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Abstract.

Optimization problems arising from engineering design problems often involve
the solution of one or several constrained minimaz optimization problems. It is
sometimes crucial that ail iterates constructed when solving such problems satis{y a
given set of ‘hard’ inequality constraints, and generally desirable that the (maximum)
objective function value improve at each iteration. In this paper, we propose an
algorithm of the sequential quadratic programming (SQP) type that enjoys such pro-
perties. This algorithm is inspired from an algorithm recently proposed for the solu-
tion of single objective constrained optimization problems. Preliminary numerical

results are very promising.
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1. Introduction.

Many problems encountered in the design of engineering systems can be

expressed in the form of a multiobjective optimization problem

Py { e e g )
st. g;(2)<0 j=1, - 'm
where f;:R"—R, i=1, -1 and ¢;:R"—R, j=1, - m, are smooth func-
tions. Usually, a design parameters vector z minimizing all the functions f;,
t=1, - - - | over the feasible domain does not exist. Problems of this type have been
widely studied in the literature (see 1] for an excellent survey). Typical approaches
make use of a real-valued preference function u(f,, - - - f;) expressing how satisfied
the user is with some given values of the objective functions. The search for an

‘optimal’ design parameter vector then amounts to solving a standard optimization

problem of the form

{ max v {f (z), - [i(z)}

st. g;(z)<0 j=1," - m

An important shortcoming of this type of approach is that a preference function is
generally difficult to express a prior:. Thus, typically, tradeofl between the various
objective functions must be explored interactively. However, such tradeoff explora-
tion can meaningfully take place only once some ‘hard’ constraints are satisfled.
These constraints, expressing hard design specifications such as stability or physical
realizability, are such that their violation would result in a design of no practical
value. Since typically, in a design environment, functions evaluations call for compu-
tationally expensive system simulations, it is essentially required that hard con-

straints be satisfied at each iteration. To help tradeoff exploration, it is also



desirable that the design obtained after each iteration improve on the previous one.

The ideas just outlined are essential components of the design methodology pro-
posed in [2] , where the preference function is the ‘max’ function of suitably scaled

objectives. Problem (P,) then becomes

minf (z)
(P) {s.t. z €X
where f ()4 max{f ,(z), - - fi(z)} and X={z s.t. 9;(2)<0 j=1, - -m}.
Here the f;’s are scaled versions of the ones in (P,) and their scaling is interactively

adjusted by the designer ( see also [3]).
In this framework, the stipulations pointed out above amount to the require-

ment that, given z, € X, the optimization algorithm construct a sequence {z; }f’;o

such that, for all &,

7 € X
(0)
J (@ ST (%)

where we have assumed, for simplicity of exposition, that all constraints are hard.
Algorithms satisfying these requirements are available in the literature (see e.g., {2] ).
They have been used very successfully in solving engineering design problems arising
in diverse application areas 4,5, 6], However, they suffer from an important
shortcoming in that they are generally slow, as their rate of convergence is at best
linear. Superlinearly convergent algorithms for solving (P ) have been proposed (see

e.g. {7, 8] ) but they do not satisfy requirements (0).



In [8] , an algorithm satisfying the requirements just outlined was proposed for
the case of a single objective function (/==1). This algorithm is of the ‘sequential
quadratic programming’ (SQP ) type and, under mild assumptions, exhibits a super-
linear rate of convergence. Such an algorithm can be used here if (P) is reformu-

lated as the single objective problem in (z,z)

- minz
(P) st. fi(@)<z i=1, - -1
9;(z)<0 j=1, - - m.

Clearly, solving this problem using the algorithm in [9] would satisfy our require-
ments. It turns out however that a simpler algorithm can be shown to also meet

these requirements. Presenting this algorithm is the object of this paper.

The balance of the paper is as follows. In section 2, the new algorithm is stated
and the differences, in comparison with that obtained by using on (P ) the algorithm
in [9] , are briefly discussed. In section 3, convergence and rate of convergence are

analyzed. Conclusions are presented in section 4.

2. The Algorithm.

For a given design parameter vector ¢ and a direction d, we will make use of

the linearized function obtained from f at z in the direction d by

fz.d)2 max {[i(z)+<V/ilz)d>},

i=1,

and of the Lagrangian function associated with a point z and some multiplier vec-

tors \ and u



L (I »x’#)——“z‘])‘i fi (.’L‘) + 2”’) g] (Z )
t J

The algorithm can now be stated.

Algorithm A.
Parameters.

o€ (o,-;—), BE (0,1), ¥>2, k>2, 7€ (2,3).

Data.
Feasible starting point z, € X

Symmetric positive definite matrix H, € R" X",

Step 0.

Set k = 0.

Step 1. Computation of a search direction.

i) Solve

min -;—dTde + max (fi(m) + <V i(z).d>)
;max
(@F) st. g;(7¢) + <Vygj(zp)d> < 05=1, "m

to obtain the auxiliary direction d;°.
If | ;% = 0 stop.

ii) Solve

min -lz—dTde + max I{f,-(xk)+<‘7fi(-’rk),d>}
i1t

(@F) st g;(z) + <vg;(zp)d> < - |40V =1, m

to obtain the search direction d;. If (@P ) has no solution go to (iv).

Problem (QP ) is equivalent to the following quadratic program in d and 6



min —l-dTde + 6
i.é 2
s.t. f,-(zk) -+ <Vf,(zk),d>_<_5 1‘=1, S|

9;(z) + <vgij(m)d> < - ||V j=1,- - m.

We will denote by A\, and p, the multiplier vectors associated respectively
with the problem objectives and constraints.
Set Oy =1 (zp,d) - [ (%)
If 6, >min(- | d;° | %~ | d; | ), go to (iv).
iii) Compute a correction :1 ¢ » solution of the quadratic program
.1
min —(|d |?)

(QP) st filze +di) + <V/i(@m)d)=F;(z +dp) +<vfj(m)d>Yij €l
9;(zp +di) + <vg (% )d>=-|d°|" Vi€

where I} and J, are defined as
L={i st. [;(z) + <V /[i(z)dp >=[ (2 .4 )}

i Je={7 st. g; (z¢) + <vy; (7). dy >= - [d,°]"}.
If (QP) has no solution or if | d; | > | d; |, set d,=0.

Proceed to step 2.
iv) Compute a first order feasible descent direction dj .
The requirements on this direction are obvious modifications of those in. (9]

Set d k =0.

Step 2. Line search.

Compute #, the first number ¢ of the sequence { 1, ,B,ﬁz, } satisfying

[z +tdy +t%d,) < [ (z,) +ath, ()

gj(-"’k ‘r"tdk +t2dk)_<_0j=1,~~-m. (2)



Step 8. Updates.
Set 7 =23 + tp dy + t,,zc} k-
Compute a new positive definite approximation Hy,, of the reduced Hessian
matrix using the following modified BFGS formula, due to Powell {10].

H. S, STH, 2z, 27
+
sd Hy sy sfz

Hk+1=Hk -
where the quantities involved are defined as follows
Sg=Zp 41— g

Ve =Vl (Zpgr e i) — Vo L (2 2 1g)

4" =9yk + (1——9)Hk Sk

with

{ 1 ifSZTyk ZO.2SkTHk S
o O.SSkTHk S

7 7 otherwise.
sg Hy sp ~ sk %

Set k =k -+ 1.

Go back to step 1.

Clearly, algorithm A is largely inspired from the algorithm proposed in {9] for
the constrained minimization of a smooth function. The reader is referred to that
paper for a motivation of the main ideas. A difference that may not have been intui-
tively expected is the presence in Algorithm A of constraints on the objectives f;’s
in (QI;), while in [9] this quadratic program only involves the constraint functions.
While this set of constraints in (Qf’) is vacuous when only one objective is present
(since, in that case, |I, | = 1), its presence is essential in order to eventually

achieve a unit step size, a necessary condition for superlinear convergence (see lemma



8 below).

As pointed out earlier, this algorithm is simpler than that obtained by applying

to (P) the algorithm in [9], Differences are as follows

(1)

(2)

(3)

(4)

Matrices H, estimate the projection in IR" of the Hessian of the Lagrangian
function, since its other components are trivially known. This idea was

already used by Han [7, 8],

The higher order correction in the ‘g’ constraints in (@P ) and (QP ) involves
a vector in IR", whereas transposition of the algorithm from [9] to problem

(P) would yield a correction involving a vector in R"11
(QP) involves a minimization in IR" rather than R" .

The line search test involves f directly instead of the z variable of probiem
(P). It may be of interest to notice, in particular, that after modifications (2)
and (3) are performed, a direct transposition of the line search in [9] may not

yield a positive step, let alone a unit step.

3. Convergence analysis.

Except for that of lemma 8, proofs are omitted, as they are simple modifications

of proofs given in {9].

We suppose that, for any z € X, the sets {¢f;(z), ¢t € I(z)} and

{vgj(z ), 7 € J(z)} are individually made up of linearly independent vectors, where

I(z)& {i st. fi(z)=f(z)} and J(z)4& {j st. g;(z)=0}, and that there exists

some positive constants h, and h, st. h, < |H, | <h,Vk € N. Under these

assumptions, convergence of the algorithm can be proven.



Theorem 1.

Algorithm A either stops at a Kuhn-Tucker point or generates a sequence {z; }

for which each accumulation point is a Kuhn-Tucker point for (P ).

[

In order to prove superlinear convergence, we will now further assume that the
functions f;,1=1,---1l, g; j=1,---m are three times continuously
differentiable. We also suppose that the sequence possesses an accumulation point

z". In view of theorem 1, the Kuhn-Tucker necessary conditions
* ¥ *
Ve L (I :>‘ o )20

E)\JZI

]
X\ >0and p* >0

gi(z)<0j=1,- - m

N =f (@ ))=0 1=1, -1
l‘;‘*gj(x')=0 j=1, " m

are satisfied for some multipliers vectors A" and p'. Finally, we will suppose that
z* satisfles the second order sufliciency conditions with complementary slackness i.e.
N>0 it fi(z )=/ (z")

;tj'>0 iff gj(x')=0

and ., L (z“,\",1") is positive definite on the subspace S” of directions tangent to

the active constraints gradients defined by



10

S*'={p st. T bst. <vfi(z*)p>=6Vi €I(z")and <yg;(z")p>=0Vj €J(z")}.

A straightforward result comes from these assumptions.

Lemma 2.

The entire sequence converges to = '
»
In the sequel, we will assume that the sequence of approximate reduced Hessian
matrices converges to a matrix whose orthogonal projection on the subspace S’ is
equal to the corresponding projection of ¥,, L (z',)\',u'). The BFGS update used

in algorithm A is known to generally enjoy such properties.

Lemma 3.
For k large enough,
i) (@QP) has a unique solution, {d,°}—0, and {d; }—0, where d,° and d, are com-
puted through step 1 (i) and (ii).
i) {Ove e )} =),

i) I, =J(z") and Je=J(z ).

Lemma 4.
There exist some constants C';>0, C,>0 and an integer K such that the solu-

tions of (@P,) and (@QP ) satisfy

C,l1d0|<|d | <Cy|d0| Wk > K
{
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Following are two key lemmas leading to the superlinear convergence theorem.
Lemma 5 establishes that, in a neighborhood of z ', the second order method (steps
(1), (ii), (iii)), is employed. The result given in lemma 6 relies crucially on the use of
the correction ;1 ¢, resulting in a line search along an arc similar to the line search
developed in |11} It asserts that the Maratos effect {12] is avoided, i.e., the stepsize

one is eventually achieved, allowing superlinear convergence to take place. The proof
[

of lemma 6 is not a simple modification of a proof in (9]

Lemma 5.

There exists a positive constant 77" such that, for k large enough, the solution d
of (QP) satisfies the inequality
O=1 (ze.d)- [ (z) < -7 di |2
Thus, in view of lemma 3(i) and lemma 4, the second order direction is always used

when z; is close enough to x ‘.

Lemma 6.
For k large enough, the stepsize {; is one.

Proof.

We will suppose in what follows that k is large enough so that I(z')zlk and
J(z")=J,. Existence of such a k is guaranteed by lemma 3. For future reference,

the Kuhn-Tucker conditions associated with the solution d; of (QP ) are as follows:

S O vSi@m)y+ Y (ee);veiz) + Hy dp =0 ()
ielz’) j€eJ@iE")
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9;(2) + <V (@)l >< - | 4’| j=1,---m (4)
)i >0, (u); 20 i €1(z"), j €J(z") (5)

¥ ()=l
i€lz) ¢ (6)

As in {11}, it is possible to show that, for k large enough, the correction d; on

the search direction is always well defined and satisfles
dp=0(]d |?. (7)
Two conditions are needed for the line search to yield a unit stepsize, namely
feasibility of the resulting point (2) and sufficient decrease (1). Expanding g; around

z; + d; and using lemma 3, lemma 4 and (7) gives, for § € J(z "),

9i(zp +dp +dy)=g;(zp +dp)+<vg;(zp +dp)d;>+0(|d |
=g (7 +dp)+<vg;(z)dy>+0(]d |

=-1d’| "+ 0(]d"]?. (8)

The last term is negative for k large enough since the sequence {d,’} converges to

zero. Thus the feasibility condition is satisfied.

Expanding f; around z; + d;, fors € I(x') and making use of (7}, we get

Ji(zy + d; 'f"}k):fi(zk +dk)+~<Vfi(Ik):‘}k> +0(]d |3

In view of the first set of constraints in (QP ), this yields

filap +dp +dp)=F;(zx +dp +d})+O0(|de |HVi,j EI") (9)
Also, since the sequence {7; +d; +d ; } goes to z* as k goes to infinity, we have

f (zk+dk+dk)= mla(x.){f,-(x,,%-dk—}-dk)}
1 €I(z

Thus, using (9) and (6), we obtain, for k large enough,
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f@trdird)= 5 Ou)ifi(met+di+dg) +0(]dg |3,
ielz")

Expanding the functions f; around z, and adding and subtracting f (2 ), we get

J (3 +dy +;‘k)=f (zi)+ 8 Ow)i{film) +<9fi(z).dy >-f (zk)+<st(1k)»;ik>
ieliz’)
+—;-dkTan;(Ik)dk} +O0(|dg |®

In view of the definition of #, in step 1(ii) of algorithm A, the above can be written

as

[l dy +d)=0 @)+ 20+ 5 Owilfi@m) + </im)d >-1 @)

ielz")

+ Y )i{<vSizm)d > +—;-dkTszf;($k)dk}+0(ldk ).
teliz”)

Using (5) and the definition of f , we get

[ +d +d)-f @IS0 +2 8% <v/ilz)d>

telz®)
) 1
+ 9 Opi{<vSi(m)dy > + E‘dkTsz Filme)de} + 0 (1 de |®).
ieliz")
Now, (3) and (7) yield

Y )<V i@y >=— % () <vg;(z)d > - dTHy dy
ieliz") jel(E=")
and
S )i <vfi@m)di>=- 8 (1); <vg;(z)d i >+0(| d, | 3).
ieiz”) i€tz

Plugging these values into the previous expression gives

flap +dp +dp)>f (m)S20 - = 5 (m); <V9;(x)dy >
2 J€TE"
y 1 1
- (I‘k)j<vgj(xk):dk>“?dkTdek +5 Y )i dT v, Fi(m)ds
ji€d=z") T€1(z”)
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+O(]dg |® (10)

Using lemma 3 and lemma 4, we get
) 1
S +dp +dp)-f (@) - B () <99 (% ).de >
i€tz

- 1
- Y (M) <vg(zm)dy> - ‘LdkTHk d +— 5 Op)idd v fi(a)d
JEeJ(z") 2 ielz®)

";‘. 2‘(l‘k)jgj(zk)"f'o(ldkIV)‘/"O(‘dkis) (11)
jE€EJ(@E®)

Now, since the g;’s are three times continuously differentiable, the relation

gj(:ck +dk +dk)=0(|dk|r) jEJ(I*)
obtained in (8) yields, for j € J(z*),

- 1
9;(z) + <V (3),dp > + <Vg; (7). d > + ;dkTsz 9;(z)dy=0(|d |7

hence,

- Y ()j<vgi(m)di>- Y () <vgj(z)dy >=
jediE") j€d(z”)
1
¥ (pe)jgi(a) + ry Y ) AV gi(m)de + O d | D).
j€essz") j€J@E")
Substituting those values into (11), we obtain

f@+d +d)-f@)-af S (- +5 F (m);05(m)
JEJE")

1
+ =4I Y M)iVafi@) + Y () Ve 95 (@) - Hy)dy
iel(z®) JEJE")

+O0(|d |N+0(]d |V (12)

Due to the convergence of the projections of the approximate Hessian matrices, we
can easily show that the right hand side of (12) is nonpositive for k large enough (see
{8] for more details). Thus the ‘sufficient decrease’ condition is satisfled, and the

proof is complete.
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Theorem 7.

Under the stated assumptions, the convergence is two-step superlinear, i.e., the

following relation holds

4. Conclusion.

Many engineering design applications can be transcribed into a formulation that
involves the solution of one or several minimax optimization problems. [2] Iterative
methods used to solve these problems are required to generate feasible iterates that
mark an improvement of the objective value at each tteration. In this paper, we have

presented a superlinearly convergent method enjoying these properties.

Whereas algorithm A makes use of a BFGS update formula, our results can be
easily extended to the case of other, possibly indefinite, estimates of the Hessian of
the Lagrangian. Such an extension is considered in {9] in the case of a single smooth

objective function.

Algorithm A is being implemented in the DELIGHT interactive software sys-
tem for optimization-based design {13, 4]. Preliminary testing on engineering design

problems is very promising.
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