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Class A biosolids are solid by-product of wastewater treatment which meet 

Environmental Protection Agency requirements to be used as fertilizer in farms, 

vegetable gardens, and can be sold directly to consumers. In 2014, this study’s target 

nutrient recovery facility adopted thermal hydrolysis pretreatment and anaerobic 

digestion to upgrade biosolids quality from Class B (previously lime-stabilized) to 

Class A. In order to certify if this newly produced material met all regulatory 

requirements, we performed laboratory analysis to characterize fecal coliforms, 

volatile solids, and metals content. In addition, we showed a baseline for nutrient 

  



management of total nitrogen, phosphorus, and the change in levels of 

polybrominated diphenyl ethers (PBDEs). Samples were collected for over a year 

since the start of THP-AD operation. Results were compared with the Class B 

biosolids produced at the same facility. Based on EPA standards, Class A biosolids 

were produced with stable quality after March, 2015, 16 weeks after process 

initiation. This work suggests that THP-AD is effective in producing Class A 

biosolids. In general, PBDEs in biosolids decreased from 1790 ± 528 (Class B) to 720 

± 110 µg/kg d.w. Our results suggest that the total levels of PBDEs decrease, 

however, the impact of the THP-AD on specific congeners are complex.   
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Chapter 1: Introduction 

 

1.1 Biosolids 

 

 Biosolids are stabilized sewage sludge with high organic matter content and 

rich in nutrients that are produced as a result of urban wastewater treatment processes 

at nutrient recovery facilities (NRF), formerly known as wastewater treatment 

processes plants (WWTPS). Every day, within the United States, including Puerto 

Rico, around 130.5 million cubic meters of wastewater is treated by publicly owned 

NRFs. The study by Seiple et al., 2017 estimated 13.84 dry million tons of biosolids 

were produced yearly in the U.S. and 50% were not beneficially applied. 

 With the variation of solids content, biosolids can exist as liquid form, cake 

form, and pellet form. Liquid biosolids have high water content 94-97% and low dry 

solids content from 3-6%. Cake biosolids usually have a solids content of 11-40%. 

And pellet biosolids solids content may reach to more than 90% (Lu et al., 2012). The 

increase of solids contents in biosolids means the efficiently reduction of volume and 

weight of the sludge, lower cost in transportation and storage, easier land application 

handling, and more persistent but slower nutrient release (Bramryd, 2001). However, 

the dewatering process is usually energy intensive and associated with high treatment 

costs. NRFs choose different biosolids treatment strategies based on ecological, 

technical and economic factors. The biosolids samples from the target NRF are in 

cake form. 
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 As a resource, the high organic matter and nutrients content of biosolids, their 

utilization in land application have both ecological and social benefits. Many studies 

already indicated the utilization of biosolids as fertilizer could provide significant 

amount of organic carbon and nutrients extractable N, P and K, optimize soil physical 

structure, improve soil chemical properties, and prolong the nutrients release time for 

better effectiveness (Alvarenga et al., 2017; Urbaniak et al., 2017; Lindsay and 

Logan, 1998; Basta et al., 2001; Binder et al., 2002). In addition, instead of direct 

combustion and landfill, the commercialization of biosolids as fertilizer is considered 

as the most beneficial application method that recycles this resource, saves in 

treatment costs, and promotes the sustainable development of the society (Wang et 

al., 2008). 

 However, with the expectation of the increase in population, wastewater 

treatment coverage, treatment effectiveness, and regulations, biosolids production and 

land application are facing rising challenges (Sanin et al., 2011). Biosolids are 

produced from the municipal wastewater that has a variety of highly health-risky 

sources, including human excreta, washing water, manufactured liquids, industrial 

drainage, and rainfall runoff. Several studies have shown the utilization of biosolids, 

especially long-term application, may bring concerns for pathogen release, nutrient 

pollutants, trace metals, and some toxic organic pollutants to nearby environment and 

agricultural production, indeed, human health (Singh and Agrawal, 2008; Marguí et 

al., 2016; Clarke et al., 2017; Harder et al., 2017).  

Therefore, legislation and regulations were passed to improve the biosolids 

quality and limit the biosolids application for environment and health concerns. The 
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development of wastewater treatment regulations in the U.S. has a long history. 

Following to the development in Europe, wastewater management began to gain the 

interests by the U.S. authorities in 1890s. Staggered in the next fifty years, no 

significant approach were achieved by federal legislation to regulate the disposal of 

wastewater, until the pass of Water Pollution Control Act of 1956 to provide federal 

funding for publicly owned sewage plant (Jewell and Seabrook, 1979). In 1972, the 

pass of Clean Water Act further required the EPA to identify and regulate pollutants 

in wastewater discharge and biosolids disposal (Venkatesan et al., 2015). Later in 

1993, The Standards for the Use or Disposal of Sewage Sludge (Title 40 of the Code 

of Federal Rgulations (CFR) (U.S. EPA, 1993), Part 503) were published by EPA to 

regulate the application of biosolids. 

 

1.2 Class A and B Biosolids Qualifications 

 

 To ensure the safety of the production and field application of biosolids, 

regulations were implemented to biosolids-generating facilities by federal, state, and 

local agencies. According to Part 503 Biosolids Rule, EPA has a classification system 

and considers biosolids which not only meet but also exceed the minimal 

requirements of pathogen reduction, metals content limits, and vector control to be of 

Class A “Exceptional Quality” (EQ) biosolids (U.S. EPA, 1994b). 

 Aiming to minimize potential for disease, biosolids are classified into two 

classes according to their pathogen reduction levels and vector attraction reduction: 

Class A and Class B. In the federal regulations, the most probable number method 
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(MPN) is used to statistically determine the number of bacteria per weight or volume 

of sample. Class A biosolids must meet at least one of the following requirements: 

either the density of Salmonella sp. must be less than 3 MPN/4g d.w. or the density of 

fecal coliforms must be less than 1000 MPN/g d.w. Class B biosolids contains a 

higher level of pathogen that requires a maximum of 2 million MPN/g d.w. of 

biosolids. In addition, vector attraction reduction means the Class A biosolids does 

not attract files, mosquitos, rodents and the other vectors to transmit diseases (U.S. 

EPA, 1994b).  

Because Class B biosolids still contains a considerable amount of pathogens 

and potentially transmits to humans, Class A classification is necessary if a user 

wants to apply the biosolids to residential lawns, home gardens, or other unrestricted 

public contact areas with potential close contact with human beings (U.S. EPA, 

1994b). In contrast, Class B biosolids application is limited to farmland for animal 

feed to avoid public area and direct food production. 

In the federal rule, maximum nutrient application rates of biosolids are not 

defined and only nitrogen (N) is regulated based on the estimate of crop N need and 

biosolids N availability beings (U.S. EPA, 1994b). For phosphate (P), no federal 

regulation is applied, but several states introduce requirements for P for land 

application with the objective of protecting groundwater and surface water quality 

(Lu et al., 2012). For metal pollutants, the biosolids that meet the ten trace metals: 

arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), 

molybdenum (Mo), nickel (Ni), selenium (Se), and zinc (Zn), have to be present in 

concentrations below the ceiling concentration limits stipulated in the federal rule as 
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shown in Table 1. These ten metal pollutants are toxic to environment, plants, 

animals, humans and the other organisms that can bioaccumulate in organic 

components, such as structural proteins, enzymes, nucleic acids, lipids, and etc. and 

affect their functions. 

Table 1. Pollutant ceiling concentration limits for all biosolids and Exceptional 

Quality (EQ) biosolids (U.S. EPA, 1994b). 

Pollutant 
Ceiling Concentration Limits 
for All Biosolids Applied to 

Land (mg/kg d.w.) 

Pollutant Concentration Limits 
for EQ Biosolids (mg/kg d.w.) 

Arsenic 75 41 
Cadmium 85 39 
Chromium 3,000 1,200 
Copper 4,300 1,500 
Lead 840 300 
Mercury 57 17 
Molybdenum 75 ________ a 
Nickel 420 420 
Selenium 100 36 
Zinc 7,500 2,800 

Applies to: All biosolids that are land applied Bulk biosolids and bagged 
biosolidsb 

From Part 503 Table 1, Section 503.13 Table 3, Section 503.13 
a As a result of the February 25, 1994, Amendment to the rule, the limits for molybdenum were deleted 
from the Part 503 rule pending EPA reconsideration. 

b Bagged biosolids are sold or given away in a bag or other container. 

The Class A EQ biosolids meet the both requirements for metal pollutants 

limits in Table 1 for EQ biosolids and requirements for Class A biosolids on pathogen 

and vector attraction reduction. Class A EQ biosolids have higher quality and broader 

application range than Class B biosolids. The land application of Class A EQ 

biosolids is regulated as the regular fertilizer in land applications (U.S. EPA, 1994b). 

The improvement from Class B to A biosolids will extend the land application area 

 5 
 



 

into food production process and local garden area with improved economic and 

social value in cost saving, nutrients recycle, and sustainable development. 

 

1.3 Thermal Hydrolysis Pretreatment and Anaerobic Digestion (THP-AD) 

 

Anaerobic digestion (AD) is a widely recognized sludge treatment process in 

NRFs to stabilize biosolids. In the U.S., over 1,200 NRFs use anaerobic digesters, and 

about 860 plants use the biogas they produced (“Current and Potential Biogas 

Production,” 2014). AD is a biological process running under anaerobic condition 

(without oxygen) that microorganisms break down complex biodegradable organic 

matter to biogas, which is about 50-80% methane and 30-50% of carbon dioxide 

(Lora Grando et al., 2017). Although AD has been known since 17th century, it was 

not deeply studied and widely utilized in NRFs until 1980s. 

Biosolids fermented by AD has the features of great mass reduction, 

beneficial biogas production, and improved dewatering properties (Tiehm et al., 

1997). The biogas produced in this process can be used for heating, power and 

electricity generation, and other energy-needed services with great economic and 

social values. AD process has four major steps to break down large organic matters 

into methane and carbon dioxide, which includes hydrolysis, acidogensis, 

acetogenesis, and methanogenesis (Gavala et al., 2003). Hydrolysis is the initial and 

rate-limiting step of overall AD process in biosolids treatment that carbohydrates, 

lipids, and proteins are depolymerized and solubilized into soluble monomers 

(Angelidaki et al., 2011; Kallistova et al., 2014).  
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In AD process, many environmental factors, such as temperature, food 

sources, pH, bioconcentration, and chemicals, can affect the efficiency of biogas 

production. Because the microbiological digestion of sludge is a slow and 

complicated process, various pretreatment technologies were developed to enhance 

biodegradation, such as thermal pretreatment, chemical pretreatment, mechanical 

pretreatment, etc. (Climent et al., 2007). Pretreatment processes can reduce digester 

heating requirements, decrease retention time, and increase biogas production (Pilli et 

al., 2015, Haug et al., 1983; Li and Noike, 1992).  

Thermal hydrolysis pretreatment (THP) is one of well-studied technologies 

that is applied in many NRFs. In the beginning THP was used to enhance biosolids 

dewaterability, then studies extend to improve digestibility for anaerobic digestion 

(Carrèreet al., 2010). With extensive studies of THP-AD process, the optimal 

conditions for THP are temperature of 160-180 ˚C and time in the range 30-60 min 

(Bougrier et al., 2008). THP has the benefits of pathogens destruction, biosolids mass 

reduction, dewaterability improvement, order removal, and positive energy balance 

(Wilson et al., 2011).  

 

1.4 Target Nutrient Recovery Facility (NRF) Operation 

 

The target NRF is the largest advanced wastewater treatment plant in the 

world, which occupies about 0.6 km2 in the Mid-Atlantic region of the U.S. The 

facility has a treatment capacity of around 1.4 million cubic meters per day and serves 

more than two million residents in the region. The treatment of wastewater in this 
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facility generates a stream of clean water, which is discharged to the local river, and a 

stream of nutrient-rich biosolids. In general, the biosolids are generated after a series 

of treatment processes, including open-air primary sedimentation, activated sludge, 

and tertiary treatment (including nitrification-denitrification, filtration, and 

disinfection). In the past, 1200 wet tons of lime-stabilized Class B biosolids were 

produced daily. In an effort to improve to Class A biosolids, in November of 2014, 

the target NRF began operating a newly constructed CambiTM thermal hydrolysis 

pretreatment combined with anaerobic digestion (THP-AD) after the thickening 

process to replace the lime-stabilization addition.  

The THP-AD system adopted consists mainly of two parts, THP tanks and 

four 14.4 million liters anaerobic digesters that are designed to produce up to 450 dry 

tons of solids per day. A schematic of the THP-AD treatment process is shown in Fig. 

1 in addition to the previous Class B biosolids production. For CambiTM THP system 

adopted by the target NRF, input sludge were separated into 4 streams and each 

stream consists: (1) one pulper to preheat the sludge to approximately 60-99˚C with 

recycled steam from THP process; (2) six digester to hydrolysis under temperature 

around 165°C the corresponding vapor pressure around 610 kPa for about 30 minute; 

(3) one flash tank to decrease temperature and pressure of the sludge and flash the 

pressure stream back to the pulper (Armstrong et al., 2017). The high temperature of 

THP can significantly reduce pathogen level and help Class A biosolids generation 

(Oosterhuis, 2014). 

The following AD process is mesophilic (about 37˚C) anaerobic digestion 

with about 22-day retention time. The microorganisms in the four digesters digest 
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sludge from THP into smaller compounds and biogas. The biogas generated from AD 

supply THP as part of energy source. The digested solids are finally dewatered into 

cake form and transferred with belt conveyors to loadout. The biosolids samples for 

this study were collected from belt conveyors before loadout. 

 

Fig. 1. Schematic of the old Class B (grey process) and the new Class A biosolids 

production THP-AD system (colored process) at target NRF. 

CambiTM THP has been commercialized in worldwide and has the merits of 

increased biosolids bio-degradability and biogas production, biosolids volume 

reduction, 2-3 times increase in digester capacity, eliminated foaming problems, 

improved biosolids dewaterability and Class A biosolids production  (Zhen et al., 

2017). According to the data obtained from the target NRF, a great mass reduction of 

biosolids was observed after switch from lime-stabilized Class B biosolids production 
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process to THP-AD for Class A biosolids production process. Around 65% of volatile 

solids reduction was observed for biosolids product by THP-AD treatment. Because 

previous lime-stabilized Class B biosolids and newly produced Class A biosolids 

have similar volatile solids (VS) that nearly 60%, for the same amount of organic 

matters in biosolids, the production of Class A biosolids will consume 1.86 times 

more of sludge input than the production of Class B biosolids. The data is used to 

correct metal pollutants concentrations and PBDEs concentrations between Class and 

B biosolids in this study. 

Due to the large size of the facility, during the investigated period, anaerobic 

digesters were gradually filled with THP treated sludge in the first three month that 

THP-AD operation was under an unstable condition and many parameters could not 

reach to optimal expect. Since the biosolids samples were collected from the start of 

THP-AD, the period from Nov. 2014 to Feb. 2015 is named as startup stage; and the 

period from March 2015 to the end of last sample, Jan. 2016, is named as full-

operation stage. In this study, data between startup and full-operation stages were 

compared to understand the impact of THP-AD on the parameters. 

 

1.5 Polybrominated Diphenyl Ethers (PBDEs) 

  

 Polybrominated diphenyl ethers (PBDEs) are a group of manufactured 

aromatic organobromine compounds that contain a diphenyl ether skeleton and 

different numbers and locations of bromine atoms with 209 possible congeners 

(Fromme et al., 2009). Because of their remarkable flame-retardant properties, good 
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thermal stability, and cheap cost, PBDEs were widely used as flame-resistant additive 

in consumer products since 1970s, in order to replacing banned flame retardants, such 

as polychlorinated biphenyls (PCBs) and polybrominated biphenyls (Daso et al., 

2010).  

Due to the directing properties of the bromine and steric hindrance, not all 

PBDEs congeners were manufactured for commercial use. Three major commercial 

formulations containing a variety of congeners, including Penta-, Octa-, and Deca-

BDEs, were widely added in polymers, such as electronic components, household 

appliances, furniture, textiles, etc. (Krol et al., 2012). Penta-BDE formulation is a 

viscous liquid that contains about 41-41% of BDE-47, 44-45% of BDE-99 and -100, 

and 6-7% of BDE-153 and -153; Octa-BDE formulation contains mainly BDE-183; 

and Deca-BDE formulation consists about 97-98% of BDE-209 (Alaee, 2003). 

According to the study of La Guardia et al., 2006, Deca-BDE dominated 83.3% of the 

year 2001 PBDE global market demand, followed by Penta-BDE at 11.1% and Octa-

BDE at 5.6%. In addition, BDE-28 is also present in commercial Penta-BDE as the 

precursors in the formation of BDE-47.  

Therefore, eight congeners of PBDEs (BDE-28, -47, -99, -100, -153, -154, -

183, and -209), representing the major congeners found in commercial formulations, 

were chosen as the targets for our analysis. PBDEs have high Koa, low water 

solubility, high Kow, and large molecular weight, which make them semi-volatile, 

hydrophobic and persistent in nature. The physical and chemical properties of the 

eight PBDEs congeners for this study were present in Table 2. 
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Table 2. Physical and chemical properties of the eight PBDEs congeners from the 

studies. Koa = n-octanol/air partition coefficient; PL = supercooled liquid vapor 

pressure (Pa); H = Henry’s Law constant measured at 25˚C(Pa m3mol-1); Kow = n-

octanol/water partition coefficient. 

Congeners Structure logKoa
a logPL

a logHa logKOW 

BDE-28 

 

9.70 -2.93 4.830 5.67b 

BDE-47 

 

10.34 -3.50 0.850 5.85b 

 

BDE-99 

 

 11.28 -4.17 0.600 6.39b 

BDE-100 

 

11.40 -4.47 0.240 6.23b 

BDE-153 

 

12.15 -5.07 0.260 6.92b 

BDE-154 

 

12.18 -5.18 0.080 6.76b 

BDE-183 

 

12.89 -5.84 1.535 7.20b 

BDE-209 

 

15.73 -8.40 0.040 6.27c* 

a Data reference from Xu et al., 2007. 
b Data reference from Lebrun et al., 2014. 
c Data reference from U.S. EPA, 2010a. 
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*Data obtain for Deca-BDE with over 97% of BDE-209 
 

Similar as PCBs and polybrominated biphenyls, the characteristics of 

persistence, bioaccumulation, and potential carcinogenic and thyroid disturbing 

effects raised environmental and health concerns to PBDEs utilization (Naert et al., 

2007). PBDEs are semi-volatile chemicals that can easily leach out and enter into 

indoor air and dust, which play as one of the major sources for exposure (Lorber, 

2008). Due to the lack of binding sites on polymers, PBDEs are simply integrated into 

materials but not chemically bound, which means that they can easily be released 

from commercial products and enter the environment (Jinhui et al., 2017). A 

significant amount of studies have demonstrated that PBDEs’ intake were toxic for 

plants, bacteria, and animals in organism development, thyroid hormones, 

neurobehaviors, and etc. (Xu et al., 2015; Talsness, 2008; Min et al., 2003). Few 

studies have fully understood the toxicity of PBDEs to human beings, but the 

bioaccumulation in body fluid, such as serum and breast milk, and the potential 

effects of liver toxicity, thyroid disturbance, and neurodevelopment affection have 

bring concerns to humans, especially pregnant mothers and infants (Herbstman et al., 

2010).  

Bioaccumulation and persistent property of PBDEs means PBDEs can deposit 

in organic matters easily and exist for a long time after phase-out in production 

(Lebrun et al., 2014). Many studies showed high concentrations of PBDEs exist in 

biosolids samples, and the application of large amounts of biosolids as fertilizer could 

put PBDEs into the food chain (Hale et al., 2012; Venkatesan and Halden, 2014; 

Stiborova et al., 2017). The study by Venkatesan and Halden, 2014, estimated about 

24,000-36,000 kg/year (53,000 pound/year – 79000 pound/year) of PBDEs were 
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released to the environment through land application of biosolids. Although PBDEs 

were phased out in manufacturing and commercial use in the consumer products, no 

regulations were applied to biosolids for PBDEs detection. 

According to a study by Stiborova et al. (2015a), biodegradation is an 

effective method to remove organic pollutants in biosolids. A number of studies 

showed the adoption of mesophilic AD in the wastewater treatment would 

debrominate PBDEs from high-brominated to low-brominated congeners (Huang et 

al., 2014; Stiborova et al., 2015b; Tokarz et al., 2008). Enhanced by THP, extensive 

microorganism activities are expected in anaerobic digester and the debromination of 

PBDEs may also be accelerated. BDE-209 is the most prevalent PBDEs congeners in 

the environment that generally considered as less toxic and more immobile, then less 

threaten to environment and human health (Stiborova et al., 2017; Liu et al., 2016). 

However, the possible emerging of the low-bromine PBDEs from the degradation of 

BDE-209 in biosolids from THP-AD system indicates BDE-209 also needs to be 

concerned. Therefore, both the total concentration of PBDEs and the composition of 

PBDEs congeners in biosolids were measured in this study for a better PBDEs 

toxicology understanding. 

After about 20 years of PBDEs production and use since 1970s, scholars and 

government agencies start to realize the environmental and health risks of PBDEs and 

begin to restrict, phase out, and ban the utilization of PBDEs. In 1989, Germany and 

Netherland initiatively phased out the sale of PBDEs-containing products. Afterward, 

Penta-BDE was stopped production in European Union in 1997. In 2009, commercial 

Penta-BDE and Octa-BDE were listed in the Persistent Organic Pollutants (POPs) 
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inventory of the Stockholm Convention. And in 2014 Deca-BDE was proposed to be 

restricted in the European Union. (Jinhui et al., 2017) In the U.S., the phase out of 

PBDEs started by the state of California in 2003 that decided to ban Penta- and Octa-

BDE in 2008. Later on, several states prohibited the sale and production of PBDEs. In 

2009, two major PBDE producers and the main importer committed to stop 

producing, import, and sale of PBDEs by the end of 2013. And in 2012, EPA 

proposed to phase out all PBDEs production, import and processing by the end of 

2013 (U.S.EPA, 2014). Since then, no new consumer product with PBDEs addition 

were allowed in the U.S.. 

 

1.6 Study Objectives 

  

In this study, two important aspects to better understand the newly produced 

biosolids by THP-AD were investigated: (1) would they fulfill the requirements for 

Class A by EPA, and (2) what is the fate of selected trace organic pollutants. The 

hypotheses of this study are: 1) biosolids produced from newly adopted THP-AD 

process at target NRF are qualified Class A biosolids based on EPA standards; 2) the 

total PBDEs concentration in biosolids produced from THP-AD were lower than 

previous Class B biosolids data from the same NRF at study by Andrade et al., 2015.  

To test the hypothesis of the study, first, biosolids samples were collected at 

the target NRF from more than 1-year period to determine if Class A biosolids were 

being produced after the adoption of the new full-scale THP-AD processes. Based on 

EPA standards, pathogen level and metal pollutants concentrations were analyzed. 

 15 
 



 

Nutrients levels are also determined to evaluate the biosolids’ economic value and 

potential contamination of excess nutrients. In addition, metals levels in Class A 

biosolids were compared to the levels found in the previously produced Class B 

biosolids for a better understand of THP-AD process.  

Second, the same biosolids samples were analyzed for PBDEs and levels were 

compared to the levels found in the Class B biosolids previously produced at the 

target NRF. The distributions of different PBDEs congeners were studies to evaluate 

the toxicity change of newly produced Class A biosolids. The PBDEs between startup 

and full-operation stages in THP-AD operation were also analyzed to have a better 

understanding of THP-AD system in PBDEs degradation. 
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Highlight 

• Qualified Class A Exceptional Quality biosolids were produced with thermal 
hydrolysis pretreatment and anaerobic digestion processes 

• Fecal coliforms levels varied greatly during the startup stage and stabilized at 
very low levels in  full-operation stage of THP-AD processes 

• Biosolids trace metals concentrations increased due to changes in stabilization 
methods (from lime addition to THP-AD processes) 

• Class A biosolids have high concentrations in total nitrogen and total 
phosphorus but low in total potassium. 
 

2.1 Abstract 

 
 Class A biosolids is the solid by-product of wastewater treatment and contains 

high-organic matter and nutrient content, which can be applied to food production 
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and gardens. In 2014, this study’s target nutrient recovery facility (NRF) in the Mid-

Atlantic region of the U.S. adopted thermal hydrolysis pretreatment (THP) and 

anaerobic digestion (AD) to increase the quality of biosolids from Class B (lime-

stabilized) to Class A. According to Environmental Protection Agency (EPA) 

requirements, pathogen levels, nutrients levels, and metal pollutants concentrations of 

biosolids during one-year period were determined and compared with levels found in 

Class B biosolids from the same facility. After optimization and equilibrium of the 

process, biosolids were produced with stable quality and satisfied all Class A 

standards. Metal concentrations increased from Class B to Class A biosolids due to 

the biosolids mass reduction. In addition, Class A biosolids are rich in total nitrogen 

(N) and phosphorus (P), but low in potassium (K) content. 

 

Keywords: Biosolids, Fecal Coliform, Nutrients, Metals 

 

2.2 Introduction 

 
A large volume of wastewater is generated every year from urban areas and is 

treated by nutrient recovery facilities (NRFs), formerly known as wastewater 

treatment plants. As population grows and urbanizes, the volume of wastewater 

generated generally increases and its content changes. Since the 1950s, the U.S. 

federal legislation has been strengthened on water pollution control (Lu et al, 2012). 

The Clean Water Act that passed in 1972 further required EPA to identify and 

regulate pollutants in wastewater discharge and biosolids disposal (Venkatesan, 
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2015). Thus, the quality of wastewater and the reuse of biosolids were dramatically 

improved. After phase separation, sedimentation, filtration, chemical and biological 

treatments, large quantities of high-nutrient content biosolids are produced from 

wastewater (Lu et al., 2012). In the U.S., approximately 50% of biosolids are applied 

to land as fertilizer or soil amendment for low-fertility soil improvement and 

degraded land reclamation (Seiple et al., 2017). Land application of biosolids can 

provide organic matter and nutrients, modify physical and biological properties of 

soils, and assist vegetation growth and ecosystem restoration (Larney and Angers, 

2012; Tian et al., 2009; Scharenbroch et al., 2013). Besides, the commercialization of 

biosolids as fertilizer is usually considered the most beneficial disposal method with 

great environmental and social values (Wang et al., 2008). 

Although biosolids land application has many benefits, there are some 

concerns that some biosolids constituents may threaten environment and the health of 

animals and humans (Singh and Agrawal, 2008; Smith, 2009; Marguí et al., 2016; 

Yergeau et al., 2016). Municipal wastewater tends to generate biosolids that are rich 

on pathogens, organic pollutants, and metal contents, and these levels may be harmful 

to environment and humans (Lu et al, 2012; Singh and Agrawal, 2008). Therefore, to 

ensure the safety of biosolids application, the production and field application of 

biosolids have to follow federal, state, and local regulations according to Part 503 

Biosolids Rule by EPA (U.S. EPA, 1993) and others. EPA has a classification system 

and considers biosolids which not only meet but also exceed the minimal 

requirements of pathogen reduction, metals content limits, and vector control to be of 

Class A “Exceptional Quality” (EQ) biosolids (U.S. EPA, 1994b). 
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Aiming to minimize potential for disease and environmental risk, biosolids 

can be classified into Class A or Class B according to EPA standards. In the federal 

regulations, Class A biosolids must meet at least one of the following requirements: 

either the density of Salmonella sp. must be less than 3 MPN/4g d.w. or the density of 

fecal coliforms must be less than 1000 MPN/g d.w. Class B biosolids may contain a 

higher level of fecal coliform density, but must remain below 2 million MPN/g d.w. 

(U.S. EPA, 1994b). Because Class B biosolids still contain a considerable amount of 

pathogens, Class A classification is necessary if a user wants to apply the biosolids to 

food production agricultural land, residential lawns, home gardens, or other 

unrestricted public contact areas (U.S. EPA, 1994b).  

All biosolids that are land-applied or commercialized have ten trace metals 

that are regulated: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead 

(Pb), mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se), and zinc (Zn). 

These metals have to be present in concentrations below the ceiling concentrations, 

which vary according to their use and classification stipulated in the federal rule (U.S. 

EPA, 1994b), as shown in Table 3. In the federal rule, maximum nutrient application 

rate of biosolids are not defined, but several states introduce requirements for 

nitrogen (N) and phosphate (P) for land application with the objective of protecting 

groundwater and surface water quality (Lu et al., 2012). 

Table 3. Pollutant ceiling concentration limits for all biosolids and Exceptional 
Quality (EQ) biosolids (U.S. EPA, 1994b). 

Pollutant 
Ceiling Concentration Limits 
for All Biosolids Applied to 

Land (mg/kg d.w.) 

Ceiling Concentration Limits 
for EQ Biosolids (mg/kg d.w.) 

Arsenic 75 41 
Cadmium 85 39 
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Chromium 3,000 1,200 
Copper 4,300 1,500 
Lead 840 300 
Mercury 57 17 
Molybdenum 75 __ a 
Nickel 420 420 
Selenium 100 36 
Zinc 7,500 2,800 

Applies to: All biosolids that are land applied Bulk biosolids and bagged 
biosolidsb 

Part 503 
Location Table 1, Section 503.13 Table 3, Section 503.13 

a As a result of the February 25, 1994, Amendment to the rule, the limits for 
molybdenum were deleted from the Part 503 rule pending EPA reconsideration. 

b Bagged biosolids are sold or given away in a bag or other container. 
 
 In the U.S., many NRFs adopt anaerobic sludge digestion as it is considered 

one of the most efficient technologies to stabilize and to produce energy from 

biosolids (Iranpour and Cox, 2007; Wang et al., 2008). Anaerobic digestion (AD) has 

great environmental and economic benefits, which include mass reduction, odor 

removal, pathogen reduction, and energy recovery (Pilli et al., 2015). During the 

digestion process, the destruction of volatile solids produces methane-rich biogas, 

which can be used to generate heat. Several studies also showed designed mesophilic 

AD could eliminate high level of pathogens and produce Class A or Class B biosolids 

(Forster-Carneiro et al., 2010; Rubio-Loza and Noyola, 2010; Lloret et al., 2013).  

However, the microbiological digestion of sludge is a slow and complicated 

process and various pretreatment technologies were developed to enhance 

biodegradation, reduce digester heating requirements, decrease retention time, and 

increase biogas production (Pilli et al., 2015). Thermal hydrolysis pretreatment (THP) 

is one of well-studied technologies that is utilized in many NRFs (Carrèreet al., 

2010). The CambiTM THP is a pre-treatment method that generally heats sludge to 
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around 165°C for about 30 minutes under the corresponding vapor pressure around 

610 kPa. The high temperature and pressure of THP can significantly reduce 

pathogen level and help Class A biosolids generation (Oosterhuis, 2014). 

In an effort to produce Class A biosolids, in November 2014, the target NRF 

in the Mid-Atlantic region of the U.S. began to operate CambiTM THP combined with 

anaerobic digestion (THP-AD). The target NRF occupies about 0.6 km2 with the 

treatment capacity of around 1.4 million m3/d and serves more than two million 

residents in the urban area. The THP-AD system mainly consists of two parts, THP 

tanks and four 14.4 million liters bacterial digesters that were designed to a capability 

of up to 450 dry tons of solids per day. Before the introduction of THP-AD processes, 

Class B biosolids were produced by gravity thickening, air floating thickening, and 

lime addition (Fig. 1), with a final production of 1200 wet tons of lime-stabilized 

Class B biosolids daily.  

Starting on November 29th, 2014, biosolids samples resulting from the THP-

AD treatment system were collected and analyzed daily. During startup stage (from 

November 2014 to February 2015), four anaerobic digesters were gradually filled 

with seed sludge and reached optimum conditions determined by ammonia generation 

and total solids. During this period, the quality of biosolids was changing and 

experiments were conducted to monitor the biosolids quality variation. When stable 

quality biosolids were produced (from March 2015 until the last sampling day for this 

study December 29th, 2015, which we call the full-operation stage), routine 

experiments were conducted to verify of the produced biosolids met EPA standards.  
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This manuscript reports on the temporal variation of fecal coliform density, 

metals concentrations, and nutrients levels during the full-scale startup and full-

operation stages of the THP-AD system at the target NRF. Moreover, we also 

assessed if the stable biosolids produced after the initial adjustment period of the 

startup stage met EPA Class A EQ classification standards. We compared the metal 

content differences in the newly-produced Class A and the previously-produced Class 

B biosolids. 

 

2.3 Materials and Methods 

 

2.3.1 Sampling Location and Collection   

Biosolids samples were collected daily from November 29th, 2014 to 

December 29th, 2015 at the target NRF from belt conveyors right after final 

dewatering after THP-AD and before loadout (Fig. 1). Sampling equipment and 

containers were sterilized in an autoclave (Hirayama Manufacturing Co. HV-50L, 

Japan) before use. The sampling collection and preservation followed U.S. EPA 

Method 1684 (U.S. EPA, 2001a). 

 

2.3.2 Total and Volatile Solids Determination   

Duplicate biosolids samples were analyzed daily to calculate total solid (TS) 

and volatile solid (VS) contents. Analysis followed EPA Method 1684, which dictates 

a minimum of 12 hours drying in an oven (Fisher Scientific, Isotemp Lab Oven) at 

103°C to 105°C for TS calculation and a further minimum 2 hours ignition in the heat 
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furnace (Neycraft Vulcan, A-550, York, PA) at 550°C for VS calculation (U.S. EPA, 

2001a). 

 

2.3.3 Fecal Coliforms Determination   

The fecal coliform density analysis was conducted daily according to EPA 

Method 1681 (U.S. EPA, 2006). Commercial A-1 medium broth most probable 

number (MPN) tubes (Hach, AD12-1ED, Loveland, CO) and MPN statistical 

methods were used to determine fecal coliforms density daily in biosolids. Positive 

and negative controls were processed with E-coli (Kwik-Stik, 0335K, Cloud, MN) 

and Enterobacter (Kwik-Stik, 0323X, Cloud, MN) to ensure the quality of the 

experiments. To ensure the acceptable performance of the experiments, percent 

recovery of E. coli in spiked control and spiked matrix samples were also calculated 

and compared with the criteria of initial and ongoing precision and recovery (U.S. 

EPA, 2006). The colony forming units were counted in A-1 medium plate to calculate 

the spiked E. coli concentration and the E. coli-spiked sample percent recovery. The 

matrix spike consisted of diluted E. coli suspension solution added to the biosolids 

homogenized solution and processed with the same method as samples. In addition, 

the control spike consisted of diluted E. coli suspension solution added to commercial 

MilorganiteTM (Organic Nitrogen Fertilizer, Milwankee, WI) and processed as 

samples. 

 

2.3.4 Metals Determination   
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Trace metals, which included As, Cd, Cr, Cu, Pb, Hg, Mo, Ni, K, Se, and Zn, 

were analyzed daily in Class A biosolids according to the EPA Method 200.7 (U.S. 

EPA, 1994a) by inductively-coupled plasma emission spectrometry (ICP-ES) 

(Shimadzu, ICPE-9000, Japan) from November 2014 to December 2015. In brief, 

biosolids samples were pre-dried and heat-digested with HNO3, H2O2, and HCl to 

extract metal ions, and then were analyzed by ICP-ES. Class B biosolids metal 

contents data from Jan. 2013 to February 2015 were obtained from the target NRF. 

 

2.3.5 Nutrients Determination   

In this study, nutrient analysis consisted of the analysis of nitrate/nitrite-N 

(NO3
-/NO2

--N), ammonia nitrogen (NH3-N), total Kjeldahl nitrogen (TKN), and total 

phosphorous (TP). Samples were analyzed daily from November, 2014 to February, 

2015, then weekly until December, 2015. Nutrient levels in Class B biosolids from 

January, 2013 to February, 2015 were obtained from the target NRF. 

 

2.3.5.1 Nitrate/nitrite-N (NO3
-/NO2

-–N)    

The analysis of nitrate/nitrite in biosolids was based on EPA Method 1685 

(U.S. EPA, 2001b). Samples were mixed with DI water to dissolve NO3
-/NO2

- ions. 

Then filtered solutions were sent to automated QuAAtroTM nutrient analyzer (Seal 

Analytical, QuAAtro39, Mequon, WI) to determine the NO3
-/NO2

-
 – N concentration. 

 

2.3.5.2 Ammonia Nitrogen (NH3-N)   
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Based on EPA Method 1690 (U.S. EPA, 2001d), SimpleDistTM system 

(Environmental Express, C6000/SC100/C6002, Charleston, SC) was utilized to distill 

NH3-N from the sample with anhydrous sodium tetraborate (Na2B4O7) buffer solution 

under pH 9.5 at 135°C. Enhanced by the heat in the bottom and air extraction on the 

top, NH3 gas was generated in the sample solution and captured by dilute sulfuric 

acid for 120 minutes (U.S. EPA, 2001d). The sulfuric acid solution was sent to 

automated QuAAtroTM nutrient analyzer (Seal Analytical, QuAAtro39, Mequon, WI) 

to determine the NH3-N concentration. 

 

2.3.5.3 Total Kjeldahl Nitrogen and Total Phosphorous (TKN and TP)  

TKN is the sum of ammonia-nitrogen and organic nitrogen. The analytical 

methods for TKN and TP were modified from EPA Method 1688 (U.S. EPA, 2011c). 

Duplicate samples were prepared for TKN and TP analysis in digestion tubes (Seal 

Analytical Inc., AIM 600 block, USA) with 20 mL of digest acid solution each, which 

contained mercuric-sulfate, potassium sulfate (K2SO4), and sulfuric acid. Samples 

were digested in a block heater (Foss, Digestor 2508 autorack, China) at 180°C for an 

hour, at 280°C for an hour, and finally at 350°C until reach to bright yellow color , 

and were sent to QuAAtroTM analyzer (Seal Analytical, QuAAtro39, Mequon, WI). 

 

2.4 Results and Discussion 

 

2.4.1 Total Solids (TS) and Volatile Solids (VS) 
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2.4.1.1 Temporal Variation  

From November 29th, 2014 to December 29th, 2015, daily samples were 

obtained daily for Class A biosolids products. The operation of the THP-AD system 

was separated into two parts: startup stage from November 29th, 2014 to February 

28th, 2015, and full-operation stage from March 1st, 2015 to December 29th, 2015. 

During the startup period, the average (± standard deviation) TS was 28.12% ± 

2.116% (n=199), and the average (± standard deviation) VS was 59.32% ± 1.972% 

(n=180). During full-operation period, the average (± standard deviation) TS was 

31.39% ± 2.180% (n=344), and the average (± standard deviation) VS was 58.40% ± 

4.087% (n=341). These values are similar to another biosolids stabilized with THP-

AD system with VS around 50% (Pérez-Elvira and Fdz-Polanco, 2012). 

 From startup to the full-operation stage, a significant increase was observed in 

TS (p<0.0001, unpaired t-test) and significant decrease was observed in VS 

(p=0.0006, unpaired t-test). Due to the mass loading in the ADs and the 

microorganisms’ population growth during startup stage, the whole THP-AD system 

was under an unstable condition and didn’t reach to the optimal dewaterability. 

Therefore, more water was kept in the biosolids samples during startup stage than in 

the full-operation stage, explaining the higher TS in the former. In contrast, a better 

growth of microorganisms in AD during full-operation stage will increase biogas 

production, reduce mass by breakage of organic matter, and leave less organic carbon 

in biosolids, which decreased VS of biosolids product (McMahon et al., 2001). 

 

2.4.1.2 Class A and B Biosolids Comparison  
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Before the adoption of the THP-AD system for biosolids production, a 

dewatering process followed by lime addition was used to stabilize and produce Class 

B biosolids. From Jan. 1st, 2013 to February 13th, 2015, TS and VS of the Class B 

biosolids were measured daily at the NRF, with TS = 33.07% ± 2.899% (n=735), and 

VS = 54.48% ± 6.159% (n=733). In comparison of Class A full-operation stage data, 

Class A biosolids had significantly lower TS (p<0.0001) but higher VS (p<0.0001), 

which indicates that the final biosolids cake treated by THP-AD contained a slightly 

higher moisture and organic matter contents than lime-stabilized Class B biosolids. 

However, it should be noticed an overall 65% volatile solids reduction (VSR) 

was observed for biosolids by THP-AD process with consideration of total sludge 

input and biosolids output. On a typical day, 300 dry tons of sludge with VS 80% 

input into THP-AD processes produce 140 dry tons of biosolids with VS 60%. As the 

result of Eq.1,  

Eq. 1:   

a significant part of organic matter was converted to biogas to supply the THP 

system. 

 

2.4.2 Fecal Coliform Density 

Fecal coliform density in biosolids is an important criteria used by EPA to 

ensure the quality of biosolids. Therefore, daily monitoring was conducted from 

November 29th, 2014 to December 29th, 2015 with duplicate measurements. 

  

2.4.2.1 Temporal Variation  
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Daily fecal coliform measurements were compiled into monthly data (Fig. 2). 

Fecal coliforms in the Class A biosolids was high and variable during startup stage 

from November 2014 to February 2015. During this stage, fecal coliform density was 

3915 ± 6068 MPN/g d.w. (n= 91), which is higher than EPA requirement for Class A 

biosolids (1000 MPN/g d.w.). In full-operation stage from March, 2015, the average 

fecal coliform density was consistently below 100 MPN/g d.w., at 35.85 ± 81.10 

MPN/g d.w. (n= 301), achieving a relative stable condition. 

 

Fig. 2. Monthly averages (+ standard error) of fecal coliform density per dry mass of 

biosolids from November 29th, 2014 to December 29th, 2015. Number of samples 

used to calculate monthly averages are shown above each column. 
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 Under the temperature of 165°C for about 30 minutes in the THP process, 

fecal coliforms in untreated sludge likely do not survive. In fact, in an analysis of a 

single sample collected immediately after the THP, there were no measurable levels 

of fecal coliforms (data not shown). However, in the ADs, bacteria are encouraged to 

grow, and operators need to control operating conditions to prevent re-growth of 

pathogens. The initial operation of the two ADs included the use of seed sludge from 

the other NRF. During the startup stage, two more ADs were gradually added into the 

treatment system and fed with sludge to the optimal volume. Although the 

temperature and pressure were controlled in the digesters, the initial digesting bacteria 

population had to acclimatize to reach optimum growth rate. Reactor configuration, 

microbial competition, pH, volatile fatty acid content, ammonia concentration, and 

biogas production all could inhibit the growth of fecal coliforms (Smith et al., 2005; 

Salsali et al., 2008; Orzi et al., 2015). The slow growth of methanogens in digesters 

during startup, or even the early full-operation period, could have allowed for lower 

microbial competition that allowed fecal coliform to regrow in the ADs. In addition, 

the initial methanogen seed from another NRF could have contained fecal coliforms, 

which could have thrived with the new unstable conditions offered in the startup 

period. Therefore, fecal coliform density was high and variable during startup period 

but decreased and stabilized in the full-operation period throughout the first year of 

the THP-AD operation. 

  

2.4.3 Trace Metals Concentrations  
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EPA sets maximum limits of metal pollutants concentrations for Class A 

biosolids, therefore a total of 11 metals were measured daily in duplicate biosolids 

samples during the startup period and weekly during the full-operation period. 

 

2.4.3.1 Temporal Variation  

The average concentration of each metal species, with standard error, and 

number of measurements is presented in Table 4. Concentrations were highest for K 

and lowest for Hg and ranked from high to low concentration in the following order: 

K > Zn > Cu > Cr > Pb > Ni > Mo > Se > As > Cd > Hg. When compared to the 

concentration limits for EQ biosolids required by EPA, all metals meet the biosolids 

requirements. 

Due to the great mass reduction from Class B to Class A biosolids production, 

Class A requires more sludge input than Class B sludge for the same unit weight of 

biosolids production. Assume all metal pollutants absorbed in the carbonic matters in 

biosolids, 65% VSR from Class B to Class A biosolids was used to correct the 

average concentrations of metal pollutants in Class B, shown Table 4. The corrected 

results imply the expected metal concentrations of Class B biosolids if they had the 

same VSR as Class A biosolids. And the differences between average concentrations 

in Class A and corrected average concentration in Class B can indicate the impacts of 

THP-AD process to the metals in biosolids. 

 

Table 4. Average concentrations of metals in Class A biosolids from November 29th, 

2014 to December 29th, 2015, measured concentrations and corrected concentrations 
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of Class B biosolids from January, 2013 to February, 2015 at target NRF, and EPA 

concentration limits for Class A biosolids (U.S. EPA, 1994b). 

Metal 
Pollutants 

Average 
Concentration in 
Class A (mg/kg 

dw) 

Actual Average 
Concentration 

in Class B 
(mg/kg dw) 

(n=51) 

Corrected 
Average 

Concentration 
in Class B 

(mg/kg dw) 

Concentration 
Limits for EQ 

Biosolids 
(mg/kg dw) 

As 6.429 ± 0.4005 
(n=141) 2.071 ± 0.05776 10.36 ± 0.2888 41 

Cd 3.388 ± 0.1166 
(n=147) 

0.7602 ± 
0.02526 3.801 ± 0.1263 39 

Cr 88.42 ± 1.995 
(n=148) 39.27 ± 1.251 196.4 ± 6.255 1,200 

Cu 400.6 ± 9.812 
(n=148) 128.0 ±2.314 640.0 ± 11.57 1,500 

Pb 68.14 ± 2.189 
(n=148) 17.65 ± 0.5383 88.25 ± 2.692 300 

Hg 1.206 ± 0.1155 
(n=148) 

0.2902 ± 
0.01448 1.451 ± 0.07240 17 

Mo 14.93 ± 0.3212 
(n=148) 7.592 ± 0.3549 37.96 ± 1.775 ―* 

Ni 23.81 ± 0.9109 
(n=146) 12.56 ± 0.4906 62.80 ± 2.453 420 

Se 10.02 ± 0.5726 
(n=140) 2.616 ± 0.09719 13.08 ± 0.4860 36 

Zn 778.4 ± 14.90 
(n=148) 284.3 ± 5.453 1422 ± 27.27 2,800 

K 850.2 ± 21.69 
(n=134) 1456 ± 43.44 7280 ± 217.2  

* As a result of the February 25, 1994, Amendment to the rule, the limits for 
molybdenum were deleted from the Part 503 rule pending EPA reconsideration. 

Daily measurements were combined to calculate monthly average 

concentrations of these 11 metal species (Fig. 3). From startup to full-operation 

period, 9 metal species were significantly different with p<0.05 between startup and 

full-operation stages. This was not valid for Zn (p=0.2765) and Cr (p=0.4764). 
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Fig. 3. Monthly average concentration of (a) Zn and Cu, (b) Cr, Pb, Ni, and Mo, (c) 

Se, As, Cd, and Hg, from November 29th, 2014 to December 29th, 2015 with standard 

deviations. 

 

2.4.3.2 Class A and B Biosolids Comparison  

Measured average Class B biosolids metal concentrations data from January, 

2013 to February, 2015 (Table 4) were compared to Class A metals concentrations. In 

general, Class A biosolids contained higher concentration of metals than Class B 

biosolids, except for K. The increase of trace metal concentrations in Class A 

biosolids when compared to Class B biosolids had been observed before by Wang et 

al. (2016), which suggested that THP might concentrate heavy metals in biosolids. 

This could be explained by the efficient mass reduction in Class A biosolids 

production. Since THP-AD removed carbon as biogas and this resulted in a 65% of 

volatile solids reduction, metals that remained in biosolids were concentrated. 

 A better comparison may be between metals concentrations in Class A and 

corrected metals concentrations in Class B biosolids. The metals content in Class B 

biosolids were corrected taking into account that the Class A biosolids had a 65% VS 

reduction (Table 4). With unpaired t-test, all metals (K (p<0.0001), Cu (p=0.0037), 

Cr (p<0.0001), Pb (p<0.0001), Ni (p<0.0001), Mo (p<0.0001), Se (p<0.0001), Cd 

(p<0.0001), and Hg (p=0.0025)), with the exception of Zn (p=0.1183) and As 

(p=0.2377), had significantly different concentrations between Class A and corrected 

Class B biosolids. K, Cr, Mo, and Ni were significantly higher in corrected Class B 
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biosolids; but Cd, Cu, Pb, Hg, and Se were significantly lower in corrected Class B 

biosolids. 

 It is possible that Cr, Mo, and Ni were lower in Class A biosolids due to 

thermal treatment of THP, which could have increased the diffusivity of metal ions 

and released organic matter-bound metals by large molecules breakage that freed 

metal ions from sludge to the water phase (Appels et al., 2010). For the other metal 

species, which did not significantly change or increased in Class A biosolids, the high 

temperature of the THP might not effectively transfer those metals ions into the water 

phase. A further analysis of the metal concentrations in the water phase from THP-

AD may aid in the understanding of the processes controlling metals concentrations 

in the solid phase. 

  

2.4.4 Nutrients Concentrations  

Although nutrients concentrations in biosolids are not regulated by EPA, 

knowing nutrients levels is helpful in evaluating the economic and agricultural 

benefits and environmental impacts of biosolids in field applications. In this study, 

NO3
-/NO2

-–N, TKN, TP, and NH3-N concentrations were analyzed in Class A 

biosolids from November 29th, 2014 to December 29th, 2015. Daily analysis of 

duplicate samples for TKN and TP, and triplicate samples for NH3-N was conducted 

during the startup period. In the full-operation period, nutrients concentrations were 

measured weekly. The results for nitrate/nitrite analysis were below the detection 

limit and are not reported in this study. 

  

 35 
 



 

2.4.4.1 Temporal Variation  

TKN concentrations did not change between startup and full-operation periods 

(p = 0.3150), however, for both TP (p = 0.0256), and NH3-N (p < 0,001) we 

measured higher concentrations during the optimal conditions of the full-operation 

stage (Fig. 4). It is quite possible that the optimal growth rate of the microorganisms 

in the ADs could enhance the breakage of large organic molecules, which could free 

more P and NH3.
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Fig. 4. Average concentrations (± standard deviation) during startup and full-operation periods for TKN (a), TP (b), and NH3-N (c) in 

Class A biosolids. Number of samples shown on top of each bar.  
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The average concentrations for the full-operation stage for K, TKN, TP, and 

ammonia in Class A biosolids are presented in Table 5. In addition, the % weight 

(weight of nutrients/dry weight of biosolids) for each nutrient was calculated and 

compared with data of Class B biosolids produced from 2013-2015 at the same NRF 

and with data from a commercial organic fertilizer: MilorganiteTM (Organic Nitrogen 

Fertilizer, Milwankee, WI). In nutrients study, total N is usually used to represent the 

nutrient level of nitrogen in fertilizer, which is the combination of NO3
-/NO2

-–N and 

TKN. Because both Class A and B biosolids have low NO3
-/NO2

-–N concentration 

that can be neglect, TKN data in biosolids is used to compare with total nitrogen of 

the commercial fertilizer in Table 5. In addition, K is an important component for 

plant growth and is generally reported in commercial fertilizers, therefore it is 

included in the discussion here.  

Class A biosolids samples have lower total K but higher TKN, TP, and 

ammonia than lime-stabilized Class B biosolids from the target NRF. THP-AD seems 

to be effective in removing K due to the increase mobility and water dissolution, 

which is important to note in a product that can be used for land application. The 

increase of TKN, TP, and ammonia suggest an increase of organic matter breakage by 

the THP-AD that enhances the release of nitrogen and phosphate. Biosolids from 

THP-AD has lower TKN but higher TP than the commercial organic fertilizer 

MilorganiteTM. Since TKN contains both ammonia and organically bounded nitrogen, 

the Class A product contains a large concentration of nitrogen that has a slow release 

time during land application (Lu et al., 2012), making it appropriate as a fertilizer. 
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Table 5. Average concentrations and standard deviations (mg/kg d.w. and weight 

percentage) of nutrients comparison (total K, TKN, TP, and ammonia) of Class A 

biosolids, lime-stabilized Class B biosolids, and MilorganiteTM (“Specifications: 

Milorganite,”). 

 Class A biosolids Class B Biosolids MilorganiteTM 

Nutrients mg/kg d.w. % weight % weight % weight 

Total K 850.2 ± 21.69 
(n=134) 

0.08502 ± 
0.0022 

0.1456 ± 
0.004344 

Data not 
available 

Total 
N/TKN 

52021 ± 13281 
(n=43) 5.202 ± 1.328 3.9740 ± 0.6229 6 

TP 34521 ± 6131 (n=42) 3.445 ± 0.6131 1.2380 ± 0.1291 2 

Ammonia-
N 7863 ± 1352 (n=43) 0.7863 ± 0.1352 0.1310 ± 0.03664 Data not 

available 
 

2.5 Conclusions 

 

Since November, 2014, the target NRF replaced lime stabilization of the 

sludge with the new THP-AD process with the goal to change the production of Class 

B biosolids to Class A biosolids and reduce significantly the total mass of biosolids 

produced. This study focused on the first year of this full-scale system to characterize 

the new product. We collected samples of the biosolids produced by THP-AD and 

analyzed them for fecal coliforms, nitrate/nitrite, TKN, TP, ammonia, and 11 

different metals. We evaluated the quality of Class A biosolids, tracked the variation 
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of concentrations with time, and compared Class A with previously produced Class B 

biosolids.  

Results indicated that the newly produced biosolids using the THP-AD 

process qualified as Class A EQ biosolids, and met all the EPA standards for 

pathogen density and metal concentrations during the full-operation stage of the 

facility. From the startup stage to full-operation stage, almost all parameters changed 

significantly, especially fecal coliforms density, which decreased significantly after 

the initial startup stage. For the comparison between Class A and measured Class B 

biosolids metal concentrations, most metals increased in Class A biosolids due to the 

great mass reduction by THP-AD process. Several metals contents in Class A 

biosolids were higher even after volatile solids reduction correction, which need 

further investigation. Furthermore, the concentrations of TKN, TP, and ammonia are 

high in Class A biosolids when compared to Class B biosolids from the target NRF 

and the commercial organic fertilizer MilorganiteTM, which suggests that the Class A 

biosolids from the target NRF may be used as a fertilizer in land application with 

good economic values. 
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Chapter 3: PBDEs in Class A Biosolids Produced from Thermal 

Hydrolysis and Anaerobic Digestion Processes 

 

3.1 Abstract 

 
Polybrominated diphenyl ethers (PBDEs) are ubiquitous in the environment 

and tend to accumulate in the biosolids during wastewater treatment. In this study, we 

measured the impact of a new biosolids stabilization method on PBDEs biosolids 

concentration. We investigated PBDEs levels in Class A biosolids produced from 

newly adopted thermal hydrolysis pretreatment and anaerobic digestion (THP-AD) at 

a Mid-Atlantic nutrient recovery facility (NRF). The total PBDEs concentration in 

Class A biosolids was 720 ± 110 µg/kg d.w. (n=21), lower than the total PBDEs 

concentration found in the previously produced Class B biosolids from the same 

facility in 2011. Among the analyzed eight congeners (BDE-28, -47, -99, -100, -153, 

-154, -183, and -209), BDE-47, -99, and -209 were the most common congeners and 

combined contributed to about 87% of the total PBDEs concentration. From Class B 

to Class A biosolids production, the most prevalent congener was BDE-209, and its 

concentration was decreased from an average 1500 µg/kg d.w. to an average 240 

µg/kg d.w.. This congener also contributed less to the total PBDE concentration from 

82% to 34%. In addition, despite the varied conditions of initializing a full scale 

anaerobic digestion system, no significant differences were observed between the 

startup period and the full-operation period of the THP-AD system. 
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3.2 Introduction 

 
Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants 

in consumer products. Belonging to the group of brominated flame retardants, PBDEs 

can prevent ignition and slow down fires in the initial phase due to their physical and 

chemical properties (Harrad et al., 2008). In the 1970s, in order to replace banned 

flame retardants, such as polychlorinated biphenyls (PCBs) and polybrominated 

biphenyls, PBDEs were widely added in polymers, such as electronic components, 

household appliances, furniture, textiles, etc. and became ubiquitous in our 

environment (Daso et al., 2010). Based on the International Union of Pure and 

Applied Chemistry (IUPAC) system, all PBDEs contain a diphenyl ether skeleton and 

different numbers of bromine atoms with 209 possible congeners (Fromme et al., 

2009). 

Three commercial formulations containing a variety of congeners have been 

used: Penta-, Octa-, and Deca-BDE (Krol et al., 2012). According to the study of 

LaGuardia et al., 2006, DecaBDE (mainly BDE-209) dominated 83.3% of the 2001 

PBDE global market demand, followed by PentaBDE (mainly BDE-47, -99, -100, -

153, and -154) at 11.1% and OctaBDE (mainly BDE-183) at 5.6%. Therefore, in this 

study, eight congeners of PBDEs (BDE-28, -47, -99, -100, -153, -154, -183, and -

209), representing the major congeners found in commercial formulations, were 

chosen as the targets for our analysis. 

Due to the lack of binding sites on polymers, PBDEs are simply integrated 

into materials but not chemically bound to products. PBDEs are semi-volatile and can 
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easily leach out of the polymers and enter air, dust, soil, etc. With similar structure 

and metabolites as PCBs, PBDEs may have carcinogenic and thyroid disturbing 

effects that bring great concern to human and ecosystem health and persistent for a 

long time (Knoth et al., 2007; Naert et al., 2007). Therefore, commercial PentaBDE 

and OctaBDE were listed in the Persistent Organic Pollutants (POPs) inventory of the 

Stockholm Convention in 2009 and were banned or phased out in European Union 

and the United State.  But the large compound DecaBDE, which was considered less 

mobile and toxic, were still widely manufactured and used in the U.S. until 2013 to be 

phased out (Jinhui et al., 2017). 

However, the characteristics of persistence in the environment and the 

tendency of bioaccumulation means PBDEs are likely to be detected in the 

environment and in wildlife for many decades after their production ceases. As 

PBDEs are released into wastewater from consumer products, and they are 

hydrophobic in nature, they can be effectively removed with organic solids during 

wastewater treatment processes (Andrade et al., 2010). Consequently, biosolids 

produced from nutrient recovery facilities (NRFs, formerly known as wastewater 

treatment plants) generally have a relatively high concentration of PBDEs. In the 

U.S., about 50% of biosolids are applied on agriculture land as a fertilizer (Seiple et 

al., 2017). A few studies showed high concentrations of PBDEs exist in biosolids 

samples, and the application of large amounts of biosolids as fertilizer could put 

PBDEs into the food chain (Hale et al., 2012; Venkatesan and Halden, 2014). The 

study by Venkatesan and Halden, 2014, estimated about 24,000-36,000 kg/year 
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(53,000 pound/year – 79000 pound/year) of PBDEs were released to the environment 

through land application of biosolids. 

To ensure the safety of biosolids application in soil, the Environmental 

Protection Agency (EPA) has framed a classification system and considers biosolids 

which not only meet, but exceed the minimal requirements of pathogen reduction, 

metals content limits, and vector control to be of Class A “Exceptional Quality” (EQ) 

biosolids (U.S. EPA, 1993). In the 40 Code of Federal Regulations Part 503.32 rule 

(EPA, 1993), Class A biosolids must meet at least one of the following requirements: 

either the density of Salmonella sp. must be less than 3 MPN/4g d.w. or the density of 

fecal coliforms must be less than 1000 MPN/g dry weight. Class A classification is 

necessary if a user wants to apply the biosolids to residential lawns, home gardens, or 

other unrestricted public contact areas (U.S. EPA, 1994b). In comparison, Class B 

biosolids has a looser requirement that the pathogen level could reach as high as 2 

million MPN/g d.w. biosolids (U.S. EPA, 1994b). For either Class A or Class B 

biosolids, no regulation exists for PBDEs content in biosolids in the U.S.  

Since November 2014, a large Mid-Atlantic NRF put online a new 

stabilization treatment process for biosolids that produces Class A product. The newly 

adopted process includes the CambiTM Thermal Hydrolysis Pretreatment (THP) and 

anaerobic digestion (AD) with the intent to enhance the microbial activity to increase 

biogas production and decrease pathogen levels in the biosolids. As a number of past 

studies showed that active microbial activity could effectively biodegrade organic 

pollutants in biosolids, the concentrations and distribution of PBDE congeners could 
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be affected by the THP-AD processes (Stiborova et al., 2015b , Huang et al., 2014; 

Stiborova et al., 2015a; Tokarz et al., 2008). 

According to a study by Stiborova et al. (2015a), biodegradation is an 

effective method to remove organic pollutants in biosolids. A number of studies 

showed the adoption of mesophilic anaerobic digestion in the wastewater treatment 

would debrominate PBDEs from high-brominated to low-brominated congeners 

(Huang et al., 2014; Stiborova et al., 2015b; Tokarz et al., 2008). Since lower-

brominated PBDEs are considered to be more mobile and more toxic than higher-

brominated PBDEs (Liu et al., 2016), both the total concentration of PBDEs and the 

composition of PBDEs congeners in biosolids should be measured. 

In addition, the switch from Class B biosolids production stabilization 

processes to THP-AD system and Class A biosolids production at the target NRF was 

gradually introduced. Based on the biosolids analysis results of EPA classification 

criteria, from November, 2014 to the end of February, 2015, the period was unstable, 

producing biosolids that did not meet EPA standards, and this period was named the 

startup stage. In this stage, THP-AD had started but not all anaerobic digesters were 

online and conditions were not optimized. From March, 2015 on, the period was 

named full-operation stage and stable quality Class A biosolids were produced. 

Therefore, the PBDEs comparison between startup and full-operation stages may 

reveal the PBDEs treatment ability of THP-AD system. 

The goals of this study were to: 1) determine the PBDEs concentrations and 

the distribution of different congeners in Class A biosolids products; 2) compare the 

PBDEs concentrations in Class A biosolids and the Class B biosolids previously 
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produced at the same location to evaluate the overall impact of the newly adopted 

THP-AD treatment technology on PBDEs; and 3) compare the PBDEs 

concentrations’ variation between the startup and the full-operation stages. 

 

3.3 Methods 

 
Class A Biosolids samples were collected weekly from the final product belt 

conveyor at the target NRF from November 2014 until February 2015 and monthly 

from February 2015 until January 2016. Biosolids sample collection from THP-AD 

process started on November 26th, 2014 and due to the possible high variability in the 

product from the treatment operation initiation, samples were collected on a weekly 

basis. Samples were collected using sterile instruments and containers. After sample 

collection, biosolids samples were immediately transferred into 250 mL amber jars 

(KimbleTM, 16oz, USA) and were frozen at -20oC until processing. 

The solids content of the samples was measured using EPA Method 1684 

(U.S. EPA, 2001). The sample was dried a minimum of 12 hours in an oven (Fisher 

Scientific, Isotemp, USA) at 103-105 °C for total solids (TS) calculation and a 

minimum of 2 hours ignition in a heat furnace ((Neycraft Vulcan, A-550, York, PA) 

at 550 °C for volatile solids (VS) calculation (U.S. EPA, 2001). 

For PBDEs analysis, the sample preparation, chemical extraction and 

cleaning, and chemical analysis was based on EPA method 1614 (U.S.EPA, 2010b). 

We utilized a modified method adopted from Deng et al., 2015, Krol et al., 2012, and 

Giergielewicz-Mozajska et al., 2001. Because PBDEs are photosensitive to sunlight, 
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the glass containers, including sample jars and vials, are amber glass, and the fume 

hood are covered with amber color film. Before processing, biosolids samples were 

thawed in a refrigerator at -4 oC overnight and then allowed to reach room 

temperature for chemical extraction. At least duplicated analysis were prepared for 

each biosolids sampels. Approximated 1.5 g (±0.01 g) sample was mixed with 3.0 g 

of hydromatrix (Agilent Technologies, Hydromatrix, USA), and spiked with 40 ng of 

the surrogate polychlorinated biphenyl PCB-209 (Cambridge Isotope Laboratories, 

PCB-209-CS, Andover, MA) and 40 ng of the internal standard PCB-138 (Cambridge 

Isotope Laboratories, PCB-138-CS, Andover, MA). Samples were extracted in an 

Acceleration Solvent Extraction (ASE) system (Thermo Scientific, Dionex ASE 350 

with Dionium Components Smartrun System & Solvent Saver System, Sunnyvale, 

CA). The extraction cycles were performed at a pressure of 2000 psi (13.79 MPa) and 

temperature of 120 oC with the mixture of solvent 4:1 of n-hexane (Fisher Scientific, 

n-Hexane, USA) : acetone (Fisher Scientific, Acetone, USA). After 5 minutes to heat 

up the oven, two static extractions of 10 min were developed at constant pressure and 

temperature, generating approximately 35 mL of extract into the amber vial. 

Since the extract had high content of lipid and sulfur that could interfere the 

PBDEs analysis (Berton et al., 2016), the extract was passed through a packed glass 

chromatographic column (KimbleTM KontesTM PTFE-Plugged Column, 300-mm L x 

22-mm ID, USA) for clean-up. From bottom to top, the column was packed with 

glass wool (Acros Organics, Glass wool, New Jersey), copper powder (Fisher, 

Copper C434-500 Powder, USA), 1 g activated silica gel (Alfa Aesar, 150 angstroms 

wide pore silica gel, USA), 2 g 33% basic silica gel with NaOH (Fisher, NaOH 
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pellets, USA), 1 g activated silica gel, 4 g 40% acid silica gel with concentrated 

sulfuric acid (Fisher, A300-212 Sulfuric Acid, USA), 2 g activated silica gel and 1 g 

anhydrous sodium sulfate (Fisher, S429-212 Sodium Sulfate Anhydrous, USA). 

PBDEs were eluted with n-hexane, evaporated in evaporator (Zymark, TurboVap LV 

Evaporator, Hopkinton, MA) under a gentle nitrogen stream, and re-dissolved with n-

hexane to 1 mL for chemical analysis. 

Eight PBDEs congeners (BDE-28, -47, -100, -99, -154, -153, -183, and -209) 

were analyzed by Agilent gas chromatography-mass spectrometry (GC-MS) 6890 

N/5975. Negative chemical ionization in selected ion monitoring mode and DB-5MS 

capillary column were used. For each extract, helium gas is applied to push the1µL of 

injected extract to go through the capillary column at temperature about 300˚C for 22 

minutes run. Standards of target PBDEs solution were prepared to generate 

calibration curve. The quantification of PBDEs was performed by monitoring the ion 

fragments with mass-to-charge ratio. 

The recovery of PCB-209 was calculated for each sample set and the results 

were accepted with surrogate recovery from 90% to 110%. At least duplicate data for 

each biosolids sample was obtained for further analysis. For each sample batch (10 

samples), a sand blank was analyzed for quality control. In addition, PBDE-spiked 

sand and PBDE-spiked biosolids sample (addition of 0.05 μg of BDE-28, -47, -99, -

100, -153, -154, and -183, each and 0.5 μg of BDE-209) (Cambridge Isotope 

Laboratories, Andover, MA) were analyzed to calculate congener-specific recovery to 

ensure the reliability of the experimental method. 
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For all analysis, the average recovery of surrogate PCB-209 for sand blank 

was 97.80%±9.981%, and no PBDEs contamination was observed. The average and 

standard deviations of recoveries for PBDEs sand spiked sand and PBDEs spiked 

biosolids with surrogate recovery from 90% to 110% were calculated and shown in 

Table 5. BDE-99,-100, -153, and -154 have the best performance in recovery. To 

compare between spiked sand and spiked biosolids, large PBDEs congeners (BDE-

153, -153, 183, and 209) had better recoveries in sand, but small PBDEs congeners 

(BDE-28, -47, -99, and -100) were in opposite. The reason for this situation is 

probably the large PBDEs congeners are harder to be extracted out from the high-

organic-matter biosolids than smaller PBDEs congeners. 

Table 5. Average recoveries of PBDEs spiked sand samples and biosolids samples. 

PCB209 BDE28 BDE47 BDE100 BDE99 BDE154 BDE153 BDE183 BDE209

Average PBDEs 
Spiked Sand 

Recovery

102.3%±
5.351

63.88%±
15.52

71.49%±
13.44%

85.07%±
11.29%

89.33%±
12.81%

90.79%±
10.57%

89.44%±
10.58%

85.73%±
11.567%

87.37%±
9.063%

Average PBDEs 
Spiked Biosolids 

Recovery

101.1%±
0.7233%

77.07%±
11.14

75.96%±
6.359%

91.10%±
7.910%

90.60%±
10.78%

86.26%±
6.843

87.41%±
7.528%

75.11%±
49.39%

76.286%
±0.4234

%  

 

3.4 Results and Discussion 

In our study, a total of 21 samples of Class A biosolids samples from 

November 2014 to January 2016 were collected and analyzed. For each sample, TS 

were measured to calculate PBDEs concentration in a dry weight basis. The average 

TS of our Class A biosolids samples was 29.3 ± 2.35% (n=21). 

Among the eight PBDEs congeners analyzed, the concentrations of BDE-47, -

99, and -209 were the highest. The detection limit and quantitation limit of each 
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chemical were measured and calculated based on Carden, 1998, and the results were 

shown in Table 6. Due to low concentrations of BDE-28 (below detection limit), its 

results were not shown in this manuscript.  

Table 6. Method detection limits (MDL) and quantitation limit (QL) of surrogate 

(PCB209) and each PBDEs congener. 

PCB209 BDE28 BDE47 BDE100 BDE99 BDE154 BDE153 BDE183 BDE209
MDL (µg/kg d.w.) 6.026 1.431 1.172 1.006 1.087 0.911 0.666 0.996 5.731
QL (µg/kg d.w.) 18.077 4.292 3.515 3.017 3.261 2.733 1.998 2.988 17.192  

The average concentrations and standard deviations of BDE-47, -99, -100, -

153, -154, -183, -209, and total PBDEs were calculated (Table 7). BDE-209 

concentrations were at similar levels to BDE-47 and BDE-99. Due to chemical 

partition and commercial production, BDE-209 is generally observed in significantly 

higher levels than other PBDEs congeners in biosolids samples (Venkatesan and 

Halden, 2014). In a previous study by Andrade et al. 2015, that reported PBDE 

concentrations in the Class B product produced  at the same facility from July 2005 

until June 2011, as shown in Table 7, BDE-47+BDE-99 concentrations hovered 

around 250 µg/kg d.w.. The sum of the same two congeners in the Class A biosolids 

would be around 390 µg/kg d.w., indicating an increase in the concentration of these 

two common congeners. Similar situation were applied to the rest small PBDEs 

congeners, except BDE-209, that the concentrations of PBDEs increased from Class 

B to Class A. Moreover, the concentration of BDE-209, the most abundant PBDE 

congener, in the previously-produced Class B material hovered around 1500 µg/kg 

d.w., which was much higher than values observed in the Class A material at around 

240 µg/kg d.w..  
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Table 7. Mean PBDEs concentrations and standard deviations in Class A biosolids 
samples and previously-produced Class B biosolids and corrected Class B biosolids 
data at the target NRF. 

 
Mean ± SD (μg/kg d.w.) 

Congeners Class A  Class B* Corrected Class B 

BDE47 190 ± 34 121 ± 36.1 346 ±103 
BDE100 44 ± 6.9 20.5 ± 11.1 58.6 ± 31.7 
BDE99 200 ± 27 134 ± 42.1 383 ± 120 
BDE154 18 ± 2.6 7.97 ± 0 22.8 ± 0 
BDE153 22 ± 4.0 8.23 ± 0 23.5 ± 0 
BDE183 7.5 ± 1.6 6.64 ± 0 19.0 ± 0 
BDE209 240 ± 72 1490 ± 503 4260 ± 1440 

Total 720 ±110 1790 ± 528 5110 ± 1510 
*Data obtained from Andrade, et al. 2015 

According to the data obtained at the target NRF, the volatile solids reduction 

from Class B to Class A biosolids is about 65%. Because THP-AD process has a 

great mass reduction effect in biosolids production, the concentrations of PBDEs in 

Class B biosolids were corrected for the same amount of organic matter input in the 

sludge as the Class A biosolids production, as showed in Table 7. After correction, all 

PBDEs congeners’ concentrations in Class B biosolids were higher than in Class A 

biosolids. The PBDEs in newly produced Class A biosolids from Nov. 2014 to Jan. 

2016 was much lower than the average PBDEs concentration in Class B biosolids at 

the same NRF from July 2005 to June 2011. 

Based on data in Table 7, a clear PBDEs concentration comparison between 

Class A and Class B for different PBDEs congeners was present in Fig. 5. Except 

BDE-209, the small PBDEs congeners’ concentrations in Class A biosolids were 

from 1.1-2.7 times of the congeners’ concentrations in Class B biosolids. In contrast, 

concentration of BDE-209 were extremely decreased that Class A only had one-sixth 
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as the concentrations in Class B biosolids. Because small PBDEs congeners are more 

mobile and more toxic, the increase of small PBDEs congeners may bring concerns in 

environmental and health risk when apply the Class A biosolids into food production 

land and dense population area. 

 

Fig. 5. Average concentrations of seven PBDEs congeners in Class A and Class B 

biosolids. 

Although in the most studies, BDE-209 was extremely high (> 90%) in the 

distribution of the total PBDEs concentration (Kim et al., 2017; Aigars et al., 2017; 

Eljarrat et al., 2011), BDE-209 in the Class A biosolids from THP-AD had a unique 

distribution form. As shown in Fig. 6, the eight PBDEs congeners’ distribution to the 
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total concentration between Class A and Class B biosolids products were calculated. 

In the Class A biosolids, BDE-47, -99, and -209 totally contributed to about 87% of 

total PBDEs while in the Class B biosolids, these three congeners contributed to over 

97% of total PBDEs. Most significantly, the percent distribution of BDE-209 was 

decreased from 82 ± 5.9% (n=62) to 34 ± 6.9% (n=21) from Class B to Class A 

biosolids (Andrade et al., 2015). In addition, the rest PBDEs congeners had increased 

distribution in Class A biosolids. 

A probable explanation to this situation is the THP-AD system could enhance 

removal of BDE-209, perhaps by the removal of bromines, efficiently debrominating 

the larger congener and generating more of the lower-brominated compounds. 

Several studies had demonstrated that anaerobic microorganisms could efficiently 

remove bromines from the diphenyl ether skeleton that degrade large PBDEs 

congeners into smaller congeners (Tokarz et al., 2008; Eljarrat et al., 2011; Stiborova 

et al., 2015). In the study by Tokarz et al., 2008, the debromination pathways of 

BDE-209 by microorganism were present in Fig. 7. The most target small PBDEs 

congeners in our study may be generated from the debromination of the large 

congeners. Besides the great mass reduction, the increase concentrations and 

distributions of small PBDEs congeners may be also contributed by the 

debronmination of large PBDEs, and lead to the decreased concentration and 

contribution of the largest congener, BDE-209. Since microorganisms can 

debrominate the most prevalent BDE-209 into more mobile and toxic small 

congeners, the extensive microorganisms’ activities by THP-AD may increase the 

toxicity of biosolids in PBDEs aspect, and need to be concerned. 
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Fig. 6. Average PBDEs congeners’ distribution to the total PBDEs concentration in Class A and Class B biosolids produced by the 

same NRF
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Fig. 7. Major debromination pathways for PBDEs derived in sediment (solid arrows) 

and in biomimetic debrominations (dash arrows) (Tokarz et al., 2008).  
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Moreover, a more in-depth investigation and the analysis of the debromination 

products of BDE-209 were required to better understand this process. Due to the 

phase out of PBDEs manufacturing and addition since 2004, a decrease trend of 

PBDEs were observed in biosolids (Kim et al., 2017). As shown in Fig. 8, from 2005 

to 20011 in the study by Andrade et al, 2015, a decreasing trend of concentration 

BDE47+99 was observed. But for BDE-209, the concentration was relative constant. 

Since the DecaBDE (mainly BDE-209) was phased out in the U.S. after 2013, further 

studies are needed to determine the impact of phase out in BDE-209 decrease in 

biosolids. For a better understand for the debromination by THP-AD system, future 

studies are going to analyze the Class B biosolids samples right before the star of 

Class A biosolids production at the target NRF. In addition, analysis of PBDEs at 

different treatment steps among THP-AD system is also helpful to investigate the 

impacts of THP-AD on PBDEs removal.  
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Fig. 8. The trend of PBDEs concentrations in Class B biosolids from 2005 to 2011 at 

target NRF. (Andrade et al. 2015) 

Since the PBDEs are persistent in nature and the trend of concentration 

decreasing was not such intensive that lead to the extremely decrease of BDE-209 in 

Class A biosolids, extensive debronmination were expected happened during THP-

AD process that degraded BDE-209 into smaller congeners and even to remove. This 

study provides information on the impact of THP-AD on PBDE concentrations, 

which can help researchers understand differences between biosolids stabilization 

processes on microconstituents. In addition, this study shows promise that this 

technology could be used for microconstituents removal and further research should 

be conducted to better understand the mechanisms in which these processes rely. 

Biosolids samples were collected from the very first day of the Class A 

biosolids production. It is interesting then, to analyze the data in a temporal scale to 

observe the impact of the startup of a large-scale stabilization process in PBDEs’ 

biosolids concentrations. The variation of PBDEs concentration from the startup stage 

to full-operation stage of the THP-AD system was investigated based on the 

concentrations of the three most common PBDE congeners: BDE-47, -99, and -209 
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(Fig. 9). Due to the large size of the treatment system and beginning stage, the 

production of Class A biosolids at the target NRF, during Nov. 26th, 2014 to the end 

of Feb., 2015, the startup stage, the THP was operated but anaerobic digesters 

operation parameters were still being optimized and not all digesters were online. 

From March 2015 until the last sampling event for this study, we characterized as 

full-operation stage, when the treatment system reached stable conditions and 

qualified consistently as Class A biosolids. We hypothesized that PBDE 

concentrations could also be impacted by the differences between the two established 

stages due to constant changes to operating parameters.  

 

Fig. 9. Concentrations of BDE-47, -99, and -209 in biosolids samples from Nov. 26th, 

2014 to Jan. 27th, 2016. 
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In order to analyze significant differences between the startup stage and full-

operation stage, about one year-long data were separated into startup stage (n=12) and 

full-operation stage (n=9), as shown in Fig. 9. Concentrations between startup and 

full-operation stages were not statistically different for BDE-47 (p=0.60), BDE-99 

(p=0.92) and BDE-209 (p=0.16) (unpaired t test). The results indicated the variation 

of THP-AD system in the early operation stage did not affect the debromination of 

PBDEs in the biosolids products. During the startup stage, the THP tanks were 

already operated under ideal and stable temperature and temperature. Instead, four 

anaerobic digesters were gradually filled with the sludge from THP until the end of 

startup stage to get to stable condition. The population of anaerobic microorganisms 

in the digesters may have a great variation during the startup stage. But the analysis 

result of no significant differences between startup and full-operation stages indicated 

that the AD in this particular facility might be efficient in PBDE removal even when 

the AD process was not operating at full capacity and optimum conditions.  

 

 

3.5 Conclusion 

Overall, this study determined eight common PBDEs congeners’ 

concentrations in Class A biosolids product that was stabilized with THP-AD 

processes. The total PBDE concentration in the biosolids in the investigated period 

Nov. 2014 – Jan. 2016 was 720 ± 110 µg/kg d.w (n=21). This reported concentration 

was lower than the total PBDE concentration found in previously produced Class B 

biosolids product from the same facility from 2005 to 2011. Among the eight 
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congeners, BDE-47, -99, and -209 were the most common congeners and contributed 

to about 87% of the total PBDEs concentration. The most prevalent PBDE congener 

in both Class B and Class A biosolids was BDE-209. However, from Class B to Class 

A biosolids production, the concentration was decreased from an average 1500 µg/kg 

d.w. to an average 240 µg/kg d.w. The distribution to the total concentration also 

decreased from 82% in Class B to 34% in Class A.  

It is unknown why the concentration of BDE-209 decreased in the Class A 

product compared to the Class B product. The study suggests that debromination may 

be enhanced due to the extensive microbiological activities in the THP-AD process 

and the phase out of PBDEs production and utilization. The increase concentrations 

of small PBDEs congeners in Class A biosolids may also due to the debromination of 

large PBDEs congeners and the great mass production. The increase concentrations of 

small PBDEs congeners bring the concerns of Class A biosolids land application due 

to the increasing toxicity for the ambient environment and humans.  In addition, the 

concentration of PBDEs were relatively constant during the startup stage to full-

operation stage, which could indicate that the debromination processes may be 

efficient since the changing operational parameters of the AD in the startup stage 

seemed sufficient to reduce PBDE concentrations. Further research will investigate 

the potential impact from the phase out of PBDEs utilization by analyzing Class B 

biosolids samples close to Class A biosolids production, extend the analyzing PBDEs 

congeners and extend samples sizes among THP-AD steps to investigate the 

mechanisms of debromination for a better understanding of THP-AD system impact 

on microconstituents. 
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Chapter 4: Conclusions 

 

 Since November, 2014, the target NRF at mid-Atlantic area started to operate 

the newly adopted CambiTM THP-AD system in order to improve the quality of 

biosolids from Class B to Class A. Based on EPA standards, biosolids samples were 

collected at target NRF for over one year and were analyzed for pathogen levels, 

metals concentrations, and nutrients. The overall results indicated qualified Class A 

biosolids were produced after one year-long operation. From startup stage (Nov. 2014 

– Feb. 2015) to full-operation stage (Mar. 2015 – Dec. 2015), stable Class A quality 

of biosolids was achieved. 

 In addition, biosolids samples were analyzed for ubiquitous organic pollutant 

PBDEs concentrations to study the impacts of THP-AD system on PBDEs residues in 

Class A biosolids. With the comparison of PBDEs concentrations in Class B biosolids 

at the same target NRF from the previous study, the total PBDEs were significantly 

decreased. The weight distribution of different PBDEs congeners shifted from over 

80% of large BDE congeners (BDE-209) in Class B biosolids to increased smaller 

BDE congeners (such as BDE-47 and-99) in Class A biosolids. 

 

4.1 Total Solids (TS) and Volatile Solids (VS) 

 

 The analysis of TS and VS of Class A biosolids samples were separated into 

two stages, startup stage and full-operation stage. During startup stage, the average 
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TS of Class A biosolids was 28.12% ± 2.116% (n=199), and the average VS was 

59.32% ± 1.972% (n=180). Besides, during full-operation stage, the average TS was 

31.39% ± 2.180% (n=344), and the average VS was 58.40% ± 4.087% (n=341). The 

unpaired t-test comparison between startup and full-operation stages indicated 

significant difference for both TS and VS. The change of mass loading and 

microorganism population growth in anaerobic digester seems affect the TS and VS 

of final biosolids product. 

 TS and VS of Class B biosolids from Jan. 1st, 2013 to Feb. 13th, 2015 at the 

target NRF were also analyzed to compare with TS and VS of Class A biosolids 

during full-operation stage. TS = 33.07% ± 2.899% (n=543), and VS = 54.48% ± 

6.159% (n=733). The TS and VS between Class A and B biosolids were significant 

different. Although part of organic matters in Class A biosolids was converted into 

biogas and left, the VS in Class A biosolids was still higher than in Class B biosolids. 

The overall volatile solids reduction for Class A biosolids was about 65%, which 

demonstrated a great mass reduction by THP-AD. The decrease of TS and increase of 

VS from Class B to Class A biosolids indicated efficient dewatering impact of THP-

AD system in Class A biosolids production. 

 

4.2 Pathogens 

 

 The analysis of pathogen population in Class A biosolids were the 

measurement of fecal coliforms based on EPA Method 1681. During the startup 

period, fecal coliform population was 3915 ± 6068 MPN/g d.w. (n= 91) that were 
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higher than EPA requirement as below 1000 MPN/g d.w.. However, began from 

March, 2015, THP-AD system were under full-operation stage and the fecal 

coliforms population were significantly decreased, with average 35.85± 81.10 MPN/g 

d.w. (n= 301) that qualify to EPA requirement. Significant difference were observed 

between startup and full-operation stages with p<0.0001. The huge number of 

standard deviation indicated relative unstable condition of fecal coliform population 

in Class A biosolids. Due to the big size and wide variation of data, fecal coliform 

population results were divided into each month with mean and standard deviation 

calculated.  A clear decreasing trend was present from the beginning of Class A 

biosolids production to the last day of analysis. In Dec. 2015, the average fecal 

coliform population was 6.748± 14.61 MPN/g d.w. (n= 56) illustrated the population 

density hadn’t reach to stable condition 

 Because several factors may affect the fecal coliform population in biosolids, 

the reasons for the difference between startup and full-operation stages and the huge 

standard deviations were not clearly suggested. Since the high temperature in THP 

supposed to eliminate the most fecal coliforms, the later appearance and growth of 

fecal coliforms in biosolids may come from regrowth of untreated fecal coliforms in 

the source and the outside feeding seed in anaerobic digesters.  

 

4.3 Metal Pollutants 

 

 Totally 11 metal pollutants concentration, including As, Cd, Cr, Cu, Pb, Hg, 

Mo, Ni, Se, Zn, and K, in biosolids were extracted and measured by ICP. To compare 
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with EPA requirements for the 10 metal pollutants except K, all measurements in 

biosolids samples contented to Class A EQ biosolids qualification. Among the 

pollutants, K, Zn, and Cu are the most ubiquitous metal species. 

 Since metal pollutants concentrations in previous Class B biosolids were also 

monitored, the comparison was made between Class A and B biosolids. Except for K, 

the rest 10 metal pollutants had up to five-fold increase from Class B to Class A. 

After correcting with mass reduction, K, Cr, Mo, and Ni were significantly higher in 

corrected Class B biosolids; but Cd, Cu, Pb, Hg, and Se were still significantly higher 

in Class A biosolids. The high temperature of THP can break large organic matters 

and increase the diffusivity of metal ions and released absorbed metal ions on organic 

matters that lead to the increase of K, Cr, Mo, and NI. For the rest metal species, 

which did not significantly change or even significantly increased in Class A 

biosolids, a further analysis of the metal concentrations in the water phase from THP-

AD may need to explain the situation. 

 

4.4 Nutrients 

  

 Although EPA doesn’t have requirements of nutrients levels for Class A 

biosolids qualification, understand of nutrients levels in biosolids is important to 

evaluate the economic benefit and environmental impact in biosolids field application 

as fertilizer. The measurements of nitrite, TKN, TP, and ammonia indicated no 

significant difference between startup and full-operation stages, with average 51960 ± 

12960 mg.kg d.w., 34895 ± 6185 mg/kg d.w., and 7699 ± 1232 mg/kg d.w.. With the 
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comparison to study by Stehouwer et al., 2000 and commercial organic fertilizer 

MilorganiteTM, Class A biosolids from the target NRF contained low total K, but high 

total P and ammonia, which may help build land application strategy in the future.  

 

4.5 PBDEs 

 

 In this study, total eight BDEs congeners (BDE-28, -47, -99, -100, 154, -153, -

183, and -209) were extracted and analyzed in Class A biosolids samples. Except 

concentration of BDE-28 was below the detection limit, the concentrations of rest 

seven BDEs congeners were determined. The total PBDEs concentration in Class A 

biosolids in the over one year investigated period was 720 ± 110 µg/kg d.w (n=21). 

To compare with the data from study Andrade et al. 2015, the Class B biosolids from 

the same NRF from 2005 to 2011 had total PBDEs concentration was 1790 ± 528 

µg/kg d.w. (n=62), which was more than doubled in Class A biosoids. Especially for 

the most prevalent and the largest PBDEs congeners BDE-209, from Class B to Class 

A biosolids, the concentration of BDE-209 decreased from 1490 ± 503 µg/kg d.w. 

(n=62) to 240 ± 72 µg/kg d.w (n=21). And the weight distribution of BDE-209 was 

also decrease from 82% in Class B to 34% in Class A. 

Among the eight congeners in Class A biosolids, BDE-47, -99, and -209 were 

the most common congeners and contributed to about 87% of the total PBDEs 

concentration. However, except BDE-209, Class A biosolids contained higher 

concentrations of more mobile and more toxic small PBDEs than Class B biosolids 

did that may bring concerns in land application. Due to the great mass reduction and 
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by THP-AD, similar corrections as for metal pollutants concentrations were applied 

to PBDEs concentrations in Class B biosolids. The new comparison illustrated all 

BDE congeners decreased from Class B to Class A biosolids. The study suggests 

debromination may be enhanced by THP-AD that large congener BDE-209 was 

debrominated to smaller congeners that changed PBDEs distributions significantly. 

Since the phase out of PBDEs in the U.S. will also decrease the PBDEs 

concentrations in biosolids, further PBDEs investigations will be on the analysis of 

the Class B biosolids right from Class A biosolids production, and the analysis of 

PBDEs debromination mechanisms by extending congeners size. In addition, between 

startup and full-operation stage no significant differences were observed for BDE-47, 

-99, and -209 in Class A biosolids. The results suggest the change of mass loading 

and microorganism growth in anaerobic digesters didn’t effectively affect the 

concentrations of PBDEs significantly. Future study of PBDEs analysis in different 

THP-AD treatment steps will help explain the reasons for this situation.  

 

 

 

Appendices 
 

Appendix A: Fecal coliforms populations, total solids (TS), and volatile solids (VS) 

of Class A biosolids by THP-AD 

Stage 
Sample 

Date 
Fecal Coliform (MPN/g 

d.w.) TS (%) VS (%) 

Startup 
Stage 

11/29/2014 4750.074286 25.50 59.58 
11/30/2014 3742.968571 26.25 61.37 
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12/1/2014 5710.324286 26.46 59.58 
12/2/2014 6191.56 20.28 58.04 
12/3/2014 5746.93 27.84 60.48 
12/4/2014 18620.14 26.47 60.26 
12/5/2014 18225.27 27.05 59.92 
12/6/2014 17967.05 27.52 59.50 
12/7/2014 18214.1 27.24 62.09 
12/8/2014 8941.92 26.77 60.50 
12/9/2014 19390.66 25.45 61.22 

12/10/2014 29810.19 26.31 59.10 
12/11/2014 12434.47 26.44 59.96 
12/12/2014 13285.56 24.69 60.17 
12/13/2014 9412.3 25.99  
12/14/2014 5020.89 25.62 59.79 
12/15/2014 3099.34 25.81 59.69 
12/16/2014 5079.65 25.90 59.64 
12/17/2014 1948.08 25.20 58.46 
12/18/2014 1261.61 24.82 58.84 
12/19/2014 667.83 25.72 59.07 
12/20/2014 123.62 26.66 59.10 
12/21/2014 125.75 27.53 59.10 
12/22/2014 4641.49 27.19 59.59 
12/23/2014 284.67 26.72 59.02 
12/24/2014 151.52 27.14 60.00 
12/25/2014 452.725 26.95 59.34 
12/26/2014 527.88 26.64 59.05 
12/27/2014 1030.43 27.49 58.59 
12/28/2014 1254.085 26.72 59.34 
12/29/2014 331.185 26.98 54.84 
12/30/2014 687.62 26.82 58.76 
12/31/2014 694.59 26.53 59.76 

1/1/2015 1355.76 26.94 58.74 
1/2/2015 1710.315 27.25 59.32 
1/3/2015 707.165 27.77 57.24 
1/4/2015 294.85 28.01 59.10 
1/5/2015 1698.88 27.94 59.52 
1/6/2015 2253.49 27.71 58.82 
1/7/2015 4906.205 27.57 57.71 
1/8/2015 12527.17 27.83 59.03 
1/9/2015 3868.84 28.55 57.27 
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1/10/2015 955.675 28.33 58.29 
1/11/2015 1045.11 29.06 57.38 
1/12/2015 2039.27 29.25 57.67 
1/13/2015 1726.535 29.79 56.49 
1/14/2015  29.97 58.22 
1/15/2015 1204.1 29.88 57.77 
1/16/2015 1457.72 29.70 57.21 
1/17/2015 757.645 28.89 58.51 
1/18/2015 1689.27 29.19 58.34 
1/19/2015 31191.395 29.99 57.66 
1/20/2015 1944.695 28.85 57.92 
1/21/2015 1832.45 30.60 57.55 
1/22/2015 1106.085 29.75 57.96 
1/23/2015 1659.87 29.71 56.54 
1/24/2015 2014.74 31.56 57.60 
1/25/2015 1520.695 26.81 59.14 
1/26/2015 1305.61 30.84 58.23 
1/27/2015 1759.79 31.83 57.45 
1/28/2015 1674.77 29.54 57.43 
1/29/2015 1064.57 31.09 57.32 
1/30/2015 1065.7 30.81 61.95 
1/31/2015 1924.29 31.46 58.10 
2/1/2015 1082.22 29.78 58.87 
2/2/2015 2560.8 27.45 58.44 
2/3/2015 1106.15 29.78 58.45 
2/4/2015 2718.87 29.43 59.26 
2/5/2015 2685.345 29.53 58.92 
2/6/2015 1757.715 29.20 58.10 
2/7/2015 1732.87 28.47 59.20 
2/8/2015 1160.58 28.78 60.10 
2/9/2015 872.93 28.78 59.81 

2/10/2015 880.02 28.29 60.02 
2/11/2015 2609.47 28.61 59.75 
2/12/2015 1640.215 30.06 60.48 
2/13/2015 2263.485 28.35 60.07 
2/14/2015 1841.975 30.43 60.56 
2/15/2015 1339.83 30.68 60.36 
2/16/2015 1951.975 30.12 60.94 
2/17/2015 1350.475 30.45 61.00 
2/18/2015 1970.97 30.10 60.67 

 69 
 



 

2/19/2015 639.825 30.10 60.04 
2/20/2015 512.06 29.18 60.43 
2/21/2015 1530.945 30.73 59.85 
2/22/2015 797.485 30.10 61.27 
2/23/2015 366.31 28.56 70.27 
2/24/2015 964.695 30.39 61.59 
2/25/2015 9023.255 30.43 61.47 
2/26/2015 254.26 31.08 61.18 
2/27/2015 272.06 29.60 60.58 

Full-
operation 

Stage 

2/28/2015 263.22 30.98 61.14 
3/1/2015 162.34 30.43 61.25 
3/2/2015 162.64 30.64 60.72 
3/3/2015 220.745 31.32 60.74 
3/4/2015 99.43 30.55 60.95 
3/5/2015 42.68 32.85 60.13 
3/6/2015 226.655 30.44  
3/7/2015 150.385 31.30 60.51 
3/8/2015 33.835 32.16 59.96 
3/9/2015 463.68 31.12 60.82 

3/10/2015 6.995 32.36 42.75 
3/11/2015 199.675 29.90 59.58 
3/12/2015 7.235 31.30 59.79 
3/13/2015 7.5 33.85 60.10 
3/14/2015 44.365 42.63 43.81 
3/15/2015 8.74 31.57 60.08 
3/16/2015 8.325 31.61 60.66 
3/17/2015 10.195 32.76 59.45 
3/18/2015 7.35 33.31 59.71 
3/19/2015 4.555 33.21 60.53 
3/20/2015 4.145 31.76 60.42 
3/21/2015 5.26 31.06 60.59 
3/22/2015 8.22 30.66 70.00 
3/23/2015 8.13 29.22 60.87 
3/24/2015 8.39 28.03 61.10 
3/25/2015 14.52 30.41 61.73 
3/26/2015 6.305 30.29 60.07 
3/27/2015 89.505 30.32 61.31 
3/28/2015 43.315 28.65 61.17 
3/29/2015 88.58 30.03 62.10 
3/30/2015 33.215 29.68 58.39 
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3/31/2015 16.11 30.76 61.15 
4/1/2015 305.3 30.85 60.84 
4/2/2015 11.105 31.97 61.58 
4/3/2015 829.905 31.37 61.02 
4/4/2015 91.39 32.08 61.34 
4/5/2015 179.85 31.17 60.79 
4/6/2015 68.87 31.47 61.55 
4/7/2015 265.8 29.80 61.40 
4/8/2015 62.72 29.92 61.34 
4/9/2015 42.555 31.57 61.19 

4/10/2015 248.66 31.69 61.68 
4/11/2015 12.17 31.11 60.93 
4/12/2015 29.82 31.66 60.17 
4/13/2015 63.605 32.42 59.76 
4/14/2015 64.84 31.80 59.83 
4/15/2015 153.36 32.60 61.50 
4/16/2015 13.04 31.53 60.82 
4/17/2015 10.435 31.95 61.57 
4/18/2015 11.43 30.71 60.12 
4/19/2015 57.01 32.24 58.79 
4/20/2015 10.265 31.33 60.91 
4/21/2015 70.6 32.50 61.95 
4/22/2015 11.62 34.03 59.35 
4/23/2015 8.805 30.78 60.78 
4/24/2015 12.1 32.72 60.12 
4/25/2015 6.105 31.29 58.41 
4/26/2015 2.45 32.20 59.18 
4/27/2015 7.95 32.19 59.18 
4/28/2015 9.235 30.86 60.70 
4/29/2015    
4/30/2015 4.06 33.60 60.03 
5/1/2015 7.03 30.61 59.28 
5/2/2015 4.035 32.61 57.97 
5/3/2015 17.545 32.12 57.10 
5/4/2015 15.955 32.34 59.57 
5/5/2015 6.065 31.81 56.95 
5/6/2015 6.175 31.24 59.24 
5/7/2015 7.78 31.30 59.01 
5/8/2015 145.5 31.55 58.08 
5/9/2015 2.06 31.29 58.78 
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5/10/2015 14.81 32.44 58.25 
5/11/2015 4.63 33.49 60.61 
5/12/2015 1.73 32.68 60.36 
5/13/2015 4.22 32.69 56.64 
5/14/2015 40.165 32.53 59.52 
5/15/2015 238.71 31.67 60.12 
5/16/2015 94.515 30.10 59.78 
5/17/2015 62.935 32.43 60.13 
5/18/2015 27.625 30.99 59.42 
5/19/2015 114.21 32.09 59.98 
5/20/2015 130.12 31.01 59.74 
5/21/2015 9.385 31.96 57.53 
5/22/2015 62.19 32.08 59.15 
5/23/2015 87.89 32.37 59.40 
5/24/2015 372.89 31.98 59.27 
5/25/2015 69.025 31.70 59.30 
5/26/2015 103.645 32.10 60.39 
5/27/2015 149.94 32.88 58.64 
5/28/2015 86.735 31.36 59.17 
5/29/2015 396.74 31.59 58.84 
5/30/2015 17.445 30.26 59.42 
5/31/2015 15.845 30.74 58.68 
6/1/2015 37.575 31.74 57.32 
6/2/2015 33.275 30.94 57.18 
6/3/2015 43.38 32.39 57.04 
6/4/2015 30.915 31.15 54.83 
6/5/2015 44.435 31.91 56.02 
6/6/2015 2.905 31.84 56.73 
6/7/2015 24.675 32.00 55.97 
6/8/2015 23.97 33.04 56.60 
6/9/2015 45.105 31.15 57.60 

6/10/2015 62.455 31.51 58.15 
6/11/2015 28.445 31.50 55.78 
6/12/2015    
6/13/2015 33.87 34.69 58.55 
6/14/2015 22.89 32.59 58.22 
6/15/2015 30.27 31.02 59.08 
6/16/2015 40.115 31.36 58.68 
6/17/2015 15.46 31.89 57.82 
6/18/2015 37.765 32.09 59.20 
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6/19/2015 25.11 31.54 58.21 
6/20/2015 20.445 31.43 59.52 
6/21/2015 18.395 31.42 58.82 
6/22/2015 7.115 33.73 57.41 
6/23/2015 14.63 32.12 57.84 
6/24/2015 3.745 32.73 57.86 
6/25/2015 4.81 33.58 57.54 
6/26/2015 316.915 32.99 57.54 
6/27/2015 5.825 32.70 57.21 
6/28/2015 7.82 30.68 56.09 
6/29/2015 3.72 32.97 56.79 
6/30/2015 6.875 32.22 55.77 
7/1/2015 6.66 32.44 54.61 
7/2/2015 3.31 31.69 55.83 
7/3/2015 4.8 33.63 53.87 
7/4/2015 4.785 32.40 54.22 
7/5/2015 11.66 33.15 54.08 
7/6/2015 10.9 32.51 55.27 
7/7/2015 10.7 32.80 55.72 
7/8/2015 20.405 31.98 55.72 
7/9/2015 69.66 32.94 55.96 

7/10/2015 7.56 32.14 56.12 
7/11/2015 13.41 32.59 54.38 
7/12/2015 49.13 33.37 55.98 
7/13/2015 15.065 30.01 51.57 
7/14/2015 40.73 32.20 56.10 
7/15/2015 17.55 31.28 56.58 
7/16/2015 6.98 39.46 54.75 
7/17/2015 7.06 31.23 56.45 
7/18/2015 7.595 31.99 57.49 
7/19/2015 77.35 31.99 57.19 
7/20/2015 21.46 32.97 56.99 
7/21/2015 46.6 32.23 57.21 
7/22/2015 13.255 32.78 57.46 
7/23/2015 6.725 31.83 57.54 
7/24/2015 80.355 32.22 56.15 
7/25/2015 3.115 31.90 57.74 
7/26/2015 61.425 32.04 58.01 
7/27/2015 7.575 30.95 58.25 
7/28/2015 8.565 31.82 58.48 
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7/29/2015 3.925 29.43 58.51 
7/30/2015 10.325 32.06 57.26 
7/31/2015 3.07 30.30 57.61 
8/1/2015 4.645 33.29 58.06 
8/2/2015 11.15 33.95 57.77 
8/3/2015 5.775 30.04 54.01 
8/4/2015 79.485 31.54 57.69 
8/5/2015 10.305 33.10 59.66 
8/6/2015 8.415 32.21 54.89 
8/7/2015 3.875 31.47 53.06 
8/8/2015 2.82 32.44 54.57 
8/9/2015 5.87 32.80 55.49 

8/10/2015 27.595 31.98 52.23 
8/11/2015 5.295 32.30 54.03 
8/12/2015 6.49 31.51 57.45 
8/13/2015 4.59 33.76 55.20 
8/14/2015 15.25 32.69 54.45 
8/15/2015 2.475 32.50 57.02 
8/16/2015 2.21 32.11 57.19 
8/17/2015 33.275 31.42 53.97 
8/18/2015 2.18 31.65 52.64 
8/19/2015 5.29 31.92 55.81 
8/20/2015 3.14 31.88 56.62 
8/21/2015 2.14 31.81 56.14 
8/22/2015 1.05 30.96 56.65 
8/23/2015 3.255 31.47 56.31 
8/24/2015 2.615 33.44 54.64 
8/25/2015 4.44 30.74 54.57 
8/26/2015 0.965 31.04 54.36 
8/27/2015 3.73 31.09 53.08 
8/28/2015 0.62 32.02 55.15 
8/29/2015 1.01 32.15 56.21 
8/30/2015 3.14 29.60 53.30 
8/31/2015 3.905 31.39 57.14 
9/1/2015 2.23 30.48 55.53 
9/2/2015 2.755 31.59 55.98 
9/3/2015 2.95 29.68 55.75 
9/4/2015 1.63 31.04 52.87 
9/5/2015 0.935 32.07 55.38 
9/6/2015 3.405 30.10 55.97 
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9/7/2015 4.58 30.14 55.28 
9/8/2015 3.06 30.37 54.81 
9/9/2015 0.98 30.54 58.19 

9/10/2015 4.035 31.12 54.61 
9/11/2015 3.125 31.53 53.37 
9/12/2015 0.945 31.76 53.79 
9/13/2015 2.2 34.26 58.22 
9/14/2015 0.68 29.49 57.45 
9/15/2015 2.81 31.14 58.43 
9/16/2015 1.44 31.16 54.50 
9/17/2015 4.95 30.50 54.45 
9/18/2015 15.38 32.05 56.04 
9/19/2015 35.93 29.10 56.38 
9/20/2015 3.765 29.22 55.59 
9/21/2015 2.445 31.13 57.95 
9/22/2015 6.04 31.55 58.40 
9/23/2015 4.74 31.52 56.06 
9/24/2015 3.92 30.21 55.67 
9/25/2015 19.3 29.04 56.34 
9/26/2015    
9/27/2015 2.055 30.20 59.53 
9/28/2015 9.485 31.63 58.77 
9/29/2015 9.505 29.76 58.91 
9/30/2015 2.67 29.58 57.88 
10/1/2015 1.06 30.65 56.25 
10/2/2015 2.895 30.19 56.45 
10/3/2015 79.75 30.07 58.88 
10/4/2015 0.66 30.46 56.46 
10/5/2015 1.005 29.85 56.92 
10/6/2015 0.66 30.08 57.81 
10/7/2015 0.58 31.01 57.29 
10/8/2015 2.105 30.11 58.76 
10/9/2015 2.83 30.92 58.92 

10/10/2015 1.31 30.47 57.08 
10/11/2015 1.085 30.03 56.83 
10/12/2015 2.97 29.45 57.95 
10/13/2015 2.28 32.20 59.34 
10/14/2015 5.68 30.30 57.38 
10/15/2015 28.18 30.34 57.70 
10/16/2015 59.075 31.29 57.37 
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10/17/2015 3.07 30.30 57.07 
10/18/2015 2.41 30.47 58.23 
10/19/2015 2.85 28.25 58.48 
10/20/2015 4.18 29.32 59.79 
10/21/2015 7.145 30.38 58.12 
10/22/2015 15.39 29.89 59.18 
10/23/2015 5.855 29.54 57.75 
10/24/2015 1.38 30.76 56.25 
10/25/2015 4.485 29.90 59.83 
10/26/2015 10.535 31.28 58.78 
10/27/2015 2.355 31.25 56.15 
10/28/2015 3.45 30.98 58.15 
10/29/2015 9.655 29.46 59.90 
10/30/2015 1.965 31.55 58.82 
10/31/2015 4.855 31.74 59.61 
11/1/2015 13.445 30.57 59.83 
11/2/2015 59.095 31.88 59.92 
11/3/2015 8.32 29.27 57.05 
11/4/2015 31.855 29.76 58.15 
11/5/2015 68.455 31.18 57.78 
11/6/2015 4.165 29.40 59.45 
11/7/2015 12.2500005 29.92 59.66 
11/8/2015 434.275 30.37 59.93 
11/9/2015 22.325 31.17 58.54 

11/10/2015 5.98 30.36 59.96 
11/11/2015 4.715 29.37 59.59 
11/12/2015 3.9 30.42 60.09 
11/13/2015 1.085 29.93 58.98 
11/14/2015 1.54 31.51 54.99 
11/15/2015 20.895 30.75 59.52 
11/16/2015 76.32 31.42 54.99 
11/17/2015 6.105 29.82 59.92 
11/18/2015 15 31.09 56.91 
11/19/2015 9.275 31.33 57.83 
11/20/2015 3.625 30.76 58.63 
11/21/2015 1.055 30.87 59.61 
11/22/2015 0.995 30.15 59.52 
11/23/2015 26.995 30.15 58.40 
11/24/2015 112.5 30.71 57.94 
11/25/2015 33.225 31.47 60.11 
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11/26/2015 18.455 30.37 59.12 
11/27/2015 6.085 31.48 59.84 
11/28/2015 1.02 31.84 59.71 
11/29/2015 0.69 28.95 61.10 
11/30/2015 41.52 30.30 60.66 
12/1/2015 41.08 31.62 60.20 
12/2/2015 77.16 31.08 59.73 
12/3/2015 5.05 30.59 60.14 
12/4/2015 2.605 30.93 59.75 
12/5/2015 2.355 31.16 60.23 
12/6/2015 1.975 31.41 60.09 
12/7/2015 3.035 30.62 62.39 
12/8/2015 1.815 31.13 60.64 
12/9/2015 2.675 29.90 60.64 

12/10/2015 2 30.99 62.75 
12/11/2015 1.48 29.73 57.29 
12/12/2015 0.97 30.93 57.89 
12/13/2015 4.34 30.89 60.10 
12/14/2015 1.45 31.03 59.25 
12/15/2015 1.785 30.23 61.64 
12/16/2015 5.4 31.30 61.38 
12/17/2015 0.66 30.22 60.35 
12/18/2015 0.96 31.28 61.61 
12/19/2015 46.05 30.52 61.09 
12/20/2015 6.54 31.27 60.78 
12/21/2015 2.785 31.40 61.36 
12/22/2015 1.015 32.02 60.49 
12/23/2015 0.97 30.99 60.60 
12/24/2015 1.47 30.70 61.70 
12/25/2015 3.51 30.04 61.04 
12/26/2015 1.94 31.94 60.56 
12/27/2015 7.115 31.20 60.32 
12/28/2015 0.63 31.71 60.61 
12/29/2015 1.39 30.52 53.71 

Total Average 936.30 30.67 58.44 
Total Stand. Dev. 3341.95 2.02 2.51 

 

 

Appendix B: Total solids (TS) and volatile solids (VS) of Class B biosolids. 
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Date (with Lime) Total 
Solids (%) 

(with Lime) 
Volatile Solids 

(%) 
1/1/2013 31.89 49.15 

1/2/2013 31.62 50.32 

1/3/2013 35.34 50.94 

1/4/2013 27.71 47.32 

1/5/2013 30.73 53.79 

1/6/2013 29.68 61.22 

1/7/2013 30.63 57.33 

1/8/2013 30.47 58.4 

1/9/2013 30.27 57.53 

1/10/2013 31.37 59.29 

1/11/2013 34.44 47.39 

1/12/2013 32.83 45.31 

1/13/2013 32.84 55.06 

1/14/2013 32.24 59.04 

1/15/2013 33.06 57.48 

1/16/2013 37.83 47.82 

1/17/2013 31.53 54.08 

1/18/2013 32.45 60.95 

1/19/2013 30.97 54.49 

1/20/2013 31.8 54.26 

1/21/2013 31.24 60.11 

1/22/2013 30.1 56.49 

1/23/2013 33.86 54.26 

1/24/2013 34.09 53.08 

1/25/2013 29.18 59.79 

1/26/2013 29.79 58.23 

1/27/2013 31.13 62.6 

1/28/2013 30.54 55.22 

1/29/2013 30.65 58.71 

1/30/2013 30.08 60.28 

1/31/2013 33.17 50.57 

2/1/2013 33.3 53.32 

2/2/2013 37.04 50.21 

2/3/2013 31.47 52.49 

2/4/2013 31.26 56.65 

2/5/2013 36.08 45.66 

2/6/2013 34.82 68.4 

2/7/2013 29.5 59.02 

2/8/2013 28.54 65.25 

2/9/2013 28.92 66.21 

2/10/2013 29.59 59.73 
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2/11/2013 29.98 61.29 

2/12/2013 31.63 60.51 

2/13/2013 32.84 53.75 

2/14/2013 30.57 63.52 

2/15/2013 31.65 51.58 

2/16/2013 32.28 50.48 

2/17/2013 27.35 61.21 

2/18/2013 29.78 61.43 

2/19/2013 29.49 63.57 

2/20/2013 28.15 63.85 

2/21/2013 30.18 58.87 

2/22/2013 32.61 59.26 

2/23/2013 32.96 61.68 

2/24/2013 31.03 64.77 

2/25/2013 30.79 57.04 

2/26/2013 32.06 56.13 

2/27/2013 33.58 56.71 

2/28/2013 32.77 59.39 

3/1/2013 33.88 54.28 

3/2/2013 30.23 56.81 

3/3/2013 32.79 65.46 

3/4/2013 29.74 60.78 

3/5/2013 29.93 60.95 

3/6/2013 30.37 54.08 

3/7/2013 31.04 61.26 

3/8/2013 34.83 57.98 

3/9/2013 28.72 69.51 

3/10/2013 30.11 64.98 

3/11/2013 28.38 64.69 

3/12/2013 33.35 57.65 

3/13/2013 33.27 55.33 

3/14/2013 30.4 58.91 

3/15/2013 30.21 61.14 

3/16/2013 29.54 59.48 

3/17/2013 31.51 54.26 

3/18/2013 31.86 49.04 

3/19/2013 27.39 64.69 

3/20/2013 29.42 56.1 

3/21/2013 31.05 57.35 

3/22/2013 28.74 64.69 

3/23/2013   
3/24/2013 31.31 65.2 

3/25/2013 31.47 53.71 
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3/26/2013 28.94 57.9 

3/27/2013 29.42 59.1 

3/28/2013 27.77 59.2 

3/29/2013 30 56.81 

3/30/2013 31.04 54.57 

3/31/2013   
4/1/2013   
4/2/2013 30.84 59.4 

4/3/2013   
4/4/2013 33.2 52.08 

4/5/2013   
4/6/2013 32.56 57.62 

4/7/2013 32.67 54.74 

4/8/2013 32.35 54.41 

4/9/2013 32.73 57.99 

4/10/2013 29.5 57.19 

4/11/2013 29.8 64.47 

4/12/2013 32.82 60.99 

4/13/2013 37.18 51.76 

4/14/2013 34.44 54.49 

4/15/2013 31.56 60.86 

4/16/2013 35.66 58.17 

4/17/2013 30.2 55.99 

4/18/2013 29.45 57.84 

4/19/2013 35.4 51.21 

4/20/2013 32.52 53.86 

4/21/2013 31.51 57.15 

4/22/2013 33.8 49.02 

4/23/2013 30.28 56.16 

4/24/2013 30.17 57.75 

4/25/2013 31.66 49.82 

4/26/2013 35.19 53.61 

4/27/2013 34.96 55.58 

4/28/2013 30.7 61.44 

4/29/2013 30.86 61.44 

4/30/2013 32.47 60.48 

5/1/2013 37.2 46.76 

5/2/2013 34.25 59.32 

5/3/2013 32.31 56.36 

5/4/2013 30.74 58.81 

5/5/2013 30.99 63.9 

5/6/2013 29.5 61.66 

5/7/2013 30.64 57.19 
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5/8/2013 32.42 60.67 

5/9/2013   
5/10/2013   
5/11/2013 33.39 67.07 

5/12/2013   
5/13/2013 32.86 56.51 

5/14/2013 29.6 55.85 

5/15/2013 31.02 55.58 

5/16/2013 30.19 63.45 

5/17/2013 33.72 52.2 

5/18/2013 32.43 56.71 

5/19/2013 31.28 57.59 

5/20/2013 31.84 57.82 

5/21/2013 29.85 57.01 

5/22/2013 30.49 58.18 

5/23/2013 32.65 53.84 

5/24/2013 32.37 57.81 

5/25/2013 33.18 57.83 

5/26/2013 31.46 59.19 

5/27/2013 32.3 58.75 

5/28/2013 31.37 59.05 

5/29/2013 28.64 61.47 

5/30/2013 30.38 61.57 

5/31/2013 29 61.04 

6/1/2013 31.81 56.74 

6/2/2013 33.64 52.72 

6/3/2013 30.58 57.43 

6/4/2013 31.2 55.45 

6/5/2013 32.86 58.12 

6/6/2013 28.7 65.28 

6/7/2013 30 59.55 

6/8/2013 32.47 56.16 

6/9/2013 34.68 53.75 

6/10/2013 30.58 58.89 

6/11/2013 31.97 54.04 

6/12/2013 34.8 47.08 

6/13/2013 33.42 53.76 

6/14/2013 32.17 58.04 

6/15/2013 31.63 47.76 

6/16/2013 34.5 51.32 

6/17/2013 32.26 44.76 

6/18/2013   
6/19/2013 35.71 55.91 
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6/20/2013 33.81 54.06 

6/21/2013 31.43 61.03 

6/22/2013 30.06 66.15 

6/23/2013 31.12 59.12 

6/24/2013 35.59  
6/25/2013 31.28  
6/26/2013   
6/27/2013 31.42 62.38 

6/28/2013 32.56 57.14 

6/29/2013   
6/30/2013 36.54 63 

7/1/2013 37.8 63.81 

7/2/2013 30.31 53.19 

7/3/2013 33.22 54.1 

7/4/2013 29.87 56.27 

7/5/2013 31.24 62.41 

7/6/2013 27.75 60.55 

7/7/2013 34.96 42.23 

7/8/2013 34.85 50.9 

7/9/2013 34.2 56.68 

7/10/2013 33.9 57.76 

7/11/2013 33.07 58.41 

7/12/2013 35.29 65.54 

7/13/2013 38.67 46.92 

7/14/2013 34.15 50.72 

7/15/2013 32.89 58.71 

7/16/2013 33.63 55.14 

7/17/2013 33.17 60.99 

7/18/2013 55.63 34.52 

7/19/2013 32.1 58.8 

7/20/2013 35.48 54.2 

7/21/2013 31.57 57.62 

7/22/2013 33.06 53.65 

7/23/2013 32.1 58.02 

7/24/2013 30.48 64.83 

7/25/2013 36.36 52.41 

7/26/2013 33.12 59.44 

7/27/2013 30.3 50.46 

7/28/2013 29.07 48.71 

7/29/2013 31.26 54.98 

7/30/2013 30.3 57.54 

7/31/2013 31.26 58.17 

8/1/2013 31.84 50.45 
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8/2/2013 31.74 54.93 

8/3/2013 33.57 56.48 

8/4/2013 32.95 50.68 

8/5/2013 35.72 52.63 

8/6/2013 32.12 54.11 

8/7/2013 36.27 56.73 

8/8/2013 36.47 59.68 

8/9/2013 29.64 66.04 

8/10/2013 36.89 48.09 

8/11/2013 30.94 58.7 

8/12/2013 29.54 57.51 

8/13/2013 33.64 54.62 

8/14/2013 33.03 59.8 

8/15/2013 31.97 53.98 

8/16/2013 31.28 60.65 

8/17/2013 31.18 60.66 

8/18/2013 32.86 52.3 

8/19/2013 34 42.17 

8/20/2013 33.05 51.13 

8/21/2013 34.99 54.04 

8/22/2013 29.37 57.84 

8/23/2013 31.7 54.44 

8/24/2013 34.48 52.54 

8/25/2013 34.45 52.35 

8/26/2013 30.83 54.35 

8/27/2013 30.04 50.28 

8/28/2013 34.97 56.78 

8/29/2013 31.9 58.06 

8/30/2013 30.46 57.69 

8/31/2013 32.73 57.87 

9/1/2013 36.95 65.3 

9/2/2013 34.61 57.96 

9/3/2013 38.52 68.77 

9/4/2013   
9/5/2013 32.53 54.09 

9/6/2013 32.06 56.31 

9/7/2013 30.99 58.46 

9/8/2013 32.39 54.75 

9/9/2013 33.78 54.17 

9/10/2013 41.33 56.79 

9/11/2013 32.06 51.07 

9/12/2013 32.16 55.56 

9/13/2013 35 57.44 
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9/14/2013 30.56 51.97 

9/15/2013 33.54 50.59 

9/16/2013 29.81 53.96 

9/17/2013 32.06 51.03 

9/18/2013 36.53 52.41 

9/19/2013 33.91 48.44 

9/20/2013 29.71 51.14 

9/21/2013 29.87 59.31 

9/22/2013 29.51 56.12 

9/23/2013 34.61 49.77 

9/24/2013 33.39 47.7 

9/25/2013 36.7 49.12 

9/26/2013 33.76 46.92 

9/27/2013 30.4 51.1 

9/28/2013 28.67 54.89 

9/29/2013 27.52 49.35 

9/30/2013 29.21 53.53 

10/1/2013 29.36 55.66 

10/2/2013 30.28 60.87 

10/3/2013 32.48 57.78 

10/4/2013 33.29 49.99 

10/5/2013 37.34 53.12 

10/6/2013 33.75 58.94 

10/7/2013 37.23 55.97 

10/8/2013 39.34 54.01 

10/9/2013 34.85 54.27 

10/10/2013 36.1 64.55 

10/11/2013 40.13 53.82 

10/12/2013 38.55 50.86 

10/13/2013 33.44 44.16 

10/14/2013 31.03 48.4 

10/15/2013 38.46 52.95 

10/16/2013 32.3 59.88 

10/17/2013 31.98 52.63 

10/18/2013 31.11 56.01 

10/19/2013 27.18 51.95 

10/20/2013 26.31 51.09 

10/21/2013 28.68 52.78 

10/22/2013 28.55 52.45 

10/23/2013 30.89 51.42 

10/24/2013 28.35 63.91 

10/25/2013 34.98 58.66 

10/26/2013 32.09 56.27 
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10/27/2013 32.45 57.92 

10/28/2013 31.16 55.11 

10/29/2013 30.5 57.21 

10/30/2013 31.92 53.06 

10/31/2013 33.2 53.95 

11/1/2013 34.04 51.73 

11/2/2013 31.85 58.42 

11/3/2013 32.53 48.81 

11/4/2013 34.4 48.05 

11/5/2013 34.9 48.55 

11/6/2013 32.38 49.78 

11/7/2013 32.86 59.59 

11/8/2013 33.76 55.82 

11/9/2013 32.88 54.45 

11/10/2013 33.87 47 

11/11/2013 35.22 42.26 

11/12/2013 35.72 44.88 

11/13/2013   
11/14/2013 33.99 67.76 

11/15/2013 35.62 67.53 

11/16/2013 33.57 58.47 

11/17/2013 33.54 60.24 

11/18/2013 35.42 48.37 

11/19/2013 37.16 51.79 

11/20/2013 34.58 53.15 

11/21/2013 35.94 71.9 

11/22/2013 35.6 66.21 

11/23/2013 36.7 53.25 

11/24/2013 33.82 56.44 

11/25/2013 30.36 51.68 

11/26/2013 31.37 54.33 

11/27/2013 31.37 54.33 

11/28/2013 33.49 52.36 

11/29/2013 33.04 56.99 

11/30/2013 30.41 62.11 

12/1/2013 31.8 62.82 

12/2/2013 31.52 45.08 

12/3/2013 29.69 62.16 

12/4/2013 32.37 52.52 

12/5/2013 31.88 53.3 

12/6/2013 29.77 58.03 

12/7/2013 31.86 51.3 

12/8/2013 48.31 60.84 
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12/9/2013 32.92 47.2 

12/10/2013 35.74 38.82 

12/11/2013 31.38 56.93 

12/12/2013 27.33 59.24 

12/13/2013 31.14 53.66 

12/14/2013 30.56 59.95 

12/15/2013 35.59 38.59 

12/16/2013 31.06 60.51 

12/17/2013 30.3 60.03 

12/18/2013 31.22 59.6 

12/19/2013 29.24 54.26 

12/20/2013 36.53 44.88 

12/21/2013 38.26 43.38 

12/22/2013 33.4 57.03 

12/23/2013 35.02 55.69 

12/24/2013 38.13 51.87 

12/25/2013 38.58 47.9 

12/26/2013 32.4 55.03 

12/27/2013 30.13 59.48 

12/28/2013 30.66 58.48 

12/29/2013 31.4 53.29 

12/30/2013   
12/31/2013 33.24 49.71 

1/1/2014 33.41 50.94 

1/2/2014 30.52 54 

1/3/2014 35.47 45.41 

1/4/2014 31.32 60.01 

1/5/2014 30.25 58.16 

1/6/2014 30.3 60.16 

1/7/2014 31.54 53.51 

1/8/2014 30.79 60.77 

1/9/2014 28.88 51.21 

1/10/2014 30.83 58.7 

1/11/2014 29.06 58.4 

1/12/2014 30.64 55.93 

1/13/2014 31.64 56 

1/14/2014 29.65 58.61 

1/15/2014 31.62 55.18 

1/16/2014 36.19 57.37 

1/17/2014 32.65 53.98 

1/18/2014 30.23 55.79 

1/19/2014 34.86 48.79 

1/20/2014 31.48 53.19 
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1/21/2014 31.43 55.98 

1/22/2014 29.4 57.82 

1/23/2014 29.35 55.77 

1/24/2014 31.22 53.83 

1/25/2014 29.25 60.89 

1/26/2014 28.9 59.79 

1/27/2014 31.87 52.43 

1/28/2014 29.89 60.03 

1/29/2014 30.12 56.35 

1/30/2014 34.44 56.6 

1/31/2014 31.77 55.06 

2/1/2014 30.83 58.38 

2/2/2014 32.34 32.49 

2/3/2014 33.45 48.87 

2/4/2014 34.3 52.2 

2/5/2014 32.87 53.61 

2/6/2014 33.06 52.33 

2/7/2014 30.17 62.1 

2/8/2014 32.77 50.11 

2/9/2014 31.37 56.92 

2/10/2014   
2/11/2014 32.66 55.15 

2/12/2014 34.92 55.76 

2/13/2014   
2/14/2014 33.93 53.09 

2/15/2014 33.56 60.1 

2/16/2014 31.13 61.4 

2/17/2014 34.68 51.82 

2/18/2014 31.89 57.85 

2/19/2014 34.26 51.75 

2/20/2014 32.05 58.42 

2/21/2014 31.05 54.38 

2/22/2014 34.03 54.18 

2/23/2014 32.8 56.02 

2/24/2014 31.22 57.5 

2/25/2014 31.48 57.08 

2/26/2014 31.19 59.18 

2/27/2014 32.53 54.87 

2/28/2014 34.45 58.04 

3/1/2014 31.07 52.43 

3/2/2014 33.27 61.01 

3/3/2014 31.05 52.43 

3/4/2014 33.01 61.89 
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3/5/2014 29.03 64.43 

3/6/2014 42.69 54.64 

3/7/2014 30.71 70.2 

3/8/2014 28.75 63.37 

3/9/2014 25.77 51.72 

3/10/2014 35.1 45.18 

3/11/2014 30.17 64.72 

3/12/2014 34.64 54.43 

3/13/2014 34.81 47.41 

3/14/2014 30.49 59.03 

3/15/2014 36.07 55.24 

3/16/2014 31.38 63.84 

3/17/2014 31.55 64.94 

3/18/2014 32.22 70.31 

3/19/2014 33.78 56.16 

3/20/2014 30.42 71.46 

3/21/2014 32.12 58.41 

3/22/2014 30.76 62.36 

3/23/2014 30.87 60.89 

3/24/2014 30.29 64.08 

3/25/2014 36.92 49.28 

3/26/2014 37.7 44.74 

3/27/2014 31.01 59.35 

3/28/2014 34.1 66.52 

3/29/2014 31.31 59.24 

3/30/2014 32.32 58.24 

3/31/2014 37.8 52.29 

4/1/2014 35.18 61.53 

4/2/2014 33.58 66.56 

4/3/2014 32.77 55.88 

4/4/2014 31.03 65.26 

4/5/2014   
4/6/2014 33.33 52.64 

4/7/2014 33.39 48.74 

4/8/2014 32.22 55.55 

4/9/2014 32.42 54.37 

4/10/2014 28.8 59.95 

4/11/2014   
4/12/2014 29.78 59.43 

4/13/2014 33.69 51.59 

4/14/2014 31.85 62.11 

4/15/2014 32.96 51.1 

4/16/2014 33.99 55.13 
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4/17/2014 35.23 57.16 

4/18/2014 39.46 51.53 

4/19/2014 31.42 57.5 

4/20/2014   
4/21/2014 31.78 61.94 

4/22/2014 37.45 36.59 

4/23/2014 36.26 62.26 

4/24/2014 31.21 58.99 

4/25/2014 31.92 57.45 

4/26/2014 30.38 58.12 

4/27/2014 33.57 57.51 

4/28/2014 42.49 66.81 

4/29/2014 32.04 49.56 

4/30/2014 31.34 52.56 

5/1/2014 35.29 51.55 

5/2/2014 37.86 40.17 

5/3/2014 37.62 45.86 

5/4/2014 35.01 50.03 

5/5/2014 30.73 58.44 

5/6/2014 33.4 52.78 

5/7/2014 33.32 59.88 

5/8/2014 33.06 59.84 

5/9/2014 33.03 50.87 

5/10/2014 32.21 55.88 

5/11/2014 32.92 52.06 

5/12/2014 34.8 57.32 

5/13/2014 33.54 51.79 

5/14/2014 36.91 55.38 

5/15/2014 33.88 48.76 

5/16/2014 35.19 43.11 

5/17/2014 35.15 52.86 

5/18/2014 37.23 49.46 

5/19/2014 38.4 57.17 

5/20/2014 32.72 53.06 

5/21/2014 33.24 54.23 

5/22/2014 31.3 56.25 

5/23/2014 35.46 59.88 

5/24/2014 32.86 53.16 

5/25/2014 35.19 53.94 

5/26/2014 30.75 58.46 

5/27/2014   
5/28/2014 35.1 50.34 

5/29/2014 38.61 49.82 
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5/30/2014 35.21 52.97 

5/31/2014 30.04 59.44 

6/1/2014 32.78 53.69 

6/2/2014 31.18 54.92 

6/3/2014 32.55 53.12 

6/4/2014 31.29 56.67 

6/5/2014 34.25 52.79 

6/6/2014 32.49 56.46 

6/7/2014 32.61 56.38 

6/8/2014 31.06 58.57 

6/9/2014 34.11 53.9 

6/10/2014 32.79 58.59 

6/11/2014 32.79 54.65 

6/12/2014 35.63 51.89 

6/13/2014 30.36 48.15 

6/14/2014 32.21 56.69 

6/15/2014 34.59 51.71 

6/16/2014 32.88 54.17 

6/17/2014 32.78 50.81 

6/18/2014 34.69 55.84 

6/19/2014 32.99 51.31 

6/20/2014 33.72 57.21 

6/21/2014 33.97 46.37 

6/22/2014 34.58 48.5 

6/23/2014 33.95 45.75 

6/24/2014 33.32 47.95 

6/25/2014 36.2 53.37 

6/26/2014   
6/27/2014 34.15 54.43 

6/28/2014 33.11 59.66 

6/29/2014 33.81 55.33 

6/30/2014 32.13 54.31 

7/1/2014 32.6 52.79 

7/2/2014 33.36 65.18 

7/3/2014 34.61 52.4 

7/4/2014 41.27 36.69 

7/5/2014   
7/6/2014 35.56 43.4 

7/7/2014   
7/8/2014 35.93 51.14 

7/9/2014 38.51 42.68 

7/10/2014 32.63 65.33 

7/11/2014 35.73 46.99 
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7/12/2014 36.75 51.84 

7/13/2014 37.89 34.72 

7/14/2014 38.77 46.83 

7/15/2014 34.78 52.63 

7/16/2014 40.55 46.82 

7/17/2014 35.4 50.41 

7/18/2014 34.1 49.69 

7/19/2014 36.07 50.45 

7/20/2014 32.29 53.81 

7/21/2014 31.3 55.53 

7/22/2014 34.97 52.51 

7/23/2014 41.5 50.72 

7/24/2014 32.93 57.69 

7/25/2014 32.37 61.77 

7/26/2014 34.4 54.22 

7/27/2014 31.22 52.37 

7/28/2014 33.44 50.62 

7/29/2014 36.26 53.21 

7/30/2014 40.04 63.87 

7/31/2014 23.81 49.07 

8/1/2014 31.7 56.78 

8/2/2014 31.02 60.28 

8/3/2014 32.84 55.69 

8/4/2014 30.18 58.56 

8/5/2014 36.3 50.47 

8/6/2014 35.84 48.04 

8/7/2014 34.21 50.34 

8/8/2014 32.96 57.16 

8/9/2014 34.56 51.04 

8/10/2014 34.53 50.06 

8/11/2014 34.39 43.86 

8/12/2014 32.57 49.11 

8/13/2014 34.48 50.49 

8/14/2014 36.97 42.7 

8/15/2014 37.1 43.11 

8/16/2014 33.66 43.69 

8/17/2014 31.47 49.36 

8/18/2014 33.02 43.2 

8/19/2014 33.15 48.35 

8/20/2014 32.5 51.89 

8/21/2014 35.1 53.6 

8/22/2014 31.11 58.85 

8/23/2014 32.19 53.92 
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8/24/2014 31.44 56.78 

8/25/2014 30.01 56.3 

8/26/2014 31.18 51.78 

8/27/2014 33.31 50.82 

8/28/2014 34.75 47.13 

8/29/2014 37.87 51.13 

8/30/2014 32.42 56.08 

8/31/2014 38.13 46.82 

9/1/2014 38.65 44.95 

9/2/2014 38.71 36.52 

9/3/2014 36.93 45.67 

9/4/2014 42.81 35.59 

9/5/2014 38.57 39.35 

9/6/2014 36.23 39.69 

9/7/2014 35.99 45.78 

9/8/2014 36.27 48.93 

9/9/2014 34.54 48.41 

9/10/2014 36.99 53.58 

9/11/2014 37.03 61.95 

9/12/2014 32.42 56.61 

9/13/2014 32.13 53.53 

9/14/2014 38.61 48.57 

9/15/2014 34.38 50.16 

9/16/2014 33.34 53.1 

9/17/2014 31.49 55 

9/18/2014 31.7 57.56 

9/19/2014 33.45 59.32 

9/20/2014 34 53.86 

9/21/2014 31.35 57.01 

9/22/2014 33.53 54.17 

9/23/2014 36.53 45.35 

9/24/2014 31.97 58.61 

9/25/2014 30.23 57.53 

9/26/2014 31.47 58.09 

9/27/2014 31.7 56.73 

9/28/2014 36.55 44.05 

9/29/2014 31.52 58.52 

9/30/2014 32.25 57.5 

10/1/2014 32.84 50.3 

10/2/2014 35.86 55 

10/3/2014 38.94 46.78 

10/4/2014 34.39 52.19 

10/5/2014 36.77 47.86 
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10/6/2014 32.79 60.04 

10/7/2014 32.19 48.9 

10/8/2014 35.38 49.47 

10/9/2014 36.4 55.2 

10/10/2014 32.46 54.78 

10/11/2014 35.18 50.31 

10/12/2014 33.79 55.98 

10/13/2014 32.53 59.39 

10/14/2014 32.47 52.06 

10/15/2014 33.26 51.25 

10/16/2014 33.8 52.45 

10/17/2014 39.06 39.94 

10/18/2014 31.53 56.72 

10/19/2014 33.05 51.25 

10/20/2014   
10/21/2014 31.29 46.91 

10/22/2014 37.6 39.51 

10/23/2014 32.92 57.06 

10/24/2014 33.29 51.41 

10/25/2014 33.23 50.33 

10/26/2014 30.79 46.75 

10/27/2014 37.06 42.41 

10/28/2014 31.1 54.48 

10/29/2014 33.97 48.25 

10/30/2014 33.3 48.85 

10/31/2014 34.09 50.2 

11/1/2014 32.28 54 

11/2/2014 31.61 60.36 

11/3/2014 32.98 54.49 

11/4/2014 33.02 53.97 

11/5/2014 33.47 55.06 

11/6/2014 33.08 60.55 

11/7/2014 36.14 52.93 

11/8/2014 38.85 48.6 

11/9/2014 36.67 47.84 

11/10/2014 32.66 55.34 

11/11/2014 34.99 51.75 

11/12/2014   
11/13/2014 35.89 48.05 

11/14/2014 31.63 59.69 

11/15/2014   
11/16/2014   
11/17/2014   
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11/18/2014 37.25 52.62 

11/19/2014 41.31 38.63 

11/20/2014   
11/21/2014   
11/22/2014 33.98 56.59 

11/23/2014 33.75 49.56 

11/24/2014 29.55 62.88 

11/25/2014 33.23 54.66 

11/26/2014 32.95 51.43 

11/27/2014 36.38 48.43 

11/28/2014 36.3 49.11 

11/29/2014 34.76 42.67 

11/30/2014   
12/1/2014 35.61 48.93 

12/2/2014 36.63 46.29 

12/3/2014 34.13 50.75 

12/4/2014 34.01 45.11 

12/5/2014 34.15 47.94 

12/6/2014 32.03 51.09 

12/7/2014 33.59 55.07 

12/8/2014 32.81 49.06 

12/9/2014 37.49 40.93 

12/10/2014 30.76 61.87 

12/11/2014 37.99 51.92 

12/12/2014 34.6 50.5 

12/13/2014 35.36 48.76 

12/14/2014 26.35 66.79 

12/15/2014 32.03 64.44 

12/16/2014 29.87 51.36 

12/17/2014 31.13 62.82 

12/18/2014 31.65 63.91 

12/19/2014   
12/20/2014 33.73 65.3 

12/21/2014 33.83 58.14 

12/22/2014 37.22 54.9 

12/23/2014 29.9 62.33 

12/24/2014 35.52 40.5 

12/25/2014 34.5 49.2 

12/26/2014   
12/27/2014 32.54 45.94 

12/28/2014 32.2 46.92 

12/29/2014 32.77 46.9 

12/30/2014 32.75 39.37 
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12/31/2014 31.64 50.47 

1/1/2015 31.1 55.35 

1/2/2015 31.69 53.24 

1/3/2015 30.5 49.96 

1/4/2015 31.56 46.46 

1/5/2015 40.17 40.39 

1/6/2015   
1/7/2015   
1/8/2015 29.57 57.39 

1/9/2015 35.87 45.6 

1/10/2015 31.55 55.6 

1/11/2015 32.36 56.77 

1/12/2015   
1/13/2015 34.25 55.24 

1/14/2015 34.42 51.92 

1/15/2015 30.77 56.69 

1/16/2015 34.79 52.12 

1/17/2015 36.55 46.31 

1/18/2015 37.49 40.94 

1/19/2015 36.29 47.2 

1/20/2015 35.57 46.93 

1/21/2015 37.58 45.29 

1/22/2015 37.87 44.49 

1/23/2015 36.8 44.46 

1/24/2015 37.96 45.1 

1/25/2015 35.72 55.34 

1/26/2015 35.02 56.22 

1/27/2015 42.16 39.61 

1/28/2015   
1/29/2015 32.85 54.46 

1/30/2015 36.03 43.86 

1/31/2015 34.91 48.18 

2/1/2015 37.14 38.02 

2/2/2015 35.36 43.74 

2/3/2015 32.01 53.15 

2/4/2015   
2/5/2015 38.07 44.67 

2/6/2015 34.61 58.75 

2/7/2015 31.4 40.94 

2/8/2015 31.56 61.45 

2/9/2015 31.76 56.2 

2/10/2015 35.16 44.33 

2/11/2015 39.81 41.34 
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2/12/2015   
2/13/2015 31.55 59.63 
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Appendix C: Metal pollutants concentrations of Class B biosolids from 2013 to 2015  

 

Date 
As Cd Cr Cu Pb Hg Mo Ni K Se Zn 

mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 

2013 

January 1 -15 1.5 1.80 33 99 19 0.15 5.5 14 1750.00 4.1 209 
January 16 -31 1.7 0.61 35 107 16 0.23 5.0 11 1770.00 2.4 257 
February 1-15 2.10 0.77 30 125 21 0.32 4.9 10.8 2150.00 2.50 284 
February 16-29 1.70 0.77 23 128 14 0.14 4.5 8.3 1730.00 2.80 314 
March  1-15 1.9 0.71 27 117 17 0.31 4.9 11 1490.000 2.5 246 
March 16 -31 1.7 0.66 25 112 12 0.30 4.4 10 2240.000 2.2 223 
April  4 -15 1.8 0.77 26 120 13 0.40 4.4 8.7 1920 2.6 253 
April 16-30 1.5 0.68 29 107 14 0.23 4.9 9.3 1710 2.5 242 
May  1-15 1.8 0.80 40 146 19 0.39 4.8 11 1770 2.60 340 
May 16 -31 1.6 0.75 47 125 15 0.38 5.5 9 1790 2.50 294 
June  1-15 2.6 0.67 48 130 25 0.36 6.4 15 1750.000 2.5 286 
June 16-30 2.5 0.82 38 143 28 0.25 6.6 9.3 1640.000 2.3 288 
July  1-15 2.2 0.72 36 135 21 0.29 9.1 10.9 1610 2.6 306 
July 16 -31 1.6 0.63 35 119 15 0.18 6.7 8.9 1670 2.4 276 
August  1-15 1.90 0.80 39 168 19 0.30 11.7 13.9 1620.00 2.4 377 
August 16 -31 1.70 0.69 48 145 16 0.60 11 16 1900.00 2.4 315 
September  1-15 1.7 0.73 45 156 17 0.24 12.2 11.6 1390.00 2.4 322 
September 16-30 2.2 0.52 60 152 19 0.28 13.4 15.0 1330.00 2.5 354 
October  1-15 2.3 0.74 47 125 19 0.33 10.5 15.7 1800.000 2.3 289 
October 16 -31 2.1 0.75 35 127 15 0.36 10.0 9.6 503.000 2.4 285 
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November  1-15 1.6 0.73 33 131 17 0.61 7.6 9.5 1370.00 2.4 288 
November 16-30 1.8 0.76 41 149 18 0.24 7.0 13 1340.00 2.4 329 
December  1-15 2.4 0.72 38 114 17 0.20 8.40 12 1590.000 2.4 224 
December 16 -31 1.9 0.67 42 111 18 0.23 6.9 12 1260.000 1.9 250 

2014 

January 1 -15 2.2 1.0 51 125 22 0.17 8.3 16 1460.00 2.2 328 
January 16 -31 1.8 0.77 44 125 19 0.25 5.5 12 1320.00 1.90 277 
February 1-15 2.0 0.77 49 130 17 0.64 7.2 15.4 1730.00 2.10 247 
February 16-28 2.30 0.82 42 127 18 0.29 5.7 12.5 1180.00 1.80 278 
March  1-15 1.7 0.76 36 112 14 0.24 5.2 11 1210.000 2.4 264 
March 16 -31 2.3 0.86 46 140 17 0.29 7.1 16 1260.000 2.5 305 
April  4 -15 2.8 0.96 63 163 20 0.32 7.2 22.6 1060.000 2.6 357 
April 16-30 2.4 0.84 47 138 25 0.27 6.1 17.1 1410.000 2.5 304 
May  1-15 2.9 0.85 55 153 25 0.34 8.5 25 1440.000 2.5 306 
May 16 -31 2.3 0.75 31 126 22 0.32 6.2 14 1220.000 2.6 291 
June  1-15 2.4 0.91 41 141 24 0.36 7.1 17 1280.000 2.5 332 
June 16-30 2.1 0.70 41 132 16 0.25 8.7 14.7 1230.000 2.4 300 
July  1-15 2.3 0.76 38 133 22 0.27 8.4 13 1460.00 2.4 296 
July 16 -31 1.7 0.69 28 121 14 0.29 8.7 10 1050.00 2.4 297 
August  1-15 2.1 0.81 46 136 18 0.26 11.3 18 1490 2.5 326 
August 16 -31 1.9 0.68 37 135 15 0.26 10.1 14 1430 2.5 308 
September  1-15 1.6 0.65 36 136 19 0.28 10.2 12 1150 2.6 309 
September 16-30 3.2 0.61 39 135 13 0.32 11.1 14 1340 5.3 293 
October  1-15 1.5 0.69 30 131 15 0.29 10.5 10 928 2.5 273 
October 16 -31 2.6 0.86 43 139 20 0.32 10.6 12 1190 4.3 290 
November  1-15 2.6 0.61 42 105 13 0.20 13 9 1330 4.3 239 
November 16-30 2.3 0.76 48 133 21 0.24 8.6 13 1310 2.5 273 
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December  1-15 2.9 0.98 38 111 16 0.18 5.6 8.8 1260 4.9 238 
December 16 -31 2.2 0.67 42 113 16 0.22 5.7 11 1460 2.3 237 

2015 
January 1 -15 2.3 0.61 41 108 14 0.27 5.0 11 1590 2.2 254 
January 16 -31 1.8 0.53 28 92 12 0.18 4.6 8.0 1160 2.5 219 
February 1-15 1.6 0.60 21 99 9.4 0.16 4.7 8.2 1220 2.2 207 

  Average 2.1 0.8 39.2 128.0 17.6 0.3 7.6 12.5 1456.1 2.6 284.3 
  Std. Dev. 0.4 0.2 8.9 16.6 3.8 0.1 2.5 3.5 310.2 0.7 38.9 

 
 

Appendix D: Metal pollutants concentrations in Class A biosolids by THP-AD 
 

Date Cu (mg/kg) K (mg/kg) Zn (mg/kg) As (mg/kg) Cd (mg/kg) Cr (mg/kg) Hg (mg/kg) Mo (mg/kg) Ni (mg/kg) Pb (mg/kg) Se (mg/kg) 

11/27/2014 445.58 423.98 1000.58 922.34 1050.97 989.29 9.21 8.63 3.28 3.06 87.82 84.80 0.05 0.50 16.20 15.55 16.27 15.47 80.62 75.13 3.66 3.65 

11/28/2014 316.16 279.48 666.49 578.48 710.82 607.03 3.70 2.36 2.73 2.51 62.51 55.44 0.12 -0.15 11.63 10.37 21.00 18.86 64.25 56.80 2.99 2.54 

11/29/2014 477.92 464.21 1007.71 973.57 963.25 938.29 4.78 6.05 4.02 3.80 90.40 87.48 -0.05 0.37 16.67 15.80 29.34 28.29 91.14 89.60 3.12 2.71 

11/30/2014 509.64 497.76 1057.48 1031.32 1020.76 981.19 6.61 5.60 4.18 3.97 96.20 93.82 0.17 0.26 16.96 16.62 30.84 30.08 100.61 95.97 3.10 3.30 

12/1/2014 502.18 495.80 973.84 937.59 922.97 975.10 11.34 7.50 3.68 4.04 93.75 92.26 3.62 3.46 16.35 16.50 23.47 23.18 52.62 53.26 8.65 7.07 

12/2/2014 393.72 402.12 706.15 708.40 753.13 770.90 6.88 5.08 3.18 3.19 76.80 77.78 2.24 3.00 13.42 13.75 19.16 19.45 43.70 43.68 5.30 6.35 

12/3/2014 496.27 482.17 904.32 843.26 904.32 879.30 3.63 3.43 3.72 3.75 96.31 93.70 1.84 4.40 17.20 17.01 26.69 25.59 88.96 82.16 23.53 23.86 

12/4/2014 485.10 484.45 882.00 872.01 911.90 909.27 6.44 4.75 3.89 3.78 99.41 99.13 2.98 2.00 14.87 14.68 24.67 24.30 49.03 47.25 0.96 2.57 

12/5/2014 487.54 465.57 879.05 836.99 908.60 881.83 1.99 4.60 4.07 3.98 97.51 96.40 1.69 1.53 16.33 16.37 28.81 29.22 73.28 69.95 11.38 10.09 

12/6/2014 486.77 459.02 911.36 845.57 911.36 859.78 8.27 3.62 4.03 3.69 99.61 94.50 3.29 1.01 15.26 15.06 28.61 27.71 81.25 80.29 13.92 8.53 

12/7/2014 420.52 260.41 790.34 494.86 820.16 536.40 0.60 5.14 3.65 2.27 88.73 58.31 1.45 1.33 15.81 9.50 26.47 17.88 63.23 39.91 3.69 5.78 

12/8/2014 498.77 501.78 913.56 925.10 920.92 925.10 4.07 2.78 4.19 4.24 104.62 101.39 2.84 2.93 16.50 16.50 30.43 30.57 79.57 76.97 11.86 9.40 

12/9/2014 466.49 485.86 854.87 885.42 869.61 907.74 5.31 8.26 3.95 3.83 98.75 114.58 2.56 2.18 16.21 17.71 28.67 42.41 81.07 82.59 7.02 11.24 
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12/10/2014 437.42 460.21 792.13 796.24 792.13 840.07 6.15 4.68 3.97 4.20 87.63 91.31 1.96 1.53 12.55 13.51 20.68 21.40 87.63 92.77 11.15 12.05 

12/11/2014 476.79 469.34 851.06 829.42 836.56 819.48 6.72 5.02 4.26 4.17 92.36 91.38 1.61 2.41 13.44 13.31 20.89 21.01 84.14 80.46 10.49 10.78 

12/12/2014 471.83 461.98 875.04 853.12 810.41 803.23 5.72 7.28 4.14 4.05 91.48 90.30 1.81 1.29 13.27 13.02 20.68 20.26 82.04 81.32 11.98 12.32 

12/13/2014 341.09 492.49 660.07 899.09 619.19 838.70 6.51 9.53 3.11 4.23 70.36 95.28 2.10 1.55 9.92 13.29 17.16 22.07 66.68 89.91 11.26 13.49 

12/14/2014 464.25 456.31 1166.83 1007.44 774.58 765.46 4.13 1.30 5.06 4.93 95.83 93.34 1.58 8.59 13.51 13.19 17.08 16.59 81.43 80.99 8.79 7.85 

12/15/2014 478.25 428.66 1019.87 870.24 787.18 721.06 4.30 4.39 5.10 4.64 97.04 92.49 1.63 0.67 13.07 12.18 17.48 18.60 97.04 86.53 5.74 5.92 

12/16/2014 476.68 493.87 1014.11 1008.72 783.85 798.99 4.95 3.97 5.19 5.19 98.47 101.87 0.55 1.75 13.57 14.03 17.05 17.93 91.61 90.39 4.70 6.64 

12/17/2014 503.72 505.25 1057.32 1040.22 807.95 807.41 3.75 3.64 5.39 5.45 115.21 102.54 1.13 1.59 15.61 14.12 33.17 17.93 89.27 89.66 8.58 9.51 

12/18/2014 501.26 466.29 1047.18 940.55 808.96 776.33 4.09 3.89 5.26 4.96 102.24 96.54 1.06 1.58 13.85 13.39 19.50 18.66 99.26 94.55 4.76 7.86 

12/19/2014 489.87 494.92 1305.82 1508.20 826.28 819.99 -2.29 3.51 5.16 5.17 106.97 107.62 2.27 1.36 15.20 15.23 29.07 29.43 90.01 87.86 14.68 8.42 

12/20/2014 447.68 566.29 1150.56 1395.69 759.66 941.59 4.57 2.41 4.79 6.00 95.14 115.53 2.12 1.82 14.38 16.69 24.26 28.98 95.88 117.53 9.07 8.35 

12/21/2014 568.14 523.95 1215.34 968.06 913.97 878.24 5.83 2.38 5.98 5.59 115.61 108.28 1.06 0.45 16.11 15.22 27.22 26.45 124.50 115.27 8.30 7.29 

12/22/2014 254.86 314.79 557.51 628.59 478.36 579.09 4.60 4.92 2.59 3.12 55.75 67.81 1.00 0.95 8.41 10.05 12.59 14.95 56.75 70.28 9.71 11.73 

12/23/2014 546.70 397.79 1035.09 755.94 940.32 725.12 10.35 8.29 5.26 4.02 115.17 87.34 2.22 0.91 17.13 13.06 25.29 19.38 118.09 88.07 20.85 11.82 

12/24/2014 530.62 474.29 971.76 809.08 908.84 850.93 6.86 7.81 5.15 4.81 112.56 104.62 0.85 0.53 16.92 15.83 24.54 23.44 114.65 109.50 18.46 15.07 

12/25/2014 330.31 334.79 579.49 550.93 618.12 640.98 7.15 6.09 3.29 2.86 72.92 61.45 1.32 0.38 10.87 9.11 16.18 13.77 75.33 63.57 12.12 9.06 

12/26/2014 706.80 726.17 1438.48 1403.60 1000.47 1023.46 7.52 7.85 4.03 4.08 129.41 132.56 1.59 1.36 18.91 19.49 28.57 28.66 137.38 140.85 8.11 7.94 

12/27/2014 663.20 674.74 1350.78 1319.94 916.78 930.85 7.07 7.93 3.68 3.73 119.96 120.17 2.15 2.89 17.51 17.43 26.28 26.40 115.08 114.76 9.22 8.22 

12/28/2014 444.63 436.67 1071.74 1037.18 847.25 826.74 6.79 5.91 4.74 4.50 97.04 94.70 0.80 1.06 14.27 13.83 25.13 24.88 88.35 87.18 21.07 19.32 

12/29/2014 445.42 406.73 1078.93 964.87 816.49 749.63 7.95 6.75 4.74 4.39 93.31 85.35 0.77 1.14 13.56 12.77 25.22 23.53 88.21 78.67 20.56 17.96 

12/30/2014 528.55 521.95 1226.58 1204.50 958.97 927.10 8.62 8.98 5.35 5.39 109.28 111.69 1.36 1.00 15.91 16.21 29.59 31.10 99.61 97.09 22.60 22.48 

12/31/2014 559.12 569.86 1351.88 1366.79 977.17 983.51 9.04 8.82 5.79 5.86 113.15 114.26 0.90 1.16 16.46 16.27 29.83 29.58 98.45 100.52 24.25 23.94 

1/1/2015 423.26 430.79 1059.99 1064.04 800.55 812.81 7.71 7.54 4.66 4.63 92.66 93.10 0.10 1.03 13.56 13.00 24.76 24.38 85.99 90.89 19.79 20.10 

1/2/2015 439.07 480.10 1032.69 967.69 850.04 840.17 12.15 12.68 5.02 5.01 96.95 96.02 0.27 0.30 14.19 14.10 29.08 27.61 96.24 89.27 17.00 13.65 

1/3/2015 558.37 567.83 1202.30 1269.95 981.02 985.31 14.09 14.82 6.20 6.23 137.20 152.54 0.60 0.29 19.47 21.24 50.89 53.72 112.85 113.86 13.57 18.68 
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1/4/2015 489.70 378.46 992.83 678.10 843.54 743.53 11.94 11.00 5.02 4.42 100.03 86.25 0.78 0.42 14.48 12.19 27.92 24.76 97.79 84.02 14.71 13.23 

1/6/2015 435.63 179.73 1090.94 467.58 816.35 657.01 10.54 8.35 4.99 4.55 92.02 40.42 0.77 1.08 13.73 10.44 24.94 15.36 94.25 50.86 8.02 10.74 

1/7/2015 96.65 99.43 236.42 243.54 388.08 399.89 5.06 5.01 2.71 2.71 22.16 22.70 0.22 0.17 6.10 6.23 9.74 9.87 29.59 30.91 6.90 7.18 

1/8/2015 109.43 170.51 269.70 415.88 438.44 637.54 5.26 8.82 2.89 4.34 26.12 39.66 0.29 0.07 7.00 10.38 10.45 15.05 34.03 50.93 6.16 10.45 

1/9/2015 539.16 533.44 1277.35 1281.74 1061.99 1059.47 13.44 13.41 6.40 6.33 119.57 120.76 -0.18 0.16 17.30 17.71 37.95 38.38 103.97 104.47 10.99 11.48 

1/11/2015 321.53 306.68 724.88 684.65 636.60 610.40 7.54 9.13 3.85 3.64 80.38 69.28 0.25 0.92 10.41 10.10 27.92 23.99 60.79 58.14 9.47 8.76 

1/13/2015 199.50 174.75 787.50 802.50 273.75 228.75 -12.75 20.70 5.35 3.87 120.75 84.75 -14.70 -19.05 14.10 9.38 131.25 35.48 67.95 62.85 -31.65 12.00 

1/15/2015 151.50 154.50 600.75 638.25 152.25 125.25 35.10 -51.08 1.70 2.00 54.23 43.88 -0.58 6.32 8.70 8.33     43.88 44.48 59.63 -35.55 

1/16/2015 154.50 125.25 564.00 810.00 100.50 106.50 26.55 32.93 1.38 2.75 33.00 39.38 -4.03 11.78 7.28 10.20 22.88 23.55 40.05 53.70 -41.78 29.93 

1/19/2015 290.00       677.00   3.30   1.60   79.20   0.41   11.00   17.20   35.00   4.20   

1/23/2015 320.00       781.00   3.70   1.90   85.70   0.50   11.00   19.00   39.00   4.20   

1/26/2015 303.00       647.00   3.80   1.80   71.00   0.67   12.00   17.60   37.00   4.70   

1/30/2015 313.00       736.00   3.70   1.80   85.20   0.64   14.00   20.10   40.00   4.70   

2/2/2015 
287.00       696.00           76.00   0.53   12.00   19.00   34.00       

2/5/2015 375.00       893.00   4.90   2.10   96.00   0.53   16.00   24.00   44.00       

2/9/2015 
339.00       825.00       2.00   79.00   0.75   13.00   20.00   36.00       

2/12/2015 275.00       589.00       1.70   63.00   0.66   12.00   17.00   36.00       

2/15/2015 325.00       726.00   4.20   2.10   80.00   0.64   15.00   24.00   39.00   5.70   

2/17/2015 285.00       611.00       1.90   59.00   0.80   13.00   16.00   39.00       

2/19/2015 331.00       674.00       2.00   60.00   0.58   12.00   18.00   31.00       

2/23/2015 
345.00       759.00       2.20   66.00   0.71   15.00   19.00   36.00       

2/26/2015 295.00       674.00       1.80   52.00   1.00   11.00   16.00   35.00       

2/28/2015 311.00       727.00   3.60   1.90   71.00   0.63   12.00   21.00   38.00   4.40   

3/2/2015 302.00   685.00   660.00   4.90   1.70   48.00   0.64   10.00   19.00   31.00   8.10   

3/9/2015 317.00   864.00   765.00   4.40   2.00   49.00   0.80   12.00   19.00   33.00   7.40   
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3/16/2015 282.00   701.00   593.00   4.80   1.60   45.00   0.63   10.00   17.00   36.00   8.00   

3/24/2015 319.00   838.00   588.00   4.50   1.80   45.00   0.67   11.00   18.00   32.00   7.60   

3/31/2015 300.00   812.00   704.00   4.60   1.80   51.00   0.61   13.00   19.00   36.00   7.70   

4/7/2015 302.00   685.00   660.00   4.90   1.70   48.00   0.60   10.00   19.00   31.00   8.10   

4/14/2015 331.00   754.00   811.00   5.00   1.70   61.00   0.50   11.00   20.00   38.00   8.30   

4/21/2015 32.00   717.00   705.00   4.80   1.80   63.00   0.70   13.00   20.00   39.00   8.00   

4/28/2015 443.00   728.00   1090.00   5.50   2.30   89.00   0.70   15.00   27.00   57.00   7.40   

5/5/2015 316.00   620.00   670.00   4.40   2.00   71.00   0.61   15.00   21.00   49.00   7.20   

5/12/2015 334.00   562.00   770.00   4.00   1.80   71.00   0.76   13.00   19.00   40.00   6.70   

5/19/2015 323.00   551.00   757.00   4.00   1.80   64.00   0.36   12.00   20.00   39.00   6.70   

5/26/2015 360.00   719.00   849.00   4.60   2.10   73.00   0.76   16.00   22.00   48.00   7.60   

6/2/2015 390.00   722.00   804.00   4.90   2.30   79.00   0.69   17.00   23.00   54.00   6.90   

6/9/2015 337.00   804.00   783.00   4.70   1.90   71.00   0.69   14.00   21.00   49.00   7.80   

6/16/2015 371.00   677.00   799.00   4.70   2.00   75.00   0.62   16.00   21.00   56.00   7.90   

6/23/2015 403.00   669.00   875.00   5.30   2.40   85.00   0.75   18.00   24.00   68.00   8.30   

6/30/2015 347.00   750.00   716.00   5.30   2.10   83.00   0.66   19.00   23.00   59.00   7.70   

7/7/2015 353.00   774.00   772.00   5.80   2.00   92.00   0.99   16.00   24.00   62.00   7.40   

7/14/2015 357.00   788.00   792.00   6.20   2.20   99.00   0.73   17.00   23.00   91.00   7.40   

7/21/2015 337.00   627.00   731.00   5.00   1.80   97.00   0.76   16.00   24.00   51.00   7.60   

7/28/2015 467.00   679.00   955.00   6.00   2.40   125.00   0.67   20.00   24.00   56.00   7.70   

8/4/2015 373.00   685.00   921.00   4.90   1.80   114.00   0.55   18.00   21.00   56.00   7.00   

8/11/2015 398.00   639.00   831.00   4.50   1.90   112.00   1.00   17.00   20.00   61.00   7.50   

8/18/2015 384.00   652.00   812.00   4.60   1.80   108.00   0.73   19.00   21.00   54.00   7.60   

8/25/2015 394.00   650.00   839.00   4.40   1.90   110.00   0.43   20.00   20.00   49.00   7.10   

9/1/2015 446.00   698.00   923.00   5.30   2.30   131.00   0.64   28.00   26.00   63.00   7.90   
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9/8/2015 368.00   600.00   763.00   5.00   1.80   107.00   0.77   22.00   20.00   53.00   8.30   

9/15/2015 425.00   638.00   906.00   4.40   2.10   124.00   0.78   26.00   22.00   60.00   6.70   

9/22/2015 275.00   363.00   601.00   5.10   1.70   76.00   0.84   17.00   13.00   52.00   8.40   

9/29/2015 357.00   628.00   855.00   4.20   2.10   108.00   1.00   23.00   18.00   50.00   7.00   

10/6/2015 413.00   711.00   939.00   4.80   2.30   119.00   0.58   27.00   23.00   62.00   8.00   

10/13/2015 410.00   660.00   858.00   5.00   2.10   113.00   0.78   25.00   23.00   53.00   7.10   

10/20/2015 388.00   584.00   828.00   4.30   1.90   107.00   0.72   23.00   21.00   53.00   7.10   

10/27/2015 416.00   720.00   923.00   4.30   2.10   112.00   0.62   23.00   23.00   51.00   7.90   

11/3/2015 401.00   689.00   850.00   4.90   2.00   103.00   0.80   22.00   21.00   49.00   8.00   

11/10/2015 361.00   605.00   748.00   4.70   1.80   93.00   0.87   19.00   19.00   47.00   7.80   

11/17/2015 375.00   711.00   837.00   5.00   2.10   96.00   0.51   20.00   18.00   47.00   8.40   

11/24/2015 436.00   636.00   926.00   4.50   2.10   104.00   0.67   21.00   21.00   56.00   7.50   

12/1/2015 348.00   614.00   798.00   4.50   1.80   89.00   0.68   18.00   20.00   46.00   7.50   

12/8/2015 333.00   811.00   623.00   4.60   1.50   69.00   0.78   15.00   18.00   38.00   7.70   

12/15/2015 372.00   887.00   633.00   4.80   2.00   69.00   0.63   20.00   20.00   36.00   8.00   

12/22/2015 407.00   975.00   972.00   4.70   2.10   79.00   0.67   17.00   22.00   34.00   7.90   

12/29/2015 398.00   665.00   898.00   4.00   1.70   67.00   0.63   16.00   23.00   34.00   6.70   
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Appendix E: TKN, TP, and Ammonia in Class A biosolids by THP-AD 
 

Sample 
Date TKN (mg/kg) TP(mg/kg) Ammonia 

(mg/kg) 
11/29/2014 49564.07 49599.7 31264.6 30199.3 2910.8 
11/30/2014 71059.48 60988.5 46405.5 36381.7 5670.4 
12/1/2014 39541.39 50607.2 29117.7 34050.3 6311.0 
12/2/2014 54858.77 41007 38614.1 30701.5 6429.4 
12/3/2014 64826.85 68465.7 40781 40142 5827.9 
12/4/2014 54428.55 66802.1 32868.5 34214.7 3661.5 
12/5/2014 77385.81 62351 35851.1 34020.9 6485.9 
12/6/2014 60809.15 65064.6 37931.6 34531.7 5655.0 
12/7/2014 67676.88 96762.2 28380.5 39497 6268.1 
12/8/2014 58647.91 55750.8 34967.4 33231.8 5208.7 
12/9/2014 62513.23 67092.6 39114.3 36038.1 5181.8 
12/10/2014 61098.18 61125.2 36000.7 34233.1 6305.7 
12/11/2014 59353.6 71189.5 38190.1 39262.5 5016.5 
12/12/2014 60870.4 78995.8 35397.6 41406.4 5866.6 
12/13/2014 49487.29 60895.3 29861.8 33246.3 6073.2 
12/14/2014 64039 61486.4 31181.4 35127.2 6489.9 
12/15/2014 43224.88 35458.6 32588.2 22364 5213.4 
12/16/2014 36832.11 36572.4 29170.8 26324.7 6702.1 
12/17/2014 59690.02 66358.3 34611.4 37961.7 8631.1 
12/18/2014 71239.28 80126.9 37316.1 42321.4 7057.9 
12/19/2014 26605.75 32396.5 19782.4 22967.5 7625.6 
12/20/2014 25764.6 28686 27494.9 22811.9 5829.8 
12/21/2014 61001.7 70095 36156.9 38955 4444.9 
12/22/2014 40870.52 39961.6 20511.5 20964.8 3982.2 
12/23/2014 73777.7 64827.3 31817.1 34545.9 7131.7 
12/24/2014 71733.32 64353.4 36821.7  5545.6 
12/25/2014 59652.04 64101.3 34811.6 32728.4 6446.2 
12/26/2014 53263.29 51659.2 24849.6 31917.2 3767.1 
12/27/2014 45973.69 30040 30439.2 24704.6 6739.9 
12/28/2014 57640.13 53286 32736.8 33849.2 6790.6 
12/29/2014 66805.24 65577 35357.8 36236.7 6413.7 
12/30/2014 61286.52 59645.8 40297.2 35652 7344.3 
12/31/2014 59687.6 60379.8 30807.8 36034.8 6970.3 
1/1/2015 40197.46 42786.4 22670.6 23798.5 7393.6 
1/2/2015 29859.32 7542.98 35016.8 7604.93 6154.1 
1/3/2015 58706.57 49142.9 39362.3 33758.9 6957.7 
1/4/2015 57340.84 54019.9 31434.3 30099.2 5451.6 
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1/5/2015      
1/6/2015 43287.66 49266.9 28242.5 29214.9 7087.5 
1/7/2015 56357.34 66262.7 31918.2 17338 5886.0 
1/8/2015 51659.24 26452 33327.6 34700.5 5009.3 
1/9/2015 45092.42 47491.5 24988.1 18995.3 6335.3 
1/10/2015     8151.4 
1/11/2015 53274.63 58154.5 31450.5 36278  
1/12/2015      
1/13/2015   22481.3 43519.5 7151.1 
1/14/2015 47057.37 81958.9    
1/15/2015     6876.8 
1/16/2015     7903.6 
1/17/2015      
1/18/2015      
1/19/2015      
1/20/2015      
1/21/2015      
1/22/2015      
1/23/2015 35489.15 33082.3 18982.3 16647.5  
3/2/2015 39000    7690.0 
3/9/2015 67300  34500  12000.0 
3/16/2015 55600    8340.0 
3/24/2015 26500  39200  8070.0 
3/31/2015 58000  29600  9730.0 
4/7/2015 68000  31000  7430.0 
4/14/2015 30900  32800   
4/21/2015 29500  32200  8610.0 
4/28/2015 26900  44900  8530.0 
5/5/2015 36000  34300  8030.0 
5/12/2015   24500  7980.0 
5/19/2015 51000  37400  8090.0 
5/26/2015 53700  50600  7450.0 
6/2/2015 42900  31300  8170.0 
6/9/2015 59100  33100  7130.0 
6/16/2015 61800  36700  8150.0 
6/23/2015 48700  31800  8530.0 
6/30/2015 43700  29600  8430.0 
7/7/2015 43200  27600  7720.0 
7/14/2015 51700  27300  8050.0 
7/21/2015 49200  34500  6930.0 
7/28/2015 47700  33000  7730.0 
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8/4/2015 77400  36200  7540.0 
8/11/2015 46700  36400  7550.0 
8/18/2015 36100  30000  5940.0 
8/25/2015 58700  30800  4530.0 
9/1/2015 49400  30900  5150.0 
9/8/2015 47500  33400  10400.0 
9/15/2015 78100  41600  7790.0 
9/22/2015 54200  40000  6740.0 
9/29/2015 50800  38400  7870.0 
10/6/2015 50800  28400  6630.0 
10/13/2015 55300  27100  6300.0 
10/20/2015 52800  36300  7960.0 
10/27/2015 45800  33600  7690.0 
11/3/2015 66900  42100  8490.0 
11/10/2015 53600  31600  7510.0 
11/17/2015 64600  57400  8160.0 
11/24/2015 90200  32700  6840.0 
12/1/2015 48700  32500  8920.0 
12/8/2015 51700  34600  8550.0 
12/15/2015 49000  33200  5280.0 
12/22/2015 66000  33800  10400.0 
12/29/2015 52200  33000  9100.0 
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Appendix F: PBDEs in Class A biosolids 
 

  
unit: ug/kg d.w. 

  Sample date Recovery PCB209 (surrogate) BDE28 BDE47 BDE100 BDE99 BDE154 BDE153 BDE183 BDE209 Weight (g) TS % 

11/26/2014 

90.40% 102.53 0.00 249.57 0.00 248.83 23.39 38.96 8.05 180.30 1.5085 23.38% 

100.73% 114.37 0.00 302.90 59.84 285.04 25.55 39.80 8.18 339.52 1.5067 23.38% 

100.13% 110.66 7.90 271.83 56.56 244.94 24.23 30.70 6.60 373.84 1.5480 23.38% 

97.33% 109.49 6.47 252.84 52.26 238.78 24.92 25.59 6.07 379.34 1.5208 23.38% 

12/3/2014 

107.15% 102.05 0.00 216.66 41.07 204.69 13.64 23.74 4.57 136.12 1.5125 27.83% 

103.15% 99.19 0.00 148.98 47.24 173.50 17.21 20.00 7.19 277.85 1.4947 27.83% 

109.13% 104.49 0.00 198.74 56.02 207.00 21.14 24.25 7.56 272.26 1.5010 27.83% 

102.78% 98.19 0.00 179.45 46.72 191.99 18.53 22.74 9.53 292.28 1.5044 27.83% 

12/10/2014 
108.58% 109.96 0.00 202.27 36.41 196.07 15.44 19.52 4.35 124.49 1.5012 26.31% 

89.40% 90.31 0.00 204.56 36.64 204.39 15.91 20.15 5.10 127.66 1.5050 26.31% 

12/17/2014 

104.88% 111.25 0.00 174.33 51.02 194.17 18.40 22.04 7.66 279.08 1.4964 25.20% 

107.75% 113.95 0.00 158.57 42.19 172.79 17.24 20.62 7.72 282.46 1.5010 25.20% 

105.58% 111.53 0.00 156.32 43.76 175.52 18.46 20.41 7.90 290.13 1.5026 25.20% 

12/24/2014 
99.75% 98.02 0.00 193.04 33.14 185.94 14.30 18.99 4.37 86.08 1.4999 27.14% 

104.60% 102.35 0.00 181.21 42.73 191.31 17.20 21.21 6.92 267.48 1.5063 27.14% 

1/7/2015 

98.30% 95.11 0.00 172.93 51.38 192.74 18.58 21.67 6.36 237.35 1.5000 27.56% 

100.30% 96.54 0.00 178.96 46.59 195.46 18.24 22.23 6.74 263.44 1.5079 27.56% 

107.23% 104.03 0.00 220.37 51.83 227.91 20.91 23.41 6.38 251.58 1.4959 27.56% 

1/15/2015 
105.50% 93.69 0.00 173.41 38.72 186.20 16.69 21.69 5.33 214.41 1.5075 29.88% 

108.53% 97.13 0.00 145.19 36.38 152.82 16.11 18.64 5.06 169.66 1.4958 29.88% 

1/23/2015 

106.93% 95.71 0.00 166.72 37.44 180.70 16.36 20.81 5.06 190.48 1.5046 29.70% 

101.15% 90.33 0.00 168.61 41.35 184.39 16.83 19.87 6.63 238.53 1.5081 29.70% 

106.20% 94.81 0.00 168.13 41.25 181.63 16.96 20.38 6.85 235.89 1.5086 29.70% 
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104.38% 93.63 0.00 143.14 36.44 164.72 15.94 19.11 6.57 263.73 1.5014 29.70% 

1/28/2015 
103.65% 93.15 0.00 134.31 30.15 145.22 13.35 17.41 4.99 156.32 1.5073 29.53% 

105.45% 94.76 0.00 159.34 39.76 175.32 16.24 20.02 7.03 236.18 1.5074 29.53% 

2/6/2015 
99.55% 90.56 0.00 198.18 55.17 223.27 19.92 23.27 8.28 212.69 1.5058 29.20% 

99.95% 91.27 0.00 207.21 55.86 228.78 21.18 23.56 8.36 189.47 1.5002 29.20% 

2/11/2015 

102.75% 95.24 0.00 186.49 37.89 202.64 18.28 23.08 9.45 229.89 1.5084 28.61% 

98.85% 92.04 0.00 198.27 53.79 206.51 20.02 22.49 8.59 178.33 1.5016 28.61% 

101.98% 94.84 0.00 207.28 53.83 217.37 20.44 23.16 8.70 211.23 1.5033 28.61% 

2/15/2015 
107.33% 92.78 0.00 184.22 39.20 195.28 18.22 22.91 8.56 211.43 1.5082 30.68% 

103.53% 89.86 0.00 159.34 35.85 169.95 15.21 20.18 8.55 209.22 1.5021 30.68% 

3/9/2015 

106.70% 90.93 6.54 149.63 34.13 163.97 0.00 18.92 8.76 221.88 1.5082 31.12% 

101.48% 87.03 8.75 174.41 44.36 187.45 16.55 20.43 9.03 228.00 1.4986 31.12% 

104.70% 89.32 7.06 161.73 39.99 176.54 16.38 19.84 8.89 253.55 1.5066 31.12% 

4/1/2015 

97.85% 84.24 8.93 195.05 48.60 202.60 18.73 21.39 8.31 173.65 1.506 30.85% 

106.53% 91.92 8.54 199.46 49.21 220.45 19.83 22.91 8.15 181.43 1.5026 30.85% 

107.05% 92.07 7.80 203.96 49.17 217.20 19.16 22.92 8.19 285.77 1.5076 30.85% 

5/7/2015 
108.35% 91.80 8.43 189.81 45.37 201.76 17.81 21.97 10.36 243.23 1.5083 31.30% 

107.15% 91.37 8.06 166.94 43.42 183.63 18.08 21.02 9.15 268.26 1.4987 31.30% 

6/17/2015 

107.88% 90.09 8.08 213.88 51.19 232.94 21.57 24.57 9.31 326.75 1.5019 31.89% 

105.75% 88.42 8.01 220.44 51.17 237.05 20.53 24.20 9.72 356.26 1.5002 31.89% 

107.68% 87.37 7.22 235.99 44.18 229.80 21.46 27.26 5.58 293.88 1.5459 31.89% 

97.53% 79.34 5.47 198.16 38.48 206.44 19.40 23.51 4.31 267.27 1.5418 31.89% 

8/28/2015 

99.78% 82.87 0.00 172.90 47.26 194.16 18.58 22.34 8.35 241.56 1.5041 32.02% 

105.83% 87.76 0.00 179.77 40.74 201.64 18.99 25.40 8.54 228.94 1.5064 32.02% 

108.23% 89.77 0.00 193.32 43.86 214.82 19.72 23.06 8.81 234.69 1.5061 32.02% 

9/18/2015 
102.05% 84.68 0.00 179.96 41.34 191.61 17.96 21.20 8.40 232.94 1.5041 32.05% 

92.08% 76.19 0.00 149.30 36.58 158.92 14.83 17.36 7.12 168.83 1.5082 32.05% 
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107.10% 88.69 0.00 195.15 44.88 202.90 19.11 22.32 7.76 179.56 1.5072 32.05% 

10/14/2015 
103.95% 91.10 0.00 195.03 46.10 203.38 19.52 22.74 8.13 263.32 1.5064 30.30% 

109.88% 96.17 0.00 208.07 47.64 221.37 20.94 24.40 8.16 170.06 1.5083 30.30% 

1/7/2016 
107.05% 90.32 0.00 160.27 37.67 179.17 18.16 20.38 8.46 245.00 1.5074 31.45% 

87.65% 73.84 0.00 133.85 31.95 148.57 14.26 17.25 8.19 243.39 1.5097 31.45% 

1/27/2016 

107.05% 95.67 8.62 183.70 47.19 207.19 19.82 21.92 9.76 349.94 1.5095 29.65% 

99.93% 89.62 7.44 119.33 40.81 147.18 15.65 17.44 8.72 350.72 1.5042 29.65% 

98.18% 87.93 7.21 132.57 42.32 160.47 16.10 19.43 9.29 509.12 1.5063 29.65% 

97.33% 84.92 5.69 203.31 41.73 211.07 19.72 22.12 4.93 274.47 1.5461 29.65% 

 
Appendix G: Spike PBDEs concentrations 
 

Batch   PCB209 BDE28 BDE47 BDE100 BDE99 BDE154 BDE153 BDE183 BDE209 
1  118.05% 65.04% 77.44% 85.62% 95.40% 94.36% 91.68% 79.00% 61.90% 
2  117.50% 63.92% 68.36% 81.04% 82.70% 80.32% 78.40% 70.82% 59.37% 
3  102.40% 80.68% 77.76% 87.90% 94.24% 92.22% 93.38% 90.92% 81.36% 
4  107.60% 50.08% 56.06% 72.64% 74.80% 79.58% 77.46% 72.48% 82.95% 
5   15.58% 17.04% 20.04% 38.30% 33.88% 43.28% 41.54% 40.54% 58.90% 
6   96.90% 60.88% 80.66% 94.68% 98.96% 100.58% 97.48% 93.80% 97.79% 

 Average 108.49% 64.12% 72.06% 84.38% 89.22% 89.41% 87.68% 81.40% 76.67% 

 Std dev. 9.28% 10.99% 10.06% 8.20% 10.11% 9.17% 9.15% 10.51% 16.01% 
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The intention of this document is to summarize, in detail, the experiment operating 
procedure for the determination of polybrominated diphenyl ethers (PBDEs) in DC 
Water biosolids. 
SOP Method Overview 
 
This SOP describes how to determine PBDEs in DC Water biosolids. The method is 
developed based on EPA Method 1614 (U.S. EPA, 2010b), Deng et al., 2015, Krol et 
al., 2012, and Giergielewicz-Mozajska et al., 2001.Total solids (TS) of biosolids are 
measured according to EPA Method 1684 before this procedure. Biosolids are 
homogenized by grinding before the PBDEs extraction by Accelerated Solvent 
Extraction (ASE). The extract is cleaned up by multi-layers silica gel 
chromatographic column. The final solution is analyzed by gas chromatography and 
mass spectrometry (GC-MS).  
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1. Biosolids Sample Preparation 
 
1.1 Laboratory Work Area and Apparatus Clean Procedure 
    1.1.1 Make sure all the laboratory work area and apparatus are clean and PBDEs –

free for use. 
    1.1.2 Wipe and clean the laboratory work surface area, such as the balance area, the 

experiment bench area, and the fume hood. 
    1.1.3 All the apparatus must be clean and dry before use. 
 
1.2 Biosolids Samples Storage 
    1.2.1 All biosolids samples were collected from DC Water and stored in 250ml 

amber glass jars with properly labeled, including sample name, sampling date 
and location, project name, and the person who collected, as shown in Fig. 1. 

 
Fig. 1. Biosolids samples stored in amber jars with labels 

    1.2.2 Biosolids samples were stored in freezer at -20oC at USDA BARC before 
processing. 

    1.2.3 Before the experiment, the needed samples should be thawed in refrigerator 
at -4 oC overnight. 

 
1.3 Biosolids Samples Preparation 
    1.3.1 Before the sample preparation, all samples need to reach room temperature 

for processing. 
    1.3.2 For each batch of extraction run, prepare: 
 • 1 sand blank 
 • triplicate analysis for each samples 
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 • 1 sand spike 
 • 1 matrix spike 
    1.3.3 Prepare enough 22-mL ASE 200 extraction cells for samples to be extracted 

by hand-tightening a bottom cell cap onto each cell body. The symbol should 
be at the top of the cell. Then insert a disposable cellulose filter into the 
bottom of each extraction cell using the insertion tool. The cellulose filter 
prevents blockage of the stainless steel frit in the bottom cap. Check the end 
of each cap to verify that the white O-rings are in place and in good 
condition. 

    1.3.4 Weigh out a sample approximately 1.5g of wet weight into an aluminum 
weighing dish and record the weight to nearest 0.001 g. Transfer this to a 
mortar. 

    1.3.5 Add about 3g of hydromatrix to the sample to absorb the moisture in the 
sample. With the mortar and pestle, mix until a free flowing sample is 
observed. 

    1.3.6 Add enough clean/baked sand to cover the filter at the bottom of the 
extraction cell. Transfer the sample with hydromatrix into the extraction cell 
labeled with the laboratory sample ID, being careful to keep the threads clean 
on the cell body and cap. 

    1.3.7 Using an electronic syringe, add 10uL of surrogate solutions (4ug/ml of PCB-
209) to each cell. 

1.3.8 The sand blank is the cell with baked sand and surrogate only. 
         The sand spike is the cell with baked sand, surrogate, and the addition of 

50uL of BDE-mix by the electronic syringe. 
         The matrix spike is the cell with biosolids sample, surrogate, and the addition 

of 50uL of BDE-mix by the electronic syringe.  
Note 1: Allow surrogate and BDE-mix solutions to come to room temperature before 
using. Re-mix the solutions by shaking or sonicating.  
Note 2: The BDE-mix contains 1ug/ml of BDE-28, -47, -99, -100, -153, -154, -183, 
and 10ug/ml of BDE-209. 
    1.3.9 Fill any void volume in the cell with clean/baked sand. Level off the sand, 

and use a brush to clean any remaining sand from the threads. Screw the top 
cap on to the cell body and hand-tighten. 

 
 
2. Sample Extraction 
 
2.1 Manually run the rinse procedure on the Accelerated Solvent Extraction (ASE) 

system 200 several times before beginning an extraction run. 
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2.2 Load the tray slots in numerical order with all of the full sample cells. Hang the 

cells vertically in the tray slots from their top caps. 
2.3 Load 60-mL vials as rinse tubes into the four open slots, labeled R1 through R4. 
2.4 Load a 60-mL collection vials labeled with the laboratory sample ID onto the 

corresponding vial tray positions, shown in Fig. 2. 

 
Fig. 2. ASE 200 system with loaded cells and amber vials 

Note: During the extraction process, sensors determine if a vial is present, contains 1 
mL of solvent, or is full. Because of this, vial labels must be placed where they do not 
block areas of the vial read by the sensors.  
IMPORTANT: Make sure that the gas (N2) supply pressure is ≥150 psig. The ASE 
unit may not extract samples reliably with the N2 supply pressure below 150 psig. 
2.5 Load the method and begin the extraction run. 

Dionex ASE Parameters: 
Preheat time: 5 minutes  
Temperature: 120ºC 
Pressure: 2000 psi  
Static time: 10 minutes 
Flush %: 60%  
Purge time: 200 seconds 
Cycles: 2 
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Solvent A, % 20 Acetone 
Solvent B, % 80 Hexane 

Note: Ensure the waste container is properly connected and labeled. 
2.6 When complete, allow the extracts to cool to room temperature before proceeding 

with filtering. Samples may be stored in the freezer once caps are replaced with 
new ones. 

2.7 Discard the samples from the cells into the waste container. And keep the extract 
in amber vails in -4 oC refrigerator for further cleanup. 

 
 
3. Extract Cleanup 
 
3.1 Before the process, the extract in amber vials need to reach room temperature. 

Prepare clean corresponding amber vials with the proper labels to take the cleaned 
extract after cleanup process. 

3.2 For each extract, prepare one clean chromatographic column (300-mm long x 22-
mm ID, with coarse-glass frit, 300-mL reservoir, and fluoropolymer stopcock) 
and fix it on the stand in the fume hood. 

3.3 Place about 2cm long of glass wool on the bottom of the column Then weight and 
put the materials in the order as shown in Fig. 3. 
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Fig. 3. Weight and the order of cleanup materials in chromatographic column. 

Note 1: The activated silica gel is 100-200 mesh, baked at 180 °C for a minimum of 1 
hour, cooled in a desiccator, and stored in a precleaned glass bottle with 
screw-cap that prevents moisture from entering. 

Note 2: Acid silica gel (40% w/w) is 100g of activated silica gel well-mixed with 67g 
of concentrated sulfuric acid. 

Note 3: Basic silica gel (33%) is 100g of activated silica gel well-mixed with 50ml of 
1N sodium hydroxide solution. 

3.4 After pack all materials in chromatographic column, rinse through the column 
with 20ml of n-hexane. Use gentle air flow drain out the n-hexane. 

3.5 Transfer the uncleaned extract to the column with Pasteur pipette. Apply gentle 
air flow to grain the extract into corresponding clean labeled amber vial. 

3.6 Use 5ml of n-hexane to rinse the amber vial for uncleaned extract and Pasture 
pipette. Rinse three times and put into chromatographic column. 

3.7 Put 10ml of n-hexane into the chromatographic column and rinse the left PBDEs 
inside the column into amber vial with gentle air flow. Cap the amber vial. 
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3.8 After clean all extract, use Zymark TurboVap evaporator to completely dry the 
samples. Adjust the bath temperature to about 40°C, and set the vials with the 
sample extracts into the evaporator. 

3.9 Set the pressure to 0.6-0.8 psi, and run for 45 minutes or until completely dry. 
3.10 Add 1.0mL of n-hexane to each vial and vortex until dissolved completely. 
3.11 Prepare 1.0mL clean GC vials with properly labeled for GC-MS analysis: 

3.11.1 Transfer 1.0ml of dissolved extract into clean amber GC vials with Pasteur 
pipette. 

3.11.2 Use electronic pipette add 10uL of Internal Standard (4ug/ml PCB-138) in 
each amber GC vials. Cap the GC vials and send to GC-MS for analysis. 

Note: Internal Standard (4ug/ml PCB-138) need to reach room temperature before 
use. 

 
 

4. Gas Chromatography and Mass Spectrometry (GC-MS) Analysis 
 
4.1 Before put GC vials on the analysis tray, vortex the vials to mix well. 
4.2 Before the sample batch, put PBDEs standards vials for GC-MS to make 

calibration curves. 
4.3 The GGC-MS is 6890N/5975 with negative chemical ionization in selected 

monitoring mode and DB-5MS capillary column. The instrument is shown in Fig. 
4. 

4.4 The injection volume is 1.0uL and the running time is 22 minutes. Pressure is 
4.80 psi. And the temperature is about 300 ˚C. 

4.5 After the analysis finish, put the PBDEs standards vials and sample vials in 
designated refrigerators. 
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Fig. 4. GC-MS 6890N/5975 for PBDEs analysis. 

 
 
5. Cleaning Procedure 
 
5.1 To clean the apparatus after experiment, all apparatus need to be washed with 

brush and tap water three times, then be rinsed with DI Water three times. 
5.2 For ASE Extraction cells: 

5.2.1 Unscrew an end cap from the extraction cell body and remove the extracted 
sand/soil/hydromatrix. Discard the sand/soil/hydromatrix into a waste 
container. 

5.2.2 Unscrew the other end cap. Remove and discard the cellulose filters from 
the end cap. 

5.2.3 Let the cell bodies and end caps soak in soapy water (Contrad or 
equilavent). 

5.2.4 Scrub cell bodies and end caps, and rinse well with DI water. 
5.2.5 Soak end caps in DI water for at least 30 minutes, then rinse well with DI 

water again. 
5.2.6 Rinse cell bodies and end caps with acetone and let air dry. 

5.3 For collection vials, caps, funnels and other glassware: 
5.3.1 Soak in soapy water (Contrad or equivalent) for at least 4 hours.  
5.3.2 Scrub with a brush and rinse thoroughly with tap water.  
5.3.3 Rinse 3 times with DI water, and let air dry. 
5.3.4 Rinse vials with acetone and let air dry. 
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