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Abstract

The structured singular value (SSV or p) is known to be an effective tool for
assessing robust performance of linear time-invariant models subject to structured
uncertainty. Yet all a single p analysis provides is a bound § on the uncertainty
under which stability as well as Ho, performance level of k/8 are guaranteed,
where k is preselectable. In this paper, we introduce 2 related quantity, denoted
by v which, for a given 3, provides a value « such that for any uncertainty bounded

by B an Hy, performance level of o (but none better than o) is guaranteed.
1. Introduction

Consider a linear time-invariant model affected by uncertainty. It is by now
well known (see, e.g., [1]) that in many cases of interest such a system can be
represented in “feedback” form as in Fig. 1. Here A represents the uncertainty
and is typically block diagonal, each block corresponding to uncertainty affecting a
specific subsystem. Both parametric and dynamic uncertainties can be accounted
for. While the former appear as real scalar blocks in A, the latter are often
represented by H,-norm bounded linear time-invariant transfer functions. Under
the assumption that the nominal model is internally stable, the overall system will
be internally stable for all A of size (Hy-norm) no more than 1, A having the

specified structure, if and only if

sup u(P11(jw)) <1

i This work was supported in part by the National Science Foundation’s En-
gineering Research Centers Program: NSFD CDR-88-03012, by the NSF under
srant DMC-85-51515, and by Rockwell International.



where 4 is Doyle’s structured singular value (SSV) for the given structure [2]. The
SSV framework also permits to assess robust performance [1]. Namely, referring
again to Fig. 1, suppose one desires to know whether the worst-case H, perfor-
mance is satisfactory, i.e., whether, for any structured A of size no more than 1,
the Hoo-norm of the transfer function Fy, (P, A) from exogenous (e.g., disturbance)
signal u to error signal e is small, say, no larger than 1. It turns out that this will
be the case if and only if the system of Fig. 2 is internally stable for all A of size
no more than 1, A having the specified structure, and for all § of size no more

than 1; equivalently, if and only if
sup il P(jw)) < 1

where [i is the structured singular value corresponding to the “augmented struc-
ture”. Straightforward scaling then yields the following, given any 8 > 0: The
system of Fig. 1 is stable for all structured A of size 8 or less, and the worst-case

performance under such uncertainty is no more than 1/4, if and only if
sup i(P(jw)) <1/8 . (1)

Thus an SSV analysis can answer the question.
(Q1) what is the largest 8 such that, whenever the uncertainty has size 3 or less,
(i) the system is stable and

(i1} the worst-case Ho, performance is better than 1/3 7

While this does provide some kind of “stability-and-performance margin”, it may
well happen that a good estimate of the actual uncertainty bound is available. In
this case, assuming that the uncertainty bound has been normalized, a question of
interest is whether (i) the system is stable whenever the uncertainty has size less
than 1, and (ii) if yes, what is the worst case performance for this same uncertainty
size. In other words:

(Q2) what is the smallest o such that, whenever the uncertainty has size 1 or less,

(1) the system is stable and

(i1) the worst-case Hy, performance is better than o ?
It 1s possible to answer (Q2) via an (infinite) sequence of SSV analyses as follows.

Note that for any a > 0, stability of the system in Fig. 1 is equivalent to stability
of the system in Fig. 3, with P,(s) given by

AN aP 1(3) C!Pl 8
Pa(s) = | "p 1) Pﬂé))'



We conclude that the system of Fig. 1is stable whenever ||Ajleo < 1 (i.€., whenever
(1/a)Allee < 1/a), with worst-case performance better than «, if and only if

sup i Pa(jw)) < e . (2)

Thus the answer to (Q2) is given by &, the infimum of those « satisfying (2). It
can be shown the & is the only root (except for, possibly, 0) of

sup i(Po(jw)) = @

and that it can be computed via the fixed point iteration

ait1 = sup i Py;(Jw)), o > 0.

This iteration can be proven to converge (also see Section 4 below).

The purpose of this paper is to introduce a quantity closely related to the
structured singular value, but yielding an answer to (Q2) in a single analysis. For
simplicity of exposition, we consider the case of two-block structures (performance
block and single uncertainty block). In Section 2 below we define the new function
v of a matrix and state a theorem (related to the Small 4 Theorem) that shows
its relation to (Q2). In Section 3, we discuss elementary properties of v and
in Section 4 we elucidate its correspondence with u. Finally, in Section 5, we
indicate how, for a complex matrix M, an upper bound to v(M) (v(M) itself
in the special case emphasized in the remainder of this paper) can be efficiently
computed. Throughout this paper, scalar functions, including value functions of

optimization problems, take values in the extended real line R U {o0}.
2. A Measure of Robust Performance

Thus, for a complex n x n matrix M, consider the structure K = (ky, k2), ki
and ky positive integers, with k1 + k2 = n. This corresponds to an uncertainty
of dimension k; X k; and an exogenous input and error signals of dimension k.

Below, we make use of the notation

D = {block diag (dI,,Ir,) : d > 0},
U = {block diag (Uy,Us),U; : k; x k;, unitary},
Py = block diag (Ix,, O, ), P» = block diag (O, , It,) ,



and M is partitioned according to

Myy Mo
M= ,
[le M22]

with M;; : k; X k;. Also, the unit sphere in C" is denoted by 0B.

Recall [2] that, for the given structure, the structured singular value u(M) of a
complex matrix M is equal to zero if there is no A € X such that det(I+AM) =0

and

p(M) = (glé%{&(A) cdet(I + AM) =0})™!
otherwise, where X is a subspace of C**" given by
X = {block diag(Ay,Ay) : A; € CF*F 5 =1 2}

Consider now the related quantity v(M), equal to zero if there is no A € Y such
that det(I + AM) = 0 and given by

v(M) = (pin{5(As) : det(I + AM) = oy~

(possibly co) otherwise, where ) is given by
Y = {block diag(A1,As) : A; € CF>*¥ 5 =1,2,5(A,) <1}

Note that, in the formula for v(M), the size of A; is not minimized but merely
kept below 1, reflecting the fact that the uncertainty has a known bound of 1. The

following result, to be compared to the Small ;1 Theorem [1],' can be proven.

Theorem 2.1. Suppose P € H,, is internally stable and let o > 0. Then
the system depicted in Fig. 1 is well formed and internally stable for all A €
Hoo, [|Alloo < 1, and || Fu(P, A)|le < « for all such A, if and only if

sup v(P(jw)) < a .

1

Thus (Q2) can be answered by means of a single “v” analysis.
3. Properties of v

The following properties of v are to be compared to similar properties of x

given in [2]. (Recall that & is strictly positive.)



Proposition 3.1.

(a) v(M) > (Ma2).

(b) v(M) < oo iff (M11) < 1.

(c) Suppose &(Mi1) < 1 and either My = 0 or My = 0. Then v(M) = 5(Mya).
(d) v(yM) 2 ly|v(M) for any |v| 2 1.

(e) v(yM) < |ylv(M) for any |y| < 1.

(f) v(DMD=1) = v(M), for any D € D.

(g) v(UM) =v(MU) = v(M), for any U € U.

(h) Whenever v(M) < oo,

v(M) = sup p(UM — P, P,),
Uel

where, given two square matrices A and B of identical dimension, p(A, B) is the
largest (finite) zero of x(A) = det(A + AB).
(1) v(-) is continuous at any M for which v(M) < co.

n

The discussion of Section 2 also suggests that v may be related to p in some

recursive way. This is indeed the case as stated next.
Proposition 3.2. Let M be such that v(M) < co.

(a) p(M) > 1if v(M) > 1iff y(M) > p(M). Furthermore, if p(M) > 6(Msz),
then u(M) > 1iff v(M) > 1iff v(M) > p(M).
(b) Suppose v(M) < oco. Then

u ([”(MO)I’“ I” M) = (M),

() Suppose u(M) > 0. Then
3 ([#_l(f(;/f)lkl ISJ M) (M)

O
4. Computing v via u

Proposition 4.1. Let M be such that (M) < oo. Define the function f : Rt —

R
o-e([ 2]4)



Then

(a) f(a) is continuous nondecreasing.

(b) f(a) = a has at least one solution at @ = v(M) and has at most two solutions
at @ = v(M) and o = 0. Furthermore, f(a) = a has two solutions iff
(Mi2)5(Ma1) # 0 and May = 0.

(c) B> v(M) implies that f(8) < B.

(d) 0 < B < v(M) implies that f(5) > S. 1
It follows that both the fixed point iteration

ait1 = flai), ao >0,

and the obvious bisection iteration can be used to compute v(M).

5. Direct Computation of v

The key question is now whether v(M) can be easily computed. For the case
under consideration, efficient algorithms are known for the computation of the

structure singular value u(M), based on the formulas ([1,3])
— inf 5 -1
w(M) = iof 5(DMD™") (3)

p(M) = max {95 |PMal| = 6| P, i = 1,2
6>0

In particular, the optimization problem in (3) has no local minima that are not
global and robust algorithm are available for its solution. Practical value of v(M)
is obviously contingent on the availability of a comparably efficient computational
algorithm. Fortunately, it appears that such an algorithm can be constructed,

based on the following results.

Theorem 5.1.

V(M) = sup {8+ |PiMa| = |Prsi] [ P2 Mz = 0] Pl
9>0

0 if (0) <0
v(M) = {sgp{ﬁ: ¥(y) = 0} otherwise (4)

where

< di1, 0 dy I, 0
— 3 H 1 k‘l _ 1 Ll
() = dd‘?}% . A (M [ - Ikz] M [ 0" daI, D
1 2=



[

Formula (4) is closely related to a result recently obtained in the context of mixed
parametric and dynamic uncertainty [4,5]. The optimization problem defining 1 is
convex, and thus ¥ can be evaluated efficiently. Further, ¥ is monotone decreasing

so that, e.g., a fast secant method can be used to compute v.
6. Discussion

The results of Section 2, 3 and 4 can be extended in a straightforward man-
ner to the case of more complex uncertainty structures, at the expense of more
involved notation. The results of Section 5 can also be generalized. However, the
generalization of (4) typically becomes a “<” inequality (but it is still always an
equality in the case of two complex uncertainty blocks). This is to be expected

since (3) also becomes a “<” inequality in that case.
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