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This dissertation evaluates, refines, and extends to a new paradigm, a set of 

stochastic models that describe the cognitive processes of individuals while they 

complete multiple trials of the Balloon Analogue Risk Task (BART; Lejuez et al., 

2002). Wallsten, Pleskac, and Lejuez (2004) designed the models using prospect 

theory and a Bayesian learning process to better understand why the BART correlates 

so well with self-reported risky behaviors. The models differed in terms of the 

individuals’ beliefs of the task’s probabilistic structure and when option evaluations 

occur. The models revealed that although respondents use a Bayesian learning 

process to understand the task, they misunderstand the BART’s stochastic process as 

stationary. Results also indicated that individuals’ attitudes toward outcomes are, in 

part, a source of the BART’s success. From these conclusions a new task was 

developed that allows manipulations of both the actual stochastic structure and the 



  

individuals’ level of knowledge regarding the structure. Participants (N = 71) 

completed four different conditions of the task. Fitting the various cognitive models 

to each individual’s data revealed that only a subset of the models correctly 

distinguished between the stochastic processes underlying the different conditions. 

Incorporating prospect theory’s weighting function and a trial-dependent bias 

component into the models accounted for performance differences between 

conditions. Of the assorted model parameters, only prospect theory’s value function 

correlated with external self-reported risky drug use. The results also showed that the 

learning component of the original BART may cloud its association to risky 

behaviors. Implications in terms of gambling tasks and the cognitive models will be 

discussed. 
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Introduction 

 Different methodologies can be used to identify individuals predisposed to risky 

behavior. A common method is to ask them to complete scales, such as the Sensation 

Seeking Scale (Zuckerman, 1990) or the Domain Specific Risk Attitude Scales (Weber, 

Blais, & Betz, 2002). Laboratory-based gambling paradigms are another option. Rather 

than reading and answering questions, respondents  play a game for multiple trials 

involving real money. These paradigms have been successful in both identifying 

individuals predisposed to risky behavior and investigating neuropsychological 

components involved in decision making (see Bechara, Damasio, Damasio, & Anderson, 

1994; Hoffrage, Weber, Hertwig, & Chase, 2003; Lejuez et al., 2002; Slovic, 1966).  

The Balloon Analogue Risk Task (BART; see Lejuez et al., 2002) is one such 

paradigm. Performance in the BART correlates with numerous self-reported risky 

behaviors, including drinking alcohol, smoking cigarettes, using illegal drugs, gambling, 

not wearing a seat belt, engaging in unprotected sex, and stealing (see Lejuez, Aklin, 

Jones et al., 2003; Lejuez, Aklin, Zvolensky, & Pedulla, 2003; Lejuez et al., 2002). 

Although laboratory-based gambling tasks provide an appealing alternative to scales and 

questionnaires, little is known as to why they are successful at identifying risky 

individuals. To this end, Wallsten, Pleskac, and Lejuez (2004) formally modeled the 

behavior of decision makers (DMs) in the BART to isolate the cognitive processes they 

were using.1 The work showed that multiple processes are used during the task to learn, 

evaluate options and choose. Moreover, the modeling process isolated the BART’s 

association with risk propensity as residing in both the evaluation and response processes; 

                                                 
1 Busemeyer and Stout (2002) have done a similar procedure to analyze the cognitive processes involved in 
the Bechara gambling task. 
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thereby suggesting that excessive risk taking, in part, may be due to both DMs’ attitudes 

towards outcomes, and their insensitivity to an evaluation.  

 The model development also unearthed several issues regarding the BART and 

the models themselves. A set of these issues revolve around the stochastic process that 

controls the task, and individuals’ level of knowledge about the process. Interestingly, the 

models revealed that a Bayesian process is used to learn about the task, but that DMs 

incorrectly assume the task is controlled by a stationary process. In this paper, I will use 

systematic changes to a new task’s probabilistic structure to (1) investigate how 

performance is affected at the empirical level, (2) evaluate our (Wallsten et al., 2004) 

four most successful cognitive models, (3) examine possible modifications to the models, 

and (4) provide external and empirical validation for the model(s) that best describes the 

data. Next, I will describe the BART and introduce the four most successful cognitive 

models.  

The BART and cognitive models of performance 

During the BART, participants successively face a series of h simulated balloons 

on a computer. For each balloon, they sequentially click a button on the screen to inflate 

it, placing x¢ in a temporary bank for each click or pump. But, with each pump, the 

balloon has a chance of exploding. In fact, unbeknownst to them, the allowable number 

of pumps for each balloon is set at n = 128, with each pump a priori equally likely to 

produce an explosion. Consequently, after each successful pump the probability of an 

explosion increases for the next, with the nth pump resulting in a certain explosion. Two 

events end the trial: an explosion or when DMs choose to stop. If an explosion occurs, 

then the money in the temporary bank is lost. But, if they stop pumping, then money 
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moves from a temporary to a permanent bank. Typically, the BART is played for 30 trials 

(balloons) and the measure of performance is the average number of pumps per balloon 

excluding ones that exploded (adjusted BART score). 

 Our (Wallsten et al., 2004) models operate on a more fine-grained level of 

performance than the adjusted BART score, focusing on each of the DMs’ choices to 

pump. Each model predicts the probability of pumping balloon h at pump i. The four 

most successful models presume DMs evaluate the gains and/or losses for each pump and 

then probabilistically choose to pump or stop based on a response rule incorporating their 

evaluation. Finally, they learn from experience, updating their opinion about the 

likelihood of the balloon exploding in subsequent trials. The models differ in the DMs’ 

representations of the probabilistic structure of the balloon and when option evaluations 

occur. Table 1 provides a summary of the four models. Next, I will describe the models 

in terms of the two differences among them, beginning with the possible beliefs of the 

stochastic process.  

Table 1. A display of the four most successful models and their relation to each other. 

DM’s representation of the stochastic process 
 Non-stationary 

process, increasing 
probability 

Stationary process 

Prior to beginning 
each balloon PENi PES 

Time of evaluation 
process 

Sequentially with 
each pump SENi SES 

 
The DM’s representation of the stochastic processes 

The BART’s instructions are vague as to what determines the balloon’s explosion. 

This leaves an individual DM left to draw his/her own conclusions regarding the 

stochastic process governing the balloon. Two plausible beliefs are of a stationary 
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process resulting in a constant explosion probability across pumps or a non-stationary 

process where explosion probability increases with each pump. I will describe the latter 

first, which also introduces how the balloon is actually programmed to explode. 

Non-stationary stochastic process with increasing probability. There are many 

ways the DM could characterize a non-stationary process. One possibility is to assume 

the correct representation, but be unsure of the parameters governing the process. In the 

task, the computerized balloon allows a maximum of n pumps and a priori is scheduled to 

explode on a random pump between 1 and n, with the a priori probability of any given 

pump being 1/n. Thus, the probability of it exploding on the first pump is 1/n, on the 

second pump given that it didn’t explode on the first 1/(n-1), etc. In general, the 

probability of an explosion on pump i given i - 1 successful pumps is expressed as,  

pi = 1/(n - i +1), where pi is the probability that the balloon will burst on pump i. The 

BART is usually programmed so that n = 128. Without that information, the DM might 

understand the general structure, but be unsure of n’s value. Hence, we modeled his/her 

prior opinion of n for balloon 1 with a discretized gamma distribution over n (see Figure 

1), fully described by its mean, µG, and variance, σG
2.2,3 

                                                 
2 The gamma distribution is a continuous distribution that is sometimes specified by the parameters ν and τ, 

Where µG = ντ and σG
2= ντ2. The continuous gamma distribution function is ( ) ( )

11 xf x x e τν
νν τ

−−=
Γ

. 

3To obtain the discrete approximation to the gamma distribution, we integrate the distribution from 
5.0−= nx to 5.0+= nx  for each ∞= ,,2,1 …n  and then normalize to account for the lost area 

from 0 to 0.5.  
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Figure 1. Two discretized gamma distributions with different means and variances.  

 

The mean of the gamma distribution represents the DM’s best estimate, prior to the first 

balloon, of the maximum number of pumps allowed, 1n̂ . The variance indexes his/her 

confidence in that guess. Both the mean and variance of the gamma distribution are free 

parameters estimated from the choice data. Using the estimated mean of the gamma 

distribution, the subjective probability of the first balloon exploding on pump i is 

1ˆ ip =1/( 1n̂ - i +1). Notice that we have added an additional subscript to index the DM’s 

changing opinion over balloons. In general, we will use h to index balloon or trial 

number. Thus, for example, we will write ˆhip to index his/her estimate of balloon h 

exploding on pump i. 
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 We assumed after each balloon the DM learns from his/her experience updating 

his/her prior distribution over n, p(n). The updated distributions do not retain the 

properties of a gamma distribution; consequently, the revision process is fairly involved. 

However, the following equation captures the process,  

( )
( ) ( )

( ) ( )
1

1 1

1 1

| , , , ,

h

h

h
d h

h h
h

h h h
d h

h h
n h

s n c p n n
p n c d c d

s n c p n n

′

′

′
′ ′

′=
∞

′
′ ′

′ ′= =

 − 
=

 ′ ′ ′− 

∏

∑∏
(1)

where ch′ is the number of pumps taken on balloon h′, 




′
′

=′ popnot  did balloon  if 1
popped balloon  if 0

h
h

dh  

and '

0 *
1 *h

if n c
s

if n c
<

=  ≥
 for ( )1* , , hc Max c c= . A proof of this result can be found in 

Wallsten et al. (2004) and Appendix A. The expected value for the updated distribution 

for balloon h+1, following balloon h, is used to represent the new best estimate of the 

maximum number of pumps allowed, 1ˆ +hn , and is subsequently used for the subjective 

probability of balloon h+1 bursting, ihp ,1ˆ + . This process exemplifies the role of learning 

in the task and allows n• to vary for each balloon. 

Stationary process. Alternatively, the DM could mistakenly characterize the 

balloon as governed by a stationary Bernoulli process with the probability of the balloon 

exploding, ph, and not exploding, hh pq −=1 , remaining constant over pumps. We 

modeled the initial uncertainty in q1 with a beta distribution described by parameters a0 

and m0, subject to the constraint that 0 0 0m a> >  (see Figure 2). 4 

                                                 
4 The beta distribution function is 

( ) ( )
( ) ( )

( ) ( )( )00 110 0
0 0 0

0 0

1 , 0 1baa b
f x x x b m a and x

a b
−−Γ +

= − = − < <
Γ Γ

. 



 

 7 
 

 
Figure 2. Two beta distributions differing in their estimate and confidence of q1. 

 
Its mean is used to represent the DM’s estimated probability of no explosion for the first 

balloon exploding, 1q̂ . Formally, this is expressed as 1q̂ = a0 / m0. Both a0 and m0 are free 

parameters that are estimated from the choice data and have a psychological 

interpretation. The more certain the DM is about the value of q prior to observing any 

data, the greater is m0 and the greater the DM thinks q is prior to observing data, the 

greater is a0 relative to m0. 

The beta distribution is a conjugate distribution of the binomial. If the DM 

assumes this representation, the balloon’s explosion is a binomial event. Modeling the 

updating process of this representation is more straightforward. After observing the data 

the posterior distribution over qh+1 retains the properties of the prior distribution over qh, 
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but its parameters change. For example, after the first balloon, regardless if the DM 

stopped or the balloon exploded, m0 is incremented by the number of pumps, c1, made on 

the first balloon, m1 = m0 + c1. If the balloon did not explode, a0 is also incremented by c1, 

a1 = a0 + c1. However, if the balloon exploded then it is incremented only by the pumps 

that resulted in no explosion, a1 = a0 + c1-1. The DM’s estimate of 2q̂ is a1/m1. In general, 

the expression for the DM’s estimate of 1ˆhq +  following experience with h balloons can be 

written as  

( )
1

0
1

1 1

0
1

ˆ

h

h h
h

h h

h
h

a c d
q

m c

−

′ ′
′=

+ −

′
′=

+ −
=

+

∑

∑
(2)

 

where 






 ′

=′ not didit  if  0
popped balloon  if 1 h

dh . We turn next to the two possible evaluation 

processes, and then combine them with the two possible representation of the balloon’s 

stochastic process just developed.  

The DM’s evaluation process 

To model the DM’s evaluations of pump options, we (Wallsten et al, 2004) 

incorporated prospect theory’s value function (Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992). This theory presumes that the DM perceives values as changes from a 

reference point rather than in terms of absolute wealth. It also includes the idea that 

“losses loom larger than gains.” More specifically, the DM considers the absolute value 

of losing $10 to be greater than the absolute value of gaining $10. The value function is 

usually expressed as a two-part power function:  
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( )






<−−
≥

= −

+

0
0

xx
xx

xv γ

γ

θ
(3)

Where x is the amount gained on each pump and γ +, γ -, θ  > 0. In past work, γ+ and γ - 

were found to be less than one, suggesting diminishing sensitivity of gains and losses. 

Additionally, θ is usually greater than one indicating loss aversion. Figure 3 displays a 

value function with these characteristics. 

 
Figure 3. Prospect theory’s value function for a range of gains and losses.  

 
When applying these ideas to the BART, there are two different points in time that the 

DM might evaluate his/her per pump option of either pumping or stopping: (1) 

sequentially, prior to each pump of the balloon, or (2) prior to beginning to pump each 

balloon. With prospect theory the two approaches can lead to different choices. 

 Sequential evaluation. If the DM evaluates options sequentially, then the 

reference point is assumed to be the current pump, i, for balloon, h. Thus, with each 
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pump, either (i-1)x¢ can be lost or x¢ gained. In addition, the chance of either a gain or 

loss is conditional on the fact of i-1 successful pumps. Accordingly, a sequential 

evaluation of the option to pump leads to the following expression, 

( ) ( )( ) −+

−−== γγ θ xipxqEb hihihihi 1ˆˆpump (4)
where γ+, γ- and θ, are free parameters that must be estimated from the choice data.  

 Although the DM’s evaluation is deterministic, his/her choice of whether or not to 

pump seems more plausibly described as probabilistic. If so, the probability of choosing 

to pump, hir , should strictly decrease with bhi and assuming no response bias equal .5 

when 0=hib . The response rule expressed as, rhi = exp(βbhi)/[1+exp(βbhi)], captures 

these properties. The free parameter β  indexes the sensitivity to bhi.  

Table 2. A full specification of all four models. The number of free parameters vary for 
each model depending on whether or not respectfully the Bayesian subcomponent is 
needed. 

Model 
numb

er 
pars 

Evaluation of each pump Maximizing 
pump 

Response 
rule 

SENi 6/4 ( ) ( )( ) −+

−







+−

−







+−

−
== γγ θ xi

in
x
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n
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hh

h
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1

1ˆ
1ˆ

pump   
hi

hi

b

b

hi e
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β

+
=

1

PENi 4/2 [ ] +−
= γix

n
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h

h
hi ˆ

ˆ
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ˆ
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γ
γ h

h
n

G  hidhi e
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1
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b

hi e
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1

 
Combined, the sequential evaluation subcomponent in equation 4 and the DM’s 

two representations of the balloon’s structure yield two sequential evaluation models. 

Each is shown in the third column of rows 1 and 3 of Table 2. Integrating the output of 

the evaluation subcomponent with the response rule produces two complete models: 
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SENi (Sequential Evaluation Non-stationary process Increasing probability) and SES 

(Sequential Evaluation Stationary process Increasing probability) found in Table 1. 

Prior evaluation. In contrast to sequentially evaluating his/her options, the DM 

may plan how many pumps to carry out prior to each balloon, selecting the number of 

pumps that maximizes his/her expected gain. In this case, the reference point is located 

prior to the first pump for each of the h balloons. Due to the BART’s payoff structure, 

evaluations are now only in terms of gains. In addition, each outcome is weighted by the 

joint probability of successfully pumping the hth balloon i times. The expected gain for 

each pump is expressed with the following equation  

( )( )hi hiE pump t ix γ += (5)
where thi is the probability of pumping balloon h, i times in succession without exploding. 

Taking the derivative of Equation 5, setting it equal to 0 and solving for i, produces the 

pump number that maximizes one’s gains for balloon h, Gh. Each solution is specific to 

the presumed stochastic structure. The maximizing pump column in Table 2 lists the 

solution for the two models. The parameter γ+ for both models must be estimated from 

the choice data. 

 Having selected Gh, the DM is assumed to probabilistically pump balloon h on 

pump i. In addition, we also assumed that the probability of taking the i'th pump on the 

h’th balloon, hir , strictly decreases with each pump and, is equal to .5 when i = Gh 

without a bias. Formally, the response rule, rhi = 1/[1+exp(βdhi)], captures these 

properties where dhi = i - Gh, and β is a response parameter representing sensitivity to the 

evaluation. The parameter β also must be estimated from the data. Incorporating the prior 

evaluation sub-components with the above response rule produces two more fully 
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specified models, PENi (Prior Evaluation Non-stationary process Increasing probability) 

and PES (Prior Evaluation Stationary process).  

Past work and predictions 

Wallsten et al. (2004) used maximum likelihood estimation procedures to fit a 

dataset of 58 participants and compared the four models presented here. The participants 

completed both the BART and a battery of self-reported risky-behavior questionnaires 

(see Lejuez, Aklin, Jones et al., 2003). In addition, they fit two other models to the data, a 

baseline model that was estimated directly from the data (see Appendix C), and a simple 

target model with non-Bayesian learning. The latter model presumed that (1) DMs 

selected a target pump and probabilistically pumped to their target, and (2) after each 

balloon individuals learned from their experience by adjusting the target up or down 

based on the previous outcome.  

All four evaluation-based models fit the data substantially better than either of the 

alternative models; thereby, suggesting that (a) the DMs learn with experience in the task, 

(b) that this learning process is well approximated by a Bayesian process, and (c) that 

they evaluate possible outcomes rather than merely setting a target number of pumps. In 

addition, SES and PES, the models presuming a constant balloon explosion probability, 

had a better fit than PENi and SENi. To better distinguish between PES and SES, their 

MLL estimated parameters were correlated with participants’ self-reported risky 

behaviors. Only PES’s valuation parameter (γ+) and response sensitivity (β) were 

significantly associated with the self reports. None of SES’s parameters were 

significantly correlated with the self reports. As a result, Wallsten et al. (2004) selected 
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PES as the model that best represented the cognitive processes of participants during the 

BART. 

These results and conclusion are relatively surprising. In particular, the suggestion 

that DMs use an optimal Bayesian learning process, albeit the wrong process for the 

task’s actual structure, generates the need for further investigation of both the task and 

the models. A natural inquiry is whether the cognitive models could distinguish between 

DMs’ different perceptions of the two stochastic processes under conditions in which 

they are made fully aware of the different structures. In terms of model comparison and 

selection, the models assuming a stationary stochastic process (PES and SES) may be in 

fact mathematically more flexible than the non-stationary models (PENi and SENi). 

Consequently, they may provide a better fit to the data regardless of whether or not the 

DM clearly understands the stochastic process. To investigate this issue, it is necessary to 

manipulate the task structure so that the stochastic process governing the outcomes is 

either stationary or non-stationary. Changing the structure also allows us to examine the 

generalizability of the task and its relation to self-reported risky behaviors to alternative 

stochastic environments.  

A second inquiry resides with the lack of a correlation between the learning 

process parameters (e.g., a0 and m0) and risky-behavior. It implies that the BART’s 

procedure of obscuring the correct structure may be adding unnecessary noise. In fact, 

work with similar tasks (see Hoffrage et al., 2003; Slovic, 1966) suggests the learning 

component is unnecessary when seeking to predict risky predisposition of individuals. In 

this case, the cognitive models would be simpler, no longer needing the Bayesian 
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component. It is an open question as to how well the cognitive models fit the data and 

their MLL parameter estimates correlate with self-reports under these conditions.  

To investigate both these issues simultaneously a different task is needed that both 

holds true to the BART’s general scheme, but increases the transparency of the stochastic 

process. The Angling Risk Task (ART; see Figure 4) does that. Briefly, the ART, as the 

name implies, is a fishing game analogous to the BART and judgment and decision 

making’s task of “balls in the urn”. During the task, participants take a trip to a pond that 

has 1 blue fish and n -1 red fish. With each cast of a fishing rod, participants hook a fish 

(each fish is a priori equally likely to be caught). If it is red, then they earn x¢ and can 

cast again. But, if it is blue, then the trip to the pond ends and the money earned on that 

trip is lost. The pond’s release law can be changed, thereby changing its stochastic 

structure. Participants can be forced to practice catch ‘n’ release, creating a stationary 

process, or catch ‘n’ keep, a non-stationary process. In addition, the parameters governing 

the stochastic processes can be masked by having the participant fish on a cloudy day so 

that they can not see how many fish are swimming in the pond, or can be exposed by 

having them fish on a sunny day so that the number of fish swimming in the pond are 

visible.  

Having participants complete all 4 pond conditions allows us to examine the 

questions/hypotheses laid out in the prior sections and listed here. Do the cognitive 

models distinguish between participants’ different perceptions of the two stochastic 

processes under conditions in which they are made fully aware of the different structures? 

To what extent does the correlation between task performance and self-reports generalize 

to alternative stochastic processes? Does the BART’s procedure of obscuring the 
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balloon’s structure cloud the correlation between performance and self-reports? How 

does the fit of the cognitive models change when the Bayesian learning components are 

not needed? After describing the experiment and its results, I also expand the prior 

evaluation models to include both a trial-dependent bias component and prospect theory’s 

weighting function to better handle the data. 

 
Figure 4. Screenshot of the ART. The weather conditions and conservation law change 
the task. During cloudy days, the fish in the pond are not shown to the participants. 
During Catch ‘n’ Release, the cooler is closed and the fish are returned to the pond rather 
than the cooler. 
 

Method 

Participants 

A total of 72 participants were recruited from the University of Maryland 

community using advertisements placed throughout the campus. The sample consisted of 

38 men and 34 women, ranging in age from 18 to 34 (M = 21.6 and SD = 3.9). Fifty-six 
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percent were White, 18% were Black/African American, 17% were Asian/Southeast 

Asian, 4% were Hispanic/Latino and the remaining 6% marked other or chose not to 

respond to the question. They were paid $7 for their time. In addition, participants earned 

a bonus based on a random set of their pond trials. 

Materials 

The ART. During a trial (trip to a pond), participants were shown a pond on the 

screen (see Figure 4). At the beginning of each trip, the pond had 1 blue fish and n-1 red 

fish. Below the pond were two buttons and an information panel. One button was labeled, 

“Go Fish.” Pressing it caused the rod on the left of the screen to cast a line into the pond 

and hook a fish. Each fish was equally likely to be caught on a given cast i.5 If a red fish 

was caught, then x¢ was placed into the “Trip Bank” shown on the information panel. 

What happens next depends on the release law. If the law was catch ‘n’ keep then the red 

fish was placed in the cooler on the right of the screen, reducing the number of red fish in 

the pond by one. In contrast, if the law was catch ‘n’ release then the red fish was placed 

back into the pond. Either way, participants got another opportunity to cast the line into 

the pond for that trip. However, if a blue fish was caught, then the trip ended, participants 

lost their money in the “Trip Bank” and began a new trip. However, if participants 

decided to stop fishing during a particular trip before catching a blue fish, they pressed 

the “Collect” button to transfer the money to the “Tournament Bank” on the information 

panel and began a new trip. 

                                                 
5 For the remaining of the paper, the terms pump, explosion, and balloon/trial used to describe the BART 
will be replaced with the ART terms of cast, blue fish, and trip/trial, respectively, for a particular pond. In 
addition, the term tournament will describe the particular conditions the participant fished under. For 
example, the participant competed in a cloudy, Catch ‘n’ Release tournament.  
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In addition to the two different release laws, there were two different types of 

weather. If the weather was sunny, as indicated by the weather forecast in the bottom 

right, the pond was clear and the participants could see how many fish were in it at all 

times. In addition, the information panel listed how many red and blue fish were in the 

pond before each cast. However, if the weather was cloudy, then the pond was murky 

concealing the number of fish in the pond and the information panel was blank. 

Combining the two release laws with the two weather forecasts produced four different 

fishing tournaments/conditions. 

 Drug and alcohol questionnaire. As a measure of risk propensity, participants 

completed a drug-use questionnaire, which referred to eleven categories of drugs 

including, cannabis, alcohol, cocaine, MDMA (ecstasy), stimulants (e.g., speed), 

sedatives/hypnotics, opiates, hallucinogens, PCP, inhalants, and nicotine. The 

questionnaire asked three questions each: (1) Have you ever used drug (Yes or no)?; (2) 

About how often did you use drug in the past year (Never, One time, Monthly or Less, 2 

to 4 times a month, 2 to 3 times a week, or 4 or more times a week)?; (3) During the 

period in your life when you were using drug most frequently, about how often were you 

using (Never, One time, Monthly or Less, 2 to 4 times a month, 2 to 3 times a week, or 4 

or more times a week)?  

As a measure of propensity towards risky behavior, I used the following two 

indices based on participants’ responses: (1) The total number of drug categories tried 

and (2) the weighted sum of drug categories tried, with the weights determined by 

responses to the third question. These measures or variants of them have been effectively 

utilized in past studies and the occurrences of these risk behaviors have been shown to 
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correlate with paper and pencil measures of sensation seeking and impulsivity (see 

Lejuez et al., 2002; 2003a,b). 

 Domain specific risk-attitude scale (Weber, Blais, & Betz, 2002). This scale, 

developed and validated by Weber et al. (2002), contains 40-items that assess an 

individuals’ likelihood to engage in risky behavior in 6 domains: ethics, investment, 

gambling, health/safety, recreational, and social. Two separate variants of the scale also 

assess an individual’s perception of the magnitude of the risk for and expected benefit 

from each of the 40 risks. 

Design and procedure 

The study used a 2 (release law) x 2 (weather) within subject design. Participants 

fished in all four pond tournaments (conditions), and completed the four risk 

scales/questionnaires. Each tournament gave participants h = 30 trips to the pond to cast 

for as many red fish as they chose, earning 5¢ per cast. Each pond had nwl fish, where w 

= s,c for sunny or cloudy, respectively, and l = k,r for keep or release, respectively. Both 

weather conditions of catch ‘n’ keep, began with n•k = 128 fish in the pond, while the 

catch ‘n’ release conditions had n•r = 65 fish. Thus, in terms of maximizing earnings in an 

expected value sense, the optimal number of casts in all four conditions was about 64. 

The order with which participants experienced each tournament and completed the risk 

questionnaires/scales was counterbalanced. All eight tasks were programmed using Sun 

Microsystem’s Java language and are available upon request. The experiment was 

administered on PC computers in separate sound attenuated laboratory cubicles.  

After reading and signing the informed consent form, participants read an 

introduction set of instructions on the computer. They were told that they would be 
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playing four different fishing tournaments, each having different rules and conditions. 

The instructions then described the two different release laws and the two different 

weather conditions they would experience. In addition, the participants were informed 

that between each fishing tournament they would fill out a questionnaire assessing their 

own risky behavior. 

Next, the participants completed four practice rounds, one for each tournament 

condition. This experience served to both reinforce their understanding of the different 

fishing tournaments and demonstrate that the ponds could have any number of fish. 

Before each practice round, participants were reminded of the conditions they would 

experience in the pond. They were then shown a window in which they were allowed to 

select how many fish they wanted in the pond (1 to 360). Finally, for each practice round 

they made two trips to the pond during which they cast for red fish as many times as they 

chose to. 

After completing the practice rounds, they began the experimental sessions, 

starting with a risk questionnaire and then alternating between questionnaire and 

tournament for the remainder of the experiment. Before each tournament, participants 

were briefly reminded of the rules governing the pond they were about to visit. At the end 

of the experimental session, they completed a set of questions regarding the strategy they 

used to fish in the tournaments. First, they were asked to describe their strategy by typing 

it into a window with the following instructions: 

“The strategy you describe should specify how you played the games in such full 
detail – describing your action in every contingency— so that if you were to write 
this all down, hand it to someone else, and go on vacation, this other person 
acting as your representative could play the tournaments just as you would have 
played it…” 
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After explaining their strategy, participants were asked to classify it into one of the six 

categories shown in Table 3 based only on the description. 

Table 3. Five strategies among which participants selected as reflective of what they used 
during the fishing tournament, and the number of participants who chose each one. When 
choosing among strategies, they only saw the description. 

Strategy name Description number of votes 

Prior evaluation 

 
Prior to each fishing trip I selected the number of ‘Go Fish’ 
presses or casts that I thought would maximize my earnings for 
that trip. I then pressed the ‘Go Fish’ button with that number in 
mind, but sometimes, on a whim, I would stop short. Other times, 
I might go past that number. But, by and large, I would stop after I 
reached that number. 
 

39 

Sequential 
Evaluation 

 
Before I pressed the ‘Go Fish’ button I would assess my situation. 
I would weigh the benefit of catching one more red fish, against 
the cost of catching a blue fish. By and large, I would stop once I 
reached the point at which the costs outweighed the benefits. But, 
sometimes, on a whim, I would stop short, other times I would go 
past that point. 
 

7 

Satisficing 

 
Before I pressed the ‘Go Fish’ button, I considered my present 
state of affairs and decided whether I had reached a satisfactory 
state. Although I possibly could have made more money, the place 
where I stopped was good enough for me. 
 

10 

Minimize regret 

 
As I pressed the ‘Go Fish’ button, I chose to stop when I had 
reached the point at which I felt I would have the least amount of 
regret if I lost my winnings for that trial. 
 

6 

Target strategy 

 
I did not really consider the money when I played the fishing 
game. Rather, before each visit, I selected how many times I 
expected I could press ‘Go Fish’ before catching a blue fish. Then 
I cast the line that many times. 
 

4 

None 
 
None of the strategies listed describe what I used. 
 

5 

 
At the conclusion of the session, the computer produced four tables showing how 

much money participants earned on each trip (trial) during the four tournaments. A trip 

from each tournament was then chosen randomly (four trips total) and participants were 

paid based on the selected trials. Participants were guaranteed $7 plus the money earned 
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in the above selected trials. The whole experimental session took a little over an hour to 

complete. 

Results 

The results are organized in the following manner. (1) The data are analyzed with 

conventional methods aggregating and averaging the adjusted ART score across 

participants. (2) Results from fitting and comparing the four original models at the 

individual level are presented. (3) Recognizing some needed extensions to the models, 

two additional subcomponents, a trial-dependent response bias and weighting function 

components, are developed. With these extensions the best-fitting models are refit to the 

empirical dataset. (4) The most useful model’s MLL parameter estimates are correlated 

with the self-reported drug and alcohol use and are used to gain insight to an individual’s 

performance during the tournaments.6 

Model-free analyses 

The model free analyses utilize the adjusted ART score as the dependent variable, 

which is the average number of casts participants made on fishing trips during a 

tournament for which they did not catch a blue fish. Using the adjusted ART score, 

Figure 5 shows that the participants’ behavior changed depending on the fishing 

tournament they were in. Recall that in all four fishing tournaments, the optimal number 

of casts per trip to maximize expected value was 64. While less than this, the mean 

adjusted ART scores suggests that participants cast more frequently in the catch ‘n’ keep 

than the catch ’n’ release condition (F(1,70) = 17.90, p < .001, MSE = 105.17), and more 

frequently in the sunny weather conditions than cloudy, (F(1,70) = 16.25, p < .001, MSE 
                                                 
6 One participant grew agitated during the experiment and did not complete the session. 
he/she will not be included in subsequent analyses. 
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= 144.45). Finally, the change from sunny to cloudy had a larger effect in the catch ’n’ 

keep condition as indicated by a significant interaction between release law and weather 

(F(1,70) = 4.80, p = .03, MSE = 38.79). The catch ‘n’ keep mean adjusted ART 

significantly decreased from 38.96 under sunny weather to 31.59, using Tukey’s HSD 

q(3,210) = 7.05, p < .01 with the MSE from the interaction. While Catch ‘n’ Release 

decreased from 32.19 to 28.06, using Tukey’s HSD q(3,210) = 3.95, p < .05. 

 

 
Figure 5. The average adjusted ART score across participants for the four different 
fishing tournaments. Points represent the average adjusted ART; vertical lines depict 
standard errors of the mean, estimated from the MSE of the interaction. 

   
 Table 4 shows correlations among the adjusted ART scores, demographic 

variables, Weber et al.’s (2003) six domains of risky behavior, and self-reported drug and 

alcohol use. Notice that the correlations between the adjusted ART scores and DrugSum, 

DrugWeighted, and nicotine, are larger in the sunny conditions than the cloudy 
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conditions, providing preliminary evidence that the BART’s concealment of the actual 

stochastic process reduces its correlation to real-world risky behaviors. Further discussion 

of these results are relegated to the discussion. 

 The correlation between the Weber et al.’s (2003) social domain and DrugSum on 

the one hand, and the lack of a correlation between the health domain and DrugSum on 

the other on the other, is rather surprising because the latter actually contained items on 

drug and alcohol use. Interestingly, none of the domains correlated with performance in 

the ART. This result in conjunction with the significant correlation between the ART’s 

sunny conditions and the self-reported drug use, suggests that the two types of predictors 

are accounting for unique variance in self-reported drug use. This indeed is the case. The 

average adj. ART score significantly accounts for a unique proportion of the variance in 

DrugWeighted (sr2 = .14, t(65) = 3.42, p = .001), as does the average response on the 

social domain (sr2 = .09, t(65) = 2.70, p = .008). These analyses are not the whole story. 

For that we will evaluate and use the cognitive models. 
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Model analyses 

The four cognitive models summarized in Table 1 and Table 2 each predict the 

probability, rhi, of cast i on trip h. They differ in when the DM evaluates options and in 

his/her representation of the stochastic process. The models are estimated at the level of 

the individual using his/her entire dataset, not just the trials when he/she chose to stop. 

Consequently, the models can offer a different account of performance during the fishing 

tournaments. 

 The data. Figure 6 uses the baseline model (see Appendix B) to characterize the 

data in terms of rhi. Briefly, the baseline model uses the proportion of casts made for each 

cast opportunity i across all 30 trips as an estimate for rhi, assuming that if DMs chose to 

stop on cast i they would stop on all subsequent casts. Averaging these estimates across 

all 71 participants for each tournament produces Figure 6. It shows that both within and 

between tournaments there is a large amount of variability in the data. In fact, the 

adjusted ART score appears to capture only a small portion of the variability. The graphs 

demonstrate that participants did in fact cast beyond the adjusted ART score. In fact, the 

catch ‘n’ release condition by definition allowed them to cast more than the catch ‘n’ 

keep. This indeed happened as the graph and data show. In addition, they also caught a 

higher proportion of blue fish in these conditions.  
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Figure 6. The estimated average probability of casting for each cast opportunity in the 
four fishing tournaments. The averages (solid lines) are based on the baseline model 
estimates from all 71 participants (see Appendix B). The solid lines only extend out to the 
maximum cast taken per tournament among all 71 participants. The dotted lines represent 
the 95% confidence interval for each cast’s estimate. As one can see there is a large 
amount of variability in the data, which itself varies between fishing tournaments.  

Model estimation. Although the baseline model was easily estimated, the 

remaining cognitive models required more effort. Each model was fit to each individual’s 

data from each tournament using maximum likelihood methods. Let the vector 

( ), 1 1 2 2, ' ' 30 30, , , , , , , ,w l h hY c d c d c d c d=  be the observed data from tournament w,l, where 

w = s or c for sunny or cloudy, respectively, l = k or r for keep or release, respectively, 

'hc is the number of casts for attempt h’, and hd ′  is whether the DM stopped (1) or not (0). 

The log likelihood of the observed data, Yw,l, for each of the models is defined as: 

( ) ( ) ( ) ( ) ( )
'

' '

130

, 1 1 2 2, ' ' 30 30 ' ' ' ' ' '
' 1 '

, , , , , , , , ln 1 ln ln 1
h

h h

c

wl h h h i h h c h h c
h i

L c d c d c d c d r d r d r
−

=

 = = + − + − ∑∑  (7)

where each model predicts rhi. 
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None of the cognitive models have a closed form solution to find the maximum 

log likelihood (MLL) estimates of the parameters. Consequently, the solutions were 

estimated with numerical optimization techniques, of which there are many. Both past 

experience and simulations have shown that a Nelder-Mead downhill simplex routine 

(available in Mathwork’s Matlab) combined with a grid-search technique is the most 

successful at both reaching a solution and guarding against local maxima (see Appendix 

C). To estimate the models, I imposed constraints on some of the parameters to facilitate 

the optimization procedure. In particular, the valuation exponents and the mean of the 

discretized gamma distribution were constrained such that, 0 , 3γ γ+ −≤ ≤  

and 00 1000µ≤ ≤ . 

Fitting the models to the data from the sunny weather tournaments also proved 

informative as to the limits of different stochastic representations. Recall that during 

these conditions the parameters controlling the pond’s probabilistic structure were 

transparent to the participants. In other words, they knew that the catch ‘n’ release pond 

had 65 fish and the catch ‘n’ keep pond had 128 fish, making the models’ Bayesian 

subcomponent unnecessary and reducing the number of model parameters by two. 

However, this alteration makes fitting PENi and SENi to the catch ‘n’ release, sunny 

tournament problematic, as the models don’t sensibly allow for a DM to make more than 

65 casts. Similarly, although PES and SES do allow for the behavior observed in 

catch’n’keep, fitting them to the data leads to extreme and unreasonable parameter 

estimates. Close inspection of the prior evaluation models (PE•) also revealed that, if 

allowed to, both PE• models would produce the same fit to the data. Consequently, only 
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the prior and sequential evaluation models that assume the correct stochastic structure 

(non-stationary or stationary) were fit to the data to yield the subsequent results.  

Model comparisons. The models have different numbers of parameters (2 or 4 

under the sunny weather condition and 4 or 6 under cloudy) and are not nested; thus, 

standard maximum-likelihood ratio tests are not available to evaluate them. Akaike’s 

information criterion (AIC; Akaike, 1973) is one common method used to compare the fit 

of non-nested models at a descriptive level. It is a function of both the maximum log 

likelihood of the data given the model (LL) and the number of parameters in the model. 

The latter is used as a heuristic measure of complexity (i.e., the more parameters the more 

complex the model). AIC is calculated as, 2 2AIC LL k= − + . The model with the smallest 

criterion measure is selected as the best-fitting model, handicapping models with more 

parameters. However, simulations that I will present shortly suggest that AIC does not 

necessarily lead to the correct conclusion. As a result, I present comparisons at the level 

of the individual based on both AIC and the maximum LL.  

Tables 5 and 6 show how many participants were best fit by each model using 

either LL or AIC. Comparing the LL of each model at the level of the participant, Table 5 

shows that under cloudy conditions in catch ‘n’ keep a majority of participants were fit 

best by SES, which presumes an incorrect stationary process. However, when the model 

fits were handicapped by the number of parameters, AIC resulted in a plurality of 

participants best fit by PENi, which assumes the correct stochastic process. A similar 

pattern emerges in the sunny conditions of catch ‘n’ keep. SENi, the sequential 

evaluation model, fits a majority using LL as a measure of fit, but PENi fits a majority 

with AIC. Noticeably the baseline model does appear to fit a few participants best in each 
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condition. Closer scrutiny of the data of these individuals showed that these participants 

were quite consistent in their behavior (i.e., always casting 15 or 16 times). Table 6 

exhibits analogous results for the catch ‘n’ release tournaments. Under both weather 

conditions, SES is fit best by a plurality of participants using LL, while PES is fit best by 

a plurality using AIC.  

Table 5 Model comparison analysis of the cloudy and sunny catch ‘n’ keep tournaments. 
The df for each model are in parentheses next to the respective model. The df for the 
baseline model ranged between 13 and 106 for the cloudy condition, and 13 and 121 for 
the sunny condition. In the sunny conditions, only the models that assumed the correct 
stochastic process could reasonably be fit to the respective conditions. 

  Catch 'n' Keep 
  Cloudy  Sunny 

Model 

Mean 
LL 

Num. 
DM's 

best fit 
with LL 

Mean 
AIC 

Num. 
DM's 

best fit 
with 
AIC 

 Mean 
LL 

Num. 
DM's 

best fit 
with LL 

Mean 
AIC 

Num. 
DM's 

best fit 
with 
AIC 

Baseline -209.90 1 525.99 0  -211.05 4 549.87 1 
PES (4,2) -73.84 3 155.68 17      
PENi (4,2)  -73.19 10 154.37 27  -78.06 23 160.12 52 
SES (6,4) -71.56 42 155.12 20      
SENi (6,4) -72.92 15 157.83 7  -73.94 44 155.88 18 

 

Table 6 Model comparison analysis of the cloudy and sunny catch ‘n’ release 
tournaments. The df for each model are in parentheses next to the respective model. The 
df for the baseline model ranged between 13 and 106 for the cloudy condition, and 7 and 
168 for the sunny condition. In the sunny conditions, only the models that assumed the 
correct stochastic process could reasonably be fit to the respective conditions. 

 Catch 'n' Release 
 Cloudy  Sunny 

Model 

Mean 
LL 

Num. 
DM's 

best fit 
with LL 

Mean 
AIC 

Num. 
DM's 

best fit 
with 
AIC 

 Mean 
LL 

Num. 
DM's 

best fit 
with LL 

Mean 
AIC 

Num. 
DM's 

best fit 
with 
AIC 

Baseline -159.59 3 414.25 0  -184.45 3 483.30 1 
PES (4,2) -60.70 9 129.40 31  -69.26 4 142.51 60 
PENi (4,2)  -61.46 9 130.92 18      
SES (6,4) -58.87 33 129.74 12  -68.32 64 144.65 10 
SENi (6,4) -60.30 17 132.60 7      
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 These results are a little puzzling. On the one hand, the LL comparisons lead to a 

conclusion that participants are evaluating their options consistent with the sequential 

evaluation models (SE•). But, SES incorrectly fits the data best under both cloudy 

tournaments, indicating that it may be too flexible a model. On the other hand, the AIC 

comparisons lead to a conclusion that participants are performing consistent with the 

prior evaluation models (PE•). Under cloudy conditions the prior evaluation models 

appear to correctly distinguish between the stochastic processes, which is a nice result 

considering past work showed that the DM incorrectly believed the non-stationary 

process to be stationary (i.e., PES fit the BART best). Table 7 looks at this result more 

closely and shows that this indeed is the case when focusing only on the prior evaluation 

models under cloudy weather. The column labeled prior compares the number of DM’s 

best fit with the two prior evaluation models in both release conditions, removing 

individuals best fit by the baseline model. The column labeled sequential does the same 

for the two sequential evaluation models and shows that the sequential models do not 

differentiate the processes.  

Table 7 The number of DM’s best fit within the PE• and SE• models under cloudy 
conditions, removing the participants for whom the Baseline was the best fit. 

 Prior  Sequential 
 PES PENi  SES SENi 
Catch 'n' Keep 24 46  52 18 
Catch 'n' Release 44 24  45 23 

 Rather than conditionalizing on the time of evaluation, we can conditionalize on 

the presumed stochastic process. The top half of Table 8 does so, comparing the prior and 

sequential evaluation models under cloudy conditions, assuming the correct stochastic 

process. The empirical dataset row substantiates the result that the sequential evaluation 
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models (SE•) are selected with the LL comparisons while the prior evaluation models 

(PE•) are selected with AIC, holding all else constant.  

Table 8 The number of DM’s best fit within •Ni and •S under cloudy conditions for both 
the empirical and simulated datasets. In the empirical dataset, participants best fit by the 
baseline model were removed from these comparisons.  

   Catch 'n' Keep  Catch 'n' Release 
   PENi SENi  PES SES 

 Num. DM's best fit with LL 33 37  17 51 Emprical 
dataset  Num. DM's best fit with AIC 59 11  50 18 
        

Num. DM's best fit with LL 49 51  58 42 with Prior 
evaluation Num. DM's best fit with AIC 69 31  94 6 
       

Num. DM's best fit with LL 27 73  17 83 
Simulated 
dataset with 

Sequential 
evaluation Num. DM's best fit with AIC 51 49  65 35 

 

Table 9 The number DM’s best fit in the simulated dataset within •Ni and •S under sunny 
conditions. In the empirical dataset, participants best fit by the Baseline model were 
removed from these comparisons.  

  Catch 'n' Keep  Catch 'n' Release 
  PENi SENi  PES SES 

Num. DM's best fit with LL 36 64  4 96 Prior 
Evaluation Num. DM's best fit with AIC 97 3  96 4 
       

Num. DM's best fit with LL 12 88  1 99 Sequential 
Evaluation Num. DM's best fit with AIC 80 20  94 6 

A simulated dataset was produced to further investigate this comparison. To do 

so, the MLL parameter estimates for 10 random participants were used to generate a 

dataset in which the simulated participants played all 4 tournaments with the prior 

evaluation models and the sequential evaluation models, assuming the correct stochastic 

process. Each simulation was repeated 10 times per simulated participant, resulting in a 

dataset with 100 tournament plays per evaluation time (PE• or SE•) across participants. 

The bottom rows in Table 8 labeled simulated dataset include the results from fitting both 

PE• and SE• models to the respective conditions generated under cloudy conditions. 
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Unfortunately, the same patterns of results occur. The sequential evaluation models (SE•) 

are selected with the LL comparisons while the prior evaluation models (PE•) are 

selected with AIC, even under conditions in which sequential evaluation models actually 

generated the data. Table 9 confirms the identical pattern in the sunny conditions. These 

troubling results suggest that neither LL nor AIC necessarily identify the correct model. 

The former does not sufficiently account for the complexity of the model, while the latter 

overcompensates. Other measures are available to select among models that attempt to 

account for both a model’s goodness of fit and complexity. An explanation of these 

measures is left for the discussion. 

 The prior evaluation models do appear to best describe the cognitive processes 

used during the fishing tournaments. First, past work and the present study jointly 

demonstrate that the prior evaluation models can discriminate between circumstances in 

which the DM incorrectly and correctly represents the stochastic process. Second, the 

present experiment suggests that the sequential evaluation model SES is too flexible a 

model, fitting all four tournaments the best using LL as a goodness of fit measure. 

Finally, a majority of participants identified the prior evaluation strategy as consistent 

with their own strategy (see Table 3). Tables 10 and 11 summarize the MLE parameter 

estimates for the prior evaluation models with the correct stochastic process in each 

tournament. For the remainder of the paper, I will focus on the prior evaluation models, 

PES and PENi, and their fit to their respective release law conditions. Next I will 

examine possible extensions to them, incorporating prospect theory’s weighting function 

and a bias component. Although both components could easily be included in the 

sequential models, evidence already suggests that at least SES is already too complex. 
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Table 10 MLE parameter estimates summary for PES in Catch ‘n’ Release tournaments. 
The last two columns summarize the mean and variance of the initial beta distribution 
and are calculated from a0 and m0. 

 Catch 'n' Release: PES 
 Sunny  Cloudy 

 β γ+  Β γ+ A0 m0 ( )1qE  )ˆvar( 1q  

Mean 0.16 1.17  0.93 0.78 5.94E+06 6.93E+06 0.98 2.49E-04 
1st Quartile 0.06 0.63  0.14 0.38 102.47 104.85 0.97 5.00E-06 
Median 0.11 0.98  0.19 0.65 328.71 334.73 0.98 4.44E-05 
3rd Quartile 0.15 1.45  0.34 0.99 1465.59 1494.97 0.99 1.80E-04 
IQR 0.09 0.82  0.20 0.62 1363.12 1390.12 0.02 1.75E-04 

 

Table 11 MLE parameter estimates summary for PENi in Catch ‘n’ Keep tournaments 

 Catch 'n' Keep: PENi 
 Sunny  Cloudy 
 β γ+  Β γ+ µ0 σ02 

Mean 0.69 1.74  0.29 1.09 137.06 3.67E+17 
1st Quartile 0.08 0.59  0.10 0.53 43.68 1.82E+02 
Median 0.11 1.78  0.16 0.90 82.48 2.12E+03 
3rd Quartile 0.16 2.97  0.31 1.25 160.27 5.56E+03 
IQR 0.08 2.38  0.21 0.73 116.59 5.38E+03 

 

Extending the models 

During this section I develop and test two additional subcomponents of the prior 

evaluation models (PE•): a trip-dependent bias component and prospect theory’s 

weighting function (see Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). The 

former captures unique strategies of participants and the latter accounts for their 

perception of probabilities. Each is developed in turn. 

The bias component. Our initial work with past data found that an added bias 

parameter in the response function that remained constant across trials did not 

significantly improve the fit of the models.7 However, close investigation of the exit 

                                                 
7In the current dataset, fitting the models with a constant bias parameter in the sunny conditions did 
significantly improve the fit of the models, but not in the cloudy conditions. The trip dependent bias 
component improved the fit in all four conditions and better captured the strategies explained in this 
section. 
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interviews revealed a number of participants reported doing either of two actions during 

the tournaments. One behavior is best identified as “Testing the waters.” One participant 

described this stating, “I started each round by casting out as many times as I could until I 

caught a blue fish.” In other words, an initial bias existed to go past the cast that 

maximizes gains. A second and related tactic labeled “Go for broke” by one participant 

occurred when he/she got bored during the tournament and decided to see how far he/she 

can get. Another participant described this stating, “After a while I got bored and started 

pushing to see how high I could get up to around $4.” To account for these trip sensitive 

actions a bias component can be added to the response function. This hypothesis is 

formalized by assuming the bias changes over trips and is most prevalent at either the 

beginning or the end of a tournament according to this expression: 

( )exp 15 1h z hζ  = − −  (7)
Negative and positive values of z characterizes the “Test the waters” and “Go for broke” 

strategies, respectively. If z = 0 then the participant exhibits no trip dependent bias. The 

response function with the bias component is now expressed as 

1
1 hi hhi dr

eβ ζ−=
+

(8)

 
The addition of the bias component can be tested against its absence with the 

likelihood-ratio test, ( ) ( )2 2 'G L M L M = −  . Where L(M) and L(M’) are likelihoods of 

the general and restricted models, respectively. The statistic is asymptotically χ2
 

distributed with df equal to the difference in the number of the parameters. In this case, 

the general models are those that contain the bias component. The bias-free models are 

the restricted models with z = 0. Fitting the prior evaluation models (PES and PENi) to 

the respective tournaments and summing the log-likelihoods across all 71 participants’ 
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results in one ratio test per tournament with 71 df (1 parameter difference for 71 

participants). All four tests indicated the necessity of a trip dependent bias component. 

The tests for the bias component in PENi under sunny and cloudy conditions resulted in, 

G2 = 915.87, p < .01 and G2 = 105.54, p < .01, respectively. A similar result was found 

with PES, G2 = 436.85, p < .01 and G2 = 168.34, p < .01. Although particular individuals 

in specific tournaments did not statistically need the bias component, the extensive 

amount of individual differences among participants within and between each tournament 

resulted in its need across participants and tournaments. Based on this need, the bias 

component will be integrated into the models as the weighting function’s use is 

examined. 

 The weighting function. Kahneman and Tversky’s (1979; 1992) prospect theory 

hypothesizes that individuals distort probabilities in a nonlinear fashion, overweighting 

small probabilities and underweighting large probabilities. Like the value function, the 

weighting function also tends to exhibit diminishing sensitivity as one moves away from 

the reference points of 0 and 1. In other words, increasing the probability of winning a 

prize from 0 to .1 or decreasing from 1 to .9 has more impact than a change from .3 to .4 

or .7 to .6. These properties give rise to a function that is concave near zero and convex 

near one, as displayed in the far left panel in Figure 7 (see Gonzalez & Wu, 1999; 

Kahneman & Tversky, 1979; Luce, 2000; Prelec, 1998; Tversky & Kahneman, 1992; 

Tversky & Wakker, 1995; Wu & Gonzalez, 1996, 1999). Incorporating the weighting 

function with the value function leads to the fourfold pattern of risk attitudes documented 

by Tversky and Kahneman (1992). For events of low probability, the DM is risk seeking 

for gains (e.g., lottery tickets) and risk averse for losses (e.g., insurance). At the same 
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time, for events of high probability, the DM is risk averse for gains and risk seeking for 

losses.  

Several functional forms of the weighting function are available (see Gonzalez & 

Wu, 1998; Luce, 2000). Prelec’s (1998) function proved the most tractable for these 

models. It assumes a weighting function for gains and losses, jointly characterized by 

three positive parameters, 0 ≤ α ≤ 1 and 0 < δ+,δ- : 

( ) ( )( )( )
( ) ( )( )( )

exp log , 0

exp log , 0

w p p x

w p p x

α

α

δ

δ

+ +

+ −

= − − ≥

= − − <
(9)

If 1,, =−+ δδα , the weighting functions are linear, illustrating Wallsten et al.’s (2004) 

initial assumptions. The parameter α controls the degree of over/underweighting of 

probabilities. As α increases DM exhibits more discriminability between option 

likelihoods (see the middle panel of Figure 7). The parameter δ• controls the inflection 

point of the weighting function or the elevation of the function (see the right panel of 

Figure 7). 
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Figure 7 Plots of the weighting function and properties of the weighting function. The 
first panel shows a weighting function exhibiting overweighting of low probabilities and 
underweighting high probabilities. The middle panel fixes δ = 1 and varies α between 0 
and 1. The third panel fixes α = 0.6 and varies δ between 0.5 and 1.5. 

Incorporating the weighting function into the prior evaluation expression 

(equation 5) produces the following function: 

( ) ( )( )hihi
E cast w t ix γ ++= . (10)

Taking the derivative of equation 10, setting it equal to 0, and solving for i, produces the 

cast number that maximizes one’s gains for trip h, Gh. Each solution is specific to the 

stochastic process. PESw’s (the w signifies a weighting function) closed form solution is,  

( )

1

lnh
h

G
q

αγ
δ α

+

+
 − 
 = . (11)



 

 38 
 

PENiw does not have a closed form solution, but Gh for PENiw can easily be found with 

numerical methods .8  

 There are several observations from equation 11 that have implications for fitting 

the models to the data that also hold true for PENIw’s numerical estimates. First, the 

presence of the weighting function may counteract, or at least serve as an alternative to γ+ 

going above 1. For example, setting γ + = 1, as the weighting function becomes increasing 

nonlinear, Gh grows larger than the optimal pump number in an expected value sense (i.e. 

Gh > 64). Second, the valuation parameter, γ +, and the weighting parameter, δ +, can not 

be estimated independently. This is not necessarily detrimental, as δ + only controls the 

inflection point. In fact, past work has primarily focused on allowing α to vary while 

setting δ+ = 1 (see Prelec, 1998; Tversky & Kahneman, 1992), which I will do as well. 9 

Third, all three parameters in the numerator cannot be estimated independently of each 

other when ˆ hq  remains constant. This situation occurs under sunny weather conditions or 

in cloudy conditions when the DM is extremely confident of himself. This issue also is 

solved by resolving a final less evident issue: α and γ+ are not identifiable even when the 

denominator (i.e. ˆ hq  or ˆ hn ) is allowed to vary. The problem and its solution are shown 

in Figure 8. 

The top two plots in Figure 8 demonstrate this issue for both PESw and PENiw. 

They plot the maximizing cast, G•, for one stochastic process parameter (e.g., 

ˆ 64 / 65hq =  for PESw or ˆ 128hn =  for PENiw) against corresponding values of G• for a 

                                                 
8 This result is true also for Kahneman and Tversky’s (1992) linear in log odds functional form also. In fact, 
their function also does not have a closed form solution for PESw. 
9 Gonzalez and Wu (1998) found that although the one-parameter functions captured group level data 
adequately, there were sufficient differences between individuals that the two parameter functions were 
required at the level of the individual.  
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different value of the parameter, across values of γ+ and at a fixed level of α. Note the 

axes are different labels reflecting the different models and different stochastic process 

parameters. The lines fall on top of each other indicating γ+ and α are not identifiable. 

However, they are identifiable when the parameters are set equal across stochastic 

processes, as the bottom plot shows by plotting PENiw’s values of G• against PESw’s. In 

this case the two models share common values for γ+ and α. I will call this constraint 

Model 2, treating all four tournament plays by one participant as one experimental 

session and the 2 prior evaluation models fit to the four tournaments with the 

aforementioned constraints as one model. Incorporating the bias component, ζ, Model 2 

has 16 parameters: 4 bias parameters zwl; 4 sensitivity parameters βwl; 2 value parameters 

γ+
w•, 2 weighting parameters αw• ; and 4 parameters controlling the DM’s representation 

of the stochastic process a0cr, m0 cr, µ0ck , 2
0ckσ , where w = s,c for sunny or cloudy and l = 

k,r for keep or release, respectively. Model 1, the set of models without a weighting 

function, also has 16 parameters. It has no weighting function parameters and 4 value 

parameters, γ+
wl.  
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Figure 8 All 3 graphs plot the maximizing cast for the prior evaluation models, 
G•, for one stochastic process parameter (i.e. q = 64/65) against the corresponding 
G• values for another parameter (i.e., q = 44/45) across values of γ+ fixing α. All 
three plot four lines, one for each specified level of α. The top row demonstrates 
that γ+ and α cannot be independently estimated within a release law. However, 
systematic constraints of the parameters across the release laws allow for γ+ and α 
to be identifiable. For example, the bottom panel demonstrates that, setting both 
γ+ and α equal across release laws within weather conditions allows both to be 
estimated.  

In addition to Model 2, there are two other possible constraints that result in the 

identifiability of γ+ and α, each also with 16 parameters. Model 3 sets γ+equal across 

weather conditions and α equal across release laws (γ+
•l

 and αw•). Finally, Model 4 sets 

γ+equal across release laws and α equal across weather conditions (γ+
w•

 and α•l).  
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Before estimating the models briefly recall also in equation 11 that the sunny 

conditions α and γ+ when G• did not change from trip to trip, which occurs in the sunny 

tournaments and the DM was highly confident of him/herself in the cloudy conditions. 

Constraining γ+ and α in Models 2 through 4 solve this difficulty by increasing the 

number of G• to at least 2. To compare the models, I will use the log-likelihood of the 

entire session, LLs. Again the models are not nested so the goodness of fit measure can 

only be used at a descriptive level.  

Table 12. Comparisons of models with different constraints to estimate a weighting 
function, with varying constraints on γ+. 

 0 3γ +< <   0 1γ +< <  

Model 

Mean 
LLs 

Num. 
DMs best 

fit  

Mean 
LLs 

Num. 
DMs best 

fit 
Baseline -764.99 2   2 
Model 1 (γ+

wl and α•• = 1 ) -270.32 52  -343.98 31 
Model 2 (γ+

w•
 and αw•) -280.76 2  -282.27 30 

Model 3 (γ+
•l

 and αw•) -308.76 0  -349.89 8 
Model 4 (γ+

w•
 and α•l) -298.39 0  -352.17 0 

 
 Treating each participant’s data for the experimental session separately, Table 12 

shows how many participants were best fit by each model using LLs when the valuation 

parameter is subject to the constraints 0 3γ +< < . Model 1, which does not incorporate a 

weighting function and allows γ+ to vary between all four tournaments fits a majority of 

the participants best. However, the first observation resulting from equation 11 points out 

that the weighting function may serve as an alternative to allowing γ+ to go above 1, 

keeping with a majority of the findings in behavioral decision making (see Gonzalez & 

Wu, 1998; Kahneman & Tversky, 1979; Luce, 2000; Wu & Gonzalez, 1995; Tversky & 

Kahneman, 1992). Table 12 shows that with this constraint Model 2 does just as well at 

fitting individuals as does Model 1. In addition, the mean LLs for Model 1 implies that 
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for some individuals its fit is quite poor. To get a better sense of this result the absolute 

difference between LLs for Model 1 and Model 2 for each participant were calculated. 

The average deviation for the 31 individual for which Model 1 was greater than Model 2 

was 6.01 (in log-likelihood space). But, for the 30 individuals for which Model 2 was 

greater than Model 1 the average deviation was 200.65.  

This result is not conclusive by any means. Two outcomes, however, encourage 

me to advance Model 2 with constraints of 0 1γ +< <  (Model 2*) as best describing the 

data. First, although forced, the model provides a reasonable fit and conforms to both 

behavioral decision theory and standard notions of diminishing sensitivity to gains. 

Second, under this model the MLL parameter estimates have the weighting function 

partialed from them. Consequently, the correlation between γ+ and self-reported risky 

behaviors can be examined free from any correlation with α. Table 13 summarizes the 

MLL parameter estimates for Model 2*. The next section explores correlations between 

the estimates and self-reported risky behaviors and DM’s behavior during the fishing 

tournaments. 



 

 43 
 

Table 13 Summary of MLL parameter estimates for Model 2* and Pearson r correlations 
with and self-reported drug use. * = p < 0.05 & # = p < 0.01 

MLL 
Parameters Average 1st 

Quartile Median 3rd 
Quartile DrugSum DrugWeighted 

zs,k -0.02 -0.06 -0.01 0.05 .01 .02 
zs,r -0.01 -0.04 0.00 0.02 .12 .16 
zc,k 0.01 -0.01 0.01 0.05 -.07 -.10 
zc,r -0.01 -0.04 0.00 0.04 -.03 -.04 
βs,k 0.42 0.10 0.14 0.19 -.16 -.15 
βs,r 0.12 0.03 0.08 0.17 -.23 -.22 
βc,k 0.27 0.09 0.15 0.26 -.13 -.15 
βc,r 0.29 0.14 0.17 0.29 -.09 -.10 

,sγ
+
•  0.69 0.41 0.87 0.99 .36# .34# 

,cγ
+
•
 0.59 0.43 0.59 0.82 .21 .24* 

αs,• 0.59 0.45 0.55 0.89 -.11 -.08 
αc,• 0.74 0.61 0.76 0.95 .04 .01 
µ0ck 147.60 53.12 96.79 186.37 -.06 -.09 

( )0ˆvar ckn  1.00E+07 114.82 750.20 4019.41 .40# .43# 

a0c,r 9.05E+13 41.78 211.42 707.60 -.08 -.08 
m0c,r 9.27E+13 42.4248 223.7765 748.165 -.08 -.08 

( )0 ,ˆ c rE q  0.92 0.96 0.98 0.99 -.31* -.37# 

( )0 ,var c rq  1.78E-03 1.41E-05 6.50E-05 3.31E-04 -.02 .01 

 

Brief model comparison summary. Before proceeding to the next section, brief 

reviews of both the modeling process and its conclusions to this point are necessary. The 

models differed with respect to two factors: (1) the DM’s representation of the stochastic 

process (•Ni or •S) and (2) the point at which he/she evaluates options during a 

sequential risk-taking task (PE• or SE•).  

To test the models, I developed the ART, which better informs participants about 

the structure of the environment. Manipulations of the stochastic process governing the 

task, and participants’ level of knowledge of the process revealed several results. First, 

only the prior evaluation class of models could distinguish between the two different 

stochastic processes. SES, appeared to be too flexible, using LL as a measure of goodness 
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of fit. Second, further investigations with simulations showed that standard measures of 

goodness of fit may not be able to distinguish between situations when the DMs are 

either evaluating options sequentially or prior to beginning a task. In addition, a majority 

of the participants identified the prior evaluation strategy as reflecting their own strategy. 

Thus, the prior evaluation class of models was taken as a better performing class. The 

prior evaluation class of models was then extended to include both a trip dependent bias 

component and a weighting function (Model 2*).  

Validity of the model 

 The purpose of modeling the DM during either the ART or the BART is not 

solely to arrive at a model that fits the data well. The model also should provide insights 

into the DM’s behavior during and external to the task. To that end, the parameter 

estimates of the models can be correlated to self-reported risky behaviors as an attempt to 

externally validate the models. In addition, the model predictions can be studied to gain 

further insight as to the DM’s performance during the fishing tournaments. 

 Correlation to risky drug use. Recall that the participants completed a 

questionnaire obtaining their self-reported drug use. The last two columns of Table 13 list 

the correlations between the parameters and the indexes of self-reported drug use.10 The 

primary area of interest focuses on the parameters involved in the DMs’ evaluation 

processes. The table shows a significant correlation between the valuation parameter, 
,sγ
+
•
 

for the sunny weather conditions and either version of the risky-drug use index. In 

addition, there is a correlation between the valuation parameter in cloudy weather,
,cγ
+
•
 , 

and the weighted index. The latter result is particularly interesting considering that 
                                                 
10 None of the MLL parameter estimates correlated with Weber et al.’s (2002) scales designed to predict 
risky behavior in different domains of life and are not included in the results section. 
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neither of the ART scores from the cloudy conditions correlated with either index. 

Finally, neither of the probability weighting function parameters αw,• significantly 

correlated with risky drug use.  

The significant correlation between the variance of the initial gamma 

distribution, ( )0ˆvar ckn , and drug use is likely a partial function of a few extreme 

estimates. Taking the natural logarithm of the MLL estimate reduces the correlation to 

.22 (p = .07) and .18 (p = .14) for DrugSum and DrugWeighted, respectively. Theoretical 

interpretation of the correlations will be left for the discussion.  

Model accounts of tournament behavior. The models also provide functional 

insights, statistically and graphically, regarding the behavior of DMs during the task, 

above and beyond that given by the typical adjusted ART score or other related empirical 

measures. The mean MLL α estimates in Table 13 indicate that on average individuals 

were less sensitive to changes in probability in the sunny conditions (t(70) = 3.80, p = 

.0003). The MLL γ estimates also hint at a marginal trend of a more linear value function 

in the sunny conditions, t(70) = 1.83, p = .07. The remaining possible hypothesis tests 

with both least squares methods and hierarchical model comparisons did not identify any 

significant or consistent trends across the tournaments.  

Figures 9, 10, 11, and 12 plot predicted probabilities of casting as a function of 

count number from the prior evaluation models (PENiw and PESw estimated with Model 

2 and the more restrictive γ+ constraints), holding true to the correct stochastic process. 

Figures 9 and 10 plot the predictions for three participants in the catch ‘n’ keep and catch 

‘n’ release, sunny weather tournaments, respectively, and shows how the models account 

for individual differences. Each figure has the predictions for the 1st, 15th and 30th trip for 
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three different participants. Progressing down the two figures, participants reported using 

fewer drug categories. The predicted curves reflect this by predicting fewer casts as a 

function of drug use. This trend generally follows across participants, but it is not perfect.  

Two other observations are worthy of notice. First, Figures 9 and 10 demonstrate 

how the bias component, ζh, accounts for performance differences between and within 

participants. Participant 24’s MLL estimates reflect a “Testing the waters” strategy in the 

catch ‘n’ keep condition ( top panel Figure 9), while a “Go for broke” strategy in catch 

‘n’ release (top panel Figure 10). In addition, Participant 20 exhibited little or no bias 

during the catch ‘n’ release, sunny tournament (bottom panel Figure 10). Second, the 

plots also illustrate the fact that the adjusted ART score may be misleading due to its 

omission of trials resulting in a blue fish. For example, participant 24’s adjusted ART 

score for catch ‘n’ keep was 39, but his/her model predictions differ substantially from 

this. In fact, closer scrutiny of his/her data revealed that in this tournament he/she actually 

made over 60 casts on several trips, but caught a blue fish on a majority of them.  

Figures 11 and 12 plot predictions in the catch ‘n’ keep and catch ‘n’ release, 

cloudy weather tournaments for participant 46. Together they illustrate how the models 

account for learning during the task by plotting trips 1-5, 13 – 17 and 26 – 30 in the top, 

middle, and bottom panels, respectively, for each model’s figure. After experiencing a 

blue fish (starred lines), both models adjust their prediction downward, but gradually 

increase after successful trips to a pond (solid lines). The Bayesian learning component 

also adjusts the predictions as participant 46 progresses in the tournament. Initially, if an 

individual has low confidence in his/her representation, like participant 46, the models 
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are much more sensitive to successes and failures. But, as he/she progresses in the task 

the individual settles into his/her beliefs and becomes more consistent in his/her behavior. 
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Discussion 

The goals of this dissertation were to evaluate the BART itself and Wallsten et 

al.’s (2004) four most successful models of the DM completing it as well as to generalize 

both the paradigm and the models. To that end, the ART was developed. It held true to 

the general structure of the BART, while simultaneously allowing manipulations of both 

the environment’s actual stochastic structure and the knowledge of the structure. 

Administering a completely within-subjects design using the ART revealed conclusions 

about the models and the task. 

Modeling conclusions, issues, and insights 

Recall that the models differed as to when the DMs evaluated their options and 

what their beliefs of the task’s stochastic process were. Analyses focused on three topics 

about the models, themselves, (1) their ability to distinguish between the DMs’ 

representation of the stochastic process, (2) their ability to identify the strategy the DMs 

used to evaluate his/her options, and (3) the incorporation of a weighting function in the 

models. I will address each in turn, and also how the best-fitting model aids in our 

understanding of the ART’s correlation to risky drug use.  

One necessary test, following our previous work, was to examine whether the 

models could discriminate between circumstances when DMs were and were not fully 

aware of the stochastic process. As the model estimation section pointed out, the critical 

subcomponent in this question is the Bayesian learning module. Without it, the estimation 

of the models either became unattainable, or the MLL parameter estimates were extreme. 

Additionally, the prior vs. sequential issue makes interpreting model fits difficult. With 

those contingencies in mind, the present study suggests that SES is too flexible. Using 
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LL, it fit both cloudy conditions best, regardless of the stochastic process and of which 

models it was compared against. However, the prior evaluation class of models (PE•) can 

distinguish between the different representations of the stochastic structures, both with 

AIC as a measure of fit and when conditionalizing on the point of evaluation. It is 

interesting to note that this result was identified with a Bayesian learning component, 

which is surprising considering the majority of present day behavioral decision theories 

hold the belief that individuals use non-optimal strategies (see Gigerenzer & Todd, 1999; 

Tversky & Kahneman, 1974).  

Whether DMs plan their behavior prior to each trial, or they sequentially evaluate 

options, is less clear. Without accounting for model complexity, the LL comparisons 

suggest that DMs sequentially evaluate their options. But, using AIC to handicap models 

with more parameters, the comparisons suggest the prior evaluation method. 

Unfortunately, simulations showed that this same pattern held under conditions when the 

data were generated with either type of evaluation. This result could be due to the 

measures not distinguishing between the two strategies or the models making 

indistinguishable predictions. Both are possible and future work is needed, as the 

complexity of models is clearly an issue.  

This is not the first time AIC has been shown to fail as a measure of a model’s 

goodness of fit (see Myung, 2000). Other measures do exist, such as the Bayesian 

information criterion (BIC; Schwarz, 1978), the minimum description length (MDL; Pitt, 

Myung, & Zhang, 2002), or Bayesian model selection (BMS; Myung & Pitt, 1997). The 

latter two require the a priori specification of the prior distribution over parameters. All 

three require better specification of the degree of dependence among either the data 
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points themselves or among the parameters. This is beyond the scope of this paper, but 

certainly must receive future attention. 

Regardless, SES does not even distinguish among the different stochastic 

representations of DMs. Based on this result and the fact that a majority of participants 

identified prior evaluation as their own personal strategy, the prior evaluation class of 

models was put forth as better describing the data. Subsequently, they were extended to 

include a bias component and a weighting function. The bias component assisted the 

models in accounting for behavior participants reported using, (i.e., testing the waters or 

going for broke).  

Turning to the weighting function, its necessity in this venture seems, in part, 

contingent on whether the value function is allowed to show increasing sensitivity. 

Certainly, the weighting function seems necessary to account for the typical decisions 

from description demonstrations used in prospect theory (e.g., choose between two 

lotteries A and B). But, choices in the ART would be classified as decisions from 

experience (see Hertwig, Barron, Weber, & Erev, in press). Incorporating the weighting 

function did indicate, however, differences in how individuals responded to the task. 

Surprisingly, it indicated that they were more sensitive to changes in probability in the 

cloudy tournaments; though, this may be because in cloudy conditions the weight was a 

function of the DMs’ subjective probability, while in sunny conditions it was a function 

of the objective probability.  

Incorporating the weighting function also allowed me to investigate the role that 

the value function, weighting function, and the remaining cognitive processes, have in the 

ART’s correlation to risky drug use. The results indicate that the primary reason for its 
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correlation resides in the DMs’ attitudes towards outcomes, not their perceptions of the 

probabilities. Although this outcome may change for different domains of risk it is 

consistent with our previous findings. The remaining strong correlation with drug use 

was with the initial subjective probability of catching a red fish in the catch ‘n’ release, 

cloudy tournament. No theoretical explanation seems tenable, but one way to interpret 

this result is that less risky individuals simply thought there were more red fish in the 

pond. An alternative explanation is that these individuals are using an alternative model, 

not specified here, for these conditions. 

A final point to be made in terms of the models is that the adjusted ART score and 

other similar measures ignore a substantial portion of the data. That is, it ignores all the 

trips on which a blue fish was caught (e.g., when perhaps the DM cast over 64 times). In 

the present study, blue fish were caught on about 1/3 of the trips. The cognitive models 

presented here use all the data and also allow individual differences among the DMs. In 

general, they suggest that DMs evaluate their options prior to beginning each trip, but, 

their evaluations are affected by their risk aversion/seeking. DMs then probabilistically 

choose to cast or not based on their evaluation, their sensitivity to the evaluation and their 

biases. Finally, when necessary, DMs learn about the task in Bayesian fashion, but again 

this depends on the person. Some are too confident in their representation of the task to 

change their opinion.  

Task conclusions 

To be sure, the BART is not precisely the ART. Conceptually, the BART lies 

somewhere in between the cloudy and sunny conditions with a catch ‘n’ keep law. The 

strength of the models is their ability see beyond the tasks’ surface differences to the 
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similarities beneath. With that, the results presented here are beneficial for future versions 

of the BART as for other gambling tasks. 

From a modeling perspective, one of the interesting challenges with the BART 

has been its vagueness from the DM’s perspective as to the process underlying the 

balloon’s explosion. However, for the purpose of risk assessment, this elusiveness 

appears to be a downfall, adding unnecessary noise to the BART’s correlation to risky 

behaviors. Both the analyses with the adjusted ART score and the cognitive models 

support this conclusion. In terms of the adjusted ART score, only conditions that revealed 

the stochastic structure (i.e., sunny) correlated with self-reported risky behaviors. 

Concealing the fish removed this correlation. Modeling the individuals’ cognitive 

processes removed this problem by accounting for their initial opinion about the pond’s 

structure. Consequently, the valuation parameter correlated with risky-drug use both 

when the DM knew and did not the number of fish in the pond. The BART is not the only 

task that incorporates a learning process. Busemeyer and Stout (2002) have found that a 

cognitive learning process is also involved in the Bechara card sort task. The results from 

the present experiment imply that the learning component of these tasks may hinder their 

clinical and neurological model-free assessment of risk taking. 

 The implications of different stochastic processes are less clear on this paradigm 

of laboratory-based gambling tasks. Participants both tended to report changing their 

behavior and appeared to change their behavior between catch ‘n’ keep and catch ‘n’ 

release. The clear inevitability of a blue fish in the catch ‘n’ keep tournaments appears to 

have increased the variation among individuals, as can be seen in Figure 6. The models 

themselves, in their present form, did not show any systematic interpretable differences, 
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nor did the correlations with the adjusted ART score. Thus, no conclusive suggestions as 

to which process is better at correlating or predicting an individual’s propensity towards 

risky behavior can be given. Perhaps different more disparate structures are needed. 

Future directions 

Like any good fishing story, this one may leave the reader wondering about the 

one that got away. In particular, the degree to which the ART/BART differentially 

correlates with certain domains of risk remains unaddressed. Although at the empirical 

level, the ART’s sunny conditions correlated with Weber et al.’s (2002) social domains 

of risk, more work in this area is needed and seems promising. For instance, it remains to 

be seen whether the concepts developed here can be used to develop a larger class of 

gambling tasks each with different narratives and/or stochastic structures that 

differentially identify individuals predisposed to particular domains of risk 
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Appendix A 

The discretized gamma distribution over n, p(n), is updated with Bayes’ Rule. The 

updated distribution does not necessarily retain the properties of the discretized gamma 

distribution. Consequently, the process is not straightforward. Wallsten et al. (2004) 

originally formalized the process, I will reconstruct it here.  

To update the distribution consider the case of observing c pumps followed by the 

balloon exploding (or in ART’s case a blue fish is caught) on the last opportunity. Recall 

that the expression, ( )11 +−= inphi , is the probability of an explosion after i -1 

successful pumps. Therefore, the probability of no explosion is 

( ) ( )11 +−−=−= ininpq hihi . The probability of c pumps followed by an explosion 

(pop) given n is 

 

( )
1 2 1 1 1 ,

| 1 2 1
0,

n n n c when n c
p c pumps with pop n n n n c n c n

when n c

− − − + = ≥= − − + − +
 <

 (A1)

Thus, any sequence of pumps resulting in the balloon exploding has probability, n1 . 

Similarly, the probability of a sequence of c pumps without the balloon exploding is 

( )
1 2 1 ,

| 1 2 1
0,

n n n c n c n c when n c
p c pumps with no pop n n n n c n c n

when n c

− − − + − − = ≥= − − + − +
 <

(A2)

. Thus, in general after h balloons the result can be expressed as  

( ) ( )
1 1 2

1

, , , , ,
hdh

h h
h h h

h

s n c
p c d c c d

n

′

′ ′
′

′=

 −
=  

  
∏ (A3)

where '

0 '
1 'h

if balloon h popped
d

if balloon h did not pop


= 


  and '

0 *
1 *h

if n c
s

if n c
<

=  ≥
, where 

( )1 2* , , , hc Max c c c= . 



 

 59 
 

With Bayes’ rule we can now obtain the expression for the updated distribution 

over n, ( )1 1| , , , ,h hp n c d c d  The result is 

( )
( ) ( )

( ) ( )
1

1 1

1 1

| , , , ,

h

h

h
d h

h h
h

h h h
d h

h h
n h

s n c p n n
p n c d c d

s n c p n n

′

′

′
′ ′

′=
∞

′
′ ′

′ ′= =

 − 
=

 ′ ′ ′− 

∏

∑∏
(A4)

(see also equation 1). 
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Appendix B 

The baseline model is a statistical model estimated directly from the data. In 

addition to describing the data, cognitive models are compared against it. The model is 

based on the binary event of the DM pumping the balloon or not at each opportunity. 

Collapsing across h balloons, the probability, ri, that the DM pumps on opportunity is the 

proportion of opportunities over all balloons that the DM chose to pump, or 

1

1ˆ
H

i hi
hi

r w
H =

= ∑ A1

 

where Hi is the total Number of balloons that did not explode prior to opportunity i and 

wh,i = 1 or 0 if the balloon is pumped or not, respectively. 

A critical assumption is that if DM chose to stop on opportunity i, then we assume 

that he/she would choose to stop on all subsequent opportunities. No such assumption is 

made for the balloons which exploded. However, this assumption renders the individual 

îr  non-independent of each other. We will use the maximum Number of opportunities 

over all 30 balloons/trips for which the DM actually made a choice to pump or stop as an 

estimate of the df. A detailed discussion of this assumption is in Wallsten et al. (2004).  
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Appendix C 

The Nelder Mead downhill simplex routine (see Nelder & Mead, 1965) in 

conjunction with a grid-search technique uses a 2 step approach to arrive at a solution. 

During the first step, I divided the parameter space into three plausible sectors. For 

example, the plausible space for γ+ was set between 0 and 3, but the divisions were 

weighted toward the lower spectrum of the space, (0, 0.5), (0.5, 1.5), and (1.5, 3). A 

starting value for each parameter was then randomly selected from one of its divisions. 

The set of starting values was then tested to insure the starting values would lead to a 

solution below a pre-specified criterion (e.g., ln(L) > -2000). If not, then the set was 

iteratively perturbed with random noise, and tested, until the criterion was met or a cutoff 

was reached. If the set did meet the criterion, then they were input into the Nelder-Mead 

method, beginning the second step. The full two step process was then repeated for 50 to 

100 iterations. The maximum ln(L) from the full set was taken as the MLL estimate.  

I tried many other procedures. Examples of such procedures include: nonlinear 

programming, genetic algorithm, or Van Zandt’s iterative annealing Nelder Mead method 

(see Van Zandt, 2000; Van Zandt, Colonius, & Proctor, 2000). However, simulations 

showed that the aforementioned procedure performed the best.  
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