it difficult to route points to positive centers.

Figure 2.15: A plot of |ϕ−1(P)| vs the clustering cost (normalized by the maximum cost ob-
tained).

2.4.4.2 LCUL Experiments

Similar to the LCAL setting for LCUL we get the centers by running k-means++. How-

ever, we do not have the labels. We compare our algorithm (algorithm 7) to two baselines: (1)

Nearest Center with Random Assignment (NCRA) and (2) Fair Clustering (FC). We refer to our

algorithm (block 7) as LFC (labeled fair clustering). In NCRA we assign each point to its closest

center which leads to an optimal clustering cost, whereas for fair clustering (FC) we solve the

87

fair clustering problem. For both NCRA and FC we assign each center label L with probability

αL.

We use two labels with α1 =
1
4

and α2 =
3
4
. For all colors and labels we set ϵAh,L = ϵ′Ah,L =

0.2 and for all labels we set ϵBL = ϵ′BL = ϵCL = ϵ′CL = 0.1. Further, all algorithms satisfy the

constraints in expectation, therefore we seek a measure of centrality around the expectation like

the variance. Each algorithm is ran 50 times and we report the average values of ∆color,∆points/label,

and ∆center/label.

Figure 2.16: LCUL results on the Adult dataset. (a):PoF, (b):∆color, (c):∆points/label ,(d):∆center/label.

Figures 2.16 and 2.17 show the results for Adult and CreditCard. For PoF, our algorithm

achieves an optimal clustering and hence coincides with NCRA whereas fair clustering achieves a

much higher PoF as large as 1.5. For the color proportionality (∆color), we see that fair clustering

88

Figure 2.17: LCUL results on the CreditCard dataset. (a):PoF, (b):∆color, (c):∆points/label

,(d):∆center/label.

has almost no violation whereas the NCRA and labeled clustering have small but noticeable

violations. For the number of points a label receives (∆points/label) we notice that all algorithms

have a violation although labeled clustering has a smaller violation mostly. As noted earlier,

we suspect that this is a result of dependent rounding’s negative correlation property leading to

some concentration around the expectation. Finally, for the number of centers a label receives

(∆center/label), clearly LFC has a much lower violation.

89

2.4.4.3 Algorithm Scalability

Here we investigate the scalability of our algorithms. In particular, we take the Census1990

dataset which consists of 2,458,285 points and sub-sample it to a specific number, each time we

find the centers with the k-means algorithm12, assign them random labels, and solve the LCAL

and LCUL problems. Note since we care only about the run-time a random assignment of labels

should suffice. Our group membership attribute is gender which has two values (two colors). We

find our algorithm are indeed highly scalable (figure 2.18) and that even for 500,000 points it

takes less than 90 seconds. We note in contrast that the fair clustering algorithm of [40] would

takes around 30 minutes to solve a similar size on the same dataset. In fact, scalability is an issue

in fair clustering and it has instigated a collection of work such as [72, 73]. The fact that our

algorithm performs relatively well run-time wise is worthy of noting.

Figure 2.18: Dataset size vs algorithm Run-Time: (left) LCAL, (right) LCUL.

2.5 Doubly Constrained Fair Clustering

There has been a significant number of fairness notions that have been introduced in fair

clustering [20], it is possible to list at least seven different notions. Although each notion is well-

12We choose k = 5 for all different dataset sizes.

90

justified, it is always motivated in a disjoint manner where the other fairness notions are ignored.

Ideally, one would desire a single clustering of the data which satisfies a collection of fairness

notions instead of having different clusterings for different fairness notions. A similar question

was investigated in fair classification [74, 75] where it was shown that unless the given classifi-

cation instance satisfies restrictive conditions, the two desired fairness objectives of calibration

and balance cannot be simultaneously satisfied. One would expect that such a guarantee would

also hold in fair clustering. For various constraints it can be shown that they are in fact at odds

with one another. However, it is also worthwhile on the other hand to ask if some fair clustering

constraints are more compatible with one another, and how one can satisfy both simultaneously?

We take a first step towards understanding this question. In particular, we consider two

specific group fairness constraints (1) GF: The group fair clustering (GF) of [21] which roughly

states that clusters should have close to population level proportions of each group (this is the

constraint the previous sections were essentially concerned with) and (2) DS: The diversity in

center selection (DS) constraint [22] which roughly states that the selected centers in the cluster-

ing should similarly include close to population level proportions of each group. We note that

although these two definitions are both concerned with group memberships, the fact that they

apply at different “levels” (clustered points vs selected centers) makes the algorithms and guar-

antees that are applicable for one problem not applicable to the other, certainly not in an obvious

way. Further, both of these notions are motivated by disparate impact [9] which essentially states

that different groups should receive the same treatment. Therefore, it is natural to consider the in-

tersection of both definitions (GF+DS). We show that by post-processing any solution satisfying

one constraint then we can always satisfy the intersection of both constraints. At a more precise

level, we show that an α-approximation algorithm for one constraint results in an approximation

91

algorithm for the intersection of the constraints with only a constant degradation to approxima-

tion ratio α. Additionally, we study the degradation in the clustering cost and show that imposing

DS on a GF solution leads to a bounded degradation of the clustering cost while the reverse is not

true. Moreover, we show that both GF and DS are incompatible (having an empty feasible set)

with a set of distance-based fairness constraints that were introduced in the literature. Finally, we

validate our findings experimentally.

2.5.1 Preliminary Remarks, Definitions and Symbols

Here we are only concerned with the k-center clustering which minimizes the maximum

distance between a point and its assigned center. Formally, we have:

min
S:|S|≤k,ϕ

max
j∈C

d(j, ϕ(j)) (2.17)

We now formally revise the group fair clustering (GF) and introduce the diverse center

selection (DS) problems:

Group Fair Clustering [1, 14, 21, 39, 40]: Minimize objective (2.17) subject to proportional

demographic representation in each cluster. Specifically, ∀i ∈ S,∀h ∈ H : βh|Ci | ≤ |Ch
i | ≤

αh|Ci | where βh and αh are pre-set upper and lower bounds for the demographic representation

of color h in a given cluster. Further, Ci is the ith cluster.

Diverse Center Selection [22, 23, 76]: Minimize objective (2.17) subject to the set of centers

S satisfying demographic representation. Specifically, denoting the number of centers from de-

mographic (color) h by kh = |S ∩ Ch |, then as done in [23] it must satisfy kl
h ≤ kh ≤ ku

h where

92

kl
h and ku

h are lower and upper bounds set for the number of centers of color h, respectively.

Importantly, throughout we have ∀h ∈ H : βh > 0. Further, for GF we consider solutions

that could have violations to the constraints as done in the previous sections. Specifically, a

given a solution (S, ϕ) has an additive violation of ρ GF if ρ is the smallest number such that the

following holds: ∀i ∈ S,∀h ∈ H : βh|Ci| − ρ ≤ |Ch
i | ≤ αh|Ci| + ρ. We denote the problem of

minimizing the k-center objective while satisfying both the GF and DS constraints as GF+DS.

Why Consider GF and DS in Particular? There are two reasons to consider the GF and DS

constraints in particular. First, from the point of view of the application both GF and DS are

concerned with demographic (group) fairness. Further, they are both specifically focused on the

representation of groups, i.e. the proportions of the groups (colors) in the clusters for GF and

in the selected center for DS. Second, they are both “distance-agnostic”, i.e. given a clustering

solution one can decide if it satisfies the GF or DS constraints without having access to the

distance between the points.

2.5.2 Algorithms for GF+DS

2.5.2.1 Active Centers

We start by observing the fact that if we wanted to satisfy both GF and DS simultaneously,

then we should make sure that all centers are active (having non-empty clusters). More precisely,

given a solution (S, ϕ) then the DS constraints should be satisfied further ∀i ∈ S : |Ci| > 0,

i.e. every center in S should have some point assigned to it and therefore not forming an empty

cluster. The following example clarifies this:

93

Figure 2.19: In this graph the distance between the points is the path distance.

Example: Consider Figure 2.19. Suppose we have k = 2 and we wish to satisfy the GF and

DS constraints with equal red to blue representation. DS requires one blue and one red center.

Further, each cluster should have |Cblue
i | = |C red

i | = 1
2
|Ci| to satisfy GF. Consider the following

solution S1 = {2, 4} and ϕ1 which assigns all points to point 2 including point 4. This satisfies

GF and DS. Since we have one blue center and one red center. Further, the cluster of center

4 has no points and therefore 0 = |Cblue
i | = |C red

i | = 1
2
|Ci|. Another solution would have

S2 = S1 = {2, 4} but with ϕ2 assigning points 2 and 3 to center 2 and points 1 and 4 to center 4.

This would also clearly satisfy the GF and DS constraints.

There is a clear issue in the first solution which is that although center 4 is included in

the selection it has no points assigned to it (it is an empty cluster). This makes it functionally

non-existent. This is why the definition should only count active centers.

This issue of active centers did not appear before in DS [22, 23], the reason behind this is

that it is trivial to satisfy when considering only the DS constraint since each center is assigned

all the points closest to it. This implies that the center will at least be assigned to itself, therefore

all centers in a DS solution are active. However, we cannot simply assign each point to its closest

center when the GF constraints are imposed additionally as the colors of the points have to satisfy

the upper and lower proportion bounds of GF.

94

2.5.2.2 The DIVIDE Subroutine

Here we introduce the DIVIDE subroutine (block 8) which is used in constructing algo-

rithms for converting solutions that only satisfy DS or GF into solutions that satisfy GF+DS.

DIVIDE takes a set of points C (which is supposed to be a single cluster) with center i along with

a subset of chosen points Q (Q ⊂ C). The entire set of points is then divided among the points

Q forming |Q| many new non-empty (active) clusters. Importantly, the points of each color are

divided among the new centers in Q so that the additive violation increases by at most 2. See

Figure 2.20 for an intuitive illustration.

Figure 2.20: Illustration of DIVIDE subroutine.

Here we use the symbol q to index a point in the set Q. Importantly, the numbering starts

with 0 and ends with |Q| − 1.

Before we give the guarantees for DIVIDE, we note the following lemma:

Lemma 2.5.1. Given a fractional solution xfrac that satisfies the GF constraints at an additive

violation of at most ρ, then if there exists an integral solution xinteg that satisfies:

∀q ∈ Q :

⌊∑
j∈C

xfrac
qj

⌋
≤
∑
j∈C

xinteg
qj ≤

⌈∑
j∈C

xfrac
qj

⌉
(2.18)

∀q ∈ Q, h ∈ H :

∑
j∈Ch

xfrac
qj

 ≤∑
j∈Ch

xinteg
qj ≤

∑
j∈Ch

xfrac
qj

 (2.19)

Then this integral solution xinteg satisifies the GF constraints at an additive violation of at most

95

Algorithm 8 DIVIDE

1: Input: Set of points C with center i ∈ C, Subset of points Q (Q ⊂ C) of cardinality |Q|.
2: Output: An assignment function ϕ : C −→ Q.

3: if |Q| = 1 then
4: Assign all points C to the single center in Q.
5: else
6: Set firstIndex = 0.
7: for h ∈ H do
8: Set: Th = |Ch|

|Q| , bh = Th − |Q| ⌊Th⌋, count = 0
9: Set: q = firstIndex

10: while count ≤ |Q| − 1 do
11: if bh > 0 then
12: Assign ⌈Th⌉ many points of color h in C to center q.
13: Update bh = bh − 1.
14: Update firstIndex = (firstIndex + 1) mod |Q|.
15: else
16: Assign ⌊Th⌋ many points of color h in C to center q.
17: end if
18: Update q = (q + 1) mod |Q|, count = count + 1.
19: end while
20: end for
21: end if

ρ+ 2.

Proof. Since the fractional solution satisfies the GF constraints at an additive violation of ρ, then

we have the following:

−ρ+
(
βh

∑
j∈C

xfrac
qj

)
≤
∑
j∈Ch

xfrac
qj ≤

(
αh

∑
j∈C

xfrac
qj

)
+ ρ

96

We start with the upper bound:

∑
j∈Ch

xinteg
qj ≤

∑
j∈Ch

xfrac
qj

≤
∑
j∈Ch

xfrac
qj + 1

≤ αh

∑
j∈C

xfrac
qj + ρ+ 1

≤ αh(
∑
j∈C

xinteg
qj + 1) + ρ+ 1

≤ αh

∑
j∈C

xinteg
qj + (αh + ρ+ 1)

≤ αh

∑
j∈C

xinteg
qj + (ρ+ 2)

Now we do the lower bound:

∑
j∈Ch

xinteg
qj ≥

∑
j∈Ch

xfrac
qj

≥
∑
j∈Ch

xfrac
qj − 1

≥ βh

∑
j∈C

xfrac
qj − ρ− 1

≥ βh(
∑
j∈C

xinteg
qj − 1)− (ρ+ 1)

≥ βh

∑
j∈C

xinteg
qj − (βh + ρ+ 1)

≥ βh

∑
j∈C

xinteg
qj − (ρ+ 2)

97

Now we prove the following about DIVIDE:

Lemma 2.5.2. Given a non-empty cluster C with center i and radius R that satisfies the GF

constraints at an additive violation of ρ and a subset of points Q (Q ⊂ C). Then the clustering

(Q, ϕ) where ϕ = DIVIDE(C,Q) has the following properties: (1) The GF constraints are satis-

fied at an additive violation of at most ρ
|Q| + 2. (2) Every center in Q is active. (3) The clustering

cost is at most 2R. If |Q| = 1 then guarantee (1) is for the additive violation is at most ρ.

Proof. We first consider the case where |Q| > 1. We prove the following claim:

Claim 2.5.3. For the fractional assignment {xfrac
qj }q∈Q,j∈C such that:

∀q ∈ Q, ∀h ∈ H :
∑
j∈Ch

xfrac
qj =

|Ch|
|Q|

= Th

It holds that: (1) ∀q ∈ Q :
∑

j∈C xfrac
qj ≥ 1, (2) GF constraints are satisfied at an additive

violation of ρ
|Q| .

Proof. Now we prove the first property

∀q ∈ Q :
∑
j∈C

xfrac
qj =

∑
h∈H

∑
j∈Ch

xfrac
qj =

1

|Q|
∑
h∈H

|Ch| = |C|
|Q|
≥ 1 (since Q ⊂ C) (2.20)

.

Since the GF constraints given center i are satisfied at an additive violation of ρ, then we

have:

∀h ∈ H :− ρ+ βh|C| ≤ |Ch| ≤ αh|C|+ ρ (2.21)

98

Therefore, since the amount of color for each center in Q with the fractional assignment can be

obtained by dividing by |Q|, then we have:

∀h ∈ H,∀q ∈ Q :− ρ

|Q|
+ βh

∑
j∈C

xfrac
qj ≤

∑
j∈Ch

xfrac
qj ≤ αh

∑
j∈C

xfrac
qj +

ρ

|Q|
(2.22)

Therefore the GF constraints are satisfied at an additive violation of ρ
|Q| .

Denoting the assignment ϕ resulting from DIVIDE by {xinteg
qj }q∈Q,j∈C , then the following

claim holds:

Claim 2.5.4.

∀q ∈ Q :

⌊∑
j∈C

xfrac
qj

⌋
≤
∑
j∈C

xinteg
qj ≤

⌈∑
j∈C

xfrac
qj

⌉

∀q ∈ Q, h ∈ H :

∑
j∈Ch

xfrac
qj

 ≤∑
j∈Ch

xinteg
qj ≤

∑
j∈Ch

xfrac
qj

Proof. For any color h we have |Ch| = ah|Q|+ bh where ah and bh are non-negative integers and

bh is the remainder of dividing |Ch| by Q (bh ∈ {0, 1, . . . , |Q|−1}). It follows that
∑

j∈Ch xfrac
qj =

Th = ah +
bh
|Q| . DIVIDE gives each center either

∑
j∈Ch x

integ
qj = ah = ⌊Th⌋ =

⌊∑
j∈Ch xfrac

qj

⌋
or∑

j∈Ch x
integ
qj = ah + 1 = ⌈Th⌉ =

⌈∑
j∈Ch xfrac

qj

⌉
. This proves the second condition.

For the first condition, note that |C| =
∑

h∈H(ah|Q| + bh) = (
∑

h∈H ah)|Q| + a|Q| + b

where we set
∑

h∈H bh = a|Q| + b with a and b being non-negative integers. b is the remainder

and has values in {0, 1, . . . , |Q| − 1}. Accordingly, the sum of the remainders across the colors

is a|Q| + b. Since the remainders are added “successivly” across the centers (see Figure 2.20)

and a is divisible by |Q|, then for any center q ∈ Q either
∑

j∈C xinteg
qj = (

∑
h∈H ah) + a or∑

j∈C xinteg
qj = (

∑
h∈H ah) + a + 1. Note that

∑
j∈C xfrac

qj =
∑

h∈H Th = (
∑

h∈H ah) + a + b
|Q| .

99

Therefore,
⌊∑

j∈C xfrac
qj

⌋
= (
∑

h∈H ah)+a and
⌈∑

j∈C xfrac
qj

⌉
= (
∑

h∈H ah)+a+1. This proves,

the first condition.

By Claim 2.5.4 and Lemma 2.5.1 it follows that for each center q ∈ Q the assignment

{xinteg
qj }q∈Q,j∈C satisfies the GF constraints at an additive violation of ρ

|Q| + 2, this proves the first

guarantee.

By Claim 2.5.4 and guarentee (1) of Claim 2.5.3, then ∀q ∈ Q :
∑

j∈C xinteg
qj ≥

⌊∑
j∈C xfrac

qj

⌋
≥

1. Therfeore, every center q ∈ Q is active proving the second guarantee.

Guarantee (3) follows since ∀j ∈ C : d(j, ϕ(j)) ≤ d(j, i) + d(i, ϕ(j)) ≤ 2R.

Now if |Q| = 1, then guarantee (2) follows since the cluster C is non-empty. Guarantee

(3) follows similarly to the above. The additive violation in the GF constraint on the other hand

is ρ since the single center Q has the exact set of points that were assigned to the original center

i.

2.5.2.3 Solving GF+DS using a DS Algorithm

Here we show an algorithm that gives a bounded approximation for GF+DS using an ap-

proximation algorithm for DS. Algorithm 9 works by first calling an αDS-approximation algo-

rithm resulting in a solution (S̄, ϕ̄) that satisfies the DS constraints, then it solves an assignment

problem using the ASSIGNMENTGF algorithm (shown in 10) where points are routed to the cen-

ters S̄ to satisfy the GF constraint. The issue is that some of the centers in S̄ may become closed

and as a result the solution may no longer satisfy the DS constraints. Therefore, we have a final

step where more centers are opened using the DIVIDE subroutine to satisfy the DS constraints

while still satisfying the GF constraints at an additive violation and having a bounded increase to

100

the clustering cost.

Algorithm 9 DSTOGF+DS
1: Input: Points C, Solution (S̄, ϕ̄) with clusters {Ci, . . . , Ck̄} satisfying the DS constraints

with |S̄| = k̄ ≤ k of approximation ratio αDS for the DS clustering problem.
2: Output: Solution (S, ϕ) satisfying the GF and DS constraints simultaneously.

3: (S ′, ϕ′) =ASSIGNMENTGF(S̄, C)
4: Update the set of centers S ′ by deleting all non-active centers (which have no points assigned

to them). Let {C ′
1, . . . , C

′
k′} be the (non-empty) clusters of the solution (S ′, ϕ′) with |S ′| =

k′ ≤ k̄.
5: Set ∀h ∈ H : sh = |S ′ ∩ Ch | , Set ∀i ∈ S : Qi = {i}
6: while ∃h ∈ H such that sh < kl

h do
7: Pick a color h0 such that sh0 < kl

h0
.

8: Pick a center i ∈ S ′ where there exists a point of color h0.
9: Pick a point jh0 of color h0 in cluster C ′

i

10: Set Qi = Qi ∪ {jh0}.
11: Update sh0 = sh0 + 1.
12: end while
13: for i ∈ S ′ do
14: ϕi = DIVIDE(C ′

i, Qi).
15: ∀j ∈ C ′

i : Set ϕ(j) = ϕi(j).
16: end for
17: Set S = S ′ ∪

(
∪i∈S′ Qi

)
.

Algorithm 10 ASSIGNMENTGF
1: Input: Set of centers S, Set of Points C.
2: Output: An assignment function ϕ : C −→ S.

3: Using binary search over the distance matrix, find the smallest radius R such that
LP (C, S,R) in (2.23) is feasible and call the solution x∗.

4: Solve MAXFLOWGF(x∗, C, S) and call the solution x̄∗.

ASSIGNMENTGF works by solving a linear program (2.23) to find a clustering which en-

sures that (1) each cluster has at least a βh fraction and at most an αh fraction of its points

belonging to color h, and (2) the clustering assigns each point to a center that is within a min-

imum possible distance R. While the resulting LP solution could be fractional, the last step

of ASSIGNMENTGF uses MAXFLOWGF which is an algorithm for rounding an LP solution to

101

valid integral assignments at a bounded degradation to the GF guarantees and no increase to the

clustering cost. See [1, 39] for details on MAXFLOWGF and its guarantees.

LP(C, S,R) :

∀j ∈ C, ∀i ∈ S : xij = 0 if d(i, j) > R (2.23a)

∀h ∈ H,∀i ∈ S : βh

∑
j∈C

xij ≤
∑
j∈Ch

xij ≤ αh

∑
j∈C

xij (2.23b)

∀j ∈ C :
∑
i∈S

xij = 1 (2.23c)

∀j ∈ C, ∀i ∈ S : xij ∈ [0, 1] (2.23d)

To establish the guarentees we start with the following lemma:

Lemma 2.5.5. Solution (S ′, ϕ′) of line (3) in algorithm 9 has the following properties: (1) It

satisfies the GF constraint at an additive violation of 2, (2) It has a clustering cost of at most

(1 + αDS)R
∗
GF+DS where R∗

GF+DS is the optimal clustering cost (radius) of the optimal solution for

GF+DS, (3) The set of centers S ′ is a subset (possibly proper subset) of the set of centers S̄, i.e.

S ′ ⊂ S.

Proof. We begin with the following claim which shows that there exists a solution that only uses

centers from S̄ to satisfy the GF constraints exactly and at a radius of at most (1 + αDS)R
∗
GF+DS.

Note that this claim has non-constructive proof, i.e. it only proves the existence of such a solution:

Claim 2.5.6. Given the set of centers S̄ resulting from the αDS-approximation algorithm, then

there exists an assignment ϕ0 from points in C to centers in S̄ such that the following holds: (1)

The GF constraint is exactly satisfied (additive violation of 0). (2) The clustering cost is at most

102

(1 + αDS)R
∗
GF+DS.

Proof. Let (S∗
GF+DS, ϕ

∗
GF+DS) be an optimal solution to the GF+DS problem. ∀i ∈ S∗

GF+DS let

N(i) = argminī∈S̄ d(i, ī), i.e. N(i) is the nearest center in S̄ to center i (ties are broken using

the smallest index). ϕ0 is formed by assigning all points which belong to center i ∈ S∗
GF+DS to

N(i). More formally, ∀j ∈ C : ϕ∗
GF+DS(j) = i we set ϕ0(j) = N(i). Note that it is possible

for more than one center i in S∗
GF+DS to have the same nearest center in S̄. We will now show

that ϕ0 satisfies the GF constraint exactly. Note first that if a center ī ∈ S̄ has not been assigned

any points by ϕ0, then it is empty and trivially satisfies the GF constraint exactly. Therefore, we

assume that ī has a non-empty cluster. Denote by N−1(̄i) the set of centers i ∈ S∗
GF+DS for which

ī is the nearest center, then by the fact that every cluster in (S∗
GF+DS, ϕ

∗
GF+DS) satisfies the GF

constraint exactly we have:

βh ≤ min
i∈N−1 (̄i)

|Ch
i |

|Ci |
≤
∑

i∈N−1 (̄i) |Ch
i |∑

i∈N−1 (̄i) |Ci |
=
|Ch

ī |
|Cī|

≤ max
i∈N−1 (̄i)

|Ch
i |

|Ci |
≤ αh (2.24)

The proves guarantee (1) of the lemma. Now we prove guarantee (2), we denote by R∗
DS the

optimal clustering cost for the DS constrained problem. We can show that ∀j ∈ C:

d(j, ϕ0(j)) ≤ d(j, ϕ∗
GF+DS(j)) + d(ϕ∗

GF+DS(j), ϕ0(j))

≤ d(j, ϕ∗
GF+DS(j)) + d(ϕ∗

GF+DS(j), N(ϕ∗
GF+DS(j))) (since ϕ0(j) = N(ϕ∗

GF+DS(j)))

≤ R∗
GF+DS + αDSR

∗
DS (since S̄ is an αDS-approximation for DS)

≤ (1 + αDS)R
∗
GF+DS

Where the last holds since R∗
DS ≤ R∗

GF+DS because the set of solutions constrained by DS is a

103

subset of the set of solutions constrained by GF+DS.

Now we can prove the lemma. By the above claim, it follows that when ASSIGNMENTGF

is called, the LP solution from line (3) of algorithm block 10 satisfies: (1) The GF constraints

exactly and (2) Has a clustering cost of at most (1 + αDS)R
∗
GF+DS. This is because LP (2.23)

includes all integral assignments from C to S̄ including ϕ0. Since this LP assignment is fed to

MAXFLOWGF it follows that the final solution satisfies: (1) The GF constraint at an additive

violation of 2, (2) Has a clustering cost of at most (1 + αDS)R
∗
GF+DS. Guarantee (3) holds since

some centers may become closed (assigned no points) and therefore S ′ ⊂ S̄ (possibly being a

proper subset).

Theorem 2.5.7. Given an αDS-approximation algorithm for the DS problem, then we can obtain

an 2(1+αDS)-approximation algorithm that satisfies GF at an additive violation of 3 and satisfies

DS simultaneously.

Proof. By Lemma 2.5.5 above, the set of centers S ′ is a subset (possibly proper) subset of S

and therefore the DS constraints may no longer be satisfied. Algorithm 9 select points from each

color h so that when they are added to S ′, then for each color h the set of centers is at least βhk.

Since these new centers are opened using the DIVIDE subroutine then it follows that they are all

active (guarantee (2) of Lemma 2.5.2).

Further, by guarantee (3) of Lemma 2.5.2 for DIVIDE we have for any point j assigned to

a new center q that d(j, q) ≤ 2d(j, ϕ′(j)) ≤ 2(1 + αDS)R
∗
GF+DS.

Finally, by guarantee (1) of Lemma 2.5.2 DIVIDE is called over a cluster that satisfies GF at

an additive violation of 2 and therefore the resulting additive violation is at most max{2, 2
|Qi|+2}.

Since 2 ≤ 2
|Qi| + 2 ≤ 2

2
+ 2 = 3. The additive violation is at most 3.

104

Remark: If in algorithm 9 no center is deleted in line (4) because it forms an empty cluster,

then by Lemma 2.5.5 the approximation ratio is 1 + αDS which is an improvement by a factor of

2. Further, the additive violation for GF is reduced from 3 to 2.

2.5.3 Solving GF+DS using a GF Solution

Algorithm 11 GFTOGF+DS
1: Input: Points C, Solution (S̄, ϕ̄) with clusters {C̄i, . . . , C̄k̄} satisfying the GF constraints

with |S̄| = k̄ ≤ k.
2: Output: Solution (S, ϕ) satisfying the GF and DS constraints simultaneously.

3: Initialize: ∀h ∈ H : sh = 0, ∀i ∈ S̄ : Qi = {}.
4: for i ∈ S̄ do
5: if ∃h ∈ H : sh < kl

h then
6: Let h0 be a color such that sh0 < kl

h0

7: else
8: Pick h0 such that sh0 + 1 ≤ ku

h0
.

9: end if
10: Pick a point jh0 of color h0 in cluster C̄i

11: Set Qi = {jh0}.
12: Update sh0 = sh0 + 1.
13: end for
14: while ∃h ∈ H : sh < kl

h do
15: Pick a color h0 such that sh0 < kl

h0
.

16: Pick a center i ∈ S̄ with cluster C̄i where there exists a point of color h0 not in Qi.
17: Pick a point jh0 of color h0 in cluster C̄i

18: Set Qi = Qi ∪ {jh0}.
19: Update sh0 = sh0 + 1.
20: end while
21: Set S = ∪i∈S̄Qi.
22: for i ∈ S̄ do
23: ϕi = DIVIDE(C̄i, Qi).
24: ∀j ∈ C̄i : Set ϕ(j) = ϕi(j). {Assignment to center is updated using DIVIDE.}
25: end for

Here we start with a solution (S̄, ϕ̄) of cost R̄ that satisfies the GF constraints and we want

to make it satisfy GF and DS simultaneously. More specifically, given any GF solution we show

how it can be post-processed to satisfy GF+DS at a bounded increase to its clustering cost by a

105

factor of 2 (see Theorem 2.5.8). This implies as a corollary that if we have an αGF-approximation

algorithm for GF then we can obtain a 2αGF-approximation algorithm for GF+DS (see Corollary

2.5.10).

The algorithm essentially first “covers” each given cluster C̄i of the given solution (S̄, ϕ̄)

by picking a point of some color h to be a future center given that picking a point of such a color

would not violate the DS constraints (lines(4-13)). If there are still colors which do not have

enough picked centers (below the lower bound kl
h), then more points are picked from clusters

where points of such colors exist (lines(14-20)). Once the algorithm has picked correct points for

each color, then the DIVIDE subroutine is called to divide the cluster among the picked points.

Now we state the main theorem:

Theorem 2.5.8. If we have a solution (S̄, ϕ̄) of cost R̄ that satisfies the GF constraints where the

number of non-empty clusters is |S̄| = k̄ ≤ k, then we can obtain a solution (S, ϕ) that satisfies

GF at an additive violation of 2 and DS simultaneously with cost R ≤ 2R̄.

Proof. We point out the following fact:

Fact 3. Every cluster in (S̄, ϕ̄) has at least one point from each color.

Proof. This holds, since given a center i ∈ S̄ we have |C̄i| > 0 and therefore ∀h ∈ H : |C̄h
i | ≥

βh|C̄i| > 0 and therefore |C̄h
i | ≥ 1 since it must be an integer.

We note that the values {βh, αh}h∈H and k must lead to a feasible DS problem, i.e. there

exist positive integers gh such that
∑

h∈H gh = k and ∀h ∈ H : βhk ≤ gh ≤ αhk. Accordingly,

since lines (4-13) in algorithm 11 can always pick a point of some color h such that the upper

bound αhk is not exceeded for every cluster i. Therefore the following fact must hold

106

Fact 4. By the end of line (13) we have ∀i ∈ S̄ : |Qi| ≥ 1.

Further, the final sh values are valid for DS:

Claim 2.5.9. By the end of line (13) the values of sh satisfy: (1)
∑

h∈H sh ≤ k, (2) ∀h ∈ H :

βhk ≤ sh ≤ αhk.

Proof. Lines (4-13) add values to sh if the lower bound βhk for color h is not satisfied. If the

lower bound is satisfied for all colors, then points of some color h are added provided that adding

them would not exceed the upper bound of αhk (see line 5). Therefore, by the end of line (13)

for any color h ∈ H : sh ≤ αhk and either sh ≥ βhk or sh < βhk
13.

If by the end of line (13) we have ∀h ∈ H : sh ≥ βhk, then the algorithm moves to line

(22). Otherwise, it will keep picking points and incrementing sh until ∀h ∈ H : sh ≥ βhk.

Further, since such valid DS values exist it must be that the above satisfies
∑

h∈H sh ≤ k

and ∀h ∈ H : sh ≤ αhk. This concludes the proof for the claim.

By Lemma 2.5.2 for DIVIDE the new centers S = ∪i∈S̄Qi are all active (guarantee 2 of

DIVIDE) and since the values of sh are valid (Claim 2.5.9 above), therefore S satisfies the DS

constraints.

Since the assignment in each cluster in the new solution (S, ϕ) is formed using DIVIDE over

the clusters of (S̄, ϕ̄) then by guarantee 1 of DIVIDE, each cluster (S, ϕ) satisfies GF at an additive

violation of 2. Finally, the clustering cost is at most R ≤ 2R̄ (guarantee 3 of DIVIDE).

Corollary 2.5.10. Given an αGF-approximation algorithm for GF, then we can have a 2αGF-

approximation algorithm that satisfies GF at an additive violation of 2 and DS simultaneously.
13To see why we could have sh < βhk, consider the case where k̄ < k and therefore there would not be enough

clusters to so that we can add points for each color.

107

Proof. Using the previous theorem (Theorem 2.5.8) the solution (S̄, ϕ̄) has a cost of R̄ ≤ αGF OPTGF.

The post-processed solution that satisfies GF at an additive violation of 2 and DS simultaneously

has a cost of R ≤ 2R̄ ≤ 2αGF OPTGF ≤ 2αGF OPTGF+DS. The last inequality follows be-

cause OPTGF ≤ OPTGF+DS which is the case since both problems minimize the same objective,

however by definition the constraint set of GF + DS is a subset of the constraint set of GF.

Remark: If the given GF solution has the number of cluster k̄ = k, then the output will have

an additive violation of zero, i.e. satisfy the GF constraints exactly. This would happen DIVIDE

would always receive Qi with |Qi| = 1 and therefore we can use the guarantee of DIVIDE for the

special case of |Q| = 1.

2.5.4 Price of (Doubly) Fair Clustering

Figure 2.21: Figure showing the PoF relation between Unconstrained, GF, DS, and GF+DS
clustering.

Here we study the degradation in the clustering cost (the price of fairness) that comes from

imposing the fairness constraint on the clustering objective. The price of fairness PoFc is defined

as PoFc =
Clustering Cost subject to Constraint c
Clustering Cost of Agnostic Solution [17, 40]. Note that since we have two constrains here GF

and DS, we also consider prices of fairness of the form PoFc1−→c2 =
Clustering Cost subject to Constraints c1 and c2

Clustering Cost subject to Constraint c1

which equal the amount of degradation in the clustering cost if we were to impose constraint c2

108

in addition to constraint c1 which is already imposed. Note that we are concerned with the price

of fairness in the worst case. Interesingly, we find that imposing the DS constraint over the GF

constraint leads to a bounded PoF if we allow an additive violation of 2 for GF while the reverse

is not true even if we allow an additive violation of Ω(n
k
) for GF.

We find the following:

Proposition 2.5.11. For any value of k ≥ 2, imposing GF can lead to an unbounded PoF even

if we allow an additive violation of Ω(n
k
).

Figure 2.22: An clustering instance made of k “masses” each having n
k

points. Each mass is
seperated from the other by a distance of at least R.

Proof. Consider the case where k ≥ 2 is even and refer to Figure 2.22 where the optimal solution

has a clustering cost of 0. The optimal solution would have one center in each of the k masses,

and assigns points to their closest center.

If we set the lower and upper proportion bounds to 1
2

for both colors, then to satisfy GF

each cluster should have both red and blue points. There must exists a cluster Ci of size |Ci| ≥ n
k

,

it follows that to satisfy the GF constraints at an additive violation of ρ, then |Cblue
i | ≥ 1

2
|Ci|−ρ =

n
2k
− ρ and similarly we would have |C red

i | ≥ n
2k
− ρ. By setting ρ = n

2k
− ϵ for some constant

ϵ > 0, then we have |Cblue
i |, |C red

i | > 0. This implies that a point will be assigned to a center at a

distance R > 0 and therefore the PoF is unbounded.

The proof for the odd case follows by constructing a similar example and argument.

Proposition 2.5.12. For any value of k ≥ 3, imposing DS can lead to an unbounded PoF.

109

Figure 2.23: This clustering instance is similar to Figure 2.22 except that the color assignments
follow a different pattern.

Proof. Consider the example shown in Figure 2.23 where k ≥ 3 and k = ℓ. Here all masses are

blue, except for the last which has n
2k

red points and n
2k

green points.

Suppose for DS we set kl
blue, k

l
red, k

l
green > 0, this implies that we should pick a center of

each color. This implies that we can have at most k − 2 blue center, therefore there will be a

community (composed of all blue points) where no point is picked as a center. Therefore, the

clustering cost is R > 0 and the PoF is unbounded.

Proposition 2.5.13. For any value of k ≥ 2, imposing GF on a solution that only satisfies DS

can lead to an unbounded increase in the clustering cost even if we allow an additive violation of

Ω(n
k
).

Proof. The proof is similar to the proof of Proposition 2.5.11. See [24] for the full proof.

Proposition 2.5.14. Imposing DS on a solution that only satisfies GF leads to a bounded increase

in the clustering cost of at most 2 (PoF ≤ 2) if we allow an additive violation of 2 in the GF

constraints.

Proof. This follows from Theorem 2.5.8 since we can always post-process a solution that only

satisfies GF into one that satisfies both GF at an additive violation of 2 and DS simultane-

ously and clearly from the theorem we would have PoF = clustering cost of GF post-processed solution
clustering cost of GF solution ≤

2 clustering cost of GF solution
clustering cost of GF solution ≤ 2.

110

2.5.5 Incompatibility with Other Distance-Based Fairness Constraints

In this section, we study the incompatibility between the DS and GF constraints and a

family of distance-based fairness constraints. We note that the results of this section do not take

into account the clustering cost and are based only on the feasibility set. That is, we consider

more than one constraints simultaneously and see if the feasibility set is empty or not. Two

constraints are considered incompatible if the intersection of their feasible sets is empty. In some

cases we also consider solution that could have violations to the constraints. Note that socially

fair clustering [77,78] is defined as an optimization problem not a constraint. However, by setting

a constraint that says the value of the objective function should not exceed an upper bound it can

be turned into a fairness constraint like the rest.

Theorem 2.5.15. For any value k ≥ 2, the fairness in your neighborhood [79], socially fair

constraint [77, 78] are each incompatible with GF even if we allow an additive violation of

Ω(n
k
) in the GF constraint. For any value k ≥ 5, the proportionally fair constraints [80] is

incompatible with GF even if we allow an additive violation of Ω(n
k
) in the GF constraint.

Proof. The proofs for the fairness in your neighborhood and socially fair constraints are very

similar to the proof of Proposition 2.5.11. However, the proportionally fair constraint requires

a different proof.

Suppose, we want an αAP relaxed proportionally fair solution [80]. Then for a given finite

value of αAP , consider Figure 2.24. For the GF constraints, the upper and lower bounds for each

color to 1
2

and the total number of points n is always even. Consider some k ≥ 5. It follows that

the sum of cluster sizes assigned to centers on either the right side or the left side would be at

least n
2
, WLOG assume that it is the left side and denote the total number of points assigned to

111

clusters on the left size by |CLS| and let SLS be the centers on the left side. The total number

of points on the left side may not be assigned to a single center but rather distributed among the

centers SLS . To satisfy the GF constraints at an additive violation of ρ, it follows that the number

of red points that have to be assigned to the left side is at least
∑

i∈SLS
(1
2
|Ci| − ρ) ≥ n

4
− kρ. Set

ρ = n
4k
− n

k2
− 1, then it follows that at least

⌈
n
k

⌉
red points are assigned to a center on the left at

a distance of at least R. Since the maximum distance between any two red points by the triangle

inequality is 2r < R
αAP

it follows that this set of red points forms a blocking coalition. I.e., these

points would also have a lower distance from their assigned center if they were instead assigned

to a red center.

Figure 2.24: Instances to show incompatibility between Proportional Fairness and GF. We always
have n/2 blue points on the left and n/2 red points on the right. For even k we would have k/2
locations for the blue and red points each. For odd k we have ⌊k/2⌋ blue locations and ⌈k/2⌉ red
locations. For each color, there is always a location at the center at a distance r from the other
locations. Points of different color are at a distance of at least R from each other. For any value
of αAP for the proportionally fair constraint, we set r < R

2αAP
.

Theorem 2.5.16. For any value k ≥ 3, the fairness in your neighborhood [79], socially fair

[77, 78] and proportionally fair [80] constraints are each incompatible with DS.

112

Proof. The proof is similar to the proof of Proposition 2.5.12. Specifically, the example in the

proof only allows solutions where all of the points in each mass are assigned to centers in the

same mass to be feasible for any of the distance based fairness constraints. But since such a

solution would not satisfy DS, then there is no feasible solution.

Compatibility between GF and DS: One can easily show compatibility between GF and DS.

Specifically, consider some values for the centers over the colors {kh}h∈H that satisfies the DS

constraints, i.e. ∀h ∈ H : kl
h ≤ kh ≤ ku

h and has
∑

h∈H kh ≤ k. Then simply pick a set Qh of

kh points of color h. Now if we give DIVIDE the entire dataset C and the set of centers ∪h∈HQh

as inputs, i.e. call DIVIDE(C,∪h∈HQh), then by the guarantees of divide each center would be

active and each cluster would satisfy the GF constraints at an additive violation of 2.

Our final conclusions about the incompatibility and compatibility of the constrains are sum-

marized in Figure 2.25.

Figure 2.25: (In)Compatibility of clustering constraints. Red arrows indicate empty feasible set
when both constraints are applied, while green arrows indicate non-empty feasibility set when
both constraints are applied.

113

2.5.6 Experiments

We use Python 3.9, the CPLEX package [81] for solving linear programs and NetworkX

[82] for max-flow rounding. Further, Scikit-learn is used for some standard ML related

operations. We use commodity hardware, specifically a MacBook Pro with an Apple M2 chip.

We conduct experiments over datasets from the UCI repository [83] to validate our theo-

retical findings. Specifically, we use the Adult dataset sub-sampled to 20,000 records. Gender is

used for group membership while the numeric entries are used to form a point (vector) for each

record. We use the Euclidean distance. Further, for the GF constraints we set the lower and upper

proportion bounds to βh = (1 − δ)rh and αh = (1 + δ)rh for each color h where rh is color h′s

proportion in the dataset and we set δ = 0.2. For the DS constraints, since we do not deal with a

large number of centers we set kl
h = 0.8rhk and ku

h = rhk.

We compare the performance of 5 algorithms. Specifically, we have (1) COLOR-BLIND:

An implementation of the Gonzalez k-center algorithm [41] which achieves a 2-approximation

for the unconstrained k-center problem. (2) ALG-GF: A GF algorithm which follows the sketch

of [40], however the final rounding step is replaced by an implementation of the MAXFLOWGF

rounding subroutine. This algorithm has a 3-approximation for the GF constrained instance. (3)

ALG-DS: An algorithm for the DS problem recently introduced by [23] for which also has an

approximation of 3. (4) GFTOGFDS: An implementation of algorithm 11 where we simply

use the GF algorithm just mentioned to obtain a GF solution. (5) DSTOGFDS: Similarly an

implementation of algorithm 9 where DS algorithm is used as a starting point instead.

Throughout we measure the performance of the algorithms in terms of (1) PoF: The price

of fairness of the algorithm. Note that we always calculate the price of fairness by dividing by

114

the COLOR-BLIND clustering cost since it solves the unconstrained problem. (2) GF-Violation:

Which is the maximum additive violation of the solution for the GF constraint as mentioned

before. (3) DS-Violation: Which is simply the maximum value of the under-representation or

over-representation across all groups in the selected centers.

Figure 2.26: Adult dataset results: (a) PoF comparison of 5 algorithms, with COLOR-BLIND as
baseline; (b) GF-Violation comparison; (c) DS-Violation comparison.

Figure 2.26 shows the behaviour of all 5 algorithms. In terms of PoF, all algorithms have

a significant degredation in the clustering cost compared to the COLOR-BLIND baseline except

for ALG-DS. However, ALG-DS has a very large GF-Violation. In fact, the GF-Violation

of ALG-DS can be more than 5 times the GF-Violation of COLOR-BLIND. This indicates that

while ALG-DS has a small clustering cost, it can give very bad guarantees for the GF constraints.

Finally, in terms of the DS-Violation we see that the ALG-GF and the COLOR-BLIND solution

can violate the DS constraint. Note that both coincide perfectly on each other. Further, although

the violation is 1, it is very significant since unlike the GF constraints the number of centers can

be very small. On the other hand, we see that both GFTOGFDS and DSTOGFDS give the best

of both worlds having small values for the GF-Violation and zero values for the DS-Violation

and while their price of fairness can be significant, it is comparable to ALG-GF. Interestingly,

the GFTOGFDS and DSTOGFDS are in agreement in terms of measures. This could be because

115

our implementations of the “GF part” of DSTOGFDS (its handling of the GF constraints) has

similarities to the GFTOGFDS algorithm.

116

Chapter 3: Fairness in Online Bipartite Matching

Online bipartite matching has been used to model many important applications such as

crowdsourcing [84–86], rideshare [87–89], and online ad allocation [26, 90]. In the most general

version of the problem, there are three interacting entities: two sides of the market to be matched

and a platform operator which assigns the matches. For example, in rideshare, riders on one

side of the market submit requests, drivers on the other side of the market can take requests, and

a platform operator such as Uber or Lyft matches the riders’ requests to one or more available

drivers. In the case of crowdsourcing, organizations offer tasks, workers look for tasks to com-

plete, and a platform operator such as Amazon Mechanical Turk (MTurk) or Upwork matches

tasks to workers.

Online bipartite matching algorithms are often designed to optimize a performance measure—

usually, maximizing overall profit for the platform operator or a proxy of that objective. However,

fairness considerations were largely ignored. This is troubling especially given that recent reports

have indicated that different demographic groups may not receive similar treatment. For exam-

ple, in rideshare platforms once the platform assigns a driver to a rider’s request, both the rider

and the driver have the option of rejecting the assignment and it has been observed that mem-

bership in a demographic group may cause adverse treatment in the form of higher rejection.

Indeed, [91–93] report that drivers could reject riders based on attributes such as gender, race,

117

or disability. Conversely, [94] reports that drivers are likely to receive less favorable ratings if

they belong to certain demographic groups. A similar phenomenon exists in crowdsourcing [95].

Moreover, even in the absence of such evidence of discrimination, as algorithms become more

prevalent in making decisions that directly affect the welfare of individuals [96, 97], it becomes

important to guarantee a standard of fairness. Also, while much of our discussion focuses on the

for-profit setting for concreteness, similar fairness issues hold in not-for-profit scenarios such as

the fair matching of individuals with health-care facilities, e.g., in the time of a pandemic.

In response, a recent line of research has been concerned with the issue of designing fair

algorithms for online bipartite matching. [98–100] present algorithms which give a minimum

utility guarantee for the drivers at a bounded drop to the operator’s profit. Conversely, [101] give

guarantees for both the platform operator and the riders instead. Finally, [102] shows empirical

methods that achieve fairness for both the riders and drivers simultaneously but lacks theoretical

guarantees and ignores the operator’s profit.

Nevertheless, the existing work has a major drawback in terms of optimality guarantees.

Specifically, the two sides being matched along with the platform operator constitute the three

main interacting entities in online matching and despite the significant progress in fair online

matching none of the previous work considers all three sides simultaneously. In this paper, we

derive algorithms with theoretical guarantees for the platform operator’s profit as well as fairness

guarantees for the two sides of the market. Unlike the previous work we not only consider the size

of the matching but also its quality. Further, we consider two online arrival settings: the KIID and

the richer KAD setting (see Section 3.2 for definitions). We consider both group and individual

notions of Rawlsian fairness and interestingly show a reduction from individual fairness to group

fairness in the KAD setting. Moreover, we show upper bounds on the optimality guarantees of

118

any algorithm and derive impossibility results that show a conflict between group and individual

notions of fairness. Finally, we empirically test our algorithms on a real-world dataset.

3.1 Related Work

It is worth noting that similar to our work, [103] and [104] have considered two-sided

fairness as well, although in the setting of recommendation systems where a different model is

applied—and, critically, a separate objective for the operator’s profit was not considered.

Fairness in bipartite matching has seen significant interest recently. The fairness definition

employed has consistently been the well-known Rawlsian fairness [105] (i.e. max-min fairness)

or its generalization Leximin fairness.1 We note that the objective to be maximized (other than

the fairness objective) represents operator profit in our setting.

The case of offline and unweighted maximum cardinality matching is addressed by [106],

who give an algorithm with Leximin fairness guarantees for one side of the market (one side

of the bipartite graph) and show that this can be achieved without sacrificing the size of the

match. Motivated by fairness consideration for drivers in ridesharing, [98] considers the problem

of offline and weighted matching. Specifically, they show an algorithm with a provable trade-off

between the operator’s profit and the minimum utility guaranteed to any vertex in one-side of the

market.

Recently, [29] considered fairness for the online part of the graph through a group notion of

fairness. In particular, the utility for a group is added across the different types and is minimized

for the group worst off, in rough terms their notion translates to maximizing the minimum utility

1Leximin fairness maximizes the minimum utility like max-min fairness. However, it proceeds to maximize the
second worst utility, and so on until the list is exhausted.

119

accumulated by a group throughout the matching. Their notion of fairness is very similar to the

one we consider here. However, [29] considers fairness only on one side of the graph and ignores

the operator’s profit. Further, only the matching size is considered to measure utility, i.e. edges

are unweighted.

A new notion of group fairness in online matching is considered in [107]. In rough terms,

their group fairness criterion amounts to establishing a quota for each group and ensuring that the

matching does not exceed that quota. This notion can be seen as ensuring that the system is not

dominated by a specific group and is in some sense an opposite to max-min fairness as the utility

is upper bounded instead of being lower bounded. Further, the fairness guarantees considered are

one-sided as well.

On the empirical side of fair online matching, [108] and [109] give application-specific

treatments in the context of deceased-donor organ allocation and food bank provisioning, respec-

tively. More related to our work is that of [102, 110] which consider the rideshare problem and

provide algorithms to achieve fairness for both sides of the graph simultaneously, however both

papers lack theoretical guarantees and in the case of [102] the operator’s profit is not considered.

3.2 Preliminaries and Problem Setup

Our model follows that of [26, 111–113] and others. We have a bipartite graph G =

(U, V,E) where U represents the set of static (offline) vertices (workers) and V represents the

set of online vertex types (job types) which arrive dynamically in each round. The online match-

ing is done over T rounds. In a given round t, a vertex of type v is sampled from V with

probability pv,t with
∑

v∈V pv,t = 1,∀t ∈ [T] the probability pv,t is known beforehand for each

120

type v and each round t. This arrival setting is referred to as the known adversarial distribution

(KAD) setting [88,113]. When the distribution is stationary, i.e. pv,t = pv,∀t ∈ [T], we have the

arrival setting of the known independent identical distribution (KIID). Accordingly, the expected

number of arrivals of type v in T rounds is nv =
∑

t∈[T] pv,t, which reduces to nv = Tpv in

the KIID setting. We assume that nv ∈ Z+ for KIID [112]. Every vertex u (v) has a group

membership,2 with G being the set of all group memberships; for any vertex u ∈ U , we denote

its group memberships by g(u) ∈ G (similarly, we have g(v) for v ∈ V). Conversely, for a group

g, U(g) (V (g)) denotes the subset of U (V) with group membership g. A vertex u (v) has a set

of incident edges Eu (Ev) which connect it to vertices in the opposite side of the graph. In a

given round, once a vertex (job) v arrives, an irrevocable decision has to be made on whether to

reject v or assign it to a neighbouring vertex u (where (u, v) ∈ Ev) which has not been matched

before. Suppose, that v is assigned to u, then the assignment is not necessarily successful rather

it succeeds with probability pe = p(u,v) ∈ [0, 1]. This models the fact that an assignment could

fail for some reason such as the worker refusing the assigned job. Furthermore, each vertex u

has patience parameter ∆u ∈ Z+ which indicates the number of failed assignments it can tolerate

before leaving the system, i.e. if u receives ∆u failed assignments then it is deleted from the

graph. Similarly, a vertex v has patience ∆v ∈ Z+, if a vertex v arrives in a given round, then it

would tolerate at most ∆v many failed assignments in that round before leaving the system.

For a given edge e = (u, v) ∈ E, we let each entity assign its own utility to that edge.

In particular, the platform operator assigns a utility of wO
e , whereas the offline vertex u assigns a

utility of wU
e , and the online vertex v assigns a utility of wV

e . This captures entities’ heterogeneous

2For a clearer representation we assume each vertex belongs to one group although our algorithms apply to the
case where a vertex can belong to multiple groups.

121

wants. For example, in ridesharing, drivers may desire long trips from nearby riders, whereas the

platform operator would not be concerned with the driver’s proximity to the rider, although this

maybe the only consideration the rider has. Similar motivations exist in crowdsourcing as well.

LettingM denote the set of successful matchings made in the T rounds, then we consider

the following optimization objectives:

• Operator’s Utility (Profit): The operator’s expected profit is simply the expected sums of

the profits across the matched edges, this leads to E[
∑

e∈M wO
e].

• Rawlsian Group Fairness:

– Offline Side: Denote byMu the subset of edges in the matching that are incident on

u. Then our fairness criterion is equal to

min
g∈G

E[
∑

u∈U(g)(
∑

e∈Mu
wU

e)]

|U(g)|
.

this value equals the minimum average expected utility received by a group in the

offline side U .

– Online Side: Similarly, we denote byMv the subset of edges in the matching that

are incident on vertex v, and define the fairness criterion to be

min
g∈G

E[
∑

v∈V (g)(
∑

e∈Mv
wV

e)]∑
v∈V (g) nv

.

this value equals the minimum average expected utility received throughout the match-

ing by any group in the online side V .

122

• Rawlsian Individual Fairness:

– Offline Side: The definition here follows from the group fairness definition for the

offline side by simply considering that each vertex u belongs to its own distinct group.

Therefore, the objective is min
u∈U

E[
∑

e∈Mu
wU

e].

– Online Side: Unlike the offline side, the definition does not follow as straightfor-

wardly. Here we cannot obtain a valid definition by simply assigning each vertex

type its own group. Rather, we note that a given individual is actually a given arriving

vertex at a given round t ∈ [T], accordingly our fairness criterion is the minimum ex-

pected utility an individual receives in a given round, i.e. min
t∈[T]

E[
∑

e∈Mvt
wV

e)], where

vt is the vertex that arrived in round t.

3.3 Main Results

Performance Criterion: We note that we are in the online setting, therefore our perfor-

mance criterion is the competitive ratio. Denote by I the distribution for the instances of matching

problems, then OPT(I) = EI∼I [OPT(I)] where OPT(I) is the optimal value of the sampled

instance I . Similarly, for a given algorithm ALG, we define the value of its objective over the

distribution I by ALG(I) = ED[ALG(I)] where the expectation ED[.] is over the randomness

of the instance and the algorithm. The competitive ratio is then defined as minI
ALG(I)
OPT(I) .

In our work, we address optimality guarantees for each of the three sides of the matching

market by providing algorithms with competitive ratio guarantees for the operator’s profit and the

fairness objectives of the static and online side of the market simultaneously. Specifically, for the

KIID arrival setting we have:

123

Theorem 3.3.1. For the KIID setting, algorithm TSGFKIID(α, β, γ) achieves a competitive ra-

tio of (α
2e
, β
2e
, γ
2e
)2 simultaneously over the operator’s profit, the group fairness objective for

the offline side, and the group fairness objective for the online side, where α, β, γ > 0 and

α + β + γ ≤ 1.

The following two theorems hold under the condition that pe = 1,∀e ∈ E. Specifically for

the KAD setting we have:

Theorem 3.3.2. For the KAD setting, algorithm TSGFKAD(α, β, γ) achieves a competitive ratio

of (α
2
, β
2
, γ
2
) simultaneously over the operator’s profit, the group fairness objective for the offline

side, and the group fairness objective for the online side, where α, β, γ > 0 and α + β + γ ≤ 1.

Moreover, for the case of individual fairness whether in the KIID or KAD arrival setting

we have:

Theorem 3.3.3. For the KIID or KAD setting, we can achieve a competitive ratio of (α
2
, β
2
, γ
2
)

simultaneously over the operator’s profit, the individual fairness objective for the offline side, and

the individual fairness objective for the online side, where α, β, γ > 0 and α + β + γ ≤ 1.

We also give the following impossibility results. In particular, for a given arrival (KIID

or KAD) setting and fairness criterion (group or individual), the competitive ratios for all sides

cannot exceed 1 simultaneously:

Theorem 3.3.4. For all arrival models, given the three objectives: operator’s profit, offline

side group (individual) fairness, and online side group (individual) fairness. No algorithm

can achieve a competitive ratio of (α, β, γ) over the three objectives simultaneously such that

α + β + γ > 1.
2Here, e denotes the Euler number, not an edge in the graph.

124

It is natural to wonder if we can combine individual and group fairness. Though it is

possible to extend our algorithms to this setting. The follow theorem shows that they can conflict

with one another:

Theorem 3.3.5. Ignoring the operator’s profit and focusing either on the offline side alone or the

online side alone. With αG and αI denoting the group and individual fairness competitive ratios,

respectively. No algorithm can achieve competitive ratios (αG, αI) over the group and individual

fairness objectives of one side simultaneously such that αG + αI > 1.

Finally, we carry experiments on real-world datasets in section 3.6.

3.4 Algorithms and Theoretical Guarantees

Our algorithms use linear programming (LP) based techniques [100, 101, 112, 114] where

first a benchmark LP is set up to upper bound the optimal value of the problem, then an LP

solution is sampled from to produce an algorithm with guarantees.

3.4.1 Group Fairness for the KIID Setting:

Before we discuss the details of the algorithm, we note that for a given vertex type v ∈ V ,

the expected arrival rate nv could be greater than one. However, it is not difficult to modify the

instance by simply “fragmenting” each type with nv > 1 such that in the new instance nv = 1 for

each type. This can be done with the operator’s profit, offline group fairness, and online group

fairness having the same values. Therefore, in what remains for the KIID setting nv = 1,∀v ∈ V

and therefore for any round t, each vertex v arrives with probability 1
T

. It also follows that for a

given group g,
∑

v∈V (g) nv =
∑

v∈V (g) 1 = |V (g)|.

125

For each edge e = (u, v) ∈ E we use xe to denote the expected number of probes (i.e,

assignments from u to type v not necessarily successful) made to edge e in the LP benchmark.

We have a total of three LPs each having the same set of constraints of (3.4), but differing by

the objective. For compactness we do not repeat these constraints and instead write them once.

Specifically, LP objective (3.1) along with the constraints of (3.4) give the optimal benchmark

value of the operator’s profit. Similarly, with the same set of constraints (3.4) LP objective

(3.2) and LP objective (3.3) give the optimal group max-min fair assignment for the offline and

online sides, respectively. Note that the expected max-min objectives of (3.2) and (3.3), can be

written in the form of a linear objective. For example, the max-min objective of (3.2) can be

replaced with an LP with objective max η subject to the additional constraints that ∀g ∈ G ,

η ≤
∑

u∈U(g)

∑
e∈Eu

wU
e xepe

|U(g)| . Having introduced the LPs, we will use LP(3.1), LP(3.2), and LP(3.3)

to refer to the platform’s profit LP, the offline side group fairness LP, and the online side group

fairness LP, respectively.

max
∑

e∈E wO
e xepe (3.1)

maxmin
g∈G

∑
u∈U(g)

∑
e∈Eu

wU
e xepe

|U(g)| (3.2)

maxmin
g∈G

∑
v∈V (g)

∑
e∈Ev

wV
e xepe

|V (g)| (3.3)

126

s.t ∀e ∈ E : 0 ≤ xe ≤ 1 (3.4a)

∀u ∈ U :
∑

e∈Eu
xepe ≤ 1 (3.4b)

∀u ∈ U :
∑

e∈Eu
xe ≤ ∆u (3.4c)

∀v ∈ V :
∑

e∈Ev
xepe ≤ 1 (3.4d)

∀v ∈ V :
∑

e∈Ev
xe ≤ ∆v (3.4e)

Now we prove that LP(3.1), LP(3.2) and LP(3.3) indeed provide valid upper bounds (bench-

marks) for the optimal solution for the operator’s profit and expected max-min fairness for the

offline and online sides of the matching.

Lemma 3.4.1. For the KIID setting, the optimal solutions of LP (3.1), LP (3.2), and LP (3.3)

are upper bounds on the expected optimal that can be achieved by any algorithm for the opera-

tor’s profit, the offline side group fairness objective, and the online side group fairness objective,

respectively.

Proof. We follow a similar proof to that used in [112]. We shall focus on the operator’s profit

objective since the other objectives follow by very similar arguments. First, we note that LP(3.1)

uses the expected values of the problem parameters, i.e. if we consider a specific graph realization

G, then let NG
v be the number of arrival for vertex type v, then it follows that LP(3.1) uses the

expected values since EI [N
G
v] = 1,∀v ∈ V where EI [.] is an expectation over the randomness

of the instance. We shall therefore refer to the value of LP(3.1) as LP (EI [G]).

To prove that LP (EI(G)) is a valid upper bound it suffices to show that LP (EI [G[) ≥

EI [LP (G)] where LP (G) is the optimal LP value of a realized instance G and EI [LP (G)] is

the expected value of that optimal LP value. Let us then consider a specific realization G′, its

127

corresponding LP would be the following:

max
∑

e′∈E′ wO
e′pe′xe′ (3.5)

s.t ∀e′ ∈ E′ : 0 ≤ xe′ ≤ 1 (3.6a)

∀u ∈ U :
∑

e′∈E′
u
xe′pe′ ≤ 1 (3.6b)

∀u ∈ U :
∑

e′∈E′
u
xe′ ≤ ∆u (3.6c)

∀v′ ∈ V ′ :
∑

e′∈E′
v′
xe′pe′ ≤ 1 (3.6d)

∀v′ ∈ V ′ :
∑

e′∈E′
v′
xe′ ≤ ∆v′ (3.6e)

where V ′ is the realization of the online side. It is clear that for a given realization G′ =

(U, V ′, E ′) the above LP(3.5) is an upper bound on the operator’s objective value for that realiza-

tion.

Now we prove that LP (EI [G]) ≥ EI [LP (G)]. The dual of the LP for the realization G′ is

the following:

min
∑

u∈U (αu +∆uβu) +
∑

v′∈V ′(αv′ +∆v′βv′) +
∑

(u,v′) γu,v′ (3.7)

s.t. ∀u ∈ U,∀v′ ∈ V ′ :

βu + βv′ + p(u,v′)(αu + αv′) + γ(u,v′) ≥ wO
(u,v′)p(u,v′) (3.8a)

αu, αv′ , βu, βv′ , γ(u,v′) ≥ 0 (3.8b)

128

Consider the graph with the expected number of arrival EI(G) it would have a dual of the above

form, let α⃗∗, β⃗∗, γ⃗∗ be the optimal solution of its corresponding dual. Then it follows by the

strong duality of LPs that solution α⃗∗, β⃗∗, γ⃗∗ would have a value of LP (EI [G]). Now for the

instance G′, we shall use the following dual solution ⃗̂α,
⃗̂
β, ⃗̂γ which is set as follows:

• ∀u ∈ U : α̂u = α∗
u, β̂u = α∗

u.

• ∀v′ ∈ V ′ of type v: α̂v′ = α∗
v, β̂v′ = β∗

v .

• ∀u ∈ U,∀v′ ∈ V ′ of type v: γ̂(u,v′) = γ∗
(u,v).

Note that the new solution ⃗̂α,
⃗̂
β, ⃗̂γ is a feasible dual solution since it satisfies constraints 3.8a and

3.8b. By weak duality the value of the solution ⃗̂α,
⃗̂
β, ⃗̂γ upper bounds LP (G′). Now if we were to

denote the number of vertices of type v that arrived in instance G′ by nG′
v , then the value of the

solution ⃗̂α,
⃗̂
β, ⃗̂γ satisfies:

∑
u∈U

(α̂u +∆uβ̂u) +
∑
v′∈V ′

(α̂v′ +∆v′ β̂v′) +
∑
(u,v′)

γ̂u,v′

=
∑
u∈U

(α∗
u +∆uβ

∗
u) +

∑
v∈V

nG′

v (α∗
v +∆vβ

∗
v) +

∑
(u,v)

nG′

v γ∗
u,v

≥ LP (G′)

129

Now taking the expectation, we get:

EI [LP (G′)]

≤ EI

[∑
u∈U

(α̂u +∆uβ̂u) +
∑
v′∈V ′

(α̂v′ +∆v′ β̂v′) +
∑
(u,v′)

γ̂u,v′
]

= EI

[∑
u∈U

(α∗
u +∆uβ

∗
u) +

∑
v∈V

nG′

v (α∗
v +∆vβ

∗
v) +

∑
(u,v)

nG′

v γ∗
u,v

]
=
∑
u∈U

(α∗
u +∆uβ

∗
u) +

∑
v∈V

EI [n
G′

v](α∗
v +∆vβ

∗
v) +

∑
(u,v)

EI [n
G′

v]γ∗
u,v

=
∑
u∈U

(α∗
u +∆uβ

∗
u) +

∑
v∈V

(α∗
v +∆vβ

∗
v) +

∑
(u,v)

γ∗
u,v

= LP (EI [G])

For the offline and online group fairness objectives, we use the same steps. The difference would

be in the constraints of the dual program, however following a similar assignment as done from

α⃗∗, β⃗∗, γ⃗∗ to ⃗̂α,
⃗̂
β, ⃗̂γ is sufficient to prove the lemma for both fairness objectives.

Our algorithm makes use of the dependent rounding subroutine [69]. We mention the main

properties of dependent rounding. In particular, given a fractional vector x⃗ = (x1, x2, . . . , xt)

where each xi ∈ [0, 1], let k =
∑

i∈[t] xi , dependent rounding rounds xi (possibly fractional) to

Xi ∈ {0, 1} for each i ∈ [t] such that the resulting vector X⃗ = (X1, X2, X3, . . . , Xt) has the

following properties: (1) Marginal Distribution: The probability that Xi = 1 is equal to xi,

i.e. Pr[Xi = 1] = xi for each i ∈ [t]. (2) Degree Preservation: Sum of Xi’s should be equal

to either ⌊k⌋ or ⌈k⌉ with probability one, i.e. Pr[
∑

i∈[t] Xi ∈ {⌊k⌋ , ⌈k⌉}] = 1. (3) Negative

Correlation: For any S ⊆ [t], (1) Pr[∧i∈SXi = 0] ≤ Πi∈SPr[Xi = 0] (2) Pr[∧i∈SXi = 1] ≤

Πi∈SPr[Xi = 1]. It follows that for any xi, xj ∈ x⃗, E[Xi = 1|Xj = 1] ≤ xi.

130

Going back to the LPs (3.1,3.2,3.3), we denote the optimal solutions to LP (3.1), LP (3.2),

and LP (3.3) by x⃗∗,y⃗∗ and z⃗∗ respectively. Further, we introduce the parameters α, β, γ ∈ [0, 1]

where α + β + γ ≤ 1 and each of these parameters decide the ”weight” the algorithm places

on each objective (the operator’s profit, the offline group fairness, and the online group fairness

objectives). We note that our algorithm makes use of the subroutine PPDR (Probe with Permuted

Dependent Rounding) shown in Algorithm 12.

Algorithm 12 PPDR(x⃗v)

1: Apply dependent rounding to the fractional solution x⃗v to get a binary vector X⃗v.
2: Choose a random permutation π over the set Ev.
3: for i = 1 to |Ev| do
4: Probe vertex π(i) if it is available and X⃗v(π(i)) = 1
5: if Probe is successful (i.e., a match) then
6: break
7: end if
8: end for

The procedure of our parameterized sampling algorithm TSGFKIID is shown in Algorithm

13. Specifically, when a vertex of type v arrives at any time step we run PPDR
(
x⃗∗
v

)
, PPDR

(
y⃗∗v
)
,

or PPDR
(
z⃗∗v
)

with probabilities α, β, and γ, respectively. We do not run any of the PPDR

subroutines and instead reject the vertex with probability 1 − (α + β + γ). The LP constraint

(3.4e) guarantees that ∀v ∈ V :
∑

e∈Er
s∗e ≤ ∆v where s⃗∗ could be x⃗∗, y⃗∗, or z⃗∗. Therefore,

when PPDR is invoked by the degree preservation property of dependent rounding the number

of edges probed will not exceed ∆v, i.e. it would be within the patience limit.

Algorithm 13 TSGFKIID(α, β, γ)
1: Let v be the vertex type arriving at time t.
2: With probability α run the subroutine, PPDR

(
x⃗∗
v

)
.

3: With probability β run the subroutine, PPDR
(
y⃗∗v
)
.

4: With probability γ run the subroutine, PPDR
(
z⃗∗v
)
.

5: Reject the arriving vertex with probability 1− (α + β + γ).

131

Now we analyze TSGFKIID to prove Theorem 3.3.1. It would suffice to prove that for each

edge e the expected number of successful probes is at least αx∗
e

2e
, β y∗e

2e
and γ z∗e

2e
. And finally from

the linearity of expectation we show that the worst case competitive ratio of the proposed online

algorithm with parameters α, β and γ is at least (α
2e
, β
2e
, γ
2e
) for the operator’s profit and group

fairness objectives on the offline and online sides of the matching, respectively. A critical step is

to lower bound the probability that a vertex u is available (safe) at the beginning of round t ∈ [T].

Let us denote the indicator random variable for that event by SFu,t. The following lemma enables

us to lower bound for the probability of SFu,t.

Lemma 3.4.2. Pr[SFu,t] ≥
(
1− t−1

T

)(
1− 1

T

)t−1

.

Proof. We have to first introduce the following two claims. Specifically, let Au,t be the number

of successful assignments that u received and accepted before round t. Then the following claim

holds.

Claim 3.4.3. For any given vertex u at time t ∈ [T] , P [Au,t = 0] ≥
(
1− 1

T

)t−1

.

Proof. Let Xe,k be the indicator random variable for u receiving an arrival request of type v where

e ∈ Eu and k < t. Let Ye,k be the indicator random variable that the edge e gets sampled by the

TSGFKIID(α, β, γ) algorithm at time k < t. Let Ze,k be the indicator random variable that assign-

132

ment e = (u, v) is successful (a match) at time k < t. Then Au,t =
∑

k<t

∑
e∈Eu

Xe,kYe,kZe,k.

Pr[Au,t = 0] = Πk<tPr
[∑
e=(u,v)∈Eu

Xe,kYe,kZe,k = 0
]

= Πk<t

(
1− Pr

[∑
e∈Eu

Xe,kYe,kZe,k ≥ 1
])

≥ Πk<t

(
1−

∑
e∈Eu

1

T
·
(
αx∗e + β

y∗e
qv

+ γ
z∗e
qv

)
· pe
)

= Πk<t

(
1− 1

T
·
(
α
∑
e∈Eu

x∗epe + β
∑
e∈Eu

y∗epe + γ
∑
e∈Eu

z∗epe
))

≥ Πk<t

(
1− 1

T
·
(
α · 1 + β · 1 + γ · 1

))
≥ Πk<t

(
1− 1

T

)
=
(
1− 1

T

)t−1

Now we lower bound the probability that u was probed less than ∆u times prior to t. Denote

the number of probes received by u before t by Bu,t, then the following claim holds:

Claim 3.4.4. Pr[Bu,t < ∆u] ≥ 1− t−1
T

.

Proof. First it is clear that Bu,t =
∑

k<t

∑
e∈Eu

Xe,kYe,k.

E[Bu,t] =
∑
k<t

∑
e∈Eu

E[Xe,kYe,k]

≤
∑
k<t

∑
e∈Eu

1

T

(
αx∗

e + βy∗e + γz∗e

)
≤
∑
k<t

1

T

(
α
∑
e∈Ed

x∗
e + β

∑
e∈Eu

y∗e + γ
∑
e∈Eu

z∗e

)
≤
∑
k<t

∆u

T
(α + β + γ) ≤ (t− 1)∆u

T

133

The inequality before the last follows from (α + β + γ) ≤ 1. Now using Markov’s inequality:

Pr[Bu,t < ∆u] ≥ 1− E[Bu,t]

∆u
, we get =⇒ Pr[Bu,t < ∆u] ≥ 1− t−1

T
.

Now we are ready to prove the lemma, consider a given edge e ∈ Eu where k < t

E[Xe,kYe,k | Au,t = 0] = E[Xe,kYe,k | Au,k = 0]

=
Pr[Xe,k = 1, Ye,k = 1, Ze,k = 0]

Pr[Au,k = 0]

≤
1
T
·
(
αx∗

e + βy∗e + γz∗e
)
· (1− pe)

1−
∑

e∈Ed

1
T
·
(
αx∗

e + βy∗e + γz∗e
)
· pe

=
1
T
·
(
αx∗

e + βy∗e + γz∗e
)
· (1− pe)

1− pe + pe

(
1−

∑
e∈Ed

1
T
·
(
αx∗

e + βy∗e + γz∗e
))

≤ 1

T
·
(
αx∗

e + βy∗e + γz∗e
)
·

The above inequality is due to the fact that
∑

e∈Eu

1
T

(
αx∗

e + βy∗e + γz∗e
)
≤ ∆u

T
< 1.

E[Bu,t|Au,t = 0] =
∑
k<t

∑
e∈Eu

E[Xe,kYe,k|Au,k = 0]

≤
∑
k<t

∑
e∈Eu

1

T

(
αx∗

e + βy∗e + γz∗e

)
≤
∑
k<t

1

T

(
α
∑
e∈Eu

x∗
e + β

∑
e∈Eu

y∗e + γ
∑
e∈Eu

z∗e

)
≤
∑
k<t

1

T

(
α ·∆u + β ·∆d + γ ·∆u

)
=
∑
k<t

∆u

T
(α + β + γ) ≤ (t− 1)∆u

T

Therefore the expected number of assignments (probes) to vertex u until time t is at most (t−1)∆u

T
.

134

Therefore, we have:

Pr[Bu,t < ∆u|Au,t = 0] ≥ 1− E[Bu,t|Au,t = 0]

∆d

≥ 1− (t− 1)∆u

T∆u

≥ 1− t− 1

T

It is to be noted that Bu,t is the total number of probes u received before round t. Thus, we have

that the events (Bu,t < ∆u) and (Au,t = 0) are positively correlated. Therefore,

Pr[SFu,t] ≥ Pr[(Bu,t < ∆u) ∧ (Au,t = 0)]

≥ Pr[Bu,t < ∆d|Au,t = 0]Pr[Au,t = 0]

Pr[SFu,t] ≥
(
1− t− 1

T

)(
1− 1

T

)t−1

Now that we have established a lower bound on Pr[SFu,t], we lower bound the probability

that an edge e is probed by one of the PPDR subroutines conditioned on the fact that u is available

(Lemma 3.4.5). Let 1e,t be the indicator that e = (u, v) is probed by the TSGFKIID Algorithm

at time t. Note that event 1e,t occurs when (1) a vertex of type v arrives at time t and (2) e is

sampled by PPDR(x⃗v), PPDR(y⃗v), or PPDR(z⃗v).

Lemma 3.4.5. Pr[1e,t | SFu,t] ≥ α x∗
e

2T
,Pr[1e,t | SFu,t] ≥ β y∗e

2T
, Pr[1e,t | SFu,t] ≥ γ z∗e

2T

Proof. In this part we prove that the probability that edge e is probed at time t is at least α x∗
e

2T
.

Note that the probability that a vertex of type v arrives at time t and that Algorithm 13 calls

the subroutine PPDR(x⃗r) is α 1
T

. Let Ev,ē be the set of edges in Ev excluding e = (u, v). For

135

each edge e′ ∈ Ev,ē let Ye′ be the indicator for e′ being before e in the random order of π (in

algorithm 12) and let Ze′ be the probability that the assignment is successful for e′. It is clear that

E[Ye′] = 1/2 and that E[Ze′] = pe′ . Now we have:

Pr[1e,t | SFu,t] (3.9)

≥ α
1

T
Pr[Xe = 1]Pr

[∑
e′∈Er,ē

Xe′Ye′Ze′ | Xe = 1
]

(3.10)

= α
Pr[Xe = 1]

T

(
1− Pr

[∑
e′∈Ev,ē

Xe′Ye′Ze′ ≥ 1 | Xe = 1
])

(3.11)

≥ α
Pr[Xe = 1]

T

(
1− E

[∑
e′∈Ev,ē

Xe′Ye′Ze′ ≥ 1 | Xe = 1
])

(3.12)

≥ α
Pr[Xe = 1]

T

(
1−

∑
e′∈Ev,ē

E
[
Xe′Ye′Ze′ ≥ 1 | Xe = 1

])
(3.13)

≥ α
x∗
e

T

(
1−

∑
e′∈Ev,ē

x∗
e′
1

2
pe′
)

(3.14)

≥ α
x∗
e

T

(
1− 1

2

)
= α

x∗
e

2T
(3.15)

Applying Markov inequality we get the inequality (3.12). By linearity of expectation we get

inequality (3.13). Since Xe and Xe′ are negatively correlated to each other from the Negative

Correlation property of Dependent Rounding we have E[Xe′ | Xe = 1] ≤ x∗
e and we get (3.14).

The last inequality (3.15) is due the fact that for any feasible solution {x∗
e} the constraints imply

that
∑

e∈Ev
x∗
epe ≤ 1 for all v ∈ V . Using similar analysis we can also prove that Pr[1e,t |

SFu,t] ≥ β y∗e
2T

and Pr[1e,t | SFu,t] ≥ γ z∗e
2T

.

Given the above lemmas Theorem 3.3.1 can be proved.

Proof of Theorem 3.3.1. Denote the expected number of probes on each edge e ∈ E resulting

136

from PPDR
(
x⃗∗
v

)
by nx

e . It follows that:

nx
e ≥

T∑
t=1

Pr[1e,t] =
T∑
t=1

Pr[1e,t | SFu,t]Pr[SFu,t]

≥
T∑
t=1

(
1− 1

T

)t−1(
1− t− 1

T

)(
α
x∗
e

2T

)
T→∞−−−→ αx∗

e

2e

Denote the optimal solution for the operator’s profit LP by OPTO. Let ALGO be operator’s

profit obtained by our online algorithm. Using the linearity of expectation we get: ALGO =

E
[∑

e∈E wO
e n

x
epe

]
≥
∑

e∈E wO
e pe

αx∗
e

2e
≥
∑

e∈E wO
e pe

(
1
e

)
αx∗

e

2
≥ α

2e
(OPTO). Similarly, we can

obtain β
2e

and γ
2e

competitive ratios for the expected max-min group fairness guarantees on the

offline and online sides, respectively.

3.4.2 Group Fairness for the KAD Setting:

For the KAD setting, the distribution over V is time dependent and hence the probability

of sampling a type v in round t is pv,t ∈ [0, 1] with
∑

v∈V pv,t = 1. Further, we assume for the

KAD setting that for every edge e ∈ E we have pe = 1. This means that whenever an incoming

vertex v is assigned to a safe-to-add vertex u the assignment is successful. This also means that

any non-trivial values for the patience parameters ∆u and ∆v become meaningless and hence we

can WLOG assume that ∀u ∈ U,∀v ∈ V,∆u = ∆v = 1. From the above discussion, we have the

following LP benchmarks for the operator’s profit, the group fairness for the offline side and the

group fairness for the online side:

137

max
∑
t∈[T]

∑
e∈E

wO
e xe,t (3.16)

maxmin
g∈G

∑
t∈[T]

∑
u∈U(g)

∑
e∈Eu

wU
e xe,t

|U(g)| (3.17)

maxmin
g∈G

∑
t∈[T]

∑
v∈V (g)

∑
e∈Ev

wV
e xe,t∑

v∈V (g)

nv
(3.18)

s.t ∀e ∈ E,∀t ∈ [T] : 0 ≤ xe,t ≤ 1 (3.19a)

∀u ∈ U :
∑
t∈[T]

∑
e∈Eu

xe,t ≤ 1 (3.19b)

∀v ∈ V, ∀t ∈ [T] :
∑

e∈Ev
xe,t ≤ pv,t (3.19c)

Lemma 3.4.6. For the KAD setting, the optimal solutions of LP (3.16), LP (3.17) and LP (3.18)

are upper bounds on the expected optimal that can be achieved by any algorithm for the opera-

tor’s profit, the offline side group fairness objective, and the online side group fairness objective,

respectively.

Proof. We shall consider only the operator’s profit objective as the other objectives follow through

an identical argument. Let 1v,t be the indicator random variable for the arrival for vertex type v in

round t. Then we can obtain a realization and solve the corresponding LP and then take the ex-

pected value of LP as an upper bound on the operator’s profit objective, i.e. the value EI [LP (G)]

where EI is an expectation with respect to the randomness of the problem. This means replacing

1v,t by its realization in the LP below:

max
∑
t∈[T]

∑
e∈E

wO
e xe,t (3.20)

138

s.t ∀e ∈ E,∀t ∈ [T] : 0 ≤ xe,t ≤ 1 (3.21a)

∀u ∈ U :
∑
t∈[T]

∑
e∈Eu

xe,t ≤ 1 (3.21b)

∀v ∈ V, ∀t ∈ [T] :
∑

e∈Ev
xe,t ≤ 1v,t (3.21c)

If we were to replace the random variables 1v,t by their expected value, then we would retrieve

LP(3.16) where EI [1v,t] = pv,t. It suffices to show that the value of LP(3.16) which is the LP

value over the “expected” graph (the parameters replaced by their expected value) which we now

denote by LP (EI [G]) is an upper bound to EI [LP (G)], i.e. LP (EI [G]) ≥ EI [LP (G)]. Let x∗,G
e,t

be the optimal solution for a given realization G and 1Gv,t be the realization of the random variables

over the instance, then we have that
∑

e∈Ev
x∗,G
e,t ≤ 1Gv,t. It follows that EI [x

∗,G
e,t] is a feasible

solution for LP(3.16), since EI [
∑

e∈Ev
x∗,G
e,t] ≤ EI [1

G
v,t] = pv,t and the rest of the constraints are

satisfied as well since they are the same in every realization. However, we have that EI [LP (G)] =

EI [
∑
t∈[T]

∑
e∈E

wO
e x

∗,G
e,t] =

∑
t∈[T]

∑
e∈E

wO
e EI [x

∗,G
e,t] ≤

∑
t∈[T]

∑
e∈E

wO
e x

∗
e,t = LP (EI [G]) where x∗

e,t is the

optimal solution for LP(3.16) over the “expected” graph. The inequality followed since a feasible

solution to a problem cannot exceed its optimal solution.

Note that in the above LP we have xe,t as the probability for successfully assigning an

edge in round t (with an explicit dependence on t), unlike in the KIID setting where we had xe

instead to denote the expected number of times edge e is probed through all rounds. Similar to

our solution for the KIID setting, we denote by x∗
e,t, y

∗
e,t, and z∗e,t the optimal solutions of the LP

benchmarks for the operator’s profit, offline side group fairness, and online side group fairness,

respectively.

139

Having the optimal solutions to the LPs, we use algorithm TSGFKAD shown in Algorithm

14. In TSGFKAD new parameters are introduced, specifically λ and ρe,t where ρe,t is the prob-

ability that edge e = (u, v) is safe to add in round t, i.e. the probability that u is unmatched

at the beginning of round t. For now we assume that we have the precise values of ρe,t for all

rounds and discuss how to obtain these values at the end of this subsection. Now conditioned on

v arriving at round t and e = (u, v) being safe to add, it follows that e is sampled with probability

α
x∗
e,t

pv,t
λ

ρe,t
+β

y∗e,t
pv,t

λ
ρe,t

+γ
z∗e,t
pv,t

λ
ρe,t

which would be a valid probability (positive and not exceeding 1) if

ρe,t ≥ λ. This follows from the fact that α, β, γ ∈ [0, 1] and α+β+ γ ≤ 1 and also by constraint

(3.19c) which leads to
∑

e∈Ev
xe,t

pv,t
≤ 1. Further, if ρe,t ≥ λ then by constraint (3.19c) we have∑

e∈Ev

(
α

x∗
e,t

pv,t
λ

ρe,t
+ β

y∗e,t
pv,t

λ
ρe,t

+ γ
z∗e,t
pv,t

λ
ρe,t

)
≤ 1 and therefore the distribution is valid. Clearly, the

value of λ is important for the validity of the algorithm, the following lemma shows that λ = 1
2

leads to a valid algorithm.

Lemma 3.4.7. Algorithm TSGFKAD is valid for λ = 1
2
.

Proof. We prove the validity of the algorithm for λ = 1
2

by induction. For the base case, it is

clear that ∀e ∈ E, ρe,t = 1, hence ρe,t ≥ λ = 1
2
. Assume for t′ < t, that ρe,t′ ≥ λ = 1

2
, then at

140

round t we have:

1− ρe,t = Pr[e is not available at t]

= Pr[e is matched in [T − 1]]

≤
∑
t′<t

Pr[e is matched in t′]

=
∑
t′<t

Pr[(e is chosen by the algorithm)

∧ (u is unmatched at the beginning of t)

∧ (v arrives at t)]

=
∑
t′<t

pv,tρe,t(α
x∗
e,t

pv,t

λ

ρe,t
+ β

y∗e,t
pv,t

λ

ρe,t
+ γ

z∗e,t
pv,t

λ

ρe,t
)

=
∑
t′<t

λ(αx∗
e,t′ + βy∗e,t′ + γz∗e,t′)

≤ λ
∑
t′<t

(αx∗
e,t′ + βy∗e,t′ + γz∗e,t′)

≤ λ(α + β + γ) ≤ λ ≤ 1

2

where we used the fact that x∗
e,t′ , y

∗
e,t′ , z

∗
e,t′ ≤ 1 from constraint (3.19a) and the fact that α+β+γ ≤

1. From the above, it follows that ρe,t ≥ 1
2
≥ λ.

We now return to the issue of how to obtain the values of ρe,t for all rounds. This can be

done by using the simulation technique as done in [88, 115]. To elaborate, we note that we first

solve the LPs (3.16,3.17,3.18) and hence have the values of x∗
e,t, y

∗
e,t, and z∗e,t. Now, for the first

round t = 1, clearly ρe,t = 1,∀e ∈ E. To obtain ρe,t for t = 2, we simulate the arrivals and

algorithm a collection of times, and use the empirically estimated probability. More precisely,

141

Algorithm 14 TSGFKAD(α, β, γ)
1: Let v be the vertex type arriving at time t.
2: if Ev,t = ϕ then
3: Reject v
4: else
5: With probability α probe e with probability x∗

e,t

pv,t
λ

ρe,t
.

6: With probability β probe e with probability y∗e,t
pv,t

λ
ρe,t

.

7: With probability γ probe e with probability z∗e,t
pv,t

λ
ρe,t

.
8: With probability [1− (α + β + γ)] reject v .
9: end if

for t = 1 we sample the arrival of vertex v from pv,t with t = 1 (pv,t values are given as part of

the model), then we run our algorithm for the values of α, β, γ that we have chosen. Accordingly,

at t = 2 some vertex in U might be matched. We do this simulation a number of times and then

we take ρe,t for t = 2 to be the average of all runs. Now having the values of ρe,t for t = 1 and

t = 2, we further simulate the arrivals and the algorithm to obtain ρe,t for t = 3 and so on until

we get ρe,t for the last round T . We note that using the Chernoff bound [116] we can rigorously

characterize the error in this estimation, however by doing this simulation a number of times that

is polynomial in the problem size, the error in the estimation would only affect the lower order

terms in the competitive ration analysis [88] and hence for simplicity it is ignored. Now, with

Lemma 3.4.7 Theorem 3.3.2 can be proved.

Proof of Theorem 3.3.2. For an edge e the probability that it is matched (successfully probed) is

142

the following:

Pr[e is successfully probed in round t]

= Pr[(e is chosen by the algorithm)

∧ (u is unmatched at the beginning of t) ∧ (v arrives at t)]

= pv,tρe,t(α
x∗
e,t

pv,t

λ

ρe,t
+ β

y∗e,t
pv,t

λ

ρe,t
+ γ

z∗e,t
pv,t

λ

ρe,t
) =

= αλx∗
e,t + βλy∗e,t + γλz∗e,t

Setting λ = 1
2
, it follows from the above that e is successfully matched with probability at least

1
2
αx∗

e,t, at least 1
2
βy∗e,t, and at least 1

2
γz∗e,t. Hence, the guarantees on the competitive ratios follow

by linearity of the expectation.

3.4.3 Individual Fairness KIID and KAD Settings:

For the case of Rawlsian (max-min) individual fairness, we simply consider each vertex of

the offline side to belong to its own distinct group and the definition of group max-min fairness

would simply lead to individual max-min fairness. On the other hand, for the online side a

similar trick would not yield a meaningful criterion, we instead define the individual max-min

fairness for the online side to equal min
t∈[T]

E[util(vt)] = min
t∈[T]

E[
∑

e∈Mvt
wV

e)] where util(vt) is the

utility received by the vertex arriving in round t. If we were to denote by xe,t the probability

that the algorithm would successfully match e in round t, then it follows straightforwardly that

E[util(vt)] =
∑

e∈Evt
wV

e xe,t. We consider this definition to be the valid extension of max-min

143

fairness for the online side as we are now concerned with the minimum utility across the online

individuals (arriving vertices) which are T many. The following lemma shows that we can solve

two-sided individual max-min fairness by a reduction to two-sided group max-min fairness in the

KAD arrival setting:

Lemma 3.4.8. Whether in the KIID or KAD setting, a given instance of two-sided individual

max-min fairness can be converted to an instance of two-sided group max-min fairness in the

KAD setting.

Proof. Given an instance with individual fairness, define G = {g1, . . . , gT} ∪ {g′1, . . . , g′|U |} as

the set of all groups, thus |G| = T + |U |, i.e. one group for each time round and one group for

each offline vertex. Further given the online side types V , create a new online side V ′ where

|V ′| = T |V | and V ′ = V ′
1 ∪ V ′

2 · · · ∪ V ′
t · · · ∪ V ′

T where V ′
t consists of the same types as V .

Moreover, ∀v′ ∈ V ′
t , pv′,t = pv,t and pv′,t̄ = 0,∀t̄ ∈ [T] − {t}, finally ∀v′ ∈ V ′

t , g(v
′) = gt.

For the offline side U , we let each vertex have its own distinct group membership, i.e. for vertex

ui ∈ U , g(ui) = g′i.

Based on the above, it is not difficult to see that both problems have the same operator

profit, and that the individual max-min fairness objectives of the original instance equal the group

max-min fairness objectives of the new instance.

From the above Lemma, applying algorithm TSGFKAD to the reduced instance leads to the

following corollary:

Corollary 3.4.9. Given an instance of two-sided individual max-min fairness, applying TSGFKAD(α, β, γ)

to the reduction from Theorem 3.4.8 leads to a competitive ratio of (α
2
, β
2
, γ
2
) simultaneously over

144

the operator’s profit, the individual fairness objective for the offline side, and the individual fair-

ness objective for the online side, where α, β, γ > 0 and α + β + γ ≤ 1.

The proof of Theorem 3.3.3 is immediate from the above corollary.

3.5 Proofs of Impossibility Results

Here we prove Theorems 3.3.4 and 3.3.5.

Proof of Theorem 3.3.4. We prove it for group fairness in the KIID setting, since the KIID set-

ting is a special case of the KAD setting, then this also proves the upper bound for the KAD

setting.

Consider the graph G = (U, V,E) which consists of three offline vertices and three online

vertex types, i.e. |U | = |V | = 3. Each vertex in U (V) belongs to its own distinct group. The

time horizon T is set to an arbitrarily large value. The arrival rate for each v ∈ V is uniform and

independent of time, i.e. KIID with pv = 1
3
. Further, the bipartite graph is complete, i.e. each

vertex of U is connected to all of the vertices of V with pe = 1 for all e ∈ E. We also let ∆u = 1

for each u ∈ U , nv = T
3

and ∆v = 1 for each v ∈ V . We represent the utilities on the edges of

E with matrices where the (i, j) element gives the utility of the edge connecting vertex ui ∈ U

and vertex vj ∈ V . The utility matrices for the platform operator, offline, and online sides are

following, respectively:

MO =

1 0 0

0 1 0

0 0 1

 ,MU =

0 0 1

1 0 0

0 1 0

 ,MV =

0 1 0

0 0 1

1 0 0

 .

145

It can be seen that the utility assignments in the above example conflict between the three entities.

Let OPTO,OPTU , and OPTV be the optimal values for the operator’s profit, offline group

fairness, and online group fairness, respectively. It is not difficult to see that OPTO = 3,

OPTU = 1, and OPTV = 1. Now, denote by A,B, and C the edges with values of 1 for

MO,MU , and MV in the graph, respectively. Further, for a given online algorithm, let aj, bk, and

cℓ be the expected number of probes received by edges j ∈ A, k ∈ B, and ℓ ∈ C, respectively.

Moreover, denote the algorithm’s expected value over the operator’s profit, expected fairness for

offline vertices, and expected fairness for online vertices by ALGO,ALGU , and ALGV , respec-

tively. We can upper bound the sum of the competitive ratios as follows:

ALGO

OPTO

+
ALGU

OPTU

+
ALGV

OPTV

≤
∑

j∈A aj

3
+

mink∈B bj
1

+
minℓ∈C cj

1

≤
∑

j∈A ai

3
+

(∑
k∈B bi

)
/3

1
+

(∑
ℓ∈C ci

)
/3

1

≤
∑

j∈A ai +
∑

k∈B bi +
∑

ℓ∈C ci

3
≤ 3

3
= 1

in the above, the second inequality follows since the minimum value is upper bounded by

the average. The last inequality follows since ∆u = 1 and therefore the expected number of

probes any offline vertex receives cannot exceed 1 and we have |U | = 3 many vertices.

To prove the same result for individual fairness we use the same graph. We note that the

arrival of vertices in V is KAD instead with the ith vertex vi having pvi,i = 1 and pvi,t = 0,∀t ̸= i.

Then we follow an argument similar to the above.

Proof of Theorem 3.3.5. Let us focus on the offline side, i.e. we consider αG and αI that are the

competitive ratios for the group and individual fairness of the offline side.

146

Consider a graph which consists of two offline vertices and one online vertex, i.e. |U | = 2

and |V | = 1. Further, there is only one group. Let pe = 1,∀e ∈ E and ∀u ∈ U,∀v ∈ V : ∆u =

∆v = 1. U has two vertices u1 and u2 both connected to the same vertex v ∈ V . For edge (u1, v),

we let wU
(u1,v)

= 1 and for edge (u2, v), we let wU
(u2,v)

= L where L is an arbitrarily large number.

Note that both of these weights are for the utility of the offline side. Finally, we only have one

round so T = 1.

Let θ1 and θ2 be the expected number of probes edges (u1, v) and (u2, v) receive, respec-

tively. Note that θ1 = 1 − θ2. It follows that the optimal offline group fairness objective is

OPTU
G = max

θ1,θ2
(θ1 + Lθ2) = max

θ2
((1 − θ2) + Lθ2) = L. Further, the optimal offline individual

fairness objective is OPTU
I = min{θ1, Lθ2}, it is not difficult to show that OPTU

I = L
L+1

. Now

consider the sum of competitive ratios, we have:

ALGU
G

OPTU
G

+
ALGU

I

OPTU
I

=
θ1 + Lθ2

L
+

min{θ1, Lθ2}
L

L+1

≤ θ1 + Lθ2
L

+
θ1(L+ 1)

L

=
(L+ 2)θ1 + Lθ2

L

= (θ1 + θ2) +
2θ1
L

≤ 1 +
2θ1
L

L→∞−−−→ 1

this proves the result for the offline side of the graph.

To prove the result for the online side, we reverse the graph construction, i.e. having one

vertex in U and two vertex types in V which arrive with equal probability. It now holds that

OPTV
I = min{θ1, Lθ2} and by setting T to an arbitrarily large value OPTV

G = L. Then we

147

Figure 3.1: Competitive ratios for TSGFKIID over the operator’s profit, offline (driver) fairness
objective, and online (rider) fairness objective with different values of α, β, γ. Note that “Match-
ing” refers to the case where driver and rider utilities are set to 1 across all edges. The experiment
is run with α = {0, 0.1, 0.2, ..., 1}, and β = γ = 1−α

2
. Higher competitive ratio indicates better

performance.

follow an identical argument to the above.

3.6 Experiments

In this section, we verify the performance of our algorithm and our theoretical lower bounds

for the KIID and group fairness setting using algorithm TSGFKIID (Section 3.4.1). We note that

none of the previous work consider our three-sided setting. We use rideshare as an application

example of online bipartite matching (see also, e.g., [88,100,101,117]). We expect similar results

and performance to hold in other matching applications such as crowdsourcing.

Experimental Setup: As done in previous work, the drivers’ side is the offline (static) side

whereas the riders’ side is the online side. We run our experiments over the widely used New

York City (NYC) yellow cabs dataset [100, 101, 118, 119] which contains records of taxi trips

in the NYC area from 2013. Each record contains a unique (anonymized) ID of the driver, the

coordinates of start and end locations of the trip, distance of the trip, and additional metadata.

Similar to [88,101], we bin the starting and ending latitudes and longitudes by dividing the

148

latitudes from 40.4◦ to 40.95◦ and longitudes from −73◦ to −75◦ into equally spaced grids of

step size 0.005. This enables us to define each driver and request type based on its starting and

ending bins. We pick out the trips between 7pm and 8pm on January 31, 2013, which is a rush

hour with 10,814 drivers and 35,109 trips. We set driver patience ∆u to 3. Following [100], we

uniformly sample rider patience ∆v from {1, 2}.

Since the dataset does not include demographic information, for each vertex we randomly

sample the group membership [101]. Specifically, we randomly assign 70% of the riders and

drivers to be advantaged and the rest to be disadvantaged. The value of pe for e = (u, v) depends

on whether the vertices belong to the advantaged or disadvantaged group. Specifically, pe = 0.6

if both vertices are advantaged, pe = 0.3 if both are disadvantaged, and pe = 0.1 for other cases.

In addition to this, a key component of our work is the use of driver and rider specific

utilities. We follow the work of [102] to set the utilities. We adopt the Manhattan distance metric

rather than the Euclidean distance metric since the former is a better proxy for length of taxi trips

in New York City. We set the operator’s utility to the rider’s trip length wO
e = tripLength(v)—a

rough proxy for profit. In addition, the rider’s utility over an edge e = (u, v) is set to wV
e =

−dist(u, v) where dist(u, v) is the distance between the rider and the driver. The driver’s utility is

set to wU
e = tripLength(v)− dist(u, v). Whereas the trip length tripLength(v) is available in the

dataset, the distance between the rider and the driver dist(u, v) is not. We therefore simulate the

distance, by creating an equally spaced grid with step size 0.005 around the starting coordinates

of the trip. This results in 81 possible coordinates in the vicinity of the starting coordinates of

the trip. We then randomly choose one of these 81 coordinates to be the location of the driver

when the trip was requested. Then dist(u, v) is the distance between this coordinate to the start

coordinate of the trip. This is a valid approximation since the platform would not assign drivers

149

unreasonably far away to pickup a rider. Lastly, we scale the utilities by a constant to prevent

them from being negative.

We run TSGFKIID at the scale of |U | = 49, |V | = 172 for 100 trials. During each trial, we

randomly sample 49 drivers and 172 requests between 7 and 8pm, and run TSGFKIID 100 times

to measure the expected competitive ratios of this trial. We then averaged the competitive ratios

over all trials, and the results are reported in figure 3.1.

Performance of TSGFKIID with Varied Parameters: Figure 3.1 shows the performance of our

algorithm over the three objectives: operator’s profit, offline (driver) group fairness, and online

(rider) group fairness. It is clear that the algorithm behaves as expected with all objectives being

steadily above their theoretical lower bound. More importantly, we see that increasing the weight

for an objective leads to better performance for that objective. I.e., a higher weight for β leads

to better performance for the offline side fairness and similar observations follow in the case of

α for the operator’s objective and in the case of γ for the online-fairness. This also indicates the

limitation in previous work which only considered fairness for one-side since their algorithms

would not be able to improve the fairness for the other ignored side.

Furthermore, previous work (e.g., [99–101]) only considered the matching size when op-

timizing the fairness objective for the offline (drivers) or online (riders) side. This is in contrast

to our setting where we consider the matching quality. To see the effect of ignoring the matching

quality and only considering the size, we run the same experiments with wU
e = wV

e = 1,∀e ∈ E,

i.e. the quality is ignored. The results are shown shown in the graph labelled “Matching” in

figure 3.1, it is clear that ignoring the match quality leads to noticeably worse results.

150

Profit Driver
Fairness

Rider
Fairness

Greedy-O 0.431 0.549 0.503
TSGFKIID (α = 1) 0.595 0.398 0.384

Greedy-D 0.371 0.609 0.563
TSGFKIID (β = 1) 0.517 0.571 0.44

Greedy-R 0.316 0.504 0.513
TSGFKIID (γ = 1) 0.252 0.353 0.574

Table 3.1: Competitive ratios of TSGFKIID with Greedy heuristics on the NYC dataset at |U | =
49, |V | = 172. Higher competitive ratio indicates better performance.

Comparison to Heuristics: We also compare the performance of TSGFKIID against three other

heuristics. In particular, we consider Greedy-O which is a greedy algorithm that upon the arrival

of an online vertex (rider) v picks the edge e ∈ Ev with maximum value of pewO
e until it either

results in a match or the patience quota is reached. We also consider Greedy-R which is identical

to Greedy-O except that it greedily picks the edge with maximum value of pewV
e instead, therefore

maximizing the rider’s utility in a greedy fashion. Moreover, we consider Greedy-D which is a

greedy algorithm that upon the arrival of an online vertex v, first finds the group on the offline

side with the lowest average utility so far, then it greedily picks an offline vertex (driver) u ∈ Ev

from this group (if possible) which has the maximum utility until it either results in a match or

the patience limit is reached. We carried out 100 trials to compare the performance of TSGFKIID

with the greedy algorithms, where each trial contains 49 randomly sampled drivers and 172

requests and is repeated 100 times. The aggregated results are displayed in table below. We see

that TSGFKIID outperforms the heuristics with the exception of a small under-performance in

comparison to Greedy-D. However, using Greedy-D we cannot tune the weights (α, β, and γ) to

balance the objectives as we can in the case of TSGFKIID.

151

Chapter 4: Implications of Distance over Redistricting Maps: Central and Out-

lier Maps

In this chapter we consider redistricting which is a fundamental problem in any democ-

racy. Redistricting is the process of dividing an electorate into a collection of districts which

each elect a representative. In the United States, this process is used for both federal and state-

level representation, and we will use the U.S. House of Representatives as a running example

throughout this paper. Subject to both state and federal law, the division of states into congres-

sional districts is not arbitrary and must satisfy a collection of properties such as districts being

contiguous and of near-equal population. Despite these regulations, it is clear that redistricting

is vulnerable to strategic manipulation in the form of gerrymandering. The body in charge of re-

districting can easily create a map within the legal constraints that leads to election results which

favor a particular outcome (e.g., more representatives elected from one political party in the case

of partisan gerrymandering). In addition, the ability to draw gerrymandered districts has im-

proved greatly with the aid of computers since the historic salamander-shaped district approved

by Massachusetts Governor Elbridge Gerry in 1812. For example, assuming voting consistent

with the 2016 election, the state of North Carolina with 13 representatives can be redistricted to

elect either 3 Democrats and 10 republicans or 10 Democrats and 3 Republicans.

However, despite this obvious threat to functioning democracy, partisan gerrymandering

152

has often eluded regulation partly because it has been difficult to measure. In response, a recent

line of research introduced sampling techniques to randomly1 generate a large collection of re-

districting maps [32, 120, 121] and calculate statistics such as a histogram of the number of seats

won by each party using this collection. With these statistics, one can check if a proposed or

enacted map is an outlier with respect to the sample. For example, the 2012 redistricting map

of North Carolina produced 4 seats for the democratic party whereas 95% of the sampled maps

led to between 6 and 9 seats [33]. In fact, these techniques were used as a key argument in the

most recent U.S. Supreme Court case on gerrymandering [122] and have supported successful

efforts to change redistricting maps in state supreme court cases [34]. More importantly for the

present work, at least two states, Michigan and Wisconsin, will use such a sampling tool [32] in

the current redistricting process in response to the 2020 U.S. Census [123].

While great progress has been made in recent years on the problem of detecting/labeling

possible gerrymandering through the use of these sampling techniques which can quantify outlier

characteristics in a given map, the question of drawing a redistricting map in a way that is “fair”

and immune to strategic manipulation remains largely unclear. We survey some existing propos-

als to automate redistricting in more detail in Section 4.1, but none of them have been adopted

in practice thus far. The direction most commonly proposed by automated redistricting methods

is to cast redistricting as a constrained optimization problem [124–126], with objectives such as

compactness and a collection of common constraints (district contiguity, equal population, etc.).

However, formulating redistricting as an optimization problem poses an issue in the fact that there

are multiple desired properties, and it is not clear why one should be optimized for over others.

1These are not the truly uniform random samples from the immense and ill-defined space of all possible maps
that we ideally want, but they are generally treated as such in courts.

153

Indeed, since there is a collection of redistricting maps that can be considered valid or legal,

it seems quite reasonable to attempt to output the most “typical” map. Inspired by social choice

theory (in particular, the Kemeny rule [53, 127]), we propose a redistricting procedure in which

the most typical (central) map among a given collection is selected. More precisely, we introduce

a family of distance functions over redistricting maps and then select the map which minimizes

the sum of distances to the other maps. In this chapter we include the proofs when they require

arguments which are somewhat involved ([35] includes all of the proofs).

4.1 Related Work

Less than a decade ago, several early works ushered in the current era of Markov Chain

Monte Carlo (MCMC) sampling techniques for gerrymandering detection [33, 128, 129]. Fol-

lowup work has both refined these techniques and further analyzed their ability to approximate

the target distribution. Authors of these works have been involved in court cases in Pennsylva-

nia [120] and North Carolina [121] with sampling approaches being used to demonstrate that

existing maps were outliers as evidence of partisan gerrymandering. One of the most recent

works in this area introduces the ReCom tool [32] which was used by the Wisconsin People’s

Maps Commission and the Michigan Independent Citizens Redistricting Commission in the cur-

rent redistricting cycle following the 2020 U.S. census [123]. Overall, these techniques have

primarily been used to analyze and sometimes reject existing maps rather than draw new maps.

However, we may think of them as at least narrowing the search space of maps drawn by legisla-

tures. Along these lines, it has been shown that even the regulation of gerrymandering via outlier

detection is subject to strategic manipulation [130].

154

On the automated redistricting side, many map drawing algorithms have favored optimiza-

tion approaches and in particular, optimizing some notion of compactness while avoiding explicit

use of partisan information. Approaches emphasizing compactness include balanced power di-

agrams [124], a k-median-based objective [131], and minimizing the number of cut edges in a

planar graph [125]. Some works include partisan information for the sake of creating competi-

tive districts (districts with narrow margins between the two main parties). The PEAR tool [126]

balances nonpartisan criteria like compactness (defined by Polsby-Popper score [132]) with other

criteria such as competitiveness and uses an evolutionary algorithm with some similarity to the

random walks taken by MCMC sampling approaches. Other works go even further in the ex-

plicitly partisan direction. For example, [133] devises a game theoretic approach which aims to

provide a map that is fair to the two dominant parties. Finally, there are methods which prefer

simplicity such as the Splitline [134] algorithm which iteratively splits a state until the desired

number of districts is reached.

In all of these approaches the aim is to automate redistricting, but it is difficult to determine

whether the choices made are the “right” or “fairest” decisions. The question of whether optimiz-

ing properties such as compactness while ignoring partisan factors could result in partisan bias

has been a concern for some time. [135] notes a comment by Justice Scalia suggesting that such

a process could be biased against Democratic voters clustered in cities in Vieth v. Jubelirer [136].

For those that do take partisan bias into account, there are questions of whether purposely drawing

competitive districts or giving a fair allocation to two parties are really beneficial to voters.

Finally, like [137] we are introducing a distance measure over redistricting maps. However,

our distance is easy to compute and does not require solving a linear program. Further, our focus

is on the implications of having a distance measure, i.e. the medoid and centroid maps that will be

155

introduced. Moreover, unlike [137] we can detect gerrymandered maps rigorously by specifying

where they lie on a distance histogram without using an embedding method and using at least

50, 000 samples instead of only 100.

4.2 Problem Setup

A given state is modelled by a graph G = (V,E) where each vertex v ∈ V represents

a voting block (unit). Each unit v has a weight w(v) > 0 which represents its population.

Further, ∀u, v ∈ V there is an edge e = (u, v) ∈ E if and only if the two vertices are connected

(geographically this means that units u and v share a boundary). The number of units is |V | =

n. A redistricting (redistricting map or simply map) M is a partition of V into k > 0 many

districts, i.e., V = V1 ∪ V2 · · · ∪ Vk where each Vi represents a district and ∀i ∈ [k], |Vi| ≠ 0 and

∀i, j ∈ [k], Vi ∩ Vj = ∅ if i ̸= j. The redistricting map M is decided by the induced partition,

i.e., M = {V1, . . . , Vk}. For a redistricting M to be considered valid, it must satisfy a collection

of properties, some of which are specific to the given state. We use the most common properties

as stated in [32, 125]: (1) Compactness: The given partitioning should have “compact” districts.

Although there is no definitive mathematical criterion which decides compactness for districts,

some have used common definitions such as Polsby-Popper or Reock Score [138]. Others have

used a clustering criterion like the k-median objective [124] or considered the total number of cuts

(number of edges between vertices in different districts) [32]. (2) Equal Population: To satisfy the

desideratum of “one person one vote” each district should have approximately the same number

of individuals. I.e., a given district Vi should satisfy
∑

v∈Vi
w(v) ∈ [(1 − ϵ)

∑
v∈V w(v)

k
, (1 +

ϵ)
∑

v∈V w(v)

k
] where ϵ is a non-negative parameter relaxing the equal population constraint. (3)

156

Contiguity: Each district (partition) Vi should be a connected component, i.e., ∀i ∈ [k] and

∀u, v ∈ Vi, v should be reachable from u through vertices which only belong to Vi.

Our proofs do not rely on these properties and therefore can likely even accommodate

further desired properties.

Let M be the set of all valid maps. Let D(M) be a distribution over these maps. Fur-

thermore, define a distance function over the maps d :M×M → [0,∞). Then the population

medoid map is M∗ which is a solution to the following:

M∗ = argmin
M∈M

E
M ′∼D(M)

[d(M,M ′)] (4.1)

In words, the population medoid map is a valid map minimizing the expected sum of distances

away from all valid maps according to the distribution D(M). This serves as a natural way to

define a central or most typical map with respect to a given distance metric of interest.

Since we clearly operate over a sample (a finite collection) from D(M); therefore, we

assume that the following condition holds:

Condition 4.2.1. We can sample maps from the distribution D(M) in an independent and iden-

tically distributed (iid) manner in polynomial time.

We note that although independence certainly does not hold over the sampling methods

of [32, 33] since they use MCMC methods, it makes the derivations significantly more tractable.

Further, the specific choice of the sampling technique is somewhat immaterial to our objective.

Based on the above condition, we can sample from the distributionM efficiently and obtain

a finite set of mapsMT having T many maps, i.e., |MT | = T .

Now, we define the sample medoid, which is simply the extension of the population medoid,

157

but restricted to the given sample. This leads to the following definition:

M̄∗ = argmin
M∈MT

∑
M ′∈MT

d(M,M ′) (4.2)

4.2.1 Distance over Redistricting Maps

Before we introduce a distance over maps, we note that a given map (partition) M can be

represented using an “adjacency” matrix A in which A(i, j) = 1 if and only if ∃Vℓ ∈M : i, j ∈ Vℓ

otherwise A(i, j) = 0. We note that this adjacency matrix can be seen as drawing an edge

between every two vertices i, j that are in the same district, i.e., where A(i, j) = 1. It is clear that

we can refer to a map by the partition M or the induced adjacency matrix A. Accordingly, we

refer to the population medoid as M∗ or A* and the sample medoid as M̄∗ or Ā*

We now introduce our distance family which is parametrized by a weight matrix Θ and

have the following form:

dΘ(A1, A2) =
1

2

∑
i,j∈V

θ(i, j)|A1(i, j)− A2(i, j)| (4.3)

where we only require that θ(i, j) > 0,∀i, j ∈ V where θ(i, j) is the (i, j) entry of Θ. For the

simple case where θ(i, j) = 1,∀i, j ∈ V , our distance d1(A1, A2) is equivalent to a Hamming

distance over adjacency matrices. When θ(i, j) = 1,∀i, j ∈ V , we refer to the metric as the

unweighted distance. We note that such a distance measure was used in previous work that

considered adversarial attacks on clustering [139, 140].

Another choice of Θ that leads to a meaningful metric is the population-weighted distance

158

where θ(i, j) = w(i)w(j). This leads to dW (A1, A2) =
1
2

∑
i,j∈V w(i)w(j)|A1(i, j) − A2(i, j)|.

The population-weighted distance takes into account the number of individuals being separated

from one another when vertices i and j are separated from one another2 by assigning a cost of

w(i)w(j). By contrast, the unweighted distance assigns the same cost regardless of the population

values and thus has a uniform weight over the separation of units immaterial of the populations

which they include.

Another choice of metric which is meaningful, could be of the form θ(i, j) = f(l(i, j))

where l(i, j) is the length of a shortest path between i and j and f(.) is a positive decreasing

function such as f(l(i, j)) = e−l(i,j). Such a metric would place a smaller penalty for separating

vertices that are far away from each other.

In general, our distance has an edit distance interpretation. Specifically, if we were to draw

edges between vertices according to the entries with 1 in the adjacency matrix, then given A1

and A2, the distance dΘ(A1, A2) simply equals the minimum total weight (according to θ(i, j))

of the edges that must be added and deleted to obtain A2 from A1. In the case of the unweighted

distance, it is precisely equal to the minimum number of edges that have to be deleted from and

added to A1 to obtain A2. See Figure 4.1 for an illustration.

4.3 Justification for Choosing a Central Map

Connection to the Kemeny Rule: We note that the Kemeny rule [53, 127] is the main inspira-

tion behind our proposed framework. More specifically, if we have a set of alternatives and each

individual votes by ranking the alternatives, then the Kemeny rule gives a method for aggregating

2Recall that each vertex (unit) is a voting block (AKA voter tabulation district) and units may contain different
numbers of voters.

159

Figure 4.1: We are given a hypothetical state consisting of 4 vertices V = {v1, v2, v3, v4} with
M1 and M2 being two valid redistricting maps. The adjacency matrices A1,A2, and edit distance
interpretation of dΘ(A1, A2) are demonstrated. Note that dΘ(A1, A2) = θ(1, 2) + θ(3, 4) +
θ(1, 3) + θ(2, 4) which is exactly the minimum sum of edge weights that need to be deleted
and added to obtain A2 from A1.

the resulting collection of rankings. This is done by introducing a distance measure over rank-

ings (the Kendall tau distance [141]) and then choosing the ranking which minimizes the sum of

distances away from the other rankings in the collection as the aggregate ranking.

Although we do not deal with rankings here, we follow a similar approach to the Kemeny

rule as we introduce a distance measure over redistricting maps and choose the map which mini-

mizes the sum of the distances as the aggregate map. In fact, recently there has been significant

citizen engagement in drawing redistricting maps. For example, in the state of Maryland an

160

executive order from the governor has established a web page to collect citizen submissions of

redistricting maps [142]. If each member of a committee was to vote for exactly one map in

the given submitted maps, then if we interpret the probability pM ′ for a map M ′ ∈ M to be the

number of votes it received from the total set of votes, then the medoid map M∗ (similar to the

Kemeny ranking) would be the map which minimizes the weighted sum of distances from the set

of maps voted on. We include this result as a proposition and its proof follows directly from the

definition we gave above:

Proposition 4.3.1. Suppose we have a committee of T many voters and that each voter votes

for one map from a subset of all possible valid maps M, then given a map M ′, if we assign

it a probability pM ′ =
∑T

τ=1 vτ,M′

T where vτ,M ′ ∈ {0, 1} is the vote of member τ for map M ′,

then the medoid map M∗ = argmin
M∈M

E
M ′∼pM′

[d(M,M ′)] is the map that minimizes the sum of

distances from the set of valid maps where the distance to each map is weighted by the total votes

it receives.

Connection to Distance and Clustering Based Outlier Detection: The medoid map by virtue

of minimizing the sum of distances can be considered a central map. Accordingly, one may

consider using the medoid map to test for gerrymandering in a manner similar to distance and

clustering based outlier detection [143, 144]. More specifically, given a large ensemble of maps,

if the enacted map is faraway from the medoid3 in comparison to the ensemble then this suggests

possible gerrymandering. In fact, we carry experiments on the states of North Carolina and

Pennsylvania (both of which have had enacted maps which were considered gerrymandered) and

we indeed find the gerrymandered maps to be faraway whereas the remedial maps are much

3In our experiments, we actually use the centroid instead of the medoid map.

161

closer in terms of distance.

4.4 Algorithms and Theoretical Guarantees

We show our linear time algorithm for obtaining the sample medoid in subsection 4.4.1.

In 4.4.2 we define the population centroid, derive sample complexity guarantees for obtaining

it, and show that its (i, j) entry equals the probability of having i and j in the same district.

Finally, in 4.4.3 we discuss obtaining the population medoid. Specifically, we show that even for

a simple one dimensional distribution an arbitrarily large sample is not sufficient for obtaining

the population medoid.

First, before we introduce our algorithms we show that our distance family is indeed a

metric, i.e. satisfies the properties of a metric:

Proposition 4.4.1. For all Θ such that ∀i, j, θ(i, j) > 0, the following distance function is a

metric.

dΘ(A1, A2) =
1

2

∑
i,j∈V

θ(i, j)|A1(i, j)− A2(i, j)|

4.4.1 Obtaining the Sample Medoid

We note that in general obtaining the sample medoid is not scalable since it usually takes

quadratic time [145] in the number of samples, i.e. Ω(T 2). An O(T 2) run time can be easily

obtained through a brute-force algorithm which for every map calculates the sum of the distances

from other maps and then selects the map with the minimum sum. However, for our family of

distances dΘ(., .) we show that the medoid map is the closest map to the centroid map and show

a simple algorithm that runs in O(T) time for obtaining the sample medoid. The fundamental

162

cause behind this speed up is an equivalence between the Hamming distance over binary vectors

and the square of the Euclidean distance which is still maintained with our generalized distance.

Before introducing the theorem we define d2,Θ(A1, A2) =
1
2

∑
i,j∈V θ(i, j)(A1(i, j) − A2(i, j))

2

where the absolute has been replaced by a square. Now we state the decomposition theorem:

Theorem 4.4.2. Given a collection of redistricting maps A1, . . . , AT , the sum of distances of the

maps from a fixed redistricting map A′ equals the following:

T∑
t=1

dΘ(At, A
′) =

T∑
t=1

d2,Θ(At, Āc) + T d2,Θ(Āc, A
′) (4.4)

where Āc =
1
T

∑
t=1At.

Proof. We begin with the following lemma:

Lemma 4.4.3. For any A1, A2 that are binary matrices (entries either 0 or 1), with d2,Θ(A1, A2) =

1
2

∑
i,j∈V θ(i, j)(A1(i, j)− A2(i, j))

2, then we have that dΘ(A1, A2) = d2,Θ(A1, A2).

Proof. The proof is immediate since A1 and A2 are binary.

It may seem redundant to introduce a new definition d2,Θ(., .) since by Lemma 4.4.3, they

are equivalent. However, we will shortly be using d2,Θ(., .) over matrices which are not necessar-

ily binary, clearly then we might have dΘ(A1, A2) ̸= d2,Θ(A1, A2).

We then introduce next lemma:

Lemma 4.4.4. For any two matrices (not necessarily binary), the following holds:

d2,Θ(A1, A2) =
1

2

∥∥AΘ
1 − AΘ

2

∥∥2
2

(4.5)

163

where AΘ
s (i, j) =

√
θ(i, j)As(i, j),∀s ∈ {1, 2} and

∥∥AΘ
1 − AΘ

2

∥∥2
2

is the square of the ℓ2-norm of

the vectorized form of the matrix (AΘ
1 − AΘ

2).

Proof.

d2,Θ(A1, A2) =
1

2

∑
i,j∈V

θ(i, j)(A1(i, j)− A2(i, j))
2

=
1

2

∑
i,j∈V

(
√

θ(i, j)A1(i, j)−
√

θ(i, j)A2(i, j))
2

=
1

2

∥∥AΘ
1 − AΘ

2

∥∥2
2

With the lemmas above, we can now prove the decomposition theorem:

T∑
t=1

dΘ(At, A
′) =

T∑
t=1

d2,Θ(At, A
′) (using Lemma 4.4.3)

=
T∑
t=1

1

2

∥∥∥AΘ
t − A′Θ

∥∥∥2
2

(using Lemma 4.4.4)

=
1

2

T∑
t=1

∥∥∥AΘ
t − ĀΘ

c + ĀΘ
c −A′Θ

∥∥∥2
2

=
1

2

T∑
t=1

[
(AΘ

t − ĀΘ
c + ĀΘ

c −A′Θ)⊺(AΘ
t − ĀΘ

c + ĀΘ
c −A′Θ)

]
=

T∑
t=1

1

2

[∥∥AΘ
t − ĀΘ

c

∥∥2
2
+
∥∥∥ĀΘ

c −A′Θ
∥∥∥2
2

]
+

(
T∑
t=1

(AΘ
t − ĀΘ

c)

)⊺

(ĀΘ
c −A′Θ)

=
T∑
t=1

1

2

∥∥AΘ
t − ĀΘ

c

∥∥2
2
+

T

2

∥∥∥ĀΘ
c −A′Θ

∥∥∥2
2
+ (T ĀΘ

c −T ĀΘ
c)

⊺(ĀΘ
c −A′Θ)

=
T∑
t=1

d2,Θ(At, Āc) + T d2,Θ(Āc, A
′)

Note that in the fourth line we take the dot product with the matrices being in vectorized form

164

Algorithm 15 Finding the Sample Medoid
Input:MT = {A1, . . . , AT}, Θ = {θ(i, j) > 0,∀i, j ∈ V }.
1: Calculate the centroid map Āc =

1
T

∑T
t=1 At.

2: Pick the map Ā∗ ∈ MT which minimizes the d2,Θ distance from the centroid Āc, i.e.
Ā∗ = argminA∈MT

d2,Θ(A, Āc).
return Ā∗

and that ĀΘ
c = 1

T

∑T
t=1 A

Θ
t . Note that it follows that ĀΘ

c (i, j) =
√
θ(i, j) Āc(i, j).

Notice that the above theorem introduces the centroid map Āc which is simply equal to

the empirical mean of the adjacency maps. It should be clear that with the exception of trivial

cases the centroid map Āc is not a valid adjacency matrix, since despite being symmetric it would

have fractional entries between 0 and 1. Hence, the centroid map also does not lead to a valid

partition or districting. Moreover, we note that it is more accurate to call Āc the sample centroid,

as opposed to the population centroid Ac (see subsection 4.4.2) which we would obtain with an

infinite number of samples.

The above theorem leads to Algorithm 15 with the following remark:

Remark 4.4.5. Algorithm 1 returns the correct sample medoid and runs in O(T) time.

We note that calculating the sample medoid in algorithm 1 has no dependence on the gen-

erating method. Therefore, if a set of maps are produced through any mechanism and are con-

sidered to be representative and sufficiently diverse, then algorithm 1 can be used to obtain the

sample medoid in time that is linear in the number of samples.

4.4.2 Sample Complexity for Obtaining the Population Centroid

In the previous section we introduced the sample centroid Āc which is simply equal to the

empirical mean that we get by taking the average of the adjacency matrices, i.e. Āc =
1
T

∑T
t=1 At.

165

We now consider the population centroid Ac = limT→∞
∑T

t=1 At. Clearly, by the law of large

numbers [146], we have Ac(i, j) = E[A(i, j)] . It is also clear that Ac has an interesting property,

specifically the (i, j)-entry equals the probability that i and j are in the same district:

Proposition 4.4.6. Ac(i, j) = Pr[i and j in the same district].

Now we show that with a sufficient number of samples, the sample centroid converges

to the population centroid entry-wise and in terms of the d2,Θ value. Specifically, we have the

following proposition:

Proposition 4.4.7. If we sample T ≥ 1
ϵ2
ln n

δ
iid samples, then with probability at least 1− δ, we

have that ∀i, j ∈ V : | Āc(i, j) − Ac(i, j)| ≤ ϵ. Further, let κ = maxi,j∈V
√

θ(i, j), if we have

T ≥ κn2

ϵ
ln n

δ
iid samples, then d2,Θ(Āc, Ac) ≤ ϵ with probability at least 1− δ.

Proof. For a given i, j ∈ V by the Hoeffding bound we have that:

Pr[| Āc(i, j)− Ac(i, j)| ≤ ϵ] ≥ 1− 2e−2ϵ2T

≥ 1− 2e−2ϵ2 1
ϵ2

ln n
δ ≥ 1− 2(e2 ln

n
δ)−1 ≥ 1− 2

δ2

n2

Now we calculate the following event:

Pr({∀i, j ∈ V : | Āc(i, j)− Ac(i, j)| ≤ ϵ})

= 1− Pr({∃i, j ∈ V : | Āc(i, j)− Ac(i, j)| > ϵ})

≥ 1−
∑
i,j∈V

2
δ2

n2
≥ 1− 2δ2

(n
2−n
2

)

n2
≥ 1− δ2 ≥ 1− δ (since δ ∈ (0, 1))

Now we prove the second part. By applying the previous result with ϵ set to
√
ϵ√
ρn

, we get that with

166

probability at least 1− δ, | Āc(i, j)− Ac(i, j)| ≤
√
ϵ√

ρn2 . It follows that:

d2,Θ(Āc, Ac) =
1

2

∑
i,j∈V

θ(i, j)(Āc(i, j)− Ac(i, j))
2

≤ 1

2

∑
i,j∈V

θ(i, j)
(√ϵ
√
ρn

)2
≤ 1

2

∑
i,j∈V

ϵ

n2

≤ 1

2

ϵ

n2

n2 − n

2
≤ ϵ

4.4.3 Obtaining the Population Medoid

Having found the sample centroid Āc and shown that it is a good estimate of the population

centroid Ac, we now show that we can obtain a good estimate of the population medoid by solving

an optimization problem. Specifically, assuming that we have the population centroid Ac, then

the population medoid is simply a valid redistricting map A which has a minimum d2,Θ(A,Ac)

value. This follows immediately from Theorem 4.4.2. More interestingly, we show in fact that

this optimization problem is a constrained instance of the min k-cut problem:

Theorem 4.4.8. Given the population centroid Ac, the population medoid A* can be obtained by

solving a constrained min k-cut problem.

Proof. From Theorem 4.4.2, the population medoid is a valid redistricting map A for which

d2,Θ(A,Ac) is minimized. Note that since A is a redistricting map, unlike Ac it must be a binary

matrix. Therefore, |A(i, j) − Ac(i, j)| = (1 − Ac(i, j)) + (2Ac(i, j) − 1)(1 − A(i, j)), where

this identity can be verified by plugging 0 or 1 for A(i, j) and seeing that it leads to an equality.

Define the matrix B as a “complement” of A. Specifically, B(i, j) = 1− A(i, j). It follows that

167

B(i, j) = 1 if and only if i and j are in different partitions and B(i, j) = 0 otherwise. Clearly, B

is a binary matrix. We can obtain the following:

d2,Θ(A,Ac) =
1

2

∑
i,j∈V

θ(i, j)(A(i, j)− Ac(i, j))
2

=
1

2

∑
i,j∈V

θ(i, j)
(
(1− Ac(i, j)) + (2Ac(i, j)− 1)(1− A(i, j))

)2
=

1

2

∑
i,j∈V

θ(i, j)
(
(1− Ac(i, j)) + (2Ac(i, j)− 1)B(i, j)

)2
=

1

2

∑
i,j∈V

θ(i, j)
(
(1− Ac(i, j))

2 + 2(1− Ac(i, j))(2Ac(i, j)− 1)B(i, j) + (2Ac(i, j)− 1)2B2(i, j)
)

=
1

2

∑
i,j∈V

θ(i, j)
(
(1− Ac(i, j))

2 + 2(1− Ac(i, j))(2Ac(i, j)− 1)B(i, j) + (2Ac(i, j)− 1)2B(i, j)
)

=
[1
2

∑
i,j∈V

θ(i, j)(Ac
2(i, j)− 2Ac(i, j) + 1)

]
−
[1
2

∑
i,j∈V

θ(i, j)
(
1− 2Ac(i, j)

)
B(i, j)

]

Note that the first sum in the last equality is a constant and has no dependence on B. Hence

to minimize d2,Θ(A,Ac), we maximize the following:

max
B

∑
i,j∈V

s(i, j)B(i, j) (4.6)

s.t. B is a k partition that leads to a valid redistricting map (4.7)

where the weight s(i, j) is equal to s(i, j) = 1
2
θ(i, j)

(
1−2Ac(i, j)

)
. Clearly, this is a constrained

max k-cut instance where the partition has to be a valid redistricting map.

If we have a good estimate Āc of the population centroid Ac, then we can solve the above

optimization using Āc instead of Ac and obtain an estimate of the population medoid Ā* instead

168

of the true population medoid A* and bound the error of that estimate. The issue is that the min

k-cut problem is NP-hard [147, 148] 4. Further, the existing approximation algorithms assume

non-negativity of the weights. Even if these approximation algorithms can be tailored to this

setting, the additional constraints on the partition being a valid redistricting (each partition being

contiguous, of equal population, and compact) make it quite difficult to approximate the objec-

tive. In fact, excluding the objective and focusing on the constraint alone, only the work of [125]

has produced approximation algorithm for redistricting maps but has done that for the restricted

case of grid graphs. Further, while there exists heuristics for solving min k-cut for redistricting

maps they only scale to at most around 500 vertices [149].

Having shown the difficulty in obtaining the population medoid by solving an optimization

problem, it is reasonable to wonder whether we can gain any guarantees about the population

medoid by sampling. We show a negative result. Specifically, the theorem below shows that we

cannot guarantee that we can estimate the sample medoid of a distribution with high probability

by choosing a sampled map even if we sample an arbitrarily large number of maps. This implies

as a corollary that the sample medoid does not converge to the population medoid in contrast to

the centroid (see Proposition 4.4.7).

Theorem 4.4.9. For any arbitrary T many iid samples {A1, . . . , AT} there exists a distribution

over a set of redistricting maps such that: (1) Pr[minA∈{A1,...,AT } d(A,A
∗) ≥ 0.331] ≥ 2

3
and (2)

Pr[minA∈{A1,...,AT } f(A) ≥ 1.1f(A∗)] ≥ 2
3

where f(.) is the medoid cost function.

Proof. Consider the hypothetical state shown in Figure 4.2 where vertices v1 and v4 are further

4Note that in the case of the min k-cut problem of Eq (4.6) the edge weights s(i, j) = 1
2θ(i, j)

(
1 − 2Ac(i, j)

)
can be negative while the min k-cut problem is generally stated with non-negative weights. Nevertheless, Eq (4.6)
still minimizes a cut objective and the non-negative weight min k-cut instance is trivially reducible to a min k-cut
instance with negative and non-negative weights.

169

Figure 4.2: The graph shows a hypothetical state. Blue edges indicate that the vertices are adja-
cent geographically. All vertices have a weight (population) of 1, except for states {a1, b1, a4, b4}
which have a weight of 1

2
.

subdividing into two vertices each. We wish to divide the state into 2 districts (k = 2). Since

each vertex has a weight of 1, except vertices {a1, b1, a4, b4} which each have a weight of 1
2
, then

each district should have a population of 2 to enforce the equal population rule with a tolerance

less than 0.25.

Denoting the set of all vertices by V and letting V ′ = {a1, b1, a4, b4}, then the weight

parameters of our weighted distance measure are defined as follows:

θ(i, j) =

ϵ if i & j ∈ V ′

1
2

if i ∈ V − V ′, j ∈ V ′ or i ∈ V ′, j ∈ V − V ′

1 otherwise

Where 0 < ϵ ≤ 1. Now, consider the maps M1,M2,M3, and M4 shown in Figure 4.3.

Based on the definition of the weighted distance measure, it is not difficult to see that given maps

170

Figure 4.3: Maps M1,M2,M3, and M4. Vertices in the same district are connected with edges.

Ms and Mt, then dΘ(Ms,Mt) can be computed visually by drawing the adjacent graphs of Ms

and Mt and then finding the minimum number of edges that have to be deleted and added to

Ms to produce Mt and adding the weighted θ(i.j) of these edges. By following this procedure,

we can show that dΘ(M1,M3) = 6 + 4ϵ for example as shown in Figure 4.4. Here we list all

distances:

dΘ(M1,M2) = 4

dΘ(M1,M4) = dΘ(M2,M4) = 2 + 4ϵ

dΘ(M1,M3) = dΘ(M2,M4) = (2 + 4ϵ) + 4 = 6 + 4ϵ

dΘ(M3,M4) = 4

Given a map M , the medoid cost function is defined as f(M) =
∑

M ′∈M pM ′d(M,M ′). Let the

probabilities for the redistricting maps be assigned as follows: p1 = p2 = p3 = 1−δ
3

whereas

Pr[Sampling a Map M /∈ {M1,M2,M3}] = δ > 0. Accordingly, p5 ≤ δ.

Further, since θ(i, j) ≤ 1 ,∀i, j ∈ V , then maximum distance between any redistricting

171

maps D can be upper bounded by the highest number of edges that can be deleted and added

from one map to produce another, therefore D ≤ 2
(|V |

2

)
= |V |(|V | − 1) = 10 × 9 = 90 since

|V | = 10 (see Figure 4.2). The medoid cost function can be lower bounded for M1,M2, and M3

and upper bounded for M4 as shown below:

f(M1) >
1− δ

3
[d(M1,M2) + d(M1,M3)] =

1− δ

3
(10 + 4ϵ)

f(M2) >
1− δ

3
[d(M1,M2) + d(M2,M3)] =

1− δ

3
(10 + 4ϵ)

f(M3) >
1− δ

3
[d(M1,M3) + d(M2,M3)] =

1− δ

3
(12 + 8ϵ)

f(M4) <
1− δ

3
[d(M1,M4) + d(M2,M4) + d(M3,M4)] + δD =

1− δ

3
(8 + 8ϵ) + 90δ ≤ 1− δ

3
(9 + 8ϵ)

Where the last inequality was obtained by setting δ < 1
271

since it follows that 90δ < 1−δ
3

. From

the above bounds it follows that the population medoid cannot cannot be M1,M2, or M3.

Set ϵ = 1
1000

and δ ≤ 1
1000

< 1
271

and with 1 − (p1 + p2 + p3) = δ, then 1−δ
3
(1 −

4ϵ) > 0.331 and (10+4ϵ)
(9+8ϵ)

> 1.11. With the population medoid denoted by M∗, then we have:

min
i∈{1,2,3}

f(Mi)
f(M∗)

≥ min
i∈{1,2,3}

f(Mi)
f(M4)

≥
1−δ
3

(10+4ϵ)
1−δ
3

(9+8ϵ)
> 1.11. Further, it follows by the triangle inequality

that ∀i ∈ {1, 2, 3} : f(Mi) ≤ f(M∗) + d(Mi,M
∗), thus d(Mi,M

∗) ≥ 1−δ
3
(1 − 4ϵ), since

otherwise f(M∗)+d(Mi,M
∗) ≤ f(M4)+d(Mi,M

∗) < 1−δ
3
(9+8ϵ)+ 1−δ

3
(1−4ϵ) = 1−δ

3
(10+4ϵ)

which would be a contradiction.

From the above we have shown that, ∀i ∈ {1, 2, 3} : d(Mi,M
∗) ≥ 1−δ

3
(1 − 4ϵ) > 0.331

and min
i∈{1,2,3}

f(Mi)
f(M∗)

≥ 1.11, therefore to prove parts (1) and (2) of the theorem it is sufficient to

upper bound the probability of sampling a map that is not in {M1,M2,M3} in T iid samples by

172

1
3
. This leads to the following:

Pr[Obtaining a map M /∈ {M1,M2,M3} in a given T iid samples]

= 1− Pr[No map M ∈ {M1,M2,M3} in the given T iid samples]

= 1− (1− δ)T ≤ 1

3

Therefore, from the above we should have δ = min{ 1
1000

, 1 − T

√
2
3
} to satisfy both parts of the

theorem.

Figure 4.4: The first map is M1 and the last is M3. The middle map shows the edges the should
be deleted from M1 (marked with X) and the edges should be added to M1 (dashed green edges)
to produce M3. The weight of each edge that is deleted or added is shown next to it in blue. By
adding the weights we get that dΘ(M1,M3) = 6 + 4ϵ.

We therefore, use a heuristic to find the medoid as mentioned in section 2.5.6.

Remark: In Theorem 4.4.9 the probability of “failure” is set to 2
3

but this is arbitrary as we

can make it arbitrarily large by choosing smaller values of δ. But our objective was simply to

show that no sampled map would converge to the population medoid or would have a medoid

173

cost function value that converges to the value of medoid cost function of the population medoid.

Further, the theorem would hold if the population medoid is sampled with probability zero, but

in our proofs we allowed the population medoid to be sampled with non-zero probability to show

that the negative result would still hold even if we were to assume that the population medoid is

sampled with non-zero probability.

4.5 Experiments

Figure 4.5: Distance histograms for NC using the unweighted distance measure. Different plots
correspond to different seeds. For NC the distances of gerrymandered maps are indicated with
red markers whereas the distances of the remedial maps are indicated with green markers (the ◦
and the X are for 2011 and 2016 enacted maps, respectively).

Figure 4.6: Distance histograms for PA, the distances of gerrymandered maps are indicated with
red markers whereas the distances of the remedial maps are indicated with green markers.

We conduct our experiments over 3 states. Specifically, North Carolina (NC), Maryland

(MD), and Pennsylvania’s (PA). The number of voting units (vertices) and districts are around

174

2,700, 1, 800, and 8,900 for NC, MD, and PA, respectively. Further, the number of districts are

13, 8, and 18 for NC, MD, and PA, respectively5. Accordingly, PA is the largest state whereas

MD is the smallest. He focus on the results for NC here (see [35] for the details of the PA and

MD results). We note that qualitatively all 3 states behave similarly. To generate a collection of

maps, we use the Recombination algorithm ReCom from [32] whose implementation is available

online. We note that ReCom is a Markov Chain Monte Carlo (MCMC) sampling method and

hence the generated samples are not actually iid. While this means that Condition (4.2.1) does

not hold, we believe that our theorems still have utility and that future work can address more

realistic sampling conditions. Moreover, we always exclude the first 2,000 from any calculation

as these are considered to be “burn-in” samples6. Throughout this section when we say distance

we mean d2,Θ(., .) instead of dΘ(., .). Full experimental details are shown in [35].

Convergence of the Centroid: We note that previous work such as [32, 150] had used the

ReCom algorithm for estimating statistics such as the histogram of election seats won by a party

and has noted that using 50,000 samples is sufficient for accurate results. However, our setting

is more challenging. Specifically, the centroid includes Ω(n) entries where n is the total number

of voting units (vertices) whereas the election histogram includes only k entries where k is the

number of districts and usually orders of magnitude smaller than the number of voting units. We

sample 200,0007 maps instead to estimate the centroid. Here we emphasize the importance of

our linear-time algorithm since using a quadratic-time algorithm on samples of the order of even

5Note that for PA the number of districts has been reduced by one to 17 districts after the 2020 census. However,
since we use past election results we have 18 districts.

6In MCMC, the chain is supposed to converge to a stationary distribution after some number of steps. These num-
ber of steps are called the mixing time. Although for ReCom the mixing time has not been theoretically calculated,
empirically it seems that 2,000 steps are sufficient.

7A smaller number is used for PA and MD but we find that it is empirically sufficient.

175

50,000 could be computationally forbidding. Following similar practice to [121] for verifying

convergence, we repeat the procedure (sampling using ReCom and estimating the centroid) for a

total of three times for each state where we start from a different seed map each time and verify

that all three runs result in essentially the same centroid estimate.

To verify the closeness of the different centroid estimates, we calculate the distances be-

tween them and compare them to their distances from sampled redistricting maps using ReCom.

We find that the centroids are orders of magnitude closer to each other than to any other sam-

pled map. For example, the maximum unweighted distance between any two centroids is less

than 130 whereas the minimum unweighted distance between any of the three centroids and any

sampled map is more than 100, 000 which is three orders of magnitude higher. Similarly, the

maximum weighted distance between any two centroids is less than 1.6× 109 whereas the mimi-

mum weighted distance between a sampled amp and centroid is at least 1.3× 1012 which is again

three orders of magnitude higher.

Distance Histogram and Detecting Gerrymandered Maps: For each state we plot the dis-

tance histogram from its centroid. More specifically, having estimated the centroid Āc, we sample

200,000 maps and calculate d2,Θ(Āc, At) where At is the tth sampled map. Figures 4.5 and 4.6

shows the unweighted distance histogram for NC and PA, respectively. The histogram appears

like a normal distribution peaking at the middle (around the mean) and falling almost symmet-

rically away from the middle. This also indicates that while the centroid minimizes the sum of

d2,Θ(Āc, At) distances, the maps do not actually concentrate around it as otherwise the histogram

would have had a peak in the beginning at small distance values. Interestingly, the histogram

has a similar shape for both distances (unweighted and weighted). Further, this shape of the

176

histogram remains unchanged accross the different seeds.

Furthermore, previous work has used similar sampling methods to detect gerrymandered

maps [33, 120, 121]. In essence these paper demonstrate that the election outcome achieved by

the enacted map is rare to happen in comparison to the large sampled ensemble of redistricting

maps. Using similar logic, we find that we can also detect gerrymandered maps. Specifically,

the 2011 and 2016 enacted maps of NC were widely considered to be gerrymandered and we

find both maps to be at the right tail of the histogram and very faraway from the centroid. In

contrast, to a remedial NC map that was drawn by a set of retired judges [121] which is much

closer to the centroid (see Figure 4.5 red and green marked points). Similarly for PA we find

that the gerrymandered map of 2011 which was struck down by the supreme court [34] is also at

the tail of the histogram whereas the remedial map has a much reasonable distance value. Quite

interestingly, all gerrymandered maps are in the 99th percentile in terms of distance (for both

distance measures and across 3 seeds).

This suggests that we indeed have a method for detecting gerrymandered maps which in

comparison to previous methods has the advantage of not needing election results (only a rea-

sonable distance measure) and is very interpretable. Further, it is reasonable to consider this as

setting a new rule when drawing redistricting maps or at least a guideline: the drawn map should

not be very far away from the centroid.

Finding the medoid: We discuss the results for the unweighted distance. Since we have shown

in subsection 4.4.3 that the medoid cannot be obtained by sampling, we follow a heuristic that

consists of these steps: (1) Sample 200,000 maps and pick the one closest to the centroid Aclosest.

(2) Start the ReCom chain from Aclosest but given a specific state (redistricting map) we only

177

Figure 4.7: NC medoids, each column is for a specific seed. Top row: Aclosest, Bottom row: Â∗.

allow transitions to new states (maps) that are closer to the centroid and we do this for a total of

200,000 steps to obtain the final estimated medoid Â∗8. We follow this procedure three times one

for each centroid 9. Figure 4.7 (top row) shows the Aclosest medoids from two different runs (each

comparing to a different centroid). It is not difficult to see that they are different. The bottom

row shows the final medoids after we run the chain from Aclosest to obtain Â∗. We see that the

final medoids are indeed very similar and in fact when we measure the distances between them

we find them to be very close.

8Similair to the centroid estimation, we also use a smaller number of sample for for PA and MD but we find that
we get similiar results empirically.

9As mentioned before we get three centroids each from sampling a chain that starts with a different seed.

178

Chapter 5: Remarks and Future Work

In this chapter we give some remarks and possible opportunities for future work. We will

focus on fair clustering in section 5.1 and on redistricting and gerrymandering in section 5.2.

5.1 Fair Clustering

Fair clustering has received significant attention and as stated in section 2.5 we can count

at least seven different fairness notions. However, it is worthwhile to wonder if the introduction

of so many constraints is an advantage and a sign of progress in the field? Each fairness notion

(while being well-motivated) is introduced in a manner that ignores the previously introduced

notions. It seems reasonable that a decision maker wanting to ensure fairness in a clustering-

centered application is faced with a non-trivial problem where he has to pick a constraint and

justify picking it (possibly over other constraints1).

Further, our work in section 2.5 shows how to satisfy two fairness notions in clustering

simultaneously as well as incompatibility results between some fairness notions in clustering.

One can envision other projects on this kind where multiple fairness notions are considered si-

multaneously. This would lead to a deeper understanding of the interaction between different

fairness notions. However, it is also worthwhile to wonder if such an approach is scalable? An

1In section 2.5 we showed that some constraints have in general an empty feasible set, i.e. they are incompatible.

179

approach that is simple and direct is arguably much preferred both from a theoretical and prac-

tical point of view. For example, the work of [151–153] suggests a welfare-based approach to

algorithmic fairness. Such an approach seems more suited and possibly preferred over the cur-

rent approach of introducing constraints but not describing the welfare interaction between the

individuals/demographic groups and the algorithm.

Another remark concerns the probabilistic fairness notion which was introduced in section

2.2. While the issue of imperfect knowledge of group memberships is well-motivated and com-

mon. The introduced notion of fairness in expectation is arguably lacking. Specifically, it is more

preferable for the clustering output to be fair in realization or with high probability instead of

being fair in expectation. Further, the model assumes that the probability of a point belonging

to a group is known (for all points and groups) which might be a strong assumption in many ap-

plications. A simpler model with weaker assumptions and an algorithm which achieves fairness

deterministically are certainly preferred.

5.2 Redistricting and Gerrymandering

Computational methods in redistricting and gerrymandering have received significant at-

tention in recent years and as discussed in chapter 4 have led to impactful results. The main

engine behind this is the MCMC methods such as those of [32, 33]. It is possible that these

methods have an even greater potential which has not been utilized yet. Specifically, if we think

of the ensemble of redistricting maps resulting from an MCMC method as a training dataset in

machine learning. For example, we can apply high dimensional visualization methods such as

those of [154] to gain a greater insight into the structure of the dataset (ensemble of maps). Fur-

180

ther, such a visualization method can be used to give a simpler and more direct argument for

why a specific map should be used or why another map is likely to be gerrymandered. Another

possibility, is using anomaly detection methods [155] to possibly detect gerrymandered maps. In

fact, our work in chapter 4 closely resembles some methods in anomaly detection.

181

Bibliography

[1] Ioana O Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R
Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. 2019.

[2] Timothy P Cadigan and Christopher T Lowenkamp. Implementing risk assessment in the
federal pretrial services system. Fed. Probation, 75:30, 2011.

[3] John P Dickerson, Ariel D Procaccia, and Tuomas Sandholm. Failure-aware kidney ex-
change. In Proceedings of the fourteenth ACM conference on Electronic commerce, pages
323–340, 2013.

[4] Martin Leo, Suneel Sharma, and Koilakuntla Maddulety. Machine learning in banking risk
management: A literature review. Risks, 7(1):29, 2019.

[5] Miranda Bogen and Aaron Rieke. Help wanted: An examination of hiring algorithms,
equity, and bias. 2018.

[6] Michael Kearns and Aaron Roth. The ethical algorithm: The science of socially aware
algorithm design. Oxford University Press, 2019.

[7] Cathy O’neil. Weapons of math destruction: How big data increases inequality and threat-
ens democracy. Broadway Books, 2016.

[8] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering
through fairlets. In Advances in Neural Information Processing Systems 30, 2017.

[9] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. Certifying and removing disparate impact. In proceedings of the
21th ACM SIGKDD international conference on knowledge discovery and data mining,
pages 259–268, 2015.

[10] Serena Wang, Wenshuo Guo, Harikrishna Narasimhan, Andrew Cotter, Maya Gupta, and
Michael Jordan. Robust optimization for fairness with noisy protected groups. Advances
in Neural Information Processing Systems, 33:5190–5203, 2020.

182

[11] Pranjal Awasthi, Matthäus Kleindessner, and Jamie Morgenstern. Equalized odds post-
processing under imperfect group information. In International Conference on Artificial
Intelligence and Statistics, pages 1770–1780. PMLR, 2020.

[12] Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar, Trevor Potter, Li Wei,
Xuezhi Wang, Ed H Chi, Jilin Chen, and Alex Beutel. Measuring model fairness under
noisy covariates: A theoretical perspective. In Proceedings of the 2021 AAAI/ACM Con-
ference on AI, Ethics, and Society, pages 873–883, 2021.

[13] Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, and Xuezhi
Wang. Evaluating fairness of machine learning models under uncertain and incomplete
information. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, pages 206–214, 2021.

[14] Seyed Esmaeili, Brian Brubach, Leonidas Tsepenekas, and John Dickerson. Probabilistic
fair clustering. Advances in Neural Information Processing Systems, 33:12743–12755,
2020.

[15] Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. The price of fairness. Opera-
tions research, 59(1):17–31, 2011.

[16] John P Dickerson, Ariel D Procaccia, and Tuomas Sandholm. Price of fairness in kidney
exchange. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF
COMPUTER SCIENCE, 2014.

[17] Seyed Esmaeili, Brian Brubach, Aravind Srinivasan, and John Dickerson. Fair clustering
under a bounded cost. Advances in Neural Information Processing Systems, 34, 2021.

[18] Ulrike Von Luxburg, Robert C Williamson, and Isabelle Guyon. Clustering: Science or
art? In Proceedings of ICML workshop on unsupervised and transfer learning, pages
65–79. JMLR Workshop and Conference Proceedings, 2012.

[19] Seyed A Esmaeili, Sharmila Duppala, John P Dickerson, and Brian Brubach. Fair labeled
clustering. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 327–335, 2022.

[20] Awasthi Pranjal, Brian Brubach, Deeparnab Chakrabarty, John P Dickerson, Seyed A.
Esmaeili, Matthäus Kleindessner, Marina Knittel, Jamie Morgenstern, Samira Samadi,
Aravind Srinivasan, and Leonidas Tsepenekas. Fairness in clustering. In AAAI Conference
on Artificial Intelligence (AAAI), 2022.

[21] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering
through fairlets. In Neural Information Processing Systems, 2017.

[22] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-center clustering
for data summarization. 2019.

[23] Huy Lê Nguyen, Thy Nguyen, and Matthew Jones. Fair range k-center. arXiv preprint
arXiv:2207.11337, 2022.

183

[24] John Dickerson, Seyed Esmaeili, Jamie Morgenstern, and Claire Jie Zhang. Doubly con-
strained fair clustering. arXiv preprint arXiv:2305.19475, 2023.

[25] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-
line bipartite matching. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pages 352–358, 1990.

[26] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoreti-
cal Computer Science, 8(4):265–368, 2013.

[27] Vedant Nanda, Pan Xu, Karthik Abhinav Sankararaman, John Dickerson, and Aravind
Srinivasan. Balancing the tradeoff between profit and fairness in rideshare platforms dur-
ing high-demand hours. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 2210–2217, 2020.

[28] Yifan Xu and Pan Xu. Trading the system efficiency for the income equality of drivers in
rideshare. arXiv preprint arXiv:2012.06850, 2020.

[29] Will Ma, Pan Xu, and Yifan Xu. Group-level fairness maximization in online bipartite
matching. arXiv preprint arXiv:2011.13908, 2020.

[30] Seyed A Esmaeili, Sharmila Duppala, Davidson Cheng, Vedant Nanda, Aravind Srini-
vasan, and John P Dickerson. Rawlsian fairness in online bipartite matching: Two-sided,
group, and individual. AAAI, 2023.

[31] William Vickrey. On the prevention of gerrymandering. Political Science Quarterly,
76(1):105–110, 1961.

[32] Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A family of markov
chains for redistricting. arXiv preprint arXiv:1911.05725, 2019.

[33] Jonathan C Mattingly and Christy Vaughn. Redistricting and the will of the people. arXiv
preprint arXiv:1410.8796, 2014.

[34] League of Women Voters of Pennsylvania v. Commonwealth of Pennsylvania, No. 159
MM (2018).

[35] Seyed A Esmaeili, Darshan Chakrabarti, Hayley Grape, and Brian Brubach. Impli-
cations of distance over redistricting maps: Central and outlier maps. arXiv preprint
arXiv:2203.00872, 2023.

[36] Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Transactions on
Algorithms (TALG), 6(3):49, 2010.

[37] Samir Khuller and Yoram J Sussmann. The capacitated k-center problem. SIAM Journal
on Discrete Mathematics, 13(3):403–418, 2000.

184

[38] Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. Lp rounding for k-centers
with non-uniform hard capacities. In 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science, pages 273–282. IEEE, 2012.

[39] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Clustering
without over-representation. In Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages 267–275, 2019.

[40] Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algo-
rithms for clustering. Advances in Neural Information Processing Systems, 32, 2019.

[41] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoreti-
cal computer science, 38:293–306, 1985.

[42] Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median, and positive correlation in budgeted optimiza-
tion. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 737–756. SIAM, 2014.

[43] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems.
SIAM Journal on computing, 33(3):544–562, 2004.

[44] D Arthur and S Vassilvitskii. k-means++: The advantages of careful seeding. In Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1027–1035, 2007.

[45] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success
of bank telemarketing. Decision Support Systems, 62:22–31, 2014.

[46] Pranjal Awasthi, Matthäus Kleindessner, and Jamie Morgenstern. Effectiveness of equal-
ized odds for fair classification under imperfect group information. arXiv preprint
arXiv:1906.03284, 2019.

[47] Christopher Meek, Bo Thiesson, and David Heckerman. The learning-curve sampling
method applied to model-based clustering. Journal of Machine Learning Research,
2(Feb):397–418, 2002.

[48] Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. The price of fairness.
59(1):17–31, 2011.

[49] Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, and Maria Ky-
ropoulou. The efficiency of fair division. International Workshop on Internet and Network
Economics (WINE), 2009.

[50] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. Price of fairness in kidney
exchange. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 1013–1020, 2014.

185

[51] United States Senate. S. 1745 – 102nd Congress: Civil Rights Act of 199, 1991.
https://www.govtrack.us/congress/bills/102/s1745.

[52] Supreme Court of the United States. 13-1371 – Texas Department of Housing and Com-
munity Affairs v. The Inclusive Communities Project, Inc., January 2015.

[53] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. Hand-
book of computational social choice. Cambridge University Press, 2016.

[54] G Gunduz and Ernest Fokoue. Uci machine learning repository. Irvine, CA: University of
California, School of Information and Computer Science, 20, 2013.

[55] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In ACM Conference on Fairness, Accountability, and
Transparency (ACM FAccT), pages 77–91, 2018.

[56] Daqing Chen, Sai Laing Sain, and Kun Guo. Data mining for the online retail industry: A
case study of rfm model-based customer segmentation using data mining. 2012.

[57] Charu Chandra Aggarwal, Joel Leonard Wolf, and Philip Shi-lung Yu. Method for tar-
geted advertising on the web based on accumulated self-learning data, clustering users and
semantic node graph techniques, March 30 2004. US Patent 6,714,975.

[58] Pang-Ning Tan, Michael Steinbach, DA Karpatne, and DV Kumar. Introduction to data
mining , 2nd editio, 2018.

[59] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts and techniques third
edition. The Morgan Kaufmann Series in Data Management Systems, 5(4):83–124, 2011.

[60] Ava Kofman and Ariana Tobin. Facebook ads can still discriminate against women and
older workers, despite a civil rights settlement. 2019.

[61] Till Speicher, Muhammad Ali, Giridhari Venkatadri, Filipe Nunes Ribeiro, George Ar-
vanitakis, Fabrı́cio Benevenuto, Krishna P Gummadi, Patrick Loiseau, and Alan Mislove.
Potential for discrimination in online targeted advertising. In ACM Conference on Fair-
ness, Accountability, and Transparency, 2018.

[62] Amit Datta, Anupam Datta, Jael Makagon, Deirdre K Mulligan, and Michael Carl
Tschantz. Discrimination in online advertising: A multidisciplinary inquiry. In ACM
Conference on Fairness, Accountability, and Transparency, 2018.

[63] Deepak P. Whither fair clustering? In AI for Social Good Workshop, 2020.

[64] David B Shmoys, Chaitanya Swamy, and Retsef Levi. Facility location with service in-
stallation costs. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1088–1097, 2004.

[65] Dachuan Xu and Shuzhong Zhang. Approximation algorithm for facility location with
service installation costs. Operations Research Letters, 36(1):46–50, 2008.

186

https://www.govtrack.us/congress/bills/102/s1745

[66] Ian Davidson and SS Ravi. Making existing clusterings fairer: Algorithms, complexity
results and insights. In AAAI Conference on Artificial Intelligence, 2020.

[67] Michael R Garey and David S Johnson. Computers and intractability, volume 174. free-
man San Francisco, 1979.

[68] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5.
Springer, 2015.

[69] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Depen-
dent rounding and its applications to approximation algorithms. Journal of the ACM
(JACM), 53(3):324–360, 2006.

[70] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. 2011.

[71] Dheeru Dua and Casey Graff. Uci machine learning repository. 2017.

[72] Lingxiao Huang, Shaofeng Jiang, and Nisheeth Vishnoi. Coresets for clustering with fair-
ness constraints. In Advances in Neural Information Processing Systems (NeurIPS), pages
7589–7600, 2019.

[73] Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wag-
ner. Scalable fair clustering. 2019.

[74] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the
fair determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

[75] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments. Big data, 5(2):153–163, 2017.

[76] Matthew Jones, Huy Lê Nguyên, and Thy Nguyen. Fair k-centers via maximum matching.
In International Conference on Machine Learning (ICML), 2020.

[77] Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via
equitable group representations, 2020.

[78] Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. Socially fair k-means cluster-
ing. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Trans-
parency, pages 438–448, 2021.

[79] Christopher Jung, Sampath Kannan, and Neil Lutz. A center in your neighborhood: Fair-
ness in facility location. 2019.

[80] Xingyu Chen, Brandon Fain, Charles Lyu, and Kamesh Munagala. Proportionally fair
clustering. 2019.

187

[81] Stefan Nickel, Claudius Steinhardt, Hans Schlenker, and Wolfgang Burkart. Ibm ilog
cplex optimization studio—a primer. In Decision Optimization with IBM ILOG CPLEX
Optimization Studio: A Hands-On Introduction to Modeling with the Optimization Pro-
gramming Language (OPL), pages 9–21. Springer, 2022.

[82] Aric Hagberg, Dan Schult, Pieter Swart, D Conway, L Séguin-Charbonneau, C Ellison,
B Edwards, and J Torrents. Networkx. high productivity software for complex networks.
https://networkx.github.io/, 2013.

[83] A Frank. Uci machine learning repository. irvine, ca: University of california, school of
information and computer science. http://archive. ics. uci. edu/ml, 2010.

[84] Chien-Ju Ho and Jennifer Vaughan. Online task assignment in crowdsourcing markets. In
AAAI, 2012.

[85] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. Online mobile micro-
task allocation in spatial crowdsourcing. In ICDE, 2016.

[86] John P Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. Bal-
ancing relevance and diversity in online bipartite matching via submodularity. In AAAI,
2019.

[87] Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. Online spatio-temporal
matching in stochastic and dynamic domains. Artificial Intelligence (AIJ), 261:71–112,
2018.

[88] John P Dickerson, Karthik A Sankararaman, Aravind Srinivasan, and Pan Xu. Allocation
problems in ride-sharing platforms: Online matching with offline reusable resources. ACM
Transactions on Economics and Computation (TEAC), 9(3):1–17, 2021.

[89] Will Ma, Pan Xu, and Yifan Xu. Fairness maximization among offline agents in online-
matching markets. In WINE, 2021.

[90] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 982–991, 2008.

[91] Gina Cook. Woman says uber driver denied her ride because of her wheelchair. 2018.

[92] Gillan B. White. Uber and lyft are failing black riders. 2016.

[93] Eli Wirtschafter. Driver discrimination still a problem as uber and lyft prepare to go public.
2019.

[94] Alex Rosenblat, Karen EC Levy, Solon Barocas, and Tim Hwang. Discriminating tastes:
Customer ratings as vehicles for bias. Available at SSRN 2858946, 2016.

[95] Hernan Galperin and Catrihel Greppi. Geographical discrimination in the gig economy.
Available at SSRN 2922874, 2017.

188

[96] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning.
fairmlbook.org, 2019. http://www.fairmlbook.org.

[97] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-
ness through awareness. In Innovations in Theoretical Computer Science Conference,
2012.

[98] Nixie S Lesmana, Xuan Zhang, and Xiaohui Bei. Balancing efficiency and fairness in
on-demand ridesourcing. In NeurIPS, 2019.

[99] Will Ma and Pan Xu. Group-level fairness maximization in online bipartite matching. In
AAMAS, 2022.

[100] Yifan Xu and Pan Xu. Trade the system efficiency for the income equality of drivers in
rideshare. In IJCAI, 2020.

[101] Vedant Nanda, Pan Xu, Karthik Abinav Sankararaman, John P Dickerson, and Aravind
Srinivasan. Balancing the tradeoff between profit and fairness in rideshare platforms dur-
ing high-demand hours. In AAAI, 2020.

[102] Tom Sühr, Asia J Biega, Meike Zehlike, Krishna P Gummadi, and Abhijnan Chakraborty.
Two-sided fairness for repeated matchings in two-sided markets: A case study of a ride-
hailing platform. In KDD, 2019.

[103] Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P Gummadi, and Abhijnan
Chakraborty. Fairrec: Two-sided fairness for personalized recommendations in two-sided
platforms. In Proceedings of The Web Conference 2020, pages 1194–1204, 2020.

[104] Kinjal Basu, Cyrus DiCiccio, Heloise Logan, and Noureddine El Karoui. A framework
for fairness in two-sided marketplaces. arXiv preprint arXiv:2006.12756, 2020.

[105] John Rawls. Justice as fairness. The philosophical review, 67(2):164–194, 1958.

[106] David Garcı́a-Soriano and Francesco Bonchi. Fair-by-design matching. Data Mining and
Knowledge Discovery, pages 1–45, 2020.

[107] Govind S Sankar, Anand Louis, Meghana Nasre, and Prajakta Nimbhorkar. Match-
ings with group fairness constraints: Online and offline algorithms. arXiv preprint
arXiv:2105.09522, 2021.

[108] Nicholas Mattei, Abdallah Saffidine, and Toby Walsh. Mechanisms for online organ
matching. In IJCAI, 2017.

[109] Min Kyung Lee, Daniel Kusbit, Anson Kahng, Ji Tae Kim, Xinran Yuan, Allissa Chan,
Daniel See, Ritesh Noothigattu, Siheon Lee, Alexandros Psomas, , and Ariel D Procaccia.
WeBuildAI: Participatory framework for algorithmic governance. In CSCW, 2019.

[110] Quan Zhou, Jakub Marecek, and Robert N Shorten. Subgroup fairness in two-sided mar-
kets. arXiv preprint arXiv:2106.02702, 2021.

189

http://www.fairmlbook.org

[111] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S. Muthukrishnan. Online stochastic
matching: Beating 1-1/e, 2009.

[112] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri
Rudra. When lp is the cure for your matching woes: Improved bounds for stochastic
matchings. In European Symposium on Algorithms, pages 218–229. Springer, 2010.

[113] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The online stochastic gen-
eralized assignment problem. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 11–25. Springer, 2013.

[114] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. Online
stochastic matching: New algorithms and bounds, 2016.

[115] Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. Improved approximation
algorithms for stochastic matching. In Algorithms-ESA 2015, pages 1–12. Springer, 2015.

[116] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press,
2017.

[117] Benjamin Barann, Daniel Beverungen, and Oliver Müller. An open-data approach for
quantifying the potential of taxi ridesharing. Decision Support Systems, 99:86–95, 2017.

[118] Sebastijan Sekulić, Jed Long, and Urška Demšar. A spatially aware method for mapping
movement-based and place-based regions from spatial flow networks. Transactions in GIS,
25(4):2104–2124, 2021.

[119] Javier Alonso-Mora, Alex Wallar, and Daniela Rus. Predictive routing for autonomous
mobility-on-demand systems with ride-sharing. In 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 3583–3590, 2017.

[120] Maria Chikina, Alan Frieze, and Wesley Pegden. Assessing significance in a markov chain
without mixing. Proceedings of the National Academy of Sciences, 114(11):2860–2864,
2017.

[121] Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia,
Robert Ravier, and Jonathan C Mattingly. Quantifying gerrymandering in north carolina.
Statistics and Public Policy, 7(1):30–38, 2020.

[122] Rucho v. Common Cause, No. 18-422, 588 U.S. (2019).

[123] Matt Chen. Tufts research lab aids states with redistricting process. The Tufts Daily, April
6, 2021.

[124] Vincent Cohen-Addad, Philip N Klein, and Neal E Young. Balanced centroidal power
diagrams for redistricting. In Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 389–396, 2018.

190

[125] Cyrus Hettle, Shixiang Zhu, Swati Gupta, and Yao Xie. Balanced districting on grid graphs
with provable compactness and contiguity. arXiv preprint arXiv:2102.05028, 2021.

[126] Yan Y. Liu, Wendy K. Tam Cho, and Shaowen Wang. Pear: a massively parallel evolu-
tionary computation approach for political redistricting optimization and analysis. Swarm
and Evolutionary Computation, 30:78 – 92, 2016.

[127] John G Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.

[128] Lucy Chenyun Wu, Jason Xiaotian Dou, Danny Sleator, Alan Frieze, and David Miller.
Impartial redistricting: A markov chain approach. arXiv preprint arXiv:1510.03247, 2015.

[129] Benjamin Fifield, Michael Higgins, Kosuke Imai, and Alexander Tarr. A new automated
redistricting simulator using markov chain monte carlo. Work. Pap., Princeton Univ.,
Princeton, NJ, 2015.

[130] Brian Brubach, Aravind Srinivasan, and Shawn Zhao. Meddling metrics: the effects of
measuring and constraining partisan gerrymandering on voter incentives. In Proceedings
of the 21st ACM Conference on Economics and Computation, pages 815–833, 2020.

[131] Aaron Bycoffe, Ella Koeze, David Wasserman, and Julia Wolfe. The Atlas Of Redistrict-
ing. https://projects.fivethirtyeight.com/redistricting-maps/,
2018. [Online; published 25-January-2018; accessed 15-August-2019].

[132] Daniel D Polsby and Robert D Popper. The third criterion: Compactness as a procedural
safeguard against partisan gerrymandering. Yale Law & Policy Review, 9(2):301–353,
1991.

[133] Wesley Pegden, Ariel D Procaccia, and Dingli Yu. A partisan districting protocol with
provably nonpartisan outcomes. arXiv preprint arXiv:1710.08781, 2017.

[134] Ivan Ryan and Warren D. Smith. Splitline districtings of all 50 states + DC + PR. https:
//rangevoting.org/SplitLR.html. [Online; accessed 15-August-2019].

[135] Wendy K Tam Cho. Technology-enabled coin flips for judging partisan gerrymandering.
Southern California law review, 93, 2019.

[136] Vieth v. Jubelirer, No. 02-1580, 541 U.S. 267 (2004).

[137] Tara Abrishami, Nestor Guillen, Parker Rule, Zachary Schutzman, Justin Solomon,
Thomas Weighill, and Si Wu. Geometry of graph partitions via optimal transport. SIAM
Journal on Scientific Computing, 42(5):A3340–A3366, 2020.

[138] Boris Alexeev and Dustin G Mixon. An impossibility theorem for gerrymandering. The
American Mathematical Monthly, 125(10):878–884, 2018.

[139] Anshuman Chhabra, Abhishek Roy, and Prasant Mohapatra. Suspicion-free adversarial
attacks on clustering algorithms. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3625–3632, 2020.

191

https://projects.fivethirtyeight.com/redistricting-maps/
https://rangevoting.org/SplitLR.html
https://rangevoting.org/SplitLR.html

[140] Antonio Emanuele Cinà, Alessandro Torcinovich, and Marcello Pelillo. A black-box ad-
versarial attack for poisoning clustering. Pattern Recognition, 122:108306, 2022.

[141] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[142] Maryland Citizens Redistricting Commission. Redistricting Map Submission Pro-
cess. https://redistricting.maryland.gov/Pages/plan-proposals.
aspx, 2021. [Online; accessed 20-October-2021].

[143] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers.
Pattern recognition letters, 24(9-10):1641–1650, 2003.

[144] Edwin M Knox and Raymond T Ng. Algorithms for mining distancebased outliers in large
datasets. In Proceedings of the international conference on very large data bases, pages
392–403. Citeseer, 1998.

[145] James Newling and François Fleuret. A sub-quadratic exact medoid algorithm. In Artificial
Intelligence and Statistics, pages 185–193. PMLR, 2017.

[146] Stefan Zubrzycki. Lectures in probability theory and mathematical statistics, volume 38.
Elsevier Publishing Company, 1972.

[147] Olivier Goldschmidt and Dorit S Hochbaum. A polynomial algorithm for the k-cut prob-
lem for fixed k. Mathematics of operations research, 19(1):24–37, 1994.

[148] Huzur Saran and Vijay V Vazirani. Finding k cuts within twice the optimal. SIAM Journal
on Computing, 24(1):101–108, 1995.

[149] Hamidreza Validi and Austin Buchanan. Political districting to minimize cut edges. Math-
ematical Programming Computation, pages 1–50, 2022.

[150] Daryl DeFord and Moon Duchin. Redistricting reform in virginia: Districting criteria in
context. Virginia Policy Review, 12(2):120–146, 2019.

[151] Violet Xinying Chen and JN Hooker. Fairness through social welfare optimization. arXiv
preprint arXiv:2102.00311, 2021.

[152] Lily Hu and Yiling Chen. Fair classification and social welfare. In Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency, pages 535–545, 2020.

[153] Alex Chohlas-Wood, Madison Coots, Henry Zhu, Emma Brunskill, and Sharad Goel.
Learning to be fair: A consequentialist approach to equitable decision-making. arXiv
preprint arXiv:2109.08792, 2021.

[154] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

[155] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):1–58, 2009.

192

https://redistricting.maryland.gov/Pages/plan-proposals.aspx
https://redistricting.maryland.gov/Pages/plan-proposals.aspx

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview of the Thesis
	Fair Clustering
	Fairness in Online Bipartite Matching
	Implications of Distance over Redistricting Maps: Central and Outlier Maps

	Fair Clustering
	Preliminaries
	Probabilistic Fair Clustering
	Approximation Algorithms and Theoretical Guarantees
	Experiments

	Fair Clustering Under a Bounded Cost
	Hardness of `3́9`42`"̇613A``45`47`"603AFCBC & `3́9`42`"̇613A``45`47`"603AFABC
	Algorithms for `3́9`42`"̇613A``45`47`"603AFCBC
	Fairness Across the Clusters is not Possible
	Experiments

	Fair Labeled Clustering
	Further Definitions for the Labeled Fair Clustering Problem
	Algorithms and Theoretical Guarantees for `3́9`42`"̇613A``45`47`"603ALCAL
	Algorithms and Theoretical Guarantees for `3́9`42`"̇613A``45`47`"603ALCUL
	Experiments

	Doubly Constrained Fair Clustering
	Preliminary Remarks, Definitions and Symbols
	Algorithms for GF+DS
	Solving GF+DS using a GF Solution
	Price of (Doubly) Fair Clustering
	Incompatibility with Other Distance-Based Fairness Constraints
	Experiments

	Fairness in Online Bipartite Matching
	Related Work
	Preliminaries and Problem Setup
	Main Results
	Algorithms and Theoretical Guarantees
	Group Fairness for the KIID Setting:
	Group Fairness for the KAD Setting:
	Individual Fairness KIID and KAD Settings:

	Proofs of Impossibility Results
	Experiments

	Implications of Distance over Redistricting Maps: Central and Outlier Maps
	Related Work
	Problem Setup
	Distance over Redistricting Maps

	Justification for Choosing a Central Map
	Algorithms and Theoretical Guarantees
	Obtaining the Sample Medoid
	Sample Complexity for Obtaining the Population Centroid
	Obtaining the Population Medoid

	Experiments

	Remarks and Future Work
	Fair Clustering
	Redistricting and Gerrymandering

	Bibliography

