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This work provides a risk-informed decision-making methodology to improve liquid
rocket engine program tradeoffs with the conflicting areas of concern affordability,
reliability, and initial operational capability (IOC) by taking into account
psychological and economic theories in combination with reliability engineering.
Technical program risks are associated with the number of predicted failures of the
test-analyze-and-fix (TAAF) cycle that is based on the maturity of the engine
components. Financial and schedule program risks are associated with the epistemic
uncertainty of the models that determine the measures of effectiveness in the three
areas of concern. The affordability and IOC models’ inputs reflect non-technical and
technical factors such as team experience, design scope, technology readiness level,
and manufacturing readiness level. The reliability model introduces the Reliability-

As-an-Independent-Variable (RAIV) strategy that aggregates fictitious or actual hot-

fire tests of testing profiles that differ from the actual mission profile to estimate the



system reliability. The main RAIV strategy inputs are the physical or functional
architecture of the system, the principal test plan strategy, a stated reliability-by-
credibility requirement, and the failure mechanisms that define the reliable life of the
system components. The results of the RAIV strategy, which are the number of
hardware sets and number of hot-fire tests, are used as inputs to the affordability and
the IOC models. Satisficing within each tradeoff is attained by maximizing the
weighted sum of the normalized areas of concern subject to constraints that are based
on the decision-maker’s targets and uncertainty about the affordability, reliability, and
IOC using genetic algorithms. In the planning stage of an engine program, the
decision variables of the genetic algorithm correspond to fictitious hot-fire tests that
include TAAF cycle failures. In the program execution stage, the RAIV strategy is
used as reliability growth planning, tracking, and projection model.

The main contributions of this work are the development of a comprehensible
and consistent risk-informed tradeoff framework, the RAIV strategy that links
affordability and reliability, a strategy to define an industry or government standard
or guideline for liquid rocket engine hot-fire test plans, and an alternative to the U.S.

Crow/AMSAA reliability growth model applying the RAIV strategy.
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Chapter 1: Introduction

National prestige and military requirements previously dominated the decisions made
during the development of new space transportation systems. Design choices for
various subsystems were driven by the need to maximize performance, to minimize
weight, and to master new technologies. This paradigm has changed, and
affordability, reliability, and Initial Operational Capability (IOC), now elevated to the
same level of importance with a lesser focus on performance optimization, have
become the prime areas of concern in the decision-making process because they drive
the overall operational effectiveness of any future space transportation system.
However, these three areas of concern create a conflict because decision-makers must
make tradeoffs between them.

In that context, liquid rocket engines play a dominant role for the following
three reasons: (1) the engine’s development and production prices are roughly 50
percent of the overall affordability of expendable space transportation systems [1], (2)
the mission success is dominated by the component reliabilities of the propulsion
system (i.e., more than 60 percent of all launch failures are associated to propulsion
system failures) [2], and (3) the overall space transportation system performance is
restricted by the maturity level of the component technologies that generate the
required propulsive power levels (i.e., mainly thrust level and vacuum specific
impulse) [3]. The lack of required maturity levels of enabling technologies is,

however, directly linked to the IOC of the space transportation system. Therefore, the



areas of concern on liquid rocket engine level correspond directly with the areas of
concern on space transportation system level, i.e., affordability, reliability, and IOC.
The reliability of liquid rocket engines is generally obtained by both using the highest
quality materials and conducting costly and lengthy Test-Analyze-And-Fix (TAAF)
hot-fire test cycles that depend on the maturity levels of the component technologies.
Therefore, it is obvious that these three areas of concern are not only interrelated but
also in conflict and that the selection of the best liquid rocket engine system
configuration, which meets the minimum performance requirements, becomes a Risk-
Informed Satisficed Decision-Making (RISDM) problem. This dissertation presents a

strategy for solving this problem.

1.1 Problem Statement

The state-of-the-art modeling approaches for the three dominating decision-making
areas of concern affordability, reliability, and IOC are incomplete. Therefore, the
manufacturers and agencies in the space industry lack a comprehensible and
consistent solution strategy for the selection of the best liquid rocket engine system
configuration [4-9].

Modeling affordability has been advancing since the 1980s due to the
introduction of parametric cost models for the development and production cost for
liquid rocket engines [10-12]. One of these models is the Rocketdyne developed
Liquid Propellant Rocket Engine Cost Model (LRECM) [6] that is implemented in
the contractor version of the NASA/Air Force Cost Model (NAFCOM®) [13].

However, the main shortcoming of the LRECM is the lack of a quantitative link



between the areas of concern affordability and reliability according to Hunt [7] and
his experience on the development costing work for the RS-84 and J2-X liquid rocket
engines. He also mentioned the difficulties he had about the TAAF cycle assumptions
which are strongly related to the reliability modeling and the impact on both the
development cost/price and the IOC.

Modeling reliability includes two aspects: (1) the inherent reliability
assurance modeling techniques and (2) the inherent reliability verification. The
inherent reliability assurance modeling techniques are well advanced and include, for
example, reliability planning and specification, allocation, prediction, Failure Mode
Effects and Criticality Analysis (FMECA), Fault Tree Analysis (FTA) [14] or
Probabilistic Risk Assessment (PRA) for safety related issues [15]. The inherent
reliability verification is based on both analyses and hot-fire tests. However, the
confidence build-up of liquid rocket engine reliability is really obtained by means of
component, subsystem, system development and finally through system qualification
or certification hot-fire tests that feature different testing profiles, i.e., different hot-
fire test durations and operational load points, that include also extreme testing loads
in order to demonstrate design maturity/robustness [16]. Modern multilevel attribute
data aggregation techniques exist to estimate the system level reliability [17-19] but
they lack the capability of aggregating different testing profiles that trigger multiple
failure mechanisms in system components. But how to scope, by means of a hot-fire
test plan, these testing profiles to attain a stated system reliability requirement that
may include TAAF cycle assumptions? No liquid rocket engine hot-fire test plan

standard/guideline exists [4, 5, 20-22], but there is complete agreement about the



strong relationship between mission success (reliability) and the amount of hot-fire
testing [4, 5, 8, 16, 20, 21].

Modeling /OC seems to be straightforward, but it is not because of the
dependency of the development schedule on the other two areas of concern
(affordability and reliability). In addition, the liquid rocket engine performance
requirements drive the complexity of the thermodynamic cycle, the maturity levels of

the enabling technologies, and consequently the scope of the hot-fire test plan.

1.2 Objectives

The main objective of the research described in this dissertation, motivated by the
European initiative to prepare the development of the Next Generation Launcher [23]
and the lack of a hot-fire test plan standard/guideline [20], is the development and
testing of a RISDM methodology that includes quantitative links between the areas of
concern affordability, reliability, and IOC, takes into account technical and non-
technical factors, bases the TAAF cycle assumptions on the Technology Readiness
Level (TRL) or similarly the novelty and maturity of the components, aggregates
testing profiles that are different from the mission profile, accounts for multiple
failure mechanisms, and scopes hot-fire test plans taking into account a stated
Reliability-by-Credibility (R-by-C) requirement in order to equip decision-makers
with a comprehensible and consistent solution strategy for the selection of the best

liquid rocket engine system configuration in early project/program life cycle phases.



1.3 Significance of Dissertation

The RISDM methodology provides a comprehensible framework for tradeoffs that
combines deterministic and probabilistic modeling of the three conflicting areas of
concern (affordability, reliability, and IOC) using technical and non-technical factors
and using the bounded rationality theory as reference framework [24-26]. In that
context, the Reliability-As-an-Independent-Variable (RAIV) strategy is developed
[27] that is also used in a Bayesian alternative to the Crow/AMSAA reliability growth
model [28]. The RISDM methodology is also used to define satisficed hot-fire test

plans given a stated R-by-C requirement [29].

1.3.1 Risk-informed Satisficed Decision-Making Methodology

The RISDM methodology combines psychological and economic theories and is
formulated as a multiobjective satisficing problem that is solved using genetic
algorithms in which the fitness function is defined by a weighted sum of truncated
exponential utility functions that reflect the risk attitude of the decision-maker for
each of the three areas of concern (affordability, reliability, and IOC). The risk
attitude, defined by the effective risk aversion coefficient using the normative target-
based decision theory, determines the shape of the utility functions. The measures of
effectiveness for each of the three utility functions are determined by the
interdependent affordability model, the RAIV strategy (see Section 1.3.2), and the
IOC model, which depend on the decision variables, the number of hot-fire tests.

Risks are expressed as TAAF cycle assumptions, i.e., number of hot-fire test failures,



which are estimated using the novelty and maturity of the system component

technologies and the level of severity of the failure-inducing agents.

1.3.2 Reliability as an independent Variable Strategy

The RAIV strategy addresses the lack of an existing multilevel attribute data
aggregation technique that estimates the system level reliability if both different
testing profiles and multiple failure mechanisms are present. The solution approach to
the RAIV strategy is based on the Bayesian estimation using a blockwise Metropolis-
Hastings algorithm. The likelihood function, in view of the competing risks theory, is
a function of component level reliabilities that reflects the multilevel hot-fire test
strategy for which the data is defined as Equivalent Mission (EQM) in order to
account for the different testing profiles and failure mechanisms. The priors for the
component level reliabilities are based on two-component mixture distributions, i.e., a
composite of a Jeffreys’ prior and a Beta distribution in which the mix parameters
reflect the knowledge transfer factor to account for the novelty and maturity levels of
the component technologies. The validation of the RAIV strategy uses hot-fire test
data from the U.S. liquid rocket engines F-1 and SSME. In addition, it was applied to

the U.S. liquid rocket engine RS-68 and the European liquid rocket engine Vulcain 1.

1.3.3 Reliability Growth Model: a Bayesian Approach

The well-known empirical Duane and analytical Crow/AMSAA models are no longer
best practice approaches to model reliability growth for systems, such as liquid rocket
engines, if different hot-fire testing profiles are used to verify the inherent reliability

[30, 31]. The RAIV strategy is applied to the reliability growth model taking



advantage of the Bayesian updating property. The modeling of the TAAF cycle
accounts also for the inclusion of hot-fire test failures that is typically in reliability

growth testing.

1.4 Overview of Dissertation

This dissertation introduces the RISDM methodology to perform comprehensive and
consistent tradeoffs in early project/program life cycle phases. The RISDM
methodology combines psychological and economic theories and is formulated as a
multiobjective satisficing problem that is solved using genetic algorithms. A central
pillar of the RISDM methodology is the RAIV strategy because it establishes a
quantitative relation between a system level reliability and affordability using the
Bayesian estimation framework. The RAIV strategy is also applied to reliability
growth modeling taking into account the differences between testing profiles and the
mission profile. The application of the RISDM methodology and RAIV strategy is
limited to liquid rocket engines in this research, but these approaches may also be
applied to any other complex decision-making problem that involves conflicting areas
of concern.

This Chapter 1 introduces the decision-making environment for liquid rocket
engines, highlights gaps in the state-of-the-art modeling for the main three areas of
concern (affordability, reliability, and IOC), and discusses the significance of this
dissertation. Chapter 2 reviews previous work on psychological and economic
theories that is relevant for the RISDM methodology. The implemented mathematical

solution techniques of the RISDM methodology require a review of satisficing using



genetic algorithms, computational Bayesian estimation, and the normative target-
based utility-probability duality. The specific decision-making environment of liquid
rocket engines requires also some discussion. Chapter 2 concludes with a brief review
of reliability growth model because the RAIV strategy is also applied in that context.
Chapter 3 describes in detail the mathematical formulation of the RISDM
methodology. It also provides sensitivity analyses for the epistemic uncertainty and
variables of the affordability, reliability, and IOC models. Chapter 4 consists of three
different problems that were solved with the general RISDM methodology and one
discussion on the satisficing approach by comparing single-objective genetic
algorithms with the well-known and frequently used elitist multiobjective non-
dominated sorting genetic algorithms NSGA-II. Each of the problems or the
discussion on satisficing can be read independently from one another; therefore, some
repetition of material from Chapter 3 is inevitable. Section 4.1 describes the RAIV
strategy applied to liquid rocket engine [27], Section 4.2 uses the RAIV strategy to
optimize test plans of liquid rocket engines [29], Section 4.3 applies the RAIV
strategy to reliability growth modeling [28], and Section 4.4 discusses the satisficing
aspect of the RISDM methodology. Chapter 5 concludes this dissertation and

identifies further research directions.



Chapter 2: Literature Review

The RISDM methodology combines various research areas and solution strategies
into a single simulation framework. The literature review is, therefore, centered on
these areas and strategies. It starts with applied decision theory because it is essential
to understand the psychological and economic aspects of decision-making. This also
includes the normative target-based decision-making approach. The implemented
mathematical solution techniques of the RISDM methodology require a review of
satisficing using genetic algorithms and computational Bayesian estimation. The
specific decision-making environment of liquid rocket engines necessitates some
discussion to acquaint the reader with this specific field of engineering. Interested
readers about the theoretical foundations of liquid rocket engines are referred to [3,
32-34]. The Chapter concludes with a brief review of reliability growth modeling

because the RAIV strategy is applied in that context.
2.1 Applied Decision Theory

Howard [35] argues that practical management decision-making problems are far
from novel theoretical theorems or specific models but he defines a structured formal
process for the analysis of decision-making under uncertainty. He stresses the point
that a good decision is a comprehensible decision that includes uncertainties, areas of
concern or objectives, and measures of effectiveness which should result in a good
outcome; one with high value to the decision-maker. However, he also notes that a

good decision may not always result in a good outcome. To provide some theoretical



background or specific models, Section 2.1.1 provides organization decision-making
frameworks, and Section 2.1.2 discusses aspects of normative decision theory based

selection.

2.1.1 Organization Decision-Making

Daft [36] frames decision-making into several organization decision-making
processes such as the Management Science Approach, the Carnegie Model, the
Incremental Decision Process Model, and the Garbage Can Model.

The Management Science Approach is based on mathematical and statistical
techniques for decision problems with well-defined and measureable variables;
however, if the main variables cannot be quantified then even the most sophisticated
model fails.

The Carnegie Model is based on the bounded rationality approach postulated
by Simon [24] and the problemistic search introduced by Cyert and March [37]. The
bounded rationality approach or the rational choice features common decision-
making constraints such as a limited set of alternatives, a relationship that determines
the measure of effectiveness (satisfaction or goal attainment), and the preference-
orderings among the measures of effectiveness. Therefore, the bounded rationality
approach includes the key characteristics of good decisions that were defined by
Howard [35]. The problemistic search tries to quickly find a solution but it does not
search for a perfect solution. The implication of the bounded rationality approach and
problemistic search on organization—level decisions with ambiguous and inconsistent
goals is that the final selection of the best alternative is based on a coalition of the

main stakeholders. The main stakeholders could include internal and even external
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groups. However, the process of coalition implies that decisions will be made to
satistfy with suffice rather than to search for the solution that maximizes the measure
of effectiveness. Based on the process of coalition, Simon [25] introduced the word
“satisfice” to describe this type of decision-making. Manktelow [38] describes
satisficing as portmanteau that combines the sound and the meanings of the two
words “satisfy and suffice.”

Simon [24, 26], Manktelow [38], and Gilboa [39] discuss the differences
between satisficing and maximizing (optimizing) by looking at psychological and
economic theories. In the classical economic theory the notion of satiation is not
accounted for, but it is in psychology theory, which defines the motivation to act as
long as no satisfaction is obtained. In addition, the motivation to attain a certain level
of satisfaction is not fixed, but it is usually specified by an aspiration level that is
based on past experience. If this motivation for satisfaction is reflected against the
business behavior of a company, the main objective of that company would be to try
to satisfice rather than to maximize (optimize) by attaining a certain level of market
share, profit, or sales. The level of attainment is associated with the attained level of
the measure of effectiveness of a particular area of concern, i.e., affordability,
reliability, and IOC in the context of this research.

Mintzberg et al. [40] develop the incremental decision process model (see
Figure 2-1) that is based on empirical evidences from 25 strategic decisions
wherefore no predefined set of alternatives existed, i.e., custom-designed solutions
were found for each decision. The model consists of three phases: identification,

development, and selection and features the main two elements recognition and
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evaluation-choice that are accompanied with the elements diagnosis, search/screen,
design, and authorization. The element recognition refers to opportunities, problems,
and crises. The evaluation-choice utilizes three modes: judgment, bargaining, and
analysis. Despite the fact that the normative literature focuses on the analytic models
that are based on maximizing predetermined utility functions, it is the least applied
approach in the strategic decision-making process because of the inclusion of a large
number of soft factors which are not easily quantitatively modeled. Soelberg [41]
discusses the approaches maximizing and satisficing in that context. In cases where
political considerations with contentious goals are key elements in the strategic
decisions-making, the bargaining selection is, however, applied most often. The
diagnosis element is concerned with the understanding of the cause-effect relationship
and the need to perform the decision-making process. The search/screen and design
elements are the heart of the overall decision-making process because they seek for
ready-made (purchased item or furnished items) or custom-made solutions which are
found in a complex, iterative procedure. The authorization element completes the
decision-making process by selecting the best alternative that was found in the
evaluation-choice element. The incremental decision process model features also
interrupts that are either caused by internal or external forces as well as by new
options for the ready-made or custom made solutions. In that context, Meisl [42]
proposes a space transportation booster engine selection methodology that matches
the main principles of the incremental decision process model approach as depicted
with red marking in Figure 2-1. Mintzberg et al. [40] provide further examples in

which only specific elements of the incremental decision process model were used.
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In addition, Krevor [43] presents a methodology that links cost/price and
reliability for early conceptual design work of space transportation systems. The
methodology follows the incremental decision process model, i.e., the recognition for
the need to design a new space transportation system was declared by the US
president George W. Bush [44] and enforced by NASA. The conceptual design
determines top-level performance requirements and the physical architecture for each
space transportation system configuration. Based on the system configurations, the
reliability models and Cost Breakdown Structures are established and the optimal
configuration selected. One of the problems of Krevor’s methodology is, however,
linked to the cost modeling of the liquid rocket engines. Krevor uses a fixed
reliability figure that is independent from the planned hot-fire test program despite the

agreement about the strong relation as mentioned in Section 1.3.1.
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Figure 2-1: Incremental Decision Process Model
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The last organizational decision-making process model, the garbage can model, is the
most recent model, that is described in Daft [36], which is not comparable with any of
the above described models because it covers multiple flows of organizational
decisions. Only a single flow of organizational decision is of interest in this research;

therefore, the garbage can model is not further discussed.

2.1.2 Normative Decision Theory based Selection

Normative decision theory is a broad field of active research. The early work on
satisficing problems was based on normative decision theory using expected utility
theory for example [26]. In that context, expected utility theory was first addressed by
Bernoulli [45] and then by von Neumann and Morgenstern [46] as well as by Savage
[47]. However, expected utility theory was shortly criticized thereafter as descriptive
model of decision-making under risk by Kahneman and Tversky [48] because
empirical studies indicated the presence of a value function that is concave for gains,
commonly convex for losses, and flatter for gains than for losses. Based on these
empirical studies, Kahneman and Tversky [48] introduce their prospect theory with a
new class of utility function. However, the prospect theory could not describe the
classic Allais paradoxes [49], so an update was needed for the prospect theory, and
that was named cumulative prospect theory [50]. Although the cumulative prospect
theory could account for the Allais paradoxes, 11 new paradoxes arose for which the
cumulative prospect theory led to contradiction or to erroneous predictions [51]. In
order to overcome the identified paradoxes, recent research initiatives by Sewell [52]

and Harrison and Rutstrom [53] focus on the combination of the expected utility
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theory and the prospect theory. Unfortunately, no concluding prescriptive model has
yet been published.

Bordley and LiCalzi [54] and Abbas and Matheson [55] work on another
research direction using the utility—probability duality that was first discussed in
detail by Abbas and Matheson [56]. The important result of the duality approach is
the relation of a target, which is set by the decision-maker, to a unique effective risk

aversion coefficient that is mathematically defined as
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where g is the aspiration equivalent, F (g) is the cumulative density function of the

given lottery, ¥? 1is the effective risk aversion coefficient, and the integrands

{LB, UB} correspond to the lower and upper bound of the utility function. The

effective risk aversion coefficient ¥ , which reflects the decision-maker’s risk

attitudes (risk-neutral, risk-averse, or risk-seeking), is fully determined given the
decision maker’s uncertainty bounds and a target for the specific area of concern. The
utility—probability duality is appealing in the context of this research not only because
of a continuous instead of a zero-one utility scale but also due to the normalization of
different dimensions and ranges of the contradicting areas of concern. Note that
Wilson [57] proposes a specific utility for reliability and survival that is based on
expert elicitation. It features also different risk attitudes but does not elicit a reliability
target or an R-by-C requirement.

The continuous behavior of the normalized areas of concern becomes practical

in the satisficing formulation that is reviewed next.
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2.2 Constrained Multiobjective Satisficing

Decision-making, as just outlined, is based on a satisficing strategy among conflicting
areas of concern in which the satisficing strategy utilizes the classical constrained
multiobjective optimizing using genetic algorithms. So why is then decision-making
not just an optimization problem? Because of a subtle difference between satisficing
and optimizing that is reviewed in Section 2.2.1 followed by the evolutionary

computation in Section 2.2.2.

2.2.1 Satisficing versus Optimizing

Are we optimizers or satisficers? In that context, Odhnoff [58] discusses on the
differences of optimizing and satisficing and concludes:

“...In my opinion there is room for both optimizing and

satisficing models in business economics. Unfortunately, the

difference between 'optimizing' and 'satisficing' is often

referred to as a difference in the quality of a certain choice. It

is a triviality that an optimal result in an optimizing model

can be an unsatisfactory result in a satisficing model. The best

thing would therefore be to avoid a general use of these two

words.”

According to Odhnoff [58], there is, however, a subtle difference between the

optimization and satisficing formulation. Optimization uses only what he calls a base
model whereas the satisficing model uses three submodels: a base model that is

equivalent to the model used in optimization, a seeking process, and an adaptation
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process. Therefore, the main difference is linked to the seeking process that generates
the alternatives and the adaptation process to select the best decision alternative.

Eilon [59] also compares managerial problem solving approaches that are
based on optimizing and satisficing and concludes as follows:

“...True enough, the optimizing philosophy is the one that
prevails in the literature, but experience and observation
suggest that satisficing is the approach that prevails in
practice. There is far more to be gained from scrutinizing and
ranking constraints than in constructing a super utility
function to delight the heart of the optimizer. ...”

Whether we are optimizer or satisficer is not finally concluded in this
research; however, the mathematical formulation of the RISDM methodology
includes the characteristics of a base model and submodels that are used as inputs to a
fitness function. Therefore, the approach should be satisficing if the classification of
Odhnoff [58] is used. In addition, target values and ranges for the three areas of
concern are expressed to include uncertainty which ranges are transferred into bounds
of the measures of effectiveness imposing as a result the constraints of the feasible
solutions. Eilon’s [59] norm setting requirements would classify such a problem
formulation also as satisficing rather than optimizing formulation.

Wierzbicki [60] discusses also the mathematical basis for satisficing decision-
making models and introduces achievement scalarizing functions. These scalarizing

functions feature order preservation and order approximation properties under the
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limited rationality of choice of decision-makers as it is the case for the utility—

probability duality derived utility functions.

2.2.2 Evolutionary Computation

The set of feasible solutions of the satisficing problem is found by applying classical
optimization formulation which, according to Rao [61], may be characterized with
regards to the methods of operation research: mathematical programming techniques,
stochastic process techniques, statistical methods, and modern optimization
techniques.

The nature of the RISDM methodology formulation rules out already the
mathematical programming techniques because these search methods are calculus-
based or enumerative. The calculus-based methods are either indirect or direct that
seek local extrema or local optima using hill climbing techniques. Since the search is
local in scope and requires continuous, unimodal, and easy derivatives of the
objective functions, the application is rather limited. The enumerative schemes, such
as dynamic programming, lack efficiency. The statistical methods transfer the
stochastic programming problem into an equivalent deterministic problem which is
then treated with the classical mathematical programming techniques.

One of the most widely used statistical methods for optimization is based on
the Response Surface Methodology known from the design and analysis of
experiments or robust design approaches. A major drawback of the Response Surface
Methodology approach is that, because the mathematical formulation of the response
surface is based on polynomials, it may not capture multimodal behavior (Kriging

metamodels may be used as remedy to capture multimodal behavior). In addition, the
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fitted surface should be as precise as possible, and this is a function of the
experimental error, the experimental design, and the points located in the design
space. The fraction of design space can be used as combined metrics. However,
enough design points must be planned in order to obtain a constant fraction of design
space level throughout the design space. The number of planned experiments could
easily become as large as 350 to 500 for the problem of this research. Therefore, the
Response Surface Methodology approach is not the most promising solution strategy
because of the inherent experimental error and the high number of required
experiments in comparison to modern optimization techniques that require similar
number of searches. However, the Response Surface Methodology may be used to
estimate metamodels for the RAIV strategy in order to improve the computational
efficiency.

The modern optimization techniques, which are Monte Carlo based algorithms
such as simulated annealing or evolutionary algorithms [62], are the last resort. In this
research, the genetic algorithm, as one of the members of the evolutionary algorithms,
is used to generate the sets of solutions for the satisficing problem. It is, however,
reported that the simulated annealing or the combination of both genetic algorithm
and simulated annealing offer advantages in terms of solution quality and number of
iterations according to Gandomkar and Vakilian [63].

Kuo and Wan [64] discuss on optimal reliability design algorithms and current
research directions. Noteworthy are the hybrid genetic algorithms and the ant colony
optimization method that is a subset of evolutionary computation [62]. A simple

genetic algorithm is a robust population-based direct random search method that can
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be applied to almost all complex reliability problems but lacks computational
efficiency. The remedy of the low computational efficiency is to combine simple
genetic algorithms with heuristic algorithms, simulated annealing or simulated
quenching, steepest ascent/descent methods, or any other local search method
assuming that the local search is only unimodal. Combining the genetic algorithm
with a more efficient algorithm is called a hybrid genetic algorithm.

More recent related applications are the ones by Nahas and Nourelfath [65],
who use a problem-specific ant colony optimization method for optimizing the
reliability of a series system with budget constraints, and Graves and Hamada [19],
who assess the influence of test allocations on the system reliability uncertainty with
multilevel data using a simple genetic algorithm. In addition, Tao et al. [66] apply a
constrained multiobjective satisficing model that featured a linear weighted objective
function and the classical optimization model formulation to an engineering design
optimization problem using a genetic algorithm to generate the Pareto-optimal
solution set. Tamura et al. [67] use a satisficing tradeoff method to solve a
multiobjective combinatorial optimization problem with application to flow shop
scheduling using also a genetic algorithm to generate the Pareto-optimal solution set.

It should be noted that the focus of this research is not on the improvement of
the computational efficiency of optimization algorithms. Therefore, the selected
solution strategy to solve the satisficing problem is based on the implementation of a

genetic algorithm that optimizes a fitness function.
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2.3 Computational Bayesian Statistics

The RAIV strategy is used to determine the measure of effectiveness of the area of
concern reliability. The Bayesian estimation framework provides the proper
mathematical implementation. Section 2.3.1 reviews Bayesian estimation in general,
Section 2.3.2 the prior distribution, Section 2.3.3 the Bayesian aggregation of
multilevel test data, and Section 2.3.4 computational impediments of Bayesian

statistics, respectively.

2.3.1 Bayesian Estimation

Bayesian estimation refers to a statistical framework that looks upon parameters as
random variables that have prior distributions. It is based on Bayes’ Theorem [68] but
extended to the continuous case; therefore, the expression Bayesian estimation is used
according to Miller and Miller [69]. The combination of the prior distribution, which
reflects the a priori information, with the sampling distribution, which models the
evidence, results in the unscaled posterior distribution. This unscaled posterior
provides the shape but does not feature the required properties of a random variable in
order to find probabilities or moments. Therefore, no inference can be made. In order
to obtain a posterior distribution, the unscaled posterior distribution must be scaled so
that it integrates to one. The scaling factor is found by integrating the product of the
prior distribution and sampling distribution. Mathematically, the posterior distribution

is defined by

L(Data|8) 7" (8)
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where ﬂ() is the posterior distribution of the parameter vector € given the evidence

Data, L() is the likelihood or sampling distribution, and 7[0() is set of prior

distributions for the parameters € in the parameter vector € that defines the

parameter space ©.

In the context of this research, the evidence can be either pseudo or actual hot-
fire test results. Note that the word “pseudo” was coined by Martz and Waller [70]
and should mean “pretended” whereas Modarres et al. [71] use the word “fictitious.”
In the planning stage of a project/program, actual hot-fire test results are not
available; therefore, pseudo/fictitious evidence is used to pretend hot-fire test results

(successes or failures). The solution of the p -dimensional integral is usually found

by numerical integration because closed form solutions exist only for sampling
distributions that belong to the exponential family with conjugate prior distributions.
The exponential family includes the continuous distributions Normal, Gamma, and
Beta and discrete distributions Binomial, Poisson, and negative Binomial [72]. The
sampling distributions used in this research are not members of the exponential

family; therefore, numerical integration methods are needed.

2.3.2 Prior Distributions — The Criticism of the Bayesian Approach

Wasserman and Kass [73] and Robert [74] recall that the Bayesian estimation
approach is often criticized because of the subjectivity involved in the generation of
the prior distribution. The influence on the parameter estimation can be negligible,
moderate, or enormous. Prior distributions should reflect the prior information,

including the level of uncertainty, of the values of the parameters of interest.
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In cases where little information is known a priori, the prior distribution may
be dispersed naming the prior diffuse, noninformative, or vague. Depending on the
sampling distribution, certain noninformative prior distributions are common choices
due to their conjugacy, e.g. the binomial sampling distribution is used with a Beta
prior distribution and the Multinomial sampling distribution with a Dirichlet prior
distribution. Weiler [75] studies the sensitivity of different prior distribution shapes
on the posterior distribution and concludes that the impact is negligible unless the
prior distribution dominates the sampling distribution. Pham [76] substantiates the
conclusion of Weiler and further argues as correspondence to the main findings by
Duran and Booker [77] that the sensitivity depends also on the precision of the
numerical code, i.e., round-off errors are very important. He further argues that the
impact on the mean and standard deviation of the posterior distribution are much less
affected from large variations of prior distribution parameters but rather emphasizes
that the prior distribution dominates the sampling distribution for cases with a small
amount of evidence.

In cases where the certainty about a parameter value is high, the prior
distribution is concentrated around that value. Such prior distributions are then called
informative. Information about the parameter values can be found by physical/
chemical theory, computational analysis, previous test results, industry-wide generic
reliability data, past experience, or expert opinions [18]. Siu and Kelly [78] provide
some general advice on developing informative prior distributions in that context.

Waterman et al. [79], Martz and Waller [70], and Modarres et al. [71] present

possible ways to obtain the beta prior distribution parameters based on actual
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evidence, i.e., the liquid rocket engine mission reliability figures in the context of this
research. McFadden and Shen [80] provide the relevant data for various liquid rocket
engine systems.

Krolo [81] and Kleyner [82] present two approaches that allow the inclusion
of computational analyses and past experience with similar products using a
transformation factor or a knowledge and innovation factor. Note that the inclusion of
computational analyses applies only to the method introduced by Krolo. Krolo’s
transformation factor approach is directly applied to the Beta distribution parameters
and is derived from a Failure Mode and Effects Analysis (FMEA) in which risk
priority numbers are used to calculate the transformation factor values that range from
zero to one. Hitziger [83] enhances the work of Krolo and describes a qualitative
approach, using fuzzy logic, and a quantitative approach, using the Kolmogorov-
Smirnov test, to define the transformation factor. Kleyner’s knowledge and
innovation factor approach is used in a two-component mixture of Uniform and Beta
distributions and is found subjectively. Note that the presented methods are applied
only on system level and not on subsystem or component levels.

Kleyner [82] further argues that Krolo’s [81] approach is more adequate for
medium reliability targets (0.90<R<0.98) using previous test results and
computational results whereas his method suits better high reliability demonstration
targets (R>0.98) using field data with only low failure rates. This research work

proves that his argument is too limited.
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2.3.3 Bayesian Test Data Aggregation

Bayesian test data aggregation refers to a statistical approach that combines
multilevel data. The data, attribute or continuous, can be pseudo (fictitious), actual, or
a mixture of pseudo and actual. The Mellin transform and the Monte Carlo methods
have been successfully applied in that context.

The Mellin transform method belongs to a class of transform techniques for
probability modeling. According to Giffin [84], the Mellin transform is useful for
quotients and products of random variables. The latter one is applicable for reliability
estimations. Once the system level random variable is found by means of Mellin
convolution, the two moments mean and variance can be found easily by replacing
the s-argument of the Mellin transform with constants. In that context, Mastran [85]
studies a three component series system using Mellin transform in conjunction with
the Bayesian estimation for component and system level attribute data. Springer and
Thompson [86] apply the Mellin transform for a series system with exponential
failure time distributions and Springer and Byers [87] modeled a mixture of a series
system with exponential and attribute data. More complex systems such as parallel, r-
out-of-k, and combinations of series-parallel components may also be modeled with
the Mellin transform technique. Note that the applications are limited to a two level
structure, i.e., component and system level. The interest in the Mellin transform
method is nowadays limited in favor of the Monte Carlo methods due to the
advancements made in computational Bayesian statistics and the availability of

commercial software packages.
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Modarres et al. [71] discuss three types of Monte Carlo methods: classical
simulation, Bayesian simulation, and Bootstrap. The classical simulation uses the
mathematical formulation of coherent systems and then simulates samples from the
component reliabilities to obtain a system level probability sample from which any
percentile can be calculated. The Bayesian method is similar to the classical except
that the component reliabilities are estimated from posteriors that were generated
from likelihood functions and prior distributions for the model parameters. The
bootstrap, like the jackknife, is a nonparametric resampling method. The approach to
estimate the system level reliability is, however, similar to the classical and Bayesian
approach.

Martz and Duran [88] compare the Maximus (a frequentist method not
reviewed in this research), the bootstrap, and the Bayes Monte Carlo simulation
methods using binomial component level data for various complex systems. Based on
the analyzed systems, none of the three methods was outstanding and no conclusive
statement is made. Note that the applications are limited to a two level structure, i.e.,
component and system.

Martz and Waller [89] present a method to analyze the system reliability of
series-parallel systems using a Bayesian procedure that aggregates either pseudo or
actual data at system, subsystem, and component levels. They noted that a prior paper
by Martz et al. [90] introduces the basics that is, however, limited to series systems.
Martz and Waller claim that the introduced method is the first Bayesian method that

integrates component, subsystem, and system pseudo or actual attribute test data.
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In the context of multilevel data aggregation just described, Bier [91] and
Azaiez and Bier [92] address the concern of aggregation errors in reliability models
with Bayesian updating. They suggest two approaches to overcome this concern: (1)
to update the component priors with component data and propagate up to obtain the
system level posterior or (2) to propagate component priors up to the system prior and
use the system level data to obtain the system level posterior. The problem is,
however, that the two approaches result in different solutions. In order to overcome
this discrepancy a new approach was developed that is discussed next.

Johnson et al. [93] introduce a Bayesian hierarchical estimation approach for
complex multilevel systems that remedy the concerns raised by Bier [91] and Azaiez
and Bier [92] by combining simultaneously all available attribute data and prior
knowledge. The estimation approach expresses the higher system levels in terms of
component reliabilities but maintains the coherent structure of the complex multilevel
system; therefore, the posterior up to the normalization constant becomes a nested
function which can only be solved with a Markov chain Monte Carlo method such as
the Metropolis-Hastings algorithm.

Hamada et al. [17] or Graves and Hamada [19] apply the Bayesian
hierarchical estimation approach for the assessment of system reliability with
multilevel attribute data and the allocation of resources (additional attribute data
collection) in order to minimize the uncertainty of the system reliability within a fixed
budget. The optimal allocation of additional tests was found using a genetic

algorithm.
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The methods reviewed so far are all applied to attribute data. However, they
can be applied to non-binomial data as well. The interested reader is referred to

Thompson and Chang [94], Chang and Thompson [95] or Martz and Baggerly [96].

2.3.4 Computational Impediments of Bayesian Statistics

The p -dimensional integral in the divisor of the posterior distribution becomes the

main impediment of Bayesian estimation because difficult numerical integrations, in
particular if the parameter space is large, need to be performed. Two types of
algorithms are used to draw samples from the posterior distribution: direct methods
and Markov chain Monte Carlo methods [97].

According to Robert and Casella [98], the most common direct methods are
the accept-reject methods, importance-resampling, and envelope/adaptive-rejection-
sampling from log-concave distributions. The direct methods are, however, limited in
application for posteriors with large parameter space because the acceptance
proportion reduces significantly as the number of parameters increases [97]. The
remedy is the Markov chain Monte Carlo method that provides an efficient algorithm
for sampling from posteriors with large parameter space.

Metropolis et al. [99] introduce the Monte Carlo method that was significantly
improved and extended by Hastings [100]; hence, the name Metropolis-Hastings
algorithm.

In a Markov chain, random numbers are simulated from more or less arbitrary

distribution with density 4 ( o | Q('”)) in which m corresponds to the iteration index of
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the chain. The Metropolis-Hastings algorithm either accepts the proposed random

number @ * that is drawn from % ( o] Q(’”)) with acceptance probability

7(6*| Data) h(6"167)
iz'(Q(m) |Data) h(Q*|Q(’”))

Ot(Q('”),Q*):min 1
i.e., 8" equals @* or rejects otherwise the candidate 8%, i.e., 8" = 6" . It can
be shown that the resulting Markov chain converges to the posterior distribution

E(Q|Data) given certain regularity conditions [101]. Note that the posterior

distribution up to the normalization constant is also called unscaled target whereas the
proposal distribution is sometimes called candidate density [97].
Robert [74] defines the regularity condition of an irreducible, aperiodic, and

ergodic chain which property is the detailed balance condition that satisfies the kernel

K(6".0%)=c(6".0%)n(e*16")+[1-r(6")]5,. (6%)

of the Metropolis-Hastings algorithm where r (9('") ) = I a(Q('"), % *) h (Q* X ) dg*

and 56<,,,) denotes the Dirac mass in Q(”’) [98].

The detailed balance condition that satisfies the kernel of a Metropolis-
Hastings algorithm does not provide practical guidance on how to decide if the
simulated Markov chain provides an adequate approximation to the posterior
distribution in order to perform statistical inference. In that context, Robert and
Casella [98] discuss three (increasingly stringent) convergence criteria: convergence
to the stationary distribution, convergence of averages, and convergence to iid

sampling.
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The approaches used for monitoring of the convergence to the stationary
distribution are trace plots of the Markov chain Monte Carlo simulations against the
iterations or standard nonparametric tests such as the Kolmogorov-Smirnov or
Kuiper. Robert and Casella [98] argue that drawing a picture is only adequate for
strong non-stationarities of the analyzed Markov chain but emphasize the use of
standard nonparametric tests. One may wonder what happened to the independence
assumption of statistical tests and call this “statistical terrorism.” Trace plots are,
however, used to estimate the length of the burn-in period of the Markov chain as
pointed by Albert [102]. The convergence of averages is monitored but not limited to
cumulative sums charting according to Yu and Mykland [103] and an analysis of
variance based within and between variance statistics according to Gelman and Rubin
[104]. As for the standard nonparametric tests, statistical terrorism prevails because
the cumulative sums and analysis of variance have statistical assumptions: mainly
independence and to a much lesser extent the underlying distribution of the samples.
The convergence to iid sampling is assessed through the degree of autocorrelation as

a scale-free measure of the strength of statistical dependence using an autocorrelation
function (ACF) plot that depicts the ACF and a 100(1—0()% confidence interval for

the sample ACF. The proper thinning of the Markov chain using the lag of the ACF at
which the sample ACF is below the confidence interval ensures convergence to iid
sampling. Note that the assessment of the convergence criteria remains an active area
of research [105, 106].

Albert [102] addresses also the issue of estimating the standard errors of the

Markov chain in relation to the lack of independence of the samples. As a remedy, he
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describes the batch means method. In this method, the accepted draws are subdivided
into b batches for which the sample mean is calculated and the standard error
approximated.

Last but not least, the autocorrelation and the acceptance rate of the simulated
draws are also closely related, i.e., too low and too high acceptance rates lead to a
high autocorrelation [97]. Based on empirical studies, Gregory [107], Liu [108], and
Graves and Hamada [19] recommend an acceptance rate of 0.35. The YADAS
software features a method to tune the acceptance rate automatically during the burn-
in period by adjusting the standard deviation of the candidate density [109].

Despite the impediments of the Markov chain Monte Carlo based methods,
the Metropolis-Hastings algorithm is attractive for its universal application but may
be detrimental to the convergence properties of the Markov chain. Therefore, several
specific samplers were derived from the very general Metropolis-Hastings algorithm
such as the Metropolis algorithm, the random-walk, the Gibbs sampling, and the Slice
sampler (that is actually a special case of the Gibbs sampling) [74, 97, 98, 108].

The Metropolis algorithm utilizes a symmetric candidate density, i.e.,
h (Q(’") | Q*) =h ( 0% | Q("’)) with acceptance probability

7 (8*| Data)

a(g(rn), g*) = min 1,7[ (g<'"> |Dam)

A special case of the Metropolis algorithm is the random-walk, the one which
was actually considered by Metropolis et al. [99], in which a function symmetric

around zero is used to generate a random number that is added to the most recent
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value of the Markov chain Q('"). However, the major drawback of the random-walk

sampling algorithm is the slow movement around the whole parameter space [97].

The Gibbs sampling and the related Slice sampler are special cases of the
Metropolis-Hastings algorithm and result in an acceptance probability of exactly one.
However, the Gibbs sampler requires the full conditional distribution for each of the
blocks that contain the parameter vector. The full set of all conditional distributions
may be very difficult to derive in complex system reliability models. However, the
strength of the Gibbs sampling and the Slice sampler algorithm is certainly given for
data analysis using regression and multilevel/hierarchical models as given in Robert
and Casella [98] and Gelman and Hill [110] for simple one dimensional models.

MH algorithm or Gibbs sampling? The number of possible implementations
of the Gibbs sampling or the Slice sampler is small compared to the very general
Metropolis-Hastings algorithm. Gibbs sampling is claimed to converge faster but the
differences are often minor or even negligible. More generally speaking, the choice
depends on the problem at hand, i.e., the proposals/hierarchical decomposition. In
addition, people often prefer a method that comes along with a software package such
as WinBUGS (GS for Gibbs sampling) but this sampler may not be necessarily
always the best implementation.

Robert [74] classifies the Gibbs sampling as local and the Metropolis-Hastings
algorithm as global in the sense that the Gibbs sampling provides a better coverage of
the neighborhood of the starting point and the Metropolis-Hastings algorithm

explores better the complete solution domain. He recommends taking advantage of
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both approaches by combining the Metropolis-Hastings algorithm and the Gibbs
sampling into a hybrid sampler.

Hastings [100] discusses also a blockwise Metropolis-Hastings algorithm, the
Gibbs sampling is actually a special case of a blockwise Metropolis-Hastings
algorithm, that sequentially applies the algorithm to each block of parameters
conditional on knowing the values of all remaining parameters that are not in that
block using the transition kernel
J
P(0.4) :IIJPJ (Qj’Aj |Q—j)'

Hastings [100] also discusses the generation of random numbers from

independent candidate distribution, i.e., h(Q(m) | *):q(g*). The acceptance

probability of such a Markov chain shortens then to

7 (8*| Data) ‘ q(0%*)
E(Q('") |Data) q(Q('"))

a(Q('"),Q*) =min| I,

Graves and Hamada [19] apply successfully such a blockwise Metropolis-
Hastings algorithm with independent candidate densities for the parameter vector in a
Bayesian hierarchical estimation for the assessment of system reliability with
multilevel attribute data and the allocation of resources (additional attribute data
collection) in order to minimize the uncertainty of the system reliability within a fixed

budget.
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2.4 Liquid Rocket Engine Programmatic Metrics

Liquid rocket engine projects/programs, as for any products, are usually divided into
phases such as development, production, and utilization or operation. The entirety of
all phases defines the system life cycle that may be divided into the six main stages:
system planning, design and development, verification and validation, production,
field deployment, and disposal [14]. Similar stages are used in the space industry
[111,112].

The system planning stage is concerned about the mission operational concept
that is based on customer needs and market competition analyses. In this stage, an
incremental decision-making process, as introduced in Section 2.1.1, is followed to
define the key project drivers such as the performance that is first order related to
enabling technologies and the time (schedule or consequently the IOC) required for
technology maturation as well as their reliability and affordability. The scopes of the
remaining system life cycle stages are now consequences and include the following
activities. The design and development stage addresses the design of the product,
matures the required technologies, and establishes manufacturing capabilities. The
main two project milestones (the preliminary and critical design reviews) are part of
the design and development stage. The verification and validation stage includes
design verification and process validation. The design verification is based on a test
plan that includes the number and types of tests, the number of hardware sets
foreseen, the test operational conditions, the acceptance criteria, the explicit
definitions of failures, and any other related elements in order to verify the inherent

reliability of the system. The process validation checks the capability of the selected
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manufacturing processes, the adequacy of the defined integration steps, and the
effectiveness and efficiency of the implemented control plans in order to assure that
the inherent reliability of the system does not degrade during the production phase.
Note that the hardware sample size requirements may be higher for the process
validation than for the design verification. The production stage is started once the
qualification or certification is announced and include the classical activities
manufacturing, assembly, integration, and test. In addition, lean production initiatives
are usually started. The field deployment stage utilizes the system in which
preplanned product improvement (P31) may be started. The disposal stage terminates
the system life cycle.

Throughout the system life cycle, program managers are concerned about the
balance of the project management trilemma elements performance (quality),
schedule, and cost at acceptable level of project risks. The performance is associated
with enabling technologies that must be matured if not available at the beginning of
the program. The technology maturation not only determines the final system
reliability but also drives mainly the development schedule (IOC) and as a
consequence the development and production cost. The customer view of the project
management trilemma is, however, not on the required performance levels because
they are expected to be met or even to be exceeded. The customer is rather concerned
about the IOC, which constraints the schedule, the reliability, and the affordability
which can be easily deduced from the project management trilemma elements. As
already stated above, the decisions about these customer concerns are made in the

system planning stage and are of utmost importance for the overall program success.
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Therefore, Sections 2.4.1, 2.4.2, and 2.4.3 provide further insights on the key liquid

rocket engine project/program metrics.

2.4.1 Performance, Technology, and Development Duration

The key performance metrics — thrust level, specific impulse, run duration, propellant
mixture ratio, weight of the engine system at burnout, geometric envelope — are
determined by space transportation system optimization subject to trajectory and
minimum payload capability constraints [3]. Note that space transportation system
optimization is not within the scope of this research. Interested readers are referred to
Krevor [43]. The derived liquid rocket engine performance requirements are,
however, closely related to the enabling technologies of the piece parts and
subassemblies that must withstand the operational challenges of the selected
thermodynamic cycle, i.e., high specific impulse requirements promote staged
combustion cycles whereas medium specific impulse and high thrust requirements
endorse gas generator cycles. The envelope (geometric size) may also impact the
choice. In any case, the availability or maturation of enabling technologies,
independent from the thermodynamic cycle, must be assessed in the decision-making
because of the impacts on affordability, reliability, and IOC that drive as a
consequence the operational effectiveness [113].

A study performed by Emdee [4] provides typical development durations of
cryogenic booster / main stage and upper stage liquid rocket engines which range
from nine to 11 years for booster / main stage engines and six to eight years for upper
stage engines, respectively. He also includes amelioration programs for upper stage

engines that range from one to five years. The figures provided by Emdee can be
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substantiated with an assessment performed by Meisl [10], who provides a range of
eight to ten years for the booster engines. In another study, Emdee [5] assesses the
development durations for LOx/kerosene booster / main stage and upper stage liquid
rocket engines ranging from three to ten years for booster / main stage engines and
four to ten years for upper stage engines, respectively. Table 2-1 summarizes typical
liquid rocket engine performance and schedule metrics. Emdee’s concluding
statement on both studies is that the development durations (schedule) have not
significantly reduced over the last 40 years.

Table 2-1:  Liquid Rocket Engine Performance and Schedule Metrics

Engine name SSME F-1 J-2 RL10 LR87 LR9I
Vacuum thrust, kN 2174 7643 1023 73 2353 460
Specific impulse, s 4529 304.1 425.0 4444 298.0 314.0
Chamber pressure, MPa 21.55 6.77 5.38 3.21 5.70 5.70
Weight, kg 3177 8444 1567 138 2055 572
Duration, y 9 8 6 3 4 4

In order to put Emdee’s concluding statement about the development durations
(schedule) into the performance and technology maturation perspective, Meisl [10]
discusses a typical test program that is required to mature the enabling technologies
for high performance system. The test program follows the classical TAAF cycle with
the three distinct phases for eliminating failure modes: fundamental modes, repeat
modes, and quality control modes. Meisl points out that significant development
duration reductions may be feasible if a technology maturation program is preceding
the actual flight engine development which eliminates the fundamental failure modes.
Another development duration reduction approach is to use extensively existing
technologies; the RS-27 is a prominent example. The development duration of the

RS-27 liquid rocket engine was only one year [5] but one needs to note that the RS-27
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engine is a derivative from the H-1 and MB-3 Block III engines, whereupon the H-1
used existing technologies of the MB-1, MB-3, and X-1 engines [114].

Besides the performance that is closely linked with the development duration
(schedule) due to the technology maturation and technology program drivers,
Hamaker [8] identifies also non-technical variables that impact the development
duration. These are requirement stability, funding stability, team experience, number

of prime contractors, number of customers, and international involvement.

2.4.2 Reliability, Test Plans, and the Lack of Guidance

Wasserman [115] defines reliability as the probability of a product performing its
intended function over its specified period of usage, and under specified operating
conditions, in a manner that meets or exceeds customer expectations. The
probabilistic aspect of reliability is assured through modeling techniques such as
reliability planning and specification, allocation, prediction, Failure Mode Effects and
Criticality Analysis (FMECA), Fault Tree Analysis (FTA) [14] or Probabilistic Risk
Assessment (PRA) for safety related issues [15]. The main intended functions of a
liquid rocket engine are to provide thrust and to generate specific impulse. The period
of usage is specified in terms of design starts and design life. Table 2-2 lists initial
engine design and mission requirements of realized liquid rocket engine systems [9].
The operating conditions at piece parts and subassembly level are determined by the
thermodynamic cycle that is selected in the space transportation system optimization.
Typical thermodynamic cycles are pressure-fed, expander, gas generator or staged
combustion. Note that the thermodynamic cycle with the system induced internal load

levels is closely related to the performance levels and the design requirements.
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Table 2-2:  Liquid Rocket Engine Design and Mission Requirements

Engine name SSME F-1 J-2 RL10 LR87 LRIl
Design starts 55 20 30 20 12 12
Design Life, s 22700 2250 3750 4500 1980 2700
Missions w/o Overhaul 55 1 1 1 1 1
Mission Starts 1 1 1Y 2 1 1
22
Mission nom. time, S 520 165 380 " 700 165 225
150 %
350 %

Y first hot firing
?) restart

Reliability engineers associate the design starts and design life with the notion of a
reliable life requirement which is typically not the case for rocket scientists because
the classical safety factor approach is used in the design process. Therefore, the data
given in Table 2-2 are only of qualitative use and they cannot be associated to an
inherent reliability requirement. Advanced probabilistic engineering analysis codes
and physics-of-failure models exist to evaluate the reliable life, but both require
design details that are not available during early design tradeoffs. In addition, some of
the failure mechanisms as well as their combination are still subject for further
research, e.g. accumulated cyclic strain (ratcheting) superimposed with creep and
reduction-oxidation of the materials during operation [116].

At least there is a common understanding among reliability engineers and
rocket scientists that the reliability must be built into the design of liquid rocket
engine piece parts and subassemblies using modern reliability engineering methods,
but as pointed out by Sackheim [16] the reliability confidence-building game is to
test, test, test, and then do more testing. Koelle [117] provides the empirical evidence

of the confidence-building game by relating the number of hot-fire tests with the
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mission reliability, i.e., the larger the test scope is the higher the mission reliability
becomes.

Unfortunately, the general trend is to reduce the number of tests due to lack of
funds and possibly overconfidence of the decision-maker. Emdee [5] identifies even a
negative trend in the flight success rates (mission reliability) as a consequence of the
test scope reduction. But how many tests are then enough? No industry or
government standard exists [20].

Emdee [5] suggests a test program of 400 tests and 40,000 seconds of
accumulated hot-fire time spread over 15 engine hardware sets. Pempie and Vernin
[21] recommend a test program of 150 tests and 50,000 seconds of accumulated hot-
fire time but leave out a number for the required engine hardware. Wood [118]
reports that 183 tests with 18,945 seconds spread over eight plus four rebuild engine
hardware sets were sufficient for the qualification of the RS-68 liquid rocket engine.
Greene [119] assumes a similar test program for the J-2X. Therefore, how many tests
are enough? The question remains unanswered, but Emdee [4] makes a point:

“The lack of guidance can be frustrating to vehicle
manufactures since engine development can be one of the
largest expenses ... Unfortunately, despite the significant
expense allocated to engine testing, the historical record
shows that propulsion system still account for over 50 percent
of the launch vehicle failures.”
One must review the hot-fire test strategies that were used in the previous

liquid rocket engine programs in order to understand the frustration. Initially, a formal
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reliability demonstration was required for the F-1 and J-2 liquid rocket engines. This
was followed by what is called a Design Verification Specifications (DVS) approach
for the SSME, and the latest evolution is an objective based variable test/time
philosophy for the RS-68 liquid rocket engine [10, 118]. In short, one may
provocatively state that any mathematical justification for the scope definition of a
test program was sacrificed in favor of program cost/price savings and development
schedule reductions.

In that context, Meisl [10] argues that a formal reliability demonstration for
the SSME would have required 20 more hardware sets with the associated increase in
terms of development cost/price and the needed time to perform the tests. But is this
the truth? Emdee [5] reports 2,805 tests and 252,958 seconds of accumulated hot-fire
time for a formal reliability demonstration of 0.99 at 50% confidence for the F-1
whereas Biggs [120] reports 726 tests and 110,253 seconds of accumulated hot-fire
time for the DVS approach for the SSME with a reported reliability of 0.984 [117].
The information just provided is, however, biased because the actual number of tests
that was needed to attain the flight readiness was only 1081 for the F-1 [121].
Considering the thrust size of the F-1, it is still the highest thrust engine with a single
combustion chamber, and the additional 350 hot-fire tests may become relative if the
reliability numbers for the F-1 and SSME are compared.

The derivation of the reliability test scope for the SSME may be rather
illustrative when discussing test plans and demonstrated reliability levels because the
hot-fire test program for the SSME was defined by a highly respected manager who

set a criterion of 65,000 seconds of accumulated hot-fire time that would qualify the
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engine for flight without any mathematical justification. The number is, however,
derived as follows: Take 40 (derived from military aircraft business) and multiply it
with the nominal SSME mission time of 520 seconds to result in 20,800 seconds. Add
an extra conservatism and multiply that by three (for the three SSME on the Space
Transportation System) to arrive at 62,400 seconds. Take this number and round it up
to 65,000 seconds [114].

The lack of guidance was recognized and expressed in an Air Force guideline
(RM2000) and the DoD “Total Quality Management Initiatives,” which dictate that
contractors shall elevate reliability to the equal status with performance and cost
[122]. O’Hara also reports that the Advanced Launch System programs have
specified quantitative reliability levels at engine level, i.e., an R-by-C level of
R99C90. In response to that requirement, Pugh [123] describes a reliability
demonstration technique that should have been applied to the Space Transportation
Main Engine (STME). The technique is based on the binomial law for zero-failure
test plans and is complemented with the Crow/AMSAA model in case of failures
during the development testing. In that model, Pugh addresses also equivalent full
duration hot-fire tests using a simplified version, the conditional probability of a
shutdown given a failure had not occurred prior to shutdown was ignored, of the
original work of Lloyd and Lipow [124]. The adequacy of the Lloyd and Lipow
model was demonstrated using the H-1, F-1, and J-2 liquid rocket engines as well as
the SSME in Worlund et al. [125]. Note that the outgrowth of the STME is the RS-68
liquid rocket engine that should have been tested according to the defined reliability

demonstration technique. However, the actual test program of the RS-68 was much
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smaller in scope and had 183 hot-fire tests with 18 failures (versus 230 hot-fire tests
that should have been performed without a failure) due to budgetary constraints. An
official reliability figure has not been published, but it should be certainly below the
R99C90 requirement.

By now, it should be evident that the reliability confidence-building game is
test, test, test, and then do more testing, but no guidance exists and frustration
prevails. Gut feeling and educated guess are the two resorts that determine the scope
of test plans. The required test schedule and the mission reliability are only results

and not input variables to size the scope of a liquid rocket engine hot-fire test plan.

2.4.3 Affordability and the Denial of the Facts

The affordability assessment for liquid rocket engines is a blend of art and science
according to Hammond [1], but the space industry has been constantly trying to
improve the accuracy of the cost estimates since the 1990s. However, the situation
has not changed and was addressed by NASA during the 7th Annual NASA Project
Management Challenge held in 2010. According to Butts [126], the following
statement describes best the cost situation for NASA projects:

“WASHINGTON - NASA can land a spacecraft on a peanut-

shaped asteroid 150 million miles away, but it doesn't come

close to hitting the budget target for building its spacecraft,

according to congressional auditors. NASA’s top officials

know it and even joke about it.”

A cost overshoot was also experienced recently for the RS-68 liquid rocket

engine development for which roughly 180 million dollar [economic condition (e.c.)
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2010] was spent in addition due to fail-fix efforts [118]. This amount may seem low
but corresponds to a cost overrun of 45% and is based on the official price figure!

NASA [127] defines affordability as an engineering process or management
discipline which assures that the final system, program, project, product, or service
can be delivered within the budget constraints previously established while still
meeting all approved requirements (Note that the word “system” is used in the
remaining discussion on affordability but may refer to program, project, product, or
service). Therefore, affordability expresses the amount of money (budget) that the
purchaser is able to pay. The affordability assessment is part of decision-making that
takes place usually in the system planning stage, i.e., the pre-Phase A [127] or
Phase 0 [112]. Note that the financial measures Life Cycle Cost (LCC) and Total
Cost of Ownership (TCO) are usually used in affordability assessments.

The LCC includes all of the costs that are accrued during a defined system life
cycle spanning from requirement development through design, verification,
production, operation and maintenance until recycling or disposal. The TCO refers to
cost that covers the acquisition, the operation, and the maintenance of a particular
system [128]. Therefore, the TCO is a subset of the LCC. This distinction is only
important for systems that are publicly funded for the development and commercially
operated during the utilization phase of the system life cycle, which is usually the
case for space transportation systems.

A considerable body of literature related to LCC and TCO exists, but many of
the materials were written by practitioners and may lack academic rigor. The

exceptions are the textbooks by Dhillon [129], Fabrycky and Blanchard [130], and
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Blanchard and Fabrycky [131] that treat the LCC and TCO tools and techniques in
more depth.

Among the numerous publications, Gupta and Chow [132], Asiedu and Gu
[133], and Christensen et al. [134] are noteworthy because the authors summarize 40
years of LCC literature, describe the mechanisms of life cycle engineering and
costing relevant for complex system development, and analyze the techniques used in
life cycle costing. The conclusions of the latter authors consider the 12 steps in the
LCC analysis process as state-of-the-art that were defined by Blanchard and Fabrycky
[131]. Among the 12 steps, the most important ones are to specify a system life cycle,
to develop a Cost Breakdown Structure, to select a cost model for analysis and
evaluation, to develop a cost profile and summary, to conduct a sensitivity analysis,
and to evaluate feasible alternatives and select a preferred approach.

The development of a Cost Breakdown Structure is the most important task
because it provides a top-down and bottom-up view of the cost structure over the
complete system life cycle. Blanchard and Fabrycky [131] provide an example of
such a Cost Breakdown Structure that includes research and development cost,
production cost, operation and support cost, and retirement cost at the first breakdown
level. A Work Breakdown Structure is usually converted into a Cost Breakdown
Structure in practice. Although there is no general rule on how to generate a Work
Breakdown Structure, the MIL-HDBK-881 or preferably a process-product oriented
approach might be used as guideline [135].

The next crucial step in the LCC analysis process is the establishment of costs

for each of the categories that are defined in the Cost Breakdown Structure. This step
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is especially critical for LCC analysis that are performed in early system life cycle
phases when available input data is limited and uncertainty is the highest due to the
lack of detailed component design definitions. Note that about 60 percent of the LCC
are committed at the end of the system planning and conceptual design stage
(corresponding to the pre-Phase A or Phase 0), roughly 80 percent are committed by
the end of the system definition, and 95 percent are committed after the full-scale

system development [136]. Figure 2-2 depicts this fact graphically [131].
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Figure 2-2: LCC Commitment versus System Life Cycle

The most widely used cost/price estimating techniques in the space industry are the
grass-root, the analogy, and the parametric approach. The application of these
techniques is, however, related to the design level of the system. NASA [127] and

Blanchard and Fabrycky [131] suggest the parametric approach in early project
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phases, the analogy in intermediate project phases, and the grass-root costing for the
production phase (see Figure 2-3 [131]). The parametric cost estimation technique is
the more advantageous approach because several design and programmatic
parameters can be used. The analogy models are usually limited to a single design

parameter such as the thrust, capacity, or weight for liquid rocket engines [129].
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Figure 2-3: Cost Estimation Techniques linked to System Life Cycle Phases

The grass-root costing is based on Cost Estimation Relationships (CER) using
detailed, accurate capital and operational cost data. Certainly, this cost estimation
technique may seem to be the most preferable, but a high degree of accuracy remains
elusive in the aerospace business since the data suffer from incompleteness and small
sample sizes. Unfortunately, many program managers trust grass root costing more
than parametric costing because the latter results usually in higher cost estimates

which they think are not competitive. Therefore, managers use grass-root costing as
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justification for a lower cost but assume at the same time that the company’s
organization operates like their grass-root cost model dictates it. This is certainly not
true, but managers deny this fact. The result is usually a major cost overrun [137].
Not shown in Figure 2-3 but also used are modern cost management systems
such as Activity-Based Costing, Just-in-Time Costing, Target Costing, and Strategic
Cost Management. However, Activity-Based Costing and Just-in-Time Costing have
limited use during early product life cycle phases since they require the bill of activity
and bill of material as input. Both inputs cannot easily be generated for conceptual
designs. In later system life cycle phases, these methods are superior and should be
used. Target Costing is used for the cost allocation process and might be used during
the conceptual design phase. Finally, the Strategic Cost Management is focused
around the value chain and can be used in conjunction with Activity-Based Costing
but not during the life cycle cost assessment in early system life cycle phases [138].
Inflation and escalation are also important variables in affordability
assessments. Inflation is in general the rise in the level of prices of goods and services
in an economy over a period of time. It is mainly influenced by the money supply of
governments by setting the interest rates. The scarcity of a certain material due to
political disruption impacts also the inflation rate which is of particular interest for
the aerospace business. Rising energy costs are influencing also the level of inflation
which will become even more dominant in the next decades to come. Escalation is
mainly linked to salary creep and grade creep due to salary upgrades and career
advancements which is in particular true for aerospace companies with typically low

personnel turnover [136].
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The purchasing power of money is another important aspect in comparative
affordability assessments among different economic markets. The appropriate metrics
is the Purchasing Power Parity (PPP) which is the long term view of the value of
money. This metric is important if prices from different markets are compared, e.g.
the prices from U.S. liquid rocket engines versus the one from European liquid rocket
engines. Although it is common practice in the liquid rocket engine business, it is
absolutely wrong to use the currency exchange rate if prices of liquid rocket engines
are compared. Currency exchange rates reflect the short term view of the value of
money which is not the case for system life cycle times of up to 30 years [139].

Historically, the need for better cost/price estimates is first addressed by Meisl
[10] who assesses the main LCC contributor of expendable and reusable space
transportation systems by comparing the liquid rocket engines F-1, J-2, and the
SSME. He also points out that both the data scarcity and the infrequency of
development programs constitute one of the major difficulties of the LCC assessment
of liquid rocket engines. The key elements that Meisl discusses are drivers for the
development and production cost, the tendency of a platykurtic slightly left-skewed
bell shaped development budget versus development time profile, and three testing
periods that are linked to the costly elimination of failure modes (fundamental modes,
repeat modes, and quality control modes). In that context, Meisl argues qualitatively
about a possible development cost/price reduction if the fundamental failure modes
can be avoided during the full-scale development program due to prior testing of
Integrated Subsystem Test Bed (ISTB) or breadboard engine demonstrator. In

addition, lessons learned indicate also the strong recommendation to test components
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early in the development program, as it is the case for the DVS approach, in order to
minimize the development cost. The main point of Meisl’s paper is the strong relation
between the schedule, reliability, and affordability that was already identified above
but which cannot be stressed enough.

Meisl [10] also provides similar elements for the production cost and
identifies the influences of technical parameters on the production cost that were
based on a Rocketdyne parametric production cost model. Several years later, Meisl
[12] includes facility cost and reliability and risk cost into his discussion on LCC.

One of Meisl’s [140] last publications about the affordability subject describes
the future of design integrated cost modeling with focus on process-oriented
parametric cost models and quantifiable uncertainties for technical, programmatic,
and cost/price parameters. One of the process-oriented parametric liquid rocket
engine cost models is described in Lee [141]. The model requires specific inputs in
terms of labor effort, material cost, and support cost. In order to provide credibly
these elements, the bill of material is needed, but this is usually not available during
early project phases. Therefore, the process-oriented parametric cost modeling
approach is not adequate for concept tradeoffs and is not further discussed here. The
second focus on the quantification of the uncertainties for technical, programmatic,
and cost/price parameters is of much higher interest because these elements should be
part of an integrated and balanced evaluation of performance or equivalently schedule
and reliability. The influence of the uncertainties about the programmatic and
cost/price parameters is derived from the hot-fire test plan, the failure mode

description, the number of available hot-fire test facilities, and the cost model input
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parameters. However, Meisl does not provide a quantitative link between these
influences and in particular for reliability, program duration, and development
cost/price. This link does still not exist!

Hamaker [8] supports this strong statement by suggesting a research direction
that should address the project success as a function of the amount of testing. In
addition, Hunt [7] points out his experience on the development costing work which
he performed for the RS-84 and J2-X liquid rocket engines. In particular, he mentions
the difficulties he had about the TAAF cycle assumptions and the impact on the
development cost/price. Therefore, Hamaker and Hunt confirm the strong statement
about the lack of existence of a link between reliability, program duration, and
development cost.

Joyner et al. [6] reaffirm the strong dependency of the development cost on
the TAAF assumptions and provide the following figures: only two percent is spent
on the initial conceptual design effort, 15 percent is spent on the engineering design
and analyses, and ten percent is spent on the qualification, reliability demonstration,
and certification. The majority — more than 70 percent — is spent on the elimination of
failure modes. They conclude that the key development cost/price drivers are the
number of hot-fire tests and number of hardware sets required to complete the test
program.

Joyner et al. [6] also review the main cost models used in the liquid rocket
engine industry: PRICE-H® (Parametric Review of Information for Cost and
Evaluation — Hardware) [142], SEER-H® (System Evaluation & Estimation of

Resources — Hardware) [143], TRANSCOST® (Handbook of Cost Engineering for
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Space Transportation Systems) [117], and the Liquid Rocket Engine Cost Model
(LRECM) that is implemented in NAFCOM® (NASA/Air Force Cost Model) [13,
144]. A similar analysis is also given in Harwick [145].

Except for the LRECM, the main model parameter of these cost tools is the
engine weight. Multipliers such as complexity, engineering experience, technical
factors, and design maturity are then used to increase the fidelity of the models. The
general tendency of the weight based tools is that a greater weight results in more
development costs. The development cost of liquid rocket engines behave, however,
opposite for a fixed design, i.e., increasing the weight usually reduces the
development cost and vice versa. Since the LRECM is not using the weight as cost
input parameter, it can be seen as an original approach to remedy the classical strong
dependency of cost models on a weight based CER. The details about the LRECM

can be found in Joyner et al. [6].

2.5 Reliability Growth

Lloyd and Lipow [124] introduce the subject of reliability growth as the relationship
between reliability prediction (a future, projected reliability number) and reliability
estimation which is estimated directly from current and previous observations. The
reliability estimate generally increases during the development. However, the rate of
growth, its adequacy, and the level of attainment at the end of the test program is a
concern. The true reliability increases incrementally through a series of redesigns of
the failure-producing piece parts. The magnitude and frequency of the redesigns may

vary and depends on the type of subassembly.
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Broemm et al. [146] define reliability growth as the improvement in a
reliability parameter over a period of time due to changes in the product design or the
manufacturing process. The changes in the product design are typically associated
with an iterative TAAF cycle.

The three major areas in the field of reliability growth are planning, tracking,
and projection, which can be directly derived from the definition given in Lloyd and
Lipow [124], i.e., the planning is linked to the forecast of the level of attainment of
the reliability metric at the end of the test program, the tracking is the reliability
estimation of current and previous observations, and the projection is the prediction
of the final reliability metric following the implementation of corrective actions to the
observed failure modes.

The models that are most widely used are based on the empirical Duane
method [147] and the US Crow/AMSAA analytical model [146]. However, both
methods are based on the underlying assumption that the failure intensity function [or
rate of occurrence of failures (ROCOF)] follows a non-homogeneous Poisson process
(NHPP) [71]. Other models which are not based on the NHPP assumption are
extensively reviewed in Hall [148].

Liquid rocket engine developments are predestinated for the iterative TAAF
cycle. Codier [147] applies successfully the Golovin and the empirical Duane models
to the test data of the F-1 and J-2 liquid rocket engines whereas Williams [30] reports
a failure in applying the US Crow/AMSAA model for the SSME because the model
initially estimated an increase of the MTBF (indicating reliability growth) but the

system reliability declined towards the end of the testing profile although overall
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testing experience would have suggested an increase in the system reliability. Why
does the reliability growth fail for the SSME but succeeds for the F-1 and J-2?

The reason is linked to the hot-fire test philosophy that has evolved over time
as already pointed out in Section 2.4.2 on the liquid rocket engine test plans.
Historically, liquid rocket engine hot-fire testing profiles followed well the mission
profile, i.e., the operational loads during ground tests were similar to the loads seen
during the flight acceptance and actual flight. The DVS and the objective based
variable test/time philosophy include extreme load points to demonstrate robustness
and design margin which introduce a significant difference between the testing profile
and the mission profile. Crow [149] and Krasich [31] also observe this concern in
other industries and propose either the grouping of the failure times in intervals from
which the classical US Crow/AMSAA model parameters are estimated or the
physics-of-failure and cumulative damage models to normalize the data from which
the parameters for the Duane or US Crow/AMSAA model can be estimated. Note that
Safie and Fuller [150] applied successfully the Crow/AMSAA model to track the
reliability growth of the Space Shuttle Main Engine reliability using data that was

strongly adjusted.
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Chapter 3: Mathematical Formulation of the Risk-
informed satisficed Decision-Making

Methodology

The RISDM methodology is based on a constrained multiobjective satisficing
problem formulation using the weighted sum method, i.e., the fitness function is the
sum of normalized objectives, in which the objectives are defined as the areas of
concern affordability, reliability, and IOC that are influenced by hot-fire tests, the
decision variables, which are allocated to various system integration levels. The areas
of concern create a conflict because they are contradicting; therefore, tradeoffs must
be made to reach a satisficed solution. A genetic algorithm is used to generate vectors
of decision variables that define the sets of possible solutions for a given liquid rocket
engine system alternative which are influenced by stakeholder targets, weights, and
uncertainties about their areas of concern. The proposed vectors of decision variables
are actually used to determine the levels of attainment for the measures of
effectiveness for the areas of concern. These are based on interrelated models that
include non-technical and technical factors such as failure mechanisms, differences
between mission profile and testing profiles, TRL, MRL, TAAF cycle assumptions
based on the newness of the system that needs to be developed, system performance,
product life cycle, design scope and environment, and team experience. The
subsequent sections describe these interrelated models. Simple problems provide

sensitivities and model validations.
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3.1 Definition of Testing Profiles as Multiples of the Mission Profile

The mission profile or main life cycle is defined by several hot-fire events that take
place during the service life of a liquid rocket engine. It may include acceptance hot-
fire test(s), a possible engine ground start hold-down with launch commit criteria
abort hot firing, and a single flight mission hot firing duration (or several flight hot
firings in case of a reusable main stage engine) or multiple re-ignitions in case of in-
flight operation. The mission profile is applicable during the production phase.

The testing profiles are composed of a potpourri of hot firings that may be
multiples of the mission profile, completely different in terms of hot-fire duration and
operational load points in order to demonstrate margin and design robustness or the
combination of both. The hot firings are also executed at various system integration
levels, i.e., component, subsystem, and system level. The complete set of all testing
profiles defines the development hot-fire test plan. Consequently, the testing profiles
are applicable during the development phase.

The testing profiles testing approach is not limited to liquid rocket engine
systems. Gas turbine engine developments use the concept of Accelerated Mission
Testing (AMT), which is an extension to the DVS that was developed by NASA for
safety critical and high reliability systems [151]. In that context, the focus of AMT is
to concentrate the testing on the failure-inducing agents in proportion to the mission
profile. Similar testing profiles are also applied to main battle tanks, light armored

vehicles, and mine-resistant ambush-protected vehicles [149].
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3.2 Constrained Multiobjective Satisficing

The mathematical basis for the constrained multiobjective satisficing decision-making
is described in Wierzbicki [60], who introduces the achievement scalarizing function
that preserves the order of preferences among the sets of attainable measure of
effectiveness within an area of concern. The normative target-based decision-making
and the related truncated exponential utility function, which is also order preserving,
are used as an alternative to the achievement scalarizing function in this research.

In case of several areas of concern or objectives, the multiobjective problem
may be formulated either as a single-objective problem, in which the objectives are
collected into a single fitness function [152], or a multiobjective problem [153]. In
this research, the weighted sum method, a single-objective problem formulation, is
used to define the fitness function. This function is maximized using a genetic
algorithm because the multiobjective problem is convex, i.e., the generated solutions
are Pareto-optimal [153-155]. A comparison between the SOGA using Palisade’s
Evolver® software [156] and the well-known and frequently used NSGA-II using the
SolveXL® software [157] is given in Section 4.4.3.

Figure 3-1 displays the flowchart of the implemented constrained
multiobjective satisficing approach. Note that the implementation follows the basic
genetic algorithm except for Steps 1 and 2 (see Sections 3.2.1 and 3.3 for details
concerning the objective weights and the specific models that are used to determine
the measures of effectiveness for the three objectives affordability, reliability, and

10C, respectively).
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Figure 3-1: Constrained Multiobjective Satisficing Approach

3.2.1 Mathematical Formulation

The constrained multiobjective satisficing is formulated as a constrained
multiobjective optimization problem. The decision variables are the hot-fire tests,
which are allocated to multilevel system integration levels.

The multilevel system integration levels are associated with component,
subsystem, and system levels and are denoted as hot-fire test groups, which are
indicated with subscript i. Within each hot-fire test group, there are different hot

firing durations or testing profiles that are indicated with subscript j . The number of
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hot-fire tests with testing profile ; in hot-fire test group i is denoted as NF ;P for

which the upper and lower bounds are denoted as NFC;PLB and NFC;P’JB,

respectively. The aggregation of all hot-fire tests defines the overall hot-fire test plan,
denoted as EQM ™ .

The weights for the normalized objectives are determined by means of the
Analytic Hierarchy Process (AHP), which will be discussed in the following
paragraphs. The objective functions that preserve the order preference for each area
of concern are modeled using truncated exponential utility functions, i.e., if the utility
score should increase as the measure of effectiveness increases, then UF =h"";
otherwise, the utility score should decrease as the measure of effectiveness increases,
and UF =h" . Eq. (3.1) exhibits the monotonically increasing and monotonically
decreasing truncated exponential utility functions.

1— 6775” (g-LB)

—y" (UB-LB) 7 =0
UF =" (g,7" ,LB,UB)=11-¢"
li?_—LLBB otherwise
B 3.1
. G
. -y* (UB-LB) 7/5 #0
UF =h™ (g,y” ,LB,UB)={1-¢
% otherwise

where ¢ is the measure of effectiveness, ¥ is the effective risk coefficient, LB is

the lower bound, and UB is the upper bound. The shape of a truncated exponential

utility function, which determines the utility score for a given measure of

effectiveness, is influenced by the effective risk coefficient . The magnitude of
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the effective risk coefficient ¥ is determined by means of the utility-probability

duality. Note that the levels of attainment for the measures of effectiveness are
determined by specific models that are described in Sections 3.3.1 to 0.

In general, let M be the number of areas of concern that are relevant to the

problem. In this research, M =3. For area of concern m, let g, be the function that
estimates the measure of effectiveness as a function of the design alternative 4" and
the hot-fire test plan EQM ™ ; let the range {LB, UB} be the lower and upper bounds
on the measure of effectiveness; let UF be the relevant utility function, the shape of

which is defined by the relevant effective risk coefficient ¥ ; and let w, be the
relative weight of that utility function. Let FF' be the fitness function, which is the

weighted sum of the utility functions. Note that all w, €[0,1] and Zle w, =1. Eq.

(3.2) exhibits the mathematical formulation.

M
Maximize FF = ZmeFm
m=1
subject to UF, =h,(g,.72 .LB,,UB,) m=1.2,..,M;
En :f;n (AnaEQMTP) m=1,2,...,M; (3 2)
g, 2LB, m=12,..M;
g, sUB, m=12,..M;
NFC;"* < NFC;" < NFC,t* i=12,..1I;
j=12,..,J,.

Analytic Hierarchy Process
Saaty [158] developed the Analytic Hierarchy Process (AHP) in the early 1970s and
applied it to numerous risk-informed decision-making problems [71]. Because of its

widespread use, it is assumed that the AHP application is known.
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Note that the AHP is preferred over the minimum number of judgments
methods, such as SWING or simple multiattribute rating technique (SMART) [159],
in the frame of this research in order to remedy behavioral biases in a decision-

making process that involves new technologies and risk-averse decision-makers.

Utility-Probability Duality

The normative target-based decision-making framework is used to express the
uncertainty of the decision-maker’s preference about an associated measure of
effectiveness for each area of concern. In the context of this research, the areas of
concern are assumed to be independent, which, as a consequence, requires the
formulation of a specific utility function for each of the area of concern.

The uncertainty about the actual performance in each area of concern for a
specific alternative can, however, be expressed, based on the knowledge of the
decision-maker about the design alternative, as a range in which each measure of
effectiveness should fall and a target for each area of concern. The targets correspond
to the programmatic requirements. Given this limited information, the decision-
maker’s uncertainty for each area of concern is modeled as a subjective probability
distribution. The challenge then is to find an appropriate utility function.

The utility-probability duality [55, 56] provides a framework to find
appropriate utility functions because it represents the decision-maker’s preference, the
decision-maker’s information about the uncertainty, the decision-maker’s target for
the specific area of concern using the aspiration-equivalent, and as a consequence the

decision-maker’s risk attitude, i.e., risk-averse, risk-neutral or risk-seeking, that is

expressed by the effective risk coefficient 7™ .
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What follows is the determination of the effective risk coefficient 2/ given

the decision-maker’s targets and the uncertainty for each area of concern using the

utility-probability duality. For the sets of alternatives and areas of concern m, let g,
be the decision-maker’s target (aspiration-equivalent), let {LBm,UBm} be the lower

and upper bound, and let F(g,;¢,.,/3,,LB,,UB,) be the general Beta cumulative

distribution function that describes the decision-maker’s uncertainty (the distribution

parameters ¢, and B, can be determined based on the bounds using the method of

quantiles [160]). Finally, let uf, =d(UF, )/dgm be the derivative of the

corresponding utility function. Then, the utility-probability duality is defined by Eq.

(3.3) that is solved for the effective risk coefficient ¥/ .
A\ [UBn . 1
F(gm)_ LB, F(gm’am’ﬁm’LBm’UBm)uf(gm’ m ’LBm’UBm)dgm (33)

Because truncated monotonically increasing exponential utility and general
Beta cumulative distribution functions are used, an expression in analytic form of the

right-hand side of Eq. (3.3) can be found which is then used to solve numerically for

the effective risk coefficient 7,5’7 for each of the m areas of concern, i.e., in general,

where v( g) is the general Beta cumulative distribution function, v'(g) is the general
Beta probability density function, u( g) is the truncated monotonically increasing

exponential utility function, and {LB,,UB,} are the bounds of the measures of

m?
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effectiveness or equivalently the bounds of the general Beta distribution that reflect
the uncertainty of the decision-maker.

The utility-probability duality as described in [55, 56] applies only to
monotonically increasing utility functions but the adaptation to truncated

monotonically decreasing exponential utility functions is accomplished by symmetry,

1e., ufMI (7/Eﬁ ) = l—ufMI (_7Eff) _ M (7,Eff) _
3.2.2 Numerical Results

Target-based Effective Risk Coefficient

Let assume that the stakeholder uncertainties about the three areas of concern
affordability (development cost), reliability, and IOC with corresponding targets were
elicited as given in Table 3-1. [The data is normalized to millions of monetary units
(MMU) in order to protect the proprietary nature of the data.] The targets for the
affordability and IOC are based on expert opinions using historical data [4, 5] or
Bayesian estimation for the reliability. The min values for the three areas of concern
correspond to the lower natural bound, i.e., zero, whereas the max values are defined
by an assumed maximum affordability, the natural bound of one for the reliability,
and an assumed 1OC, respectively. The percentiles for the affordability are based on
percentage values that are subtracted and added to the target. The percentiles for the
reliability are based on the two-sided credibility interval (TBCI) using the historical
data that are given in [80]. Finally, the percentiles for the IOC are based on a minus
three standard deviation using the data given in [4, 5] and an upper bound that

includes an assumed positive slack, i.e., one year with regard to the IOC.
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Table 3-1:  Stakeholder Uncertainties and Targets

Areas of concern Min Max 0.05 0.95 target
percentile percentile
Affordability, MMU 0 2000 930 1350 1035
Reliability, - 0 1 0.9663 0.9974 0.956
10C, y 0 13 7.50 12.00 10.9

Equation (3.3) is then used to assess the influence of the target g, on the effective

risk coefficient y for the areas of concern affordability, reliability, and 10C,

respectively. The calculated risk coefficients y? are depicted in Figure 3-2. Note

that the abscissae for affordability and IOC have been normalized. By looking at

Figure 3-2 and considering the elicited ranges, the stakeholder’s or decision-maker’s

risk attitudes for the area of concern affordability and IOC are always risk-averse

whereas the risk attitude for the area of concern reliability changes from risk-averse

to risk-seeing, i.e., positive effective risk coefficients correspond risk-averse, zero to

risk-neutral, and negative to risk-seeking risk attitudes, respectively. E.g., setting the

target to the upper bound and expect to attain this high level is a risky (risk-seeking)

endeavor considering the actual levels of reliability for liquid rocket engines.
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SO © o o <o ©
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o
)
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Figure 3-2: Targets versus Effective Risk Coefficient
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Satisficing results with different objective weights, decision-maker’s uncertainty,

and Penalty Functions

Impact of Objective Weights

The impact of the objective weights that are used to define the fitness function is
studied using a mixture design with 11 runs. Table 3-2 lists the design matrix
including the measures of effectiveness for the objectives affordability, reliability,
and IOC. Each solution was found by running the SOGA with the parameters as listed
in Table 3-3. Figure 3-3 depicts the resulting Pareto-optimal satisficed solutions and
the genetic evolution progress for the various weight settings.

Table 3-2:  Mixture Design Matrix

Weights Affordability Reliability  10C Satisficed Solution
Aff Rel 10C
Case-I 1 0 0 714 09297 6
Case-II 1/2 1/2 0 943 0.9545  7.825
Case-I1I 0 1 0 2693 0.9888 28.75
Case-1V 2/3 1/6 1/6 760 0.9348 6
Case-V 1/3 1/3 1/3 896 0.9507 6.6
Case-VI 0 2/3 1/3 1344 09725  9.925
Case-VII 1/2 0 1/2 739 09118 5
Case-VIII 0 1/2 1/2 1342 09720  9.85
Case-IX 1/3 0 2/3 714 09273 6
Case-X 0 1/3 2/3 1338 09720 9.8
Case-XI 0 0 1 744 09177 5.1

Table 3-3: Parameters of the SOGA used in Palisade’s Evolver®

Population size 50

No. of generations Progress based
Cross-over probability 0.5
Cross-over type Arithmetic
Selector Weighted average
Mutation probability 0.1

Mutator Cauchy mutation
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Figure 3-3: Pareto-optimal Satisficed Solutions for different Weight Settings

Impact of Decision-maker’s Uncertainty

The decision-maker’s uncertainty about the objectives influences the shapes of the
utility functions; therefore, the fitness function evaluation is impacted. Based on
Figure 3-2, the pertinent objective that changes the risk attitude is the reliability,
which is further used to study the impact of the decision-maker’s uncertainty on the
fitness function evaluation with equal weights for the three objectives affordability,
reliability, and IOC. Figure 3-4 depicts the resulting Pareto-optimal satisficed

solutions and the genetic evolution progress for three cases: risk-averse, risk-neutral,

and risk-seeking, respectively.
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Figure 3-4: Pareto-optimal Satisficed Solutions for the Objective Reliability
with Risk Averse, Risk Neutral, and Risk Seeking Risk Attitudes

3.3 Areas of Concern: Modeling Affordability, Reliability, and

Initial Operational Capability

3.3.1 Modeling Affordability

Parametric Cost/Price Model

NATO [161] defines affordability as the degree to which the LCC of an acquisition
program is in consonance with the long-range investment and force structure plans of
a specific administration. In the context of this research, “in consonance” means to
deliver a liquid rocket engine system that meets the customer’s needs at available

budget (annual funding availability) with sustainable opportunities throughout the
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system life cycle. The specific administration is either NASA or the ESA member
states in case of the liquid rocket engines.

The total cost, or equivalently the LCC, that is accrued throughout a typical
liquid rocket engine system life cycle may be split into the classical portions:
development, production, and operations and support. The development costs are
associated with the technology maturation, the design and development, and the
design verification by means of a test plan that include the TAAF cycles.

The Liquid Rocket Engine Cost Model (LRECM), originally developed by
Rocketdyne, estimates the development and production cost. It is implemented in the
NASA/Air Force Cost Model (NAFCOM®) Contractor Version [13]. Details about
the LRECM evolution may be found in Meisl [10], Meisl [12], and Joyner et al. [6].
Note that the fundamental model equations are proprietary and access to NAFCOM®
is given upon the acceptance of a nondisclosure agreement.

Not specific to this research but generally important is the consideration of
international economy theory if two different economic markets, i.e., the prices of
liquid rocket engines, are compared [139, 162]. The Purchasing Power Parity (PPP)
of the price level at a specific economic condition (e.c.) is used as conversion factor.
The application of economic theory to the LRECM results is validated using
proprietary European cost data of existing liquid rocket engines.

Joyner et al. [6] provide the most recent description of the LRECM. The
LRECM was specifically created as an alternative approach to the classical weight-
based Cost Estimating Relationship (CER) models typically used in early project

phases to support the decision-making concerning liquid rocket engine conceptual
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design choices such as thrust, chamber pressure, engine thermodynamic cycle,
technology readiness level, engineering and production processes attributes, design
for producibility, etc. The input parameters are listed in Table 3-4. However,
important limitations of the LRECM are the applicability of the model to NASA
project phases C and D and the lack of a specific cost model that estimates the
execution of a predefined hot-fire test plan, which will be developed using the RAIV
strategy (see Section 3.3.2).

Table 3-4: LRECM Input Parameters

Parameter Development Production Test hardware
cost cost cost

Development environment X

Manufacturing environment X X X
Manufacturing readiness level X X X
Design scope X

Team experience X

Engine cycle X X
Producibility X X
Vacuum thrust, kKN X X
Chamber pressure, bar X X

Schankman [163], OSD [164], ECSS [112], and Macret [165] provide the links
between project phases, design scope expressed as Technology Readiness Level
(TRL) [166], team experience, Integration Readiness Level (IRL) [165, 167, 168§],
and Manufacturing Readiness Level (MRL) [164] as displayed in Figure 3-5. By that
means, the limitation of the LRECM to the project phases C and D is no longer
applicable. Note that the verbal descriptions of the design scope and team experience

correspond to the factor levels used in the LRECM.
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Figure 3-5:  Project Phases, Design Scope, Team Experience, IRL, TRL, and
MRL

The Cost Estimating Relation (CER) for the development dost C™ is expressed as

THW
¢,

the sum of the design and development cost C””, the test hardware cost and

the cost to execute the testing profiles (test plan) C'". Eq. (3.4) exhibits the

fundamental development CER.
P — PP | CTHW 4 TP (3.4)
C" and C™" are determined with the LRECM, and specific models are
used to estimate the number of hardware sets needed to complete the hot-fire test plan

(see Sections 3.3.2), whereas the test execution cost C'” depends upon the

construction and maintenance cost of the test facilities and the costs of the hot-fire

tests performed, i.e., C" = C};f +C.
Let N be the number of test facilities of type 7, let C! be the construction

cost of a test facility of type 7, and let C be the annual maintenance cost of a test
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facility of type r. The fixed test execution cost C;f for the test facilities is

determined by Eq. (3.5).

R

Cir =Y N"(c/+D"c™) (3.5)

where D!” is the test facility occupation duration of test facility of type r (see

Section 0). Note that C! is a one-time cost that may or may not be associated with

the development cost and may include a complete construction of a new test facility,
a major upgrade of an existing test facility, or simple modifications. Initial installment
or upgrade cost may be required if existing test facility capabilities are no longer
adequate to support the required testing profiles boundary conditions. For example,

the thrust level of a liquid rocket engine may exceed existing facility capabilities.

The variable test execution cost C!” in a test facility of type 7 includes the

cost of operating the facility as well as the costs of the fuel, oxidizer, and

consumables used during the test. Let C2” be the direct personnel cost of operating a

test facility of type r for test campaign s for hot-fire test group i. This cost depends
upon the time and personnel required to install the test hardware in the test facility,

conduct a number of hot-fire tests with different testing profiles, and dismount the

hardware from the test facility. Let C." be the cost of the fuel used for test campaign
s for hot-fire test group i in a test facility of type r. Let C2° be the cost of the

oxidizer used for test campaign s for hot-fire test group i in a test facility of type 7.
These propellant costs depend upon the hot firing duration, the propellants used

(determined through thrust, vacuum specific impulse, and propellant mixture ratio),
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and the per-unit cost of fuel and oxidizer. Let C.’ be the cost of the consumables

used for test campaign s for hot-fire test group i in a test facility of type 7. This cost
is a constant and includes the cost of gases such as nitrogen or helium that are used

for purging or venting operations during or in between the hot-fire tests. Given these

quantities, the variable test execution cost C!" for test campaign s for hot-fire group

i in the test facility 7 is determined by Eq. (3.6).

M

/I R
Cor =22

i=l r=1 s

(C2F +Cl 4 Co +C) (3.6)

s s s s

I
—

with
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= j FD!
,21: Isp)! g, (MRTP +1) i €

ijrs

J; FTPMR

_ ijrs ijrs FDTP Ox
,Z}]spm 2o (MRTP +1) i €
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irs ijrs

CCo z CCo
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where N™ is the number of direct personnel operating the test facility, R” is the
hourly rate, WY"" are the yearly working hours of one direct personnel, D™ is the
test facility occupation duration, F" is the thrust level, Isp’" is the vacuum specific
impulse, MR"" is the propellant mixture ratio, g, is the gravitational constant, FD"
is the firing duration, ¢ is the specific propellant cost for the oxidizer, and ¢ is

the specific propellant cost for the fuel. Note that F'", ISpTP, MR™ , FD™  and C
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depend on the testing profiles j associated with a specific hot-fire test group i that is

performed in test campaign s in test facility of type r.

Finally, the affordability is modeled using Eq. (3.7). Note that the operations
and support (O&S) costs, although part of the affordability, are not taken into account
in this research because these costs are only of importance for reusable liquid rocket

engines, which are not considered herein.
CAff — CDev + CPmd (37)
where C™ is the cost associated with the development as given in Eq. (3.4) and

C"™ is the accumulated production cost associated with a defined product life cycle

and rate of production, which is estimated with NAFCOM®.

3.3.2 Modeling Reliability as Reliability-As-an-Independent-Variable

Strategy

Bayesian Multilevel Testing Profiles Aggregation

The Bayesian estimation of the multilevel testing profiles aggregation is based on a
Bayesian multilevel attribute data aggregation method [17-19, 93]. The application of
the Bayesian multilevel attribute data aggregation method is, however, not applicable
because different hot-fire test conditions are present in the testing profiles. In order to
remedy the inapplicability and apply the Bayesian multilevel attribute data
aggregation method, the concept of an Equivalent Mission (EQM) is used. Note that
an EQM of one simply corresponds to a single trial under the Bayesian multilevel

attribute data aggregation method.
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An EQM normalizes the different testing profiles with the mission profile by
taking into account the challenges to which piece parts and subassemblies of liquid
rocket engines are exposed during the operational start-up, steady, and shutdown
states. The performance-requirement failure model is most applicable to liquid rocket
engines in which the two dominant failure-inducing agents are stress and time, which
trigger stress-increased and strength-reduced failure mechanisms [71]. The two
failure mechanisms may be interrelated but certainly do not contribute equally to the
well-known failure modes of liquid rocket engines; consequently, a weighting must
be regarded. Mathematically, the EQM is defined in Eq. (3.8). The first term reflects
the stress-increased failure mechanism, and the second term reflects the strength-

reduced failure mechanism.

AWC”+O_§)GHYP
NFC™ CFD""

EOM™ =¢ (3.9)

where { is the weighting factor of the challenges that trigger the two failure

mechanisms, NFC™ is the number of hot firing cycles associated with the testing

profiles with the corresponding cumulative hot firing duration CFD'", and NFC"" is

the number of hot firing cycles associated with the mission profile with the

corresponding cumulative hot firing durations CFD" . Note that the weighting factor
depends on the thermodynamic engine cycle as well as the pressure and thrust level,
i.e. high pressure high thrust level liquid rocket engines are more vulnerable for
strength-reduced failure mechanism whereas lower level systems are more vulnerable
for stress-increased failure mechanisms. Therefore, the EQM covers all possible

liquid rocket engine system alternatives in a single modeling approach.
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The different testing profiles are usually performed at various system
integration levels, i.e., component, subsystem, and system level, which also define the
test configurations. Within each test configuration, different hot firing durations FD
may be defined. To account for both different test configurations and hot firing
durations, hot-fire test groups are denoted with subscript i, and testing profiles are

denoted with subscript j . Eq. (3.9) exhibits the introduction.

NFC[" NFCI"FD!"

The flight mission hot firing duration is the reference hot-fire test time. Any
hot firing testing profile that is less than the full flight mission hot firing duration
must be weighted with respect to this reference; otherwise, any system reliability

estimate would be seriously biased [123, 125]. Lloyd and Lipow [124] derived a

probabilistic model to estimate an appropriate weighting factor w; ; this is given in
Eq. (3.10). Note that the weighting factor w; is associated with the system level test

configuration, denoted with subscript sys , because the real mission operational loads

and a full flight mission duration FMD can be exerted only on the system level due
to the limitations of the component and subsystem test facilities, i.e., limited pressure

levels and firing durations.

P pSyS,./' +€(1_psys’j)

sys,j (310)
yj psys,FMD +& (1 - psys,FMD )

where p

s, 1 the probability of failure occurrence during the start-up and steady

state up to firing duration FDSIj > Dys.eup 18 the probability of failure occurrence for

the full flight mission duration, and & 1is the conditional probability of failure
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occurrence during the shutdown state given that no start-up and steady state failure

had occurred prior to the shutdown.

Eq. (3.11) exhibits the introduction of the weighting factor w), into the EQM

definition. The parameters £ and p,, ; are estimated using Bayesian estimation with

the likelihood function that is given in Eq. (3.12) and uniform prior distributions.

NFC w NFC;"w,"FD;"

JSys

L(Data | Q)Sys :HL(Data |Q)Sys,j (3.12)
J=

with
NFC™ |
L (Data | Q)Sys ;= syS.J .
’ TP(S) TP(F F)
NFC.S 'NFCW ' 'H NFCW o

< ) TP(F)

(1=, )0=) " [(1-p,,,)e]

Jj TP(F
11 NECh
psys,k - psys,k—l

k=1

NECTHS)

where [(1— Py, j)(l—g)} "’ is the corresponding ordinary failure probability,

. : o
[(1— Dy, j)eJNF . is the shutdown state failure probability, and

J

NFCTHE)
H( Posik — Pos i 1) """ s the failure probability for failures that could have
k=1

occurred in the hot firing interval with durations (FDTP - FD™ ) NFC™ s the

sys,k sys,k—1 SyS,j

total number of hot-fire tests, NF' wa /> is the number of successful hot-fire tests,
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NFC™) is the number of shutdown hot-fire test failures, and NFC'STyff_j?c is the

sys,j
number of hot-fire test failures that can occur in the hot firing interval.
The strength-reduced failure mechanism is influenced by the operational loads

during the steady state operation; therefore, different levels of failure acceleration
effects must be regarded by means of an acceleration factor AF:J.TP [169]. Note that
more research is, however, required in the field of advanced physics-of-failure
models for liquid rocket engine piece parts and subassemblies and the aggregation of

these individual AF into a single AF that reflects the specific hot-fire test group i. A

study of combustion chambers is described by Schwarz et al. [116]. Eq. (3.13)

exhibits the introduction of the acceleration factor AE].TP into the EQM definition.

NFC] NFCT” AR W FDI"
( +(1=¢. ) ij iy i ij
NFCMP v CFD"

EQM," ={,

(3.13)

Analogous to the binomial model, EQM successes, denoted by superscript S,
and EQM failures, denoted by superscript F, are defined for each of the system
integration levels i. Equations (3.14), (3.15), and (3.16) exhibit the relevant
mathematical expressions for the EQM trials, EQM failures, and EQM successes,

respectively. Note that the overall hot-fire test plan is then defined as the sum of all

1
EQM,, i.c., > EOM" and denoted as EQM™ .

i=1

J;
EOM[" =% EOM;" (3.14)
Jj=1
wiry [ . NFC) NFCT AR W' FDJ""!
EoM"" =31 ¢ +(1-¢;) (3.15)
= ij NFCMP y CFDMP
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EOM™®) = EoM™ — EoM™") (3.16)

The final step in the Bayesian multilevel testing profiles aggregation is the
construction of the underlying likelihood function using a functional node network
that is similar to Reliability Block Diagrams (RBD) [170] and the definition of the

prior distributions for the component reliabilities in order to define the unscaled
posterior distribution (8| Data) as given in Eq. (3.17).

<S> )EQM[TP _EQM[TP<S>

7(6| Data) = [1752" (1- 7, =) G171

i=l i=1
where 7. is the functional node reliability at the various system integration levels and

z! is the corresponding prior distribution. The functional node reliabilities are

functions of the physical component (or any other lowest system decomposition

level) or Common-Cause Component Group (CCCG) reliabilities of the physical

system architecture that are subject to & risks or causes of failures, i.e., 7, = f (ﬂ'c )

The functional node network defines also the fundamental hot-fire test plan, i.e., it
specifies the hot-fire test configurations.

Figure 3-6 depicts a five component functional node network to demonstrate
the construction of the likelihood function. Note that the approach is not limited to

simple serial networks; complex serial-parallel networks are also possible [93].

Node 0: system
(o s ST s

i Node 1: subsystem 1 Node 2: subsystem 2 '
| e ——— |
;o [ (I
- Node 3: Node 4: I | Node 5: Node 6: Node 7: I
—> > c
[ : Component 1 Component 2| | : Component 3 Component4| = Component 5| |
I |

Figure 3-6:  Serial Functional Node Network
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In this example, the system-level functional node reliability, denoted by Node 0, is

7, = m, 7, with subsystem functional node reliabilities, denoted by Node 1 and Node

2, n,=nr, and &, =77, . Note that the functional node reliabilities 7, 7,, 7,

75, and 7, , correspond to the component reliabilities 7. , 7. , 7., 7., and 7,

respectively. The likelihood function is then found by inserting the functional

component, subsystem, and system level nodes into Eq. (3.17), i.e.,

EoMT" —EoM ™)
L(Data|8)= 7, ) “ a .

1 - JZ.CI
EQMZP<S>
”CS i (1 - HCS

TP(S)
0 subsys|

T T ) (1—7[ T
( GG subsys, GG

7P(S)
QMsubsysz

)EQMgg ~EQM ¢, (s)

P TP(S)
)EQMsubsyA'] _EQMsubsyS] X

TP TP(S
)EQMWbS.VSZ _EQMSub<sy.22

(ﬂcs Zc, ”CS ) (1 N ﬂ-c3 Zc, ﬂ-cs

subsys,

EoM™? —EQMTES)

sys sys

e

s | =7 7w, 70, 7o, 7o, )

( ﬂ-cl ﬂ-cz ﬂ-c3 ﬂ:c4 ﬂ-cs

Prior Distribution Choices
Section 2.3.2 discussed criticisms of the Bayesian approach related to the subjectivity
involved in the generation of the prior distributions because of the negligible,
moderate, or enormous influence on the parameter estimation. In general, two classes
of prior distributions exist: (1) minimally informative or equivalently diffuse,
noninformative, or vague and (2) informative [18].

The most common approach to define a minimally informative prior is to
apply Jeffreys’ rule that may result in improper or proper distribution functions. In

case of the binomial experiment, a proper Jeffreys’ prior distribution function is

given, i.e. Be(O.S,O.S) [101].
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The Beta distribution function is also used to define informative prior
distributions for the component level as follows. The system level Beta distribution

shape parameters ¢, and B are determined using the method of quantile

Sps

estimates [160] that minimize

o5 [ rlonn-(-2]]

in which the two quantiles p,, and p_,, correspond to the predicted two-sided

Bayes probability interval (TBPI) [171] or mathematically more appropriately to the
TBCI of a posterior distribution [101]. Empirical data is used to calculate the required

pth quantiles [4, 5, 80, 172]. Eq. (3.18) exhibits the first level Bayesian estimate of a
mean predicted reliability, and Eq. (3.19) and Eq. (3.20) exhibit the lower and upper
bounds of the credibility interval, respectively. The 100(1-7/2)% level of

credibility is set to 90% that defines the 5™ and 95™ quantiles.

NMP<S>+1
red
E[Rr]= T (3.18)
RTBCL _ Su +1
s WPlS MP(S
NS 414 (N +2- N 1) F () (3.19)

P12 22 4228 13

(N +1)F,

1-y/2

NMP—NMP<S>+l+(NMP<S>+1)E—}//2 () (320)

- (2N 44,28 —2NME 4 2)
R =
Sys

E—y/Z () = F

1-y/2

(2NMP<S> +4,2NM _QNMPS) 4 2)
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MP(S)

where N is the number of predicted mission profile successes, N is the

number of predicted mission profile trials, and £_,, (v,,v,) is the (1—¥/2) quantile

of the F-distribution with degree of freedoms v, and v,.

The combination of both minimally informative priors and informative prior
information is expressed in the form of finite mixture distributions as given in Eq.

(3.21)[173].

L

f(8)=f(6n) (3.21)

I=1

where f,(ﬁ\@) are the population distribution functions, 77, is a vector of the

distribution parameters for the distribution function of population /, and @ are the

mix parameters with

L
szzl and @ 20, for/=1,2,...,L.

I=1
Kleyner [82] proposes a two-component mixture distribution with the
component distributions Uniform and Beta. The mix parameters are interpreted as
knowledge factor expressing the similarity of a new product to the existing one and
innovation factor expressing the novelty content in the new product. Eq. (3.22)

exhibits Kleyner’s two-component mixture distribution.

(1-9) 6=0veo=1

f(G:0.B.0)=1 6°"(1-6)" (3.22)
¢—ER&ET—+U—m 0<6<l

81



where @ is the variable, i.e., the component reliability, ¢ and (1—¢) are the mix

parameters, o and [ are the shape parameters of the Beta distribution, and B() is

the Beta function.

Relating to the knowledge and innovation factors, Krolo [81] proposes an
alternative formulation that is based on an informative Beta distribution. However,
the introduction of the knowledge and innovation factors requires an adjustment of
the normalization constant of a standard Beta distribution function to ensure that the

total probability integrates to unity, i.e., the Eulerian integral of the first kind becomes
U (ac, gc, )1 Be,—1)¢c, . .
J.O Aot -(l—t)( e gy , which has the solution B[acxgbcx,(ﬂcx _1)% +1} . Note

that this alternative formulation was used in [28].
This research used Jeffreys’ prior instead of a Uniform distribution in a finite
mixture distribution because the selection of prior distributions is based on formal

rules [73] and the interpretation of the mix parameters as knowledge transfer factor ¢

is similar to the knowledge and innovation factors [82]. Eq. (3.23) exhibits the two-

component finite mixture distribution using the Jeffreys’ prior and Beta distribution.

o* (1-6)""
B(a,B)

(1-6)* 67

f(6;0,8,0)=¢ B (/)

+(1-9)

0<O<1 (3.23)

where @ is the variable, i.e., the component reliability, ¢ is the knowledge transfer
factor, & and f are the shape parameters of the Beta distribution, and B() is the

Beta function.
Note that the selection of a prior distribution is used only at the lowest system

decomposition level, i.e., component level, in the frame of this research. The prior
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distributions of the subsystem and system level are assumed to be Uniform

0

probability density functions, i.e., 7, =1 and 7l

o whes, —1. The implemented prior

distributions on component levels are given in Eq. (3.24). The justification for the

choice is deferred to Section 0.

ei(lsys_l 1-6, Py
71'2} (91 5 asys 5 ﬁsys > ¢Sys ) - ¢sy y B (OE ) '

sys > Isys )
Ly (=) e
+(1 ¢Sys> B(asys?ﬂsys)

(3.24)

where 6, is the component level reliability, @, is the system level knowledge

transfer factor, & =a,, and f. =/f, are the shape parameters of the Beta

Sys
distribution, and B() is the Beta function.

The assumptions that &, =¢,, and ﬂc = p,, for the shape parameters of

the Beta distribution are due to the competing risks of the system components. If a
system is studied that is not following the competing risks model assumptions, the

component level informative prior distribution parameters ¢, and f,. are found by

simulation [18]. In case of a simple series system the Beta distribution parameters are

7 ~ Be(asys,ﬂ) with Z;ﬂc =p.

Predicted Test-Analyze-And-Fix Cycle Failures
The knowledge transfer factor ¢ is also used to predict the TAAF cycle failures. The
level of knowledge transfer is defined by physical considerations, i.e., the power-to-

weight ratio, and the expertise of the used propellants in contrast to the application of

an FMEA [81], Fuzzy Model [83], pilot tests [81] or field data [81, 82].
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Power is the rate at which energy is transferred, used, or transformed. In the
context of liquid rocket engines, the energy equals the mass flow rate of propellants
that are used to transfer chemical into kinetic energy to generate thrust. The chemical
energy transfer takes place at high-temperature, high-pressure conditions that are also
associated with the failure-inducing agents.

Therefore, the knowledge transfer factor on system level ¢ is defined

through the thrust and system pressure conditions that determine the adverse
operational conditions in liquid rocket engines. In addition, the used propellant
combination is added because new propellants add new unknown unknowns. Eq.
(3.25) exhibits the mathematical formula.

Fknown a Pknown b 1
¢Sys :( e ] ( P‘n‘ew J [propellant (325)

vac

where F  is the vacuum thrust, P_ is the main combustion chamber pressure, a

]propellant

and b are constants, and is an indicator variable. Knowledge from existing

similar systems is denoted by superscript known, the new system of interest is

denoted by superscript new, and 17" =1 if the propellant is new but equals 2 if
the propellant is well-known.
The method introduced by Waterman et al. [79] is used to estimate the

required distribution parameters &, =k, and S =v, —k, but modified with a

proper two-component mixture distribution, i.e., Eq. (3.22). In addition, the method

also requires a (K‘, 1)) parameterized Beta distribution instead of a Be(()(, ,B) Hence,
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Eq. (3.26) and Eq. (3.27) can be defined to solve numerically for the parameter v,

followed by the calculation of the parameter «,,

5 *

B, [ 0RE 0 (1R |
RTECl _ RTBCly 4 Ry Y 5ys sys :( _Zj 326
v T e T e T (1= R y) G20
K=VRI (3.27)

Next, the predicted system level reliability RS’;ZEd is corrected with the system level

knowledge factor ¢

..« t0 obtain the corrected predicted system level reliability RV

Sys

using Eq. (3.28).

! . (1= Rz ) Rireios
Rgf;” - .[ RS];‘ ‘ (1 - ¢SJ’S ) By( asys ’ IB sySy) '
(Rpred )%s—l (l _ Rred )ﬁ} -1 (3.28)
+¢ = s dR pred
sys B (CY‘}S , ﬂsys ) Sys

Finally, Eq. (3.29) approximates the number of TAAF cycle failures 7,,,. by

assuming that the delta in the number of successes corresponds to the number of

failures, i.e., As = AnAR.
Traar = IV(NMP — Uy )(Rsl;;ed - Rgi;»;ﬂ )—‘ (3.29)
Figure 3-7 depicts the system level knowledge factor @, versus the number of

TAAF failures 7, .
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Figure 3-7: System Knowledge Factor versus Number of System Failures

The number of predicted TAAF cycle failures is then allocated to the relevant system
components [174], as listed in Table 3-5, using the SSME experience in accordance
to the failure occurrence experience [125], i.e., 60% of the failures occur during the
start-up, 20% within the first one-third of the full flight mission duration, and the
remaining 20% up to flight mission completion. Other failure information will not be
made available in this research to protect the proprietary nature of the data.

Table 3-5:  Failure Allocation to System Components

Component Failure fraction
High pressure fuel turbopump 0.150
High pressure ox turbopump 0.076
Low pressure turbopumps 0.023
Nozzle extension 0.091
Combustion devices 0.170
Valves, sensors, and controls 0.184
Ducts 0.106
Other 0.184

Bayesian Estimation using the Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is required to estimate the parameters of the

Bayesian multilevel testing profiles aggregation because of nontrivial unscaled
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posteriors. A blockwise Metropolis-Hastings algorithm with an independent
candidate density is selected because of the computational efficiency, i.e., typically
10,000 iterations are needed to meet the convergence criteria even for high
dimensional problems.

In particular, the blockwise Metropolis-Hastings algorithm loops through all

unknown parameters &, conditional on all the other parameters € ; that are not in that
block. At each iteration step, a new candidate value for the unknown parameters 8, is

proposed from an independent candidate density. The candidate value q(Q *) is

either accepted or rejected according to the detailed balance condition that satisfies
the kernel of the Metropolis-Hastings algorithm which is drawn on the logit-scale

according to Eq. (3.30) [19].
logit6,* ~ N (logit6"), 0, (3.30)
where logit@ * is defined as In(6 *)—In(1-6 *) [175], o, is the standard deviation

that is used as tuning constant of the Markov chain with acceptance probability

7(6*| Data) 6,*(1-6,*%)
(6" | Data) 6" (1-6")

1

a(6™,6*0,)=min]1, (3.31)

where 77(6*| Data) is the unscaled target density (posterior) that is evaluated with

the new candidate value 6 *, 7 (0}”” | Data) is the unscaled target density (posterior)

that is evaluated at the previously accepted value Q(m) .

The computational implementation of Eq. (3.30) is given in Eq. (3.32). In

addition, Eq. (3.31) was modified, as given in Eq. (3.33), to solve numerical
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instabilities that are caused by small or large numbers [176]. The overall
computational implementation is depicted in Figure 3-8.

gro__ 1 (3.32)

Lo 4

where  Fy' (u) is the equated inverse cumulative density function of

X~N (logitﬂ('"),ai) at the random number u generated by U ~U (0,1).

{ln[/r(ﬁ,*\Data)Jfln[lr(@(m)\Data”} 61 * (1 - 91 *)

g(iam)|

a(6",6%6 ,)=minle

1 1

Markov chain Monte Carlo samples are not independent random samples;
therefore, the following convergence criteria must be met: convergence to the
stationary distribution, convergence of averages, and convergence to iid sampling
[98]. The burn-in period, the acceptance rate, and the autocorrelation of the samples
are a concern but can also be used to influence the Markov chain behavior in order to
meet the convergence criteria. Unfortunately, no mathematical treatment is given that
determines the length of the required burn-in period [97]. In this research, it turned
out that 1000 iterations are sufficient for the burn-in period reflecting the two

considerations: convergence to the stationary distribution using mainly trace plots as

well as minimum scatter of the standard deviation O, of the independent candidate

density that influences the acceptance rate and consequently the autocorrelation as
measure for the convergence to iid sampling. Gregory [107], Liu [108], and Graves
and Hamada [19] suggest acceptance rates close to 0.35 for problems that are similar
to the ones treated in this research. However, an empirical study using the posteriors

in the frame of this research suggests acceptance rates of 0.40 (see Figure 3-15). The
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final step is to remove the iterations of the burn-in period and thin the remaining
iterations of the Markov chain using the lag at which the autocorrelation is below the

0.95 confidence level.

!" Start |
0. Initialize m =0 and 0" = {X ~U(a.p)} ‘ 5. Select o, at specified acceptance rate ‘
i=1 ‘ 6. Initialize m =0 and " ={X ~ U (a.B)} ‘

| i|3| =

I

i<lg) > i+
A=t ‘ l S
k < 1(r k++ n:=]
,n; <10000 —
‘ m=1 ‘
|
¥ J
AN 7. Draw 0* from logitd,* ~ N (logitt", 7 ‘
m <1000 l
'L | 2(8*| Data) 6*(1-0,*)
1. Draw 6* from logitd* ~ N(logit&‘”'),o}) ‘ 8. Compute = min l’ﬂ_(g(m] | Data) ’ 6’.(”')(1 —6(’"))
2. Compute r =minly, 781 Daa) 6,*(1-6,%) 9. Draw u from a Uniform(0,1) density ‘
(6| Data) " (1-6) 1
l 10. Ifu<r set 8™ = §*, Otherwise, set 8™ =" ‘
3. Draw u from a Uniform(0,1) density ‘ ¢

,l, m++‘

4. Ifu<r set 8" =@*. Otherwise, set 6" =g ‘

m++

N S

Stop

Figure 3-8: Computational Algorithm of the Bayesian multilevel Testing
Profiles Aggregation Method
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Number of Development Hardware based on Bayesian Success Mission Profile
Testing
The number of hardware sets that are required to verify the inherent mission profile
reliability-by-credibility (R-by-C) requirement is based on the Bayesian success
testing under an exponential distribution assumption [115]. An expression in analytic
form is found by the Bayesian estimation of a failure fraction.

The likelihood function for the failure fraction is a binomial distribution in
which the number of trials » is replaced by the Equivalent Mission notion as given in

Eq. (3.34).

(3.34)

P -
L(Data | q) _ [EQMRbyCqu (l—q)EQM -r

r
where ¢ i1s the failure fraction, EQM%?C is the number of mission profile EQMs
associated with the R-by-C requirement, and 7 is the number of observed failures
during the hot-fire test plan. Note that the number of failures 7 is set to zero in the
Bayesian success testing under an exponential distribution assumption.

The prior distribution for the failure fraction is a two-component mixture

distribution in which the mixture components are a Uniform and a Beta distribution.

Eq. (3.35) exhibits the two-component mixture distribution [82].

qaq—l (l_q)ﬂqfl

3.35
B(aq’ﬂq> ( )

fla:9,.8,.8,,)=(1-8,.)+9,

where ¢ is the failure fraction, ¢, is the knowledge transfer factor, ¢, and S, are

the Beta distribution shape parameters, and B() is the Beta function.
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The posterior of the failure fraction ¢ is found using the Bayesian estimation.
Eq. (3.36) exhibits the resulting posterior.

)

a,-1
L= g)EOMe | Pund (I-q)" 41
S I R
vasr(aq)r(ﬁq+EQ lj?lf;c)_i_ 1_¢sys
B(e,.B,)T(") EQM o +1

7(q;,,,.0| Data) = (3.36)

with
F() = F(O(q +ﬂq +EQM£§C)
where ¢ is the failure fraction, EQM%};C is the number of mission profile EQMs

associated with the R-by-C requirement, ¢, is the knowledge transfer factor, ¢, and

B, are the Beta distribution shape parameters, B() is the Beta function, and

I(z)= J‘:tz‘le‘tdt is the Gamma function.

The percentiles on the posterior distribution of the failure fraction ¢ are given
by Eq. (3.37).

Pr(g<gq,)= joq“ 7(¢;@,.,.9,, | Data)dg = C (3.37)
where g, is the upper percentile of the posterior distribution of the failure fraction ¢
and C is the level of credibility.

The expression in analytic form of the upper percentile failure fraction ¢, is
given in Eq. (3.38).

{[1—(1—% )EQM}‘W”‘I;"H}(cz)m ~1)B()-ag,,B, (-)}r<‘> ()
(0,.-1)BOT" ()-ag, T (e, )T ()

=C (3.38)
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with

a=(EQM . +1)

3

B(’):B(aq’ﬂq)

2

() =T(e, +B,+EOM ) and

b

I ()=T(B,+EOM )

RbyC

The final step is to transfer the upper percentile failure fraction g, to the

lower bound mission profile reliability R}y , i.e., RS =1—q, and g, =1-R)".

Then, Eq. (3.38) exhibits the expression in analytic form of the mission profile
reliability-by-credibility (R-by-C) requirement that is required in the Bayesian
success testing under an exponential distribution assumption. Note that a minimally

informative prior distribution is assumed for the failure fraction ¢ in this research,
i.e., Jeffreys’ prior with distribution parameters ¢, = §, =0.5 [101].

The number of hardware sets depends on the capacity of the piece parts and
subassembly designs to withstand the thermofluid-mechanical challenges that are
caused by stress and time, the two different failure-inducing agents [71]. Like the
notion of Equivalent Mission (EQM), which accumulates the challenges, the notion
of Equivalent Life (EQL) 1s used for the capacity in this research. Note that an EQL
without an associated R-by-C requirement is, however, useless. In the automotive

industry, the R-by-C requirement is also referred to as a test bogey [115]. Eq. (3.39)

exhibits the definition for the reliable EQL EQL%;C that is multiplied with a safety

factor.
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EQLy . =SF g—cg’ic +(1—§)—tg’ic (3.39)
e NFC™ CFD"" '

where SF is the safety factor, £ is the weighting factor of the capacity to withstand

MP

wye 18 the number of reliable

the challenges that trigger the two failure mechanisms, ¢

MP

e 1s the reliable time, and NFC™ is the number of hot firing cycles

cycles, ¢
associated to the mission profile with the corresponding cumulative hot firing

durations CFD" . Note that the values for the reliable cycles ¢2 . and the reliable

RbyC

life t,ﬁ’; - are based primarily on engineering judgment and simplified engineering

models. Advanced physics-of-failure models for liquid rocket engine piece parts or
subassemblies are still an area of active research [116].

Using the results of Eq. (3.38) and Eq. (3.39), the number of hardware sets
HVK?Z;C that are needed to verify the inherent mission profile R-by-C requirement is

finally given in Eq. (3.40). Note that Eq. (3.40) applies only to the system level test

configuration.
E Q MP
HWh = ——20C 3.40
RbyC E Q L}}\g[i} . ( )

Remaining Number of Development Hardware based on the Median Equivalent
Life
Depending on the liquid rocket engine system’s maturity, expressed as knowledge

transfer factor ¢__, the EQMs of the complete hot-fire test plan EQOM ™ may exceed

sys 2
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the EQM that is associated with the R-by-C requirement, i.e., EOM ﬁf;c. Therefore,
Eq. (3.41) exhibits the remaining EQMs EQM " that are in excess to the EQM ﬁf;c .

EOMT" = EOM™ — EQM," (3.41)

RbyC
As a strategy for reducing the number of hardware sets, the remaining EQM

testing profiles EQM” are to be performed in excess to the reliable EQL EQLy,

up to the median EQL E\QZTP. The determination of the median EQL E\an’

requires defining the underlying distributions that describe the two different failure-
inducing agents (stress and time), which are the Poisson and the Weibull,
respectively. The Poisson distribution is a proper choice for cyclic loads since it
describes a random discrete variable with no upper bound. The Weibull distribution
governs the time to occurrence of the weakest link of many competing failure
processes. The median is chosen in preference over the average statistics in cases of
small Weibull shape parameter [177]. Eq. (3.42) exhibits the fundamental definition.
The subassemblies of liquid rocket engines that typically dominate the time to failure

are the turbine(s), bearings, and combustion chamber liner.

/iTP ltTP

NFC ' (1=¢) CFD"" (3.42)

— TP
EQL =SF [f
where SF is the safety factor, & is the weighting factor of the capacity to withstand

the challenges that trigger the two failure mechanisms, A™ is the median number of

cycles to failure, 7'" is the median life, and NFC" is the number of hot firing

cycles associated to the mission profile with the corresponding cumulative hot firing

durations CED"" .
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The median number of cycles A is given in Eq. (3.43). Note that the median

A7 s actually calculated as mean 4™ which does not impact the overall approach
because the Poisson distribution is approximated with the Normal distribution if the
mean A7 is above nine, and the median and the mean of a Normal distribution are
equal.

T(1+| e |.27)
r(1+[ee )

P(NFC™ <cph)=R(cpre)=1- (3.43)

where P(NF C"™ <cp, C) is the probability of failure associated with the test bogey,

R (c%f: C) is the reliable cycles, A" is the mean of the Poisson distribution, |_J 1s

the floor function, and T'(z) = J:o t*'-e”'dt is the Gamma function.

The median time 7'" is given in (3.44).

7
i =ty [IIL”J (3.44)

MP
—in (RRbyC

where #3". is the reliable life, Ry, is the reliability associated with the R-by-C

requirement, and /3 is the shape parameter of the Weibull distribution.

Similarly to Eq. (3.40), the number of hardware sets HW '’ that are in excess

rem

to the number of hardware sets HWIAéfC but needed to complete the overall hot-fire

test plan EQM " is defined in Eq. (3.45). Note that Eq. (3.45) is applied to all system

integration levels, i.e., component, subsystem, and system level.

P
W = E9M (3.45)

rem TP
EOL
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Numerical Results

Testing Profiles Weighting according to the Lloyd-Lipow Model

Worlund et al. [125] provides data for the weighting factor w, that were estimated

using the SSME and H-1, F-1, and J-2 liquid rocket engines. For ease of reference,
the plot is reproduced in Figure 3-9.
To study further the general behavior of the testing profiles weighting factor

w, , consider an arbitrary liquid rocket engine test plan that consists of five testing

profiles with hot firing interval durations (FD]" —FD."

sys.k sys,k—1

), ie., [0,10), [10,100),

[100,180), [180,240), and [240,300]. For this example, assume that the total number
of hot-fire tests remains constant in the study, i.e., 200, and that the numbers of

failures depend on the system level knowledge factor ¢, knowledge factor. In

addition, the failure occurrence assumptions follow the empirically observed ones,
1.e., 60% occur within the first couple of seconds, an additional 20% occur within
one-third of the flight mission hot firing duration, and the remaining failures occur up
to flight mission hot firing completion [125]. The results are depicted in Figure 3-10.
By looking at Figure 3-10, the general behavior of the testing profiles

weighting factor w; is consistent with a rocket scientist’s belief, i.e., if a certain hot-

fire time is past the likelihood of a failure is lower and that the additional gain in
demonstrating system reliability is minor. Prominent examples are the SSME and the
F-1 liquid rocket engine. The critical time of the SSME is 1.5 seconds during start-up

due to a thermodynamic instability [120] whereas the F-1 featured a 110 second
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turbopump phenomenon problem that remains a mystery [178]. Current flight liquid

rocket engines observe similar phenomena but cannot be disclosed in this research.

O SSME
A J-2
v F-1
o H-1

Firing Duration, [ s |

Figure 3-9: Test Firings versus Weighting Factor

¢ = 1.0, 0 Failure
¢ = 0.8, 2 Failure
¢ = 0.6, 6 Failure
¢ = 0.4, 16 Failure
¢ = 0.2, 35 Failure

0o < > O

Firing Duration, [ s |

Figure 3-10: Influence of Knowledge Factor Level on Testing Profiles

Weighting Factor
To conclude the discussion on the testing profiles weighting according to the Lloyd-
Lipow model and to demonstrate the coherence between theory and actual data, both

the empirical and the model results are overlaid in Figure 3-11.
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Figure 3-11: Historical Weighting Factors compared to Lloyd-Lipow Model
based Testing Profiles Weighting Factor

Multilevel Bayesian Attribute Test Data Aggregation
Hamada [18] provides data for a three-component series system that is described in

Table 3-6.

Table 3-6:  Bayesian Aggregation: Three Component Series Test Data

Integration Level Success Failures Units tested
Component 1 5 1 6
Component 2 6 0 6
Component 3 9 1 10
System 10 2 12

Each component is modeled as p, ~ Bi (ni,Jr[) where 7, is the number of units tested

and 7 is the success probability for each of the i=1,2,3 components. If common

cause failures are excluded, i.e., the component failures are independent, the system

reliability is 7z, =77,7,. The prior distributions, Uniform density functions, are
assumed to be independent for each . The unscaled posterior distribution is,

therefore, given as
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7(8| Data) =7 (m,, 7,7, | x) =7 (1-m,) 7] (1-7,) 7} (1- 1)
where the vector x corresponds to the data given in Table 3-6.
The Metropolis-Hastings algorithm starts with the tuning of the standard

deviation o, for each of the i component probabilities. Figure 3-12 depicts the

results of the sweep. A classical regression is used to select the proper tuning constant
that meets an acceptance rate of 0.35. Noteworthy is the dependency of the
acceptance rate and tuning constant on the number of units tested, i.e., the slight shift
of the tuning constant sweep for the component 3. This effect is also applicable to the
RISDM methodology.

The Metropolis-Hastings algorithm is applied again, with the tuning constants
selected to result in acceptance rates of 0.35, in order to estimate the component
reliabilities. Note that the actual acceptance rates of the Markov chains were 0.3557,
0.3503, and 0.3471, respectively.

Before accepting the results of the Metropolis-Hastings algorithm, the
convergence criteria are checked by means of trace plots and the autocorrelation
function [97, 98, 102] as depicted in Figure 3-13 for the current example. All three
Markov chains provide adequate levels of convergence to the stationary distribution,
convergence of averages, and convergence to iid sampling, respectively.

The remaining steps are the dropping of the burn-in iterations and the thinning
of the Markov chains according to the lags, which do no longer feature a strong
autocorrelation based on the results of the autocorrelation function. A lag of 10 is
adequate for the given three-component series system example. Finally, the results

can be used to estimate the system reliability as given in Table 3-7 and Figure 3-14.
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Figure 3-12: Tuning Constant versus Acceptance Rate of Markov Chain

Table 3-7:  Bayesian Aggregation: Three Components Series Results without

Inclusion of System Level Data

Results by Hamada [18] Results by blockwise MH

Parameter Mean StDev Mean StDev
I 0.75 0.12 0.7511 0.1198
T, 0.73 0.13 0.7316 0.1291
T, 0.67 0.18 0.6715 0.1766
Ty 0.36 0.13 0.3693 0.1339

The Metropolis-Hastings algorithm was also applied to the same three-component
series system but evaluated with the system level data, and results similar to those
reported in Hamada [18] were obtained.

As already mentioned above, the convergence criteria of a Markov chain are a
concern, and the tuning constant ¢ is used to influence the behavior. To assess the
level of influence, a parametric study was performed, and the results, shown in Figure
3-15, suggest setting the acceptance rate to a value near 0.40 in order to minimize the

thinning of the Markov chain and, as a consequence, the number of iterations.
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Convergence of Averages, and Convergence to iid Sampling
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Figure 3-14: Thinned (Lag = 10) Metropolis-Hastings Algorithm Result
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Figure 3-15: Influence of Acceptance Rate on ACF Lag and Tuning Constant
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System Reliability Metamodel

The Bayesian estimation using the Metropolis-Hastings algorithm is the most time
consuming model of all the models that are implemented in the RISDM methodology.
A single estimation loop takes about 20 seconds using four cores of a Quad Core
CPU 2.40GHz, e.g., 1000 iterations take about 5.5 hours. If a genetic algorithm
satisficing run needed to be superimposed with 500 Monte Carlo simulations within
each of the 1000 genetic algorithm iterations, the total simulation would then take
approximately six days. In early project/program phases, high fidelity models are
prerequisite to explore all possible design alternatives; therefore, metamodels, if
accurate enough, should be used.

The Response Surface Methodology and regression-kriging technique are
used in general to generate metamodels [179, 180]. However, the particularity of
weighting the testing profiles is given in the Bayesian estimation of the system
reliability, as depicted in Figure 3-16, which limits the applicability due to the lack of
model accuracy. In particular, the two parameters € and p,, . depend on the total

TP

number of testing profiles NFC ,,

the number of successful testing profiles

NFC™S) | and the number of failed testing profiles NFC™) \yhich influence

svs.j 2 svs.j
likewise the EQMs that are used to estimate the system level reliability. Therefore, if
the testing profiles weighting approximation is inaccurate, then the EQMs are

erroneous and likewise the system level reliability.
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Figure 3-16: System Reliability Metamodel Factors
To study the metamodel accuracies, a D-optimal baseline design with 66 runs was
selected to obtain minimum variance metamodel parameter estimates for the ten
factors that are given in Table 3-8. Then, the baseline design was augmented by
adding 300 design points using the strategy “minimum Euclidean distance” to obtain
an overall design matrix that features a fraction of design space that is flat with a low
standard error [179].

The analyzed design of experiment results are given in Table 3-9 in terms of

2
R,

;, and Rfm as measures of adequacy and predictive capability of the regression

model, respectively [181]. Although the differences are small, they significantly
adversely affect the system reliability approximations; therefore, the metamodel

approach cannot be used in the frame of this research.
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Table 3-8:  System Reliability Metamodel Design Details

Design Summary

Study Type Response Surface ~ Runs 366
Design Type Distance Coordinate Exchange
Design Model Quadratic

Factor Name Min Max
Knowledge transfer factor B 0.6124 0.7484
Component EOM! | 30 90
Subsystem EOM 3 o 5 50
System Testing Profile 1 EOM], 20 100
System Testing Profile 2 EOM [, 20 100
System Testing Profile 3 EOM 10 200
System Testing Profile 4 EOMY 10 300
System Testing Profile 5 EOM” 10 300
System Testing Profile 6 EOM ] 10 300
Failure mechanisms weighting 4 0.3 0.7

Table 3-9:  Design of Experiment Results

wsys,l sts,Z sts,3 Wsys,4 Wsys,S SyStem
) V reliability
Rjdi 0.9866 0.9796 09813 09852 0.9843 0.9938
R, 09793 09681 0.9719 09752 0.9745 0.9888
Difference R’ 0.0073 0.0115 0.0094 0.01 0.0098  0.005
Difference in % 0.7 1.2 1.0 1.0 1.0 0.5

Knowledge Transfer Factor and Predicted Number of Test-Analyze-And-Fix Failures

The knowledge transfer factor ¢ is estimated using the SSME and the RS-68 liquid

rocket engine data by assessing the prior information with respect to thrust and
combustion chamber pressure levels. Table 3-10 and Table 3-11 list these examples
and include the resulting knowledge factor levels and the number of TAAF cycle
failures. The predicted numbers of TAAF cycle failures are generally coherent with

the experienced number of failures during the hot-fire test plan execution.
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Table 3-10: Knowledge Transfer Factor for the SSME

Case: F-1 to SSME Thrust, Pressure,  Propellants
kN bar

F-1 (old) 6672 70 LOx/RP1

SSME (new) 2279 206.4 LOx/LH2

Factors of Eq. (3.25) 1P 0.418 1?

Knowledge transfer factor 0.421

Predicted TAAF failures 147

D Higher thrust level not taken into account as additional experience
2) Propellants are different; however, propellant experience from J-2
3) Number of TAAF failures are in accordance with the data given in [120]

Table 3-11: Knowledge Transfer Factor for the RS-68

Case: SSME to RS-68 Thrust, Pressure,  Propellants
kN bar

SSME (old) 2279 206.4 LOx/LH2

RS-68 (new) 3370 97 LOx/LH2

Factors of Eq. (3.25) 0.67 1V 1

Knowledge transfer factor 0.676

Predicted TAAF failures 32

D Higher pressure level not taken into account as additional experience

2 Number of TAAF failures may not seem in accordance with the data given
in [118], i.e., 18 on engine level; however, if one analyzes the publication in
detail, there are only 3 main failure modes addresses: shortfall of turbopump
power, fatigue life of turbine blisks, and damping of turbine blisks. Thus,
the number of failures seems to follow actual experience.

Bayesian Success Equivalent Mission

The equivalency of the expression given in Eq. (3.38) with the well-known

frequentist binomial model (1—-C)=R" may not be obvious, but if Eq. (3.38) is
rewritten using a vague prior (parameters «,, B, and ¢ are set to one), the
Bayesian-like binomial model can be stated as

Bi(0,g,n+1)=(1-¢)" =(1-C) & R™' =(1-C)
where Bi (0,q,n+l) is the binomial probability density function including the

Bayesian adjustment of the vague prior by the quantity n+1 instead of only » in the
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frequentist framework and C as the confidence level. E.g., let be R=0.99 and
C=0.9 then n=229.105 in the frequentist estimation.

Similarly, let R=0.99, C=09, ¢ =1, B =1, and ¢, =1 then
n=228.105 in the Bayesian estimation. The difference of one is due to the Bayesian
adjustment, i.e., n+1 instead of only » if a uniform prior distribution is assumed on
the failure fraction ¢ [115].

Next, the influence of the knowledge factor ¢ ., the lower bound mission

sys 2

MP
LB >

profile reliability R,; , and the credibility level C on the Bayesian success EQM is

studied. Figure 3-17 depicts the influence of the lower bound mission profile
reliability R], and Figure 3-18 the credibility level C on the Bayesian success
EQM, respectively. The influence of the lower bound mission profile reliability R;5

is slightly higher than the influence of the credibility level C' on the Bayesian success

EQM.

250 | i
200 i f o R99C90

=l I I \

@] | I
2 50| R98C90
s v R97C90
g < R96C90
E% 0 R95C90
R94C90

00 02 04 06 08 1.0 & R93C90
Knowledge factor @, [ — |

Figure 3-17: Knowledge Factor versus Bayesian Success Mission Profile for

R9xC90
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Figure 3-18: Knowledge Factor versus Bayesian Success Mission Profile for

R99Cx0

Mission Profile and Median Equivalent Life
Richards [9] provides quantitative values for design starts and the design life for

various liquid rocket engines. Eq. (3.39) is used to calculate the reliable EQL
EQL%;;C assuming a weighting factor level £ of 0.5. Table 3-12 lists the results.

Table 3-12: Bogey EQLSs for various Liquid Rocket Engines

Engine Design  Design Mission Mission EQM%’;C
Designation starts life, s profile cycles profile life, s

SSME 55 22700 4 821.5 20.7
F-1 20 2250 3 365 6.4
J-2 30 3750 3 680 7.8
RL10 20 4500 3 1000 5.6
LR&7 12 1980 3 365 4.7
LR91 12 2700 3 425 5.2

RAIV Strategy Validation
The RAIV strategy is validated against the empirical mission reliabilities that are
given in [117] using the published SSME and F-1 liquid rocket engine hot-fire test

plans [120, 121, 178]. Table 3-13 lists and Figure 3-19 depicts the RAIV strategy
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results. Note that Table 3-13 includes the error between the nonlinear fit and the
RAIV strategy estimated median system reliabilities.

Table 3-13: RAIV Strategy Validation

SSME F-1 Liquid Rocket Engine
No. of hot- System Error No. ofhot-  System Error
fire tests  Reliability fire tests  Reliability
726 0.9833 0.0040 1081 0.9894 0.0020
2476 0.9936 0.0027 1437 0.9930 0.0004
2930 0.9948 0.0022 2740 0.9952 0.0015

The SSME system reliability figure of 0.9948 may also be compared to the estimated
engine reliability for a nominal mission firing duration of 520 seconds of 0.9924
using the Crow/AMSAA reliability growth model with the hot-fire test data after the
Challenger accident [150].

H-1 (90) aenpts roay RL10 (99)
1.00 - RD-0120 (96) O ssmE (99)

0.59 SSME (91)

A 11 90)
0.98 -
0.97 -
0.96 -
0.95

0.94

0.93 -
0.92 -
091 -
0.90

0.89 -
0.88 -
0.87
0.86
0.85

HM-7 (99)
HM-7 (94)
L

F-1 Case Studies

SSME Case Studies

F-1

Engine Reliability [-]

Aestus (01) SSME

+ Koelle

— it

LE-7 (99)

100 1,000 10,000
Number of Development and Qualification Firings [-]

Figure 3-19: RAIV Strategy Validation

3.3.3 Modeling Initial Operational Capability

The 10C depends on the design maturity (TRL), the design process maturity

(experience of the team), the R-by-C requirement that determines the hot-fire test
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plan, the hot-fire test cadence, the number of test facilities, and the yearly funding

level. Therefore, the Schedule Estimating Relation (SER) for the IOC, also known as
the development duration D", can be expressed as the sum of the design and

development duration D”” and the test facility occupation duration D™". Eq. (3.46)

exhibits the fundamental SER.
D" =D + D™ (3.46)
D", the development duration in years, is based on the associated design and
development cost estimation using the LRECM divided by MAF"" | the mean annual

funding level, and DDF"”, a design and development factor that expresses the

technology maturation effort. Eq. (3.47) exhibits the mathematical expression.

DD
DD C

" DDF™MAF™

(3.47)

The values for the design and development factor DDF"” | as listed in Table
3-14, are derived from previous development programs. Note that the numerical
values are linked to the LRECM input parameter design scope.

Table 3-14: Numerical Values for the Design and Development Factor Levels

Design scope Factor level
Simple modification 0.9
Extensive modification 0.95
New design 1

New product 1.25
New technology 1.5
Advanced state-of-the-art 2

D™ | the test facility occupation duration in years, is driven by the hot-fire test plan,

which is specified by the number of hot firing cycles associated with the testing

profiles NF ;P as a result of the RAIV strategy, the number of available test
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facilities 7F that are suitable to provide the relevant testing conditions for the

different system integration levels, and the test cadence 7C of the utilized test facility
to perform the hot firings (7C is in the range of four to six days [182]). D™ is also
influenced by the limited bogey EQL EQL%C of the piece parts and subassemblies

of the system components. The RAIV strategy allocates more testing profiles
(challenges) on a specific hardware than the hardware is capable to withstand
(capacity) due to the failure-inducing agents; therefore, the testing profiles are spread
over several hardware sets that requires hot-fire test free mounting and dismounting

activities.

Let S, be the number of test campaigns for hot-fire test group i that is to be

performed in a test facility of type 7. Let NFC,. be number of hot firing cycles

ijrs
associated with the testing profiles j for hot-fire test group i that is to be performed

in test campaign s in a test facility of type 7. Let TC,_ be the test cadence (number

of firing cycles per year per facility) that a test facility of type » can perform for test
campaign s in hot-fire test group i. Let N, be the number of test facilities of type r
that can perform test campaign s in hot-fire test group i. Note that all of the test
campaigns within a hot-fire test group at any type of test facility must be done
sequentially, but other types of facilities can do other campaigns in parallel, and other
hot-fire test groups can be done in parallel. Therefore, let 7 be the number of distinct
hot-fire test groups and let R be the number of types of distinct test facilities. Then,

Eq. (3.48) defines the maximum hot-fire D™,
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Ji
5. > NFC;!

ijrs

D™ =max zw:izl,...,l;r:l,...,R (3.48)
s=1 i i

s s

3.4 Sensitivity Assessment

The RISDM methodology uses models, i.e. the multilevel EQM attribute data
sampling for reliability as well as CERs and SERs for affordability and 10C, with
imprecisely known parameters. Therefore, epistemic uncertainty is associated with
the results of the specific affordability, reliability, and IOC models, respectively. In
that context, the prior distribution conveys the epistemic uncertainty about possible
model parameter values [183].

The sensitivity assessment is principally based on the objective based variable
test/time philosophy that was applied to the RS-68 qualification/certification. The
node representation that is used in the Bayesian multilevel testing profiles
aggregation is depicted in Figure 3-20. Sections 3.4.1 to 3.4.4 discuss not only the
dependencies of the parameters within the models but also the interdependencies
between the areas of concern affordability, reliability, and IOC. Section 3.4.5
summarizes the results of a Monte Carlo simulation to assess the epistemic
uncertainties of the RISDM methodology. Finally, Section 3.4.6 assesses the most
pertinent epistemic uncertainty that is the component level node prior distributions
that were discussed in Section 3.3.2. A justified selection for the range of the shape

parameter f3, is presented.
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Node 0 - System Level
Node I - Subsystem Level

Node 9 Node 2 Node 3 Node 4 Node 5
To provide drive To increase Teo increase To provide driver To accelerate
power during start > pressure, fu »  pressure, ox » power > matter
T8 mf T2 73 T4

Node 1 - Subsystem Level

Node 6 Node 7 Node 8 Node 10
To control mass To control mass To pr()\—‘fde energy To heat ox
» Jlow, fu > flow, ox » to ignite 70
Ty 76 x7

Figure 3-20: Node Representation of Sensitivity Study Test Plan
3.4.1 Modeling Affordability

Figure 3-21 depicts the modeling strategy for the area of concern affordability, i.e.,
the epistemic parameters, the decision variables, and the models are indicated. Figure
3-22 is an extension to Figure 3-21 with focus on the hot-fire test cost model. Note
that the production cost C”* is not further explained in Figure 3-21 because the cost
drivers are well-known from manufacturing progress models (learning curve), i.e.,
learning and production rate assumptions as well as the level of producibility [142,
184]. However, the Monte Carlo simulation includes the production cost drivers for

completeness.

3.4.2 Modeling Reliability

Figure 3-23 depicts the modeling strategy for the area of concern reliability, i.e., the

epistemic parameters, the decision variables, and the models are indicated.
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3.4.3 Modeling Initial Operational Capability

Figure 3-24 depicts the modeling strategy for the area of concern IOC, i.e., the

epistemic parameters, the decision variables, and the models are indicated.

3.4.4 Composite Fitness Function

The composite fitness function involves two sources of epistemic uncertainties, i.e.
the weighting of the areas of concern and the shapes of the utility functions that
reflect the risk attitude of the decision maker. Figure 3-25 depicts the relations of

these epistemic uncertainties and links them to the models for the area of concerns.

3.4.5 Monte Carlo Simulations

A simple Monte Carlo simulation was performed to assess not only the ranges for the
epistemic uncertainties but also the ranges for the decision variables on the results of
the models for the areas of concern affordability, reliability, and IOC. In addition, the
sensitivity on the fitness function that is used in the satisficing using a genetic
algorithm is given. The inputs terms of name, distributions, and ranges as well as the
results are presented. The practical importance of input variables on the model

outputs is also discussed.

Input variables

The Monte Carlo simulation input variable values are depicted in Figure 3-26 to
Figure 3-30. They include the minimum and maximum values that are based on
physical considerations and natural limits. Epistemic uncertainty parameters are

prefixed with EpiUn/.
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Figure 3-21: Epistemic Uncertainty, Decision Variables, and Models of the Area

of Concern Affordability — Main Process
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Figure 3-22: Epistemic Uncertainty, Decision Variables, and Models of the Area
of Concern Affordability — Testing Profiles Cost
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Figure 3-23: Epistemic Uncertainty, Decision Variables, and Models of the Area

of Concern Reliability
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Figure 3-24: Epistemic Uncertainty, Decision Variables, and Models of the Area

of Concern 10C
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Figure 3-25: Epistemic Uncertainty of Composite Weighted Fitness Function

and Relations to the Areas of Concern
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I Name ‘ Cell ‘Graph IMin IMax
Category: Aff
18 32
Al Service Lie [y] n o ”"l”” "0 30
Afl Flights per Year [1/y] J13 1 ||||||||| r 3 15
Category: CompTF
CompTF/ No of Test Facility Q207 ’ "Ih 2
CompTF/ Initial or Modification Facility Cost [MMU] |R207 l 001 |19.98
CompTF/ No of People operating Facility S207 ' 25
CompTF/ Hourly Rate [MU/h] 207 | 150
CompTF/ Yearly Working Hours [h] U207 | 2200
CompTF/ Test Cadence [1/w] V207 50
CompTF/ Yearly Maintenance Cost [MMU] w207 0.10 1.00
Category: DT
DT/ Average Fund Availability [MMU] F520 200
Category: EpiUn
1
EpiUn/ SF (Safety Factor) G450 - 10.0
EpiUn/ Knowledge Transfer Factor K4 ' | 0.00 1.00
v "
EpiUn/ Weibull Shape Parameter p1 1450 l 5.0 7.0
EpiUn/ Weibull Shape Parameter p2 L451 l 5.0 7.0
EpiUn/ Weibull Shape Parameter p3 L452 l 2.0 4.0

Figure 3-26: Monte Carlo Simulation Inputs — Part I
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Name Cell |Graph Min Max
1.5 4.5
EpiUn/ Weibull Shape Parameter p4 1453 l 2.0 4.0
1"5 4.3
EpiUn/ Weibull Shape Parameter p5 L454 l 2.0 4.0
EpiUn/ Weibull Shape Parameter p6 L455 l 2.0 4.0
EpiUn/ Weibull Shape Parameter p7 L456 l 2.0 4.0
1"5 4.5
EpiUn/ Weibull Shape Parameter p8 L457 l 2.0 4.0
EpiUn/ Weibull Shape Parameter p9 1458 l 4.0
EpiUn/ Failure Mechanisms Weight M207 " "oz o7
EpiUn/ Capacity Weight M450 - 0.7
EpiUn/ Prior Beta (alpha) N205 || "1380  [67.0
EpiUn/ Prior Beta (beta) 0205 - 0.30 0.70
Category: FF
FF/ Target Reliability C105 - 0.900 0.990
FF/ Target 10C [y] C110 - 8.00 12.00
FF/ Target Affordability [MMU| C115| "l9s0 MU 1,300 MU
FF/ Reliability Weight R20 0.00 1.00
FF/ Affordability Weight R21 0.00 1.00
FF/10C Weight R22 - 0.00 1.00

Figure 3-27: Monte Carlo Simulation Inputs — Part II
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| Name ‘ Cell ‘Graph IMin IMax
Category: LRECM
LRECM/ Dev Environment F500 | "I 2
v v
LRECM/ Design Scope F503 | | | | 0 5
i v
LRECM/ Mfg Environment F501 | | 0 3
LRECM/ Mfg MRL F502 ] | | 0 2
= =
LRECM/ Team Experience F504 l | | I 0 3
LRECM/ Producibility F306 - 0.30 0.80
LRECM/ Unit LC Factor F512 | "loss  10.95
LRECM/ Overhead on TFU for Dev System Price F514 1.25 1.50
0 ’&
LRECM/ Oxidizer Cost per kilogramm [MU/kg] F551 - 0.20
LRECM/ Fuel Cost per kilogramm [MU/kg] F552 8.6 20.0
Category: NFC TP
NFC TP/Component no7 | -' 30 90
0 11:'
NFC TP/ Subsystem 1225 - 5 100
40 20
NFC TP/ Systeml 1235 50 200
NFC TP/ System2 J236 | 200
40 .'!Z:'
NFC TP/ System3 1237 - 50 200
NFC TP/ Systemd J238 200

Figure 3-28: Monte Carlo Simulation Inputs — Part I11
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Name Cell |Graph Min Max
40 220
NFC TP/ Systems 1239 ‘ 50 200
40 22 :'
NFC TP/ System6 1240 _ 50 200
Category: SubsystemTF
SubsystemTF/ No of Test Facility Q225 '] [ | 1 2
z
SubsystemTF/ Initial or Modification Facility Cost v
R225 60
[MMU]
SubsystemTF/ No of People operating Facility S225 1"""""""[ 10 25
SubsysteniTF/ Hourly Rate [MU/h] T225 l 150
1' 400 1-3:-:'
SubsystemTF/ Yearly Working Hours [h] U225 1500 {2200
SubsystemTF/ Test Cadence [1/w] V225 ' 50
SubsystemTF/ Yearly Maintenance Cost [MMU] W225 1.00
Category: SystemTF
0.5 4.5
SystemTF/ No of Test Facility Q235 | | | | 1 4
SystemTF/ Initial or Modification Facility Cost R235 l 200
SystemIF/ No of People operating Facility S235 III 30 50
SystemTF/ Hourly Rate [MU/h] T235 - 150
l' 400 1,3:-:'
SystemTF/ Yearly Working Hours U235 1500 2200
v
SystemIF/ Test Cadence [1/w] V235 20 50
SystemTF/ Yearly Maintenance Cost [MMU] W235 0.50 2.00

Figure 3-29: Monte Carlo Simulation Inputs — Part IV
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Name | Cell |Graph Min  [Max
Category: TF

-y il 5

TF/ Consumables [MMU per test] F554 0.02 0.05

Figure 3-30: Monte Carlo Simulation Inputs — Part V

Output analysis
The Monte Carlo simulation results are analyzed with regard to their importance
using the Spearman’s rank correlation coefficient and the associated hypothesis test
(or confidence interval) at a significance level of 0.001. The significance level differs
significantly from the common 0.05 level because only convincing correlations are of
practical importance in the frame of this research (a level of 0.05 is considered
suggestive but inconclusive [185]). Figure 3-31 to Figure 3-33 depict the Monte Carlo
simulation output results followed by Table 3-15 to Table 3-34 that list the
Spearman’s rank correlation coefficients and the associated p-value of the
corresponding hypothesis test.

Based on the p-values, the only important epistemic uncertainty is linked to

the shape parameters & and f of the prior distribution for the node reliabilities.

Therefore, the influence is further studied in Section 3.4.6. All other epistemic
uncertainties are of minor importance. The Monte Carlo simulation revealed also the
strong influence of the decision variables, the hot-fire tests, and the non-technical
TRL, MRL, product life cycle, design scope and environment, and team experience.
Therefore, the RISDM methodology results are mainly determined by aleatory model
parameters that reflect non-technical and technical stakeholder inputs as well as the

decision variables of the problem formulation.
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Name Cell | Graph Min Mean |Max
5 45
No. of Failures Sys TP 1 B250 | | "o 1 43
| |||II|||:III|.||.| ..................
| - E
No. of Failures Sys TP 2 B251 0 4 14
. |||III||||||.15
No. of Failures Sys TP 3 B252 0 4 14
||||II||||||.
0 120
Engine Level THW D30 | h "9 30 109
0 - 1‘:
BogeyEQL based D31 " 1 | 13
| | .
0 10
pl SubSys THW D34 | 1 2 9
| b
-
p2 SubSys THW D35 | 1 2 9
(T
]
p3 SubSys THW D36 | 1 2 9
oo
p4 SubSys THW D37 0 0 0
0 10
v v
p5 SubSys THW D38 | 1 2 9
| (] .
-
p6 SubSys THW D39 | 1 2 9
| I .
.
p7 SubSys THW D40 | 1 2 9
'y .
.
p8 SubSys THW D41 | 1 2 9
| I
=
p3 Comp THW D55 1 1 5
0.5-percentile System Level F24 0.9703 |0.9852 0.9931
p-th Percentile Rel Sys F26 0.9671 [0.9833 [0.9921

Figure 3-31: Monte Carlo Simulation Outputs — Part I
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Name Cell | Graph Min Mean |Max
Risk CoeffRel H105 | Y796 |29 10.0
Risk Coeff Dev Dur H110 ‘ 9.6 238 (633

, 5
Risk Coeff Dev Cost H115 :- 49 10.4 17.5

EC SC-:'
Service Life HW Tot I16 WWWM Jl | 80 2504|480

I

0 1,400
Development Cost (D&D), [MMU] 720 W 54 431 1228
Development Cost (HW) [MMU] 121 376 1863 9235
Development Cost (DD+HW) [MMU] 122 460 2294 9528
Development Cost (Testing) [MMU] 123 219 512 1061
DDE&T Cost (Total Dev) [MMU] 124 825 2806 |10188
TFU [MMU] 130 244|454 71.2
AUC [MMU] 131 17.3 34.7 60.3
Production Cost Tot [MMU] 135 1590 (8698  |23443
Affordability [MMU] 136 3460 [11504  |28596
MoE Reliabiltiy P5 09671 |1.0 0.9921
MOoE Affordability [MMU] P6 825 2806 10188
MoE 10C [y] P7 3.3 150 |48.1

Figure 3-32: Monte Carlo Simulation Outputs — Part I1
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Name Cell Graph_ Min Mean |Max
weighted FF P30 T -1.5E+57 |-1.5E+54 |1.00
Comp / Test Cost [MMU] Y207 :' . - 4 22 58
Subsystem Test Cost [MMU] Y225 : 5 3 48 99
System Test Cost [MMU] Y235 169 443 970

Figure 3-33: Monte Carlo Simulation Qutputs — Part III
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Spearman’s Rank Coefficient and associated Spearman Rank

Table 3-15

Hypothesis p-values — Matrix I-a
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Table 3-16

Hypothesis p-values — Matrix I-b
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Table 3-17

Hypothesis p-values — Matrix II-a
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Spearman’s Rank Coefficient and associated Spearman Rank

Table 3-18

Hypothesis p-values — Matrix II-b

690 [10°0- [L6'0 (000 |¥9°0 |IOO |[ISO (200 [9C0 |¥0°0- |9€°0 (€00 [09°0 |C00- € dL SAS sampiey Jo ‘oN
€8°0 (100~ |00°T |00°0 {290 (TO0 |¥SO |20'0 |LTO |€0°0- [9T°0 |¥0°0 |SE€0 |€0°0- T dL SAS saanjiey Jo *oN
¢80 (10°0- |98°0 |I0°0- |¥SO (TO0 (€90 |20'0 |ITO (YO0~ [YI'O |SO'0 |€¥'0 |CO0- I dL SAS saanfieq jo *oN
0I'0 |SO°0- |L6°0 (000 ([6C°0 |€0°0- |€6'0 [00°0 ([LLO |100 |C80 |I00- [ST'O (SO0 [N 350D 1891, WdysAg
9¢'0 |€0°0 |STO (¥0°0 (€60 000 |96°0 (000 ([6C0 |€0°0 |I6°0 |00°0 [STO (SO0 ININIA 350D 183, wdysAsqng
¢¢’0 (20°0- |8I°0 [¥O°0 |00°0 (8¥0 |¥P'O 200 |CO0 [LOO- [FEO |€0°0- {260 [00°0 ININIA] 380D 183, / dwio)
0I'0 SO0 |90 (200 [90°0 |90°0 |S¥'0 ([TO0- [SF'O |20°0 |00°0 (00T |[SLO |10°0- 180D A3 330D ST
LEO [€0°0 [09°0 |TO00 |L60 |00°0 (880 (000 [£€8°0 |I00- |SLO ([10°0- (000 |0OO'T N A JJ20D ASryY
29°0 |T0°0- [6S0 |20°0- |€€0 |€0°0- (810 (OO |8F°0 |CO0- |0E0 (€00 |€9°0 |CO0 9 320D sy
0C0 [¥0°0- |00°0 (610 (000 |6C0 |9T0 (¥0°0 [LI'O |¥0°0 |SSO [CO0 [ITO |#0°0- MHL dwo) ¢d
€00 (LO0O |I00 |60°0 |08°0 (I0°0- |ISO |C00 |¥CTO (YOO ([¥SO |2O0- |I¥'0 |€0°0- MHLL sAsgng gd
€00 [LOO |I00 |60°0 |08°0 (I0°0- |ISO |200 |¥CTO [¥OO ([¥SO |2O0- |I¥'0 |€0°0- MHL sASqng /d
€00 (LO0O |100 |60°0 |08°0 (10°0- |ISO |C00 |PTO [¥O'O ([¥SO |TO0- |I¥'0 |€0°0- MHLL sAsgng od
ead [oyx [fea-d {oyx [jea-d [oyax [jea-d |oyx [fea-d |ogx [jea-d |oyx [jea-d |oya mding
= c [ [
3% E s . 5 3 = =
= 2 = = -~ - 03 03
> g B a =3 =3 S 2
¢ | 5 : - : = g
= | £° | % g g g 3
;| € : : i
- - = =3 3 =
Y = E
S =
~ B

130



Spearman’s Rank Coefficient and associated Spearman Rank

Table 3-19

Hypothesis p-values — Matrix III-a
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Table 3-20

Hypothesis p-values — Matrix II1-b
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Table 3-21

Hypothesis p-values — Matrix IV-a
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Table 3-22

Hypothesis p-values — Matrix IV-b
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Table 3-23

Hypothesis p-values — Matrix V-a
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Table 3-24

Hypothesis p-values — Matrix V-b
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Table 3-25

Hypothesis p-values — Matrix VI-a
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Table 3-26

Hypothesis p-values — Matrix VI-b
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Table 3-27

Hypothesis p-values — Matrix VII-a
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Table 3-28

Hypothesis p-values — Matrix VII-b
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Table 3-29

Hypothesis p-values — Matrix VIII-a
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Table 3-30

Hypothesis p-values — Matrix VIII-b
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Table 3-31

Hypothesis p-values — Matrix IX-a
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Table 3-32

Hypothesis p-values — Matrix IX-b
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Spearman’s Rank Coefficient and associated Spearman Rank

Table 3-33

Hypothesis p-values — Matrix X-a
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Spearman’s Rank Coefficient and associated Spearman Rank

Table 3-34

Hypothesis p-values — Matrix X-b
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3.4.6 Minimally Informative Priors versus Informative Priors

In Section 3.3.2, various minimally informative and informative priors were
discussed. This section studies various prior distributions, as listed in Table 3-35, in
order to substantiate the prior distributions selection for the Bayesian estimation
approach that is used in the RAIV strategy. Note that the test case starts with the
initial hot-fire test plan of the RS-68 liquid rocket engine as presented in [27]. Then,
multiples of 2, 3, and 5 were applied to successively increase the number of hot-fire
tests, i.e., 183, 366, 549, and 915, with an corresponding accumulated hot firing
duration of 18,979, 37,958, 56,937, and 94,895 seconds, respectively. The simulation
results are listed in Table 3-36 to Table 3-44.

Table 3-35: List of Prior Distributions of Interest

Distribution Mix Shape Shape
para. para. para.
Dy Ay, B,
Jeffreys’ prior - 0.5 0.5
Beta (informative) " 40.0 0.5
Krolo — Type Ia [81] ? 0.676 138.705  2.018
Krolo — Type Ib [81] 2 0.676 138.705  0.224
Kleyner — Type Ia [82] % 0.676 138.705  2.018
Kleyner — Type Ib [82] 2 0.676  138.705  0.224

Component mixture Type Ia — see Eq. (3.23) ? 0.676 138.705  2.018
Component mixture Type Ib — see Eq. (3.23) 0.676 40.0 0.5
Component mixture Type Il —see Eq. (3.24)?®  0.676  138.705  0.224
" Shape parameters are determined from information given in [80]. In [27], shape parameters of
38.8 and 0.68 were used, respectively.

Shape parameters are determined from the methods of quantiles using Egs. (3.18) to (3.20) and
mix parameter from Eq. (3.25) using the testing profiles of RS-68 as given in [27].

Shape parameter /3 is based on a competing risk assumption

2)

3)
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Table 3-36: Simulation Results — Jeffreys’ Prior

Statistics 183|18,979 s 366[37,958 s 549|56,937 s 915|94,895 s
Mean 0.8888 0.9413 0.9593 0.9749
Variance 0.0023 0.0007 0.0004 0.0001
Median 0.8951 0.9442 0.9622 0.9760
0.4 Percentile 0.8836 0.9382 0.9575 0.9734
0.1 Percentile 0.8225 0.9058 0.9335 0.9598
Table 3-37: Simulation Results — Informative Beta Prior

Statistics 183]18,979 s 366|37,958 s 549|56,937 s 915|94,895 s
Mean 0.9440 0.9609 0.9701 0.9797
Variance 0.0007 0.0003 0.0002 0.0001
Median 0.9480 0.9636 0.9722 0.9814
0.4 Percentile 0.9416 0.9589 0.9683 0.9790
0.1 Percentile 0.9100 0.9351 0.9523 0.9662
Table 3-38: Simulation Results — “Krolo” Prior — Type I-a

Statistics 183]18,979 s 366|37,958 s 549/56,937 s 915|94,895 s
Mean 0.8717 0.8970 0.9140 0.9345
Variance 0.0008 0.0005 0.0004 0.0002
Median 0.8730 0.8981 0.9156 0.9356
0.4 Percentile 0.8656 0.8913 0.9106 0.9312
0.1 Percentile 0.8324 0.8668 0.8881 0.9142
Table 3-39: Simulation Results — “Krolo” Prior — Type I-b

Statistics 183]18,979 s 366|37,958 s 549]56,937 s 915|94,895 s
Mean 0.9849 0.9876 0.9921 0.9926
Variance 0.0001 0.0001 0.0000 0.0000
Median 0.9875 0.9896 0.9933 0.9936
0.4 Percentile 0.9850 0.9872 0.9921 0.9925
0.1 Percentile 0.9707 0.9759 0.9849 0.9860
Table 3-40: Simulation Results — “Kleyner” Prior — Type I-a

Statistics 183|18,979 s 366|37,958 s 549|56,937 s 915|94,895 s
Mean 0.8989 0.9181 0.9283 0.9432
Variance 0.0006 0.0003 0.0002 0.0002
Median 0.9002 0.9202 0.9288 0.9440
0.4 Percentile 0.8956 0.9160 0.9256 0.9399
0.1 Percentile 0.8693 0.8937 0.9080 0.9266

148



Table 3-41: Simulation Results — “Kleyner” Prior — Type I-b

Statistics 183]18,979 s 366|37,958 s 549(56,937 s 915|94,895 s
Mean 0.9848 0.9897 0.9912 0.9933
Variance 0.0002 0.0001 0.0000 0.0000
Median 0.9887 0.9916 0.9926 0.9944
0.4 Percentile 0.9859 0.9897 0.9911 0.9934
0.1 Percentile 0.9720 0.9800 0.9833 0.9870

Table 3-42: Simulation Results — Component Mixture Prior — Type I-a

Statistics 183]18,979 s 366|37,958 s 549/56,937 s 915194,895 s
Mean 0.9015 0.9186 0.9299 0.9476
Variance 0.0006 0.0004 0.0003 0.0002
Median 0.9037 0.9194 0.9307 0.9483
0.4 Percentile 0.8973 0.9152 0.9264 0.9454
0.1 Percentile 0.8715 0.8918 0.9082 0.9300

Table 3-43: Simulation Results — Component Mixture Prior — Type I-b

Statistics 183]18,979 s 366[37,958 s 549|56,937s  915[94,895 s
Mean 0.9393 0.9602 0.9687 0.9790
Variance 0.0009 0.0003 0.0002 0.0001
Median 0.9437 0.9630 0.9707 0.9808
0.4 Percentile 0.9372 0.9582 0.9672 0.9781
0.1 Percentile 0.8976 0.9363 0.9500 0.9661

Table 3-44: Simulation Results — Component Mixture Prior — Type 11

Statistics 183]18,979 s 366[37,958 s 549|56,937s _ 915[94,895 s
Mean 0.9835 0.9886 0.9909 0.9933
Variance 0.0003 0.0001 0.0000 0.0000
Median 0.9884 0.9910 0.9925 0.9942
0.4 Percentile 0.9855 0.9891 0.9908 0.9932
0.1 Percentile 0.9663 0.9770 0.9826 0.9872

Figure 3-34 depicts the median statistics from the simulation runs, actual mission
reliability levels based on published data [117], and RAIV strategy validations using
the hot-fire test plans that were executed in the SSME and F-1 development and
reliability growth programs [186], and the RAIV strategy application to the RS-68

hot-fire test plan to qualify/certify the liquid rocket engine for flight [27].
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Figure 3-34: Comparison of Simulation Results to Actual Engine Mission

Reliability Levels
By looking at Figure 3-34 and assessing the first four simulation runs, one could
identify three groups. The first group of priors, i.e., strong informative priors (Krolo —
Type Ib, Kleyner — Type Ib, and Mixture — Type II), dominate the posterior medians
in terms of overestimation. Therefore, these priors are not adequate for the Bayesian
estimation that is used in the RAIV strategy. The second group of priors, i.e.,
informative and mixture priors (Krolo — Type Ia, Kleyner — Type Ia, and Mixture —
Type Ia), dominate the posterior medians in terms of underestimation. The third
group of priors, i.e., Jeffreys’ prior, a Beta informative, and the mixture of both
(Mixture — Type Ib), allow generally the data to dominate the posterior medians.
Hence, this general behavior is further investigated by additional simulation runs up
to 2745 hot-fire tests. The results are listed in Table 3-45 to Table 3-47 and already

displayed in Figure 3-34.
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Table 3-45: Simulation Results — Best Prior Candidates — Case 1

Jeffreys’ Beta informative Mixture Type Ib
Statistics 1281]132,853 s 1281]132,853 s 1281[132,853 s
Mean 0.9820 0.9842 0.9840
Variance 0.0001 0.0001 0.0001
Median 0.9835 0.9852 0.9850
0.4 Percentile 0.9820 0.9837 0.9831
0.1 Percentile 0.9709 0.9739 0.9740

Table 3-46: Simulation Results — Best Prior Candidates — Case 2

Jeffreys’ Beta informative Mixture Type Ib
Statistics 1830[189,790 s 1830[189,790 s 1830]189,790 s
Mean 0.9872 0.9885 0.9885
Variance 0.0000 0.0000 0.0000
Median 0.9882 0.9893 0.9896
0.4 Percentile 0.9863 0.9880 0.9882
0.1 Percentile 0.9787 0.9816 0.9812

Table 3-47: Simulation Results — Best Prior Candidates — Case 3

Jeffreys’ Beta informative Mixture Type Ib
Statistics 2745(284,685 s 2745|284,685 s 2745|284,685 s
Mean 0.9916 0.9921 0.9921
Variance 0.0000 0.0000 0.0000
Median 0.9923 0.9926 0.9926
0.4 Percentile 0.9913 0.9917 0.9916
0.1 Percentile 0.9862 0.9872 0.9869

As shown Figure 3-34, the mixture prior seems to dominate the posterior median
when the number of hot firings is small, but it converges to Jeffreys’ prior when the
number of hot firings increases. The difference between Jeffreys’ prior and the
informative Beta prior or the mixture prior when the number of hot firings is large is
of no practical importance. However, the significant difference when the number of

hot firings is small can be utilized with respect to the knowledge transfer factor ¢,

in combination with the mixture prior. In particular, if the knowledge transfer factor

$,, =0 (no transfer of knowledge or additional failures in a reliability growth

151



tracking that were not initially planned in the TAAF cycle), then the estimated system

reliability would be penalized; otherwise, if the knowledge transfer factor ¢ =1,

then the estimated system reliability follows the actual engine mission reliability.
Therefore, the mixture prior Type Ib, i.e., a finite mixture distribution with Jeffreys’
prior and an informative Beta distribution as distribution functions of the populations

with the knowledge transfer factor ¢, as mix parameters as given in Eq. (3.24) is

selected in the frame of this research.

3.4.7 Impact of Failure Mechanisms Weighting Factor on the estimated
System Reliability

The EQM definition [see Eq. (3.13)] requires the definition of a factor that weighs the

two failure mechanisms. In that context, two limiting cases can be studied, i.e., the

domination of the stress-increased failure mechanism (¢, =1) or the domination of

the strength-reduced failure mechanism (¢; =0). The resulting median system level

reliabilities for the SSME and the RS-68 are listed in Table 3-48.

Table 3-48: Impact of Failure Mechanism Weights on the System Reliability

SSME RS-68
Stress-increased failure mechanism only 0.9847 0.9547
Weighted failure mechanisms 0.9833 0.9544
Strength-reduced failure mechanism only 0.9814 0.9541

The differences are small but as pointed out in [124], the system level reliability is
overestimated if only unsteady modes (stress-increased failure mechanisms) are
considered and is underestimated if the unsteady modes are neglected. In addition, the

sensitivity study (see Section 3.4.5) indicated already that the weighting factors for
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the failure mechanisms are not of practical importance for the measure of
effectiveness reliability and that the most influencing parameters are the decision
variables and the parameters of the two-component mixture prior (see Table 3-15

through Table 3-34).
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Chapter 4: Specific Problems and Discussions

This chapter presents the results of applying the RAIV strategy and the RISDM
approach to four problems related to liquid rocket engine development and test
planning. Section 4.1 describes the RAIV strategy and applies it to liquid rocket
engine hot-fire test plans. Section 4.2 describes the application of the RISDM
approach to optimize liquid rocket hot-fire tests plans. Section 4.3 describes the
application of the RAIV strategy as reliability growth model. Finally, Section 4.4
describes the behavior of the genetic algorithm that is used in the RISDM approach.
These results demonstrate the usefulness of the RAIV strategy and the RISDM

approach.

4.1 Reliability-as-an-Independent-Variable Applied to Liquid

Rocket Hot-fire Test Plans

Manufacturers lack an adequate method to balance affordability, reliability, and
Initial Operational Capability (IOC). The reliability-as-an-independent-variable
(RAIV) strategy is the solution proposed by expressing quantitatively the reliability
trade space as ranges of a number of hardware sets and a number of hot-fire tests
necessary to develop and qualify/certify a liquid rocket engine against a stated
reliability requirement. Therefore, reliability-as-an-independent-variable becomes one
of the key decision parameters in early tradeoff studies for liquid rocket engines
because the reliability trade space directly influences the performance requirements

and, as a result, the affordability and IOC. The overall solution approach of the RAIV

154



strategy is based on the Bayesian statistical framework using either the planned or
actual number of hot-fire tests. The planned hot-fire test results may include test
failures to simulate the typical design-fail-fix-test cycles present in liquid rocket
engine development programs in order to provide the schedule and cost risk impacts
for early tradeoff studies. The RAIV strategy is applied to the actual hot-fire test
history of the F-1 liquid rocket engine, the space shuttle main engine (SSME), and the
RS-68 liquid rocket engine. The results show adequate agreement between the

estimated values and the actual flight engine reliability.

4.1.1 Introduction

Liquid rocket engines have always been one of the major affordability drivers of
launch vehicles, but, in the past, national prestige or military requirements dominated
the decisions about the development of a new launch vehicle. This paradigm has
changed. Affordability, reliability, and IOC have equal importance in the decision-
making process. Europe is currently facing this paradigm change by defining the
requirements for an expendable next generation launcher in the frame of the ESA’s
Future Launchers Preparatory Program [23]. Various launch vehicle architectures
were identified, ranging from a two-stage pure liquid rocket engine-based architecture
to a three-stage launch vehicle with two solid propellant stages and a cryogenic
upper-stage engine. Although innovative technologies are identified in all relevant
areas, the focus will be on affordability in order to develop a launcher that is
competitive on cost [187] but maintains the same the mission success reliability and
other launch service factors as the current European launch vehicle (the Ariane 5) and

other operational launch vehicles.
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The affordability of expendable launch vehicles is largely determined by the
development and production costs of their liquid rocket engines [1, 10]. The major
part of the development cost is spent on development test hardware that is subjected
to hot-fire tests in order to sufficiently demonstrate design maturity and robustness
and to qualify/certify the liquid rocket engines for a successful flight operation [117].
The reliability-as-an-independent-variable (RAIV) strategy provides the framework
for specifying qualification/certification hot-fire test attributes in terms of the number
of tests, number of hardware sets, and total test duration that are allocated at the
component, the subsystem, and the engine system level. The production cost is driven
mainly by performance and reliability requirements that can be transferred into a
manufacturing complexity expressed as a number of parts, precision of the parts, and
selected materials. One of the main leverages on the development cost is the chosen
verification strategy, with seeks to minimize the number of hardware sets by testing
the mission requirements on a single hardware set multiple times but increases the
production cost because of increased performance requirements, the selection of
special materials, and the need for elevated manufacturing precisions in order to
guarantee the longer life capability. Affordability of the launch vehicle would be
incomplete without the consideration of vehicle operation and support, mission
assurance, range cost, and insurance fees [188].

Therefore, finding the optimal choice in the conflicting trade spaces for
performance, reliability, and affordability becomes a multiple-criterion decision-
making (MCDM) problem. The trade spaces for affordability and performance are

generated with parametric cost models and thermodynamic cycle codes. However, the
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main shortcoming of the current MCDM solutions is the lack of an adequate
modeling technique for the reliability trade space in terms of the number of hot-fire
tests and number of hardware sets given a formal reliability requirement; the RAIV

strategy addresses this shortcoming.

4.1.2 Background

Liquid rocket engine qualification or, synonymously, flight certification has always
been a concern of space industry and agency alike because no industry or
government-wide recognized standard exists. The approach by which the confidence
is gained to fly includes the elements design methodology, analyses, component tests,
subsystem tests, system development tests, and system qualification or certification
tests. In short, the confidence-building process is dominated by an expensive and
schedule-impacting hot-fire test program [16].

Historically, the hot-fire test program definitions experienced an evolution
from a formal reliability demonstration to an aggressive cost minimization approach.
Initially, liquid rocket engine development programs included a formal reliability
demonstration requirement (e.g., F-1 or J-2) but they were discarded in favor of
design verification specifications (DVSs) [e.g., space shuttle main engine (SSME)]
due to prohibitively high hot-fire test costs [10]. The most recent approach is the
objective-based variable test/time philosophy executed for qualifying the RS-68
liquid rocket engine that required the least amount of hot-fire tests and accumulated
hot-fire test duration [118].

Although these different test program philosophies were applied for various

liquid rocket engines with large performance differences, one may wonder why no
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significant trend can be seen on the qualification/certification hot-fire test attributes as
listed in Table 4-1 [9]. The numbers of tests required per hardware set are higher for
the F-1 and J-2 compared with the SSME, which were all man rated, and the SSME is
even reusable but subjected to different hot-fire test definitions, i.e., the formal
reliability demonstration versus the DVS. The J-2 and RL10 are both cryogenic
upper-stage liquid rocket engines, but hardware changes were allowed only for the J-
2 and not for the RL10. Table 4-2 may reveal the only difference among the test
attributes that is linked to the propellant combination used and the resulting internal
loads present during engine operation; that is, more tests and, as a consequence, a
higher accumulated test duration, which is expressed as a number of multiple mission
durations, is placed on hardware sets for the propellant combination liquid oxygen
(LOx)/liquid hydrogen (two- to fivefold) compared with the propellant combination
LOx/kerosene or hypergolic storable propellants (more than tenfold). This identified
difference may be biased by the lack of visibility on the extent of the prior component
level or the development engine test history.

Table 4-1:  Qualification/certification Hot-fire Test Attributes

Test Attributes F-1 J-2 RL1I0 LR87 LR9I SSME RS-68"
Number of tests required 20 30 20 12 12 10 12
Total test duration required, s 2250 3750 4500 1992 2532 5000 1800
Number of samples 1 2 3 1 1 2 2
Hardware changes allowed Yes Yes No Yes Yes Yes Yes
Fleetleader concept used No No No No No Yes No
Overstress testing No No Yes No No Yes Yes

* Values are based on the data given in [118]

The surveys performed by Emdee [4, 5] and Pempie and Vernin [21] provide further
details about the variety of current best practices by recommending the scope of hot-
fire test programs and highlighting the lack of an industry or government standard or

guideline. The recommendations vary from 400 hot-fire tests with 40,000 seconds
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accumulated test duration spread over 15 hardware sets to 150 hot-fire tests with at
least 50,000 seconds of accumulated test duration but without a statement about a
required number of hardware sets.

Table 4-2:  Detailed Analysis of Qualification/Certification Hot-fire Test

Attributes
Test Attributes F-1 J-2 RL10 LR87 LR91 SSME RS-68
Test per hardware 20 15 6.7 12 12 5 6
Test duration per hardware, s 2250 1875 1500 1992 2532 2500 900
Duration per test per hardware, s 1125 125.0 2250 166.0 211.0 500.0 150.0
Mission nom. time (max), s 165 500 700 165 225 520 250
Multiple of mission nom. time, s 13.6 3.8 2.1 12.1 11.3 4.8 3.6

Despite these two recommendations, Wood [118] reports that the RS-68 engine was
subjected to 183 hot-fire tests with an accumulated test duration of only 18,945
seconds spread over eight new and four refurbished hardware sets before the maiden
flight on the Delta IV launch vehicle. Greene [119] describes a similar hot-fire test
plan for the J-2X in its nonhuman rated certification configuration requiring 182 hot-
fire tests spread over six engine hardware sets. An extreme for an expendable liquid
rocket engine might be the RD-0120, which was subjected to 793 tests with 163,000
seconds accumulated hot-fire duration spread over more than 90 hardware sets [189].
Although the space industry was innovative with hot-fire test program
definitions ranging from a formal reliability demonstration to an objective-based
variable test/time philosophy without a quantified reliability demonstration
requirement at all, the U.S. Air Force Guidelines (RM2000) and the U.S. Department
of Defense Total Quality Management Initiatives dictated that liquid rocket engine
contractors shall elevate reliability to an equal status with performance and cost
[122]. In response to these guidelines and initiatives, a Space Propulsion Integrated

Reliability Team was founded in order to define a reliability demonstration technique
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for the space transportation main engine (STME) [123]. The proposed strategy is
based on the U.S. Army Materiel Systems Analysis Activity reliability growth model
and the well-known binomial distribution in order to support a formal reliability by
confidence demonstration. However, this reliability demonstration technique has not
been applied to the RS-68 although it was an outgrowth of the STME study [118],
most likely due to budget constraints. Consequently, the lack of an industry or

government standard or guideline remains evident.

4.1.3 Reliability-as-an-Independent-Variable Strategy

The RAIV strategy is a solution to the lack of an industry or government standard by
providing the ranges for the trade space in terms of the number of hardware sets and
number of hot-fire tests to achieve both a stated reliability demonstration (test bogey
that may correspond with the hardware reliability) and a reliability projection
(mission reliability) level to assure mission success. It is based on the statistical
treatment of multilevel data aggregation and bogey time testing principles applying
the Bayesian framework to assure minimum hot-fire test plans. Physics-based
enhancements are included in the statistical treatment of the hot-fire test data in order
to reflect particularities of liquid rocket engine hot-fire test programs. The overall
goal of the RAIV strategy is to generate the quantitative figures of the reliability trade
space.

The inputs to the RAIV strategy include the reliability level that must be
demonstrated (the reliability projection requirement), a series of function nodes to
model the functional architecture of the liquid rocket engine, prior distributions of the

success probabilities for each functional node at a component level reflecting the
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existing experience, the duration of the different hot-fire tests, the mission duration,
and expert opinions about the life capability of hardware. The outputs of the RAIV
strategy are the number of hot-fire tests that should be done at the system, subsystem,
and component levels and the number of hardware sets required to perform these
tests.

The overall RAIV strategy is depicted in Figure 4-1. The main steps of the
strategy are listed below.

1) To define the hot-fire test strategy, the functional architecture of liquid
rocket engine is modeled as a series of functional nodes (if one main function fails,
the system fails) not only to provide the mathematical framework to determine the
success probability of each node, and finally the system-level reliability projection,
but also to represent the hot-fire test strategy. The single functional nodes represent
the component level, whereas the combined sets of functional nodes define
subsystem- and system-level hot-fire tests.

2) To express hot-fire tests as mission equivalents, the notion of equivalent
mission (EQM) is used to relate the cyclic and time-dependent failure mechanisms to
the mission specification. In particular, the time-dependent failure mechanisms are
accounted for by weighing tests that are shorter than the full mission duration. In this
way, for each functional node, the numbers of tests and failures for the components

associated with that node are used to determine the EQMs.
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Reliability-as-an-Independent-Variable Methodology
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Figure 4-1: RAIV Strategy
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3) To estimate the reliability projection metric, a Markov chain Monte Carlo
(MCMC) method is used to determine the posterior distributions of the success
probabilities of the functional nodes at component level but uses all multilevel hot-
fire test data that are obtained during development and qualification/certification
testing, i.e., the results from component, subsystem, and system hot-fire tests. The
functional node architecture at system level is then used to estimate the reliability
projection metric using the results of the MCMC. The quantitative level of the
reliability projection metric sizes the overall hot-fire test plan in terms of EQM:s.

4) To estimate the reliability-by-confidence metric, the Bayesian reliability
demonstration testing (BRDT) technique is used to determine the minimum
equivalent design life of the hardware components that must be tested in order to
demonstrate (with a given confidence) that the engine meets its hardware reliability
requirement, under the assumption that there are no failures. The quantitative level of
the reliability-by-confidence metric determines the hardware reliability.

5) To express hardware reliability as life capability, information about the
ability of the hardware sets to survive the hot-fire tests is provided as expert opinions
that are elicited to define the design number of cycles and design life. In addition, the
associated failure mechanisms and failure modes are elicited based on the
thermodynamic cycle of the liquid rocket engine. This information about the
hardware reliability is converted into individual equivalent life (EQL) capability. The
EQL uses the same basic definition as the EQM. Hence, it also relates the cyclic and
time-dependent failure mechanisms to the mission specification but uses the design

number of cycles and design life.
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6) To determine the number of hardware sets, given the equivalent number of
tests required and the EQL capability of the hardware sets, the number of hardware
sets is estimated.

7) To optimize the hot-fire test plan subject to programmatic constraints and
formal reliability requirements, the optimal hot-fire test plan specifies the smallest
acceptable number of tests required at the component, subsystem, and system level
and, as a consequence, the lowest number of required hardware sets given a certain

life capability.

Functional Node Representation

The multilevel Bayesian test data aggregation (BTDA) technique requires the transfer
of the physical liquid rocket engine cycle architecture into a node representation as a
framework to aggregate mathematically the underlying hot-fire test strategy, i.e., the
hot-fire tests either planned or performed at component, subsystem, and engine
system levels [17, 19, 190]. The lowest level is defined by the structural relationship
of the system components or subassemblies similar to the fault tree or reliability
block diagram techniques.

However, this classical structural relationship was modified to a functional
relationship because various liquid rocket engine piece parts or subassemblies are
subjected to environment-based coupling factors that propagate a failure mechanism
via identical internal environmental characteristics. Examples of subassemblies that
have a common cause failure mode are 1) the main oxidizer valve, fuel preburner
oxidizer valve, and oxidizer preburner oxidizer valve of the SSME; 2) the main

oxidizer valve and oxidizer gas generator (GG) valve of the RS-68 or Vulcain 2; and
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3) the coupling of boost pumps with main pumps performance. It is also important to
notice that the functional node representation selects only components or
subassemblies that are most pertinent to experience a failure mode during operation,
i.e., turbomachinery, combustion devices, propellant valves, igniters, heat exchangers,
etc. Smaller subassemblies (such as roll control, check wvalves, purge and
pressurization lines, and electronic parts) are not included in this model because their
reliability should be (nearly) 100%, which can be demonstrated with subassembly
testing. If this is not true, then the RAIV strategy, which focuses on liquid rocket
engine hot-fire test requirements, should be extended to incorporate the unreliable
subassemblies and avoid overestimating the system reliability.

Figure 4-2 depicts the functional node representation of the hot-fire test
strategy that was used for the RS-68 liquid rocket engine as described by Wood
[118]. The engine system level is the node zero, the power-pack (PP) subsystem is the
node one, and the components are the functional nodes two through 10. Note that “fu”
refers to the fuel and “ox” refers to the oxidizer propellant route. The physical

mapping to the functional nodes is given below.

Number of Trials Expressed as Equivalent Mission

The technology maturation and qualification/certification of liquid rocket engines
include hot-fire tests of the rocket engine at system, subsystem, and component
levels. These tests may be done at multiple durations. A hot-fire test group is a set of
tests of the components associated with a functional node, where all the tests in this
group have the same duration. Let subscript i denote the functional node and

subscript j denote a duration group for that functional node. Associated with each
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duration group is the number of cycles tested NI pr; the number of failures 7, ; the

test duration FD;P; the weighting factors for the two failure mechanisms, ¢, and

1

(1—{@..); a weighting factor to account for hot-fire tests shorter than full mission

duration w; ; and an acceleration factor (AF) to account for different operational load
points AE].TP. As described in the following paragraphs, these data are used to

determine EQM.", the EQMs of these tests, and, EQM ™, the EQMs of all of the

17
tests for a functional node.

Node 0 - System Level
Node I - Subsystem Level

Node 2 Node 3 Node 4 Node 5 Node 6
To provide drive To increase To increase To provide driver To accelerate
power during start »  pressure, fu —»  pressure, ox > power I, 4 matter
xl 72 a3 a4 5

Node 1 - Subsystem Level

Node 7 Node 8 Node 9 Node 10
To control mass To control mass T pide energy .
O CoOnmtrol mass O control mass (7] pl’()\f e energy To hE(H ox
» fow, fu > flow, ox > to ignite
9
76 a7 78

Figure 4-2: Functional Node Representation of the RS-68 Liquid Rocket

Engine
The different hot-fire durations for the typical operation of liquid rocket engines are
the consequences of the product life cycle, which include acceptance tests as well as
the actual flight mission. A typical product life cycle for a liquid rocket engine
includes the following hot-fire events: 1) acceptance hot-fire testing before the actual
flight, 2) a possible engine ground start hold-down with launch commit criteria abort,

and 3) a single flight mission duration (or several flight missions in case of a reusable
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main stage engine) or multiple re-ignitions in case of upper-stage liquid rocket
engines.

These hot-fire events are usually combined into a single main life cycle
(MLC). Additional hot-fire tests are augmented to the product life cycle or,
equivalently, MLC during the development and qualification/certification of liquid
rocket engines. However, the augmentation of hot-fire tests is not infinite due to
hardware degradation, and testing is stopped at the presence of a failure or even
before. The test bogey is therefore the complete set of hot-fire test events that may
consist of multiple MLCs and/or hot-fire events that are shorter than full mission
duration. The test bogey can be chosen arbitrarily, but we suggest linking it to the
reliable life capability of the hardware itself. The application of the test bogey is,
however, deferred to later paragraphs of this section, because the different hot-fire
events must be normalized first with respect to the mission and different hot firings as
described next.

In each hot-fire operation, the hardware is degraded by the two fundamental
failure mechanisms, stress-increased (cyclic) and strength-reduced (time dependent),
which result in the failure mode wear, erosion, creep, and fatigue, including crack
initiation and propagation, and thermal shock caused by cyclic high-temperature
ranges as well as cyclic mechanical stress/strain amplitudes [71, 116].

The notion of EQM captures both the stress-increased and strength-reduced
failure mechanisms caused by the cyclic startup and shutdown transients and the
time-dependent material wearout during steady-state operations. The fundamental

definition of the EQM is given in Eq. (4.1). The first term reflects the stress-increased
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failure mechanism, and the second term reflects the strength-reduced failure

mechanism, respectively:

NFC™ CFD™

EQM=§W+(1—§)W

(4.1)

where { is the weighting factor for the two failure mechanisms, NFC'"" is the
number of hot firing cycles associated to the testing profiles with the corresponding

cumulative hot firing durations CFD™, and NFC™ is the number of hot firing

cycles associated to the mission profile with the corresponding cumulative hot firing
durations CFD"" .

The weighting factor ¢ is assumed to be 0.5 in this study, but advanced

physics-of-failure (POF) analysis models for the various subassemblies may
determine more accurate values by varying the stress-increased and strength-reduced
loading of the subassembly and component designs. One of these advanced POF
analysis models is under final evaluation for the failure modes present in liquid rocket
engine combustion chambers [116].

Startup and shutdown modes are more detrimental than the steady state
operational mode of liquid rocket engines [124, 140]; therefore, some weighting
inside the CFD™ is used to account for these different effects. Worlund et al. [125]
made available actual weighting factors for the liquid rocket engines J-2, F-1, H-1,
and SSME, which were based on a failure probability model introduced by Lloyd and
Lipow [124]. These data were partially used to describe the relationship as given in

Eq. (4.2):
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| )=
w = n(tpj) ,Bmed,o 4.2)

’ IBmed,l

where In (tpj) is the natural logarithm of the hot-fire test proportion zp; for the hot-

fire group j,and S, ,, as well as B ,, are the two median regression coefticients.

The weighting factors may also be calculated using the Bayesian estimation for the
parameters that define the likelihood function as given in Lloyd and Lipow [124].

If required, an AF for different operational load points may also be defined in
order to account for accelerated life testing phenomena. However, more research is
required in the field of advanced POF models for liquid rocket engine subassemblies
and components in order to apply adequate rating factors in the planning stage of hot-
fire test plans. The impact of the AF on the RAIV strategy can be seen in Section
4.14.

Introducing all extensions, the final EQM equation for a hot-fire test group j
within a functional node i is given in Eq. (4.3):

NFC!* NFC" AF™w'* FD'*
i 4 (1 _’ ) ij iy ij
NFC" ! CFD""

EQMUT.P =¢; (4.3)

where ¢ is the weighting factor for the two failure mechanisms, ]\7FC;P is the

number of cycles tested (one cycle consists of the startup and shutdown), NFC"" is

the MLC ignition quantity without overhaul of the system in between the missions,

(AE/.TP w, FD;" ) is the rated and weighted test duration times the number of cycles

tested NF ;P ,and CFD"" is the hot firings accumulated during the MLC.
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The likelihood of the multilevel BTDA requires the aggregation of hot-fire

test data of each functional node in terms of the equivalent number of total trials
EOM " and equivalent number of successful trials EQM, I.TP<S>. The number of total

trials EQOM " is given in Eq. (4.4):

Ji
EQM[" =) EQM, (44)
j=1
where EQM,; is the EQM as defined in Eq. (4.3). The number of equivalent
successful trials EQMI.TP<S> is given in Eq. (4.5):

EOM™®) = EOM™®

Y NFC™ NFEC™ AF" W FDF) 4.5
Y G (1-g) T A D | 6
7 NF J CFD

=l
where EQM[" is defined in Eq. (4.4), and the second term is equivalent to Eq. (4.3)

but equated at the actual failure time that accounts for the different failure
mechanisms, e.g., low and high cycle, wear, blanching, etc.

Equations (4.4) and (4.5) correspond to the number of trials and number of
successes in an attribute sampling but normalized with the MLC. Both equations are

used in the following section.

Multilevel Bayesian Test Data Aggregation Including Mathematical Solution

The multilevel BTDA serves two objectives: either to predict the reliability projection
level during the hot-fire test planning process or to estimate the reliability projection
level as metrics for the mission success probability during the actual hot-fire test

program execution. The test data are planned or collected at various integration
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levels, i.e., component, subsystem, and system using both the development and
qualification hot-fire test events. The BTDA technique also provides a simulation
framework to optimally allocate the hot-fire tests given a required reliability
projection level subject to schedule and budget constraints.

The full Bayesian formulation of the multilevel BTDA technique is given as
unscaled posterior in Eq. (4.6). The solution of Eq. (4.6) is, however, nontrivial
because the mathematical relationship at the lowest level functional node

decomposition is a function of the subsystems and system probabilities, i.e.,
w.=f (ﬂ'cx ):

(s

I _ TP(S) 1
7z'(Q|Data)°< HﬂiEQMiTP >(1_7[i )EQM[P EOM; H”:’O (Q) (4.6)

i=1 i=1
where 72'( A Data) is the posterior of the parameter vector @ given the Data, 7, is

the individual lowest level functional node success probability, 7[1.0 (Q) is the prior

distribution of the individual lowest level functional node success probability, and

Data is the multilevel data in terms of EQM EQM " as defined in Eq. (4.4) and

)

equivalent successes EQMI.TP<S as defined in Eq. (4.5) of each functional node at

component, subsystem, and system levels.

The difficulty of the multilevel BTDA implementation is linked to the
numerical integration over the complete domain ©, even with modern general-
purpose multidimensional integration algorithms [191]. Instead, the MCMC method
was used to generate samples from the unscaled target density using a one-variable-

at-a-time Metropolis—Hastings (MH) algorithm [97, 100, 107, 108, 192-194]. The
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algorithm cycles through all unknown parameters, one at a time, proposing new
samples from an independent candidate density while holding the remaining
parameters at their most recent values, i.e., at arbitrary initial values. The logit scale is

used for the update of the samples from the candidate probability density function
q(6*) as given in Eq. (4.7):

gr-—1 (4.7)

P O

where F ; (u) is the equated inverse cumulative density function of
X~N (logité?fm),ai) at the random number u generated by U~U(0,1). The
standard deviation O, of the distribution function is a tunable constant that influences
the one-variable-at-a-time acceptance rate of the acceptance probability ¢ for new
candidate values for each functional node probability 7. The acceptance probability
is given in Eq. (4.8):

#(6*| Data) 6,*(1-6,*)
fr(ﬁi(m) |Data) o (1—&(’”))

1 1

a(6",6*6,)=min1, (4.8)

where 77(6*| Data) is the unscaled target density (posterior) that is evaluated with
the new candidate value 6 *, 7 (6’}”” | Data) is the unscaled target density (posterior)

that is evaluated at the previously accepted value 6’,('") .

MCMC samples are not independent random samples; therefore, the burn-in
time and the sample autocorrelation of the samples are a concern. The burn-in time is

the number of steps in the MCMC needed to draw the samples from the long-run
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distribution. Unfortunately, no mathematical treatment is given that determines the
length of the burn-in period. As a remedy, the autocorrelation function is used to
determine the sample autocorrelations and the lag by which the samples of the

Markov chain must be thinned at in order to use independent draws. The standard
deviation o, of the independent candidate distributions influence the sample
autocorrelations and the acceptance rates of each Markov chain; therefore, the burn-in
time is used to tune the standard deviations 0, in such a way that the acceptance rates
of each individual parameter are close to 0.35 [19, 107, 108].

Finally, the results of the MH MCMC for the individual functional node
parameters 7, are used to calculate the subsystems and system success probability or
reliability projection metrics such as the mean, the variance, or any other pth
percentile.

The selection of the prior distributions for the functional node parameters 7,
is crucial because only a small number of liquid rocket engine hot-fire test programs
is available, providing only indirect information about the parameters to be estimated.
In such a problem setting, the prior distribution becomes more important and
sensitivity analyses should check the adequacy of the choice of prior distribution
parameters. Several sets of prior distribution shape parameters were tested including
the noninformative parameter settings o=1 and f=1. The best set for the
informative prior shape parameters were & =38.3 and f=0.7 for the two sets of

hot-fire test programs of the SSME and the RS-68, respectively. The sensitivity study

for the selection of prior distribution parameter settings was also used to validate the
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MH MCMC code by running the code several times with different initial values for

the parameters to be estimated.

Bayesian Reliability Demonstration Testing

The main advantage of the BRDT technique is the reduction of test sample size [115].
The governing BRDT equation is derived using the Bayesian estimation of the failure
fraction. The derivation starts with the classical Binomial distribution but modified

with the EQM notion as given in Eq. (4.9):

(4.9)

EQAjITQZ»C ] qr (1 _ q)EQMTP_r

L(Datalq)z(

where ¢ is the failure fraction, EQM;S;)C is the number of mission profile EQMs

associated with the R-by-C requirement, and 7 is the number of observed failures
during the hot-fire test plan. Note that the number of failures 7 is usually assumed to
be zero in the Bayesian success testing under an exponential distribution assumption.
Here, the number of failures is, however, kept in the remaining derivation because it
can be used in sensitivity studies for test planning purposes using a planned number
of failures or to account for actual failure cases if erroneous assumptions about the
hardware reliability were initially made in the hot-fire test planning process.

The prior distribution in the classical Bayesian setup of attribute life test data
is based on the Beta distribution as defined in Eq. (4.10):

_ qa—l (1 _ q)ﬁ—l

f(g:a.p) B (2, 5)

(4.10)
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where ¢ is the failure fraction (the parameter to be estimated in the Bayes theorem),
o and B are the shape parameters of the Beta distribution, and B(O{, ,B) is the
solution of the Eulerian integral of the first kind:
1
P _ q
IO x?(1-x)" dx
An empirical Bayes approach was used to estimate the parameter settings for

the shape parameters & and [ using the data given in McFadden and Shen [80]. The

procedures described by Martz and Waller [70, 171] or by Modarres et al. [71] were
applied that lead to the same parameter estimates, but the latter one is mathematically

more appealing and is given in Eq. (4.11):

1—
xO ppr
p,=— ad n=———-1  where n,>x,20
1, k'p, 4.11)
o=x, and B=n,—x,

where Py is the prior mean, x, are the successes, 7, are the trials, k is the

coefficient of variation, and « and [ are the shape parameters of the Beta
distribution. The estimated shape parameters o and [ that correspond to the mean

as well as the 0.05 and 0.95 percentiles of liquid rocket engine reliability are listed in

Table 4-3.

Table 4-3:  Shape Parameter for the Beta Prior Distribution in the BRDT

Plan
0.05 percentile Mean (0.95 percentile
Shape parameter o 21 39 42
Shape parameter [ 0.6 0.5 1.2

The posterior distribution percentiles of the failure fraction g are related to the

binomial distribution as given in Eq. (4.12):
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Pr(quu)zjoq"ﬂ(q;a,,mData)dq:C (4.12)

where ¢, is the upper percentile of the posterior distribution, 77 (q; a, B Data) is the

posterior distribution of the failure fraction ¢, and C is the level of confidence
(credibility bound).
The analytical solution of the posterior distribution percentiles of the failure

fraction ¢ is given in Eq. (4.13):

B, (a+r,ﬁ+EQM§fyC —r)r(a+ﬁ+EQM,§gC
T(B+EQMy  —r)T(a+r)

)zc (4.13)

where EOQM ;fyc is the EQM without occurrence of failures to meet the reliability-by-

confidence (R-by-C) requirement, 7 is the number of equivalent failures set to zero in

the BRDT, o and f are the Beta distribution shape parameters, C is the credibility

bound, B “ () is the incomplete beta function, and

F(z) = Jmtz_le_’dt

0
1s the Gamma function.

The equivalency of Eq. (4.13) with the well-known frequentist binomial
model (l—C ) = R" may not be obvious, but if Eq. (4.13) is rewritten using a vague

prior (parameters « and [ are set to 1), and assuming a zero failure success testing,

the Bayesian-like binomial model can be stated as given in Eq. (4.14):

n+l

Bi(0,g,n+1)=(1-¢)" =(1-C) & R =(1-C) (4.14)
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where Bi(0,q,n+1) is the binomial probability density function including the

Bayesian adjustment of the vague prior by the quantity n+1 instead of only » in the

frequentist framework and C as the confidence level.

Life Capability of Hardware Sets

The RAIV strategy uses the notion of EQM to capture the two stress-increased and
strength-reduced failure mechanisms into a single metrics. The resulting failure
modes are the result of accumulated damages during the various hot-fire runs as
response to the internal thermofluid-mechanical challenges. The proper physical
design of the parts and subassemblies of liquid rocket engines must withstand these
challenges, which are expressed as design cycles and design life. Typical values are
listed in Table 4-4, but one of the main deficits of the reported values is the lack of an
associated reliability statement [9].

Table 4-4:  Engine Design and Mission Requirements

Engine Design Design  Missions Mission  Mission MP MPFD EQLW

RbyC

Name  Cvcles Life, s Starts Nominal  Cycles
Time, s

SSME 55 27,000 55 1 520 4 680 26.7
F-1 20 2,250 1 1 165 3 215 8.3
J-2 30 3,750 1 1 380 3 480 8.8

2° 150° 4 600 6.8

350° 450

RL10 20 4,500 1 2 700 4 890 5.1
LR8&7 12 1,980 1 1 165 3 215 6.4
LRI1 12 2,700 1 1 225 3 295 6.7

? First hot-fire and restart

These two design metrics are transferred into the single metric EQL with an

associated reliability level similar to the notion of EQM in order to use it in the frame

of the RAIV strategy. It is important to note that the bogey EQL (EQL%ZC) is a
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metric that is based on the assumption that no failure occurred up to the equivalent
bogey number of cycles and bogey life that may also correspond with the design
number of the cycles and design life. The promoted approach for future liquid rocket
engines would be the equality of the bogey test requirements with the design number
of cycles and design life. The computed EQLA,fb[;C is also listed in Table 4-4, assuming
the given MLC in terms of the number of cycles and accumulated HFTD. To transfer
the bogey number of cycles and bogey life into a single EQL notion, the following
two assumptions were made: (1) The stress-increased failure mechanism is modeled
by a Poisson distribution and (2) The strength-reduced failure mechanism follows a
Weibull distribution.

The Poisson distribution is a proper choice for cyclic loads since it describes a
random discrete variable with no upper bound. The Weibull distribution governs the
time to occurrence of the weakest link of many competing failure processes. Typical
piece parts or subassemblies of liquid rocket engines that dominate the time to failure
or cycles to failure occurrence are the turbine(s), bearings, or combustion chamber
liner.

The life capability definition requires the two reliability measures in terms of
bogey number of cycles and bogey life as well as the median number of cycles and
median life. The bogey reliability measure is the number of cycles or time for which
the reliability will be R (hot-fire testing without failure occurrence), whereas the
median reliability measure corresponds to the 0.5 percentile of the underlying failure

distribution (hot-fire testing is performed until a failure occurred).
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The life capability uses the same functional structure as the EQM already

introduced in Eq. (4.1) but with relevant modifications linked to the bogey number of
cycles, the bogey life, and the 0.5 percentiles. The bogey EQL (EQL%;C) is given in

Eq. (4.15), and the median EQL (E/@ZTP) is given in Eq. (4.16):

MP MP

Creyc Lreye
EQL]I‘gjcngFyMP-i_(l_f)CFyMP (4'15)

where & is the weighting factor of the capacity to withstand the challenges that

MP

e is the number of reliable cycles, 7. is the

trigger the two failure mechanisms, ¢ RbyC

reliable time, and NFC" is the number of hot firing cycles associated to the mission

profile with the corresponding cumulative hot firing durations CFD""

qr 7P

(1-¢)

EOL" =¢ (4.16)

—_— + —_
NFECM? CFD""

where & is the weighting factor of the capacity to withstand the challenges that

trigger the two failure mechanisms, A™ is the median number of cycles to failure,

7 TP

™ is the median life, and NFC"" is the number of hot firing cycles associated to the

mission profile with the corresponding cumulative hot firing durations CFD" . The
median number of cycles to failure A" s given by Eq. (4.17), and the median life
™" is given by Eq. (4.18):

r(1+ch§CJ,ZTP)
r(1+Lc,ﬁf,’;CJ)

Pr(NFC™ <cpho)=R(cpre ) =1- (4.17)
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where Pr(NF Cc'™ < cfbic) is the probability of failure associated with the test bogey,

R (c%i, C) is the reliable cycles, A™ is the mean of the Poisson distribution, LJ 18

the floor function, and
I'(z)= J.: e dt

is the Gamma function. The search parameter is the mean of the Poisson distribution
until the probability statement is true.

The inconsistency of using the mean instead of the median for the number of
cycles does not impact the overall methodology because the Poisson distribution can
be approximated with the normal distribution if the mean is above nine, for which the

mean and the median will be indistinguishable.

. n(2) |/
(=0 4.18
RbyC —11’1 (leg;x;c) ( )

where 1, is the reliable life, RRM,;)C is the reliability associated with the R-by-C

requirement, and [ is the shape parameter of the Weibull distribution. The median

time to failure was preferred over the classical mean time to failure because the
median is more representative in terms of central tendency for highly skewed failure
distribution, i.e., Weibull distributions with shape parameters less than three, as is the
case for most of the weakest link piece parts or subassemblies present in liquid rocket
engines. It should be noted that the weakest link assumption may also be used to
estimate ranges for the individual hardware set requirements for each piece part or
subassembly in order to adequately plan for hardware manufacturing during the

design maturity demonstration and subsequent qualification/certification.
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The life capability is usually derived by the mission requirements and is based
on first engineering judgments, simplified engineering life time models, or on
advanced POF models (recalling Table 4-4 for the used levels in the past). It is,
however, important to use credible and realistic bogey capabilities in order to
estimate the real hardware needs (see Section 4.1.4 for the initial SSME design cycle

and design life assumptions).

Number of Hardware Sets
The number of hardware sets needed to complete the RAIV strategy hot-fire test

scope is calculated using the hardware reliability necessary to support the total
required EQM (EQM ™) based on the multilevel BTDA technique as given in Eq.
(4.19):

EQM™ = EQM}f, + EQM[", & HW™ = HW.l. + HWT  (4.19)

rem RbyC

where EOM . is the required EQM to support the BRDT, and EQM” is the

remaining EQM needed to complete the overall RAIV strategy hot-fire test scope
defined by Eq. (4.6).
Equation (4.19) can be modified with the corresponding life capability in

order to define the required number of hardware sets as given in Eq. (4.20):

EQM e EOM,,

HW'™ = Lo (4.20)
EQLy,.  EQL

TP

where EOM %’;C is the required EQM for the BRDT with corresponding bogey EQL

(EQLy, ), and EQM" is the remaining EQM to complete the overall RAIV

rem
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strategy hot-fire test scope with corresponding median EQL (E\QZTP) based on the

0.5 percentile.

Integrated Multiple Criteria Decision-Making Model
In general, hot-fire test planning is a MCDM problem. The criteria are the number of
hardware sets, the number of hot-fire tests including the associated firing durations,
the development duration, and the development cost. The RAIV strategy seeks to
minimize the number of hot-fire tests subject to constraints on the development
duration and cost. One of the possible solution strategies for the MCDM problem is
the application of multiobjective optimization using evolutionary algorithms. Among
the various evolutionary algorithms, the most popular type is the genetic algorithm,
which searches the decision variable space by generating random populations of n
strings using the operations of reproduction, crossover, and mutation. The distinction
between feasible and infeasible solutions is determined by the penalty function
approach that penalizes a soft or hard constraint violation [153, 195].

In Section 4.1.4, the impact on key hot-fire test plan metrics was analyzed for

the RS-68 test case by varying the reliability projection targets.

4.1.4 Numerical Examples

The application and demonstration of the RAIV strategy with artificial hot-fire test
data would lack credibility in the space industry. Therefore, the numerical examples
used for the validation of the RAIV strategy are based on the hot-fire test histories of
the F-1 liquid rocket engine, the SSME, and the RS-68 liquid rocket engine. They

reflect the three different test program philosophies of formal reliability
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demonstration, DVS, and the objective-based variable test/time, respectively. The

numerical examples follow the main seven steps as introduced in Section 4.1.3.

Define Hot-Fire Test Strategy

The RAIV strategy is started with the definition of the functional node representation.
The test histories of the F-1, SSME, and RS-68 liquid rocket engines were used to
deduce the hot-fire test strategy. The F-1 hot-fire test history deduction is based on
the data given in an immediate release by Rocketdyne [121], which stated that the
number of hot-fire tests was 1081, and 278 tests were for 150 seconds or longer. No
information is given on the accumulated HFTDs. The SSME hot-fire test history
featured 726 hot-fire tests with 110,253 seconds of accumulated HFTD [120]. The
RS-68 was qualified with 183 hot-fire tests and 18,945 seconds [118]. Based on these
data, the hot-fire test strategies were deduced for the F-1, SSME, and RS-68, and they
were expressed as functional nodes with the associated physical components as given
in Table 4-5 for the F-1, as given in Table 4-6 for the SSME, and as given in Table
4-7 for the RS-68.

Table 4-5:  Functional Nodes of the F-1 Mapped to Physical Components

Functional node Physical component

To provide ignition power 7, Ignition system components

To increase pressure 7, Single shaft turbopump arrangement
(including gear)

To provide drive power 7, Gas Generator (GG)

To accelerate matter 7, Thrust Chamber Assembly (TCA)

To control mass flow, fuel side 7; Valves on fuel-side

To control mass flow, oxidizer side 7, ~ Valves on oxidizer side
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Table 4-6:  Functional Nodes of the SSME Mapped to Physical Components

Functional node Physical component

To increase pressure, fuel side 7, Boost and turbopump, fuel side

To increase pressure, oxidizer side 7, Boost and turbopump, oxidizer side

To provide drive power, fuel side 7, Preburner to drive turbine, fuel side

To provide drive power, oxidizer side 7z, Preburner to drive turbine, oxidizer side

To accelerate matter 7, Thrust Chamber Assembly (flight
nozzle extension)

To control mass flow, fuel side 7, Main fuel valve

To control mass flow, oxidizer side r, Main oxidizer valve, preburner oxidizer
valves

To provide energy to ignite 7z, Igniters for preburners and thrust
chamber assembly

To heat oxidizer z, Heat exchanger to pressurize tank

Table 4-7:  Functional Nodes of the RS-68 Mapped to Physical Components

Functional node Physical component

To provide drive power during start, =, Starter

To increase pressure, fuel side 7, Turbopump, fuel side

To increase pressure, oxidizer side 7, Turbopump, oxygen side

To provide drive power, 7, GG to drive the fuel and oxygen pumps
To accelerate matter 7z, TCA

To control mass flow, fuel side 7, GG and TCA Valves, fuel

To control mass flow, oxidizer side r, GG and TCA Valves, ox

To provide energy to ignite z, Igniters for GG and TCA

To heat oxidizer z, Heat exchanger to pressurize tank

Express Hot-Fire Tests as Mission Equivalents

The functional nodes define the hot-fire testing levels, such as component, subsystem,
and system levels. The SSME test history provided more details about the system-
level hot-fire tests in terms of hot-fire testing groups with different HFTDs using the
data given by Biggs [120]. The F-1 and RS-68 data lack this kind of information, but
the data were derived as follows. The F-1 hot-fire testing groups, with the

corresponding EQMs, are based on the matching of the weighting factor for hot-fire
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tests that are shorter than full mission duration that were given in Worland et al. [125]
and a Bayesian solution for the parameters of the likelihood function of the model
introduced by Lloyd and Lipow [124]. The resulting accumulated hot-fire test time is
about 111,000 seconds, with the average hot firing of around 100 seconds that can be
compared with the data given in Emdee [5], which result in the average hot firing of
roughly 90 seconds. Likewise, the RS-68 hot-fire testing groups are based on a test
allocation that resulted in the accumulated hot firing that is given by Wood [118]. The
weighting factors for the hot-fire tests that were shorter than full mission duration
were also calculated with the Bayesian solution for the parameters of the likelihood
function of the model introduced by Lloyd and Lipow [124].

In addition, the objective-based variable test/time philosophy applied to the
RS-68 includes the principles of accelerated life testing that require the application of
an AF.

The derived hot-fire test strategies for the F-1, the SSME that includes an
integrated subsystem test bed (ISTB) testing, and the RS-68 that includes GG
component-level and PP subsystem-level testing are given in Table 4-8, Table 4-9,
and Table 4-10 (RS-68 with AF of one) as well as in Table 4-11 (RS-68 with AF of
five), respectively. The assumption that the AF equals five is given to investigate the
impact on the number of hardware sets and the resulting reliability projection level.
Using Egs. (4.3), (4.4), and (4.5), the EQMs and the number of successful trials were

determined as required inputs for (4.6).

185



Table 4-8:  Multilevel BTDA Scope: F-1

Ty EOM,; NFC;" FD/",s w, ¢ ¢-I
Node (0 — System
Group 1 [15 5] 1 5.4 30 450 044 050 0.50
Group 2 [50 s] 1 11.3 50 2500  0.66 0.50 0.50
Group 3 [80 s] 1 90.3 323 25840  0.78 0.50 0.50
Group 4 [100s] 1 127.6 400 40000 0.84 0.50 0.50
Group 5[150s] 2 107.4 250 37500 096 0.50 0.50
Group 6 [165s] 0 13.1 28 4620 1.00 0.50 0.50
Test Scope Aggregation at System Integration Levels
EQOM? EQM, NFC" > FD".s
Node 0 — Engine 353.5 355.1 1081 110910
Table 4-9:  Multilevel BTDA Scope: SSME
Ty EOM,; NFC;" FD/",s w, ¢ ¢-I
Node 1 — ISTB
Group 1 [100s] o 197.1 1000 100000  0.75 0.50 0.50
Node 0 — System
Group 1 [2 s] 0 34 27 54  0.15 0.50 0.50
Group 2 [21 s] 0 14.1 107 2247  0.51 0.50 0.50
Group 3 [97 s] 3 31.1 184 17848  0.74 0.50 0.50
Group 4 [158s] 4 26.9 132 20856  0.82 0.50 0.50
Group 5[183s] 4 26.5 121 22143  0.84 050 0.50
Group 6 [283s] 3 36.0 128 36224 091 0.50 0.50
Group 7 [400s] O 7.5 21 8400 096 0.50 0.50
Group 8 [520s] 0 2.6 6 3120 1.00 0.50 0.50

Test Scope Aggregation at System Integration Levels

EQOM? EQM, NFC" > FD".s

Node 1 —ISTB 197.1 197.1 1000 100000

Node 0 — Engine 147.5 148.1 726 110892

186



Table 4-10: Multilevel BTDA Scope (AF =1): RS-68

Ty EOM,; NFC;" FD/",s w, ¢ ¢-I
Node 5 — GG
Group 1[50 s] 2 12.5 62 3100  0.04 0.50 0.50
Node I — PP
Group 1 [100s] 1 1.8 6 600 042 0.50 0.50
Node (0 — System
Group 1 [28 s] 3 13.1 78 2195  0.04 0.50 0.50
Group 2 [136s] 3 4.4 18 2450  0.53 0.50 0.50
Group 3[139s] 3 6.9 28 3900 0.53 0.50 0.50
Group 4 [163s] 3 6.5 24 3900 0.59 0.50 0.50
Group 5[173s] 3 4.2 15 2600  0.59 0.50 0.50
Group 6[195s] 3 5.8 20 3900 0.59 0.50 0.50
Test Scope Aggregation at System Integration Levels
EQOM? EQM, NFC" > FD" s
Node 5 — GG 122 125 62 3100
Node 1 — PP 1.8 1.8 6 600
Node 0 — Engine 37.0 409 183 18945
Table 4-11: Multilevel BTDA Scope (AF = 5): RS-68
T EOM, NFC[" FD",s w; { (-l
Node 5 — GG
Group 1[50 s] 2 16.7 62 3100  0.04 0.50 0.50
Node I — PP
Group 1 [100s] 1 1.9 6 600 042 0.50 0.50
Node 0 — System
Group 1 [28 s] 3 20.3 78 2195  0.04 0.50 0.50
Group 2 [136s] 3 5.7 18 2450  0.53 0.50 0.50
Group 3[139s] 3 8.9 28 3900 0.53 0.50 0.50
Group 4 [163s] 3 7.9 24 3900 0.59 0.50 0.50
Group 5[173s] 3 5.0 15 2600  0.59 0.50 0.50
Group 6 [195s] 3 7.3 20 3900 0.59 0.50 0.50

Test Scope Aggregation at System Integration Levels

EQM? EQM, NFC" Y FD" s

Node 5 - GG 162 16.7 62 3100
Node 1 — PP 0.3 1.9 6 600
Node 0 — Engine 53.5 551 183 18945
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Estimate the Reliability Projection Metric
The EQMs and the number of successful trials given in Table 4-8, Table 4-9 and
Table 4-10 are used in the multilevel BTDA using Eq. (4.6) to estimate the system-
level reliability projection. The resulting reliability projection levels for the F-1,
SSME, and RS-68 are listed in Table 4-12.

Table 4-12: Reliability Projection Levels using the RAIV Strategy

Engine Designation Mean Lower Bound Upper Bound
0.05 percentile  0.95 percentile
F-1 0.9894 0.9826 0.9964
SSME 0.9825 0.9730 0.9922
RS-68 (AF=1) 0.9227 0.8866 0.9644
RS-68 (AF =5) 0.9454 0.9162 0.9734

The average reliability projection levels for the F-1 and SSME of 0.9894 and 0.9825
may be compared with the formal reliability demonstration level of 0.99 at 50% [10]
and the reported reliability level of 0.984 [117], respectively. In addition, Koelle
[117] reported the conductance of 1437 hot-fire tests with a reliability level of 0.993
that may be compared with the RAIV-based projected reliability level of 0.9919
(Note that the average HFTD of around 100 seconds was assumed as well). No
reliability has been reported for the RS-68, but the RAIV-based reliability projection
levels, ranging from 0.9227 (using no AF) to 0.9454 (assuming an AF of five for all
engine-level hot-fire tests), may be compared with levels of 0.92 (one flight anomaly)
to 0.96 (zero flight anomaly), which were calculated with a first-level Bayesian
estimate of the mean predicted reliability using the number of RS-68 liquid rocket
engines used on the medium and heavy Delta IV launch vehicle until 2011 [196].
Table 4-12 should not suggest the conclusion that the RS-68 liquid rocket

engine is an unreliable propulsion system. The risk of observing a launch failure
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might be higher for the RS-68 since not all failure modes may have been discovered
during the low number of hot-fire tests performed during the development. An
intensive production quality inspection program and post-maiden-flight hot-fire
testing will reduce the risks of a flight failure and increase the reliability projection,
but at the expense of higher production cost than most likely initially foreseen. Flight
hardware is usually subjected to a myriad of inspections and several acceptance tests

at various system integration levels.

Estimate the Reliability-by-Confidence Metric

The R-by-C metric is used as input for the hardware reliability requirements, which
influences the number of hardware sets required for the overall hot-fire test strategy.
Equation (4.13) is used to determine the EQMs without the occurrence of a failure
using the reliability projection level, which was calculated in the previous step. The
confidence level is usually set to classical values of 50, 60 or 90%. In this study, the
confidence level was set to 50% for the F-1 engine [10], to 60% for the SSME, and to

90% was used for the RS-68 engine [123].

Express Hardware Reliability as Life Capability

The hardware life capability is expressed by means of bogey or design cycles and
bogey or design life. POF models, covariate models, or expert opinions can be used to
provide credible figures. Table 4-13 lists the bogey or design cycles and bogey or
design life for the F-1 [5] and SSME [9]. The bogey cycles and bogey life for the RS-
68 were defined through the RAIV strategy. Only realistic hardware reliability levels
should be stated during the requirement development process, as will be seen for the

SSME in the next step of the RAIV strategy.
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Determine the Number of Hardware Sets

Based on the R-by-C metric, where the reliability level is equal to the level of the
reliability projection metric as given in Table 4-12, the confidence levels of 50, 60,
and 90%, the life capability, and the number of hardware sets are determined with Eq.
(4.20). The results in terms of average, minimum, and maximum numbers of

hardware sets are given in Table 4-13 assuming Weibull shape parameters of 3+0.5
and 4+0.5 for the median lifetime estimation. The estimation of the QM %ﬁc was

performed with an informative prior for the SSME engine because of the ISTB,
whereas the estimation for the F-1 and RS-68 engines used noninformed priors
because both engines were state-of-the-art in terms of thrust size.

Table 4-13: Total Number of Hardware Sets

Engine Designation =~ R-by-C~ HW Design Design f#=3+£05 [=4%0.5
Life Cycles

F-1 0.9839 567 2250 20 20<22<24 24<26<28
(1081 hot-fire tests) at0.5
F-1 0.9952 56" 2250 20 39<46<51 51<55<59

(2740 hot-fire tests) at 0.5
SSME, specified life  0.9825 20 27000° 55  4<5<6  6<6<7

capability” at 0.6

SSME, realistic test ~ 0.9825 20  5000Y 209 17<21<23 23<26<27

bogey” at 0.6

RS-68 0.9454 8+47 4000° 159 9<10<10 10<10<10
at 0.9

D reported in Meisl (1986) and Emdee (2001) but spread over 2,740 hot-fire tests
2 same hot-fire test plan assumed

% original design life and cycles requirement

) realistic life time and cycle numbers derived from Williams (1993)

> 4 engine hardware sets were refurbished [Wood (2002)]

% estimated test bogey life and test bogey cycles based on the RAIV strategy

The findings shown in Table 4-13 may suggest the use of Weibull shape parameters
of 3+0.5 for LOx/liquid hydrogen and 4%0.5 for LOx/kerosene liquid rocket

engines based on the estimated number of hardware sets using the RAIV strategy and
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the corresponding reported values. Certainly, further investigations are needed to
make final conclusions. The more important aspect of the results listed in Table 4-13
is, however, linked to the problem of unrealistic test bogey capability assumptions, as
was the case for the SSME. Based on the initial or specified life capability
requirements (55 cycles and 27,000 seconds), only five to six hardware sets would
have been required for the complete development program using the RAIV strategy
for the hardware estimation. However, the actual number of hardware sets was as
high as 20 [8]. A similar level of hardware sets can be estimated with the RAIV
strategy using the more realistic test bogey capability of 20 cycles and 5000 seconds.
This set of test bogey capability, for the weakest components, is in fact more realistic
using the figures reported in the generic deviation approval request limits [30].
Therefore, the SSME example demonstrates that any unrealistic test bogey capability
assumption, when used in tradeoff studies, may result in infeasible hot-fire test plan

definitions and may cause strong program cost overruns and schedule slippage.

Test Plan Optimization

The scenario investigated in this study assesses how changes to a stated reliability
projection target value affect the key hot-fire test plan metrics: the number of
hardware sets, the number of hot-fire tests, the development duration, and the
development cost (no overall affordability optimization is addressed in this scenario).
Therefore, the setup of the MCDM is subject only to programmatic hard constraints;
that is, the development cost and the development time should not exceed twice their
baseline values. The budget metric is determined with the cost tool NASA/Air Force

Costing Model (NAFCOM®) in combination with a specific hot-fire test cost model
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using the results of the RAIV strategy. The duration (schedule) metric is defined by a
typical resource allocation for the design and development (DD) phase using the DD
cost estimate of NAFCOM®. It is further assumed that 2.5 years of engine-level
testing is accomplished within the resource allocation defined schedule with a yearly
cadence of 30 tests on two test facilities. A schedule penalty function is defined to
account for an elongated or expedited schedule due to the different hot-fire test
numbers as a result of the different reliability projection targets.

Six values of the reliability projection target (from 0.92 to 0.96) were
considered. For each value, the RAIV strategy determined the optimal hot-fire test
plan. The results (presented in Figure 4-3) highlight quantitatively the expected
tendencies of the claims presented in Section 4.1.2. Short development times and
associated low development costs can be achieved only with limited hot-fire testing
and at the expense of the confidence-building process. The limited number of hot-fire
tests also impacts the number of hardware sets needed and, as a consequence, the
development cost.

The recommendations for test plans ranging from 150 to 400 hot firings must
be seen in conjunction with the reliability projection level that must be demonstrated
before the first launch. The RS-68 test case results in a 50% increase for both the
number of hot-fire tests and number of hardware sets, a 25% increase in development
duration, and a 35% increase in normalized development cost if the reliability
projection level is raised from the initial level of 0.933 to 0.95 (Note that the
reliability level indicated is based on the case where no AF is used in the RAIV

strategy).
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Figure 4-3: Key Test Plan Metrics for various Reliability Projection Targets:

RS-68 Test Case

4.1.5 Conclusion

The presented RAIV strategy features unique characteristics currently not publicly
available to the liquid rocket engine space industry for early tradeoff studies by
providing quantitative reliability trade spaces for the number of hardware sets and the
number of hot-fire tests needed to assure mission success and to demonstrate design
maturity using multilevel planned hot-fire test data. In addition, the RAIV strategy
can be used to define test bogeys that are associated with a reliability requirement that
may also be used as a design requirement. One additional strength of the RAIV
strategy is the inclusion of envisaged failures in the planning process of hot-fire test
plans in order to simulate the typical design-fail-fix-test cycles present in liquid

rocket engine developments. Therefore, program managers and systems engineers are
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equipped with an adequate simulation framework to credibly balance performance,
reliability, and affordability by combining the RAIV strategy with thermodynamic
cycle models and parametric cost models. Although the RAIV strategy was
demonstrated using the liquid rocket engine hot-fire test histories of the F-1, the
SSME, and the RS-68 that were based on the different hot-fire test strategies formal
reliability demonstration, DVS, and objective-based variable test/time, the overall
acceptance of the approach depends on a future application of the methodology to a

new liquid rocket engine program.

4.2 A Reliability as an Independent Variable Methodology for

Optimizing Test Planning for Liquid Rocket Engines

The hot-fire test strategy for liquid rocket engines has always been a concern of space
industry and agency alike because no recognized standard exists. Previous hot-fire
test plans focused on the verification of performance requirements but did not
explicitly include reliability as a dimensioning variable. The stakeholders are,
however, concerned about a hot-fire test strategy that balances affordability,
reliability, and Initial Operational Capability (IOC). A multiple criteria test planning
model is presented that provides a framework to optimize the hot-fire test strategy
with respect to stakeholder concerns. The Staged Combustion Rocket Engine
Demonstrator, a program of the European Space Agency, is used as an example to
support the claim that a reduced thrust scale demonstrator is cost beneficial for a
subsequent flight engine development. Scalability aspects of major subsystems are

considered in the prior information definition inside the Bayesian framework. The
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model is also applied to assess the impact of an increase of the demonstrated

reliability level on the development duration (IOC) and affordability.

4.2.1 Liquid Rocket Engine Test Planning

The selection of a hot-fire test plan for liquid rocket engines is a concern for the space
industry and the European Space Agency because there exists no recognized standard
that defines quantitatively the scope of hot-fire test plans. The current best practice is
a blend of art and science that tries to define test plans that will verify performance
requirements and demonstrate safety margins against known failure modes. The
scope of initial test plans is defined by meeting the stated IOC and the available
budget. Updates of test plans are made during the development to adjust the schedule
constraints and the remaining budget. The predicted mission success probability is
then a result of the executed hot-fire test plan. However, the key stakeholders — the
space agency, the member states, and launch operators — are concerned about the
predicted reliability, the time required for the development including the hot-fire
testing to meet the IOC, and the cost of the development including hot-fire testing
(“‘affordability’’) in the early program planning stage. The scope definition of a test
plan is one of the key drivers for the stakeholder concerns; therefore, the selection of
an optimized hot-fire test plan becomes a multiple criteria decision-making (MCDM)
problem in which the numbers of planned hot-fire tests at various system integration
levels are the decision variables.

The multiple criteria test planning problem (MCTPP) is formulated as an
optimization problem with elements from utility theory and normative target-based

decision making. The number of hot-fire tests determines the reliability, defines the
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development duration, and drives the affordability. The MCTPP formulation seeks to
maximize a linear combination of the utilities of these values. We will solve this
problem using an evolutionary algorithm that searches for the optimal hot-fire test
plan.

The MCTPP is demonstrated in the context of ESA’s Future Launcher
Preparatory Programme (FLPP) [197]. Hot-fire test plans are found for two scenarios:
(1) a reduced thrust scale engine demonstrator precedes the flight engine development
and (2) a flight engine development is executed from scratch (without a

demonstrator).

4.2.2 Problem Formulation

The decision variables of the MCTPP are the number of hot-fire tests. The objective
function is a multiattribute utility function that relates the decision variables to the
stakeholder’s areas of concern: reliability, schedule, and affordability, which are all

functions of the number of hot-fire tests.

Decision Variables

The decision variables of the MCTPP are the number of planned hot-fire tests
allocated at the different system integration levels, i.e. component, subsystem, and
system level. For example, for the LE-7A liquid rocket engine, there are nine types of
tests that must be considered (see Table 4-14). The key component tests are the
preburner test and the igniter test. The key subsystem tests are the fuel

turbomachinery test, the oxidizer turbomachinery test, and the combustion test. There
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are also four different system tests (which have different durations). The specific
number of tests of each type must be determined, so there are nine decision variables.

For each test type, the specific number of tests is bounded below by the
minimum number required to verify the performance requirements, optimize the start-
up and shut down sequences, demonstrate margin against known failure modes, and
attain an adequate level of demonstrated reliability to assure mission success subject
to schedule and budget constraints. In addition, the specific number of tests is
bounded above such that the number of required hot-fire tests for engine reliability
certification is placed on engine system level (Nota Bene: The bounds provided in
Table 4-14 are given only as example). Therefore, various hot-fire test strategies can
be defined to demonstrate these basic test objectives. However, test facility
capabilities and physical hardware degradation phenomena impose constraints to the
allocation of the hot-fire tests that defines the hot-fire test strategy.

Table 4-14: Hot Fire Test Strategy for LE-7A

System Integration Level Min. no. Max. no.  Hot-fire test
of tests of tests time (s)
Component
Preburner 20 60 10
Igniter 20 80 2
Subsystem
Fuel turbomachinery 40 100 60
Ox turbomachinery 40 100 60
Combustion devices 40 100 10
System
Test duration 1 5 50 3
Test duration 2 5 50 30
Test duration 3 5 200 150
Test duration 4 5 200 300

The component and subsystem test facilities lack the capability of providing adequate

testing boundary conditions that allow the operation of the tested hardware at full
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rated conditions. At system level, the full rated conditions are achieved but the test
facility may lack the capability of providing the required amount of propellants to
support the operation of the full mission duration. Both the limitations are
superimposed by the fact that start-ups and shut downs are more detrimental than the
simple accumulation of hot-fire test time. Therefore, a framework is needed to
account not only for the various test facility limitations but also for the hardware
degradation phenomena.

The proposed framework uses a functional node representation of the physical
architecture of a liquid rocket engine and the notion of mission equivalents. The
details about these two elements of the framework are described using the LE-7A

architecture.

Functional Node Representation

The functional node representation of a physical architecture of a liquid rocket engine
not only describes the structural relation of components known from the fault tree
(FT) or reliability block diagram (RBD) techniques but also defines the fundamental
hot-fire test strategy [27].

The LE-7A liquid rocket engine architecture (see [198]) is used to explain a
possible fundamental hot-fire test strategy. The main components of the LE-7A,
which are most likely pertinent to main failure modes, are the turbomachinery on fuel
and oxidizer side, the preburner, the thrust chamber assembly, the two ignition
systems, the control valve on the fuel side (MFV), the control valves on the oxidizer

side (MOV and POV), the mixture ratio setting device, and the heat exchanger.
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Based on the definition of components with pertinent failure modes, the
functional node representation can be defined (see Figure 4-4). All of the main
functions are in series (if one function fails the system fails). This node representation
is node 0 and is used to aggregate all engine level hot-fire tests. It should be noticed
that not all subassemblies or components of the liquid rocket engine are included in
the functional node representation because the reliability levels of the ‘‘missing’’
components are considered to be unity or almost unity and therefore do not affect the
reliability analysis. In case a specific subassembly or component is failure mode
susceptible, it can be easily included in the node representation.

iNode 0 - System Level

Node4 | Node5 | | Node6 | | Node7 | | Node$
To increase To increase To provide drive To accelerate To control mass :
pressure, Fu =¥ pressure, Ox =¥ power, Fu & Ox —» matter —>» Slow, Fu —/ |
zl a2 73 4 fi) i
Node 9 | Nodelo | | Nodell | | Nodel2 |
i To control mass To control To provide energy To heat Ox for
> flow, Ox —»  Mixture ratio —» to ignite —»  tank pressuriz.
| w6 a7 8 9

Figure 4-4: Node 0: Engine Level — Functional Node Representation

Once the engine level functional node representation is defined, the fundamental hot-
fire test strategy at lower system level can be established. Fundamental in that sense
means that subsystem level hot-fire test configurations at combustion device and

turbomachinery level can be defined as shown in Figure 4-5.

Mission Equivalents
Based on the fundamental hot-fire test strategy definition, through the functional node
representation, the mission equivalents are needed to relate the planned hot-fire tests

at the various system integration levels to the mission requirement as well as to
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capture the two fundamental stress-increased and strength-reduced failure
mechanisms into a single metric, the equivalent mission (see Section 3.1).

The mission requirement not only includes the actual flight but also any other
hot-fire tests aggregated throughout the product life cycle. The notion of main life
cycle (MLC) is used to normalize the hot-fire test events which may consist of a
single or multiple acceptance hot-fire test(s) before the actual flight, a possible engine
ground start hold-down with launch commit criteria abort, and the single flight
mission (or several flight missions in case of a reusable main stage engine) or
multiple reignitions in case of upper stage liquid rocket engines.

‘Node I - Subsystem Level — Fuel Turbopump
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“Node 3 - Subsystem Level — Combustion Devices
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Figure 4-5: Nodes 1 and 2: Subsystem level — Functional Node Representation
During the design maturation and qualification, additional hot-fire tests are added to

the MLC. Such tests may include multiples of a nominal MLC and those that are a
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fraction of full mission duration. Each hot-fire test contributes to the degradation of
the hardware due to the stress-increased and strength-reduced failure mechanisms that
are present in every liquid rocket engine piece part or subassembly. Equation (4.21)
captures mathematically the two fundamental failure mechanisms and normalizes
them with the hot-fire events of the MLC; hence, the notion of equivalent mission
(EQM).

NFC” (1-¢)) NFC;" AF,"w;"FD,"
+(1-C.. )
NFC™* : CFDY*

EQM;P = é’y . (4.21)

The first term accounts for the stress-increased failure mechanism, and the
second term accounts for the strength-reduced failure mechanism. The second term
includes also the weighing of planned hot-fire tests which are shorter than full
mission duration.

Therefore, the hot-fire tests can be performed with different hot-fire test

durations which is reflected in the index ;. The various system integration levels are
defined through the index i, a group of hot-fire tests. The number of hot-fire tests in

each hot-fire test group is defined by J;. The total number of equivalent missions in

each hot-fire test group i is given in Eq. (4.22).

Ji
TP
EOM" =% EOM " (4.22)

=

Equation (4.23) accounts for planned hot-fire test failures in each hot-fire test
group i to reflect the typical design-fail-fix-test cycles present in liquid rocket engine
developments. The second term of Eq. (4.23) is based on Eq. (4.21) but is measured

at the failure time.
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J=1

Equations (4.22) and (4.23) are used in Section 4.2.2, which describes a
methodology to estimate the projected mission success probability based on the
number of planned hot-fire tests that are allocated at the various system integration

levels.

Measures of Effectiveness for the Areas of Concern

The measure of effectiveness for each area of concern is a function of the number of
hot-fire tests. The measure of effectiveness for reliability is determined by means of
the reliability as independent variable (RAIV) strategy, the measure of effectiveness
for the schedule is effort level driven in terms of work force and test plan scope, and
the measure of effectiveness for the budget is based on cost models that partially
depend on the test plan scope, respectively. These measures of effectiveness are later
used to compute the score value of the utility functions that are implemented in the

MCTPP formulation.

Reliability

The RAIV methodology estimates the projected mission success probability based on
the number of hot-fire tests planned. As the number of hot-fire tests increases, the
reliability measure of effectiveness and, as a consequence, the reliability utility score
increases. The unique features of RAIV are the multi-level aggregation of hot-fire test

results (planned or actual), i.e. results may be obtained at component, subsystem,
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and/or system level using the functional node representation and the pooling of test

results with various hot-fire test durations using the notion of mission equivalents.
The fundamental mathematical expression of RAIV is given in Eq. (4.24). It is

based on the Bayesian formulation to estimate parameters (probability of success 7;)

given a set of data (the number of hot-fire tests).

1 TP _ TP(S) 1
(6| Data) < [Tz (1-7,)" " 0" " 1120 (8) (4.24)

i
i=1 i=1

()

The first product expresses the hot-fire test strategy defined by the equivalent
number of planned hot-fire tests EQM/" including possible test failures EQM I.TP<F> at

the various functional node levels. The second product defines the prior knowledge of
the parameters to be estimated in the Bayesian framework. Each individual function
node may feature a different level of prior knowledge due to scalability constraints,
e.g. a turbomachinery is limited in terms of scalability from a small to a much larger
thrust scale if compared to a thrust chamber.

The solutions for the functional node reliability levels are used to calculate the

mean, the variance or any other pth percentile of the projected engine level mission

success probability.

Development Duration (I0C)
The measure of effectiveness for the IOC is effort driven as well as by the time which
is needed to perform the hot-fire tests to attain the reliability target estimated with the
RAIV strategy.

The effort which is needed to design and develop the hardware is estimated

with the NASA/Air Force Cost Model (NAFCOM®). The test occupation simply

203



depends on the number of hot-fire tests allocated to the various integration levels and
the number of test facilities, the test cadence per week, a yearly maintenance period,
and the mounting and dismounting periods.

Based on empirical evidences given in Koelle [117], a quantile regression
equation for the development period in years is defined which relates the cost for the
design and development divided by the work force yearly cost [the first part of Eq.
(4.25)]. The second part of Eq. (4.25) is simply the addition of the overall test
duration also given in years which is determined by the test occupation model

described next.

DP= {—6.62 +1.35In (QH +TO (4.25)
WYy

The second term of Eq. (4.25) links the measure of effectiveness for the
development duration with the decision variable number of hot-fire tests. The test
operational assumptions such as the number of test facilities, the test cadence per
week, a yearly maintenance period in weeks, and the mounting and dismounting
periods in weeks define the minimum test occupation. Eq. (4.26) defines the simple
test occupation model used.

TO = HFT,, (4.26)

TR (52— M - MD)TF,

tot

It should also be noted that Eq. (4.25) is not considering any schedule penalty
term due the lack of a proper funding profile. It is assumed that an adequate funding

profile exists.
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Budget (Affordability)
The measure of effectiveness for the area of concern affordability is based on two
cost models: NAFCOM® and the effort-driven test facility operation cost model
defined herein. The purchasing power parity principle is used to transfer the U.S. to
the European productivity level in order to obtain an adequate European level for the
price estimations obtained from NAFCOM® [13].

Available European engine development programmatic evidences were used
to anchor/validate the two cost models for a European multi-national environment.

Design and Development and System Test Hardware Cost Model

The NAFCOM® tool is used to estimate the design and development (D&D) cost as
well as the System Test Hardware (STH) cost. The D&D cost includes all the
specifications and requirements, engineering drawings as well as program
management and configuration control efforts that are required to achieve the built-to
baseline for the definition of the STH. It includes also design rework which may
become necessary after the hot-fire test conductance and evaluation.

The NAFCOM® effort-driven input variables for the D&D cost estimate are
the development environment, the manufacturing environment, the Manufacturing
Readiness Level (MRL), the design scope, and the design team experience. However,
a correlation exists between the design effort and the team’s experience, as pointed
out by Sherman [199], i.e. a high design effort is also linked with a low team
experience level and vice versa. In addition, the links between this correlation, the
Technology Readiness Level (TRL), the MRL, the Integration Readiness Level

(IRL), and project phases exist and are highlighted in Figure 4-6 [112, 163-165].
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Figure 4-6: Effort-driven Cost Model Input Variables in Relation to IRL,
TRL, MRL, and IRL

The STH cost is estimated based on the theoretical first unit (TFU) cost but includes a
25% overhead applied to reflect a prototype design approach. No learning curve
effect is considered for the STH cost estimation. The total number of STH sets
needed to complete the overall hot-fire test plan is given in Eq. (4.27) and is based on

elements defined by the RAIV strategy [27].

yr _ EOMu,c | EOM,, 497
- EOIM? —~—TP ( : )
OLgyc EQL

Equation (4.27) uses the results obtained from Eq. (4.24) in terms of total
number of equivalent missions required to attain the specified reliability level and
relates it to the life capability of the piece parts or subassemblies of the liquid rocket
engine components. The first term relates the number of equivalent missions without
the occurrence of failures to the hardware reliability (reliable number of cycles and
reliable life time). The second term completes the overall test plan by testing the

remaining number of equivalent missions needed to attain the specified level of
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reliability and relates this number to the medians of the underlying hardware
reliability distribution functions describing the two fundamental failure mechanisms,
i.e. the Poisson and Weibull distributions. Equation (4.28), a Bayesian formulation to
estimate the percentile of a binomial distribution, is used to estimate the mission

equivalents needed in the reliability by confidence (R by C) success-testing scheme,
i.c.the EOM .

B, (a+r.f+EOM;, . —r)T(a+f+EQM
T(f+EOMy, —r)T(a+r)

) =C (4.28)

The percentile or failure fraction g, is equal to the estimated reliability level.

The confidence level C is specified by the customer; typically 60 or 90%. The

parameters & and 3 reflect the prior knowledge about the engine reliability levels

either based on the data given in McFadden and Shen [80] or user specific
information.

The hardware reliability is defined by specifying the reliable number of cycles

cﬁf;c and reliable life time tﬁfgc but is transferred into the EQM notion using Eq.

(4.29). The parameter & is used to weigh the two failure mechanisms.

MP MP

cRbyC tRbyC

The remaining hot-fire tests, in terms of equivalent missions needed in Eq.

(4.27), are calculated with Eq. (4.30).

EQM" = EOM™ — EQM " (4.30)

rem
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Similarly to Eq. (4.29), Eq. (4.31) is used to transfer the medians of the
Poisson and Weibull distribution into the EQM notion which is also needed in Eq.

4.27).

P ZTP t~TP

Equations (4.32) and (4.33) are used to calculate the medians of the Poisson

and Weibull distribution, which are required in Eq. (4.31), based on the assumed

reliable number of cycles cﬁf;c and reliable life time tﬁf;c of the piece parts or

subassemblies.
r(1+]ets, .27)
Pr(NFC™ < Y=R(cM )=1- , o
r( CRbyC) (CR’WC) F(1+Lc%§CJ) -
1
e [ @) P .
t —tRbyC[_ln(Rg[;c):| ( )

Test Operational Cost Model

The test operational cost model is also effort-driven, i.e. the test occupation is
determined based on assumptions concerning engine mounting, test rate, and test
facility operation using empirical data. The test operational cost model estimates the
cost based on the values of the decision variables (the number of hot-fire tests). Once
the test occupation in years is determined using Eq. (4.26), the yearly cost for a work
force year is used to estimate the cost associated to the test conductance. Although
minor in magnitude, the propellant cost is also considered which may become more
significant in the future if the current tendency of the price increase remains evident

for the hydrogen propellant.
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Utility Functions and Normative Decision-Making
The utility function and normative decision making are used to define the objective
function as well as to divide the search space in terms of the decision variable number

of hot-fire tests into feasible and infeasible regions.

Utility Function
For each area of concern, the measure of effectiveness of a test plan is converted into
a utility score. The stakeholder has target values for each measure of effectiveness,
which could be used to define a simple step utility function in which any measure of
effectiveness that meets the target receives a value of one, and any measure of
effectiveness that does not receives a value of zero. However, this type of step
function makes optimization difficult because it penalizes all poor performance
solutions equally and does not reflect adequately the customer value in case a solution
is above the target but is still acceptable with a lower value. Thus, we sought a utility
function that would be equivalent in some sense. This will be discussed more in the
next subsection.

For reliability, we used the monotonically increasing utility function given in
Eq. (4.34). For schedule and affordability, we use the monotonically decreasing
function given in Eq. (4.35).

[—e " et®) a
w10

UF =h" (g, 7" ,LB,UB)=4{1—¢ (4.34)
g—-LB .
- otherwise
UB-LB
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The range of the measure of effectiveness g is defined by the stakeholder’s

least preferred and most preferred values for the particular area of concern. The least
preferred value evaluates to a score of zero, whereas the most preferred value
evaluates to a score of one in order to maintain uniformity over the various areas of
concern domains [200].

The utility assigned to an intermediate value of the measure of effectiveness is
determined by the utility function. The shape of the utility function is determined by
the risk aversion coefficient . For each area of concern, this parameter is set so
that the utility function has an aspiration equivalent equal to the stakeholder’s target
for that measure of effectiveness.

Based on the three individual exponential utility functions, the objective
function of the MCTPP is the weighted linear combination of the three exponential
utility functions. The weights are provided by the stakeholder based on his

preferences about the tradeoffs between the three areas of concerns.

Normative Target-based Decision-Making
The selection of an adequate value for the risk aversion coefficient »* is based on

the normative target-based decision making framework because stakeholders are
usually not in a position to directly express a value. Instead, stakeholders define their
preferences in terms of a target for each area of concern, e.g. the reliability level

should be at least 0.95, the development duration (schedule) should be at most eight
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years, and the budget (affordability) should be no more than 1.00 (normalized cost),
respectively.

We wish to define a utility function for each area of concern that reflects the
customer target and is equal to the expected value of the utility function.

From normative target-based decision making theory, we know that there
exists a unique effective risk aversion coefficient ¥/ for any stated aspiration-

equivalent (target) and probability distribution (likelihood) that results in the same

expected utility and aspiration-equivalent of a particular utility function [55, 56]. That
is, we can find the appropriate value of the risk aversion coefficient ¥ by finding

the value that satisfies the equality of Eq. (4.36).

UB i 7" g
F(g)=] T pg)de (4.36)

1B g VLB _ o~ 7UB
The cumulative density function F ( g) , which expresses the uncertainty of

the degree of attainment of the target for each area of concern, is evaluated at the

target value g (aspiration-equivalent) and set equal to the product of the derivative of

the utility function and the cumulative density function (expected utility). The
integration limits are defined through the range of the particular area of concern.

In particular, for each area of concern, the stakeholder can provide a

probability distribution F ( g) for the measure of effectiveness that captures the

general uncertainty associated with that Measure of effectiveness. This distribution

(over the range {LB, UB} for this measure of effectiveness) may be based on the

performance of previous development programs or expert opinion. Among the
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various distributions, the general Beta, the Uniform or a truncated Lognormal are the
preferred ones.

The first two moments, mean and variance, are used to find the general Beta

distribution parameters given the range {LB, UB} . The parameters for the truncated

lognormal are found using the bounds of the range {LB, UB} as the 5™ and the 95"

percentile, respectively. In case for the exponential utility function and the use of the

general Beta distribution to reflect the uncertainty about the measure of effectiveness,
the solution for the risk aversion coefficient » is found by applying first the

integration by parts technique to simplify the integral such that a closed form solution

is obtained. In a second step, Brent method is used to solve finally for the risk
aversion coefficient ¥ . Note that this has to be performed appropriately for each

area of concern.

4.2.3 Application of the Multiple Criteria Test Planning Problem

The hot-fire test strategies are determined for two scenarios of interest in the context
of FLPP: (1) a flight engine development after a successful completion of a
demonstrator project at reduced thrust scale and (2) a flight engine development
without a prior execution of a demonstrator project. These two scenarios were chosen
in order to study the claim that the execution of a prior demonstrator project is cost
beneficial for the subsequent flight engine development especially in case of
considerable involvement of new technology maturation.

The MCTPPs were solved with a genetic algorithm that is implemented in

Palisade’s Evolver® [156]. Each run took about three hours on an Intel Duo Core
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CPU with 2.40 GHz with an optimization run time setting of 0.01% change of the
fitness function within the last 100 trials. The used parameter settings are already
given in Table 3-3.

The parameter that drives the overall run time is linked to the solution of the
reliability measure of effectiveness, which requires a Markov chain Monte Carlo
(MCMC). In order to optimize the MCMC sampling from the posterior, a one-
variable-at-a-time with independent candidate density Metropolis—Hastings algorithm
was selected which uses already the burn-in samples to tune the independent
candidate density properties such that the required acceptance rate of 35% is
obtained. The time required to run a single MCMC for nine parameters takes about

one minutes with 1000 burn-in samples and chain lengths of 10,000 samples.

Key Liquid Rocket Engine Requirements

The key liquid rocket engine requirements are determined in early design trade-off
studies performed at launch vehicle level. The launch vehicle optimizations vary the
thrust level, the nozzle area ratio, and the combustion chamber pressure level to
obtain optimal solutions for lifting the given payload weight into a particular orbit.
An optimum exists between the gross lift off weight of the vehicle and the thrust level
of the propulsive system. This optimum should correlate with minimum launcher
affordability. Geometric constraints of the launch vehicle limit the nozzle area ratio,
and higher levels of the combustion chamber pressure increase the sea-level
performance. The mission profile defines the mission durations of the propulsion

system(s).
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The launch vehicle optimizations are not finalized within the FLPP but the
following key liquid rocket engine assumptions were made to perform the study (see
Table 4-15). The reduced thrust scale is set to 1400kN for the demonstrator. In
addition, the liquid rocket engine architecture is similar to LE-7A which allows the
reuse of the fundamental hot-fire test strategy as already defined in Figure 4-4 for the
engine system level and Figure 4-5 for the subsystem level.

Table 4-15: Key Performance Requirements

Performance characteristics Values
Combustion chamber pressure, bar 150
Vacuum thrust, kN 2,300
Main life cycle (Mission profile)
Acceptance test, s 150
Acceptance test, s 150
Hold-down, launch commit, s 10
Mission duration, s 300
Number of ignitions, - 4
Reliable cycle at 0.98 reliability, - 5
Reliable life at 0.98 reliability, s 5

Stakeholder Preference
The stakeholder preferences about the three areas of concern affordability, reliability,
and IOC were elicited. The main outcomes are listed in Table 4-16. The budget
(affordability) figures are proprietary data and are given only as normalized values. In
both scenarios, an IOC in 2025 is required.

Based on the customer responses, the three aspiration equivalent exponential
utility functions were determined using the techniques presented in Section 4.2.2.

The stakeholder preferences for the three areas of concern influence the search
for an optimal test plan because they determine the three utility functions that are

included in the fitness function used as the objective function of the MCTPP.

214



Table 4-16: Customer Preferences

Trade space Min Target Max Mode Weights  Remarks
Reliability, - 0.90 0.95 0.995 0.98 0.50  The higher
the better
Budget, - 0.67 1.00 1.42 1.17 0.35  Defined by
the authors
Development 7 8 12 10 0.15  Defined by
duration, y the authors

Measure of Effectiveness Settings

Reliability
The required inputs for calculating the reliability measure of effectiveness are the

MLC, the weights for the two failure mechanisms (¢ and 1-¢"), the weights for hot-
fire test durations which are shorter than full mission duration (w;P ), the number of

anticipated hot-fire test failures, and prior information about the component
reliabilities. The following paragraphs provide details for these input parameters. All
remaining model parameters are calculated internally by the model setup using the
mathematical expressions given in Section 4.2.2.

The MLC is already defined in Table 4-15. The weights { and 1—¢ for the
two failure mechanism depend on the planned hot-fire test durations and are based on
previous European engine development programs (see Section 4.1). The weights W;P
for planned hot-fire tests which are shorter than full mission duration are based on a
quantile regression using data from previous cryogenic liquid rocket engine programs
(see Section 4.1). The numbers of anticipated hot-fire test failures are set to zero in all

scenarios. The prior information about the component reliabilities depend on the

scenarios. Two cases are discussed next.
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No prior information is available because Europe has never demonstrated the
mastery of a cryogenic staged combustion liquid rocket engine. Therefore, a non-
informative (uniform) prior distribution is assumed for the reduced thrust scale
demonstrator engine in scenario I as well as for the flight engine development in
scenario II.

Prior information is, however, available for the flight engine development
after an assumed successful execution of the demonstrator project in scenario I. The
data given in McFadden and Shen [80] is used to estimate the prior distribution

parameters [27].

Development Duration (10C)

The required inputs for calculating the IOC measure of effectiveness are limited to
the assumptions concerning the number of available test facilities, weekly test
cadence, maintenance periods, and mounting and dismounting activities. All
remaining model parameters are calculated internally by the model setup using the
mathematical expressions given in Section 4.2.2. It should be recalled that the
presented model setup does not include any schedule penalty due to the lack of an
adequate funding profile.

There are two engine test facilities available in Europe. Both were assumed to
be operational for the flight engine development. The demonstrator engine is tested
only on one test facility. The component and subsystem test facilities are limited to
one for turbomachinery tests and one for combustion devices hot-fire tests. The
weekly test cadence is set to 0.6 which may seem to be low but was set to that level to

account for possible testing interferences with other hot-fire test facilities. The non-
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testing periods due to maintenance and mounting/dismounting activities were set to
four months per year for engine level test facilities. No impact was considered for

component and subsystem test facilities.

Affordability
The required inputs for calculating the affordability measure of effectiveness are
linked to the settings for the design and development cost and the test facility
operation cost. All remaining model parameters are calculated internally by the model
setup using the mathematical expressions given in Section 4.2.2.

Table 4-17 lists the input parameters for the design and development as well
as the TFU cost needed to estimate a single STH cost. The total STH cost is a
multiple of the single STH based on the number of required hardware sets defined by
the technique discussed in Section 4.2.2. The inputs for the test facility operation cost
were already defined in the discussion above.

Table 4-17: NAFCOM Settings used to assess the Scenarios

Model parameter Scenario I: Scenario I: Scenario II:
Demonstrator Flight engine Flight engine

Dev. environment CAD CAD CAD

Manu. environment Semi-automated  Semi-automated Semi-automated

MRL Similar/modified New New

Design scope New technology = New design New technology

Team experience Unfamiliar Normal Unfamiliar

Engine cycle SC-Single PB SC-Single PB SC-Single PB

MCC pressure, bar 150 150 150

Vacuum thrust, kN 1400 2300 2300
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Scenario Assessment

Scenario I: Demonstrator and Flight Engine Development

Reduced Thrust Scale Demonstrator Engine

No customer preference consideration is needed because the programmatic elements
are defined by means of the requirements with regards to an IOC for the subsequent
flight engine in 2025 and a limited testing scope of 30 hot-fire tests spread over two
engine hardware sets. On engine level, four hot-fire test groups were defined, i.e. the
3 seconds tests are used as start-up verification tests, the 30 seconds tests as ramp-up
tests, the 150 seconds tests as an intermediate test step, and the 300 seconds tests as
full duration tests. The component and subsystem testing scope were defined by
systems engineering best practices. An additional hardware was assumed for the
component and subsystem level tests. The results in terms of key programmatic
elements and test plan characteristics are listed in Table 4-18.

Table 4-18: Hot-Fire Test Plan Defining Characteristics for Demonstrator

System Integration Level Number of HTF time, s Accumulated
tests test time, s
Component
Preburner 20 10 200
Igniter 35 2 70
Subsystem
Fuel turbomachinery 20 60 1,200
Ox turbomachinery 20 60 1,200
Combustion devices 20 10 200
System
Test duration 1 5 3 15
Test duration 2 5 30 150
Test duration 3 10 150 1,500
Test duration 4 10 300 3,000

Key programmatic elements and test plan characteristics:

Total number of hot-fire tests (system level): 30, Number of hardware sets: 3,
Reliability projection level: 62.8%, Reliability projection level at 90% confidence:
50.0%, Total duration (schedule): to be finished in 2017/2018, Total budget: 0.770
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Subsequent Flight Engine Development

The customer preferences were considered when solving the MCTPP for the flight
engine development after the successful completion of the reduced thrust scale
demonstrator project. The same numbers of hot-fire test groups as defined for the
demonstrator were kept on engine level for the flight engine. The lower bounds for
the number of tests for each hot-fire test group is set by the minimum number of
hardware sets and the associated MLC, i.e. five in this scenario. The upper bounds are
set to 300 for each hot-fire test group. The results in terms of key programmatic
elements and test plan characteristics are listed in Table 4-19. The customer targets in
terms of development duration and development budget were met. The demonstrated
reliability target is marginally not met.

Table 4-19: Optimized Hot-fire Test Plan defining Characteristics — Flight

Engine after Demonstrator

System Integration Level Number of HTF time, s Accumulated
tests test time, s
Component
Preburner 40 10 400
Igniter 35 2 70
Subsystem
Fuel turbomachinery 160 60 9,600
Ox turbomachinery 160 60 9,600
Combustion devices 210 10 2,100
System
Test duration 1 5 3 15
Test duration 2 30 30 900
Test duration 3 33 150 4,950
Test duration 4 90 300 27,000

Key programmatic elements and test plan characteristics:

Total number of hot-fire tests (system level): 158, Number of hardware sets: 5,
Reliability projection level: 94.4%, Reliability projection level at 90% confidence:
92.2%, Total duration (schedule): 7.5 years, Total budget: 0.737
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Scenario I1: Flight Engine Development without Demonstrator

The customer preferences were also considered when solving the MCTPP for the
flight engine development without a prior execution of a demonstrator project. The
results in terms of key programmatic elements and test plan characteristics are listed
in Table 4-20. The numbers of hot-fire test groups were increased to six in this
scenario to provide an additional degree of freedom for the optimal hot-fire test
allocation. The lower and upper bounds for the number of tests for each hot-fire test
group is set in a similar way as it was done for scenario I. The minimum number of
hot-fire tests is, however, set to 11 which corresponds to the number of hardware sets
needed in scenario II. The customer targets in terms of demonstrated reliability,
development duration, and development budget were not met. However, the
demonstrated reliability level is only marginally not met as it was the cased in the
flight development of scenario I. Both demonstrated reliability levels obtained in

scenario I and II are at about the same level which allows an easy comparison.

Comparison of Results with Previous Liquid Rocket Engine Programs

Before the two scenarios are compared, the results of the MCTPP are reflected
against previous liquid rocket engine key programmatic elements and test plan
characteristics.

Koelle [117] provides a figure about the empirical relation of engine
reliability versus the number of development and qualification hot firings (see Figure
4-7). The figure was expanded with additional flight engines, results from Section
4.1, and the results obtained from the two scenario assessments. The model results

follow rather well the empirically determined relation.
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Table 4-20: Optimized Hot-fire Test Plan defining Characteristics — Flight

Engine only

System Integration Level Number of HTF time, s Accumulated
tests test time, s
Component
Preburner 40 10 400
Igniter 35 2 70
Subsystem
Fuel turbomachinery 160 60 9600
Ox turbomachinery 160 60 9600
Combustion devices 210 10 2100
System
Test duration 1 5 3 15
Test duration 2 30 30 900
Test duration 3 33 150 4950
Test duration 4 90 300 27000

Key programmatic elements and test plan characteristics:

Total number of hot-fire tests (system level): 281, Number of hardware sets: 11,
Reliability projection level: 94.3%, Reliability projection level at 90% confidence:
91.9%, Total duration (schedule): 11.1 years, Total budget: 1.781

The number of hardware sets required in the two scenarios, five and 11, correspond
also well with previous experiences if one considers the planned number of tests and
the assumed hardware reliability level. Evidences of similar hardware set utilizations
for developments are given in Emdee [4]. Section 4.1 further highlights the impact on
too stringent hardware reliability requirements on the overall hot-fire test plan
credibility. Based on this information, the assumed hardware reliability levels as
given in Table 4-15 are reasonable.

The development duration (IOC) results for the two scenarios fit also well
with previous evidence given in Emdee [4], e.g. LE-7 with 282 hot-fire tests required

11 years and Vulcain 1 with 278 hot-fire tests ten years, respectively.
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Therefore, the results obtained for the two scenarios by solving the MCTPP
can be seen as credible based on the comparison of the key programmatic and test

plan characteristics with evidences from previous liquid rocket engine programs.
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Figure 4-7: Engine Reliability versus Number of Development and

Qualification Hot Firings

Cost Advantages of a Demonstrator Project

The claim that a prior demonstrator project is cost beneficial for the flight engine
development can be confirmed by assessing the results obtained from the two
scenarios as summarized in Figure 4-8. The customer targets for the reliability level
and the development duration are also included for ease of comparison.

By looking at Figure 4-8, the longer development duration for scenario I
should not raise any concern by the stakeholders because the budget for a
demonstrator project is limited and as a consequence the work force level allocated to
such a project which directly impacts the development duration. In addition, the IOC

in 2025 1s met even with this longer development duration.
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Figure 4-8: Comparison of Scenarios and Customer Targets

The Cost of Reliability

The cost of reliability is also a long lasting question in the space industry and by the
European Space Agency. The MCTPP setup provides the proper framework for
answering this question with quantitative facts. Figure 4-9 shows the impact of an
increase in the demonstrated reliability level on the schedule and affordability. The
flight engine development of scenario I is included as reference.

By looking at Figure 4-9, the effect on the number of hot-fire tests on engine
level, the number of engine hardware sets, development duration (schedule), and
affordability (development cost) of an increase of the reliability from 0.95 to 0.98
(roughly 3%) can be assessed. The number of hot-fire tests on engine level is
increased by 260%, the number of hardware sets by 320%, the development duration
by 150%, and the affordability by 270%, respectively. The number of hardware sets

that are needed can be significantly reduced in case of an enhanced life capability of
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the piece parts and subassemblies is given but at the expense of an increase in the
production cost for later flight utilization. The development duration may be
significantly reduced by erecting additional test facilities for engine level tests but at

the expense of an increase in development cost.
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Figure 4-9: Impact of Reliability Level on Development Schedule and Cost for
Flight Engines

4.2.4 Conclusion

The MCTPP presented here supports early design tradeoff studies by providing
quantitative relationships between the hot-fire test plan and reliability, schedule, and
affordability performance measures. Moreover, the model allows one to find the best
hot-fire test strategy that meets customer targets for these performance measures.
(The best test strategy has the smallest number of tests and hardware sets.)

In addition, the study substantiated the claim that a prior test bed or

demonstrator project reduces the development cost of the actual flight engine in case
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there is a substantial technology maturation need. Scalability aspects for the
technology maturation at lower scale are adequately accounted for the different
components and subsystems through the prior in the Bayesian framework.

The sensitivity of the development schedule and development cost to an
increased level of reliability is quantitatively confirmed as well.

Of course, optimal plans increase the likelihood of success but do not
guarantee it. The actual flight mission success is still subject to good workmanship,

brilliant engineers, and luck.

4.3 Planning, Tracking, and Projecting Reliability Growth:

A Bayesian Approach

Liquid rocket engine reliability growth modeling is a blend of art and science because
of data scarcity and heterogeneity, which result from the limited number of engine
development programs as well as testing profiles that are much different from the
actual mission profile. In particular, hot-fire tests are shorter than full mission
duration due to test facility limitations and some of them are performed at extreme
load points to demonstrate robustness and design margin.

As a response to modern liquid rocket engine hot-fire testing profiles, which
require a new reliability growth modeling approach, this section presents a new, fully
Bayesian estimation based methodology that estimates the system reliability without
the MTBF metrics; instead, it takes into account all component, subsystem, and
system level hot-fire test data. The Bayesian estimation provides naturally the

framework that is needed to apply the methodology in the three areas of reliability
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growth: planning, tracking, and projection because pseudo, actual, and the
combination of both pseudo and actual hot firings test data can be used to estimate the
system level reliability.

The methodology is applied to planning, tracking, and projecting reliability
growth and illustrated using an example. In the example, a system reliability target
must be demonstrated in a TAAF program. The system reliability target defines the
scope of the hot-fire test plan for the reliability growth planning using pseudo
numbers for the planned hot-fire tests. At each occurrence of a failure, the
methodology is used in the context of reliability growth tracking, i.e. the attained
system level reliability is estimated. The test plan is updated to reflect the need for
additional tests to meet the system reliability target. Reliability growth projection is
easily performed using either specific projection models or the prior distribution that

features a knowledge factor to model the specified level of fix effectiveness.

4.3.1 Reliability Growth

Reliability growth is typically attained through a formal TAAF program that
discovers and corrects design deficits. Reliability growth models are used for test
planning, tracking reliability throughout the program, and projecting the reliability
when the tests are completed. The two most widely used reliability growth models are
the empirical Duane and the analytical Crow/AMSAA, which both use the MTBF to
estimate the reliability growth rate. The MTBF is calculated from the total
accumulated test time divided by the total number of failures without considering the
operational loads, durations, and sequences of the applied stresses, which highly

affect the failure rate and as a consequence the MTBF metric [201]. Therefore,
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ignoring the applied stresses makes the Duane and Crow/AMSAA models
questionable for cases in which the testing profiles differ, in terms of applied stresses,
significantly from the stated mission profile [31, 149].

Modern liquid rocket engine hot-fire testing profiles belong to such cases
because the testing profile is a potpourri of tests that are shorter than full mission
duration and tests performed at extreme load points to demonstrate robustness and
design margins. Therefore, neither the Duane nor the Crow/AMSAA data analysis
may be any longer best practice as the following brief discussion highlights.

Historically, liquid rocket engine hot-fire testing profiles were used to comply
with a formal reliability demonstration as it was the case for the F-1 and J-2 engines.
These hot-fire testing profiles followed adequately well the operational loads, and, as
a consequence, the Golovin and empirical Duane models were successfully applied
[147].

However, formal reliability demonstration hot-fire testing profiles are lengthy
and cost prohibitive, which led to the DVS approach that was applied to the SSME
certification. The Crow/AMSAA model, one of the two reliability growth models
used, initially estimated an increase of the MTBF (indicating reliability growth), but
the system reliability declined towards the end of the testing profiles although overall
testing experience would have suggested an increase in the system reliability [30].

Most recently, an objective based variable test/time philosophy was used to
qualify the RS-68 liquid rocket engine while lowering the development cost and
reducing the development schedule. To achieve these objectives, the hot-fire testing

profile included extreme load points to demonstrate robustness and design margin
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[118]. Based on the SSME experience, the RS-68 engine testing profile should have
been even more difficult to analyze with the Duane and Crow/AMSAA models and to

estimate a system reliability that is based on the MTBF metric.

4.3.2 Methodology

The methodology is based on the Bayesian aggregation of multilevel binomial test
data [93] but is extended with the notion of equivalent mission to account for the
operational loads, durations, and sequences of the applied stresses that are present in
the specific testing profiles but are unlike those in the mission profile [27].

The Bayesian aggregation of multilevel binomial test data uses a functional
network that is based on the principles of the reliability block diagram technique
[202]. The functional network serves two purposes: (1) It defines the fundamental test
strategy that defines also the hot-fire test configurations at the component, subsystem,
and engine system levels and (2) it is used to derive the governing likelihood function
that combines simultaneously all available multilevel hot-fire test data. It should be
noted that the functional component level nodes correspond to individual physical
components or to a CCCG of the actual physical system architecture. Figure 4-10

depicts an example of such a functional network.

Figure 4-10: Functional Network
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The methodology begins with the set of prior distributions about the reliability of

each functional node. Each prior is a modified Beta distribution with three

parameters: ¢ and [, which can be derived from previous engine reliability data as
given in [80], and the knowledge factor (or relevance factor) ¢, which measures the

level of transformation of similar designs into new product designs and is derived
from methods defined in [81, 82]. It can be determined qualitatively or quantitatively
with methods described in [81, 83]. Thus, the prior for node i is the following

distribution:

_ = (-,
T =SB0 = g g ]

(810
)

(4.37)

In addition, the methodology requires for each functional node the number of
equivalent trials, EQM;P, and the number of equivalent successes, FOM iTP<S>. The

notion of equivalent mission is introduced because it captures the two fundamental
failure mechanisms (characterized as stress-increased and strength-reduced) that are

present in liquid rocket engine piece parts and subassemblies. The number of

equivalent trials, EOM ;P , 1s calculated as follows:

NFC;" D"
EOM;" =¢ J J

The first term relates the stress-increased (cyclic) and the second term the
strength-reduced (time-dependent) failure mechanism, respectively. Both terms are
weighted and relate the specific testing profiles to the mission profile.

These quantities are derived from the characteristics of the testing profiles as

follows. For the number of equivalent trials, the testing profile duration D;P depends
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upon the test duration, an acceleration factor, which is introduced to model the
extreme load points, and a weighting factor accounts for the hot-fire tests that are
shorter than full mission duration. Note that these different testing profiles at

functional node i are accounted for by defining specific hot firings ;. The

acceleration factor, AE./TP , 1s based on the acceleration testing theory [169] and is not

further discussed. The weighting factor, wgp, is based on a likelihood function that
models the union of two mutually exclusive events: (1) a failure that takes place

during the start-up and steady state operation (ordinary failure) and (2) a failure that

takes place during the shutdown operation [124].
P __ P_ TP P
D;" = AF;"w; FD; (4.39)
Because the individual hot-fire test durations are usually different within each

functional node i, which is reflected through subscript j, we use the following to

calculate EQM "

(4.40)

CFD™

<\ 77 NFC™

Ji TP TP TP_ TP TP
EQMiTP ZZ(Q NFCz'j +(1_é’,-j)' NFCU AF;]_ W, FDij J

For the number of equivalent successes at node i, the testing profile duration

FD;P depends upon the actual failure time FD;P<F>, the acceleration factor, and the
weighting factor:

D" = AF"w ] FD]" (4.41)

Then, the number of equivalent successes at node i is derived using an

equation similar to equation (4.40):
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After these quantities are derived, the Bayesian estimation uses Bayes’
Theorem to define an unscaled posterior distribution for the parameters that must be
estimated. The unscaled posterior distribution is defined through a likelihood function
which models the data and a set of prior distributions for the parameters of the model
(the likelihood function) that is given as

/ _ TP(S) |
7(6] Data)e< [ 2P (1= ) O P [T (0)  (443)
i=1

i=1 l

The parameter vector, €, of this unscaled posterior distribution is estimated
with a one-variable-at-a-time MH algorithm. Important metrics of this solution
strategy are the acceptance rate of the acceptance probability as well as the
autocorrelation and convergence of the Markov chain of the proposed candidates. The
candidates are drawn on a logit scale for which the proper acceptance rate is around
0.35. In order to obtain that rate, the burn-in period of the Markov chain is used to
tune the standard deviation of the candidate density function. The autocorrelation
function is used to obtain the lag at which the Markov chain is thinned. Finally, the
convergence of the accepted Markov chain was visually inspected by means of trace
plots.

The combined likelihood function of equation (4.43) is found as follows: The
fundamental test strategy defines the test configurations that are expressed in terms of
nodes. Using the example depicted in Figure 4-10, the system level is node 0, the two

subsystem nodes would be 1 and 2, and the functional component level nodes are 3 to
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7. The subsystem node 1 and 2 reliabilities are expressed as 7, =7m,7, and
7, = w7t 7T, . The system level node 0 reliability is given as 7, = 7,7, or equivalently
as 7, =77, . Finally, these functional component, subsystem, and system

level reliabilities are inserted in equation (4.43) to combine simultaneously all level
test data.
The probabilities of the mutually exclusive events that define the weighting

TP : : ; >
factor, w;", for the different testing profiles are also found by applying Bayes

Theorem to the likelihood function and a prior distribution for the model parameters.
The likelihood function that describes the mutually exclusive events is based on a
quasi-multinomial distribution. Uniform distributions are used as prior.

Figure 4-11 depicts empirical evidence for the weighting factors for different
liquid rocket engines using the data given in [148]. The figure includes also the

weighting factors that are used in the illustrative example described in 4.3.3.
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Figure 4-11: Weighting Factor versus Hot Fire Test Duration
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The equivalent trials, EQM /", can be related to an equivalent life for the hardware

components in order to estimate the number of hardware sets required to complete the

specific testing profile. The reliable equivalent life is given as:

MP MP

Criyc e
EQL]gy o=£ NFCy’MP +(1-¢) RO (4.44)

The definitions of the reliable cycle, c%fyjc , and the reliable time, tﬁf;c , may be

either based on physics-of-failure models if available or on expert elicitation.
It should be noted that the structure of the reliable equivalent life is the same
as for the equivalent mission. Therefore, the number of required hardware sets can be

estimated with

E MMP
HW =—EQQLA5£}’C (4.45)
RbyC

Equation (4.45) can be applied using the overall number of equivalent trials or
the equivalent trials that are associated with the relevant functional node i level.

The Bayesian estimation methodology is applied next to an illustrative
example that describes the application in the context of reliability growth: planning
and tracking. The area reliability growth projection is not explicitly demonstrated but
once the system reliability is estimated various projection models can be applied

[148].

4.3.3 Illustrative Example

As an illustrative example, we consider a hypothetical liquid rocket engine TAAF
program that includes a contractual reliability growth objective (system reliability

target) for a cryogenic Gas Generator main stage engine.
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The physical system architecture is similar to the RS-68 or Vulcain 2 liquid
rocket engine. Therefore, the physical architecture can be described with nine
functional component nodes in series.

The thrust class of the new engine is a significant increase compared to
previous designs but our a priori knowledge is that the design authority has mastered

a staged combustion engine at lower thrust scale. Based on this, we decided to use a

knowledge factor ¢ of 0.80 for the functional component level node priors with

distribution parameters ¢, =38 and £ =0.7.

Furthermore, the stated engine mission profile consists of a 100 seconds
acceptance test, a 10 seconds engine ground start hold-down with launch commit
criteria abort, and a 300 seconds flight mission. The contractor and agency selected
specific testing profiles (hot-fire test plan), which includes component level,
subsystem, and system level tests. Table 4-21 lists these testing profiles in terms of
number of tests, hot-fire test duration, and acceleration factor to indicate the severity
of the hot-fire test conditions.

Table 4-21: Testing Profile

Node No. of Hot-fire Acceleration
Tests Duration, s Factor

Gas Generator 60 50 1
Powerpack 10 100 1
Engine, Group 1 70 30 1
Engine, Group 2 50 120 1
Engine, Group 3a 35 150 1
Engine, Group 3b 35 150 5
Engine, Group 4a 20 300 1
Engine, Group 4b 20 300 5
Total / Accumulated 230 30600
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Based on this data, setting the weight ¢ =0.5, and the application of Eq. (4.43), the

average system level reliability estimate is 0.956.

We now consider the impact of failures. We will consider a scenario in which
three failures occur (see Table 4-22). The failures are fully defined by means of the
hot-fire test order number, the failure time, and the affected physical component.

Table 4-22: Assumed Failure Metrics

No. of Failure

Node Tests Time, s Component
Engine, Group 1 45 150 Turbopump, ox
Engine, Group 2 100 300 Gas Generator
Engine, Group 3a 150 300 Turbopump, fu

In this scenario, the TAAF program has started, the first couple of hot-fire tests are
successful, and then the failures occur. At each failure event, the following updating
procedure is performed:

e the likelihood function for the weighting factor, w, , is updated with the

failure event and the Bayesian estimation calculates new weights that
are used in Eq. (4.39) and Eq. (4.41),

e Eq. (4.40) and (4.42) are equated using the new weights and the actual
failure event time,

e the a priori knowledge is considered as non-existing for the failed
component that modifies the prior distribution, and

e the recalculation of the functional component level reliabilities using

Eq. (4.43) in order to update the system level reliability.
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Table 4-23 lists the resulting system level reliability estimates at each failure
occurrence and demonstrates the application of the methodology in the context of
reliability growth tracking.

Table 4-23: Reliability Growth Tracking

Tracking steps Test number Reliability level
Failure 1 45 0.831
Failure 2 100 0.861
Failure 3 150 0.879

The next step in our TAAF program scenario is the definition of the remaining hot-
fire test effort given the failure occurrence in order to attain the contracted system
reliability target (reliability growth planning). Either of two assumptions can be
made: (1) no additional failures will occur during the remaining hot-fire tests or (2)
additional failures will occur and the number of the additional failures is estimated
using reliability growth projection models. This work considers only the first case and
updates the reliability growth planning hot-fire test scope at each time when an
assumed failure occurred. Table 4-24 lists the consequences in terms of additional
hot-fire tests and as a delta (difference) from the initial hot-fire test plan to attain the
contracted system reliability target, i.e., 0.956. Figure 4-12 depicts the described
scenario graphically.

Table 4-24: Test Scope Consequences

Additional hot- Delta from initial
Events

fire tests test plan
Failure 1 20 20
Failure 2 30 50
Failure 3 25 75

The practical importance to both contractors and the space agency should be noted

because the methodology not only estimates the attained or planned system reliability
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to assure the mission success but also provides the hot-fire test scope during the
requirements definition and after a failure occurrence. Thus, the presented Bayesian
methodology in the context of reliability growth is also a valuable management tool

for program managers.

—— Initial Test Plan
— Failure 1

—— Failure 2

0 50 100 150 200 250 300 350 — Failure3
No. of Engine Level Tests, [ — |

Figure 4-12: Reliability Growth Planning and Tracking

4.3.4 Conclusion

This section presented a new, fully Bayesian estimation based methodology that
provides a true alternative to the empirical Duane and analytical Crow/AMSAA
models. The key features that distinguish the proposed methodology from the
classical models are the aggregation of multilevel test data, the neutralization of the
differences of the specific testing profile to the mission profile, the inclusion of a
priori knowledge, and the capability to apply it to all three main areas of reliability
growth: planning, tracking, and projection.

The illustrative example demonstrated the practical use of the proposed
methodology by quantifying the impact of failures on the estimated system reliability

in the context of reliability growth planning, tracking, and projection. The illustrative
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example also highlighted the importance of the methodology as a risk management
tool by providing quantitative figures for the hot-fire test scope definition that drives

both the development cost and development schedule.

4.4 Preference-based Risk-informed satisficed Decision-Making

with Epistemic Uncertainty

Motivated by the problem of developing and certifying a liquid rocket engine, this
section describes a multiobjective optimization approach that incorporates user
preferences about the objectives (expressed as both targets and relative weights) and
epistemic uncertainty about design problem parameters. The proposed approach
supports program management decisions that involve the correlated objectives of
affordability, reliability, and initial operational capability and include technical,
financial, and schedule program risks.

Section 4.4.1 describes some general considerations about the problem.
Section 4.4.2 describes the preference-based risk-informed decision-making problem
formulation including the specific model details. Section 4.4.3 presents the main

results, and Section 4.4.4 summarizes the main findings.

4.4.1 Introduction

Managing the development of a new product involves decision-making with multiple,
usually conflicting, and correlated objectives that include program risks and epistemic
uncertainty. A single optimal solution is not attainable with respect to all of the

objectives, but Pareto-optimal solutions exist. In addition, the decision-makers are
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satisficers, as the theory of bounded rationality proposes [24-26], who seek solutions
from a limited set of alternatives.

This section presents a risk-informed satisficed decision-making method for a
new liquid rocket engine development. The programmatic elements (the objectives)
are affordability (cost), demonstrated reliability, and Initial Operational Capability
(IOC) (development duration), and the decision-maker has a set of targets for and
uncertainty about each objective. In addition, the decision-maker provides a set of
minimum product characteristics such as the vacuum thrust and the main combustion
chamber pressure for the selected thermodynamic cycle architecture [3].

In this context, the decision variables describe the test plan that will verify the
product’s inherent reliability. These include hot-fire tests at component, subsystem,
and system level. It is also well-known that the test-analyze-and-fix (TAAF) cycle
failure assumptions strongly influence program decisions because not only is an
impact given for reliability but also for affordability and IOC. In order to predict the
number of TAAF cycle failures, the product characteristics are used to define the
newness of the liquid rocket engine system.

In the problem specific context, it may seem straightforward to apply
evolutionary multiobjective optimization (EMO) algorithms with Pareto dominance-
based fitness evaluation but it is not because the objectives are not only conflicting
(the classical case) but also correlate among each other and incorporate uncertainty.
Studies about the impact of correlated objective functions have already shown that the
application of elitist multiobjective non-dominated sorting genetic algorithms such as

the NSGA-II or the SPEA either will find only solutions around the center of the
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Pareto front (proposed remedies are the incorporation of preference as described in
[203-205]), or will generate similar sets of Pareto-optimal solutions compared to
dimensionality reduction approaches, in the most extreme case a single-objective
genetic algorithm (SOGA) or the multiobjective evolutionary algorithm based on
decomposition (MOEA/D) [155], but at the expense of computational time (which is
demonstrated in Section 4.4.3 using the NSGA-II) [206, 207]. The inclusion of
uncertainty in the objective functions is usually modeled as noise by adding an error
term that is generated by a statistical distribution [208-212]. However, in program
management related decision-making such an approach is impractical because the
decision-maker will not be able to define an adequate statistical distribution a priori;
the impact of the epistemic uncertainty depends upon the design solution and cannot
be modeled as noise.

Our proposed approach, a preference-based risk-informed decision-making
problem formulation, is based on a SOGA using the weighted sum approach [153,
154] which addresses well the shortcomings of the present mainstream EMO solution
strategies because the approach not only is computationally more efficient but also
incorporates the decision-maker’s preferences, targets, and the uncertainty about the
objectives. Note that the targets and uncertainty define the decision-maker’s risk
attitude for each of the objectives using utility-probability duality [55]. The weights
are determined by means of the preference programming method to include already
the decision-maker’s uncertainty about the weights in the weighting elicitation
process [213], but it will be seen that the inclusion is not of first order importance and

that other methods could have been used such as ranking methods, rating methods,
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weighted sum approaches or the concept of hypothetical equivalents and
inequivalents but with the limitation that these methods result in single weight
estimates [214]. The fitness function is based on truncated exponential utility
functions [200, 215] that not only normalize disparately-scaled objective spaces but
also allow for a fitness evaluation on the score values which measures’ of
effectiveness depend on the decision variables and on the decision-maker’s risk
attitude for each objective space. The measures of effectiveness are determined by

specific affordability, reliability engineering, and IOC models, respectively.

4.4.2 Satisficing Problem Formulation
Before considering the specific problem that motivated this research, we will present
the general approach. Consider a design optimization problem with M performance
measures. Let ¥ =(x,,...,x,) be the vector of / decision variables. Each variable has
a lower bound x'*' and an upper bound x").

For each of the M performance measures, let g,k be the value of the
performance measure, which is determined by the evaluation function 4, (X), and let
LB, and UB, be the lower and upper bounds. These bounds express the decision-
maker’s beliefs about the possible range of the performance measure. Let g, be the

decision-maker’s target for this performance measure. This value, as explained later

in this section, determines }/rfﬂ , the effective risk coefficient that defines the shape of
the utility function UF,. Finally, let w,  be the weight associated with the

performance measure.
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The optimization problem can then be formulated as the sum of weighted

normalized utility functions as follows:

Maximize FF = inUFm
m=1
UF, =h,(g,.7. .LB,,UB,) m=12,..M;
g, =/ (%) m=12,...M
subject to g, 2LB, m=12,...M;
g, 2(-UB,) m=12,...M;
xi(L) <X, Sfo) i=12,..,1.

(4.46)

The concept of utility functions with the associated risk attitudes is discussed

in Keeney and Raiffa [215]. In this approach, two types of truncated exponential

utility functions are used: a monotonically increasing function, denoted with the

superscript MI, for objectives (like reliability) that should be maximized, and a

monotonically decreasing function, denoted with the superscript MD , for objectives

that should be minimized (like affordability and IOC). The general expressions, in

which UF is a function of g, are the following equations:

-7 (e7L8)
5 (UB-LB 7,E..ff #0
UF =" (g, ,LB,UB)={1=¢ " """

% otherwise
-7 (UB~g)
l1-e
—— 720
- —y —
UF =" g,y ,LB,UB)={1=¢ " """
UB-g .
M otherwise

(4.47)

where " is the effective risk coefficient that defines the shape of the utility

function and expresses the decision-maker’s risk attitude. The impact of different

risk-attitudes is discussed in Section 4.4.3.
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Given the target g, , the bounds LB, and UB,, and F, (-), the distribution of

the decision-maker’s uncertainty about this performance measure, the effective risk

coefficient ¥ can be found using utility-probability duality [55]. In particular, 3~

m

is the value that generates the function UF, that satisfies the following equation. The

adaptation for monotonically decreasing utility functions is simply by symmetry (see

Section 3.2.1).

UF,

F(8n) g™ 2 (4.48)

UB,

ERRIN

Figure 4-13 depicts examples of utility functions that convey the decision-
maker’s risk attitudes risk-averse, risk-neutral, or risk-seeking. Note that the resulting

risk attitudes are in good agreement with the prospect theory given in Kahneman and

Tversky [48].
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Figure 4-13: Example of Utility Functions for different Risk Coefficient Settings

Models to Determine the Measures of Effectiveness for the Objectives
This section describes the performance measures for the liquid rocket engine
development and certification application and how they depend upon the design

variables (the number of hot-fire tests). Because deriving these relationships is not
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the purpose of this work, the reader is referred to other sources for details that have

been omitted.

Affordability

Minimizing the cost of developing a liquid rocket engine is an important objective. In
the application considered here, its affordability is measured by the development cost
C"®. This cost can be estimated using the liquid rocket engine cost model (LRECM)
[6], which is implemented in the NASA/Air Force Cost Model (NAFCOM®) [13], in
combination with a specific effort-driven hot-fire test model using the results of the
reliability-as-an-independent-variable (RAIV) strategy (see Section 3.3.2). The cost

model used in this work was discussed in detail in Section 3.3.1.

Reliability-As-an-Independent-Variable Strategy

The number of hot-fire tests, which corresponds to the decision variables (X ) of the
genetic algorithm, is used to determine the number of equivalent missions that the
liquid rocket engine undergoes during testing (see Section 4.1). This is used to
estimate the objective demonstrated reliability at liquid rocket engine system level
and the number of hardware sets (which are used in the affordability model). In
addition, it is used to predict the number of TAAF cycle failures using the knowledge

transfer factor ¢ that reflects the newness of the liquid rocket engine. The RAIV

strategy presented in Section 3.3.2 was used in this study.

Initial Operational Capability

Minimizing the initial operational capability (IOC), which is equivalent to the

development duration D", is an important objective that depends upon the number
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of hot-fire tests. This performance measure depends on the design maturity (TRL),
the design process maturity (experience of the team), the reliability-by-credibility
(confidence) requirement that determines the hot-fire test plan, the hot-fire test
cadence, the number of test facilities, and the yearly funding level. Therefore, the
Schedule Estimating Relation (SER) for the IOC can be expressed as the sum of the
design and development duration D" and the test facility occupation duration D™,

Section 0 presented the details of how these durations are estimated.

A Typical Liquid Rocket Engine Development Program Tradeoff Decision
This section describes the development and certification optimization for a particular
liquid rocket engine development scenario. A typical liquid rocket engine
development program tradeoff decision is concerned about selecting the best
alternative among various design solutions considering the three objectives
affordability, reliability, and IOC. The decision-maker defines the targets, the
uncertainty, and the weights for the objectives. Next, the space transportation system
requirements, mainly thrust, vacuum specific impulse, propellant combination,
propellant mixture ratio, and geometric constraints, are transferred into liquid rocket
engine requirements that define the possible set of design alternatives.

The system that is the subject in this study, assuming an early program phase,
is the U.S. liquid rocket engine RS-68. Details about the actual project performance

are given in Wood [118].

Decision-maker’s Targets, Uncertainty Bounds, and Weights
The decision-maker provides the objective functions’ targets and weights. In addition,

the decision-maker may express the ranges for the objectives to express their
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uncertainty about their targets. Table 4-25 lists the decision-maker’s responses (note

that normalized figures are given for the affordability). Based on these inputs, the
corresponding effective risk coefficients 7 can be determined; these and the

associated risk attitudes are given in Table 4-26. In addition, the decision-maker is
also asked to provide the product and processes characteristics that are the required
inputs for the LRECM.

Table 4-25: Decision-maker’s Uncertainty Bounds, Targets, and Weights

Objectives Min Max 0.05LB 095UB Targets Weights
Affordability, MU 0 2 0.930 1.350 1.200 0.20
Reliability, - 0 1 0.9663 0.9974 0.958 0.65
10C, y 0 13 7.50 12.00 10.25 0.15

Table 4-26: Decision-maker’s Risk Attitudes

Objectives y7 Risk Attitude
Affordability 7.1 Risk averse
Reliability 0.017  Risk neutral
10C 29.1 Risk averse

The values given for the objective reliability need more explanation because it may
seem odd that the target is outside the lower and upper bounds. A distinction must be
made between the mission reliability for the new liquid rocket engine once it is in
operation and the reliability demonstration target that is set by the decision-maker due
to the cost prohibitive design verification hot-fire test plan. Note that the impact of

the target value on the risk attitude is deferred until Section 4.4.3.

Description of a Liquid Rocket Engine Design Alternative
The engine components, from a main function point of view and that are classically at
risk, are depicted in Figure 4-14. Note that the node notion indicates also the testing

strategy for liquid rocket engines, i.e., node 0 identifies the components that are used
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for the system level hot-fire tests whereas node 1 defines the subset of the
components that are considered for the subsystem level hot-fire tests. Node 6 and
Node 10 are not included in the system level test configuration because they do not
contribute to the main test objective, i.e., the turbomachinery. On component level,
only node 5 is, however, considered for hot-fire tests in order to mitigate the technical

risks of combustion instability for a gas generator component.
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Figure 4-14: Functional Representation of the U.S. Liquid Rocket Engine RS-68

Determination of Knowledge Transfer Factor to predict the technical Program Risks
The product characteristics, namely vacuum thrust and combustion chamber pressure,

are used to determine the system level knowledge transfer factor ¢, for the RS-68

liquid rocket engine. The Space Shuttle Main Engine (SSME) is considered as the
prior experience, and the knowledge transfer factor is set to 0.676. Table 4-27 lists the
results. The predicted number of TAAF cycle failures (3) equals the number of main
failure modes reported in Wood [118]: shortfall of turbopump power, fatigue life of

turbine blisks, and damping of turbine blisks.
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Table 4-27: Knowledge Transfer Factor for the RS-68

Thrust, KN Pressure, bar  Propellants

SSME (old system) 2279 206.4 LOx/LH2
RS-68 (new system) 3370 97 LOx/LH2
Knowledge transfer factor 0.676

Projected TAAF cycle failures 3

Correlations among the Objectives

The correlation structures of the three objectives are determined by the specific
models for the affordability, reliability, and IOC which will influence the behavior of
the EMO algorithms [206].

In program management, the correlation among the objectives affordability
and IOC is inherent (because more effort requires more time and costs more), and the
consideration of joint confidence intervals for the assessment of the project budget
and the associated project schedule is specifically requested by NASA [216]. In that
context, Book [217] suggests an empirically determined correlation coefficient of 0.2,
whereas Harmon [218] advocates a value of 0.45, which was derived using the
Bayesian estimation method. If we assume that the joint distribution is normally
distributed with an estimated correlation of 0.28, then Figure 4-15 depicts the joint
confidence intervals at the 0.90, 0.95, and 0.99 confidence levels for the given U.S.

liquid rocket engine RS-68 development program.
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Figure 4-15: Joint Confidence Intervals

4.4.3 Satisficing Results considering Objective Weights, Decision-maker’s

Uncertainty, and Program Risks

Impact of Objective Weights on Satisficing Results

It is well-known that the weights of the composite fitness function influence the
single optimal solution [155]. In addition, a SOGA will fail to find Pareto-optimal
(non-dominated) solutions when the set of non-dominated solutions is non-convex
[153-155]. Therefore, we performed the comparison of a SOGA using Palisade’s
Evolver® software [156] against the well-known and frequently used NSGA-II using
the SolveXL® software [157] to show not only that the SOGA outperforms the
NSGA-II but also that the set of non-dominated solutions is convex. Table 4-28 lists
the parameter settings for the SOGA and NSGA-II. Noticeable is the run-time that is
tenfold for the NSGA-II in comparison with the SOGA using the same computer

hardware.
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Table 4-28: Parameters of the SOGA and NSGA-II

Evolver® NSGA-II
Population size 50 40
No. of generations Progress based 12
Cross-over probability 0.5 0.5
Cross-over type Arithmetic Uniform random
Selector Weighted average Crowded tournament
Mutation probability 0.1 0.1
Mutator Cauchy mutation Simple by Gene
Utility function weights Equally weighted Not applicable
Run-time, h 2to3 35

The Pareto-optimal solutions of the NSGA-II are also used to show that the set of
non-dominated solutions is convex and that the weights, as listed in Table 4-29, can
be used to force the SOGA to explore this set, as depicted in Figure 4-16. Using the
notation that is given in Table 4-29, Case-III is able to explore the upper bounds
whereas Case-VII and Case-XI cover the lower bounds of the objective spaces. It also
seems that the NSGA-II fails to converge in particular toward the Pareto-optimal
front for Case-VI, Case-VIII, and Case-X which is either due to the correlated
objectives or the result of both a small population size and a low number of
generations.

Table 4-29: Weights used to define the Fitness Function

Affordability w, Reliability w, I0C w,
Case-I 1 0 0
Case-II 172 1/2 0
Case-III 0 1 0
Case-1V 2/3 1/6 1/6
Case-V 1/3 1/3 1/3
Case-VI 0 2/3 1/3
Case-VII 1/2 0 1/2
Case-VIII 0 1/2 1/2
Case-IX 1/3 0 2/3
Case-X 0 1/3 2/3
Case-XI 0 0 1
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Figure 4-16: The satisficed solutions found using the SOGA for the eleven cases
(which use different weights) and the Pareto-optimal front found

by the NSGA-II

Impact of the Decision-maker’s Risk Attitude
The decision-maker’s risk attitude (expressed as a target) influences the utility (score
value) for a given performance measure and the overall fitness evaluation of a
solution. Studies have shown that the most sensitive risk-attitude is associated with
the objective reliability (see Figure 3-2).

Historically, liquid rocket engines were hot-fire tested until an inherent
reliability of 0.900 to 0.995 was demonstrated [117], and there was a tendency to
target a level of around 0.956 for new liquid rocket engine developments (see Section

4.1). Therefore, the two reliability targets of 0.926 and 0.986 are selected to study the

impact on the satisficing. The resulting effective risk coefficients are * =5.8 and

¥ =-43.7 characterizing the decision-maker’s risk attitudes as risk averse and risk
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seeking, respectively. (The original reliability target of 0.958 corresponds to a risk-

neutral attitude.) The weights from Case-V (w =w,=w;=1) are used, and the

SOGA for these two additional cases was run. Figure 4-17 depicts the resulting
single solutions for the three risk attitudes: risk-averse, risk-neutral (the original Case-
V solution), and risk-seeking. Note that the other results from previous section are

also included for ease of reference.
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Figure 4-17: Satisficed Solutions of the SOGA using different Risk Attitudes for
Reliability

By comparing the satisficed solutions of the SOGA that were obtained with different
weights with the solutions obtained with different risk attitudes for reliability, it is
apparent that both decision-maker inputs influence the fitness evaluation of the
SOGA. The impact of the risk attitude is even more influential; therefore, the

determination of the weights is less critical in the satisficing approach than usually
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considered. As a consequence, fixed values can be used in the overall decision-
making. Instead, more focus should be given to the decision-maker’s uncertainty

about the objective spaces and the definition of credible objective targets.

Technical, Financial, and Schedule Program Risks

A Monte Carlo simulation was run to explore impact of this uncertainty on the
performance of specific solutions. This simulation sampled from the distributions of
these uncertain parameters, which are listed in Table 4-30. All were modeled as
triangular distributions with the parameters given in Table 4-30. (Note that no test
conductance variables or epistemic uncertainty is given to respect the confidentiality
of the data such as the number of test facility, test cadence, and direct cost.) The
simulation created 500 samples and, for each sample, calculated the performance
measures for the satisficed solution that takes into account the decision-maker inputs
(see Table 4-25). Figure 4-18 depicts the simulation results and the results generated
in previous section for ease of reference.

Table 4-30: Uncertainty Bounds of Decision-maker Inputs and Epistemic

Uncertainty
Min Most Max
likely

Knowledge transfer factor, - 0.609 0.676 0.744
Failure occurrence allocation 1, - 0.54 0.60 0.66
Failure occurrence allocation 2, - 0.18 0.20 0.22
Failure mechanisms weight, - 0.4 0.5 0.6
Low cycle fatigue Weibull shape parameter 2 3 4
High cycle fatigue Weibull shape parameter 5 6 7
Life capacity weight, - 0.4 0.5 0.6
Design safety factor, - 2 4 6
Producibility, - 0.30 0.35 0.40
Overhead for development hardware, - 1.300 1.325 1.350
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Figure 4-18: Risks and Epistemic Uncertainty Impact on the Satisficed Solution
Based on the simulation results for the financial and schedule risks (which are
correlated as shown in Figure 4-15), the probability that the program will meet both
the affordability and IOC targets (1.200 and 10.25 years) is approximately 0.65 based
on the bivariate normal probability density function. Therefore, a 35 percent risk is
given to accrue a cost overrun and a schedule slippage. In reality, the RS-68 liquid
rocket engine development cost overrun was 40 percent, and its development

schedule slippage was 12 months [118].

4.4.4 Conclusion

This section presented a preference-based risk-informed satisficed decision-making
method that uses a SOGA and includes utility functions that reflect the decision-
maker’s risk attitude (expressed as targets). The SOGA implementation is shown to

be computationally efficient and effective in finding the Pareto-optimal solutions by

254



comparing the results with the NSGA-II. It was also shown that the set of non-
dominated solutions is convex, which allows the application of a SOGA.

The inclusion of the decision-maker’s risk attitude into the fitness function by
means of truncated exponential utility functions with associated efficient risk
coefficient is shown to be more important than the weights in SOGAs or preference
incorporation in the multi- or even many-objective EMO algorithms. The utility-
probability duality is an adequate model that is easily implemented in a SOGA
because it affects only the fitness evaluation.

The preference-based risk-informed satisficed decision-making method equips
program managers and systems engineers with a simulation framework that is capable
of treating program risks efficiently and adequately. The technical risk is measured by
the number of TAAF cycle failures, and the financial and schedule risks are
determined by the model variables and the epistemic uncertainty. Joint confidence
intervals for the objectives affordability and IOC can be estimated to support this new

trend in program risk management.

255



Chapter S: Conclusion

This dissertation described a risk-informed decision-making methodology to improve
liquid rocket engine program tradeoffs with conflicting areas of concern, which
includes non-technical and technical parameters. The solution strategy is based on a
multiobjective satisficing problem formulation using the weighted sum of normalized
objective functions. The objectives correspond to three areas of concern:
affordability, reliability, and IOC, which are modeled with classical CERs, the RAIV
strategy (introduced here), and classical SERs.

This dissertation also described the RAIV strategy, which is an important
component of the methodology. The RAIV strategy was developed to estimate the
demonstrated reliability of complex systems by aggregating multilevel hot-fire test
data with different failure mechanisms and the characteristics that the testing profiles
differ from the mission profile.

The problems that were discussed in Chapter 4 addressed: (1) the validation of
the RAIV strategy using the U.S. liquid rocket engines F-1, SSME, and RS-68 and
the European liquid rocket engine Vulcain 1 and Vulcain 2 (Section 4.1), (2) the
application of the methodology in a multiattribute decision-making to select the best
liquid rocket engine design alternative (Section 4.2), (3) the application of the
methodology in a multiobjective satisficed decision-making to define the optimum
hot-fire test plan (Sections 4.1, 4.2, and 4.4), (4) and the application of the RAIV

strategy as a reliability growth model (Section 4.3).
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All logical model constructions include evolutions of the tools that are used to
find the solution to a formulated problem statement as it was the case also for the
risk-informed decision-making methodology. The definition of the EQM and the
Bayesian estimation of the functional node reliabilities were fundamental to the
generation and validation of the logical model. The first major progress was the
Bayesian estimation of the parameters that are used to calculate the weighting of the
testing profiles instead of a simple quantile regression of historical data. The second
major progress was the implementation of the coding trick [see Eq. (3.33)] that
improved significantly the numerical stability and relaxed several impediments with
regard to the use of a mixture prior distribution. The third main progress was the
inclusion of the knowledge transfer factor as the mix parameters of the mixture prior
distribution and the prediction of the TAAF cycle failures, which take into account
the novelty of the new system. Consequently, the final model requires only minimum
user inputs such as the targets for the objectives and the performance requirements of
the liquid rocket engine alternatives to generate Pareto-optimal fronts or the satisficed

solution for each of the liquid rocket engine design alternative.

5.1 Summary of Results

5.1.1 Reliability-as-an-independent-variable Strategy

The RAIV strategy provides a mathematical framework for planning and tracking the
demonstrated reliability of complex systems by aggregating multilevel hot-fire test
data with different failure mechanisms and the characteristics that the testing profiles

differ from the mission profile. The planning of hot-fire test data includes the
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prediction of the number of the typical TAAF cycle failures, which is based on the
technology maturity of the competing risks system components.

The RAIV strategy is validated with the U.S. liquid rocket engines F-1,
SSME, and RS-68 as well as the European liquid rocket engine Vulcain 1 and
Vulcain 2 that were based on the different hot-fire test strategies ranging from a
formal reliability demonstration, the DVS, and the objective-based variable test/time
philosophy. It is shown that the three hot-fire test strategies are not different from a
reliability engineering point of view. The differences are with regard to a stringent
cost reduction approach by cutting the scope of the hot-fire test plan with the

consequence of a reduced demonstrated reliability prior to the first flight.

5.1.2 Test plan optimization

Hot-fire test plan optimization, which maximizes the demonstrated reliability while
optimizing the affordability and test schedule, is an important use of the risk-
informed decision-making methodology. Therefore, the quantitative link between
affordability and reliability is provided to the decision-maker.

As discussed in Section 4.2.3, the test plan optimization approach was used to
quantitatively substantiate the claim that a prior test bed or demonstrator reduces the
development cost of the actual flight engine in case there is a substantial technology

maturation need.

5.1.3 Reliability Growth

The application of the RAIV strategy as a reliability growth planning, tracking, and

projection model (discussed in Section 4.3) provides a true alternative to the
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empirical Duane and analytical Crow/AMSAA models. In particular, the inclusion of
testing profiles that are different to the mission profile and aggregated over several
system integration levels offers specifically advantages over the classical reliability

growth models.

5.1.4 Satisficing

The satisficing operation within the risk-informed decision-making methodology can
be performed with a computationally efficient and effective SOGA because the set of
non-dominated solutions is convex. This was shown by comparing the results of a
SOGA with the well-known and frequently used NSGA-II. The SOGA approach
combines the dimensionality reduction, preference incorporation, and different fitness
evaluation schemes in order to handle the multiobjective problem in a single-
objective problem formulation.

The dimensionality reduction is based on a weighted normalized fitness
function that includes the decision-maker’s risk attitude by means of truncated
exponential utility functions (preference incorporation) with associated efficient risk
coefficient using the utility-probability duality. The fitness function evaluation is then
performed on the transformed objective space, i.e., the score values of the utility

functions.

5.2 Contributions

The risk-informed decision-making methodology and the RAIV strategy contribute to
improving decision-making in the liquid rocket engine industry by providing

decision-makers with an integrated way to consider tradeoffs between demonstrated
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reliability, affordability, and schedule (IOC). These tools can be used by customers
(agency), program managers, systems engineers, and reliability engineers throughout
the entire product life cycle.

The risk-informed decision-making methodology and the RAIV strategy
improve the multiattribute decision-making in the NASA “pre-Phase A” or ECSS
“Phase 0 and A” with regard to the selection of the best liquid rocket engine
alternative by providing a quantitative link between the three areas of concern
affordability, reliability, and 10C.

In addition, the risk-informed decision-making methodology and the RAIV
strategy improve the multiobjective decision-making in the NASA “Phase A and B”
or ECSS “Phase B” with regard to the definition of an optimized multilevel hot-fire
test allocation that defines the overall test plan in order to achieve the liquid rocket
engine flight certification with a stated reliability-by-credibility requirement.

Finally, the RAIV strategy is used for reliability growth modeling in all
remaining product life cycle phases, i.e., NASA “Phase C, D, and E” or ECSS “Phase

C, D, and E”. Flight missions and production assurance tests are used as evidence.

5.3 Future Work

The risk-informed decision-making methodology is applied to liquid rocket engine
systems that can be categorized as competing risks systems. The methodology is,
however, generally formulated so that any other complex hardware system may be
used that is subject to testing profiles that are different to the final mission profile.

Therefore, future work could focus on the application of the risk-informed decision-
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making methodology to other complex hardware system or non-competing risks
systems.

Only expendable liquid rocket engines are currently considered. The inclusion
of renewal theory and the application to maintenance models not only for the
development but also for the operation and support is of particular interest for
reusable liquid rocket engine applications. This research suggestion may seem odd
with regard to the current launch vehicle development directions but the future will
reintroduce reusable launch vehicles [219].

The TAAF cycle failure prediction is based on a system level approach and
retrospective failure fraction allocation. The development of more sophisticated
physics-of-failure component models may allow the definition of a component level
knowledge transfer factor. By that means the TAAF cycle failure prediction may be
improved.

The RAIV strategy application focuses on reliability growth planning and
tracking. Future work could focus on the implementation of reliability growth
projection models that incorporate the general framework of delayed and non-delayed
fixes.

Software applications are not at all addressed in this research but the RAIV
strategy 1is principally also applicable to software reliability verifications and
validations by treating the multilevel as functions, modules, and fully integrated

software instead of component, subsystem, and hardware product.
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