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1 Introduction

A literature survey reveals that numerous methodolo-
gies have been proposed for the kinematic analysis of
epicyclic spur gear trains (Allen, 1979, Gibson and
Kramer, 1984, Levai, 1968, Olson et al., 1991, Smith,
1979). Using graph theory, Buchsbaum and Freuden-
stein (1970) investigated the structural characteristics
associated with epicyclic gear trains (EGTs) and pro-
posed a systematic methodology for the structure syn-
thesis of such mechanisms. Subsequently, Freudenstein
(1971) proposed a systematic methodology for the kine-
matic analysis of EGTs. Freudenstein’s method utilizes
the concept of fundamental circuits (f-circuits) which
can be readily derived from the graph of an EGT. The
method was elaborated in more detail by Freudenstein
and Yang (1971).

The analysis of bevel-gear trains is more involved due
to the nature of spatial motion of the gears and carri-
ers. Freudenstein et al. (1984) suggested the tabular
method using Rodrigues equation to keep track of the
positions of the carriers. Gupta (1985) and, Ma and
Gupta (1989) proposed the method of superposition.
Tsai (1988) demonstrated that the f-circuit equations
and coaxiality conditions can be applied to the kine-
matic analysis of complex robotic bevel-gear trains.

While the kinematic analysis for geared mechanisms
has been nearly perfected, the challenge lies in au-
tomating the process of identifying fundamental cir-
cuits and subsequent generation of the kinematic equa-
tions. There are several matrices associated with the
graph of an EGT. The adjacency matrix has been fre-
quently used for structure synthesis of mechanisms.
However, the incidence, edge set, circuit, and path ma-
trices seem to be relatively unknown to most kinemati-
cians. The adjacency, incidence, and edge set matrices
determine the topology of a graph up to graph isomor-
phism, while the circuit matrix does not, because the
presence or absence of an edge which lies on no circuit
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Figure 1. Schematic diagram of a typical EGM.

is not indicated in the matrix. In this paper, the def-
initions of these matrices and their relationships will
be reviewed. Then these relationships will be applied
to the detection of f-circuits and transfer vertices in
EGTs.

2 Graph Representations

Conventional Graph. Figure 1 shows the schematic
diagram of a typical epicyclic gear mechanism (EGM).
In a conventional graph representation, vertices denote
links, edges denote joints, and the edges are labeled
according to the type of pair connections. For EGTs,
gear pairs are denoted by heavy edges, turning pairs
by thin edges, and the thin edges are labeled accord-
ing to their axis locations in space. In addition, the
vertex denoting the fixed link is labeled by two concen-
tric small circles. For example, the conventional graph
representation for the mechanism shown in Fig. 1 is
sketched in Fig. 2.
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Figure 2: Conventional graph representation.
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Figure 3: Canonical graph representation.

Canonical Graph. When there are several coaxial
links in a mechanism, it is possible to reconfigure the
revolute joints among these coaxial links without af-
fecting the functionality of the mechanism. These kine-
matically equivalent mechanisms and their correspond-
ing graphs are called pseudo isomorphic mechanisms
and pseudo isomorphic graphs, respectively. In order
to eliminate the problem of pseudo iosmorphism and
to achieve a unique graph representation, a canonical
graph was defined by Tsai (1988). The canonical graph
is a rooted graph in which the root represents the fixed
link. Furthermore, all edges lying on a thin edged path
traced from the root to any other vertex in the graph
have different edge labels.

Recently, Chatterjee and Tsai (1994) applied the con-
cept of canonical graph for the enumeration of EGMs.
The vertices in a canonical graph are divided into sev-
eral levels. The ground-level vertex represents the root.
The first-level vertices, which are one thin-edge away
from the root, represent the coaxial links such as the
suns, rings and carriers in an EGM. And the second-
level vertices, which are two thin edges away from the
root, represent the planet gears. For example, the
canonical graph representation for the EGM shown in
Fig. 1 is sketched in Fig. 3.

Directed Graph. In a directed graph, each edge is
assigned a direction. For EGMSs, we assign the direction
to be pointing from its lower-level incident vertex to the
higher-level incident vertex. Figure 4 shows a directed
graph obtained by assigning a direction to each edge of
the canonical graph shown in Fig. 3.

Spanning Tree. Buchsbaum and Freudenstein (1970)
pointed out that removal all geared edges from the

Figure 4: Directed canonical graph.
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Figure 5: Spanning tree.

graph of an EGM results in a unique spanning tree.
For this reason, we refer the thin edges as the arcs and
the heavy edges as the chords. The arcs consists of all
edges that belong to the spanning tree and the chords
consists of all edges which are not in the tree. Figure 5
shows the spanning tree for the canonical graph shown
in Fig. 4.

3 Matrix Representations

The information contained in the graph of an EGM can
be conveniently stored in a matrix form. For a graph
with v vertices and e edges, the vertices are labeled se-
quentially from 0 to v — 1, the thin edges are numbered
from 1 to v—1, and the heavy edges are numbered from
v to e. The numbering of vertices and edges proceeds
from the lowest level to the highest level, with no pref-
erential order given to those edges (vertices) located at
the same level, and the root is denoted as vertex 0. For
example, Fig. 4 demonstrates a proper numbering of
the vertices and edges.

Adjacency Matrix. The vertex-to-vertex adjacency
matrix A is defined as

A, ) = 1, if vertex ¢ is adjacent to vertex j
77 =9 0, otherwise (including i = 7)

The adjacency matrix A is a v X v symmetric matrix.
The row sums of A are the degrees of the corresponding
vertices. The adjacency matrix identifies a graph up




to graph isomorphism. The adjacency matrix is often
used for structure synthesis of mechanisms and will not
be elaborated in detail here.

Incidence Matrix. The edge-to-vertex incidence ma-
trix B utilizes the concept of a directed graph. It ele-
ments are defined as

+1, if edge 7 emanates from vertex ¢
—1, if edge j terminates at vertex i
0, otherwise

B(iJ) =

Hence, the incidence matrix B is a v X e matrix. The
ith column represents the it* edge and the j* row rep-
resents the (j — 1)®* vertex. Since each edge has two
end vertices, there are exactly two non-zero elements
in each column and the column sum is always equal to
zero. Similar to the adjacency matrix, the incidence
matrix determines a graph up to isomorphism.

The reduced incident matrix B is defined by strik-
ing out the first row of B.

Edge Set Matrix. It is not desirable to store the en-
tire incidence matrix in a computer because it contains
a large number of zero elements. For the purpose of
computer programming, all the pertinent information
contained in B can be conveniently stored in an edge
set matrix. The edge set matrix £ is defined asa 3 x e
matrix. Each column of E represents an edge: the ele-
ment in the first row denotes the vertex from which the
edge emanates, the element in the second row denotes
the vertex to which the edge terminates, and the ele-
ment in the third row denotes the edge label. The edge
set matrix defines the structure topology of a mecha-
nism up to isomorphism.

Circuit Matrix. The circuit matrix C is defined as

1, if edge i forms part of the boundary
for circuit j
0, otherwise

Clj) =

In a circuit matrix, each column represents a circuit
and each row represents an edge. Obviously, those
edges which do not lie on any circuit are not expressed
in the matrix. Hence, the circuit matrix does not pro-
vide complete information of a graph. Unlike the adja-
cency and incidence matrices, the circuit matrix does
not determine a graph up to isomorphism. Further, the
column vectors of C' are not necessarily independent.

It is well known that if the edges of a graph are parti-
tioned into arcs and chords with respect to a spanning
tree, then the addition of each chord to the spanning
tree forms a circuit and the set of circuits determined
from all the chords constitutes the basis for the circuit
space. Any other circuits can be expressed as a linear
combination of these base vectors.

Path Matrix. The path matrix T is defined for a

rooted tree. The 1** row represents the i** edge, the
7" column represent the jt* vertex, and the root is ex-
cluded from the matrix. The elements of a path matrix
T are defined as

+1, if edge iis on the path from the
root to vertex j and the edge is
directed toward the root
T(i,7) = ¢ =1, if edgeiis on the path from the

root to vertex j and the edge is
directed away from the root
0, otherwise

Matrix Relationships. If we partition the edges of a
graph into arcs and chords with respect to a spanning
tree such that the arcs are labeled from 1 to v — 1
and the chords from v to e, then the reduced incidence
matrix can be partitioned as

1)

where B, denotes the portion of the reduced incidence

matrix associated with the arcs and B, denotes the
portion associated with the chords.

=[5 B

Similarly, the edge set matrix can also be partitioned
as

E = {Ea Ec] (2)

where E, denotes the portion of the edge set matrix
associated with the arcs and E, denotes the portion
associated with the chords.

Using the partitioned matrix. it has been shown by
Roberson and Schwertassek (1988) that

TB, =1 (3)
where I is a unit matrix of order v — 1, and
U
2]

where U = T B, and [ is a unit matrix of order e—v+1.

The nonzero elements in each column of C represent
the edges of a circuit. The nonzero elements are neg-
ative for the chord itself and for those arcs that point
in the same direction around the circuit as the chord,
and positive for those arcs that point in the opposite
direction. The number of circuits formed by Eq. (4) is
equal to the number of chords. We call these circuits
the fundamental circuits with respect to the spanning
tree. Finally, it can also be shown that

BC =[0] (5)

Hence, the columns of C span the null space of B.




4 Detection of Fundamental

Circuits

An f-circuit as defined by Buchsbaum and Freuden-
stein (1970) consists of a heavy edge and several thin
edges. Equation (4) can be applied for the detection
of f-circuits. In what follows, we demonstrate the pro-
cedure by using the example mechanism shown in Fig.
1.

Neglecting the difference between the thin and heavy
edges, the incidence matrix for the directed graph
shown in Fig. 4 is given by

B:

11 1 1 0 0 0 0 0 0]
-1 0 0 0 1 0 0 O 0 O
0 -1 0 0 0 1 1 0 0 0
6o 0o 0 -1 0 0 O 0 1 1
o 0 -1 0 O O o0 1 0 O
o o o0 0 -1 0 -1 0 0 =1

i 0 0 0 0 0 -1 0 -1 -1 0

(6)

The edge set matrix E is given by

000012 2 433
E=|12 435656 6 5 (7)
a a a a b c g g g g

The reduced incidence matrix associated with the arcs
is given by

o

Q8
OO O OO
O = OO O

OO OO O
OO OO~ O
OO O = OC
O O O - O

The reduced incidence matrix associated with the
chords is given by

= O~ O O

= O O - OO
O - O - OO

The path matrix corresponding to the rooted tree
shown in Fig. 5 is given by

1 0 0 0 -1 0
0 -1 0 0 0 -1
0 0 0 -1 0 0
=19 0 -1 0o o o (10)
0 0 0 0 -1 0
0 0 0 0 0 -1

Substituting Eqgs. (8) and (10) into (3), yields

[1 0000 0]
010000
= _|oo0o1000
TBa=19 00100 (11)
0 00010
00000 1]
Substituting Eqgs. (9) and (10) into (4), yields
1 0 0 1
-1 1 1 0
0 -1 0 0
0 0 -1 -1
|1 0 o0 1
=1 0o 1 1 o (12)
-1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 -1 |

| Hence, there are four f-circuits: circuit 1 consists of

edges el, €2, e5 and e7; circuit 2 consists of edges €2,
e3, e6 and e8; circuit 3 consists of edges €2, e4, e6 and
e9; and circuit 4 consists of edges el, e4, 5 and el0.

5 Detection of Transfer Ver-
tices

In each f-circuit, there exists a vertex called the transfer
vertex such that all thin edges lying on one side of the
transfer vertex are at the same level and all the other
thin edges lying on the opposite side are at a different
level. The transfer vertex is also known as the carrier
of a gear pair. Detection of the transfer vertex in an
f-circuit is essential in order to develop the f-circuit
equation.

The transfer vertex can be easily detected from the
canonical graph. For each f-circuit, the edge labels are
read from the edge set matrix, E,, and the common
vertex which belongs to two edges of different label
is identified as the transfer vertex. For the example
system, loop 1 has vertex 1 as the transfer vertex, loop
2 has vertex 2 as the transfer vertex, loop 3 has vertex
2 as the transfer vertex, and loop 4 has vertex 1 as the
transfer vertex.

6 Kinematic Equations

Let links 7 and j be a gear pair and & be the carrier.
Then links 1, j and & form an f-circuit and the f-circuit
equation can be written as (Freudenstein, 1971)

Nyw, —w; + (1 = NyjJwi =0 (13)



where w, denotes the angular velocity of link 2, and
N,, denotes the gear ratio for the gear pair mounted
on links ¢ and j, positive or negative according as the
gear mesh is internal or external.

For the example gear mechanism shown in Fig. 1, the
f-circuit equations are

Noswy —ws + (1 = Vas)wy =0 (14)

Nygwq — wg + (1 - Af_;g)(dg =0 (15)

Nagwsz —we + (1 — NVzg)wz =0 (16)
and

N35u)3 - Ws + (1 - .’V35)UJ1 =0 (17)

Equations (14) through (17) consist of four linear equa-
tions in six variables. However. under normal operat-
ing conditions, one of its coaxial links will be clutched
to the casing and another to the input power source.
Hence, two of the six angular velocities are known, and
the remaining four can be solved in terms of these two.

7 Summary

A procedure for the detection of fundamental circuits in
epicyclic gear mechanisms is outlined. The well estab-
lished graph theory is used to represent the system and
then to detect the fundamental circuits. The identifi-
cation of fundamental circuits and the transfer vertices
leads to automated formulation of the kinematic equa-
tions in a systematic and methodological manner. The
method is also applicable to the kinematic analysis of
bevel-gear robotic mechanisms.
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