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I sampled 9 streams in Western Maryland during the spring, summer and fall of 

2010.  5 species of stream salamander were collected at these streams and analyzed for 

total mercury; northern dusky salamanders (Desmognathus fuscus), northern two-lined 

salamanders (Eurycea bislineata), Allegheny Mountain dusky salamanders 

(Desmognathus ochrophaeus), seal salamanders (Desmognathus monticola), and eastern 

red spotted newts (Notopthalmus viridescens).  The streams were also analyzed for 

various water chemistry factors; pH, Acid Neutralizing Capacity (ANC), Total Mercury 

(THg), Methyl Mercury (MeHg), Chloride (Cl-), Nitrate (NO3
-), Sulfate (SO4

2-), Total 

Suspended Solids (TSS), and Dissolved Organic Carbon (DOC).   

In all but two streams adult northern two-lined salamanders had significantly 

higher concentrations of total mercury in their tissues than larval northern two-lined 

salamanders.  Adult northern two lined salamanders also had the highest concentrations 



 

 

of the three species that were statistically analyzed; northern two-lined salamanders, 

northern dusky salamanders, and Allegheny Mountain dusky salamanders.  Stream 

methyl mercury concentrations and stream DOC were also found to significantly 

influence salamander tissue total mercury concentrations. 
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INTRODUCTION 

Mercury is a toxic pollutant of global interest.  Mercury can remain in the 

atmosphere for as long as two years in its elemental form.  The primary 

anthropogenic source of mercury to the atmosphere is coal fired power plants.  

Once mercury enters the atmosphere it can be deposited to soils and other surfaces, 

eventually making its way to wetlands and waterways.  Once in the wetlands and 

anoxic sediments, anaerobic bacteria can methylate the mercury.  Methyl mercury 

can then bioaccumulate eventually being biomagnified in higher trophic levels.  

Mercury concentrations in fish and other top predators have received significant 

research, but we know little about mercury concentrations in other organisms such 

as salamanders.  Salamanders are uniquely connected to both the aquatic 

environment and surrounding riparian areas.  The connection allows them to act as  

vector to transport mercury from aquatic food webs into terrestrial food webs that 

would otherwise receive little exposure to mercury.   

 The focus of my research was on the concentrations of mercury found in five 

species of salamander from nine streams in Garrett County, MD.  We collected 

individual northern two-lined (Eurycea bislineata bislineata), northern dusky 

(Desmognathus fuscus fuscus), Allegheny Mountain dusky (Desmognathus 

ochrophaeus), and seal salamanders (Desmognathus monticola) as well as eastern 

red-spotted newts (Notopthalmus viridescens viridescens).  I also concurrently 

collected water samples from each of my streams in order to determine what if any 

influence water chemistry factors may have on salamander total mercury 

concentrations.  There have been few studies on the mercury concentrations found 
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in salamanders, but those studies do indicate significant concentrations can be 

found in salamanders from both streams with low mercury concentrations and 

contaminated streams with high concentrations (Bank et al. 2005, Bergeron et al. 

2010, Burke et al. 2010).   

 The lack of thorough knowledge of the mercury concentrations in 

salamanders led me to develop three main objectives for my study: 

 

1. Determine the pattern of mercury concentrations in the different life stages 

of stream salamanders. 

2. Determine the patterns of mercury concentrations across different species of 

stream salamander. 

3. Determine the patterns of mercury across different streams and determine 

any influence water chemistry has on that pattern. 

 

 These three objectives are addressed separately in three chapters, which will 

be submitted for publication.  Chapter 1 focuses on mercury concentrations 

measured in adult and larval northern two-lined salamanders.  Northern two-lined 

salamanders were the only species where larvae were collected in sufficient number 

to allow comparison with adults.  Chapter 2 focuses on comparing mercury 

concentrations in adult northern two-lined, northern dusky, and Allegheny 

Mountain dusky salamanders.  These three species were collected from six streams 

to allow for comparisons across different watersheds.  Chapter 3 focuses on water 
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quality factors across all nine streams and how they are statistically related to total 

mercury concentrations in salamanders. 

 Three appendices are included to address data that was collected but not 

included in the above chapters.  Mercury concentrations measured in eastern red-

spotted newt individuals and seal salamander individuals are included in appendix 

A.  Appendix B includes methyl mercury concentrations measured in a small subset 

of salamanders used to determine the percent methyl mercury in salamander 

tissues.  This data was not included in the chapters because the analysis did not 

meet quality control standards.  Appendix C includes salamander community data 

collected from all nine streams.  This includes the total number of salamanders 

encountered at each stream, the total man-hours spent searching for salamanders, 

and the Shannon Diversity Index calculated from the salamander presence data. 
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CHAPTER 1: VARIATIONS IN TOTAL MERCURY 

CONCENTRATIONS BETWEEN ADULT AND LARVAL 

NORTHERN TWO-LINED SALAMANDERS IN STREAMS 

OF GARRETT COUNTY, MARYLAND 

ABSTRACT  

The purpose of this study was to increase our understanding of mercury 

bioaccumulation in northern two-lined salamanders (Eurycea bislineata bislineata).  We 

measured mercury concentrations in adult and larval northern two-lined salamanders, 

which were collected from seven streams in Garrett County, Maryland in April, July and 

September of 2010. Averaged over all streams, adult northern two-lined salamanders had 

significantly higher concentrations of total mercury than larval salamanders (29.5 ng g-1 

vs. 22.1 ng g-1).  Across all streams, the methyl mercury concentrations in stream water 

were positively correlated with the total mercury concentrations in adults and larvae.  

Dissolved organic carbon (DOC) in these streams was also positively correlated with 

total mercury concentrations in larvae.  Total mercury concentrations in adult northern 

two-lined salamanders were significantly greater than total mercury concentrations in 

larval northern two-lined salamanders at five of seven streams: Bear Creek, Bear Pen, 

Mill Run, Monroe Run, and Poplar Lick.  In contrast, total mercury concentrations in 

adult and larval northern two-lined salamanders were not significantly different at Mud 

Lick and Little Savage River.  In addition, salamanders from these two streams had the 

highest total mercury concentrations compared to all other streams.  The lack of 

difference between adult and larval salamander total mercury concentrations in Mud Lick 
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and Little Savage River suggests that dietary pool of mercury available to the larvae plays 

an important role in the bioaccumulation of mercury in this species. 
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INTRODUCTION 

Mercury is a neurotoxin that is released into the environment through processes 

such as metal manufacturing, waste incineration, mining, and most commonly, from coal-

fired power plants used to generate electricity.  This airborne mercury enters terrestrial 

and aquatic ecosystems primarily from atmospheric deposition.  Moore et al. (2011) 

estimated total atmospheric mercury deposition rates of 30 µg m-2 y-1 for ecosystems in 

western Maryland (Moore et al. 2011).  After mercury is deposited to aquatic ecosystems, 

the inorganic mercury can be converted into methyl mercury (CH3Hg) by anaerobic 

bacteria (Gilmour et al. 1991; Morel et al. 1998).  This methyl mercury can subsequently 

be bioaccumulated in the tissues of aquatic organisms where it acts as an endocrine 

disruptor and/or immune suppressor.  

Mercury dynamics in stream ecosystems have been extensively studied in the 

eastern United States.  Total mercury concentrations ranged from 0.09 ng L-1 to 80 ng L-1 

and methyl mercury concentrations ranged from <0.04 ng L-1 to 3.2 ng L-1 (Shanley et al. 

2005).  Previous studies in Garrett County, Maryland reported total mercury 

concentrations in streams ranging from 0.42 ng L-1 to 6.76 ng L-1 with an average 

concentration of 1.38 ng L-1 (Castro et al. 2007).  Methyl mercury concentrations in these 

same streams ranged from 0.04 ng L-1 to 0.55 ng L-1 (Castro et al. 2007).  Mason et al. 

(2000) reported average total mercury concentrations of 1.7 ng L-1 and 2.1 ng L-1 in two 

other streams in western Maryland.  The mean methyl mercury concentrations in these 

streams were 0.01 ng L-1 and 0.06 ng L-1.  Total mercury concentrations in western 

Maryland streams exceed concentrations in streams in Shenandoah National Park (0.24 to 
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0.65 ng L-1) by factors of 2 to 10 and are similar to average concentrations (1.7 ng L-1) in 

streams in Acadia National Park (Moore et al. 2009; Peckenham et al. 2007).  

These streams are home to many species of salamanders, which are sensitive to 

environmental pollutants dissolved in stream waters (Lannoo 2005; Petranka 1998).  

Mutations in many species of salamanders have been linked to environmental pollutants 

such as atrazine, an herbicide, and nitrate fertilizer, which can be absorbed through the 

skin of adults and through the permeable mucosa surrounding their eggs (Boone and 

James 2003; Hatch and Blaustein 2003; Lenkowski et al. 2008; Rouse et al. 1999; Storrs 

and Kiesecker 2004; Taylor et al. 2005; Williams et al. 2008).  However, the impact of 

mercury on stream salamanders is not well understood.  There have been only three 

studies of mercury and stream salamanders in the eastern United States (Bank et al. 2005; 

Bergeron et al. 2010; Burke et al. 2010).  The unique physiology of salamanders and their 

complex life cycles may make them more effective indicators of ecosystem mercury 

contamination than other stream dwelling organisms, such as fish and insects (Bank et al. 

2005; Southerland 2004).  Greater understanding of mercury dynamics in salamanders 

will provide new insight into the movement of mercury through the environment and 

processes responsible for the bioaccumulation of mercury in salamanders. 

 This study focused on mercury concentrations in both adult and larval northern 

two-lined salamanders (Eurycea bislineata bislineata) across several small streams in 

Garrett County, Maryland.  Our objectives were to document patterns of total mercury 

concentrations in northern two-lined salamanders in different life stages and to identify 

differences in salamander mercury concentrations amongst different streams.  We 

hypothesized that adult northern two-lined salamanders would have lower mercury 
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concentrations than larvae.  This hypothesis assumed that the mercury concentrations in 

the terrestrial diets of the adult salamanders are significantly lower than the mercury 

concentrations in the aquatic diets of the larval salamanders.  In addition, we 

hypothesized that salamanders from streams with higher mercury concentrations would 

have higher total mercury concentrations. 

  

METHODS 

Study Streams 

 We studied salamanders in seven first-order streams in western Maryland.  Five 

streams were located in the Savage River watershed and two streams were located in the 

Youghiogheny River watershed (Fig. 1).  Mean pH and ANC in these streams ranged 

from 5.98 to 6.70 and from 43.9 µeq L-1 to 467.8 µeq L-1 respectively.  These small 

streams drained watersheds dominated by forest (62% to 97%) and agriculture (<1% to 

29%).  Watershed area ranged from 95 ha at Bear Creek to 4,365 ha at Mill Run.  

However most watersheds were less than 2,200 ha (Table 2).  Our study streams and 

watersheds are similar to those found throughout the Appalachian Plateau region of 

western Maryland. 

 

Field Sampling  

 We collected northern two-lined salamanders in April, July, and September of 

2010 using visual encounter surveys.  To collect adult salamanders, cover objects were 

overturned within 2 m of the stream edge.  To collect larval salamanders, cover objects 

were overturned within the first 0.5 m of the stream channel.  Larval salamanders were 
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identified by the presence of external gills.  Survey sampling for salamanders lasted for 2 

to 6 hours at each stream.  Adults and larvae were collected using a small aquarium dip 

net.  After capture, they were transported in glass jars to the Appalachian Laboratory 

(AL) in Frostburg, MD.  We attempted to collect 10 adults and 10 larvae per stream for 

each sampling.  The total number of samples at individual streams ranged from 2 to 30 

for adults, and 5 to 30 for larvae (Table 1).  Dry conditions during summer likely reduced 

the number of individuals collected.  High flow events just prior to sampling also reduced 

the number of larvae encountered.  This may be due to high flow conditions forcing 

larval salamanders downstream of the sampling site.  Two egg masses were removed 

from gravid females collected at Monroe Run and Mill Run for total mercury analysis.   

 

Water Chemistry 

 Stream water was sampled monthly from April through December 2010 with the 

exception September.  Measurements of water temperature, specific conductivity, and pH 

were made in situ using a Hydrolab Quanta model sonde.  Grab samples of stream water 

were collected in acid cleaned high density polyethylene (HDPE) bottles for lab analysis 

of closed pH, ANC, total and methyl mercury, dissolved organic carbon (DOC), total 

suspended solids (TSS), chloride (Cl-1), nitrate (NO3
-1), and sulfate (SO4

-2).  Water 

samples were filtered through 0.45 µm Whatman glass fiber filters for TSS and DOC.  

Mercury samples were collected in ultra clean 1 L Teflon bottles and double Ziploc 

bagged using the “clean hand/dirty hand” technique (EPA method 1639).  All samples 

were placed on ice and transported in coolers to the AL for analysis.  Samples were 
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stored at -4ºC and were analyzed within 1 month of collection using EPA protocols 

(Table 3). 

 

Total Mercury in Salamanders 

 At AL, the live salamanders were euthanized in a buffered 10 g L-1 solution of 

methane tricainesulfonate (MS-222).  Once euthanized, salamanders were measured for 

weight, total length, and snout-vent length (SVL).  Salamanders were then double bagged 

and frozen at -22ºC until analyzed.  All analyses were completed within 3 months of 

sample collection.  Prior to analysis, salamanders were thawed and allowed to reach room 

temperature.  Afterwards, whole salamanders were digested overnight in an acid solution 

of 70% concentrated sulfuric acid and 30% concentrated nitric acid.  The following day, 

100-150 µL of digestion solution and 250 µL of bromine mono-chloride (BrCl) were 

added to 50 mL of distilled de-ionized water in separate 65 mL ultra-clean FEP Teflon 

auto-analyzer vials.  The total mercury concentration in this solution was measured using 

cold vapor atomic fluorescence spectroscopy (CVAFS) in a Tekran 2600 CVAFS 

mercury analysis system in the class 100 clean room at AL (EPA Method 1631). 

 

Quality Assurance/Quality Control (QA/QC) 

Independent standards were used as QA/QC checks in all water chemistry and 

tissue analyses.  Instrument calibration required an r2 > 0.99 for the calibration curve.  All 

samples were within our standard range (0.2 – 56.6 ng L-1).  Field replicates were 

randomly collected from three streams for each monthly water sampling, and two lab 

duplicates were analyzed for every set of samples.  For tissue samples, duplicates were 
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analyzed every tenth tissue digest.  Replicates and duplicates were acceptable with < 5% 

variation.  Due to the <1g of tissue available, replicates could not be taken from 

individual salamanders.  We analyzed two replicates of DORM-3 fish protein (National 

Research Council of Canada) with each set of salamander tissue samples.  The acceptable 

range of total mercury concentrations for DORM-3 was 322 ng g-1 to 442 ng g-1.  Our 

DORM-3 samples averaged 367.8 ± 5.4 ng g-1 within a range of 323.1 ng g-1 to 434.7 ng 

g-1. 

 

Statistical Analysis  

 Total mercury concentrations in northern two-lined salamanders were analyzed 

using a nested ANOVA to assess the differences in total mercury concentrations between 

the adult and larval life stages and among streams.  Life stage of the salamanders, stream, 

and the interaction term between life stage and stream were fixed effects in the model.  

We included the seasonal samplings as a random effect in the model to account for 

pseudo-replication within the data set.  Factors used in the ANOVA were tested for 

normality using the Lilliefors test of normality, prior to analysis.  We transformed total 

mercury data using a ¼ root transformation to address non-normality of data.  This 

transformation provides the best balance between normality of residuals in the model and 

homogeneity of variances.  The transformed residuals passed Lilliefors test of normality 

(P < 0.05).  Transformed total mercury concentrations were also tested for correlation 

with salamander weight, snout-vent length (SVL), and length using Pearson Product-

Moment Correlation tests.   
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The mean values for the monthly stream water chemistry data were then used in a 

Pearson Product-Moment Correlation analysis with the mean total mercury 

concentrations for each life stage at each stream.  All statistical analyses were performed 

using the Linear and Nonlinear Mixed Effects Models (nlme) package in the R-Project 

(version 2.12) (R Development Core Team 2009, Pinheiro et al. 2011). 

 

RESULTS 

Salamander Weight, Length, and SVL 

The overall mean weight for adult northern two-lined salamanders was 0.79 ± 

0.04 g within a range of 0.15 g to 1.91 g.  Across individual streams, mean weight ranged 

from 0.52 ± 0.05 g at Bear Pen to 1.03 ± 0.10 g at Monroe Run.  The overall mean weight 

for larvae was 0.19 ± 0.01 g within a range of 0.16 g to 0.69 g.  Across individual 

streams, larvae ranged in mean weight from 0.10 ± 0.03 g at Little Savage River to 0.26 ± 

0.03 g at Mill Run. 

The overall mean SVL for adults was 35.05 ± 0.61 mm within a range of 21.0 mm 

to 48.2 mm.  Across individual streams, mean SVL ranged from 30.78 ± 1.00 mm at Bear 

Pen to 38.48 ± 1.09 mm at Monroe Run.  The overall mean SVL for larvae was 19.89 ± 

0.34 mm within a range of 9.9 mm to 32.4 mm.  Across individual streams, the mean 

SVL ranged from 16.98 ± 1.74 mm at Little Savage River to 21.21 ± 0.80 mm at Mill 

Run. 

The overall mean total length was 75.65 ± 1.67 mm within a range of 40.5 mm to 

117.8 mm (not including 6 individuals with missing tails).  Across individual streams, 

mean total length ranged from 63.27 ± 2.62 mm at Bear Pen (not including 3 individuals 
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missing tails) to 84.02 ± 3.33 mm at Monroe Run (not including 1 individual missing its 

tail).  The overall mean total length for larvae was 35.28 ± 0.69 mm within a range of 

17.5 mm to 61.5 mm.  Across individual streams, mean total lengths ranged from 29.06 ± 

3.42 mm at Little Savage River to 38.62 ± 1.77 mm at Mill Run. 

  

Mercury Concentrations in Adult and Larval Northern Two-Lined Salamanders 

 Across all streams the mean total mercury concentration in adult northern two-

lined salamanders was 29.54 ± 1.30 ng g-1 within a range of 10.92 ng g-1 to 73.78 ng g-1.  

Across individual streams mean total mercury concentrations in adults ranged from 19.36 

± 1.76 ng g-1 at Mill Run to 40.97 ± 2.69 ng g-1 at Mud Lick  

In larval northern two-lined salamanders the mean total mercury concentration 

was 22.08 ± 1.48 ng g-1 within a range of 0.64 ng g-1 to 92.56 ng g-1.  Across individual 

streams mean total mercury concentrations ranged from 6.73 ± 0.72 ng g-1 at Bear Creek 

to 42.20 ± 3.55 ng g-1 at Mud Lick. 

The enhancement of total mercury concentrations from larval northern two-lined 

salamanders to adults varied across sites.  The overall mean enhancement ratio (mean 

adult total mercury/mean larval total mercury) was 1.74.  The ratio ranged from 0.97 at 

Mud Lick to 4.12 at Bear Creek (Table 5). 

 Mean total mercury concentrations in northern two-lined salamanders were 

significantly affected by life stage (F = 28.8466, df = 1,234, P <0.0001), stream (F = 

7.2135, df = 6,11, P = .0026), and the life stage stream interaction term (F = 2.9908, df = 

6,234, P = .0078).  Mean total mercury concentrations in adult and larval northern two-

lined salamanders were not statistically different at Mud Lick (adult: 40.97±2.69 ng g-1, 
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larvae: 42.20±3.55 ng g-1) and Little Savage River (adult: 36.53±4.34 ng g-1, larvae: 

35.91±4.53 ng g-1).  For the other five study streams adult northern two-lined 

salamanders had significantly more total mercury than larval northern two-lined 

salamanders (Fig. 2, 3). 

 

Mercury Concentrations in Egg Masses 

Total mercury concentrations of 9.21 ng g-1 and 9.33 ng g-1 were in egg masses 

taken from one gravid female at both Mill Run and Monroe Run, respectively.  These egg 

masses weighed 0.08 g and 0.34 g and contained 15 and 22 individual eggs resulting in 

0.61 ng g-1 and 0.42 ng g-1 total mercury per egg, respectively. 

 

Mercury and DOC in Streams 

 Total mercury, methyl mercury, and DOC varied across streams.  Mean stream 

total mercury concentrations ranged from 0.52 ± 0.06 ng L-1 at Mill Run to 2.25 ± 0.26 

ng L-1 at Little Savage River.  Mean methyl mercury concentrations ranged from 0.06 ± 

0.01 ng L-1 at Mill Run to 0.21 ± 0.05 ng L-1 at Little Savage River.  Mean DOC 

concentrations ranged from 0.51 ± 0.04 mg L-1 at Bear Creek to 3.51 ± 0.24 mg L-1 at 

Little Savage (Table 6). 

 

Correlation Analyses 

 In adults and larvae, body weight (A: r = 0.098, P = 0.3033, L: r = -0.071, P = 

0.3951), length (A: r = -0.023, P = 0.8096, L: r = 0.020, P = 0.8150) and SVL (A: r = 

0.143, P = 0.340, L: r = 0.073, P = 0.3818) were not significantly correlated with root 
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transformed mercury concentrations (Table 7).  Stream methyl mercury concentration 

was positively correlated with total mercury concentrations in adult (r = 0.756, P = 

0.0491) and larval (r = 0.786, P = 0.0361) northern two-lined salamanders.  DOC was 

positively correlated with total mercury concentrations in larval northern two-lined 

salamanders (r = 0.768, P = 0.439) (Table 8).  

 

DISCUSSION 

 The weights and SVL of our adult and larval northern two-lined salamanders were 

similar to those reported in other studies (Bank et al. 2005; Lannoo 2005).  Lannoo 

(2005) reported mean SVL of 29 to 41 mm for adult northern two-lined salamanders from 

populations throughout the range, from Nova Scotia to northern Virginia.  In comparison, 

our adult salamanders ranged in mean SVL from 30.78 ± 1.00 mm to 38.48 ± 1.09 mm 

(Table 4).  Bank et al. (2005) reported mean larval wet weights that ranged from 0.11 ± 

0.02 g to 0.33 ± 0.02 g and mean larval SVL that ranged from 20 ± 0.07 mm to 27 ± 0.06 

mm.  Our mean larval weights ranged from 0.10 ± 0.03 g to 0.26 ± 0.03 g and our mean 

larval SVL ranged from 16.98 ± 1.74 mm to 21.21 ± 0.80 (Table 4).  Our mean SVL 

measurements and those of Bank et al. (2005) were less than the mean SVL at time of 

metamorphosis of 30 mm (Lannoo 2005), illustrating that our sampled populations and 

those sampled by Bank et al. (2005) have a larval period of normal length and normal 

growth.  Thus, our salamanders were typical of those from other stream ecosystems and 

are likely to be representative of populations in Garrett County, MD. 

There was considerable variation in the total mercury concentrations in adult and 

larval northern two-lined salamanders.  Total mercury concentrations in individual adult 
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salamanders ranged from 10.92 ng g-1 at Mill Run to 73.78 ng g-1 at Poplar Lick.  The 

median mercury concentration in adults was 26.07 ng g-1 and only 10 of 113 adult 

northern two-lined salamanders had total mercury concentrations exceeding 50 ng g-1.  

Total mercury concentrations in larvae ranged from 0.64 ng g-1 at Bear Creek to 92.56 ng 

g-1 at Poplar Lick.  The median total mercury concentration in larvae was 15.80 ng g-1 

and only 10 of 146 had total mercury concentrations of greater than 50 ng g-1. 

Bank et al. (2005) reported mean total mercury concentrations in larval northern 

two-lined salamanders from Acadia National Park of 66.1±3.4 ng g-1 and from 

Shenandoah National Park of 26.8±1.8 ng g-1.  The mean concentration from Shenandoah 

is closer to our mean total mercury concentrations in larvae (22.08 ± 1.48 ng g-1) than the 

mean larval concentration from Acadia.  This may be explained by greater geographic 

and geologic similarities between our streams in western Maryland and those in 

Shenandoah National Park, Virginia.   

The life cycle of northern two-lined salamanders contributes significantly to their 

mercury burden.  During late spring, eggs are laid on the underside of rocks and other 

cover items in streams.  Our limited data on the mercury concentrations in eggs suggests 

that maternal transfer of mercury is 0.42 ng g-1 to 0.61 ng g-1 per egg.  These eggs hatch 

in 4-10 weeks into fully aquatic larvae.  They can remain in the aquatic larval stage for up 

to 3 years (Lannoo 2005; Petranka 1998).  The diet of larval northern two-lined 

salamanders includes many common aquatic macro-invertebrates and periphyton 

(Lannoo 2005; Petranka 1984).  This diet has been shown to be a significant source of 

mercury for fish and is likely a significant source of mercury for larval salamanders 

(Cremona et al. 2008; Kelly et al. 2006; Prepas et al. 2005; Zizek et al. 2007).  Our larval 
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northern two-lined salamanders had mean total mercury concentrations around 40 to 50 

times greater than the total mercury concentrations in eggs (0.42 to 0.61 ng g-1 vs. 22.08 

± 1.48 ng g-1).  The lack of significant maternal transfer of mercury suggests that the 

majority of mercury accumulated by larval northern two-lined salamanders is obtained 

from stream food sources. 

As adults, northern two-lined salamanders consume a diet of mostly terrestrial 

macroinvertebrates and some aquatic benthic macroinvertebrates (Lannoo 2005; Petranka 

1998).  Assuming this terrestrial diet would contain lower mercury concentrations than 

the aquatic diet of the larvae, we hypothesized that adult northern two-lined salamanders 

would have lower total mercury concentrations than larval salamanders.  The assumption 

that terrestrial macroinvertebrates would contain lower concentrations of mercury was 

based on a spatial separation from aquatic environments where mercury methylation 

occurs.  However, Rimmer et al. (2010) reported high concentrations of total mercury in 

terrestrial arthropods in a montane forest in Vermont, with reported concentrations 

ranging from 8 ng g-1 (Hemiptera sp.) to 176 ng g-1 (Araneae sp.).  Mercury deposition 

rates in Vermont are comparable to those in our study area (Miller et al. 2005). Therefore, 

it is reasonable to assume that the arthropods being consumed by adult northern two-lined 

salamanders in our study would exhibit similar concentrations of mercury to those 

reported in the Rimmer et al. study.   

We found adult northern two-lined salamanders in five streams had significantly 

higher concentrations of total mercury than larval northern two-lined salamanders.  At 

these five streams the enhancement ratio ranged from 1.15 at Poplar Lick to 4.12 at Bear 

Creek.  This large range of enhancement ratios further emphasizes the large variation in 
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mercury concentrations across the sites.  The large enhancement ratio at Bear Creek may 

be influenced by the small sample size of adults at this stream, but it does indicate a 

potentially large difference in mercury uptake between the adults and larvae.  The 

increase in total mercury concentration from larvae to adult and the data reported by 

Rimmer et al. suggests that the terrestrial diet of the adult northern two-lined salamanders 

may contain mercury comparable to the diets of the larvae, contrary to our original 

assumption. Therefore, the higher total mercury concentrations in the adult northern two-

lined salamanders is likely related to their continued growth and age as a function of their 

continued consumption of high mercury prey. 

At two streams, Mud Lick and Little Savage River, adults and larvae had 

statistically similar mean concentrations of total mercury.  In addition, salamanders from 

these two streams had the highest concentrations of total mercury (Fig. 2).  These two 

streams also had the highest concentrations of total and methyl mercury and DOC (Table 

5).  High concentrations of DOC have been shown to carry mercury in stream ecosystems 

(Balogh et al. 2003; Brigham et al. 2009).  This is consistent with our hypothesis that 

streams with higher concentrations of mercury would have salamanders with higher 

concentrations of mercury.  Methyl mercury and DOC concentrations in stream water 

were positively correlated with total mercury concentrations in adults and larvae, 

suggesting a strong link between salamander mercury accumulation and stream mercury 

cycling.  This same relationship was also present in brook trout in western Maryland 

streams with higher methyl mercury concentrations (Castro et al. 2007).  

At these higher mercury streams, we would expect to find higher concentrations 

of mercury in the prey of the adult and larval northern two-lined salamanders.  This 
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expectation is consistent with Castro et al. (2007) who reported that macroinvertebrates 

of Heptagenidae sp. and Acroneuria sp. in the Little Savage River have significantly 

higher mercury concentrations than those found in Monroe Run.  Both of these 

macroinvertebrates are food sources for larval northern two-lined salamanders.  This 

suggests that larval northern two-lined salamanders at Little Savage River may be 

consuming significantly more mercury than larvae at other streams.  Therefore, the larvae 

in Little Savage River would have higher total mercury concentrations than larvae in 

other streams, which is consistent with our data (Table 5).  Despite having no data for 

macroinvertebrates at Mud Lick, it is possible that the larvae in Mud Lick are also 

consuming significantly more mercury than at other sites.  

We were surprised to find no statistical difference between adult and larval total 

mercury concentrations at Mud Lick and Little Savage River.  This may indicate that the 

mercury content in the aquatic diet available to the larvae is similar in magnitude to the 

mercury content of the terrestrial diet available to adults.  This difference in food source 

mercury content may be due to the higher mercury concentrations in the aquatic 

macroinvertebrates of these streams.  

 

CONCLUSION 

 The unique physiologies of stream salamanders, their complex life histories, and 

their presence in streams too shallow or intermittent to support fish may make them 

effective bioindicator species of mercury contamination in small stream reaches (Bank et 

al. 2005; Southerland 2004).  Improving our knowledge of mercury dynamics in these 
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salamanders will increase our understanding of the movement of mercury through the 

environment. 

 Our findings that, contrary to our original hypothesis, mercury concentrations in 

adult salamanders were higher than mercury concentrations in larval salamanders at five 

of seven streams may indicate that some of our original assumptions may be incorrect.  

The terrestrial diets of these adult salamanders may not be lower in mercury content than 

the aquatic diets of the larval salamanders as we assumed. 

Our data supports our hypothesis that streams with higher total and methyl 

mercury concentrations would also have salamanders with higher total mercury 

concentrations.  Higher stream mercury concentrations may indicate higher mercury 

concentrations in aquatic macroinvertebrates, which may result in higher mercury 

concentrations in northern two-lined salamanders as seen in our Mud Lick and Little 

Savage River streams. 

 Diet may play a large role in the variations in mercury concentration across 

populations of northern two-lined salamanders.  Differences in the mercury pool in the 

food sources for adult and larval northern two-lined salamanders may explain a 

significant portion of the variation seen in the mercury concentrations between the two 

life stages.  Further study is needed to identify the sources of mercury to northern two-

lined salamanders.  More information is also needed about adult and larval diets at 

specific locations, across stream differences in mercury in the aquatic and terrestrial food 

sources, and within stream differences between aquatic and terrestrial food sources.  The 

results of this study indicate that terrestrial food webs may be higher in mercury than was 

previously assumed.  Further study of mercury concentrations in stream salamanders will 
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help to better understand the dynamics of mercury movement between stream and 

riparian ecosystems.   
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TABLES AND FIGURES 

Table 1 Streams sampled in Garrett County, MD with number of salamanders collected. 

Stream Name Latitude Longitude Number of Salamanders 

      Adults Larvae 

Bear Creek 39.6503 -79.2903 2 15 

Bear Pen Run 39.5626 -79.1117 24 18 

Little Savage River 39.6169 -79.0249 10 5 

Mud LicK 39.6461 -79.0257 30 29 

Monroe Run 39.5553 -79.2166 16 19 

Mill Run 39.7135 -79.3781 20 30 

Poplar Lick 39.6385 -79.1175 11 30 

     

Total   113 146 
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Table 2 Watershed composition and land use of streams sampled in Garrett County, MD.  

Land use data is calculated from the National Land Cover Database (NLCD) 2006 data 

set. 

  Land Use (%) Forest type (%)  Total Area 

Stream Wet. Ag. Dev. For. Bare Decid. Ever. Mixed  (Ha) 

Bear Creek 0 0.82 2.43 96.59 0.17 80.13 16.46 0 95 

Bear Pen  0 9.88 1.57 88.07 0.48 84.34 2.44 1.29 867 

L. Sav. River 0.14 0.3 1.95 95.21 0.21 70.96 22.47 1.77 555 

Mud Lick 0 29.1 7.73 61.92 1.2 42.92 18.07 0.93 1432 

Monroe Run 0 2.68 4.8 92.46 0.05 87.69 3.97 0.8 1201 

Mill Run 0 15.61 9.42 74.28 0.59 69.72 3.86 0.7 4365 

Poplar Lick  0.18 5.46 3.36 89.74 0.9 67.68 19.81 2.26 2139 
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Table 3 List of methods used in analysis of water chemistry. 

 Procedure for Sample 

Preparation 

Method of Analysis 

Dissolved Organic 

Carbon 

EPA Method 415.3 Ultraviolet Absorbance at 254 nm 

Total Suspended Solids ESS Method 340.3 Filtration and Drying to 103-105 C 

Major Anions (Cl-, NO3
-

, SO4
2-) 

EPA Method 300 Rev 2.1 Ion Chromatography 

Acid Neutralizing 

Capacity 

 Gran Analysis Technique 

pH EPA Method 150.1 Electrometric Determination 

Total Mercury EPA Method 1631 Cold Vapor Atomic Fluorescence 

Spectrophotometry (CVAFS) 
Methyl Mercury EPA Method 1630 Ethylation and Preconcentration Purge and 

Trap Techniques 
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Table 4 Mean weight (±SE), length (± SE), and SVL (±SE) of adult and larval northern two-lined salamanders sampled from streams 

in Garrett County, MD. 

  Mean Weight (g) Mean SVL (mm) Mean Total Length (mm) 

Site Adult Larvae Adult Larvae Adult Larvae A. Missing Tails 

Bear Creek 0.99 ± 0.02 0.14 ± 0.02 39.8 ± 1.3 18.89 ± 0.90 81.55 ± 0.55 33.67 ± 1.64 0 

Bear Pen 0.52 ± 0.05 0.18 ± 0.02 30.78 ± 1.00 19.65 ± 0.92 63.27 ± 2.62 35.03 ± 1.74 3 

Little Savage River 0.80 ± 0.12 0.10 ± 0.03 35.57 ± 1.94 16.98 ± 1.74 75.27 ± 4.89 29.06 ± 3.42 0 

Mud Lick 0.78 ± 0.06 0.17 ± 0.02 35.55 ± 1.26 19.04 ± 0.83 75.45 ± 3.28 33.76 ± 1.62 1 

Monroe Run 1.03 ± 0.10 0.20 ± 0.02 38.48 ± 1.09 20.77 ± 0.93 84.02 ± 3.33 36.75 ± 1.91 1 

Mill Run 0.84 ± 0.10 0.26 ± 0.03 35.53 ± 1.69 21.21 ± 0.80 80.71 ± 4.68 38.62 ± 1.77 1 

Poplar Lick 0.93 ± 0.14 0.16 ± 0.02 35.74 ± 1.97 19.96 ± 0.73 78.85 ± 5.29 34.47 ± 1.31 0 

        

Overall Mean 0.79 ± 0.04 0.19 ± 0.01 35.05 ± 0.61 19.89 ± 0.34 75.65 ± 1.67 35.28 ± 0.69 6 
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Table 5 Table of mean total mercury concentrations in adults and larval northern two-

lined salamanders (±SE) collected from streams in Garrett County, MD and the ratio of 

adult to larvae total mercury. 

  Mean Total Mercury (ng g-1) Adult/Larvae 

Stream Adult Larvae THg 

Bear Creek 27.70 ± 4.69 6.73 ± 0.72 4.12 

Bear Pen 24.54 ± 1.65 13.37 ± 2.65 1.84 

Little Savage River 36.53 ± 4.34 35.90 ± 4.53 1.02 

Mud Lick 40.97 ± 2.69 42.20 ± 3.55  0.97 

Monroe Run 22.87 ± 1.56 18.30 ± 1.64 1.25 

Mill Run 19.36 ± 1.76 10.41 ± 0.82 1.86 

Poplar Lick 31.45 ± 4.64 27.30 ± 3.52 1.15 

    

Overall Mean 29.54 ± 1.30  22.08 ± 1.48  1.74 
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Table 6 Mean dissolved organic carbon (DOC) (±SE), total mercury (THg) (±SE), 

methyl mercury (MeHg) (±SE), and methylation efficiency (MeHgeff) in streams in 

Garrett County, MD. 

  Mean DOC Mean THg Mean MeHg Mean MeHgeff 

Stream mg L-1  ng L-1  ng L-1 Percent 

Bear Creek 0.51 ± 0.04 0.78 ± 0.12 0.07 ± 0.01 10.1 

Bear Pen 0.84 ± 0.06 0.66 ± 0.05 0.09 ± 0.02 12.59 

Little Savage River 3.51 ± 0.24 2.25 ± 0.21 0.21 ± 0.05 9.43 

Mud Lick 2.06 ± 0.25 1.00 ± 0.10 0.15 ± 0.03 14.56 

Monroe Run 0.81 ± 0.06 0.60 ± 0.06 0.09 ± 0.02 14.71 

Mill Run 1.02 ± 0.07 0.52 ± 0.06 0.06 ± 0.01 12.26 

Poplar Lick 0.95 ± 0.06 0.76 ± 0.09 0.08 ± 0.02 10.74 

     

Overall Mean 1.39 ± 0.14 0.94 ± 0.08 0.11 ± 0.01 12.06 ± 0.88 
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Table 7 Pearson product-moment Correlation table of ¼ root transformed total Hg data, 

weight, SVL, length.  Significant correlations (P < 0.05) are marked with an asterisk. 

 ¼ Root Total Hg Weight SVL 

Adults    

Weight 0.098   

SVL 0.143  0.947*  

Length -0.023  0.232*  0.295* 

    

Larvae    

Weight -0.071   

SVL 0.073  0.884*  

Length 0.02  0.913*  0.952* 
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Table 8 Pearson product-moment correlation table of ¼ root transformed mean total mercury concentrations in adult and larval 

northern two-lined salamanders and mean water chemistry factors.  Significant correlations (P < 0.05) are marked with an asterisk. 

 ¼ Root Total Hg pH ANC THg MeHg DOC TSS Cl-1 NO3
-1 

Adult          

pH -0.537         

ANC -0.211  0.843*        

THg 0.639 -0.948* -0.71       

MeHg  0.756* -0.898* -0.567  0.931*      

DOC 0.688 -0.888* -0.517  0.935*  0.963*     

TSS 0.333 -0.437 -0.695 0.354 0.24 0.187    

Cl-1 -0.042 0.394 0.748 -0.265 -0.107 0.036 -0.611   

NO3
-1 -0.625 0.437 0.407 -0.411 -0.462 -0.275 -0.278 0.652  

SO4
-2 -0.625 0.437 0.407 -0.411 -0.462 -0.275 -0.278 0.652  1.000* 

          

Larvae          

pH -0.592         

ANC -0.173  0.843*        

THg 0.611 -0.948* -0.71       

MeHg  0.786* -0.898* -0.567  0.931*      

DOC  0.768* -0.888* -0.517  0.935*  0.963*     

TSS 0.105 -0.437 -0.695 0.354 0.24 0.187    

Cl-1 0.121 0.394 0.748 -0.265 -0.107 0.036 -0.611   

NO3
-1 -0.519 0.437 0.407 -0.411 -0.462 -0.275 -0.278 0.652  

SO4
-2 -0.519 0.437 0.407 -0.411 -0.462 -0.275 -0.278 0.652  1.000* 
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Figure 1 Map of streams sampled in Garrett County, MD within the Youghiogheny and 

Savage River Watersheds. 
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Figure 2 Mean Total Mercury Concentrations between adult and larval northern two-

lined salamanders from Bear Creek (BC), Bear Pen (BP), Little Savage River (LSR), 

Mud Lick (ML), Monroe Run (MON), Mill Run (MR), and Poplar Lick (PL) in Garrett 

County, MD (±SE). 
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Figure 3 Interaction plot of life stage and stream site for mean total mercury 

concentrations in northern two-lined salamanders from Bear Creek (BC), Bear Pen (BP), 

Little Savage River (LSR), Mud Lick (ML), Monroe Run (MON), Mill Run (MR), and 

Poplar Lick (PL) in Garrett County, MD. 
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CHAPTER 2: MERCURY CONCENTRATIONS IN THREE 

SPECIES OF SALAMANDERS IN STREAMS OF 

GARRETT COUNTY, MARYLAND 

 

ABSTRACT 

 The purpose of this study was to examine differences in total mercury 

concentrations among three species of stream salamanders across six streams in Garrett 

County, MD.  We measured total mercury concentrations in adults of two species, the 

northern two-lined salamander (Eurycea bislineata bislineata) and the northern dusky 

salamander (Desmognathus fuscus) collected in April, July, and September 2010.  We 

also measured total mercury concentrations in adults of the Allegheny Mountain dusky 

salamander (Desmognathus ocrophaeus) collected in July and September 2010.  

Averaged over all streams, adult northern two-lined salamanders had significantly higher 

mean total mercury concentrations (29.57 ± 1.32 ng g-1) than adult northern dusky (20.95 

± 0.78 ng g-1) and mountain dusky salamanders (22.84 ± 1.23 ng g-1).  Adult northern 

dusky and mountain dusky salamanders were not significantly different.  This may be due 

to the longer larval period of the northern two-lined salamanders (24-36 months) 

compared to northern dusky (9-12 months) and Allegheny Mountain dusky salamanders 

(0-3 months).  A longer larval period suggests that the northern two-lined salamanders 

were consuming a fully aquatic diet, which may be higher in mercury, for a longer time 

period.  Mean tissue total mercury concentrations in northern dusky salamanders were 

more highly correlated with stream water methyl mercury concentrations (r = 0.898) than 

northern two-lined salamanders (r = 0.776) and Allegheny Mountain dusky salamanders 
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(r = 0.748).  Mercury concentrations in the tissues the three species were highest at two 

study streams.  These two streams also had the highest concentrations of total and methyl 

mercury as well as DOC, which may indicate higher concentrations of mercury in the 

prey species of the salamanders.  These variations indicate the importance further study 

into mercury concentrations in stream salamanders. 
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INTRODUCTION  

 Fish that are consumed by humans have long been a focus of mercury research, 

but little is known about the concentrations of mercury that can be measured in smaller 

animals such as salamanders that occupy lower trophic levels.  Salamanders and other 

amphibians are unique, both in their physiology and in their life cycles.  Aquatic egg and 

larval stages metamorphose into terrestrial adults in many species.  Other species spend 

their entire lives in the water, some entirely on land.  There has only been one study 

measuring mercury concentrations in streams in western Maryland, which focused on 

adult and larval northern two-lined salamanders (Castro et al. 2018).  This study 

measured higher concentrations in adult salamanders than the larvae at most streams, 

with two streams having statistically similar concentrations between the adults and 

larvae.  Several other recent studies have identified significant mercury concentrations in 

salamanders and other amphibians in streams with similar mercury concentrations to 

those in Western Maryland (Bank et al. 2005) and in contaminated streams with 

significantly higher mercury concentrations (Bergeron et al. 2010; Burke et al. 2010).  

With the exception of Bergeron et al. (2010), these studies have all focused on one 

species, the northern two-lined salamander.  The unique physiology and life history of 

salamanders make them effective indices of pollution, including mercury contamination, 

in stream ecosystems (Bank et al. 2005, Southerland 2004).  In order to better understand 

the dynamics of mercury movement throughout stream habitats it is important to gain a 

greater knowledge of the differences in mercury concentrations among different species 

of stream salamander. 
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 This study compared mercury concentrations in adults of three species of stream 

salamander collected from six streams in Garrett County Maryland.  The species 

examined here include northern dusky (Desmognathus fuscus), northern two-lined 

(Eurycea bislineata bislineata), and Allegheny Mountain dusky salamanders (D. 

ocrophaeus).  These three species are common streamside inhabitants found along rocky 

streams.  Northern dusky salamanders are found under cover items rarely more than a 

meter from the stream edge.  Northern two-lined salamanders are also often found under 

rocks and other cover items at the stream edge, though they do disperse into the 

surrounding uplands and can be found several meters from the stream edge.  Allegheny 

Mountain dusky salamanders share habitat with the other two species but can be found 

farther from streams and are often encountered in the upland areas surrounding streams.  

The extensive, overlapping ranges of these three species and their shared habitat 

preferences make them good candidates to be used to compare mercury contamination 

and mercury bioaccumulation across wide regions (Lannoo 2005, Petranka 1998). 

 Northern dusky salamanders and northern two-lined salamanders have similar life 

histories.  Both species have fully aquatic larvae, but the time spent in the larval stage 

differs between the two species.  Northern two-lined salamanders can remain as larvae 

for up to three years, while the larval period of the northern dusky salamanders last for 

nine to twelve months.  Both northern dusky and northern two-lined larvae feed on a 

wide variety of small aquatic macroinvertebrates.  The aquatic diets of the larval stage of 

these two species expose them to potentially high concentrations of mercury.  Adults of 

these species have differing diets, however, which potentially expose them to different 

amounts of mercury throughout their lives.  Northern dusky adults consume a mixture of 
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aquatic and terrestrial macroinvertebrates as well as the molted skins and larvae of other 

northern dusky salamanders.  Adult northern two-lined salamanders also consume a 

mixture of aquatic and terrestrial macroinvertebrates, with a bias more towards terrestrial 

prey (Petranka 1998, Lannoo 2005).  Terrestrial macroinvertebrates can range 

significantly in tissue total mercury concentrations (Rimmer et al. 2010).  It was assumed 

that the more terrestrial diet of the northern two-lined salamanders would expose them to 

lower concentrations of mercury than the northern dusky salamanders.  Though the 

previous research by Castro et al. (2018)  and the work by Rimmer et al. indicate that this 

assumption may not be correct. 

Allegheny Mountain dusky salamanders are distinctly more terrestrial than the 

other species in this study.  Their eggs are laid under moist logs, and these salamanders 

have a short-lived larval stage of 0-3 months.  Larval Allegheny Mountain dusky 

salamanders can remain on land if conditions are moist enough.  Both adults and larvae 

eat mostly terrestrial macroinvertebrates (Lannoo 2005, Petranka 1998).  The lack of a 

long aquatic larval period potentially exposes the Allegheny Mountain dusky 

salamanders to lower concentrations of mercury.   

Aquatic macroinvertebrates are likely an important source of mercury for all three 

species of salamander (Prepas et al. 2005, Castro et al. 2006, Kelly et al. 2006, Zizek et 

al. 2007, Cremona et al. 2008).  However, the impact of terrestrial diets on mercury 

accumulation is not well understood. 

The objective of the study was to identify differences in mercury concentrations 

between species of stream salamander.  From the data of Bank et al. (2005) and Bergeron 

et al. (2010), as well as lifecycle similarities and differences between these three species, 
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we hypothesized that because of their longer larval period northern two-lined 

salamanders would accumulate significantly more mercury than the other two species.  

We also hypothesized that because of their terrestrial lifestyles and diets, the Allegheny 

Mountain dusky salamanders would accumulate significantly less mercury than the other 

two species. 

 

METHODS 

Study Streams 

We studied salamanders in six first-order streams in western Maryland.  Five 

streams were located in the Savage River watershed and one stream was located in the 

Youghiogheny River watershed (Fig. 4).  Mean pH and ANC in these streams ranged 

from 5.98 to 6.70 and from 43.9 µeq L-1 to 467.8 µeq L-1 respectively.  These small 

streams drained watersheds dominated by forest (62% to 97%) and agriculture (<1% to 

29%).  Watershed area ranged from 555 ha at Little Savage River to 4,365 ha at Mill 

Run.  However, most watersheds were less than 2,200 ha (Table 10).  Our study streams 

and watersheds are similar to those found throughout the Appalachian Plateau region of 

western Maryland. 

 

Field Sampling  

 We collected salamanders in April, July, and September of 2010 using visual 

encounter surveys.  To collect adult salamanders, cover objects were overturned within 2 

m of the stream edge.  Survey sampling for salamanders lasted for 2 to 6 hours at each 

stream.  Salamanders were collected using a small aquarium dip net.  After capture, they 
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were transported in glass jars to the Appalachian Laboratory (AL) in Frostburg, MD.  We 

attempted to collect 10 adult salamanders per species per stream for each sampling. The 

total number of samples at individual streams ranged from 6 to 20 for Allegheny 

Mountain dusky salamanders, 11 to 30 for northern two-lined salamanders, and 25 to 30 

for northern dusky salamanders due to time, weather, and other sampling constraints 

(Table 9).  Dry conditions during summer likely reduced the number of individuals 

collected.   

 

Water Chemistry 

Stream water was sampled monthly from April through December 2010 with the 

exception September.  Measurements of water temperature, specific conductivity, and pH 

were made in situ using a Hydrolab Quanta model sonde, which was calibrated prior to 

each sampling.  Grab samples of stream water were collected in acid cleaned high density 

polyethylene (HDPE) bottles for lab analysis of closed pH, ANC, total and methyl 

mercury, dissolved organic carbon (DOC), total suspended solids (TSS), chloride (Cl-1), 

nitrate (NO3
-1), and sulfate (SO4

-2).  Water samples were filtered through 0.45 µm 

Whatman glass fiber filters for TSS and DOC.  Mercury samples were collected in ultra 

clean 1 L Teflon bottles and double Ziploc bagged using the “clean hand/dirty hand” 

technique (EPA method 1639).  All samples were placed on ice and transported in 

coolers to the AL for analysis.  Samples were stored at -4ºC and were analyzed within 1 

month of collection using EPA protocols (Table 11). 
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Total Mercury in Salamanders 

At AL, the live salamanders were euthanized in a buffered 10 g L-1 solution of 

methane tricainesulfonate (MS-222).  Once euthanized, salamanders were measured for 

weight, total length, and snout-vent length (SVL).  Salamanders were then double bagged 

and frozen at -22ºC until analyzed.  All analyses were completed within 3 months of 

sample collection.  Prior to analysis, salamanders were thawed and allowed to reach room 

temperature.  Afterwards, whole salamanders were digested overnight in an acid solution 

of 70% concentrated sulfuric acid and 30% concentrated nitric acid.  The following day, 

100-150 µL of digestion solution and 250 µL of bromine mono-chloride (BrCl) were 

added to 50 mL of distilled de-ionized water in separate 65 mL ultra-clean FEP Teflon 

auto-analyzer vials.  The total mercury concentration in this solution was measured using 

cold vapor atomic fluorescence spectroscopy (CVAFS) in a Tekran 2600 CVAFS 

mercury analysis system in the class 100 clean room at AL (EPA Method 1631). 

 

Quality Assurance/Quality Control (QA/QC) 

Independent standards were used as QA/QC checks in all water chemistry and 

tissue analyses.  Instrument calibration required an r2 > 0.99 for the calibration curve.  All 

samples were within our standard range (0.2 – 56.6 ng L-1).  Field replicates were 

randomly collected from three streams for each monthly water sampling, and two lab 

duplicates were analyzed for every set of samples.  For tissue samples, duplicates were 

analyzed every tenth tissue digest.  Replicates and duplicates were acceptable with < 5% 

variation.  Due to the <1g of tissue available, replicates could not be taken from 

individual salamanders.  We analyzed two replicates of DORM-3 fish protein (National 
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Research Council of Canada) with each set of salamander tissue samples.  The acceptable 

range of total mercury concentrations for DORM-3 was 322 ng g-1 to 442 ng g-1.  Our 

DORM-3 samples averaged 367.8 ± 5.4 ng g-1 within a range of 323.1 ng g-1 to 434.7 ng 

g-1. 

 

Statistical Analysis  

Total mercury concentrations in salamanders were analyzed using a nested 

ANOVA to assess the differences in total mercury concentrations among species and 

among streams.  Salamander species, stream, and the interaction term between species 

and stream were fixed effects in the model.  We included the seasonal samplings as a 

random effect in the model to account for pseudo-replication within the data set.  Factors 

used in the ANOVA were tested for normality using the Lilliefors test of normality, prior 

to analysis.  We transformed total mercury data using a ¼ root transformation to address 

non-normality of data.  This transformation provided the best balance between normality 

of residuals in the model and homogeneity of variances.  The transformed residuals 

passed Lilliefors test of normality (P < 0.05).  Transformed total mercury concentrations 

were also tested for correlation with salamander weight, snout-vent length (SVL), and 

length using Pearson Product-Moment Correlation tests. 

Salamander weight, length and SVL were analyzed in separate 2-way ANOVA’s.  

The terms in the model were salamander species, stream site, and the interaction between 

species and site.  The interaction terms were non-significant and were subsequently 

removed from the models. 
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The mean values for the monthly stream water chemistry data were then used in a 

Pearson Product-Moment Correlation analysis with the mean total mercury 

concentrations for each species at each stream.  All statistical analyses were performed 

using the Linear and Nonlinear Mixed Effects Models (nlme) package in the R-Project 

(version 2.12) (R Development Core Team 2009, Pinheiro et al. 2011). 

 

RESULTS 

Salamander Weight, SVL, and Length 

 The overall mean weight for northern dusky salamander was 2.31 ± 0.09 g within 

a range of 0.28 g and 5.69 g, which is significantly greater than the mean weights for the 

other two species (P < 0.05).  The overall mean weight for northern two-lined 

salamanders was 0.79 ± 0.04 g within a range of 0.15 g to 1.91 g, and the overall mean 

weight for Allegheny Mountain dusky salamanders was 0.99 ± 0.04 g within a range of 

0.12 g to 2.01 g.  Northern two-lined salamanders and Allegheny Mountain dusky 

salamanders had statistically similar weights. 

Northern dusky salamanders also significantly longer mean SVL than the other 

two species (P < 0.05). The overall mean SVL for northern dusky salamanders was 45.58 

± 0.61 mm within a range of 23.6 mm to 62.6 mm.  The overall mean SVL for northern 

two-lined salamanders was 34.96 ± 0.62 mm within a range of 21.0 mm to 48.2 mm, and 

the overall mean SVL for Allegheny Mountain dusky salamanders was 36.01 ± 0.63 mm 

within a range of 17.8 mm to 47.2 mm.  Northern two-lined salamanders and Allegheny 

Mountain dusky salamanders had statistically similar SVL. 
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Northern Dusky salamanders had significantly longer total lengths than the other 

two species at 89.06 ± 1.22 mm within a range of 46.5 mm to 124.2 mm (not including 

15 individuals with missing tails) (P < 0.05).  The overall mean total length for northern 

two-lined salamanders was 75.53 ± 1.70 mm within a range of 40.5 mm to 117.8 mm (not 

including 6 individuals with missing tails).  The overall mean total length for Allegheny 

Mountain dusky salamanders was 76.03 ± 1.51 mm within a range of 34.3 mm to 102.3 

mm (not including 5 individuals missing tails).  Northern two-lined salamanders and 

Allegheny Mountain dusky salamanders were statistically similar in total length. 

 

Total Mercury Concentrations in Adult Salamanders 

Total mercury concentrations in adult salamanders were significantly different 

among species (F = 30.905, P < 0.001) and streams (F = 8.740, P = 0.0011).  Mean total 

mercury concentrations in northern dusky salamanders (20.95 ± 0.78 ng g-1) and 

Allegheny Mountain dusky (22.84 ± 1.23 ng g-1) were significantly lower than northern 

two-lined salamanders (29.57 ± 1.32 ng g-1) (P < 0.0001), but not different from each 

other across all streams  (P = 0.145).  There was no significant interaction between 

species and stream, so the interaction term was removed from the model.   

 

Mercury and DOC in Streams 

 Total mercury, methyl mercury, and DOC concentrations varied across streams.  

Mean stream total mercury ranged from 0.52 ± 0.06 ng L-1 at Mill Run to 2.25 ± 0.26 ng 

L-1 at Little Savage River.  Mean methyl mercury ranged from 0.06 ± 0.01 ng L-1 at Mill 

Run to 0.21 ± 0.05 ng L-1 at Little Savage River.  Mean DOC ranged from 0.81 ± 0.06 
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mg L-1 at Monroe Run to 3.51 ± 0.24 mg L-1 at Little Savage River.  Percent methyl 

mercury of total mercury ranged from 9.43 % at Little Savage River to 14.71 % at 

Monroe Run. 

 

Correlation Analyses 

For Allegheny Mountain dusky salamanders both weight (r = 0.262, P = 0.0065) 

and SVL (r = 0.369, P < 0.001) were weakly but significantly correlated with ¼ root 

transformed total mercury concentrations.  In northern two-lined salamanders and 

northern dusky salamanders weight, SVL, and total body length were not significantly 

correlated with ¼ root transformed total mercury concentrations (Table 15). 

In only northern dusky salamanders stream total mercury (r = 0.844, P = 0.0347), 

stream methyl mercury (r = 0.898, P = 0.0151), and stream DOC (r = 0.929, P = 0.0073) 

were significantly correlated with ¼ root transformed tissue total mercury concentrations.  

In northern two-lined and Allegheny Mountain dusky salamanders no water chemistry 

factors were significantly correlated with ¼ root transformed tissue total mercury 

concentrations (Table 16).  Despite non-significant P values, correlation coefficients were 

still high.  In northern two-lined salamanders correlation coefficients for stream total 

mercury (r = 0.646, P = 0.1657), stream methyl mercury (r = 0.776, P = 0.0696), and 

stream DOC (r = 0.702, P = 0.1199) were slightly lower than those of the northern dusky 

salamanders.  In Allegheny Mountain dusky salamanders the correlation coefficients for 

stream methyl mercury (r = 0.748, P = 0.0874) and stream DOC (r = 0.673, P = 0.1430) 

were slightly below those of the northern two-lined salamanders.  Correlation analyses 

include data from all streams. 
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DISCUSSION 

We hypothesized that northern two-lined salamanders would have higher 

concentrations of mercury than both northern dusky and Allegheny Mountain dusky 

salamanders.  Our data indicates that northern two-lined salamanders do have 

significantly higher mercury concentrations than northern dusky salamanders at all 

streams and Allegheny Mountain dusky salamanders at most streams.  Previous studies 

indicate northern two-lined salamanders accumulate significant amounts of mercury 

during the larval period (Banks et al. 2005, Castro et al. 2018).  The longer larval period 

(2-3 years compared to 9-12 months), the aquatic diet of larval northern two-lined 

salamanders, and the placement of egg masses in the shallows of the stream may explain 

the higher total mercury concentrations found in the northern two-lined salamanders 

compared to northern dusky salamanders despite the aquatic diet of the adult northern 

dusky salamanders (Castro et al. 2018, Petranka 1998). 

We also hypothesized that the Allegheny Mountain dusky salamander would have 

lower total mercury concentrations than the other two species due to the short to non-

existent larval period and the more terrestrial diet of this species.  Our results, however, 

indicate this was not the case.  The lack of a significant difference in total mercury 

concentrations between the northern dusky salamanders and the Allegheny Mountain 

dusky salamanders does not support our hypothesis.  At Mud Lick and Monroe Run, total 

mercury concentrations in Allegheny Mountain dusky and northern two-lined 

salamanders were similar and were greater than northern dusky salamanders found at the 

same streams (Fig. 5).  This variation is not well explained by differences in stream 
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chemistry as Mud Lick has significantly more total and methyl mercury and DOC than 

Monroe Run, though this variation may be explained by dietary variability between 

populations of Allegheny Mountain dusky salamanders.  Sub-populations of Allegheny 

Mountain dusky salamanders found around different habitat types, such as seepages and 

stream edges, could have significantly different diets which could dramatically impact 

mercury accumulation between individuals captured from different habitats (Lannoo 

2005, Petranka 1998).  The work of Rimmer et al. (2010) indicates that terrestrial 

arthropods, the expected diet of the Allegheny Mountain dusky salamander (Lannoo 

2005, Petranka 1998), are higher in mercury concentrations than we originally assumed.  

We removed one undigested caterpillar of an unknown species from the stomach of an 

Allegheny Mountain dusky salamander from Mill Run and analyzed it for total mercury.  

The caterpillar had a weight of 0.08 g and a total mercury concentration of 5.45 ng g-1.  

Similar caterpillars were seen in the stomachs of other Allegheny Mountain dusky 

salamanders but were not analyzed due to more advanced digestion in those samples.  

This single sample was comparable to the low end of the range (7 ng g-1 to 108 ng g-1) 

from Lepidoptera larvae published by Rimmer et al.  Data from Castro et al. (2007) 

shows that this caterpillar has a lower concentration of total mercury than the mean 

concentrations measured in many species of aquatic macroinvertebrates collected from 

nearby streams.  The large range published by Rimmer et al. is comparable to the data 

published by Castro et al.  It is possible that the mercury concentrations found in the 

terrestrial arthropods being consumed by the Allegheny Mountain dusky salamander 

adults are comparable to the concentrations found the aquatic benthic macroinvertebrates 

being consumed by the northern dusky salamanders and the larvae of the northern two-
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lined salamanders.  This would explain the statistically similar concentrations found 

between these species. 

Differences in total mercury concentrations between species of stream salamander 

may also be explained by differences in metabolic efficiency.  Northern dusky 

salamanders are significantly larger than the other two species (Table 12).  It is possible 

that the lower concentrations of total mercury found in the northern dusky salamanders 

may be explained by a higher biomass dilution of the mercury.  If northern dusky 

salamanders are more metabolically efficient they may be consuming and incorporating 

less mercury into their biomass, resulting in lower concentrations of total mercury in their 

tissues.  The high concentrations of total mercury found in Allegheny Mountain dusky 

salamanders at Mud Lick and Monroe run may be explained by lower metabolic 

efficiency.  If the Allegheny Mountain dusky salamanders are consuming a higher 

volume of prey per gram of biomass, they may be consuming and incorporating higher 

amounts of mercury.  The same may be true of northern two-lined salamanders.  Lower 

metabolic efficiency combined with the potentially high total mercury aquatic diet of the 

larval northern two-lined salamanders may explain the higher concentrations of total 

mercury.  Studies of the metabolic rates of northern two-lined salamanders and 

Allegheny Mountain dusky salamanders indicate that these two species have similar 

metabolic energy assimilation efficiencies (~86%) (Fitzpatrick 1973, Fitzpatrick 1973).  

The metabolic energy assimilation of the northern dusky is unknown but other studies 

have indicated similar metabolic acclimation to temperature changes between northern 

dusky salamanders and Allegheny Mountain dusky salamanders (Fitzpatrick et al. 1971).  

Further study into the metabolic efficiencies of these species are needed to better 
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understand the potential impacts this may have on the mercury concentrations in stream 

salamanders. 

Only Allegheny Mountain dusky salamanders had tissue total mercury 

concentrations that were significantly correlated with weight and SVL, though these were 

weak correlations (weight: r = 0.262, SVL: r = 0.369).  This may indicate that Allegheny 

Mountain dusky salamanders are accumulating mercury at similar rates throughout their 

lives and the other species have variable rates of accumulation between their larval and 

adult life stages.   

Northern dusky salamanders were significantly correlated with stream total and 

methyl mercury and DOC.  Total mercury concentrations in northern two-lined and 

Allegheny Mountain dusky salamanders were not significantly correlated with any water 

quality factors.  Comparing correlation coefficients among the three species showed 

decreasing correlation between tissue total mercury and stream water chemistry factors 

from adult northern dusky to northern two-lined to Allegheny Mountain dusky 

salamanders.  DOC concentrations in streams have been shown to affect mercury 

bioaccumulation in stream organisms (Balogh et al. 2003, Brigham et al. 2009).  Based 

on the correlation coefficients between the three species, DOC is more positively 

correlated with tissue total mercury in the aquatic northern dusky salamanders than in the 

other two more terrestrial species.  Life history accounts describe the northern dusky 

salamanders as staying closest to streams with northern two-lined salamanders staying 

close but venturing farther away, and the Allegheny Mountain dusky salamanders 

venturing the farthest from the streams.  This indicates that as species become more 
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terrestrial, total mercury concentrations are less correlated with stream water chemistry 

factors. 

Mercury concentrations in all three species were highest at two streams, Little 

Savage River and Mud Lick.  These results mirror the results of Castro et al. (2018), 

where the concentrations of adult and larval northern two-lined salamanders were 

significantly higher at these two streams than at other sampled streams.  These two 

streams had the highest concentrations of both total and methyl mercury as well as DOC 

of the sampled streams.  The higher stream concentrations of mercury may indicate 

higher concentrations of mercury in the prey species of the salamanders resulting in 

higher tissue concentrations in the adults.  The high amount of variation in mercury 

concentration across streams may be indicative of dietary variability among different 

populations of the stream salamanders.  Other researchers have observed dietary 

variability among different populations of many species of stream salamander, including 

the northern dusky, northern two-lined, and Allegheny Mountain dusky salamanders 

(Lannoo 2005, Petranka 1998).  

 

CONCLUSION 

Our results show that northern two-lined salamanders had significantly higher 

mercury concentrations than the other two species in this study.  These results support 

our original hypothesis and we attribute this to the long larval stage of the northern two-

lined salamanders.  Contrary to our other hypothesis our results show that Allegheny 

Mountain dusky salamanders and northern dusky salamanders have statistically similar 

mercury concentrations.  The higher than expected mercury concentrations in the 
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Allegheny Mountain dusky salamander may be a result of lower metabolic efficiencies in 

this species.  

Dietary differences among the different species of stream salamander likely plays 

a large role in the mercury dynamics of these three species.  Variability in diet both 

within a population and among different populations may also explain some of the 

variation in mercury concentrations seen in this study.  Further study should focus on the 

potential microhabitat differences in mercury accumulation within populations of 

Allegheny Mountain dusky salamanders.  It is likely that the terrestrial diet of the 

Allegheny Mountain dusky salamander is higher in mercury that was assumed at the 

outset of this study.  Further studies should examine the dietary sources of mercury for 

salamanders and potential differences in metabolic efficiency among species, as this may 

drive a significant part of the variation in mercury concentrations measured across 

populations of salamanders.  Study into the differences in mercury concentrations 

between the different life stages of northern dusky and Allegheny Mountain dusky 

salamanders can also increase the understanding of the dynamics behind mercury 

accumulation in stream salamanders. 
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TABLES AND FIGURES 

Table 9 Streams sampled in Garrett County, Maryland, 2010 and number of salamanders 

collected per stream. 

Stream Name Number of Salamanders Salamanders Missing Tails 

  ND NTL MD ND NTL MD 

Bear Pen 25 24 20 2 3  

Little Savage River 20 10 20 2  1 

Mud Lick (ML) 30 30 6 1 1  

Monroe Run (MON) 30 16 21 5 1 2 

Mill Run (MR) 29 20 20 4 1 2 

Poplar Lick (PL) 30 11 20 1   

       

Total 164 111 107 15 6 5 
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Table 10 Watershed composition and land use of streams sampled in Garrett County, 

MD. 

  Land Use (%) Forest type (%)  Total Area 

Stream Wet. Ag. Dev. For. Bare Decid. Ever. Mixed  (Ha) 

Bear Pen  0 9.88 1.57 88.07 0.48 84.34 2.44 1.29 867 

L. Sav. River 0.14 0.3 1.95 95.21 0.21 70.96 22.47 1.77 555 

Mud Lick 0 29.1 7.73 61.92 1.2 42.92 18.07 0.93 1432 

Monroe Run 0 2.68 4.8 92.46 0.05 87.69 3.97 0.8 1201 

Mill Run 0 15.61 9.42 74.28 0.59 69.72 3.86 0.7 4365 

Poplar Lick  0.18 5.46 3.36 89.74 0.9 67.68 19.81 2.26 2139 
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Table 11 Methods used in water chemistry analysis of streams in Garrett County, 

Maryland, 2010. 

 Procedure for Sample 

Preparation 

Method of Analysis 

Dissolved Organic 

Carbon 

EPA Method 415.3 Ultraviolet Absorbance at 254 nm 

Total Suspended Solids ESS Method 340.3 Filtration and Drying to 103-105 C 

Major Anions (Cl-, NO3
-

, SO4
2-) 

EPA Method 300 Rev 2.1 Ion Chromatography 

Acid Neutralizing 

Capacity 

 Gran Analysis Technique 

pH EPA Method 150.1 Electrometric Determination 

Total Mercury EPA Method 1631 Cold Vapor Atomic Fluorescence 

Spectrophotometry (CVAFS) 
Methyl Mercury EPA Method 1630 Ethylation and Preconcentration Purge and 

Trap Techniques 

 



 58

Table 12 Mean weight (±SE), SVL (±SE), and total length (±SE) for northern dusky (ND), northern two-lined (NTL), and Allegheny 

Mountain dusky salamanders (MD) sampled from Garrett County, MD.  Individuals that had visibly lost a portion of their tail were 

not included in the average total length. 

  Mean Weight (g) Mean SVL (mm) Mean Length (mm) 

Site ND NTL MD ND NTL MD ND NTL MD 

Bear Pen 2.22 ± 0.24 0.52 ± 0.05 0.90 ± 0.08 44.60 ± 1.66 30.78 ± 1.00 35.53 ± 1.14 86.83 ± 2.64 63.27 ± 2.62 73.63 ± 2.54 

Little Savage River 2.08 ± 0.25 0.80 ± 0.12 0.89 ± 0.08 43.74 ± 1.78 35.57 ± 1.94 35.00 ± 1.37 83.17 ± 3.11 75.27 ± 4.89 73.39 ± 3.33 

Mud Lick 2.04 ± 0.16 0.78 ± 0.06 1.02 ± 0.08 44.17 ± 1.35 35.55 ± 1.26 37.35 ± 1.29 88.61 ± 2.93 75.45 ± 3.28 77.20 ± 4.24 

Monroe Run 3.17 ± 0.20 1.03 ± 0.10 1.06 ± 0.10 50.26 ± 1.06 38.48 ± 1.09 37.44 ± 1.36 96.99 ± 2.41 84.02 ± 3.33 77.18 ± 3.07 

Mill Run 2.02 ± 0.19 0.84 ± 0.10 0.94 ± 0.13 44.64 ± 1.55 35.53 ± 1.69 34.34 ± 2.12 88.00 ± 3.16 80.71 ± 4.68 75.31 ± 5.37 

Poplar Lick 2.23 ± 0.19 0.93 ± 0.14 1.15 ± 0.09 45.28 ± 1.50 35.74 ± 1.97 37.29 ± 1.29 88.97 ± 3.07 78.85 ± 5.29 80.17 ± 3.19 
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Table 13 Mean total mercury concentrations (SE) for adult northern dusky (ND) 

Allegheny Mountain dusky (MD) and northern two-lined (NTL) salamanders in streams 

in Garrett county, Maryland, 2010.  Asterisks indicate mercury concentrations at Little 

Savage River and Mud Lick were significantly higher for all three species. 

 Mean Total Mercury (ng g-1) 

Stream ND n NTL n MD n 

Bear Pen 14.59 ± 1.09  25 24.54 ± 1.65  24 15.66 ± 1.16 20 

Little Savage River 32.08 ± 2.40 * 20 36.53 ± 4.34 * 10 32.75 ± 3.69 * 20 

Mud Lick 28.66 ± 2.06 * 30 40.97 ± 2.69 * 30 44.20 ± 5.55 * 6 

Monroe Run 16.26 ± 0.84  30 22.87 ± 1.56  16 23.40 ± 2.14 21 

Mill Run 17.10 ± 1.17  29 19.36 ± 1.76  20 15.84 ± 1.43 20 

Poplar Lick 19.55 ± 1.32 30 31.45 ± 4.64 11 20.14 ± 1.61 20 

       

Overall Mean 20.95±0.78 164 29.57±1.32 111 22.84±1.23 107 
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Table 14 Mean dissolved organic carbon (DOC) (±SE), total mercury (THg) (±SE), 

methyl mercury (MeHg) (±SE), and methylation efficiency (MeHgeff) in streams in 

Garrett County, MD. 

  Mean DOC Mean THg Mean MeHg Mean MeHg 

Stream mg L-1  ng L-1  ng L-1 Percent 

Bear Pen 0.84 ± 0.06 0.66 ± 0.05 0.09 ± 0.02 12.59 

Little Savage River 3.51 ± 0.24 2.25 ± 0.21 0.21 ± 0.05 9.43 

Mud Lick 2.06 ± 0.25 1.00 ± 0.10 0.15 ± 0.03 14.56 

Monroe Run 0.81 ± 0.06 0.60 ± 0.06 0.09 ± 0.02 14.71 

Mill Run 1.02 ± 0.07 0.52 ± 0.06 0.06 ± 0.01 12.26 

Poplar Lick 0.95 ± 0.06 0.76 ± 0.09 0.08 ± 0.02 10.74 

     

Overall Mean 1.39 ± 0.14 0.94 ± 0.08 0.11 ± 0.01 12.06 ± 0.88 
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Table 15 Pearson product-moment correlation tables of ¼ root transformed total mercury 

concentrations in adult northern dusky (ND) allegheny mountain dusky (MD) and 

northern two-lined (NTL) salamanders and salamander weight, snout-vent length (SVL), 

and total length.  Asterisks indicate significant correlations (P < 0.05). 

 RootTotal Hg Weight SVL 

ND       

RootTotal Hg    

Weight 0.059   

SVL 0.126  0.940*  

Length -0.063 -0.385* -0.293* 

        

NTL       

RootTotal Hg    

Weight 0.098   

SVL 0.143  0.947*  

Length -0.023  0.229*  0.291* 

        

MD       

RootTotal Hg    

Weight  0.262*   

SVL  0.369*  0.921*  

Length 0.135  0.578*  0.627* 
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Table 16 Pearson product-moment correlation coefficients for ¼ root transformed total 

mercury concentrations in adult northern dusky (ND) Allegheny Mountain dusky (MD) 

and northern two-lined (NTL) salamanders and stream water chemistry factors.  Asterisks 

indicate significant correlations (P < 0.05). 

  RootTotal Hg RootTotal Hg RootTotal Hg 

  ND NTL MD 

        

pH -0.701 -0.572 -0.397 

ANC -0.26 -0.26 0.05 

THg  0.844* 0.646 0.537 

MeHg  0.898* 0.776 0.748 

DOC  0.929* 0.702 0.673 

TSS 0.14 0.378 -0.093 

Cl 0.077 -0.146 0.177 

NO3 -0.671 -0.566 -0.375 

SO4 -0.428 -0.696 -0.567 
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Figure 4 Stream Sites sampled in the Savage River and Youghiogheny River Watersheds 
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Figure 5 Mean total mercury concentrations (ng g-1) for adult northern dusky (ND) 

Allegheny Mountain dusky (MD) and northern two-lined (NTL) salamanders for each 

sampled stream, Bear Pen (BP), Little Savage River (LSR), Mud Lick (ML), Monroe 

Run (MON), Mill Run (MR), and Poplar Lick (PL).  Error bars are ± 1 SE. 
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CHAPTER 3: THE INFLUENCE OF WATER CHEMISTRY 

FACTORS ON TISSUE TOTAL MERCURY 

CONCENTRATIONS IN STREAM SALAMANDERS IN 

GARRETT COUNTY MARYLAND 

 

ABSTRACT 

This study examined the potential influence of stream water chemistry on tissue 

total mercury concentrations in three species of salamander in Garrett County, MD.  We 

collected adults of two species, the northern two-lined salamander (Eurycea bislineata 

bislineata) and the northern dusky salamander (Desmognathus fuscus) in April, July, and 

September 2010.  Northern two-lined salamanders were collected from seven first order 

streams, and northern dusky salamanders were collected from 6 first order streams.  

Adult Allegheny Mountain dusky salamanders (Desmognathus ocrophaeus) were 

collected in July and September 2010 from nine first order streams.  Water chemistry was 

sampled monthly from April 2010 through December 2010, excluding September. Mean 

salamander tissue total mercury concentrations were significantly correlated with mean 

stream methyl mercury concentrations in northern dusky salamanders (P = 0.0180, r = 

0.888), and Allegheny Mountain dusky salamanders (P = 0.0361, r = 0.699).  Regression 

analysis indicated that stream total mercury, dissolved organic carbon (DOC), and stream 

sulfate concentrations were significant drivers of stream methyl mercury concentrations.  

Mean stream DOC was significantly correlated with mean salamander tissue total 

mercury concentrations in Allegheny Mountain dusky salamanders (P = 0.0268, r = 

0.726) and northern dusky salamanders (P = 0.0053, r = 0.940).  Regression analysis 
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indicated a significant relationship between DOC and stream total mercury, stream 

chloride, and stream nitrate.  Stream water chemistry has a significant influence on 

salamander mercury concentrations, specifically stream mercury concentrations and 

DOC, though further study is needed to better understand these relationships. 
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INTRODUCTION 

The volatile chemical nature of mercury and the variety of anthropogenic sources 

of mercury to the atmosphere, such as the emissions of coal fired power plants, have led 

to the global distribution of mercury pollution.  The mercury biogeochemical cycle is 

complex, involving chemical transformations in the atmosphere and chemical and 

biological transformations in terrestrial and aquatic ecosystems.  In the atmosphere, 

elemental mercury (Hg0) is transformed to the more reactive form (Hg2+), which then 

forms complexes with a variety of halogens and can be rapidly deposited to the landscape 

(Lindberg et al. 2007).  There, mercury is converted to methyl mercury through the 

actions of sulfate-reducing bacteria and other bacteria species in moist, anaerobic soils 

and under anaerobic conditions in wetland and aquatic environments (Langley 1973, 

Gilmour et al. 1991).  Methyl mercury is more toxic and bio available than the elemental 

form of mercury.  This toxic form can be readily accumulated by organisms and 

magnified up the trophic scale (Mason et al. 1996, Ward et al. 2010). 

The drivers and mechanisms of mercury methylation have been studied 

extensively over the past several decades (Langley 1973, Shin and Krenkel 1976, Morel 

et al. 1998, Driscoll et al. 2007).  However, the drivers and mechanisms of the movement 

of mercury through food chains are less understood.  Mercury bioaccumulation has been 

studied extensively in fish (Gilmour and Riedel 2000, Swanson et al. 2003, Hogan et al. 

2007).  There is little information about mercury bioaccumulation in stream salamanders.  

In addition, there has been little study on the influence of stream water chemistry on 

salamander tissue total mercury concentrations.  
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Dissolved organic carbon (DOC) and total suspended solids (TSS) in stream 

water have been identified as important transport vectors of mercury through aquatic 

environments (Grigal 2002).  DOC and TSS mobilize mercury allowing for uptake by 

producers and eventually consumers up the food web.   

The importance of sulfate-reducing bacteria in the methylation of mercury also 

indicates the potential for sulfate concentrations in streams to be an important driver of 

stream mercury concentrations and the bioaccumulation of mercury.  Many stream and 

lake-based studies have identified a strong positive correlation between sulfate additions 

to lakes and streams and increasing mercury methylation (Gilmour et al. 1992). 

Potentially related to this relationship is stream pH and acid neutralizing capacity 

(ANC); lower pH has been linked to increased mercury concentrations in stream 

ecosystems.  ANC is strongly linked to stream pH.  As stream ANC decreases the stream 

water is less able to buffer acidic inputs and the pH of the stream is more likely to 

dramatically decrease during precipitation events due to the acidic nature of rainfall.  

Acidification of stream waters can lead to increased availability of metals, including 

mercury, in the stream water (Gilmour et al. 1992, Ward et al. 2010).  Increased 

availability of mercury may increase bioaccumulation in stream organisms. 

Stream ecosystems are strongly linked to the surrounding watershed.  Not only is 

water chemistry directly tied to the geology of the surrounding region, it is also strongly 

influenced by the plant community found around the stream.  Streams found in evergreen 

forests often have very different water chemistry than those found in deciduous forests or 

in grasslands.  Stream food webs are also strongly linked with the food web in the 

surrounding watershed.  Species such as salamanders, with aquatic and terrestrial life 
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stages, act as a direct link between the two food webs (Petranka 1998, Lanoo 2005).  For 

this reason, salamanders may play an important and little-studied roll in the movement of 

mercury throughout the landscape (Bank et al. 2005).  The terrestrial adults of many 

stream salamander species roam well into riparian zones carrying mercury accumulated 

from the stream during their aquatic larval stage and are important food items for many 

forest inhabitants including birds, snakes, raccoons, foxes, and other predators.  Previous 

studies have shown significant concentrations of mercury in stream salamanders (Bank et 

al. 2005, Bergeron et al. 2010, Burke et al. 2010). 

The purpose of this project was to determine the influence of stream water 

chemistry on tissue total mercury concentrations in stream salamanders.  We measured 

mercury in three species of salamander, the northern dusky salamander (Desmognathus 

fuscus), the northern two-lined salamander (Eurycea bislineata bislineata), and the 

Allegheny Mountain dusky salamander (Desmognathus ocraphaeus) from streams in 

Garrett County, MD.  We simultaneously sampled stream water for pH, ANC, total 

mercury concentration, methyl mercury concentration, DOC, TSS, chloride 

concentration, nitrate concentration, and sulfate concentration.  Our goal was to correlate 

these water chemistry variables with variations in total mercury concentration in 

salamander tissues. 

 

METHODS 

Stream Selection and Study Sites 

Our study streams were located in Garrett County, Maryland and were in the 

Savage River and Youghiogheny River watersheds (Fig. 6).  Streams were first order and 
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drained watersheds of similar land use.  Watersheds ranged from 58 to 96 percent forest, 

and <1 to 32 % agriculture.  Watershed area ranged from 1543 acres to 10929 acres at 

Mill Run.  The largest watershed, Mill Run, is twice the size of the next larger watershed 

in the study, Poplar Lick (Table 18).   

 

Field Sampling 

We collected salamanders in April, July, and September of 2010 using visual 

encounter surveys by overturning cover objects within 2 m of the stream edge.  Survey 

sampling for salamanders lasted for 2-6 hours at each site.  Salamanders were collected 

using a small aquarium dip net and were transported in glass jars to the Appalachian Lab 

in Frostburg, MD. We attempted to collect 10 adults per site for each sampling.  The 

actual number of samples varied due to time, weather, and other sampling constraints 

(Table 17). 

 

Water Chemistry 

Stream water was sampled monthly from April through December 2010 with the 

exception of September.  Measurements of water temperature, specific conductivity, and 

pH were made in situ using a Hydrolab Quanta model sonde.  Sonde pH and conductivity 

sensors were calibrated prior to all sampling trips.  Grab samples of stream water were 

collected with zero headspace in acid cleaned high density polyethylene (HDPE) bottles 

for laboratory analysis of closed pH, ANC, total and methyl mercury, dissolved organic 

carbon (DOC), total suspended solids (TSS), chloride (Cl-1), nitrate (NO3
-1), and sulfate 
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(SO4
-2).  Water samples were filtered using Whatman grade 43 16 μm glass fiber filters in 

the lab for TSS and DOC.   

 

Total Mercury in Salamanders 

Salamanders were euthanized in a buffered 10 g/L solution of MS-222.  Once 

euthanized, salamanders were measured for weight, total length, and snout-vent length 

(SVL).  Salamanders were then frozen in a -22ºC freezer and until analysis.  All analyses 

were completed within 3 months of sample collection.  The entire salamander (.05 – 5 g) 

was digested in 70% concentrated sulfuric acid and 30% concentrated nitric acid.  We 

diluted 100-150 µL of digestion solution to 50 mL with distilled deionized water.   

The total mercury concentration in the digests was measured by CVAFS on a 

Tekran 2600 CVAFS mercury analysis system (EPA 1631). Instrument calibration 

required an r2 > 0.99 for the calibration curve.  All digests were diluted to fit within our 

standard operating range (0.2 – 56.6 ng/g). Duplicate analysis of digests was done on 

every tenth tissue digest, but low sample weights precluded replicate analysis of 

individual salamanders.  Duplicates were acceptable with < 5% difference between the 

replicates. DORM-3 fish protein (National Research Council Canada) was used a 

certified reference material. Averaged recovery of DORM-3 samples carried through the 

digestion and analysis procedure was 368 ng/g. The acceptable range of mercury 

concentrations for the DORM-3 samples is 322 to 442 ng/g.  Digest blanks served as 

analytical blanks. Digest blanks diluted and analyzed in the same way as samples 0.7 ± 

0.3 ng/L.  
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Total Mercury and Methyl Mercury in Stream Water 

Mercury samples were collected in ultra clean Teflon bottles and double Ziploc 

bagged using the “clean hands/dirty hands” technique (EPA method 1639).  All samples 

were placed on ice in the field and transported in coolers to the Appalachian 

Environmental Laboratory (AEL) for analysis.  THg and MeHg samples were stored at -

4ºC and were analyzed within 1 month of collection.  THg and MeHg samples were 

unfiltered prior to analysis due to low TSS concentrations.  Prior to analysis concentrated 

bromine monochloride was added to each THg sample.  MeHg samples were acidified 

using concentrated hydrochloric acid prior to analysis.  Ethylation of these samples was 

performed using sodium tetraethyl borate.  Analyses were performed using the 

appropriate EPA standard analysis technique (Table 19).  Field replicates were randomly 

collected from three streams for each monthly water chemistry sampling, and 2 lab 

duplicates were analyzed for every set of samples.   

 

Statistical Analysis 

Water chemistry data was transformed using a log10 transformation prior to 

analysis, and salamander tissue total mercury data was transformed using a ¼ root 

transformation.  The mean was then calculated for each water chemistry parameter at 

each site.  These means were then run in a Pearson Product-Moment Correlation analysis 

with the mean tissue mercury concentrations for each species at each site. Water 

chemistry factors that were significantly correlated with salamander tissue total mercury 

concentrations were used as response variables in a multiple regression analysis.  Models 

were constructed using a backwards elimination approach resulting in all predictive 
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variables significantly related to the response variables and the lowest Bayesian 

information criteria (BIC).  Square root transformations were used to meet the 

homogeneity of variances and normality of residuals assumptions of multiple regression 

analyses.  All statistical analyses were performed using the R-Project (version 2.12) (R 

Development Core Team 2009). 

 

RESULTS 

Water Chemistry 

The first-order Appalachian streams sampled in this study were circumneutral, 

ionically dilute and low in DOC and suspended solids.  Nitrate averaged about 0.5 mg/L 

and sulfate about 10 mg/L.  Exceptions were Murley Run, where stream water pH was 

usually below 5, and ANC was often negative.   

Murley Run and Little Savage River had pH values below those of the other 

streams, 5.98 ± 0.10 at Little Savage River and 4.59 ± 0.04 at Murley Run.   

ANC varied across streams.  Most streams had ANC values above 100 µeq/L, the 

two exceptions were again Little Savage River (43.9 ± 12.3 µeq/L) and Murley Run ( -

22.3 ± 2.3 µeq/L). 

Laurel Run experienced a large swing in pH and ANC during the sampling 

period.  Crushed limestone was added upstream of our sampling site in an effort to 

remediate low pH between the May and June samplings.  This addition resulted in an 

increase of pH from 4.7 to 7.2 and an increase in ANC from -8.56 µeq/L to 1198.97 

µeq/L (Fig. 10).  
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Streams fall into two categories based on total mercury concentrations.  Four 

streams had mean total mercury concentrations 1.00 ng/L or greater and five streams had 

total mercury concentrations below 1.00 ng/L.  The highest mean total mercury 

concentration was measured at Little Savage River (2.25 ± 0.21 ng/L). 

Mean methyl mercury concentration exhibited similar variation to total mercury.  

Three streams had mean methyl mercury concentrations above 0.10 ng/L, with the 

highest concentration measured at Little Savage River (0.21 ± 0.05 ng/L).  The mean 

methyl mercury concentrations at the other six streams ranged from 0.03 ± 0.00 ng/L to 

0.09 ± 0.02 ng/L.  The percentage of total mercury present as methyl mercury ranged 

from 3.20 ± 2.4 % at Laurel Run to 14.82 ± 8.9 % at Murley Run. 

There was not wide variation in DOC or TSS across streams.  Five streams had 

mean DOC concentrations above 1.00 mg/L with the highest mean concentration of DOC 

at Little Savage River (3.51 ± 0.24 mg/L).  Four streams had mean DOC concentrations 

below 1.00 mg/L.  Mean TSS concentrations ranged from 1.17 ± 0.45 mg/L at Monroe 

Run to 2.76 ± 0.68 mg/L at Bear Pen. 

Chloride and Sulfate showed wide variation across sites while nitrate showed 

little variation.  Nitrate concentrations in all streams were less than 0.60 mg/L.  Mill Run 

had the highest mean concentration of 0.55 ± 0.11 mg/L.  Mill Run (90.43 ± 19.1 mg/L) 

and Mud Lick (74.78 ± 20.1 mg/L) have the highest chloride concentrations.  These two 

sites experience large increases in chloride concentrations during the fall and winter 

months (Fig. 10).  The lowest mean chloride concentration was 0.56 ± 0.03 mg/L at 

Murley Run.  The streams with the highest sulfate concentrations were Mill Run (18.44 ± 

1.64 mg/L) and Laurel Run (17.06 ± 1.43 mg/L).  The streams with the lowest 
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concentrations were Poplar Lick (8.02 ± 0.58 mg/L) and Little Savage River (8.05 ± 0.78 

mg/L). 

Mercury in Salamanders 

 The overall mean tissue total mercury concentration for northern dusky 

salamanders was 20.95 ± 0.78 ng/g within a range of 7.47 ng/g to 59.98 ng/g.  Across 

individual streams mean tissue total mercury ranged from 14.59 ± 1.09 ng/g at Bear Pen 

to 32.08 ± 2.40 ng/g at Little Savage River.  

The overall mean tissue total mercury concentration for northern two-lined 

salamanders was 29.54 ± 1.30 ng/g within a range of 10.92 ng/g to 73.78 ng/g.  Across 

individual streams mean tissue total mercury concentrations ranged from 19.36 ± 1.76 at 

Mill Run to 40.97 ± 2.69 at Mud Lick. 

The overall mean tissue total mercury concentration for Allegheny Mountain 

dusky salamanders was 22.84 ± 1.23 ng/g within a range of 6.26 ng/g to 77.53 ng/g.  

Across individual sites tissue total mercury concentrations ranged from 15.66 ± 1.16 ng/g 

at Bear Pen to 44.20 ± 5.55 ng/g at Mud Lick.  

 

Correlation Analyses 

Mean salamander tissue total mercury concentrations were significantly correlated 

with mean stream methyl mercury concentrations in northern dusky salamanders (P = 

0.018, r = 0.888) and Allegheny Mountain dusky salamanders (P = 0.0361, r = 0.699).  

Mean stream DOC was significantly correlated with mean salamander tissue total 

mercury concentrations in Allegheny Mountain dusky salamanders (P = 0.0268, r = 

0.726) and northern dusky salamanders (P = 0.0053, r = 0.940).  Mean stream total 
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mercury concentrations were significantly correlated with mean salamander tissue total 

mercury concentrations in northern dusky salamanders (P = 0.0352, r = 0.843).  Stream 

sulfate concentrations were significantly correlated with tissue total mercury in Northern 

Two Lined Salamanders (P = 0.0396, r = 0.865). 

 

Regression Analyses 

Square root transformed stream methyl mercury concentration was best predicted 

by a model including stream total mercury concentration, stream DOC, and stream SO4
-2 

concentration (P < 0.001, r2 = 0.454). 

(Eq. 1)  [MeHg] = (0.045[THg] + 0.041[DOC] – 0.010[SO4
-2] + 0.304)2 

Negative square root transformed stream DOC was best predicted by a model including 

stream total mercury concentration, stream chloride and nitrate concentrations (P < 0.001, 

r2 = 0.429). 

(Eq. 2)  [DOC] = (-0.194*[THg] - 0.002*[Cl-1] + 0.308*[NO3
-1] + 1.125)-2 

 

DISCUSSION 

Mercury in Salamanders 

There was considerable variation in total mercury concentrations among the three 

species of salamander and across the study streams (Table 22).  These concentrations are 

comparable to mercury concentrations measured in northern two-lined larvae in Acadia 

National Park (47.7 ± 1.9 ng/g to 79.5 ± 5.2 ng/g) and Shenandoah National Park (26.8 ± 

1.6 ng/g), though they are lower than those measured at reference sites along the South 
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River in Virginia (256 ± 56 ng/g) (Bank et al. 2005, Bergeron et al. 2010, Burke et al. 

2010). 

 

Stream Methyl Mercury 

Two of the three species of stream salamander we collected had mean tissue total 

mercury concentrations that were significantly correlated with stream methyl mercury 

concentrations (Table 21).  This significant correlation illustrates the link between the 

stream salamanders and the aquatic food web where methyl mercury is magnified up 

increasing trophic levels.  Northern dusky salamanders have the most aquatic adult life 

stage of the three species, northern two lined salamanders have the longest aquatic larval 

stage, but a more terrestrial adult stage, and Allegheny Mountain dusky salamanders are 

mostly terrestrial (Petranka 1998, Lannoo 2005).  The correlation coefficients of 

salamander tissue total mercury and stream methyl mercury decrease as the adult stage of 

the salamanders becomes more terrestrial.  While not significant in northern two lined 

salamanders, the correlation coefficient (P = 0.0621, r = 0.731) falls between that of the 

northern dusky salamanders (r = 0.888) and the Allegheny Mountain dusky salamander (r 

= 0.699).  This indicates that the more terrestrial adults, northern two-lined and 

Allegheny Mountain dusky salamanders, may incorporate mercury sources of a terrestrial 

nature, though the majority of mercury is still likely incorporated from aquatic sources.    

The backwards elimination method used to create a regression model to predict 

stream methyl mercury concentration resulted in a model consisting of stream total 

mercury concentration, stream DOC, and stream sulfate concentration (Eq. 1).  This 

model matches well with literature descriptions of stream mercury methylation (Gilmour 
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et al. 1991, Gilmour et al. 1992, Benoit et al. 2003, Ward et al. 2010).  The positive 

coefficient for stream total mercury is indicative of the within-stream methylation that 

accounts for most of the methyl mercury in the stream water (Gilmour et al. 1991).  

Increasing total mercury concentrations indicates increased inorganic mercury available 

for methylation within the stream.   

The positive influence of DOC on methyl mercury illustrates a potential transport 

relationship between DOC and mercury in the streams; previous studies have shown 

DOC to be an important transport vector for both inorganic and methyl mercury (Grigal 

2002, Wu et al. 2004, Miller et al. 2007, Brigham et al. 2009).  Increasing DOC in the 

streams potentially mobilizes more total and methyl mercury resulting in increased 

concentrations of methyl mercury in the stream water. 

Previous studies involving sulfate additions to aquatic systems have shown an 

increase in mercury methylation after those additions (Gilmour et al. 1992).  The negative 

regression coefficient for sulfate concentration in our model seems contradictory to past 

experimental evidence. This can be explained by the activity of sulfate-reducing bacteria.  

In the absence of a sulfate source, increased activity by sulfate-reducing bacteria may 

result in both a decrease in sulfate concentration as well as an increase in methyl mercury 

concentration.   

This is best illustrated at our Murley Run site.  Murley Run has the highest sulfate 

concentrations of any of our sampled streams and time series plots of sulfate 

concentration and methyl mercury concentration show strong correlation between the two 

(r2 = 0.794, n = 8) (Fig. 7, 8).  This highly significant relationship at Murley Run explains 

the significance of sulfate concentration in our regression model; the relationship 
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between sulfate concentration and methyl mercury concentration is only significant at 

Murley Run (P = 0.003, r2 = 0.794) and Monroe Run (P = 0.0496, r2 = 0.418).  The lack 

of a significant relationship at the other sites may be explained by the proximity of 

sampling locations at Murley Run and Monroe Run to wetland areas.  Wetland areas have 

been shown to be important sites of mercury methylation (Castro et al. 2006).  The 

sampling site at Murley Run was within 500 m of an inundated wetland region, which 

could be contributing to this significant relationship.  The sampling site at Monroe Run 

was close to a wide, flat floodplain that is often saturated.  This floodplain may be acting 

as a methylation site similar to a wetland.  Mud Lick also has a similar floodplain to 

Monroe Run, and despite sulfate concentrations not being significantly related to methyl 

mercury concentrations, the regression coefficient at this site is the highest of the other 

sites (P = 0.161, r2 = 0.181). 

 

Stream DOC 

Stream DOC was significantly correlated with tissue total mercury concentrations 

in northern dusky salamanders and Allegheny Mountain dusky salamanders.  This may 

be explained by the role of DOC in complexing with inorganic and methyl mercury in the 

streams (Grigal 2002, Wu et al. 2004, Miller et al. 2007, Brigham et al. 2009).  Most of 

our streams had low DOC concentrations, which may indicate low watershed inputs of 

DOC.   

The regression model for DOC was also generated using the backward 

elimination method.  Our resulting model consisted of stream total mercury 

concentration, stream chloride concentration, and stream nitrate concentration (Eq. 2).  
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DOC data was transformed using a negative square root transformation, which inverted 

the coefficients in the regression equation.  When taking into consideration the inversion, 

the negative total mercury concentration coefficient indicates a positive relationship 

between total mercury and DOC.  This is similar to the relationship between DOC and 

methyl mercury, where DOC acts as a transport vector of mercury in the stream system.  

This may be useful for predicting DOC in the streams, but the causative relationship is 

likely reversed where DOC is a driver of total mercury concentrations in the streams 

(Grigal 2002).  Our regression model also indicates a negative influence of stream nitrate 

concentrations on DOC.  It is possible that nitrate is used up in stream primary 

productivity thereby increasing stream DOC.  This may result in a negative relationship, 

as nitrate is used up within the stream, DOC is being produced. 

Variation in chloride concentration in our streams seems to be influenced by 

winter road salt at two sites, Mud Lick and Mill Run, indicated by large increases in 

chloride concentrations in the fall and winter months (Fig. 9).  The relationship between 

chloride and DOC in our streams is coincidental rather than mechanistic.  Both are 

dissolved in the stream water and fluctuate closely with streamflow.  The regression 

model indicates a positive influence of chloride concentration on DOC but there does not 

appear to be an obvious environmental mechanism to explain this relationship.  Studies 

on the removal of natural organic matter (NOM) and mercury from drinking and surface 

waters indicate that metal chlorides are effective coagulants and serve to aid in the 

removal of NOM and DOC from water sources (Matilainen et al. 2010, Henneberry et al. 

2011).  These studies seem to disagree with our model that suggests a positive influence 

of stream chloride on DOC concentrations.   
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CONCLUSION 

The life histories of northern dusky, northern two-lined, and Allegheny Mountain 

dusky salamanders allow them to act as vectors to transport this mercury into the 

terrestrial environment.  Therefore, it is important to identify the factors that influence the 

accumulation of mercury in these salamanders. Tissue total mercury concentrations are 

significantly correlated with stream methyl mercury concentrations.  This indicates that 

the majority of mercury that these salamanders are incorporating into their tissues comes 

from the streams.  Regression analysis of stream methyl mercury concentrations and the 

other water chemistry factors indicates that stream DOC, sulfate, and total mercury 

concentrations are significant drivers of stream methyl mercury, and therefore 

salamander tissue total mercury.  Stream DOC was also significantly correlated with 

tissue total mercury in northern dusky and Allegheny Mountain dusky salamanders.  

Regression analysis of DOC indicates stream chloride and nitrate concentrations to be 

significantly related to stream DOC.   

The correlation analyses used to identify key water chemistry factors correlated 

with salamander tissue total mercury concentrations are limited in application due to the 

small sample size of 9 averaged values for each parameter.    Calculating the means for 

each parameter at each site was necessitated by the different temporal scales of sampling 

for salamanders and water chemistry in this study.  In future studies, simultaneous 

sampling of salamanders and stream water chemistry may improve the statistical power 

of the data.  Having concurrent measurements will allow for more powerful correlation 

and regression analyses of tissue total mercury and stream water factors.  Non-lethal 
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tissue sampling as will also facilitate these comparisons by allowing tissue samples to be 

taken without damage to the salamander population, which may occur because of the 

frequent samplings (Bergeron et al. 2010).  Longer time-series data of two or more years 

will also elucidate potential patterns among salamander tissue total mercury 

concentrations and water chemistry factors.   
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TABLES AND FIGURES 

Table 17 Location of streams surveyed in Garrett County, Maryland, 2010 and number 

of salamanders collected at each stream. 

Stream Name Latitude Longitude Number of Salamanders 

   ND NTL MD 

Bear Creek 39.6503 -79.2903 0 2 20 

Bear Pen 39.5626 -79.1117 25 24 20 

Laurel Run (LR) 39.4882 -79.1531 0 0 20 

Little Savage River 39.6169 -79.0249 20 10 20 

Mud Lick (ML) 39.6461 -79.0257 30 30 6 

Monroe Run (MON) 39.5553 -79.2166 30 16 21 

Mill Run (MR) 39.7135 -79.3781 29 20 20 

Murley Run (MUR) 39.4878 -79.4612 0 0 19 

Poplar Lick (PL) 39.6385 -79.1175 30 11 20 

      

Total   164 113 166 
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Table 18 Watershed composition and land use of streams sampled in Garrett County, 

MD.  Land use data for our Bear Creek site is not currently available though the 

watershed is mostly deciduous forest. 

  Land Use (%) Forest type (%)  Total Area 

 
Wet. Ag. Dev. For. Bare Decid. Ever. Mixed  (Ha) 

Bear Creek 0 0.82 2.43 96.59 0.17 80.13 16.46 0 95 

Bear Pen  0 9.88 1.57 88.07 0.48 84.34 2.44 1.29 867 

Laurel Run 0 0.36 11.66 85.26 2.73 84.55 0.7 0 159 

L. Sav. River 0.14 0.3 1.95 95.21 0.21 70.96 22.47 1.77 555 

Mud Lick 0 29.1 7.73 61.92 1.2 42.92 18.07 0.93 1432 

Monroe Run 0 2.68 4.8 92.46 0.05 87.69 3.97 0.8 1201 

Mill Run 0 15.61 9.42 74.28 0.59 69.72 3.86 0.7 4365 

Murley Run 0 0.01 1.66 98.34 0 90.4 3.55 4.38 290 

Poplar Lick  0.18 5.46 3.36 89.74 0.9 67.68 19.81 2.26 2139 
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Table 19 Methods used in water chemistry analysis of streams in Garrett County, 

Maryland, 2010. 

 Procedure for Sample 

Preparation 

Method of Analysis 

Dissolved Organic Carbon EPA Method 415.3 Ultraviolet Absorbance at 254 nm 

Total Suspended Solids ESS Method 340.3 Filtration and Drying to 103-105 C 

Major Anions (Cl-, NO3
-, SO4

2-) EPA Method 300 Rev 2.1 Ion Chromatography 

Acid Neutralizing Capacity  Gran Analysis Technique 

pH EPA Method 150.1 Electrometric Determination 

Total Mercury EPA Method 1631 Cold Vapor Atomic Fluorescence 

Spectrophotometry (CVAFS) 
Methyl Mercury EPA Method 1630 Ethylation and Preconcentration 

Purge and Trap Techniques 
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Table 20 Mean total mercury concentrations (ng/g), SVL, weight and length for adults 

salamanders in the 9 study watersheds. All species were not found in all watersheds. 

Species Site Hg SVL Weight Length n 

ng/gww mm g mm 

MD BC 14.1 24 0.34 46 20 

BP 15.7 36 0.90 74 20 

LR 18.4 33 0.79 67 20 

LSR 32.7 35 0.89 72 20 

ML 44.2 37 1.02 77 6 

MON 23.4 37 1.06 75 21 

MR 15.8 34 0.94 72 20 

MUR 24.9 36 0.95 69 19 

PL 20.1 37 1.15 80 20 

ND BP 14.6 45 2.22 86 25 

LSR 35.6 44 2.14 82 21 

ML 28.7 44 2.04 88 30 

MON 16.3 50 3.17 94 30 

MR 17.1 45 2.02 84 29 

PL 19.6 45 2.23 88 30 

NTL BC 27.7 40 0.99 82 2 

BP 24.5 31 0.52 61 24 

LSR 36.5 36 0.80 75 10 

ML 43.4 36 0.78 75 31 

MON 22.9 38 1.03 81 16 

MR 19.4 36 0.84 79 20 

PL 31.4 36 0.93 79 11 
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Table 21 Pearson product-moment correlation coefficients for ¼ root transformed total 

mercury concentrations in adult northern dusky (ND) Allegheny Mountain dusky (MD) 

and northern two-lined (NTL) salamanders and stream water chemistry factors.  Asterisks 

indicate significant correlations (P < 0.05).  Correlation analyses were run using only 

data from the sites where the species were found. 

  RootTotal Hg RootTotal Hg RootTotal Hg 

  ND NTL MD 

      

pH -0.708 -0.549 -0.217 

ANC -0.410 -0.296 -0.165 

THg  0.843*  0.645  0.542 

MeHg  0.888*  0.731  0.699* 

DOC  0.940*  0.662  0.726* 

TSS -0.378 -0.193 -0.054 

Cl  0.198 -0.010  0.195 

NO3 -0.715 -0.585 -0.251 

SO4 -0.622 -0.865* -0.514 
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Table 22 Mean water chemistry factors for streams sampled in Garrett County, MD (±SE). 

  Bear Creek Bear Pen Laurel Run Little Savage Mill Run Monroe Run Mud Lick Murley Run Poplar Lick 

Mean pH  6.64 ± 0.11 6.49 ± 0.11 6.89 ± 0.36 5.98 ± 0.10 6.70 ± 0.12 6.55 ± 0.11 6.52 ± 0.10 4.59 ± 0.04 6.49 ± 0.10 

Mean ANC 

(µeq/L) 

348.7 ± 65.3 182.7 ± 23.3 706.2 ± 254.5 43.9 ± 12.3 471.1 ± 61.7 360.9 ± 50.0 467.8 ± 91.5 -22.3 ± 1.3 293.4 ± 38.3 

Mean THg 

(ng/L) 

0.78 ± 0.12 0.66 ± 0.05 1.06 ± 0.26 2.25 ± 0.21 0.52 ± 0.06 0.60 ± 0.06 1.00 ± 0.10 1.47 ± 0.58 0.76 ± 0.09 

Mean MeHg 

(ng/L) 

0.07 ± 0.01 0.09 ± 0.02 0.03 ± 0.00 0.21 ± 0.05 0.06 ± 0.01 0.09 ± 0.02 0.15 ± 0.03 0.18 ± 0.05 0.08 ± 0.02 

Mean % 

MeHg 

10.10 ± 6.4 12.59 ± 7.7 3.20 ± 2.4 9.43 ± 6.2 12.26 ± 7.2 14.71 ± 6.1 14.56 ± 6.3 14.82  ± 8.9 10.74 ± 6.6 

Mean Cl-1 

(mg/L) 

4.40 ± 1.21 1.16 ± 0.09 35.22 ± 4.45 3.10 ± 0.90 90.43 ± 19.1 16.86 ± 1.46 74.78 ± 20.1 0.56 ± 0.03 2.20 ± 0.32 

Mean NO3
-1 

(mg/L) 

0.50 ± 0.02 0.50 ± 0.07 0.20 ± 0.02 0.18 ± 0.04 0.55 ± 0.11 0.43 ± 0.09 0.48 ± 0.13 0.05 ± 0.01 0.36 ± 0.06 

Mean SO4
-2 

(mg/L) 

9.56 ± 0.28 11.66 ± 0.21 17.06 ± 1.43 8.05 ± 0.78 18.44 ± 1.64 8.13 ± 0.70 8.93 ± 1.26 8.63 ± 0.58 8.02 ±0.44 

Mean TSS 

(mg/L) 

2.17 ± 0.56 2.76 ± 0.68 1.67 ± 0.27 2.42 ± 0.92 1.43 ± 0.25 1.17 ± 0.45 1.81 ± 0.61 1.85 ± 0.54 2.44 ± 0.56 

Mean DOC 

(mg/L) 

0.51 ± 0.04 0.84 ± 0.06 1.32 ± 0.15 3.51 ± 0.24 1.02 ± 0.07 0.81 ± 0.06 2.06 ± 0.25 1.34 ± 0.20 0.95 ± 0.06 
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Figure 6 Stream Sites sampled in the Savage River and Youghiogheny River Watersheds, in Garrett County, Maryland. 
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Figure 7 Time series plot of methyl mercury concentrations and sulfate concentrations at 

Murley Run stream site. 
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Figure 8 Plot of stream methyl mercury and stream sulfate concentration at Murley Run 

with regression line. 
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Figure 9 Time series of chloride concentrations at Mill Run and Mud Lick. 
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Figure 10 Time series of pH and ANC at Laurel Run in Garrett County, MD in 2010.  

Remediated with lime added upstream of our sampling site between the May and June 

samplings, resulting in an increase in both pH and ANC. 
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CONCLUSIONS 

 The toxicity of mercury and its prevalence throughout the globe has led to 

new research into areas of the mercury biogeochemical cycle that have received 

little attention in the past.  Thorough research into the concentrations that can be 

expected in species of game fish have increased our knowledge of human exposure 

to mercury, but there are still large gaps in our knowledge of how mercury moves 

through the biota in the landscape.  My research into mercury concentrations in 

stream salamanders attempted to increase our knowledge of how much mercury is 

present in biota besides fish.  The connection between aquatic and riparian 

landscapes created by salamanders and other amphibians make them an important 

area to study mercury concentrations.  They are important to help of understand the 

potential migration of mercury into the terrestrial landscape.  I attempted to 

determine how mercury concentrations change throughout the life cycle of stream 

salamanders, how mercury concentrations differ between species of salamander 

with different life history strategies, and how water quality may impact these 

concentrations.   

 In five streams mercury concentrations were found to be significantly higher 

in adult northern two-lined salamanders than in larvae, but at two streams adults 

and larvae were found to have statistically similar mercury concentrations.  I had 

hypothesized that due to the terrestrial nature of adult northern two-lined diets that 

larval salamanders would actually have higher total mercury concentrations than 

adults.  This hypothesis assumed that the terrestrial diet of the adults was lower in 

mercury than the aquatic diet of the larvae.  These results may indicate that the 
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terrestrial diets of the adults are higher in mercury than the diets of the larvae.  This 

opens new questions and new research opportunities to truly understand the 

mercury dynamics in this species of salamander.  Are terrestrial macroinvertebrates 

at these five streams truly higher in mercury, or the adults still consuming mostly 

aquatic macroinvertebrates?  Answering these questions will help us to better how 

mercury is moving through these ecosystems. 

 My data showed that adult northern two-lined salamanders had significantly 

higher mercury concentrations than both adult northern dusky and adult Allegheny 

Mountain dusky salamanders.  I had hypothesized that this would be the case due to 

the longer aquatic larval stage of the northern two-lined salamanders (1-3 years) 

compared to the other two species (9-12 months for northern dusky salamanders, 

and 0-3 months for Allegheny Mountain dusky salamanders).   I had also 

hypothesized that allehgeny mountain dusky salamanders would have the lowest 

concentrations of mercury due to their more terrestrial life history strategy.  

Similarly to the comparison of adult to larval northern two-lined salamanders, my 

data showed Allegheny Mountain dusky salamanders to not have significantly lower 

mercury concentrations than northern dusky salamanders, despite the assumption 

of a more terrestrial life strategy and diet.  In fact, at two streams, Mud Lick and 

Monroe Run, Allegheny Mountain dusky salamanders had similar mean mercury 

concentrations to northern two-lined salamanders.  These results, and recent 

studies into the concentrations of mercury in terrestrial arthropods lend evidence to 

the conclusion that the terrestrial macroinvertebrates preyed upon by adult 

northern two-lined salamanders and adult Allegheny Mountain dusky salamanders 
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may not have lower mercury than the aquatic macroinvertebrates consumed by 

larval salamanders.  If these salamanders are in fact consuming mostly terrestrial 

macroinvertebrates that are lower in mercury, then these adult salamanders should 

have lower concentrations than larvae and other species that are consuming more 

aquatic macroinvertebrates. 

 All of my collected salamanders had mean total mercury concentrations that 

were significantly positively correlated with stream methyl mercury concentrations.  

This indicates that much of the mercury accumulated by these salamanders 

originates in the streams.  This may explain the unexpectedly high concentrations in 

adult northern two-lined and Allegheny Mountain dusky salamanders.  This tissue 

mercury concentration correlation with stream methyl mercury concentrations 

could indicate more aquatic diets of these salamanders than were assumed at the 

outset of the project.  My data indicates that stream methyl mercury concentrations 

are significantly affected by stream total mercury concentrations, stream DOC 

concentrations, and stream sulfate concentrations.  These regression results imply 

that much of the methyl mercury present in the streams is being produced locally, 

rather than being transported long distances. 

 Total mercury concentrations in Allegheny Mountain dusky and northern 

dusky salamanders were also significantly positively correlated with DOC.  The role 

of DOC as a transport vector for both inorganic and methyl mercury may explain 

this result.  My data suggests a significant link between DOC and stream total 

mercury concentrations, stream chloride concentrations, and stream nitrate 

concentrations.  The transport vector link between mercury and DOC explain part of 
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these results.  The link between chloride, nitrate, and DOC may solely be a 

coincidence related to all three existing in the streams in the dissolved form. 

 The results of my project indicate that much of the variation in total mercury 

concentrations in stream salamanders may be attributable to dietary variation 

within and across populations.  To truly understand the dynamics of mercury in 

salamanders we need to understand the role of dietary sources of mercury in these 

organisms.  A better understanding of the role diet plays in the accumulation of 

mercury in salamanders will also help us to better understand the role played by 

other factors such as life history strategy and stream water quality.  Future studies 

should attempt to identify the dietary composition in local populations of stream 

salamander.  Once the composition of the salamander diets has been identified, the 

variations in mercury concentrations in those prey items should be researched to 

identify the mercury concentrations being contributed to salamanders from these 

sources. 
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APPENDIX A:  TOTAL MERCURY CONCENTRATIONS 

IN SEAL SALAMANDERS AND EASTERN RED-SPOTTED 

NEWTS COLLECTED FROM STREAMS IN GARRETT 

COUNTY, MD. 

 

 Seal Salamanders and eastern red-spotted newts were not widespread enough to 

allow inclusion in statistical analyses in the main thesis.  Total mercury concentrations 

were measured for these species (Table 23).  Weight, SVL, and total length were also 

measured for each individual salamander (Table 24). 

The overall mean tissue total mercury concentration for seal salamanders was 

18.72 ± 1.97 ng g-1 within a range of 6.26 ng g-1 to 79.42 ng g-1.  Across individual 

streams mean tissue total mercury ranged from 11.37 ± 0.69 ng g-1 at Bear Pen to 39.94 ± 

6.49 ng g-1 at Little Savage River.  

The overall mean tissue total mercury concentration for adult eastern red-spotted 

newts was 28.27 ± 1.53 ng g-1 within a range of 5.84 ng g-1 to 59.97 ng g-1.  across 

individual streams mean tissue total mercury concentrations ranged from 20.68 ± 2.11 ng 

g-1 at Mill Run to 29.91 ± 2.38 ng g-1 at Mud Lick.  The overall mean tissue total mercury 

concentration for eft eastern red-spotted newts was 14.37 ± 4.92 ng g-1 within a range of 

7.48 ng g-1 to 33.49 ng g-1.  Across individual streams mean tissue total mercury 

concentrations were 8.11 ± 0.49 ng g-1 at Mill Run and 23.76 ± 9.73 ng g-1 at Mud Lick. 
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Table 23 Mean total mercury concentrations (±SE) for seal salamanders and eastern red-

spotted newts collected from streams in Garrett County, MD. 

 Mean THg (ng g-1) 

Site Seal Salamanders Eastern Red-Spotted Newt 

 Adult n Adult n Eft n 

BC 13.88 ± 2.36 21     

BP 11.37 ± 0.69 11     

LR 21.13 ± 3.60 9     

LSR 39.94 ± 6.49 11     

ML   29.91 ± 2.38 32 23.76 ± 9.73 2 

MON 11.48 ± 0.80 10     

MR   20.68 ± 2.11 2 8.11 ± 0.49 3 

PL   26.98 ± 2.02 29   

       

Mean 18.72 ± 1.97 62 28.27 ± 1.53 63 14.37 ± 4.92 5 
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Table 24 Mean weight (±SE), SVL (±SE), and total length (±SE) for seal salamander (S) 

and eastern red-spotted newts (RSN) sampled from Garrett County, MD. 

 Mean Weight (g) Mean SVL (mm) Mean Length (mm) 

 S RSN S RSN S RSN 

Site Adult Adult Eft Adult Adult Eft Adult Adult Eft 

BC 1.68 ± 

0.46 

  35.51 ± 

3.25 

  63.67 ± 

5.65 

  

BP 1.50 ± 

0.34 

  38.84 ± 

3.08 

  81.43 ± 

5.87 

  

LR 3.30 ± 

0.71 

  48.30 ± 

3.80 

  98.01 ± 

6.12 

  

LS

R 

4.06 ± 

0.81 

  51.16 ± 

4.41 

  99.63 ± 

8.99 

  

ML  3.54 ± 

0.11 

2.70 ± 

0.36 

 47.01 ± 

0.46 

36.05 ± 

10.15 

 95.06 ± 

1.05 

85.95 ± 

4.05 

MO

N 

3.30 ± 

0.78 

  47.69 ± 

4.78 

  94.14 ± 

8.99 

  

MR  3.58 ± 

0.45 

2.24 ± 

0.28 

 44.00 ± 

2.90 

41.40 ± 

1.80 

 87.00 ± 

7.60 

82.83 ± 

4.03 

PL  3.26 ± 

0.10 

  45.40 ± 

0.56 

  93.51 ± 

1.15 
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APPENDIX B: TISSUES METHYL MERCURY ANALYSIS 

OF SELECTED SALAMANDERS 

 
A small subset of salamanders (26) was analyzed for methyl and total mercury to 

ascertain the percent of total mercury present in tissues as methyl mercury (Table 25, 26).  

The methyl mercury analysis did not meet QA/QC standards and therefore this data was 

not included in the main thesis.  The methyl mercury concentrations measured in the 

DORM-3 tissue samples used as independent checks of the digestion and analysis 

procedures were not within the allowable range (Table 27).   

 The mean percent of total mercury present as methyl mercury for northern two-

lined salamanders was 70.58 % within a range of 54.80 % to 86.09 %.  This is lower than 

the percent methyl mercury range of 73 % to 97 % reported by Bank et al. (2005), though 

it is similar to the percent methyl mercury of 61.2% reported by Bergeron et al. (2010).  

 The mean percent methyl mercury for northern dusky salamanders was 72.06 % 

within a range of 51.30 % to 85.14 %.  The mean percent methyl mercury for Allegheny 

Mountain dusky salamanders was 67.34 % within a range of 55.04 % to 81.77 %. 
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Table 25 Methyl mercury concentrations, total mercury concentrations, and the percent 

methyl mercury for a subset of salamanders collected from streams in Garrett County, 

MD. 

  Mercury 

Sample Species Methyl Total Percent Methyl 

  ng g-1 ng g-1 % 

FBP-NTLA-11 NTL 15.52 21.55 72.03 

FLSR-NTLA-11 NTL 21.82 26.25 83.15 

FLSR-NTLA-16 NTL 27.02 37.14 72.75 

FLSR-NTLA-17 NTL 16.27 29.69 54.80 

FLSR-NTLA-18 NTL 20.82 36.47 57.10 

FLSR-NTLA-19 NTL 21.33 34.40 62.00 

FLSR-NTLA-21 NTL 15.83 22.96 68.93 

FLSR-NTLA-22 NTL 14.15 18.06 78.34 

FLSR-NTLA-23 NTL 37.30 43.33 86.09 

FMON-NDA-15 ND 9.16 13.12 69.85 

FPL-NDA-11 ND 15.88 18.65 85.14 

FPL-NDA-12 ND 22.57 30.91 73.00 

FPL-NDA-14 ND 18.05 31.56 57.20 

FPL-NDA-15 ND 12.95 16.31 79.36 

FPL-NDA-16 ND 21.11 27.11 77.87 

FPL-NDA-17 ND 12.81 18.05 70.93 

FPL-NDA-18 ND 13.19 15.73 83.85 

FPL-NDA-19 ND 6.46 12.58 51.30 

FBP-MDA-11 MD 11.16 16.41 68.00 

FLSR-MDA-11 MD 16.96 26.52 63.93 

FMON-MDA-2 MD 14.20 22.04 64.44 

FMON-MDA-3 MD 9.60 17.45 55.04 

FMON-MDA-4 MD 18.55 23.63 78.51 

FMON-MDA-7 MD 17.87 21.85 81.77 

FMR-MDA-9 MD 7.88 12.18 64.66 

FPL-MDA-11 MD 15.90 25.48 62.40 

     

Mean  16.71 23.82 70.09 

 

 
Table 26 Mean methyl mercury concentrations, mean total mercury concentrations, and 

mean percent methyl mercury for northern two-lined salamanders (NTL), northern dusky 

salamanders (ND), and Allegheny Mountain dusky salamanders (MD). 

 Mean Methyl Mean Total Mean Percent Methyl 

Species ng g-1 ng g-1 % 

MD 14.01 20.69 67.34 

ND 14.69 20.45 72.06 

NTL 21.12 29.98 70.58 
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APPENDIX C: SALAMANDER ENCOUNTER DATA 

INCLUDING SHANNON DIVERSITY INDEX FOR 

INDIVIDUAL STREAMS IN GARRETT COUNTY, MD. 

 
Table 27 Count of salamander species and individuals encountered during spring 

sampling and Shannon Diversity Index values for individual streams in Garrett County, 

MD. 

Spring 

  BC BP LR LSR MR MON ML MUR PL 

Northern Dusky 0 15 0 12 9 10 12 0 11 

Northern Two-Lined 0 35 0 0 10 11 30 0 13 

Eastern Red-Spotted Newt 0 0 0 0 2 0 13 0 15 

Mountain Dusky 12 11 8 8 16 8 14 11 7 

Seal Salamander 5 6 6 5 1 7 0 0 0 

Spring Salamander 0 2 0 1 0 0 0 0 0 

Red Salamander 0 0 0 0 0 0 0 0 0 

Long-Tailed 0 0 0 0 0 0 0 0 0 

          

Total Species 2 5 2 4 5 4 4 1 4 

Total Individuals 17 69 14 26 38 36 69 11 46 

          

Shannon Diversity Index 0.606 1.284 0.683 1.162 1.307 1.371 1.304 0.000 1.351 

          

Man Hours 3 5 3 5 6 4 8 3 5 
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Table 28 Count of salamander species and individuals encountered during summer 

sampling and Shannon Diversity Index values for individual streams in Garrett County, 

MD. 

Summer 

  BC BP LR LSR MR MON ML MUR PL 

Northern Dusky 0 14 0 11 14 13 16 0 11 

Northern Two-Lined 10 13 0 0 31 14 27 0 12 

Eastern Red-Spotted Newt 0 0 0 0 3 0 15 0 11 

Mountain Dusky 15 14 12 13 17 12 16 13 13 

Seal Salamander 11 13 10 15 0 12 0 0 0 

Spring Salamander 0 0 0 2 0 0 0 0 0 

Red Salamander 0 0 0 0 1 0 0 0 0 

Long-Tailed 0 0 0 0 1 0 0 0 0 

          

Total Species 3 4 2 4 6 4 4 1 4 

Total Individuals 36 54 22 41 67 51 74 13 47 

          

Shannon diversity Index 1.083 1.386 0.689 1.232 1.296 1.384 1.354 0.000 1.384 

          

Man Hours 5 8 4 6 10 8 10 4 8 
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Table 29 Count of salamander species and individuals encountered during fall sampling 

and Shannon Diversity Index values for individual streams in Garrett County, MD. 

Fall 

  BC BP LR LSR MR MON ML MUR PL 

Northern Dusky 0 5 0 2 21 19 14 0 22 

Northern Two-Lined 13 12 0 30 24 13 26 0 20 

Eastern Red-Spotted Newt 0 0 0 0 0 0 16 0 11 

Mountain Dusky 22 12 11 13 15 24 6 8 13 

Seal Salamander 12 9 9 4 0 16 0 0 0 

Spring Salamander 0 1 0 0 0 0 0 0 0 

Red Salamander 0 0 0 0 0 0 0 0 0 

Long-Tailed 0 0 0 0 0 0 0 0 0 

          

Total Species 3 5 2 4 3 4 4 1 4 

Total Individuals 47 39 20 49 60 72 62 8 66 

          

Shannon diversity Index 1.059 1.421 0.688 0.987 1.081 1.361 1.276 0.000 1.347 

          

Man Hours 6 8 4 8 6 8 10 3 8 
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