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Stroke, spinal cord injury and neurodegenerative diseases such as ALS and 

Parkinson’s debilitate their victims by suffocating, cleaving communication between, 

and/or poisoning entire populations of geographically correlated neurons.  Although 

the damage associated with such injury or disease is typically irreversible, recent 

advances in implantable neural prosthetic devices offer hope for the restoration of lost 

sensory, cognitive and motor functions by remapping those functions onto healthy 

cortical regions.  The research presented in this thesis is directed toward developing 

enabling technology for totally implantable neural prosthetics that could one day 

restore lost sensory, cognitive and motor function to the victims of debilitating neural 

injury or disease. 

 There are three principal components to this work.  First, novel integrated 

biosensors have been designed and implemented to transduce weak extra-cellular 



  

electrical potentials and optical signals from cells cultured directly on the surface of 

the sensor chips, as well as to manipulate cells on the surface of these chips.   Second, 

a method of detecting and identifying stereotyped neural signals, or action potentials, 

has been mapped into silicon circuits which operate at very low power levels suitable 

for implantation.  Third, as one step towards the development of cognitive neural 

implants, a learning silicon synapse has been implemented and a neural network 

application demonstrated.  

 
The original contributions of this dissertation include: 

 A contact image sensor that adapts to background light intensity and can 

asynchronously detect statistically significant optical events in real-time; 

 Programmable electrode arrays for enhanced electrophysiological recording, 

for directing cellular growth, for site-specific in situ bio-functionalization, and 

for analyte and particulate collection;  

 Ultra-low power, programmable floating gate template matching circuits for 

the detection and classification of neural action potentials;  

 A two transistor synapse that exhibits spike timing dependent plasticity and 

can implement adaptive pattern classification and silicon learning. 
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Chapter 1: Introduction 

1.1  Overview 

Stroke, spinal cord injury and neurodegenerative diseases such as ALS and 

Parkinson’s debilitate their victims by suffocating [1], cleaving communication 

between [2], and/or poisoning [3], entire populations of geographically correlated 

neurons.  Although the damage associated with such injury or disease is typically 

irreversible, recent advances in implantable neural prosthetic devices offer hope for 

the restoration of lost sensory, cognitive and motor functions by remapping those 

functions onto healthy cortical regions [4].  These prosthetics are remarkable devices, 

yet for most of these state of the art systems, neural event detection and classification 

systems remain external; and most implants still consume too much power and 

occupy too much space to reliably resolve neural events across multiple channels 

simultaneously [5], [6].  To truly restore lost sensory, cognitive and motor function to 

victims of debilitating neural injury or disease, a totally implantable neural prosthetic 

is required [7].  The principal aim of my research, therefore, has been to develop 

enabling technology for such prosthetics and the rehabilitation of lost sensory, 

cognitive and motor function.   

In order to meet this ambitious aim, I have taken a multi-tiered approach.  In 

one aspect of this research, I studied existing technology and developed novel 

integrated biosensors for electrophysiological recording and optical sensing of neural 

activity.  In another, I designed, fabricated and characterized ultra-low-power circuits 

for detecting, extracting the salient features from, and identifying the source of neural 

action potentials.  Finally, in an attempt to build technology for closed-loop 
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unsupervised control, I implemented a new silicon synapse capable of correlating 

signals for Hebbian learning.  In developing these circuits and systems, I have 

addressed some of the key limitations of previous generations of biosensor and 

implantable signal processing architectures – power consumption and reliable 

encoding of neural data – and I offer some novel approaches for next generation 

implantable prosthetic devices.  

1.2  Research Contributions 

This thesis is divided into four technical Chapters, 2-5, which detail the 

original contributions of this work and provide the context to appreciate the 

significance of these contributions to the field.  

Chapter 2, entitled Contact Imaging, introduces integrated active pixel sensors 

(“APS”) for imaging biological activity, such as neural action potentials.  In this 

chapter, we introduce and lay the theoretical foundations for a deeper understanding 

of the advantages and limitations of integrated contact imaging [8], and show the 

simulated and experimentally verified performance of fabricated contact image 

sensors [8], [9], [10], [11].  The original contributions of this thesis described in this 

chapter include the design, fabrication and characterization of a contact image sensor 

that adapts to background light intensity and can asynchronously detect statistically 

significant optical events in real-time.  The architecture of this adaptive sensor (“a-

APS”) is presented along with experimental data [11], and we disclose an array of a-

APS sensors with arbitrated AER readout for asynchronous (and unsupervised) neural 

spike detection that has also been designed, simulated and submitted for fabrication. 
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Chapter 3, entitled Neural Recording, details the historical evolution of neural 

recording techniques and demonstrates the experimental performance of several state-

of-the-art integrated microelectrode arrays designed to interface with, manipulate and 

record from living biological cells and systems [12], [13].  The original contributions 

of this thesis described in this chapter include the design, fabrication and 

characterization of programmable electrode arrays for enhanced electrophysiological 

recording, for directing cellular growth, for site-specific in situ bio-functionalization, 

and for analyte and particulate collection.  Fabricated programmable arrays for 

compensating electrode and amplifier mismatch, process variation and local 

environmental inhomogeneities have been characterized [13].  When properly 

packaged, these arrays are suitable for in vitro neural recording and also for 

integration with implantable recording and signal processing devices.   Moreover, a 

variant of these arrays can be used to pattern arbitrary potentials across the sensor 

surface for directing the growth of developing and possibly damaged nerve cells.     

Chapter 4, entitled Spike Sorting, is divided into three parts.  First, we provide 

a concise primer on the relevant aspects of mixed-signal VLSI design.  Second, we 

perform an in-depth review of state-of-the-art spike sorting algorithms and circuits.  

Finally, we detail the architecture and performance of the ultra-low-power floating 

gate template matching circuits I designed for the detection and classification of 

neural action potentials [14].  The original contributions of this thesis described in 

this chapter include: (a) the overall floating gate template matching architecture; (b) 

application of floating gate adaptation and template matching to solve the detection 

and classification problem under competing constraints of low-power dissipation and 
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high computational precision; (c) novel on-chip variance estimation circuitry; (d) 

novel asynchronous current-mode weight-update circuits; (e) unique silicon neuron 

template generation mechanism; and (f) a VLSI implementation of a theoretical non-

linear energy operator (“NEO”) to threshold incoming signals for unsupervised 

template generation.  Together, these contributions represent a significant step down 

the path toward next generation neural prosthetics.     

Finally, in Chapter 5, entitled The Two Transistor Synapse, we consider 

biological Hebbian learning, explore a new analog circuit architecture for 

implementing biologically realistic learning (the two transistor synapse, “2TS”), and 

conclude with an illustrative pattern recognition application.  The original 

contributions of this thesis described in this chapter include the development and 

implementation of a novel two transistor synapse that exhibits spike timing dependent 

plasticity and can implement adaptive pattern classification and silicon learning.  This 

silicon synapse [15], provides the foundation for unsupervised silicon learning which 

could one day be used for the closed-loop control of implantable neural prosthetics. 
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Chapter 2: Contact Imaging 
  

In this Chapter, we introduce, lay the theoretical foundations for and 

demonstrate the experimental performance of integrated contact image sensors for 

biosensing applications.  Original contributions of this thesis to the field include the 

design, fabrication and characterization of a contact image sensor that adapts to 

background light intensity and can asynchronously detect statistically significant 

optical events in real-time.  

2.1 Integrated Image Sensors 

Since the late 16th century we have been using microscopes as a window into 

a world that remains hidden to the naked eye [16].  Powerful optical lenses and sub-

micrometer precision stages provide an unparalleled view of the molecules, structures 

and biological organisms that populate that world – microscopes enable us to 

elucidate surface chemistries [17], to characterize deadly pathogens [18], and to 

visualize the very mechanisms of conscious thought [19].  However, for all the 

marvels that modern microscopes can conjure, ownership and operation of these 

instruments is costly in more ways than one.  Conventional “light” microscopes are 

heavy and take up large volumes of space, e.g. [20].  While this is an overhead that is 

fine for research, it is a price that first responders in the field and prosthetics 

engineers cannot tolerate.  In the modern era, diagnostic, therapeutic and 

rehabilitative applications that have historically been anchored to the instruments 

must be untethered and allowed to follow the need. 
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Necessity breeds innovation, and forty years after Smith, Boyle and 

Thompsett first shaped silicon sands into a charge-coupled array for storing patterns 

of light and dark projected onto the focal plane [21], today’s engineers have 

developed the technology to integrate tens of millions of tiny photosensors onto a 

silicon chip the size of a fingernail, e.g. [22].  As a result, state-of-the art 

telecommunications devices can transduce full frame images into a bitstream of 

millions of 1’s and 0’s in a fraction of a second [23].  Removing the lenses from such 

systems and coupling microscopic particles or biological cells directly to the 

integrated sensor surface, it is possible to leverage the myriad advantages of 

integrated circuit technology – low cost and power consumption, high speed, and 

advanced focal plane processing – with the superior efficiency and reduced footprint 

of imaging systems that do not require the overhead of intervening optics.  What 

follows is an introduction to integrated contact image sensors, and the theoretical and 

experimentally established performance of such sensors.  

2.1.1 Active Pixel Sensors 

Although there are many different means of transducing light into electrical 

signals, we shall focus on the active pixel sensor (“APS”), which is broadly defined 

as an integrated photodetector and amplifier.  Arrays of APS’s fabricated in today’s 

standard complementary metal oxide semiconductor (“CMOS”) technology can be 

read out orders of magnitude faster and more efficiently than the charge-coupled 

devices (“CCD”) first fabricated in the early 1970’s, compare e.g. the sensors 

reported in [24] with the technology in [21].  CMOS offers the additional advantages 

of reliable, low cost manufacturing and the ability to integrate photosensors with 
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Figure 2.1: Schematic of typical 3-transistor 
(“3T”) active pixel sensor (“APS”).   

advanced image plane processing on the same chip.  The prototypical APS constitutes 

a reverse biased, or “pinned”, photodiode and source-follower readout transistor.  A 

schematic of a typical 3-transistor (“3T”) CMOS APS is shown in Fig. 2.1 below. 

In this particular configuration, PMOS 

transistor M1 is operated as a switch that 

resets the voltage at the gate of the source-

follower, M2, to Vdd when the rst signal is 

asserted.  Incident light (photon flux) 

generates charge carriers (electron-hole pairs) 

in the depletion region of the reverse-biased 

photodiode, and the carriers that do not 

recombine internally are swept across the 

photodiode junctions, resulting in a photocurrent that tends to discharge the 

photodiode junction capacitance to ground.  Transistor M2 is a source-follower single 

transistor amplifier whose output voltage is proportional to the voltage at its gate, 

which is equivalently the voltage across the photodiode junction capacitance.  M3 is a 

simple switch that permits the voltage at the source of M2 to be read out on a 

common bus.   

Under ideal conditions, assuming a perfectly linear photodiode junction 

capacitance and uniform illumination, we would expect both the photocurrent, I, and 

the photodiode junction capacitance, C, to remain relatively constant, so that 

according to the characteristic equation:
dt

dV
CI  , we would observe the change in 

voltage over time to be roughly linear.  This holds true to first order approximation 
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even though the photodiode junction capacitance is not truly linear.  Instead it is a 

function of photodiode junction width, which is proportional to the square root of the 

difference between the built-in potential and the voltage across the diode, as is shown 

in Equations 2.1 & 2.2, below: 

 

(2.1) 

 

 

(2.2) 

 

In these equations, Cdiode_junction represents the photodiode junction capacitance, εsilicon 

is the permittivity of silicon, Adiode is the exposed area of the photodiode, Xdiode_depletion 

is the diode depletion region depth, q is the charge on a single electron, 1.6 x 10-19 A, 

NA and ND respectively represent the acceptor and donor concentrations of the p- and 

n- type silicon regions of our photodiodes, Vreverse_bias is the external voltage drop 

across the photodiode, and Φ0 represents the built-in-potential.  The voltage drop 

across the photodiode, in turn, depends on both the reset bias voltage and illumination 

conditions which give rise to photocurrents that tend to discharge the photodiode 

junction capacitance.  However, for nearly all illumination conditions, dV is so small 

during the integration period (the time between reset and readout) that the 

dependency may be relegated to a second-order effect.   

Figure 2.2 shows a schematic of a photodiode in a standard, single-well 

CMOS process.  The p-type substrate (“p-sub”) is silicon that has been doped with a 
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Figure 2.2: Photodiode physical cross-section 
(top) and energy band diagram (bottom). [25]

Figure 2.3: Electromagnetic spectrum.  [26] 

group-III acceptor such as Boron, while the n-well has been doped with an electron 

rich group-V donor such as Arsenic or Phosphorous.  As with a typical diode 

junction, in the absence of any applied electric field across the diode, electrons from 

the donor atoms on the n-type side will tend to migrate across the junction to fill the 

vacancies in the group-III acceptors on p-type side.  This results in unmasked positive 

atomic cores on the n-type side and filled valence shells on the p-type side that form 

the depletion region. 

 

 

 

 

 

 

 

 

Free charge carriers do not reside in the depletion region, as the built-in 

potential reflected in the potential energy diagram shown in Fig. 2.2, sweeps them 

away.   The depletion region as bounded by the charged atomic cores acts as a 

parasitic capacitor in parallel with the photodiode.  It is this parasitic capacitance 

which is charged and discharged by the photocurrent, and thus gives rise to a 

proportional voltage change across the photodiode.  Under reverse bias, the depletion 
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region is extended and free carriers tend to get swept across the junction if they do not 

first recombine with each other.   

Photocurrents occur when incident photons impart sufficient energy to the 

doped silicon to generate electron-hole pairs – i.e., when photons impart sufficient 

energy to valence electrons to jump the 1.12eV bandgap to the conduction band.  

Since the wavelength and energy, or frequency, of electromagnetic radiation are 

inversely proportional (c=λυ), UV, visible and near-IR all possess such energy, see 

Fig. 2.3, but electromagnetic radiation with a wavelength greater than about 1100 nm, 

such as microwaves and radio frequencies, do not and therefore cannot generate 

photocurrents in Si.  The reason for this is described simply by Planck’s 

law: eV
hc

hfE
nm

nm


1240

 , where h is Planck’s constant, 6.626 x 10-34 kgm2/s, c 

is the speed of light, 3 x 108 m/s, and 1 eV is 1.6 x 10-19 J.  Given the 1.12 eV indirect 

bandgap of silicon, individual photons of light with λ > (1240/1.12), or approximately 

1100 nm (IR), do not possess the requisite energy to, by themselves, excite electrons 

to the conduction band.  If the incident light intensity is high – e.g. with a laser 

excitation source, it is possible for two higher wavelength, lower energy photons to 

impact the same atom at the same time to generate electron-hole pairs, and a 

corresponding photocurrent, but absent high intensity collimated laser light, this 

occurrence is a rarity.   

However, using longer wavelength, lower frequency laser radiation, scientists 

can probe deeper into tissues with less damage – 2-photon microscopy is a very 

useful technique [27].  Finally, with respect to the spectral responsivity of silicon – 

light with a wavelength below about 300 nm does not penetrate the photodiode as 
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Figure 2.4: Typical silicon photodiode 
spectral responsivity.  [28] 

Figure 2.5: Measured spectral responsivity for 
the n-APS sensor.  Blue curve represents raw 
data; bottom represents measured intensity. 
Each data point is the mean of 50 trials. [11] 

deeply and tends to recombine before it reaches the depletion region to be turned into 

photocurrent; likewise some much higher frequency (lower wavelength) radiation, 

such as x-rays, can pass through silicon without being substantially detected at all. 

The ratio of electrons collected to incident photons at a given wavelength is 

referred to as the detective quantum efficiency (“DQE”)1.  Theoretically DQE can 

approach unity, but for a standard CMOS APS fabricated in a commercial 0.5um 

process, owing to material imperfections that give rise to local recombination, 

thermal carrier generation that can become conflated with small photocurrents, and 

electrical noise, the observed DQE over the visible wavelengths is on the order of 

0.33.  The spectral responsivity (“SR”) reflects the relative DQE of a photosensor at 

different wavelengths, normalized for optical power.  A characteristic silicon 

photodiode SR curve is shown in Fig. 2.4, alongside measured data from a fabricated 

APS, shown in Fig. 2.5.  Note that the shape of the experimentally observed data on 

the right, shown in blue, closely parallels the optical power curve, shown in red.  

Thus when normalized, the experimentally characterized APS SR is relatively flat.   

 

 

 

 

                                                 
1 As contrasted with quantum efficiency (“QE”) which we use to refer to the number of electron-hole 
pairs generated by a single incident photon. 
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The disparity between the characteristic and experimentally observed data is in part a 

function of the sensitivity of the fabricated photodiode with respect to the dark 

current noise floor – note that the minimum mean threshold voltage recorded is 

approximately 527 mV (for the filtered fluorescent light), separated from the highest 

peak by less than 10% or 38 mV; it is in part proportional to the accuracy and 

precision of the readout and data acquisition hardware – measured mean threshold 

voltages are proportional to the photocurrent, but do not represent a direct current 

measurement – instead they are the bias voltages at which, over a fixed integration 

time, the generated bias current overwhelmed the photocurrent (more on this later) 

and invoked a digital trigger – the imprecision in the readout circuitry is further 

compounded by the data acquisition system which is capable of controlling the bias 

voltage with approximately 1-2 mV accuracy; finally, and to a lesser extent, the 

observed SR is in part due to the precision of the optical test apparatus, including 

such factors as ambient light leakage, and also the limited precision and reliability of 

the monochromator light source and optical power meter. 

In sum, device physics and circuit design both play an important role in 

defining the capabilities of integrated CMOS.  Physical properties of the photodiode 

set both the DQE and SR and define the noise floor – i.e., the minimum detectable 

signal beneath which it is not possible to differentiate between the photocurrent and 

the current resulting from thermally generated carriers.  However, numerous circuit 

techniques have been reported to reduce dark current and to extend the dynamic range 

of silicon photodiodes, e.g. [29]; device physics alone does not determine the 

characteristics of the APS.  As seen above, much of the difficulty in designing ultra-
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sensitive APS image sensors is in crafting the readout circuitry that will preserve the 

dynamic range of the signal against circuit imprecision – due to mismatch and 

process variations – and against noise inherent in analog and mixed-signal designs.  

We will discuss APS design considerations in greater detail later in this chapter.  

First, in evaluating the fundamental limits of CMOS APS imagers, we consider the 

resolution limits of these image sensors independent of any intervening optics – 

coupling the object or cell to be detected directly to the sensor surface.  

2.1.2  Contact Imaging 

 
APS imagers are ubiquitous.  They are embedded in every cell phone, PDA 

and laptop computer on the market, they have replaced CCD’s in even high-end 

digital cameras, and they have supplanted film as the medium of choice for most 

medical and diagnostic applications.  However, these imagers typically employ 

discrete optical lenses to focus images onto the sensor surface, which adds to the cost, 

size and complexity of these instruments and makes them unsuitable for applications 

such as implantable neural imaging [30].  In order to establish the fundamental 

performance limitations of APS technology, we have investigated and characterized 

contact imagers capable of visualizing microscopic objects simply by coupling them 

directly to the sensor surface.  These sensors leverage the enhanced collection 

efficiency that proximity to the sensor provides, and are able to perform functional 

microscopy without the overhead of intervening optics.  In this section, we describe 

the results of simulations and measurement of CMOS APS imaging response, as 

published in [8].   



 14 
 

Figure 2.6: Schematic of theoretically 
modeled contact imaging system.  [8] 

Figure 2.7: Plot of average annulus intensity 
as a function of radius, illustrating the 
computation of contrast parameters.  [8] 

In assessing the quality of captured images, we used the contrast of an imaged 

object – defined in terms of the mean object intensity, mobject, the mean background 

intensity, mbackground, and the background variance, σ2 – as
2

2)(


backgroundobject mm

C


 .  

Contrast represents the squared, or power, SNR of the imager and was both simulated 

and experimentally verified. 

Simulations were performed using the commercial software simulator 

LightTools™, by fixing a 2 mm x 2mm Lambertian light source a uniform distance 

from a virtual opaque circular disk with diameter of 5 um and thickness of 1 um.  The 

simulated image plane constituted one quarter of a 60 µm x 60 µm 2D array of 4900 

square bins, each bin corresponding with a pixel of an image sensor.  Fig. 2.6 

illustrates the simulated system.  Since the simulated image plane captured every 

photon incident upon it, the stochastic nature of the simulation is a function of the 

random photon generation of the Lambertian light source.   
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In order to quantitatively assess contrast, we needed to specify the regions 

corresponding to the captured image of the object and the background.  We defined 

the object as comprising all pixels of the simulated image plane within a specified 

radius of the fixed object center.  To ensure that we could reliably segregate 

background from object, we defined a transition region between the two whose 

midpoint was determined iteratively by identifying the smallest radius at which the 

mean value of an annulus two pixels wide was greater than the calculated mean 

intensity of the transition region.  We determined the outer boundary of the transition 

region by finding the intersection between the line approximating the intensity in the 

transition region and the estimated background intensity. All pixels outside the 

transition region are background pixels.  The method is illustrated in Fig. 2.7. 

Fig. 2.8 represents simulated data for the virtual quarter image plane as a 

function of increasing object distance from the surface.  Notably, even at relatively 

large distances it is possible to resolve the object with the human eye, a feat that 

would prove exceedingly difficult for an integrated image processor.  Fig. 2.9 

illustrates the simulated data across all measured distances; the solid line is the LMS 

fit between the function 

))(1(

)(
nobj

obj

d

D
a

Df


 and the logarithmically weighted 

contrast data.  For the simulation data shown in Fig. 2.8, a = 1341, the characteristic 

distance, d = 0.1305 mm, and shape parameter, n = 3.076.  
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Figure 2.8: Simulated contact images of a 
quarter disk formed on image planes at: (a) 
1 µm, (b) 240 µm, and (c) 500 µm away 
from the disk.  [8] 

Figure 2.9: Simulated image contrast as a function 
of distance between the object disk and sensor 
surface.  [8] 

Figure 2.10: Photomicrograph of fabricated image sensor, [8], alongside a photograph of 
experimental contact imaging setup with micropipette, light source and chip shown. 

 

 

 

 

 

 

 

 

In order to measure imager contrast and confirm the theoretical results shown 

above, we performed two sets of experiments on a 96 x 96 APS, 8.4 µm pitch imager 

fabricated in a commercial 0.5 µm process.2  The test setup I devised is shown in Fig. 

2.10, alongside the fabricated contact imager.   

 

 

 

 

 

 

 

                                                 
2 This imager array was designed and submitted for fabrication by Mr. Honghao Ji while he was a 
student at the University of Maryland Department of Electrical and Computer Engineering. 
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Figure 2.11: Measured images of a 
284.5 um bead formed on image 
planes at (a) 1 µm, (b) 1950 µm, and 
(c) 3950 µm away from imager 
surface. [8] 

Figure 2.12: Image contrast as a function of 
increasing D from simulation (5µm) and 
experimental results ( 48 and 284.5 µm). [8] 

For the first experiment that I formulated, we represented the Lambertian surface 

between the light source and the focal plane using a 48 μm polystyrene microbead; 

for the second, we employed a 284.5 μm stainless steel microball.  In both instances, 

the microparticles were attached to the tip of a pulled (using a Flaming Brown P-97 

micropipette puller) borosilicate pipette with a clear UV-curable polymer, Loctite™ 

3340.  The bead-pipette fixture was then affixed to a Sutter MP-285 micropositioner 

(at an angle of 29 degrees from the horizontal) and the imager chip and board were 

then positioned onto a custom stage for an Axiotron microscope.  Using the 

micropositioner, we first aligned the anchored bead to a position near the center of the 

imager and then raised and lowered the beads to take images at varying distances 

from the focal plane The sample and imager were illuminated using halogen light 

provided by the built-in light source of an Axiotron microscope, projected through an 

empty socket in the nosepiece which was approximately 45 mm above the sensor 

surface.  
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The images were analyzed using the algorithm described above, except that the 

location of the object center was determined by inspection, and we: (a) attempted to 

reduce fixed pattern noise by subtracting a reference frame containing no bead from 

the captured data; and (b) cropped four pixels on each edge of the frame to eliminate 

edge effects.  Once these tasks were completed, we computed the contrast ratios for 

each frame according to the formula provided above.  Captured images for the 

stainless steel microball, as well as compiled data for all experiments and simulations 

are presented in Figs. 2.11 & 2.12. 

For the polystyrene bead (not shown), the fit has amplitude, a=643.1, 

characteristic distance, d=0.2679 mm, and shape parameter, n=2.150; the metal 

microbead shown above has a=603.6, d=3.283, and n=5.8087.  The characteristic 

distance at which the contrast begins to degrade increases as the size of the object 

increases.  The higher noise content of the measured images, including the pipette tip 

and real-world illumination conditions, resulted in an expected but nonetheless 

significant increase in variance versus theoretical results, accounting in part for the 

observed discrepancy in contrast values between the three sets of data.   Nonetheless, 

experimentally observed data qualitatively match the theoretical predictions, and 

proves the paradigm for assessing contact image quality. 

2.2  Biosensing 

Having explored the device physics, integrated circuit realization and 

performance of integrated contact image sensors, we next consider contact imagers as 

biosensors.  In particular, we focus on two principal applications: (1) localizing cells 

and other microscopic particles coupled to the sensor surface for handheld cytometry, 
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cell sorting and other diagnostic and integrated feedback applications; and (2) 

detecting optical transients, or spikes, that correspond with, e.g., localized metabolic 

or neural activity, for identifying pathogens or visualizing cellular neural activity.    

2.2.1  Sensing cells 

An APS contact imager can detect microscopic particles or biological cells 

coupled to the sensor surface, provided that the pixel size is on the scale of the 

particles or cells to be visualized.  Numerous integrated APS sensors for biological 

sensing have been reported, e.g. [8], [9], [11], [30].  A common problem is that cells, 

being semi-transparent, are difficult to detect without some means of enhancing 

contrast.  Typically, this is accomplished by staining the cells with a dye such as 

neutral red, which can be introduced into live cells without significantly impacting 

their health.  As an example that we presented in [8], taking a maximum safe dye 

concentration of 0.1 M, we can use the extinction coefficient for neutral red of 39000 

cm-1 M-1 to compute the transmission rate through a 2 µm thick monolayer of 

stained cells as lconcECT 10   ≈ 0.17 so that approximately 83% of incident light will 

be blocked by the cells.  Therefore, to register the location of individual cells on the 

sensor surface, it is simply necessary to identify the dark, or occluded pixels – this 

forms the foundation of the spike detecting imager that we shall discuss in the next 

section.  The dynamic range of a typical n-well, p-sub APS imager in a commercial 

0.5 µm process, is about 54 dB (500:1), [8] allowing us to register 83% occlusion 

easily. 

To demonstrate proof of principle cell localization, it is first necessary to 

insulate the exposed electrical areas of the packaged chip (bond wires and pads), and 
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Figure 2.14: Pictures of live cells coupled to chip surface are taken using (a) a camera and (b) the 
contact imager. The overlapped view is shown in (c). [8],[9] 

Figure 2.13: Photographs of (a) test fixture ready for cell plating, and (b) a close-up 
view of packaged contact imager. [8] 

also to keep the biological cells from coming into contact with any electrical 

connections or toxins.  To accomplish both aims, we encapsulate the bondwires with 

a biocompatible UV-patternable polymer, Loctite 3108 in this case, and affix a 

custom media well using silicon glue, as is shown in Fig. 2.13 [8]. 

 

  

 

 

 

 

The surface of the chip is washed with deionized water and culture media to 

remove any harmful residues, and for the experiment whose results are shown in Fig. 

2.14, bovine aortic smooth muscle cells (“BAOSMC”) that had been stained with 

neutral red dye were plated onto the surface of the chip.  A digital photograph of the 

sensor surface was taken through a microscope lens, and images were captured using 

the contact imager.  Fig.  2.14 (a) is an enhanced photograph, Fig. 2.14 (b), is the 

image acquired by the APS sensor array, and Fig. 2.14 (c) is the overlay of (a) on top 

of (b).   The stained cells are clearly seen in all three images [8], [9].   
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It is possible therefore, to image cells coupled directly to the sensor surface.  

However, in order to identify the location of the cells using a standard CMOS APS 

imager, an entire imaging frame must be read out first so that a user or computer 

program can segregate object(s) from background.  To enable unsupervised detection 

of dynamic cellular behavior, it would be desirable for the imager itself to be able to 

identify and report the location of sparse distributions of cells without the necessity 

and computational cost of full frame readout.  That is precisely the problem that the 

dark address event imager seeks to address. 

Specifically, we designed a hybrid dark-active address-event representation 

(“AER”) image sensor whose active pixel elements operated in both: (1) a 

conventional imaging mode; and (2) a “dark AER” mode wherein the individual 

pixels asynchronously generate voltage pulses, or spikes, when the incident light on a 

pixel falls below a user defined threshold [10].  Thus, in the dark AER mode, 

individual pixels sense whether they are occluded (“dark”), or not, by integrating the 

difference between the photocurrent and a tunable bias current onto the photodiode 

junction capacitance.  Charge accumulates on an occluded photodiode because the 

photocurrent is smaller than the bias current.  The capacitor voltage is then buffered 

by a source follower and, for a dark photodiode, increases until it crosses the 

threshold of a CMOS inverter, whereupon it is converted into a logic "high" event.  

For a full frame image sensor, “dark” digital events can be queued using a standard 

arbiter structure as outlined in [31], or may priority encoded in real-time and then 

multiplexed together for serial readout.    
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Figure 2.15: (a) Non-adaptive APS (“n-APS”) schematic; (b) n-APS principle of operation.   Incident 
light generates a photocurrent that discharges the photodiode junction capacitance, while an 
opposing, user-tuned, current source supplements the thermal (dark) current and charges the node. 
[10] 

(a) (b) 

Fig. 2.15 (a) illustrates the fundamental sensing unit of the dark AER imager – 

it is a standard APS cell, with two essential modifications: (a) an in-pixel current 

source controlled by the voltage p_bias; and (b) the digital inverter buffers which 

convert the analog follower voltage to a digital signal.  As laid out in a commercial 

0.5 μm, 3-metal 2-poly process, the pixel is approximately 32 μm x 30 μm in size, 

and achieves a fill factor of 19%.   The operation of the circuit can be seen in Fig. 

2.15 (b), which represents the voltage across the photodiode junction capacitance as a 

function of time, under different bias conditions.  

 

 

 

 

 

 

During the reset period, the voltage is fixed at a DC level.  When the rst 

switch is turned off, then the incident light generates a photocurrent that tends to 

discharge the pixel.  However, the opposing bias current tends to charge the 

photodiode, resulting in a competition between the two.  In the dark, the bias current 

is stronger than the photocurrent and so the pixel will charge and the voltage rises.  
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By contrast, in bright light, the photocurrent is more powerful than the user-fixed bias 

current, and so it tends to discharge the pixel, thereby reducing the voltage across the 

photodiode.  Note that owing to the characteristic relationship between voltage and 

current described above, the 
dt

dV
 for a given illumination intensity is essentially 

linear.  In asynchronous mode, when the voltage rises above or falls below a certain 

threshold, the competition between light and dark is concluded; the voltage triggers 

the inverter buffers which convert the analog output into a binary decision – logic 

high or logic low, and thereby signal an optical occlusion or spike event.  Thus, 

instead of reading out an entire image frame and performing costly post-processing 

on the data, the image sensors themselves flag the location of migrating objects or 

cells that occlude light from the sensor surface.  Furthermore, since the spatial 

location of each APS is fixed in an array, the address of each flag can be deduced and 

transmitted by integrated readout circuitry.  For sparse distributions of cells, this 

address-event representation is an efficient and compact alternative to conventional 

techniques.  

Several experiments were performed to validate the operation of the dark 

AER APS.  Results from two of these experiments which illustrate analog and digital 

transitions between light and dark for a pixel of the fabricated image sensor are 

shown in Figs 2.16 (a) & 2.16 (b), respectively.  Voltage peaks correspond with the 

dark, whereas troughs represent bright incident light.   Note that the digital transitions 

are rail-to-rail, whereas the analog transitions do not rise above 2 V.  Likewise, it is 

important to observe that while the analog transitions are crisp, the digital readout 
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Figure 2.16: (a) Non-adaptive APS (“n-APS”) source follower output in response to slow changes in 
ambient light intensity (30s total time scale); (b) n-APS digital output in response to slow changes in 
ambient light intensity.  Plateaus represent periods of static ambient light intensity, while high 
voltages represent dark or occluded signals, and low voltages represent the incident light. [10], [11] 

(a) (b)

suffers from considerable jitter, owing in part to parasitic capacitances and leakage 

through the analog readout architecture. 

 

 

 

 

 

 

In addition, owing to the very small photo- and bias- currents (a fraction of a 

pF), and the size of the photodiode junction and parasitic capacitances (100’s of fF), 

the full-swing transition time is on the order of hundreds of ms to seconds.  Their 

slow speed, while useful for detecting the natural migration of cells that occurs over 

minutes, hours and days, does not permit rapid physiological measurement of optical 

activity.   Furthermore, the thresholds for these transitions are fixed, user defined and 

subject to circuit mismatch and process variation; although each pixel can distinguish 

light from dark, none can adapt to changes in ambient illumination.  As a result, in 

order to: (a) enable reliable unsupervised optical event detection under different 

ambient lighting conditions; and (b) enhance the discrimination speed of the detector, 

we developed a new adaptive image sensor for optical spike detection.   
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2.2.2 Sensing biological activity 

With sufficient spatial, optical and temporal resolution, it is possible to 

measure not only static information about a cell, such as the location to which it may 

have migrated, but additionally to observe some aspects of a cell’s dynamic behavior 

and physiology as well.  There are several reported integrated architectures that 

perform just such measurements [30].  Photodiodes fabricated on the scale of 

biological cells possess the requisite sensitivity3, integrated fluorescence filters permit 

us to employ optical dyes and coated fluorescent microbeads to illuminate chemical 

potential spikes [32], and detector speed is enhanced so that sensing dynamic 

biological activity with integrated contact imagers is rapidly becoming the new 

paradigm.   

As our first step down that path, we note that the ambitious objective of 

observing salient biological activity using a contact imager is predicated on the notion 

that we can visualize such activity – i.e. that physiology can be mapped to 

fluctuations in optical intensity that can be captured by the image sensor.  Inasmuch 

as most biological processes do not exhibit optical signals naturally, this is no mean 

feat.  The most common conventional manner in which to visualize such processes 

fluorescence microscopy – this process requires a microscope fitted at a minimum 

with both an excitation filter and source [33].  Several important biological 

compounds, principally NADH, will fluoresce when excited, and emit light at a 

                                                 
3 Many promising new technologies with superior sensitivity are being developed – avalanche 
photodiodes in standard CMOS still suffer a high noise floor, but offer much promise in this area.  
Likewise, techniques for enhancing the signal quality, such as surface plasmon resonance and optical 
waveguides suggest that the future of this field is indeed bright. 
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different wavelength; other biological compounds, metabolic processes and potential 

shifts can trigger fluorescent dyes or probes.   

 

 

 

 

 

 

 

 

 

Fig. 2.17 is a schematic Jablonski diagram illustrating the fundamental 

physics underlying fluorescence, and Fig. 2.18 displays an idealized representation of 

excitation and emission spectra, along with the concept behind an excitation filter.  

Although there are many commercial ways to implement these filters, none of these 

fall within the province of this dissertation.  For the fluorescence experiments 

conducted here, the integrated fluorescence filters were prepared by adding a UV 

chromophore, benzotriazole, to poly-dimethyl-siloxane (“PDMS”) in order to form a 

patternable absorption filter that absorbs over 99 percent of light below 400 nm, while 

passing nearly all of the light above that wavelength [35].4  Fig. 2.19 displays a 

photomicrograph of the n-APS shaded with a drawn blue filter.  

                                                 
4 The filters were prepared by Mr. Marc Dandin of the University of Maryland Department of 
Bioengineering. 

excitation 
filter 

emission 
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Figure 2.18: Stokes shift and 
principles of fluorescence detection. 

Figure 2.17: Jablonski 
diagram, [34].   

Figure 2.19: Photomicrograph 
of n-APS sensor array, shaded 
with a drawn blue filter.   
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To the extent that there exist several well-known reported techniques for 

monitoring biological activity by fluorescence imaging, we have not attempted to 

substantially modify or add to these methods.  Although we address two such means 

for neural signal detection – the methods in and of themselves do not represent a 

contribution of the present work.  Instead, we establish basic theoretical performance 

characteristics of a contact imaging system for the fluorescence detection of neural 

signals, and report a novel adaptive contact image sensor with enhanced detection 

speed suitable for measuring optical spikes that correspond with biological metabolic 

and/or neural activity. 

We shall focus our theoretical discussion on two classes of neural signals: (a) 

action potential propagation along a nerve axon; and (b) synaptic transmission 

between neurons.  For each of these classes of neural signals we shall consider the 

required: (1) spatial resolution; (2) sensitivity; and (3) speed to capture the signal.  

Spatial resolution depends principally on neuroanatomy – action potentials propagate 

along nerve axons that can be smaller than 1 µm in diameter, but are typically 

hundreds of microns to millimeters in length [36].  Thus, sensors with dimensions on 

the order of tens of microns are capable of resolving action potentials that traverse 

their photodiodes.  Likewise, although synaptic terminals are often less than 1 µm in 

diameter, with collections of Ca++ channels and synaptic clefts on the order of 10-20 

nm [37] – a sensor 50 µm on a side can still capture aggregate synaptic activity from 

a population of synapses.  As with such dynamic imaging techniques as fMRI, 

quorum sensing of neural activity can still provide meaningful information about 

dynamic neural activity, and as integrated microlenses become available, it is possible 
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to leverage the next generation of optics together with the advantages standard CMOS 

brings. 

Sensitivity is a function of both: (a) sensor dynamic range; and (b) the 

transduction chemistry – i.e., fluorophore excitation and emission spectra.  As we 

have seen, the dark current floor and associated shot noise determine the minimum 

detectable signal, and dynamic range of an APS imager is also affected by circuit 

noise [38].  Although it is not possible to characterize the dark current directly for the 

a-APS, plain-vanilla APS imagers fabricated in a commercial 0.5 µm process using 

the same n-well, p-sub structure have a reported dynamic range of in excess of 53 dB 

[8]; techniques exist for further extending this range [39].  Under low-light 

conditions, it is often difficult to distinguish thermally generated carriers from 

photocurrents, but from a systems perspective, since we illuminate the objects of 

interest with an excitation source of our choosing, we can engineer appropriate 

ambient illumination.  The real limitations are imposed by the selection of viable 

transduction chemistries – reported potentiometric dyes embedded in the nerve 

membrane register a shift of between 0.1% and 10% for a 100 mV depolarization 

[40], [32]; while a 10% shift is well within the capabilities of standard APS imagers, 

0.1% would need to be amplified for reliable APS detection.  This is equally true for 

monitoring in vivo synaptic activity – although there are reported APS detectors 

capable of monitoring free Ca++ concentrations in vitro in the nM range, only the 

coarsest detection of optical events using an implantable contact imager has been 

demonstrated in vivo [30].  However, synaptopHlourin (“spH”) is a pH sensitive GFP 

which exhibits a 20-fold increase in fluorescence when deprotonated in the neutral 
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extracellular fluid of the synaptic cleft versus its quiescent state inside the acidic 

environment of the pre-synaptic cell [41]; transfecting cell lines with this GFP 

derivative should render suitable signals for APS detection.  In addition, there are 

other technologies for amplifying a weak biological signal, like surface plasmon 

resonance, and avalanche photodiodes – both of these pose unique advantages and 

challenges that go beyond the province of this dissertation.  The critical point is that 

CMOS APS imagers are capable of resolving the signals generated by potentiometric 

dyes and proteins from background noise and so are suitable for monitoring dynamic 

biological electrophysiology. 

With respect to speed, neural spike trains saturate at frequency of around 1-2 

kHz, so that even high end systems that would seek to sample the transient 

components of an individual action potential require limited bandwidth – a 

conservative estimate of the required Nyquist sampling rate suggests that 10-20 kS/s 

would be sufficient to ensure perfect reconstruction.  However, to capture 30 frames 

of a 128x128 array per second, while serially recording 10kS per pixel for each frame 

would demand a minimum clock speed of  close to 5 GHz – pushing the outer limits 

of  present day integrated technology and consuming far too much power for an 

implantable system.  The solution for recording sparse neural activity is far simpler – 

employ a more modest (power and speed) imager to identify pockets of neural 

activity, and then focus 20kS/s attention on those active regions of the frame.  In this 

capacity, a standard APS imager operating asynchronously performs the required 

operations beautifully.  It is to that end that we have designed an adaptive image 

sensor for optical spike detection.   
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As a first step down the path towards integrated contact imaging of neural 

activity, I developed a novel APS with adaptive in-pixel thresholding for optical spike 

detection.  The adaptive threshold is set by ultra-low-power current-mode CMOS 

circuits which continuously compute the mean and standard deviation of the 

photocurrents generated by eight representative pixels in real-time.  Sensor pixels 

discriminate between light and dark by integrating onto the photodiode junction 

capacitance the difference between the photocurrent and an opposing bias current 

whose magnitude is set by the mean and standard deviation circuits.  I have 

characterized the active pixel sensor with and without an integrated fluorescence filter 

for biosensing applications and measured results agree with theory and simulations.   

Fig. 2.20 reflects the basic principle of on which the adaptation is premised – 

the magnitude of photocurrents generated across an array of APS under uniform 

ambient illumination should approach a normal distribution, so that it should be 

possible to distinguish transient optical events from background light levels by 

applying a simple statistical threshold, in this case, some user-set number of standard 

deviations above the mean.    

 

 

 

 

 

 
Figure 2.21:  Computed standard deviation 
from measured variance estimation circuit 
data. [11] 

Figure 2.20: Principle of adaptive 
thresholding. [11] 
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Custom circuits compute the mean and standard deviation of N (= 8 for this design) 

representative photodiodes in real-time.  Fig 2.21 illustrates the computed standard 

deviation from measured variance estimation circuit data.   

As shown in Fig. 2.22, each pixel contains a current source whose magnitude 

is set by the mean and standard deviation circuits.  As with the n-APS, this current 

source opposes the photocurrent, but in this case it charges in ambient light that is not 

focused on the center pixel – i.e. it represents the background light.   A spatially 

localized transient optical event of sufficient power will overwhelm the current 

source and drop the photodiode junction capacitance to ground.  When the transient 

optical event has concluded, the feedback transistors [42] ensure a rapid reset to logic 

high.  Fig. 2.23 shows simulation data. 

 

 

 

 

 

 

 

The layout for a pair of these image sensors, with surround pixels and mean 

and standard deviation computation circuitry is shown below in Fig 2.24, alongside a 

photomicrograph of the fabricated image sensor in Fig. 2.25.  I have previously 

shown the spectral responsivity for the n-APS, and demonstrated that measurements 

Figure 2.23. Simulated single a-APS spike. [11] Figure 2.22: a-APS sensor. [11] 
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using a weak excitation source (nW) in the sub-400nm cut-off regime register no 

higher than dark current on the fluorescence-filter-coated sensor. 

 

 

 

 

 

 

 

To illustrate proof-of-principle optical transient detection, I performed 2 

additional sets of experiments.  For the first, whose results are presented in Fig. 2.26 

and 2.27 below, a blue LED light (~465 nm) was pulsed at 1 Hz (left, blue) and 10 Hz 

(right, red) onto the image sensor.  For these tests, all pixels – the local sensor, as well 

as the 8 representative pixels used to set the threshold – were illuminated 

simultaneously with the pulsed LED source. As a result, the real-time adaptation 

mechanism sets a bias current that overwhelms the local pixel sensor current and 

charges the photodiode in the light; this powerful adaptation mechanism also 

maintains a higher voltage floor in the dark.   

 

 

 

 

 

8 “background” pixels with 
centered sensor. 

Figure 2.24:  Layout of two a-APS sensors and one standard 
deviation circuit, [12]. 

Figure 2.25: Photomicrograph of 
fabricated image sensor, [12]. 

Figure 2:26:  Measured data from the a-APS when uniformly illuminated with a pulsed blue LED.  (a) 
single spike measured at 1 Hz; (b) spike train measured at 10 Hz, [11]. 

(a) (b) 
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In order to further characterize the operation of the sensor, I considered two different 

methods of coupling light directly to the center pixel and keeping the remaining 

surround relatively dark: (a) fiber optic cable; and (b) focused laser beam.  For ease of 

setup, I chose to work with a focused visible laser at ~ 633 nm; this class II laser 

delivers approximately 1 mW of power in typical operation.  The experimental setup 

is shown in Fig. 2.27, below.  A chopper wheel was used to pulse the laser signal onto 

the pixel of interest while keeping the surround shrouded only in ambient room light.  

Fig 2.28 shows an approximately 1 kHz signal as measured by the a-APS; at the 

highest available chopper setting, ~ 4kHz (not shown), only about 10% peak 

attenuation was observed in the amplitude of the measured signal.   

 

 

 

 

 

 

 

Laser light exhibits a normal distribution.  Fig 2.29 shows a MATLAB 

simulation of laser light intensity as a function of position in the upper right quadrant 

of the image sensor.  In this simulation, the location of the center and surround pixels 

is identified with black boxes, the pseudo-color gradient reflects the relative intensity 

of the distribution, with red being normalized to unity and blue approaching zero.  For 

this particular distribution, the focus is principally on the center pixel, but the 

Figure 2:27:  Laser experimental setup, 
including 633 nm class II laser, chopper wheel, 
prototype board and sensor. 

Figure 2:28:  Measured data from the a-APS 
when red laser light (633 nm) is focused directly 
onto the sense pixel and chopped at 1 kHz. 
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surround receives sufficient light to theoretically balance the center.  A graphical 

illustration of simulated relative current intensities of center vs. surround as a 

function of the spread or focus of the laser light is provided in Fig 2.30.  The 

intersection of the two approximately represents the distribution at which the center 

pixel exceeds the 3σ threshold; small variations in the spatial arrangement of the 

surround photodiodes shift this slightly.   

 

 

 

 

 

 

 

 

 

 

As a result of these figures, we can establish a basic framework for the 

experimental design of a system to detect optical transients.  New blue voltage 

sensitive fluorescence dyes are less toxic than older red dyes, and when excited with 

laser light at a wavelength of approximately 633 nm exhibited  ΔF/F of 10-13% [32].  

Using such a potentiometric dye, it would be possible to couple the laser light in close 

proximity to the sensor surface using fiber optic cable, and with a suitable excitation 

filter, perform real-time adaptively thresholded neural imaging.  

Figure 2:29:  MATLAB pseudo-color plot of 
laser light intensity as a function of position in 
the upper right quadrant of the image plane. 
Black boxes mark the locations of the pixels, 
the pseudo-color gradient reflects the relative 
intensity, with red normalized to one and blue 
approaching zero.  

Figure 2:30:  Simulated center versus surround 
current intensities as a function of the spread or 
focus of the laser light.  Units on the x-axis 
represent signal spread; the y-axis is 
proportional to the photocurrent. 
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To realize this objective, I have designed and submitted for fabrication a 

complete imager incorporating this novel adaptive sensor.  Full simulations and 

experimental data from the a-APS indicate that the array possesses the sensitivity, 

speed and spatial resolution to monitor neural signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In particular, the imager array comprises a 32 x 32 array of a-APS 

elements, with adaptive thresholding circuitry and mixed-signal arbitrated 

address-event-readout (“AER”) circuitry.  It represents a first step down the path 

to low-power, unsupervised optical spike detection for implantable neural 

prosthetics.  

Row 28,    Row 6,     Row 28 … 

Col 12,       Col 17,    Col 12 … 

Figure 2:31:  (above) Layout of 32 x 32 a-APS 
imager array with adaptive thresholding and 
arbitrated AER readout.  Yellow and red suns 
indicate optical events. 
 
Figure 2.32: (right) Simulated AER readout 
from four optical events.  Event timing is 
represented by the shaded color-coded 
columns.
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Chapter 3: Neural Recording 
 

In this Chapter, we detail the historical evolution of neural recording 

techniques and demonstrate the experimental performance of several state-of-the-art 

integrated microelectrode arrays designed to interface with, manipulate and record 

from living biological cells and systems.  Original contributions of this thesis to the 

field include the design, fabrication and characterization of programmable electrode 

arrays for enhanced electrophysiological recording, for directing cellular growth, for 

site-specific in situ bio-functionalization, and for analyte and particulate collection. 

3.1  Neural Signals 

Neurons are the fundamental building blocks of our perceptual and cognitive 

systems – they transmit and shape sensory information and collectively give rise to 

consciousness.  There are on the order of 100 billion neurons in the average human 

brain – members of PhD committees tend to have a few more – and roughly 1015 

synapses [37].   Incapacitate a few hundred thousand with a chemical inhibitor such 

as ethanol and the rest rally to compensate; damage millions of geographically 

correlated neurons, e.g. by stroke or spinal cord injury, and it is possible to 

irreversibly impair sensory, cognitive and motor function.  As we collectively begin 

to take the first steps down the path to restoring lost function to the victims of neural 

injury and disease, we must first examine the behavior of individual neurons as they 

interact with one another.  Over the years engineers have devised a host of different 

imaging techniques to meaningfully measure neural activity; MEG, fMRI, cat scans, 

EEG recordings, to name a few.  All of these methods can resolve neural activity in 
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some detail and, remarkably each does so without piercing the skull.  However, 

despite recent advancements in the field it remains impossible to measure individual 

neural electrical signals non-invasively.  Instead, to obtain single unit data, it is 

necessary to record directly from, or in close proximity to the nerve cells of interest.  

Further, in order to conserve the signal strength of extracellular action or local field 

potentials, which are typically on the order of 50 – 500 µV, and to mitigate against 

signal degradation across long distances, recording electrodes should be connected as 

closely as possible with the hardware that will encode the incident neural events.  

Thus, implantable electrode arrays are preferred.  Ideally such systems would be fully 

implantable, in order to obviate the need for hard-wired connections between 

microelectrode and prosthetic that are susceptible to both signal attenuation and 

infection.   

In building the foundations for such implantable arrays, we shall first 

introduce some fundamental neurophysiology, including the mechanisms of neural 

action potential (“AP”) generation and salient AP characteristics.  Next we shall 

describe conventional mechanisms for in vitro and in vivo neural recording, including 

the patch clamp technique and conventional sharp electrode arrays.  We report several 

new integrated electrode arrays for in vitro recording and for cellular manipulation.  

Finally, we lay the groundwork for extensions to in vivo and integrated implantable 

spike sorting systems.  We begin with the neuron. 
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3.1.1  Neurophysiology 

Roughly speaking, one can divide the neuron into four primary functional signal-

processing compartments: (1) the dendrites; (2) the cell body; (3) the axon; and (4) 

the synaptic terminals, as shown in Fig. 3.1, below. 

 

 

 

 

 

 

 

The (1) dendrites transduce electrochemical signals from the synapses of other nerve 

cells into graded post-synaptic potentials (PSPs) which travel passively down to (2) 

the cell body, which integrates the dendritic inputs and instantiates one or more 

action potentials at the axon hillock; (3) the axon acts as a transmission line, or cable 

along which action potentials are transmitted until they reach the synapses of the 

neuron; and (4) the synaptic terminals chemically propagate the signal to other cells. 

[36].  At a higher level of abstraction, the neuron may be considered as an 

information theoretic channel, with certain coding format – the stereotyped AP – and 

capacity [43].   

Although it is often useful to regard biological action potentials as digital 

spikes, it is important to remember, especially for detection and classification 

purposes, that action potentials remain in fact analog signals.  Fig. 3.2 shows the first 

Figure 3.1:  Schematic drawing of prototypical neuron. [36] 
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Figure 3.2:  First published AP 
recording, 1939. [36] 

Figure 3.3: Voltage clamp 
apparatus drawing. [45] 

published recording of a neural action potential.  Even 

though some information is lost in these early 

recordings due to slow response time and poor current 

detection limits, we nonetheless observe the 

characteristic analog peak and refractory period trough 

existing in all neural action potentials.  These salient 

features always occur, but the precise shape and timing 

vary from neuron to neuron and in response to changing environmental conditions 

and stimuli [44].  In addition to AP shape, patterns of neural activity can range from 

quiescence to intermittent or tonic AP firing, to bursting activity in response to 

intense stimuli with an inter-spike-interval (“ISI”) on the order of ms; the rate of 

firing is typically regarded as an encoding mechanism that researchers use to decipher 

these patterns [43].   

However, before we attempt to divine 

meaning from the frequency at which a neural cell 

fires, we need to take a step back and examine the 

analog nature of APs, and in particular, the 

biological mechanisms by which they are 

generated.  In the early 1950’s, Hodgkin and 

Huxley performed a landmark series of 

experiments on the squid giant axon using a 

voltage clamp apparatus shown in Fig. 3.3 to 

elucidate those functions.   
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The voltage clamp allowed Hodgkin and Huxley to fix the membrane 

potential using negative feedback: the sense electrode measured the potential across 

the squid axon relative to the bath ground and fed this potential into one input of an 

operational amplifier whose other input is a fixed control voltage; the output of the op 

amp drives a current injection electrode located inside the giant axon.  This output 

injection compensates for any changes in sense input to bring the sensed and control 

voltages together, and in so doing provides a measure of membrane conductance at 

different fixed membrane potentials. 

From the experimental data they obtained, Hodgkin and Huxley postulated the 

following explanation for how an action potential is generated: 

(1) At rest, the nerve cell membrane is selectively permeable to the ions that 
comprise the fluid media of the cerebral cortex and, through active and 
passive mechanisms, maintains an equilibrium potential of approximately -
70mV with respect to the exterior of the cell; (2) stimuli fed by the cell’s 
dendrites to the cell body exceeds a certain threshold voltage (approximately -
50mV) which causes gated ion channels in the cell membrane to open and 
permits Na+ ions to rush inward and K+ ions to rush outward along their 
respective concentration gradients; (3) the net influx of positively charged 
ions (Na+ ions are at a higher potential gradient than K+ ions) depolarizes a 
localized portion of the axon membrane, and this depolarization causes 
neighboring sites along the membrane to also depolarize; (4) the previously 
depolarized portion has been flooded with positive ions, so that the membrane 
approaches the Na+ ion equilibrium potential (about +50mV), which 
ultimately closes the Na+ channels, while simultaneously K+ ions continue to 
egress until local equilibrium is established again and the membrane 
repolarizes; (5) the signal is continually regenerated with almost no 
appreciable attenuation along the length of the axon, until it reaches the 
synaptic terminals, at which point it is propagated chemically to another cell. 
[36], [45] 

 

Thus, the action potential is thus a traveling local depolarization that moves 

like a wave along the axon.  The depolarization and subsequent repolarization cycle is 

so sharp and abrupt that it is often referred to as a “spike.”  The shape and frequency 
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of biological action potentials are both functions of the ionic conductances across the 

membrane, as is shown in Figs. 3.4 & 3.5. 

 

 

 

 

 

  

 

As the figures indicate, resting potential for a typical cortical neuron while 

proportional to the ionic gradients of the local environment, tend to be around -70 

mV; likewise, the stereotypical action potential has a peak amplitude on the order of 

30-50 mV, along with a repolarization trough that dips slightly below resting 

potential.  The entire cycle of a neural AP is typically on the order of 1 ms; this 

period can be extended by K+ channel blockers such as tetraethylammonium 

(“TEA”), or shortened as a function of environmental conditions and intense stimuli 

[36]. 

3.1.2  Modeling Neural Action Potentials 

Drawing on their experimental data, Hodgkin and Huxley proposed a simple circuit 

model to represent the nerve axon and its signaling function, as shown in Fig. 3.6.  

The model represents the cell membrane as a capacitor, and the gated ion channels as 

parallel conductances across the capacitor connected to batteries that represent ionic 

equilibrium potentials: 

Fig. 3.5: Action potential as a function of Na+ and 
K+ channel conductances. [36] 

Fig. 3.4: Action potential as a function of ion 
channel activity. [46] 
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Fig. 3.6. Hodgkin-Huxley cell membrane 
model.  [47]. 

Quantitatively we obtain: IM = Cm
dt

dV
 

+ IK + INa + IL ; where, IM = membrane 

current; Cm
dt

dV
= capacitor current; IK    

represents the potassium current; INa = 

sodium current; and IL = passive leakage 

current.  

The model is plain, and although subsequent authors have extended this model 

(Fitzhugh Nagamo, etc.), the precise algorithm used to compute the ionic 

conductances that give rise to the action potential are not of primary importance.   

What is critical is: (1) that the action potential shape, including spike amplitude, 

peak-width, trough duration and rise and fall slopes, are determined, at least to first 

order, by known functions;  and, (2) as Mahowald [48] and others have demonstrated, 

these functions can be reproduced in silicon thus providing a rudimentary template 

for matching spike form to function.  Figures 3.7 (a) and 3.7 (b) are, respectively, 

actual and simulated neural data reproduced from Mahowald’s silicon neuron paper 

and a course paper containing original PSpice simulations. 

The imperfections in the modeled neuronal behavior shown above, while 

interesting from a theoretical standpoint, are not significant from the circuit design 

perspective; if spike shape is all that matters1, there are simpler and more precise 

ways of constructing an action potential template in silicon (See, e.g., [49]).   

 

                                                 
1 Of course, spike shape is not all that matters; spike frequency is of significance as well.   
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Subsequent authors have significantly improved on the prototypical 

conductance-based silicon neuron model, implementing circuits that generate tunable, 

biologically realistic action potentials in real-time or faster (e.g., [50]).  What matters 

is that the mapping can be done, and it can be done efficiently in silicon, thus giving 

rise to a tunable template generation mechanism that is considerably simpler than 

conventional means for accomplishing the same goal.  In addition, having 

characterized the mechanisms and elucidated fundamental models for AP generation, 

we can now proceed to resolving the means by which these signals are measured and 

recorded. 

3.1.3  Conventional Neural Recording 

While there are several ways to record extracellular action potentials, the 

“gold standard” for measuring the channel currents that define these potentials is the 

patch-clamp method.  Though there are many variants on this method (for which 

Neher and Sakman won the Nobel Prize), all of them entail suctioning the micron-

sized tip of a hollow, fluid-filled glass micropipette onto a portion, or “patch”, of the 

Figure 3.7. (a) Real action potentials versus silicon neuron APs [12]; (b) PSPICE simulations. 
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cell membrane to form a seal and monitor channel currents or cellular potentials.  In 

the case of whole cell patch-clamp recording, the seal between the micropipette tip 

and cell membrane joins the intracellular and microelectrode salt solutions and 

separates them both from the bath media, imposing a gigaohm membrane resistance 

between the recording electrode and the extracellular media.  The voltage or current is 

“clamped” using negative feedback through an external amplifier, and the desired 

signal is measured.  The gigaseal is the hallmark of whole cell patch-clamp recording, 

and is required for reliable monitoring of aggregate channel currents and potentials 

across the membrane. [51]. 

I assembled our patch-clamping apparatus from: (1) an Axiotron confocal 

microscope fitted with water immersion and long distance objectives corrected for 

biological work; (2) a custom-designed2, rigid, locking integrated stage and mount for 

an MP-285 micromanipulator; (3) an MP-285 micromanipulator; (4) a Multiclamp 

700B patch-clamp amplifier; and (5) a data acquisition system using a Measurement 

Computing PCI-DAS 1602 data acquisition card, and custom software developed in 

MATLAB and C++.   Fig. 3.8 illustrates the experimental patch-clamp setup. 

In developing my recording acumen, I learned the culture and care of several 

different cell lines and developed a multi-phase protocol for whole-cell patch 

clamping to govern: (a) the preparation of intracellular pipette filling solution; (b) the 

program parameters required to reproducibly generate optimal pipette tip resistances 

and geometries; (c) pipette filling; (d) electrode chloriding, assembly, placement and 

manipulation;  (e) cell preparation; (f) patching onto a cell; and (g) 

neurophysiological recording.  Following this extended protocol, I performed 
                                                 
2 Jay Pyle of the IREAP machine shop fabricated the stage I designed. 
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repeated whole-cell patch-clamp recording on cultured bovine aortic smooth muscle 

cells (“BAOSMC”). 

 

 

 

 

 

 

 

 

 

 

 

 

Cartoon schematics of the whole-cell method are provided in Fig. 3.9, 

alongside a video capture of one of my own whole-cell patch-clamp experiments in 

progress, as seen in Fig. 3.10.   The cartoons illustrate gigaseal formation by patching 

onto and subsequently rupturing the cell membrane, and show a schematic of the 

whole-cell electrophysiological configuration.  Figs. 3.11 and 3.12 on the following 

page show recordings from BAOSMC experiments demonstrating successful 

application of whole-cell patch-clamping protocol resulting respectively in: (a) 

gigaseal formation; and (b) (noisy) signal recording. 

 

Micropositioner 
on custom stage 

PhD candidate 

Micropipette and 
attached live cell 

Axiotron confocal microscope 
with custom stage 

Faraday cage 

Multiclamp 
amplifier 

Pipette 
puller 

Figure 3.8: Author performing a whole-cell patch-clamp experiment using the custom-built rig. 
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The seal-test reflects the transient voltages resulting from pulsed current 

injections into the sealed cell membrane.  The exponential voltage decay is a function 

of membrane, pipette tip, and parasitic capacitances, as well as the amount of injected 

current.  The measured features of the whole cell recording roughly approximate that 

of a prototypical cardiac AP, in both amplitude, duration, and ISI.   

Initially, the patch-clamping work was intended to characterize the 

relationship between sensor (planar microelectrode) recordings of extracellular 

potentials and cellular depolarization events, to enable more accurate detection and 

classification of these potentials.3  However, we quickly discovered that BAOSMC, 

while particularly robust to the iniquities of multi-party cell culture and care, only 

                                                 
3 Although a real recorded action potential waveform is distorted in non-linear fashion as it travels through the biological 
impedance network that separates cell membrane from recording electrode; for adaptive detection and classification of spikes, 
this distortion can be characterized over time. 

Figure 3.12: Whole cell patch-clamp 
recording from cultured BAOSM cells. 

Figure 3.11: Seal test on BAOSM cell. 

Figure 3.10:  Video capture of 
whole-cell patch-clamp experiment. 

cell 

pipette 

Figure 3.9: Cartoons of the whole-cell patch clamping 
procedure. [62][63] 
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rarely exhibited spontaneous depolarizations and were thus not the ideal surrogates 

for networks of spiking neural cells.  It is my understanding that to this day the only 

published recorded action potentials from BAOSMC are reported in [12] and [52].  

Widely-reported experimental successes using cardiac myocytes [53], and actual 

neural cells [54], suggest that these would be more appropriate cell lines for the 

intended experiments.   

Patch-clamp recording remains the gold standard for measuring channel 

currents and corresponding depolarizations of individual neural cells in vitro.  

However, whole-cell recording is a destructive technique which inevitably results in 

cell death.  In addition the size of the instrument prohibits clamping more than 2 or 3 

neurons at a time, and so is unsuitable for recording from populations of neurons, or 

for chronic implantation.  As a result, engineers seeking to make meaning out of 

signals generated by tens or hundreds of neurons, as opposed to two or three APs, 

must employ a different technology to measure and record such data – the paradigm 

thus shifts from direct measurement of channel currents of a single neuron to  indirect 

recording of transient shifts in extracellular electrical potentials.  Moreover, instead of 

recording from two or three sharp glass electrodes filled with electrolyte and wire, 

engineers seeking to capture population data have fabricated integrated arrays of 

sharp microelectrodes for chronic recording and stimulation.  The industry standard is 

the Utah array, shown in Fig. 3.13 (a) and (b).  

In vivo measurements are beyond the province of this dissertation, so I 

obtained single unit ferret neural recordings from Professors Asaf Keller of the 

University of Maryland Medical School and Shihab Shamma (and Dr. Ping-Bo Yin) 
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from the Neural Systems Lab (“NSL”) of the Institute for Systems Research at 

UMCP.   

 

 

 

 

 

 

 

 

The data from the NSL was obtained using custom microelectrodes 

chronically implanted into the auditory cortex of live ferrets and as we shall see in the 

spike sorting section of this dissertation, the recordings are excellent.  However, as 

with the patch-clamp technique, the quality of their recordings comes with a price – 

the size of the discrete external instruments that perform the signal amplification, 

filtering and conditioning.  As an added overhead, the ferrets must be immobilized 

during testing to avoid introducing extraneous noise to the tethered system.  It is 

neither desirable, nor in the author’s opinion, ethical, to tether human subjects to such 

extraneous instrumentation.  To truly restore lost cognitive, sensory and motor 

function to the victims of neural injury and disease, a fully implantable system is 

required. 

 

Figure 3.13: (a) “Utah” microelectrode array; (b) Utah array next to penny for comparison. [56] 

(a) (b) 
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3.2  Integrated Electrode Arrays 

The Utah array has served as the closest thing to emerge as a standard for 

sharp integrated microelectrodes, but there has been an explosion of new 

microelectrode designs over the past 10 years.  Some electrodes are simple spikes 

[55], others are planar arrays [54]; some employ metal interfaces, others use 

conducting polymer [56]; some are hardwired to external instruments, others are 

integrated with amplification, and recording capabilities [5].  It is to this end that we 

aspire – leveraging the density and power efficiency of standard CMOS technology, 

to implement several novel integrated electrode arrays for monitoring neural activity 

in vitro, for demonstrating proof of principle integrated spike sorting systems on-chip, 

and for manipulating nerve cell growth, orientation and network formation.   

To be clear, we have not developed any novel interface chemistries or 

electrode geometries as part of this dissertation.  Nor do we look to reinvent the wheel 

in terms of integrated amplifiers, although we have trimmed one model to our 

specifications.  We seek to build ultra-low-power integrated systems for neural signal 

processing on-chip, but first and foremost, our systems must be capable of accurately 

and reliably recording incident extracellular potentials.  More specifically, they need 

to be able to record signals on the order of 100’s of µV to 100’s of mV, across tens to 

hundreds of channels, all while not exceeding several mW of chronic power 

dissipation.   As a starting point down that path, we have scaled down Harrison’s 

classic neural amplifier [57], Fig. 3.14, to a commercial 0.5 µm process, and 

integrated this design, with high density electrode arrays, and also with integrated 

spike sorting architectures.  Harrison’s basic design has a gain of ~ 100 (39.5 dB), 
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Figure 3.14: Harrison bioamplifier schematic. 
[57] 

Figure 3.15: Haas scaled version layout and 
photomicrograph 

bandwidth of 7.2 kHz, operates on +/- 2.5 V rails and a remarkably low input referred 

noise of 2.2 µV, rms.  The one published in [12], operates on +/- 1.65 V rails, exhibits 

a gain of approximately 100 (> 38.4 dB measured) , has a bandwidth of ~ 3 kHz, low-

noise design, and an area just over half that of Harrison’s (.16 mm2 versus .09 mm2).  

Figure 3.15 shows my own variant on the Harrison bioamplifier, which is again more 

than halved in size, and laid out using common centroid techniques for matching. 

 

 

 

 

 

 

 

 

 

 

 

As in Harrison’s original work, both scaled amplifiers meet all of the 

requirements for neural signal recording:  power consumption for an array of these 

amplifiers comes in at well under the 80-100 mW/cm2 budget; bandwidth is sufficient 

to capture the salient features of AP shapes; and the gain set by the ratio of feedback 

capacitors, C1 and C2, is sufficient to shift small extracellular signals well above the 

noise floor for subsequent on-chip processing.  Having outlined the basic neural 

100 um 
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Figure 3.16: Array of first generation scaled 
bioamplifiers, [12]. 

Figure 3.17: Recorded signals from cultured 
BAOSMC, on one channel, and across all 
eight channels.  [12] 

recording requirements and technology, we next turn to completely integrated 

systems. 

 

3.2.1  Neurite outgrowth 

In 2006, we reported data from a design with ten integrated bioamplifiers, 

with an ideal gain of 40 dB, and planar commercially cut electrodes, Fig.3.16 [12].  

As previously noted, these experiments and those found in [52] represent the only 

known reported BAOSMC action potentials in the literature, Fig. 3.17.      

 

    

 

 

 

 

Although these sensors were fabricated in an integrated CMOS process, each 

channel was implemented with its own dedicated bioamplifier; as a result, it was only 

possible to place ten recording channels onto a 1.5 mm x 1.5 mm MOSIS tiny chip.  

Inter-electrode distances can be rendered almost arbitrarily small (even violating 

design rules), but sensor resolution is limited by the density of the amplifier circuits.  

Thus, in order to enable higher resolution recording from, e.g. cultured neural cells, 

we designed and fabricated a suite of 128 x 128 electrode arrays at 7-14 μm pitch, on 

2.5 x 2.5 mm2 dies, with simple pre-amplifier circuits at each electrode, to buffer the 
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weak neural signals and minimize the effects of readout noise.  High input impedance 

MOSFETs buffer the signals near their source, thereby reducing attenuation and 

improving signal integrity [58], [59].4  As a result, a single bioamplifier can be used 

to drive 16,384 high fidelity, multiplexed signals off-chip.  

Multiple copies of each design were submitted so that we could compare the 

performance of electrodes defined by commercial versus in-house glass cuts.  The 7-

14 µm pitch of our electrodes was comparable to the then state-of the-art MEA 

reported in [54]; our principal point of novelty was obviated when it was decided not 

to purchase the photomasks required to cut sub-micrometer electrodes in the array.  

However, the array served a testbed for the two high density pre-amplifier 

architectures: (a) a single transistor common-source buffer; and (b) a differential 

sensor to compensate for bath and localized DC electrical potentials.  Fig. 3.18 shows 

the schematics and layout for the two preamplifier architectures: 

       

 

 

 

 

 

The single transistor common-source amplifier acts as a unity gain buffer 

driving the load imposed by the readout circuitry.  Monte Carlo simulations 

performed with respect to the published corner parameters suggest that the common-

                                                 
4 Interfacial capacitance would not dramatically perturb measurements of extracellular potentials due to the relatively high 
Helmholtz layer capacitance (approximately 0.1 pF per μm sq. [60]), and the comparatively low series gate capacitance (on the 
order of 1fF per μm sq.).   

Figure 3.18: (a) single-ended common-source pre-amplifier schematic and layout; (b) differential 
common-source preamplifier schematic and layout.
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source preamplifier can drive a 100 µV, 1 kHz signal onto a 128 element column bus 

with less than a tenth of one percent attenuation; although actual circuit performance 

is attenuated somewhat as a function of the bioamplifier performance and also non-

ideal parasitic switch capacitances.   

 

 

 

 

 

 

 

 

This is illustrated in Fig. 3.20, which represents the bench-test output of the 

CS preamp and bioamplifier as buffered by a unity gain op-amp, in response to a 

synthetic AP.   In this case, I connected an artificial AP signal directly to a pinned-out 

electrode; it had an amplitude of ~20 mV, peak-to-trough, and a frequency of 1 kHz.  

Note that although the ISI is precisely preserved, the fast transient components of the 

simulated AP are attenuated by approximately ½ as they push into the roll-off freq. 

(~3kHz) of the bioamplifier.  Additional bench-testing using the probe-station 

featured in Fig.3.19, demonstrated the performance of the buffered CS amplifier 

when a signal was coupled through directly to the aluminum pad on the sensor 

surface.  By comparison with the directly pinned out electrode, a probed pad contact 

Figure 3.19: Bench-testing apparatus 
for probing microelectrodes using 
signal generator. 

Figure 3.20: Data from single-ended pre-
amplifier, fed by arbitrary waveform 
generator and buffered by bioamplifier 
from [12].  
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yields a significantly greater degree of attenuation; this is believed to be a function of 

interfacial capacitances and process imperfections. 

By contrast, the NMOS-only differential amplifier was designed to provide a 

small gain while minimizing common-mode noise.  Gain for the differential pre-

amplifier is a function of the ratio of the widths of the input transistors to the active 

loads: in the ideal case of perfectly matched process parameters and taking the 

lengths of all transistors as equal, Liv WWA  , where Wi is the width of each of the 

input transistors, and WL is the width of each of the active load transistors.  With a 

fabricated Wi of approximately 9 μm, and WL of about 1 μm, we expect a gain of 

about 3.  As with the common-source amplifier, whose theoretical frequency response 

is nearly identical, there is should be no appreciable frequency roll-off in the range of 

interest for this preamplifier configuration. 

Having characterized several sensors on the bench, and desiring to conduct 

biological experiments with these sensors, it was first necessary to package them – to 

passivate the toxic aluminum electrodes, to encapsulate the bond wires, and to form a 

culture well for cell media.  First, the chips were affixed into ceramic DIP40 packages 

and wirebonded through MOSIS.  Next, we electrolessly plated the aluminum 

electrodes with gold.   Then, we insulated the bondwires using a biocompatible UV-

patternable polymer, Loctite 3340, leaving the electrodes exposed.  Fourth, we 

affixed a custom-milled culture well to the packaged surface with silicone glue.  Fig. 

3.21, below, shows: (a) a close-up of electrolessly-plated 14 µm planar electrodes; (b) 

a photomicrograph of the fabricated 128x128 differential sensor array; and (c) a fully 

packaged chip.   
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I conducted several sets of biological experiments using the packaged sensors.  

In one, I plated BAOSMC onto the surface of the sensor, added media to the culture 

well and incubated them overnight to permit the cells to adhere to the sensor surface.  

The following day, I would visualize the adherent cells using an Axiotron confocal 

microscope, and record from selected channels of the array.  To spur the naturally 

quiescent BAOSMC to generate and sustain APs, I would occasionally dose the bath 

media at selected points with tetraethyammonium (“TEA”) and/or salts.   

 

 

 

 

 

 

 

 

Figure 3.21:  Left, photograph of electrolessly plated planar commercially cut electrodes; center, 
photomicrograph of fabricated 128x128 differential sensor array; right, packaged electrode array. 

(a) (b) (c) 

Figure 3.22: Recorded activity of cultured 
BAOSMC in HBSS dosed with ~2mM TEA. 

Figure 3.23: Stereotyped cardiac action 
potential. [61] 
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Data from one such experiment is shown in Fig. 3.22.  For comparison, Fig. 

3.23 shows a schematic representations of a cardiac AP.  For subsequent generations 

of chips, in future collaborations with other faculty and institutes, I intend to pursue 

neural recording on-chip. 

 

3.2.2  Programmable electrode arrays 

Integrated electrode arrays provide high density, low power neural recording 

capabilities and permit sophisticated on-chip signal processing circuitry.  However, 

standard CMOS was designed for digital circuits – device mismatch and process 

variation that would not significantly affect digital designs can have a pronounced 

impact on analog circuits, particularly CMOS sensors used to decode very small 

neural signals.  For high-density arrays of neural sensors, it is essential to be able to 

reliably correlate signals measured across different sites in order to render an accurate 

representation of the environment sensed. However, even state of the art MEAs using 

complex compensation circuitry exhibit variation in excess of 30 percent [54].  This 

problem is further compounded when random, but quantifiable environmental 

inhomogeneities associated with in vitro cell culture are introduced. Thus, in order to 

address these problems and enable more reliable comparison of signals across the 

MEA, I developed a series of programmable VLSI sensor arrays for compensating 

these offsets and accurately monitoring electrogenic cells in vitro.  In addition, I have 

fabricated and performed bench tests on a completely passivated planar electrode 

array that is designed to exploit the tendency of biological cells to grow along electric 

field vectors, a phenomenon known as galvanotropism.  In particular, these arrays are 
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Figure 3.24: Schematic, layout and fabricated 
128 x 128 array of programmable electrodes. 

designed to manipulate nerve cells, including neurites of developing axons, to enable 

user-controlled patterning of custom neural (and other cellular) networks.  In addition 

to the specific examples described, programmable array technology may also used to 

collect and concentrate charged analytes and particulate matter, and to implement 

site-specific in situ bio- and chemical-functionalization for such applications as DNA 

arrays, and other assays.   

 

A. Programmable High Density CMOS Microelectrode Array [13] 

 

For the first proof-of-principle 

design, the principal aims were 

electrophysiological recording, so that 

it was important to not exceed the 

pitch of existing microelectrode arrays 

(14 μm), while demonstrating basic 

programming of individual array 

elements. In striving to accomplish 

this programming within the confines 

of a cell-sized sensor, I stripped the 

circuits down to the bare minimum, 

removing as much of the extraneous architectures as possible and attempting to make 

circuits multi-functional where feasible.  As a result, I developed the circuit shown in 

the following schematic and layout of Fig. 3.24, which is a current-mode amplifier 



 58 
 

with non-volatile analog memory built into each element of the sensor array. The 

control gate aids in programming and is also useful in characterizing the performance 

of the array because it is in parallel with the cell-sensor interface (“CSI”) electrode. 

The CSI electrode is a commercially cut exposed aluminum electrode which is 

capacitively coupled to the floating gate of the programmable PMOS transistor. Slow-

moving DC offsets are rejected and small-signal AC transients such as those from 

cells coupled to the electrodes on the packaged sensor surface are transduced into 

drain currents that are buffered through a digital column switch to a common bus. 

These signals may be further buffered using, e.g., integrated operational amplifiers, 

but for this prototype they are read out directly through user-controlled switches with 

adjustable rails.   

A photomicrograph of the fabricated array is also shown in Figure 3.24. The 

large golden square that fills the bulk of the 3 mm x 3 mm die comprises a 128 x 128 

array of programmable sensors, and the remaining elements are the readout and 

programming circuitry. In attempting to reduce the footprint of the overall design, I 

employed digital row and column select decoders to control the source and drain 

voltages and thereby regulate both programming and readout across the array. For 

ease of testing, each decoder was fabricated with its own independent, user-tunable 

rails so that programming would not be constrained by fixed biases; this helps avoid 

undesired forward biasing any of the diodes in the array and avoid latch-up.  Source 

voltages are asserted column-wise, while drain voltages are controlled by the row 

decoder. This enables a user to access any element of the array desired for readout or 

programming, and effectively isolates other elements because no current will flow 
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absent the required source voltage and no programming will occur without the 

appropriate voltages at the source and the drain of the programming transistor.  

Each channel of the array may be programmed independently using hot 

electron injection, and can be erased by UV light or Fowler Nordheim (“FN”) field-

induced tunneling. Hot electron injection in MOSFETs is a function of transistor 

source- (“S”) and gate- (“G”) drain (“D”) voltages, has been empirically shown to 

obey the following relationship [64]: 

 

(3.1) 

 

where α, β, and δ are experimentally derived process dependent constants, Is is the S-

D current flowing through the transistor, and Vgd and Vsd are the voltages across the 

gate-drain and source-drain regions, respectively.  These parameters have previously 

been characterized for the commercial 0.5 μm process in which the sensor array has 

been fabricated.5  Thus, for a controlled S-D voltage, which may be asserted through 

user-controlled tunable switches, the injection current is a function of: (a) the current 

flowing through the programming transistor, and (b) the floating gate voltage which 

falls with injection and rises with tunneling.  This current results in a stored charge on 

the floating node which modulates the gain and offset of the sensor element.     

The array may be uniformly erased by exposure to strong UV light for several 

hours, and it is also theoretically possible to erase these structures by field-induced 

Fowler-Nordheim tunneling. In MOSFETs, FN tunneling exhibits an exponential 

dependence on the voltage across the oxide barrier that is given by [64]: 
                                                 
5 by Eric Wong while he was a student and colleague in the ECE department. 
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(3.2) 

 

where Itun0 is a pre-exponential current, Vf is a process dependent constant, and Vox is 

the voltage across the oxide barrier. In either case, the programming mechanism 

operates to change the charge and thereby the voltage stored on the floating node 

between the CSI and the gate of the PMOS sensing element.   

Simulated and measured data from the array is presented in Figs. 3.25, 3.26, & 

3.27.  The simulation data shown below in Figure 3.25 reflects the output current of 

individual sensors with mismatch variation: (a) before ideal programming; and (b) 

with the offsets mathematically removed.  However, this simplistic view of mismatch 

compensation does not fully reflect the realities of programming single-transistor 

amplifiers that behave differently across many regions of operation, and with 

different biases.  In order to more fully understand these real world issues, prior to 

receiving the fully fabricated sensor array, I tested some other analog front ends that I 

had previously fabricated which share the design, if not the pitch of the sensors in the 

microelectrode array. Figure 3.26 shows the results of those preliminary tests on 

actual circuits with architectures nearly identical to those on the fabricated array.  

More specifically, those figures are the results of programming arbitrary voltages 

onto the floating node of individual, previously fabricated sensors to illustrate how 

programming affects gain and offset for this design. In the top box of Fig. 3.26, 

programming results only in an offset shift of the input sine wave, as can be seen in 

the inlay when these offsets are mathematically subtracted using MATLAB. In the 
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bottom box, programming arbitrary voltages onto the floating node affects both gain 

and DC level, as can be seen in the second inlay, which again is the result of 

mathematically subtracting out the offsets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These figures illustrate both the problems and the promise of the 

programming techniques. In the former case, I was able to control injection well 

enough to avoid pushing the single transistor amplifiers into a different mode of 

operation, and hence the programming voltage simply shifted the I-V curve with a 

DC offset. On the other hand, I believe in the latter case, the programming voltage 

actually pushed the transistor deeper into saturation, resulting in a higher overall 

Figure 3.25: Before: simulated swamp the signal;  
After: the offsets are mathematically removed.    

Figure 3.27: Sensor array element before and 
after programming the floating node by 
injection. Both gain and offset are affected. [13]

Figure 3.26: Programming arbitrary offsets 
onto floating gates in order to shift I-V 
curves and tune gain. Within each box, input 
signals are identical. Inlays show signals with 
DC offsets subtracted. [13] 
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current (the axes are negative on that figure), with a lower signal gain.  I observed 

similar phenomena when I bench tested the fabricated floating gate array.  Fig. 3.27 

shows the output from a single sensor element of the fabricated array in response to a 

synthetic spike train input asserted directly at the control gate. The dashed line is the 

output before programming, and the solid line is the output afterwards; the output 

spike trains are normalized to their respective mean voltages for comparison. In this 

instance, programming impacts gain considerably more than offset.  Fig. 3.28 is a 

reproduction of the packaging flow, with a photomicrograph of the fabricated sensor 

array. 

 

 

 

 

 

 

 

B. Galvanotropism 

The ability to program analog offsets onto the electrodes of an array is 

valuable to many applications in addition to neural recording.  Stroke, spinal cord 

injury and neurodegenerative diseases such as ALS and Parkinson’s debilitate their 

victims by suffocating [1], cleaving communication between [2], and/or poisoning [3] 

entire populations of geographically correlated neurons.  Although the damage 

associated with such injury or disease is typically irreversible, studies have shown 

Figure 3.28: Previously fabricated microelectrode array with identical pitch and die size to the 
fabricated sensors, plated and packaged. 
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that neurite outgrowth itself can be directed and enhanced in vitro by subjecting 

developing cells to applied electric fields [65]-[74].  Together with in vivo studies 

implicating endogenous electrochemical potential gradients in neuronal 

differentiation and development [71], and clinical research showing that applied 

electric fields (“EF”) can stimulate recovery of severed neural pathways [74], this 

research offers the possibility of substantial therapeutic advances in the treatment of 

nerve injury and neurodegenerative diseases.  While promising, the systems used to 

realize these therapeutic applications are typically macro-scale implementations with 

fixed EF vectors [71], coarse controls [74], and poor spatial resolution [75], which 

limits the potential for such applications.  In view of these limitations, the present 

research is directed to developing a programmable, high-resolution micro-system for 

inducing EF-directed neurite outgrowth, and to testing this system on several different 

cell lines.  In performing this research, I hope to develop a tool which researchers can 

use to obtain deeper insights into the phenomena underlying neural development and 

growth, and which clinicians might use in the treatment of damaged and diseased 

nerve cells. 

In so doing, I designed, fabricated and characterized an integrated planar 

electrode array capable of generating localized, programmable EF gradients for 

stimulating and manipulating neuronal growth.  The electrodes are paired with 

integrated readout circuitry, and employ floating gate electrodes to pattern EFs and 

potential gradients.  The fabricated microchip has been packaged using a photo-

curable polymer to provide a culture well for cell growth and to insulate the electrical 

components of the chip from the cells and fluid media, as with the previous work.  
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The passivated glass surface of the chip remains exposed and, in conjunction with the 

polymer packaging, serves as the culture well substrate which may be coated with an 

adhesion or neurotrophic factor to promote neurite outgrowth.  For the prototype, 

controls are discrete off-chip components in order to permit better characterization of 

the electrode array and the generated EFs.  In characterizing the performance of the 

system, local field strength is both modeled and must be experimentally measured.   

The prototype chips are comprised of a 16 x 16 passivated array of electrodes 

coupled to analog floating gate memories that store precise analog voltages on each 

electrode instead of a digital bit.  Circuits were modeled in part using the Cadence 

Spectre circuit simulator; layout of this design as shown in Figure 3.29 (b) was done 

with the Cadence software suite, Virtuoso.  

 

 

     

 

 

 

 

 

 

The tiled pattern of voltages set on the array of electrodes will define the DC 

EF gradients used to direct neurite outgrowth; a fixed-potential counter-electrode may 

be mounted atop the array to ensure proper behavior.  Electric field vectors will be 

 

(a) (b) 

Figure 3.29: (a) Typical set-up for two electrode galvanotropism, [72]; (b) layout of fabricated 16 x 
16 array for performing arbitrary field pattern galvanotropism, and photograph of typical bio-
packaging.   
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studied using three-dimensional (3-D) finite-element-analysis (“FEM”), taking each 

planar electrode in the array, including the passivation (insulation) layer and 

corresponding fluid volume as a single element of the tiled array.  EFs will also be 

measured indirectly with potentiometric fluorescent probes.  Theoretical calculations 

suggest that the prototype FG system currently in fabrication is capable of generating 

EF strengths up to several orders of magnitude higher than that reported in the 

literature.  Specifically, taking the passivation layer as several hundred microns thick 

and the top plate counter-electrode as being situated 1-2 mm above the surface of the 

chip, given supply rails which may be set to ± 5 V, the tiled vertical EFs could be as 

high as 10 V / mm and, owing to electrode geometry and pitch, the lateral growth- 

inducing fields could be up to 200 times greater.  The entire array may be 

reconfigured within minutes using only electric currents and voltages (and not 

physical manipulation of switches or other apparatus).  Initial experiments will 

attempt to program relatively uniform and unidirectional gradients, to reproduce the 

experiments reported in the literature.  Subsequent investigation will focus on: (a) the 

effects of novel patterned DC EFs on neurite outgrowth; and (b) the impact of time-

varying EFs on neural development.   

Having characterized a suitable micro-scale system for stimulating cells, 

future efforts will be directed at conducting a series of experiments designed to assess 

the effects of different applied DC EF gradients to cells cultured in the fabricated, 

encapsulated systems.   For the first series of experiments, I intend to work with a 

clinical research partner to culture mouse nasal explants directly atop the partially 

encapsulated chips and expose them to a unidirectional EF gradient over several days.  
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These cells are obtained from colleagues at the NIH and also in the Bioengineering 

department of the University of Maryland, College Park.  To affect the cell growth, 

we first generate the unidirectional EF by programming each column of the array to a 

specific voltage, generating a columnwise potential gradient from left to right 

comparable to the 10-150 mV/mm used to induce directed neurite outgrowth in 

several of the reported studies [65]-[73].  Once the EF pattern has been stored on the 

array, we clean the glass substrate and add any required adhesion factors (such as 

laminin).  After preparing the microsystem, harvested cells will be introduced to the 

culture well by conventional techniques along with culture media sufficient to support 

6-7 days growth.  The entire apparatus will be placed in an incubator under standard 

conditions (370C, 5% CO2), and we will visualize the emerging growth cones using 

conventional microscopy.  For the preliminary experiments, periodic digital images 

will be taken over the course of several days, although depending on the observed 

rate of growth, this sampling period may be increased or lowered.   These digital 

images will be registered, sorted and evaluated, first by hand, and then by custom 

software (MATLAB) to automatically track neurite outgrowth for a particular neuron. 

Subsequent experiments will employ (a) collagen; (b) poly-L-lysine; and (c) 

NGF to coat regions of the glass substrate to ascertain whether any EF induced 

outgrowth is subject to a substrate-induced dependency.  The rate, direction and 

morphology of neurite outgrowth will be monitored during this period using 

conventional microscopy.  Subsequent experiments will investigate the effects of 

different EF spatial, and temporal patterns on neurite outgrowth of the nasal explants.   

Finally, we will conclude the proposed work by attempting to extend the results to 
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other cell lines, such as NGF-differentiated PC12 cells and dissociated hippocampal 

cells.  Previously reviewed work has shown Xenopus motor neurites turning toward 

the cathode, while PC12 neurites turn the other way [72].  Such definitions may 

further be stretched by the unconventional electric fields generated across the 

proposed array; virtual “anodes” and “cathodes” will simply be the most positive and 

negative regions on the chip.   

In summarizing this section, I have designed and fabricated a novel 

architecture for stimulating in vitro cell cultures with programmable DC EFs.  Future 

work will include more sophisticated experiments to elucidate the mechanisms of EF-

induced growth by selective modulation of environmental conditions, such as 

extracellular Ca++ concentration or actin polymerization (using, e.g., latrunculin A).  

 

C. Other Applications 

Finally, it should be pointed out that the programmable electrode arrays 

presented here have many variants, including different geometries (such as nano-

electrodes), materials (e.g. carbon nanotubes and organic electrodes), circuit 

architectures (different trimmable amplifiers), and modes (current, voltage, charge, 

etc…).  One set of experiments indicate its suitability for concentrating analytes or 

particulate matter into desired regions of an array.   The possibilities are practically 

limitless. 
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3.3 EMG  

Finally, we briefly discuss surface electromyography (“EMG”) for 

biofeedback and rehabilitation.  From 2006-2008, I mentored a team of Gemstone 

undergraduates and helped them to develop a closed-loop surface-EMG feedback 

system for the rehabilitation of hemiparetic stroke victims.   

Surface EMG is the measurement of electrical potentials generated by muscles 

when they contract. More specifically, motor nerves that terminate in muscle fiber 

give rise to local depolarizations of the muscle fibers innervated by those nerves – the 

aggregate activity of a group of muscle fibers results in a synchronized depolarization 

called a motor unit action potential, or MUAP.  For a given muscle, such as the 

hamstring, MUAPs superpose and give rise to a collective waveform whose 

amplitude reflects the intensity of a muscular contraction and whose period coincides 

with the frequency of stimulation.   Fig. 3.30 illustrates the basic principles of signal 

acquisition and decomposition.  MUAPs are important in the characterization and 

rehabilitation of the victims of neurophysiological diseases and injury such as stroke 

– they become a barometer for the strength of motor innervations, which in turn are a 

function of cortical vitality.    

Together with the Gemstone team, previously acknowledged, I coordinated 

with clinicians to develop a system that would measure these MUAPs and provide 

biofeedback for the rehabilitation of stroke victims.  We developed miniature 

instrumentation amplifiers and filters for recording the very small surface potentials, 

~10uV-10mV, representing subcutaneous MUAPs.  Gel surface electrodes were 

connected to the amplifier inputs to minimize interfacial impedance, and 
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characteristic signals were recorded from, e.g. arm-wrestling students.  For 

biofeedback, our clinical partners at UMBC School of Medicine, devised a therapy 

regiment and assisted us in identifying appropriate recording sites – ultimately we 

chose 6 muscle groups involved to assess gait.  Fig. 3.31 shows representative 

surface-EMG data that we recorded from a student’s calf muscle. 

 

 

 

 

 

 

 

 

Future work will involve measuring the impaired gait of hemiplaegic stroke 

victims, for rehabilitative biofeedback, and next generation systems integration. 

 

 

 

 

 

 

 

Figure 3.30: Basic principles of EMG acquisition 
and signal decomposition. [76] 

Figure 3.31: Surface-EMG recording from calf-
muscle. 
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Chapter 4: Spike Sorting 

The principal aim of this work has been to develop mixed-signal VLSI circuits 

that can process real-time neural signals recorded from cultured (in vitro) and living 

(in vivo) biological systems.  In particular, I have designed, fabricated and 

characterized circuits for detecting, extracting the salient features from, and 

identifying the source of neural action potentials.  In so doing, I have evaluated the 

performance of these systems against other mixed-signal spike sorting circuits, 

comparable digital systems, and theoretical performance metrics.  This work has 

provided me with a deeper understanding the advantages and limitations of low-

power analog computation, and enabled me to test some novel stochastic and adaptive 

architectures which are designed to enhance the precision and accuracy of analog 

VLSI systems generally.  More particularly, I have addressed some of the key 

limitations of previous generations of implantable signal processing and biosensor 

architectures – power consumption and reliable encoding of neural data – and offer 

some novel approaches for next generation spike sorting systems.   

I undertook this research to meet a perceived deficiency in the broad 

development of neural prosthetics.  Specifically, I observed that first generation 

neural implants typically recorded and amplified localized time-varying extracellular 

potentials, but performed limited additional signal conditioning on-chip [77].  State-

of-the-art systems fared little better: although microelectrode arrays have been 

chronically implanted into the cortex, many such “implants” are essentially just wires, 

[78], onto which low-resolution, high-power ASICS have been mounted [5], [6], or 

mixed-signal threshold detectors that are incapable of discriminating between spikes 
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from neighboring neurons [79], [80], [81].  Each of these systems suffered from the 

same general deficiency – they did not reliably encode the vast amount of incident 

neural data, and therefore required external hardware to make any sense of it.  

Furthermore, while cultured cells may be able to endure the heat generated by 

clocked, high-powered digital processors (see, e.g. [77]), neurons in situ cannot.  As a 

result, neural implants continued to rely on hard-wired connections between 

microelectrode and PC that pierce the skull and can succumb to noise, corrosion, 

signal attenuation, and infection.  Thus, a principal motivation for the present work 

has been to develop low-power VLSI architectures that will accurately classify 

incident neural data for low-power RF transcutaneous transmission (or additional on-

chip processing for control, etc.), and thereby to enable a new generation of 

implantable cognitive and cortically controlled neural prosthetics.  Such prosthetics 

could be implemented to restore lost or impaired vision, hearing, and motor control, 

among other possibilities. 

In addition, when implemented in conjunction with densely populated 

microelectrode arrays and low-noise bioamplifiers for monitoring the neural activity 

of cultured cells, the spike sorting circuits I developed can also provide a robust 

platform for low-false-positive cell-based sensing.  In this context, small footprint and 

integrability are the key constraints – size and power-efficiency matters.   Because the 

fabricated design takes advantage of the efficiencies of real-time analog signal 

processing and obviates the need for, e.g., A/D conversion and vast memory stores, it 

is a fraction of the size and corresponding power cost of comparable DSPs.  

Leveraging the efficiency of analog VLSI systems thus enables a new platform for 
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low-power cell-based sensing that is both portable and precise.  As one particular 

example of how such a system could be implemented, olfactory nerve cells are known 

to respond to different classes of chemical moieties with different 

electrophysiological signatures.  If such cells were cultured atop a microelectrode 

array whose outputs were encoded by one of the spike sorting circuits, it should be 

possible to detect changes in individual neural signatures by observing the incident 

action potential frequencies.  Ultimately, the accuracy of action potential detection 

and classification will determine the number of false positives a sensor reports, and so 

another aim of the research has been to enhance the receiver operating characteristics 

(“ROC”) of cell-based sensors by increasing the precision of the sorting circuits. 

In furtherance of this research, I have studied cellular neurophysiology and 

mixed-signal VLSI design.  I have developed and tested novel cellular sensor 

architectures with embedded signal processing capabilities, and have experimentally 

investigated the cell-CMOS interface.   

The original contributions of this thesis with respect to the field reside in the 

design, fabrication and characterization of ultra-low power programmable floating 

gate template matching circuits for the detection and classification of neural action 

potentials.  Specific contributions to the field include: (a) the overall architecture; (b) 

application of floating gate adaptation and template matching to solve the detection 

and classification problem under competing constraints of low-power dissipation and 

high computational precision; (c) novel on-chip variance estimation circuitry; (d) 

novel asynchronous current-mode weight-update circuits; (e) unique silicon neuron 

template generation mechanism; and (f) a VLSI implementation of a theoretical non-
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linear energy operator (“NEO”) to threshold incoming signals for unsupervised 

template generation.     

This chapter of the dissertation is organized into three parts.  In the first, we 

explore the relevant foundations of mixed-signal stochastic computation.  Next, we 

perform an in-depth review of existing spike sorting algorithms, methods and 

architectures.  Finally, I present my own contributions to the field, represented by 

ultra-low-power floating gate template matching circuits for neural spike sorting, and 

place this system into the context of existing and future work. 

4.1  Mixed Signal Stochastic Computation 

Almost twenty years ago, Carver Mead proclaimed his “conviction that the 

nervous system … contains computing paradigms that are orders of magnitude more 

effective than are those found in systems made by humans.” [45].  Drawing 

inspiration from nature, nurture and necessity, I now share Mead’s conviction.  As a 

result, the systems investigated, designed, fabricated and tested are all informed by 

the knowledge that the laws of physics apply equally to silicon and sensory cells, to 

nerves and to NAND gates.  In mapping biological functions onto silicon substrates 

we exploit the analog subthreshold regime that MOSFETs provide, exchanging some 

precision for the ability to operate within biological power constraints.  

In addition, beyond simply confining my designs to run cool, I have attempted 

to optimize in a very real sense the balance of analog versus digital computational 

blocks used, investigating both mixed-signal and mixed-mode (voltage, charge, 

current) computation.  Using novel stochastic and adaptive feedback circuitry, and 

incorporating floating gate technology to implement multiple input and multiple input 
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translinear elements (“MITE”) and analog memories, I have devised means to not 

only adapt away offsets, but to compensate for a primary source of imprecision in 

analog computation – device mismatch.  As a result, system and circuit noise can be 

more accurately characterized and reduced.   

The following subsections serve as a focused primer, detailing the theoretical 

underpinnings that informed my designs.  

4.1.1 Analog VLSI 

All silicon computation is ultimately analog.  Although digital designers can 

attain arbitrary resolution by confining signal states to a series of binary bins, in so 

doing they necessarily ignore the computational cost of confinement.  Real world 

signals, such as neural action potentials, are NOT digital and quantizing them costs – 

it costs precision, it costs speed, and it costs power.  Moreover, with respect to the 

particular application presented here, digital architectures cannot at present attain 

accuracy sufficient for unsupervised sorting (Compare, e.g., [82] with [83], [84]).  

Therefore, in this dissertation, I aimed to press the limits of analog precision by 

adaptively tuning transistor and process mismatch to the noise floor.  I also applied 

conventional noise reduction and elimination techniques, where applicable, to obtain 

superior analog precision while maintaining a very low power budget.  The guiding 

hypothesis has been that properly calibrated analog circuits can achieve higher 

precision at a given power consumption than comparable digital circuits. 

4.1.2 Low Power Design 
 

Implementing low-power analog design invokes three primary constraints: (1) 

reduce the power-supply rails as low as possible; (2) incur as little short-circuit 
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dynamic dissipation as possible; and (3) perform required computations in low-

voltage, low-current regime.  Thus, most of the circuits implement analog 

computation using MOSFETs operating in the subthreshold regime.  This limits 

operating current and dynamic power dissipation accordingly.  Likewise, although the 

rails are presently set at 0 and 5 volts to permit floating gate adaptation, this operating 

voltage can be scaled with the fabrication process.  Dynamic power dissipation is 

further minimized by ensuring rapid digital transitions and using low-power amplifier 

and current steering circuits where feasible.   

In principle, the subthreshold power savings is largely a function of the log-

linear relationship between MOSFET current and applied gate-source voltage.  The 

basic equations that govern the operation of MOSFETs in this regime are given 

below: 

(4.1) 

 
 

for        (4.2) 
 

 
 (4.3) 

 
 
  

 (4.4) 
 

 

For the commercially available 0.5 µm process used to prototype circuits, 

subthreshold gate-source voltages of several hundred mV yield currents in the pA – 

nA range, which minimizes static and dynamic power dissipation.  

1)1( /   TDS VVe mVVV TDS 1004 

kTq
n

bieNtD
L

W
qI /

00


slopeldsubthresho
C

C

ox

tot 1

TGS VV
ldsubthresho eII /

0
 



 76 
 

4.1.3 Floating Gate Basics 
 

Floating gates are implemented as polysilicon (“poly”) gates which are 

electrically isolated from both the MOSFET body and direct electrical contact with 

any input node by layers of gate- and field oxide, respectively.  Floating gates are 

electrically floating nodes, and so can: (a) store charge and thus serve as analog 

memory elements; and (b) couple multiple gate inputs into a single gate.  I employ 

floating gates for both of these purposes.  We shall discuss each in turn: 

 

a. FLOATING GATE ADAPTATION 

 

Floating gates can serve as analog memories that can be used as dynamically 

configurable tap weights, template bases, wavelet kernels, etc…  The mechanisms by 

which the values stored on these nodes are updated are (1) hot electron injection; and 

(2) Fowler-Nordheim tunneling.  Taken directly from Rahimi’s 2002 ISCAS 

publication, Figs. 4.1 & 4.2 are schematic drawings of a floating gate node, with 

tunneling implant, and an energy level diagram illustrating the potential gradients that 

must be overcome to invoke the physical charge injection and tunneling processes. 

Floating gate adaptation is readily implemented to nullify threshold mismatch 

and process length variation in analog VLSI designs.  Conventional floating gate 

trimming circuits employ voltage comparators to adaptively inject and tunnel charge 

onto and off the relevant gates, thereby providing a means of achieving enhanced 

precision in such circuits [19].  Simple current-mode trimming circuits have also been 
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Figure 4.3:  Floating gate schematic 
with differential injection and 
tunneling nodes. [149]. 

reported [148].  I have included circuitry to nullify current mismatch in my filters and 

computational blocks to arbitrary precision, using such techniques.   

 

 

 

 

 

 

Although the particular details will be addressed in 

subsequent sections of this dissertation, one way to 

correct threshold voltage mismatch is the indirect 

programming method reported by Graham, et al. in 

[149].  A schematic of the basic architecture copied 

from this paper is shown below in Fig. 4.3, right.  

Several fabricated designs include variations on this 

architecture. 

In one aspect, I have developed circuits that use tunneling only for resetting 

template values, and prefer carefully balanced hot electron injection to bidirectional 

updates.  In these cases, negative feedback is used to ensure stability.  I have also 

designed architectures which take full advantage of both positive charge increments 

through controlled tunneling; and negative decrements by continuous hot electron 

injection.  The full details of these architectures are discussed later in this chapter. 

 

Figure 4.1:  Floating gate layout with control, injection 
and tunneling nodes. [19]. 

Figure 4.2:  Schematic of injection and tunneling 
mechanisms. [19]. 
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b. MULTIPLE INPUT TRANSLINEAR ELEMENTS (“MITES”) 

 

Subthreshold MOSFETs display a logarithmic relationship between applied 

gate-source voltage and drain current, and so may be ideally regarded as translinear 

elements, which can be used to implement low-power, current mode analog 

calculations [158].  The basic formulation follows from standard KVL mesh analysis: 

 

KVL:     , or        (4.5) 

 

For the ideal translinear element (“TE”):                         (4.6) 

 

assuming for MOSFETs operating in subthreshold that (i) the bodies are tied to 

common voltage; and (ii) that we operate in saturation with          .  Controlling 

VDS by implementing cascodes is optimal.  We can compensate for VT mismatch by 

injection at an indirect programming floating gate PMOS node.   That should take 

care of variable component of κ also.  Then you have    

  

    (4.7) 

 

Dropping the common VT and κ terms, turning the log sum into a product, and 

exponentiating both sides while assuming a common λ and I0 yields:   
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Instead of using multiple transistors in various looped configurations, it is 

sometimes more convenient to use multiple inputs to the same floating gate to 

generate MITE structures which perform the same computation more compactly.  

 

In this case, we begin with:                 (4.9) 

Taking as a typical example, the subthreshold current squaring circuit used in one of 

the variance estimation designs, we have: 

 

 

 

 

 

 

 

 

 

Using standard subthreshold analysis, we write: 

 

(4.10) 

(4.11)  

(4.12)  

 

Fiigure 4.4: Multiple input translinear element (“MITE”) current squaring circuit. 
[158] 
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For the circuits I have implemented,               (4.13) 

And, based on the circuit:   

       VG31=VG32=V21= “V2”            (4.14) 

          VG22=VG11=VG12= “V1”            (4.15) 

Then we have: 

(4.16) 

(4.17) 

(4.18) 

Solving for V1 and V2 in terms of I1, I2 and I3, we obtain: 

(4.19)  

 

(4.20)  

  

(4.21) 

 

Assuming identical VT’s, we now equate the three equations and solve for I1, I2 and I3 

 

(4.22) 

    

With a little manipulation (not shown), and assuming identical λ and I0, we find that: 

 

(4.23) 

We are now prepared to examine the state of the art in spike sorting systems. 
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4.2 Spike Sorting Literature Review 

Implantable neural prosthetics and portable, precision biosensors must satisfy a 

host of different bandwidth and power constraints as they detect, classify and decode 

incoming neural signals, but functionally it is the precision and accuracy of spike 

sorting that defines the quality of the implant or sensor.  Spike sorting is term that 

broadly encompasses four overlapping and intertwined problems: (a) spike detection; 

(b) feature extraction; (c) source classification; and (d) decoding of spike trains.  The 

thesis research, like the majority of the hundreds of reported algorithms, methods and 

means of performing spike sorting, is confined to the first three tasks outlined above.  

The following literature review addresses the limited subset of the reported spike 

sorting systems  that have informed the present work. 

 
4.2.1 Spike Sorting Methods and Algorithms 

 
Although this research has been directed toward mixed-signal spike sorting 

architectures for implantable neural prosthetics, much of the inspiration for my 

designs has come from the following sources: 

A. SUMMARIES AND REVIEWS 
 

The seminal review in the field was prepared by Michael Lewicki in 1988 

[106].   In A review of methods for spike sorting: the detection and classification of 

neural action potentials, Lewicki introduces the intertwined problems of (a) detecting 

spikes against background neural noise and (b) classifying the source of overlapping 

spikes; and then identifies the primary methods for resolving those problems.  At a 

fundamental level, spike detection is simply a thresholding problem, and Lewicki 
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observes that simple voltage thresholding is a common way of identifying the most 

prominent feature of a neural action potential: its amplitude.  However, simple 

thresholding is susceptible to classification error owing to overlapping spikes and 

noise signals, and also suffers a ROC that is a function of the threshold set.  

Therefore, to the extent that my designs rely on thresholding, those thresholds are set 

adaptively so as to optimize the detector ROC. 

One way to enhance detection accuracy beyond simple thresholding is to 

incorporate a greater number of features into the classification scheme.  Lewicki 

identifies three ways of classifying spikes based on this notion: (1) principal 

components analysis (“PCA”); (2) cluster cutting; and (3) template matching.    

Principal components analysis involves finding the set of orthogonal basis 

vectors which represent the greatest variation in the recorded neural signal.  Once the 

basis vectors are identified, action potentials may be classified by convolving them 

with each of the principal components and assigning a score to each spike according 

to the convolution.  In this case, the pictures shown in Fig. 4.5 provide significant 

insight: 

 

 

 

 

 

 

 Figure 4.5: Lewicki’s PCA analysis [106]: (a) shows raw data; (b) 
illustrates the first three principal components; (c) provides the standard 
deviation of the scores for each component; and (d) clusters the 
component scores.  
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Since each successive component represents a smaller degree of variation in the data, 

it is possible to resolve a signal to arbitrary levels of precision by incorporating 

additional components into the description.  For discrete sampled signals, the 

principal components correspond with the eigenvectors of the covariance matrix of 

the data.  However, while noting that the first three components account for 

approximately 76% of the variation in the neural data, Lewicki observes that only the 

first two have latent roots, or scores, above that of the background noise.  As such, he 

proposes using the first two components to classify spikes from this data set.  This 

method can be very powerful, however it is also expensive, and citing a 1982 study 

by Wheeler and Heetderks, Lewicki comments that this computationally pricey 

method yielded superior results to simple feature analysis, but were nonetheless “not 

as accurate as template matching.” 

Lewicki goes on to address various methods of classifying spikes based on 

their features or principal components:  generally speaking, he describes various 

algorithms for cluster cutting.  The nearest neighbor or k-means algorithm classifies 

spikes based on their Euclidean distance from one of several cluster means.  Bayesian 

sorting is a more sophisticated method that defines clusters stochastically: a 

multivariate Gaussian centered about the cluster mean is often used to describe each 

cluster, and spikes are sorted based on the marginal probability that they belong to a 

particular class, using Bayes’ rule.   

 

(4.24) 
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The spike features, such as amplitude and firing frequency used to sort the action 

potentials into classes are optimized using a maximum likelihood algorithm to define 

bounded clusters for the feature set.  Fig. 4.6 illustrates the method: 

 

   

 

 

 

 

 

After surveying a number of related spike sorting problems and advertising 

his own method for overlap decomposition, Lewicki refers back to the Wheeler and 

Heetderks study that found “template-matching methods yielded the best 

classification accuracy compared to spike-shape features, principal components, and 

optimal filters.”  Noting that non-adaptive template-based methods suffer during 

bursting neural sequences and as a result of electrode drift, Lewicki concludes that 

perhaps the best hope for separation of overlapping spikes is the tetrode, which 

enables superior source localization.  

A subsequent comparison of spike classification techniques in detecting tonic 

and phasic action potentials generated by caterpillar taste organs was set forth in 

[123].  In that review, the authors showed that classical template matching and 

principal components analysis (“PCA”) techniques performed nearly perfectly in 

Figure 4.6: Gaussian clustering by Lewicki [106]; (a) shows the Bayesian decision 
boundaries for the four clusters; (b) shows the same data with ninc clusters.  
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detecting tonic spikes generated by various stimuli.  However, the neural network 

classifier that the authors studied performed significantly better at distinguishing 

phasic, or transient, responses than either template matching or PCA.  Although these 

algorithms were employed offline, and thus do not directly inform the investigation 

into analog and mixed-signal spike sorting circuits, they do suggest that alternatives 

to the classic template matching scheme ought to be examined.  That is precisely 

what I have done. 

 

 B. TEMPLATE MATCHING 
 

There is an appreciable dearth of recent template matching algorithms for 

spike sorting, presumably owing to the maturity of the basic algorithms, and the 

computational complexity of such a system.  The following sources address recent 

advances in the field:  

In [127], A New Template Matching Method using Variance Estimation for 

Spike Sorting, Cho et al. describe a novel algorithm for performing template matching 

by estimating the variance of each purported class of spike shapes and using that 

variance to define the distribution for that class of spikes (See, e.g. [131]).  Detection 

is then accomplished by a weighted Euclidean distance metric.  This is one way in 

which training may be accomplished using template matching architectures, by 

employing the variance estimation circuitry across a band of tuned template matching 

filter banks.  Using my novel variance estimation circuit to tune a Gaussian formed 

by, e.g. a bump circuit, we can translate this algorithm into hardware – a result which 

can be applied much more broadly than for the purpose of spike sorting.   
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Another offline system of note was reported in [86], in which the authors 

develop a multistage template-matching algorithm for spike detection and 

classification.  In particular, templates are evaluated for fit against ostensible “spike 

events”; the best fit is the one which results in the minimum residue variance 

according to the chi-squared test.   And preceding that paper, in [141], Zouridakis and 

Tam developed a method for fuzzy clustering to generate templates that were nearly 

identical to the signals from which they were learned.  Although somewhat difficult 

to implement in mixed-signal hardware, the principles underlying this algorithm 

inspired some of the adaptive template learning algorithms developed below.  And 

the earliest reported real-time template matching system used an eight-point matched 

filter system and was implemented primarily in software, [138], [139]. 

 

C.  WAVELET AND MULTIRESOLUTION ANALYSIS 

 

Wavelet decomposition and multiresolution analysis methods gained favor in 

the late 1990’s, and since that time, the signal processing community has virtually 

exploded with wavelet sorting algorithms.  The theory is fairly straightforward: a few 

signal subbands or discrete coefficients characterize the basic action potential and 

may be classified accordingly; detection accuracy is improved inasmuch as noise is 

implicitly discounted.  Many of the algorithms proposed employ an arbitrary 

resolution discrete wavelet transform; however, the continuous time analog wavelet 

transform possesses the distinct advantage of not requiring storage for discrete 

coefficients.  The references that follow represent the state of the art wavelet sorting 

algorithms: 
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In the most recent publication on point, [112], Robert Brychta and his 

colleagues evaluate Wavelet Methods for Spike Detection in Mouse Renal 

Sympathetic Nerve Activity.   Brychta, et al. compare the performance of the discrete 

and stationary wavelet transforms against one another at detecting the spikes which 

comprise mouse renal sympathetic nerve activity.  Noting that conventional 

algorithms either integrate spikes indiscriminately or rely upon static and error-prone 

thresholds to detect action potentials, the authors proposed to employ and contrast 

two wavelet schemes for decomposing a neural signal:  the DWT and the SWT.  In 

evaluating their data, the authors conclude that, in spite of its computational 

complexity the SWT is a more reliable alternative to either the DWT or simple 

amplitude thresholding for denoising and spike detection and discrimination. 

A couple of years earlier, in [150] Zoran Nenadic and Joel Burdick had 

proposed an analogous method for Spike detection using the continuous wavelet 

transform.  Rather than simply decomposed thresholding the spikes, the Nenadic and 

Burdick used Bayesian hypothesis testing at different scales to find and classify 

spikes.   According to the authors, their ROCs are better and their false positives 

closer to real neural spikes than those identified by previous methods of spike sorting.  

The authors extol the virtues of template matching techniques, but complain that 

template generation requires supervision – the reports cited above cast some doubt on 

this position.  Regardless, the authors of [150] demonstrate (through simulation) the 

theoretical power of wavelets in discriminating between signal and noise.   

Owing to this ability to reliably separate relevant signal components from 

noise, a litany of authors have employed the continuous and discrete-time wavelet 
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transforms: as pre-processors, [111], for unsupervised spike detection and sorting, 

[109], [110] to characterize action potential features for template generation, [87], to 

detect overlapping extracellular neural signals with a low SNR, [101], [104], [134], 

[142].  These are but the most recent in a surfeit of wavelet algorithms to perform or 

assist in spike sorting.  Likewise, multiresolution non-linear time-frequency 

classifiers have been proposed – see, e.g., [115].  Despite this flush of algorithms and 

methods, there are, however, less than a handful of custom wavelet transform circuits. 

 

D.  NEURAL NETWORK CLASSIFIERS 

 

Many alternatives to the wavelet technique exist.  One promising method is 

reported by Kyung Kim and Sung Kim, who demonstrated Neural Spike Sorting 

Under Nearly 0-dB Signal-to-Noise Ratio Using Nonlinear Energy Operator and 

Artificial Neural-Network Classifier, [82].  The authors achieved classification of 

extracellular spikes from Aplysia abdominal ganglia at better than 90% with an SNR 

as low as 1.2 (0.8 dB).  They critique thresholding, Haar-basis wavelet analysis and 

matched filters as poor means of detecting spikes against an SNR that approaches the 

zero level.  They further observe that such methods can require a priori knowledge of 

the waveform and background noise which is often not available during the training 

phase.  They assert that neural networks can achieve superior blind performance but 

may be computationally costly, and to the extent that they rely on, e.g., thresholding 

during training, that such methods are susceptible to the same shortcomings as the 

others.  By contrast, the authors’ method trains an NN using a non-linear energy 
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operator (NEO) proportional to the instantaneous product of frequency and amplitude 

for both training and detection.  Specifically, they relied on supervised classifiers 

comprised of multilayer perceptrons (MLPs) and radial basis function networks 

(RBFNs) (See [114]).  The authors conceded that adaptation based on learning the 

actual distribution function through repeated training could yield better results.  

However, while the authors set their threshold level manually, I have designed 

circuits to do it adaptively – an NEO operator is used to detect neural spikes and 

compared against amplitude thresholding.   

Classical neural network (“NN”) detectors have been applied to multiunit 

spike detection and sorting for well over a decade.  Such classifiers were particularly 

in vogue during the mid-to late 1990’s when a bevy of authors reported enhanced 

ROCs using real-time digital NNs [133], [136], [137], [146].  Difficult problems in 

resolving superposed spikes from one another were handled significantly more 

reliably by trained NNs than by simple matched filters, [146].  It is on the basis of this 

and other groundbreaking work in mapping prototypical frequency transforms onto a 

NN architecture by Professor Martin Peckerar and colleagues [135], that I have 

modeled a NN classifier to compete with the adaptive floating gate template matching 

and wavelet transform circuits. 

 

E.  AUTOMATED AND UNSUPERVISED 

 

Among the several hundred other recent spike sorting papers, those following 

authors’ work have had the most significant impact on this work.  Wood and Black at 
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Brown University have co-authored several papers in the field, [100], [103], [153] 

beginning with an illuminating article on the variability of manual spike sorting. In 

[100], they report that even among purported experts, false positive and false negative 

spike detections exceeded 25% on average for a synthetic signal; and that the 

variability in separating spikes from noise and other action potentials was even 

greater when real data was evaluated.  The authors concluded that this data pointed to 

the need for an automated sorting method that would yield more consistent results, 

[100], and their work corroborates the conclusion by Shamma in [108], that it is 

important to focus on reliable or repeating spikes, rather than errant or transient 

firings.  Wood and Black developed two methods for automatic spike sorting, in 

[153] and [103], the latter assuming an infinite mixture model (“IMM”) of possible 

spike classes and partitioning this space according to a Bayesian computation of 

maximum a posteriori (“MAP”) probabilities.  The authors correctly postulate that 

their offline method may be extended to an online classifier that estimates the 

posterior probabilities sequentially; the floating gate filter bank, the wavelet 

decomposition circuit and the neural network classifiers can adapt to these 

probabilities as they are trained to operate on real data. 

A number of authors have also reported sophisticated techniques for 

unsupervised sorting: projection pursuit based on negentropy maximization, [88], 

[98]; Markov chain Monte Carlo classification based on spike timing and generation 

dynamics as well as amplitude features, [79]; a purportedly information theoretic 

maximum likelihood algorithm, [127]; a principal components analysis (“PCA”) 

based method with automatic overlap decomposition employing an iterative 
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algorithm to optimally cluster spikes according to a spectral cost function, [90]; and 

clustering spikes and assessing the quality of classification based on noise 

characteristics [107].  

In addition many authors continue to employ more conventional methods of 

performing unsupervised sorting, including: PCA plus self organizing feature map 

neural network, [89]; spike-sorting with a multivariate t-distribution expectation 

maximization algorithm, [144]; modeling spike waveforms by ordinary differential 

equations with perturbations and characterizing their phase space features to classify 

them [147]; using support vector machines, [92]; resorting to tetrodes to differentially 

localize the source of independent action potentials, [95]; software-based feature 

extraction and template learning plus detection and classification, [140]. 

 

F.  NEURAL PROSTHETICS 

 

Neural prosthetics are remarkably advanced, yet the field remains in its 

infancy.  The most recent work detailed in [5], [6], [116], and [79],[80] represent the 

state of the art with respect to truly implantable prosthetics, yet each of these systems 

does little more than record and identify peaks against the noise.  In [96], [117], [121] 

and [125] and a host of other publications, Nicolelis and his colleagues report on a 

remarkable motor prosthetic they have built which is driven by a computer that 

records from populations of neurons via a chronically implanted microelectrode 

array.  While incredible progress has been made on this front, the hardware 

responsible for detection, classification and decoding of neural signals remains off-
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chip, so that the “implant” is essentially just a bundle of fine wires.  For a glimpse 

into some of the earlier contributions to the field, and in particular population coding, 

see [118], [119], [120] and [122]. 

 

4.2.2 Spike Sorting Circuits 

 

Despite advancements in the field, it remains impossible to measure 

individual neural electrical signals non-invasively.  Thus, neural prosthetics that 

would seek to ascertain the state of the system demand a direct brain-machine 

interface; it is necessary to record directly from, or in close proximity to the nerve 

cells of interest.  Further, in order to conserve the signal strength of the extracellular 

potentials measured, which are typically on the order of 50 µV peak-to-peak, and to 

mitigate against noise corruption along transmission lines, the required recording 

electrodes should be connected as closely as possible with the hardware that will sort 

the incident spikes.  To maximize SNR and mitigate against external interference, 

implantable signal processing architectures are therefore preferred.  This section 

reviews reported and proposed implantable integrated architectures which primarily 

serve as preamplification, conditioning and detection stages for spike sorting.   A 

table summarizing the various architectures is presented at the end of this section. 

In 2003, Reid Harrison, who despite his young years we will call the 

grandfather of this field, reported A Low-Power Integrated Circuit for Adaptive 

Detection of Action Potentials in Noisy Signals [102].  In this paper, he observed that 

it would not be possible within power operating constraints to directly transmit the 
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raw electrophysiological data from an implanted multi-electrode array 

transcutaneously to a processing unit outside the brain.  Consequently, he proposed to 

encode the measured signals using an implicit AER scheme to represent the measured 

action potentials so that a low-power RF transceiver could serially send the addresses 

of firing neurons off-chip.  Harrison implemented his novel encoding architecture 

using the following circuit:  

 

 

 

 

 

 

 

 

 

Harrison’s architecture operates by adaptively tuning the detection threshold to some 

multiple of the standard deviation of the noise (approximately 5σ).  To compute σ, the 

circuit relies on the output of the integrating low-pass filter to estimate the duty cycle, 

or fraction of time the noise component of the signal will spend above the threshold 

potential.  Since Gaussian noise will result in a theoretical duty cycle of 

approximately 0.159 with the threshold set at σ, σ can be found by forcing the 

estimated and theoretical duty cycles to match.  Using a simple resistive divider, 

Harrison ensures the reliability of his peak detector by setting the threshold to 5σ+. 

Figure 4.7:  Harrison’s adaptive threshold detection circuit. [102]  
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Harrison’s circuit is clever, but has several drawbacks: (a) first, while it does 

well to discriminate peaks against Gaussian background noise, it is still possible for 

transients or other artifacts to  give rise to false positives – incorporating other spike 

features can offer more accurate and precise detection with only incremental costs; 

(b) second, the adaptation relies heavily on the performance of the Gm-C filter to give 

a reliable estimate of the duty cycle, on noise theory to ensure that it matches the 

actual noise encountered, on the differential amplifier to accurately compare the two, 

and on IC resistors to set the threshold – the precision of each of these elements is 

severely constrained by device and process mismatch, and also by limited 

computational precision in the operating regime – acting in concert, these effects 

result in either an underestimate of the noise and a surfeit of false positive detections, 

or an overly conservative estimate of the noise floor, and missed spikes; (c) third, the 

comparators used are comprised of latches which must be clocked, resulting in 

additional circuitry and sources of error; (d) fourth, the architecture consumes 

(admittedly in a 1.5 μm process with 5 V supply) almost 60 µW of power in 

operation.  Multiply that by 100 to perform parallel encoding of 100 channels, and 

nearly 6 mW of power per 10 square mm is consumed – this is an entirely 

unacceptable level for implantable devices; (e) Fifth, the architecture only allows for 

the detection of spikes – it would be confounded by the classification problem – i.e., 

how to resolve the identity of the neurons responsible for concurrent spikes. 

The following year, in [93], Horiuchi and Abshire published: A Low-Power 

CMOS Neural Amplifier with Amplitude Measurements for Spike Sorting.  The 

reported architecture is an evolution of Harrison’s earlier low-power, low-noise 
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amplifier for neural recording.  Working in conjunction with their students, Horiuchi 

and Abshire added peak, trough and level detection circuits to the output of the 

Harrison amplifier, thus enabling the authors to discriminate between classes of firing 

neurons based on spike amplitude features.  Although the ROC for the detector are 

not reported, the authors did confirm low-power amplifier operation (<1uW) and 

demonstrated proof-of-concept feature extraction on chip.  The major drawbacks to 

this particular architecture are related to its performance during bursting sequences of 

potentials, and at low SNR where many conventional thresholding methods fail.  

Later that same year, Rogers and Harris, published A Low-Power Analog 

Spike Detector for Extracellular Neural Recordings [91], tackling the same 

bandwidth bottleneck noted by Harrison.  These authors implemented a more 

sophisticated “onset detection” scheme for detecting neural spikes.   

 

 

 

 

 

 

 

 

The two OTAs which measure the input signal are tuned to different 

frequencies: the high pass filter is used to remove high frequency noise from the 

signal of interest and the low pass filter is used to estimate generate a local average 

Figure 4.8: Frequency selective onset detection architecture. [91] 
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background signal.  The outputs of those two are compared first against one another, 

and then against a fixed threshold to generate a spike output.  Notably the capacitance 

values for C1 and C2 were on the order of 10 pF.  By operating their circuit in the 

subthreshold regime, the authors were able to achieve total circuit power dissipation 

of under 1 uW.  

Although the circuit is more robust in some ways than a simple threshold 

detector, it has several significant drawbacks: (a) first, both the cutoff frequencies for 

the input low-pass filters and the thresholds themselves are set off chip, according to 

the authors to account for mismatch, etc. – as a result this circuit is not suitable for 

unsupervised or implantable spike sorting; (b) second, although the MATLAB 

simulations (and subsequent data) yield a nearly perfect ROC, the precision and 

hence accuracy with which the filters can actually detect spikes is largely a function 

of the quality and precision of the filters, which can vary dramatically as a result of 

process and mismatch variation – without adaptive biasing, these circuits cannot 

accomplish their intended purpose; (c) third, MATLAB simulations do not provide 

compelling evidence that the circuit is robust against a near 0 dB SNR, suggesting 

other features might be considered; (d) fourth, and finally, the circuit shares the 

deficit of its predecessor – namely, it cannot classify spikes. 

Taking a more complex theoretical approach to the problem, Y. Suhail and 

K.G. Oweiss, published A Reduced Complexity Integer Lifting Wavelet-Based Module 

for Real-Time Processing in Implantable Neural Interface Devices, that same year.  

They introduced a “design methodology for computing the DWT with the WL 

scheme for arbitrary number of channels.”   In order to conserve memory and 
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bandwidth, the authors proposed to use the integer wavelet transform (IWT) on signal 

data sampled with 10 bit precision, and to quantize the filter coefficients.  They chose 

the DWT because the discrete representation is computationally efficient, and 

because the wavelet transform tends to encode action potentials in a few large 

principal components and the noise in many smaller ones, thus performing an implicit 

thresholding operation in the process.  Although the authors did not implement the 

architecture they proposed, they did demonstrate theoretical accuracy comparable to 

that of conventional digital signal processing hardware.   

In principle, this architecture performed admirably and offered cost savings 

versus conventional DSPs.  However, the drawbacks are a matter of conjecture 

inasmuch as neither an architecture, nor power consumption and footprint for the 

DWT are disclosed.  A compact, precise, analog variant on the wavelet 

decomposition algorithm could surely be made smaller and with significantly reduced 

power requirements, though computational precision remains an issue for existing 

analog implementations.  

In a parallel attempt to shoehorn Pentiums into the low-power regime, in [84], 

Zachary Zumsteg and his colleagues published a study on the Power Feasibility of 

Implantable Digital Spike-Sorting Circuits for Neural Prosthetic Systems.  Taking the 

standard heat dissipation for a 0.13 μm digital system at 1uW / GOPS (Giga-

operations per second), the authors estimated the computational cost of each of the 

steps involved in two spike sorting algorithms, including training and classification, 

concluding that a 5mm x 5mm chip would consume less than 3mW/cm2 power, well 

below the 80mW/cm2 thought to cause tissue damage.  Their study presents a 
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compelling argument that we should not completely discount digital spike sorting 

systems, however, the authors fail to account for a number of factors which could 

inflate their consumption estimates.  First, they purportedly perform the desired 

operations in the digital domain, but do not appear to account for the cost of A-D 

sampling and conversion – neural signals may be comprised of trains of all or nothing 

spikes, but their waveforms are decidedly not digital.  Second, to the extent that their 

A-D conversion is in fact a simple thresholding operation, the authors do not report 

the accuracy of this stage, nor in fact do they discuss the overall performance of their 

proposed architectures against a specified set of SNRs.  Also neglected is the practical 

degree to which a custom ASIC can replicate the performance, i.e. power efficiency, 

of a Pentium / Athlon / SPARC chip.   Finally, the authors do not account for the heat 

dissipation of the onboard clock required to drive the digital circuitry.  For these 

reasons, it is believed that DSPs still suffer competitively versus analog spike sorting 

architectures. 

The following year, Rogers and Harris teamed up with Principe and Sanchez 

and published: An Analog VLSI Implementation of A Multi-Scale Spike Detection 

Algorithm for Extracellular Neural Recordings [152].  This circuit shares many of the 

same advantages (and deficits) of its predecessor, but incorporates a novel detection 

architecture that implements an analog wavelet transform.  The circuit operates as a 

cascade of low pass filters (LPF) that are biased by sequential voltage taps taken from 

the resistive line.  By tuning Vhigh, all of the other bias voltages are set automatically, 

and when operating the LPFs in the subthreshold regime, the linear drop across the 

resistors corresponds with an exponential decrease in bias current and hence filter 
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cutoff frequency.  As a result, the filters exhibit a constant Q (center frequency / 

spectrum width = constant) and the circuit performs an effective wavelet 

decomposition of the incoming signal.   

 

 

  

 

 

 

The transfer function for each stage is given by 
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preset factor.  In this scheme, spikes are detected by thresholding the difference at 

neighboring taps. As with their previous designs, these thresholds are set manually. 

This chip demonstrates the remarkable efficiency that analog computing can 

bring to bear, but also serves to illustrate the difficulty in matching digital precision 

with existing analog architectures.  More specifically, positive results for the legacy 

onset detector are admittedly sub-optimal: although they showed 99% detection 

accuracy when verified using an artificial signal, the authors demonstrated that their 

competing multi-scale detection scheme performed almost 8 times better at 

eliminating false positives when tested in MATLAB simulations using real neural 

data.  Moreover, with respect to the analog wavelet multi-scale design, it is telling 

that although the authors tested the new architecture on real neural data, they never 

reported those results.  Although it is only possible to speculate as to why, the natural 

suspicion is that the circuit could not reliably reproduce the theoretical results – this is 

Figure 4.9:  Gm-C filter bank for implementing analog wavelet transform. [152]  
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often the case with analog filter banks; one possible culprit in this case is mismatch 

and process variation leading to imprecise cutoff frequencies and thresholds.  Using 

floating gate architectures to compensate for mismatch and adaptive biasing schemes 

to set thresholds permits considerably greater precision and robustness against noise.  

During that same year, Alex Zviagintsev, Yevgeny Perelman, and Ran 

Ginosar, published a study, Low-Power Architectures for Spike Sorting, in [143].  

They tested three different classification algorithms on real neural data, observing the 

computational complexity and error rate for each.   Among the three, only PCA 

performed error-free but the integral transform (IT) performed with only 2.2% errors, 

and offered a simple hardware implementation.  In, [83] Zachary S. Zumsteg and his 

colleagues perform a much more robust argument for the, Power Feasibility of 

Implantable Digital Spike Sorting Circuits for Neural Prosthetic Systems.  

Resurrecting their previous arguments, they provide a rebuttal to the primary 

deficiency in their earlier analysis: namely, they account for the power consumed by 

A/D conversion, pegging it approximately 100uW for 100 channels of 8 bit 30kHz 

conversion.  Notwithstanding the fact that this estimate is an order of magnitude 

lower the design they cite to substantiate it, the authors reveal in this paper another 

flaw suggested by their earlier analysis.  That is, for the resolution they propose, the 

suggested architectures cannot reliably detect or classify neural spikes below an SNR 

of approximately 7.  Simply speaking, the quantization error introduced by digitizing 

the data loses the signal below a certain threshold; a threshold which precision analog 

implementations do not share.  
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In, [105], Perelman and Ginosar presented, An Integrated System for 

Multichannel Neuronal Recording With Spike/LPF Separation, Integrated A/D 

Conversion and Threshold Detection.  This mixed-signal architecture may hail the 

onset of a new generation of processors, but at present it is not characterized 

sufficiently to be able to critique its performance.  Power consumption is identified as 

12 mA [sic] for an approximately 4 mm x 4 mm chip, suggesting with a 1.5 V supply, 

18 mW / 16 mm2 are consumed – far above the 80mW/cm2 that fries brain cells.  Nor 

are ROC statistics presented.  Overall, this chip reflects the deficiencies that digital 

systems remain unable to overcome.  They cost too much in terms of power, and they 

sacrifice too much resolution to be able to approach the efficiencies of analog design, 

hence they are less accurate.   

For example, two teams of west coast researchers, led by Shenoy and Meng at 

Stanford, and Fetz at the University of Washington have recently developed, in 

parallel, digital “implantable” microchips for neural recording and stimulus [5], [6].  

The Stanford authors have developed and reported an implantable digital architecture 

for long-term (several days) continuous recording of neural signals, called HermesB.  

Dr. Fetz’s team has developed a similar circuit, the Neurochip, for chronic neural 

recording and stimulation.  While these architectures both represent remarkable 

advances in the field, their power consumption renders them unsuitable for 

simultaneous recording across an array of electrodes.  In particular, HermesB draws 

hundreds of milliwatts of power while sampling two channels, and the Neurochip 

dissipates a comparable 40-120 mW when recording from a single channel. Likewise, 

the frequency bandwidth of these systems is limited even at maximum power, so that 
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typical problems of electrode drift, ambient noise and superposed spikes that 

significantly attenuate the SNR of recorded signals pose greater problems for these 

low-resolution systems than for higher precision offline or continuous analog designs.  

In addition, although these systems are both situated supra-cranially, it is likely that 

chronic exposure to the relatively high power dissipation of these prototype 

architectures will result in tissue damage [129]. 

Likewise, although reported analog and mixed-signal systems are capable of 

remarkable feats of computational efficiency, they often lack the precision to perform 

unsupervised detection or classification with confidence.  So while it may be possible 

to: measure the signal energy of a local field potential using mere nW of power, [81];  

place as many as one hundred recording channels on a chip without climbing above 

the power ceiling, [80]; or threshold spikes with 5 bit precision over 32 channels 

while dissipating less 200 uW per channel, [79]; each of these systems operates 

according to fixed user-defined thresholds.  And none of these architectures purports 

to classify spikes.  Indeed, computational imprecision resulting from device mismatch 

and systems noise can cripple the performance of such low-power detection and 

classification circuits.  Adaptive architectures for thresholding and event detection 

have been reported as noted above, but the circuits that perform the adaptation are 

themselves susceptible to mismatch and imprecision.   

Finally, efforts reported in [93], [113], demonstrate that it is possible to 

algorithmically discriminate offline between classes of firing blowfly neurons (H1 

and HS) based on data generated by real-time spike peak and trough feature 

extraction circuits; but no classifier architectures have been reported.  In this work, I 
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have attempted to overcome these difficulties by using adaptive integrated circuit 

architectures to compensate for mismatch and adaptive biasing schemes to set 

thresholds in order to realize considerably greater precision and robustness against 

noise.   

Table 4.1 provides a list of the spike sorting circuits I have reviewed along 

with relevant power dissipation information. Power density was computed by 

normalizing reported power dissipation for a given footprint to an area of one cm2.  

Red shading indicates reported power density above maximum safe limits.  Orange 

shading indicates reported power density approaching danger zone for chronic 

implantation (>10 mW/cm2).  Green shading indicates reported power density in 

acceptable range for implantation.  

In sum, there are several reasons why the spike sorting research I performed matters.  

First, many state-of-the-art architectures either exceed or approach maximum 

permissible chronic exposure levels; they do not meet power-density requirements for 

implantable prosthetics, particularly the digital systems.  Second, systems that operate 

on an acceptable power budget often suffer from circuit mismatch, computational 

imprecision and fixed, user-defined thresholds to identify spikes.  Third, no reported 

system attempts to classify neural spikes on-chip.*,**  

* In [155], the authors report that their circuit performs clustering of extracted 

features, but no clustering circuits are shown – only feature extracting circuits. 

** In [157], the authors report a remarkably power efficient PCA circuit, but only 

simulation results are provided. 
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Table 4.1 Spike Sorting Circuits 

Reference Type Detection 
Algorithm  

Classification 
Algorithm 

Power Density 

Harrison, 2003, [102]. Analo
g 

Adaptive peak 
thresholding 

N/A 64 mW/cm2 

Harrison, Shenoy, 2004, 
[81]. 

Analo
g 

Low pass 
filter / 
squaring 
circuit 

N/A 11 µW/cm2 

Horiuchi, Abshire, 2004, 
2007, [93], [113]. 

Analo
g 

Peak / trough 
thresholding 

Not reported 1.1 mW/cm2  

Rogers, Harris, 2004, 
[91], Principe, Sanchez, 
2005, [152]. 

Analo
g 

Frequency 
decompositio
n / wavelet 
circuit 

N/A 1.8 mW/cm2 

Diorio, Fetz, 2005, [4]. Mixed
-signal 

Analog filters 
/ A-D 
conversion / 
thresholding 

N/A > 40 mW/channel 

Perelman, Ginosar, 
2007, [105]. 

Mixed
-signal 

Low pass 
filter / A-D 
conversion / 
thresholding 

N/A 113 mW/cm2 

Harrison, 2007, [80]. Mixed
-signal 

A-D 
conversion / 
thresholding / 
100 channels 

N/A 49 mW/cm2 

Wise, Najafi, 2007, [79]. Mixed
-signal 

Peak / trough 
thresholding / 
32-64 
channels 

N/A 197 µW/channel  

Shenoy, Meng 
2007, [5]. 

Mixed
-signal 

Analog filters 
/ A-D 
conversion / 
thresholding 

N/A ~100 mW/channel 

Harris, et al., 2008, 
[154]. 

Mixed
-signal 

Pulse-based 
feature 
extraction 

N/A ~100 uW/channel  

Borghi, et al., 2008 
[155]. 

Mixed
-signal 

Peak / trough 
/ thresholding 

N/A* 30 mW/cm2 

Chae, et al., 2008, [156]. Digital Max-min 
feature 
extractors 

N/A 600 mW/cm2 

Chen, et al., 2008, [157]. Digital 90 nm PCA N/A** 210 mW/cm2 
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4.3  Floating Gate Template Matching  

In order to develop novel, high accuracy and precision circuits that are both 

power and size compatible with biological systems for implantation and biosensing, I 

have investigated mixed-signal VLSI architectures for spike sorting across a broad 

feature space.  Following the suggestion in the literature that template matching 

algorithms provided superior detection and classification accuracy [106], I designed a 

novel programmable template matching system for implantable spike sorting.  The 

circuit components I have implemented operate at very low power, are programmable 

and adaptive, and include new stochastic signal processing architectures and 

trimming circuits to improve accuracy.   

In following subsections, we expound upon the theoretical foundations for the 

designs, including functional rationales, and show simulated and measured 

performance data for the spike sorting circuits.  In so doing, we expose the express 

and implicit tradeoffs made in balancing among the following: dynamic range and 

SNR, accuracy and precision, power efficiency and computational complexity, speed, 

and size or footprint of these architectures.  We also further discuss the novel on-chip 

real-time statistical signal processing architectures that I have developed for 

improving the feedback control and hence performance of the sensing and 

classification architectures. 

A system level schematic is shown in Fig. 4.10.  Without loss of generality, it 

has three main components: (1) a template matching filter bank; (2) a variance 

estimation circuit; and (3) a simple classification block. 
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MATLAB simulations performed under ideal conditions illustrate the 

operation of the system in principle.  An artificial spike waveform was digitally 

extracted from an image, and a spike train was generated:  

 

 

 

 

  

 

 

When the artificially generated spike train above (right) is virtually passed 

through the template matching architecture, we see the following (a) variance; and (b) 

negative thresholded, or spike detection waveforms: 

Figure 4.10: System-level diagram of the floating gate template matching spike 
sorting system. 

Figure 4.11: (a) left: Schematic drawing of neural action potential; (b) right: spike train 
consisting of  cascade of simulated action potentials. 

(a) (b) 
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To enable the system to perform unsupervised learning of new templates, a 

pre-sorting component, the spike detector, has been developed. 

 

4.3.1 Detecting Neural Action Potentials 

 

The recorded neural data processed here was obtained from Dr. Ping-Bo Yin 

and Professor Shihab Shamma of the Neural Systems Lab at the University of 

Maryland, College Park.  A schematic of the experimental setup, coupled with a 

segment of recorded neural activity from one channel of an electrode array implanted 

into the auditory cortex of a ferret are shown in Fig. 4.13.  This data reflects 

amplified, filtered single-channel recordings over a period of 30s in response to 

auditory stimulation. 

As Yang and Shamma observed in [108], “the overriding goal of the spike 

detection algorithm to be used with multielectrode arrays is not so much to detect the 

smallest spikes in the midst of noisy traces, but rather to isolate the most reliable 

spikes with no or minimal human intervention.”   

Figure 4.12: (a) left: MATLAB simulated output of the floating gate template matching 
variance estimator; (b) right: pulse-train where each event corresponds with a template match. 

(a) (b) 
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This applies equally to implantable neural prosthetics – we want to extract the 

minimum relevant information from the vast array of incident neural data; this means 

identifying reliable spikes without operator supervision. Extracting reliable spikes, in 

turn, means reliable classification, and thus more robust implantable architectures.  

Furthermore, because there is greater confidence in assigning meaning to a population 

code when the population is large, we seek to increase recording and stimulation 

channel density to the extent practically possible. 

For my own design, I was guided by these principles and inspired by Kim and 

Kim’s, algorithm for the detection and classification of extracellular spikes using a 

non-linear energy operator (“NEO”) to exaggerate spikes against the background 

noise [82].  They used an NEO proportional to the instantaneous product of frequency 

and amplitude of an incoming signal to demonstrate theoretical detection and 

classification at better than 90% at < 1 dB SNR using this system.  To accomplish 

analogous results, I first tried the fabricated variance estimation circuit as a spike 

detector – since the variance estimator output is the difference of squares, 

Figure 4.13: Neural signals obtained from the NSL and schematic representation of recording 
apparatus. 
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(4.25) 

 

it too serves as an NEO that tends to resolve spikes from background noise.  Fig 4.14 

(a) represents a noisy idealized spike train generated as follows: forty-element spike 

templates were generated by extracting the average waveforms of two previously 

identified classes of spikes found in a 20s ferret cortical recording; the two 

waveforms were normalized to a 150 mV peak-to-peak scale,1 and then inverted 

about the voltage axis to serve as templates; by concatenating a sequence of one or 

both template classes together, at normally distributed inter-spike intervals and 

adding Gaussian noise using the randn function, the composite trains were 

completed.  The SNR was computed as follows: 

 

(4.26) 

 

where Asignal is the computed root-mean-square amplitude of all of the elements of a 

given spike train, and Anoise is the standard deviation of the normally distributed noise 

amplitude.  Fig. 4.14 (b) shows the outputs of the first generation variance estimation 

circuit with physical inputs generated by a MATLAB controlled DAQ card; the 

physical inputs represent the convolution of a virtual template matching filter with a 

temporally rescaled version of the noisy spike train.  Detection of neural events is 

accomplished in one of two ways, either: (a) by a template match, corresponding with 

                                                 
1 Extracellular recordings from real neural signals vary from tens of microvolts to tens of millivolts depending on the nature of 
the recording electrode and its proximity to the neurons, as well as surrounding potentials, so a 150 mV signal has been pre-
amplified.  Microwatt preamplifiers are well known and characterized. [57] 
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a local variance minimum, as an incoming neural signal is convolved with one or 

more matched filters in parallel; or (b) by employing the variance estimator as an 

energy operator whose maximum output corresponds with a neural spike.  Local 

minima and maxima may be identified using a low-power current comparator or peak 

detector.  In Fig 4.14 (b), both user-defined template matching (solid line) and instant 

energy (dashed line) thresholds are marked.   

 

 

 

 

 

 

 

 

 

 

 

Detection accuracy was assessed on a series of these simulated single-unit 

spike trains with SNRs ranging from 60 dB down to 0 dB.  Measured detection 

accuracy of these simulated spikes using either of the thresholding schemes described 

(template match or NEO) is 100% at SNR down to 10 dB, and only drops to 90% at 3 

dB when using a template matching threshold.  Figure 4.14 (c) shows the receiver 

Figure 4.14: (a) simulated spike train with 10 dB SNR; (b) variance circuit estimate with user defined 
thresholds; (c) spike detection ROC using template matching threshold. 

(a) 

(b) 

(c) 
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operating characteristic (“ROC”) for single-unit spike detection as a function of SNR, 

using the template matching method. 

Although the performance of the template matching detection scheme is 

satisfactory, the observed performance of the NEO element (squaring circuit) of the 

variance estimator was significantly better.  As a result, I decided to leverage this 

feature by implementing an NEO detector to square the incoming signal and 

compares the output against a user-defined threshold.  Fig. 4.15, shows the layout for 

the first generation detector circuit.  In this figure, a compact MITE squaring circuit 

(left) is paired with a current mirror (middle-right) and a current comparator (right).  

This circuit has been fabricated and is preliminary characterization shows it operates 

as intended, although at low currents it is relatively slow. 

 

 

 

 

 

 

 

As with the variance estimation circuit, the squaring element of the NEO 

operates in subthreshold for lower power consumption and in current mode for ease 

of computation.  It is possible to accomplish similar result using conventional voltage 

mode circuits, but as always, such circuitry adds to the complexity of signal 

processing operations.   I have subsequently updated the compact squaring circuit 

Figure 4.15: First generation spike detector layout. 



 112 
 

(and variance estimator) to enhance operating speed and reduce device footprint; 

along with one of several current comparators under test, simulations and measured 

data indicate that it is possible to reliably resolve action potentials against background 

noise at near 0 dB SNR.  Using either one of these action potential detection schemes, 

it is possible to trigger unsupervised learning in the floating gate template matching 

filter banks. 

 

4.3.2 Sorting Neural Spikes 

 

A. Floating Gate Template Matching Filter Bank 

 

In order to sort neural spikes it is first necessary to adopt a metric for 

distinguishing between APs from different neurons.  As we briefly discussed in the 

chapter on neural recording, although spikes are often considered digital all-or-

nothing events, the actual AP is an analog waveform that varies significantly from 

neuron to neuron and under different stimulus history [44].  Likewise, proximity to or 

distance from a recording electrode can enhance, attenuate or distort a train of APs 

from one neuron versus its neighbors.  Although simple feature extraction algorithms 

such as peak-trough detectors are capable of distinguishing between distinct classes 

of neurons under ideal conditions [79], and other proposed methods such as pulse 

coding enjoy similar success [154], template matching is believed to offer superior 

performance in discriminating spikes under noisy real world conditions [106]. 
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Thus, in order to classify spikes from one neuron from another, I have 

implemented an N (=8) point template matching filter.  Templates for this filter can 

be inverted, normalized, N-point version of an idealized or measured action potential, 

or any other desired waveform.  In hardware, the template matching circuit is 

implemented as a matched filter whose tap weights correspond with elements of the 

template.  The filter decomposes the incoming signal using an analog delay line and 

generates eight continuous-time outputs which represent the point-wise distance of 

the neural waveform from the template.  Classification is accomplished using the 

variance estimator to compute the distance between successive N-point segments of 

the neural signal and one or more distinct templates (which optimally form an 

orthornomal basis that span the signal space).  Depending on the desired resolution, 

the filter and variance estimation circuit may be scaled to higher order, and it is also 
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Figure 4.16: Schematic of the N (=8) point template matching method. 
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possible to implement windowing and interpolation functions on chip.  Fig. 4.16 

gives a schematic representation of the template matching method. 

Fig. 4.17 (a) is a schematic of the floating gate template matching filter bank; 

Fig. 4.17 (b) shows the layout of a fabricated filter bank.  It employs a cascade of 

OTAs to uniformly decompose an incoming signal into eight delayed, copies of the 

original signal.  The total delay for the line corresponds with the approximate 

duration of the typical biological action potential; thus at any given instant in time, 

the filter taps represent a spatial decomposition of an incoming neural spike.  A 2-

input PMOS floating gate transistor converts each tap voltage into a current; 

templates are stored on non-volatile, programmable floating gate memories at each 

tap, and control gates inputs may also be used to modulate tap currents. 

 

 

 

 

 

 

 

 

The RC delay for each stage is determined by a 1/gm resistive component and 

the capacitive network between the tap node and ground; for small-signal purposes, 

this network primarily comprises the tap-input gate capacitance in series with the 

parallel combination of the second input capacitance and the parasitic capacitances of 

Figure 4.17: (a) schematic of floating gate filter bank for neural signal decomposition; (b) layout of 
filter.

(a) (b) 
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the PMOS current source and the regulating transistor (not shown) following the 

drain.  Assuming gate oxide and poly/poly2 capacitances of about 2.5 fF/μm2 and 1 

fF/μm2 respectively, the expected capacitance is on the order of 10 pF for each stage, 

whose schematic is in Fig. 4.18 below: 

 

 

 

 

 

 

 

 

Another implementation of this filter bank incorporates a wide linear range 

(“WLR”) OTA designed according to the principles enumerated in [159]; Fig. 4.19 

(a) shows a schematic of this amplifier; 4.19 (b) is a photomicrograph of the 

fabricated filter using this amplifier.   

 

 

 

 

 

 

 
Figure 4.19: (a) schematic of wide-linear range OTA with low gm [159]; (b) fabricated filter bank 
incorporating filters. 

(a) (b) 

≡

Figure 4.18: (a) schematic of conventional OTA in unity gain configuration; (b) symbolic view. 

(a) (b) 
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In order to achieve the widest possible linear range, I followed the principles 

outlined in [159] and lowered gm by source degeneration and by using well contacts 

as inputs.  This yields superior linearity at the cost of drive, so that capacitive 

coupling is required – often this is a detriment, but here a feature.  Bump linearization 

as suggested in [159] was not required for this implementation; the reduced distortion 

across a wider range of input signals yields theoretically superior signal 

decomposition with this amplifier, although attenuation must nonetheless be 

corrected.  Fig. 4.20 (a), below shows simulated transient data for a 1 kHz sinusoidal 

input asserted at the input of the original OTA filter bank.  Fig. 4.20 (b), shows the 

propagation of an idealized spike across the eight taps of a filter bank including the 

wide line OTA.   

 

 

 

 

 

 

 

Measured data from the first generation of the floating gate filter bank 

generated eight pico- to nano-ampere current outputs as a function of the input and 

bias voltages provided.  Figure 4.21 shows representative measurements of (a) 

voltage signals generated by passing the eight outputs through a 10M+ DAQ input 

impedance – this serves to illustrate the temporal decomposition of an incoming 

Figure 4.20: (a) simulated transient data for 1 kHz sinusoidal input asserted onto the first generation 
filter bank; (b) reflects the propagation of a transient spike across the taps of the WLR OTA. 
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signal according to tap number and tail current bias; and also serves to illustrate 

fabrication mismatch variability; and (b) measured current response from a single 

slowly varying tap, showing the amplitude response of the filter components. 

 

 

 

 

 

 

 

 

Two things immediately become apparent when viewing this data: (1) a 

higher speed, high-fidelity recording method to assess these tiny time-varying local 

currents is required to characterize the filter when it operates at pA-nA levels – 

suitable current amplifiers are will be implemented in subsequent work; (2) the tap-

to-tap offsets and attenuation are significant and must be eliminated.  Although it is 

theoretically possible to design multistage filters with considerably improved fidelity 

across the taps, for my proof-of-principle circuits, we can compensate attenuation 

across the taps more simply in one of two ways.  

First, it is possible to buttress successive taps by applying a proportional DC 

bias onto their control gates, if the approximate offset is know in advance.  Since the 

tap current is proportional to a weighted combination of the voltages applied at the 

Figure 4.21: (a) Direct measurement of voltage signals from floating gate taps; (b) current 
amplitude response of single slowly varying tap.  In both cases, inferred current outputs are on the 
order of nA. 

(a) (b) 
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input and control gates, we can modulate each tap signal by simply adjusting the 

biases as shown in Fig. 4.22.   

 

 

 

 

Second, we can program arbitrary offsets onto the floating gates of each tap using 

using hot electron injection and FN tunneling – this accomplishes a similar result.   

The template is stored onto the filter using analog non-volatile floating gate 

memories at each tap.  These weights may be (a) programmed directly by the user 

with an on-chip an analog multiplexer; (b) sequentially generated by a function 

mapped onto silicon (silicon neuron or other periodic function); or (c) learned 

adaptively from training data.  

Initially I had proposed to correct mismatch and program transistors using the 

mechanism outlined in Fig. 4.23.  Floating gate tap weights were to be: (1) initially 

updated during a mismatch correction phase by charge injection driven by the 

difference of adjacent tap currents for the identical signal bias.  This difference itself 

was to be measured by a precision, FG matched, current steering circuit, whose 

8 pA 

Figure 4.22: Modulating the current output of a fabricated filter bank tap by adjusting 
the capacitively coupled DC control bias. 
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output would be amplified and converted to a voltage in order to drive the injection / 

tunneling depending on the direction of the current flow 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(2) During a second, template learning, cycle tap weights would have been updated 

adaptively by injection / tunneling synchronized with the onset of the template 

waveform.  The update at each tap would be keyed to a fixed delay from the time that 

a non-linear energy operator (NEO), (threshold amplitude)*(frequency), as proposed 

in [114] indicates a template waveform is detected.  The NEO was to be 

accomplished by taking the product of a peak detector voltage and frequency which 

was to be evaluated as an inverse function of the difference in amplitude between 

Figure 4.23: Schematic illustrating proposed method of mismatch correction. 
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successive tap signals.  Simulations performed using the equation-based Rahimi 

model in TSpice indicated that the proposed system would achieve convergence over 

time, but the overhead associated with tuning the continuous-time feedback system 

properly proved too high.  In repeated simulations, the floating gate was charged in 

response to a ramped voltage signal and this modulated the current associated 

difference between input and output.  Although negative feedback prevented the 

charge injection from becoming unstable, overshoot was a significant issue in these 

simulations.   

To avoid this issue, and attain bi-directional updates approximating a 

rudimentary stochastic gradient descent, I redesigned the programming mechanism to 

compare the two currents and trigger small discrete weight updates for each time the 

mechanism was triggered.  For hot electron injection, Eric Wong had previously 

characterized the Rahimi parameters for injection currents – computed IV curves are 

shown in Fig. 4.24, below.  The mechanism for hot electron injection is schematically 

illustrated in Fig. 4.25; tap currents are evaluated against either a fixed bias or 

sampled signal current and the difference between the two triggers a voltage 

controlled oscillator (“VCO”) that turns on a negative charge pump (“NCP”) which 

drops the voltage at the drain of a programming transistor sufficiently to induce hot 

electron injection across the transistor.   

Figs. 4.26 (a) and (b) show programming of a particular tap using hot electron 

injection.  Fig. 4.26(a) illustrates the programming of offsets onto an isolated tap, 

which are mathematically subtracted in the associated inlay.  
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Fig. 4.26 (b) shows programming of a single tap, resulting in a modulation of 

both offset and gain.  The subtraction may be accomplished on chip using FN 

tunneling as an erase mechanism.  Programming may be unidirectional, or bi-

directional.  That is two separate comparators of opposite polarity have been designed 

to trigger respective negative and positive charge pumps that will pulse a fixed unit of 

charge onto the floating node, thereby decreasing or increasing the voltage on the tap.  

Figure 4.24: Theoretical hot electron 
injection currents based on Rahimi
model and with experimentally fitted 
parameters. 

Figure 4.25: High-level schematic of 
programming mechanism.  Comparison 
between desired and measured current 
drives injection or tunneling. 

Figure 4.26: Programming arbitrary offsets onto floating gates in order to shift I-V curves and tune 
gain. Within each box, input signals are identical. Inlays show signals with DC offsets subtracted. 

(a) (b)
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Schematics and layouts for the two Dickson charge pumps, including VCO’s are 

shown in Figs. 4.27 (a) & 4.27 (b), below. 

 

 

 

 

 

 

 

 

 

 

 

 

 In order to achieve precise control of the NCP pulse width, a second charge 

pump was implemented to drive the negative voltage required to rapidly turn open the 

control switch and shunt the CP voltage to ground.  As a result, pulse widths are well 

controlled, but inter-pulse intervals are a function of slow capacitive decay.  For the 

positive charge pump, a rail logic high value will serve to drop the CP output to 

ground.  The output of the positive charge pump may be asserted simultaneously 

during the programming period through high voltage switches at each tap and the 

output of a single NCP can also be multiplexed with a series of compact negative 

Figure 4.27: Schematic, layout and 
photomicrograph of: (a) fabricated high 
voltage positive charge pump; (b) fabricated 
low voltage negative charge pump. 

(a) 

(b) 
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Figure 4.29: Schematic and layout for a fabricated Traff current comparator, [160]. 
 

Figure 4.28: Schematic and layout for a fabricated set of high voltage switches. 
 

voltage generators (mini-NCPs); for finer control, each tap may have its own pair of 

independently timed positive and NCPs.  

Schematics and layout of some high voltage switches designed after a floating 

gate array reported by Hasler, and a variant on the Traff current comparator [160] 

used to respectively multiplex and control the programming voltages are shown in 

Figs. 4.28 & 4.29 below: 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 Together, these components comprise a floating gate template matching filter 

bank capable of unsupervised learning and signal decomposition and filtering.  To 

High voltage 
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assess the instant quality of a match, we turn next to my fabricated variance 

estimation circuits. 

 

B. Variance Estimation Circuit 

 

I considered several different metrics for evaluating the proximity of an 

incident neural signal to the programmed template stored in the filter bank.  However, 

simple Euclidean distance metrics neglected spike shapes and focused solely on 

magnitudes of peaks and troughs – thus neither attenuated nor offset spikes would 

register properly.  By contrast more complex theoretical algorithms often required 

A/D conversion and memory to properly represent and encode incident neural data.  

The variance estimator was chosen, therefore, to represent a low power, real-time 

analog architecture with no memory or clock overhead, that would nonetheless 

register spikes based on their shape and not on the amplitude of their features.  Fig. 

4.30 illustrates the idea – the N-point variance of an offset signal with identical shape 

to the template is 15 orders of magnitude smaller than the variance of a distorted 

signal with equivalent Euclidean distance from the template, but entirely different 

shape.   

Variance is the mean square error of an unbiased estimator, and as such 

provides a statistically valid metric for measuring proximity of signal to template.  In 

view of these advantages, and several others, I chose to implement a variance 

estimation circuit to compute variance, defined as 

][][]])[[( 2222  , where   



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 is the expected 



 125 
 

Figure 4.31: Block diagram of variance estimation circuit. 
 

value, or mean, of a random variable,  , for the input signals from the template 

matching filter.   

 

 

 

 

 

 

 

 

A high-level representation of the variance circuit is shown in Fig. 4.31, 

below: 

 

 

 

 

 

 

 

 

 

 

Figure 4.30: Computed variance estimates for the distance between (a) a distorted 
signal and the stored template; and (b) an offset signal and the stored template. 

(a) (b) 
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1 2/ / /
1 2 0 0 0... ( ) ( ) ... ( )GS T GS T GSn TV V V V V V

total nI I I I I e I e I e              

This circuit computes )(2 I  by: (a) copying eight input currents, )7()....0( ii ; 

(b) individually squaring and then averaging one set of currents to generate ][ 2IE ; 

(c) averaging and then squaring the average of the second set of currents, to compute 

][2 IE ; and then (d) subtracting the second result from the first.  Precision current 

copies in the first generation circuit were created using stacked cascode current 

mirrors that provided good linearity over a wide range of input currents, from 

approximately 10 pA to 10 nA.  Average currents are computed by providing copies 

of the input currents to the common gate and drain of an equal number of identical 

diode-connected PMOS transistors [151].  Multiple-input translinear elements 

(“MITE”) comprised of floating gate NMOS transistors operating in subthreshold 

were employed as squaring circuits [158].  For matched devices operating in 

saturation, i.e., dsV  > 4kT/q   100 mV, the translinear circuits produce an output 

current, 
biasi

ni
outi

_

)(
_

2

 .  The variance estimation circuit thus uses a unique 

combination of high-precision current mirrors, simple current-averaging components, 

and subthreshold translinear squaring circuits to compute a true analog variance 

estimate without incurring the costs of sampling, quantizing, storing and manipulating 

digital data.    

We have previously performed the squaring circuit analysis, and subtracting 

currents is a matter of mirrors.  For n-current inputs to the averaging circuit (a 2d 

generation of which is shown in Fig, 4.33) we can mathematically derive the 

averaging function as follows [151]: 

(4.27) 



 127 
 

1 2 1/ / / /
0 0( ... ) ( )GS T GS T GSn T GS TV V V V V V V VI e e e n I e          

0( ln ( / ) ( / ) /
0 ( ) /t o t a l T TI n I V V

o u t t o t a lI I e I n    

 

(4.28)  

 

(4.29) 

 

In the first generation variance estimation circuit I used MITE squaring 

circuits [158], and oversized mirrors to enhance circuit matching and precision.  For 

the second generation, in order to improve speed, I used MOSFETs biased into the 

sub-threshold regime to implement the mathematical functions without the delays 

associated with explicit capacitors at the inputs.   For enhanced precision, I employed 

ultra-low-power current mirrors in all of my circuits [161], as shown in Fig. 4.32.   By 

biasing the gate of the input transistor below its drain, as reported in [161], it is 

possible to extend the operating range of the mirror into the sub-pico ampere range.  

This permits even lower power precision current mode computation.  A schematic of 

the new averaging circuit is shown in Fig. 4.33.  

 

 

 

 

 

 

 

Figure 4.32: Ultra-low-
current current mirror 

Figure 4.33: Second generation current averaging circuit. 
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Figure 4.34(a) shows the subthreshold current squaring circuit, and the 

difference circuit is a variation on the low-power mirror, as is shown in Fig. 4.34 (b). 

 

 

 

 

 

 

 

 

Integrating these elements together, I have developed an ultra-low-power 

current-mode circuit that generates an analog variance estimate across N current 

inputs in real-time.  The first generation variance estimation circuit has a footprint of 

< 0.15 mm2 for N=8 in a commercial 0.5 µm 3-metal, 2-poly process  

 

 

 

 

 

 

 

 
Figure 4.35: (a) Labeled photomicrograph of first generation variance estimation circuit; 
(b) bare photomicrograph of fabricated second generation circuit. 

(b) (a) 

Figure 4.34: (a) second generation subthreshold squaring circuit; (b) second generation current 
subtraction circuit. 

(a) (b
)
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.  A photomicrograph of the original MITE variance estimation circuit is 

shown in Fig. 4.35, alongside the layout of the second generation circuit, which is 

approximately 2/3 the size of the original and theoretically over an order of 

magnitude faster.  As an online signal classifier, the N=8 circuit computes the 

instantaneous distance of a continuous-time input signal from an eight element 

template while dissipating less than 10 nW of power.  A comparison of simulated and 

measured results demonstrates the suitability of the circuit for integrated mixed-signal 

applications.  In particular, Monte Carlo mismatch and process analysis reveal a 

picoampere floor on current accuracy, while variance estimates as a function of DC 

sweeps confirm both theoretical (MATLAB) and simulated (Cadence Spectre) 

estimates.  Fig. 4.36 shows the measured common-mode response of the variance 

estimation circuit (1st G) to a DC sweep of input currents. 

 

 

 

 

 

 

 

 

Ideally, the CM response is zero, but systematic circuit biases and device 

mismatch cause a current offset.  For input voltages within the operating range 

between 2.6 and 3.3 V, corresponding with input currents between 10 nA and 100 fA, 

Figure 4.36:  DC response of first generation variance estimation circuit.
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the magnitude of the CM offset is less than 1 pA.  This represents < 0.1 % error when 

circuit inputs are in the nA range. 

DC operating characteristics for the first generation circuit were verified using 

a 16 bit, digital-to-analog converter to drive the eight VCCS inputs to specified values 

and the SMU of an HP 4156B semiconductor parameter analyzer to measure the 

variance output.  In one experiment, random sequences of eight voltages, normalized 

to produce currents within the operating range (10 pA to 10 nA), were simultaneously 

asserted at one second intervals and theoretical and measured variance estimates were 

compared, as shown in Figure 4.37 (a).  The correlation coefficient between the 

logarithms of the average measured and computed values for this data is ρ=0.96; 

repeated trials show that this result is typical, although outliers can dramatically affect 

the correlation (e.g., for one N=100 trial, ρ=0.92).  Figure 4.37(b) illustrates the 

measured and best-fit variances from another experiment in which input currents are 

computed by sampling eight intersecting lines at regular intervals along the x-axis of 

the plot representing these lines.   

 

 

 

 

 

 

 

21.0e-008 [0.0038 x -0.0846 x+0.4494]y     
0.9875 

Figure 4.37: Measured versus theoretically computed variance estimates.  In (a) inputs are 
random; p=0.96; in (b) inputs are converging (intersecting) linear currents, red line is fit. 

(a) (b) 



 131 
 

Figure 4.38: Theoretical and measured response of variance estimation circuit to 
MATLAB simulated output of floating gate filter bank to artificial neural spike train. 

In all cases, the measured and predicted results show good agreement, 

although the theoretical estimates do not perfectly reflect actual circuit operation 

because they neglect real-world parasitics and (correctable) sources of circuit and 

device mismatch.   

When employed as a dynamic distance estimator for a template matching 

algorithm, we observe a 1:1 correspondence between spike template match (as 

rendered by a MATLAB controlled 8-channel D-to-A converter) and variance 

estimate minimum as shown in the following figures:  

 

 

 

 

 

 

 

 

Finally, as reported above in our discussion on detection of neural action 

potentials, I have characterized the first generation variance estimation circuits’ 

classification capability across two different classes of neural APs.  Results indicate 

reliable binary classification down to 20 dB SNR, although these results do not 

account for uncompensated filter bank process and mismatch variations.  Figure 4.14 

displays representative data confirming the suitability of the variance estimation 

circuit as a distance estimator, albeit a slow one.   
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The second generation variance estimation circuit was designed to operate on 

a faster time-scale at lower currents, which should provide adequate bandwidth for 

biological signal processing and classification.  It is also possible to scale the distance 

estimator, along with the control and filtering circuits, to processes with smaller 

feature sizes in order to enhance speed and performance, although such scaling is not 

trivial.  In particular, deep submicron scaling is not linear and parasitics and 

mismatch variation must be considered carefully as scaled designs are drawn.   

 

C. Classification Block 

 

The detection / classification decision element for the circuit is a simple current 

comparator triggered by a negative threshold crossing, indicating a template match.  

The speed of the current comparator is principally a function of the time it takes to 

charge the implicit capacitors of the input transistors – this in turn is a function of 

transistor sizing and bias conditions.  In practice, with appropriate DC biasing, 

switching times on the order of ns [160] have been reported.   

 

4.3.3 System Performance 

 

As noted in the subsection on detection, ferret auditory neural signals have 

been quantized, decomposed and fed through the variance estimator to assess the 

reliability of the template matching method, see Fig. 3.14.  Results are promising, but 

depend heavily on the template generation scheme.  Subsequent stages of testing may 
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continue to use pre-recorded neural signals as inputs, or actual cultured cells atop an 

integrated spike sorting chip with bioamplifiers and electrodes will be implemented.  

No live animal testing is anticipated, although blowfly neural recordings may be 

taken. 

Over the course of the past two years, I have fabricated the proposed spike 

sorting architectures and tested them against one another and theoretical performance 

limits, evaluating their performance against the feature space of mixed-signal spike 

sorting architectures.  I have developed circuits to permit the system to blindly learn 

its programmed tap weights from incoming neural signals.  Further, I have designed a 

tunable silicon neuron template generation mechanism (not shown) for unsupervised 

training of the template matching architectures.  While performing this work, I have 

continued my research into extracellular recording of neural signals from cultured 

cells and also investigated low-noise electrode, bioamplifier and optical front-ends, 

particularly focusing on arrays of sensor devices.  I have tested and characterized 

fabricated circuits using real neural data and biologically realistic simulations, and 

evaluated the power efficiency and detection and classification of these circuits 

against one another and theoretical analog and reported digital performance limits.     

One aim of my research has been to develop novel mixed-signal circuits for 

neural recording, event detection and classification that are both ultra-low-power and 

high-precision.  Simulated and experimentally verified performance of these circuits 

demonstrates reasonable precision and ultra-low-power operation.  There is a tradeoff 

between the two that can be exploited while still coming under power budget.  Given 

the demonstrated performance of the components of the system, it is possible that 
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optimized versions could be integrated into the next generation of implantable neural 

prosthetics – enhancing performance of these prosthetics by increasing the number of 

recording channels simultaneously measured, while reliably detecting, classifying and 

encoding neural events in real-time.  It is my hope that this research will thus enable 

more detailed investigation into local cortical function and better closed-loop 

feedback control of neural prosthetics, facilitating the study and treatment of those 

who suffer from debilitating neural injury or disease.    
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Figure 5.1: Biological spike timing dependent 
plasticity. [162],[163] 

Chapter 5:  The Two Transistor Synapse 
 

In this Chapter, we consider biological Hebbian learning, explore a new 

analog circuit architecture for implementing biologically realistic learning, and 

conclude with an illustrative pattern recognition application.  Original contributions 

of this thesis to the field include the development and implementation of a novel two 

transistor synapse that exhibits spike timing dependent plasticity and can implement 

adaptive pattern classification and silicon learning. 

5.1  Two Transistor Synapse with STDP 

5.1.1 Hebbian Learning and STDP 

In biology, spike-timing-

dependent-plasticity (“STDP”) describes 

the strengthening (potentiation) or 

weakening (depression) of synaptic 

connections between neurons according 

to the coincidence of pre- and post-

synaptic action potentials.  It has been 

experimentally observed that when a pre-

synaptic action potential is followed within some time (typically on the order of ms) 

by a post-synaptic action potential, the strength of the synaptic connection between the 

two neurons is increased in proportion to the coincidence of the firing times (or 

equivalently in inverse proportion to the time between firings).  Conversely, it has 
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been shown that when a pre-synaptic action potential follows within some time 

(typically on the order of ms) a post-synaptic action potential, then the strength of the 

synaptic connection between the two neurons is decreased in proportion to the 

coincidence of the firing times (in inverse proportion to the time between firings).  

These rules which predict the potentiation and depression of synaptic weights and 

which together give rise to STDP are known as Hebbian learning.  The concepts are 

graphically illustrated in a plot of biological data shown in Figure 5.1, as adapted from 

[162] by [163].   

While the biological mechanisms of STDP have not been fully elucidated, they 

represent a ubiquitous and important mode of neural adaptation and learning.  

Therefore, in order to begin to realize electronic analogues of rudimentary cortical 

functions, we must develop synaptic mechanisms that incorporate STDP-like 

behavior.  Furthermore, in order to accurately synthesize even the simplest neural 

architectures, STDP synapses must be realized in ultra-compact form with very high 

integration density.  As a first step down that path, I have developed a two transistor 

synapse for implementing biologically realistic STDP [15].   

5.1.2 Two Transistor Synapse 

The two transistor synapse (“2TS”) is designed to exhibit spike timing 

dependent plasticity (“STDP”), as with a real biological synapse.  In short, temporal 

coincidence of synthetic pre- and post- synaptic action potentials across the 2TS 

induces localized floating gate injection and tunneling that result in proportional 

Hebbian synaptic weight updates.  In the absence of correlated pre- and post- synaptic 

activity, no significant weight updates occur.  A compact implementation of the 2TS 



 137 
 

Figure 5.2: Schematic of the two-transistor 
synapse with illustrative “pre” and “post” 
waveforms. 

has been simulated, and fabricated in a commercial 0.5 μm process.  Suitable 

synthetic neural waveforms for symmetric STDP have been derived and circuit and 

network operation have been modeled and tested.  Simulations agree with theory and 

preliminary experimental results. 

There are several reported single, [170], and two-transistor synapses, [165]-

[169], some of which are programmable [164], [168], [169]. Further, there are reported 

STDP synapses that comprise many transistors [171], [172].  However, because the 

2TS employs the same control signals to concurrently update synaptic weights and to 

pass information between pre- and post- synaptic nodes, as in biological systems, the 

2TS is both simpler and smaller than any other integrated STDP realization.   

The two transistor synapse (“2TS”) 

comprises two PFET transistors with a 

floating gate node that is common to both.  

Figure 5.2 shows a circuit schematic of one 

2TS configuration wherein the “pre”-

synaptic signal is asserted at both PMOS 

sources, and the “post”-synaptic signal defines the potential of the drain of the 

programming transistor on the left.  The PFET on the right passes current generated by 

“pre”-synaptic spikes to the integration node, or soma, of the post-synaptic neuron (not 

shown).  The body of the programming transistor on the left is connected to the source, 

while the body of the right transistor is held at a fixed potential. 
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In theory, the operation of the 2TS circuit is relatively straightforward.  PRE 

and POST synaptic waveforms are asserted at the corresponding labeled nodes.  If 

PRE occurs first, but POST occurs within some prescribed time of PRE, then PRE and 

POST will overlap resulting in a large transient difference in the source-drain voltage 

of the programming transistor causing hot electron injection to decrease the stored 

voltage on the floating gate and thereby increase the synaptic weight.  On the other 

hand, when POST occurs first, but PRE occurs within some prescribed time of POST, 

then PRE and POST will overlap at a high voltage causing Fowler-Nordheim 

tunneling to increase the stored voltage on the floating gate and thereby decrease the 

synaptic weight.  

In practice, circuit operation is more intricate.  First, it is necessary to rely on 

an implicit injection threshold to avoid significant positive weight updates in the 

absence of PRE/POST overlap.  This operating assumption follows from the 

characteristic exponential relationship between the injection current and programming 

transistor source to drain voltage.  Likewise, when the drain of the programming 

transistor is held low, a transient PRE overvoltage that is also coupled to the body of 

the programming transistor will not generate significant negative weight updates.  

Preliminary experimental results indicate that holding the drain voltage on the 

programming transistor several volts below the programming threshold voltage 

reduces the field across the oxide sufficiently to adequately suppress tunneling. 

There are many factors in the physical realization which will impact the layout 

of the 2TS.  Among the most significant of these are the gate length of the 

programming transistor, which can mitigate short-channel effects, and the doping 
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Figure 5.3:  Physical layout of a 2TS in a commercial  
0.5 µm process. 

density of the source and drain regions, which impact local field strength and carrier 

transport.  However, while such considerations are important for optimization of the 

structure and function, for a proof-of-principle implementation, I fabricated a simple 

symmetric 2TS in a commercial 3-metal, 2-poly, 0.5 μm process, as shown in Figure 

5.3.  Each of the six terminals of this 2TS is connected to a separate pad for testing.   

The non-optimized proof-of-principle layout has a fairly large footprint at just 

under 400 μm2.  However, it is estimated that a minimum-sized variant of the 2TS 

satisfying analog design rules in a commercial 90 nm process consumes less than 6 

μm2 of real estate; we have fabricated a 90 nm process 2TS.   

 

 

 

 

 

Allowing both PFETs to share the same well would reduce the minimum 

dimensions even further; our model simulations and experimental characterizations of 

tunneling behavior in fabricated devices suggest that it may be possible to place both 

transistors of the 2TS in the same well without significantly compromising operation.  

With modern lithographic techniques extending integrated circuit technologies deep 

into the nanometer regime, a sub-micrometer 2TS is technically feasible.  However, it 

should be noted that owing to the non-linear scaling of submicron CMOS – neither 

threshold voltages, nor gate leakage currents scale proportionally with size in this 



 140 
 

regime – that such scaling poses additional technical challenges for deep submicron 

design.  Among the concerns are high gate leakage currents for ultra-thin gate oxides, 

potentially resulting in non-volatile memory storage on the order of minutes to days 

rather than years.   These and other considerations must be addressed in any scaled 

design. 

There are an infinite number of potential waveforms that will yield positive 

and negative Hebbian weight updates when asserted across the 2TS, see, e.g., [164].  

However, the subset that can accomplish bidirectional Hebbian learning according to 

biologically realistic STDP rules is considerably smaller.  In this work, I developed 

and investigated two such classes of waveforms: (1) a uniphasic PRE signal and a 

biphasic POST signal; and (2) paired, mirror-symmetric biphasic PRE and POST 

signals.  Integrated circuit architectures for implementing these types of signals have 

been previously reported, see, e.g. [172].   

Synaptic weight updates are accomplished by balanced hot electron injection 

and Fowler-Nordheim tunneling.  Hot electron injection in MOSFETs is a function of 

transistor source- and gate- drain voltages, and has been empirically shown to obey the 

following relationship [64]: 

 

(5.1) 

   

where α, β, and δ are experimentally derived process dependent constants, Is is the 

source-drain current flowing through the transistor, and Vgd and Vsd are the voltages 
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across the gate-drain and source-drain regions, respectively.  For a relatively constant 

gate voltage, the exponential dependence of the injection current on the source and 

drain voltages, allows us to determine a threshold voltage below which no significant 

(< 1% of max.) injection occurs. 

Similarly, Fowler-Nordheim tunneling in MOSFETs exhibits an exponential 

dependence on the voltage across the oxide barrier that is given by [64]: 

 



 

where Itun0 is a pre-exponential current, Vf is a process-dependent constant, and Vox is 

the voltage across the oxide barrier.  For semi-empirical modeling, Vox was computed 

to first order as representing a weighted average of source, body and drain voltages.  

This simplification discounts localized potential differences and barrier reduction to 

some degree, although experimental data suggests that it is a reasonable approximation 

in test devices. 

From the analyses and investigation performed, the most suitable waveforms 

for implementing realistic STDP appeared to be mirror-symmetric, biphasic PRE and 

POST signals.  Since tunneling and injection are both exponential functions, a variant 

of the exponential STDP curve itself was used as a starting point for the PRE signal.  

Then, in order to produce the desired Hebbian updates – that is, to balance the positive 

and negative increments for correlated PRE and POST signals, strengthening synaptic 
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connections when PRE precedes POST and weakening them when PRE follows POST 

– the POST signal was taken as the mirror-symmetric, biphasic version of the PRE 

signal.  The PRE and POST signals shown in Figure 5.4 can be mathematically 

weighted, with appropriate thresholds, to yield the biologically realistic STDP curve 

shown in Figure 5.5. 

In Figure 5.5, each point in the STDP curve represents the integration of the 

injection and tunneling contributions at a single instant in time as the PRE and POST 

waveforms are convolved past one another.  For this simulation, both mechanisms 

were assumed to contribute currents and corresponding weight updates that increase 

exponentially beyond the relevant threshold voltage (source-drain voltage for injection 

and oxide voltage for tunneling).  For simplicity, the exponential coefficients were 

taken to be the same for injection and tunneling although they differ in actual circuits.  

Likewise, tunneling and injection thresholds for these simulations were selected to 

balance the positive and negative weight updates and represent theoretical, rather than 

experimentally derived, estimates.  More realistic empirical models for injection and 

tunneling have been developed and are being used to inform the development of a next 

generation neural network based on these circuits.    

 

 

 

 

 Figure 5.5:  Simulated STDP as a function of 
biphasic mirror-image input waveforms. 
Computed weight update is shown in red. 

Figure 5.4:  Ideal discrete 
PRE and POST synaptic spike 
waveforms.  

“PRE”
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Figure 5.6 Equivalent, but 
differently-sized, 2TS test 
structure.  

Using the circuit shown in Figure 5.6, we 

first experimentally characterized the performance 

of the 2TS using floating gate test structures that 

contained equivalent, but differently sized, 

transistors to the 2TS.  Leaving all unused 

connections on these test structures (one poly 

control capacitor, one MOSCAP, and one NMOS 

follower) floating we asserted the biphasic waveforms 

as shown in Fig. 5.7 (a) repeatedly at 100 Hz with PRE occurring at a small, fixed 

(~20 degrees) phase shift ahead of POST.  Over 20 s, with an applied peak-to-peak 

voltage of approximately 10V, we observed the spiking output of the signal at the 

integration node shown in Figure 5.7 (b), illustrating a small, but significant weight 

increment over time; we have highlighted the increment with a red trend line that 

follows the increase.  Thus we see positive Hebbian learning using the biphasic PRE 

and POST inputs.  

 

 

 

 

 

 

Figure 5.7: (a) Cartoon of “pre”-“post” overlap for potentiation and hot electron injection weight 
update; (b) Measured output of circuit integration node as a function of successive positive weight 
updates.  Trend line shown in red.

(a) (b)
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When my colleague, Timir Datta, amplified the PRE and POST signals 

slightly, to approximately 13 volts peak-to-peak, and asserted them across the 2TS at 

10 Hz, with POST preceding PRE by a similar phase shift over 50s, he measured the 

spiking output of the signal at the integration node shown in Figure 5.8.  This data 

reflects a small, but significant weight decrement over time, consistent with negative 

Hebbian learning.  Thus we have shown proof-of-principle Hebbian learning using the 

derived biphasic waveforms.   

 

 

 

 

 

 

I am presently characterizing the full performance of the fabricated 0.5 μm 2TS 

structures, by repeatedly tunneling and injecting charge carriers off of and onto the 

floating node of the 2TS, to attain accurate dynamic programming of the circuit that 

approximates the better theoretical data from new models.  Figure 5.9 represents the 

results of one such test – the drain current at “i_node” for the 2TS is shown as a 

function of repeated hot electron injection cycles at drain voltages from -3 to -5 V. 

 

 

Figure 5.8: (a) Cartoon of “pre”-“post” overlap for depression and FN tunneling weight update;   
(b) Measured output of circuit integration node as a function of successive negative weight updates.  
Trend line shown in red.   

(a) (b) 
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The two transistor synapse exhibits theoretical and measured spike timing 

dependent plasticity in response to biphasic neural waveforms.  I intend to continue 

this work by fully characterizing the fabricated 2TS circuits, and by further 

investigating the performance of the 2TS in neural network applications for 

unsupervised learning that may one day be incorporated into implantable neural 

prosthetics for closed-loop control, e.g. of sensorimotor integration and feedback. 

5.2 Neural Network Implementation 

One particularly interesting engineering application that leverages this 

technology is unsupervised pattern recognition.  Figure 5.10 illustrates the 

architecture of a simple Hebbian learning neural network incorporating the 2TS.   

To demonstrate the potential of such a network, I developed a MATLAB 

learning and pattern recognition simulation whose architecture corresponds roughly 

with fabricated circuit components.  First, input vector, p1 … pn, represents pre-

synaptic signals, which may be neural spikes, or as here, simple vectors representing 

dA/dt 

5.9: 2TS current increases owing to successive hot 
electron injection weight updates.  Inlay shows dA/dt for 
each pulsed drain voltage asserted. 
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alphanumeric code.  Second, weight matrix, W, could correspond with an array of 

2TS synapses.  Finally, distance estimators programmed with distinct template 

classes, T1 .. Tm, may be used to generate post-synaptic “spikes” when computed 

template matches occur.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the particular simulation shown here, unbiased templates were 

programmed using noisy versions of ideal templates shown in Fig. 5.11 (a).  In 

circuits, this corresponds with floating gate template programming using hot electron 

injection and FN tunneling pulses.  By iteratively asserting even noisy versions of the 

signal to update the template vector and employing some thresholded distance metric 

(such as variance estimation) to end the updates, it is possible to theoretically 

program to nearly arbitrary precision.  Mismatch and process variation, plus circuit 

and signal noise impose real world limits on the precision of such circuits, as 

W

p1 

p2 

. 

. 

. 
pn 

T1

T2

Tm

.

.

“post”“pre”

Figure 5.10: Block diagram of Hebbian learning system based on 
2TS as synapse. 
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discussed in greater detail in Chapter 4.  Furthermore, unsupervised template 

programming is also possible, using the methods described in the preceding Chapter. 

In any event, once the templates are programmed, pre-synaptic input signals 

are weighted and correlated with each of the templates to assess whether there is a 

match.  If so, the corresponding template sends a post-synaptic signal indicating a 

match that simultaneously reinforce and attenuates synapses in proportion to their 

contribution to the template match.  In such a fashion, the weight matrix, or 2TS 

array, is proportionally strengthened and weakened according to the coincidence of 

pre- and post- synaptic activity.  Moreover, after some number of iterations of 

programming, the weights themselves correspond with templates so that merely 

convolving incoming signals with the synaptic array should result in proper 

classification.       

In this case, I used a simple supervised three template classification in order to 

illustrate the process.   The ideal templates represent the letters U, M and D, as shown 

in Fig. 5.11(a) and each template comprises a vector of 1’s and 0’s corresponding 

with dark and light pixels, respectively.  Noisy variants of these ideal templates are 

programmed into analog memory by repeatedly asserting them, comparing them 

against stored values, and updating until an arbitrary minimum distance is reached; 

this results in the non-ideal stored templates shown in Fig. 5.11 (b).   

Once the templates have been programmed, noisy variants of each of the ideal 

templates are asserted and weights are updated when template matches occur in 

proportion to their contribution to the match.  This represents competitive Hebbian 

learning.   
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Figure 5.11: (a) graphical plot of ideal template; (b) plot of noisy programmed template. 

 

 

 

 

 

 

 

 

As in biology, if a post-synaptic spike fires, the contributing synapses are 

proportionally strengthened and non-contributing synapses are weakened.   Finally, 

once the weight matrix has been trained, we see robust pattern recognition 

demonstrated over repeated trials, as shown in Fig. 5.12 where the two patterns on the 

left are mapped onto the correct identifications on the right using the trained weight 

matrix. 

 

 

 

 

 

 

 

 

U 

M 
Figure 5.12: Two examples of pattern recognition using the trained 
NN.  In the first, a partial letter is correctly identified.  In the 
second, a noisy and attenuated letter is also correctly identified by 
the trained network.  

(a) 

(b) 

Figure 5.11: (a) graphical plot of ideal template; (b) plot of noisy programmed template. 
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In addition to the specific example presented above, it is possible to employ a 

network of 2TS to register and learn correlations between extracted features of, e.g., 

neural spikes, in real-time.  Previously reported architectures for extracting salient 

features of neural action potentials and mapping them to biphasic spike trains exist 

[173].  Building upon this work and classical neural network theory I have begun to 

evaluate the performance of 2TS networks for unsupervised spike sorting.  

 

 
 



 

 150 
 

Chapter 6: Conclusions 

6.1  Summary 

We have identified and explored the principal original contributions of this 

dissertation: (1) programmable electrode arrays for enhanced electrophysiological 

recording and for directing nerve cell growth; (2) integrated image sensors for the 

unsupervised detection of significant biological events; (3) ultra-low power, 

programmable floating gate template matching circuits for the detection and 

classification of neural action potentials; and (4) a two transistor synapse for the 

compact hardware implementation of silicon learning.  We have further illustrated 

how these contributions fit into the context of and advance the field.  It is believed 

that these contributions represent enabling technologies for integration with the next 

generation of implantable neural prosthetics.  As such, it is hoped that the work 

presented here will be used to aid in the restoration of lost sensory and motor function 

among those individuals suffering from debilitating neural injury and disease. 

 

6.2  Future Directions 

In each of the principal research directions we have explored, I anticipate 

developing the relevant circuits and systems further.  An arbitrated AER contact 

imaging array for neural sensing has been submitted for fabrication; when it returns I 

plan to characterize its performance using real biological cells.  Likewise, in 

conjunction with colleagues in the bioengineering department and at the National 

Institutes of Health, I have also planned a number of in vitro experiments for further 

testing of the programmable electrode arrays and to demonstrate on-chip 
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galvanotropism.  In addition, the spike sorting architectures I designed are a mere first 

step along the path to ultra-low-power mixed signal architectures for implantable 

neural prosthetics, with integrated spike train decoding architectures.  Finally, I am 

developing hardware networks of the 2TS circuit for unsupervised on-chip learning 

and pattern recognition.     

This is the beginning, not the end. 
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