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To discover in the world of nature the geometrical forms of our own thinking can be one of our 
most exciting experiences. A child delights in the hexagonal symmetry of a snow flake, and Kepler and 
thousands after him have joyed in the beauty of the laws of planetary motion. These experiences stir us, 
for they reveal that behind material nature there is a creative world in which we can participate through 
our thinking.

Such experiences are even more moving when they come from the world of living forms. The 
work of Lawrence Edwards (1913 – 2004) on plant buds offers the finest example known to me. In 
over four-fifths of the species he has examined, the bud profiles are fit extremely closely by a family of 
curves known as path curves, for they are the paths taken by points under repeated application of a 
projective transformation of space.

Edwards's own description [1] of the mathematics of these curves flows beautifully, but has proven 
perplexing to readers not well acquainted with these matters. I have therefore undertaken to provide an 
introduction to his work in terms of mathematics which is widely known. In the first section, I explain 
the construction of the bud-form curves. This section uses only plane geometry and suffices to 
understand the computations actually made by Edwards. It does not explain what these curves have to 
do with projective geometry. That is the business of section 2, which uses coordinate geometry and 
vectors and matrices for expressing linear equations. It also makes use of the idea of characteristic roots 
and vectors of a matrix. Still, this section does not give us algebraic equations for the path curves. 
Section 3 handles these matters, but it is necessary to use a bit more mathematics, namely linear 
differential equations and the elementary properties of complex numbers. With these formulae in hand, 
we turn, in the final section, to the statistical fitting of the path curves. Here I use data kindly provided 

* The theoretical part of this paper was worked out in about 1978. The computations were done when I was at the 
International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria in 1978-79,  and the paper first 
appeared in the Professional Papers series of that institute in 1979.  That version is now (2013) on the website of the 
Institute. In preparing it for entry into the digital repository at the University of Maryland (DRUM) it has been reviewed 
and some clarifications introduced and typographical corrections made. I was first introduced to the subject by Martin 
Levin and owe my interest in it to his enthusiasm for it. Martin McCrea suggested the use of homogeneous coordinates. 
My greatest debt, of course, is to Lawrence Edwards, who has painstakingly written answers to many questions and has 
shared the data he has accumulated over years of work. Calculations were done on the IIASA computer.
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by Edwards and fit path curves by least squares. For many species, the average absolute percentage 
error is less than two percent.

The first section should be intelligible to any interested reader; and the last section is intelligible 
without reading the intermediate sections if one will accept the formula derived for the path curves.

1. Construction of a Plant­Bud Path Curve
We begin with the construction of the bud-form curve. On a given line, a, pick points O, A and B, 

as shown in Figure 1. Our first task is to find the point C on the line such that

OC/OB = OB/OA = λ1.

That is to say, we are looking for the point C that makes the distance from O grow by the same 
percentage between B and C as it did between A and B. Here is the construction that makes that 
happen.

Draw a line c parallel to a and choose V on c so that the line from V to O will be perpendicular to 
c. Draw a line  d  passing through O and not identical with  a. Mark its intersection with  c  by R. Draw 
VB and mark its intersection with  d  by B′. Draw the line AB′ and mark its intersection with  c by P. 
Draw PB and mark its intersection with  d  by C′. Draw the line connecting V and C′ and mark its 
intersection with  a  by C. This C is the desired point.

Proof: The triangle OAB′ is similar to PRB' and OBC′ is similar PRC'. Therefore, 

(a) OA/AB′ = PR/PB′
 and

(b)   OB/B′ = PR/PC′.
Furthermore  ABB′ is similar to VPB′  and  BCC′ is similar to VPC′, so

(c)  AB/AB′ = VP/PB′
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Figure 1. An Expanding Series of Points



and  
(d) BC/BC′ = VP/PC′. 

Adding (a) and (c) gives
(e) (OA+AB)/AB′ = (VP+PR)/PB′.

But OA+AB = OB and VP+PR = VR, so
(f) OB/AB′ = VR/PB′.

Dividing each side of (f) by the corresponding side of (a) gives
(g) OB/OA = VR/PR

By similar reasoning, (b) and (d) imply
(h) OC/OB = VR/PR.

But the right sides of (g) and (h) are the same, so their left sides must be equal. Thus
OC/OB = OB/OA

as was to be demonstrated. (The proof did not use the fact that VO was perpendicular to c, but we will 
draw the figure that way in what follows.)

As shown in Figure 1, an expanding sequence of points A, B, C, D, E, etc. can be constructed on 
the line a in the same way. We say that  λ1 is the multiplier of this sequence. Similarly, in Figure 

2, we construct a contracting series of points A″, B″, C″, D″, … along the line c. Let  
λ2 = V″B″/VA″ be the multiplier on c.

 Now in Figure 3, we combine Figure 1 and Figure 2, but to avoid confusion we show only the lines 
passing through V and O. 
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Figure 2. The Contracting Sequence of Points.



Where the line to A meets the line to A' mark the point x. Think now of x stepping along from line 
to line on the expanding sequence of lines and, simultaneously, on the contracting sequence. Its 
"footprints" will fall on the circled points of Figure 3. 

Now suppose that, instead of having multiplier λ1 on a and multiplier λ2 on c, we had multipliers 

of 1
1/2 on a and 2

1 /2 on c. Then two steps of this "walk" are equivalent to one of the original. All 
of the "footprints" of x on the first walk remain footprints on the second, but the second has an extra 
print between each pair of the first walk. If we took a walk with 1

1/3  on a and 2
1 /3  on c, then x 

would make two footprints between each pair of the original ones. With 1
2 /3 and 2

2 /3 , x would 
have every other one of these footprints. Clearly x is traversing the same "path" on all of the walks; 
only its step-length differs. For all of the step-lengths, the ratio

 = log2

/ log1


= log2/ log1

remains the same and characterizes the path itself. 

It is these path curves which Edwards has shown to give the profile of plant buds. For a particular 
species, he collects numerous buds at the point just before opening. Then, using tweezers and a 
magnifying glass, he carefully removes the outer petals and reveals the form of the inner inflorescence. 
If a tiny petal budges, the specimen is lost. He then photographs the bud and enlarges it to be four 
inches high. At half-inch intervals along the vertical axis of the enlarged bud he measures the diameter. 
These measurements on at least seven buds of the species are averaged and plotted as in Figure 4. 
These measurements for 150 species and varieties are given in Appendix 2. They are radii in inches of 
the 4-inch high buds, starting from the top.

Edwards then takes two points on the profile, say T and E in Figure 4, draws lines from O and V 
through them, and computes the multipliers λ1 and  λ2 on a and c respectively, and then calculates
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Figure 3. The Path Curve Emerges from the Expanding and Contracting Sequences



λ = log λ2 / log λ1. 

If the profile is a perfect 
path curve, each pair of points 
gives the same value of λ. (Of 
course, it is not necessary 
actually to draw the figure; the 
value of λ for a pair of points 
can be easily calculated directly 
from the measurements of the 
diameters without introducing. 
any drafting error.) 

For ease of computation, 
Edwards takes the midpoint, 
marked T, in conjunction with 
each of the other points. For 
fifty-five species and varieties, 
Edwards reports in [2] the 
average absolute percentage deviations of the resulting six λ's from their mean. He also indicates that 
deviations of ten percent or less mean extremely close fit to a path curve. Thirty of the species have 
average deviations of less than 10 percent; twenty of them have average deviations between 10 and 20 
percent, four, between 20 and 30 percent, and only one over 30 percent.

We shall present in section 4 the results of fitting the path curves to Edwards's data in another way, 
minimizing the sum of the squared percentage errors between observed and "theoretical" values of the 
bud diameters. We present there also the average absolute error in the fit, which makes it easy even for 
the inexperienced to appreciate the extraordinary closeness of fit. 

Although we have constructed the particular bud-form path curve, we have not seen its connection 
with projective transformations, nor have we developed the algebraic formula necessary for statistical 
fitting to the diameters, nor have we seen how to generalize from two-dimensional figures to path 
curves in three dimensions. The next two sections concern these matters.

2 Projective Transformations and Homogeneous Coordinates
Projective geometry deals with the properties of figures which are preserved under projective 

transformation. Figure 5 shows a typical projective transformation of the line a into itself. 

The transformation is determined by a second line, d, and two points, p and q, not on a or d. The 
transformation of the point x is then found as follows. Draw the line determined by p and x; where it 
intersects d, mark the point x'. Draw the line determined by x' and q and mark x″ where this line 
intersects a. This x″ is the image of x under the transformation. Any point x is transformed into a 
unique x″, and any x″ comes from a unique x.
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Figure 4. Plot of bud measurements after averaging



Our familiar Figure 1 from the first section 
also shows an example of a projective 
transformation of the line a, with point A being 
transformed into B; B. into C; C into D and so 
on. Figure 6 shows yet another special case of a 
projective transformation of a line. This one 
gives the solution of the the problem of 
representing in proper perspective on the plane a 
row of equally spaced telephone poles of equal 
height. It uses the fact that any three parallel lines 
in space will all meet at one point on the plane 
(or appear as parallel). 

Let us return now to Figure 5 and notice that 
if we happen to start from the particular point 
marked y, we will find that the line from y' to q is 
parallel to a. We say, however, that the two 
parallel lines determine the point at infinity or 
intersect at the point at infinity on a, which is, of course, also the point at infinity on the line through y' 
and q. Consequently, we see that parallel lines must all have the same point at infinity.

If we use ordinary, Cartesian coordinates, this point can only be written as (∞, ∞). But the point at 
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Figure 5. Projective transformation of a line into  
itself

Figure 6. Special case of projective transformation when p is at infinity.



infinity on the line d can also be written only as (∞, ∞). This notation  gives the unfortunate impression 
that a and d intersect at infinity, when, in fact, they intersect at a finite point. Consequently, projective 
geometry requires a coordinate system which can distinguish between the different points at infinity. 
This distinction is achieved by adding one more coordinate and agreeing that all multiples of the same 
vector represent the same point. This manner of representation is called homogeneous coordinates. 
Thus the vectors (4, 1, 1), (8, 2, 2) and (1, .25, .25) all denote the same point in homogeneous 
coordinates. We shall write x ≈ y to mean that the vectors x and y are proportional and thus denote, in 
homogeneous coordinates,  the same point.

For plotting. one picks a normalization. a row vector h, and plots the first two coordinates of the 
vector x/hx. The most common choice for h is h = (0,0,1), so that one plots (x1/x3, x2/x3 ). Any other 

choice of a non-zero h is equally valid, though of course the homogeneous representation of a point 
depends upon which h is used. For example, the Cartesian coordinates (1,1) may represent (1,1,1) if h = 
(0,0,1), but (1,1,-1) if h = (1,1,1). Only the vector (0,0,0) never arises as the homogeneous 
representation of a point.

If we think of the homogeneous coordinates of a figure as the Cartesian coordinates of a three-
dimensional figure, then the normalization amounts to a projection through the origin onto the plane 
hx  = 1. Then, in plotting only the first two coordinates, we are, in effect, looking at this planar figure 
from infinitely far out on the x 3 axis. More formally, we are projecting onto the plane

0x1 + 0x2 + 1x3  = 1

from the point (0, 0, ∞).
Thus, plotting from homogeneous coordinates is formally equivalent to projection of a figure in 

three-dimensional space onto a plane.

In what follows, we shall denote the column vectors for the homogeneous coordinates of points 
with letters from p to z;  row vectors for equations we denote with letters from a to h and scalars we 
denote with k, m, and n.

In homogeneous coordinates, the points on the line connecting x and y may be written as mx + ny 
for any values of m and n. In the plane, the equation of a line may be written ax = 0, where x gives the 
homogeneous coordinates of points on the line. With h = (0,0,1), this equation corresponds to the 
equation

a1x1 + a2x2   = 1

in Cartesian coordinates; we just set x3 = 1 and a3 = -1. Similarly, in three-dimensional space, the 

equation of any plane can be written as ax = 0, where x is a four-element vector giving the 
homogeneous coordinates of points on the plane.

Let us now consider the transformation, not of a line, as in Figure 5, but of an entire plane by a 
projective transformation. That is, let us start with a point x in plane A, project it through point p into 
point x' in a plane B, and then project x′ through a point q back into plane A at x″. (The points p and q 
must not lie in A or B.) We shall show that this transformation, which is quite non-linear in Cartesian 
coordinates, is linear in homogeneous coordinates and may be represented by u″ = Cu, where u and u″ 
are homogeneous coordinates of the original and transformed (or image) points, respectively, and C is a 
square matrix. It will prove convenient to take as plane A the "horizontal" plane with x3 = 0 in its 

Cartesian coordinates.
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The line from x through p is given by the points mx + np, where x and p are 4-element column 
vectors, homogeneous coordinates of points in three-dimensional space, and m and n are any real 
numbers. The requirement that the point x′ lie in B we may write as bx′ = 0, so 

bx′ = b(mx + np) = 0

hence, once we pick an m, n must satisfy
n  = - mbx/bp

and
x′ = mx + np = mx - m(bx/bp)p

for all m, so we may as well take this m = 1. The line from x′ through q is therefore all points of the 
form m(x -(bx/bp)p) + nq for all m and n. (These are a new m and n for the second projection; for the 
first projection we have already fixed m = 1 and n = -bx/bp.) The requirement that x3″ = 0 –  i.e., the 

requirement that x lie in the plane A –  implies that x″ is given by the m and n that satisfy
-m(bx/bp)p3 + nq3 = 0

since we chose A as the plane with x3 = 0. Therefore, for x″

n = m(bx/bp)k
where k = p3/q3 so that

x″ = m(x - (bx/bp)p + k(bx/bp)q).
Since this equation is valid for all m, we may pick m = (bp) and write

x″ = (bp)x - (bx)p + k(bx)q.
Since (bx) is a scalar, (bx)p = p(bx) = [pb]x, where [ ] marks a square matrix.
Likewise, (bx)q = q(bx) = [qb]x, so

x″ = ((bp)I - [pb] + k[qb])x
where I is the identity matrix. If we now denote the entire matrix on the right of this equation by B, the 
equation becomes just

x″ = Bx.
Furthermore, because both x3 = 0 and x″3 = 0, we can strike out the third row and column of B to get a 

3-by-3 matrix C such that
u″ = Cu (1 )

for the three-element vectors u″ and u derived by striking out the third coordinate of x″ and x. Thus, u 
and u″ are just the homogeneous coordinates of points in the plane A.

We have therefore shown that a projective transformation of a plane into itself can be represented  
by a linear transformation of its homogeneous coordinates. Though we have conducted this proof in 
three dimensions. it immediately generalizes to n dimensions by just replacing "three" or "3” by "n". 
The matrix C of this transformation will be non-singular, for no point transforms into the non-point 
(0,0,0),

What does a projective transformation of the plane look like geometrically? From matrix theory, 
we know that that a 3-by-3 matrix will have three characteristic vectors, v1,  v2 and v3' with 

corresponding characteristic values m1,  m2 and m3. For each of these 

Cv i =  mivi.  

But mivi  and vi are the homogeneous coordinates of the same point. Therefore these characteristic 

vectors are fixed points of the transformation. In this section, we shall assume that all three 
characteristic values are real and distinct. (In the next section we shall treat also complex characteristic 

8



values.) With this assumption, we can plot the three fixed points as in Figure 7.

Now any point on the line a 
determined by v1 and v2 is transformed 

into a point on this line, for

C(n1 v1 + n2 v2) =  n1 m1 v1 + n2 m2 
v2

We express this fact by saying that 
the line a is invariant under the 
transformation. The lines b and c 
determined by v1 and  v3 and by v2 and  v3 
are likewise invariant. These three inva-
riant lines have been drawn on Figure 7.  

What can we say about the transformation 
of the line a into itself? Well, it is
precisely a projective transformation of 
the type described by Figure 5 with the
point  v3 of Figure 7 playing the role of the point q in Figure 5. We have therefore labeled the point 

both  v3 and q, but as a vector we will define q numerically as v3 – v2. We may take d to be any line 

through  v1 not containing  v2 or  v3. We then choose the point p on c  such that 

1 – (dv2/dp) =  m2/m1 (2)

or
dp = dv2 /(1 -  m2/m1)       

Note that p is not an arbitrary point but depends on characteristic values and vectors of the matrix. 
That is only to be expected. We are not trying to show that any projective transformation of the line a 
into itself is equivalent to that of a given matrix, but only that, given the arbitrary line d,  there is one 
such transformation and it depends on the characteristic values of the matrix and a characteristic vector, 
as well as, of course, the line d.

To check that this geometrical construction will give the same transformation as does the matrix C, 
let us pick an arbitrary point    

x ≈ n1v1 +  n2v2

on a and find its image, x″, in both ways. The matrix transformation gives immediately

x″  ≈ C( n1v1 +  n2v2) =  n1m1v1 +  n2m2v2 (3)

The transformation done in Figure 5 style gives first

x′  ≈ x – (dx/dp)p (4)

Clearly this x′ is on the line determined by x and p and dx′ = 0 so it is on the line d also. Next,

x″  ≈ x′  - (ax′/ aq)q.  (5)

It is clearly on the line determined by x′ and q; and ax″ = 0, so it is on the line a also. We need to show 
that this x″ is the same as that found in equation (3). Since ax = 0, premultiplying (4) by the vector a 
gives
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Figure 7. Fixed points of the transformation 



ax' =  -(dx /dp )(ap), (6)

and substituting from (4) and (6) into (5) gives

x″  ≈  x  - (dx/dp)p + (dx /dp)(ap/aq)q = x - (dx/dp)(p – (ap/aq)q)      (7)

Now p satisfies the equation

p = v2 + (ap/aq)q (8)

To see this, note that ap can be thought of as the distance from the line  a to the line through p parallel 
to  a, while aq is the distance from a to the line parallel to a through q. To get to the point p from v2 

along the vector q, we have to go the fraction (ap/aq) of the total length of q. That is what is expressed 
as equation (8). We can rewrite (8) as 

v2 = p – (ap/aq)q (8)

and substitute this expression into (7) to get

x″  ≈  x – (dx/dp)v2 (9)

Now substituting the expression for x in terms of v1 and v2 

x″  ≈  n1v1 + n2v2  – ((n1dv1 + n2dv2/dp)v2

But dv1 = 0, so

x″  ≈  n1v1 + n2(1  – dv2/dp)v2

or, by using (2),

x″  ≈  n1v1 + n2(m2/m1)v2 (10)

Multiplying through by m1 gives

x″  ≈ n1m1v1 +  n2m2v2 (11)

which is exactly the expression for x″ which we obtained in (3) from the matrix transformation. 
(Remember, the ≈ means the vectors on either side are proportional; one side of the ≈ can be multiplied 
by a scalar without multiplying the other side by the same scalar.) 

Thus, the projective transformation of the plane given by
x″ = Cx

induces a projective transformation into itself of each of the lines connecting its three fixed points.  

Edwards refers to the ratio m2/m1 as the multiplier of the transformation along a, and denotes it by 

λ1. The multipliers  λ2 = m3/m2  and λ3  =  m1/m3  on the two other invariant lines are similarly defined, 

and the identity

 λ1 λ2 λ3 = 1 

becomes obvious.

If we know the transformation of two of the invariant lines, we can easily determine geometrically 
the transformation of the entire plane. In Figure 8, for example, let us suppose that we know the 
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transformation induced by C on the lines a and c. Whither will the point x, not on either line, be 
transformed? 

From v3, project x onto a at point y. This 

y will be transformed to some other point 
on a, say y″, and v3  is transformed into 

itself. Now the transformation induced by 
the matrix takes lines into lines:

C(k1u1 + k2u2) = k1(Cu1) + k2(Cu2)

for any k's and u's. Therefore, the line 
through v3 and y will be transformed into

the (dashed) line through v3  and y″.

Likewise, the line through v1 through x to 

z on the line c will be transformed into 
the (dashed) line through v1  and some z″ 

on c. Since x″, the image of x under the transformation, must lie on both the dashed lines, its location is 
fully determined.

We obtain our old friend figure 3, the cornerstone of Edwards's work, if we happen to have
v1 = (0, 0, 1)T , v2 = (1, 0, 0)T , and  v3 = (0, 1, 1)T 

where the superscript T denotes transposition. Then v2  is the point at infinity on the horizontal axis, so 

the "triangle" appears exactly as the lines a, b, and c of Figure 3. If we rewrite formula (4) taking n1 = 1

and n2 =  n, so that

x″  ≈  v1 + nλ1v2,

then we see that the point on  a  at distance n from v1, is transformed into the point at nλ1; and this 

point, into the one at distance nλ1
2, and so on, exactly as in Figure 3. Similarly, the distance of a point 

on c from v3 is changing by the multiplier  λ2, just as in Figure 3. Moreover, the projective 

transformation of the two lines a and c induces a projective transformation on the entire plane and the 
successive “footprints” of the point x are, in fact, where it is moved by successive applications of a 
projective transformation of the plane into itself.

3 Continuous Path Curves
We now want to think of taking walks with shorter and shorter steps taken faster and faster. We 

therefore introduce a continuous parameter t and consider the sequence of projective transformations 
described by

x(t + Δt) = (I + AΔt) x(t)   t = 0, Δt, 2Δt, 3Δt … .

Here Δt is a fixed, finite change in t; I + AΔt is the matrix C of equation (1) and x(t) and x(t + Δt) 
correspond to u and u″ of equation (1). They are n+1 dimensional vectors giving the homogeneous 
coordinates of points in n-dimensional space relative to some normalization vector, h. If we fix A and 
take Δt smaller and smaller, we do not, in fact, always walk along the same "path" as described at the 
end of section 1. Instead, the route changes slightly with each shorter Δt, but these routes converge to a 
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limiting, continuous path. On each walk we have

(x(t +Δt) – x(t))/Δt  = Ax(t)

and as Δt →  0, we obtain the differential equations

ẋ t  = Ax t  (12)

where the dot over x denotes the derivative with respect to t.

This is a system of n+1 linear, homogeneous differential equations with constant coefficients. Its 
solution is well-known, and we need only review it here. We can then easily show that it is, indeed, the 
path followed by infinitely many finite-step walks, and, in fact, that all such walks take such a path.

The general solution to the system (12) is

x t  = ∑
i=1

n1

k i v i e
mi t (13)

where the k's are constants depending on initial conditions, and the v's and m's are characteristic 
vectors and values of the matrix A, as we shall explain. If x(t) is a solution of (5), kx(t) is also a 
solution, as is readily checked. Likewise, the sum of two solutions is a solution. Consequently, to 
investigate whether (13) is a solution of (12), we need only know the conditions for vemt to be a 
solution. For this, we must have

ẋ = mvemt = Avemt for all t.

Therefore, we must have
mv = Av 

or 
(A – mI)v = 0.

If this last equation is to have a solution other than v = 0, the matrix (A - mI) must  be singular, so 
the determinant │A-mI│ must be zero. The expansion of the determinant produces a polynomial of 
degree n+1 in m, which will have n+1 roots. These roots are the m's of (13). We shall assume that they 
are distinct, and this assumption is sufficient to guarantee that the v's are linearly independent. Let V be 
the matrix of the v's. Then V −1 AV = M , where M is a diagonal matrix having the m's, the 
characteristic values of A, down the diagonal.

Because Edwards always worked with finite step walks while we are moving into continuous 
curves, we need to be careful about the relation of the two. We therefore ask, first, Are there finite-step 
walks which move along the curve given by (13)? Indeed there are. First, pick any Δt and calculate by 
(13) the points x(0), x(Δt), x(2Δt), x(3Δt),  etc. These are all points on the continuous path. Now, to 
repeat the question more precisely, Can we find a matrix C which will “walk” x(0) with exactly these 
points as footprints? Then answer is Yes, but before we display that C we need to be clearer about the 
footprints. Let

emit
= f i (14)

then from (13) we see that

x  j t = ∑
j = 1

n1

k i v i f i
j = VKF j for j = 0, 1, 2, 3, … . (15)
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where K is the diagonal matrix of the ki and F is the diagonal matrix of the fi. These successive points 

for j = 0, 1, 2, … are the “footprints” on the path. 

Now we need to find the matrix C which will, starting from the first of these, transform it into the 
second, and transform the second to the third, and so on. We define a matrix C by 

C = VFV−1

where F is the diagonal matrix of the fi.  We now need to show that it will produce the sequence of 

“footprints” given by (15). Let us apply it to x  jT  .

Cx  j t  = VFV−1VKF j = VFKF j = VKFF j = VKF j1 = x  j1 t 

so that repeated application of the transformation C “walks” the point x precisely along path given by 
the differential equation. (The third of the equalities in the above equation used FK = KF, which is true 
because both matrices are diagonal.) 

Conversely, given C, we can define F by F = V −1 CV , where V is the matrix of characteristic 
vectors of C, and then use (14) to define the mi for a given Δt. The given C will then walk x in finite 

steps, each step falling on the continuous path determined by (13) with these v's and m's.

Let us now look at a few special cases. First with n = 2, (and n+1 = 3 for the homogeneous coordinates) 
suppose that we have

V = 
1 0 0
0 1 0
0 1 1

and k2 = k3 = 1 and k1 = k. If we then write out the formula for each component of x(t) by (13) we get

x1t = kem1 t , x2t = em2 t , x3t = em2 t
 em3 t .

We now normalize with the vector h = (0,0,1), which is to say, we divide x1 and x2 by x3 and call the 

first component of the normalized vector r(t), and the second h(t): 
r t  = kem1 t

/ em2 t
 em3 t



h t  = em 2t /em2 t
 em3 t

 .  

Now divide numerator and denominator of the expressions for r(t) and h(t) by em3 t

r t = kem1−m3  t / em2−m3  t  e0


h t  = e m2 − m3 t /e m 2 − m3 t  e0
 .  

Next, choose the units of t so that m2 - m3  = 1, and define m  =  m1 – m3. We then finally obtain

r t  = kemt
/ e t

 1 (16)

 h t  = e t
/e t

 1  (17)

These are the parametric equations of the bud forms, with r as the radius of the bud at height h. 
When t = 0, h = 1/2 and r = k,  so k is the radius of the bud at mid height. 

Figure 9 shows such a curve for the case 0 < m < 1. Its connection with Figure 3 becomes apparent 
if we draw a line from (0, 0) through (r,h) to intersect the horizontal line h = 1 at the point whose 
distance from the vertical axis is kem − 1 t . Clearly this distance is contracting exponentially, just as 
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in Figure 3. Likewise, the line from (0,1) through 
(r,h) intersects the horizontal axis at ke mt , This 
distance from the origin is expanding 
exponentially, just as in Figure 3. Therefore, (16) 
and (17) do indeed give the continuous form of 
the path on which x was walking in Figure 3. 
With step length of Δt, the multipliers on the top 
and bottom lines are e m − 1 t and ke mt ,  
respectively. Now λ is the ratio of the logarithms 
of these multipliers, so λ  = (m - 1)/m.

For statistical fitting, it is convenient to divide 
(17) into (16) to get

 r t/h t  = kem−1 t  (18)
or, in logarithmic form

log r(t) - log h(t) =  log k + (m-1)t. (19)
We also solve (17) for t in terms of h, thus

t = log [h(t)/(1 – h(t)]. (20)
Now given observations on r at various values of h. we compute by (20) the values of t 

corresponding to these h's and then fit (19) by least squares. Note that the r, h, and t in (19) are known, 
and we seek log k and m-1 to give the closest fit to (19). Results are given in the next section.

We need to comment briefly on the case of complex roots in (6). If they occur, they occur in 
conjugate pairs, and it is easy to see that the corresponding v's are also complex conjugates. 
Furthermore, since the initial point is real, the corresponding k's must also be conjugate. We then use 
the definition

e a  ib t = eat cos bt   i sin bt 

Clearly, the exponential functions of conjugates are conjugate, so the vectors on the right of (13) occur 
in conjugate pairs and their imaginary components cancel in the summation. Suppose then that we have 
the following V matrix

V = 
1 1 0

−i i 0
0 0 1

For simplicity, let us suppose that all the k's of (13) are 1, and that m1 =  a + ib, m2 =  a – ib,  and 

m3 = m. Then (13) gives
x1t  = 2 eat cos bt 

x2t  = 2 eatsin bt 

x3t  = emt

If we now normalize with h = (0,0,1), we get a logarithmic spiral. Thus this beautiful curve, also found 
in nature, is a path curve.

Finally, we may go to three-dimensional space – described by 4-element homogeneous coordinates 
–  and consider the equations with
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V = 
1 1 0 0
−i i 0 0
0 0 1 0
0 0 0 1


The first three components will be as in the previous example, and the fourth will be another 
exponential function. Normalizing with h =(0.0,1.1) gives a family of three-dimensional curves that 
wind around a bud shape, as described in Edwards's second article [3].  Here we see how the three-
dimensional form of the bud whispers of the fourth dimension.

Many plants look much alike in their first two leaves before they expand in infinite variety of 
shapes in their leaves and stems. Then in the bud they again contract, again touch back to the 
archetypal plant and let a higher dimension breathe through them before they open into the glory of the 
blossom. In the bud. the plant meditates; in the blossom, it works in this world.

4. How the Curves Fit the Buds
To fit a path curve to a bud profile by least squares, we find the values of log k and m- 1 to 

minimize

S = ∑
i=1

7

[ log ri − log hi − log k   m−1 ti]
2

where the ri  are the observed values of the radius of the bud at the chosen heights hi  and the ti are 

defined by (20) as

ti  = log[hi //(1 - hi )], i = 1, …, 7. 

In the terms usually used in regression analysis, the dependent variable is log ri  - log hi  and the 

independent variable is ti ; the constant term found by the regression is log k, and the regression 

coefficient on the one independent variable is (m-1). If the heights at which the radii are measured are 
the same for all buds, then the independent variable is the same for all buds, making the calculations 
fairly easily done even by hand.   

A slight complication is added by uncertainty about where the bottom of the bud is. The bud is 
always attached to the plant, so it cannot come down to a zero radius at h = O. Therefore, there is some 
uncertainty about where the bottom of the bud is. On each photograph, Edwards extrapolates freehand 
the path-curve-like part of the profile downwards to a point at the bottom. Consequently. this lower 
point is somewhat uncertain. If, for example, the bud was estimated to be 8 mm long but was in fact 9 
mm long, then the 7 radii, measured at 1 mm intervals from the top would not have been at the heights 

hi = 1 – i/8  i = 1, 2, …, 7

on the standardized bud of height 1, but at the heights

 hi = 1 – i/9  i =  1, 2, …, 7.

More generally, 

h i = 1 −
i
b

  i =  1, 2, …, 7.
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where b is the true length of the bud in units in which it was estimated to have been 8. I follow 
Edwards's practice of varying b and picking the b that gives the best fit. The variation in length, 
however, has been limited to five percent on either side of the “best guess” length estimated by 
Edwards by eye.

The results of fitting are shown in the accompanying tables. Edwards has collected bud profiles not 
only where he lives, in Scotland, but also on his travels in New Zealand and Australia. He gave me the 
data grouped by country. and I have left it in this grouping. 

In the tables, the first column gives the value of m – 1, the parameter actually estimated by 
regression; the second column gives the value of  λ derived from m - 1. The third column. labeled “ro" 
gives the value of k in the regression. (The notation ro recalls the fact that it is the “theoretlcal” radius 
at h =1/2, which corresponds to t = 0.) The column labeled “|er|" gives the average absolute error for 
the fit. The units are in hundredths of an inch on a bud shape four inches high. The column labeled 
“emax" gives the maximum absolute error, also in hundredths of an inch on a four in bud. The “mape” 
column give the mean absolute percentage error. The "rho" column gives the autocorrelation of errors 
along the curve. (Values of rho close to zero are good; they indicate that relatively large errors in the 
same direction do not tend to occur next to one another along the bud height. Thus, low values of rho 
indicate that the errors are "noise" in the observations rather than evidence of systematic deviation from 
path-curve forms.) Finally, the column labeled “length" gives the optimal-fit, theoretical length as a 
percent of the best-guess, free-hand estimate of the length of the bud.

Buds have not been excluded after taking measurements because they gave a poor fit. On the other 
hand, some plants have non-symmetric buds which are obviously not path curves, and Edwards has not 
gone to the trouble to measure them to prove the obvious. The outer budcase of the rhododendron, a 
beautiful, big bud visible all winter, was measured but was not a good path curve and is not given here. 
The inner inflorescence, however, is a good path curve. It was actually this plant from which Edwards 
learned to measure the inner shape, not the outer case.

In New Zealand and Australia, Edwards was often unable to identify the plant whose buds he 
collected. The observation is, however, no less relevant for the main point, namely, that plants produce 
path curves in their buds. The accuracy with which these plants, quite unrelated to those of Edwards's 
home country, produce path curves shows that this capacity is little connected with family lines, but 
comes directly from the nature of the plant kingdom.

Of the 150 species or varieties in the tables, 125 have an emax of less than 4 hundredths of an inch. 
That is, for these 125, the maximum deviation is less  than one percent of the height of the bud. No bud 
had a maximum deviation of as much as two percent of the height. The mean absolute percentage error 
was under two percent for 109 of the buds; for only two of them did it slightly exceed four percent. The 
buds are higher than wide, so the errors are a larger percent of the radius than of the height.

Edwards has asked his classes to draw buds or to draw ovals flat at one end and pointed at the 
other. Only three or four percent of the results were path curves in the range of accuracy with which 
plants produce them. I have tried drawing bud-form path curves with only slightly better results. I 
suggest that you try a few freehand curves. You can then take two points on the curve, and –  using the 
method of Figure 3 –  check other points. Whether or not you prove better at it than I am, you may 
share my amazement that plants all over the world are out there producing path curves by the billion. 
And if you share my amazement, maybe you will share my joy.
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Appendix 1: Results of Fitting a Path Curve to Bud Profiles 
Scotland
bud m - 1 lambda   ro   |er| emax mape  rho length
aubresia 0.436  1.29  1.11  0.91  1.54  0.91  0.24   96.
blackberry 0.481  1.08  1.83  1.03  3.66  0.72 -0.31 102.
bluebell single bud  0.478  1.09  0.72  2.01  3.45  3.39  0.35   95.
bluebell inflor. 0.445  1.25  0.72  1.03  1.66  1.73  0.55   95.
buttercup i 0.309  2.24  1.80  1.03  2.97  0.66 -0.11 105.
buttercup 1i 0.364  1.75  2.27  2.06  4.01  1.12  0.03 101.
campanula 0.446  1.24  0.89  0.71  1.98  0.93  0.30   95.
campion, pink 0.260  2.85  0.96  0.88  2.05  1.18  0.24   98.
campion, white  0.271  2.69  0.99  2.68  4.06  3.26  0.52   95.
celandine 0.416  1.41  1.52  1.89  4.21  1.59  0.04   99.
cherry, ornamental 0.411  1.44  1.23  0.75  1.41  0.77 -0.02   99.
cherry, wild 0.470  1.13  1.70  1.15  3.81  0.77 -0.24   96.
chickweed i 0.353  1.83  0.62  0.70  1.58  1.31 -0.44   95.
chickweed ii 0.337  1.97  0.83  0.27  0.72  0.38 -0.09  103.
clematis 0.187  4.34  0.68  0.99  1.70  1.83  0.31  104.
columbine 0.148  5.75  0.68  1.61  2.91  3.16  0.24  104.
comfrey 0.542  0.85  0.62  0.49  0.73  0.89  0.05  913 .
convolvulus 0.253  2.94  0.47  0.60  1.30  1.53  0.21  103.
cornflower 0.327  2.05  1.30  0.48  1.22  0.41 -0.14  103.
creeping jenny 0.300  2.34  0.94  0.62  1.23  0.84 -0.01  102.
crow'sfoot 0.460  1.18  1.53  3.08  4.85  2.30  0.52    95.
currant, flowering I  0.308  2.25  1.08  2.48  4.96  2.57  0.23  105.
currant, flowering ii 0.319  2.14  1.06  2.24  4.68  2.46  0.16  105.
currant, flowering iii  0.377  1.65  1.03  1.40  2.65  1.58  0.53  105.
daffodil  0.523  0.91  0.50  1.14  1.85  2.73  0.40    95.
elm leafbud 0.357  1.80  0.85  0.66  2.33  0.86 -0.42  102.
forsythea 0.343  1.92  0.67  1.18  2.82  2.05  0.21  102.
fuschia 0.257  2.88  0.53  1.53  3.49  3.73  0.30  100.
garden briar rose 0.195  4.13  0.76  1.53  3.57  2.42  0.36  104.
garlic 0.194  4.16  0.80  2.27  3.93  3.18  0.58  105.
geranium 0.396  1.53  1.04  0.87  1.84  0.96 -0.10  103.
grape hyacinth inflo. 0.374  1.67  0.73  1.76  3.11  2.97  0.23    96.
hawthorn 0.504  0.98  1.82  1.01  2.63  0.68 -0.40  101.
honesty 0.468  1.14  0.71  0.70  1.66  1.10 -0.45    99.
hypericum 0.335  1.99  1.21  1.27  3.23  1.25  0.30  100.
ivy leafbud 0.428  1.33  1.15  0.65  1.40  0.64 -0.19  101.
jasmine, winter  0.325  2.07  0.84  0.67  1.30  0.92  0.41  100.
kale (flower bud) 0.441  1.21  1.18  0.77  1.92  0.78  0.30    99.
knapweed 0.453  1.21  1.54  0.88  2.64  0.66  0.02  101.
1arch (male flower bud) 0.455  1.20  1.60  0.89  2.06  0.69 -0.27    98.
1ime leafbud 0.357  1.80  0.75  0.54  1.51  0.89  0.24  101.
mahonia 0.485  1.06  0.85  0.85  1.45  1.17  0.23    95.
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Scotland
bud m – 1  lambda   ro   |er| emax mape  rho length
narcissus 0.349  1.86 0.53  0.68  1.09 1.64 0.43    95.
phlox, dwarf 0.410  1.44 0.74  1.59  4.63  2.46 -0.08  102.
potentilla 0.447  1. 24 1.75  1.10  2.29  0.72  0.24    98.
oak (leafbud) 0.281  2.56 0.84  0.96  2.25  1.52  0.27  105.
poplar (leaf bud) 0.263  2.80 0.64  0.50  1.21  0.98  0.19  105.
poppy 0.277  2.62 1.00  1.44  2.61  1.59  0.31  105.
poppy (another variety) 0.346  1.89 0.96  0.92  2.29  1.14  0.04  105.
primrose 0.369  1.71 1.01  2.61  5.87  3.11  0.28  100.
pussy willow (catkin) 0.434  1.31 0.53  0.57  1.05  1. 21  0.48    95.
red may 0.511  0.96 1.90  1.01  3.29   0.57 -0.11    99.
rhododendron 0.344  1.91 1.24  0.85  2.71   0.77 -0.18  105.
sage 0.212  3.71 1.10  2.91  3.91   3.55  0.23  105.
sea thrift 0.290  2.45 1.16  1.01  2.06   1.11 -0.14  100.
sibirica 0.447  1.24 0.81  0.56  1.74   0.92 -0.15    98.
snowdrop 0.402  1.49 0.60  1.43  2.23   3.07  0.27    95.
speed well 0.299  2.35 0.93  0.80  2.09   0.97  0.09  105.
star of bethlehem 0.380  1.63 0.69  0.53  1.02  0.92  0.47    95.
stitchwort 0.371  1.70 0.76  1.12  2.04  1.86  0.07    99.
strawberry, wild 0.386  1.59 1.25  0.88  1.54  0.77 -0.11  104.
summer snow 0.450  1.22 0.87  0.59  1.21  0.82  0.01    98.
summer snow ii 0.422  1.37 0.84  0.67  1.79  0.94 -0.43    96.
sycamore flower bud 0.450  1.22 0.92  0.81  1.34  1.04  0.32    95.
sycamore leafbud 0.404  1.47 0.91  0.47  1.19  0.59  0.12    95.
syringa 0.322  2.11 0.90  2.74  5.20  3.55  0.54  105.
veronica 0.386  1.59 0.80  0.94  2.05  1.31 -0.02  101.
water lily 0.312  2.20 0.83  0.73  1.40  1.03 -0.18  103.
whortleberry 0.343  1.92 1.37  3.67  5.93  3.35  0.25   95.
wild iris 0.421  1.38 0.48  0.97  1.97  2.31  0.34   97.
wood sorrel 0.349  1.86 0.88  0.68  1.45  0.94 -0.09  101.
wood sorrel (dif.year) 0.345  1.90 0.69  0.45  0.88  0.77  0.35   99.
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Australia
bud m – 1  lambda   ro   |er| emax mape  rho length
boromia 0.385  1.59  1.82  0.92  1.73  0.58  0·39  101.
camelia 0.324  2.09  1.42  1.68  4.16  1.39  0.14  104.
Christmas bells ? 0.435  1.30  1.08  0.54  1.57  0.56 -0.41    99.
clematis, bush 0.366  1.73  0.92  1.23  2.65  1.52  0.18  105.
epocris 0.198  4.04  0.68  0.59  1.37  1.00 -0.05  103.
eriostemon i 0.389  1.57  1.00  1.15  2.56  1.39  0.10  101.
eriostemon ii 0.392  1.55  1.30  2.17  3.70  1.93  0.51    95.
eriostemon iii 0.347  1.88  0.99  1.58  2.95  2.12  0.09    95.
eucalyptus i 0.404  1.48  1.34  1.83  2.84  1.69  0.21    95.
eucalyptus ii 0.137  6.31  1.14  1.58  3.39  1.68  0.39  105.
gardenia 0.340  1.95  0.99  0.89  1.70  1.23  0.13  100.
hibertia stricta 0.244  3.09  1.08  0.88  2.36  1.10 -0.27  103.
hibiscus i 0.343  1.91  0.80  0.44  1.17  0.61  0.05  100.
hibiscus ii 0.440  1.27  1.57  0.64  1.86  0.48  0.03    99.
hibiscus iii 0.292  2.43  0.78  1.09  3.17  1.56 -0.06    95.
mallow 0.265  2.78  0.70  1.0 1  1.82  1.99  0.12    99.
wild vine 0.129  6.78  0.81  2.17  4.14  2.81  0.18  105.
unidentified i 0.299  2.35  0.90  2.13  2.87  3.21  0.25    95.
unidentified ii 0.360  1.77  1.62  0.57  1.35  0.39  0.10    99.
unidentified iii 0.387  1.58  0.65  0.73  2.17  1.26  0.21    95.
unidentified iv 0.410  1.44  0.98  0.75  1.47  0.94 -0.07    98.
unidentified v 0.148  5.74  0.87  3.46  6.46  4.25  0.18  105.
uniden tified vi 0.377  1.65  0.85  0.90  1.50  1.33  0.09  102.
unidentified vii 0.376  1.66  0.85  1.11  2.88  1.42  0.01    95.
unidentified viii 0.494  1.03  0.85  1.80  4.04  2.50 -0.06    95.
unidentified ix 0.395  1.53  0.84  0.61  0.99  0.88  0.28    98.
unidentified x 0.377  1.65  0.98  0.71  1.43  0.80 -0.22    99.
unidentified xi 0.353  1.84  0.98  0.61  1.04  0.67  0.04  103.
unidentified xii 0.373  1.68  1.01  1.13  3.06  1.23 -0.03    96.
unidentified xiii 0.559  0.79  1.55  3.52  6.15  2.57  0.34  101.
unidentified xiv 0.251  2.99  0.46  0.27  0.54  0.81 -0.08    97.

New Zealand
bud m – 1  lambda   ro   |er| emax mape  rho length
apple 0.463  1.16  1.32  0.50  1.09  0.44  -0.22    98.
berberis 0.575  0.74  1.53  1.69  3.40  1.28  -0.06    98.
cabbage (flower plant) 0.438  1.28  1.40  0.80  1.39  0.70  -0.18  101.
cabbage tree 0.609  0.64  1.02  1.09  2.04  1.18   0.16    95.
california fuschia 0.248  3.04  1.06  0.72  1.84  0.70  -0.08  104.
camelia 0.346  1.89  1.50  1.95  4.45  1.56   0.16  105.
Chinese lantern 0.401  1.49  1.47  0.60  1.58  0.50  -0.25  100.
clematis, bush 0.413  1.42  1.29  1.55  2.55  1.50   0.18  104.
cress 0.477  1.10  1.23  1.83  3.43  1.75   0.24    97.
daphne 0.385  1.60  0.86  0.57  0.89  0.77  -0.16  100.
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New Zealand (continued)
bud m – 1  lambda   ro   |er| emax mape  rho length
diosma 0.268  2.73  0.77  2.66  5.68  4 .11  0.47  105.
flax 0.210  3.76  0.76  2.00  4.17  3.21  0.13  105.
fremontia 0.190  4.26  1.18  2.12  5.15  1.81  0.33  105.
geranium 0.384  1.60  0.90  0.87  3.07  1.13 -0.28  105.
ginger 0.519  0.93  0.94  1.83  3.20  2.25  0.61    95.
holly 0.620  0.61  1.53  0.72  1.51  0.51  0.32    99.
horopito 0.327  2.06  2.48  2.77  5.11  1.25  0.28  102.
indian hawthorn, pink 0.264  2.79  1.28  1.07  2.34  1.16 -0.09  100.
indian hawthorn, white 0.274  2.65  1.14  2.00  3.25  1.98  0.33  105.
iris, new zealand 0.479  1.09  1.12  0.41  0.94  0.44  -0.06    96.
jasmine, minature 0.294  2.40  1.09  1.21  2.50  1.30  -0.35    95.
japonica 0.323  2.10  1.35  1.32  2.76  1.15   0.35    99.
karaka 0.397  1.52  1.55  0.62  1.11  0.44  -0.04    97.
keria 0.240  3.17  0.81  0.40  0.86  0.64  -0.08  101.
lady's smock 0.399  1.51  0.69  1.05  2.33  1.94  0.04    97.
lemon 0.553  0.81  1.50  1.79  2.72  1.39  0.16    99.
magnolia 0.315  2.18  0.65  1.03  2.61  1.92  0.33    99.
magnolia stellata 0.314  2.18  0.63  2.23  4.45  4.32  0.37  103.
magnolia, port wine 0.333  2.00  1.09  0.38  0.62  0.39 -0.36  101.
malus 0.453  1.21  1.18  0.58  1.61  0.57  0.11    98.
maori privet 0.279  2.58  1.71  3.47  7.48  2.35  0.38  104.
ngaio 0.378  1.64  0.94  1.41  2.47  1.68 -0.07    99.
oxalis 0.384  1.61  0.50  0.42  0.55  0.97 -0.12    99.
peach 0.396  1.52  1.45  1.42  5.28  1.06 -0.15  102.
periwinkle 0.245  3.07  0.87  2.91  4.84  4.38  0.43    95.
pimpernel, scarlet 0.313  2.20  0.92  2.09  3.37  2.88  0.23    96.
poroporo 0.517  0.93  1.13  0.50  1.32  0.50  0.37    95.
quince 0.251  2.98  1.04  1.63  3.11  1.85  0.47  105.
rose, wild 0.196  4.10  0.91  2.24  3.48  2.95  0.20  105.
tawari 0.318  2.14  1.75  0.97  2.31  0.68 -0.20  103.
vibernum 0.425  1.35  1.74  1.65  2.86  1.05  0.04  102.
wiegela 0.544  0.84  0.89  0.81  1.57  1.04  0.28    97.
unidentified i 0.354  1.83  1.70  2.13  5.13  1.44  0.18  103.
unidentified ii  0.606  0.65  0.93  1.33  2.76  1.64  0.29  104.
unidentified iii 0.195  4.13  0.55  1.54  3.14  3.55  0.30  102.
unidentified iv te mata? 0.336  1.97  0.59  0.38  0.89  0.71 -0.42  100.
unidentified v 0.412  1.43  1.92  1.80  3.25  1.09  0.35    97.
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Appendix 2. Data on Plant Buds

Scotland Data.
                               F    E     D     T C B     A
auresia                      0.530 0.880 1.043 1.120 1.110 1.945 0.910 
blackberry                   1.180 1.570 1.760 1.830 1.780 1.550 1.200
bluebell single bud          0.470 0.580 0.654 0.700 0.590 0.650 0.590
bluebell inflor.             0.430 0.570 0.550 0.700 0.715 0.590 0.600
buttercup i                  0.840 1.300 1.650 1.830 1.940 1.870 1.570
buttercup ii                 1.180 1.670 2.040 2.250 2.360 2.310 1.910
campanula                    0.520 0.710 0.820 0.880 0.870 0.840 0.740
campion, pink                0.400 0.620 0.795 0.940 1.040 1.100 1.030
campion, white               0.430 0.640 0.790 0.940 1.040 1.130 1.110
celandine                    0.875 1.150 1.375 1.520 1.555 1.460 1.210
cherry, ornamental           0.670 0.975 1.145 1.220 1.245 1.185 0.985
cherry, wild                 1.040 1.405 1.615 1.710 1.690 1.535 1.330
chickweed i                  0.305 0.440 0.540 0.630 0.640 0.650 0.590
chickweed ii                 0.410 0.610 0.750 0.840 0.880 0.860 0.710
clematis                     0.260 0.420 0.560 0.680 0.790 0.950 0.800
columbine                    0.250 0.395 0.540 0.690 0.820 0.910 0.880
comfrey                      0.435 0.565 0.620 0.620 0.600 0.540 0.440
convolvulus                  0.200 0.310 0.400 0.460 0.520 0.540 0.480
cornflower                   0.630 0.950 1.160 1.320 1.385 1.360 1.135
creeping jenny               0.433 0.650 0.825 0.955 1.024 1.010 0.890
crowsfoot                    0.930 1.260 1.400 1.470 1.480 1.460 1.250
currant, flowering i         0.515 0.755 0.944 1.100 1.210 1.170 0.910
currant, flowering ii        0.524 0.760 0.915 1.100 1.170 1.120 0.890
currant, flowering iii       0.545 0.790 0.970 1.065 1.090 0.990 0.745
daffodil                     0.355 0.430 0.480 0.485 0.475 0.440 0.380
elm (1eaf bud)               0.430 0.640 0.770 0.855 0.890 0.830 0.725
forsythea                    0.340 0.490 0.580 0.656 0.700 0.710 0.575
fuschia                      0.235 0.340 0.420 0.525 0.600 0.620 0.565
garden briar rose            0.300 0.480 0.620 0.760 0.880 0.965 0.885
garlic                       0.290 0.500 0.710 0.860 0.945 0.958 0.885
geranium                     0.574 0.795 0.970 1.064 1.064 0.980 0.780
grape hyacinth inflores      0.390 0.520 0.630 0.7Q0 0.760 0.770 0.660
hawthorn                     1.230 1.560 1.770 1.820 1.760 1.540 1.160
honesty                      0.440 0.590 0.690 0.715 0.715 0.630 0.520
hypericum                    0.590 0.870 1.040 1.190 1.270 1.280 1.100
ivy leafbud                  0.670 0.920 1.080 1.170 1.160 1.060 0.860
jasmine, winter              0.400 0.600 0.730 0.825 0.890 0.890 0.780
kale (flower bud)            0.705 0.950 1.090 1.180 1.190 1.110 0.900
knapweed                     0.940 1.260 1.450 1.540 1.550 1.390 1.080
larch (male flower bud)      0.945 1.325 1.505 1.590 1.595 1.460 1.210
lime leafbud                 0.385 0.555 0.665 0.755 0.790 0.765 0.545
mahonia                      0.540 0.700 0.790 0.835 0.840 0.790 0.645
narcissus                    0.260 0.370 0.450 0.510 0.545 0.550 0.510
phlox, dwarf                 0.425 0.580 0.670 0.730 0.750 0.745 0.540
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Scotland cont.
                               F    E     D     T C B     A
potentilla                   1.020 1.420 1.650 1.765 1.730 1.620 1.340
oak leafbud                  0.385 0.575 0.720 0.R50 0.920 0.920 0.780
poplar (leaf bud)            0.280 0.435 0.550 0.650 0.715 0.710 0.620
poppy                        0.440 0.675 0.890 1.040 1.120 1.095 0.915
poppy (another variety)      0.475 0.725 0.885 0.980 1.005 0.935 0.765
primrose                     0.565 0.755 0.880 1.020 1.075 1.085 0.885
pussy willow (catkin)        0.305 0.425 0.490 0.520 0.530 0.510 0.455
red may                      1.280 1.650 1.840 1.935 1.840 1.630 1.270
rhododendron                 0.620 0.930 1.140 1.260 1.300 1.215 1.000
sage                         0.400 0.760 0.990 1.170 1.260 1.280 1.190
sea thrift                   0.520 0.780 1.007 1.180 1.264 1.260 1.160
sibirica                     0.490 0.640 0.756 0.810 0.310 0.760 0.625
snowdrop                     0.344 0.440 0.525 0.590 0.610 0.600 0.550
speedwell                    0.423 0.665 0.840 0.953 1.000 0.965 0.830
star of Bethlehem            0.355 0.510 0.605 0.675 0.700 0.695 0.635
stitchwort                   0.403 0.550 0.670 0.770 0.805 0.765 0.660
strawberry, wild             0.675 0.980 1.140 1.245 1.290 1.200 0.925
summer snow                  0.510 0.720 0.825 0.865 0.860 0.810 0.655
summer snow ii               0.470 0.640 0.790 0.840 0.850 0.810 0.700
sycamore flower bud          0.545 0.730 0.840 0.900 0.910 0.880 0.745
sycamore 1eafbud             0.485 0.695 0.835 0.910 0.930 0.890 0.800
syringa                      0.410 0.660 0.860 0.970 0.980 0.900 0.740
veronica                     0.425 0.630 0.745 0.785 0.815 0.795 0.650
water lily                   0.390 0.580 0.740 0.850 0.890 0.860 0.750
whort1eberry                 0.610 1.010 1.253 1.373 1.400 1.370 1.325
wild iris                    0.260 0.380 0.460 0.500 0.486 0.445 0.397
wood sorrel                  0.445 0.640 0.790 0.890 0.940 0.895 0.770
wood sorrel (dif. year)      0.330 0.500 0.620 0.690 0.715 0.700 0.625
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Australia
                               F    E     D     T C B     A
boromia                      0.960 1.395 1.685 1.840 1.870 1.760 1.470
camelia                      0.670 1.045 1.305 1.460 1.515 1.430 1.230
Christmas bells ?            0.630 0.860 1.010 1.075 1.100 1.010 0.830
clematis, bush               0.475 0.700 0.870 0.950 0.950 0.870 0.700
epocris                      0.255 0.425 0.590 0.700 0.730 0.815 0.790
eriostemon i                 0.550 0.760 0.905 0.995 1.025 1.000 0.800
eriostemon ii                0.695 0.970 1.150 1.245 1.300 1.320 1.180
eriostemon iii               0.490 0.575 0.840 0.965 1.030 1.055 0.940
eucalyptus i                 0.740 1.000 1.195 1.310 1.360 1.355 1.180
eucalyptus ii                0.375 0.695 0.980 1.200 1.370 1.465 1.495
gardenia                     0.495 0.750 0.870 0.995 1.050 1.030 0.905
hibertia stricta             0.450 0.695 0.935 1.105 1.210 1.230 1.130
hibiscus i                   0.390 0.575 0.715 0.810 0.840 0.815 0.715
hibiscus ii                  0.915 1.270 1.490 1.570 1.570 1.450 1.200
hibiscus iii                 0.330 0.520 0.695 0.760 0.815 0.850 0.825
mallow                       0.305 0.450 0.585 0.700 0.780 0.800 0.745
wild vine                    0.275 0.460 0.660 0.850 1.015 1.095 1.050
unidentified i               0.415 0.575 0.735 0.855 0.955 0.990 0.950
unidentified ii              0.810 1.195 1.465 1.625 1.685 1.630 1.435
unidentified iii             0.340 0.485 0.585 0.620 0.660 0.660 0.590
unidentified iv              0.530 0.775 0.905 0.985 0.995 0,935 0.310
unidentified v               0.315 0.500 0.705 0.910 1.105 1.180 1.070
unidentified vi              0.460 0.635 0.770 0.815 0.835 0.840 0.685
unidentified vii             0.435 0.635 0.750 0.825 0.875 0.895 0.775
unidentified viii            0.535 0.740 0.825 0.855 0.825 0.735 0.570
unijentified ix              0.455 0.635 0.755 0.830 0.855 0.830 0.710
unidentified x               0.510 0.730 0.895 0.990 1.020 0.965 0.845
unidentified xi              0.495 0.730 0.900 1.000 1.020 0.975 0.815
unidentified xii             0.515 0.750 0.885 0.990 1.045 1.055 0.905
unidentified xiii            1.105 1.450 1.605 1.600 1.430 1.190 0.880
unidentified xiv             0.185 0.290 0.380 0.455 0.500 0.520 0.505

New Zealand
apple                        0.810 1.080 1.250 1.330 1.310 1.205 0.990
berberis                     1.140 1.465 1.545 1.545 1.425 1.230 0.940
cabbage (flower plant)       0.815 1.150 1.325 1.395 1.400 1.275 1.020
cabbage tree                 0.845 0.970 1.030 1.030 0.970 0.850 0.645
california fuschia           0.440 0.710 0.930 1.090 1.190 1.190 1.090
camelia                      0.740 1.140 1.410 1.540 1.580 1.460 1.200
chinese lantern              0.810 1.130 1.360 1.480 1.510 1.420 1.180
clematis, bush               0.710 1.055 1.230 1.305 1.290 1.170 0.900
cress                        0.745 1.040 1.195 1.250 1.210 1.085 0.920
daphne                       0.460 0.650 0.785 0.870 0.895 0.840 0.715
diosma                       0.310 0.540 0.700 0.840 0.865 0.820 0.710
flax                         0.310 0.470 0.625 0.770 0.880 0.945 0.820
fremontia                    0.445 0.730 1.010 1.250 1.425 1.455 1.335
geranium                     0.490 0.700 0.840 0.915 0.920 0.825 0.665
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                               F    E     D     T C B     A
ginger                       0.650 0.830 0.890 0.910 0.900 0.845 0.705
holly                        1.260 1.510 1.585 1.535 1.390 1.170 0.830
horopito                     1.170 1.790 2.270 2.540 2.610 2.530 2.225
indian hawthorn, pink        0.545 0.830 1.085 1.290 1.405 1.430 1.340
indian hawthorn, white       0.495 0.780 1.045 1.200 1.270 1.230 1.070
iris, new zealand            0.705 0.925 1.060 1.115 1.110 1.030 0.850
jasmine, minature            0.470 0.710 0.930 1.075 1.160 1.150 1.140
japonica                     0.620 0.965 1.220 1.365 1.420 1.410 1.285
karaka                       0.825 1.175 1.420 1.550 1.580 1.520 1.330
keria                        0.330 0.525 0.690 0.815 0.903 0.945 0.880
lady's smock                 0.355 0.550 0.640 0.685 0.590 0.670 0.590
lemon                        1.065 1.395 1.510 1.515 1.415 1.210 0.925
magnolia                     0.290 0.465 0.600 0.660 0.690 0.680 0.630
magnolia stellata            0.320 0.440 0.520 0.615 0.695 0.695 0.570
magnolia,port wine           0.520 0.790 0.965 1.095 1.150 1.120 0.975
malus                        0.700 0.965 1.125 1.175 1.170 1.085 0.900
maori privet                 0.730 1.200 1.590 1.795 1.850 1.820 1.635
ngaio                        0.480 0.720 0.865 0.915 0.940 0.950 0.800
oxalis                       0.265 0.375 0.450 0.505 0.520 0.490 0.425
peach                        0.795 1.135 1.345 1.400 1.485 1.405 1.118
periwinkle                   0.370 0.530 0.670 0.815 0.940 1.020 1.020
pimpernel, scarlet           0.435 0.610 0.765 0.890 0.990 1.022 0.920
poroporo                     0.760 0.985 1.095 1.125 1.090 1.010 0.830
quince                       0.425 0.710 0.945 1.085 1.175 1.160 1.025
rose, wild                   0.360 0.560 0.745 0.930 1.080 1.140 1.020
tawari                       0.840 1.250 1.570 1.760 1.870 1.860 1.560
vibernum                     1.010 1.420 1.610 1.720 1.760 1.640 1.260
wiegela                      0.625 0.810 0.895 0.900 0.850 0.750 0.595
unidentified i               0.850 1.255 1.600 1.745 1.780 1.675 1.400
unidentified ii              0.750 0.920 0.980 0.935 0.820 0.660 0.420
unidentified iii             0.220 0.335 0.440 0.545 0.640 0.705 0.555
unidentified iv te mata?     0.285 0.435 0.525 0.590 0.535 0.615 0.540
unidentified v               1.070 1.480 1.730 1.875 1.960 1.890 1.600
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