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The Classical theory of cognition proposes that there are cognitive processes that 

are computations defined over syntactically specified representations, “sen-

tences” in a language of thought, for which the representational-constituency re-

lation is concatenative. The main rival to Classicism is (Nonimplementational, or 

Radical, Distributed) Connectionism. It proposes that cognitive processes are 

computations defined over syntactically simple, distributed representions, for 

which the constituency relation is nonconcatenative. I argue that Connectionism, 

unlike Classicism, fails to provide an adequate theoretical framework for ex-

plaining systematically related cognitive capacities and that this is due to its nec-

essary reliance on nonconcatenative constituency.

There appears to be an interesting divergence of attitude among philoso-

phers of psychology and cognitive scientists regarding Classicism’s language of 

thought hypothesis. On one extreme, there are those who argue that only hu-



mans are likely to possess a language of thought (or that we at least have no evi-

dence to the contrary). On the other extreme, there are those who argue that dis-

tinctively human thinking is not likely to be explicable in terms of a language of 

thought. They point to features of human cognition which they claim strongly 

support the hypothesis that human cognitive-state transition functions are com-

putationally intractable. This implicitly suggests that the cognitive processes of 

simpler, nonhuman minds might be computationally tractable and thus amena-

ble to Classical computational explanation.

I review much of the recent literature on honeybee navigation. I argue that 

many capacities of honeybees to acquire various sorts of navigational informa-

tion do in fact exhibit systematicity. That conclusion, together with the correct-

ness of the view that Classicism provides a better theoretical framework than 

does Connectionism for explaining the systematicity of the relevant cognitive ca-

pacities, gives one reason in support of the claim that sophisticated navigators 

like honeybees have a kind of language of thought. At the very least, it provides 

one reason in support of the claim that the constituency relation for the mental 

representations of such navigators is concatenative, not nonconcatenative.
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Chapter 1

Introduction: Systematicity, Navigation, and Cognitive Architecture

1.1  The Issues

The Classical theory of cognition proposes that there are cognitive processes that 

are computations defined over syntactically specified representations, “sen-

tences” in a language of thought. Classicism provides a theoretical framework for 

explaining several features of cognition.1 Some of these are the productivity of 

thought, the compositional unity of particular thoughts, inferential relations 

among thoughts, structure-sensitive errors in reasoning, the multiplicity of psy-

chological “attitudes” that may be taken toward particular thoughts (we can be-

lieve that P, desire that P, etc.), the causal relations that obtain between thoughts in 

cognitive processes, and the systematicity of thought. Theories of cognitive ar-

chitecture must be evaluated in light of how well they explain (or explain away) 

those and other properties of cognition. My focus is on the systematicity of cog-

nitive capacities.

The main rival to Classicism is Nonimplementational (or Radical) Distrib-

uted Connectionism (hereafter, simply Connectionism). As we will see, Classi-

1

1 Rey 1997.



cism affords a relatively straightforward explanation of the systematicity of 

thought. And, though other approaches to cognitive architecture might turn out 

to be viable,2 the only worked-out alternative to the Classical explanation of sys-

tematicity is a Connectionist one. Thus, one of the two principal questions I ad-

dress is, Which theoretical framework, Classicism or Connectionism, provides 

the best explanation of systematicity? I argue that Connectionism, unlike Classi-

cism, fails to provide an adequate framework for explaining systematicity. 

There appears to be an interesting divergence of attitude among philoso-

phers of psychology and cognitive scientists regarding the Classicist’s language 

of thought hypothesis. On one extreme, there are those who argue that only hu-

mans are likely to possess a language of thought (or that we at least have no evi-

dence to the contrary). Povinelli and colleagues3 favor the view that certain hu-

man cognitive capacities require a language of thought. Some of the capacities 

they include in that category are the capacities to represent unobservables and 

counterfactual situations, to distinguish individuals and kinds, to learn new rules 

that operate on instances of variables, and to use productive and systematic 

symbolic systems. However, they argue that, in many cases, there is evidence 

2

2 See Beer 2000; Haugeland 1997; and van Gelder 1995, 1998.

3 Penn and Povinelli (submitted), Povinelli and Bering 2002, Povinelli et al.  2000, Povinelli and 
Giambrone 2001, Povinelli and Vonk 2003.



which suggests that nonhumans lack such capacities, while in other cases, there 

is a lack of evidence that nonhumans have such capacities. 

On the other extreme, it has been argued that distinctively human thinking 

is not likely to be explicable in terms of a Classical language of thought. For ex-

ample, Horgan and Tienson4 point to features of human cognition (its open-

endedness, the potential relevance of anything to anything, and the holistic char-

acter of relevance) which they claim strongly support the hypothesis that human 

cognitive-state transition functions are computationally intractable. This implic-

itly suggests that the cognitive processes of simpler, nonhuman minds might be 

computationally tractable and thus amenable to Classical computational expla-

nation.

Thus, the second of the two principal questions I address is, Do the cognitive 

capacities of any nonhuman organisms exhibit systematicity? I argue that certain 

navigational capacities of honeybees do in fact exhibit systematicity. That conclu-

sion, together with the correctness of the view that Classicism provides a better

theoretical framework for explaining the systematicity of the relevant naviga-

tional capacities than does Connectionism, gives one reason in support of the 

claim that sophisticated navigators like honeybees have a kind of language of 

3

4 Horgan and Tienson 1996.



thought (or, at the very least, a system of mental representation for which the 

constituency relation is Classical in character [§ 2.1]).

1.2  Classical and Connectionist Cognitive Architectures

The most important tenets (for my purposes) of Classicism and Connectionism 

will be spelled out in more detail in Chapter 2. Here I provide a brief sketch of 

how those theories answer two questions: What are the relations among mental 

representations as vehicles of content? What roles do those vehicles play in cogni-

tive processes?

The Classicist holds that the relations among mental representations include 

both causal relations and constituency relations. Certain mental representations 

are complex, in the sense that they have constituents which are themselves repre-

sentations. Those constituents play causal roles in cognitive processes. That is, 

cognitive processes are causally sensitive to the constituent structure of mental 

representations. Moreover, mental representations may share constituents. In 

other words, two different, complex-representation tokens may share constituent 

tokens of the same type.

For purposes of illustration, we can think of Classical mental representations 

as being analogous, in certain respects, to formulae of propositional logic. Thus, 

suppose that a cognitive system’s entokening P → Q causes it to entoken 

4



~Q → ~P. The causal mechanisms responsible for that transition, on the Classical 

story, are sensitive to the constituent structure, or syntax, of P → Q, ~P, and ~Q. 

The transition will have been governed by rules that operate on the constituents 

of those representations.

The Connectionist, unlike the Classicist, holds that the only relations among 

mental representations are causal relations (though there are constituency rela-

tions among the contents of mental representations). The Connectionist hypothe-

sizes that the mind is a kind of network of interconnected nodes. It’s structure, at 

the cognitive level, is similar to the structure of the brain at the level of neurons 

and their interconnections. Mental representations are not formulaic; rather, they 

are patterns of activity levels across sets of nodes. These representational patterns 

do not have parts that are themselves representations. They are, in that sense, 

simple rather than complex (though their contents may be complex). Cognitive 

processes are transformations of representational patterns into other representa-

tional patterns.

Suppose, then, that a cognitive system’s entokening of the pattern <1, 2, 3, 4> 

causes it to entoken the pattern <5, 6, 7, 8>. (These representations may have the 

same respective contents as P → Q and ~Q → ~P; those contents could be, say, [If 

there’s smoke, there’s fire] and [If there’s no fire, there’s no smoke].5) The causal 

5

5 I adopt the convention of using boldface square brackets to indicate contents.



mechanisms responsible for that transition, on the Connectionist story, are sensi-

tive to the activity levels of the individual nodes. The strengths of the connec-

tions between nodes determines what activity pattern becomes entokened as the 

result of the entokening of another activity pattern. There are no operations de-

fined over syntactically specified entities.

For the Connectionist, representations are distributed not only in the sense 

that they are realized by the activity levels of multiple nodes but also in the sense 

that a particular set of activity levels may realize many representations at once. 

This will be the case when a pattern of activity that is a representation is the sum, 

or superimposition, of multiple patterns that are themselves representations. 

(Similarly, cognitive processes are distributed in the sense that one and the same 

set of connection strengths may realize multiple operations at once [§ 3.1.2].) As 

we will see, the idea of representations in superposition plays an important role 

in the Connectionist explanation of systematicity. 

1.3  Systematicity

There are a number of possible varieties of systematicity. Linguistic capacities 

may become more systematic over the course of development.6  Also, different 

kinds of cognitive capacities might be systematically related in different ways.

6

6 Hadley 1994.



For now, a general characterization will do (I argue in Chapter 7 that honeybee 

navigational capacities exhibit two specific kinds of systematicity). The central

idea is that certain, relatively specific cognitive capacities come in clumps. That 

is, if a mind has certain cognitive capacities, it thereby—by nomological necessi-

ty—also has certain other cognitive capacities. Common examples of systemati-

cally related capacities are various linguistic ones. Thus, if a person has the ca-

pacity to understand the sentence, “John loves Mary,” then that person thereby 

also has the capacity to understand the sentence, “Mary loves John.”

As I’ll emphasize in the next chapter, systematicity has an important seman-

tic aspect. That this is so is tied to the fact that cognitive capacities are capacities 

to acquire, store, and process information. An explanation of systematicity must 

make clear how causal cognitive processes preserve the appropriate semantic 

relations among mental representations.

1.4  Why Navigation?

Patricia Churchland once pointed out that “if you root yourself to the ground, 

you can afford to be stupid.”7 On the other side of the coin, if your survival de-

pends on long foraging trips to perhaps unfamiliar territory far from home, then 

you can’t afford to be stupid. For the need to navigate over long distances and to

7

7 Churchland 1986, p.13.



find your way back to safety brings with it the distinct possibility that you will 

become lost. So the abilities to plan your trip in advance and to think about what 

to do when in fact you do become lost would be very valuable assets. 

It’s extremely likely that some navigational capacities do not require cogni-

tive capacities. For example, there supposedly is no need to posit thought proc-

esses or memories in order to explain chemotaxis, phototaxis, or magnetotaxis8 in 

bacteria. Likewise, although ants have the ability to home toward remembered 

landmarks, it is plausible that such beacon homing can be explained in terms of 

recognition–triggered-response mechanisms.9

On the other hand, some navigational capacities would seem to require the 

capacity to represent various places of interest and certain relations (topological, 

metric, etc.) among them,10 as well as the capacity to make inferences involving 

those representations. Perhaps the clearest example is the capacity to take novel 

shortcuts. Thus, suppose an organism has learned how to get from Place A to 

Place B and how to get from Place C to Place A. Suppose further that the organ-

ism is unfamiliar with the territory between Places B and C, and that no percep-

8

8 Blakemore and Frankel 1981.

9 Gallistel (1998), however, argues that the image matching mechanism thought by many to un-
derly beacon (landmark) homing in ants requires symbolic computation.

10 Although I here speak of representing places and relations, I mean to leave open the issue of 
what contents and extensions such representations actually have, at least in the case of nonhu-
man animals (see below, § 7.1.1).



tible features associated with Place B (or with known routes to or from it) are

detectable by the organism from Place C. Nonetheless, when at Place C, it takes 

the direct route from Place C to Place B. Assuming that the organism’s finding its 

way to Place B was not accidental, it must have acquired information about the 

directed distances between Places A and B and between Places A and C, and it 

must have used that information to infer the direct route. We know of no other 

way an organism (or device) could accomplish such a task. 

Navigation in humans and other animals, including invertebrates, has been 

studied extensively.11 Despite this, philosophers of mind have devoted relatively 

little attention to this body of work, certainly much less attention than they have 

devoted to natural language.12 In particular, recent philosophical discussions of 

systematicity have focused on linguistic capacities and sentence parsing.13 A col-

league once suggested that if the philosophical focus had been on navigation 

rather than language, the language of thought hypothesis would not have been 

nearly so influential. I hope to convince you that that suggestion is dubious.

9

11 See, for example, Healy 1998 and Golledge 1999.

12 Two noteworthy exceptions are Carruthers 2005 and Robinson 1995.

13 Cummins et al. 2001, Hadley 1994, Niklasson and van Gelder 1994.



1.5  Why Honeybees?

The honeybee is a superb model organism for the study of learning and memory. 

Also, its neurophysiology is being investigated using both electrical and optical 

techniques.14 It has “only” about 960,000 neurons, which makes the goal of at-

taining a comprehensive understanding of its neuroanatomy relatively practical.

The evidence is growing for the idea that the honeybee has genuinely cogni-

tive capacities.15  This is, it is becoming increasingly difficult to explain honey-

bees’ behavior in nonrepresentational terms. For example, they exhibit multiple 

stages of memory consolidation;16  their learning mechanisms go well beyond 

those of simple association; and they can generalize well beyond the information 

present in the stimuli used for training. Some researchers have come to advocate 

the view that honeybees have goal-specific expectations17 (cf. § 6.1.3). Especially 

pertinent is the growing body of evidence that strongly supports the hypothesis 

that honeybees are capable of taking novel shortcuts (§§ 6.2.3.1, 6.2.3.2, 6.2.4).

10

14 Joerges et al. 1997, Menzel and Müller 1996.

15 Menzel and Giurfa 2001,  Menzel et al. 2000b.

16 Menzel 1999.

17 Menzel et al. 1996.



1.6  The Terrain Ahead

Chapter 2 revisits the Classical explanation of systematicity and Smolensky’s 

Connectionist explanation.18 Although these explanations are familiar to many 

philosophers and cognitive scientists, it will be useful to review them in detail. I 

focus on Smolensky’s explanation, since it is the most-often discussed explana-

tion in the literature, and it contains the essentials of any adequate Connectionist 

explanation.

Chapter 3 examines the role of representational constituents in the Classical 

and the Connectionist explanations. As we have seen, Classicism attributes 

causal roles to the constituents of complex representations. If a Classical repre-

sentation is tokened, so too must be its constituents, and they will thus be avail-

able to play causal roles in mental processes. There is still much confusion in the 

literature concerning whether the Connectionist explanation attributes causal 

efficacy, in cognitive processes, to representational constituents. I argue that it 

does not—it does not attribute to such constituents causal roles in mental opera-

tions on the representations of which they are constituents. In that sense, the 

Connectionist explanation is not a causal one.

Chapters 4 and 5 raise and defend arguments for the claim that we have 

strong (though defeasible) reasons to prefer the Classical explanation of syste-

11

18 Many of the key elements of these explanations are developed in articles collected in MacDon-
ald and MacDonald 1995.



maticity over the Connectionist one. I argue in Chapter 4 that while there is a 

sense in which the Connectionist explanation is an adequate one, as an “acausal” 

explanation, it is not adequate as an acausal explanation of systematicity. At best, 

it is an adequate explanation of how networks can be rigged so as to exhibit the 

systematicities of which Classical architectures, by their very nature, are capable. 

Combining the lessons from Chapters 3 and 4, I conclude that since the Connec-

tionist account is neither a causal explanation of systematicity nor an acausal ex-

planation of systematicity, it is not really an explanation of systematicity at all.

I argue in Chapter 5 that the Connectionist explanation is unprincipled in 

that it appeals to cognitive processes that are arbitrary with respect to Connec-

tionism. The explanation will be shown to have the same form as certain scien-

tific explanations which are clearly unprincipled. The central point is that Classi-

cal cognitive systems exhibit systematicity “for free,” as it were (by nomological 

necessity). The systematicity of Classical systems is a product of Classical cogni-

tive architecture alone. If a Classical system doesn’t exhibit systematicity, that 

will have to be because it has been specifically designed out of the system. On 

the other hand, Connectionist cognitive architectures can just as easily be non-

systematic as systematic. For such architectures, systematicity has to be specifi-

cally designed in. (An important part of my argument is a response to an attempt 

12



by Cummins and colleagues19 to shift the issue from systematic relations among 

thoughts or items of information to law-like psychological effects of acquiring 

knowledge of various structured domains. As we’ll see, if that shift is warranted, 

it becomes a bit (but just a bit) easier to argue that the Classical explanation is just 

as unprincipled as the Connectionist account.)

Chapter 6 is a review of much of the literature on honeybee navigation. I 

argue that some of the navigational abilities of bees require the learning and 

storage of semantically complex information. Some, in addition, require learning 

by means of combining new and previously acquired information in novel ways.

Finally, in Chapter 7, I argue that various capacities of honeybees to acquire 

information relevant to their navigational tasks exhibit certain systematicities. I 

conclude by proposing that a complete account of honeybee navigational capaci-

ties will be one that posits cognitive processes that are computations defined 

over syntactically specified representations. At the very least, such an account 

will be one that posits computations defined over configurationally complex rep-

resentations. Either way, the account will not be a Connectionist one.

13

19 Cummins 1996 and Cummins et al. 2001.



Chapter 2

Two Candidate Explanations of Systematicity

A view widely held among cognitive scientists1 is that human thought is system-

atic. Roughly, the idea is that our capacity to think certain thoughts is intrinsi-

cally related to our capacity to think certain other thoughts. For example, anyone 

who is able to think that Seabiscuit was a better racehorse than War Admiral is 

also able to think that War Admiral was a better racehorse than Seabiscuit. Any-

one who can think that there are black cats and brown dogs can also think that 

there are black dogs and brown cats.

There are many ways to more precisely specify the nature of systematicity.2 

For present purposes, we may consider two structurally complex thoughts to be 

systematically related just in case they have the same logical and representational 

constituents and are formal permutations of each other. Thus, whereas the 

thought that Fa → Gb is a systematic variant of the thought that Ga → Fb, this is 

true neither of the thought that Fa → Hb nor the thought that ~ (Fa ∨ Gb).

14

1 In addition to the researchers who contributed to the explanations of systematicity presented in 
this chapter,  some others who (at least implicitly) accept that human thought is systematic are 
Anderson 1995; Barsalou 1992, 1993; Block 1995; Butler 1991; Carruthers 2005; Hadley 1994, 1997; 
Horgan and Tienson 1996; Hummel and Holyoak 2001; Marcus 2001; Niklasson and van Gelder 
1994; Phillips 1998; Phillips and Halford 1997; Pinker 1997; and Sterelny 1990.

2 See Hadley 1994, McLaughlin 1993, and Niklasson and van Gelder 1994.



There are two aspects of systematicity particularly important to account for. 

First, systematicity is supposedly a matter of psychological law. Anyone who is 

able to think the thought T is thereby also able to think systematic variants of T. 

Nature, it seems, packages capacities to think various thoughts in bundles. Sec-

ond, systematicity has a semantic aspect: the semantic relations among system-

atically related thoughts are nonarbitrary. For example, the contents [brown], 

[black], [cat], and [dog] contribute to the content of both the thought that there 

are black cats and brown dogs and the thought that there are black dogs and 

brown cats.

A natural place to look for explanations of systematicity, its lawfulness, and 

its semantic character are theories of cognitive architecture. Fodor and others3 

(hereafter, Fodor) have promoted an explanation that appeals to Classical cogni-

tive architecture. Smolensky4 has offered an explanation that appeals to one type 

of Connectionist cognitive architecture.

The assumptions those explanations have in common include the following 

(note that the notion of constituency appealed to here is a very broad one, one 

that allows for the possibility that the constituency relation is an abstract, formal 

relation, rather than some sort of part –whole relation):

15

3 Fodor 1998,  Fodor and McLaughlin 1995,  Fodor and Pylyshyn 1995, and McLaughlin 1993.

4 Smolensky 1995a–c.



Representationalism   Thinking that P requires having a mental representa-
tion that has the content [P].

Complexity of mental representations  Some mental representations are com-
plex in the sense that they have mental representations as constituents.

Structure-sensitive processing    Mental processes are sensitive to the con-
stituent structure of mental representations.

Compositionality for mental representations  The content of some mental rep-
resentations is determined by the contents of their constituents and by 
their constituent structure.5 

But Fodor’s Classical explanation and Smolensky’s Connectionist explanation 

rely on different views about the nature of mental representations, mental proc-

essing, and the constituency relation for mental representations. 

2.1  The Classical Explanation of Systematicity

Let’s begin with Fodor’s Classical explanation of systematicity. For the purpose 

of understanding his account, it useful to see that he endeavors to explain the 

systematicity of thought in much the way one might explain the systematicity 

(what there is of it) present in natural language. For example, anyone who can 

understand the sentence “Andy loves Betty” is bound to be able to understand 

the sentence “Betty loves Andy.” A plausible explanation of this appeals to these 

facts: (1) the two sentences have the words “Andy,” “loves,” and “Betty” as con-

16

5 This notion of compositionality, as I intend it to be understood, is weaker than the linguistic 
notion, since what is meant by “constituent” is left open.



stituents; (2) those constituents have the respective contents [Andy], [loves], and 

[Betty]; and (3) the two sentences have the same syntactic structure. Furthermore, 

understanding them requires understanding what their syntactic structures and 

their constituents contribute to their contents. But if all this is true, then it looks 

like what it takes to understand one of the sentences is just what it takes to un-

derstand the other. Roughly, what explains the systematicity present in natural 

language is that the requirements for understanding systematically related sen-

tences are the same. What is necessary for understanding “Andy loves Betty” is 

necessary and normally sufficient for understanding “Betty loves Andy.”

A useful way to bring the key features of the Classical explanation into relief 

is to first suppose that John is able to think that Andy loves Betty. We may then 

spell out in detail how Classical hypotheses about mental representation and 

processing, together with that supposition, explain how John is thereby also able 

to think that Betty loves Andy.

The first step of the Classical explanation is a hypothesis about the nature of 

propositional attitudes, such as believing that P, desiring that P, and so on. On the 

Classical view, to have a certain sort of occurrent propositional attitude toward a 

thought content is to stand in a specific kind of computational relation to a 

mental-representation token with that content. For example, for a to occurrently 

judge that C is for a to have entokened within his cognitive system a representa-
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tion both having the content [C] and playing the computational role of a judg-

ment. Clearly, then, on the Classical account of propositional attitudes, John is 

able to think that Andy loves Betty only if he can entoken a mental representa-

tion with the content [Andy loves Betty]. Let’s say that a token of a mental repre-

sentation with that content is a token of α.6  (For ease of exposition in what fol-

lows, I’ll generally put aside type–token subtleties.)

The Classical view hypothesizes that some mental representations are com-

plex, in the sense that they have representations as constituents. Furthermore, the 

Classicist proposes that the structure of some complex mental representations is 

governed by a combinatorial syntax. This means that certain mental representa-

tions are of certain formal types (individual constants, variables, etc.) and that 

they combine to form more complex representations according to syntactic rules. 

Thus, the Classicist proposes that α is a complex, syntactically structured repre-

sentation, formally much like a well-formed formula in an artificial language 

such as first-order predicate logic. Indeed, α is part of a system of mental repre-

sentation, “Mentalese,” which is literally a language of thought.
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that label might be misleading, since it would prematurely suggest that they have language-like 
constituent structure. The Classical explanation proceeds by hypothesizing that mental representa-
tions have language-like constituent structure and then showing that that hypothesis plays a 
central role in a good explanation of systematicity. To refer to the representations in question as 
“ANDY LOVES BETTY” representations might make the Classicist’s hypothesis seem trivial or 
question begging (cf. Cummins et al. 2001), when in fact it is neither. In what sense the structure 
of mental representations is language-like, on the Classical view, is explained below.



What, then, are α’s constituents? The specific kinds of constituents that 

mental representations have is a point of contention among Classicists. But the 

Classical explanation of systematicity doesn’t depend on any particular stance on 

that issue. The important point is that whatever are α’s constituents, they stand in 

structural relations governed by syntactic rules. So, for expository purposes, we 

can keep the discussion at an intuitive level.

Let’s assume, then, that α’s content, [Andy loves Betty], is composed of the 

contents [Andy], [loves], and [Betty].7  Further, since the constituents of a repre-

sentation are themselves representations, let’s suppose that α has three constitu-

ents, each having one of those three contents. Call the constituents of α which 

have those contents a, L, and b, respectively,8 where a and b are individual con-

stants and L is a 2-place predicate.

Now, Mentalese representational constituency is a co-tokening relation: rep-

resentation R is a constituent of representation R* just in case it is metaphysically

necessary that whenever R* is tokened, so is R.9  Call this sort of constituency 
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not committed to the view that the constituents of a thought content stand in one-to-one corre-
spondence with the words in a public-language sentence that may be used to express it.

8 The constituents a, L, and b themselves might be either simple or complex. The Classical account 
of systematicity does not and need not take a stand on this issue.

9 This is explicit in Fodor and McLaughlin 1995, p. 201; see also Fodor 1998. van Gelder (1990) 
makes it clear that concatenative constituency is a necessary feature of complex Classical repre-
sentations. According to Classicism, the mind/brain is a syntactically driven physical system that 
exhibits semantically coherent behavior. This requires that mental processes are causally sensitive 
to the syntactic structure of mental representations, which in turn requires that their syntactic 
constituents are physically entokened.



“concatenative” constituency. Clear examples of representations with concatena-

tive constituency are representationally complex written sentences. The word 

“Andy” is concatenative constituent of the sentence “Andy loves Betty,” since the 

latter cannot be tokened unless the former is tokened. 

From the Classical characterization of the constituency relation, and given 

that a, L, and b are α’s constituents, it follows that tokening α requires tokening a, 

L, and b. Furthermore, John is able to stand in a computational relation to α only 

if his cognitive system can token α. Hence, John is able to stand in a computa-

tional relation to α only if his cognitive system can token a, L, and b.

The Classicist’s story so far is that John is able to think that Andy loves Betty 

only if his cognitive system can token a, L, and b. What the Classicist still needs to 

explain is how John’s cognitive system can token a, L, and b only if he can think 

that Betty loves Andy. The explanation proceeds by appealing to the Classical 

account of mental processes. That account includes the hypothesis that some 

mental processes have representational constituents in their domains and are 

causally sensitive to syntactic structure. Thus, the Classicist claims that there are 

mental processes that can operate on α’s constituents so as to construct mental 

representations which have the same syntactic form as α, the very same constitu-

ents as α, but a different arrangement of those constituents. If there are mental 

processes that can construct α by, as it were, completing the mental predicate 
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‘_L_’ with ‘a’ in the first slot and ‘b’ in the second, then there are mental processes 

that can construct other mental representations by completing the same predicate 

with ‘b’ in the first slot and ‘a’ in the second. So, on the Classical view, if John’s 

cognitive system is capable of tokening a, L, and b (and aLb representations), then 

his cognitive system is also capable of tokening bLa representations.

What remains to be explained is how John can token bLa representations 

only if he can think that Betty loves Andy. That is, there is still the question of the 

content of bLa. The Classicist addresses this question by hypothesizing that the 

semantics for mental representations is compositional: the content of a complex 

mental representation is determined by its syntactic structure together with the 

contents of its constituents, which are context independent. On this hypothesis, α 

has the content [Andy loves Betty] because, first, its constituents, a, L, and b, have 

the contents [Andy], [loves], and [Betty], respectively, and second, it has the 

syntactic form xRy, where x = a, R = L, and y = b. Likewise, bLa has the content 

[Betty loves Andy] because, first, its constituents, a, L, and b, have the contents 

they do, and second, it has the form xRy, where x = b, R = L, and y = a. Therefore, 

John can token bLa representations only if he is able to think that Betty loves 

Andy. This completes the explanatory chain from the supposition that John can 

think that Andy loves Betty to the result that he can think that Betty loves Andy.
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Note that the Classical account explains why the semantic relations among 

systematically related thoughts are nonarbitrary. Systematically related mental 

representations share constituents, and those constituents contribute the same 

contents to the content of the relevant mental representations. That is why, for 

example, the content [loves] contributes to the content of both the thought that 

Andy loves Betty and the thought that Betty loves Andy. Thinking either thought 

requires tokening a complex mental representation having a constituent with the 

content [loves].

The Classical account also explains why systematicity is a nomologically 

necessary feature of thought. Because the systematic variants of a particular 

mental representation are constructed from the same constituents by means of 

the same syntactic rules, anyone who can token that mental representation is 

bound to be able to token its systematic variants. Of course, there could be spe-

cial circumstances in which systematicity does not hold for certain thoughts. For 

example, John might suffer a type of brain damage that prevents him from 

thinking that Betty loves Andy, even if he can think that Andy loves Betty. But 

the point is that, on the Classical view, such circumstances would have to be out 

of the ordinary. In other words, the Classicist may hold that the law that thought 

is systematic is a ceteris paribus law.

Let’s move on to Smolensky’s explanation of systematicity.
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2.2  Smolensky’s Connectionist Explanation of Systematicity

Smolensky accepts representationalism, mental-representation complexity, struc-

ture-sensitive mental processing, and compositionality for mental representa-

tions. He disagrees with the Classicist, however, on the nature of mental repre-

sentations and, correlatively, on the nature of the constituency relation. He also 

disagrees with the Classicist on the nature of mental processes.10 

Smolensky’s account of the systematicity of thought takes some setting up, 

but then is relatively straightforward. A good place to begin is his view on the 

nature of mental representations.

Unlike Fodor, Smolensky does not attempt to explain systematicity in terms 

of language-like mental representations. Instead, he appeals to representations 

that encode both the syntactic structure of language-like representations and their 

constituents but do not actually have language-like, configurational structure 

themselves. On his account, all mental representations, or at least those impor-

tant for issues about systematicity, are patterns of Connectionist-network unit 

activation levels. They are distributed over many units, which is to say that

(1) every mental representation comprises the activity of multiple units, and

(2) every unit participates in multiple mental representations. Such activity pat-

terns are readily conceptualized as vectors (ordered sets of numbers), where each 
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number in the vector uniquely corresponds to the activity level of a particular 

unit (Fig. 2.1). For this reason, following Smolensky and many others, we may 

simply call mental representations of this sort “vectors.”

On Smolensky’s view, the constituency relation for vector representations is 

a certain type of vector component11  relation, not a co-tokening relation. Of 

course, there are many vector component relations: vectors are mathematically 

decomposable in many ways (in some systems of vector representation, includ-

ing Smolensky’s, infinitely many). For example, just as many different pairs of 

numbers sum to a given number, many different pairs of vectors sum to a given 

vector (some vector operations are introduced below). So, some of the compo-

nents mathematically derivable from a vector representation will not have an ap-
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members of the domains of vector operations such as vector addition and tensor multiplication, 
which are introduced below.

1 6 3 4 2

Vector: 〈1, 6, 3, 4, 2〉

Content: [Andy loves Betty]

5 0 7 8 9

Vector: 〈5, 0, 7, 8, 9〉

Content: [Betty loves Andy]

a b c d e a b c d e

Activity pattern 1 Activity pattern 2

Figure 2.1.  Vector representations. The activity patterns and the contents I’ve assigned to them 
were chosen arbitrarily. Note that, although the contents of two vectors may be systematically 
related, as they are here, this does not require that the vectors have any common elements or 
subvectors.  a–e: Connectionist-network units.



propriate content or will have no content at all. Such components, then, will not 

be representational constituents of the vector from which they are derivable. To 

address this matter, Smolensky comes up with a system of vector representation 

in which just those vector components with the appropriate contents are the con-

stituents of mental representations. He achieves this, in part, by providing an 

algorithm for translating Classical symbol structures into vectors. In particular, 

he shows that a unique vector translation is derivable from any constituent 

structure, binary tree.12 

In order to understand Smolensky’s translation scheme, it is necessary first 

to understand two vector operations, vector addition and tensor multiplication. 

To add two vectors, we simply add their corresponding elements. Thus, the vec-

tor sum of 〈1, 2, 3〉 and 〈2, 3, 4〉 is 〈3, 5, 7〉. Generalizing to all finite vectors, the 

sum of the vectors 

〈x1, x2, …, xn〉

and

〈y1, y2, …, yn〉

is
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symbol structures. He doesn’t speak of vectors as translating them. However, with respect to the 
present issue, I think that seeing vectors as translations (of a sort) most clearly elucidates his view. 
For the notion of translation brings with it the idea of semantic relations, and that idea is crucial 
to the explanation of systematicity.



〈x1 + y1, x2 + y2 , …, xn + yn〉. 

(Vector addition is defined only for vectors having the same number of ele-

ments.) The tensor product of two vectors is the vector which contains all the 

separate products of every single element of the first and every single element of 

the second. For example, the vector product of 〈1, 2〉 and 〈2, 3, 4〉 is

〈1(2), 1(3), 1(4), 2(2), 2(3), 2(4)〉 = 〈2, 3, 4, 4, 6, 8〉.

Generalizing to all finite vectors, the tensor product of

〈x1, x2, …, xn〉

and

〈y1, y2, …, ym〉

is

〈x1y1, x1y2, …, x1ym, x2y1, x2y2, …, x2ym, xny1, xny2, …, xnym〉. 

Vectors which are tensor products, or which have tensor products as compo-

nents, are called “tensor product representations.”

We are now in a position to understand the essential’s of Smolensky’s tree 

translation scheme.13  Take some constituent structure tree, say, (L (A, B)), 
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having the content [Andy loves Betty]. In Smolensky’s system, it has the unique 

vector translation

V = (r0 ⊗ L) + (r1 ⊗ ((r0 ⊗ A) + (r1 ⊗ B))),

where ‘⊗’ is tensor multiplication and ‘+’ is vector addition. The tree constituents 

L, A, and B are assigned the vectors L, A, and B, respectively. That L and A are left 

branches is encoded by taking the tensor products of L and r0 and of A and r0, 

where r0 is a (constant) vector than encodes the left-branch structural role. That B 

and (A, B) are right branches is encoded by taking the tensor products of B and 

r1, and of (r0 ⊗ A) + (r1 ⊗ B) and r1, where r1 is a (constant) vector that encodes 

the right-branch structural role. That a certain tree has two particular trees as its 

immediate subtrees—for example, that (L (A, B)) has L and (A, B) as its im-

mediate subtrees—is encoded by requiring that the vector which translates the 

higher-level tree is the sum of the vectors which translate the two subtrees.

Given Smolensky’s tree translation scheme, just those vector components 

with the appropriate contents are the constituents of mental representations. Al-

though V is equal to the sum of many different pairs of vectors, only the sum

(r0 ⊗ L) + (r1 ⊗ ((r0 ⊗ A) + (r1 ⊗ B)))

gives us V’s constituents, L, A, and B.14 
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Smolensky’s notion of vector constituency, then, may be stated as follows:

Vector constituency    Vector Vn is a vector constituent of vector Vm iff Vn 
uniquely translates tree T, Vm uniquely translates tree T*, and T is a Clas-
sical constituent of T*. 

Vector constituency, then, is a derivation relation, not a co-tokening relation. It is 

a vector component relation that presupposes a translation function from trees to 

vectors, where the vector that translates a particular tree is uniquely derivable 

from it.

Since vector constituency is not a co-tokening relation, one vector can be a 

constituent of another, tokened vector, without itself ever being tokened. Ac-

cordingly, it is further true that although the representation-level processes in a 

Smolensky cognitive architecture result in vector-to-vector transformations, they 

do not operate on any tokened constituents of the vector tokens they trans-

form—vectors are processed as wholes (Fig. 2.2; see also § 3.1.2). This stands in 

stark contrast to the Classical account, on which there are representation-level 

processes that transform complex representation tokens by operating on their 

tokened constituents.

The principal representation-level operation in Connectionist networks is 

matrix multiplication: the multiplication of a vector by a matrix of connection 

strengths. Matrix multiplication is implemented by a set of simpler algorithmic 

processes, each being the multiplication of a single unit’s activation value by a 
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single connection strength. But these algorithmic processes operate at a subrepre-

sentational level of description: they do their job at the level of single units and 

single connections. They do not operate on patterns of activity levels. Hence, they 

do not operate on mental representations or their constituents (which themselves 

are patterns of activity levels). Thus, in a Smolenksy architecture, neither 

representation-level processes nor the algorithmic processes that implement 

them operate on the constituents of the representation tokens they manipulate.

It’s important to be clear on the role of trees and tree translation algorithms 

in Smolensky’s account. Neither are to be understood as playing causal roles 

within cognitive systems. They are, rather, elements of his theory of how cogni-

tive systems can exhibit some of the properties of Classical systems of represen-

tation. Trees simply provide a good example of representations having Classical 
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Figure 2.2. Vectors are processed as wholes. Vector transforming processes in networks with dis-
tributed vector representations operate on entire vectors,  not on any of their constituents. Here, 
the vector instantiated at left is directly transformed into an instantiation of one of its systematic 
semantic variants; and this is accomplished in the absence of any process that operates on any 
vector with the content [Andy],  [loves], or [Betty].



constituent structure, and Smolensky shows that tensor product representations 

can have a parallel, but non-Classical, constituent structure. The tree translation 

algorithms describe but do not govern mental processes, in the sense that they 

are not executed by cognitive systems. They do, though, provide a way of under-

standing the tensor product representation constituency relation. They also pro-

vide a way to show that a Connectionist network with a Smolensky architecture 

can process tensor product representations in a way that maintains the appropri-

ate semantic relations among systematically related mental representations, as 

we will see shortly.

We may briefly sum up the key points of the preceding as follows. Consider 

a mental representation that has the content [Andy loves Betty]. On Smolensky’s 

account, that representation is a tensor product representation,

V1 = (r0 ⊗ L) + (r1 ⊗ ((r0 ⊗ A) + (r1 ⊗ B))).

Vector V1 is the unique translation, and encodes the constituent structure, of a 

tree, (L (A, B)), having the content [Andy loves Betty]. Furthermore, V1’s  

component vectors, A, L, and B, have the contents [Andy], [loves], and [Betty], 

respectively. Those vectors are the representational constituents of V1.

Now, vector V1 can be transformed into a different vector,

V2 = (r0 ⊗ L) + (r1 ⊗ ((r0 ⊗ B) + (r1 ⊗ A))).
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Note that V2 has the same constituents as V1, but their mathematical arrange-

ment is different: the roles of A and B are reversed. A key question now is, What 

is the content of V2? Since vectors are translations of trees, an important step in 

answering that question is to determine which tree V2 translates. Smolensky, in 

fact, provides a procedure for deriving from any vector that tree which is its 

unique translation. He shows not only that there is only one vector that translates 

a given tree but also that there is only one tree derivable from a given vector. The 

tree that is uniquely derivable from and uniquely translated by V2 is (L (B, A)). 

Hence, assuming compositionality for tensor product representations, V2 has the 

content [Betty loves Andy]. 

The explanation of systematicity is now relatively straightforward. Suppose 

that John’s cognitive system has a Smolensky architecture and can token V1. 

Then the vector space for that system contains the vectors A, L, B, r0, and r1.15 

Furthermore, the system must (in principle) be capable of building up V1 by 

means of processes that both operate on its constituents and implement vector 

addition and tensor multiplication. But then the vector space for the system also 

contains V2. For V2 has the same constituents and the same mathematical struc-

ture as V1. Finally, if the vector space for the system contains V2, then the system

31

15 These consequences depend on the properties of a Smolensky architecture. One key property is 
that of having fixed, independent, structural-role vectors (r0 and r1). Another is that of having a 
continuous range of unbounded activation values.



is capable of tokening V2. Hence, on Smolensky’s account, if John is able to think 

that Andy loves Betty, he is thereby also able to think that Betty loves Andy. For if 

John is able to think that Andy loves Betty, then his cognitive system is capable of 

tokening V1. And if his cognitive system is capable of tokening V1, it is capable of 

tokening V2. And, finally, if it is capable of tokening V2, then John is able to think 

that Betty loves Andy.

As on the Classical account, systematically related tensor product represen-

tations share constituents, and those constituents individually contribute the 

same contents to the content of the relevant mental representations. So Smolen-

sky’s account explains why the semantic relations among systematically related 

thoughts are nonarbitrary.

Smolensky’s account also seems to explain why systematicity is a nomologi-

cally necessary feature of thought: because a particular tensor product represen-

tation and its systematic variants have the same vector constituents and the same 

mathematical form, anyone who is able to token that representation is bound to 

be able to token its systematic variants.

2.3  Summary of the Key Features of the Two Explanations of Systematicity

The Classical explanation and Smolensky’s explanation both assume, in a broad 

sense, compositionality for mental representations. But they differ in four im-
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portant respects. The Classical account posits a cognitive architecture with the 

following features:

(1) The constituency relation for mental representations is concatenative.

(2) Mental representations have syntactic structure.

(3) Mental processes are causally sensitive to the syntactic properties of 
mental representations.

(4) The constituents of mental representations play causal roles in mental 
processes.

On the other hand, Smolensky’s account posits a cognitive architecture with 

these features:

(5) The constituency relation for mental representations is nonconcatena-
tive.

(6) Mental representations have mathematical (vector) structure, of a sort 
that is not also a kind of syntactic structure.

(7) Mental processes are functionally sensitive to the constituent structure 
of mental representations.

(8) The constituents of any particular mental-representation token do not 
have causal roles in any operation on that token.

My claim that (8) is a feature of a Smolensky architecture is controversial. I show 

in the next chapter that it is indeed a feature of Connectionist architectures.

Feature (6) might require some clarification. Some defenders of Connection-

ism, including Smolensky, do speak of vectors as having syntactic structure and 
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do consider mental processes to be sensitive to syntactic structure. For the math-

ematical structures of the relevant vectors encode the syntactic structures of their 

corresponding Classical representations, and that permits mental processes to be 

structure sensitive. But this is a terminological matter. To avoid confusion, I will 

use terms describing the formal structure of representation tokens only as de-

scriptions of their configurational structure, not as descriptions of their (broadly 

speaking) constituent structure (though these two kinds of structures may coin-

cide, as they do for Classical representations).

Features (5)–(8) are very plausibly essential features of any Connectionist 

architecture on which a non-Classical explanation of systematicity could be 

based. Again, that this is true for (8) is a topic of the next chapter. Feature (7) 

seems clearly essential for any adequate explanation of systematicity. Regarding 

(5) and (6), note first that they are features of any Connectionist architecture that 

employs distributed vector representations, whether or not they are tensor prod-

uct representations. Furthermore, all Connectionist systems alleged to exhibit 

some significant kind of systematicity employ distributed vectors. Indeed, as van 

Gelder16  argues, it is hard to see how Connectionists could provide a non-

Classical explanation of systematicity without appealing to distributed vectors. 

For Connectionist networks do not have arbitrarily extendable representational 
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resources—they have a finite number of units over which to represent arbitrary 

complex structures. So, in order to represent such structures, Connectionists have 

turned to representational schemes which permit the various parts of a complex 

structure to be represented at once over the same set of units; that is, they have 

turned to distributed vectors.

As I argue in Chapters 4 and 5, the appeal to distributed vectors in explana-

tions of systematicity turns out to be problematic. The force of the difficulties 

facing Connectionism will be clearer if we first see that the constituents of a vec-

tor representation token do not have causal roles in any operation on that token.
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Chapter 3

Systematicity and Causation

There is a specific sense in which the Classical explanation of systematicity is a 

causal explanation. Since Classical constituency is a co-tokening relation, the rep-

resentational constituents within a cognitive system, on the Classical account, are 

available to causally interact via rule-governed processes in order to form sys-

tematically related mental representations. The causal efficacy of representational 

constituents is essential to the Classical explanation.

In contrast, Fodor and McLaughlin1 argue, Smolensky’s explanation is not a 

causal one. That is, his explanation of the capacity to token systematically related 

vectors does not posit causal laws governing constituents of those vectors. 

Nothing about a Smolensky architecture guarantees that the vector constituents 

of tokened vectors are ever themselves tokened within the system. Neither to-

kening a vector nor performing an operation on a vector requires tokening its 

vector constituents. So nothing about a Smolensky architecture guarantees that 

the vector constituents of tokened vectors are available to causally interact in or-

der to form systematically related mental representations. Moreover, neither con-
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stituent structure trees nor tree–vector algorithms play any causal roles within 

Smolensky architectures.

In this chapter, I’ll examine and reject a variety of objection’s to Fodor and 

McLaughlin’s argument. Note that their argument applies to any cognitive ar-

chitecture for which the constituency relation is nonconcatenative. So there is 

good reason to think that it applies to every Connectionist architecture (§ 2.3).

3.1  Vector Constituent Causation

Some defenders of Connectionism have argued that Smolensky’s explanation of 

systematicity is (or could turn out to be) a causal explanation after all. Some of 

them argue that the vector constituents of tensor product mental representations 

do (or might) play causal roles at the representational level of description, ap-

pealing to either the notion of superposition, criteria for existence and causal effi-

cacy, or similarity relations among vectors. Contrary to first appearances, on this 

sort of view, vector constituents are (or might be) causally efficacious, even if not 

severally present within the relevant cognitive system.

Other defenders of Connectionism argue that nonconcatenative constituency 

is compatible with the architectural requirement that a vector’s constituents must 

have played a causal role in the eventual production of that vector, and that that 

is enough to guarantee the causal efficacy of those constituents. Still others argue 

that whether vector constituents themselves are causally efficacious is not the is-
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sue; rather, it is whether facts that certain vectors have certain constituents are caus-

ally efficacious.

3.1.1  Superposition

Smolensky suggests the possibility that the constituent structure of tensor prod-

uct representations is analogous to the structure of such phenomena as complex 

waves.2 Thus, when a musical chord is played, the sound waves of its individual 

notes are in superposition. They are not independently tokened within the re-

sulting complex wave, in the sense that the waves in superposition are not like 

the separate strands of a string. Nevertheless, they each have their own causal 

consequences. For instance, they can be discriminated by the human ear.

Or consider the example of a single-trace recording of a chord on magnetic 

tape.3 The magnetic pattern on the tape, it might be claimed, is a superposition of 

the patterns that would have been present if the chord’s notes had been recorded 

separately. None of those patterns is actually present on the tape. But if the tape 

is played on suitable sound processing equipment, each individual note’s pattern 

can have its own causal consequences.
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3 The example is from Horgan and Tienson (1996, p.  183, note 3). Horgan and Tienson do not ar-
gue that vector constituents are causally efficacious at the representational level. But a defender 
of Connectionism might be tempted to argue that they are, or could be, on the basis of such ex-
amples. Horgan and Tienson’s position will be examined below.



I find neither of these analogies persuasive. Let’s start with the recording 

case. As Fodor and McLaughlin have argued, the trouble with such cases is sim-

ply that counterfactual causes cannot have actual effects.4 The current question is 

whether the type of magnetic pattern under discussion has “constituents,” of the 

specified sort, with independent causal powers. And the answer is clearly no. A 

magnetic pattern that would have been there in a counterfactual situation is not 

in fact there and so cannot have actual causal consequences.

Of course, the magnetic pattern that is in fact on the tape is a kind of encod-

ing of a chord. And the pattern can be decoded so as to more-or-less accurately 

reproduce the chord. So it might appear that some sort of constituent –structure-

sensitive processing is going on. But the fact that the pattern can be decoded 

doesn’t show that it has causally efficacious, single-note encoding constituents. It 

only shows that it carries information about the chord’s structure. And this it can 

do, even if it has no such constituents at all. After all, in principle, each distinct 

chord type could be encoded by a different simple numerical symbol.

The sound wave case might be different from the magnetic-pattern case. In 

the magnetic-pattern case, the constituents are only “counterfactually there.” If 

the same is true in the sound wave case, then the same response is called for: 

counterfactual causes cannot have actual effects. However, it might be thought 
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that in the case of sound waves, any constituent waves are somehow actually 

there, even though they are not separately tokened. And if they are actually 

there, then they can have actual effects. We’d then have the kind of case the pres-

ently envisioned defender of Connectionism wants: a clear example of non-

Classical, nontokened constituents with causal efficacy.

For example, I can imagine someone wanting to claim that in the case of a 

chord’s sound wave, the individual notes’ waves could first severally come into 

being and then superimpose to form the chord’s waveform. If that is the case, 

then clearly each note’s wave pattern makes a causal contribution to the charac-

ter of the complex wave pattern, even though its individual character is lost in 

the superposition. And since it makes a causal contribution to the character of the 

complex pattern, it can have further causal consequences through that contribu-

tion. Moreover, even if a chord’s wave pattern is produced all at once, without its 

component waves having been produced independently, it still seems to be the 

case that each component wave’s pattern makes a causal contribution to the 

character of the chord’s wave pattern. Thus, it certainly appears that something 

can be actually present, in some sense, without being separately tokened, and 

that that is enough for it to be causally efficacious.

Clearly, one problem with the move under consideration is that sense needs 

to be made of the purported distinction between being actually present and be-
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ing separately tokened. If to be tokened, “separately” or otherwise, is something 

other than to have an instance actually present, then what is it? 

Furthermore, in the case of wave phenomena, there is in fact no pressure to 

distinguish between a wave’s being actually present and its being tokened.

The law of superposition can be stated as follows: The existence of one 
wave does not affect the existence or properties of another wave, even if 
they are in the same place at the same time. This is equivalent to the 
statement that waves add algebraically; that is, the displacement of the 
sum wave A + B is equal to the displacement due to wave A added to the 
displacement due to wave B at the same point and time. … This clearly 
distinguishes waves from material things, no two of which can occupy the 
same place at the same time. Waves can pass through each other without 
affecting each other.5 

Given what we know about waves, and contrary to the envisioned view under 

discussion, component waves do not lose their individual character when in su-

perposition. So there is no reason to regard them as nontokened, without all of 

their defining properties intact. Of course, we might not be able to tell what the 

component waves of a complex sound wave are, just by looking at (say) the dis-

placement pattern due to the complex wave. In that sense, waves do lose their 

“individual character,” or appearance, when in superposition. But that’s an 

epistemological problem, not one about the nature of waves.

By now it should be clear that tensor product representations and complex 

waves are significantly disanalogous. Given what we know above waves, the 
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component waves of a complex wave must be (separately) tokened in order for it 

to have the properties it has.6 That’s why each of its component waves can have 

its own causal consequences. However, the vector constituents of a tokened ten-

sor product representation need not themselves ever be tokened in order for it to 

have the properties it has. To put this another way, waves and vectors superim-

pose differently. A complex wave token is a result of physical interactions among 

its component wave tokens. A tensor product representation, on the other hand, is 

a result of computations that rely on mathematical relations among its vector con-

stituent types, regardless of whether or not those types are ever tokened. So the 

fact that waves in superposition can each be causally efficacious provides no rea-

son for thinking that nontokened vector constituents can be causally efficacious.7

3.1.2  Criteria for Existence and Causal Efficacy

Matthews argues that, on Fodor’s own criteria for existence and causal efficacy, 

vector constituents appear both to exist and to have causal consequences.8 
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Roughly, on Fodor’s view, a science is committed to the existence of those theo-

retical entities that figure essentially in its explanations and generalizations,9 and 

a scientific theory is committed to the causal efficacy of a property if the theory 

includes a causal law to the effect that something’s having that property (for 

example, a sail’s having the property of being an airfoil, or a bank of nodes’ hav-

ing the property of instantiating a certain vector) is nomologically sufficient for the 

occurrence of an event of some specific kind (under appropriate conditions). 

More formally, a theory is committed to the causal efficacy of a property, F, if, 

according to the theory, an occurrence of an event that has F is nomologically suf-

ficient for the occurrence of an event that has a certain property, G.10 According to 

Matthews, vector constituents satisfy both criteria. For on Smolensky’s theory, 

decomposing tensor product representations into their constituents is essential to 

understanding and explaining the regularities in a network’s behavior.11 

Matthews is wrong if his claim is that Fodor is committed to the existence 

and causal efficacy of nontokened vector constituents. Note first that there is no 

problem at all for Fodor regarding the existence and causal efficacy of tokened
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vectors. Nor is there a problem for Fodor regarding the existence and causal effi-

cacy of vectors as types. For they can be tokened, and if they are, they can have 

causal consequences. The specific issue is whether a vector, as a nontokened vector 

constituent, can have causal consequences.12 

Now, it is certainly true that decomposing tensor product representations 

into their constituents is essential to understanding and explaining the regulari-

ties in the behavior of a Smolensky architecture, including any regularities re-

lated to systematicity. But the broad issue here is whether Smolensky’s explana-

tion of systematicity is a causal one, and Matthew’s objection just presupposes 

that it is. It is tendentious whether Smolensky’s theory requires that a nonto-

kened vector constituent’s possessing some specific property is nomologically 

sufficient for the occurrence of some specific kind of event, and Matthews pro-

vides no reason for thinking that this is so.

Still, Matthew’s presupposition could be right. So we need to look at how 

decomposing tensor product representations into their constituents is essential to 

understanding and explaining the regularities in the behavior of a Smolensky 
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architecture. Smolensky’s exposition of this, though not difficult to follow, takes a 

few pages.13 So rather than summing up the entire exposition in terms of general 

principles, I’ll provide a simple example.

Suppose we have a Smolensky architecture that computes a simple function, 

namely, the function whose value is the binary tree (y, x), for any binary tree (x, y) 

in its domain. The network, we’ll assume, computes this function in one step, by 

multiplying the vector Vi, which translates (x, y), by the connection weight ma-

trix W, yielding the vector Vo, which translates (y, x). So how does the network 

work? How does it compute the function in the manner it does?

First, as Smolensky shows, there are weight matrices Wextract left and

Wextract right, such that

Wextract left · Vi = Vx

and

Wextract right · Vi = Vy,

where ‘·’ is matrix multiplication, and Vx and Vy translate the trees x and y, re-

spectively. There are also weight matrices Wconstruct left and Wconstruct right, such 

that
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Vo = (Wconstruct left · Vy) + (Wconstruct right · Vx).

Thus, substituting Wextract left · Vi for Vx and Wextract right · Vi for Vy, we obtain

Vo = (Wconstruct left · Wextract right · Vi) + (Wconstruct right · Wextract left · Vi)

Vo = Vi · ((Wconstruct left · Wextract right) + (Wconstruct right · Wextract left)).

Since the products and sums of weight matrices are themselves weight matrices, 

there is a weight matrix, W, such that

W = (Wconstruct left · Wextract right) + (Wconstruct right · Wextract left).

Hence,

Vo = Vi · W.

This derivation shows how the network computes the function in question by 

means of a single vector transformation. It can do so because of the mathematical 

structure of W, Vi, Vo, Vx, and Vy and because of the fact that Vx and Vy trans-

late the appropriate trees.

Of course, Vx and Vy are the vector constituents of Vi and Vo. And they 

must be referred to in order to explain how the network works in this case. This 

is just one example of the fact that “tensor product constituents play absolutely 
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indispensable roles in the description and explanation of cognitive behavior in 

[Smolensky architectures].”14 

So is Matthews right? Is Fodor committed to the causal efficacy of nonto-

kened vector constituents? Clearly, not. The explanation relies on mathematical 

relationships as opposed to lawful relationships between events. Nothing about 

the explanation we’ve just gone through requires that Vx’s (or Vy’s) being a 

(nontokened) constituent of Vi (or Vo) is nomologically sufficient for the occur-

rence of anything. Nor is there anything about the explanation that requires that 

something’s being an instance of Vx  (or Vy) is nomologically sufficient for the 

occurrence of anything, since the explanation simply does not require any vector 

constituent to be instanced.

Matthews also argues that Fodor and company’s rejection of the causal effi-

cacy of vector constituents is incompatible with Fodor’s view that causation oc-

curs at macroscopic levels of description, not only at more primitive levels.

Matthews claims that Fodor and colleagues’ “complaint against tensor product 

representations … is that they don’t actually have constituent structure. They 

don’t have it, because … the normal modes [vector constituents] into which the 

tensor product vectors are decomposed don’t ‘correspond’ to causal agents in the 

network.”15 And, Matthews claims, Fodor and his associates think that vector 
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constituents are not causal agents because all the causal work in a Connectionist 

network is done at the level of individual units and connections. But if, as Fodor 

maintains, causation occurs at many levels, causation at the level of individual 

units and connections does not rule out causation at higher levels, in particular, 

at levels of representation.

I find this objection to be quite puzzling. Certainly Fodor wouldn’t deny that 

tokened vectors are causally efficacious. Fodor would surely agree that they can 

have causal consequences, even though there are causal processes operating at 

the level of individual units and connections. What Fodor does deny is that 

nontokened vectors can have causal consequences. His view on this matter has 

nothing to do with levels of causation; rather, it simply rests on the extremely 

plausible assumption that nonexistents can’t cause anything. If there aren’t any 

network unit activation patterns that token a certain vector, then there aren’t any 

causal effects due to activation patterns that token that vector.

Matthews seems to be presupposing, contrary to what we concluded earlier, 

that the vector constituents of tensor product representations do not lose their 

individual character in superposition, so that if a tensor product representation is 

tokened, so too must be its vector constituents.16 That is, he appears to be as-
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suming that vector constituents are like wave components. On that assumption, 

if Fodor accepts the existence and causal efficacy of wave components, then he 

should do likewise regarding vector constituents. We’ve already rejected the idea 

that vector constituents are like wave components, but let’s see what its conse-

quences would be if it were true.

Suppose the vector constituents of a tensor product representation must be 

tokened whenever it is tokened. A consequence of this supposition is that tensor 

product representations would be Classical representations. For, first, vector con-

stituency would be a kind of co-tokening relation. Second, the structure of tensor 

product representations would be governed by a combinatorial syntax. Certain 

vectors would be of certain formal types and would physically combine, or con-

catenate, to form more complex vectors according to syntactic rules. The repre-

sentation forming processes would be sensitive to the causally efficacious syntactic 

properties of the tokened vectors on which they would operate.

More specifically, the following rules specify a perfectly good syntax, on the 

present supposition that the constituency relation for tensor product representa-

tions is concatenative.

1. There are two sets of atomic vectors, role vectors ({r0, r1}) and filler vec-
tors. ({A1, A2, A3, …}).

2. For any atomic filler vector, Ai, the vectors r0 ⊗ Ai and r1 ⊗ Ai are wffs.
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3. If the vectors r0 ⊗ Vi and r1 ⊗ Vk are wffs, then the vector (r0 ⊗ Vi) +
(r1 ⊗. Vk) is a wff.

4. If the vector Vi + Vk is a wff, then the vectors r0 ⊗ (Vi + Vk) and r1 ⊗
(Vi +. Vk) are wffs.

5. There are no other wffs. 

Of course, the symbols ’⊗’, ‘+’, ‘(‘, and ‘)’, as they occur in these rules, are not 

part of the object language. They describe how the relevant vectors are concate-

nated, rather than designate any of the things that are concatenated.

Tensor product representations having concatenative constituency and a 

combinatorial syntax might be acceptable to some Connectionists, provided that 

they could still make a good case for the claim that cognitive processes would 

nonetheless be non-Classical. However, the suggested reason for thinking that 

vector constituency is a co-tokening relation—vector constituents do not lose 

their individual character in superposition—would seem to apply equally to 

weight matrices. As we’ve seen, weight matrices themselves are superpositions 

of other weight matrices. Like tensor product representations, weight matrices 

are sums and products of weight matrices. So if vector constituency is a co-

tokening relation, so too is matrix constituency.

Furthermore, in a Smolensky architecture, fundamental weight matrices en-

code steps of Classical algorithms for operating on vector constituents. There are 

weight matrices for extracting vector constituents and weight matrices for com-
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bining vector constituents. However, if vector constituency and matrix constitu-

ency are co-tokening relations, then it looks very much like Smolensky architec-

tures are nothing more than massively parallel implementations of Classical ar-

chitectures. For all the steps of the relevant Classical rules, and all the relevant 

Classical constituents on which they operate, would be encoded, and the encod-

ing weight matrix constituents and vector constituents would be tokened and 

thus available to play causal roles. We’d end up with an implementation of a 

Classical system in a wave-like substrate.

By way of illustration, notice that the above derivation that explains how a 

Smolensky network can compute a function by means of a single vector trans-

formation outlines a Classical algorithm for computing that function solely by 

means of Classical operations on tokened vectors and their tokened constituents. 

A Classical machine could implement such an algorithm to compute, in a se-

quence of steps, what the network computes in one step. Also, the extraction and 

construction matrices (and matrices for adding vectors and matrices) encode 

steps of that algorithm. If we assume that all the Classical-constituent encoding 

vectors and algorithm-step encoding matrices must be actually tokened in the 

network, then its hard to see how the network is not merely an implementation, 

albeit a massively parallel one, of a Classical machine.
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3.1.3  Vector Similarity

van Gelder17  has argued that representation processing in Connectionist net-

works is causally sensitive to the constituent structure of vectors. He attempts to 

derive the causal efficacy of vector constituents from both the causal efficacy of 

the tokened vectors which have them as constituents and the notion of distance 

in vector space. As he points out, vectors stand in nonsyntactic, internal-structure 

similarity relations. These similarities are (or correspond to) the distance relations 

among vectors in the vector space for the relevant system.18 Furthermore, sys-

tematically related vectors are more similar in this regard than non-

systematically related vectors: systematic variants are closer in vector space than 

non-systematic variants.

These similarities, van Gelder argues, are of causal significance. First, the 

behavior of a network causally depends on the precise activation values of its 

units. And the activation values of particular units instantiate vectors, which, of 

course, have locations in vector space. So the behavior of a network—the conse-

quences of its vector operations—causally depends on the vector space locations 

of its currently instantiated vectors. Second, the location of a tokened vector de-

pends upon its constituents and its constituent structure. Any two tokened vec-
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tors which differ in constituents or constituent structure will instantiate different 

vector types and so have different locations. Thus, vector operations must caus-

ally depend on the constituents and constituent structure of the relevant vectors.

van Gelder’s argument, however, is either invalid or relies upon tendentious 

assumptions. True, a Connectionist network that exhibits some degree of syste-

maticity will causally process vectors that have the same constituents and con-

stituent structure in similar ways. So such a system would be at least functionally 

sensitive to constituent structure. Now, as van Gelder acknowledges, the con-

stituents of tokened vectors are not explicitly available. So the system cannot be 

sensitive to similarity relations among vectors by directly detecting their con-

stituents. But, according to van Gelder, it can detect similarities with respect to 

distance in vector space. And the distance in vector space between two vectors 

depends on what constituents and constituent structures they have. But how is it 

supposed to follow that the constituents of a vector token have causal roles in 

operations on that token? 

First, in what sense could it be true that a network literally detects similari-

ties with respect to distance in vector space? Such similarities would seem no 

more explicit than the constituents of a complex vector. Of course, we can use 

similarity of location in a network’s vector space to describe some aspects of its 

behavior. But the network itself doesn’t make use of such descriptions. The only 
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respect in which it seems true that a network “detects” such similarities is that 

the system is functionally sensitive to them; that is, it can exhibit appropriate 

systematic behaviors. But whether such sensitivity requires that the constituents 

of a vector token have causal roles in operations on that token is precisely what’s 

at issue. (The issue of whether such sensitivity requires that vectors carry infor-

mation about their constituent structure is addressed below in Section 3.1.5.)

Second, for any given network that exhibits some sort of systematicity, it 

would appear to be an empirical question whether systematically related vectors 

are closer in vector space than non-systematically related vectors. Servan-

Schreiber et al.19 studied various simple recurrent networks trained to predict 

legal continuations of symbolic expressions having a simple grammar. The net-

works varied in number of units. For networks with a relatively small number of 

units, the encodings of similarly structured symbolic expressions had similar lo-

cations in vector space. However, this correspondence in similarity became 

weaker as the number of network units increased. This suggests that for net-

works with very large numbers of units, there might not be such a correspon-

dence at all.

Given that possibility, it becomes doubtful whether the systematicities ex-

hibited by Connectionist networks require, for their explanation, causal sensitiv-
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ity to similarity of location in vector space. For a network that exhibits a certain 

systematicity might encode similar structures with vectors that do not have a 

correspondingly similar location. 

Finally, in what sense does the location of a vector depend upon its constitu-

ents and its constituent structure? If the former does not causally depend upon 

the latter, then van Gelder’s argument does not go through. For the argument 

requires a bridge from the causal efficacy of tokened complex vectors to the 

causal efficacy of their nontokened constituents. And van Gelder cannot just as-

sume that the location of a tokened vector is causally dependent on its nonto-

kened constituents, for that assumption would presuppose that such constituents 

are causally efficacious, and that is at issue. Lastly, there is no reason for thinking 

that a tokened vector’s location is causally dependent on it constituents. For a 

tokened vector would have its location (that is, be an instance of a specific vector 

type) regardless of its causal history. 

3.1.4  Vector Constituents as Causal Precursors

Some defenders of Connectionism20 have argued that nonconcatenative constitu-

ency is compatible with the adoption of the architectural (representational-level) 

requirement that a vector’s constituents must have played a causal role in the 

eventual production of that vector. Further, that requirement would be enough to 
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guarantee the causal efficacy of those constituents, even when they are not cur-

rently being tokened. Causation is transitive, so if there are causal chains of 

events from the tokenings of a tokened vector’s constituents to the tokening of 

that vector, then the tokenings of those constituents will play causal roles in any 

operations on that vector.

On this view, the constituency relation for complex vectors remains noncon-

catenative. It is not metaphysically necessary that a complex vector is tokened only 

if its constituents have also been tokened. However, this is nomologically neces-

sary, given the architectural properties of the sort of networks envisioned.

There is a serious problem with the view under consideration: the proposed 

architectural property would add nothing to Connectionist explanations of sys-

tematicity. It should be clear from Smolensky’s account of systematicity that a 

Connectionist system which exhibits certain systematicities with respect to vari-

ous complex vector representations would exhibit those systematicities regard-

less of whether or not the constituents of the relevant tokened vectors have ever 

themselves been tokened. In particular, this is true of Connectionist systems 

having the architectural property that a vector’s constituents (nomologically) 

must have played a causal role in the eventual production of that vector. To see 

this, note that, in such a system, it is nonetheless possible that a complex vector 

be (fortuitously) tokened without any of its constituents ever having been to-
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kened. And supposing that the system exhibits systematicity, it will be nonethe-

less be the case that, if it is capable of (fortuitously) tokening such a vector, then it 

will be capable of tokening its systematic variants. An explanation of the sys-

tem’s systematic behavior, in this sort of case, couldn’t appeal to the causal effi-

cacy of the appropriate tokened constituents, since, by assumption, there never 

were any. But if there is an explanation of the systematic behavior of the network 

in this sort of case, it should apply just as well to cases in which the constituents 

of the relevant complex vectors have been tokened. So whether or not there have 

been tokenings of those constituents shouldn’t matter; they would add nothing 

to the explanation.

More generally, what enables Connectionist representational processes to be 

constituent-structure sensitive is that constituent structure is vector encoded. The 

only way in which processes that operate on syntactically simple representations 

can be sensitive to their constituent structure is to have that structure encoded in 

the representations. Constituent-structure sensitivity, then, needs to be explained 

in terms of properties of the encodings. But if the properties of the encodings (to-

gether with the processing mechanisms) do the explanatory work, then there is 

no need to appeal further to tokenings of constituents of the encodings.

To put this another way, Connectionist explanations of systematicity turn on 

the mathematical properties of vectors in relation to a network’s (causal) vector 
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operations. But tokened vectors have their mathematical properties independ-

ently of their etiology. Rather, they are inherited from the vector types they in-

stantiate. So they have their mathematical properties independently of tokenings 

of any of their constituents. Of course, a true causal explanation of the tokening 

of a particular complex vector might advert to tokenings of its constituents. But 

an explanation of the mathematical properties of a particular vector doesn’t re-

quire a causal explanation of its tokening. Indeed, a vector has its mathematical 

properties regardless of whether it is ever tokened.

In sum, the proposed architectural requirement that a tokened vector’s con-

stituents (nomologically) must have played a causal role in the eventual genera-

tion of that vector would add nothing to Connectionist explanations of systema-

ticity. Its only consequence would be to give some causal roles to tokenings of the 

relevant vector constituents. And that alone is not enough to make Connectionist 

explanations of systematicity reliant upon those causal roles.

3.1.5  Causal Efficacy of Information about Constituents

There is a further issue that needs to be addressed before we may confidently 

conclude that Connectionist accounts of systematicity which appeal to noncon-

catenative distributed representations are not causal explanations. Horgan and 

Tienson appear to concede that nontokened vector constituents themselves do 

not have causal consequences. They argue, however, that the fact that a particular 
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tensor product representation has a certain vector constituent can play a causal 

role in Connectionist architectures.

The question is not whether constituents can play a causal role. The ques-
tion is whether the fact that a representation has a particular constituent 
can play a causal role. And that fact can play a causal role if the represen-
tation carries the information that it has that constituent.21 

Furthermore, they argue that vector representations which encode symbolic 

structures do in fact carry the information that they have the constituents they 

do. So if Horgan and Tienson are right, nontokened vector constituents them-

selves need not be causally efficacious in order for a Connectionist explanation of 

systematicity to be a causal one.

I think that Horgan and Tienson’s attempt to refocus the issue does nothing 

to further the Connectionist’s cause. Let’s first examine why they think that a 

complex vector representation carries the information that it has a particular con-

stituent. As far as I can see, their only reason for thinking this is that a Connec-

tionist architecture can perform what they consider to be constituent-sensitive 

operations.22 For example, as Smolensky has shown, networks can process tensor 

product representations so as to yield their systematic variants. How is this pos-
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sible if tensor product representations don’t carry the information that they have 

certain constituents?

We may grant that some Connectionist architectures can compute the same 

functions as certain Classical architectures. The issue is whether the explanation 

of such facts must appeal to processes that are causally sensitive to the constitu-

ent structure of vector representations. Horgan and Tienson appear just to as-

sume that this is so. That is, they appear to just assume that the information that 

a representation has a particular constituent must play a causal role in mental 

processing. They need to provide an explanation of how Connectionist systems 

compute the functions they do, where that explanation adverts to causal roles for 

such information.

Horgan and Tienson do say that “how tensor product representations carry 

such information is no miracle; it is explainable mathematically.”23 But we’ve al-

ready seen the form of such mathematical explanations, in our discussion of how 

decomposing tensor product representations into their constituents is essential to 

understanding and explaining the regularities in the behavior of a Smolensky 

architecture (§ 3.1.2). Such explanations do not require that information about 

vector constituents is causally efficacious. For instance, nothing about the sample 

explanation presented earlier requires that there are causal consequences of the 
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fact that the vector Vi (or Vo) has Vx (or Vy) as a constituent. In fact, such expla-

nations seem to show how vector operations can be “constituent sensitive” with-

out being causally sensitive to information about constituents.24 

I should emphasize that I’m not attempting to deny that complex vectors en-

code information about their constituents. We need to be careful so as to not con-

fuse the idea of ‘carrying’ information with the idea of ‘encoding’ information. 

Tensor product representations certainly encode their constituent structure. What 

I deny is that they carry information about their constituents in such a way that 

that information could play a causal role in operations performed on those repre-

sentations. Rather, such information, I think, is used only by us in designing 

Connectionist networks or in understanding how they work. But so far I’ve ar-

gued only that there is no good reason to think that Connectionist architectures 

causally use such information. Is there a positive argument for my claim that 

they don’t? I think there is. I’ll state my case in terms of Smolensky architectures.
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But the argument applies as well to any Connectionist system for which the rep-

resentational constituency relation is nonconcatenative.

Assume that there is a tensor product representation, R, that has a vector, C, 

as a constituent. Also, let’s suppose that the fact that R has C as a constituent 

plays a causal role in the operations which a Smolensky network performs on R. 

We want to explain how that fact is causally efficacious. An important question 

to initially ask is, What is the fact that R has C? What makes it true that R has C? 

Well, given the notion of vector constituency, the answer is the fact that R 

uniquely translates a constituent structure tree, T, C uniquely translates the tree 

T*, and T* is a Classical constituent of T. According to Horgan and Tienson, that 

fact can play a causal role if R carries the information that that fact obtains. 

So how could R carry that information? First, notice that the information is 

about properties of R that are nonlocal and nonphysical (radically physically het-

erogeneous). Nonlocal, because (1) trees are not tokened, and do not play causal 

roles, in Smolensky architectures, and (2) the tokening of R does not require the 

tokening of C. Nonphysical, because translation relations (and, thereby, vector 

constituency relations) are nonphysical. In Smolensky networks, there are no 

physical interactions between trees and the vectors that translate them. More-

over, since vector constituency is not a co-tokening relation, the property of hav-

ing C as a constituent is physically heterogeneous. It is not the case that if two 
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tensor product representations have C as a constituent, then they must thereby 

have a specific physical property in common. Having C as a constituent is simply 

not a physical property, in the required sense.

Second, it is quite plausible, to say the least, that the only way in which a 

computational system, of any kind, could be systematically sensitive to nonlocal, 

nonphysical properties is by representing them.25 If a computational device is to 

function properly, its mechanical, information manipulating processes need to be 

systematically sensitive to various local and physical properties of its information 

bearing structures. It could not be expected to function properly if its operations 

have to be sensitive to whether or not the representations on which they operate 

possess certain nonlocal or nonphysical properties. For example, we can’t expect 

a computational system to work if its processes have to detect whether or not the 

representations on which they operate are, say, within 200 yd of a school build-

ing, or are numerals, rather than some other sort of symbol.

So, since having C as a constituent is a nonlocal, nonphysical property of R, 

if R is to effectively carry the information that it has C, if that information is to be 

reliably and mechanically detectable, then R must somehow represent the fact that 

it has C by means of some of its local, physical properties. Let’s call the feature or 
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features of R that instantiate the relevant physical properties the bearer of the 

information that R has C. 

What, then, is the nature of the bearer of that information? In a Smolensky 

architecture, representations are vectors. So the bearer of the information that R 

has C must be a vector, V, that represents the fact that R has C. 

Well, then, which vector is V? V represents the fact that R has C, and so 

must have constituents, R* and C*, which refer to R and C, respectively. So R 

could be V only if it has those same constituents. That is, R could be V only if its 

correct interpretation is ‘R has C’. (Remember, it’s provable just what are the con-

stituents of a given tensor product representation.) But then our explanation of 

how R carries the information that it has C as a constituent would have the con-

sequence that it could do so only if that’s what it meant in the first place. Natu-

rally, what we need is an explanation of how R carries the information that it has 

C, regardless of what is the correct interpretation of R. Of course, when we 

started out, R was supposed to be the vector that carried the information in 

question. But let’s see if some other vector could do the job.

Could V be a constituent, or some other nontokened vector component, of 

R? That won’t do, since V has to instantiate those local and physical properties of 

R which bear the information that R has C. That is something V could do only if 
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it is tokened along with R. Remember, we’re looking for a causal explanation. So 

whatever carries the information that R has C has to really be there.

The only remaining option is that V is a subvector of R. That is, if R is the 

vector <1, 2, 3, 4>, perhaps V is the vector <1, 2>. However, if that’s the case, then 

R has a representational constituent, V, that must be tokened whenever it is. This 

option, then, gives up nonconcatenative constituency. It also has another prob-

lem. For V, too, would have to carry information about its constituents via its 

subvectors (which in turn would have to have their own constituents, in that 

they would attribute properties to V). But vectors are finite. So eventually there 

would have to be a vector, V*, that either did not carry information about its con-

stituents (since it wouldn’t have a subvector to do the job) or did carry informa-

tion about its constituents by some other means. If the former, then our explana-

tion would have to allow that some vectors don’t carry information about their 

constituents, in which case one would wonder why any would have to. If the 

latter, then we’d need another explanation of how vectors like V* carry informa-

tion about their constituents.

We thus have a kind of reductio of the supposition that the information that 

R has C is causally employed by a Smolensky network. For if that supposition 

were true, then there should be a causal explanation of it. There should be an ex-

planation of how that information plays a causal role. But it appears that such an 
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explanation is not to be had. Therefore, that information is not causally used by 

such systems.

A defender of Horgan and Tienson might point out that, contrary to what 

my argument appears to assume, on their view, R alone does not carry the infor-

mation that it has C. Rather, it carries that information relative to the entire sys-

tem: 

In classical systems … representations … have constituents only in the 
context of the whole system. The structure of the system as a whole de-
termines that representations have a causal role that is sensitive to their 
constituent structure. And it is only by virtue of their having such a causal 
role that it makes sense to say that certain physical items are constituents. 
In connectionist systems … the information that representation R has con-
stituent C is [sic] carried by the representation R—relative to the whole 
system, even though constituent C is not physically present.26 

My argument, however, does not assume that R carries the relevant information 

independently of the entire system. It’s fine with me if R carries that information 

only relative to the system as a whole. It would still remain that case that if R is 

to carry the information, it must somehow represent it by means of some of its 

physical properties, regardless of whether or not those properties represent that 

information in and of themselves. What Horgan and Tienson need is a causal ex-

planation of how R could carry (relative to the system) the information that it has 

C, and I’ve argued that one cannot be had.
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Perhaps Horgan and Tienson are drawing attention to the distinction be-

tween explicit information and implicit information. In a Classical system, a rep-

resentation like Fa explicitly means whatever it means, but only implicitly carries 

the information that it has F as a constituent. So maybe my argument errs by 

construing the information that R has C as information which is explicitly, rather 

than implicitly, carried by R. But this sort of response to my argument would 

miss its point. Classical representations can implicitly carry information about 

their constituents because those constituents are right there, instantiating all their 

local and physical properties. In contrast, representations for which the constitu-

ency relation is nonconcatenative can’t implicitly carry information about their 

constituents in that way, since their constituents aren’t there. So if they do carry 

that information, they have to do it in some other way. Since the information is 

about nonlocal, nonphysical properties of the representations, it must be carried 

by being represented.

Still, one might wonder, Isn’t the fact that nonconcatenative representations 

encode their constituent structure enough to show that they implicitly carry in-

formation about what constituents they have? Well, no. That just takes us back to 

where we started. We have an explanation of how systems which employ non-

concatenative representations exhibit systematicity. That explanation appeals to 
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properties of the encodings. The issue then arises whether the explanation is a 

causal one. Hence, this chapter.

Again, my argument applies to any Connectionist system for which the rep-

resentational constituency relation is nonconcatenative. We need only replace the 

specific version of vector constituency that applies in the case of Smolensky ar-

chitectures with a more general version: a vector, Vn, is a vector constituent of 

another vector, Vm, only if Vn uniquely encodes a symbolic structure, S, Vm 

uniquely encodes another symbolic structure, S*, and S is a (concatenative) con-

stituent of S*. 

But one might question whether my argument goes through when applied 

to Connectionist systems which employ the architectural requirement that a to-

kened vector’s constituents (nomologically) must have played a causal role in the 

eventual generation of that vector. For it might not be clear that, in such systems, 

the information that a particular complex vector has certain constituents is about 

properties of that vector which are nonlocal and nonphysical. 

However, having a certain constituent as a causal precursor doesn’t make 

having that constituent a local, physical property. It seems easy enough to imag-

ine two tokenings of the same vector having the same nomologically possible ef-

fects, where one has a tokening of one of its constituents as a causal precursor but 

the other does not. At the least, I find it hard to imagine a non-question begging 
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way of arguing that having a certain constituent as a causal precursor makes 

having that constituent a local, physical property.

Moreover, having a certain constituent as a causal precursor isn’t enough to 

make having that constituent a physical property. For the property of having a 

certain constituent as a causal precursor is itself physically realizable in a very 

wide variety of ways.

Based on the arguments presented in this chapter, I think we may confi-

dently conclude that Connectionist explanations of systematicity are not causal 

explanations. Of course, this conclusion does not in itself pose an immediate dif-

ficulty for Connectionism unless the only sort of acceptable explanation in cog-

nitive science is causal explanation. However, the next two chapters do present 

more direct problems for Connectionism; and one of those problems arises once 

it is seen that Connectionist explanations of systematicity are not causal ones.
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Chapter 4

Acausal Explanation?

Defenders of Smolensky could concede that his explanation of systematicity is 

not a causal one in that it does not advert to causal laws governing the constitu-

ents of systematically related vectors. For they could deny that the only accept-

able form of explanation in cognitive science is causal explanation. In particular, 

they could argue that Smolensky’s explanation is a good one, even though it 

does not take the form of a causal explanation.

If Smolensky’s explanation is not a causal one, then what kind of explana-

tion is it? Well, presumably it is supposed to work in the following way. We un-

derstand the systematicity of Classical systems of representation, such as consti-

tuent-structure trees. The tree–vector algorithms show that there is a one-to-one 

mapping between trees and the vectors which translate them. Furthermore, sys-

tems with Smolensky architectures are designed so that vector processing is car-

ried out in a way that maintains that one-to-one mapping.

One difficulty with this sort of explanation, according to Fodor, is that ex-

planatory adequacy is not in general preserved under one-to-one correspond- 
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ence.1 So that there is a one-to-one correspondence between trees and tensor 

product vectors does not show that vector constituents and the notion of vector 

constituency are doing any explanatory work. In fact, Fodor maintains, the ex-

planatory burden seems to be carried exclusively by Classical trees and the no-

tion of concatenative constituency. On his view, all that tree encoding/deriving 

algorithms and the notion of vector constituency do for Smolensky is allow him 

to completely parasitize the Classical explanation without adding anything of 

substance to it. If his explanation appears to be adequate, that is only because it is 

merely the Classical explanation in disguise.

I think Fodor’s conclusion might be too strong. I’m not sure that it is, and I 

won’t attempt to convincingly establish that it is. Suffice it to say that the expla-

nation presented in Section 3.1.2 is of the same kind as Smolensky’s explanation 

of systematicity; and the former appears to be an adequate and illuminating ex-

planation. Moreover, it is hard to see how the burden of that explanation is sup-

posed to be carried exclusively by Classical representations and the notion of 

concatenative constituency.

Rather than take a definitive stand on whether Fodor is right, I want to re-

cast the issue somewhat. I want to claim that, insofar as Smolensky’s explanation 

is a good one, it fails to explain what it sets out to explain. (Perhaps, in the end, 
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my objection amounts to the same point as Fodor’s, viewed in a different light.) 

The best way I can think of to clarify all this is just to get on with it.

4.1  An Adequate Explanation, but Not of Systematicity

One way to show that an explanatory strategy is a good one is to provide a case 

in which it clearly succeeds. And one might appeal to Smolensky’s “Visa Box” 

example, as he himself does, in order to show that some “acausal” explanations, 

as he calls them, are in fact good ones.2 I’ll agree with Smolensky that the expla-

nation of how the Visa Box works is a good one, but I’ll claim that the explana-

tory strategy is inadequate with respect to systematicity.

The Visa Box is a device that assists in restaurant bill tip calculation, when 

the bill is not itemized. It’s inputs are the bill subtotal (food total, plus tax), the 

local food tax percentage, and the chosen tip percentage. It’s output is the bill 

total (food total, plus tax, plus tip). One would naturally surmise that the device 

works by sequencing through the following calculations, or some very similar to 

them:
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$FOOD = SUBTOTAL/(1 + x/100)3

$TIP = $FOOD (p/100)

TOTAL = SUBTOTAL + $TIP,

where x and p are the tax and tip percentages, respectively. Thus, it is natural to 

suppose that the Visa Box employs $FOOD representations in its calculations. But, 

in fact, the device works by calculating a number, w, and then multiplying w by 

the subtotal to obtain its output:

w = (100 + x + p)/(100 + p)

TOTAL = w (SUBTOTAL)

How does the Visa Box, without tokening $FOOD representations, compute the 

correct TOTAL for a given set of inputs? Here’s a derivation that provides an ex-

planation:

TOTAL = w (SUBTOTAL)

= [(100 + x + p)/(100 + x)] SUBTOTAL                                                                Substitution

= [(1/100) (100 + x + p)/(1/100) (100 + x)] SUBTOTAL                 Multiplication by
                                                                                                         (1/100)/(1/100)
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SUBTOTAL = $FOOD + $FOOD(x/100)
SUBTOTAL = $FOOD(1 + x/100)
SUBTOTAL/$FOOD = (1 + x/100)
1/$FOOD = (1 + x/100)/SUBTOTAL
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= [(1 + x/100 + p/100)/(1 + x/100)] SUBTOTAL                               Distribution

= (1 + x/100 + p/100) [SUBTOTAL/(1 + x/100)]                               Association:
                                                                                                        (m/n)s = m(s/n)

= (1 + x/100 + p/100) $FOOD                                                             Substitution

= ($FOOD + $FOOD (x/100) + $FOOD (p/100)                                      Distribution

= $FOOD + $TAX + $TIP                                                                          Substitution

= SUBTOTAL + $TIP

This derivation provides an explanation of how the Visa Box works without its 

employing $FOOD representations. We see how the algorithm it uses and one we 

would naturally expect it to use each compute the same function. The explana-

tion appears perfectly adequate. So, although the Visa Box does not employ 

$FOOD representations, an adequate explanation of how it works may nonethe-

less appeal to $FOOD representations.

On Smolensky’s view, this should not be surprising. For, first, the content 

[food price] is a constituent of each of the contents expressed by x and p, since x 

expresses the content [local tax percentage on food price] and p expresses the 

content [chosen tip percentage on the food price] for the relevant bill. Second, 

[food price] is also a constituent of the content expressed by TOTAL, since

TOTAL = SUBTOTAL = $FOOD + $TAX.
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It is useful, then, for [food price] to enter into both the semantic characterization 

of the function the Visa Box computes and the explanation of how the device 

works. Of course, it is given that the Visa Box does not use $FOOD representa-

tions. But the fact that we may appeal to [food price] in order to explain how the 

device operates shows that an adequate explanation may (perhaps must) use 

representations that express that content. Regarding the particular explanation 

under consideration, the appeal to the representation $FOOD is explanatorily ade-

quate, despite that fact that the explanation does not posit a causal mechanism 

that involves the tokening of $FOOD representations. Thus, we may say that 

$FOOD, together with the above derivation, is acausally explanatory—or, perhaps 

more clearly, mathematically explanatory.

Let’s relate the above explanation to Smolensky’s explanation of systematic-

ity. Representations containing $FOOD are to be taken as analogous to constituent 

structure trees. And the equality

[(100 + x + p)/(100 + x)] SUBTOTAL = $FOOD + $TAX + $TIP

is to be taken as analogous to the bi-unique derivation relations between con-

stituent structure trees and tensor product representations. The conclusion is that 

Classical trees, together with Smolensky’s tree–vector algorithms, provide the 

basis of an adequate acausal explanation of systematicity, just as $FOOD and the 
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aforementioned equality provide the basis of an adequate acausal explanation of 

the operations of the Visa Box.

So what’s the problem? The problem is that, insofar as the Visa Box explana-

tion is adequate, it is not really an acausal one. Moreover, insofar as it is an 

acausal explanation, it does not explain how the Visa Box operates. In order to 

see why this is the case, it is necessary to distinguish two senses in which an ex-

planation could be an explanation of “how something works.”

The question, “How does it work?” is quite vague. It could mean, to mention 

just two possibilities, (1) How did its inventor get it to work in the way it does?, 

or (2) What operations does it perform? Clearly these are two very different 

questions, requiring two very different kinds of answers. Now, the Visa Box ex-

planation would be a natural and adequate explanation of how someone was 

able to make the device work as it does.4 But then it would not really be an 

acausal explanation. Food-price representations and representations of the above 

equality would be attributed causal roles, since the inventor of the device would 

have made use of them in designing it.

76

4 Compare Smolensky (1995c, p. 245), who “marvels” at the “ingenuity” of the person who made 
the device.



Similarly, consider a “Swamp Visa Box” (I assume you are familiar with 

Swampman).5 We might learn what it does with numeric inputs. And once we 

learn that, we might also discover that we can use the object to calculate tips, re-

alizing that

[(100 + x + p)/(100 + x)] SUBTOTAL = $FOOD + $TAX + $TIP.

But the explanation of that discovery would also attribute causal roles to food-

price representations and that equality, since they would have been employed by 

those who discovered that the object could be used for said purpose. In the ab-

sence of any such representations, we could never discover that we could use the 

object as a tip calculator.

In contrast, it is not the case that either $FOOD or the equality are useful for 

explaining how the Visa Box or Swamp Visa Box operates on its inputs, or for ex-

plaining the nuts and bolts of its operation. For neither $FOOD nor the equality 

have causal roles in the objects themselves.

So what we have in the case of the Visa Box is an (implicit) adequate causal 

explanation of why it can be used to calculate tips, along with an adequate 
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representational-level, causal explanation of the operations it performs on its 

numeric inputs. But what we don’t seem to have is an explanation that appeals to 

$FOOD representations but does not require that they have causal roles. It might 

appear to someone that we do have such an explanation only if he or she fails to 

keep distinct the different senses of “How does it work?”

Now, since the Visa Box explanation and Smolensky’s explanation of syste-

maticity are of the same type, what we have regarding the latter is an (implicit) 

adequate causal explanation of how a Connectionist network could be designed 

to compute the same functions as certain Classical architectures. We also have, as 

part of that explanation, an adequate representational-level, causal explanation of 

the operations such a network could perform on tokened activity patterns. But 

what we don’t seem to have is an explanation that appeals to Classical represen-

tations or tree–vector algorithms but does not require that they have causal roles. In 

short, we don’t seem to have an acausal explanation of systematicity. 

Perhaps someone might think that my argument relies too much on the Visa 

box’s being an invention, a tool, without intrinsic content. But my claim is that 

the sort of acausal explanation at issue works only for such devices. My point can 

be illustrated by means of the following hypothetical example. Suppose there is 

an organism whose systematic behavior can be explained by attributing to it a 

Classical architecture. We eventually discover, however, that it does not have a 
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Classical architecture; rather, it has a Connectionist architecture. Thus, the Classi-

cal explanation of the relevant behaviors is simply false. Nonetheless, we may 

suppose that nature, not us, designed the organism, so that the actual contents of 

its representational states are independent of our purposes and of how we think 

about those states. However, nature presumably doesn’t have available any sys-

tem of representation that it can use for purposes of designing Connectionist 

minds. How, then, could nature have designed the organism to work as it does? 

How could nature have bestowed upon it systematically related cognitive ca-

pacities? The answer to that question, I submit, would remain a mystery. In par-

ticular, what would not be forthcoming is a Connectionist explanation that ap-

peals to Classical representations and requires that they have causal roles.

Look at the matter from a slightly different angle. Clearly, the organism’s 

vector representations wouldn’t encode, in the sense of having been translated 

from, Classical representations and their structures. But presumably they would 

encode their own semantic structures. So we’d be able to see how the organism 

appears to have a Classical architecture without actually having one. However, 

what we wouldn’t be able to see is how its vectors could have come to encode 

their own semantic structures in the first place. Where could such structures have 

been instantiated? Not in the organism’s architecture, since Connectionist net-

works don’t support structured vehicles of content. Nor could they have been 
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instantiated by anything in the organism’s environment—again, nature pre-

sumably doesn’t have available any system of representation that it can use for 

purposes of designing Connectionist minds. The only remaining alternative is 

that they could have been instantiated in minds like our own. So it would be 

clear how we might have been able to design such an organism. What would be 

not at all clear is how nature could have.

In the previous chapter, I concluded that Smolensky’s explanation of syste-

maticity is not a causal one. A few words need to be said about how that conclu-

sion relates to the present argument. His explanation is not causal in that (1) it 

explicitly rejects causal roles for Classical representations and tree–vector algo-

rithms, and (2) neither vectors, as nontokened vector consituents, nor informa-

tion that certain vectors have particular constituents have causal roles. On the 

other hand, the explanation is causal in the sense that it is an (implicit) causal ex-

planation of how a Connectionist network could be designed to compute the 

same functions as certain Classical architectures do, including functions from 

representations to their systematic variants. As such, but only as such, it is an 

adequate explanation. To put the point a bit cursorily, the explanation is an ade-

quate one only if it attributes causal roles to Classical representations; but it 

doesn’t, so it isn’t. What we end up with, then, is neither an adequate causal ex-
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planation of systematicity nor an adequate acausal explanation of systematicity. 

In short, we don’t have an adequate explanation of systematicity at all.

4.2  Moral of the Argument

The argument of the preceding section applies to the explanatory adequacy of 

any Connectionist account for which the constituency relation is nonconcatena-

tive, and hence it applies to any Connectionist account that is an alternative to 

the Classical picture. The problem systematicity poses for Connectionism is to 

show how Connectionist-network operations defined over syntactically simple 

representations nomologically must be sensitive to representational-constituent 

structure. Since vectors are syntactically simple, constituent structure must be en-

coded. Moreover, encoding of constituent structure requires computation of a 

function from constituent structures to encodings.

Now, the representational structures encoded are not the formal, configura-

tional structures of representations supported by the relevant Connectionist net-

works; such networks don’t support representations with concatenative constitu-

ency. So they must be structures of representations instantiated outside such 

networks. But, as I’ve argued, a Connectionist (purportedly adequate) explana-

tion of systematicity that adverts to such representations could at best provide an 

adequate explanation of how we could design a network to compute the same 

functions as certain Classical architectures do, including functions from repre-
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sentations to their systematic variants. And one that does not advert to such rep-

resentations could at best provide an adequate causal explanation of the opera-

tions a network could perform on tokened activity patterns. But we don’t get a 

Connectionist explanation of systematicity per se.

In this chapter, I’ve argued that a Connectionist explanation of systematicity 

would not be an adequate explanation of systematicity. What I show next is that if 

we nevertheless construe Connectionist explanations as explanations of syste-

maticity, the result, not surprisingly, is that they become unprincipled in a rather 

serious way.
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Chapter 5

Structure Sensitivity and Principled Explanation

Another difficulty for Connectionist explanations of systematicity is that they 

appear to be unprincipled, arbitrary, or ad hoc in a rather serious way.1 Cummins 

et al. (who defend Connectionist explanations of systematicity) introduce this 

objection as the claim “that classical representational schemes predict systematic-

ity, whereas connectionist schemes at best accommodate it.”2  Our first task with 

regard to this objection is to see just what it amounts to.
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at all for thinking that the two issues are separable. In any event,  I’m willing to grant that if a 
Connectionist explanation of systematicity is principled, then it is a principled explanation of the 
lawfulness of systematicity.

2 Cummins et al. 2001, p.172. See also Cummins 1996, p. 605. Cummins et al.  (2001) explicate this 
objection in terms of how a Classical parser would parse sentences as opposed to how a Connec-
tionist parser would parse sentences. I instead present the objection in terms of how Classical and 
Connectionist cognitive systems are supposed to be able to think systematically related thoughts.



5.1  Prediction versus Accommodation of Systematicity

Aizawa provides two cases from the history of science which illustrate well the 

nature of the objection under consideration.3 One case concerns Darwin’s and the 

Creationist’s explanations of why the close resemblance between blind subterra-

nean forms of organisms and their sighted, surface counterparts is tied to their 

geographical location. The other case concerns the Copernican and Ptolemaic ex-

planations of the fact that Mercury and Venus, unlike the other planets, are never 

found in opposition to the Sun. 

Darwin4 notes that the blind forms of insects that live in limestone caverns in 

the United States resemble their sighted counterparts on the surface, and that the 

same is true regarding blind and sighted forms in Europe. However, the relevant 

European and American blind insects don’t bear a close resemblance to each 

other, despite the close similarity of their environments. On the evolutionary ac-

count, this is easily explained by the hypothesis that the blind forms and sighted 

forms, in their respective regions, evolved by natural selection from a common 

ancestor. For if that is true, the observed similarities and dissimilarities would be 
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3 Aizawa 1997.  Aizawa argues that both the Classical and the Connectionist explanations of sys-
tematicity are unprincipled. However, his argument works only if the kinds of representational-
level processes required by each account are arbitrary with respect to the kinds of mental repre-
sentations each account posits. I argue that this is not the case for Classicism, but that it is the case 
for Connectionism. The objection, as I present it,  makes use of Aizawa’s cases but follows the 
outline of the objection as presented by Cummins 1996,  pp.  605–608.

4 Darwin 1985, chapter 5,  pp. 178–179.



just what you would expect. On the Creationist’s account, the similarities and 

dissimilarities are due to the Creator’s plan.

But given the close similarity of the environments of the American and 

European caverns, the Creator could just as easily have placed similar blind in-

sects in the two habitats. Indeed, the Creator could just as easily have made the 

blind forms in Europe similar to the sighted forms in America, and vice versa. 

Nothing about Creationism alone precludes this. Creationism alone does not ex-

plain the facts. In order to cover the data, then, the Creationist account must in-

voke an arbitrary assumption to the effect that the Creator did one thing, when 

he or she could just as easily have done something else. This gives us a defeasible 

reason to prefer the Evolutionist explanation to the Creationist one.

Turning to the Copernicus–Ptolemy case, the position of Mercury, as seen 

from Earth, never deviates from that of the Sun by more than about 28° of arc. 

Venus is never farther from the Sun than about 45°. On the other hand, the posi-

tions of the other planets can deviate from that of the Sun by 180°. Now, the Co-

pernican and Ptolemaic theories of the solar system both advert to deferents and 

epicycles. But the Copernican hypothesis that the planets orbit the Sun in the or-

der Mercury, Venus, Earth, Mars, Jupiter, and Saturn provides an immediate ex-

planation of the observation that Mercury and Venus never stray far from the 

Sun. No further assumptions are required. In contrast, the Ptolemaic theory pro-

85



poses that the solar bodies orbit the Earth in the order Mercury, Venus, the Sun, 

Mars, Jupiter, and Saturn. That theory alone, however, does not explain the 

planetary movements. Another hypothesis is required, namely, that the deferents 

of Mercury, Venus, and the Sun are “locked” together, so that the centers of the 

epicycles of Mercury and Venus are always in line with the Sun (while none of 

the deferents of the remaining planets are locked with any other). 

Thus, unlike the Copernican account, in order to cover the data, the Ptole-

maic explanation must invoke an arbitrary assumption. The Ptolemaic theory 

alone is insufficient. For while geocentrism allows the deferents of Mercury, Ve-

nus, and the Sun to be locked together, it also allows them to be independent of 

each other. This gives us a defeasible reason to prefer the Copernican explanation 

to the Ptolemaic one.

With respect to the above cases, the objection that the Connectionist expla-

nation of systematicity is unprincipled likens Classicism to Evolutionism and 

Copernican theory, and likens Connectionism to Creationism and Ptolemaic the-

ory. As we’ve seen (§ 2.1), Classicism explains systematicity by hypothesizing 

that mental representations have a combinatorial syntax and semantics and that 

mental operations are sensitive to the syntactic properties of mental representa-

tions. It will be useful here to revisit the essentials of that explanation (and the 

Connectionist style of explanation) in light of the preceding discussion.
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Thus, consider a complex Classical mental representation, aLb. It is com-

posed of the simpler representational constituents a, L, and b. By virtue of some 

of their local, physical properties, a and b have the syntactic role of designator, 

while L has the syntactic role of 2-place predicate. The mental processes that 

contribute to the formation of aLb are sensitive to those syntactic properties. 

From this it should be clear that if the relevant cognitive system can form aLb, it 

is to be expected that it can just as easily form bLa. The very same mental proc-

esses which can construct the former can construct the latter. No additional op-

erations are required. For a is placeable in the subject or object slot of L, as it 

were, by virtue of being a designator; and the same is true of b.

Of course, when the constituents of aLb stand in construction so as to form 

that representation, a acquires the syntactic role of subject, and b acquires the 

syntactic role of object, and vice-versa for bLa. But these further syntactic roles 

are consequences of the representation forming process. The formation of tokens 

of aLb and bLa employ the very same types of mental operations.

On Connectionism, representations are vectors, and mental processes are 

vector operations. Vectors are syntactically atomic, so a Connectionist explana-

tion of systematicity cannot appeal to processes that are sensitive to their syntac-

tic structure. But vectors are capable of encoding, by virtue of their local, physical 

properties, representational-constituent structure. So vector operations can be 
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sensitive to constituent structure through their sensitivity to the relevant physical 

properties of vectors.

Thus, consider a vector, VaLb, where a, L, and b are its vector constituents. 

One way this vector can be tokened in a Connectionist system is by means of a 

vector operation on its vector constituents. But (in contrast with Classicism) the 

system must do more than just combine those constituents. It can’t merely su-

perimpose them, say, for that wouldn’t account for the different structural roles 

of a, L, and b in VaLb. The Connectionist solution is to posit operations that bind 

constituents to the appropriate structural roles.5  (As we’ve seen, Smolensky ar-

chitectures bind a particular vector to a particular structural role by taking the 

tensor product of that vector and the vector that “represents” that structural role 

[§ 2.2].) So any process that constructs VaLb must be different from one that con-

structs VbLa. For their constituents must be bound to the appropriate structural 

roles, and the structural roles of a and b differ in the two vectors. With role 

binding operations in place, systematicity is then explained in terms of the sensi-

tivity of vector operations to the local, physical properties of complex vectors 

that encode all of the structural roles of their constituents.
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and the latter to predicate structural roles. The principle ways Connectionists have attempted to 
achieve variable binding are reviewed in Browne and Sun 1999.



This sort of explanation, however, like the Creationist and Ptolemaic expla-

nations above, is unprincipled in that it requires an arbitrary assumption. It is not 

a tenet of Connectionism that networks have operations that bind vectors to 

structural roles. To employ such operations is not part of what makes a system a 

Connectionist network. What makes a system such a network is that its repre-

sentations are syntactically simple vectors, and its operations are vector opera-

tions, such as matrix multiplication. A Connectionist system could just as easily 

have structural-role binding operations as not have them. Therefore, Connec-

tionism by itself fails to explain systematicity. More hypotheses are required.6 

This gives us a defeasible reason to prefer the Classical explanation to Connec-

tionist explanations.7 

This objection is at times misunderstood. For example, Hadley complains 

that 

… on the classical account, the systematicity of representations arises only 
in the presence of assumed algorithmic processes. … It follows, then, that 
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6 Compare Phillips (1998, p.  157): an “architecture based on a network of units coupled with a 
learning algorithm … is attractive.  It makes fewer commitments to the design of specific mecha-
nisms that realize cognitive behaviours …. Nevertheless, if one accepts the requirements of sys-
tematicity, then those requirements are not met by just this type of architecture. Either additional 
properties are necessary to explain why networks are configured in a particular way so as to ex-
hibit systematicity or additional subnetworks are required to preprocess potential components 
into similarity-based representations, for which it may be possible to demonstrate … systematic-
ity. Either way, the standard approach will not suffice.”

7 One could stipulate that the additional requisite hypotheses are part of the theory. But,  as Ai-
zawa (1997) observes,  this move clearly wouldn’t help in the cases of Creationism and Ptolemaic 
Geocentrism. So it shouldn’t help in the case of Connectionism either.



when the … characteristics of a connectionist architecture are considered, 
we must permit the connectionist to assume that correspondingly general 
processing mechanisms are in place. … Yet [Fodor and McLaughlin] seem 
unwilling to allow Smolensky the connectionist mechanisms that would 
permit a network to process his tensor-product representations … in a 
manner that would engender systematic relations between those rep- 
resentations.8 

But the unprincipledness objection does allow the Connectionist correspondingly 

general processing mechanisms that permit a network to do the job. The point of 

the objection is that such mechanisms don’t guarantee that every network em-

ploying them can do the job. Further mechanisms, not essential to or definitive of 

Connectionism, are needed. Hadley fails to see that the Connectionist mecha-

nisms of a Smolensky architecture are of the latter sort, not of the former.

Still, though I’ve already taken some pains to do so, I might not have made it 

sufficiently clear that the unprincipledness objection attributes correspondingly 

general processing mechanisms to Classicism and Connectionism. Perhaps I’ve 

failed to attribute to Classicism all the processing mechanisms the Classical ex-

planation of systematicity requires, in which case I should attribute further (and 

correspondingly general) processing mechanisms to Connectionism. It’s impor-

tant, then, to say a bit more on this issue.
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5.2  The Nonarbitrariness of Classical Processes

Aizawa9 argues that the two hypotheses that mental representations have a com-

binatorial syntax and semantics and that mental processes are causally sensitive 

to syntactic structure do not explain systematicity. His argument amounts to the 

observation that cognitive architectures of which those hypotheses hold can just 

as easily be nonsystematic as systematic. For one could easily program a system 

having such an architecture so that it can token, say, aLb, but not bLa. If that’s 

right, it looks like the Classicist can explain systematicity only by hypothesizing 

mental processes specifically designed to capture it. And that would mean either 

that the Classicist’s explanation is just as unprincipled as the Connectionist’s or 

that the Classicist must allow the Connectionist to appeal to correspondingly 

general mental processes.

The easiest way to make it clear that Aizawa’s argument fails is to consider 

what it would take to program a Classical system that is capable of tokening aLb 

but incapable of tokening bLa. The representation forming mechanisms would 

have to be sensitive to more than just the syntactic properties of a, L, and b. Oth-

erwise they could just as easily produce bLa as aLb. They would also have to be 

sensitive to the nonsyntactic “shapes” of a and b. That is, a rule to the effect that 

‘If x = b and yLz, then x ≠ y’ would be required. Such a rule, however, is com-
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pletely arbitrary with respect to Classicism. So within the Classical framework, it 

is asystematicity, not systematicity, that has to be specifically designed into Classi-

cal systems. Although it is clearly possible to have a Classical system that can 

token aLb but not bLa, such a system would have to be specially so crafted.

For Connectionism, the situation is reversed. A Connectionist architecture 

that is able to token both VaLb and VbLa will not be able to do so because they are 

systematic variants. Rather, a Connectionist architecture could do so only if that 

capacity has been specifically built into the system. It could just as easily have 

been built out of the system.

There is here a connection with the argument of the previous chapter. Recall 

the hypothetical organism discovered to have a Connectionist cognitive archi-

tecture. I argued that it’s clear how we might have been able to design such an 

organism, whereas it’s not at all clear how nature could have. Now it looks like 

we have a reason why that is so. For, insofar as the organism has a Connectionist 

cognitive architecture, it seems that nature could just as easily have made the 

organism’s mind nonsystematic as systematic.
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5.3  Unprincipledness is Not Structured-Domain Relative

Cummins and colleagues10  (hereafter, Cummins) argue that the Classicist must 

either concede that the unprincipledness objection is not all that serious or admit 

that some, perhaps a great deal, of mental representation is non-Classical.

Cummins begins by pointing out that acquiring knowledge about some do-

mains requires acquiring knowledge about their underlying structure. Acquisi-

tion of a language requires acquisition of its grammar. Learning which direction 

from a novel location is homeward requires learning the relationships between 

various directional cues and certain places you’ve been. Likewise, learning the 

layout of one’s environment requires learning the relationships among various 

locations within it. Some domains are not like this. Learning the state capitals 

does not require learning about any structural properties of states or their capi-

tals, other than simply what capital is situated within what state.

According to Cummins, the fact that a cognitive system has learned about 

the structure of a certain domain will manifest itself in various psychological ef-

fects. That is, the system will become subject to certain psychological laws, the 

specific nature of which will depend on the structure of the relevant domain as 

well as on various properties of the system’s cognitive architecture and physical 

organization. Cummins calls such effects “systematicity” effects. I call them 

93

10 Cummins et al. 2001, Cummins 1996.



“structural” effects, so as to avoid the tendentious suggestion that this sort of 

systematicity is to be identified with the systematicity of thought.

Cummins distinguishes primary structural effects from incidental structural 

effects. Primary structural effects are laws relating a cognitive system’s inputs to 

its outputs. If, for example, Andy has learned how to multiply integers, his cog-

nitive system will be governed by a psychological law stating (more-or-less) that 

if a mathematically well-educated cognitive system s is asked on an exam to 

multiply two integers, n and m, s will, ceteris paribus, provide the answer nm.

Incidental structural effects are the result of not only what a system com-

putes but also a number of other factors, including what algorithms the system 

uses to perform its computations, the kind of hardware on which those algo-

rithms are implemented, and the effects of external or internal environmental 

conditions on the system’s operation. Thus, two systems can exhibit the same pri-

mary effect while exhibiting different incidental effects. Andy and Betty could ex-

hibit the same primary multiplication effect, but they could nonetheless exhibit dif-

ferent incidental multiplication effects if they use different procedures to multiply.

Important to Cummins’ argument is the distinction between structural rep-

resentations, structural encodings, and pure encodings (all of which are repre-

sentations). Structural representations and what they represent are isomorphs. 

They have constituents which represent (at least in the context of the representa-
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tion as a whole) parts of the relevant domain; and how the constituents of such a 

representation are structurally related represents how the represented parts of 

the domain are structurally related. An accurate map of Boston is a structural 

representation of Boston. Classical binary trees can serve as structural represen-

tations of sentences.

The constituency relation for structural representations is a part –whole rela-

tion and thus a kind of co-tokening relation, as it is on the Classical account. 

However, it is not the case that all structural representations are Classical repre-

sentations. For some structural representations (such as standard maps, photo-

graphs, and scale models) do not have a combinatorial syntax and semantics. The 

content of a representational part of a structural representation need not be con-

text independent. Nor must such a part, independently of its representational 

context, represent anything at all.

Structural encodings, on the other hand, do not share structure with what 

they represent. However, the structure of what a structural encoding represents 

is systematically recoverable from it, by means of a generał/productive algo-

rithm. As we saw in Section 2.2, tensor product representations can serve as 

structural encodings of binary trees. Gödel number representations can serve as 

structural encodings of sentences.
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Finally, pure (or arbitrary) encodings do not share structure with what they 

represent, nor is the structure of what a pure encoding represents systematically 

recoverable from it.

According to Cummins, an adequate argument from the systematicity of 

thought to the conclusion that mental representations are Classical requires the 

assumption that the systematicity of thought is an incidental rather than a pri-

mary structural effect of having acquired knowledge about certain domains. For 

primary structural effects don’t provide us with evidence about how a cognitive 

system represents a domain or processes information about it. And that’s what’s 

at issue. So, for Cummins, an adequate Classical explanation of systematicity, as 

an argument for Classical mental representations, should have the following 

form:

1. There are incidental structural effects of having acquired knowledge of 
domain D.

2. If there are such effects, then mental representations somehow preserve 
information about D’s structure.

3. D’s structure is sentence-like.

4. Assuming that the structure of mental representations is sentence-like 
provides the best explanation of the fact that mental representations pre-
serve information about D’s structure.

5. Therefore, mental representations have sentence-like, that is, Classical 
structure.
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Cummins regards steps 1 and 2 as uncontroversial. He also thinks that positing 

structural representations is the most natural way to explain the various inci-

dental structural effects associated with the acquisition of knowledge of different 

domains. So he considers step 4 to be very plausible. The trouble with the argu-

ment, on his view, is that step 3 is clearly not true for every domain. Different 

domains have different structures; in particular, many domains have non-Clas-

sical, that is, non-sentence-like, structures.

Cummins’ case in point involves the perception of objects in space.11  If a 

cognitive system has learned about the structure of visual scenes containing dis-

tinct objects, it will exhibit certain incidental structural effects. For example, any-

one who can perceive (imagine) a scene in which two objects are situated at com-

pletely distinct locations can also perceive (imagine) a scene in which the loca-

tions of those two objects are switched. Such structural effects would be naturally 

explainable in terms of multidimensional-graph-like, structural representations 

having representations of objects among their constituents. However, Cummins 

maintains, such structural effects would not be naturally explainable in terms of 

Classical representations. For Classical representations have sentence-like struc-

ture (a combinatorial syntax and semantics), not graph-like structure. Thus, 
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whereas they could serve as structural encodings of visual scenes containing ob-

jects, they could not serve as structural representations of them. 

On Cummins’ account, then, any incidental structural effects of having ac-

quired knowledge of a non-Classically structured domain provide the basis of an 

argument, of the above form, for the existence of non-Classical, structural mental 

representations. The result is (perhaps massive) representational pluralism: for 

every differently structured domain, we have an argument for the existence of a 

structurally distinct kind of structural mental representation. This result 

shouldn’t sit well with Classicists who believe that all thought is grounded in 

Classical representation.

The Classicist can avoid this sort of representational pluralism, according to 

Cummins, by arguing that some incidental structural effects can be best ex-

plained by appeal to Classical representations that are structural encodings of 

what they represent (that is, by rejecting premise 4 of the above argument). But, 

Cummins argues, if structural encoding is allowed, then the objection that the 

Connectionist explanation of systematicity is seriously unprincipled must be 

given up. For, according to Cummins, if the Classicist concedes that certain inci-

dental structural effects can be given an adequate explanation by appealing to 

(Classical) structural encodings, then the incidental structural effects associated 

with the systematicity of thought can likewise be given an adequate explanation 
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by appealing to non-Classical structural encodings (say, tensor product repre-

sentations). Such an explanation would be no more unprincipled than one that 

appeals to structural encodings that are Classical representations.

So if Cummins is right, it looks like the Classicist must either give up the 

objection that the Connectionist explanation of systematicity is seriously unprin-

cipled or admit that a great deal of mental representation is non-Classical.

That’s Cummins’ argument. The rest of this chapter is about why it fails. 

Before I set out my main responses, though, it is worth noting that it is not neces-

sarily incompatible with Classicism if some kinds of mental representations are 

non-Classical. The important part of Classicism is that a significant part of a com-

plete account of the mind will have to advert to Classical representations and 

Classical operations defined over them. The Classicist could allow that part of 

that complete account will have to appeal to non-Classical representations and 

processes.12 In any event, Cummins hasn’t come close to showing that the Classi-

cist must either concede that the unprincipledness objection is not all that serious 

or admit that some, perhaps a great deal, of mental representation is non-

Classical.
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5.3.1  The Relationship between Content Structure and Representation Structure

First, it is not at all clear that an adequate argument from systematicity to the 

conclusion that mental representations are Classical requires the assumption that 

systematicity is a structural effect of having acquired knowledge about certain 

domains. The Classical explanation of systematicity (§ 2.1) makes no appeal 

whatsoever to knowledge about any particular structured domain. It’s an argu-

ment from the systematicity of thought, and thought (fortunately) is not domain 

specific. Systematicity is neither a primary nor an incidental structural effect of 

having acquired knowledge about any specific domain. Rather, it’s a psychologi-

cal effect of having acquired the ability to think or reason, regardless of domain.

Cummins does have a reply to this objection.13 The Classical explanation of 

systematicity appeals to the contents of mental representations. On Cummins’ 

view, the problem with that approach is that there is no nontendentious way of 

identifying the systematic variants of a content. He first points out that an ade-

quate Classical explanation of systematicity must not depend on the assumption 

that contents have the structure of Classical representations. Contents might be 

structurally atomic or have a different kind of structure. So we should not con-

strue the notion of systematicity in this way:
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Systematicity 1  Anyone who can think a content of the form aRb can think 
a content of the form bRa.

This problem can be avoided by construing systematicity somewhat as follows:

Systematicity 2  Anyone who can think the content c can also think the 
systematic variants of c.

But then the question arises, How are the systematic variants of a content to be 

identified?

As it turns out, Cummins argues, what contents appear systematically re-

lated, and what structure contents appear to have, depends upon the structure of 

the representations we use to refer to them. Thus, consider the claim

(1) Anyone who can think the content [Andy loves Betty] can think the 
content [Betty loves Andy].

According to Cummins, the intuitive force of (1) is due entirely to the systema-

ticity present in natural language—in particular, to the fact that the sentences 

‘Andy loves Betty’ and ‘Betty loves Andy’ are systematic variants of each other. 

This should be clear, he says, from the fact that (1) would lose some or all of its 

intuitive force if we substituted atomic or differently structured (Classical or non-

Classical) representations for those sentences. He asks us to consider claims such 

as the following:
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(2) Anyone who can think Betty’s favorite content can think the content 
[Betty loves Andy].

Even assuming that Betty’s favorite content is [Andy loves Betty], Cummins 

maintains, (2) fails to elicit systematicity intuitions.

Cummins also asks us to compare the following claims:

(3) Anyone who can think that a face is smiling can think that a face is 
frowning.

(4) Anyone who can image a smiling face can image a frowning face.

Claim (3) is dubious. But, Cummins says, given an appropriate scheme of imag-

istic representation (say, one which builds images from a palette of circles, lines, 

and arcs), claim (4) is quite plausible. For such a scheme would permit an image 

of a frowning face that is a permutation of an image of a smiling face. Thus, if our 

preferred scheme for representing contents were one of just that sort, then a suit-

able counterpart of (3), say,

(3*) Anyone who can think that A can think that K,

would become plausible as well.14 

What these examples are supposed to show is that:

Absent some representation-independent access to the structure of propo-
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sitions, which propositions seem to be systematic variants of each other 
will depend on one’s preferred scheme for representing propositions. If 
you linguistically represent the contents to be thought, then you will want 
mental representation to be linguistic, since then the systematicities in 
thought that are visible from your perspective will be exactly the ones 
your mental scheme can explain.15 

In short, an explanation of systematicity that identifies contents linguistically is 

one that covertly assumes that contents have the structure of Classical represen-

tations, and that’s cheating.

According to Cummins, then, what we need is a way of identifying syste-

maticities in thought that is independent of any assumptions about the structure 

of thought contents. This can be done if we focus on how we acquire knowledge 

of structured domains.

I don’t find this reply to the first problem I see with Cummins’ argument to 

be all that forceful. To begin with, it’s not clear to me that the Classical explana-

tion of systematicity makes any commitment to the structure of contents.16  Sup-

pose for the sake of argument that contents are atomic. That wouldn’t change the 

fact that they have many properties. For example, the contents [Andy loves 

Betty] and [Betty loves Andy] have different truth conditions and thus might 
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have different truth values. The first is true iff Andy stands in the loving relation 

to Betty, while the second is true iff Betty stands in the loving relation to Andy. So 

even if those contents are atomic, they stand in different relations to Andy, Betty, 

and the loving relation. And how one of those contents is related to those three 

things (whatever their ontological status) is quite plausibly systematically related 

to how the other content is related to them. 

My line of reasoning might seem to commit me to the possibility that the 

simplicity of mental representations is compatible with systematicity. For even if 

mental representations are atomic, they still have their contents and associated 

truth conditions. So perhaps thought is systematic just because truth conditions 

are. This move, however, wouldn’t work. We’d still have to explain why we can 

think thoughts with systematically related truth conditions. That is, we’d still 

have to explain why anyone who can think a thought, T, can think those 

thoughts the truth conditions of which are systematic variants of the truth condi-

tions of T. And that appears to be difficult to do without positing a language of 

thought.

I suspect that a defender of Cummins might respond by rerunning his ar-

gument, substituting “truth-conditions” for “contents”; that is, by arguing that 

what truth conditions appear systematically related, and what structure they ap-

pear to have, depends upon the kinds of representations that we use to refer to 
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them. What I would do then is rerun his argument, substituting “structured do-

mains” for “contents.” The trouble is that we have to use representations to 

identify the relevant entities at some point. Otherwise, it’s hard to see how we 

could state our theories or theorize at all.

In some circles, that might be seen as a problem for both the Classical view 

and Cummins’ way of arguing from structural effects to the structure of mental 

representations. But it’s not a problem for either. And that’s because Cummins’ 

hasn’t shown that what contents appear systematically related, and what struc-

ture they appear to have, depends upon the structure of the representations we 

use to refer to them.

Consider again claims (1) and (2):

(1) Anyone who can think the content [Andy loves Betty] can think the 
content [Betty loves Andy].

(2) Anyone who can think Betty’s favorite content can think the content 
[Betty loves Andy].

Cummins does show that if we want to illustrate systematicity, we’d be advised 

(under normal circumstances) to use (1). But I don’t see why this is anything 

more than a matter of pragmatics. If Betty’s favorite content is in fact [Andy loves 

Betty], given an appropriate context (say, one in which it’s common knowledge 

what Betty’s favorite content is), (2) could be used to provide an example of sys-

tematically related contents. Furthermore, and more to the point, if the phrase 
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‘Betty’s favorite content’ were an idiom that had the content [Andy loves Betty], 

then (2) would serve as well as (1) as an illustration of systematicity. Compare:

(5) Anyone who can think that Andy has been shanghaied can think that 
Andy has shanghaied some person or persons.

Even though the sentences ‘Andy has been shanghaied’ and ‘Andy has shang-

haied some person or persons’ are not syntactic permutations of each other, (5) 

seems to provide an acceptable illustration of systematicity. And (5) seems to do 

so because those two sentences have the contents they do. When providing an 

example of systematicity, the identification of the relevant contents does require 

the mediation of appropriate representations. But Cummins doesn’t show that 

it’s the structure (syntactic or nonsyntactic) of the mediating representations, as 

opposed to their contents, which determines whether or not we see systematicity 

in thoughts with those contents. After all, we use the words ‘dog’ and ‘god’ in 

that –clauses to refer to the contents [dog] and [god]. And those words are sys-

tematic variants of each other. But that they are so related doesn’t in the least in-

cline us to believe that anyone who can token the concept having the content 

[dog] can token the concept having the content [god].

It may be worthwhile to note, regarding (5), that the sentences ‘Andy has 

been shanghaied’ and ‘Andy has shanghaied some person or persons’ arguably 

are syntactic permutations of each other. For syntactic structure need not neatly 
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correspond to surface structure. However, any argument for the claim that the 

two sentences have the same syntactic structure would quite plausibly have to 

appeal to their respective contents. And that would be to admit that syntactic 

structure and (internal or relational) content structure are intimately related, 

which is precisely what Cummins questions.

Cummins’ treatment of claims (3) and (4) is also flawed.

(3) Anyone who can think that a face is smiling can think that a face is 
frowning.

(4) Anyone who can image a smiling face can image a frowning face.

The problem here is that Cummins’ argument would appear to prove too much. 

Perhaps if our preferred representational scheme for representing contents was 

one of the imagistic sort Cummins envisages, then (4) and

(3*) Anyone who can think that A can think that K,

would gain intuitive force. However, if (3*) would gain intuitive force, so too 

should

(6) Anyone who can think that A can think that .

For ‘ A ’ and ‘  ’would be structural permutations of each other. But that pre-

sents a problem, since the content of ‘  ’ could be merely arbitrarily relatable to 

the content of ‘ A ’, or it might have no content at all (even assuming the two 
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images are “image-grammatically” well formed). It’s content could be, say, [The 

sculpture in the square is outré]. And I strongly suspect that we wouldn’t find 

the claim

Anyone who can think that a face is smiling can think that the sculpture in 
the garden is outré,

to be very plausible. And we certainly wouldn’t find a nonsensical claim to be 

plausible. Thus, even assuming a suitable system of representation, (6) might not 

serve as a plausible illustration of systematicity.

Another of Cummins’ examples is similar to the image case. Cummins 

claims that

if you think mental representations are activation vectors, then you are 
entitled to

Anyone who can think a thought of the form < …a … b …> can think a 
thought of the form < … b … a … >.17 

Well, perhaps if you can token one of those vectors, you can token the other. But 

again, the contents of those vectors could be merely arbitrarily related to each 

other, and the latter might not pick out a thought, even if the former does. 

In light of all this, it’s not too hard to see why (3*) has some intuitive force 

(within Cummins’ scenario). It’s because the semantic relations between ‘a face 

smiling’ and ‘a face frowning’ are nonarbitrary. So it looks like we are free to ar-
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gue that because our intuitions about systematicity depend on semantic rela-

tions, it can’t be right that it’s the (syntactic or nonsyntactic) structure of the me-

diating representations, as opposed to their contents, which determines whether 

or not we see systematicity in thoughts having those contents.

5.3.2  Unprincipledness Rests with Vector Constituency, Not Encoding

Let’s move on to a second serious problem with Cummins’ argument. It doesn’t 

appear to be true that if Classicists grant that certain structural effects can be 

adequately explained by appealing to (concatenative) structural encodings, then 

they should also grant that the systematicity of thought can likewise be ade-

quately explained by appealing to (nonconcatenative) structural encodings. For 

the objection that the Connectionist explanation of systematicity is unprincipled 

doesn’t turn simply on the fact that vectors are structural encodings. Rather, it 

turns on the fact that the constituency relation for vectors is nonconcatenative. So 

it’s hard to see how an explanation of certain structural effects in terms of struc-

tural encodings that are Classical representations would be inadequate (because 

unprincipled).

This should be fairly easy to show. Suppose we have a Classical, structural 

encoding scheme for representing maps. Suppose further that we have a Classi-

cal system which can represent, in that scheme, any structural (“systematic”) 

variant of any map it can represent. Would any Classical explanation of this be 
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unprincipled in the way I have argued Connectionist explanations of systematic-

ity are unprincipled? I don’t see why it should be. My point is easily made in 

terms of a relatively concrete example.

Maps of Earth which illustrate plate tectonics provide a relatively good case 

of maps which are structural transformations of each other.18  Consider two such 

maps, one that represents South America as being n miles from Africa, and an-

other that represents South America as being m miles from Africa. Part of the ex-

planation of the fact that Classical systems can represent one of these maps if 

they can represent the other would presumably appeal to facts like this:

The Classical encodings of these maps each have constituents representing 
map–distance representations, Dxy = z. But they differ in that the encod-
ing of the first map has the representation Dsa = n (but not Dsa = m) as a 
constituent, whereas the encoding of the second map has Dsa = m as a 
constituent (but not Dsa = n) (where the contents of these constituents are 
the obvious candidates).19 

The explanation would also appeal to the syntax sensitivity of the operations 

which construct the relevant representations, showing that if a Classical system 
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tain their contents. Different ideas of what counts as a structural permutation of a map would 
merely require a different sort of example.

19 It’s true that any artificial, Classical system of structural encoding will have to be tailored to the 
structural permutations one is interested to capture. But the same will be true for any artificial, 
distributed-vector system of representation. Furthermore, as I am in the process of arguing, this 
sort of arbitrariness is not what would make an explanation of domain-structure sensitivity that 
appeals to such a representational system unprincipled.



can construct a representation of one map, then it can construct a representation 

of a structural permutation of that map, proceeding along the lines of the Classi-

cal explanation of systematicity. Given a representation of a particular map, a 

Classical system’s syntax-sensitive operations allow it to construct a representa-

tion of a different map, where the second has as parts the same representations as 

the original map but standing in a different arrangement.

Now imagine a Connectionist system that captures the very same structural 

transformations that the above Classical system does. How does it do that? Well, 

it presumably employs an encoding scheme that represents map parts and map 

structural relations. And presumably its vector operations correspond to the “le-

gal” permutations20 that can be performed on the map structures of interest; per-

haps its vector representations and operations are related to those permutations 

in just the way that the vector representations and operations of a Smolensky 

architecture are related to Classical trees and rules for extracting and combining 

tree constituents. 

But now it looks like we can run the unprincipled-explanation objection 

against the claim that such Connectionist systems could serve as the basis of a 

good explanation of the cognitive capacity (assuming there is one) to represent 

systematic map variants. It’s important to emphasize that there are two distinct 
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kinds of structural encodings. There are structural encodings having concatena-

tive constituents and structural encodings with nonconcatenative constituents. 

The envisaged Classical system uses structural encodings of the former sort. 

With such representations (to echo a point Cummins makes regarding structural 

representations), “the theorist is constrained by the form of the representations: 

you can only write permutation rules when there are permutable constituents.”21 

However, Connectionist models have no way of enforcing a comparably princi-

pled constraint. For such models, it’s not the case that you can only have certain 

vector operations when there are permutable representational constituents, for 

there simply aren’t any such constituents. Such models, then, need structural-role 

binding operations, which are arbitrary with respect to Connectionism. So it 

looks like it’s the case that, for any structural map variants M and M*, a Connec-

tionist system that is able to represent both maps will not be able to do so because 

they are structural variants. Rather, if a Connectionist system can represent certain 

map structural variants, it will be able to do so only because that capacity has 

been specifically built into the system. It could just as easily have been built out of 

the system.

What misleads Cummins is his view, which we’ve rejected, that arguments 

from systematicity to the structure of mental representations ought to focus on 
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the cognition of structured domains. From that perspective, a Classical explana-

tion of the structural effects for, say, the linguistic domain would be principled 

because the structure of Classical representations is isomorphic with the structure 

of that domain. On the other hand, a Connectionist explanation of those effects 

would be unprincipled, because the structure of vectors does not mirror the 

structure of that domain. Likewise, a Classical explanation of the structural ef-

fects for a domain having map-like structure would be equally unprincipled—

map-like domains do not have syntactic structure. If the issue is couched in these 

terms, then the distinction between syntactically complex structural encodings 

and syntactically simple structural encodings is bound to seem irrelevant. But, as 

I’ve argued, it’s not.

5.4  Representations for Navigation

I conclude this chapter by stating its bottom line in terms of the explanation of 

navigational capacities and by briefly noting a minor point relevant to represen-

tational pluralism.

I argued in this and the previous chapter that Connectionist explanations of 

systematicity are inadequate. This chapter yields a further conclusion. I will ar-

gue that certain navigational capacities are best explained by appeal to mental 

representations for which the constituency relation is concatenative. If that is 

right, then, regardless of whether those representations are structural representa-
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tions or structural encodings, and regardless of whether they are Classical repre-

sentations, Connectionist explanations of the same capacities will be inadequate. 

Any such explanation will be subject to at least two strong objections: the expla-

nation (if a good one) doesn’t explain what it sets out to explain (Chapter 4), and 

it is unprincipled.

Finally, a relatively minor point relevant to representational pluralism. Even 

if adequately explaining certain navigational capacities requires positing map-

like structural representations, that in itself is not logically incompatible with the 

possibility that the required explanation is a Classical one. For although ordinary 

maps lack a combinatorial syntax and semantics, this need not be true for formal 

maps (or for cognitive maps, if there are such things). That is, it is possible to de-

vise limited, formal systems of representation that are both language-like and 

map-like. For illustrative purposes only, I’ve provided a simple, artificial exam-

ple in Appendix A.22  The expressive power of all such systems of representation 

very well might be quite limited. But that’s not a problem if adequately repre-

senting facts in the relevant domain doesn’t require all that much expressive 

power to begin with. A system of representation devoted to or useful for naviga-

tion might not need to be productive, say.
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Chapter 6

Structure of the Honeybee’s Navigational Domain

Although complex representations such as charts and maps are quite useful for 

purposes of navigation, in part because of the structural similarities they bear to 

the regions they represent, that does not imply that any animal capable of ac-

complishing even fairly sophisticated navigational tasks represents some features 

of its environment with mental representations having similarly complex con-

tents or configurations. Through careful behavioral or neurophysiological ex-

perimentation, however, it is possible to discern the structural features, of a cer-

tain domain, to which an organism is sensitive. The nature of such features, to-

gether with details about the organism’s sensitivities to them, can provide clues 

regarding the semantic simplicity or complexity of its mental representations. 

And, if it turns out to be probable that they are semantically complex, then fur-

ther considerations can be marshaled to address the question of the configura-

tional structure of such representations.

In this chapter, I review a number of recent behavioral studies which reveal 

various structures that honeybees, as navigators, are capable of learning. I also 

review those and other studies that show what bees are able to do with some of 
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that information. Based on the nature of the navigational capacities exhibited, I 

argue, in the next (and final) chapter, that certain classes of information acquired 

by honeybees exhibit systematicity. I conclude that we thus have at least one 

good reason to prefer Classical theories of honeybee navigational capacities over 

Connectionist ones.

Note that while I speak of honeybees acquiring information about various 

distances and directions, relying on their solar compass, and so on, I remain neu-

tral on the issue of what the contents and extensions of the representations in 

question actually are (I discuss this matter further in § 7.1.1). Moreover, I want to 

avoid commitment to any particular theory of content or reference.

6.1  Simple Structures

Honeybees are capable of acquiring information about a number of relationships 

between various places of interest. My focus is on distance and direction rela-

tions. The following three sections are especially pertinent to the arguments for 

the systematicity of bee navigational capacities presented in Sections 7.1.2 and 

7.2.1. There I argue that the general capacities described below require certain 

more-specific capacities to acquire systematically related information. One of my 

main points will be that the capacities of bees to coherently track locations of in-

terest (including their own current location) require that the semantic relations 

among the items of information they acquire are nonarbitrary.
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6.1.1  Distance and Direction Relations

A honeybee learns the distance and direction, from the hive, of a foraging site it 

discovers. During the bee’s outbound flight, it continually updates the informa-

tion it has about its location in relation to the hive by a process known as dead 

reckoning, or path integration: the bee continually integrates its most recent 

flight segment, or vector of travel, with the sum of its previous flight vectors.1 

The result is a single vector that informs it of its current direction and distance 

from the hive. When the bee discovers a foraging site, it stores some kind of rep-

resentation of the site’s location; and when it returns to the hive, it can go there 

directly, even if its outward path was circuitous, and even if no landmarks near 

the hive are visible from the site.2 

The waggle run, or dance, is the means by which a honeybee informs other 

colony members of the approximate distance and direction to a foraging site or a 

potential nest site.3 Some honeybee species, such as Apis mellifora and Apis cerana, 

orient their waggle runs with respect to gravity. They perform their runs in dark-
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text to disambiguate terms such as “vector”—whether they refer to some feature of the environ-
ment (or the bee’s own behavior) or to the bee’s information about such a feature.

2 For recent discussions of path integration in insects, see Collett (M.) and Collett 2000; Collett 
(M.) et al. 1998; Collett (T. S.) and Collett 2000, 2002; Giurfa and Capaldi 1999; Schmidt et al. 1992; 
Wehner et al. 1996, 2002; and Wohlgemuth et al. 2001.

3 von Frisch 1967, Riley et al. 2005. See Dyer 2002 and Michelson 1999 for recent reviews.



ness on the vertical surface of a comb within the hive. The duration (and other 

properties) of the run corresponds to the distance to the site, and the angle of the 

run with respect to gravity indicates its current solar bearing (a vertical run indi-

cates that the direction to the site is toward the sun). 

Honeybees can use remembered hive-to-site vectors to return directly to 

previously visited locations. They can also use remembered site-to-hive vectors 

to return directly to the hive after having been displaced by an experimenter to a 

familiar or unfamiliar site.4 But they can learn vectors other than those relating 

the hive to other important locations. They can also learn “local” vectors: those 

connecting a landmark (or other visual cue) to another landmark, or connecting a 

landmark to a goal site.5 

Honeybees estimate distance flown by monitoring optic flow, or image 

movement across the retina.6 They estimate direction principally by means of 

their solar compass.7  The next section presents features of the solar compass 

mechanism that are important for issues of cognitive architecture. 
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tion by ants, see Ronacher and Wehner 1995.

7 Dickinson and Dyer 1996;  Dyer 1987, 2002; Dyer and Dickinson 1994, 1996; Wehner 1983, 1984; 
Wehner et al. 1996.



6.1.2  Solar Compass and Solar Ephemeris

Honeybees are able to use the sun (as well as the pattern of polarized sunlight) in 

order to set and hold a compass course. Because the sun moves in relation to the 

landscape, a bee’s returning to a familiar site at different times of day requires its 

flying at different angles in relation to the sun’s compass direction, or azimuth. In 

order to do so, it must be able to estimate how much the solar azimuth changes 

during the relevant time spans. This in turns requires the organism to be in-

formed about the time of day (information provided by its circadian clock) and to 

have a record of the solar azimuth as a function of time of day. Such a record is 

called a solar ephemeris.

The solar ephemeris varies with time of year and latitude. Hence, the current 

ephemeris for a particular locale must be learned. Complicating matters is the 

fact that the rate of change of the sun’s azimuth varies with the time of day, being 

slowest in the morning and evening and fastest at midday. Nonetheless, it has 

been shown that bees raised in an incubator and exposed to the sun only during 

a limited part of the day (for example, for a couple hours in the afternoon) learn 

the current solar ephemeris for their locale.8 

Honeybees learn how the solar azimuth varies in relation to the position or 

orientation of certain landscape features over the course of the day. Thus, on 
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heavily overcast days, when neither the sun nor the pattern of polarized sunlight 

is visible, honeybees can estimate the direction of the sun by means of familiar 

landscape features in conjunction with their internal solar ephemeris.9 Remarka-

bly, this ability allows bees to estimate the solar azimuth on moonlit nights, pro-

vided that the necessary landmarks are visible.10

The solar ephemeris learning mechanism, then, produces a record that al-

lows bees to estimate the position of the sun at times when they do not see it 

(due to heavy overcast), have not ever seen it (due to controlled, limited expo-

sure), or never will see it (due to the time of night).

This strongly suggests that bees are capable of freely generalizing their solar 

ephemeris function to novel inputs. That is, for times of day for which a bee has
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briefly disoriented upon release,  if their vision of the surrounding terrain is blocked until the time 
of release. Their perception of the sun and its associated skylight patterns alone, under such con-
ditions, appears to be insufficient for them to set a course. In light of this, Schöne et al. suggest 
that solar compass course setting involves integration of terrestrial and celestial cues. If “terres-
trial” is construed broadly, the truth of their suggestion is actually knowable a priori. For if what 
your compass “needle” points at is in continual motion, it must be related to a stable reference 
direction if it is to be reliable. Consider how useful a standard compass would be in a possible 
world where the position of magnetic north varied predictably but rapidly over, say, 180˚. Under 
such circumstances, a standard compass would be useless without a “magnetic-pole ephemeris” 
chart. In the case of the bee, stabilizing cues are provided by its circadian clock and internal solar 
ephemeris. If “terrestrial cue” is construed to mean “ landscape visual cue,” then Schöne et al.’s 
suggestion is clearly wrong. Route-trained bees do not need such cues to set a course and typi-
cally ignore them when released at an unexpected location (Riley et al. 2003). On the other hand, 
terrestrial cues are essential for setting a correct course. For example, knowing which way is east 
or west doesn’t help much if you don’t know whether you are east or west of your destination. 
Schöne et al.’s observation, then, is probably related to the bees’ attempting to locate themselves 
in relation to familiar landscape features.

10 Dyer 1985b.



never experienced the corresponding solar azimuth, it nonetheless is able to fairly 

accurately map those times to azimuthal positions. As we’ll see (§ 7.5), the ability 

to freely generalize certain universally quantified functions appears to require 

the exercise of rules that operate on instances of variables. 

Honeybees are capable of relating the solar ephemeris to different groups of 

landscape features.11 This is necessary, for example, if the colony moves to a dis-

tant new nest site. And there are further complications. The landscape features 

visible at (or along the way to) one foraging site will often be different from those 

associated with another site. Terrain features visible from two different sites will 

most likely be seen from those places from different perspectives. And the land-

scape features visible from the hive will not be the same as those visible from 

relatively distant foraging sites. This fact is especially pertinent in the case of the 

Asian honeybee Apis florea. On overcast days, members of this species orient their 

horizontal waggle runs in relation to the panorama of vegetation near the nest; 

but that panorama is not available to foragers when away from the nest.12 

It is worth noting that members of A. mellifora can be trained to orient their 

waggle runs in relation to landscape features, even though they normally use 

only gravity or celestial cues as a reference. In fact, they are just as good at this as 
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members of A. florea.13 As I point out later (§ 7.2.1) the presence of such unexer-

cised capacities is just what one should expect if related capacities exhibit a cer-

tain form of systematicity.

On the basis of the data reviewed above and in the previous section, it is 

clear that honeybees can acquire information about a large number of relations 

important for navigation. These include (among others):

The distance between the nest and a particular goal site. 

The distance from the bee’s current location to the hive.

For each “time of day” and location of the bee, the solar bearing of a par-
ticular goal site (nest, foraging site, etc.) at that time and place.

For each time of day, the location of the solar azimuth in relation to the 
surrounding landscape. Also, there are different sets of these relations for 
(sufficiently) different places. 

For each time of day, the bearing of a particular goal site with respect to 
the landscape feature(s) associated with the solar azimuth at that time. 
This information is necessary in order to learn the location of a foraging 
site on the basis of gravity-referenced waggle runs on heavily overcast 
days.14

So what a honeybee can learn about, say, a particular foraging site, consists of 

information about quite a number of relations involving that site. This is evident, 

even though we have yet to examine other navigational capacities; for instance, 
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how honeybees can employ landmarks to locate a goal. Nor have we considered 

certain capacities which are not strictly navigational, such as the capacity to learn 

the type of a certain foraging site (resin, pollen, nectar, water) and that site’s cur-

rent value to the colony.

6.1.3  Updating Previously Learned Relationships

Naturally, bees are sensitive to changes in their environment. What isn’t obvious 

is what they learn when they acquire information about such changes. How is 

the new information related to the old information? What information is updated 

and what information remains the same?

Some light is shed on these issues by the results of station shift experiments. 

In such a study, the hive and feeder are placed along an extended, straight land-

mark, such as a tree line, an edge of a field, or a row of artificial markers. The 

bees are trained to the feeder under sunny conditions. If a natural landmark is 

used, a test site that is just like the training site, except with respect to the com-

pass orientation of the extended landmark, will have been chosen. After training, 

the hive and feeder arrangement is displaced to the test site. Since the bees will 

be unaware of their change in venue, they will be faced with conflicting informa-

tion. Their memory of the landmark’s compass orientation, acquired at the 

training site, will differ from their experience of the landmark’s compass orienta-

tion at the testing site. The experimenter can gain insight into how the bees re-
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spond to that conflict by observing their waggle dances when they’ve returned to 

the hive from the feeder under sunny or overcast conditions.

Gould15  performed a station shift experiment in an open field, in which a 

row of artificial markers led from the hive to the feeder. Under sunny conditions, 

the arrangement was suddenly rotated by about 30˚. The bees located the feeder 

by flying along the row of markers. Over a period of about 40 min, the direction 

indicated by their waggle dances gradually shifted from the solar bearing of the 

feeder as learned during training to the new solar bearing. That the shift was 

gradual suggests that the permutation of the training setup resulted in a corre-

sponding permutation in how the bees represented that setup. In other words, it 

suggests that the bees altered their previously acquired information about the 

orientation of the extended landmark and the direction of the feeder. They did 

not simply acquire new, additional information.

Dyer16 performed a series of station shift experiments in which the orienta-

tion, at the test site, of a field’s edge, differed by 90˚ from the orientation, at the 

training site, of the corresponding field edge. Tests began with the hive being 

opened under heavy overcast. The bees found the feeder by flying along the 

field’s edge, as they would have done during training. As long as the sky re-
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mained overcast, their waggle dances indicated where the solar azimuth would 

have been if the hive had not been displaced, and thus they were off by about 90˚.

Once the sky opened enough for the bees to use their solar compass, Dyer 

observed five distinct types of responses. Most bees immediately adjusted their 

waggle dances to indicate the correct solar bearing of the feeder and continued to 

indicate the correct bearing when the sky again became heavily overcast. These 

bees disregarded the orientation of the training site field edge and learned the 

orientation of the test site field edge. Their doing so is compatible with their ac-

quiring new, additional information as opposed to their altering previously ac-

quired information.

Some bees ignored the compass bearing of the visible sun for at least one 

trip. Sometimes many foraging excursions under bright sunlight were required 

before the bees’ dances indicated the correct solar bearing of the feeding station.

Some bees, like those in Gould’s study, exhibited gradual reorientation. The 

solar bearing indicated by their dances progressively shifted from the one correct 

for the training site to the one correct for their current location. Again, this sort of 

response suggests that the permutation of the training setup resulted in a corre-

sponding permutation in how the bees represented that setup.

Some bees indicated the correct solar bearing in the presence of sunlight but 

indicated the incorrect, previously acquired solar bearing when the sky again 
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became overcast. Also, some bees exhibited bimodal dances once the sun became 

visible. That is, they indicated both the old and new solar bearings on alternate 

waggle runs. The bees that exhibited one of these two responses must have 

stored their information about the original and new solar bearings separately. 

Further, the new and the old information could independently direct behavior.

Bimodal waggle dances are particularly intriguing. One possibility is that 

the mechanism responsible for producing the angle of the waggle run with re-

spect to gravity has simultaneous access to conflicting compass information but 

does not resolve the conflict. Another possibility is that the mechanism alter-

nately accesses the conflicting information but does not detect the conflict. In ei-

ther case, the ability of bees to perform bimodal dances would seem to require 

the ability to acquire respective items of information that “predicate” two con-

flicting attributes to one and the same thing.

One way to investigate how bees deal with environmental changes on a 

smaller scale is to study how they modulate their learning flights under various 

conditions. To learn the precise locations of newly discovered foraging sites, bees 

will perform specialized learning flights on their departure. While facing the site, 

the bee slowly backs away, flying side-to-side in increasingly larger arcs roughly 

centered on the place of interest. Such a flight pattern is ideal for learning, via 

motion cues, the position of a site relative to nearby landmarks. The duration of a 
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bee’s learning flight declines over subsequent visits to the same location, until 

the flight pattern is no longer performed.

Wei et al.17 (hereafter, Wei) examined the factors that influence changes in 

learning flight duration. He introduced bees to an inconspicuous feeder situated 

near a tetrad of black cylinders, which served as proximal landmarks. The feeder 

and cylinders were contained within an oblong arena having 0.5-m-high walls, 

which blocked most external landmarks from the bees’ view while they were in-

side the apparatus. 

In one experiment, Wei measured the durations of the learning flights of in-

dividual bees on repeat visits, beginning with their initial departure from the 

feeder. The duration of learning flights gradually decreased until the amount of 

time from when a bee left the feeder to when it left the arena stabilized. Once de-

parture flight duration for an individual bee had stabilized, Wei imposed delays 

of various lengths between the time the bee arrived in the arena and the time it 

found the feeder. This was done by removing the feeder before the bee arrived 

and replacing it once the intended delay had been effected. Under natural condi-

tions, an increase in search time might be the result of changes in the appearance 

or location of the local landmarks used to pinpoint the goal.
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Wei found that the bees increased the duration of their learning flights after 

an enforced delay. The longer the delay between arrival at the arena and location 

of the feeder, the greater the increase in learning flight duration. Post-delay 

learning flights were briefer and exhibited a more rapid duration decay rate than 

post-initial departure learning flights. Some possible factors other than prior 

learning on the modulation of learning flight duration were ruled out.

In another experiment, the entire formation of the cylinders and feeder was 

moved to a different place within the arena for each visit by an individual bee, 

beginning after their first departure flight. Consequently, the relationship be-

tween arena-external and -internal cues was altered. The longest learning flights 

of the bees tested under these conditions tended to occur on the second or third 

departure, whereas the longest learning flights of the bees tested under stable 

landmark conditions occurred on the first departure. This suggests that the bees 

that encountered a change in scene upon their return performed a learning flight 

longer in duration than the one they would have performed if the scene had re-

mained stable.

Wei also showed that learning flight durations increased when bees were 

introduced to a new, qualitatively similar feeding site having a higher sucrose 

concentration. The bees modulated their learning flight durations in accordance 
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with the difference between the new concentration and the old one, rather than 

in accordance with the absolute value of the concentration. 

Barring the influence of unknown factors, Wei’s results indicate that bees 

update or acquire their information about feeding sites in light of their past expe-

rience. Their behavior in this case does not follow a rigid, inflexible pattern. They 

do not mindlessly repeat the original learning process in response to perceived 

differences, as if learning about the site for the very first time. The delay and 

moving configuration experiments indicate that bees integrate remembered and 

current information in response to certain changes. Further, comparison of the 

learning flight durations in those experiments suggests that bees are capable of 

modifying their information about a particular place in a way that corresponds to 

the changes that occur at that very place.

I should also note that Wei’s experiments provide examples of behavior that 

are difficult to explain without appealing to a notion like ‘expectation’ or ‘pre-

diction’. The behavior thus reveals the operation of learning mechanisms that go 

beyond those of simple association. For it would seem that the bees modified 

their learning flights when they encountered a delay that was longer than ex-

pected or a location of the landmark array that was different than expected. This 

is just one example of why it is becoming increasingly difficult to explain honey-

bees’ behavior in nonrepresentational terms (§ 1.5).
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Chittka et al.18 have provided a somewhat different sort of example with 

similar implications. They trained bees to a feeder in a flat, open area devoid of 

prominent landmarks, except for a car parked near the feeder They found that 

when the compass direction, from the hive, of the landmark-feeder configuration 

was slightly changed from its direction during training, but the relative positions 

of the landmark and feeder remained unchanged, bees did not correct their 

return-to-hive flight vectors. They flew along a vector that would have taken 

them directly to the hive during training. When the landmark remained in its 

training position, but the feeder was moved, the bees did correct their return-to-

hive flight vectors. As in Wei’s experiments, learning appeared to be influenced 

by the occurrence of something unanticipated, either an increase in search time, a 

change in the location of the feeder in relation to the landmark, or both.19

6.2  Complex Structures: Sequences, Rules, and Maps

Honeybees are capable of learning about structures more complex than distance 

and direction relations between locations. They can learn vector sequences: or-

dered lists of flight segments, each of which specifies a certain direction and dis-

tance of travel. They can learn the correct path through a maze, their learning of 

which at least sometimes involves learning part of the maze’s structure. They can 
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learn rules for negotiating mazes. There is even recent evidence that they can 

learn (derive) novel routes on the basis of stored place information and local 

cues, suggesting that some of the information they acquire can at least serve as a 

kind of map.

6.2.1  Vector Sequences

Honeybees and other insects are able to learn a specific, landmark-based route 

from the nest to a familiar foraging site and to learn a specific route from the for-

aging site back to the nest (the two routes might differ).20 The same insect typi-

cally takes the same routes each trip, while different insects may take different 

routes. Such learned routes are often complex, consisting of multiple segments of 

various distances and directions. Thus, a typical route might consist of segments 

such as: (1) a flight from the nest to a prominent landmark; (2) a flight from the 

vicinity of that landmark to another near the feeding site; and (3) a flight from 

the vicinity of the latter landmark to others very close to the site, with respect to 

which its location can be pinpointed.21 Also, it is not unusual for a honeybee to 

visit more than one foraging site on a single excursion. Bees that do so can learn a 
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specific route connecting them. When they return to the sites, they will visit them 

in the same order along the same “trapline” route.22 

What do honeybees learn that enables them to follow complex routes? They 

do learn route segments; but how are the memories about different route seg-

ments related to each other? In particular, are they stored completely independ-

ently of one another, or are they somehow combined into a memory of the entire 

route? If the latter, then bees do not simply acquire sets of memories that happen 

to get triggered in the appropriate sequence; rather, they acquire memories of 

sequences. That would suggest that the content of such memories is complex, 

having as constituents memories of individual route segments. The experiments 

I’m about to discuss suggest that bees do in fact acquire memories of sequences.23 

I’ll argue (§§ 7.1.2 and 7.2.1) that bees’ capacities to acquire information about the 

different sorts of sequences discussed in this section and below (§ 6.2.2.1) exhibit 

systematicity. This section and others (§§ 6.2.3.2 and 6.2.4) also serve as the basis 

for an argument that some bee representational constituents play a semantic role 

akin to that of indexicals (§ 7.3.3).

Collett et al.24 (hereafter, Collett) performed a series of experiments designed 

to provide insight into what honeybees learn when they learn complex routes. 
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One set of experiments specifically addressed the issue of whether bees learn an 

ordered list of flight vectors—that is, whether they learn something roughly like 

the following: first, fly n distance units in direction d; second, fly m distance units 

in direction d*; and so on. Collett trained bees to fly an obstacle course contained 

within a box (Fig. 6.1). The course required the bees to fly in a zig-zag pattern, 

through holes in transparent plexiglas partitions, in order to reach a sucrose re-

ward. The holes were very difficult for the bees to see, so they were sometimes 

marked with either small, black disks (just above them) or black rings (around 

them). The markers, however, were periodically removed during training to pre-

vent the bees from becoming too reliant upon them. The walls and floor of the 
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Figure 6.1. Plan view of the principal train and test course configurations employed in Collett’s 
vector sequence experiments. The entrance and partition holes were 15 cm in diameter. The 
feeder entrance hole was 2 cm in diameter. Coordinates of the holes for training: entrance hole, 
(130, 30); first partition hole,  (160, 60); second partition hole, (90, 120); feeder hole, (160, 180). Co-
ordinates of the entrance hole for displacement tests:  (0, 90). Axes units are centimeters.  e, en-
trance hole. f, feeder hole. Redrawn from Journal of Comparative Physiology A,  vol.  172,  1993,  pp. 
693–706, “Sequence learning by honeybees,” Collett, T. S.,  Fry, S. N., and Wehner., R., Figure 1,
© Springer-Verlag 1993, with kind permission of Springer Science and Business Media.



box were white with random dark marks. The marks provided stabilizing visual 

cues (input for optic flow and perhaps some distance-to-wall information).

Tests were conducted with the plexiglas partitions removed. In some tests 

(standard tests), the entrance hole remained at its training location. In other tests 

(displacement tests), the position of the entrance hole was shifted, enough so that 

the bees might be able to detect some of the resulting differences in their location 

as they flew through the box (Fig. 6.1). The displacement tests were performed to 

see whether the bees would fly to specific places in the box, rather than princi-

pally rely on remembered vectors.

The standard-test trajectories turned out to be significantly different from the 

displacement-test trajectories. In standard tests, the locations of the bees’ first and 

second turns inside the box were approximately the same as they had been dur-

ing training. In displacement tests, the resultant shift in each turn’s location, 

along each axis, was approximately the same as the amount of displacement of 

the entrance hole. Furthermore, in each sort of test, when the position of the first 

turn in an individual bee’s flight path differed from the correct location, there 

was a slight tendency for the position of the second turn to differ from the correct 

location by the same amount. The second flight segment, then, did not appear to 

correct for any inaccuracies in the first.
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Thus, the results were consistent with the hypothesis that the bees learned 

an ordered list of vectors, and they were significantly different from what they 

would have been had the bees learned only to fly to specific locations in the box. 

In other words, the only apparent cause of the bees’ adopting the second flight 

segment in the training sequence was the playing out of the first flight vector. So 

it would seem that the vector memories for the two flight segments must have 

been directly linked in some way. Similar results were obtained with a different 

zig-zag route and with a route consisting of two turns in the same direction.

Although the above experiments suggest that the bees relied principally on 

their memories of the appropriate flight vector sequence, Collett acknowledges 

that there probably were some relatively weak effects of place information on the 

bees’ trajectories. Those effects could be explained in terms of slight differences 

between the visual scenes at the two partition hole locations. For although the 

panorama within the box was fairly uniform, a bee relatively close to one wall 

would quite likely experience a visual scene that was, in detail, a bit different 

from the one it would experience if it were close to the opposite wall. The black 

marks on the close wall would likely appear to be larger and more distinct than 

those on the opposite wall.
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Collett25 recently investigated the effects of panoramic context on honeybees’ 

performance of route flight segments. His results confirmed the hypothesis that 

bees are capable of learning vector sequences. He trained bees to a food reward 

situated within a channel that contained two landmarks between its entrance and 

the feeder’s entrance. The experiments made use of two types of landmarks, 

boundary landmarks and isolated landmarks. Boundary landmarks are sharp 

transitions between two perceptibly different panoramic contexts. An example of 

such a landmark would be anywhere along the border between an open meadow 

and a forest. Isolated landmarks are prominent, localized landscape features for 

which the panoramic context encountered before the feature (relative to a line of 

travel) appears similar to the context encountered after the feature. An example 

of this type of landmark would be a solitary tree in an area of grassland. 

Different groups of bees were trained with, respectively, two different types 

of channels (Fig. 6.2A). One type of channel contained two boundary landmarks, 

each of which was an abrupt change in wall pattern from randomly distributed 

black and white squares to alternating black and white vertical stripes. The first 

boundary occurred 1 m beyond the channel entrance, and the second occurred 

1  m beyond the first. The feeder entrance (a 10-mm round hole in one of the 

walls) was positioned 1 m beyond the second boundary. The other type of chan-
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nel contained one boundary landmark and one isolated landmark, a baffle 

through which the bees flew. The boundary occurred 1  m beyond the channel 

entrance, and the baffle was situated 1 m beyond the boundary. The feeder en-

trance was another meter past the baffle. Throughout training, the channels ex-

tended at least 4 m beyond the feeder entrance (the entrance–landmark–feeder 

configuration was regularly moved along the channel walls in order to control 

for various cues).
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Figure 6.2. Train and test configurations in Collett’s channel experiments. Wall patterns are 
shown together with the locations of boundary landmarks (open triangles), baffles (filled trian-
gles), and the feeder entrance (filled arrows; open arrows indicate the training position of the 
feeder in relation to the last landmark).  (A) Training configurations for bees trained with two 
boundary landmarks (top) and with one boundary landmark and one baffle (bottom). (B) Test 
configurations for boundary-only-trained bees with the distance from the channel entrance to the 
first boundary increased by 1 m from the training distance (top) and for baffle-trained bees with 
the distance from the entrance to the boundary increased by 2 m from the training distance (bot-
tom). (C) Test configurations for boundary-only-trained bees (top) and baffle-trained bees (bot-
tom) with the distance between the landmarks increased by 1 m from the training distance. (D) 
Test configurations for boundary-only-trained bees (top) and baffle-trained bees (bottom) with 
the final landmark removed. Adapted from various figures in Collett et al. 2002.



Collett performed three series of tests. For each test, the wall segment that, 

during training, contained the feeder entrance was replaced with an identical 

segment that did not contain a hole. In one series of tests, the relative positions of 

the landmarks remained as they were during training (Fig. 6.2B). The distance 

from the channel entrance to the first landmark either was the same as in training 

or was increased. For all tests in this series, and regardless of the types of land-

marks employed, bees searched at the training distance from the final landmark. 

That they did so, regardless of the distance from the channel entrance to the first 

landmark, confirmed earlier findings26 that bees’ searches are sometimes con-

trolled by a local vector extending from a particular landmark to the place, rela-

tive to that landmark, where the goal had been.

In the second series of tests, the second landmark was placed 2 m (rather 

than 1 m) beyond the first landmark, where the feeder entrance had been relative 

to the first landmark during training (Fig. 6.2C). Bees trained with two boundary 

landmarks searched at the training distance from the final landmark, as they had 

done in the previous series of tests. Bees trained with the baffle, however, exhib-

ited a search pattern centered at the baffle. The baffle, then, did not activate a 

baffle-to-goal vector. Still, like the bees trained with two boundary landmarks, 
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they did search at the appropriate location in relation to the final (and only) 

boundary landmark. 

In the final series of tests, the second landmark was removed (Fig. 6.2D). 

Bees trained with the baffle searched about 2 m after the boundary landmark (at 

the appropriate location in relation to that landmark), as they had done in the 

second series of tests. Their search, however, was a bit broader, and its focus was 

a bit less well defined, than the searches of baffle-trained bees in the first series of 

tests. Adding 2 m to the distance between the channel entrance and the boundary 

shifted the focus of the search farther into the channel, well beyond where it 

should have been had the bees been guided by an estimate of the distance of the 

feeder from the hive or from the channel entrance (rather than an estimate or es-

timates in some way related to the boundary). Bees trained with only boundary 

landmarks exhibited a search which was much less constrained than that of the 

baffle-trained bees. It also lacked a well-defined focal point. Clearly, though, the 

focus of their searches was well past the correct location. Most of the bees flew 

until they were close to the end of the channel before turning back.

So how are the above results pertinent to the issue of whether the bees 

learned a sequence of vectors? The results for boundary-only-trained bees, by 

themselves, are consistent with their having learned independent flight seg-
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ments, each associated with one of the boundary landmarks.27 They might have 

learned, in effect, merely to fly to the second boundary upon encountering the 

first, and to fly to the feeder upon encountering the second. Perhaps their flight 

segment memories were triggered by only their having seen the landmarks asso-

ciated with them, with the role of active local vectors having been only to sup-

press the vector recall system until they were played out. In short, their perform-

ance, taken alone, could be explained in terms of their having relied upon memo-

ries recalled in sequence as opposed to a recalled memory of a sequence.

The performance of the baffle-trained bees, however, cannot be explained in 

quite the same fashion.28 For, unlike the boundary-only-trained bees, they did not 

use a landmark-to-feeder vector upon encountering the second landmark (for 

them, the baffle) in tests in which it was moved (Fig. 6.2C). Nor did they prema-

turely search near the training location of the baffle (relative to the first land-

mark) in tests in which it was moved or removed, even though (i) the available 

visual stimuli at that location were more consistent with the feeder’s training 

location than the baffle’s training location (Fig. 6.2C,D), (ii) the learned land-

mark-to-feeder vector couldn’t have been triggered by the baffle (which wasn’t 

there), and (iii) there consequently wasn’t a baffle-triggered active vector that 
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could have suppressed a search for the goal. Moreover, it is unlikely that the 

baffle-trained bees employed either only a baffle-to-feeder vector or only a 

boundary-to-baffle vector. Otherwise, in one or more tests, they presumably 

would have searched at a much shorter distance from the boundary than they in 

fact did.

What remains to be determined, then, is whether the baffle-trained bees re-

lied upon a memory of a single boundary-to-feeder vector or upon a memory of 

a sequence of vectors (from the landmark to the location of the baffle, then from 

the location of the baffle to the location of the feeder entrance). The former alter-

native is compatible with the bees’ having learned the difference between the 

global coordinates of the boundary and those of the feeder entrance.

Collett argues that the baffle-trained bees relied upon a remembered se-

quence of vectors. First, when the test configuration of landmarks was the same 

as in training (the first series of tests), the searches for the two groups of bees 

were quite similarly focused. This suggests that each group relied upon a vector 

from the second landmark to the feeder location. For spread of search is posi-

tively correlated with local-vector length.29  That the baffle-trained bees relied 

upon a baffle (location)-to-feeder vector is further supported by the fact that their 
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searches were much more focused when the baffle was at its training location (in 

relation to the boundary) than when it was removed.

Second, the searches of bees trained with only boundary landmarks were 

not controlled by a single, remembered local vector from the first boundary 

landmark to the feeder entrance. Otherwise, in tests in which the second bound-

ary landmark was shifted to the location (relative to the first landmark) of the 

feeder entrance during training, they would have searched at the second bound-

ary landmark. Instead, they searched at the trained distance from that landmark. 

The absence, in boundary-only-trained bees, of the operation of a single vector 

from the first landmark to the feeder strongly suggests the absence of the opera-

tion of such a vector in baffle-trained bees. The only remaining alternative is that 

their searches were produced by a recalled sequence of local vectors.

Collett considers his major finding to be that, in every test, the two groups of 

bees searched at the trained distance along the panoramic context that contained 

the feeder. Furthermore, the only case in which bees did not search at the trained 

distance from the last-encountered boundary landmark was when boundary-

only-trained bees were tested with the final training landmark removed. In that 

test, the panoramic context of the feeder occurred nowhere along the channel. As 

Collett points out, this suggests that the correct panoramic context is necessary 

for activation of the appropriate local vector.
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Panoramic contexts, though, cannot be relied upon to precisely specify loca-

tions. They are, by definition, much the same over a wide area. And for baffle-

trained bees, in every test, the panoramic context was the same from just past the 

boundary landmark to near the end of the channel. (Recall also that, in Collett’s 

vector sequence experiments, the panorama was fairly uniform throughout the 

box.) Furthermore, there is no reason to think that any other sensory information 

relevant to where the baffle should have been in tests was acquired by the bees at 

or near that point. It is highly likely, then, that the principal cause of the activa-

tion of the baffle-trained bees’ baffle (location)-to-feeder vector was the playing 

out of their boundary-to-baffle vector. Again, it appears that those vectors must 

have been connected in memory.

6.2.2  Maze Learning

The capacity of honeybees to learn to correctly negotiate various sorts of mazes 

has implications regarding what they are able to represent. Several studies sug-

gest that bees are able to represent maze configurations, or sequences of sensory 

stimuli or motor commands. Other studies suggest that bees can represent rules 

for navigating mazes.
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6.2.2.1  Configurations and Sequences

Honeybees can learn to fly the correct path through a maze containing several 

decision points, without the help of markers to guide them. Zhang et al.30 (here-

after, Zhang) successfully trained bees to follow the correct path through one of 

either of two such mazes (Fig. 6.3).

Zhang took his results to suggest that the bees learned either the spatial lay-

out of the maze or the sequence of the correct turns through it. Unfortunately, for 
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Figure 6.3.  Two mazes used by Zhang in his maze learning experiments. The width and height of 
each box was 30 cm. Every box had four 4-cm diameter holes, one in the center of each wall, with 
one or two of the exit holes blocked. The interior walls were effectively textureless. Boxes with 
two exit holes (decision boxes) are numbered. A solid line indicates the correct path through the 
maze; a broken line indicates an incorrect path. e, maze entrance; f,  feeder. Reprinted from Neuro-
biology of Learning and Memory, vol. 66, Zhang, S. W., Bartsch, K., and Srinivasan, M. V.,  “Maze 
learning by honeybees,” 267–282, © Copyright 1996, with permission from Elsevier.



my purposes, the results in question can be explained without appealing to the 

bees’ having learned either sort of structure.

First, consider maze 131 (Fig. 6.3). Decision boxes 1 and 3 have the same 

compass orientation and the same exit hole locations. Also, the correct turn is to 

the left in decision box 1 and to the right in decision box 3. So it is true that bees 

repeatedly navigating the maze without making errors (at above-chance levels) 

would require their having information which enables them to treat the two 

boxes differently. As we are about to see, however, the required information 

could be in the form of a sequence of memories, rather than a memory of either a 

sequence or a spatial layout.

Notice that the entrance to the maze, which is also the entrance to decision 

box 1, could be taken, not implausibly, to be a boundary landmark, marking the 

transition from the panorama of the lab to the panorama of the box’s interior. On 

the other hand, the entrance to decision box 3 does not mark a transition of dis-

tinct panoramas. Furthermore, decision box 2 is in detail visually distinct from 

the other boxes, in that one of its exit holes is to the left and the other is straight 

ahead. So the bees’ performance could be explained by their having learned to do 

the following:

To turn left just after encountering the lab–maze boundary landmark.
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Upon entering a box having a single exit hole, to fly through it.

Upon entering a box having an exit hole to the left and one straight ahead, 
to fly through the one straight ahead.

Upon entering (without encountering a boundary landmark) a box having 
an exit to the left and one to the right, to turn right.

Moreover, it would seem that the above acquired information need not be linked 

in memory in order for the bees’ to correctly navigate the maze.

Second, consider maze 232 (Fig. 6.3). Decision box 3 is in detail visually dis-

tinct from the other boxes in that one of its exit holes is to the left and the other is 

straight ahead. Also, each of the remaining decision boxes differ in compass ori-

entation. Since it is known that honeybees learn the compass orientation (relative 

to their line of flight) of landmarks along a route,33 it is not implausible that the 

bees in Zhang’s experiment learned the respective compass orientations of the 

relevant boxes in the maze. So the bees’ performance could be explained by their 

simply having associated the appropriate behaviors with the relevant visual 

stimuli and compass information. They need not have acquired a memory of a 

sequence or of a spatial layout.

For one of the experiments with maze 1, Zhang did control for compass in-

formation by frequently rotating it during training. However, as we’ve seen, 
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compass information is not required to reliably negotiate maze 1. Compass in-

formation could be crucial for learning maze 2. But Zhang did not control for 

compass information with maze 2; he controlled only for odors by exchanging 

some of the boxes for one test.

I’ve assumed that, for the bees in Zhang’s experiments, open holes were 

visually distinct from blocked holes. This assumption could be questioned, since 

it appears that blocked holes were covered on only the exterior surfaces of the 

boxes. Zhang, though, does not address this issue. Nor does he relate how often, 

if ever, bees attempted to fly through blocked holes. If, however, my assumption 

is incorrect, then his claim that his results suggest that the bees learned either the 

spatial layout of the maze or the sequence of the correct turns through it would 

become more plausible. I would welcome that outcome, for we would then have 

a plausible case of bees’ having learned another kind of complex structure, in 

addition to vector sequences.

In fact, Collett34 has provided such a case, one in which honeybees appear to 

have acquired information about a maze’s configuration.35 His experiments not 

only support the claim that bees can acquire semantically complex information 

(and that the relevant capacities exhibit systematicity) but also raise the possibil-

ity that bees are capable of transitive reasoning (§ 7.4).
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Collett trained honeybees to negotiate a relatively simple, maze-like appa-

ratus comprised of three boxes, placed end to end (Fig. 6.4). For most of the ex-

periments, the training configuration was as follows. Two distinct patterns were 

fixed to the back wall of each box, one on the left and one on the right. A hole 

2 cm in diameter occurred in the center of each pattern. The hole in one of the 

two patterns (the positive stimulus) led either to the next box (if any) or to a su-

crose reward. The hole in the other pattern (the negative stimulus) led to a small, 

blocked-off compartment. The left –right positions of the patterns were frequently 

switched, whereas the same two patterns always occurred in the same boxes 

(and no pattern occurred in more than one box). Thus, a bee could learn to fly 
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Figure 6.4. Plan views of sample train (top) and test (bottom) configurations of the apparatus in 
Collett’s visual-sequence learning experiments. Bees flew from left to right. Each box was 40 cm 
high, 60 cm wide, and 50 cm long. The entrance to the first box was 5 cm in diameter. All patterns 
were 25 by 25 cm. The walls and floor of each box were white, with random dark marks. W, 
white; Blk, black; Y, yellow; Blu, blue;  H, black–white horizontal stripes; V, black–white vertical 
stripes; +, positive stimulus, –, negative stimulus. Training configuration redrawn from Journal of 
Comparative Physiology A, vol. 172, 1993, pp. 693–706, “Sequence learning by honeybees,” Collett, 
T. S., Fry, S. N.,  and Wehner., R., Figure 10, © Springer-Verlag 1993, with kind permission of 
Springer Science and Business Media.



directly through the apparatus to the reward only if it learned, for each box, 

which of the two patterns was the positive stimulus.

In tests, the negative pattern in one of the boxes was replaced with the posi-

tive pattern from one of the other boxes, resulting in a box having two positive 

stimuli. The remaining patterns were left unchanged (Fig. 6.4). As in training, the

left –right positions of the patterns were frequently switched, so that each pattern 

was on a particular side of the back wall for half of the trials.

In one experiment, the pairs of training patterns in the front, middle, and 

back boxes were, respectively, white paper (positive) and black paper (negative), 

blue paper (positive) and yellow paper (negative), and black–white vertical 

stripes (positive) and black–white horizontal stripes (negative). After the bees 

had learned which pattern of each pair identified the way to the reward, they 

were tested with both the white pattern and the vertical pattern (positive for the 

front box and back box, respectively) in either the front box or the back box. The 

bees preferred the white pattern in the front box, and they preferred the vertical 

pattern in the back box. Similar results were obtained in four other tests that 

paired the positive stimuli from the front and back boxes. 

Results were different when bees were tested in the middle box, with the 

positive stimulus of that box set beside the positive stimulus from one of the 

other boxes. For all such tests, the bees either preferred the positive stimulus 
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from the front box or the back box or showed no preference. Nonetheless, the 

way they treated a pair of test stimuli in the middle box was different from the 

way they treated the same pair of test stimuli in one of the other boxes. In three 

of six experiments, the preference for the positive stimulus of either the front box 

or the back box, when bees were tested in one of those boxes, was significantly 

stronger than it was when bees were tested in the middle box.

The results of Collett’s experiments, then, suggest that the bees learned the 

order in which they encountered the relevant positive stimuli. They certainly did 

not learn merely to fly through the opening in any positive pattern. 

Furthermore, Collett attempted to gain insight into what cues told the bees 

where they were in the sequence. A “box swapping” experiment ruled out the 

possibility that the bees discovered or created differences among the boxes them-

selves, independent of their position in the series. And the following experiment 

told against the possibility that the bees simply associated the positive stimulus 

in (or the appearance of) one box with the positive stimulus in the next.

Bees were trained with yellow paper marking the entrance to the boxes 

(which was always on the left), white (positive) and black (negative) in the first 

box, blue (marking the only exit and always on the right) in the second, and ver-

tical (positive) and horizontal (negative) in the third (Fig. 6.5). As in the other ex-

periments, the left –right positions of the positive and negative stimuli were fre-
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quently switched. In two respective tests, bees chose between white and vertical 

in the front box and the back box. As expected, they preferred white in the front 

box and vertical in the back box. In a further test, bees chose between white and 

vertical in the middle box (Fig. 6.5). The back box remained the same as in train-

ing, whereas the front box was made to look as similar as possible to the middle 

box in training, with blue on the right marking the only exit. Nonetheless, the 

bees preferred white in the middle box and vertical in the back box. They did not, 

then, simply associate the perceived characteristics of the middle box in training 

with the succeeding, vertical positive stimulus.

Collett did not discuss the possibility that the bees (in this experiment) 

learned to correctly navigate the apparatus by their having associated only the 
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Figure 6.5. Plan views of the train (top) and one of the test (bottom) configurations of the appa-
ratus for Collett’s “blue–single exit” sequence learning experiment. For further details, see the 
caption to Figure 6.4. W, white; Blk, black;  Y, yellow; Blu, blue; H, black–white horizontal stripes; 
V, black–white vertical stripes;  +, positive stimulus, –, negative stimulus. Adapted from Journal of 
Comparative Physiology A, vol. 172, 1993, pp. 693–706, “Sequence learning by honeybees,” Collett, 
T. S., Fry, S. N., and Wehner., R., Figure 10, © Springer-Verlag 1993, with kind permission of 
Springer Science and Business Media.



global or local positions of the boxes with the appropriate positive stimuli. That 

is, one possible explanation of the results is that the bees associated certain 

ranges of distance—their estimates of their distance from, say, the entrance of the 

apparatus—with the respective correct choices. In other words, they might have 

associated the location of the middle box in training with the succeeding, vertical 

positive stimulus.

The results, however, count against this sort of explanatory hypothesis as 

well. It has four possible versions.

(1) The bees’ associated their (local or global path integration) coordinates 
with the pattern positive for the currently occupied box, and,

(a) upon entering the front box (testing), they reset their coordinates to 
those appropriate to the middle box (training), or,

(b) they did not reset their coordinates.

(2) The bees’ associated their coordinates with the pattern positive for the 
box (if any) which came just after the currently occupied box, and,

(a) upon entering the front box (testing), they reset their coordinates to 
those appropriate to the middle box (training), or,

(b) they did not reset their coordinates.

Every version is consistent with the bees’ having flown through the blue-marked 

opening in the front box, it having been the only available alternative. Every ver-

sion is consistent as well with the bees’ having chosen vertical over white in the 
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back box. But it is difficult to reconcile any version with the bees’ having pre-

ferred white over vertical in the middle box.

Hypotheses (1a) and (2a) maintain that the bees reset their coordinates upon 

entering the front box. Thus, on (1a), when the bees were in the middle box (test-

ing), their coordinates would have been appropriate to the back box (training). 

Since (1a) requires the bees to have chosen the positive pattern for the box they 

took themselves currently to be in, they should have chosen, in the middle box, 

the positive pattern for the back box. That is, they should have preferred vertical 

over white, contrary to their actually having preferred white. On hypothesis (2a), 

when the bees were in the front box (testing), their coordinates would have been 

appropriate to the middle box (training). Bees in the front box, then, would have 

taken the subsequent box (in reality, the middle box) to be the back box. Since 

(2a) requires the bees to have chosen, in what they took to be the subsequent box, 

the positive pattern for that box, they should have chosen, in the middle box, the 

positive pattern for the back box. Again, they should have preferred vertical over 

white, contrary to their actually having preferred white.

Hypotheses (1b) and (2b) maintain that the bees did not reset their coordi-

nates upon entering the first box. On either hypothesis, then, the bees were 

highly likely to have been correct about which box they were in. Thus, on (1b), 

bees in the middle box would have taken themselves to be in a location interme-
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diate with respect to that appropriate for choosing white (the front box) and that 

appropriate for choosing vertical (the back box). In that case, they should not 

have shown any significant middle-box pattern preference. Hypothesis (2b) 

would have predicted the same result. The bees would have associated their first-

box location with exiting the second box through the blue pattern. In tests, when 

they arrived in the middle box, no blue pattern was present. So, considering just 

the hypothesis in question, it should not have made any difference to them 

which middle-box pattern to choose.

I hope to have established the plausibility of the possibility that the bees in 

Collett’s experiments acquired a memory of a sequence (the box-to-box sequence 

of positive stimuli) rather than behaved in accordance with sequentially recalled 

memories. For example, in the experiment just examined, they may have stored a 

representation having a content somewhat analogous to [white, then blue, then 

vertical] or [white before blue and blue before vertical].36 We thus have another 

plausible case of bees’ having learned a kind of complex structure.
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36 If in fact this is correct, then there is a possibility that the bees’ having preferred white when 
tested in the middle box was a result of a kind of reasoning process.  From “white before blue and 
blue before vertical,” say, the bees might have derived “white before vertical.” Of course, it is also 
possible that the bees independently learned “white before vertical.” More on the possibility of 
reasoning in honeybees will be presented below (§ 7.4).



6.2.2.2  Rules

Zhang37 performed maze experiments in addition to those described in the pre-

ceding section. For many experiments, he trained honeybees to correctly negoti-

ate mazes (such as those shown in figure 6.3) by following marks of a particular 

color. He found, for example, that bees trained on one maze with one color are 

able to accurately navigate a differently configured maze by following either 

marks of the same color or marks of a different color. He also found that bees so 

trained are able to negotiate an identically configured maze without marks. Their 

performance is less accurate than it is in the case of marked mazes, but it is still 

significantly more accurate than the performance of controls.

My intent is not to evaluate or examine the implications of the experiments 

just mentioned. Instead, I focus on another of Zhang’s maze experiments. Using 

maze 3 (Fig. 6.6),38 he trained bees to turn right when the wall opposite the en-

trance to a compartment was blue and to turn left when that wall was green. The 

only nonmarked compartments were those both having a single exit hole and not 

requiring a turn. Tests were carried out with mazes 3, 4, and 5 (Fig. 6.6). The test 

with maze 4 was performed immediately after the test with maze 3, and the test 

with maze 5 was performed immediately after the test with maze 4. 
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37 Zhang et al. 1996.

38 What I call mazes 3–5 are called paths 6–8, respectively, in Zhang et al. 1996.



The bees performed very well in every test, and their levels of performance 

in the three tests did not significantly differ from one another. The percentages of 

error-free trials were 92.2% for maze 3, 97.7% for maze 4, and 93.2% for maze 5. 

Two explanations of these results readily come to mind. One is that the bees 

simply associated turning left with green and turning right with blue (and con-

tinuing straight ahead with the color of the bare walls). The other is that the bees 

learned a (nonassociative) rule that caused them to go through the hole right of 

the colored wall when it was blue and to go through the hole left of the colored 

wall when it was green. Zhang’s results do not help us to decide between these 

alternatives.

A key feature of a rule, as I here employ the notion, is that it allows its pos-

sessor to generalize over a broad range of different stimuli, where that range in-
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Figure 6.6. The maze configurations used by Zhang to test the ability of bees to turn left or right 
in response to color cues. A solid line indicates the correct path through the maze; a broken line 
indicates an incorrect path. For further details, see the caption to Figure 6.3.  Reprinted from Neu-
robiology of Learning and Memory, vol. 66, Zhang, S. W., Bartsch, K., and Srinivasan, M. V., “Maze 
learning by honeybees,” 267–282, © Copyright 1996, with permission from Elsevier.



cludes stimuli that bear no apparent resemblance to those included in the train-

ing set. Ruled-based generalization, then, is different than association-based gen-

eralization, in that the latter involves generalizing only over stimuli that are 

similar to those used in the training set. As remarked in the first paragraph of 

this section, bees trained to negotiate mazes by following marks of a single color 

did at least appear to exhibit some ability to generalize beyond the training con-

ditions. But Zhang did not perform experiments designed to assess whether or 

not the bees had the ability to generalize beyond the training conditions of the 

experiment currently in question. 

On the other hand, Giurfa et al.39 (hereafter, Giurfa) did perform simple-

maze experiments which showed that honeybees are indeed able to generalize a 

learned task to novel, dissimilar stimuli. Thus, it is likely that they acquired a 

rule, rather than an association. As we’ll see in the next chapter, Giurfa’s results 

are relevant to the issue of whether different types of bee representations have 

different semantic roles (§ 7.3.2). They also bear on whether bees implement rules 

that operate on the values of variables (§ 7.5) and on whether some honeybee 

cognitive processes are sensitive to the constituent-structure of the representa-

tions on which they operate (§§ 7.4 and 7.5).
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In the first stage of Giurfa’s experiments, he successfully trained six respec-

tive groups of bees to solve four delayed matching-to-sample tasks and two de-

layed non-matching-to-sample tasks. A Y-maze served as the experimental appa-

ratus (the configuration of the maze for one experiment is shown in Figure 6.7). 

In the delayed matching-to-sample experiments, the bees encountered one of a 

pair of stimuli (the sample stimulus) at the maze entrance. (Which of the two 

served as the sample was varied.) The entrance arm of the maze ended at a 

chamber in which the bees had to decide between the two remaining arms. One 

arm contained the sample, or matching, stimulus, while the other arm contained 

the nonmatching stimulus. The bees were rewarded only if they chose the arm 

which contained the matching stimulus. (Which arm served as the “matching” 

arm also was varied.) The training procedure for the delayed non-matching-to-

158

Figure 6.7. Configuration of the Y-maze use by Giurfa in a delayed matching-to-sample experi-
ment in which bees were trained with odors and tested with colors. The odors were presented by 
means of odorant-soaked tissues in perforated vials.  Exhaust fans prevented odor mixing in the 
decision chamber and removed feeder odors. Baffles prevented the bees from experiencing the 
stimuli present in a chamber until they had entered it. In the transfer test,  the scented vials were 
replaced with visually identical, odorless vials. b, baffles; c, colors; d, dummy vials; e, entrance; o, 
odor vials; f, feeder; x, exhaust fan. (Adapted by permission from Macmillan Publishers Ltd: Na-
ture, vol. 410, pp. 930–933, Giurfa, M., Zhang,  S., Jenett, A., Menzel, R., and Srinivasan, M. V., 
“The concepts of ‘sameness’ and ‘difference’ in an insect,” © Copyright 2001.)



sample experiments was the same, except the bees were rewarded only if they 

chose the arm which contained the nonmatching stimulus.

In each experiment, after the bees had learned the relevant discrimination, 

Giurfa performed a test to determine whether or not the bees would transfer 

what they had learned to a pair of novel stimuli. The pairs of train and transfer 

test stimuli used in the experiments are given in Table 6.1. The levels of perform-

ance of the bees in transfer tests were about the same as the respective levels of 

performance they had achieved in training.40 Thus, the bees not only learned the 
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40 The one exception was experiment 3, in which bees were trained on radial and circular gratings 
and tested on oriented (45˚ and –45˚) linear gratings. Nonetheless, the bees’ preference for the 
appropriate test grating was highly significant (P < .001).

Experiment
Stimulus Pairs

Train Test

Experiment 1 Blue
Yellow

Vertical grating
Horizontal grating

Experiment 2 Vertical grating
Horizontal grating

Blue
Yellow

Experiment 3 Radial grating
Circular grating

Oriented (45˚) linear grating
Oriented (–45˚) linear grating

Experiment 4 Lemon odor
Mango odor

Blue
Yellow

Experiment 5 Blue
Yellow

Vertical grating
Horizontal grating

Experiment 6 Vertical grating
Horizontal grating

Blue
Yellow

Table 6.1. Stimulus pairs used in Giurfa et al.’s delayed matching-to-sample (1–4) and delayed 
non-matching-to-sample experiments (5 and 6). All gratings were black–white.



matching and nonmatching tasks but also transfered what they learned to novel 

stimuli. Furthermore, they exhibited transference not only between different 

sorts of visual stimuli but also from olfactory stimuli to visual stimuli.

Giurfa took his results to strongly suggest that honeybees have the capacity 

to acquire (or make use of) sameness and difference concepts. Depending on 

what one means by “concept,” that may or may not be the case. For example, it’s 

not clear that the bees’ could have solved the tasks only if they had made use of 

representations with the content [same] or [different]. What Giurfa’s results more 

clearly suggest is that the bees acquired a rule that operates on a variable. In par-

ticular, in the “matching” transfer tests, they seem to have made use of a rule 

something like, “Choose the x-marked arm if x was at the entrance,” where x 

ranges over (at least) colors, patterns, and odors. It’s possible that neither the ac-

quisition nor the execution of such a rule requires explicit judgments about 

whether what is now present is the same as what was present at the entrance.

The bees’ exhibited capacity to generalize to novel stimuli is key. They cer-

tainly did not simply associate which of two specific stimuli occurred at the maze 

entrance with the reward arm of the maze. Otherwise, they would not have been 

able to transfer their learning across different sorts of visual stimuli, much less 

across different sensory modalities. One might be tempted to suggest that the 

bees associated “whatever stimulus” was (or was not) at the entrance with the 
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reward arm. But it should take at most only a bit of reflection to see that “what-

ever stimulus” is a variable. The question then arises what it could be to “associ-

ate” a variable with something, if not to acquire a rule that operates on a variable.

6.2.3  Novel Shortcuts and Vector Averaging

Displacement experiments are those in which bees are captured at the hive or a 

foraging site, transported to a familiar or unfamiliar location, and then released. 

Their subsequent course is then recorded. Such experiments have proven useful 

for revealing what bees are capable of learning about the layout of their foraging 

territory. They have also proven useful for illuminating some of the ways in 

which bees’ current motivations interact with their current sensory information 

and their recalled and stored locational information. 

6.2.3.1  Novel Shortcuts to the Hive

Menzel et al.41 (hereafter, Menzel) performed a series of experiments that demon-

strated (among other things) the capacity of honeybees to take a novel route 

when displaced to an unfamiliar location. Menzel accounts for his results by ar-

guing that the novel-shortcut bees averaged known site-to-hive vectors to obtain 

a novel site-to-hive vector. I argue that Menzel’s hypothesis is indeed the best 

explanation of his results (§ 6.2.3.2). If that’s the case, then it appears that bees are 
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capable of performing operations defined over certain semantic constituents of 

complex representations (§ 7.4). Menzel’s results also have implications regard-

ing the circumstance- and motivation-independence of certain bee representa-

tional constituents (§ 7.1.2). The Classicist can explain such independence by 

positing context-independent syntactic constituents.

Menzel trained bees to forage at two feeding stations, one in the morning 

and the other in the afternoon (Fig. 6.8). The area chosen for the experiments was 

unfamiliar to the bees, and there were no natural food sources in the regions 

around or between the hive, the feeding sites, and the two release-only sites. 
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Figure 6.8. A map of the area chosen by Menzel for his displacement experiments. The landscape 
was dominated by a large, cone-shaped hill,  surrounded by flat farmland. Sm, morning site; Sa, 
afternoon site; S3, Site 3;, S4, Site 4. Reprinted from Animal Behaviour, vol. 55, Menzel, R., Geiger, 
K., Jourges,  J., Müller, U.,  and Chittka, L., “Bees travel novel homeward routes by integrating 
separately acquired vector memories,” pp. 139–152, © Copyright 1998,  with permission from El-
sevier and Randolf Menzel.



Consequently, the trained routes were the only routes established by the bees in 

the experimental area. 

The morning site was situated within an area of harvested agricultural 

fields, with no apparent local landmarks within a 150-m radius. The afternoon 

site was about 60 m from a low bush, which was visible to the bees. Site 3, a 

release-only location, was situated within an area of uniform grassland. A clump 

of trees and a few scattered trees should have been just visible to bees at the spot. 

Site 4, another release-only location, was in a pasture. A row of bushes along a 

creek and some scattered tall trees were nearby landmarks.

In experiment 1, bees were captured at the hive upon arrival from one of the 

feeding sites. The bees were expected to be motivated to get back to the hive to 

discharge their foraging load. Bees arriving from the morning site were displaced 

to either the afternoon site or Site 3. Bees arriving from the afternoon site were 

transferred to either the morning site, Site 3, or Site 4. Bees (controls) that had 

visited only the afternoon site were transported to Site 3. Sites 3 and 4 were very 

unlikely to have been visited by the bees. As in all of the experiments, all bees 

were released within 20 min of capture. The direction in which a bee departed 

from a release site was estimated by recording its vanishing bearing, or the com-

pass direction of its flight at the point at which it disappeared from view.

163



The bees which had learned the locations of both feeding sites and were dis-

placed to the morning site, the afternoon site, or Site 3 flew toward the hive upon 

release (Fig. 6.9). The bees displaced from the afternoon site to Site 4 flew in the 

direction that would have taken them from the afternoon site to the hive. The 

bees which had visited only the afternoon site, when released at Site 3, also flew 

in the direction that would have taken them from the afternoon site to the hive.

The results showed that bees familiar with the two feeding sites could recall 

the homeward vector, learned at a different time of day, appropriate to the feed-
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Figure 6.9. Distributions of vanishing bearings of bees captured at the hive upon arrival from the 
afternoon site (open circles) and from the morning site (filled circles), in Menzel’s vanishing 
bearing, displacement study. Thick arrows indicate the means of the distributions. Thin arrows 
indicate specific headings that the bees might have adopted. H, hive; Sa, afternoon site; Sm, 
morning site; S3, Site 3; S4,  Site 4. Reprinted from Animal Behaviour,  vol.  55, Menzel, R., Geiger, K., 
Jourges, J., Müller, U., and Chittka, L., “Bees travel novel homeward routes by integrating sepa-
rately acquired vector memories,” pp. 139–152, © Copyright 1998,  with permission from Elsevier 
and Randolf Menzel.



ing site to which they had been transported. Also, the group of such bees re-

leased at Site 3 took a novel shortcut from there to the hive. Landmarks near the 

hive were thought to be imperceptible to bees at Site 3 (based on what is known 

about their visual resolution). The fact that the bees which had visited only the 

afternoon site adopted the afternoon-site-to-hive direction when released at Site 3 

controlled for both the possibility that the novel-route bees steered toward a bea-

con near the hive and the possibility that they relied on learned-route-associated 

landscape features. It also suggests that having learned the two feeder–hive 

routes was necessary for having been able to take the novel shortcut. The novel-

route bees, then, must have somehow combined the two respective route memo-

ries. In addition, the fact that the bees released at Site 4 adopted the afternoon-

site-to-hive direction suggests that bees don’t combine route or vector memories 

whenever they are released at an unfamiliar location.

In experiment 2, bees were captured at the hive when they were about to 

depart to one of the feeding stations. The bees were expected to be motivated to 

get to the feeding site appropriate to the period of time, morning or afternoon, 

during which they were captured. They were displaced to either the morning site 

if captured in the afternoon), the afternoon site (if captured in the morning), Site 

3, or Site 4. Bees (controls) that had visited only the morning site were trans-

ported to Site 3.
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The bees displaced to the afternoon site in the morning flew toward the hive; 

they did not adopt the course that would have taken them to the morning site 

(their original destination) had they not been displaced, nor did they set off in the 

actual direction of the morning site. As in experiment 1, they recalled the home-

ward vector appropriate to the site to which they had been transported.

The bees displaced to the morning site in the afternoon adopted one of two 

headings. About half of them flew toward the hive, whereas as the other half 

headed in the direction that would have taken them from the hive to the after-

noon site, their original target. They did not take the actual course to the after-

noon site.

Menzel explains the difference in behavior between the bees displaced to the 

morning site and those displaced to the afternoon site in terms of differences in 

the local cues available at the two locations. The landmarks visible from the af-

ternoon site were more prominent than those visible from the morning site. The 

former was characterized by a nearby bush, and it was much closer to the large 

hill than the latter. Thus, the bees transferred to the afternoon site were more 

likely to recognize their location than those transferred to the morning site. By 

the same token, they were also more likely to change their original feeder-direct-

ed motivation (and corresponding flight vector) to a hive-directed one.

166



The vanishing bearings of the hive departing bees transported to Site 3 ex-

hibited a bimodal distribution. This was the case for both the morning-displaced 

bees and the afternoon-displaced bees. Most of the bees in each group departed 

Site 3 on a course that would have taken them from the hive to the time-appro-

priate feeder. A significant proportion of the bees in each group took the novel 

course toward the hive. However, none of the peaks in the distribution of van-

ishing bearings corresponded to the actual direction from Site 3 to the time-

appropriate feeder.

The bees transferred to Site 4 in the morning chose the hive-to-morning-site 

compass direction and hence behaved as if they had not been displaced. The bees 

which had visited only the morning site, when released at Site 3, also behaved as 

if they had not been displaced—they, too, opted for the hive-to-morning-site di-

rection. These results reaffirm the implications of experiment 1. The possibility 

that the novel-route bees homed toward a beacon near the hive, as well as the 

possibility that they were attracted to familiar-route-associated landscape fea-

tures, was excluded. Also, learning the two feeder–hive routes appears to have 

been necessary for taking the novel shortcut. So it again appears that the novel-

route bees somehow combined the two respective route memories. Furthermore, 

the fact that the bees released at Site 4 behaved as if they had not been displaced 
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suggests that bees don’t automatically combine route or vector memories when-

ever they are released at an unfamiliar location.

In experiment 3, bees were captured at the feeders, some upon arrival and 

some upon departure. Bees arriving at or departing from the morning site were 

displaced to either the afternoon site or Site 3. Bees arriving at or departing from 

the afternoon site were displaced to the morning site. Feeder arriving bees were 

expected to be motivated to feed and thus to return to the feeding site at which 

they were captured, if able to do so. Feeder departing bees were expected to be 

motivated to return to the hive.

All of the bees taken from the morning site set a course that, in the absence 

of displacement, would have taken them back to the hive from the morning site. 

This was the case, regardless of whether they were captured upon arrival or de-

parture, and regardless of whether they were displaced to the afternoon site or 

Site 3. Menzel found this result surprising, since hive arriving and hive departing 

bees were able to fly directly home from the feeding sites and Site 3, and since 

feeder departing bees should have been at least as motivated to return to the hive 

as bees from either of those two groups. Menzel suggests both that the home-

ward vector is loaded into working memory upon arrival at a feeding site and 

that it is strong enough to override local landmark information. (I’ll suggest a dif-

ferent explanation shortly.)
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Bees captured at the afternoon site and released at the morning site showed 

a bimodal distribution of vanishing bearings, presumably uncorrelated with 

whether the bees were captured upon arrival or departure. About half of them 

oriented their flights in the afternoon-site-to-hive direction, whereas the remain-

der oriented their flights toward the hive. The bees captured at the afternoon site, 

then, behaved in a different manner than those captured at the morning site.

Menzel’s explanation of the behavior of the bees captured at the morning 

site doesn’t explain the behavior of the bees captured at the afternoon sight. If the 

homeward vector in working memory was strong enough to override local 

landmark information in the former case, then it should have been strong 

enough to override local landmark information in the latter case as well, since the 

landmarks at the morning sight were less prominent than those at the afternoon 

site. The bees released at the morning site would have had less local information 

to override than the bees released at the afternoon site. 

An alternative explanation focuses on the prominence of local cues at the 

capture site, rather than the strength of the homeward vector and the prominence 

of local cues at the release site. Since the morning site was characterized by rela-

tively few local cues, the bees captured at that site were likely to be disposed to 

rely upon compass information, rather than local cues, to set their course upon 

departure. This explains their failure to notice that they had been displaced to 

169



either Site 3 or the afternoon site. The afternoon site, on the other hand, did have 

at least one prominent local feature, a nearby bush. So it is reasonable to suppose 

that they were more disposed than morning-captured bees to rely upon local 

cues to set their course upon departure. Consequently, they should have been 

more likely than morning-captured bees to recognize where they were once re-

leased and to set the correct homeward course. This explanatory hypothesis pre-

dicts that, if the experiment is repeated under the same conditions, then a signifi-

cant portion of bees captured at a location corresponding to the afternoon site 

will fly directly to the hive if displaced to a location corresponding to Site 3.

Note that the just-offered explanation comports well with the idea that bees 

learn sequences of route segments (§§ 6.2.1–6.2.2.1). For if that idea is correct, it 

would explain how bees could already be disposed to fly in the feeding-site-to-

hive direction upon arrival at that site. A route from the hive to a feeding site and 

back to the hive can be viewed as one journey with multiple route segments, just 

as well as a route from the hive to a foraging site, or one from the hive to a for-

aging site and then to another foraging site.

From his results (summarized in Table 6.2), Menzel infers that the course a 

displaced bee sets upon release depends upon both its motivation when captured 

and the information it acquires at the release site. It does appear likely that the 

bees linked their memories of the feeder-to-hive vectors to cues available at the 
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feeding sites.42 This explains why hive departing bees and hive arriving bees 

were able to set the correct course from either feeding site to the hive. It explains 

why hive departing bees transported to the afternoon site were more likely than 

those transported to the morning site to choose the correct course home. And, as 

we’ve just seen, the behavior of feeder arriving bees and feeder departing bees 

can be explained in terms of the relative prominence of local cues at the two 

feeding sites.
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Release 
site

Hive arriving Hive departing Feeder arriving Feeder departing

Morn Aft Morn Aft Morn Aft Morn Aft

Sm Sm-to-H Sm-to-H
H-to-Sa

Sa-to-H
Sm-to-H

Sa-to-H
Sm-to-H

Sa Sa-to-H Sa-to-H Sm-to-H Sm-to-H

S3 S3-to-H S3-to-H S3-to-H
H-to-Sm

S3-to-H
H-to-Sa

Sm-to-H Sm-to-H

S4 Sa-to-H H-to-Sm

S3a Sa-to-H H-to-Sm

Table 6.2. Courses set by the bees in Menzel’s vanishing bearing, displacement experiments. 
morn, captured in the morning at the hive or the morning feeding site;  aft, captured in the after-
noon at the hive or the afternoon feeding site; Sm, morning site; Sa, afternoon site, S3, Site 3; S4, 
Site 4; H, hive.

a Control experiments in which the bees had visited only the site at which they were captured.



6.2.3.2  Explanations of Novel-Shortcut Behavior

Menzel demonstrated that bees are capable of setting a novel course from an un-

familiar site to the hive, without homing to recognized visual cues near or along 

the way to the hive. There are several possible explanations of this finding. 

Image matching  The novel route was the result of the bees’ traveling so as 
to match their stored image of distant landscape features, as seen from the 
hive, with their current image.43

Noninferential Interpolation  The similarity between the distant visual cues 
at Site 3 and those at each of the two feeding sites directly caused the bees 
in question to compromise between their established homeward vectors; 
no inferential processes were involved.44

Sequential Memory Referral  The novel route was the result of the bees’ al-
ternately relying upon the two remembered feeder-to-hive vectors.45 

General Landscape Memory  The novel-route bees did not rely upon their 
feeder-to-hive vectors; rather, they employed their “general landscape” 
memory, established during their exploration, or orientation, flights.46

Cognitive Map  The bees were able to set a novel course by locating them-
selves on their cognitive map, which encoded the coordinates of the two 
feeding sites, and other places in the bees’ explored territory, in a common 
frame of reference centered on the hive.47
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43 Collett (T. S.) and Collett 2002; Wehner et al. 1996.

44 Menzel et al. 1998, p. 149.

45 Menzel et al. 2000b.

46 I mention this as a possible explanation based on the results of Menzel et al.  (2000a,  2005), 
which I present below.

47 Giurfa and Capaldi 1999; Menzel and Giurfa 2001; Menzel et al.  1998, 2000b.



Vector Averaging  The similarity between the distant visual cues at Site 3 
and those at each of the two feeding sites caused the bees to recall both of 
the acquired feeder-to-hive vectors, which they then averaged to obtain a 
Site 3-to-hive vector.48 

Menzel favors the vector averaging hypothesis. It does, in fact, currently provide 

the best explanation of his results, as I will now argue.

There is a great deal of evidence confirmatory of the idea that honeybees 

pinpoint the location of their goal by matching their stored image(s) of land-

marks near the goal with their current image.49 One could argue, then, as do 

Wehner et al.,50 that bees might employ such a landmark-based guidance strat-

egy on larger scales, at least when the relevant visual cues do not have to com-

pete with vector information in working memory.

It is not at all clear, however, that this large-scale image matching hypothesis 

could adequately explain Menzel’s results. It is prima facie incompatible with 

several of them. First, bees captured upon arrival at the hive have just played out 

their feeder-to-hive vector. Thus, on the image matching hypothesis, they should 

be quite capable of employing landmark-based information in order to return to 

the hive via a novel shortcut. Now, in Menzel’s experiment 1, the hive arriving 

bees which had visited both feeding sites did depart from Site 3 in the direction 
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49 Cartwright and Collett 1983; Collett (T. S.) 1992; Wehner 1992.

50 Wehner et al. 1996.



of the hive. But the hive arriving bees which had visited only the afternoon site 

departed from Site 3 in the afternoon-site-to-hive direction. This poses a diffi-

culty for advocates of imaging matching, since the bees which had visited only 

the afternoon site should have been just as able to take the novel shortcut by 

means of image matching as the bees which had visited both sites. Moreover, any 

of the bees which had been visiting the afternoon site should have been quite fa-

miliar with the large hill, toward which they flew when traveling to that location 

(Fig. 6.8). 

Similarly, if the image matching hypothesis were correct, the hive arriving 

bees displaced to Site 4 in the afternoon should have been able to set the correct 

homeward course upon departure. Instead, they picked the direction that would 

have taken them from the afternoon site to hive in the absence of displacement. It 

is true that the hill’s compass direction at Site 4 differed by more than 90˚ from its 

compass direction at the afternoon site and at the hive (Fig. 6.8). So the bees dis-

placed to Site 4 might not have treated that prominent visual cue as the hill with 

which they were familiar. However, this possibility runs counter to at least the 

spirit of the imaging matching hypothesis under consideration, since it purports 

to explain the ability of insects to take novel shortcuts, even when the relevant 

landmarks are viewed from very different perspectives.51 
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Further, morning and afternoon hive departing bees were able to take the 

novel route back to the hive. But hive departing bees which had visited only the 

morning site did not orient toward the hive when released at Site 3. Again, this is 

a difficulty for the image matching hypothesis. The bees which had visited only 

the morning site should have been just as able to take the novel route by means 

of image matching as the bees which had visited both sites. One could claim that 

the morning-site only bees were somewhat less familiar with the position of the 

hill than bees which had visited the afternoon site, since the hill was not situated 

in line with their hive-to-morning-site route. This, then, might account for their 

failure to take the novel shortcut. But this response is unsupported, given that 

hive arriving, afternoon-site only bees also failed to take the novel route. That is, 

the bees’ degree of familiarity with the hill doesn’t account for any differences in 

navigational performance between the two groups.

Relatedly, an appeal to large-scale imaging matching would have to account 

for the fact that the hive departing bees released at Site 3 did not depart toward 

either of the feeders. Rather, they set off either on a heading toward the hive or 

on their original hive-to-site heading. The idea that image matching is not relied 

upon in the presence of a vector in working memory does not help here, since, to 

reiterate, a significant proportion of the hive departing bees released at Site 3 

headed toward the hive. Thus, hive departing bees were able to disregard their 
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original flight vector (and this is in accord with the results of other studies52). 

They were also motivated to forage when captured. It would seem, then, that if 

the novel-route, hive departing bees used imaging matching in order to return to 

the hive, then they should have been able to use image matching in order to lo-

cate their original destination.

The noninferential-interpolation hypothesis avoids some of the problems 

faced by the image matching hypothesis, since it attributes the bees’ novel-

shortcut ability, in part, to their having visited both of the feeding sites. Menzel 

mentions the view merely as providing a possible explanation of his results. I’m 

unaware of anyone who actually defends it. Consequently, it’s not clear what the 

claim is, exactly. The idea, I gather, is as follows. The bees associated the visual 

scenes at the two familiar sites with the respective homeward vectors. The scene 

at Site 3 resembled those familiar scenes closely enough that when some of the 

bees released at Site 3 attempted to match the available visual cues with one of 

the familiar scenes, both of the learned associations became active. The vector 

memories then somehow competed for control of the bees’ behavior, the result 

having been a compromise flight direction.

The interpolation hypothesis, as I understand it, attempts to occupy a mid-

dle ground between the imaging matching account and the vector averaging ac-
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count. It adds to the former an appeal to vector navigation. However, it stops 

short of an appeal to computational processes, relying only on associations and 

association strengths. Vectors come into play, but they are not rule manipulated.

Nonetheless, it is not clear that the hypothesis occupies a stable position. 

First, what sort of process is supposed to yield a compromise between two vec-

tors that is not a kind of inference? And if it is not a kind a inference, how is the 

process to be distinguished from large-scale image matching? In any event, even 

if the hypothesis is coherent, it’s not likely to be adequate. Before I present my 

case for that conclusion, I turn to Menzel’s.

Menzel finds the interpolation hypothesis unlikely because the bees released 

at Site 4 left on the heading they would have taken if they had not been dis-

placed, even though the hill was a prominent visual cue there. That assessment 

suggests that he takes the hypothesis to be a variant of the image matching ac-

count. But his response is not clearly adequate, if emphasis is placed on the pro-

posal’s requirement that the bees’ recalled both learned vectors. The hill’s com-

pass direction at Site 4 differed from that at each feeding site by 100–110˚ (Fig. 

6.8). It could be argued, then, that the bees did not treat Site 4 as sufficiently 

similar to either of the familiar sites. Furthermore, Menzel’s objection undercuts 

his own position. For if it is the case that the distant visual cues at Site 4 were 

similar to those available at the familiar sites, enough so that the interpolation 
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account should have applied to bees at Site 4, then those cues should have been 

similar enough for Menzel’s vector averaging thesis to have applied as well. 

(Note that the hill’s orientation with respect to the various sites poses a problem 

for image matching, but not clearly for interpolation, since the former, but not 

necessarily the latter, purports to explain novel shortcuts, even when the relevant 

landmarks are viewed from very different perspectives.) 

Since interpolation and vector averaging each appeal to vector navigation, it 

might be thought that they should account for Menzel’s data equally well. But I 

hope to convince you that this is not the case. Again, the interpolation account 

appeals to only associations and association strengths. It explains the behavior of 

the novel-route bees in terms of the strengths of their site–vector associations and 

the degree to which the visual cues at Site 3 stimulate each familiar-site-

associated vector memory. But association strengths and degrees of stimulation 

can be highly variable factors. Moreover, it is more likely than not that two vector 

memories would differ in their associative influence on a bee’s course (perhaps 

with one dominating). Consequently, on the interpolation view, it seems that the 

vanishing-bearing distribution at Site 3, for experiment 1 (hive arriving bees), 

should have been relatively broad, perhaps also with multiple peaks: one be-

tween the afternoon-site-to-hive and Site 3-to-hive directions, and one between 

178



the morning-site-to-hive and Site 3-to-hive directions, possibly with additional 

peaks at each of the feeder-to-hive directions.

However, no such peaks are discernible (Figs. 6.9 and 6.10). Furthermore, 

histograms of Menzel’s vanishing bearing data appear to show that the distribu-

tion of vanishing bearings for hive arriving bees released at Site 3 is not signifi-

cantly different from the distributions for hive arriving bees released at Site 4 and 

afternoon-site only bees released at Site 3 (controls). In fact, the similarity of the 

distributions is fairly close (the Site 3 distribution for hive arriving bees also 

bears some resemblance to the Site 4 distribution for hive departing bees) (Fig. 

6.10). This suggests that similar mechanisms were operative in the three groups 

of bees. We may infer, then, that since interpolation did not occur in the Site 4 or 

control group, it did not occur in the Site 3 group either. Also, since the Site 4 

bees and the control bees showed a tendency to rely upon a single vector after 

displacement, the same is probably also true of the Site 3 bees.

The general-landscape-memory, cognitive-map, and vector averaging ac-

counts each attribute novel-course setting to a single, flight controlling vector. 

The sequential-memory-referral hypothesis, to which I now turn, does not.

As he does in the case of the interpolation hypothesis, Menzel mentions the 

sequential-memory-referral account merely as providing a possible explanation 

of his results. Again, I’m unaware of anyone who actually defends it. In any case, 
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Figure 6.10.  Histograms showing the distribution of vanishing bearings for four groups of bees in 
Menzel’s displacement experiments. The distributions shown in panels B–D are normalized so 
that their maximum values are equal to the maximum value of the distribution shown in panel A. 
(A) Hive arriving bees, Site 3. The data for morning- and afternoon-captured bees are combined 
(see Figure 6.9; n = 210). The superimposed black line approximates the distribution curve. (B) 
Hive arriving bees, Site 4 (n = 37). The black line is identical to the one in panel A. (C) Hive de-
parting bees, Site 4 (n  = 32). The black line is the left-right mirror of the line in panel A. (D) Hive 
arriving bees that had visited only the afternoon site,  Site 3 (n = 55). The black line is identical to 
the one in panels A and B.



it is easy to dispense with. For if the novel-route bees alternately relied upon 

their two route vector memories, their flights should have exhibited a zig-zag 

pattern, with an alternation frequency high enough to allow a vanishing bearing 

distribution directed toward the hive. Otherwise, the distributions would have 

been bimodal, with one peak for each of the two vectors. A difference in flight 

behavior, then, between novel-shortcut bees and others should have been ob-

servable from the release site. However, Menzel reports that the departure flight 

characteristics for novel-route bees did not differ in any discernible way from 

those of any other group of bees. Thus, the hypothesis in question is unsup-

ported. (Notice also that the view leaves for further investigation the question of 

why the distributions of vanishing bearings are similar across the different ex-

perimental groups.)

The hypothesis that appeals to the general landscape memory of bees, unlike 

the hypothesis just examined, is based on known bee navigational abilities. In 

order to provide a clear enough statement of the idea, I first contrast bees’ gen-

eral landscape memory with both their landmark-based route memory and their 

vector memory.

Prior to foraging for the first time, or for the first time in a new area, honey-

bees will make a series of exploration, or orientation, flights. Individual bees 

typically will explore multiple regions around the hive, though each flight is 
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usually limited to a particular sector.53 On these excursions, bees learn the local 

solar ephemeris. They also learn the distance and direction, from the hive, of 

various landscape features. The sum of such stored distance and direction infor-

mation is referred to as the bees’ general landscape memory.

Once bees begin to forage, they learn routes to and from foraging sites. Ex-

perienced foragers rely on landmark-based route memories and flight vector 

memories as their primary means of navigation. That is why, when such bees are 

released after displacement to a location they are unaccustomed with, they tend 

to depart either along the flight vector they would have adopted had they not 

been displaced or in the direction of their original destination by means of hav-

ing recognized landmarks that lie along the relevant established route.

Bees which have flown only orientation flights are able to return rapidly to 

the hive after displacement, about as rapidly as they would have returned if they 

had learned a direct route connecting the hive and the place of release.54 They 

can recognize landscape features near the release point and recall the associated 

homeward vector acquired during exploration.55 Because experienced foragers 

primarily rely on established-route memories, they might take significantly 

longer to return to the hive after displacement, depending on where they are re-
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leased in relation to the hive and familiar routes. For example, a bee trained to a 

feeder 200 m north of the hive and displaced from the feeder to a location 200 m 

south of the hive will initially fly the learned southward feeder-to-hive vector, 

taking it farther away from the nest.

But experienced foragers, too, can recall locational information acquired 

during their orientation flights. They are most likely to do so when familiar-route 

vector information is absent from working memory. That is the case for bees 

which have just played out a particular recalled vector. And that occurs when 

they have arrived at the hive or when they have flown the entire length of the 

vector without encountering their destination.56 

Since experienced foragers have access to their general landscape memory, 

the possibility arises that the novel-route bees in Menzel’s displacement experi-

ments were able to take a shortcut to the hive because they recalled a Site 3-

associated homeward vector, which they learned during their orientation flights.

Although an appeal to general landscape memory could account for some 

novel-shortcut behavior, it is doubtful that such an account could explain Men-

zel’s results. The fact that the bees which had visited only the morning site or 

only the afternoon site failed to orient toward the hive from Site 3 is a problem 

for the idea. The hive arriving bees which had visited only the afternoon site 
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failed to exhibit novel-shortcut ability. Also, whereas about half of the hive de-

parting bees displaced to Site 3 adopted the novel homeward course, those which 

had visited only the morning site did not. Again, this suggests that experience 

with both trained routes was necessary in order to be able to take the novel route. 

That would not have been necessary on the general-landscape account, which 

would require only that the bees became acquainted with Site 3’s vicinity on at 

least one of their orientation flights. Moreover, it is highly unlikely that the bees 

which had learned both routes could access their general landscape memory af-

ter displacement to Site 3, but both the morning-only-site bees and the afternoon-

only-site bees could not.

As we have seen (§ 6.2.3.1), the behavior of bees that had learned only one of 

the trained routes controlled for the possibility that the novel-route bees homed 

toward landscape features near the hive as well as for the possibility that they 

relied on route-associated landscape features. We see now that it also controlled 

for the possibility that those bees employed a single orientation-flight-acquired 

vector associated with Site 3 local cues.

What could explain why single-route bees did not activate general-land-

scape vector memories when released at Site 3? The landscape features associ-

ated with homeward vectors during orientation excursions are not unlikely to be 

relatively local features along the bee’s line of flight. They certainly need to be 
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more localized than distant panorama features, since distant cues appear much 

the same over a broad area and hence are not useful for accurate assessment of 

position. Site 3 was situated within a uniform expanse of grassland. It’s plausible, 

then, that the site’s local scene was not distinctive enough for exploring bees to 

have associated the location with a homeward vector in the first place.

It remains to evaluate the vector averaging and cognitive-map hypotheses.

According to the former, the similarity between the distant visual cues at Site 

3 and those at each of the two feeding sites caused the bees to recall the two 

feeder-to-hive vectors, which they then averaged to obtain a Site 3-to-hive vector. 

The first thing to notice about the account is that it’s no worse off than the inter-

polation view with regard to explaining the difference in behavior between the 

groups of bees that did take the novel shortcut and the groups that did not. For 

example, advocates of either claim may appeal to the fact that the hill’s compass 

direction at Site 4 differed from that at each feeding site by 100–110˚, in order to 

explain why the bees released at Site 4 failed to orient toward the hive.

Second, the vector-averaging account provides an explanation of the simi-

larity among the vanishing bearing distributions for the different groups of bees 

displaced to unfamiliar sites. For, first, the values of the vectors which are pro-

posed to have been averaged are unlikely to have differed significantly among 
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individual bees.57 Second, there is no reason to suppose that the bees would have 

weighted the vectors differently. Third, the result of an averaging process de-

pends on the values of the vectors averaged, not on their “strengths.” On the 

other hand, it’s at least quite unclear whether or not noninferential interpolation 

would result in such similarities. In fact, as I’ve argued, we should expect some 

discernible differences.

Since each group of control bees had learned only one route, vector averaging 

explains why neither of them oriented toward the hive from Site 3. It should also 

be clear that vector averaging doesn’t predict unusual departure flight patterns.

What about the lack of novel routes to feeders? The vector averaging ac-

count does not imply that the bees in Menzel’s experiments should have been 

able to take a novel shortcut from Site 3 to the time-appropriate feeding location. 

The proposed computation operates on two hive-directed vectors, neither one of 

which has the bee’s actual location as its point of origin. It requires only that the 

bee recall and average those vectors. Whereas a computation of the heading and 

distance from Site 3 to a feeding site would require that the bee first compute a 

Site 3-to-hive vector, maintain that vector in working memory while recalling a 

hive-to-feeder vector, and then sum them. Clearly, then, the ability to average 
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two vectors does not bring with it an ability to compute a course from an unfa-

miliar location to a familiar location other than the hive.

It’s important to recall that the bee’s in Menzel’s experiments either did not 

store a Site 3-to-hive vector in their general landscape memory or could not recall 

such a vector after displacement to that site. For if they had access to such a vec-

tor, then it appears that they could have summed it with the relevant hive-to-

feeder vector in order to set a course toward a feeder location. In fact, as we will 

see below (§ 6.2.4), there is evidence that suggests that bees do have this ability.

What about the fact that hive departing bees released at the morning site in 

the afternoon, or at the afternoon site in the morning, did not choose a shortcut to 

the relevant feeder? Couldn’t they have summed the feeder-to-hive vector for 

their release site with the hive-to-feeder vector for the other site? Perhaps. But 

this isn’t a serious worry, given the strong tendency of experienced foragers to 

give primacy to acquired route information. Also, hive departing bees have lim-

ited energy resources.58  Consequently, when find themselves at an unexpected 

location, they are apt to return to the hive, along a familiar route, rather than set 

out on a riskier course that would take them over unfamiliar territory.
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In sum, none of Menzel’s results pose any special problem for his vector av-

eraging hypothesis. Let’s now turn to the cognitive-map account and see how 

well it fares.

On the cognitive-map thesis, the bees in Menzel’s displacement experiments 

recorded the coordinates of the two feeder locations, and other places in their ex-

plored territory, in a common frame of reference centered on the hive. The bees 

acquired this information over the course of their exploration and foraging trips. 

The sum of this information functions as a map, since it enables bees to set a di-

rect course between any two recorded locations. Thus, the bees’ were able to set a 

novel course from Site 3 to the hive by first (somehow) locating themselves on 

their mental map. Once they did so, they were able to compute a homeward 

flight vector with the help of information provided by their solar compass.

However, there is a difficulty for the cognitive-map approach. The trouble is 

that if the bees’ in Menzel’s experiments did in fact construct a cognitive map of 

their foraging territory (and their having done so was responsible for their novel 

shortcuts), then the hive departing bees, at least, should have been able to take a 

shortcut from their place of release to their original foraging site destination. 

Again, hive departing bees (at least when captured) are motivated to fly to a 

particular foraging place. Moreover they have been shown to be able to set a 

novel course, from the place of their release, to either the hive or, in certain cir-
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cumstances, their original destination.59 Since a significant proportion of the hive 

departing bees in Menzel’s experiments were able to take a shortcut from Site 3 

back to the hive, the cognitive-map view requires that they must have been able 

to estimate the position of their place of displacement in relation to the hive. 

Also, they were informed about the location, with respect to the hive, of the time-

appropriate feeder. Nonetheless, they failed to demonstrate an ability to set a 

Site 3-to-feeder course.

It might be thought that if the novel-route bees navigated using a cognitive 

map, then hive departing bees released at the morning site in the afternoon, or at 

the afternoon site in the morning, also should have been able to choose a shortcut 

to the relevant feeder. For they possessed information about the hive-relative po-

sition of both the release site and the time-appropriate feeding site (this was not 

the case for the control group). But, as in the case of vector averaging, the strong 

tendency of experienced foragers to give primacy to acquired route information 

allays this worry.

Table 6.3 summarizes the conclusions of this section. Menzel’s vector aver-

aging hypothesis is judged to provide the best explanation of his results. Each of 

the alternatives fails to deal adequately with at least one of them.
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6.2.4  A Kind of Cognitive Map

The failure to demonstrate a role for a cognitive map in the production of the 

vanishing bearing distributions in Menzel’s displacement experiments does not 

show that the honeybee does not have a cognitive map. It shows only that the 

bees in those experiments probably did not rely upon a cognitive map to set their 

initial course from the release site. As Menzel points out, training bees to specific 

routes might result in reliance on flight vector information for course setting. The 

operation of a cognitive map might not become apparent until a route-trained 

bee finds itself to be lost after a flight vector memory fails to lead it to its destina-
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Explanandum
Hypothesis

IM SMR GLM NI VA CM

Shapes of vanishing bearing distributions √ √ √ √

No shortcuts to hive from Site 4 √ √ √ √ √

Controlsa: No shortcuts to hive from Site 3 √ √ √ √

No novel routes to feeders √ √ √ √

Typical departure flight patterns √ √ √ √ √

Table 6.3. Comparison of explanations of Menzel’s displacement experiment results, based on my 
evaluations. A checkmark indicates either that the hypothesis explains the result relatively well or 
that the result poses no apparent difficulty. Abbreviations: NI, noninferential interpolation; CM, 
cognitive map; GLM, global landscape memory; IM, (large-scale) image matching; SMR, sequen-
tial memory referral; VA, vector averaging.

a Control experiments in which the bees had visited only the site at which they were captured.



tion. In fact, the general landscape memory of bees was not revealed until they 

were tested in displacement experiments in which route learning was prevented.60

The general landscape memory is a kind of map, but it is not as robust as the 

sort of cognitive map we’ve been considering. It consists of multiple, hive point-

ing vectors associated with various respective landscape features. Bees could 

have this sort of “vector” map without representing the spatial relations between 

any places other than certain landscape features and the hive. Furthermore, bees 

could have this sort of map and yet not be able to integrate any of its vectors with 

any other. In that sense, a vector map could be fragmented and piecemeal.

Menzel and colleagues,61 however, claim to have demonstrated the existence 

of a kind of cognitive map in the honeybee, a map that allows bees to take novel 

shortcuts between known locations, neither of which is the hive. I later propose 

that the novel shortcuts flown were the results of novel combinations of flight 

vector memories and their semantic constituents (§ 7.4).

Using harmonic radar,62  Menzel tracked displaced bees over the entire 

course of their flights. Three groups of bees were tested in the study. One group 

was trained to a stationary feeder situated 200 m east of the hive. A second group
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was trained to a feeder that slowly revolved around the hive at a distance of 

10  m. A third group consisted only of bees that had not visited the stationary 

feeder but were recruited to it by a waggle dance. 

The two groups of feeder-trained bees were captured at the feeder after they 

had filled their crops. The dance-recruited bees were captured upon departure 

from the hive. Captured bees were placed in a dark container and transported to 

one of eight sites, where they were released within 15 min of capture.

The experiments were performed in an expanse of flat grassland which 

contained very few natural food sources. Ground patterns due to different 

mowing times and soil conditions provided the only natural landmarks. Two 

groups of tents of various colors served as artificial landmarks. The height of the 

skyline as seen from the hive area varied within a range of less than 1.5˚. 

Due to the resolution of the honeybee visual system, no features of the sky-

line were pronounced enough to guide the bees to the area of the hive. Neither 

the hive nor the feeder was visible to the bees beyond a range of 60 m. The tents 

could not be seen by the bees outside a range of 100 m. Of one group of tents, the 

tent closest to the hive was 110-m distant. Of the other group, the nearest tent 

was 190-m distant. Hence, the tents were not suitable for purposes of homing by 

image matching.
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The bees were experienced foragers, but the study site was new to them. The 

bees tested during one study period were allowed to perform orientation flights 

for 3 days. The bees tested during the other study period were permitted to per-

form orientation flights for 6 days. Tests were carried out with the two groups of 

tents either in their original positions, rotated 120˚ about the hive, or removed. 

Orientation flights and test flights occurred under conditions well suited for 

solar-compass navigation (with the exception of some of the test flights of dance-

recruited bees). 

Irrespective of release site and test conditions, the bees trained to the sta-

tionary feeder initially flew their feeder-to-hive flight vector (on the heading and 

for the distance they would have flown in the absence of displacement). They 

next performed a search flight, followed by a straight homing flight toward the 

hive or  first toward the feeder and then toward the hive. Hive departing, dance-

recruited bees initially flew their hive-to-feeder vector with very good accuracy.63 

After a brief search for the feeder, they flew back toward the release site and ini-

tiated a search for the nest. That search was followed by a straight, homeward 

homing flight. Bees trained to the moving feeder began to search for the hive 

immediately upon release. They too eventually performed a straight homing 

flight toward the hive. Since all groups of bees performed equally well, they 
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must have acquired information sufficient for homing during their orientation 

flights.

For all groups of bees, search flight speed (12.9 ± 3.5 km/h) was significantly 

slower than both vector flight speed (19.1 ± 2.4 km/h) and homing speed (19.4 ± 

1.8 km/h). Search flight paths were curved and highly variable. Searching bees 

often returned to the release site multiple times.64 

With very few exceptions, homing flights were initiated at points well out-

side the 60-m-radius “visibility zone” around the hive. Patterns of small patches 

of slightly differing kinds of vegetation were much the same over the entire 

study area. Also, bees homed toward the hive and approached the point at which 

they initiated their homing flights from all directions. Furthermore, bees released 

at the same site multiple times were able to approach the hive from different 

directions.65 So it’s very unlikely that any particular pattern of ground patches 

visible beyond 60 m from the hive was used as a beacon.
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65  Examples of this have been provided online (http://www.honeybee.neurobiologie.fu-berlin 
.de/Menzel-Greggers-Smith-PNAS-2005/supplement.html).



Bees clearly often used the tents as landmarks when they remained in their 

orientation-period locations. The presence of the tents was not essential for accu-

rate homing, since bees homed just as effectively both when the tents were ro-

tated 120˚ clockwise about the hive and when the tents were removed. Bees also 

homed just as effectively under heavy overcast, when solar cues were not avail-

able. Thus, ground features were sufficient for accurate homing.

A group of 29 stationary-feeder-trained bees were released at one of two 

sites under sunny skies and with the tents in their original positions. Of those 

bees, ten performed homing flights toward the feeder prior to returning to the 

hive. (Some other bees also homed toward the feeder under different conditions.) 

The homing routes taken by the feeder homing bees were certainly novel, as-

suming that all stationary-feeder trained bees never flew outside the direct 

pathway between it and the hive, as Menzel reports. Although its possible that 

some of the hive homing bees, during exploration, had flown along the path of 

their homing flight, Menzel maintains that it’s very likely that at least a signifi-

cant proportion of their homing flights were novel shortcuts.

Menzel argues that his results show that the large-scale spatial memory of 

bees has a map-like organization. The bees took novel shortcuts to the feeder as 

well as the hive. The shortcuts were not a direct result of path integration, since 

the bees could not observe anything during transport to the release sites. Finally, 
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the shortcuts were not produced by beacon homing or image matching. Thus, 

during their orientation flights, the bees must have associated homeward vectors 

(provided by path integration) with views of various landscape features they en-

countered. Furthermore, since the bees took novel shortcuts to the feeder as well 

as the hive, they must have been able to integrate hive–feeder route vectors into 

that general landscape memory.66

As I indicated in the introduction (§ 1.4) the capacity to take novel shortcuts 

is one that seems to require the capacity to represent various places of interest 

and certain relations (topological, metric, etc.) among them, as well as the capac-

ity to make inferences involving those representations. Indeed, I’ll argue that the 

novel shortcuts flown to the feeder, in the above study, were the results of novel 

combinations of flight vector memories and their semantic constituents (§ 7.4).
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Chapter 7

The Systematicity of Honeybee Navigational Capacities

In this chapter I argue that various honeybee navigational capacities are system-

atically related. Insofar as the systematicity hypotheses I propose involve attri-

butions of content, the meaning and explanatory role of such attributions needs 

to be addressed (§ 7.1.1). I spell out some of the semantic roles played by various 

honeybee representations as constituents of complex representations (§ 7.3). One 

of these roles is that of an indexical (§ 7.3.3). I argue that some honeybee cogni-

tive processes are sensitive to the constituent-structure of the representations on 

which they operate (§ 7.4). Relatedly, I argue that honeybees implement opera-

tions defined over variables (§ 7.5). Finally, I conclude by tying together the con-

clusions of Chapters 2–5 with those of the present chapter. I propose that honey-

bees have a simple language of thought. I also argue that even if they don’t, we 

have good reason to prefer non-Connectionist explanations of honeybee naviga-

tional capacities over Connectionist ones. 
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7.1  Systematicity of Information Acquired by Honeybees

Much of the previous chapter is pertinent to whether certain classes of informa-

tion acquired by bees exhibit systematicity. My concern in this section is to pro-

pose and defend the following general hypothesis:

For various classes of information, if a honeybee has the capacity to ac-
quire information I, then it also has the capacity to acquire systematic 
variants of I,

where two items of information are systematic variants just in case they have the 

same informational constituents, have the same informational structure, but are 

formal permutations of each other. I argue for this general hypothesis by arguing 

for specific instances of it. The point of restricting the hypothesis to some classes 

of information is to avoid its having as consequences claims like: if a bee can 

learn that the sun is directly above the crest of the hill, then it can learn that the 

crest of the hill is directly above the sun.1 As I mentioned in Chapter 1, there are a 

number of possible varieties of systematicity, and different kinds of cognitive ca-

pacities might be systematically related in different ways. (See also § 7.2.)

Note that the general sort of systematicity just referred to is the same as that 

discussed in Chapter 2. There I considered two structurally complex thoughts to 

be systematically related just in case they have the same logical and representa-
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tional constituents and are formal permutations of each other. Thus, whereas the 

thought that Fa → Gb is a systematic variant of the thought that Ga → Fb, this is 

true neither of the thought that Fa → Hb nor the thought that ~ (Fa ∨ Gb). But dis-

cussions of systematicity are often about one or another somewhat weaker no-

tion, one that does not have a formal-permutation requirement. These weaker 

notions focus on the nonarbitrariness of the semantic relations among represen-

tations. In Section 7.2, I argue that bee navigational capacities also exhibit a par-

ticular type of “weak” systematicity.

The first specific hypothesis I propose concerns the capacity of bees to ac-

quire information about distance and solar bearing relations between various 

places, such as the hive, landmarks, and foraging sites (§§ 6.1.1, 6.1.2, 6.2.1, 6.2.4). 

As I will argue, that capacity does not come in isolated pieces. That is, the capac-

ity of bees to acquire information about some particular distance and direction 

relations comes along with capacities to acquire intrinsically related information 

about other distance and direction relations. In particular,

Systematicity 1  If a honeybee has the capacity to estimate that the solar 
bearing of a particular foraging site from the hive is, say, 45˚ west of the 
sun, then it also has the capacity to estimate that the solar bearing of the 
hive from that site is 45˚ west of the sun.

I emphasize that this is a claim about informational content and not a claim 

about the configurational structure of honeybee mental representations. Hy-
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potheses about the configurational structure and semantics of mental represen-

tations contribute to explanations of the truth of hypotheses like Systematicity 1 

and are not part of such hypotheses themselves. But since such hypotheses do 

involve attributions of content to nonhuman organisms, the issue arises as to 

how such attributions should be understood. It will save us some trouble if I ad-

dress this issue prior to arguing for specific systematicity hypotheses.

7.1.1  Attributions of Content to Insects

Much work on animal cognition concerns how to best characterize the contents 

acquired by various organisms. For example, the debates over whether or not 

various animals, including insects, possess a kind of cognitive map make sense 

only as issues about content. They are debates over how the spatial information 

an organism acquires is semantically organized. Little discussion, if any, is de-

voted to the configurational structure of the bearers of the information.2  And 

claims like, 

(1) The bees learned that the feeder is 200 m to the east of the hive.

are common in the literature on insect navigation. But it’s a safe bet that those 

who make such claims would consider the idea than an insect could have a rep-

200

2 This is not to say that the distinction between the two issues is never ignored or overlooked. 



resentation with the content [meter] (or [sucrose reward], or [200],3  or [east], or 

[hive]) to be absurd or baseless. So how are we to understand content attribu-

tions such as those involved in claims like (1) and Systematicity 1?

I won’t attempt here to provide a complete, comprehensive answer to that 

question. For my purposes, it is enough to provide the basic details of a way of 

understanding such attributions that both conforms with scientific practice and 

allows them to be confirmable and disconfirmable within currently possible ex-

perimental paradigms.

The general issue may be framed in terms of the relationship between the 

content of the that-clauses in the attributions and the information thought to be 

actually acquired by the organism. That relationship certainly is (or is at least ex-

tremely unlikely to be) identity. I suspect that any expert on bee cognition would 

admit that there is a sense in which (1) could be true, even though the content of 

the bees’ representations would not be [the sucrose reward is 200 m to the east of 

the hive].

Perhaps the extensions of the semantic constituents of the that-clause need to 

be identical with the extensions of the respective constituents of the bees’ infor-
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mation. This suggestion might seem more promising than the first, but it is still 

off the mark. For it’s not currently possible to determine the actual extensions of 

insect representations. For example, we can’t with any confidence claim that the 

extension of a term like “sucrose reward” or “the hive” is the same as the exten-

sion of some piece of information acquired by bees. The extension of “sucrose 

reward” is very unlikely to be the same as the extension of any bee representa-

tion. Similarly, it’s possible that bees don’t represent the hive per se. Rather, they 

may represent only various parts of it, or features of it, while lacking a represen-

tation of the entire structure. It’s even possible that the extensions of many or all 

bee mental-representational constituents do not include anything external to bees 

at all.4 They could turn out to be “lucky” (though not accidentally successful) 

hallucinators. This could be the case if the correct theory of content for bee men-

tal representations is an internalist theory, rather than an externalist one. Thus, 

bees’ representations of the “hive” might refer to only the relevant aspects of the 

snapshots they take on hive-departing learning flights.

Consider whether bees can be tricked or caused to be mistaken as a result of 

various experimental manipulations. As we’ve seen, bees acquire information 

pertaining to distance by measuring optic flow. When trained to fly through a 

tunnel in order to obtain a reward, the close proximity of the tunnel walls may 
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induce more optic flow than the bees would have experienced had they flown to 

the reward location under normal circumstances.5 If that is the case, bees that 

have returned to the hive will signal to recruits, via the waggle dance, a “dis-

tance” that is farther than the actual distance. But would such dancers literally be 

making a mistake? They would be, if the information they employ in producing 

the dance refers to distance, for then that information will refer to the wrong 

distance. But it’s possible that the information bees employ in the waggle dance 

actually refers to the quantity of optic flow that would be experienced during a 

normal, direct flight to the reward. If that were the case, the dancers would not 

be making a mistake.

Or consider a case in which bees are stimulated to forage at night, and in 

which they rely on an artificial light source for orientation. Would such bees be 

mistaking the light for the sun? They would be, only if the referent of the relevant 

representations is in fact the sun. But perhaps those representations have an ex-

tension that includes any suitable light source. Or perhaps the extension includes 

only certain illumination intensities. In either of these latter cases, the bees would 

not be making a mistake.

Fortunately, for purposes of addressing the issues about systematicity with 

which we’re concerned, we don’t have to decide what are the actual contents and 
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extensions of honeybee mental representations. For the explanatory purpose of 

attributions of content to bees (and other organisms) can be accomplished prior 

to settling those issues. For it is reasonable to interpret those attributions as hy-

potheses about what features of the environment bees are able to track; and such 

hypotheses can be confirmed or disconfirmed, independently of establishing the 

specific contents and extensions of the information that allows bees to track those 

features. 

Crucially, evidence about what features of the environment bees are capable 

of tracking constrains what the contents and extensions of their acquired infor-

mation could be. Whatever the contents and extensions of bee mental represen-

tations are, they must be such as to permit bees to track what they do. Part of the 

burden of the following arguments for the presence of systematicities in honey-

bee navigation is to support an additional claim: if bees can track certain struc-

tures composed of elements that they can also independently track, then the in-

formational contents by virtue of which they track those structures have seman-

tic constituents by virtue of which they track those elements. 

In what follows, then, I’ll continue to employ nonliteral content attributions 

like claim (1) above. My concern is the semantic relations among items of infor-

mation acquired by bees; and that issue can be addressed without making ten-

dentious assumptions about the actual contents so related.
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7.1.2  Some Honeybee Systematicies

Various classes of information acquired by bees exhibit systematicity. The argu-

ments for the systematicity hypotheses I propose here each exhibit the same pat-

tern. Each type of systematicity is shown to be a consequence of bees’ having a 

particular general capacity.

As promised, I begin with Systematicity 1:

Systematicity 1  If a honeybee has the capacity to estimate6 that the solar 
bearing of a particular foraging site from the hive is, say, 45˚ west of the 
sun, then it also has the capacity to estimate that the solar bearing of the 
hive from that site is 45˚ west of the sun.

All the evidence at present suggests that bees store information about the 

hive and individual foraging sites. And the ability of bees to use the sun as a 

compass is firmly established. Further, it would be quite difficult to explain the 

navigational abilities of bees if (contrary to overwhelming evidence) they are not 

capable of estimating the solar bearing of a particular foraging site from the hive, 

or of the hive from a particular foraging site.

Crucially, the mechanisms which allow bees to estimate hive-to-site solar 

bearings are the very same mechanisms which allow them to estimate site-to-

hive solar bearings. As we’ve seen, bees employ their internal solar ephemeris to 

accommodate the pattern of movement of the sun’s azimuth. In addition, they 
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are able to estimate the position of the solar azimuth not only during the day but 

also at night. Moreover, bees are capable of relating their solar ephemeris to dif-

ferent groups of landscape features; in particular, those visible from the hive and 

those visible from various foraging sites. Thus, for any solar bearing , bees have 

the capacity to estimate that the solar bearing from a particular familiar site to 

the hive is  (and that the solar bearing from the hive to that site is ), regardless 

of the time of day at which that bearing is . And this gives us Systematicity 1. 

Systematicity 1, then, is a consequence of the capacity of bees to estimate the so-

lar bearing of any familiar place from any other familiar place. That capacity 

comprises a cluster of systematically related capacities.

In light of the discussion of the previous section, the truth of Systematicity 1 

does not require that bees can think a thought with the content [the solar bearing 

of the hive from the foraging site is 45˚ west of the sun]. Nor does it require that 

for each representational constituent of the bee’s information there is a unique 

constituent of [the solar bearing of the hive from the foraging site is 45˚ west of 

the sun] that has precisely the same extension. Insofar as the example involves 

direction, it’s being an example of systematicity requires only that bees are capa-

ble of acquiring two distinct items of information that would share a representa-

tional constituent that allows them to track a particular solar bearing, whatever 

the specific content of that constituent. Likewise, insofar as the example involves 
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the hive, it’s being an example of systematicity requires only that bees are capa-

ble of acquiring two distinct items of information that would share a representa-

tional constituent that allows them to track the hive, whatever the specific con-

tent of that constituent.

A question that might arise at this point is, Why suppose that bees are capa-

ble of acquiring two distinct items of information related in that way? Perhaps 

bees represent places in different ways under different circumstances or different 

motivational states. Thus, a bee might represent the hive one way when it is us-

ing information about the hive’s solar bearing from a certain site but represent it 

in a different way when it is using information about the solar bearing of that site 

(or another) from the hive. So a capacity to estimate that the solar bearing of 

Place 1 from Place 2 is  might bring with it only a capacity to estimate that the 

solar bearing of Place 3 from Place 4 is , even when Place 1 is identical with 

Place 4 and Place 3 is identical with Place 2. Why think otherwise?

Well, for one thing, there is no evidence that suggests that the envisioned 

possibility is actually the case. Second, as far as we know, the view would attrib-

ute to bees much more information than is necessary to explain their behavior. 

Systematicity 1 attributes to bees information about two places, whereas the ob-

jection’s alternative attributes to bees information about four places. Third, as I 

am about to argue, it would be difficult to explain the actual navigational abilities 
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of bees if we could not assume that the way in which they represented particular 

places normally didn’t vary with changes in the information they have about 

their circumstances or with changes in their internal states, such as motivation.

Consider path integration. Suppose that while scouting for a new foraging 

site, a bee keeps track of its position in the relation to the hive, which it repre-

sents as Place 1. Suppose further that the bee finds a source of nectar, and fills its 

crop. In that case, its motivational state (and presumably its information about 

various particulars of its circumstances) would change. It would become moti-

vated to return to the hive rather than search or forage. But suppose that because 

of its change in motivation and circumstances, the bee then represents the hive as 

Place 2. How could the bee’s information about its position in relation to Place 1, 

provided by its path integration system, help it get to Place 2? Or to put it the 

other way around, How would going to Place 2 help the bee get back to Place 1? 

We would either have to reject the supposition that [Place 1] and [Place 2] are 

distinct ways of representing the hive or maintain that the bee would have to be 

sensitive to the fact that Place 1 is identical with Place 2. 

An advocate of the objection under consideration would have to opt for the 

latter alternative.7 However, it would be difficult to explain how the bee could be 
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sensitive to the fact that Place 1 is identical with Place 2 without presupposing 

that it has a way of representing the hive which is (at least with regard to the sort 

of case in question) circumstance and motivation independent. In fact, sensitivity 

to that identity would seem to make both [Place 1] and [Place 2] such ways of 

representing. For then it would seem that the bee would have the capacity to es-

timate its position in relation to “either” place, regardless of its motivation or cir-

cumstances. In other words, an appeal to sensitivity to identity places the oppo-

nent of Systematicity 1 in the position of having to concede the very kinds of ca-

pacities the existence of which he or she wants to question.

Consider also some of the results of Menzel’s vanishing bearing, displace-

ment experiments (Table 6.2). Hive departing and feeder arriving bees which 

were captured in the afternoon (without having filled their crops) and released at 

the morning site were able to adopt the morning-site-to-hive compass heading 

upon release. This suggests that those bees represented the morning site and the 

hive the same way in which they represented them during previous, morning 

foraging excursions and after they had filled their crops. Neither their having 

flown to the morning site nor their having fed there was necessary in order for 

the bees to call up the appropriate homeward vector. Likewise, the bees which 

took the novel shortcut from Site 3 must have represented the hive and the two 

sites in the same way in which they had on previous foraging excursions. Oth-
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erwise, it would be hard to see how the bees could treat both (or either) of the 

site-to-hive vectors as relevant to the task of returning to the hive from Site 3.

In short, without coherence in the way bees represent various places under 

various external and internal conditions, it’s hard to see how they could exhibit 

the coherence in their navigational behavior that in fact they do.

There’s another worry about Systematicity 1 that requires attention. Why 

suppose that the related items of information are complex? Perhaps estimating 

the solar bearing of a particular foraging site from the hive doesn’t require in-

formation about that site or the hive. Rather, couldn’t the bee just call up the 

relevant solar bearing? The bee might need to recall only information that we 

might express as “Go along bearing .”

First, remember that the present discussion is solely about content. So I’m 

not assuming that the configurational structure of the vehicles of the relevant in-

formation in question is complex. Second, the crucial fact that needs to be ex-

plained is a bee’s capacity to call up an appropriate vector in a variety of circum-

stances. For example, displaced bees have the capacity to call up a vector the ori-

gin of which is tied to their location prior to their having been displaced and the 

“tip” of which is tied to their original destination. Also, bees displaced from the 

hive to any familiar location have the capacity to return directly to the hive from 

that place. Moreover, bees can return directly to the hive from any type of forag-
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ing site (nectar, pollen, etc.), and they can directly return to any type of familiar 

foraging site from the hive, even if they last visited that site at least one-day ago 

and have not just been recruited to it. So when bees decide to fly out toward a 

certain familiar destination (say, to a nectar source, if motivated to obtain nectar), 

they don’t just access any of their many vector memories; rather, they access the 

one which will lead them from (what they take to be) their present location to 

another at which a specific type of resource may presently be available. That can 

be explained, it seems, only if the vector and the connected locations are linked in 

memory. That’s the sense in which the remembered information has to be se-

mantically complex.

Much of what I’ve said about the attributions involved in Sytematicity 1 

should be applicable, mutatis mutandis, to the additional cases of systematicity I 

provide below. They can thus be presented more briefly.

The ability of bees to represent various sorts of complex structures provides 

us with further examples of clusters of systematically related capacities. Collett’s 

vector sequence experiments (§ 6.2.1) suggest the following hypothesis:

Systematicity 2  If a honeybee has the capacity to learn the flight vector 
sequence ‘distance n in direction d, then distance m in direction d*,’ then it 
has the capacity to learn the flight vector sequence ‘distance n in direction 
d*, then distance m in direction d’, as well as the capacity to learn ‘distance 
m in direction d*, then distance n in direction d’.
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Bees presumably have the capacity to represent a great variety of two-segment 

vector sequences. That bees have that capacity has Systematicity 2 as a conse-

quence, assuming of course that they can represent the distances n and m and the 

directions d and d*. But that’s guaranteed by Systematicity 2’s antecedent.

The results of Collett’s study on the effects of panoramic context on the per-

formance of route flight segments (§ 6.2.1) suggest yet another systematicity hy-

pothesis:

Systematicity 3  If a honeybee has the capacity to learn the route sequence 
‘distance n to landmark L, then distance m to landmark L*’, then it has the 
capacity to learn any of the route sequences (i) ‘distance m to L, then dis-
tance n to L*’, (ii) ‘distance n to L*, then distance m to L’, and (iii) ‘distance 
m to L*, then distance n to L’.

The case for this hypothesis proceeds along the same lines as the justifications for 

Systematicies 1 and 2. As long as bees can represent the distances n and m and 

the landmarks L and L*, the consequent of Systematicity 3 follows from the ca-

pacity of bees to learn the lengths of a great variety of route segments. And that 

bees can represent those particular distances and landmarks is guaranteed by the 

antecedent of the hypothesis.

Here are two more systematicity hypotheses:

Systematicity 4  If a honeybee has the capacity to learn the sequence of 
positive stimuli ‘white, then blue, then black–white vertical stripes’, then it 
has the capacity to learn any of the sequences ‘white, then black–white 
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vertical stripes, then blue’, ‘blue, then white, then black–white vertical 
stripes’, and so on. 

Systematicity 5  If a honeybee has the capacity to learn that the sucrose 
concentration of Feeder 1 is greater than that of Feeder 2, then it has the 
capacity to learn that the sucrose concentration of Feeder 2 is greater than 
that of Feeder 1.

Systematicity 4 is based on the results of Collett’s visual-sequence learning ex-

periments (§ 6.2.2.1), which strongly suggest that bees can represent arbitrary 

sequences of visual stimuli. Systematicity 5 is based on Wei’s study of learning 

flight modulation (§ 6.1.3), which suggests that bees can represent arbitrary rela-

tive levels of sucrose concentration.8 As with Systematicities 1–3, for each of these 

two hypotheses, the existence of systematically related specific capacities is in-

ferred from the existence of a more general capacity.

7.2  Weak Systematicity and the Tracking Argument

So far I’ve restricted my discussion to a relatively strict form of systematicity, 

requiring that systematic variants be formal permutations of each other. But dis-

cussions of systematicity are often about one or another somewhat weaker no-

tion, one that does not have a formal-permutation requirement. These weaker 

notions focus on the nonarbitrariness of the semantic relations among represen-

213

8 Bees are also capable of learning the relative flow rates of different feeders as well as the relative 
amounts of reward available from different feeders. See Greggers and Menzel 1993 and Greggers 
and Mauelshagen 1997.



tations. The central idea is that an organism’s capacity to acquire information 

about a certain domain exhibits systematicity if the following is the case:

If the organism has the capacity to acquire the information that a certain 
individual has a certain property (or stands in a certain relation), then it 
has both the capacity to acquire the information that that individual has 
any of a variety of different properties (or stands in any of a variety of dif-
ferent relations) and the capacity to acquire the information that any of a 
variety of individuals has that property (or stands in that relation).

More formally,

If the organism has the capacity to represent that a has the property (or 
stands in the relation) F, then there are other properties (or relations), G1, 
G2, …, Gn, and other individuals, b1, b2, …, bm, such that it has the capacity 
to represent that a is G1, that a is G2, …, and that a is Gn, and that b1 is F, 
that b2 is F, …, and that bm is F.

In short, an organism’s capacity to acquire information about a certain domain 

exhibits systematicity if it comprises specific capacities to acquire any of a plu-

rality of items of information having a common semantic constituent in the same 

semantic structural role. Call this sort of systematicity “weak” systematicity. Note 

that weak systematicity is not the claim that for any a, b, F, and G, if an individual 

can represent that a is F and that b is G, then it can also represent that b is F and 

that a is G. This stronger claim, applied to humans, has the questionable conse-

quence that if someone can think both that John plays guitar and that the number 

two is an even number, then they can thereby think both that the number two 

plays guitar and that John is an even number. Weak systematicity, on the other 
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hand, does not require that if a bee can learn that a nectar source is 200 m from 

the hive, then it can learn that a nectar source is 200 m from the brood chamber. The 

information that bees use to find their way around the hive might not be accessi-

ble to their large-scale navigational systems; but that has no bearing on whether 

their large-scale navigational capacities are systematically related. 

Note that the explanations of systematicity presented in Chapter 2 apply, 

mutatis mutandis, to weak systematicity as well. For those explanations are fun-

damentally explanations of how it is that mental representations have various 

types of constituent structures and of how it is that the semantic relations among 

them are nonarbitrary.

7.2.1  The Tracking Argument

Horgan and Tienson’s tracking argument for a “language” of thought9 may be 

viewed as appealing to weak systematicity. They argue that some organisms 

have to have at least some representations which are semantically complex. Fur-

thermore, in terms of Cummins’ distinction between pure encodings, structural 

encodings, and structural representations (§ 5.3), they argue, in effect, that such 

representations cannot be pure encodings but must be either structural encodings 

or structural representations of what they represent.
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Note that, although Horgan and Tienson mean to show that there must be 

mental representations having “language-like,” or “syntactic,” structure, under 

the rubric “language-like,” Horgan and Tienson include non-Classical representa-

tions, such as tensor products. Roughly speaking, on their use of the term, a sys-

tem of representation is language-like if it can be used to encode syntactic struc-

ture in a way that allows the encoded structures to be recoverable from the repre-

sentations (but does not require that they ever be recovered). Again, I reserve the 

use of terms such as “syntactic” for the actual configuration of representations at 

the representational level of description.

One of Horgan and Tienson’s favorite ways to state the tracking argument is 

in terms of navigational capacities. Any organism that exhibits complex and 

flexible navigational behavior must acquire a great deal of information about 

many particular things and places in its locale, such as landmarks and foraging 

sites. It must have information about their locations in relation to itself and to 

certain other objects. It also needs information about many of their other proper-

ties, such as appearance and value as a resource. Furthermore, such an organism 

must be able to acquire new information as circumstances warrant. For resource 

values change; some landmarks move, become temporarily hidden, or disappear; 

and the organism itself might move to an altogether different area. So the organ-

ism would have to have the capacity to attribute different properties and rela-
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tions to the same objects at different times. It would also need the capacity to at-

tribute to newly encountered objects the same properties and relations it has at-

tributed to other objects. In addition, every item of acquired information must 

have a content-appropriate causal role. It does no good to learn that the position 

of a landmark has changed if that information, in relation to other information 

possessed by the organism, is not appropriately efficacious in guiding its behav-

ior. Finally, note that the organism must have such capacities not only for the en-

vironment it actually inhabits but also for any possible environment it might 

have found itself in.

Horgan and Tienson maintain that all this is possible only if the mental rep-

resentations that encode the information have some sort of “language-like,” 

representational-constituent structure, whether it be concatenative or noncon-

catenative. The only way for the organism to acquire all the information it needs 

on an ongoing basis, while reliably maintaining the content-appropriate causal 

efficacy of its information bearing states, is to have the corresponding represen-

tations be “constructed,” as needed, out of representational constituents.

From many of the findings examined in the preceding chapter, it should be 

clear that the navigational abilities of the honeybee are sophisticated and flexible 

enough for it to be among the organisms to which the tracking argument applies. 

Those abilities do indeed depend on weak-systematically related capacities to 
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acquire information relevant to wayfinding. Thus, bees can track the location of a 

place of interest, even though its solar bearing in relation to the hive continually 

changes. Also, by means of path integration, bees in flight can keep track of their 

continually changing location in relation to the hive, a landmark, or the place of 

their release. They can learn to relate the solar ephemeris for their locale to the 

different landscape features visible at different locations. Apis Mellifora has the 

capacity to reference its waggle runs to landscape features, though this capacity 

is exercised, as far as we know, only under experimental conditions. Local, iso-

lated changes in the area of a goal (say, the appearance or location of nearby 

landmarks) need not prevent bees from searching at the correct location. Fur-

thermore, as long as they have a means of individuating certain reward sites, 

bees can track changes in the relative value of those rewards.

The capacity of A. Mellifora to learn to reference its waggle runs to landscape 

features illustrates the fact that current capacities need not match up with current 

abilities. Without training, A. mellifora presumably is unable to orient its waggle 

runs to landscape features. Nonetheless, its ability to learn the task shows that it 

has the prior capacity to do so. Note that such unexercised capacities of an or-

ganism are just what one should expect if related capacities of that organism ex-

hibit a certain form of systematicity.
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I won’t bother to spell out more formally all of the weakly systematic way-

finding capacities of bees. Here are just two:

If a bee has the capacity to learn that a feeding site is at certain direction 
and distance from the hive, it also has the capacity to learn that that very 
site is at a different direction and distance from the hive.

If a bee has the capacity to learn that the sun’s azimuth is at one location 
(in relation to the landscape) at a given time, it also has the capacity to 
learn that it is at a different location at that time.

Clearly, there are many other plausible hypotheses of this sort.

The station shift experiments of Gould and Dyer provide particularly good 

support for the weak systematicity of bee navigational capacities (§ 6.1.3). Recall 

that when Gould changed the compass direction of the feeding station by about 

30˚, the bees adjusted their waggle dances gradually, until they correctly indi-

cated the new solar bearing. Some of the bees in Dyer’s experiments (which em-

ployed a 90˚ shift in the direction of the feeding station) also showed gradual re-

orientation. This suggests that the bees updated their information about the lo-

cation of the site by updating their information about the location of what for 

them was one and the same site.

The bimodal dances reported by Dyer have the same implication. The bees 

that performed bimodal dances had returned from just the one site. So its quite 

likely that their dances communicated what for them was the location of that one 

site. Yet the dances alternately indicated two very different solar bearings, one 
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presumably based on their memory of the solar bearing of that site in relation to 

the landscape and the other based on their very recent experience of its actual 

solar bearing. It’s possible that the dances were a result of the bee’s memory of 

the location of the “old” site competing with their newly acquired information 

about the location of the “new” site. That is, the bees might have been confused 

about which of two sites—what from their point of view were two sites—they 

had just visited, rather than about the location of the one site. But I find this pos-

sibility to be highly unlikely. For not only the station but also the field edge 

would have changed in orientation. The bees flew along the landmark that had 

always led to the station, and they found the station at its usual place in relation 

to that landmark. Further, there’s no other evidence that bees which have just 

returned from a successful foraging trip ever dance to indicate the location of a 

site other than the one from which they have just returned.

Wei’s learning flight modulation study also provides good support for the 

weak systematicity of bee navigational capacities. That the learning flights of the 

bees increased in duration after an imposed increase in search time, and that the 

decay rate of their learning flights after such increases was significantly faster 

than the decay rate of their initial learning flights, suggests that the bees updated 

their information about the location of the feeder in light of their past experience 

of it. After an increase in search time or a change in location of the land-
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mark–feeder array, they did not treat the feeder and associated landmarks as if 

they were situated at a newly discovered site; rather, they behaved as if they in-

tegrated remembered and newly acquired information about what for them was 

one and the same place.

The important point here is that a bee’s remembered information about a 

particular place (or object) and any of it’s newly acquired information about 

what we would say is the same place, really are, for the bee, two pieces of infor-

mation about the same place. Which is to say that the semantic relations between 

such remembered and newly acquired information are nonarbitrary.

To see the force of the tracking argument, just consider how difficult it 

would be to explain certain behaviors if the semantic relations between remem-

bered information and new information about what is, in reality, one and the 

same object or place were arbitrary. Suppose I remember that my coffee mug is 

on my desk. But when I go to get it, I see that it is no longer there. Believing that 

it was washed and put up, I go to the kitchen and find it in the cupboard. Now 

suppose that the content of my memory about the location of the mug was [my 

mug is on my desk], but that the content of my newly acquired information 

about (what is in reality) the mug, when I found that it was no longer on my 

desk, was [Paul’s copy of The Last of the Mohicans is probably somewhere in Aus-

tralia]. If that’s the case, then it would appear to be a bit difficult to explain why I 
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went to the kitchen to look for my mug, rather than to Australia to look for Paul’s 

book. Clearly, it would be quite difficult for someone to consistently find their 

way to important resources or places if the semantic relations among their items 

of information about important locations were arbitrary.

But how does the need for flexible navigational capacities to be weakly sys-

tematic support the claim that the organism’s mental representations need to be 

structural encodings or structural representations of what they represent, rather 

than pure encodings? The trouble with pure encodings is that any correspon-

dence between their nonsemantic, physical properties and their contents is 

purely accidental. So even if the items of informational content acquired by an 

organism happen to be systematically related, if its mental representations are 

pure encodings, the presence of that systematicity would also be purely acci-

dental. It could not be explained in terms of the nonsemantic, physical properties 

of its pure encodings. 

To spell this out just a bit more, suppose that my mental representations are 

pure encodings. Suppose further that the bearer of the content of my belief that 

my mug is on my desk is , and  that the bearer of the content of my belief that 

my mug is in the kitchen is . How could my cognitive system know which be-

lief to act on, or even that they conflict? For, by hypothesis, those two representa-

tions need not share any cognitively efficacious, nonsemantic, physical proper-
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ties. Thus, there need not be any way for my cognitive system to detect that those 

two representations share a representational constituent. The semantic relations 

between  and  might as well be arbitrary, even if they are not. 

7.3  Systematicity and Semantic Structural Roles

The “strong” systematicity of honeybees’ capacities to acquire various sorts of 

navigation-related information is possible only if the mental representations that 

encode the information have some sort of representational-constituent structure, 

whether it be concatenative or nonconcatenative. The same is the case for weak 

systematicity. As Horgan and Tienson maintain, the only way for the organism to 

acquire all the information it needs on an ongoing basis, while reliably main-

taining the content-appropriate causal efficacy of its information bearing states, is 

to have the corresponding representations be “constructed,” as needed, out of 

representational constituents.

Complex semantic structure requires that representational constituents have 

certain semantic structural roles. This should be relatively noncontroversial, 

though it’s worth emphasizing in order to see some of the sorts of structural roles 

bee representational constituents need to play. In Section 7.4, I argue that honey-

bee information processing is sensitive to those structural roles.
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7.3.1  Distinguishing Systematic Variants

Consider Systematicities 1 and 5:

Systematicity 1 If a honeybee has the capacity to estimate that the solar 
bearing of a particular foraging site from the hive is, say, 45˚ west of the 
sun, then it also has the capacity to estimate that the solar bearing of the 
hive from that site is 45˚ west of the sun.

Systematicity 5 If a honeybee has the capacity to learn that the sucrose con-
centration of Feeder 1 is greater than that of Feeder 2, then it has the ca-
pacity to learn that the sucrose concentration of Feeder 2 is greater than 
that of Feeder 1.

It should be clear that the semantic structure of representations that are system-

atically related in either of the above two ways must be something other than the 

structure of a non-ordered set, such as {hive, Site S, 45˚, west, sun}. For such a 

structure wouldn’t allow the bee to distinguish [The solar bearing of Site S from 

the hive is 45˚ west of the sun] from [The solar bearing of the hive from Site S is 

45˚ west of the sun]. Since solar bearing is an asymmetrical relation, the constitu-

ents [hive] and [Site S] must play different structural roles in those contents. 

Since having greater sucrose concentration is also an asymmetrical relation, the 

constituents [Feeder 1] and [Feeder 2] must also play different structural roles in 

[Feeder 1 has a greater sucrose concentration than Feeder 2].

The need to distinguish weakly systematic variants also requires that repre-

sentational constituents have certain structural roles. Suppose that a bee acquires 

the information [The bearing of Site S from the hive at time t is 45˚ west of the 
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sun]. The bee must be sensitive to the fact that that information is distinct from 

both [The bearing of the hive from Site S at time t is 225˚ west of the sun] and 

[The bearing of Site S from from the hive at time t is 225˚ west of the sun]. For 

only the second of the three can guide the bee back to the hive from Site S.

Consider also Systematicities 2–4:

Systematicity 2 If a honeybee has the capacity to learn the flight vector se-
quence ‘distance n in direction d, then distance m in direction d*,’ then it 
has the capacity to learn the flight vector sequence ‘distance n in direction 
d*, then distance m in direction d’, as well as the capacity to learn ‘distance 
m in direction d*, then distance n in direction d’.

Systematicity 3 If a honeybee has the capacity to learn the route sequence 
‘distance n to landmark L, then distance m to landmark L*’, then it has the 
capacity to learn any of the route sequences (i) ‘distance m to L, then dis-
tance n to L*’, (ii) ‘distance n to L*, then distance m to L’, and (iii) ‘distance 
m to L*, then distance n to L’.

Systematicity 4 If a honeybee has the capacity to learn the sequence of 
positive stimuli ‘white, then blue, then black–white vertical stripes’, then it 
has the capacity to learn any of the sequences ‘white, then black–white 
vertical stripes, then blue’, ‘blue, then white, then black–white vertical 
stripes’, and so on. 

Each of these systematicities concerns a capacity to acquire information about a 

certain kind of sequence. For sequences, order is crucial. The bee needs to be sen-

sitive to which element of the sequence is first, second, or third, and so on. And 

that could be the case only if each constituent of the relevant information plays a 

certain place-in-the-sequence structural role.
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7.3.2  ‘What’ and ‘Where’

There are other sorts of structural roles for bee representational constituents. For 

example, the representation forming processes responsible for producing infor-

mation about the location of a particular place in relation to another must com-

bine two constituents about those two respective places with a constituent about 

a certain direction and a constituent about a certain distance. Those processes 

must combine, as it were, two “what” constituents with two “where” constitu-

ents, rather than two what constituents with two more what constituents, or one 

what constituent with three where constituents, and so on.

Likewise, that there are certain bee psychological processes dedicated to 

manipulating information about direction (and not about distance, resource 

value, color, and so on) suggests that different bits of information about different 

directions share a special property to which those processes are sensitive. In or-

der to be reliable, such processes must be able to distinguish information about 

direction from other kinds of spatial information as well as from non-spatial in-

formation. Consider further the ability of bees to solve matching- (and non-

matching-) to-sample tasks (§ 6.2.2.2). A rule such as, “Choose the x-marked arm 

if x was at the entrance,” plausibly could not operate on, say, information strictly 

about distance. For example, the variable in such a rule is quite unlikely to be 

replaceable by the content [200 m]. 
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7.3.3  Indexicals

In the case of humans, the contents of mental representations that we express 

through the use of proper names or indexicals have a different sort of semantic 

structural role than the contents we express through the use of predicates. Might 

there be anything like this distinction in the case of bee mental representations? 

It’s plausible that there is. In this section I propose that some bee representations 

have an indexical-like element as a semantic constituent.

In the last chapter we saw that bees have the capacity to learn a variety of 

route segments. They can learn vector sequences as well as landmark-to-land-

mark and landmark-to-foraging-site route segments (§ 6.2.1). They can learn the 

distance and direction from the hive of various local landmarks—their general 

landscape memory (§ 6.2.3.2). Also, when released at an unfamiliar location, they 

are able to track their location with respect to it by means of path integration, al-

lowing them to periodically return there during their search flight (§ 6.2.4). To-

gether, all this evidence clearly indicates that bees are capable of keeping track of 

their location with respect to an arbitrarily broad range of types of places.

Its perhaps universally acknowledged that path integration requires an ac-

cumulator that tracks a foraging or exploring bee’s distance and direction from 

the hive. However, in light of the sort of evidence just mentioned, there’s also a 

need for one or more local accumulators that work in tandem with the main, 
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global accumulator.10 A local accumulator might work just like a global accumu-

lator, except that its origin can be set at a variety of locations, rather than just at 

the current hive location. Alternatively, local vector information could be the 

product of a system that monitors the global accumulator, comparing its values 

at different places along a route, and deriving the distances and directions be-

tween them. Whatever the case, local vector information needs to be tied to vari-

ous specific locations, such as a salient local landmark or the place of release after 

displacement. 

Now, consider a bee that is learning a multisegment route, one that takes it 

from the hive to solitary tree in a clearing, then to a large boulder, and then to a 

landmark array that marks the foraging site. While learning this route, the bee 

also learns the tree-to-boulder flight vector and the boulder-to-site flight vector. 

That is, in addition to learning to fly to the tree, then to the boulder, and then to 

the site, it also learns the distance and direction of the tree from the hive, the 

boulder from the tree, and the site from the boulder. In each case, the origin of its 

local accumulator is tied to a different place. Since the bee is learning the flight 

vectors in question, it would appear that it needs to explicitly represent informa-

tion such as [100 m and 45º east of the sun from tree] while in flight. That is, local 

vector information must be tied to specific place information. The learning mech-

228

10 Collett (T. S.) and Zeil 1998, Collett (M.) et al. 2002.



anism in question, then, would appear to require representations that provide 

distance and direction information in relation to the value a variable whose in-

stances are representations of places, representations of the (semantic) form: 

[distance n and direction d from place x]. 

It is not unreasonable to suppose that the value of the place variable in such 

a representation sometimes has an indexical-like semantic role. For it’s possible 

for a bee’s local-vector learning mechanism to be active without it’s being tied to 

any specific place features. That might occur if the bee is released at a featureless, 

uniform, unfamiliar location. Or that might occur when a displaced bee, after 

playing out its (say) feeder-to-hive vector, arrives at a featureless, uniform loca-

tion that would have been the location of the hive in the absence of displace- 

ment.11 (Another possible occurrence is presented in Section 7.4.) It seems to be a 

live hypothesis, then, that some bee representations are of the form [distance n 

and direction d from there].

Indeed, one might well wonder how vector navigation is possible without 

(semantic) indexicals. Information about the distances and directions between 

various places is not going to be useful to you unless you know where you’re at. 

Thus, a bee might have stored the information [Site S to hive: 200 m and 30˚ west 

of the sun]. But if the bee, upon departing from the hive for Site S, is displaced to 
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Site S, that information won’t help it get back to the hive unless it can also ac-

quire the information [here is at Site S]. Moreover, it’s not acquiring that infor-

mation, but retaining the information [here is at hive], would explain it’s setting a 

course, upon release at Site S, that would have taken it from the hive to Site S in 

the absence of displacement.

7.4  Operations on Semantic Constituents of Complex Representations

As I argued in the previous section, bee representational constituents have vari-

ous sorts of semantic structural roles. There is a corollary to this claim regarding 

information processing in the honeybee, namely, that some of those processes 

must be structure sensitive. They must be sensitive to the structural roles of rep-

resentational constituents. In this section, I provide what I take to be specific 

examples of such processes.

Recall that Menzel has shown that bees are capable of adopting novel routes 

to a feeder upon determining their location in relation to the hive (§ 6.2.4). A sig-

nificant fraction of the novel flight trajectories to the feeder were straight, 

whereas a majority consisted of two flight segments (Fig. 7.1). The initial segment 

of two-segment flights resembled the trained hive-to-feeder vector. The second 

segment resembled the vector that would have led the bee to the hive from the 

homing flight’s point of origin. 
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Straight shortcuts to the feeder are explanable by the hypothesis that the 

bees summed their present-location-to-hive vector with their hive-to-feeder vec-

tor. Two-segment novel routes are explanable by the hypothesis that the bees 

flew those two vectors rather than summed them. What’s particularly intriguing 

about the latter possibility is that the bees would have first flown their hive-to-

feeder vector from a place that was not the location of the hive to a place that was 

not the location of the feeder (Fig. 7.1). Furthermore, they would then have flown 

along a vector that was originally hive directed but was now feeder directed. So, 

as I am about to propose in more detail, not only was the route flown a novel 

shortcut, it was, on the present hypothesis, a result of a novel combination of 

flight vector memories and their semantic constituents.12 
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Figure 7.1. Novel metric shortcuts contrasted with novel complex routes. (Left) A straight short-
cut (solid arrow) from a recognized landmark (L) to the feeder (F) is the sum of the landmark-to-
hive (H) vector (V1) and the hive-to-feeder vector (V2). (Right) The first leg of a two-segment 
novel route, from a recognized landmark to the feeder, is the original hive-to-feeder vector (V2). 
Since the bee starts at the landmark rather than the hive, the first leg leads the bee to a place (x) 
that is neither the hive nor the feeder.  The second leg is the vector that would have led from the 
landmark to the hive (V1).



Suppose that a bee, while searching for the hive, encounters a landmark the 

perception of which causes the bee to recall, from its general landscape memory, 

the vector that leads from that landmark to the hive. Say that the content of that 

memory is [landmark L-to-hive: 100 m northeast]. However, the bee has become 

motivated to find the feeder (perhaps because its energy reserves are becoming 

depleted). So the bee’s new motivational state causes it also to recall its hive-to-

feeder flight vector, the content of which we may express as [hive-to-feeder: 

200 m east]. But the bee doesn’t merely fly the hive-to-feeder vector and search 

for the feeder upon its completion. It flies that vector and then the vector than 

would have led it to the hive from the recognized landmark. The hypothesis, 

then, is that from the stored information,

[landmark L-to-hive: 100m northeast]

[hive-to-feeder: 200m east]

the bee constructs the “flight plan,”

[landmark L-to-x: 200m east, then x-to-feeder: 100m northeast].

That is, the bee learns how to get to the feeder from its location at the landmark 

by recombining, in a novel way, some of the semantic constituents of information 

previously acquired. Correlatively, there must be information manipulating 

processes that operate on the remembered information in question. Note that if 
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this hypothesis is correct, the bee’s flight plan has an indexical-like element as a 

semantic constituent, in accordance with the possibility, mentioned above

(§ 7.3.2), that a bee’s local-vector learning mechanism can be active without it’s 

being tied to any specific place features. The bee’s construction of the flight plan 

on the basis of its stored information would also seem to require that the bee rely 

on information such as [here is at landmark L].

Another possibility is that the bee arrives at the feeder by combining con-

stituents of the stored information,

[landmark L-to-hive: 100m northeast]

[hive-to-feeder: 200m east]

so as to construct the flight plan,

[200m east, then 100m northeast].

But, crucially, even on this weaker hypothesis, the derived vector is a combina-

tion of semantic constituents of the stored vectors. 

Vector averaging also involves manipulation of vector memory semantic 

constituents. First, vector information operations such as vector averaging and 

vector addition (as in, for example, path integration [§ 6.1.1]) require manipula-

tion of the distance and direction semantic constituents of the relevant vectors. 

For it’s only by manipulation of those constituents that the resultant vector can 
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be derived. But vector averaging, as hypothesized to have been performed by the 

novel-shortcut bees in Menzel’s vanishing bearing, displacement study (§ 6.2.3), 

might also involve further alterations. The bees could have manipulated the two 

feeder-to-hive vectors so as to obtain a present-location-to-hive vector. Or they 

could have averaged the two hive-to-feeder vectors and then reversed the direc-

tion of the result to obtain a present-location-to-hive vector. 

Giurfa’s Y-maze experiments provide evidence in support of the claim that 

bees can acquire constitutent-structure sensitive rules (see also below [§ 7.5.2]). 

Recall that the bees appeared to acquire rules along the lines of “Choose the x-

marked arm if x is at the entrance.” If that’s correct, it’s reasonable to propose 

that the bees, in performing the delayed matching-to-sample task, relied on a 

rule and representations with the following contents:

Learned rule [Choose the x-marked arm if x is at the entrance.]

Current information [Odor O is at the entrance.]

Instantiated rule [Choose the O-marked arm if O is at the entrance.]

Motor command [Choose the O-marked arm.]

This would be a clear example of structure-sensitive reasoning, regardless of 

whether or not the representations having the last three contents are thought of 

as being processed strictly in sequence or, to some extent, in parallel. 
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One of Collett’s maze experiments, together with other available evidence, 

makes the possibility that honeybees are capable of transitive reasoning worthy 

of investigation. Recall that Collett trained bees to negotiate a three-compartment 

maze by choosing the correct stimulus for each compartment (§ 6.2.2.1). Collett’s 

results strongly suggest that the bee’s learned the compartment-to-compartment 

sequence of positive stimuli, rather than behaved in accordance with sequentially 

recalled memories. Now, recall that, for one set of experiments, bees were trained 

with yellow paper marking the entrance to the boxes (which was always on the 

left), white (positive) and black (negative) in the first box, blue (marking the only 

exit and always on the right) in the second, and vertical (positive) and horizontal 

(negative) in the third (Fig. 6.5). The test I draw your attention to is the one in 

which bees chose between white and vertical in the middle box. The back box 

remained the same as in training, whereas the front box was made to look as 

similar as possible to the middle box in training, with blue on the right marking 

the only exit. Nonetheless, the bees preferred white in the middle box and verti-

cal in the back box. They did not, then, simply associate the perceived character-

istics of the middle box in training with the succeeding, vertical positive stimu-

lus. Rather, they appear to have stored a representation having a content corre-

sponding to [white before blue and blue before vertical].
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If in fact this is correct, then there is a possibility that the bees’ having pre-

ferred white when tested in the middle box was a result of a kind of transitive 

reasoning process. From [white before blue and blue before vertical], the bees 

might have derived [white before vertical]. Of course, it is also possible that the 

bees independently learned, rather than derived, [white before vertical]. How-

ever, what makes the possibility of transitive reasoning here one to be taken seri-

ously is that, although bees learn route-segment sequences, they appear to learn, 

and certainly perform, individual route segments independently.

For example, in Collett’s channel experiments (§ 6.2.1), the bees learned the 

landmark-to-landmark route segment and the landmark-to-feeder route seg-

ment, but didn’t appear to learn the first-boundary-to-feeder route segment. 

Note also that, for all tests in the first series, regardless of the types of landmarks 

employed, the bees searched at the training distance from the final landmark. 

That they did so, regardless of the distance from the channel entrance to the first 

landmark, confirmed earlier findings13 that bees’ searches are sometimes con-

trolled by a local vector extending from a particular landmark to the place, rela-

tive to that landmark, where the goal had been. And, in Collett’s vector sequence 

experiments (§ 6.2.1), in both standard and displacement tests, when the position 

of the first turn in an individual bee’s flight path differed from the correct loca-
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tion, there was a slight tendency for the position of the second turn to differ from 

the correct location by the same amount. The second flight segment, then, did not 

appear to correct for any inaccuracies in the first. 

The following appears to be a clear case of explicit goal information inter-

acting with additional, explicit locational information in order to yield an action. 

A recruitee reads a dance indicating [200 meters from the hive, at 30˚ west of the 

sun]. So it acquires, as an explicit goal, [200 meters from the hive, at 30˚ west of 

the sun]. Noncontroversially, this needs to be explicit. The bee then heads for the 

stated location, only to find the way blocked, perhaps by a high, steep bluff. It 

then detours around the obstacle. Its path-integration accumulator coordinates 

will give it its current position with respect to the hive (also explicit), which must 

be compared with the explicit goal coordinates, in order to give the bee the nec-

essary heading and direction to take once clear of the obstacle. We thus have cur-

rent information interacting with explicit goal information to yield an action. We 

also another example of a process operating on representational constituents.14

7.5  Algebraic Rules: An Introduction to Modelling Issues

In Chapters 3–5, I argued that Connectionist-style explanations of systematicity 

do not have an explanation of systematicity per se, and that they are unprinci-
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pled in the sense that they appeal to mechanisms that are arbitrary with respect 

to Connectionism. Smolensky architectures, for example, appeal to structural-role 

vectors and operations defined over them. Such architectures are, in that sense, 

nonstandard Connectionist architectures. I’ve argued that an appeal to nonstan-

dard Connectionist mechanisms is necessary in order to explain systematicity

(§§ 4.2 and 5.3). Connectionist theorists, though, will no doubt persist in at-

tempting to capture systematicity with more standard architectures. Whether or 

not they will succeed without implementing Classical representations or rules is 

an empirical issue. So far, they have not succeeded;15 and there may be principled 

explanations for the lack of their success.16

I leave a full discussion of modelling issues for a later occasion. But it’s 

worth taking a look at one important issue that needs to be addressed, namely, 

whether standard Connectionist architectures are capable of freely generalizing 

universally quantified one-to-one mappings. (We’ll see what this issue is about 

shortly.) For, first, the issue of systematicity is related to issues of generalization. 

In accordance with a point made by Hadley,17 systematically related capacities 

require (or perhaps are) capacities to generalize previously acquired informa-
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tional structures to novel informational constituents. For example, if you’ve ac-

quired the capacity to think that Andy loves Betty, and you later acquire an ad-

ditional concept with the content [Carol], then you also acquire the capacity to 

think that Andy loves Carol. Second, as I’ll make clear below, honeybees have the 

capacity to freely generalize certain universally quantified one-to-one mappings.

7.5.1  Algebraic Rules and Free Generalization

Marcus reminds us that there is much evidence that people can freely generalize 

universally quantified one-to-one mappings.18 Such a mapping is a function that 

yields a unique value for every item in its domain. The identity function, f(x) = x, 

is a clear example. To say that people can freely generalize such a function is to 

say that they can determine it’s value for any item in its domain, regardless of 

whether or not they have previously encountered that item. For example, English 

speakers can form the progressive of any English verb stem by suffixing “-ing” to 

it, even if the verb stem is entirely new to them.

Free generalization of a universal one-to-one function seems to require exe-

cution of a rule that operates on instances of variables, what Marcus calls an al-

gebraic rule. Operations that rely on encoded one-to-one mappings between 

particulars (such as could be contained in a look-up table, for example) would 

not suffice. Such operations simply do not permit generalization to novel par-
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ticulars. For novel particulars, by definition, are just those for which there is no 

prior encoded mapping.

On the other hand, free generalization comes naturally to a system that exe-

cutes algebraic rules. For such a rule is applicable to any input-variable instance, 

regardless of whether or not the instance is novel to the system. As long as the 

rule is a good one, it will yield appropriate outputs for novel inputs.

Bees, it seems, are also able to freely generalize universally quantified one-

to-one mappings. We’ve seen that bees can freely generalize the solar ephemeris 

for their locale (§ 6.1.2). That is, on the basis of limited exposure to the sun, their 

solar ephemeris learning mechanism produces a record that allows them to esti-

mate the azimuthal position of the sun at times when have not seen it or never 

can see it. Also, Guirfa’s Y-maze experiments showed that bees can solve delayed 

matching-to-sample tasks and delayed non-matching-to-sample tasks, where 

their solutions allow them to generalize to novel stimuli, even across sensory 

modalities (§ 6.2.2.2). Again, his results suggest that the bees can acquire rules 

that operate on instances of a variable. Furthermore, rules such as “Choose the x-

marked arm if x was at the entrance” and “Choose the non-x-marked arm if x 

was at the entrance” are universally quantified one-to-one functions.

Marcus provides a strong case for his thesis that standard connectionist net-

works (whether local or distributed), trained by standard connectionist learning 
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algorithms, cannot freely generalize universal one-to-one functions unless they 

implement algebraic rules. He first provides theoretical considerations in support 

of his thesis. He then examines various models which attempt to account for ex-

perimental results with respect to a variety of human cognitive tasks (such as 

linguistic inflection), where successful performance appears to require the ability 

to freely generalize. He argues that the most successful models implement rules 

for computing universal one-to-one functions, whereas the unsuccessful models 

do not. Here I present only his theoretical argument. I then show that his argu-

ment applies fairly straightforwardly to a network model of solar ephemeris 

learning proposed by Dickinson and Dyer.19 I also briefly discuss the implica-

tions of his argument for modeling Giurfa’s Y-maze results.

Marcus’ theoretical thesis is that the training independence exhibited by 

standard connectionist networks entails that a multiple-node-per-input-variable20 

connectionist model can learn to compute a certain universal one-to-one function 

only if every input node and output node is exposed, during training, to at least 

some items in that function’s domain. Roughly, training independence exists 
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natural candidates as hypotheses about how algebraic rules could be implemented in networks. 
As such, they do not constitute an alternative to models having Classical architecture. Smolensky 
makes a similar claim about local connectionist models: “The theory of … local connectionist 
networks is so intimately associated with the classical theory of computation and automata that 
drawing any principled boundary between them may well be impossible” (1995c, p. 231).



when: (1) adjustment of the connection weights (training) for some input nodes 

occurs independently of adjustment of the connection weights for other input 

nodes (input independence); and (2) adjustment of the connection weights for some 

output nodes occurs independently of adjustment of the connection weights for 

other output nodes (output independence).

Training independence, according to Marcus, is a logical consequence of the 

nature of the standard connectionist learning algorithms, such as backpropaga-

tion and Hebbian algorithms. Learning that occurs through the use of such algo-

rithms is local. During training, the weight of a given connection is altered as a 

function of information that is locally available to that connection. Connections 

are not given access to the activation values of nodes to which they do not con-

nect, nor are they given access to the weights of other connections. As a result, 

successful training adjustment of the connection weights for some subset of a 

network’s input (or output) nodes need not transfer to the connection weights for 

its other input (or output) nodes. As Marcus puts it, standard connectionist net-

works are unable to generalize universal one-to-one functions between nodes.

7.5.2  Free Generalization in Bees

Dickinson and Dyer claim to have provided what they consider to be a nonim-

plementational connectionist model of how bees learn the local solar ephem- 
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eris.21 The connectivity structure of the core of Dickinson and Dyer’s model is 

partially illustrated in Figure 7.2. The most active node in the inner ring repre-

sents the time of day. The most active node in the outer ring represents the azi-

muth. The outer ring receives its inputs from the visual system. The inner ring 

receives its inputs from the circadian clock. Each time node is connected with 

every azimuth node. There are also connections within each ring.

During the learning process, the connection between the most active time 

node and the most active azimuth node is strengthened relative to the other time-

azimuth connections (a Hebbian learning algorithm seems sufficient for this pur-

pose). Also, the connection within each ring between its most active node and its 

180˚ (12-h) opposite is strengthened relative to the other connections within that 

ring. The relative strengthening of intra-ring connections, according to Dickinson 
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set. Dickinson and Dyer regarded this as “a fatal flaw of the model, and of any model that re-
quires exposure to examples of complete patterns to be able to recognize incomplete patterns” 
(1996, p. 200).

Figure 7.2. Connectivity structure of Dickin-
son and Dyer’s model of solar ephemeris 
learning (not all connections are shown).



and Dyer, allows the network to learn the local ephemeris and to use it to esti-

mate the azimuth for any time of day or night.22

Dickinson and Dyer claim that this sort of model can learn any solar ephem-

eris function. They also claim that it is nonimplementational.23 It may be con-

ceded that a model of the sort proposed by Dickinson and Dyer can learn any 

particular, local solar ephemeris function. However, it appears that such a model 

could learn such a function only if it builds in constraints that amount to an im-

plementation of a general function which, via learning (perhaps some sort of 

parameter setting), yields a particular solar ephemeris.

Consider such a model repeatedly exposed to the local solar azimuth only 

for the same couple of hours in the afternoon. How can it learn to estimate the 

complete local solar ephemeris for its locale? First, as Dickinson and Dyer realize, 

in order to learn the ephemeris for the corresponding time of night, the time-of-

day nodes need to be most strongly connected to the time-of-night nodes that 

correspond to one-half of a day later. But it should be clear that this is a con-

straint on weights that partially builds in a general solar ephemeris function. 

Clearly, this constraint must be built-in by the modeller, since weights are simply 

not determined by connectivity alone. Second, the portion of the solar ephemeris 
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that a network with such connectivity will learn, based on limited exposure, will 

be consistent with an infinite variety of complete solar ephemeris functions. For 

example, for all such a network might learn, the sun is never visible outside that 

part of the sky in which it has been observed. Thus, further constraints on the 

weights of its connections will be necessary. Again, such constraints must be built 

in by the modeller. In short, if such a model can learn any local solar ephemeris, 

that will be possible only if the modeller builds in what he or she already knows 

about the “shapes” (a graph of) a local solar ephemeris can actually take as well 

as how the entire shape of a particular ephemeris depends on the shapes of cer-

tain of its parts.

Dickinson and Dyer’s network model, then, won’t be able to freely general-

ize a local solar ephemeris unless it implements a generalized solar ephemeris 

function that operates on the value of a variable (time of day). Thus, it’s not a de-

finitive example of a nonimplementational connectionist model of solar ephem-

eris learning. At best, their model shows that if a universally quantified one-to-

one mapping has a sufficiently limited domain, then it can be implemented with 

what amounts to a kind of look-up table. That’s something a Classical theorist 

should have no qualms about.

I now turn to the question of whether network models of the learning of de-

layed matching-to-sample tasks or delayed non-matching-to-sample tasks could 

245



be adequate without implementing an algebraic rule. I won’t attempt to provide 

a complete answer this question. (Again, I leave a thorough examination of spe-

cific modelling issues for future work.24) Rather, I limit my discussion to a recent 

argument for an affirmative, though qualifiedly affirmative, answer. I’ll then say 

a few words about Giurfa’s Y-maze experiments.

Learning the tasks in question involves learning a first-order sameness or 

difference relation. Penn and Povinelli25  argue that non-Classical architectures 

are capable of learning such relations. They point to a network model by Gasser 

and Colunga26 as a clear example of such a network. Their model employs “mi-

cro-relational units” to detect, roughly, the similarity or difference between two
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(none have the capability of taking novel shortcuts) implement representations for which the con-
stituency relation is concatenative (typically, configurationally complex maps; they also employ 
traditional graph-search algorithms). The same is true of the more recent network model pro-
posed by Voicu and Schmajuk (2000). The network model developed by McNaughton and col-
leagues (McNaughton et al. 1991, 1996; Samsonovich and McNaughton 1997) performs path inte-
gration, but does so by implementing a look-up table,  and thus can’t serve as a definitive exam-
ple of a non-Classical approach. Their model also implements a configurationally complex map. 
(A problem with the model is that it is incapable of returning to the coordinates of a stored loca-
tion, since it has no mechanism for storing such coordinates.) Mittelstaedt (2000) extends their 
model. Unlike McNaughton et al.’s version, Mittelstaedt’s model can return to a previously vis-
ited location. But, crucially, it leaves unspecified the mechanism by which locational information 
is tied to goal information. In effect, the model posits complex information without explaining 
how it is to be implemented. I should note that McNaughton and Mittelstaedt don’t appear to 
have a Connectionist axe to grind. Their goal is to provide network models of hippocampal func-
tion and mammalian navigation, and network models need not have an entirely non-Classical 
architecture.

25 Penn and Povinelli (submitted).

26 Gasser and Colunga 1999.



numeric inputs that encode respective features. However, it’s somewhat puzzling 

that Penn and Povinelli go on to admit that a micro-relational unit can plausibly 

be interpreted as implementing a rule that operates on the values of variables. 

Why, then, do they claim that Gasser and Colunga’s solution is non-Classical?

The principal answer is that Penn and Povinelli require of Classical rules 

that they be implemented in the form of explicit information. Since micro-

relational units do their job without employing explicit information about either 

the sameness or difference relation, Gasser and Colunga’s solution is non-

Classical. 

Apart from the fact that Classical rules need not be implemented in the form 

of explicit information (they can be hardwired, for example), there’s a distinction 

between a solution that is not definitively Classical and one that does not imple-

ment a rule that operates on the values of a variable. Some ways of implementing 

such rules are compatible with both Classical architectures and Connectionist 

ones. Gasser and Colunga’s use of multi-relational units appears to be one such 

way. Thus, insofar as the model employs such units, it cannot serve as a defini-

tive example of a non-Classical implementation of an algebraic rule.

It is also true, by the same token, that insofar as the model employs such 

units, it cannot serve as a definitive example of a Classical implementation. How-

ever, the ability to learn a first-order sameness or difference relation, while per-
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haps necessary for performing delayed matching-to-sample tasks or delaying 

non-matching to sample tasks, is not sufficient.27 The rules learned by the bees in 

Giurfa’s experiments—“Choose the x-marked arm if x was at the entrance,” and 

“Choose the non-x-marked arm if x was at the entrance”—make use of sameness 

or difference information and thus require more than the implementation of a 

rule merely for detecting sameness and difference. The bees learned to detect not 

only sameness or difference but also the sameness or difference between two dif-

ferent kinds of features: the sample stimulus and the matching or nonmatching 

stimulus. In terms of variables, the information about the sample stimulus had to 

have been bound to a different variable than the information about either of the 

later-encountered stimuli. Which is another way of saying that the values of the 

respective variables had to have different semantic roles, and the learned rules 

had to have been sensitive to those roles. Thus, it appears that an adequate 

model of Giurfa’s results would have to do more than simply implement alge-

braic rules. It would have to implement rules that are sensitive to semantic 

structure.28 
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dependence.



7.6  Summary and Conclusion

I’ve argued in this chapter (based on the evidence presented in Chapter 6) that 

certain navigational capacities of honeybees exhibit what I’ve called strong sys-

tematicity (§ 7.1) and that certain navigational capacities of honeybees exhibit 

what I’ve called weak systematicity (§ 7.2). I’ve also argued that the representa-

tional constituents of systematically related honeybee mental representations 

have various structural roles (§ 7.3). Among these are subject- and object-of-

relation roles (§ 7.3.1), place-in-sequence roles (§ 7.3.1), and “what” and “where” 

roles (§ 7.3.2). Furthermore, a case can be made for the hypothesis that among the 

constituents of bee representations are indexical-like constituents (§§ 7.3.3, 7.4, 

and 7.5). Finally, I’ve argued that honeybee information processing must be sen-

sitive to the structural roles of representational constituents.

The question that connects Chapters 2–5 and Chapters 6 and 7 is, “What 

kind of theory of honeybee mental representations and processes would best ex-

plain the systematicity of the relevant honeybee navigational capacities?” Classi-

cal theorists would hypothesize, in light of the evidence (Chapter 6), that honey-

bees have mental representations that are complex, having representations as 

constituents. They would also hypothesize that the constituency relation for the 

relevant bee mental representations is concatenative and that the configurational 

structure of those representations is governed by a combinatorial syntax and se-
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mantics. As in the case of human thought, the specific kinds of constituents—the 

specific contents and extensions of atomic and complex constituents—would be 

left open, for the present.29 Classical theorists would further hypothesize that the 

relevant honeybee cognitive processes have representational constituents in their 

domains and are causally sensitive to syntactic structure.

As I argued in Chapters 3–5, such an explanation of systematicity would be 

a good one. On the other hand, a Connectionist explanation would not be a good 

one, in that (1) it would provide neither a causal explanation of systematicity 

(Chapter 3) nor an acausal explanation of systematicity (Chapter 4) (and thus 

would not really explain systematicity at all), and (2) it would be unprincipled if 

construed as an explanation of systematicity (Chapter 5) (though it would not be 

be unprincipled if construed as an explanation of how a Connectionist system 

could mimic a Classical system that exhibits systematicity). Therefore, we have 

good (though defeasible) reasons to prefer Classical theories of certain honeybee 

navigational capacities over Connectionist theories.

One objection to the Classical explanation of systematicity is that it’s not at 

all clear whether systematicity requires that the configurational structure of 
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off on this matter.



mental representations be syntactic.30 Perhaps positing map-like structure (for 

example) rather than syntactic structure would work as well. In regard specifi-

cally to the systematicity of honeybee navigational capacities, it might seem that 

map-like representational structure could account for the relevant systematicies. 

After all, we’re talking about certain capacities of honeybees to acquire informa-

tion about their navigational domain. Furthermore (it might be thought), assum-

ing that the structure of the relevant honeybee mental representations is map-like 

provides the best explanation of the fact that those representations preserve in-

formation about about the layout of their environment (which is also map-like).

This objection, I acknowledge, does raise serious issues that would need to 

be adequately addressed by anyone concerned to defend the Classical language 

of thought hypothesis, especially by anyone concerned to defend the view that 

honeybees have a language of thought. Fortunately, however, for my principal 

purpose, it’s not necessary for me to attempt to refute the kind of view under 

consideration. For one thing, as I pointed out earlier (§ 5.4; Appendix A), a sys-

tem of mental representation can be both map-like and language-like. Further-

more, and this is the key point, my main conclusion is that we have (defeasible) 

good reasons to favor explanations of systematicity that posit a system of mental 

representation for which the constituency relation is concatenative over explana-
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tions that do not; and the constituency relation for maps and other sorts of 

structural representations is in fact concatenative. So even if the objection in 

question could be worked out (and even if it turns out that the vehicles of hon-

eybee mental representations are map-like), that would be of no solace to a Con-

nectionist. For distributed representations are configurationally simple. Their 

contents can be complex, but the Connectionist constituency relation is noncon-

catenative. And, as I argued in Chapters 3–5, it’s that feature of Connectionism 

that makes its explanation of systematicity problematic.
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Appendix A

A Limited Representational System which is both Map- and 
Language-Like

Here I demonstrate by means of a simple, artificial example, the possibility of a 

system of representation that is map-like, in that its representations have spatial 

structure, and language-like, in that it has a combinatorial syntax and semantics. 

I make no claims about the theoretical usefulness of the system.

A.1  Lexicon for Map Legend L

The map legend L consists of the following terms:

A finite set of individual constants, I: a set of 12 unique, uniform patterns.

A finite set of 1-place predicates, P: a set of 12 distinct colors.

A finite set of 3-place predicates, G: a set of 12 grids of two square, non-
overlapping regions having the same area and contiguous along a vertical 
side (  n).

On the intended interpretation, the members of G express something like the 

following: x is that minimal region of the world such that y is situated in the left 

half of x, and z is situated in the right half of x.
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A.2  Syntax for L

All patterns, colors, and grids are to be understood as members of the relevant 

set of the terms of L.

1. For any uniform (colored or noncolored) pattern , and for any grid
 n,  n and n are wffs. (Here, “noncolored” means having a 

color that is distinct from each member of P.)

2. For any uniform (colored or noncolored) patterns  and , and for 
any grid  n,  n is a wff.

3. If P and Q are wffs by clause 1 or 2, then the stack P/Q (P stacked on Q) 
is a wff.

4. There are no other wffs.

Regarding 1, when just one of the pattern variables is instanced, the other may be 

considered bound by an implicit existential quantifier whose domain is I. 

A.3  Semantics for L

A.3.1  L-Models

An L-model is an ordered 4-tuple, < , Γ, Π, Ι>, where

1.  is a square region consisting of 16 contiguous, nonoverlapping, and 
numbered square regions, arranged in a 4-by-4 grid:
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2. Γ is a one-to-one mapping of G onto the set of the 12 smallest, horizon-
tally oriented, rectangular regions of , S: {1-2, 2-3, 3-4, 5-6, …, 15-16}.

3. Π assigns to each member of I one member of P.

4. Ι is a one-to-one mapping of I onto the set of the 16 numbered subre-
gions of  .

A.3.2 Truth Conditions for wffs of L

1. If  is a noncolored pattern, then n is true iff Γ(  n) = k-(k+1) 
and Ι( ) = k.

2. If  is a noncolored pattern, then n is true iff Γ(  n) = k-(k+1) 
and Ι( ) = k+1.

3. If  is a pattern of color c ∈ P, then n is true iff Γ(  n) = k-(k+1),
Ι( ) = k, and Π( ) = c.

4. If  is a pattern of color c ∈ P, then n is true iff Γ(  n) = k-(k+1),
Ι( ) = k+1, and Π( ) = c.

5. If  and  are (colored or noncolored) patterns, then n is true iff 
n and n are true.

6. A stack, P/Q, is true iff P is true, Q is true, and the grid constituents of P 
and Q are mapped by Γ onto two members of S, a and b (respectively), 
such that the bottom side of a is contiguous with the top side of b. 

255



References

Aizawa, K. 1997. “Explaining systematicity.” Mind and Language 12: 115–136.

Anderson, J. A. 1995. An Introduction to Neural Networks. MIT Press.

Barsalou, L. W. 1992. “Frames, concepts, and conceptual fields.” In Frames, Fields, 
and Contrasts: New Essays in Semantic and Lexical Organization, ed. E. Kittay 
and A. Lehrer. Erlbaum.

Barsalou, L. W. 1993. “Flexibility, structure, and linguistic vagary in concepts: 
Manifestations of a compositional system of perceptual symbols.” In Theories 
of Memories, ed. A. C. Collins, S. E. Gathercole, and M. A. Conway. Erlbaum.

Beer, R. D. 2000. “Dynamical approaches to cognitive science.” Trends in Cognitive 
Sciences 4: 91–99.

Berg, R. E., and Stork, D. G. 1995. The Physics of Sound, second edition. Prentice 
Hall.

Blakemore, R. P., and Frankel, R. B. 1981. “Magnetic Navigation in Bacteria.” Sci-
entific American 245: 58–65.

Block, N. 1995. “The mind as the software of the brain.” In An Invitation to Cogni-
tive Science, 2nd ed., vol. 3, Thinking, ed. D. Osherson. MIT Press.

Browne, A., and Sun, R. 1999. “Connectionist variable binding.” Expert Systems 
16: 189–207.

Butler, K. 1991. “Towards a connectionist cognitive architecture.” Mind and Lan-
guage 6: 252–272.

Capaldi, E. A., and Dyer, F. C. 1995. “Landmarks and dance orientation in the 
honeybee Apis mellifera.” Naturwissenschaften 82: 245–247.

Capaldi, E. A., and Dyer, F. C. 1999. “The role of orientation flights on homing 
performance in honeybees.” The Journal of Experimental Biology 202: 1655-1666.

256



Capaldi, E. A., Smith, A. D., Osborne, J. L., Fahrbach, S. E., Farris, S. M., Rey-
nolds, D. R., Edwards, A. S., Martin, A., Robinson, G. E., Poppy, G. M., and 
Riley, J. R. 2000. “Ontogeny of orientation flight in the honeybee revealed by 
harmonic radar.” Nature 403: 537–540.

Carruthers, P. 2005. “On being simple-minded.” In Consciousness: Essays from an 
Higher-Order Perspective. Oxford University Press.

Cartwright, B. A., and Collett, T. S. 1983. “Landmark learning in bees: Experi-
ments and models.” Journal of Comparative Physiology 151: 521–543.

Casati, R., and Varzi, A. C. 1999. Parts and Places: The Structures of Spatial Represen-
tation. MIT Press.

Chittka, L., Bonn, A., Geiger, K., Hellstern, F., Klein, J., Koch, G., Meuser, S., and 
Menzel, R. 1992. “Do bees navigate by means of snapshot memory pictures? 
In Proceedings of the 20th Göttingen Neurobiology Conference, ed. N. Elsner and 
D. W. Richter. Georg Thieme Verlag.

Chittka, L., Geiger, K., and Kunze, J. 1995a. “The influence of landmarks on dis-
tance estimation of honey bees.” Animal Behaviour 50: 23–31.

Chittka, L., Kunze, J., Shipman, C., and Buchmann, S. L. 1995b. “The significance 
of landmarks for path integration in homing honeybee foragers.” Naturwis-
senschaften 82: 341–343.

Churchland, P. S. 1986. Neurophilosophy: Toward a Unified Science of the Mind Brain. 
MIT Press.

Clark, A. 1988. “Thoughts, sentences and cognitive science.” Philosophical Psychol-
ogy 1: 263–278.

Collett, M., and Collett, T. S. 2000. “How do insects use path integration for their 
navigation?” Biological Cybernetics 83: 245–259.

Collett, M., Collett, T. S., Bischi, S, and Wehner, R. 1998. “Local and global vectors 
in desert ant navigation.” Nature 394: 269–272.

Collett, M., Harland, D., and Collett, T. S. 2002. “The use of landmarks and pano-
ramic context in the performance of local vectors by navigating honeybees.” 
The Journal of Experimental Biology 205: 807–814.

257



Collett, T. S. 1992. “Landmark learning and guidance in insects.” Philosophical 
Transactions of the Royal Society of London B 337: 295–303.

Collett, T. S. 1996. “Insect navigation en route to the goal: Multiple strategies for 
the use of landmarks. The Journal of Experimental Biology 199: 227–235.

Collett, T. S., and Baron, J. 1994. “Biological compasses and the coordinate frame 
of landmark memories in honeybees.” Nature 368: 137–140.

Collett, T. S., and Zeil, J. 1998. “Places and landmarks: An arthropod perspec-
tive.” In Spatial Representation in Animals, ed. S. Healy. Oxford University 
Press.

Collett, T. S., Fry, S. N., and Wehner, R. 1993. “Sequence learning by honey bees.” 
Journal of Comparative Physiology A 172: 693–706.

Collett, T. S., Baron, J., and Sellen, K. 1996. “On the encoding of movement vec-
tors by honeybees. Are distance and direction represented separately?” Jour-
nal of Comparative Physiology A 179: 395–406.

Collett, T. S., and Collett, M. 2000. “Path integration in insects.” Current Opinion 
in Neurobiology 10: 757–762.

Collett, T. S., and Collett, M. 2002. “Memory use in insect visual navigation.” Na-
ture Reviews Neuroscience 3: 542–552.

Copeland, J. 1993. Artifical Intelligence: A Philosophical Introduction. Blackwell.

Cummins, R. 1996. “Systematicity.” The Journal of Philosophy 93: 591–614.

Cummins, R., Blackmon, J., Byrd, D., Poirier, P., Roth, M., and Schwarz, G. 2001. 
“Systematicity and the cognition of structured domains.” The Journal of Phi-
losophy 98: 167–185.

Darwin, C. 1985. The Origin of Species. Penguin Classics.

Dennett, D. C. 1989. “Mother nature versus the walking encyclopedia.” In Phi-
losophy and Connectionist Theory, ed. W. M. Ramsey, S. P. Stich, and D. E. Ru-
melhart. L. Erlbaum Associates.

Dickinson, J. 1994. “Bees link local landmarks with celestial compass cues.” Na-
turwissenschaften 81: 465–467.

258



Dickinson, J., and Dyer, F. C. 1996. “How insects learn about the sun’s course: Al-
ternative modeling approaches.” In From Animals to Animats 4, ed. P. Maes, M. 
J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson. MIT Press.

Dyer, F. C. 1985a. “Mechanisms of dance orientation by the Asian honey bee Apis 
florea.” Journal of Comparative Physiology A 157: 183–198.

Dyer, F. C. 1985b. “Nocturnal orientation by the Asian honey bee, Apis dorsata.” 
Animal Behaviour 33: 769–774.

Dyer, F. C. 1987. “Memory and sun compensation by honey bees.” Journal of 
Comparative Physiology A 160: 621–633.

Dyer, F. C. 1991. “Bees acquire route-based memories but not cognitive maps in a 
familiar landscape.” Animal Behaviour 41: 239–246.

Dyer, F. C. 2002. “The biology of the dance language.” Annual Review of Entomol-
ogy 47: 917–949.

Dyer, F. C., and Dickinson, J. A. 1994. “Development of sun compensation by 
honey bees: How partially experienced bees estimate the sun’s course.” Pro-
ceedings of the National Academy of Sciences USA 91: 4471–4474.

Dyer, F. C., and Dickinson, J. A. 1996. “Sun-compass learning in insects: Repre-
sentation in a simple mind.” Current Directions in Psychological Science 5: 67–
72.

Esch, H. E., and Burns, J. E. 1996. “Distance estimation by foraging honeybees.” 
The Journal of Experimental Biology 199: 155–162.

Esch, H. E., Zhang, S. W., Srinivasan, M. V., and Tautz, J. 2001. “Honeybee dances 
communicate distances measured by optic flow.” Nature 411: 581–583.

Etienne, A., Maurer, R., Berlie, J., Reverdin, B., Rowe, T., Georgakopoulos, J., and 
Séguinot, V. 1998. “Navigation through vector addition.” Nature 396: 161–164.

Fodor, J. A. 1990. A Theory of Content and Other Essays. MIT Press.

Fodor, J. A. 1998. “Connectionism and the problem of systematicity (continued): 
Why Smolensky’s solution still doesn’t work.” In J. A. Fodor, In Critical Condi-
tion: Polemical Essays on Cognitive Science and the Philosophy of Mind. MIT Press.

259



Fodor, J. A. 2000. The Mind Doesn’t Work That Way: The Scope and Limits of Compu-
tational Psychology. MIT Press.

Fodor, J. A., and McLaughlin, B. P. 1995. “Connectionism and the problem of sys-
tematicity: Why Smolensky’s solution doesn’t work.” In Connectionism: De-
bates on Psychological Explanation, ed. C. MacDonald and G. MacDonald. 
Blackwell.

Fodor, J. A., and Pylyshyn, Z. W. 1995. “Connectionism and cognitive architec-
ture: A critical analysis.” In Connectionism: Debates on Psychological Explanation, 
ed. C. MacDonald and G. MacDonald. Blackwell.

Fülöp, A., and Menzel, R. 2000. “Risk-indifferent foraging behaviour in honey-
bees.” Animal Behaviour 60: 657–666.

Gallistel, C. R. 1998. “Symbolic processes in the brain: the case of insect naviga-
tion.” In An Invitation to Cognitive Science, 2nd ed., vol. 4, Methods, Models, and 
Conceptual Issues, ed. D. Osherson. MIT Press. 

Garson, J. W. 1997. “Syntax in a dynamic brain.” Synthese 110: 343–355.

Giurfa, M., and Capaldi, E. A. 1999. “Vectors, routes and maps: New discoveries 
about navigation in insects.” Trends in Neurosciences 22: 237–242.

Giurfa, M., Zhang, S., Jenett, A., Menzel, R., and Srinivasan, M. V. 2001. “The 
concepts of ‘sameness’ and ‘difference’ in an insect.” Nature 410: 930–933.

Golledge, R. G., ed. 1999. Wayfinding Behavior: Cognitive Mapping and Other Spatial 
Processes. The Johns Hopkins University Press.

Gould, J. L. 1984. “Processing of sun-azimuth information by honey bees.” Ani-
mal Behaviour 32: 149–152.

Gould, J. L. 1986. “The locale map of honey bees: Do insects have cognitive 
maps?” Science 232: 861–863.

Gould, J. L., and Gould, C. G. 1988. The Honey Bee. W. H. Freeman.

Greggers, U., and Mauelshagen, J. 1997. “Matching behavior of honeybees in a 
multiple-choice situation: The differential effect of environmental stimuli on 
the choice process.” Animal Learning and Behaviour 25: 458–472.

260



Greggers, U., and Menzel, R. 1993. “Memory dynamics and foraging strategies of 
honeybees.” Behavioral Ecology and Sociobiology 32: 17–29.

Hadley, R. F. 1994. “Systematicity in connectionist language learning.” Mind and 
Language 9: 247–272.

Hadley, R. F. 1997. “Cognition, systematicity, and nomic necessity.” Mind and 
Language 12: 137-153.

Hadley, R. F. 2002. “Systematicity in Connectionist Generalization,” In The Hand-
book of Brain Theory and Neural Networks, 2nd ed., ed. M.A. Arbib. MIT Press.

Hadley, R. F. 2004. “On the Proper Treatment of Semantic Systematicity.” Minds 
and Machines 14: 145–172.

Haugeland, J., ed. 1997. Mind Design II: Philosophy, Psychology, Artificial Intelli-
gence. MIT Press.

Healy, S., ed. 1998. Spatial Representation in Animals. Oxford University Press.

Heinrich, B. 1976. “Foraging specializations of individual bumblebees.” [Jrnl 
name? Ecol Monogr] 46: 105–128.

Horgan, T., and Tienson, J. 1996. Connectionism and the Philosophy of Psychology. 
MIT Press.

Hummel, J. E., and Holyoak, K. J. 2001. “A process model of human transitive 
inference.” In Spatial Schemas and Abstract Thought, ed. M. Gattis. MIT Press.

Janzen, D. H. 1971. “Euglossine bees as long-distance pollinators of tropical 
plants.” Science 171: 203–205.

Joerges, J., Küttner, A., Galizia, C. G., and Menzel, R. 1997. “Representation of 
odours and odour mixtures visualized in the honeybee brain.” Nature 387: 
285–288.

Kratzsch, D., Giurfa, M., and Menzel, R. 1998. “Sequence learning by honey-
bees.” Abstract 296, Fifth International Congress of Neuroethology, University of 
California, San Diego.

MacDonald, C., and MacDonald, G., ed. 1995. Connectionism: Debates on Psycho-
logical Explanation. Blackwell.

261



Manning, A. 1956. “Some aspects of the foraging behaviour of bumblebees.” Be-
haviour 9: 164–201.

Marcus, G. 2001. The Algebraic Mind: Integrating Connectionism and Cognitive Sci-
ence. MIT Press.

Matthews, R. J. 1996. “Can connectionists explain systematicity.” Mind and Lan-
guage 12: 154–157.

McLaughlin, B. P. 1993. “The connectionism/classicism battle to win souls.” 
Philosophical Studies 71: 163-190.

McNaughton, B. L., Chen, L. L., and Markus, E. J. 1991. “ ‘Dead reckoning’, 
landmark learning, and the sense of direction: A neurophysiological and 
computational hypothesis.” Journal of Cognitive Neuroscience 3: 190–202.

McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W., 
Knierim, J. J., Kudrimoti, H., Qin, Y., Skaggs, W. E., Suster, M., and Weaver, 
K. L. 1996. “Deciphering the hippocampal polyglot: The hippocampus as a 
path integration system.” The Journal of Experimental Biology 199: 173–185.

Menzel, R. 1989. “Bee-havior and the neural systems and behavior course.” In 
Perspectives in Neural Systems and Behavior, ed. T. J. Carew and D. Kelley. Alan 
R. Liss.

Menzel, R. 1999. “Memory dynamics in the honeybee.” Journal of Comparative 
Physiology A 185: 323–340.

Menzel, R., and Giurfa, M. 2001. “Cognitive architecture of a mini-brain: The 
honeybee.” Trends in Cognitive Science 5: 62–71.

Menzel, R, and Müller, U. 1996. “Learning and memory in honeybees: From be-
havior to neural substrates.” Annual Review of Neuroscience 19: 379–404.

Menzel, R., Geiger, K., Chittka, L, Joerges, J., Kunze, J., and Müller, U. 1996. “The 
knowledge base of bee navigation.” The Journal of Experimental Biology 199: 
141–146.

Menzel, R., Geiger, K., Joerges, J., Müller, U., and Chittka L. 1998. “Bees travel 
novel homeward routes by integrating separately acquired vector memories.” 
Animal Behaviour 55: 139–152.

262



Menzel, R., Brandt, R., Gumbert, A., Komischke, B., and Kunze, J. 2000a. “Two 
spatial memories for honeybee navigation.” Proceedings of the Royal Society of 
London B 267: 961–968.

Menzel, R., Giurfa, M., Gerber, B., and Hellstern, F. 2000b. “Cognition in insects: 
The honeybee as a study case.” In Brain Evolution and Cognition, ed. G. Roth 
and M. F. Wulliman. Wiley.

Menzel, R., Greggers, U., Smith, A., Berger , S., Brandt, R., Brunke, S., Bundrock, G., 
Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., 
and Watzl, S. 2005. “Honey bees navigate according to a map-like spatial memory.” 
Proceedings of the National Academy of Sciences USA 102: 3040–3045.

Michelson, A. 1999. “The dance language of honey bees: Recent findings and 
problems.” In The Design of Animal Communication, ed. M. Hauser and M. 
Konishi. MIT Press.

Mittelstaedt, H. 2000. “Triple-loop model of path control by head direction and 
place cells.” Biological Cybernetics 83: 261–270.

Müller, M., and Wehner, R. 1994. “The hidden spiral: Systematic search and path 
integration in desert ants, Cataglyphis fortis.” Journal of Comparative Physiology 
A 175: 525–530.

Niklasson, L. F., and van Gelder, T. 1994. “On being systematically connection-
ist.” Mind and Language 9: 288–302.

Pastergue-Ruiz, I., and Beugnon, G. 1994. “Spatial sequential memory in the ant 
Cataglyphis cursor. In Les Insectes Sociaux. Proceedings of the 12th Congress of the 
International Union. Study social insects, ed. A Lenoir, G. Arnold, and M. 
Lepage. University Paris Nord, Paris.

Penn, D., and Povinelli, D. J. (submitted.) “Do animals really have a language of 
thought?” Behavioral and Brain Sciences.

Phillips, S. 1998. “Are feedforward and recurrent networks systematic? Analysis 
and implications for a connectionist cognitive architecture.” Connection Sci-
ence 10: 137–160.

Phillips, S., and Halford, G. S. 1997. “Systematicity: Psychological evidence with 
connectionist implications.” In Proceedings of the Nineteenth Annual Conference 

263



of the Cognitive Science Society, eds. M. G. Shafto and P. Langley. Stanford Uni-
versity.

Pinker, S. 1997. How the Mind Works. Norton.

Povinelli, D. J., and Bering, J. M. 2002. “The mentality of apes revisited.” Current 
Directions in Psychological Science 11: 115–119.

Povinelli, D. J., Bering, J. M., and Giambrone, S. 2000. “Toward a science of other 
minds: Escaping the argument by analogy.” Cognitive Science 24: 509–541.

Povinelli, D. J., and Giambrone, S. 2001. “Reasoning about beliefs: A human spe-
cialization?” Child Development 72: 691–695.

Povinelli, D. J., and Vonk, J. 2003. “Chimpanzee minds: Suspiciously human?” 
Trends in Cognitive Sciences 7: 157–160.

Rey, G. 1997. Contemporary Philosophy of Mind. Blackwell.

Rey, G. 2003. “Chomsky, Intentionality, and a CRTT.” In Chomsky and His Critics, 
ed. L. M. Antony and N. Hornstein. Blackwell.

Riley, J. R., Smith, A. D., Reynolds, D. R., Edwards, A. S., Osborne, J. L., Williams, 
I. H., Carreck, N. L., and Poppy, G. M. 1996. “Tracking bees with harmonic 
radar.” Nature 379: 29–30.

Riley, J. R., Valeur, P., Smith, A. D., Reynolds, D. R., Poppy, G. M., and Löfstedt, 
C. 1998. “Harmonic radar as a means of tracking the pheromone-finding and 
pheromone-following flight of male moths.” Journal of Insect Behavior 11: 287–
296.

Riley, J. R., Greggers, U., Smith, A. D., Stach, S., Reynolds, D. R., Stollhoff, N., 
Brandt, R., Schaupp, F., and Menzel, R. 2003. “The automatic pilot of honey-
bees.” Proceedings of the Royal Society of London B 270: 2421–2424.

Riley, J. R., Greggers, U., Smith, A. D., Reynolds, D. R., and Menzel, R. 2005. “The 
flight paths of honeybees recruited by the waggle dance.” Nature 435: 205–
207.

Robinson, W. S. 1995. “Direct representation.” Philosophical Studies 80: 305–322.

264



Ronacher, B., and Wehner, R. 1995. “Desert ants Cataglyphis fortis use self-
induced optic flow to measure distances travelled.” Journal of Comparative 
Physiology A 177: 21–27.

Samsonovich, A., and McNaughton, B. L. 1997. “Path integration and cognitive 
mapping in a continuous attractor neural network model.” The Journal of Neu-
roscience 17: 5900–5920.

Schmidt, I., Collett, T. S., Dillier, F.-X., and Wehner, R. 1992. “How desert ants 
cope with enforced detours on their way home.” Journal of Comparative Physi-
ology A 173: 103–133.

Schöne, H., Westermayr, P., Kühme, D., Kühme, L., Schöne, M., and Schöne, R. 
1998. “Searching behaviour and direction finding of differently motivated 
displaced honeybees — an ‘etho-psychological’ study of release behaviour.” 
Ethology 104: 1039–1055.

Servan-Schreiber, D., Cleeremans, A., and McClelland, J. 1991. “Graded state ma-
chines: The representation of temporal contingencies in simple recurrent net-
works.” In Connectionist Approaches to Language Learning, ed. D. Touretzky. 
Kluwer.

Si, A., Srinivasan, M. V., and Zhang, S. 2003. “Honeybee navigation: Properties of 
the visually driven ‘odometer’.” The Journal of Experimental Biology 206: 1265–
1273

Schmidt, I., Collett, T. S., Dillier, F.-X., and Wehner, R. 1992. “How desert ants 
cope with enforced detours on their way home.” Journal of Comparative Physi-
ology A 171: 285–288.

Smolensky, P. 1995a. “Connectionism, constituency, and the language of 
thought.” In Connectionism: Debates on Psychological Explanation, ed. C. Mac-
Donald and G. MacDonald. Blackwell.

Smolensky, P. 1995b. “On the proper treatment of connectionism.” In Connection-
ism: Debates on Psychological Explanation, ed. C. MacDonald and G. MacDon-
ald. Blackwell.

Smolensky, P. 1995c. “Reply: Constituent structure and explanation in an inte-
grated connectionist/symbolic cognitive architecture.” In Connectionism: De-

265



bates on Psychological Explanation, ed. C. MacDonald and G. MacDonald. 
Blackwell.

Srinivasan, M. V., Zhang, S. W., and Bidwell, N. J. 1997. “Visually mediated 
odometry in honeybees navigation en route to the goal: Visual flight control 
and odometry.” The Journal of Experimental Biology 200: 2513–2522.

Srinivasan, M. V., Zhang, S., Altwein, M., and Tautz, J. 2000. “Honeybee naviga-
tion: Nature and calibration of the ‘odometer’.” Science 287: 851–853.

Sterelny, K. 1990. The Representational Theory of Mind: An Introduction. Blackwell.

Tautz, J., Zhang, S., Spaethe, J., Brockmann, A., Si, A., and Srinivasan, M. 2004. 
“Honeybee odometry: Performance in varying natural terrain.” PLoS Biology 
2: 915–922.

Touretzky, D. S. 1986. “BoltzCONS: Reconciling connectionism with the recursive 
nature of stacks and trees.” Proceedings of the Eighth Annual Conference of the 
Cognitive Science Society. Amherst, Mass.

Trullier, O., Wiener, S. I., Berthoz, A., and Meyer, J.-A. 1997. “Biologically based 
artificial navigation systems: review and prospects.” Progress in Neurobiology 
51: 483–544.

van Gelder, T. 1990. “Compositionality: A connectionist variation on a classical 
theme.” Cognitive Science 14: 355–384.

van Gelder, T. 1991. “Classical questions, radical answers: Connectionism and the 
structure of mental representations.” In Connectionism and the Philosophy of 
Mind, ed. T. Horgan and J. Tienson. Kluwer.

van Gelder, T. 1995. “What might cognition be, if not computation?” Journal of 
Philosophy 91: 345–381.

van Gelder, T. 1998. “The dynamical hypothesis in cognitive science.” Behavioral 
and Brain Sciences 21: 615–665.

Voicu, H., and Schmajuk, N. 2000. “Exploration, navigation and cognitive map-
ping.” Adaptive Behavior 8: 207–224.

von Frisch, K. 1967. The Dance Language and Orientation of Bees. Belknap/Harvard.

266



Wehner, R. 1983. “Celestial and terrestrial navigation: Human strategies – insect 
strategies.” In Neuroethology and Behavioral Physiology, ed. F. Huber and H. 
Markl. Springer-Verlag.

Wehner, R. 1984. “Astronavigation in insects.” Annual Review of Entomology 29: 
277–298.

Wehner, R. 1992. “Arthropods.” In Animal Homing, ed. F. Papi. Chapman & Hall.

Wehner, R., and Srinivasan, M. V. 1981. “Searching behavior of desert ants, genus 
Cataglyphis (Formicidae, Hymenoptera).” Journal of Comparative Physiology 
142: 315–338.

Wehner, R., Bleuler, S., Nievergelt, C., and Shah, D. 1990. “Bees navigate by using 
vectors and routes rather than maps.” Naturwissenschaften 77: 479–482.

Wehner, R., Michel, B., and Antonsen, P. 1996. “Visual navigation in insects: Cou-
pling of egocentric and geocentric information.” The Journal of Experimental 
Biology 199: 129–140.

Wehner, R., Gallizzi, K., Frei, C., and Vesely, M. 2002. “Calibration processes in 
desert ant navigation: vector courses and systematic search.” Journal of Com-
parative Physiology A 188: 683–693.

Wei, C. A., Rafalko, S. L., and Dyer, F. C. 2002. “Deciding to learn: Modulation of 
learning flights in honeybees, Apis mellifera.” Journal of Comparative Physiology 
A 188: 725–737.

Wohlgemuth, S., Ronacher, B., and Wehner, R. 2001. “Ant odometry in the third 
dimension.” Nature 411: 795–798.

Zhang, S. W., Bartsch, K., and Srinivasan, M. V. 1996. “Maze learning by honey-
bees.” Neurobiology of Learning and Memory 66: 267–282.

267


