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Mobile devices are becoming increasingly popular due to their flexibility and

convenience in managing personal information such as bank accounts, profiles and

passwords. With the increasing use of mobile devices comes the issue of security as

the loss of a smartphone would compromise the personal information of the user.

Traditional methods for authenticating users on mobile devices are based on

passwords or fingerprints. As long as mobile devices remain active, they do not in-

corporate any mechanisms for verifying if the user originally authenticated is still the

user in control of the mobile device. Thus, unauthorized individuals may improperly

obtain access to personal information of the user if a password is compromised or if a

user does not exercise adequate vigilance after initial authentication on a device. To

deal with this problem, active authentication systems have been proposed in which

users are continuously monitored after the initial access to the mobile device [1].

Active authentication systems can capture users’ data (facial image data, screen

touch data, motion data, etc) through sensors (camera, touch screen, accelerometer,

etc), extract features from different sensors’ data, build classification models and



authenticate users via comparing additional sensor data against the models.

Mobile active authentication can be viewed as one application of the more

general problem, namely, multimodal classification. The idea of multimodal clas-

sification is to utilize multiple sources (modalities) measuring the same instance

to improve the overall performance compared to using a single source (modality).

Multimodal classification also arises in many computer vision tasks such as image

classification, RGBD object classification and scene recognition.

In this dissertation, we not only present methods and algorithms related to ac-

tive authentication problems, but also propose multimodal recognition algorithms

based on low-rank and joint sparse representations as well as multimodal metric

learning algorithm to improve multimodal classification performance. The multi-

modal learning algorithms proposed in this dissertation make no assumption about

the feature type or applications, thus they can be applied to various recognition tasks

such as mobile active authentication, image classification and RGBD recognition.

First, we study the mobile active authentication problem by exploiting a

dataset consisting of 50 users’ face captured by the phone’s frontal camera and screen

touch data sensed by the screen for evaluating active authentication algorithms de-

veloped under this research. The dataset is named as UMD Active Authentication

(UMDAA) dataset. Details on data preprocessing and feature extraction for touch

data and face data are described respectively.

Second, we present an approach for active user authentication using screen

touch gestures by building linear and kernelized dictionaries based on sparse rep-

resentations and associated classifiers. Experiments using the screen touch data



components of UMDAA dataset as well as two other publicly available screen touch

datasets show that the dictionary-based classification method compares favorably

to those discussed in the literature. Experiments done using screen touch data col-

lected in three different sessions show a drop in performance when the training and

test data come from different sessions. This suggests a need for applying domain

adaptation methods to further improve the performance of the classifiers.

Third, we propose a domain adaptive sparse representation-based classification

method that learns projections of data in a space where the sparsity of data is

maintained. We provide an efficient iterative procedure for solving the proposed

optimization problem. One of the key features of the proposed method is that

it is computationally efficient as learning is done in the lower-dimensional space.

Various experiments on UMDAA dataset show that our method is able to capture

the meaningful structure of data and can perform significantly better than many

competitive domain adaptation algorithms.

Fourth, we propose low-rank and joint sparse representations-based multi-

modal recognition. Our formulations can be viewed as generalized versions of mul-

tivariate low-rank and sparse regression, where sparse and low-rank representations

across all the modalities are imposed. One of our methods takes into account

coupling information within different modalities simultaneously by enforcing the

common low-rank and joint sparse representation among each modality’s observa-

tions. We also modify our formulations by including an occlusion term that is

assumed to be sparse. The alternating direction method of multipliers is proposed

to efficiently solve the proposed optimization problems. Extensive experiments on



UMDAA dataset, WVU multimodal biometrics dataset and Pascal-Sentence image

classification dataset show that that our methods provide better recognition perfor-

mance than other feature-level fusion methods.

Finally, we propose a hierarchical multimodal metric learning algorithm for

multimodal data in order to improve multimodal classification performance. We

design metric for each modality as a product of two matrices: one matrix is modal-

ity specific, the other is enforced to be shared by all the modalities. The modality

specific projection matrices capture the varying characteristics exhibited by mul-

tiple modalities and the common projection matrix establishes the relationship of

the distance metrics corresponding to multiple modalities. The learned metrics

significantly improves classification accuracy and experimental results of tagged im-

age classification problem as well as various RGBD recognition problems show that

the proposed algorithm outperforms existing learning algorithms based on multiple

metrics as well as other state-of-the-art approaches tested on these datasets. Fur-

thermore, we make the proposed multimodal metric learning algorithm non-linear

by using kernel methods.



MULTIMODAL LEARNING AND ITS APPLICATION TO
MOBILE ACTIVE AUTHENTICATION

by

Heng Zhang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

May 2017

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Larry Davis
Professor Min Wu
Professor Vishal M. Patel, Rutgers University
Professor Ramani Duraiswami, Dean’s Representative



c© Copyright by
Heng Zhang
May 2017



Dedication

This dissertation is dedicated to God.

ii



Acknowledgments

I owe my gratitude to all the people who have made this dissertation possible

and because of whom my graduate experience has been one that I will cherish

forever.

First and foremost, I’d like to thank my advisor, Professor Rama Chellappa

for giving me an invaluable opportunity to work with him on the challenging and

interesting active authentication project. He has always made himself available for

guidance and advice. He is hard-working, inspiring and humorous. It is my great

honor and pleasure to learn from such a famous and influential researcher in the

field of computer vision and pattern recognition.

I would also like to thank Professor Vishal M. Patel. I have been fortunate to

work with him ever since I joined the active authentication team. We collaborated

on all the research topics discussed in this dissertation. He is also caring and helpful

just like a big brother for me. I enjoyed all the Friday lunches we had together

when he was a research scientist at UMIACS and I wish him the best at Rutgers

University.

Thanks are due to Professor Larry Davis, Professor Min Wu and Professor

Ramani Duraiswami for agreeing to serve on my thesis committee and providing

valuable feedbacks and advice to make this dissertation much better. I benefited

from the suggestions and research ideas discussed by Professor Davis at active au-

thentication meetings. ENEE630 taught by Professor Wu is the first course I took

when I came to UMD. She made the course interesting and I learned a lot from her.

iii



Professor Duraiswami has been very kind and helped me a lot during the final stage

of my thesis defense.

The research experiences at Google gave me an opportunity to study active

authentication problems at scale and explore methods and algorithms to make it

work as a mobile application. The rigorous engineering practice and engineering

culture at Google inspired me a lot. I would like to thank Dr. Deepak Chandra,

Jagadish Agrawal and Brandon Barbello for hosting me and providing help in many

ways.

My colleagues at Rama’s group have enriched my graduate life. Specifically,

Dr. Sumit Shekhar, Dr. Garrett Warnell, Dr. Ashish Shrivastava, Dr. Jie Ni, Dr.

Jingjing Zheng, Dr. Huy Tho Ho, Mohammed E. Fathy, Howard Peng, Sayantan

Sarkar and Swami Sankaranarayanan kindly discussed the research problems I had

and provided useful advice. I would also like to acknowledge the help and support

from staff members including Janice Perrone, Arlene Schenk, Bill Churma and Maria

Hoo. This five-year journey at UMD would not be so enjoyable without the company

of my friends including Zhihao, Hong, Zhe and many others. It is impossible to

remember all, and I apologize to those I’ve inadvertently left out.

I owe my deepest thanks to my family. My parents have always stood by me

and guided me through my life. My fiancee, Moyu has gone thourgh all the ups

and downs with me. She encourages me to purse my dream and makes me a better

person.

Lastly, thank you all and thank God!

iv



Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 UMD Active Authentication Dataset . . . . . . . . . . . . . . . . . . 3

1.2.1 Data Collection App . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Preprocessing and Feature Extraction . . . . . . . . . . . . . . 8

1.2.3.1 Facial data . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3.2 Touch Data . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Proposed Algorithms and Contributions . . . . . . . . . . . . . . . . 11
1.3.1 Touch Gesture-Based Active User Authentication Using Dic-

tionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Domain Adaptive Sparse Representation-Based Classification . 12
1.3.3 Low-Rank and Joint Sparse Representations for Multimodal

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Hierarchical Multimodal Metric Learning for multimodal Clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Touch Gesture-Based Active User Authentication Using Dictionaries 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Sparse Representation and Dictionary Learning based Classification . 17

2.2.1 Sparse Representation-based Classification(SRC) . . . . . . . 17
2.2.2 Kernel Sparse Representation-based Classification (KSRC) . . 19
2.2.3 Dictionary Learning-based Classification . . . . . . . . . . . . 21
2.2.4 Kernel Dictionary Learning-based Classification . . . . . . . . 22

2.3 Experimental Results On Touch Data . . . . . . . . . . . . . . . . . . 23
2.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Results on Touch Data Component Of UMDAA Dataset . . . 26

v



2.3.3 Results On Touchalytics Dataset . . . . . . . . . . . . . . . . 30
2.3.4 Results On BTAS 2013 Dataset . . . . . . . . . . . . . . . . . 31

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Domain Adaptive Sparse Representation-Based Classification 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Two Domains Formulation . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Multi-Domain Formulation . . . . . . . . . . . . . . . . . . . . 41

3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Update B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Update P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Domain Adaptive Sparse Representation-Based Classification . 46

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Single-source Domain Adaptation Experiments . . . . . . . . . 48
3.5.3 Multi-source Domain Adaptation Experiments . . . . . . . . . 49
3.5.4 Further Discussions And Analysis . . . . . . . . . . . . . . . . 51

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Low-Rank and Joint Sparse Representations for Multimodal Recognition 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Low-rank and joint sparse representations for multimodal recognition 60

4.3.1 Basic version . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Robust version . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Two Special Cases . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3.1 Joint Sparse Representation . . . . . . . . . . . . . . 64
4.3.3.2 Low-Rank Representation . . . . . . . . . . . . . . . 64

4.4 Common low-rank and joint sparse representations for multimodal
recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Basic Version . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Robust Version . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 Two Special Cases . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3.1 Common Sparse Representation . . . . . . . . . . . . 67
4.4.3.2 Common Low-Rank Representation . . . . . . . . . . 68

4.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.1 Optimization of RMRLRJS . . . . . . . . . . . . . . . . . . . 69
4.5.2 Optimization of RMRLRJS-C . . . . . . . . . . . . . . . . . . 74

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6.1 WVU multimodal biometrics dataset . . . . . . . . . . . . . . 75
4.6.2 UMDAA Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.3 Pascal-Sentence Dataset . . . . . . . . . . . . . . . . . . . . . 84
4.6.4 Low-Rank versus Joint Sparsity . . . . . . . . . . . . . . . . . 87

vi



4.6.5 Weighted vs Non-Weighted Classification . . . . . . . . . . . . 88
4.7 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Hierarchical Multimodal Metric Learning for Multimodal Classification 92
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Hierarchical Multimodal Metric Learning (HM3L) . . . . . . . 98
5.3.3 HM3L-based multimodal classification . . . . . . . . . . . . . 100

5.4 Kernelized Hierarchical Multimodal Metric Learning(KHM3L) . . . . 100
5.4.1 Kernelized metric learning for single-modal instances . . . . . 101
5.4.2 Kernelized Hierarchical Multimodal Metric Learning . . . . . 102
5.4.3 KHM3L-based multimodal classification . . . . . . . . . . . . 104

5.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.1 Optimization for HM3L . . . . . . . . . . . . . . . . . . . . . 104
5.5.2 Optimization for KHM3L . . . . . . . . . . . . . . . . . . . . 108

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6.1 Object recognition on RGB-D Object dataset . . . . . . . . . 110
5.6.2 Object recognition on CIN 2D3D dataset . . . . . . . . . . . . 116
5.6.3 Scene Categorization on SUN RGB-D dataset . . . . . . . . . 117
5.6.4 Tagged image classification on NUS-WIDE dataset . . . . . . 119

5.7 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Conclusions and Future Research 124

Bibliography 127

vii



List of Tables

1.1 Description of the 27-dimensional feature vector. . . . . . . . . . . . . 10

2.1 Average EER values (in %) for different classification methods on the
new dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Average EER values (in %) for the cross-session experiments with the
new dataset. In the first column of this table, a→ b means that data
from session a are used for training and data from session b are used
for testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Average EER values (in %) for different classification methods on the
Touchalytics dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Average EER values (in %) for the portrait mode cross-session ex-
periments with the BTAS 2013 dataset. In the first column of this
table, a→ b means that data from session a are used for training and
data from session b are used for testing. . . . . . . . . . . . . . . . . . 32

2.5 Average EER values (in %) for the landscape mode cross-session ex-
periments with the BTAS 2013 dataset. In the first column of this
table, a→ b means that data from session a are used for training and
data from session b are used for testing. . . . . . . . . . . . . . . . . . 32

3.1 Recognition accuracy on target domain with semi-supervised adap-
tation for the face component. . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Recognition accuracy on target domain with semi-supervised adap-
tation for the touch component. . . . . . . . . . . . . . . . . . . . . . 50

3.3 Multi-source domain adaptation on face data. . . . . . . . . . . . . . 50
3.4 Multi-source domain adaptation on touch data. . . . . . . . . . . . . 51

4.1 Rank one recognition accuracy (in %) for WVU biometric multi-
modal dataset for individual modality. . . . . . . . . . . . . . . . . . 77

4.2 Rank one recognition accuracy (in %) for the WVU multimodal bio-
metric dataset for fusion of different modalities. . . . . . . . . . . . . 78

4.3 Rank one recognition accuracy (in %) for different fusion methods
using 10 samples from each user for training. . . . . . . . . . . . . . . 81

viii



4.4 Rank one recognition accuracy (in %) for different fusion methods
using 15 samples from each user for training. . . . . . . . . . . . . . . 82

4.5 Rank one recognition accuracy (in %) for different fusion methods
using 20 samples from each user for training. . . . . . . . . . . . . . . 83

4.6 Classification accuracy (in %) for the Pascal-Sentence dataset. . . . . 86
4.7 Rank one recognition accuracy (in %) for weighted and non-weighted

classification on three datasets. . . . . . . . . . . . . . . . . . . . . . 89

5.1 Instance recognition accuracy on RGB-D Object dataset. . . . . . . . 113
5.2 Category recognition accuracy on RGB-D Object dataset. . . . . . . 114
5.3 Category recognition accuracy (in %) on CIN 2D3D dataset. . . . . . 117
5.4 Scene categorization accuracy (in %) on SUN RGB-D dataset. . . . . 120
5.5 KNN Classification Accuracy under learned metrics for tagged images.121

ix



List of Figures

1.1 Screen shots of the App for data collection. These four pictures from
left to right are screen shots of Scrolling Task, Popup Task, Picture
Task and Document Task respectively. . . . . . . . . . . . . . . . . . 5

1.2 Examples of face images in UMDAA dataset. Each row shows face
images collected from a mobile device in a particular ambient condi-
tion. Images in each column correspond to the same individual. . . . 6

1.3 Samples of screen touch data in UMDAA dataset. First and second
rows respectively show touch data corresponding to four different
individuals performing the same task. The figure is best viewed in
color and 200% zoom in. . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 First row: Example faces in this dataset. Second row: Detected
landmarks on the images shown on the first row. . . . . . . . . . . . . 9

2.1 Average F1 score values (in %) for different classification methods on
the new dataset as the number of training samples are increased. (a)
Single-swipe classification. (b) Eleven-swipe classification.The figure
is best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 An overview of learning domain adaptive sparse representations. . . . 36
3.2 First six components of the learned projection matrices for the multi-

source domain adaptation experiment. (a) Components from P1, (b)
Components from P2. (c) Components from P3. . . . . . . . . . . . . 52

3.3 Objective function versus number of iterations of the proposed op-
timization problems. (a) The ADMM method for solving (3.5). (b)
The method of SOC for solving the trace minimization problem with
multiple orthogonality constraints (3.6). (c) The proposed problem
(3.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 An overview of the proposed low-rank and joint sparse representation-
based multimodal recognition. . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Sample fingerprint and iris images from the WVU dataset. . . . . . . 74
4.3 Sample images and corresponding sentences from the Pascal-Sentence

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



4.4 Mean rank one recognition accuracy versus the relative contribution
of low-rank and joint sparsity constraint. . . . . . . . . . . . . . . . . 88

5.1 Overview of Hierarchical MultiModal Metric Learning. . . . . . . . . 95
5.2 Confusion matrix for Instance recognition result. . . . . . . . . . . . . 114
5.3 Confusion matrix for 8th trial category recognition result. . . . . . . . 115
5.4 Examples of prediction errors in category recognition experiment. . . 115
5.5 Confusion matrix for scene recognition result. . . . . . . . . . . . . . 118
5.6 Normalized cost function over iterations. . . . . . . . . . . . . . . . . 122

xi



Chapter 1: Introduction

1.1 Motivation

Active user authentication on mobile devices has become an interesting re-

search topic and attracted a lot of attention from both academia and industry.

Active authentication is supposed to be performed by the mobile devices actively

and continuously through sensing and analyzing users’ physiological and behavioral

data to decide whether the user is the trusted user or an impostor. With recent

developments in hardware and software, current mobile devices, even the cheaper

ones, can have many sensors including high resolution frontal and back cameras,

touch screen, accelerometer and so on. These powerful sensors can acquire screen

touch data, face images and so on.

The reasons why screen touch data and face data have been used to build

mobile active authentication systems are 1) abundant screen touch data are avail-

able as long as users swipe on the screen and screen touch data can record detailed

information which might be discriminative among users; 2) face recognition [2] is

a relatively well-studied problem and several methods and techniques are at hand

even though face images captured by mobile devices can exhibit different variations

compared to the ones seen in traditional face recognition problems. However, screen

1



touch gestures, as a kind of human behavior, have a lot of intra-person variations

and may change; face images captured by the mobile devices in unconstrained man-

ner, can exhibit different poses, rotations, illuminations and partial faces. These

challenges motivate us to study touch gesture and face-based active authentication

by building efficient classification models for screen touch data and face images.

Mobile active authentication can be viewed as one application of multimodal

classification which also arises in many computer vision tasks such as image classifi-

cation, RGBD object classification and scene recognition. Rather than exploring one

specific application, we study the more general multimodal recognition problems in

order to robustly provide better performance than when just a single modality alone

is used. However, the differences in features extracted from different modalities in

terms of types and dimensions make the feature-level fusion non trivial. Simply con-

catenating feature vectors of multiple modalities and applying classic classification

algorithms often yields poor performance and expensive computational cost since

the dimension of the concatenated feature vector can be very large. The difficulty

in fusing multiple feature vectors efficiently and effectively motivate us to explore

robust multimodal fusion based on low-rank and joint sparse representations.

Metric learning algorithms can learn the Mahalanobis distance from data pairs

and side information indicating the relationship of data pairs [3]. The learned dis-

tance can be better than the Euclidean distance for the original feature space and

improve classification performance. While many classic metric learning algorithms in

uni-modal setting are available, there are limited works on studying metric learning

in multi-modal setting. The varying characteristics exhibited by multiple modalities

2



make it necessary to simultaneously learn the corresponding distance metrics. This

motivate us to explore novel metric learning algorithms for multimodal data.

1.2 UMD Active Authentication Dataset

In order to facilitate mobile active authentication research, we built a dataset

consisting of 50 users’ face images and screen touch data over 3 sessions. The dataset

is named as UMD Active Authentication(UMDAA) dataset.

In this section, we describe the details of the dataset we have collected using

an iPhone 5s in an application environment. The users were asked to log in the

data collection App and perform several tasks such as scrolling a document, viewing

pictures, reading a long article etc. While users performed these tasks, their touch

data sensed by the screen and face images acquired by the front-facing camera were

simultaneously captured. Also, users need to perform these tasks in different sessions

with different ambient conditions, namely in a well-lit room, in a dim-lit room, and

in a room with natural daytime illumination. The goal was to simulate the real-

world scenarios to study whether ambient changes can influence the captured face

data and possibly users’ touch behavior. During data collection, users were free to

use the phone in either portrait mode or orientation mode and hold the phone in

any position.

This dataset differs from other active authentication datasets including [4]

and [5] in three aspects: a) data collection was done using the iOS platform, b) it

is a multi-modal dataset consisting of face and touch data, c) data were collected

3



over three different sessions with different ambient conditions.

1.2.1 Data Collection App

The iPhone application for data collection consists of five different tasks de-

scribed below. During each task, the application simultaneously records each users’

face video from the front camera on the iPhone and the touch data sensed by the

screen. Figure 1.1 shows the screen shots of the four different tasks for screen touch

data collection.

Enrollment Task—–An user would enroll face by turning his/her head to the

left, then to the right, then up, and finally down while being recorded by the front-

facing camera on the iPhone. Following the enrollment task, the user would perform

four tasks with both face and screen touch data being recorded simultaneously. The

four tasks are described as follows.

Scrolling Task—–User would view a collection of images that are arranged

horizontally and vertically. Each image would take up the whole screen and the

user is required to swipe their finger on the screen left and right or up and down in

order to navigate through the images.

Popup Task—–Fifteen images are positioned off screen in such a way that only

a segment of the image was shown. The user would then be required to drag the

image and position it in the center of the iPhone to the best of their ability.

Picture Task—–A large poster-like image displays 72 cars with different colors

in a 12 by 6 table. Only a few cars could be seen at any given time on the screen.

4



The user was then asked to count the number of cars that were of the color selected

by the test proctor. The user was then required to scroll through the entire image

in order to provide the correct number.

Documents Task—–This task contains a PDF of a research paper which is 12

pages long. The user was asked to count the number of items indicated by the test

proctor such as figure, tables etc.

Figure 1.1: Screen shots of the App for data collection. These four pictures from left

to right are screen shots of Scrolling Task, Popup Task, Picture Task and Document

Task respectively.

1.2.2 Data Visualization

On average it took about 30 seconds to 2 minutes to collect facial and touch

data per task per session. The dataset consists of 50 users with 43 male users and

7 female users. All 50 users used the phone in the portrait mode and only one user

also used the phone in the landscape mode. In total, there are 750 videos recording

5



Figure 1.2: Examples of face images in UMDAA dataset. Each row shows face

images collected from a mobile device in a particular ambient condition. Images in

each column correspond to the same individual.
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Figure 1.3: Samples of screen touch data in UMDAA dataset. First and second rows

respectively show touch data corresponding to four different individuals performing

the same task. The figure is best viewed in color and 200% zoom in.
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facial data and 600 txt files recording screen touch data with about 15490 touch

gestures.

Since facial video data were collected in an unconstrained manner, many faces

exhibit different poses, rotations and illuminations. In particular, partial faces are

common in this dataset. Also, as users are free to swipe on the screen in any way

they prefer, intra-user variations can be large. Figures 1.2 shows sample face images

from this dataset. Each row shows images from a particular ambient condition. It

can be seen that the images from different ambient conditions show very different

characteristics. Figure 1.3 shows samples of touch data in this dataset. It is in-

teresting to observe that even for the same task touch data of different users show

significant differences.

1.2.3 Preprocessing and Feature Extraction

As this dataset consists of two modalities, we perform preprocessing and fea-

ture extraction for face and screen touch data separately.

1.2.3.1 Facial data

For the face data, we first detect the landmarks of the face images frame by

frame from the videos using the tree-based landmarks detector [6]. These detected

landmarks are shown in the second row of Figure 1.4. We then crop and align

the faces using the method described in [7] based on the landmarks’ locations. We

then apply the illumination normalization method described in [8] to the cropped

8
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Figure 1.4: First row: Example faces in this dataset. Second row: Detected land-

marks on the images shown on the first row.

face images. Finally, the face images are rescaled to dimension 192 × 168 × 3 and

converted to grayscale images. After preprocessing, we downsample the preprocessed

face images to 24 by 21 and simply used the whole image as a feature vector of

dimension 504.

1.2.3.2 Touch Data

Every swipe on the screen is a sequence of touch data when the finger is in

touch with the screen of the mobile phone. Every swipe S is encoded as a sequence

of vectors

si = (xi, yi, ti, Ai, o
ph
i ),

i ∈ {1, · · · , Nc} where xi, yi are the location points, ti is the time stamp, Ai is the

area occluded by the finger and ophi is the orientation of the phone (e.g. landscape or

portrait). Given these touch data, we extracted a 27-dimensional feature vector for

9



FeatureID Description

feature 1 inter-stroke time

feature 2 stroke duration

feature 3 start x

feature 4 start y

feature 5 stop x

feature 6 stop y

feature 7 direct end-to-end distance

feature 8 mean resultant length

feature 9 up/down/left/right flag

feature 10 direction of end-to-end line

feature 11 20%-perc. pairwise velocity

feature 12 50%-perc. pairwise velocity

feature 13 80%-perc. pairwise velocity

feature 14 20%-perc. pairwise acceleration

feature 15 50%-perc. pairwise acceleration

feature 16 80%-perc. pairwise acceleration

feature 17 median velocity at last 3 points

feature 18 largest deviation from end-to-end line

feature 19 20%-perc. dev. from end-to-end line

feature 20 50%-perc. dev. from end-to-end line

feature 21 80%-perc. dev. from end-to-end line

feature 22 average direction

feature 23 length of trajectory

feature 24 ratio end-to-end dist and length of trajectory

feature 25 average velocity

feature 26 median acceleration at first 5 points

feature 27 mid-stroke area covered

Table 1.1: Description of the 27-dimensional feature vector.
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every single stroke in our dataset using the method described in [5]. These features

are summarized in Table 1.1.

Note that for the Touchalytics [5] and the BTAS 2013 dataset [4], we extracted

28 features from each swipe. Additional feature for these datasets corresponds to the

mid-stroke pressure. The new dataset described in Section 3 was collected using an

iPhone 5s and it does not allow one to capture the pressure information. Whereas,

the Touchalytics dataset and the BTAS 2013 dataset, were collected using Android

phones which allow them to collect the pressure information.

1.3 Proposed Algorithms and Contributions

1.3.1 Touch Gesture-Based Active User Authentication Using Dic-

tionaries

Screen touch gesture has been shown to be a promising modality for touch-

based active authentication of users of mobile devices. We present an approach

for active user authentication using screen touch gestures by building kernelized

dictionaries based on sparse representations and associated classifiers.

This work makes the following contributions:

• We propose kernel dictionary learning-based methods for touch gesture-based

active user authentication.

• We point out the domain shift issue for touch-based active authentication and

suggest future research work in this area to address these challenges.
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1.3.2 Domain Adaptive Sparse Representation-Based Classification

We propose Domain Adaptive Sparse Representation-Based Classification which

combines subspace learning and sparse representation-based classification (SRC) [9]

and attempts to mitigate the domain shift. The proposed formulations learn pro-

jections of data in different domains in a way that preserves the sparse structure

of data in the low-dimensional space. We develop an efficient optimization method

based on Alternating Direction Method of Multipliers (ADMM) and the Method

of Splitting Orthogonality Constraints (SOC) for solving the resulting optimization

problem.

This work makes the following contributions:

• A sparse representation-based classification algorithm is proposed for domain

adaptation.

• An efficient iterative method based on the ADMM and the method of SOC is

derived for solving the resulting optimization problem.

• The effectiveness of the proposed domain adaptation approach is demonstrated

through comparisons with other recently proposed state-of-the-art domain

adaptation methods on faces images and screen touch data of UMDAA dataset.
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1.3.3 Low-Rank and Joint Sparse Representations for Multimodal

Recognition

We propose multimodal feature-level fusion methods by simultaneously enforc-

ing low-rank and joint sparsity constraints across representations corresponding to

multiple modalities. The proposed method is a general formulation for multimodal

fusion problems where different representations (sparse and low-rank) are simulta-

neously sought for improved multimodal fusion. Efficient optimization algorithms

using ADMM is derived to solve the proposed optimization problems.

This work makes the following contributions:

• A general formulation based on low-rank and joint sparse representations is

proposed for multimodal recognition.

• An extended formulation based on common sparse and low-rank representa-

tion is proposed to robustly leverage the correlation and coupling information

across the modalities especially when the performance of each modality differs

a lot.

• We evaluate our method on various multimodal recognition problems such as

active authentication [10], [11] multi-biometrics recognition [12], and image

recognition [13].
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1.3.4 Hierarchical Multimodal Metric Learning for multimodal Clas-

sification

We propose a Hierarchical Multimodal Metric Learning (HM3L) algorithm

which fully exploits the relationships among the different metrics of different modal-

ities. In our formulation, the metric of each modality is constructed through the

multiplication of modality specific part representing appropriate subspace and a

common part (p.s.d matrix) shared by all the metrics. Furthermore, The kerneliza-

tion of the proposed algorithm leads to Kernelized Hierarchical Multimodal Metric

Learning (KHM3L) algorithm and can be applied to classification problems in which

decision boundary is complex.

This work makes the following contributions:

• A noval Mahalanobis metric learning algorithm for multimodal data is pro-

posed by factoring the distance metric of each modality into the product of a

modality-specific projection and a common projection shared across all met-

rics.

• Kernelization of the proposed HM3L is derived to learn metrics for multimodal

data in kernel space.

• We evaluate the proposed method on four publicly available multimodal datasets

about RGB-D recognition and tagged image classification. We obtain the

state-of-the-art results with 89.2% object category recognition accuracy on

the multi-view RGB-D dataset [14] and 52.3% scene category recognition ac-
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curacy on SUN RGB-D dataset [15].

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we build

touch gesture dictionaries as user biometric templates to perform active authentica-

tion. Then, we propose in Chapter 3, a domain adaptive sparse representation-based

classification algorithm to mitigate the domain shift issues for face and screen touch

data. Next, in Chapter 4, we formulate a multimodal recognition algorithm using

low-rank and joint sparse representations in order to perform efficient and robust fea-

ture level fusion. In Chapter 5, we propose a hierarchical multimodal metric learning

(HM3L) algorithm and its kernelized extension (KHM3L) to improve multimodal

classification performance. Finally, in Chapter 6, we conclude this dissertation with

a summary and discussion of future research.
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Chapter 2: Touch Gesture-Based Active User Authentication Using

Dictionaries

2.1 Introduction

Screen touch gestures, as a kind of behavioral biometric, are basically the way

users swipe their fingers on the screen of their mobile devices. They have been

used to continuously authenticate users while users perform basic operations on the

phone [5], [4], [16], [17]. In these methods, a behavioral feature vector is extracted

from the recorded screen touch data and a discriminative classifier like an SVM

classifier or a Nearest Neighbor classifier is trained on these extracted features for

authentication. These works have demonstrated that touch gestures can be used as

a promising biometric for active user authentication of mobile devices in the future.

In recent years, sparse representation and dictionary learning based methods

have produced state-of-the-art results in many physiological biometrics recognition

problems such as face recognition [18] and iris recognition [19]. These methods

assume that given sufficient training samples of certain class, any new test sample

that belongs to the same class will lie approximately in the linear or nonlinear span

of the training samples from that class. We assume that this assumption is also

16



valid for behavioral biometric, like screen touch gestures.

Kernel sparse coding [20] and kernel dictionary learning [21] have been pro-

posed and applied for image classification and face recognition. In this chapter, we

study the effectiveness of kernel dictionary learning-based methods in recognizing

screen touch gestures for user authentication. Our method builds dictionaries for

users, which can be viewed as biometric templates of users and are more suitable to

be incorporated into a biometric system to authenticate users actively and contin-

uously. Application of kernel dictionary learning for touch gesture recognition and

achieving very promising performance are the primary goals of this work.

The rest of this chapter is organized as follows. Section 2.2 describes sparse

representation and dictionary learning-based methods for screen touch gesture recog-

nition. Experimental results on screen touch component of this new dataset as well

as on two other publicly available screen touch datasets are presented in Section 2.3.

Finally, Section 2.4 presents a brief summary and discussion.

2.2 Sparse Representation and Dictionary Learning based Classifica-

tion

2.2.1 Sparse Representation-based Classification(SRC)

Suppose that we are given C distinct classes and a set of Nc training samples

per class. Let Yc = [yc1, . . . ,y
c
Nc

] ∈ Rd×Nc be the matrix of training samples from

the cth class. Define a matrix Y as the concatenation of training samples from all

17



the classes

Y = [Y1, . . . ,YC ] ∈ Rd×N = [y1
1, . . . ,y

1
N1
|y2

1, . . . ,y
2
N2
|......|yC1 , . . . ,yCNC

],

where N =
∑

cNc. We consider an observation vector yt ∈ Rd of unknown class as

a linear combination of the training vectors as

yt =
C∑
c=1

Nc∑
i=1

xciy
c
i (2.1)

with coefficients xci ∈ R. Equation (2.1) can be more compactly written as

yt = Yx, (2.2)

where x = [x1
1, . . . , x

1
N1
|x2

1, . . . , x
2
N2
| . . . |xC1 , . . . , xCNC

]T .

One can make an assumption that given sufficient training samples of the

cth class, Yc, any new test sample yt ∈ Rd that belongs to the same class will

approximately lie in the linear span of the training samples from the class c. This

implies that most of the coefficients not associated with class c will be close to zero.

As a result, assuming that observations are noisy, one can recover this sparse vector

by solving the following optimization problem,

xt = arg min
x
‖x‖0 (2.3)

s.t. ‖yt −Yx‖2 ≤ ε

or equivalently the following formulation,

xt = arg min
x
‖yt −Yx‖2 + λ‖x‖0, (2.4)

where λ is a parameter and ‖ · ‖p for 0 < p <∞ is the `p-norm defined as

‖x‖p =

(
d∑
j=1

|xj|p
) 1

p

.
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The sparse code xt can be solved using Orthogonal Matching Pursuit (OMP) algo-

rithm [22]. Then the class of yt can be determined by computing the following error

for each class,

ec = ‖yt −Ycx
c
t‖2, (2.5)

where, xct is the part of coefficient vector xt that corresponds to Yc. Finally, the

class c∗ that is assigned to the test sample yt, can be declared as the one that

produces the smallest approximation error [18]

c∗ = arg min
c
ec = arg min

c
‖yt −Ycx

c
t‖2. (2.6)

2.2.2 Kernel Sparse Representation-based Classification (KSRC)

In kernel SRC, the idea is to map data in the high dimensional feature space

and solve (2.4) using the kernel trick [20] [21]. This allows one to deal with data

which are not linearly separable in the original space [23]. Let Φ : Rd → G be a

non-linear mapping from the d-dimensional space into a dot product space G. A

non-linear SRC can be performed by solving the following optimization problem,

xt = arg min
x
‖Φ(yt)−Φ(Y)x‖2

2 + λ‖x‖0, (2.7)

where

Φ(Y) , [Φ(y1
1), · · · ,Φ(y1

N1
)| · · · |Φ(yC1 ), · · · ,Φ(yCNC

)].
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Denote the first term of (2.7) by Eκ as follows

Eκ(x; Y,yt) = ‖Φ(yt)−Φ(Y)x‖2
2

= Φ(yt)
TΦ(yt) + xTΦ(Y)TΦ(Y)x− 2Φ(yt)

TΦ(Y)x

= κ(yt,yt) + xTK(Y,Y)x− 2K(yt,Y)x,

where K(Y,Y) ∈ RN×N is a positive semidefinite kernel Gram matrix whose ele-

ments are computed as

[K(Y,Y)]i,j = [〈Φ(Y),Φ(Y)〉]i,j = Φ(yi)
TΦ(yj) = κ(yi,yj),

and

K(yt,Y) , [κ(yt,y1), κ(yt,y2), · · · , κ(yt,yN)] ∈ R1×N , (2.8)

where κ : Rd × Rd → R is the kernel function.

Note that the computation of K only requires dot products. Therefore, we

are able to employ Mercer kernel functions to compute these dot products without

carrying out the mapping Φ. Some commonly used kernels include polynomial

kernels

κ(x,y) = 〈(x,y〉+ a)b

and Gaussian kernels

κ(x,y) = exp

(
−‖x− y‖2

c

)
,

where a, b and c are the parameters.

With the above definitions, the kernel version of the SRC optimization problem

in (2.4) can be written as,

xt = arg min
x
Eκ(x; Y,yt) + λ‖x‖0. (2.9)
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One can solve the optimization problem (2.9) by the kernel orthogonal matching

pursuit algorithm [21].

2.2.3 Dictionary Learning-based Classification

Rather than finding a sparse representation based on training samples as is

done in SRC, C touch specific dictionaries can be trained by solving the following

optimization problem for i = 1, · · · , C. The following optimization problem can be

efficiently solved by the KSVD algorithm [24].

(D̂i, X̂i) = arg min
Di,Xi

‖Yi −DiXi‖2
F (2.10)

s.t. ‖xj‖0 ≤ T0 ∀j

Given a test sample yt, first we compute its sparse codes xi with respect to

each Di using OMP algorithm [22], and then compute reconstruction error

ri(yt) = ‖yt −Dixi‖2
F

.

Since the KSVD algorithm finds the dictionary, Di, that leads to the best

representation for each examples in Yi, one can expect ri(yt) to be small if yt were

to belong to the ith class and large for the other classes. Based on this, one can

classify yt by finding the class corresponding to the lowest reconstruction error.

Note that similar methods have been used for face biometric in [25].
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2.2.4 Kernel Dictionary Learning-based Classification

Linear dictionary learning model (2.10) can be made non-linear so that non-

linearity in the data can be handled better [21]. Kernel dictionary learning opti-

mization can be formulated as follows

(Âi, X̂i) = arg min
Ai,Xi

‖Φ(Yi)−Φ(Yi)AiXi‖2
F (2.11)

s.t. ‖xj‖0 ≤ T0 ∀j,

where the dictionary in the feature space [21] is modeled as follows

D = Φ(Y)A, (2.12)

where A is a coefficient matrix. This model provides adaptivity via modification of

matrix A. After some algebraic manipulations, the cost function in (2.11) can be

written as

‖Φ(Yi)−Φ(Yi)AiXi‖2
F = tr((I−Ai)

TK(Yi,Yi)(I−Ai)). (2.13)

This problem can be solved using Kernel KSVD (KKSVD) algorithm [21] which

applies sparse coding in kernel space and dictionary update in kernel space.

Let Di = Φ(Yi)Ai denote the learned kernel dictionary for each class, where

i ∈ {1, · · · , C}. Given a test sample yt, first perform kernel OMP separately for

each Di to obtain the sparse code xi. Similarly, the test sample is assigned to

the class that gives the smallest reconstruction error. Reconstruction error ri(yt)
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(i ∈ [1, · · · , C]) is computed as

ri(yt) = ‖Φ(yt)−Φ(Yi)Aixi‖2
F

= κ(yt,yt)− 2K(yt,Yi)Aixi + xTi AT
i K(Yi,Yi)Aixi (2.14)

2.3 Experimental Results On Touch Data

In this section, we present several experimental results demonstrating the effec-

tiveness of the kernel dictionary-based methods for screen touch gesture recognition.

In particular, we present results on the dataset described in the previous section,

the Touchalytics dataset [5] and the BTAS 2013 dataset [4].

2.3.1 Experiment Setup

In this part, we give a detailed description of the experimental setup by spec-

ifying evaluation metrics, feature extraction, implementation details and different

comparison strategies.

For a fair comparison, with all the datasets available, we extracted the same

features on all the datasets, fixed the implementation details, optimized the param-

eters of every algorithm using cross validation, repeated the experiment multiple

times by randomly splitting the data into training data and testing data and report

the mean and standard deviation of the evaluation metrics.

23



Evaluation Metrics

Average Equal Error Rate (EER) and average F1 score are used to evaluate

the performance of different methods. The EER is the error rate at which the

probability of false acceptance rate is equal to the probability of false rejection rate.

The lower the EER value, the higher the accuracy of the biometric system. The F1

score is defined as a harmonic mean of precision P and recall R

F1 score =
2PR

P +R
,

where the precision P is the number of correct results divided by the number of

all returned results and the recall R is the number of correct results divided by the

number of results that should have been returned. The F1 score is always between

0 and 1. The higher the F1 score, better is the accuracy of the biometric system.

Implementation Details

The state of the art performance of touch gesture recognition achieved by

kernel SVM with optimized parameters are shown in [5]and [16]. We compare

the kernel SVM classifier with the kernel SRC (KSRC) classifier and the kernel

dictionary-based classifier (KDTGR) for screen touch gestures.

We designed two types of experimental setups. For the first type of exper-

iments on the datasets, we combined data from different tasks and sessions. and

then we randomly split data for training and testing. As we were also interested

in investigating how the environmental changes can affect the users’ screen touch
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behavior, for the second type of experiments on the datasets, we performed cross

session recognition experiments where that training and testing samples are from

different sessions. During testing, each user has his or her own test samples for

genuine test and all the other users’ test samples for impostor test which means a

much larger number of samples were used for impostor test. In all the experiments,

we used the histogram intersection kernel for KSRC and the Gaussian kernel with

the optimized parameter was used for the kernel SVM. All the experiments were

repeated 11 times.

Single-swipe vs. Multiple-swipe Classification

The performances of recognition algorithms is influenced by the number of

swipes combined to predict a class label. For K-swipe classification, we first perform

a single-swipe classification for all the K swipes and obtain the corresponding K

predicted labels. Then by voting, we choose the one that appears most frequently as

the final predicted class label. Here, we let K to be an odd integer. As K becomes

larger, all the algorithms achieve better performance than the methods based on

single-swipe classification. However, a large K implies longer time to collect swipes

and predict the current class label. This is a tradeoff that one has to consider when

designing an authentication system based on screen touch gestures.
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2.3.2 Results on Touch Data Component Of UMDAA Dataset

For the first set of experiments using the new dataset, we randomly selected

80 swipes from each user to form the training matrix and used the remaining data

for testing. Table 2.1 summarizes the results obtained by different methods for

this experiment. For the single-swipe classification (row one in Table 2.1), rbfSVM

performs the best. However, the average EER is very high for all the methods. This

implies that authentication based simply on one swipe is very unreliable. As the

number of swipes increase, KDTGR performs the best. This makes sense because

by mapping the data onto a high-dimensional feature space and finding a compact

representation by learning a dictionary in the feature space, one is able to find

the common internal structure of the screen touch data. Classification based on

the reconstruction error in the feature space is essentially improving the overall

classification accuracy. As kernel SRC does not use dictionary learning step, it does

not provide the best results for this dataset.

In the second set of experiments with the new dataset, we studied the per-

formance of different classification methods as we increase the number of training

samples. The average F1 score values for different number of training samples corre-

sponding to a single-swipe and eleven-swipe classification are shown in Figure 2.1(a)

and (b), respectively. As can be seen from these figures, KDTGR performs the best

for both single-swipe and eleven-swipe classification. Furthermore, the average F1

score value increases as we increase the number of training samples for all the three

classification methods. In particular, the average F1 score approaches 0.924, 0.913,
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Swipes KSRC KDTGR rbfSVM

1 29.86 ± 0.37 28.03 ± 0.22 17.41 ± 0.13

3 15.82 ± 0.30 12.92 ± 0.34 14.00 ± 0.27

5 9.71 ± 0.33 7.53 ± 0.31 8.56 ± 0.25

7 7.50 ± 0.32 5.59 ± 0.20 6.15 ± 0.27

9 5.85 ± 0.41 4.12 ± 0.22 4.75 ± 0.29

11 4.55 ± 0.32 2.91 ± 0.21 3.58 ± 0.26

13 3.40 ± 0.32 2.16 ± 0.14 2.66 ± 0.28

15 2.55 ± 0.40 1.43 ± 0.23 2.11 ± 0.27

17 1.98 ± 0.20 1.05 ± 0.20 1.43 ± 0.24

19 1.54 ± 0.25 0.77 ± 0.21 1.13 ± 0.22

Table 2.1: Average EER values (in %) for different classification methods on the

new dataset.

0.885 for the KDTGR method, rbfSVM and the KSRC method, respectively when

140 samples are used for training for eleven-swipe classification.

Finally, in the last set of experiment with the new dataset, we performed

cross-session experiments. In particular, since the new dataset contains data from

three different sessions with different environmental conditions, we trained classifiers

using the data from one session and test it on data from other session. We repeated

this procedure for all the six different combinations of three sessions. For these

experiments, we omitted eight users who have less than 70 swipes in any one of the

three sessions. Then, we randomly selected 70 swipes for each user in one session

to form the training data and randomly selected 70 swipes for each user in another

session to form the test data. The average EER values for different cases for eleven-
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Figure 2.1: Average F1 score values (in %) for different classification methods on

the new dataset as the number of training samples are increased. (a) Single-swipe

classification. (b) Eleven-swipe classification.The figure is best viewed in color.
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Case KSRC KDTGR rbfSVM

1 → 2 12.05 ±1.21 9.90 ±0.61 11.04 ±1.13

1 → 3 14.21 ±1.10 11.72 ±0.64 13.08 ±1.12

2 → 1 14.42 ±0.79 11.69 ±1.12 11.65 ±1.07

2 → 3 7.23 ±0.53 5.64 ±0.63 5.85 ±0.66

3 → 1 13.94 ±1.60 11.60 ±0.91 11.75 ±0.97

3 → 2 7.43 ±0.87 4.88 ±0.74 5.29 ±0.75

1 2 3→1 2 3 4.21 ±0.67 2.62 ±0.65 3.10 ±0.30

Table 2.2: Average EER values (in %) for the cross-session experiments with the

new dataset. In the first column of this table, a→ b means that data from session

a are used for training and data from session b are used for testing.

swipe cross-session classification experiments are summarized in Table 2.2. The last

row of the Table shows the result which were obtained by combining data samples

from different sessions together and then splitting them into training and testing

data.

As can be seen from Table 2.2, on average the KDTGR method performed

the best. When samples from all three sessions are used for training, all three

classification methods performed well. This can be seen from the last row of the

table. However, when classifiers are trained on data from one session and tested on

the data from another session, the performance of all the three methods degraded

noticeable.
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Swipes KSRC KDTGR rbfSVM

1 17.62 ± 0.45 17.69 ± 0.26 8.51 ± 0.13

3 6.13 ± 0.19 4.05 ± 0.097 4.16 ± 0.12

5 3.42 ± 0.13 2.29 ± 0.074 2.33 ± 0.11

7 2.19 ± 0.14 1.14 ± 0.13 1.25 ± 0.11

9 1.31 ± 0.099 0.60 ± 0.079 0.67 ± 0.088

11 0.85 ± 0.11 0.34 ± 0.084 0.36 ± 0.090

13 0.50 ± 0.082 0.16 ± 0.079 0.21 ± 0.074

15 0.35 ± 0.10 0.10 ± 0.062 0.16 ± 0.063

17 0.28 ± 0.082 0.051 ± 0.035 0.086 ± 0.043

19 0.18 ± 0.054 0.026 ± 0.025 0.060 ± 0.036

Table 2.3: Average EER values (in %) for different classification methods on the

Touchalytics dataset.

2.3.3 Results On Touchalytics Dataset

Touchalytics dataset [5] consists of 41 users’ touch data collected in two ses-

sions separated by one week as described in the original paper. For each user, we

randomly selected 80 swipes as training data and the remaining swipes as test data.

Results are summarized in Table 2.3. As can be seen from this Table, on average,

the KDTGR method performed the best. For a single-swipe classification, rbfSVM

performed better than KSRC and KDTGR. As the number of swipes is increased,

KDTGR outperformed the other methods.

In the Touchalytics dataset, Session 2 contains touch data from only 14 users.

As a result, we did not perform the cross-session experiments on this dataset.
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2.3.4 Results On BTAS 2013 Dataset

The BTAS 2013 dataset [4] is a large dataset which consists of data in two

parts: 138 users’ mobile touch data in portrait mode over 2 sessions and 59 users’

mobile touch data in landscape mode over 2 different sessions.

Portrait Mode Cross-Session Experiment

Only one user had data with less than 80 swipes in any one of the 2 sessions.

We omitted this user for the cross-session experiments. We randomly selected 80

swipes for each user in one session to form the training data and randomly selected

80 swipes for each user in the other session to form the test data. For comparison,

we also considered the case where 80 training data and 80 testing data for each

user were selected from both sessions. Table 2.4 shows the average EER values

for different cases when 11 swipes were combined to make the final decision (e.g.

eleven-swipe classification).

It is interesting to see that when data from both sessions are used, the EER

values are the lowest. Similar to the observation we made in the experiments with

the new dataset, as we train on the data from one session and test on the data from

the other session, the performance of all the three classification methods degraded

significantly.
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Case KSRC KDTGR rbfSVM

1 → 2 23.51 ± 0.70 19.78 ± 0.65 20.67 ± 0.53

2 → 1 23.83 ± 0.49 19.20 ± 0.72 20.06 ± 0.62

1 2 → 1 2 8.94 ± 0.62 5.00 ± 0.46 5.86 ± 0.45

Table 2.4: Average EER values (in %) for the portrait mode cross-session experi-

ments with the BTAS 2013 dataset. In the first column of this table, a→ b means

that data from session a are used for training and data from session b are used for

testing.

Case KSRC KDTGR rbfSVM

1 → 2 14.25 ± 0.70 11.09 ± 0.98 13.19 ± 0.81

2 → 1 13.70 ± 0.49 11.29 ± 0.54 12.04 ± 0.83

1 2 → 1 2 4.06 ± 0.68 1.73 ± 0.44 2.18 ± 0.35

Table 2.5: Average EER values (in %) for the landscape mode cross-session experi-

ments with the BTAS 2013 dataset. In the first column of this table, a→ b means

that data from session a are used for training and data from session b are used for

testing.

Landscape Mode Cross-Session Experiment

Like before, we omitted six users who had fewer than 80 swipes in any one of

the two sessions. We applied the same experiment setup as we did for the touch data

in the portrait mode. Table 2.5 shows the average EER values for different cases

when eleven swipes were combined to make the final decision. Again, the KDTGR

method outperformed the other methods on this dataset.
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2.4 Conclusion

In this chapter, we discussed the active authentication problem and proposed

kernel sparse representation and kernel dictionary learning-based methods for touch

gesture-based active user authentication. Experiments on screen touch data of UM-

DAA datasets as well as two publicly available screen touch datasets showed that

the proposed kernel dictionary-based method performed favorably over other com-

pared methods. Cross-session experiments showed that there is a significant drop

in the performance of all the methods. This problem can be viewed as domain

adaptation [26] or dataset bias problem [27] which have been studied in machine

learning, natural language processing and computer vision. The following chapter

will address this problem.
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Chapter 3: Domain Adaptive Sparse Representation-Based Classifi-

cation

3.1 Introduction

In biometrics recognition, one is often faced with scenarios where the training

data used to learn a recognition engine has a different distribution from the test

data. Examples of such cases include: recognizing and detecting faces under different

lighting conditions and poses while the algorithms are trained on well-illuminated

frontal faces, recognizing low-resolution face images when recognition algorithms

are instead optimized for high-resolution images, recognizing and detecting human

faces on infrared images while the algorithms are optimized for color images, etc.

Regardless of the specific cause, any distribution change that occurs after learning

a classifier can degrade its performance at test time. Domain adaptation essentially

tries to mitigate this dataset shift problem.

We propose an approach to the problem of domain adaptation based on sparse

representation. Our method learns projections of data in different domains in a

way that preserves the sparse structure of data in the low-dimensional space. We

develop an efficient optimization method based on Alternating Direction Method
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of Multipliers (ADMM) and the Method of Splitting Orthogonality Constraints

(SOC) for solving the resulting optimization problem. One of the advantages of the

proposed method compared to other dictionary-based domain adaptation methods

is that it is very efficient as it does not require learning a dictionary. Our method

can be viewed as a generalization of the Sparse Representation-based Classification

(SRC) [9] that accounts for domain shift. An overview of the proposed method is

shown in Figure 3.1.

The rest of the chapter is organized as follows: In Section 3.2, we review

some recent domain adaptation methods. The proposed domain adaptive sparse

representation-based classification problem is formulated in Section 3.3. Details of

the optimization algorithm are given in Section 3.4. Experimental results are given

in Section 3.5. Finally, Section 3.6 concludes the this chapter with a brief summary

and discussion.

3.2 Related Work

Various domain adaptation methods have been proposed in the computer vi-

sion and machine learning literature. One of the simplest domain adaptation ap-

proaches is the feature augmentation work proposed in [28]. The goal is to make

a domain specific copy of the original features for each domain. This work was ex-

tended for the heterogeneous data in [29]. The idea of feature augmentation has also

been extended to consider a manifold of intermediate domains [30]. Rather than

working with information conveyed by the source and target domains alone, [30] pro-
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Figure 3.1: An overview of learning domain adaptive sparse representations.

posed an incremental learning technique based on gradually following the geodesic

path between the source and target domains. Geodesic flows were used to derive

intermediate subspaces that interpolate between the source and target domains. Re-

cently, the approach of [30] was kernelized and extended to the infinite case, defining

a new kernel equivalent to integrating over all common subspaces that lie on the

geodesic flow connecting the source and target subspaces, respectively [31].

Various feature transformation-based approaches have also been proposed in

the literature [32], [33], [34]. The idea behind this method is to adapt features

across general image domains by learning transformations. Another class of domain

adaptation algorithms is based on parameter adaptation in which the Support Vector

Machine (SVM) type of algorithms are proposed for domain adaptation. Algorithms
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such as adaptive SVM [35], domain transfer SVM [36], max-margin domain transfer

[37] and domain adaptive multiple kernel learning [38] fall under this category.

Dictionary learning-based methods have also gained a lot of attention in recent

years for domain adaptation. In [39], the idea of sparse domain transfer under

the framework of dictionary learning was proposed for image super-resolution and

photo-sketch synthesis. A technique for jointly learning transformations of data in

source and target domains, and a latent discriminative dictionary that can succinctly

represent both domains in the projected low-dimensional space was proposed in [40].

In [41], a function learning framework was presented for the task of transforming a

dictionary learned from one visual domain to the other, while maintaining a domain-

invariant representation of a signal. Another approach [42] proposed using concepts

from dictionary learning to generate intermediate domains that bridge the domain

shift. See [43], [44] and [45] for more detailed discussion of recent domain adaptation

approaches.

3.3 Problem Formulation

In this section, we formulate the domain adaptation problems. For simplicity,

we begin with two domains adaptation problems by specifying all the details. This

is followed by a straightforward generalization to multiple domains.
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3.3.1 Two Domains Formulation

Let {(yd1i , c
d1
i )}N1

i=1, denote the collection of N1 labeled data from the domain

D1. Here, yd1i ∈ RM1 is referred to as the ith observation and cd1i is the corresponding

class label. Labeled data from the domain D2 is denoted by {(yd2i , c
d2
i )}N2

i=1 where

yd2i ∈ RM2 . Denote

Y1 = [yd11 , · · · ,yd1N1
] ∈ RM1×N1

as the matrix of N1 data points from D1. Similarly, denote

Y2 = [yd21 , · · · ,yd2N2
] ∈ RM2×N2

as the matrix of N2 data from D2. It is assumed that the data from both domains

pertain to C subjects or classes. We assume that there is always a relatively large

amount of labeled data in the source domain and a small amount of labeled data

in the target domain. As a result, if D1 corresponds to the source domain and D2

corresponds to the target domain then N1 � N2.

Let P1 ∈ Rm×M1 and P2 ∈ Rm×M2 be the mappings represented as matrices

that project the data from D1 and D2 to a common m-dimensional space, respec-

tively. As a results, P1Y1 and P2Y2 lie on an m-dimensional space. Let

Z = [P1Y1,P2Y2] = [z1, · · · , zN1+N2 ] ∈ Rm×(N1+N2)

denote the samples in the m-dimensional space. In our method, we want to take

advantage of the self-expressiveness property of the data in the low-dimensional

space [46]. That is, each data zi can be efficiently reconstructed by a combination
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of other points in Z. More precisely, zi can be written as

zi = Zbi, bi,i = 0 (3.1)

where bi = [bi,1, bi,2, · · · , bi,N1+N2 ]
T . Here, the constraint bi,i = 0 eliminates the

trivial solution that arises as a result of representing a point as a linear combination

of itself in the projected m-dimensional space. The assumption that N1 +N2 � m

results in many solutions for (3.1). One can look for the sparsest solution and restrict

the set of solutions by minimizing the following sparse optimization problem

min‖bi‖1 (3.2)

s.t. zi = Zbi, bi,i = 0

where ‖bi‖1 =
∑

j |bi,j| is the `1-norm of bi. This problem can be solved using

convex optimization methods. One can rewrite the sparse optimization problem

(3.2) for all samples in the m-dimensional space as

min‖B‖1 (3.3)

s.t. Z = ZB

diag(B) = 0

where B = [b1,b2, · · · ,bN1+N2 ] ∈ R(N1+N2)×(N1+N2) is the coefficient matrix whose

ith column is the sparse coefficient corresponding to zi and diag(B) is the vector of

the diagonal elements of B.

In our approach, we desire to learn projections P1 and P2 along with the sparse
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coefficient matrix B simultaneously by minimizing the following cost function

min
P,B

C1(P,Y,B) + βC2(P,Y) + µ‖PY‖2
F + λ‖B‖1 (3.4)

s.t. P1P
T
1 = P2P

T
2 = I

diag(B) = 0

where β, µ and λ are the regularization parameters, C1(P,Y,B) = ‖PY−PYB‖2
F

and C2(P,Y) = ‖Y1−PT
1 P1Y1‖2

F + ‖Y2−PT
2 P2Y2‖2

F . After ignoring the constant

terms in Y, C2 can be rewritten as

C2(P,Y) = −tr((PY)(PY)T ).

Here P and Y are defined as

P = [P1 P2] ∈ Rm×(M1+M2), Y =

 Y1 0

0 Y2

 ∈ R(M1+M2)×(N1+N2).

The first part of the cost function C1 with the constraint that diag(B) = 0

essentially exploits the self-expressiveness property of the data in the sense that

each data point can be efficiently reconstructed by a combination of other points

in the database. Similar ideas have been explored for subspace clustering using

sparse representations in [46]. The second term C2 is a PCA-like regularization

term, ensures that the projection does not loose too much information available in

the original domain. Finally, ‖PY‖2
F is added to ensure the convexity of the cost

function.
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3.3.2 Multi-Domain Formulation

The above formulation can be extended from two domains to multiple do-

mains. For K domain problem, we have data Y1, · · · ,YK from K different domains

D1, · · · ,DK and one can simply construct P and Y as

P = [P1 · · ·PK ], Y =


Y1 · · · 0

...
. . .

...

0 · · · YK

 .

With these definitions, (3.4) can be extended to multiple domains. Note that we do

not require the dimensions from different domains to be the same. As a result, our

method can be viewed as a heterogeneous domain adaptation method [45].

3.4 Optimization

We solve the optimization problem (3.4) by optimizing over P and B iter-

atively. Note that the optimization problem is non-convex. However, numerical

simulations have shown that the algorithm usually converges to a local minimum in

a few iterations.
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3.4.1 Update B

In this step, we assume that P is fixed. As a result, the following problem

needs to be solved

min
B
C1(P,Y,B) + λ‖B‖1 (3.5)

s.t. diag(B) = 0.

This problem is similar to the Sparse Subspace Clustering (SSC) problem [46] which

can be efficiently solved using the ADMM method [47].

3.4.2 Update P

For a fixed B, we have to solve the following problem to obtain P

min
P
C1(P,Y,B) + βC2(P,Y) + µ‖PY‖2

F (3.6)

s.t. P1P
T
1 = P2P

T
2 = I.

The cost function of (3.6) can be rewritten as

C1(P,Y,B) + βC2(P,Y) + µ‖PY‖2
F

= ‖PY −PYB‖2
F + (µ− β)tr((PY)(PY)T )

= tr[(PY −PYB)T (PY −PYB) + (µ− β)(PY)(PY)T ]

= tr[P(Y(I− 2B + BBT + (µ− β)I)YT )PT ].
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Let H = Y(I − 2B + BBT + (µ − β)I)YT be
∑

iMi ×
∑

iMi matrix. Then, the

optimization problem (3.6) can be rewritten as

min
P

tr[PHPT ] (3.7)

s.t. P1P
T
1 = P2P

T
2 = I.

This optimization problem involves trace minimization with multiple orthogonality

constraints. The cost function is convex when H is positive semi-definite; however

multiple orthogonality constraints make the problem not convex and we cannot

directly solve it as a classical eigen problem.

In what follows, we present the method of SOC [48] for solving this problem

. Let O = PT . Then, the trace minimization problem (3.7) with K orthogonality

constants can be rewritten as

min
O

g(O1, · · · ,OK ; H) (3.8)

s.t. OT
i Oi = I ∀i = 1, · · · , K,

where Oi ∈ RMi×m, m ≤ min{M1,M2, · · · ,MK},

H =


H11 H12 · · · H1K

H21 H22 · · · H2K

HK1 HK2 · · · HKK

 ∈ R
∑

iMi×
∑

iMi ,

Hij ∈ RMi×Mj and g(O1, · · · ,OK ; H) = tr[OTHO]. The SOC method solves the

orthogonality constrained problems by iteratively optimizing the unconstrained and

quadratic problems with analytic solutions using the combination of variable split-

ting and Bregman iterations [49]. It consists of three main steps.
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Update Oi : For updating Oi one at a time, we need to solve the following sub

optimization problem

Ot
i = arg min

Oi

g(Ot−1
1 , · · · ,Ot−1

K ) +
γ

2
‖Oi −Qt−1

i + Rt−1
i ‖2

F .

Where γ is a positive parameter that can be tuned. By taking the first derivative

and setting it equal to zero, we get

Ot
i =

(γ
2

I + Hii

)−1

γ2 (Qt−1
i −Rt−1

i )−
K∑
j=1
j 6=i

HijO
t−1
j

 .
Update Qi : In order to update Qi, we need to solve the following optimization

problem

Qt
i = arg min

Q

γ

2
‖Qi − (Ot

i −Rt−1
i )‖2

F (3.9)

s.t QT
i Qi = I

whose closed form solution is obtained as

Qt
i = UiIMi×mVT

i ,

where UiDiV
T
i is the Singular Value Decomposition (SVD) of (Ot

i −Rt−1
i ) and

Ui ∈ RMi×Mi ,Di ∈ RMi×m, Vi ∈ Rm×m.

Update Ri : Finally, having updated Qi and Oi, Ri is updated as follows

Rt
i = Rt−1

i +
(
Ot
i −Qt

i

)
.

The entire procedure for solving (3.8) using the method of SOC is summarized in

Algorithm 1.

The Domain Adaptive Sparse Representation learning process is summarized

in Algorithm 2.
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Algorithm 1: The method of SOC for solving (3.8).

Input: O,H, γ

Initialization:R0,O0,Q0

While not converge do

1. Update Oi:

Ot
i =

(γ
2

I + Hii

)−1 γ2 (Qt−1
i −Rt−1

i )−
K∑
j=1
j 6=i

HijO
t−1
j


2. Update Qi:

Qt
i = UiIMi×mVT

i

3. Update Ri:

Rt
i = Rt−1

i +
(
Ot

i −Qt
i

)
Output: Ô = [Ot

1, · · · ,Ot
K ]

Algorithm 2: Learning Domain Adaptive Sparse Representation

Input: Data Y1, · · · ,YK and corresponding class labels, β, µ, λ

Initialization: P

Until convergence do

1. Update B: Solve the following `1 minimization problem using the ADMM procedure

described in [46]

min
B
C1(P,Y,B) + λ‖B‖1 s.t. diag(B) = 0

2. Update P: Solve the following optimization problem using the method of SOC as

summarized in Algorithm 1.

min
P

tr[PHPT ] s.t. P1P
T
1 = P2P

T
2 = I

Output: B̂ and P̂ = [P̂1, P̂2, · · · , P̂K ]
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3.4.3 Domain Adaptive Sparse Representation-Based Classification

Given a test sample yt from domain k, we propose the following steps for

classification.

1. Compute the embeddings of all the training samples from different domains

in the common m-dimensional subspace using the corresponding projections

as PiYi ∈ m×Ni.

2. Using the label information, form a training matrix in the low-dimensional

subspace as follows

Z = [Z1,Z2, · · · ,ZC ] ∈ Rm×
∑

iNi ,

where Zi is the matrix corresponding to the training samples from class i in

the m-dimensional space.

3. Compute the embedding of the test sample yt in the common m-dimensional

subspace using the projection Pk as

zt = Pkyt.

4. Compute the sparse coefficient α̂t of the embedded sample zt over dictionary

Z by solving the following optimization problem

α̂t = min
α
‖αt|0 s.t. ‖zt − Zαt‖2

F ≤ η, (3.10)

where η is the noise level and ‖x‖0 is the `0-norm of x which counts the number

of non-zero elements in x. We use the Orthogonal Matching Pursuit (OMP)

algorithm [22] to solve (3.10).
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5. The sample can be assigned to class i if the reconstruction using the samples

corresponding to class i is minimum

Output label = î = arg min
i
‖zt − Zδi(α̂t)‖2

F ,

where δi(·) is the characteristic function that selects the coefficients associated

with the ith class.

3.5 Experimental Results

In this section, we evaluate the proposed algorithm on the UMDAA dataset.

For the domain adaptation experiments, we sampled a subset from UMDAA dataset:

(1) for face component, we selected 30 faces from each session for each user. As

a result, in total we selected 4500 face images for 50 users across three different

domains. For the touch signature, we also selected 4500 touch swipes of 50 users

across three domains. All the experiment done will be based on these selected 4500

face images and 4500 touch swipes.

Because the underlying characteristics of data collected in different sessions

with different ambient conditions is very different, data in different sessions can

be viewed as data from different domains. Therefore, it is appropriate to apply

domain adaptation methods to design classifiers that are robust to different sessions

(domains).
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3.5.1 Experimental Setup

Algorithms and Implementation details

We compare our method with several recent domain adaptation algorithms

including a metric learning-based method [32], a manifold-based method [30], and

dictionary learning-based methods [42], [40]. We also use the SRC method [9] as a

baseline for comparison. For SRC, data from different domains are used without do-

main adaptation. This method essentially shows the performance of a sparsity-based

method when training and test samples come from different domains. Comparison

of our Domain-Adaptive SRC (DASRC) method with SRC will validate the effec-

tiveness of the proposed domain adaptation approach.

For the proposed DASRC algorithm, we choose µ−β = 4.5, λ = 50 and γ = 60

which are the tuned results from the cross validation experiments. Parameters

for other domain adaptation methods were optimized according to the discussion

provided in the corresponding papers.

3.5.2 Single-source Domain Adaptation Experiments

Following the standard domain adaptation protocol, we selected 20 samples

for each user from one session as the source domain and 5 samples for each user from

another session as the target domain to form the training data. The remaining data

from the target domain were used for testing. We randomly split the training and

testing datasets, and repeated each experiment 10 times and report the mean and

48



Methods 1 → 2 1 → 3 2 → 3 2 → 1 3 → 1 3 → 2 Average

SRC [9] 73.52 ±1.49 85.12 ± 1.04 83.98± 0.91 80.83 ±1.08 80.73 ±1.35 72.57 ±1.13 79.46

Metric [32] 73.19 ±1.95 84.54 ± 1.27 80.36 ± 2.92 78.83 ±4.06 85.45 ±1.15 73.61 ±2.18 79.33

SGF [30] 56.57 ±1.22 62.58 ± 1.13 60.90 ± 1.05 54.94 ±2.19 65.66 ±1.75 62.69 ±1.33 60.56

SDDL [40] 55.48 ±4.40 71.67 ± 4.14 75.67 ± 3.72 71.71 ±4.46 77.74 ±4.15 66.74 ±2.91 69.84

Dict [42] 66.13 ±1.40 78.61 ± 1.42 76.26 ± 0.63 72.30 ±1.24 78.18 ±1.50 71.15 ±1.24 73.77

DASRC 81.39± 1.66 89.06± 1.31 89.70± 1.05 87.36± 0.82 86.92± 0.99 82.16± 0.69 86.10

Table 3.1: Recognition accuracy on target domain with semi-supervised adaptation

for the face component.

the standard deviation of the classification accuracy. Since we have three sessions,

there are six different combinations of source and target domains. The performance

of our proposed method is compared with other domain adaptation methods for the

face and the touch data in Table 3.1 and Table 3.2, respectively.

As can be seen from these tables, the proposed DASRC method outperforms

the other methods on all six domain pairs. In some cases the improvement is over

10% over other methods. Furthermore, comparison with the SRC method shows

that the sparse coding framework is insufficient when the test data has different

characteristics than the data used for training. Also, the performance on faces is

better than the performance on touch gestures.

3.5.3 Multi-source Domain Adaptation Experiments

For multi-source domain adaptation experiments, we selected 20 samples for

each user from source domains and 5 samples for each user from the target domain
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Methods 1 → 2 1 → 3 2 → 3 2 → 1 3 → 1 3 → 2 Average

SRC [9] 35.48 ±1.49 37.50 ± 0.86 40.18± 1.27 36.99 ±1.10 37.57 ±1.23 38.50 ±0.73 37.70

Metric [32] 24.58 ±1.75 25.71 ± 0.92 29.58 ± 2.22 22.45 ±2.07 24.25 ±1.90 28.59 ±1.47 25.86

SGF [30] 37.88 ±1.18 35.47 ± 1.25 37.00 ± 0.97 37.08 ±1.28 36.10 ±1.20 41.54 ±1.22 37.51

SDDL [40] 39.49 ±2.73 41.86 ± 2.36 42.28± 2.38 38.71±3.65 39.66 ±2.90 38.98 ±3.26 40.16

Dict [42] 30.31 ±1.39 31.00 ± 0.74 34.74 ± 1.05 30.58 ±0.94 32.55 ±0.73 36.21 ±0.82 32.57

DASRC 41.54± 1.89 44.34± 1.66 44.77± 1.17 41.58± 1.35 41.82± 1.61 42.30± 1.50 42.74

Table 3.2: Recognition accuracy on target domain with semi-supervised adaptation

for the touch component.

Methods 1 2 → 3 1 3 → 2 2 3 → 1 Average

SRC [9] 89.68 ±0.83 81.14 ± 0.86 88.20 ± 0.76 86.34

SGF [30] 69.57 ±1.35 64.05 ± 1.21 62.21 ± 2.12 65.28

SDDL [40] 75.08 ±3.82 55.34 ± 2.34 72.86 ± 3.27 67.76

LMSDA [50] 82.48 ±1.04 70.17 ± 0.66 77.18 ± 1.18 76.61

DASRC 90.94± 0.86 83.03± 0.74 88.44± 0.68 87.47

Table 3.3: Multi-source domain adaptation on face data.

to form the training data. The remaining data from the target domain were used

for testing. Like before, we repeated each experiment 10 times and report the

mean and the standard deviation of the classification accuracy. Since we have three

sessions, there are three different combinations of two source domains and one target

domain. The experimental results comparing the proposed method with the other

multi-source domain adaptation methods on the face data and the touch data are

shown in Table 3.3 and Table 3.4, respectively.

Again, our DASRC method performs better than other methods on all possible
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Methods 1 2 → 3 1 3 → 2 2 3 → 1 Average

SRC [9] 39.88 ±1.10 38.26 ± 0.63 36.68 ± 1.28 38.27

SGF [30] 39.04 ±0.99 39.13 ± 1.11 35.96 ± 0.94 38.04

SDDL [40] 34.66 ±1.50 31.21 ± 2.98 31.26 ± 2.56 32.38

LMSDA [50] 40.86 ±1.21 39.20 ± 0.79 37.42 ± 1.22 39.16

DASRC 43.62± 1.75 42.17± 1.14 42.40± 0.83 42.73

Table 3.4: Multi-source domain adaptation on touch data.

combinations. An interesting observation is that increasing the number of domains

can be helpful, especially when compared to a single source and single target cases.

This can be seen by comparing Tables 3.1 and 3.2 with tables 3.3 and 3.4. The gain

is more apparent for faces.

3.5.4 Further Discussions And Analysis

Visualization of the Projection Matrices

To gain additional insights regarding our method, we investigated the projec-

tion matrices Pi ∈ Rm×Mi ,∀i = 1, · · · , K learned by our method in the case of multi-

source domain adaptation using faces. For better visualization, we used grayscale

face images rescaled to 128× 128 from the original preprocessed face images of size

192 × 168 × 3. We followed the multi-source domain adaptation experiment setup

as described above. We chose session 1 and 2 to be the source domains and session

3 to be the target domain. We first randomly selected 20 images per subject in each

source domain, and five images per subject in the target domain, and then fed these
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images to our proposed algorithm to learn the projection matrices P1, P2 and P3.

Figure 3.2 shows the first six rows of the learned projection matrices reshaped as

images. As can be seen from this figures, the projection matrices learn the internal

structure of the different domains and can capture the shape, illumination and pose

information. As a result, we are able to find better sparse representation in the

projected m-dimensional space.

(a)

(b)

(c)

Figure 3.2: First six components of the learned projection matrices for the multi-

source domain adaptation experiment. (a) Components from P1, (b) Components

from P2. (c) Components from P3.
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Figure 3.3: Objective function versus number of iterations of the proposed optimiza-

tion problems. (a) The ADMM method for solving (3.5). (b) The method of SOC

for solving the trace minimization problem with multiple orthogonality constraints

(3.6). (c) The proposed problem (3.4).

Runtime Analysis and Computational Issue

In this section, we study the convergence properties of the proposed method

and briefly discuss the computational complexity compared to the dictionary-based

domain adaptation algorithms [42], [40].

As discussed earlier, our method is non-convex and often converges to a local

minimum in a few iterations. To empirically show the convergence of our method,

in Fig 3.3(a)-(c), we present the objective function vs iteration plots for the ADMM

method for solving (3.5), the method of SOC for solving the trace minimization

problem with multiple orthogonality constraints (3.6) and our proposed problem

(3.4), respectively. As can be seen from this figure, both sub optimization problems

as well as our overall algorithm do converge in a few iterations. Furthermore, com-

pared to the previously proposed dictionary-based domain adaptation methods, our
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method is very efficient. On average, the proposed method takes about 6.5ms to

recognize a test image of size 24× 21 compared to 26ms and 11ms for [42] and [40],

respectively. Experiments were done in 64bit Matlab R2013a environment on a

laptop with 2.9GHz Intel Core i7-3520M CPU and 8GB Memory.

3.6 Conclusion

In this chapter, a sparse representation-based classification algorithm was pro-

posed for domain adaptation and an efficient iterative method based on ADMM

and SOC methods was derived for solving the proposed optimization problem. This

domain adaptation algorithm was evaluated on face component and screen touch

component of the UMDAA Dataset. Experimental results showed that the proposed

algorithm can help to alleviate the drop of the classification performance when train-

ing and test data comes from different domains (conditions) and it outperformed

many state-of-the-art domain adaptation algorithms.
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Chapter 4: Low-Rank and Joint Sparse Representations for Multi-

modal Recognition

4.1 Introduction

Developments in sensing and communication technologies have led to an ex-

plosion in the availability of data from multiple sources and modalities. Millions

of sensors of different types have been installed in buildings, streets, and airports

around the world that are capable of capturing multimodal information such as

light, depth and heat. This has resulted in the development of various multi-sensor

fusion methods [51], [52].

The idea of fusing multiple sources or modalities to achieve better performance

compared to using a single modality alone is appealing. In particular, multimodal

classification has received a lot of attention where one uses information from various

modalities recording the same physical event to achieve improved classification per-

formance. Many practical systems are multimodal systems. For example, in multi-

modal biometrics systems, similarity scores generated by multiple features extracted

from face, fingerprints and iris are integrated for identity recognition [53], [54]. One

advantage of multimodal biometrics systems is that they are less vulnerable to spoof
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attacks.

In recent years, sparse and low-rank representations have been explored in

problems such as matrix recovery [55], [56], [57], compressive sensing [58], regres-

sion [59], and subspace clustering [46], [60], [61], [62]. In particular, a low-rank

and joint sparse representation-based method was proposed in [58] to recover hy-

perspectral images from very few number of noisy compressive measurements. A

low-rank sparse subspace clustering (LRSSC) method was proposed in [62] that

simultaneously enforces low-rank and sparse constraints on the representation ma-

trix for subspace clustering. The trade-off between self-expressiveness property and

graph-connectivity was analyzed and LRSSC was shown to take advantage of both

low-rank and sparse constraints to yield improved clustering performance.

Motivated by recent developments and applications of low-rank and joint

sparse representations [58], [62], [63], [64], we propose multimodal feature-level fusion

methods by simultaneously enforcing low-rank and joint sparsity constraints across

the representations corresponding to multiple modalities. We derive efficient opti-

mization algorithms using the alternating direction method of multipliers (ADMM)

to solve the resulting optimization problems. Once the representation coefficients

are estimated, the minimum reconstruction rule is used for multimodal recognition.

Figure 4.1 gives an overview of the proposed method.

The rest of the Chapter is organized as follows. In Section 4.2, we reviewed

related works on multimodal fusion methods. In Section 4.3, we introduce our for-

mulation based on low-rank and joint sparse representation and present two special

cases of the proposed method. In Section 4.4, we present an extension of our method
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Figure 4.1: An overview of the proposed low-rank and joint sparse representation-

based multimodal recognition.
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based on common sparse and low-rank representations. An optimization algorithm

based on the ADMM method is presented in Section 4.5. Experimental evaluations

on three multimodal datasets are presented in Section 4.6. In Section 4.7, the com-

plexity of proposed methods is analyzed. Finally, concluding remarks are presented

in Section 4.8 with a brief summary and discussion.

4.2 Related Work

Data fusion can be achieved at several different levels, which can be broadly

classified as sensor-level, feature-level, score-level or decision-level fusion. Since

feature-level fusion preserves the raw information, it can be more discriminative

and robust than score-level or decision-level fusion. The focus of this paper is on

designing new feature-level fusion methods and making comparisons with previous

feature-level fusion methods.

Differences in features extracted from different modalities in terms of types and

dimensions make the feature-level fusion non trivial. One of the simplest methods

for feature-level fusion is feature concatenation [65], [66]. However, feature con-

catenation often tends to be computationally demanding and inefficient. Multiple

Kernel Learning (MKL) has also been used to integrate information from multiple

features by learning a weighted combination of appropriate kernels. See [67] for

more details on various MKL algorithms.

Recent multimodal fusion methods based on sparse or low-rank representations

of multimodal data have been shown to produce state-of-the-art results on various
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multimodal recognition problems. In [68], a multi-task sparse linear regression model

is proposed for image classification. In [69], a joint dynamic sparse representation

method was proposed to recognize object viewed from multiple observations (e.g.

poses). In [63], a joint sparse representation-based method was proposed for fusing

multiple biometrics features. This method is based on multi-task multivariate Lasso

[70]. [64] proposed low-rank representation-based multimodal recognition methods.

In [71] and [64], the idea of enforcing common sparse (low-rank) representation

was shown to be robust and more effective especially when the quality of different

modality differs a lot.

In [72], a general collaborative sparse-representation framework for multi-

sensor classification is proposed. Joint sparsity is enforced within each sensor’s

multiple observations and is also simultaneously enforced across heterogeneous sen-

sors. Sparse noise and low rank interference signals are considered in their approach.

The objective of the resulting optimization is to seek a joint sparse representation

while minimizing the sparse error or low rank interference signals. A multimodal

task-driven dictionary learning algorithm with joint sparsity constraint enforced

across multiple sources of information is proposed in [73]. In [58], a low-rank and

joint sparse representation-based method is proposed for recovering hyperspectral

images from a small number of noisy compressive measurements.

Other recent multimodal feature-level fusion methods include [74] and [75].

In [74], a class consistent multi-modal fusion (CCMM) scheme was proposed which

essentially extends the application of binary codes [76] for multimodal recognition.

In [75], harmonic image fusion was proposed to achieve clutter mitigation and speckle
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noise reduction.

4.3 Low-rank and joint sparse representations for multimodal recog-

nition

Suppose we are given a C-class classification problem with D different modali-

ties. Assume that there are m training samples in each modality. For each modality,

i = 1, · · · , D, we denote Xi = [Xi
1,X

i
2, · · · ,Xi

C ] as an ni × m matrix of training

samples containing C sub-matrices Xi
j’s corresponding to C different classes. Each

sub-matrix Xi
j = [xij,1,x

i
j,2, · · · ,xij,mj

] ∈ Rni×mj contains a set of training samples

from the ith modality corresponding to the jth class. Here, mj is the number of

training samples in class j and ni is the feature dimension of each sample. As a

result, there are in total m =
∑C

j=1 mj many samples in Xi. Given a test matrix

Y, which consists of D different modalities, {Y1, · · · ,YD}, where each sample Yi

consists of di observations Yi = [yi1,y
i
2, · · · ,yidi ] ∈ Rni×di , the objective is to identify

the class to which the test sample Y belongs to.

4.3.1 Basic version

In the case when the data is contaminated by random noise, the observations

from ith modality can be modeled as follows

Yi = XiΓi + Ni,

where Ni is small dense additive noise. Let Γ = [Γ1,Γ2, · · · ,ΓD] ∈ Rm×d be the

coefficient matrix formed by concatenating D representation matrices with d =
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∑D
i=1 di. We wish to solve for the low-rank and joint sparse matrix Γ by solving the

following problem

Γ̂ = arg min
Γ

1

2

D∑
i=1

‖Yi −XiΓi‖2
F + λ1‖Γ‖∗ + λ2‖Γ‖1,2, (4.1)

where ‖A‖F =
√∑

i,j A
2
i,j is the Frobenius norm of A; ‖A‖∗ =

∑
i σi(A) is the sum

of the singular values of A (i.e. the nuclear norm of A); ‖A‖1,2 =
∑

k ‖ak‖2 and ak

is the kth row vector of the matrix A (i.e the row sparsity of A); λ1 and λ2 are two

positive regularization parameters corresponding to low rank constraint and joint

sparse constraint, respectively.

Once the coefficient matrix Γ̂ is obtained, the class label associated with an

observation vector is declared as the one that produces the smallest approximation

error

ˆ̀= arg min
`

D∑
i=1

‖Yi −Xiδ`(Γ̂
i
)‖2
F , (4.2)

where δ`(·) is the matrix indicator function that keeps rows corresponding to the

`th class and sets all other rows equal to zero.

Ideally, the learned coefficients corresponding to the correct class should ex-

hibit relatively larger values compared to the coefficients corresponding to the in-

correct classes. In order to take this assumption into the classification mechanism,

for a given coefficient vector obtained from the ith modality, we define wi
` as:

wi =
λ1(Cmax`‖δ`(Γ̂

i
)‖∗

‖Γ̂i‖∗
− 1) + λ2(Cmax`‖δ`(Γ̂

i
)‖1,2

‖Γ̂i‖1,2
− 1)

(λ1 + λ2)(C − 1)
. (4.3)

This weight measures the quality of the learned representation. Representation of

high quality will be low-rank (max` ‖δ`(Γ̂
i
)‖∗ close to ‖Γ̂

i
‖∗) and will also be joint

sparse (max` ‖δ`(Γ̂
i
)‖1,2 close to ‖Γ̂

i
‖1,2).
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The classification rule (4.2) based on the weighted reconstruction error can be

modified as follows

ˆ̀= arg min
`

D∑
i=1

wi‖Yi −Xiδ`(Γ̂
i
)‖2
F . (4.4)

Similar ideas have been explored in [77] and [63]. We call the resulting algorithm

Multimodal Recognition via Low-Rank and Joint Sparse (MRLRJS) representation.

Enforcing joint sparsity (row sparsity) ensures that the number of rows that

have nonzero norm to be small. Ideally, these nonzero rows correspond to the true

class. A matrix which has row sparsity can also be a low-rank matrix (e.g. many

rows of the matrix are null vectors). The reason for enforcing the low-rank constraint

is that it can explore the underlying structure of the representation matrix especially

in the column sense. For the given input multimodal instance, representations of

different modalities are assumed to be correlated, therefore, when these represen-

tations are stacked horizontally, the resulting representation matrix is assumed to

have a small column rank.

In our experiments, we observed that instances where (4.1) with λ1 = 0 fails

are often different from those where (4.1) with λ2 = 0 fails. Hence, combining the

two algorithms may lead to a better multimodal fusion method, since the underlying

representation matrix we want to recover is both row-sparse and low-rank simulta-

neously. Our work is specifically motivated by [59] and [62] where simultaneous

`1-norm and nuclear norm have been studied for general regression and subspace

clustering problems, respectively. In contrast, our focus in this paper is specifically

on multimodal recognition problems.

62



4.3.2 Robust version

In the case when data is contaminated by noise and occlusion, the observation

from the ith modality can be modeled as follows

Yi = XiΓi + Ni + Ei,

where Ni is a small dense additive noise and Ei is a matrix of sparse occlusion

with arbitrary large magnitude. By taking advantage of the fact that Ei is sparse,

one can simultaneously estimate Γi and Ei by solving the following optimization

problem

Γ̂, Ê = arg min
Γ,E

1

2

D∑
i=1

‖Yi −XiΓi − Ei‖2
F + λ1‖Γ‖∗

+ λ2‖Γ‖1,2 + λ3

D∑
i=1

‖Ei‖1, (4.5)

where E = [E1,E2, · · · ,ED] is the spare occlusion matrix and ‖A‖1 =
∑

i,j |Ai,j| is

the `1-norm of A. Note that E is just a compact representation and we solve each Ei

separately since their dimensions can be different. Here, λ1, λ2 and λ3 are positive

parameters that control the rank of coefficients, joint sparsity of the coefficients and

the sparsity of the occlusion term, respectively.

Once Γ and E are estimated, the effect of occlusion can be removed by setting

Ŷi = Yi − Êi. Finally, one can declare the class label associated to an observation

vector as

ˆ̀= arg min
`

D∑
i=1

wi‖Yi −Xiδ`(Γ̂
i
)− Êi‖2

F , (4.6)

63



where wi
` is defined in (4.3). We call the resulting algorithm Robust Multimodal

Recognition via Low-Rank and Joint Sparse (RMRLRJS) representation.

4.3.3 Two Special Cases

The above formulations take both rank and joint sparsity into consideration

and the parameters λ1 and λ2 control the relative importance between low-rank and

sparse representations, respectively. By selecting λ1 and λ2 appropriately, we obtain

two special cases of MRLRJS and RMRLRJS.

4.3.3.1 Joint Sparse Representation

If λ1 is set equal to 0, then the basic and robust versions are simplified as

Γ̂ = arg min
Γ

1

2

D∑
i=1

‖Yi −XiΓi‖2
F + λ2‖Γ‖1,2, (4.7)

and

Γ̂, Ê = arg min
Γ,E

1

2

D∑
i=1

‖Yi −XiΓi − Ei‖2
F + λ2‖Γ‖1,2 + λ3

D∑
i=1

‖Ei‖1 (4.8)

respectively. These simplified formulations essentially correspond to the joint sparse

representation-based multimodal fusion algorithms proposed in [63].

4.3.3.2 Low-Rank Representation

If λ2 is set equal to 0 then, MRLRJS and RMRLRJS are simplified as

Γ̂ = arg min
Γ

1

2

D∑
i=1

‖Yi −XiΓi‖2
F + λ1‖Γ‖∗, (4.9)
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and

Γ̂, Ê = arg min
Γ,E

1

2

D∑
i=1

‖Yi −XiΓi − Ei‖2
F + λ1‖Γ‖∗ + λ3

D∑
i=1

‖Ei‖1 (4.10)

respectively. These simplified formulations essentially correspond to the multitask

multivariate low-rank representations proposed in [64].

4.4 Common low-rank and joint sparse representations for multi-

modal recognition

Different from previous formulations, in this section we propose to enforce com-

mon sparse and low-rank representations on the coefficients from different modali-

ties. As a result, we are able to exploit the correlations among different modalities

better. In this method, the coefficient matrices corresponding to D different modal-

ities are required to be the same as follows

Γ = Γ1 = Γ2 = · · · = ΓD.

In order to make the coefficient matrices match in terms of matrix dimensions, for

classifying a multi-modal instance in testing phase, the number of samples from

each modality has to be the same. With the common representation, low-rank and

joint sparse constraint on the concatenated matrix [Γ1,Γ2, · · · ,ΓD] is equivalent

to enforcing the constraint on Γ1. Similar ideas have been explored in [78] for

image super-resolution and in [64], [71] for multimodal recognition. One of the

disadvantages of enfacing such strong constraints is that during the test phase, each

modality must have the same number of samples. However, as will be shown later,
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such common representation is found to be robust in several biometrics and object

recognition applications.

4.4.1 Basic Version

When we consider the common representation, we assume that the ith modal-

ity’s observations are of the following form

Yi = XiΓ + Ni.

Note that, since the same representation is used for all the modalities in the above

model, we let the number of samples from each modality be the same, i.e Yi ∈ Rni×d.

With this model, the common low-rank and joint sparse representation-based multi-

modal recognition (MRLRJS-C) problem can be formulated as

Γ̂ = arg min
Γ

1

2

D∑
i=1

‖Yi −XiΓ‖2
F + λ1‖Γ‖∗ + λ2‖Γ‖1,2. (4.11)

Once Γ̂ is estimated, it can be used to declare the class label of the observation by

the minimum reconstruction error criteria as follows

ˆ̀= arg min
`

D∑
i=1

w‖Yi −Xiδ`(Γ̂)‖2
F , (4.12)

where w` is defined as

w =
λ1(Cmax` ‖δ`(Γ̂)‖∗

‖Γ̂‖∗
− 1) + λ2(Cmax` ‖δ`(Γ̂)‖1,2

‖Γ̂‖1,2
− 1)

(λ1 + λ2)(C − 1)
. (4.13)
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4.4.2 Robust Version

In this case, the ith modality’s observations are assumed to be of the following

form

Yi = XiΓ + Ni + Ei.

With this, the robust version of the MRLRJS-C (RMRLRJS-C) problem can be

formulated as

Γ̂, Ê = arg min
Γ,E

1

2

D∑
i=1

‖Yi −XiΓ− Ei‖2
F + λ1‖Γ‖∗

+ λ2‖Γ‖1,2 + λ3

D∑
i=1

‖Ei‖1. (4.14)

Finally, the following minimum reconstruction error rule can be used to classify

multimodal data

ˆ̀= arg min
`

D∑
i=1

w‖Yi −Xiδ`(Γ̂)− Êi‖2
F , (4.15)

where w` is defined in (4.13).

4.4.3 Two Special Cases

Depending on the selected parameters in (4.14), we obtain the following two

special cases.

4.4.3.1 Common Sparse Representation

If λ1 is set equal to 0, then the basic and the robust versions are simplified as

Γ̂ = arg min
Γ

1

2

D∑
i=1

‖Yi −XiΓ‖2
F + λ2‖Γ‖1,2, (4.16)
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and

Γ̂, Ê = arg min
Γ,E

1

2

D∑
i=1

‖Yi −XiΓ− Ei‖2
F + λ2‖Γ‖1,2 + λ3

D∑
i=1

‖Ei‖1 (4.17)

respectively. This formulation is essentially what was proposed in [71].

4.4.3.2 Common Low-Rank Representation

If λ2 is set equal to 0, then the basic and robust versions are simplified as

Γ̂ = arg min
Γ

1

2

D∑
i=1

‖Yi −XiΓ‖2
F + λ1‖Γ‖∗, (4.18)

and

Γ̂, Ê = arg min
Γ,E

1

2

D∑
i=1

‖Yi −XiΓ− Ei‖2
F + λ1‖Γ‖∗ + λ3

D∑
i=1

‖Ei‖1, (4.19)

respectively, which is essentially the common low-rank representation-based multi-

modal fusion framework proposed in [64].

4.5 Optimization

In this section, we propose an approach based on the ADMM method [47] to

solve the proposed optimization problems. Due to the similarity of these problems,

we only provide details on the optimization of (4.5). In ADMM, appropriate aux-

iliary variables are introduced into the optimization program, the constraints are

augmented into the objective function and the Lagrangian is iteratively minimized

with respect to the primal variables and maximized with respect to the Lagrange

multipliers.
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4.5.1 Optimization of RMRLRJS

Problem (4.5) can be reformulated by introducing the auxiliary variables as

follows

min
Γ,E,V,U,Z

1

2

D∑
i=1

‖Yi −XiΓi − Ei‖2
F + λ1‖V‖∗ + λ2‖Z‖1,2 + λ3

D∑
i=1

‖Ui‖1 (4.20)

s.t. Γ = V,Γ = Z,Ei = Ui(i = 1, · · · , D).

Note that similar to Γ, we denote V = [V1,V2, · · · ,VD] ∈ Rm×d, Z =

[Z1,Z2, · · · ,ZD] ∈ Rm×d and like E, we let U = [U1,U2, · · · ,UD] as a compact

representation of Ui(i = 1, · · · , D) which is, however, solved independently.

Equation (4.20) can be solved using the Augmented Lagrangian Method (ALM)

[47]. The augmented Lagrangian function fαV ,αZ ,αU
(Γ,E,V,Z,U; AV ,AZ ,AU) is

defined as

min
Γ,E,V,Z,U

1

2

D∑
i=1

‖Yi −XiΓi − Ei‖2
F

+ λ1‖V‖∗ + 〈AV ,Γ−V〉+
αV
2
‖Γ−V‖2

F (4.21)

+ λ2‖Z‖1,2 + 〈AZ ,Γ− Z〉+
αZ
2
‖Γ− Z‖2

F

+
D∑
i=1

(λ3‖Ui‖1 + 〈Ai
U ,E

i −Ui〉+
αU
2
‖Ei −Ui‖2

F ),

where AV , AZ and AU are the multipliers of the linear constrains, αV , αZ and αU are

the positive parameters, 〈A,B〉 denotes tr(ATB). We denote AV = [A1
V ,A

2
V , · · · ,AD

V ] ∈

Rm×d and AZ = [A1
Z ,A

2
Z , · · · ,AD

Z ] ∈ Rm×d and AU = [A1
U ,A

2
U , · · · ,AD

U ] as a com-

pact representation of Ai
U(i = 1, · · · , D).

In the ALM algorithm, fαV ,αZ ,αU
is solved iteratively with respect to Γ,E,U,V
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and Z jointly while keeping AV , AZ and AU fixed and then updating AV , AZ and

AU keeping the remaining variables fixed.

Update step for Γ

Obtain Γt+1 by minimizing fαV ,αZ ,αU
with respect to Γ. This can be done by

taking the first-order derivative of fαV ,αZ ,αU
and setting it equal to zero. Further-

more, as the first term of fαV ,αZ ,αU
is a sum of convex functions associated with

sub-matrices Γi, one can find Γi
t+1(i = 1, · · · , D) by solving the following linear

system

(XiTXi + (αV + αZ)I)Γi
t+1 = XiT (Yi − Ei

t) + αV Vi
t −Ai

V,t + αZZi
t −Ai

Z,t, (4.22)

where I is m × m identity matrix and Ei
t, Vi

t, Zi
t, Ai

V,t and Ai
Z,t are submatrices

of Et,Vt,Zt, AV,t and AZ,t, respectively. When m is is not very large, one can

simply apply matrix inversion to obtain Γi
t+1 from Eq.(4.22). For large values of m,

gradient-based methods should be employed to obtain Γi
t+1.

Update step for E

The second subproblem is similar to the first in nature and Ei
t+1(i = 1, · · · , D)

can be obtained as

Ei
t+1 = (1 + αU)−1(Yi −XiΓi

t+1 + αUUi
t −Ai

U,t),

where Ui
t and Ai

U,t are submatrices of Ut and AU,t, respectively.
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Update step for U

In order to update Ui
t+1(i = 1, · · · , D), one needs to solve the following `1

minimization problem

min
1

2
‖Ei

t+1 + α−1
U Ai

U,t −Ui‖2
F +

λ3

αU
‖Ui‖1, (4.23)

whose solution is given by [79]

Ui
t+1 = S

(
Ei
t+1 + α−1

U Ai
U,t,

λ3

αU

)
,

where S(a, b) = sgn(a)(|a| − b) for |a| ≥ b and zero otherwise.

Update step for V

The subproblem for updating V has the following form

min
1

2
‖Γt+1 + α−1

V AV,t −V‖2
F +

λ1

αV
‖V‖∗. (4.24)

Solution to this optimization problem is obtained by shrinking the singular values

of Γt+1 + α−1
V AV,t [80], [81]. As a result, we obtain the following update for V

Vt+1 = FS(Σ,
λ1

αV
)BT ,

where FΣBT is the Singular Value Decomposition (SVD) of Γt+1 + α−1
V AV,t. Same

S(a, b) is applied as above.

Update step for Z

In order to update Z, we need to solve the following optimization problem

min
1

2
‖Γt+1 + α−1

Z AZ,t − Z‖2
F +

λ2

αZ
‖Z‖1,2. (4.25)
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Due to the separable structure of (4.25), it can be solved by minimizing it with

respect to each row of Z separately. Following the method used in [63], we let γi,t+1,

aZi,t
and zi,t+1 be the ith row of matrices Γt+1, AZ,t and Zt+1 respectively. Then

for each row, we solve the following subproblem

zi,t+1 = min
1

2
‖p− z‖2

2 +
λ2

αZ
‖z‖2, (4.26)

where p = γi,t+1 + aZi,t
α−1
Z . The closed form solution of (4.26) is given as follows

zi,t+1 =

(
1− λ2

αZ‖p‖2

)
+

p,

where (v)+ is the vector with entries receiving values max (vi, 0).

Update steps for AV , AZ and Ai
U(i = 1, · · · , D)

Finally, the Lagrange multipliers are updated as

AV,t+1 = AV,t + αV (Γt+1 −Vt+1), (4.27)

AZ,t+1 = AZ,t + αZ(Γt+1 − Zt+1), (4.28)

Ai
U,t+1 = Ai

U,t + αU(Ei
t+1 −Ui

t+1). (4.29)

The proposed ADMM algorithm for solving the RMRLRJS problem is summarized

in Algorithm 3. Note that the optimization problem is not convex and there does

not exist any guarantee for the Algorithm 3 to converge. The convergence issue of

ADMM is still not fully understood and remains an open research problem. Yet,

ADMM works well in practice. For our proposed methods, the termination condition

is either when the difference of the cost function errors is below some threshold or

the maximum number of iteration is reached.
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Algorithm 3: Robust Multimodal Recognition via Low-Rank and Joint Sparse

Representation (RMRLRJS)

Input: Multi-modal training samples {Xi}Di=1, test sample {Yi}Di=1, λ1, λ2, λ3, αV , αZ and αU

Initialization:

Γ0,V0,Z0,U0,AV,0,AZ,0,AU,0 are initialized to be zero matrices.

Until convergence do

1. Update Γ: Γt+1 = [Γ1
t+1, · · · ,ΓD

t+1], where

Γi
t+1 = (XiT Xi + (αV + αZ)I)−1(XiT (Yi −Ei

t) + αV Vi
t −Ai

V,t + αZZi
t −Ai

Z,t)

2. Update E: Et+1 = [Ei
t+1, · · · ,ED

t+1], where

Ei
t+1 = (1 + αE)−1(Yi −XiΓi

t+1 + αUUi
t −Ai

U,t)

3. Update U: Ut+1 = [Ui
t+1, · · · ,UD

t+1], where

Ui
t+1 = S

(
Ei

t+1 + α−1
U Ai

U,t,
λ3

αU

)

4. Update V:

Vt+1 = FL λ1
αV

(Σ) BT

5. Update Z:

zi,t+1 =

(
1−

λ2

αZ‖p‖2

)
+

p

6. Update AV , AZ , Ai
U (i = 1, · · · , D):

AV,t+1 = AV,t + αV (Γt+1 −Vt+1)

AZ,t+1 = AZ,t + αZ(Γt+1 − Zt+1)

Ai
U,t+1 = Ai

U,t + αU (Ei
t+1 −Ui

t+1)

Classification:

Let Êi = Ei
t+1(i = 1, · · · , D) and Γ̂ = Γt+1,

1. Compute weight wi
` by (4.3)

2. Assign the class label with minimum error:

ˆ̀= arg min
`

D∑
i=1

wi
`‖Y

i −Xiδ`(Γ̂
i
)− Êi‖2F

Output: class label ˆ̀
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Figure 4.2: Sample fingerprint and iris images from the WVU dataset.

4.5.2 Optimization of RMRLRJS-C

The RMRLRJS-C problem (4.14) can be optimized in a similar way using the

ADMM method. However, there are a few key differences in solving the subprob-

lems. In particular, Γ is not separated into D different parts and Γ can be updated

as

Γt+1 = (
D∑
i=1

XiTXi + (αV + αZ)I)−1(
D∑
i=1

XiT (Yi − Ei) + αV Vi
t −Ai

V,t + αZZi
t −Ai

Z,t).

After solving Êi(i = 1, · · · , D) and Γ̂, the class label can by obtained by using (4.13)

and (4.15).

4.6 Experimental Results

In this section, we evaluate the proposed algorithms on three publicly available

multimodal recognition datasets, namely the WVU multimodal biometrics dataset

[12], UMDAA multimodal active authentication dataset [10], [11] and multimodal

object recognition [13]. We compare the proposed method with various feature-

level fusion methods including multiple kernel learning based multi-modal fusion
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method (MKL) [82], joint sparse representation-based multi-modal fusion methods

(SMBR-WE and SMBR-E) [63], common sparse representation-based multi-modal

fusion methods (MCSR and RMCSR) [71], low-rank representation-based multi-

modal fusion methods (MLRR, RMLRR, MCLRR and RMCLRR) [64] and the

class consistent multi-modal fusion (CCMM) [74].

The proposed methods can have up to six parameters during the optimization

procedure. To efficiently tune these parameters, we adopt the following strategy:

solve for appropriate parameters for joint sparse representation-based optimization

and low-rank representation-based optimization separately and then weight these

parameters to control their relative contributions to the final recognition. For ex-

ample, in order to tune the parameters in Algorithm 3, we first consider the sparsity

constraint only by letting λ1 be 0 and obtain “optimal” λ2 and λ3s , αZ and αUs

through grid search. Then, we consider the low-rank constraint only and obtain

λ1 and λ3r , αV and αUr . Finally, we introduce a parameter r(0 ≤ r ≤ 1) to con-

trol the relative contribution and the final parameters used are rλ1, (1 − r)λ2 and

rλ3r + (1− r)λ3s , rαV , (1− r)αZ and rαUr + (1− r)αUs .

4.6.1 WVU multimodal biometrics dataset

The WVU biometrics dataset is a comprehensive collection of different biomet-

ric modalities such as fingerprint, iris, palmprint, hand geometry, and voice from

subjects of different age, gender, and ethnicity. It is a challenging dataset as many

of these samples are corrupted with blur, occlusion, and sensor noise. Following the
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experimental settings described in [63], we choose four fingerprint modalities and

two iris modalities on a subset of 219 subjects having data in all these modalities.

Figure 4.2 shows some sample fingerprint and iris images from this dataset.

Preprocessing and Feature Extraction

We applied the same preprocessing and feature extraction methods used in [63].

In particular, fingerprint images were enhanced using the filtering methods described

in [83]. After detecting the core point [84], Gabor features were extracted around the

core point and a feature vector of dimension 3600 was obtained for each fingerprint

image. The iris images were segmented using the method proposed in [85] and the

publicly available code described in [86] was applied to create 25×240 iris templates.

A Gabor feature of dimension 6000 was generated for every iris image.

Experiment Setup, Results and Analysis

The data instances (one instance includes six samples corresponding to six

modalities) were randomly divided into four training instances per class and the

remaining instances were used for testing. As a result, 876 instances were used for

training and 519 instances were used for testing. The recognition result was averaged

over five runs and we report the mean and standard deviation of rank one recognition

accuracy. The rank one recognition results comparing the proposed methods with

other feature-level multimodal fusion methods are shown in Table 4.1 and Table 4.2

for each modality alone and fusion of modalities, respectively. RMRLRJS-C shows
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the best recognition performance and the corresponding parameters λ1, λ2, λ3, rαV ,

αU , αZ are set equal to 0.0004, 0.0006, 0.0007, 0.0004, 0.0064, 0.006, respectively.

Methods Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2

CCMM 67.8 ± 1.2 86.9 ± 1.1 69.4 ± 1.9 89.3 ± 1.6 60.5 ± 1.7 61.2 ± 0.9

SMBR-WE 68.1 ± 1.1 88.4 ± 1.2 69.2 ± 1.5 87.5 ± 1.5 60.0 ± 1.5 62.1 ± 0.4

SMBR-E 67.1 ± 1.0 87.9 ± 0.8 67.4 ± 1.9 86.9 ± 1.5 62.5 ± 1.2 64.3 ± 1.0

MCSR 70.3 ± 1.0 90.1 ± 0.8 69.2 ± 2.3 89.5 ± 1.4 62.6 ± 1.8 64.6 ± 1.0

RMCSR 69.8 ± 1.4 89.4 ± 1.0 69.2 ± 2.3 89.2 ± 1.1 70.5± 1.1 71.7± 0.5

MLRR 70.0 ± 1.8 90.0 ± 0.9 68.3 ± 1.8 89.6 ± 1.4 59.0 ± 1.8 60.1 ± 0.8

RMLRR 70.4± 1.5 89.8 ± 1.0 68.8 ± 2.1 89.9 ± 1.9 63.0 ± 1.4 65.2 ± 0.6

MCLRR 68.5 ± 1.9 88.8 ± 1.2 67.5 ± 1.5 88.5 ± 1.6 56.5 ± 1.4 58.8 ± 0.6

RMCLRR 68.5 ± 1.5 88.3 ± 1.1 67.0 ± 1.6 87.9 ± 1.7 58.7 ± 1.0 60.1 ± 0.6

MRLRJS 69.7 ± 1.1 89.7 ± 1.3 70.6 ± 1.6 90.4 ± 0.6 59.6 ± 1.0 61.0 ± 0.4

RMRLRJS 68.6 ± 1.3 89.3 ± 1.1 69.0 ± 2.0 89.0 ± 1.4 63.5 ± 1.1 64.6 ± 1.0

MRLRJS-C 69.5 ± 0.9 90.0 ± 1.0 70.1 ± 1.6 90.4 ± 0.5 59.1 ± 0.8 60.6 ± 0.5

RMRLRJS-C 70.1 ± 1.8 90.1± 0.3 71.2± 1.3 90.5± 0.1 69.5 ± 1.3 69.8 ± 0.6

Table 4.1: Rank one recognition accuracy (in %) for WVU biometric multi-modal

dataset for individual modality.

From the results shown in Table 4.1 and Table 4.2, we make the following

observations: (1) All the considered methods achieve better recognition accuracy

when fusing multiple modalities than using a single modality for recognition. (2)

Robust formulations by including the sparse error term in the optimization can lead

to better recognition results. (3) Compared to applying the low-rank constraint

or joint sparsity constraint alone, the proposed methods that enforce both low-
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Methods 4 Fingerprints 2 Irises All Modalities

MKL 86.2 ± 1.2 76.8 ± 2.5 89.8 ±0.9

CCMM 98.9± 0.5 82.9 ± 1.4 99.6 ±0.2

SMBR-WE 97.9 ± 0.4 76.5 ± 1.6 98.7 ±0.2

SMBR-E 97.6 ± 0.6 78.2 ± 1.2 98.6 ±0.5

MCSR 95.6 ± 0.4 78.3 ± 0.2 98.2 ±0.4

RMCSR 96.1 ± 0.6 85.3 ± 1.9 99.4 ±0.5

MLRR 98.7 ± 0.6 74.0 ± 0.9 98.9 ±0.4

RMLRR 98.7 ± 0.5 78.2 ± 1.2 99.1 ±0.4

MCLRR 96.0 ± 0.4 74.9 ± 1.7 98.6 ±0.5

RMCLRR 96.5 ± 0.2 77.0 ± 1.6 99.4 ±0.5

MRLRJS 98.5 ± 0.7 75.9 ± 0.9 99.0 ± 0.2

RMRLRJS 98.2 ± 0.5 78.6 ± 1.7 99.2 ± 0.1

MRLRJS-C 96.0 ± 0.6 76.2 ± 2.12 99.0 ± 0.7

RMRLRJS-C 96.6 ± 0.2 85.6± 1.7 99.8± 0.1

Table 4.2: Rank one recognition accuracy (in %) for the WVU multimodal biometric

dataset for fusion of different modalities.
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rank and joint sparse constraints perform better. (4) Common representation-based

methods RMRLRJS-C perform slightly better than their corresponding methods

without applying common representation constraints.

For the first proposed formulation (MRLRJS and RMRLRJS), the represen-

tation we seek is Γ = [Γ1,Γ2, · · · ,ΓD] ∈ Rm×d. The advantage of this formulation

is that the information from each modality is preserved in the representation ma-

trix; the disadvantage is that a single modality may determine the low-rank and

joint sparse property of the representation matrix, thus determine the overall per-

formance. For example, if the representation of a certain modality is not low-rank or

joint sparse, this modality can still determine the overall low-rank and joint sparse

property of the overall representation matrix and as a result, we may get a poor

performance.

For the second proposed formulation (MRLRJS-C and RMRLRJS-C), the rep-

resentation is the same for all D modalities, i.e. Γ = Γ1 = Γ2 = · · · = ΓD. The

advantage of this formulation is that it satisfies the low-rank and joint sparse con-

straint more easily and it is more robust as each modality contributes partially to

the same representation and no modality can determine the overall representation

alone; the disadvantage is that it loses some discriminative information since only a

single representation is enforced for all modalities.

Therefore for this dataset in which the performance of each modalities is on

the same level, the proposed methods work. However, due to the advantage and

disadvantage of common representation (second formulation), RMRLRJS-C works

only slightly better than RMRLRJS as we see in observation (4).
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4.6.2 UMDAA Dataset

Experimental Setup, Results and Analysis

In order to evaluate the proposed multimodal fusion methods, we sampled a

subset from this dataset. For each user in each of the three sessions, thirty face

images and thirty touch swipes were randomly selected and the resulting subset

consisted of 4500 face images and 4500 touch swipes corresponding to 50 users

across three sessions. We selected 10, 15 and 20 instances for each user to form

the training data, and use the remaining data for testing. In total, there are 500,

750, and 1000 instances for training and 4000, 3750 and 3500 instances for testing.

Each instance contains a 504-dimensional feature vector for the face image and a

27-dimensional feature vector for screen touch gestures. By randomly splitting the

data for training and testing, we repeated each experiment ten times and report the

mean and standard deviation of the rank one recognition accuracy.

The reason why we choose a small fraction of data for training is because in

active authentication, the matching algorithm is supposed to work on mobile devices

nearly in real-time. Our algorithm calculates the representation (either sparse or low

rank or both) using the training samples, thus more training samples means high-

dimensional representation and high computational cost, which should be tuned

carefully in order to achieve a balance between performance and speed.

The experimental results comparing our proposed methods with other fusion

methods are shown in Table 4.3 and Table 4.4, and Table 4.5 respectively, when
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Methods Face Touch Face & Touch

MKL 72.58 ± 1.08 36.02± 0.49 75.13 ±2.22

CCMM 76.87 ± 1.18 33.54 ± 1.71 79.25 ±1.39

SMBR-WE 75.37 ± 1.13 30.40 ± 1.59 66.69 ±0.78

SMBR-E 73.05 ± 1.29 27.72 ± 1.50 64.49 ±1.61

MCSR 78.23 ± 0.98 28.44 ± 1.27 78.50 ±0.87

RMCSR 78.38 ± 0.87 27.72 ± 1.50 78.44 ±0.87

MLRR 76.04 ± 0.92 21.95 ± 1.41 69.24 ±0.85

RMLRR 75.94 ± 1.16 21.88 ± 1.35 69.21 ±1.17

MCLRR 75.49 ± 1.03 22.02 ± 1.37 78.58 ±1.21

RMCLRR 72.72 ± 1.49 21.88 ± 1.34 77.93 ±1.35

MRLRJS 77.36 ± 1.19 31.09 ± 1.61 68.96 ±0.86

RMRLRJS 77.15 ± 0.98 28.82 ± 1.64 63.74 ±1.04

MRLRJS-C 80.28± 1.01 23.85 ± 1.57 81.94± 1.09

RMRLRJS-C 78.77 ± 1.05 24.95 ± 1.56 81.15 ± 1.05

Table 4.3: Rank one recognition accuracy (in %) for different fusion methods using

10 samples from each user for training.

we use 10, 15 and 20 training instances for each user. MRLRJS-C yielded the best

recognition performance and the corresponding parameters λ1, λ2, rαV , αZ are set

equal to 0.0014, 0.0001, 0.45, 0.001, respectively.

From the results shown in Tables 4.3, 4.4 and 4.5, we make the following

observations: (1) Face modality works much better than touch modality. (2) As

we increase the number of training samples, we observe consistent performance for

each fusion method. The more training samples, the better each method perform
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Methods Face Touch Face & Touch

MKL 77.23 ± 0.57 39.19± 1.25 80.80 ±1.22

CCMM 79.78 ± 0.61 37.27 ± 1.11 83.16 ±1.03

SMBR-WE 81.44 ± 0.49 32.42 ± 1.13 74.31 ±1.10

SMBR-E 79.12 ± 0.61 30.18 ± 1.22 71.90 ±1.36

MCSR 83.71 ± 0.47 29.79 ± 1.14 84.95 ±0.49

RMCSR 83.96 ± 0.45 29.93 ± 1.14 85.02 ±0.43

MLRR 81.04 ± 0.60 23.26 ± 1.57 75.82 ±1.06

RMLRR 81.19 ± 0.63 23.27 ± 1.69 76.28 ±1.06

MCLRR 80.60 ± 0.52 23.26 ± 1.58 83.68 ±0.53

RMCLRR 79.19 ± 0.72 23.27 ± 1.65 83.75 ±0.66

MRLRJS 83.09 ± 0.61 32.64 ± 1.18 76.08 ±1.02

RMRLRJS 81.54 ± 0.63 31.21 ± 1.34 71.28 ±0.99

MRLRJS-C 85.47± 0.54 24.78 ± 1.43 87.45± 0.58

RMRLRJS-C 84.44 ± 0.38 25.94 ± 1.28 87.26 ± 0.46

Table 4.4: Rank one recognition accuracy (in %) for different fusion methods using

15 samples from each user for training.
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Methods Face Touch Face & Touch

MKL 78.36 ± 0.94 41.48± 0.56 82.20 ±0.61

CCMM 83.29 ± 0.71 40.15 ± 1.03 87.54 ±0.72

SMBR-WE 85.83 ± 0.66 32.71 ± 0.99 74.64 ±0.85

SMBR-E 87.47 ± 0.66 28.61 ± 1.45 74.88 ±1.00

MCSR 87.06 ± 0.64 29.07 ± 1.07 88.49 ±0.95

RMCSR 87.11 ± 0.71 29.08 ± 1.16 88.48 ±0.56

MLRR 87.67 ± 0.70 23.35 ± 0.99 78.94 ±0.78

RMLRR 88.02 ± 0.82 23.52 ± 1.07 79.65 ±0.86

MCLRR 87.44 ± 0.73 23.41 ± 1.10 89.33 ±0.61

RMCLRR 86.69 ± 0.85 23.61 ± 1.11 89.60 ±0.85

MRLRJS 86.30 ± 0.74 33.97 ± 1.13 80.66 ± 0.86

RMRLRJS 85.64 ± 0.78 32.01 ± 1.19 75.80 ± 0.88

MRLRJS-C 88.58± 0.60 26.78 ± 1.17 90.42 ± 0.54

RMRLRJS-C 87.57 ± 0.68 26.64 ± 1.11 90.45± 0.62

Table 4.5: Rank one recognition accuracy (in %) for different fusion methods using

20 samples from each user for training.
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in terms of both single modality and the fusion of two modalities. (3) Methods

without enforcing common representation failed to fuse face and touch modality

to generate better performance than using single modality alone. On contrary,

methods enforcing common representation (MCSR, RMCSR, MCLRR, RMCLRR,

MRLRJS-C, RMRLRJS-C) successfully fused the two modalities.

In this dataset, faces (strong modality) as physical biometrics are more robust

and reliable while screen touch gestures (weak modality), as a kind of behavioral

biometric, exhibit more variations and can changes more easily. The performance

of face modality and touch modality differs a lot. For fusion methods enforcing a

common representation, it is more robust as each modality contributes partially to

the same representation and no modality can determine the overall representation

alone. Therefore, it can successfully fuse two modalities even with presence of weak

modality. However, for fusion methods without enforcing common representation,

weak modality can significantly influence the quality of the overall representation

and lead to worse performance when fusing two modalities compared to using face

modality alone.

4.6.3 Pascal-Sentence Dataset

Pascal-Sentence dataset is a multimodal dataset consisting of two modalities,

i.e, image and sentences describing the image [13]. The images are chosen from the

PASCAL VOC 2008 Challenge, which is a benchmark dataset for object recognition

and detection. 1000 images were randomly selected from 20 classes. Each image
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Figure 4.3: Sample images and corresponding sentences from the Pascal-Sentence

dataset.

was annotated with five sentences using Amazon’s Mechanical Turk. Samples images

and the corresponding sentences from this dataset are shown in Figure 4.3.

Preprocessing and Feature Extraction

We follow the same feature extraction method as described in [74]. Specif-

ically, the image features are collections of responses from a variety of detectors,

image classifiers and scene classifiers. The semantic features were constructed by

using word-net semantic with a dictionary of 1200 words. The details of feature ex-

traction for both modalities are described in [87]. These low-level features were then
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Methods Intensity Features Semantic Features Fusion

MKL 67.2 64.4 76

CCMM 66.2 63.2 77.2

SMBR 66.2 69.6 75.4

MRLRJS 75.5± 0.2 77.7± 0.1 82.7± 0.3

RMRLRJS 75.5± 0.2 77.7± 0.1 82.7± 0.3

MRLRJS-C 75.0 ± 0.2 74.6 ± 0.5 81.1 ±0.6

RMRLRJS-C 75.0 ± 0.2 74.6 ± 0.5 81.1 ±0.6

Table 4.6: Classification accuracy (in %) for the Pascal-Sentence dataset.

converted to binary codes using the methods described in [76]. The binary codes

were then used to evaluate the performance of various feature-level fusion methods.

Experimental Setup, Results and Analysis

Following the experimental setup in [74], we randomly chose 500 samples for

training and kept the remaining 500 samples for testing and calculated the per-

formance of our method. We repeated this process five times and report the final

accuracy in terms of mean and standard deviation (std) in Table 4.6. Note that the

results of the other methods are directly copied from [74] which essentially follows

the same protocol but does not report the std values. RMRLRJS yielded the best

recognition performance and the corresponding parameters λ1, λ2, λ3, rαV , αZ , αU ,

are set equal to 0.5, 1, 0.5, 0.5, 1, 0.5, respectively.

From the results shown in Tables 4.6, we make the following observations: (1)

The performance of each modality is on the same level. (2) The robust version of
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each formulations (RMRLRJS, EMRLRJS-C) did not yield improved performance

than their corresponding basic version (MRLRJS, MRLRJS-C). (3) Enforcing a

common representation did not yield improved performance.

In this dataset, since the performance of each modality is similar, both for-

mulations perform comparably. The proposed formulation enforcing common repre-

sentation does not show better results because we get a more robust representation

at the cost of losing (discriminative) information. Also, the robust version of each

formulation does not show significant performance because of the fact that the orig-

inal low-level features were converted into binary codes which are already robust to

sparse errors.

4.6.4 Low-Rank versus Joint Sparsity

To study the relative contribution of low-rank constraint and joint sparse con-

straint, we vary the parameter r from 0 to 1 in the increments of 0.1 and plot the

mean rank one recognition accuracy for RMRLRJS-C. When r = 0, our method

reduces to RMCSR and when r = 1 the proposed method reduces to RMCLRR.

Figure 4.4 shows the performance change of RMRLRJS-C under different values

of r. This figure clearly illustrates the advantage of enforcing low-rank and joint

sparsity constraints together over enforcing just low-rank or joint sparsity constraint

alone.
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Figure 4.4: Mean rank one recognition accuracy versus the relative contribution of

low-rank and joint sparsity constraint.

4.6.5 Weighted vs Non-Weighted Classification

We applied the weighted reconstruction error to assign a given test instance

after solving the (common) low-rank and joint sparse representation. To empirically

compare these two classification strategies, we applied non-weighted classification us-

ing the same representation obtained by the proposed methods on the three datasets

and report the recognition. As shown in Table 4.7, the weighted classification rule

provides no worse results than those obtained by non-weighted classification.

4.7 Complexity Analysis

To analyze the computational complexity of the proposed methods, we look

at each step in the algorithm. For simplicity, we assume the number of modalities
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Dataset Non-Weighted Weighted

WVU 99.80 99.80

UMDAA 89.51 90.45

Pascal-Sentence 81.48 82.72

Table 4.7: Rank one recognition accuracy (in %) for weighted and non-weighted

classification on three datasets.

is D, the number of classes is C, the dimension of the feature vector from different

modality is n, the number of training samples is m, the number of iterations is k

and the number of observations from different modality in one test sample is p. D

and p are usually much smaller than C, m and n. k depends on how quickly the

algorithm can converge.

In general, the complexity of matrix multiplication is O(n3) and the complex-

ity of matrix addition is O(n2) for two n × n matrices. The complexity of matrix

inversion and singular value decomposition is O(n3) for an n × n matrix. For the

proposed algorithm, in every iteration, the complexity of computing Γ and E is

O(mnpD). Note that the matrix inversion part can be computed in advance since

it is fixed. Computing U requires thresholding each element and its complexity

is O(npD). Computing V involves singular value decomposition, singular value

shrinking and matrix multiplication and their complexity is O(m2pD). The com-

plexity of computing Z is O(mpD). The complexity of computing AV , AZ , AU

is also O(mpD). Therefore, computing the coefficient matrix through k iterations
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requires the computations in the order of O(k(mnpD + m2pD)). For classifying

the test sample, one need to compute the weights and reconstruction error and its

complexity is O(mnpCD). Note that, the overall complexity of the proposed algo-

rithms is the same as its special cases, even though more variables are introduced

and computed.

4.8 Conclusion

We proposed joint sparsity and low-rank representation-based methods for

multimodal recognition. The second formulation further enforce common represen-

tation across all the modality in order to get a more robust representation at the cost

of losing information. Previously proposed joint sparsity or low-rank representation-

based multimodal recognition methods are special cases of the proposed formula-

tions. Efficient algorithms based on ADMM are derived to solve the proposed prob-

lems.

From the experimental results, we can conclude that: (1) for datasets, such as

WVU dataset and Pascal-Sentence dataset, in which the performance of each modal-

ity is on the same level, there is no guarantee that enforcing a common representation

(MRLRJS-C and RMRLRJS-C) may always yield better results because we get a

more robust representation at the cost of losing information; (2) for datasets, such

as the UMDAA dataset, in which the performance of each modality differs a lot,

enforcing a common representation (MRLRJS and RMRLRJS) will successfully fuse

all the modalities and perform much better than the general formulation (MRLRJS
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and RMRLRJS) which fail to fuse strong and weak modalities together.

91



Chapter 5: Hierarchical Multimodal Metric Learning for Multimodal

Classification

5.1 Introduction

Owing to recent developments in sensor technology, researchers and developers

are able to collect multimodal data consisting of depth information and RGB im-

ages to achieve better performance for tasks such as object detection, classification

and scene understanding [14, 15, 88–91]. Massive image and video data on Internet

are associated with tags and metadata which are useful for image classification [92]

and retrieval [93, 94]. Solutions to these problems can be formulated using multi-

modal classification frameworks. Multimodal classification has also been studied for

other applications such as audio-visual speech classification [95,96], and multimodal

biometrics recognition [63,64].

How to efficiently and effectively combine different modalities is the key issue

in multimodal classification. Feature vectors corresponding to different modalities

might be very different even if they essentially represent the same object. Some

feature vectors are very discriminative while others are not; some feature vectors

are clean while others are noisy; some feature vectors are dense while others are
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sparse. Many factors like data acquisition, preprocessing and feature extraction can

make feature vectors’ behavior quite different. Therefore, direct linear combination

of feature vectors or simple linear combination of the result of each modality can

not guarantee good performance compared with using certain modality alone.

Metric learning algorithms can learn the Mahalanobis distance from data pairs

and side information indicating the relationship of data pairs [3]. The learned dis-

tance metric can be better than Euclidean distance for the original feature space.

Extensive research on metric learning in uni-modal setting is available in the liter-

ature. Classical algorithms includes the ones proposed in [3], Large Margin Near-

est Neighbor (LMNN) algorithm [97] and Information Theoretical Metric Learning

(ITML) algorithm [98]. When linear metric cannot adequately represent the in-

herent complexities that lie in the original feature space, various kernelized metric

learning algorithms [99] [100] [101] [102] have been proposed to implicitly learn the

metric in certain kernel space. For example, [102] demonstrated that a large class of

Mahalanobis metric learning methods can be seen as learning a linear transforma-

tion (LT) kernel function and thus provided a constructive method for kernelizing

these metric learning methods.

Extending the uni-modal metric learning algorithm to multi-modal metric

learning can be a good solution for multimodal classification problems if the learned

metrics are appropriate distance measures for corresponding feature spaces. Also, it

is important to explore the relationship among the multiple metrics and the learning

process should take into account the underlying differences among multiple modal-

ities by balancing the contribution of each modality. As will be analyzed in Section
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5.2 and Section 5.3, existing approaches for multimodal metric learning do not fully

capture the relationships among the multiple learned ,metrics.

Motivated by previous works that consider shared representations in their for-

mulations for multi-modal applications such as [64, 71, 95, 103, 104], we propose a

Hierarchical Multimodal Metric Learning (HM3L) algorithm which fully explores

the relationships among the different metrics of different modalities. In our formu-

lation, metric of each modality is constructed through the multiplication of modality

specific part representing appropriate subspace and a common part (p.s.d matrix)

shared by all the metrics. Figure 5.1 gives an overview of the proposed multi-

modal metric learning algorithm. Given multimodal representations, first we apply

modality-specific projections Pk to each modality since their representations are

very different in nature, then we apply the common metric M to features after the

modality-specific projection assuming the features lie in the same common space.

Furthermore, The kernelization of the proposed algorithm using the general kernel

learning framework proposed in [102] leads to Kernelized Hierarchical Multimodal

Metric Learning (KHM3L) algorithm.

The rest of this chapter is organized as follows. In Section 5.2, we review

different metric learning algorithms. In Section 5.3, the Hierarchical Multimodal

Metric Learning (HM3L) is proposed and differences from other related multiple

metrics learning algorithms are discussed. In Section 5.4, the Kernelized Hierarchical

Multimodal Metric Learning (KHM3L) is formulated as the nonlinear extension of

the HM3L. In Section 5.5, efficient algorithms based on subgradient method are

derived to solve the optimization problems corresponding to HM3L and KHM3L

94



Figure 5.1: Overview of Hierarchical MultiModal Metric Learning.

respectively. Extensive experimental results on four datasets are presented in Section

5.6. Complexity analysis for HM3L and KHM3L is provided in Section 5.7. Finally,

Section 5.8 concludes the paper with a brief summary.

5.2 Related Work

Metric learning has been studied in various fields such as machine learning

[3, 97], information retrieval [105], computer vision [106] and biometrics [107, 108].

The goal of a metric learning algorithm is to learn a metric so that after data

are projected using the learned metric, similar data samples (e.g. from the same

class) are clustered together and dissimilar data samples (e.g. samples from different

classes) are separated.

In a recent work, [3] formulated the metric learning problem as a convex opti-
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mization problem by utilizing the side information of two data samples being similar

or dissimilar. LMNN [97] applies the idea of large margin in Support Vector Ma-

chine (SVM) to improve the KNN classifier and uses triplet constraints to describe

the relative relationships among three samples. In [98], the information theoreti-

cal metric learning (ITML) algorithm was proposed which essentially minimizes the

differential relative entropy between two multivariate Gaussians under constraints

on the distance function.

More recent metric learning algorithms also explore the structure of the metric

by enforcing low-rank constraints [109, 110] or sparse constraints [111–113] or both

sparse and low-rank constraints [114]. For high dimensional problems, [109] showed

that enforcing low-rank constraints on the metric during the learning process is

computationally efficient and tractable even with a small number of samples. More

comprehensive survey of various metric learning methods and their applications are

summarized in [115,116].

Several multimodal metric learning algorithms have also been proposed in

the literature. For instance, a multimodal metric learning method in [117] applies

multi-wing harmonium (MWH) learning framework to get latent representations

from different modalities and learns a metric under a probabilistic formulation. A

Heterogeneous Multi-Metric Learning algorithm proposed in [118] for multi-sensor

fusion essentially extends the LMNN algorithm [97] for multi-metric learning. Sim-

ilarly, in [119] a large margin multi-metric learning (LM3L) was proposed for face

and kinship verification which learns multiple metrics under which the correlations

of different feature representations of each sample are maximized. Some of the other
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multimodal metric learning algorithms include Pairwise-constrained Multiple Metric

Learning (PMML) [120]. Note that these methods can be viewed as multimodal ex-

tensions of the classical unimodal metric learning algorithms like ITML and LMNN.

One of the limitations of these methods is that they do not explore the relationships

among different metrics corresponding to different modalities.

5.3 Formulation

5.3.1 Problem Description

Let

S = {(Xi, Xj)|yij = 1}

and

D = {(Xi, Xj)|yij = −1}

be two sets consisting of similar instance pairs and dissimilar instance pairs, respec-

tively. An instance in the multimodal scenario is denoted as

Xi = {x(1)
i , x

(2)
i , · · · , x(K)

i },

which consists of K features from K different modalities, where x
(1)
i ∈ Rl1 , x

(2)
i ∈

Rl2 , · · · , x(K)
i ∈ RlK . Note that the dimension of each feature vector can be different.

In multimodal metric learning, the objective is to learn metrics for such instances

consisting of K feature vectors.

A simple way to learn a metric for multimodal data is by concatenating the

features of the K modalities into one feature vector of length
∑K

i=1 li and applying
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the classical metric learning algorithms like LMNN or ITML. The drawback of this

approach is the high computational cost incurred by learning an
∑K

i=1 li by
∑K

i=1 li

metric. This problem is even more serious for high-dimensional multimodal data.

Existing multimodal metric leaning algorithms such as Pairwise-constrained

Multiple Metric Learning [120], Large Margin Multi-metric Learning [119], and Het-

erogeneous Multi-Metric Learning [118], are extensions of the classical unimodal

metric learning algorithms in which the distance between any two instances is ob-

tained as

d2
m(Xi, Xj) =

1

K

K∑
i=1

d2
Mk

(x
(k)
i , x

(k)
j ) (5.1)

=
1

K

K∑
i=1

(x
(k)
i − x

(k)
j )TMk(x

(k)
i − x

(k)
j ).

These approaches simultaneously solve K positive semi-definite (p.s.d) matrices

Mk, k = 1, · · · , K as metrics in a joint formulation.

5.3.2 Hierarchical Multimodal Metric Learning (HM3L)

In order to efficiently learn multiple metrics for multiple modalities as well as

to capture the relationship among them, we enforce the different metrics Mk, k =

1, · · · , K to satisfy the following condition

Mk = PT
kMPk, k = 1, · · · , K, (5.2)

where Pk ∈ Rd×lk and d ≤ min{l1, l2, · · · , lK}. Also, M is required to be a p.s.d

matrix. Using this formulation, one can prove that if M ∈ Rd×d is p.s.d, then for

any non-trivial Pk ∈ Rd×lk , Mk = PT
kMPk is p.s.d.
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For the given training data, the learned metrics Mk are obtained by learning

modality specific part Pk and the shared part M in a hierarchical framework. As

long as M is p.s.d, Mk is p.s.d meaning that Mk are valid metrics.

By enforcing (5.2), we establish the relationship among the different modal-

ities. As a result, we can formulate the Hierarchical multimodal metric learning

(HM3L) algorithm as the optimization problem specified in (5.3).

min
M∈S+

d

tr(M) + γ
K∑
k=1

‖Pi‖2
F (5.3)

s.t.
1

K

K∑
k=1

d2
M(Pkx

(k)
i ,Pkx

(k)
j ) ≤ µ if yij = 1

1

K

K∑
k=1

d2
M(Pkx

(k)
i ,Pkx

(k)
j ) ≥ β if yij = −1.

Here γ controls the relative contribution to the cost function between Pk and

M and µ and β are non-negative real numbers which specify the upper bound for

distance of two similar instances and lower bound for distance of two dissimilar

instances, respectively. We introduce the slack variables εij > 0 for constraints.

Then (5.3) can be rewritten as

min
M∈S+

d

tr(M) + γ

K∑
k=1

‖Pi‖2
F (5.4)

s.t.
1

K

K∑
k=1

d2
M(Pkx

(k)
i ,Pkx

(k)
j ) ≤ µ+ εij if yij = 1

1

K

K∑
k=1

d2
M(Pkx

(k)
i ,Pkx

(k)
j ) ≥ β − εij if yij = −1.
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5.3.3 HM3L-based multimodal classification

Once Pk and M are learned, we can easily get L such that LTL = M through

matrix decomposition. Then the multi-modal data

Xi = {x(1)
i , x

(2)
i , · · · , x(K)

i }

can be projected by Pk and L and transformed to

X̂i = {LP1x
(1)
i ,LP2x

(2)
i , · · · ,LPKx

(K)
i }.

Concatenation of all the projected features can be used with various classification

algorithms like KNN and SVM.

5.4 Kernelized Hierarchical Multimodal Metric Learning(KHM3L)

Very often a linear projection cannot capture the inherent complexities of

given data. To address this limitation, various works introduce nonlinearity into the

formulation by proposing kernelized metric learning algorithms in order to compute

the Mahalanobis distance (linear projection) in some non-linear feature space.

Kernel function κ : Rl × Rl → R is of the form κ(x, y) = φ(x)Tφ(y) for

function φ which maps give instance x to some feature space H. The dimensionality

of feature space H is denoted as dl and can be infinite. Some commonly used kernels

include polynomial kernels

κ(x,y) = (〈x,y〉+ a)b
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and Gaussian kernels

κ(x,y) = exp

(
−‖x− y‖2

c

)
where a, b and c are the parameters.

5.4.1 Kernelized metric learning for single-modal instances

The squared Mahalanobis distance of two instances in the H space can be

denoted as:

d2
M(φ(xi), φ(xj)) = (φ(xi)− φ(xj))

TM(φ(xi)− φ(xj)) (5.5)

Where Mk is p.s.d matrix in H space. Learning metric Mk in kernel space given

finite pairs of instances being similar or dissimilar is an ill-posed problem since the

dimensions of Mk can be infinite.

Kernelized metric learning does not explicitly learn M. As proved in [102], for

the following problem,

min
M∈S+

d

tr(M) (5.6)

s.t. d2
M(φ(xi), φ(xj)) ≤ µ if yij = 1

d2
M(φ(xi), φ(xj)) ≥ β if yij = −1

the optimal solution is of the form M = Φ(X)AΦ(X)T and A is a P.S.D matrix. X

and Φ(X) are defined as [x1, . . . ,xN ] and [φ(x1), · · · , φ(xN)] respectively assuming

N training samples.
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Therefore,(5.6) is equivalent to the following optimization problem,

min
A∈S+

d

tr(AK) (5.7)

s.t. (Ki −Kj)
TA(Ki −Kj) ≤ µ if yij = 1

(Ki −Kj)
TA(Ki −Kj) ≥ β if yij = −1

where K ∈ RN×N is defined as Φ(X)TΦ(X) and it is a p.s.d kernel matrix. Kij =

κ(xi, xj) and Ki = [κ(x1, xi), · · · ,κ(xN , xi)]
T ∈ RN×1. Note that the computation

of K only requires dot products without carrying out the mapping φ and K can be

precomputed from the training data. This makes kernelized metric learning almost

the same as linear metric learning.

5.4.2 Kernelized Hierarchical Multimodal Metric Learning

Corresponding to (5.5) for single-modal instances, the squared Mahalanobis

distance of two multimodal instances in the kernel space can be denoted as:

d2
M(φ(Xi), φ(Xj)) =

1

K

K∑
i=1

d2
Mk

(φk(x
(k)
i ), φk(x

(k)
j )) (5.8)

=
1

K

K∑
i=1

(φk(x
(k)
i )− φk(x(k)

j ))TMk(φk(x
(k)
i )− φk(x(k)

j )).

Let Mk = Φk(X
(k))AkΦk(X

(k))T for k = 1, 2, · · · , K. Ak is (p.s.d) matrix for k =

1, . . . , K. X(k) and Φk(X
(k)) are defined as [x

(k)
1 , · · · ,x(k)

N ] and [φk(x
(k)
1 ), · · · , φk(x(k)

N )]

respectively assuming N training samples for the kth modality. Note that here the

training samples may or may not have labels in real-settings and X(k)(k = 1, . . . , K)

can be constructed by concatenation of the data samples from given similar pairs

and dissimilar pairs.
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In order to efficiently learn multiple metrics for multiple modalities and capture

the relationships among them, we enforce Ak, k = 1, · · · , K to satisfy the following

condition

Ak = PT
kMPk, k = 1, · · · , K, (5.9)

where Pk ∈ Rd×N and d ≤ N . Also, M is required to be a p.s.d matrix. Therefore,

metrics in the kernel space for the K modalities satisfy

Mk = ΦK(X(k))PT
kMPkΦK(X(k))T , k = 1, · · · , K, (5.10)

By enforcing (5.10), we establish the relationships among the different modal-

ities. As a result, we can formulate the Kernelized Hierarchical multimodal metric

learning (KHM3L) algorithm as the following optimization problem with slack vari-

ables εij > 0 introduced for constraints,

min
M∈S+

d

tr(M) + γ
K∑
k=1

tr(PkK(k)PT
k ) (5.11)

s.t.
1

K

K∑
k=1

d2
M(PkKi

(k),PkKj
(k)) ≤ µ+ εij if yij = 1

1

K

K∑
k=1

d2
M(PkKi

(k),PkKj
(k)) ≥ β − εij if yij = −1.

where K(k) is defined as Φk(X
(k))TΦk(X

(k)) for the kth modality and it is a p.s.d ker-

nel matrix. Kij
(k) = κk(x

(k)
i , x

(k)
j ) and Ki

(k) = [κk(x
(k)
1 , x

(k)
i ), · · · ,κk(x(k)

N , x
(k)
i )]T ∈

RN×1.

Here γ controls the relative contribution to the cost function between PkK(k)PT
k

and M. µ and β are non-negative real numbers which specify the upper bound for

distance of two similar instances and lower bound for distance of two dissimilar

instances, respectively.
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5.4.3 KHM3L-based multimodal classification

Once Pk and M are learned, we can easily get L such that LTL = M through

matrix decomposition. Then the multi-modal data

Xi = {x(1)
i , · · · , x(K)

i }

can be transformed to

X̂i = {LP1Ki
(1),LP2Ki

(2), · · · ,LPKKi
(K)}.

Concatenation of all the projected features can be used with various classification

algorithms like KNN and SVM.

5.5 Optimization

5.5.1 Optimization for HM3L

To solve the proposed optimization problem (5.4), we apply hinge-loss function

to get rid of the constraints which results in an unconstrained optimization problem

as follows

min
M∈S+

d

tr(M) + γ

K∑
k=1

‖Pi‖2
F (5.12)

+ αC
∑

(Xi,Xj)∈S

[
1

K

K∑
k=1

d2
M(Pkx

(k)
i ,Pkx

(k)
j )− µ

]
+

+ (1− α)C
∑

(Xi,Xj)∈D

[
β − 1

K

K∑
k=1

d2
M(Pkx

(k)
i ,Pkx

(k)
j )

]
+

where C is a positive number that controls the relative contribution between the

constraints on the metric and the constraints on the data samples, α is a constant
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that balances the relative contribution between the pairs from similar set and pairs

from dissimilar set. Let L(M; P1,P2, ...,PK) denote the above cost function we are

trying to minimize. It is a bi-convex optimization problem when we consider Pk

(k = 1, 2, ..., K) together as P. We iteratively solve for M and P by updating one

with the other fixed.

The hinge-loss function indicates that only pairs of samples that violate the

distance constraints will make contributions to the overall cost function. For no-

tational convenience, let AtS,P , AtD,P , AtS,M and AtD,M denote active sets at time t.

AtS,P (AtD,P ) means set for similar (dissimilar) pairs that violate the distance con-

straint when we fix Pk to update M. Similarly, AtS,M (AtD,M) means set for similar

(dissimilar) pairs that violate the distance constraint when we fix M to update Pk.

At
S,P = {(Xi, Xj) ∈ S|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≥ µ}

At
D,P = {(Xi, Xj) ∈ D|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≤ β}

At
S,M = {(Xi, Xj) ∈ S|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≥ µ}

At
D,M = {(Xi, Xj) ∈ D|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≤ β}.

Updating M

Fixing Pk, projected sub-gradient method [121] can be applied to solve for M.

It involves two key steps.
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Step 1:

Mtmp = Mt − ηgt(M), (5.13)

where gt(M) is the gradient of L(M) at time t and it is derived as,

gt(M) = Id×d + Cα
∑

(Xi,Xj)∈At
S,P

[
1

K

K∑
k=1

Pk,t−1B
(k)
i,j PT

k,t−1

]
+

C(1− α)
∑

(Xi,Xj)∈At
D,P

[
− 1

K

K∑
k=1

Pk,t−1B
(k)
i,j PT

k,t−1

]
(5.14)

Where B
(k)
i,j = (x

(k)
i − x

(k)
j )(x

(k)
i − x

(k)
j )T is a rank 1 matrix.

Step 2:

Mt+1 = VT [Σ]+V, (5.15)

where VTΣV is the eigenvalue decomposition of Mtmp. Projecting Mtmp onto the p.s.d

cone can be done by thresholding the eigenvalues by keeping the positive eigenvalues and

setting the negative ones to be 0.

Updating P

Fixing M, each Pk can be updated separately through gradient descent as

Pk,t = Pk,t−1 − ηgt(Pk), k = 1, 2, ...,K, (5.16)

where gt(Pk) is the gradient of L(Pk) at time t and it is derived as

gt(Pk) = 2γPk,t−1 + Cα
∑

(Xi,Xj)∈At
S,M

[
2

K
MtPk,t−1B

(k)
i,j

]
+

C(1− α)
∑

(Xi,Xj)∈At
D,M

[
− 2

K
MtPk,t−1B

(k)
i,j

]
(5.17)

The overall Hierarchical Multimodal Metric Learning (HM3L) algorithm is summarized

in Algorithm 1.
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Algorithm 4: Hierarchical Multimodal Metric Learning (HM3L)

Inputs:

S = {(Xi, Xj)|yij = 1}, D = {(Xi, Xj)|yij = −1}, positive integer γ, α, η,

µ, β, C and maximum iteration T .

Initialization:

To initialize Pk (k = 1,2,...,K):

construct Xk ∈ Rlk×N of x
(k)
i from S and D;

perform PCA on Xk to obtain Pk,0 ∈ Rd×lk .

To initialize M:

set M0 = Id×d.

Main loop:

for t = 1 : T do

calculate AtS,P and AtD,P to update M through (5.14), (5.13) and (5.15);

calculate AtS,M and AtD,M to update Pk through (5.17) and (5.16).

end

Outputs:

Pk (k = 1, 2, . . . , K) and M.
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5.5.2 Optimization for KHM3L

First, we transform the original multimodal instance pairs. Given similar (dissim-

ilar) multimodal instance pairs set S (D), construct Xk ∈ Rlk×N of x
(k)
i from S and D

(for k = 1, . . . ,K) and compute the kernel matrix K(k) = Φk(X
(k))TΦk(X

(k)) using the

kernel function κk. Then, redefine

S = {(Ki,Kj)|yij = 1}

and

D = {(Ki,Kj)|yij = −1}

where Ki = {K(1)
i , · · · ,K(K)

i }.

The optimization of KHM3L follows similar steps for that of HM3L. The optimiza-

tion problem denoted by (5.11) is equivalent to the following unconstrained optimization

problem

min
M∈S+

d

tr(M) + γ

K∑
k=1

tr(PkK(k)PT
k ) (5.18)

+ αC
∑

(Ki,Kj)∈S

[
1

K

K∑
k=1

d2
M (PkKi

(k),PkKj
(k))− µ

]
+

+ (1− α)C
∑

(Ki,Kj)∈D

[
β − 1

K

K∑
k=1

d2
M (PkKi

(k),PkKj
(k))

]
+

where the hyperparameters C and α are the same as in (5.12). Let L(M; P1,P2, ...,PK)

denote the above cost function and as this is still a bi-convex optimization problem, we

iteratively solve for M and P by updating one with the other fixed.
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Active sets AtS,P , AtD,P , AtS,M and AtD,M at iteration t are defined as

At
S,P = {(Ki,Kj) ∈ S|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1Ki

(k),Pk,t−1Kj
(k)) ≥ µ}

At
D,P = {(Ki,Kj) ∈ D|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1Ki

(k),Pk,t−1Kj
(k)) ≤ β}

At
S,M = {(Ki,Kj) ∈ S|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1Ki

(k),Pk,t−1Kj
(k)) ≥ µ}

At
D,M = {(Ki,Kj) ∈ D|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1Ki

(k),Pk,t−1Kj
(k)) ≤ β}.

Updating M

Updating M requires the same two steps as specified by (5.13) and (5.15). gt(M)

is derived as,

gt(M) = Id×d + Cα
∑

(Ki,Kj)∈At
S,P

[
1

K

K∑
k=1

Pk,t−1B
(k)
i,j PT

k,t−1

]
+

C(1− α)
∑

(Ki,Kj)∈At
D,P

[
− 1

K

K∑
k=1

Pk,t−1B
(k)
i,j PT

k,t−1

]
(5.19)

Where B
(k)
i,j = (Ki

(k) −Kj
(k))(Ki

(k) −Kj
(k))T .

Updating P

Fixing M, each Pk can be updated separately through gradient descent as

Pk,t = Pk,t−1 − ηgt(Pk), k = 1, 2, ...,K, (5.20)
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where gt(Pk) is the gradient of L(Pk) at time t and it is derived as

gt(Pk) = 2γPk,t−1K(k) + Cα
∑

(Ki,Kj)∈At
S,M

[
2

K
MtPk,t−1B

(k)
i,j

]
+

C(1− α)
∑

(Ki,Kj)∈At
D,M

[
− 2

K
MtPk,t−1B

(k)
i,j

]
(5.21)

The overall Kernelized Hierarchical Multimodal Metric Learning (KHM3L) algorithm is

summarized in Algorithm 2.

5.6 Experiments

To illustrate the effectiveness of our method, we present experimental results on four

publicly available multimodal datasets: RGB-D Object dataset [14], CIN 2D3D object

dataset [88], SUN RGB-D dataset [15] and NUS-WIDE dataset [122]. The details of

these datasets, experimental setups and experimental results are given in the following

subsections.

For experiments on each dataset, we include (1) the baseline result (without metric

learning) obtained by certain features plus either NN or SVM classifiers depending on

which was used to report the baseline result, (2) the proposed HM3L method as well as

other publicly available multiple metrics learning methods [118,120] to first transform the

features used in the baseline result, then apply NN or SVM classifier, (3) other methods

which reported the best results on that experiment.

5.6.1 Object recognition on RGB-D Object dataset

RGB-D Object dataset [14] is a large scale multi-view dataset for 3D object recog-

nition, segmentation, scene labeling and so on. It consists of video recordings of 300
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Algorithm 5: Kernelized Hierarchical Multimodal Metric Learning (KHM3L)

Inputs:

S = {(Xi, Xj)|yij = 1}, D = {(Xi, Xj)|yij = −1}, kernel functions κk with

their associated parameters (k = 1, . . . , K), positive real numbers γ, α, η, µ,

β, C and maximum iteration T .

Preprocessing:

To transform multimodal instance (k= 1,2,...,K):

construct Xk ∈ Rlk×N of x
(k)
i from S and D ;

compute kernel matrix: K(k) = Φ(X(k))TΦ(X(k)).

Redefine S = {(Ki,Kj)|yij = 1};

Redefine D = {(Ki,Kj)|yij = −1}.

Initialization:

To initialize Pk (k = 1,2,...,K):

perform PCA on K(k) to obtain Pk,0 ∈ Rd×N .

To initialize M:

set M0 = Id×d.

Main loop:

for t = 1 : T do

calculate AtS,P and AtD,P to update M through (5.19), (5.13) and (5.15);

calculate AtS,M and AtD,M to update Pk through (5.21) and (5.20).

end

Outputs:

Pk (k = 1, 2, . . . , K) and M.
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everyday objects organized into 51 different categories. The video recordings were cap-

tured by cameras mounted at 3 different elevation angles of 300, 450 and 600. A single

RGB-D frame consists of both an RGB image and a depth image. Evaluation protocol for

various computer vision tasks such as instance recognition and category recognition were

set in [14]. RGB-D Images were sampled every 5th frame of the videos and in total about

45,000 RGB-D images were collected.

Kernel descriptors [123] [124] were extracted as features for RGB images and depth

image. For RGB images, the LBP kernel descriptor, Gradient kernel descriptor and nor-

malized color kernel descriptor were extracted. For depth images, the gradient kernel

descriptor and the LBP kernel descriptor were extracted from depth images; normal ker-

nel descriptor and size kernel descriptor were extracted from point clouds which were

converted from the depth images. For each kernel descriptor, object-level features were

obtained from 1000 dimensional basis vector for 1 × 1, 2 × 2, 3 × 3 pyramid sub-regions.

The basis vector was learned by K-means on about 400,000 sample kernel descriptors from

training data. The dimensionality of each kernel descriptor is (1 + 4 + 9)× 1000 = 14000;

principal component analysis was used to reduce dimensionality to 1000. After feature ex-

traction, each RGB-D image was represented by seven kernel descriptors and each kernel

descriptor is 1000 dimensional vector.

Experimental Setup

For the instance recognition experiment, images corresponding to videos captured at

angles 300 and 600 were used for training, and images corresponding to videos captured at

angle 450 were used for testing. For the category recognition experiment, one object was

randomly chosen and left out from each category for testing and all views of the remaining
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objects were used for training. Ten trials were repeated for category recognition.

For the instance and category recognition tasks, we first learn multiple metrics

for seven kernel descriptors using the similar and dissimilar set of the RGB-D images

generated from the training data. We then perform linear SVM classification [125] based

on the learned metrics. We also compare the performance of our method with the results

reported in [103] which are based on deep learning-based methods for RGB-D image

classification.

Methods RGB Depth RGB-D

Lai [14] 60.7 46.2 74.8

Bo [124] 90.8 54.7 91.2

Blum [126] 82.9 - 90.4

HMP [127] 92.1 51.7 92.8

MMSS [103] - - 94.0

PMML [120] + linear SVM 92.7 53.4 92.9

HMML [118] + linear SVM 90.0 51.9 92.1

HM3L + linear SVM 93.34 55.6 95.0

Table 5.1: Instance recognition accuracy on RGB-D Object dataset.

Experiment Results

Classification results for instance recognition and category recognition are shown in

Table 5.1 and Table 5.2 respectively. From these tables, we made the following obser-

vations. (1) the proposed HM3L-based classification method outperform the best results

obtained from MMSS [103] which applies deep architectures on the RGB-D images for

both instance recognition testing on over 13800 instances and category recognition over-
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Methods RGB Depth RGB-D

Lai [14] 64.7±2.2 74.5±3.1 83.8 ± 3.5

Bo [124] 80.7±2.1 80.3±2.9 86.5 ±2.1

Blum [126] - - 86.4 ±2.3

HMP [127] 82.4± 3.1 81.2± 2.3 87.5 ±2.9

MMSS [103] - - 88.5 ± 2.2

PMML [120] + linear SVM 80.2 77.7 ± 2.4 88.5 ± 1.4

HMML [118] + linear SVM 75.8± 3.2 77.4 ± 2.4 87.3 ± 1.8

HM3L + linear SVM 81.0 ± 2.7 79.1 ± 2.4 89.2± 1.6

Table 5.2: Category recognition accuracy on RGB-D Object dataset.
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Figure 5.2: Confusion matrix for Instance recognition result.
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Figure 5.3: Confusion matrix for 8th trial category recognition result.

Figure 5.4: Examples of prediction errors in category recognition experiment.

all ten trials. (2) The proposed HM3L algorithm can boost the classification accuracy

compared to the case where metrics learning was not performed. (3) HM3L-based multi-

modal classification outperforms other multiple metrics learning-based classification and

this shows that the idea of capturing the relationship for different multiple metrics can

help to learn more appropriate distance measures.

Confusion matrices of classification results based on the proposed algorithm are

shown in Figure 5.2 for instance recognition experiment and in Figure 5.3 for the 8th

trial of category recognition experiment. The testing data of recognition experiment are

placed such that testing samples of the same objects are put together and objects from
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the same category are grouped together. As we can see from Figure 5.2, for each of

300 objects, most samples are classified correctly (diagonal) and many errors are made

due to the misclassification of certain samples to other objects from the same category.

Examples of misclassification in category recognition is shown in Figure 5.4. For each

column, the objects on top was misclassified to the category represented by certain object

in the bottom. We can see that errors occur due to similar color and shape.

5.6.2 Object recognition on CIN 2D3D dataset

CIN 2D3D object classification dataset [88] contains segmented color and depth

images of 154 objects from eighteen categories of common household and office objects.

Each category contains between three to fourteen objects. Each object was recorded using

a high-resolution color camera and a time-of-flight rang sensor. Objects were rotated using

a turn table and snapshots taken every ten degrees and yields 36 views per object. Each

view is one data sample consisting of RGB image and Depth image. Following the similar

procedures used to extract kernel descriptors for samples in RGB-D object dataset, we

also extract kernel descriptors for data samples in 2D3D dataset.

Experiment Results

The evaluation protocol for category classification was set in the original paper [88].

six objects per category were used for training and remaining objects were used for testing.

For each object, eighteen views are selected for training and eighteen views for testing.

The training set consisted of 82 objects with a total of 1476 views. The test set contained

74 objects with 1332 views. Same methods as included in RGB-D dataset are evaluated.

Classification results for category recognition are shown in Table 5.3. As can be seen from
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this table, the proposed HM3L-based multimodal classification gives the best performance

on average.

Methods RGB Depth RGB-D

Browatzki [88] 66.6 74.6 82.8

HMP [127] 86.3 87.6 91.0

MMSS [103] - - 91.3

PMML [120] + linear SVM 90.6 82.7 91.8

HMML [118] + linear SVM 86.8 83.4 90.8

HM3L + linear SVM 89.9 86.4 92.9

Table 5.3: Category recognition accuracy (in %) on CIN 2D3D dataset.

5.6.3 Scene Categorization on SUN RGB-D dataset

SUN RGB-D dataset [15] consists of 10355 RGB-D scene images including 3784

Kinect v2 images, 1159 Intel RealSense images as well as 1449 images taken from the

NYU Depth Dataset V2 [90], 554 scene images from the Berkeley B3DO Dataset [89], and

3389 Asus Xtion images from SUN3D videos [91]. We choose the same Places-CNN [128]

scene features of dimension 4096 for both RGB image and depth image which were used

to report the baseline results in [15].

Experimental Results

We followed the standard experimental setup for scene categorization task according

to [15]. Specifically, nineteen scene categories with more than eighty images are used.

These scene categories are bathroom, bedroom, classroom, computer room, conference
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Figure 5.5: Confusion matrix for scene recognition result.
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room, corridor, dining area, dining room, discussion area, furniture store, home office,

kitchen, lab, lecture theatre, library, living room, office, rest space, study space.

The train and test split is available in [15]. In total, 4845 samples are used for

training and 4659 samples are used for testing. The standard average categorization

accuracy is used for evaluation. We apply the proposed HM3L method to the Places-CNN

features, transform the original features with the learned matrices, and then apply one-vs-

all rbf SVM for classification. The scene category recognition results are shown in Table

5.4 and the confusion matrix of scene recognition results based on the proposed algorithm

is shown in Figure 5.5.

From results, we made the following observations. (1) the proposed HM3L-based

classification method outperformed the best results obtained from [129, 130]. (2) The

proposed HM3L algorithm as well other two multiple metrics learning algorithms can

significantly boost the classification accuracy compared to the baseline case in which met-

rics learning was not performed. (3) HM3L-based multimodal classification outperforms

other multiple metrics learning-based classification and this again shows the importance

of capturing the relationship for different multiple metrics in the learning process.

5.6.4 Tagged image classification on NUS-WIDE dataset

The NUS-WIDE dataset [122] consists of 269,648 web images and tags from Flickr.

For a fair comparison with previous results reported in [117], same subset of tagged im-

ages, same train/test splitting, same sets of similar (dissimilar) pairs of instances and

same feature extraction procedures are applied. A subset of 1521 tagged images are used.

These tagged images consist of 30 classes (actor, airplane, bicycle, bridge, buddha, build-

ing, butterfly, camels, car, cathedral, cliff, clouds, coast, computers, desert, flag, flowers,
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Methods RGB Depth RGB-D

Place-CNN + linear SVM [15] 35.6 25.5 37.2

Place-CNN + rbf SVM [15] 38.1 27.7 39.0

Liao [131] 36.1 - 41.3

Zhu [130] - - 41.5

Wang [129] - - 48.1

PMML [120] + rbf SVM 40.7 30.5 44.2

HMML [118] + rbf SVM 47.9 32.6 51.1

HM3L + rbf SVM 48.6 33.2 52.3

Table 5.4: Scene categorization accuracy (in %) on SUN RGB-D dataset.

food, forest, glacier, hills, lake, leaf, monks, moon, motorcycle, mushrooms, ocean, police,

pyramid) and roughly fifty tagged images per class are randomly selected. By randomly

splitting the dataset, 765 tagged images are used as training data and the remaining are

used as testing data. From the training data, 9613 pairs of similar instances and 10067

pairs of dissimilar instances are selected to learn distance metrics. For images, 1024-D bag

of visual words based on SIFT descriptors is extracted to represent the image modality; for

tags, 1000-D bag of words is extracted to represent the associated tag modality. Therefore,

one instance of tagged image is represented by feature vectors of two modalities.

Experiment Setup

For every approach considered, metrics are first learned. Then, KNN classification

under the learned metrics is performed using training and testing data. The value of K is

chosen to be 1, 3, 5, 10 and 20. We compare the performance of our method with those of

”Xing + Original”, ”ITML+Original”, ”Xing + MWH”, ”ITML + MWH”, ”MKE” [132],
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Methods Xing+Original ITML+Original Xing+MWH ITML+MWH MKE [132] Xie [117] PMML [120] HMML [118] HM3L

1-NN 0.8995 0.8995 0.8995 0.9286 0.8056 0.9352 0.9233 0.9140 0.9524

3-NN 0.8108 0.6653 0.8849 0.8929 0.6944 0.9021 0.9220 0.9246 0.9431

5-NN 0.6971 0.4868 0.8426 0.8519 0.5860 0.8849 0.9299 0.9114 0.9418

10-NN 0.4775 0.2394 0.7646 0.7394 0.4405 0.8333 0.9139 0.9008 0.9339

20-NN 0.1548 0.0450 0.6230 0.4841 0.1746 0.7130 0.9074 0.8876 0.9223

Table 5.5: KNN Classification Accuracy under learned metrics for tagged images.

Heterogeneous Multi-Metric Learning (HMML) [118] and PMML [120]. ”Xing+Original”

and ”ITML+Original” methods essentially apply algorithms proposed in [3] and [98] on

the concatenated feature vectors from different modalities. Similarly, ”Xing+MWH” and

”ITML+MWH” correspond to the algorithms combined with the MWH model proposed

in [117]. All parameters are tuned using cross-validation on training data.

Experimental Results

Table 5.5 shows the KNN classification accuracies of different methods. As can be

seen from the table, the proposed method performed the best. This experiment clearly

shows that our method can provide better distance measures which can enhance the per-

formance of a classification algorithm.

To see whether the proposed algorithms converge, we empirically show the conver-

gence of our algorithm by plotting the normalized cost function values versus iterations.

From Figure 5.6, we can observe that the proposed algorithm converges in a few iterations.

5.7 Complexity Analysis

To analyze the computational complexity of the proposed methods, each step in-

volves various matrices operation. In general, the complexity of matrix multiplication for
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Figure 5.6: Normalized cost function over iterations.

a m × n matrix and a n × p matrix is O(mnp) and the complexity of matrix addition is

O(mn) for two m × n matrices. The complexity of matrix inversion and singular value

decomposition is O(n3) for an n× n matrix.

For simplicity, Let’s assume the number of modalities is K; the dimension of matrix

M is d×d; the dimension of the feature vector corresponding to different modality is l and

thus the dimension of matrix Pk (k = 1, . . . ,K) is d × l; the number of training samples

is N ; set S consists of NS similar pairs; set D consists of ND dissimilar pairs; the number

of iterations is T .

For the proposed HM3L algorithm, the complexity of initialization is O(KNl2 +

d2); the complexity of the main loop is T × O((NS + ND)K(d2 + ld + ld2) + d3). The

overall complexity for HM3L algorithm is O(T (NS +ND)Kld2). The complexity analysis

for KHM3L algorithm can be similarly done and the overall complexity is O(T (NS +

ND)KNd2).
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5.8 Conclusions

In this chapter, we proposed linear and kernelized hierarchical multimodal met-

ric learning algorithm which can efficiently learn multiple metrics for multi-modal data

while fully exploring the relationships among these metrics. Experimental results on four

datasets show that the proposed metric learning algorithm outperforms other metric learn-

ing algorithms dealing with multi-modal data and provide the best performance for all the

experiments considered. We view feature learning as a different problem and only focus

on learning discriminative metrics for multimodal data in order to improve the multi-

modal classification accuracy. As we separate the feature learning process from the metric

learning process, the proposed approach is quite general and can be applied to many dif-

ferent applications with many different feature types. Especially, since many computer

vision and image processing problems involve dealing with multiple descriptors and thus

can be considered in multi-modal settings, the proposed algorithms can be applied where

appropriate distance metrics are required and can boost the performance of related tasks.
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Chapter 6: Conclusions and Future Research

This dissertation was initially motivated by the challenges in building active au-

thentication system on mobile platforms and was further extended to exploring general

multimodal recognition (classification) problems which arise in many computer vision and

machine learning problems.

The Active Authentication dataset (UMDAA) we built became a useful resource for

studying touch data and face images for active authentication problems. In Chapter 2, we

designed kernel sparse representation-based classifier and kernel dictionary learning-based

classifers for touch gestures. Experiments on screen touch data of UMDAA datasets as

well as two publicly available screen touch datasets showed that the kernel dictionary

can be a potential signature for user authentication on mobile platforms. Cross-session

experiments showed a significant drop in the performance of all the methods. This problem

can be viewed as domain adaptation problem which was addressed in Chapter 3.

In Chapter 3, we proposed a sparsity-based framework for solving the domain adap-

tion problems. The proposed DASRC algorithm is applicable to single-source domain,

multi-source and heterogeneous domain adaptation problems. We proposed an iterative

algorithm consisting of the ADMM method and the SOC method for solving the optimiza-

tion problem. Extensive experiments on the UMDAA dataset showed that our method

can perform better than many state-of-the-art domain adaptation methods.
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After considering screen touch data and face data separately, we focused on devel-

oping efficient fusion algorithms in order to provide better performance using multiple

sources of data than using any single source of data by itself. In Chapter 4, we proposed

multi-task, multivariate low-rank and joint sparse representation-based methods for mul-

timodal recognition. Our methods can be viewed as a generalized version of multivariate

low-rank and joint sparse regression, where low-rank and joint sparse constraints are im-

posed across all the modalities. We further explored common representation across all

modalities in order to get a more robust representation at some cost of losing information.

Efficient algorithms based on ADMM were derived to solve the proposed problems and

extensive experimental results on UMDAA dataset as well as other multimodal recognition

datasets demonstrated the robustness and effectiveness of the proposed algorithms.

In Chapter 5, we proposed noval multimodal metric learning algorithm and its ker-

nel extension which can learn multiple metrics simultaneously for multimodal data in

order to improve multimodal classification performance. The proposed formulation takes

into account both the different characteristics exhibited in different modalities and the

relationship among the multiple metrics. Experimental results for tagged image classifi-

cation, GBD object recognition and the RGBD scene recognition problems showed that

the proposed metric learning algorithm outperformed other metric learning algorithms

dealing with multi-modal data and provide the best performance for all the experiments

considered.

The multimodal learning algorithms proposed in Chapter 4 and Chapter 5 are gen-

eral and are suitable for many different applications with many different feature types.

Since many computer vision and machine learning problems involve dealing with multiple

descriptors and thus can be considered in multi-modal settings, the proposed multimodal
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learning algorithms can boost the performance of related tasks.

In the future, we plan to study the interactions and inferences among different

modalities in multimodal problems which arise in many applications and are receiving a

lot of attention [133] [134] [135]. A few specific problems of interest are as follows. (1) We

would like propose efficient algorithms to transfer knowledge learned from one modality

to other modalities to improve classification, clustering and retrieval performance. (2)

Similar to image captioning [135], we would like to explore models to generate data of one

modality from other modalities.
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