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Abstract

This paper investigates two fixpoint approaches for minimal model reasoning with disjunctive
logic programs P. The first one, called model generation [4], is based on an operator 7"
defined on sets of Herbrand interpretations, whose least fixpoint is logically equivalent to the
set of minimal Herbrand models of the program. The second approach, called state generation
[12], uses a fixpoint operator 73 based on hyperresolution. It operates on disjunctive Herbrand
states and its least fixpoint is the set of logical consequences of P, the so—called minimal model
state of the program.

We establish a useful relationship between hyperresolution by 75 and model generation by
TAH'T. Then we investigate the problem of continuity of the two operators 75 and T, It is
known that the operator 73 is continuous [12], and so it reaches its least fixpoint in at most
w steps. On the other hand, the question of whether 73" is continuous has been open. We
show by a counterexample that 75T is not continuous. Nevertheless, we prove that it converges
towards its least fixpoint in at most w steps too, as follows from the relationship that we show
exists between hyperresolution and model generation.

We define an iterative version of 73" that computes the perfect model semantics of stratified
disjunctive logic programs. On each stratum of the program, this operator converges in at most
w steps. Model generations for the stable semantics and the partial stable (and so the well-
founded) semantics are respectively achieved by using this iterative operator together with the
evidential transformation [3] and the 3-S transformation [16].

1 Introduction

The semantics of a disjunctive logic program has been characterized by its set of minimal Herbrand
models or, equivalently, by the collection of all positive disjunctions that hold in every minimal
Herbrand model of the program (see [11]). This collection is called the minimal model state of the
program.

*The last two authors acknowledge the support of the National Science Foundation under grant number TRI
9300691.



These equivalent semantic definitions gave rise to two alternative ways of computing the meaning
of a program. The first one, denoted here by model generation, relies on a fixpoint operator 75’
that operates on sets of Herbrand interpretations and whose least fixpoint is the set of minimal
Herbrand models of the program. This operator was originally introduced by Fernandez and Minker
in [4] (see also [2, 5]) for the case of disjunctive logic programs without function symbols.

The second approach, developed by Minker and Rajasekar [12], is based on a fixpoint operator
75 defined on sets of positive disjunctions called states. This operator uses hyperresolution to
construct the model state of the program as its least fixpoint. We refer to this approach as state
generation.

In this paper, we further investigate the nature of model and state generations and prove some
useful relationships between them. In particular, we investigate the problem of continuity of the
two operators 75 and Tp'. It is known that the operator 73 is continuous [12], and so it reaches
its least fixpoint in at most w steps. On the other hand, the question of whether 77" is continuous
when applied to arbitrary disjunctive logic programs (with function symbols) has been open. We
argue that this problem is ill-posed as the domain of 72" is not closed under least upper bounds.
We then give a natural extension of 75" in terms of a new operator 75" defined on a more suitable
domain and reformulate the continuity problem for the new operator. We prove, by means of a
counterexample, that 75" is not continuous. Nevertheless, from a relationship that we show exists
between state generation by 75 and model generation by 75", we prove that 75" reaches its least
fixpoint in at most w steps, too.

We define an iterative version of 75" that computes the perfect model semantics of stratified
disjunctive logic programs. On each stratum of the program, this operator converges in at most w
steps. Due to the characterizations of the stable and the partial stable (and so the well-founded)
semantics respectively presented in [3] and [16], this iterative operator can be used to construct the
stable models and partial stable models (the well-founded model in particular) of normal disjunctive
logic programs.

The paper consists of the following sections: Section 2 presents some basic definitions and
notation. Section 3 summarizes the main properties of state generation. Section 4 surveys model
generation, defines the new operator 75" and shows that it is not continuos. This section also
proves the existence of minimal models of disjunctive logic programs. Section 5 establishes some
useful relationships between model generation and state generation. As a consequence of these
relationships, it is proven that 75" reaches its least fixpoint in at most w steps. Section 6 provides
an iterated version of the operator 7p"" that constructs the perfect models of stratified disjunctive
logic programs, and is used to generate the (partial) stable models of normal disjunctive logic
programs. Section 7 concludes the paper.

2 Basic Definitions and Notations

Given a first order language, a disjunctive logic program P consists of logical inference rules of the
form

AV ... VA, — BN AB,, (1)

where A;, i € (1,k), and B;, i € (1,m), are (positive) atoms in the language and k,m € INg.!
A rule is called a fact if m = 0. The set of all ground instances of the rules and facts in P is

!By IN; we denote the set {1,2,3,...} of positive natural numbers, whereas INo denotes the set {0,1,2,...} of
all natural numbers.



denoted by gnd (P). A disjunctive logic program P is called a disjunctive deductive database if the
program does not contain any function symbols. Two important concepts are associated with a
logic program P:

(i) First, a subset I C Hpp of the Herbrand base HBp is called a Herbrand interpretation. The
set of all Herbrand interpretations is denoted by Hzp. A Herbrand interpretation [ is called
a model of P if for all ground rules of the form (1) in P, it holds that { B;|t € (1,m)} C [
implies that there exists 7 € (1, k) such that A; € I. The set of all Herbrand models of P is
denoted by Mopp, and sometimes by Mop(P).

(ii) Secondly, the set DaBp of all ground disjunctions Ay V...V Ak, k € INg, that can be formed
by atoms A; € HBp is called the disjunctive Herbrand base of P. A subset S C DuBp is called
a disjunctive Herbrand state.

For reasoning with disjunctive deductive logic programs two main approaches have been developed.
The first approach generates the set MMp of all minimal Herbrand models of P. A model I is
called minimal if there is no smaller model I’ of P for which I’ C I. The second approach
uses hyperresolution for deriving the set MSp of all ground disjunctions C' € DaBp that are logical
consequences of the logic program, i.e., the disjunctions that hold in all models of the logic program.
This set is called the minimal model state of the logic program [12].

Below, we put together some important notation and results on partial orderings and lattices
and on fizpoint theory on complete lattices, cf. e.g. [9, 1].

Let O = (5,<), where S is a set and < is a binary relation on 5. O is called a partial ordering
on 5, if <is reflexive, transitive and antisymmetric. A partial ordering O is called a complete lattice,
if for all subsets X C S there exists a least upper bound, denoted by lub(X ), and a greatest lower
bound, denoted by glb(X),in 5.2 A very common example of a complete lattice that will occur in
this paper is O = (2Y,C) where 2V is the power set of some set U, ordered by set inclusion, and
least upper bounds and greatest lower bounds are given by the operations union and intersection,
respectively.

Certain mappings 7 : L — L on a complete lattice O = ( L, <) are of special interest: monotonic
mappings which preserve the partial ordering and continuous mappings which commute with the
least upper bound operator of the lattice. 7 is called monotonic, if z1 < 3 implies 7 (21) < 7 (23),
for all elements 1,25 € L. A subset X C L is called directed, if for every finite subset X’ of X
there exists an upper bound of X’ in X. 7 is called continuous, if 7(lub(X)) = lub(7 (X)) for all
directed subsets X C L, where 7(X) = {7(2)|2 € X }. Every continuous mapping on a complete
lattice is also monotonic. The converse, however, is not true.

The elements of a lattice which are invariant under a mapping on the lattice are called fixpoints
of the mapping. That is, an element = € L is called a fizpoint of 7, if T(z) = . A fixpoint z € L
of T is called the least fizpoint of T, denoted by Ifp(T), if < 2’ for all fixpoints 2’ of 7.2

Given a mapping 7 : L — L on a complete lattice O = (L, <) we can define its ordinal powers
— corresponding to repeated applications of the mapping — as new mappings on the same lattice by
using transfinite recursion on « in conjunction with the least upper bound operation on the lattice.
The ordinal powers T1% : I — L of T are defined as follows:

%) = e,

2The notations lub(X) and glb(X) are justified since for every set X its least upper bound and its greatest lower
bound are unique if they exist.
*The notation Ifp(T) is justified since for every mapping 7 its least fixpoint is unique if it exists.



T'(z) = T(T'"7Y(x)), for a successor ordinal a,
T () wb({ T (x)| B < a}), for alimit ordinal a.

For the important special case of the bottom element L = glb(L) of O, the ordinal powers T | a of
7T are lattice elements given by 7 T a = ’TTa(J_). The well-known theorem of Knaster and Tarski,
cf. [8] and [20], relates the fixpoints of a monotonic mapping on a complete lattice to the ordinal
powers: If 7 is monotonic, then the collection of fixpoints of 7 forms a complete lattice and so 7
has a unique least fixpoint Ifp(7). For any ordinal a, it holds 7 | o < lfp(7), and there exists
an ordinal a, such that 7 | o' = lfp(7) for all @/ > «. The smallest such « is called the closure
ordinal of 7. If T is continuous, then 7 | w = Ifp(7) (see [7]).

3 State Generation

The fixpoint semantics of a disjunctive logic program is based on a disjunctive consequence operator
Tp given in [12] (see also [10]).

Definition 3.1 (Consequence Operator 73)
Let P be a disjunctive logic program and let S C DuBp be a disjunctive Herbrand state.
The disjunctive consequence operator

T’PS . 2DHB73 N 2DHB73
of P is defined as

T3(5) = SULCVCIV...v (o |C\Ch,....Cn € Dipp and
there is a rule C' — By A...A B, € gnd (P):
Vie({l,m): B;vC; €8 }.

Note that according to the above definition the result of applying the operator 73 to a disjunctive
Herbrand state S contains the state S as well as all disjunctions that can be derived from § and
the rules in P by one step of hyperresolution.

Minker and Rajasekar show in [12] that the disjunctive consequence operator 73 is continuous
with respect to the complete lattice @ = (2P%7 C) on disjunctive Herbrand states, and hence also
monotonic. The bottom element of @ is L = (). Following the general setting given in Section 2,
the ordinal powers of the disjunctive consequence operator are defined with respect to the lattice
O as follows.

Definition 3.2 (Ordinal Powers for 75 on O = (27 C))
Let P be a disjunctive logic program.

(i) For S C Dup, the ordinal powers T5!%(S) are defined by

T31°(85) = 8,
TE1(8) = TH(TE1°7H(S)), for a successor ordinal a,
T31(8) = U 7517 (S), for a limit ordinal a.

p<a

(ii) The ordinal powers T3 | a are defined by T3 T a = T51*(0).



Example 3.3 (Disjunctive Transitive Closure)
Consider the disjunctive logic program

P = {path(X,Y) — arc(X,Z) A path(Z,Y),
path(X,Y) — are(X,Y),
arc(a,b)V arc(a,c), arc(b,d), arc(c,d) },

that consists of the classical transitive closure rules and some disjunctive facts for the arc—relation,
cf. Figure 1.

Figure 1: Graph with disjunctive arcs
The ordinal powers S, =75 | n = ’TPST”(@), n > 1, are given by
S1 = {arc(a,b)V arc(a,c), arc(b,d), arc(e,d) },

Sy = S1U{ arc(a,b)V path(a,c), path(a,b)V arc(a,c),
path(b,d), path(c,d) },

Ss = Sy U{ path(a,b)V path(a,c), path(a,d)V arc(a,c),
path(a,d) Vv arc(a,b),
path(a,d) V path(a,c), path(a,d)V path(a,b) },

Sy = SsU{ path(a,d) },

S, = 84, forall n>4.

Thus, 73 T w = 75 1 4. This example shows that 735 can also derive definite facts from disjunctive
facts.

A disjunction C" is called a sub-disjunction of another disjunction C' if every atom appearing in
(" also appears in C'. €’ is called a proper sub-disjunction of C'if C" # € and C" is a sub-disjunction
of C'. For a disjunctive Herbrand state 5, let

can(S) = {Ce€ S| AC" € 5 :C"is a proper sub-disjunction of C' },
exp(S) = {C € DuBp|3C" € §:C"is a sub-disjunction of C' }.

can(S) and exp (5) are respectively the canonization and the expansion of S, and it holds that
can(5) C S C exp(S). Two disjunctive Herbrand states Sy and 95 are called equivalent if exp(57) =
exp (92). This is denoted by 51 =, 93.

The minimal model state MSp is equivalent to the least fixpoint of the disjunctive consequence
operator 73, and it can be derived as MSp = exp (75 | w), as was proven by Minker and Rajasekar
in [12].



Theorem 3.4 (Characterization of MSp [12])
Let P be a disjunctive logic program. Then

MSp =, Ufp(T5) =75 1 «,

where a is the closure ordinal of 73 on O = (2P C).

4 Model Generation

The model generation approach constructs the minimal Herbrand models of a given logic program.
For a definite logic program P (without disjunctions) and a given Herbrand interpretation I the
classical consequence operator 7p of van Emden and Kowalski [21] computes the Herbrand inter-
pretation J that consists of the head atoms of all rules in gnd (P), such that the bodies of the
rules are satisfied by I. The unique minimal Herbrand model of the program is precisely the least
fixpoint of this operator.

For disjunctive logic programs, model generation deals with sets of Herbrand interpretations.
For conciseness, we abbreviate the set of Herbrand interpretations as coin (collection of interpreta-
tions). We use the following two operations min and exp for a coin 7:

min(Z) = {Ile€l| AJe€ZI:JCI},
exp(I) = {1e€2™P|3JeT:JC1)}.

Note that we use the operator exp for states as well as for coins, but it will be clear from the
context to which case we are refering. A coin 7 is called canonical if it does not contain two
different Herbrand interpretations I,.J such that I C J, i.e. if Z = min(Z). A coin 7 is called
expanded if for each Herbrand interpretation I € Z it also contains all Herbrand interpretations
that are supersets of I, i.e. if 7 = exp (7). E.g. for the Herbrand base HBp = { a,b, ¢ } and the coin

T ={{a},{a,b}, {b,c} }, we get min(Z) = {{a}, {b,c} } and exp (Z) = ZU {{a,c}, {a,b,c} }.
The following consequence operator 75" generalizes the operator 7p of van Emden and Kowal-
ski to the case of disjunctive logic programs P. 75" maps coins to coins.

Definition 4.1 (Consequence Operators 73" and 73")
Let P be a disjunctive logic program.

(i) The consequence operator
r]%NT . 27—(173 _ 27—(173

operates on sets 7 € 2"77 of Herbrand interpretations:

TH(T) = | Mon(T3(1),
IeT

(ii) The consequence operator
TPM . 27‘[173 N 27‘[173

operates on sets Z € 2777 of Herbrand interpretations:

TH(T) = min(T3™ ().



Foreach I € 7, T;¥"(Z) contains all Herbrand interpretations J which extend I and at the same
time satisfy all ground rules of P whose bodies are satisfied by I. Thus, from each interpretation
several interpretations may be derived. Furthermore, the result 757" (Z) is expanded.

The operator 72" was originally introduced by Fernandez and Minker [4] (see also [2, 5]) to
compute the minimal Herbrand models of a disjunctive deductive database (i.e. a disjunctive
logic program with no function symbols). In this case, due to the fact that the Herbrand base
of a database is finite, coins are finite sets of finite interpretations and so have the property that

Tp(I) = eap (Tp"(T)). "

Example 4.2 (Consequence Operator 77")
Consider the disjunctive deductive database P of Example 3.3.

(i) For the Herbrand interpretation I = () the rules whose bodies are satisfied by I are precisely
the facts of P. Thus, 73 ({0}) = Z; = {I1, J1}, is the set of minimal Herbrand interpretations
of the facts of P, where

L = {arc(a,b),arc(b,d),arc(c,d) },
J1 { arc(a,c), arc(b,d), arc(c,d) }.

(ii) For the Herbrand interpretations in Z; the bodies of some ground instances of the second rule
are satisfied. Thus, 77" extends Iy, J1. We get T3(Z1) = Iy = {l3, J2}, where

I, = 1L U{path(a,b), path(b,d), path(c,d) },
Jy = JiU{path(a,c), path(b,d), path(c,d) }.

Fernandez and Minker (cf. [5]) investigated some of the properties of the consequence operator
75" based on the following subsumption relation T defined for coins Z,J € 2P,

ICcCg it vJjeg:d1el: 1CJ

E.g. for 7 = {{a}, {a,b}, {b,c} } and J = {{a}, {c} } weget J CT.

The pair @ = (2777 C) however is only a quasi-ordering, since on 277 the relation C is
reflexive and transitive, but not antisymmetric. To overcome this, one can work with equivalence
classes of coins as follows: Two coins Z,J € 2777 are called equivalent with respect to the quasi-
ordering C, denoted by Z =¢ 7, if they subsume each other, i.e.

IT=cJg iff IC Jand J CT.

Fernandez and Minker then restricted the domain of 72" to Oy, = <27ﬂ-577;, C ), where 277;577;
consists of all canonical coins. This subdomain does form a partial ordering. For disjunctive
deductive databases, this partial ordering is also complete since the Herbrand base of a such a
database is finite. Based on this, they proved the monotonicity of 75" on O, and the following
characterization of the set MMp of minimal Herbrand models of P in terms of the consequence

operator 72! and its ordinal powers 73! | o = ’Tﬁﬂa({ 0 }) with respect to Oy

*For an arbitrary disjunctive logic program P, a coin can be an infinite set and it can contain infinite interpreta-
tions. Thus, this property may not hold for P, since there may exist some I € TNT (Z) for which there is no minimal
interpretation in 75V T (Z) contained in I.



Theorem 4.3 (Characterization of MMyp [5])
Let P be a disjunctive deductive database. Then

MMp = Ufp(T2) = T | a,
Hip Oy,

where «a is the closure ordinal of 72" on Opy, = (2,7, C

Since the Herbrand base of a disjunctive deductive database is finite, the operator 75" reaches
its least fixpoint in a finite number of iterations.

Example 4.4 (Disjunctive Transitive Closure)

For the disjunctive logic program P of Example 3.3 all ordinal powers 73" | n = {1,,J, }, n > 1,
consist of two Herbrand interpretations, where Iy,.J; and I3, .J; have been given in Example 4.2
and

Iy = LU{path(a,d)},
Js = JyU{path(a,d)}.

It holds I, = I3 and J, = Js, for all n > 3. Thus, the set of minimal Herbrand models of P is
given by MMp = { I3, J3 }.

In principle, one can apply the operator 75" to disjunctive logic programs containing function
symbols. The question of whether or not the operator is continuous in this extended context has
been open. Notice however that, in the extended context, the partial ordering O,,;, = <27ﬂ-577;, C)
is not a complete lattice (the least upper bound of a collection X of canonical coins may not exist).
Hence the question of continuity in this subdomain is ill-posed.

We reformulate the continuity problem in a more appropriate domain O.,, = <2Z£j’, C ), where
278'%7’ consists of all expanded coins. It is easy to show that in this subdomain of expanded coins

the relation C reduces to superset inclusion, since for all Z, 7 € 2% it holds
TCJ iff eap(T) 2 eap ().
This shows that O, = (2%Z> L) is a complete lattice, and that the least upper bound and the

exp
HIP
exp

ZUbexp(X) = ﬂ I? glbexp(X): U 1.
TeX TeX

greatest lower bound of a set X C 2 of expanded coins are given by

The bottom element of O, is the coin L.,, = HIp consisting of all Herbrand interpretations.
Note that both the intersection and the union of a set X of expanded coins is an expanded coin.’
We remark that the construction of O, is similar to the concept of free w-completion of partial
orderings, cf. [23].

In the domain O, we can work with the operator 75"" that produces expanded coins. For
every coin Z it holds Z T TF""(Z), since every Herbrand interpretation J € 7T3V"(I) is derived
by extending an Herbrand interpretation I € Z, where I C J. Moreover, the operator 75" is
monotonic on O = (2"77 C) (and hence in O, ):

IC J implies 75 " (I)C 75" ().

Following the general setting given in Section 2, the ordinal powers of 75" are defined with respect
to the complete lattice O,;, as follows.

°This does not hold for canonical coins.



Definition 4.5 (Ordinal Powers for 7)™" on O,,, = <2Z£j’, C))
Let P be a disjunctive logic program.

(i) For 7 € 2127 the ordinal powers T 1*(7) are defined by

exp

TﬁNT TO(I) — I,

TﬁNTTO‘(I) - TﬁNT(TﬁNTTa_l(I)), for a successor ordinal «,
TﬁNTTO‘(I) — ﬂ TﬁNTm(I), for a limit ordinal «.
B<a

1 e orainat powers Q are deline y o = J—ex .
ii) The ordinal TR defined by T 1 a = TR"19( 1L,

For disjunctive deductive databases it can be shown that the respective ordinal powers of the
operators 75" and 7p" are equivalent, i.e. 73" T a = 73" | a. It holds 73" | o = exp (73" T )
and T3 T a = min(T5" | a).

We show now by means of a counterexample that the operator 75" is not continuous.

Example 4.6 (Non—continuity of Model Generation through 7;~")
Consider the disjunctive logic program

P o= { a—aX)ANa(Y)Adiff(X,Y),
a(X) — a(Y),
d(f(c)) —d(c) }

and the complete lattice O, = <2HI7’ D). Consider the following Herbrand interpretation for the

exp

predicate symbol diff:

Liig = { diff (f"(¢), f"(c)) | m,n € INg,m # n }.

This Herbrand interpretation /g says that for diff (X,Y) to be true, it must hold that X and Y
denote different terms. Let a,, denote the atom a( f(¢)), forall n € IN;, and let I, = {a,|n € IN4}.
We are interested in the following expanded coins Z,, where all I € 7,, contain the Herbrand
interpretation /4 :

T, = exp({{an}Ulgg|m>n}), forne IN,.

The set X = {Z, |n € IN; } of coins forms a chain, since it holds Z,, C 7y, for all n > k. Thus, X
is a directed set of coins. The least upper bound of X is given by

luboyy(X)= () Z,={1C Hp|InI,is infinite and L4y C I},
nEW+

i.e. it consists exactly of those Herbrand interpretations I, which contain infinitely many of the
atoms a, and also contain the whole Herbrand interpretation I4;#. Thus, each of these Herbrand
interpretations I contains at least two different atoms a, = a(f"(c)) and ax = a(f*(c)) and the
corresponding atom diff (f™(c), f¥(c)). This implies that the first rule of the logic program will
extend I with the atom ag, and that the second rule of the logic program will extend I with all
other atoms a,, € I,. Thus, it holds

Tp™" (lub ey (X)) = eap ({ {ao} U Lo U Laigr }).



On the other hand it holds
T (1) = exp ({ I, U Lyp }), for all n € Ny,

i.e. all coins 75""(Z,,), n € IN4, are identical. Thus,

lubery ({ T3 (Zo) [ n € Ny }) = () T (L) = eap ({ 1o U Luig }).-
n€Ny

This shows that the operator 75¥" does not commute with lub ), i.e.
Tp™ (lub ooy (X)) # lubeay ({ Tp™ (Z1) | n € IN4 }).

This implies also that 75" is not continuous with respect to Oy = <2Z£j’, C ) nor with respect
to O = (2" ).
O

In the next section we show that even though 75" is not continuous it reaches its least fixpoint
in at most w steps. Furthermore, based on the operator 75", we are able to generalize the
characterization of the minimal Herbrand model semantics that Fernindez and Minker obtained
for disjunctive deductive databases to arbitrary disjunctive logic programs, namely that MMp =¢
Ifp(T5"") = 75" T w (see Theorem 5.5).

The following lemma is used in the next section. It shows that the set of minimal Herbrand
models of a disjunctive logic program is equivalent to the set of all Herbrand models of the logic
program with respect to the quasi-ordering C. In other words, this means that each Herbrand
model of the logic program contains a minimal Herbrand model of the program. This result is not
trivial since, for an arbitrary disjunctive logic program P, it could have been the case that there
were an infinitely decreasing chain My 2 My 2 Ms D ... of models of P.

Lemma 4.7 (Existence of Minimal Models)
Let P be a disjunctive logic program. Then

MMp = Mopp.

Proof:

For each M € Mopp we want to show that there exists some I € MMp such that I* C M.
Let Zpy = {1 € Mopp |1 C M }. We prove below that each chain K C 7y, 6 has a lower bound
I* in Zps. Using Zorn’s lemma, this implies that the coin Zps contains a minimal element. Hence,
MMp C Mopp. The statement Mopp C MM is trivial, since MMp C MoDp.

Now let K C Zps be a chain of Herbrand models. Obviously, the Herbrand interpretation

=1
Iex

is a lower bound of K and I'* C M. We want to show that I* is also a model of P, i.e. I" € MoDp.
Consider a rule
AV ... VA — By A...A By, € gnd (P)

such that I* |= By A ... A B,,. Since K is a chain, we get that
J=AIn{A,.. A }|T€Tl}

bi.e. for each I,J € K it either holds I C Jor J C I.

10



is a chain, too. Since all elements of [/ have a finite cardinality between 0 and k, there exists an
element J' € J with minimal cardinality. Since 7 is a chain, it holds

vieJg:J C

Consider the Herbrand interpretation I’ € K, such that J' = I’ { Ay,...,Ap}. Since I |
BiA...ABy and I* C I'Jit holds I' = By A...AB,,. From I' € Mopp weget I' = Ay V...V Ay,
ie. JJ=T'Nn{A,...,A;} # 0. Since all elements of 7 are supersets of J/, we get

vieK:J cl.

This shows that J' C I*,i.e. I* = Ay V...V Ag. Thus, I* is a Herbrand model of P contained in
T
O

5 Relationships between State Generation and Model Generation

For disjunctive logic programs P the minimal model state MSp and the set MMp of minimal
Herbrand models of P are dual concepts, i.e., they can be derived from each other. According to

[10], it holds

MMp = MM(MSp),
MSp = MS(MMp),

where the dualization operations are defined by

MS(I) = {CeDuBp|VIel I=C},
MM(S) = min({l € Hzp|VC € S: 1= C}).

This resembles the duality between the conjunctive and the disjunctive normal form of boolean
formulas, since MSp represents the conjunction of its disjunctions, whereas MM p represents the
disjunction of the conjunctions formed by its models.

This duality relates the least fixpoints MSp and MMyp ( = MoDpp ) of the consequence oper-
ators 75 and 75", respectively (see Figure 2). In the following we also compare the intermediate
results of the respective fixpoint iterations. Corollary 5.3 establishes the relationship between the
ordinal powers 75 | n and 75" T n.

Lemma 5.1 (Connection between 75 and 75N" [17])
Let P be a disjunctive logic program, let Z be a coin, and let S C DHBp be a disjunctive Herbrand
state, such that Z C Mop(5). Then

TENI) C Mop(TA(S)),
THS) C MS(TE(T)).

11
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Figure 2: Comparing Fixpoint Computations

Proof:
(i) Assume M is a Herbrand interpretation, such that
M e 7:7(1).

We will show that M € Mop(75(5)).

There is some I € Z, such that M € Mop(T3(1)). Thus, I C M. Since T C MoD(5), we get
I € Mop(S5). Since I is a model of 5, we get that M is a model of 5. For each C' € T5(5)\ 5,

there is a rule
C'"— BiA...NB, €gnd(P)

and there are facts B; vV C; € S, such that C =C'vCyv...vC,. I |=Cy V...V, then
M |= C. Otherwise, since I = B;VC;, 1 <i<m,wegetl|= BiA...AB,,. Thus, C' € T35(I).
Since M € Mop(T5(1)), we get that M |= C’. Thus, again M |= €. Summarizing, M is a
model of 75(5)\ 5.

This shows that M € Mop(T3(5)), i.e.
TH(T) C Mon(TA(S)).
(i) Application of MS to (i) yields
MS(MoD(TA(S))) € MS(TE™(T).
Since T5(5) C MS(Mop(T5(5))), we get
TA(S) € MS(TR ().
o

From this connection we can derive some relationships between state generation and model
generation, i.e., between the ordinal powers 75 | a of the operator 75 on disjunctive Herbrand
states and the ordinal powers 75" | a of the operator 75" on sets of Herbrand interpretations.

12



Theorem 5.2 (State Generation vs. Model Generation)
Let P be a disjunctive logic program, let S C DHBp be a disjunctive Herbrand state of P and let
7 be a coin, such that Z C Mop(S) and S C MS(Z). For all ordinals « it holds

Mop(T1°(5)),

-
C MS(TETI(T)).
Proof:

(i) The first set inclusion is shown by induction on a.

a = 0 : The induction basis is shown by
TR 1(T) = T € Mop(§) = Mop(TE1°(5)).
a — a+1: Using the induction assumption for a and the monotonicity of 75" we get
T NT) = TR (T (D)) € T (Mon(TE(5))).

Let 7/ = Mop(7'%(S)) and §' = 751%(S). Then I’ = Mop(S’). Applying the first
set inclusion of Lemma 5.1 to S” and 7’ yields T3V (Z') C Mop(73(5")), i.e.,

TE(Mop(T319(8))) € Mop(TR(TE1($))) = Mon(T31"H1(8)).
By transitivity we get:
THT1 ) © Mon(T31F ().
a a limit ordinal: Intersecting the set inclusions for all § < « yields

N 77" (z) € () Mon(T317(5)).
B<a B<a

Since Ns<q TR (T) = T 1), and

M Mon(7517(5)) = Mon( | TZ17(8)) = Mon(T51%(5)).
B<a f<a

we get that
THT1(T) € Mon(T31°(5)).

(ii) If we apply MS to the first set inclusion we get
MS(Mop(T31°(5))) € MS(TH™*(T)).

By chaining with 731%(S) C MS(Mop(T31%(5))) we get the second set inclusion.

Corollary 5.3 (State Generation vs. Model Generation)
Let P be a disjunctive logic program. For all ordinals « it holds
2" Ta C Mop(Tp T a),

Tpla C MS(TH" | a).

13



Sometimes, the set inclusions in Corollary 5.3 are strict, as the following example shows.

Example 5.4 (State Generation vs. Model Generation)
Given some n € IN,, consider the disjunctive logic program

P={a<b|1<i<n}u{bVv...Vb,}
with n rules and one fact. Let 5, = 75 | m and Z,,, = 73" T m. For n = 2 we get

St = {byVvby},

Sy = { by Vby, aVby, aVby},
Zy = {{bi},{b}},

Iy = {{b,a},{bya}}.

Thus, for the atom a we get a € MS(Z3), but a € S3. For n > 2 we get the disjunctive Herbrand
states

Sm = {byV...Vb, }U
{aVvb,Vv...Vb, [{i1,....,5:} C{L,n),n—m+1<k<n-1},
for all m € IN,4,

where (n,m) denotes the interval {n,n+ 1,...,m } of all natural numbers between n and m. On
the other hand,

L = {{bl}vv{bn}}v
In = {{bia}|l<i<n}, foralm>2.

The least fixpoint of 73" is always reached after two steps: Ifp(73") = I,, whereas the least fixpoint
of 75 is reached after n 4 1 steps: Ifp(75) = Spy1 = S» U {a}. We can show that

Mop(S,) = ewp (Lo UL},
MS(Z.) = e (.U {a}),

where I, = {b;| 1 < ¢ < n}. This shows that « € MS(Z,) \ S., Iy € Mop(S5,)\Z,, i.e., the set
inclusions in Corollary 5.3 are strict.

Since the operator 73 is continuous (see [12]), its ordinal powers converge towards its least
fixpoint in at most w steps, i.e., Ifp(7p) = 75 | w =, MSp. Corollary 5.3 helps to show that the
ordinal powers of the operator 75"" converge towards its least fixpoint in at most w steps, too.
That is, the closure ordinal of 75" on O, is w. Moreover, this least fixpoint is equivalent to the
set MMp of the minimal Herbrand models of the program.

Theorem 5.5 (Convergence of Model Generation by 7N7")
Let P be a disjunctive logic program. Then

MMp =c Ifp(Tp™) = Tp" | w.

Proof:
We will show that MMp T 73" | w and that 75" | w © MMp.

14



i) From Corollary 5.3 we know that 73" T w C Mop(75 | w). With 735 | w =, MSp, we get
P P P
Mop(MSp) C T | w.

From Lemma 4.7 we know that MM(MSp) = Mop(MSp), and from [12] we know that
MM(MSp) = MMp. This shows that

MMp C T35 T w.

(ii) From
TﬁNT T 0= J—exp C MMp

and T3V (MMp) = MMp and the monotonicity of the operator 75"" on the partial ordering
Oy = <2HI7’ C ), by induction on n € INg we get that

exp 9
75" 1 n E MMp, for all n € INy.

This shows that
T [ w=lubeyy {7p"" Tn|n € INo}) E MMp.

Hence 75" | w =¢ MMp. Since MMp is a fixpoint of THT, ie., T (MMp) = MMp, this
implies that Ifp(75"") = MMop.
O
Thus, the operator 75" is an example of a monotonic operator that is not continuous, but
nevertheless reaches its least fixpoint in at most w steps.

6 Iterative Model Generation of Perfect and (Partial) Stable Se-
mantics

In [5], Minker and Ferndndez defined an iterative method to compute the perfect models of a
stratified disjunctive deductive database. In this section we extend their method to work with
arbitrary stratified disjunctive logic programs by using the operator 75"" defined on Section 4.

Given a first order language, a normal disjunctive logic program P consists of logical inference
rules of the form

AV .. VA, — BN ABu AnotCy AL A notC, (2)

where A;, 7 € (1,k), By, ¢ € (1,m), and C;, ¢ € (1,n), are (positive) atoms in the language;
k,m,n € INg; and not is the negation-by-default operator. Given a predicate p in the language,
the definition of p in P is the set of all rules in P whose heads (i.e. A; V...V Ag) contain an
atom in which p appears. The definition of an atom A is taken to be the definition of the predicate
symbol appearing in A.

A normal disjunctive logic program P is called stratified (see [13]) if it is possible to partition
the set of rules of P into sets {P1,..., P}, called strata, such that for every rule of the form (2) in
P there exists a constant ¢, 1 < ¢ < r, such that: (1) the definition of each A; is contained in P;
(2) the definition of each B; is contained in (J . Ps; and (3) the definition of each Cj is contained
in Usee Ps. Any partition {Py,..., P} of P satisfying the above conditions is called a stratification
of P.
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The intended meaning of a stratified disjunctive logic program P is given by its collection
of perfect models as defined in [13]. It is well-known (see e.g. [13]) that this collection can be
constructed by induction on the strata as follows. Given a stratification {Py,...,P,} of P, let PM;
denote the set of perfect models of the first ¢ strata of P, i.e. of the logic program (J,.; Ps. By
definition, the lowest stratum 7P; (which may be the empty set) is free of negation—by—default and
its set of perfect models is given by PM; = MMp,. When PM; has been constructed, it is used to
evaluate the negated by default literals appearing in the 7 4+ 1 stratum as follows: If I € PM;, then

772»14_1 is the disjunctive logic program:

Ply ={ AV..VA <~ BiA...AB,
Al\/...\/AkHBl/\.../\Bm/\TLOtCl/\.../\NOtCnEPH.l and
{C1,...,C, 30T =0},

PI_H is called the Gelfond-Lifschitz transformation of P;y1 with respect to I. The perfect models

K3
of the first 7 + 1 strata are then taken to be UIEPMi /\/l/\/lPiIHU[. The collection of perfect models
of P is exactly PM,. It is worth noticing that this collection of models is the same independently
of the particular stratification of P used in the induction.
For the case of function—free logic programs, Minker and Ferndndez used an iterative version of
their operator 75" to compute this collection of perfect models [5]. We extend now this procedure

to arbitrary stratified disjunctive logic programs by defining the iterative version of our operator
THT.
P

Definition 6.1 (Iterative version of 73N7)
Let P be a stratified disjunctive logic program and {Py,...,P.} be a stratification of P. The
iterative version of 75" is defined as follows:

oy = min(Tp 1 agigy),
7ZI/P1,...,PW(+1> = U mzn(’ZEI'P{H_lUI) T a(n—l—l,[))
IeTh
(731 ..... 73”>

where a(; 1y is the closure ordinal of ’T(;)ijul).

The set of perfect models of P is given by 7/ . Notice that, due to Theorem 5.5, each of
(P1ye-sPr)

the closure ordinals a! in the previous definition is at most w.

Fernandez et al. [3] showed how to transform an arbitrary normal disjunctive logic program P
into a stratified one, denoted by P¢, in such a way that the perfect models of P¢ that satisfy a given
set of integrity constraints correspond to the stable models of P (as defined in [14]). They called
this transformation the evidential transformation. Using this characterization of stable models, the
iterative version of 75" can be used to construct the stable semantics of P.

Similarly, the operator 75¥" can be used to generate the collection of partial (or 3—valued) stable
models ([15]) of a normal disjunctive logic program P by using a characterization of this collection
of models given by Ruiz and Minker in [16]. This characterization is based on a transformation
called the 35-transformation which applied to a normal disjunctive logic program P produces a
constrained logic program (free of negation-by-default) P3°, whose minimal (2-valued) consistent
models correspond to the partial stable models of the original program P. Since the well-founded
model ([22]) is a distinct partial stable model of a normal logic program (see [15]), then model
generation for the well-founded semantics is also achieved using the operator 75" together with
the 3S-transformation.
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7 Conclusions

Given a disjunctive logic program P, there are two approaches for deriving the minimal model state
MSp and two approaches for deriving the set MM p of minimal models of the database. Both sets
can be derived based on hyperresolution as well as on model generation from P.

o Using hyperresolution, MSp is computed as the least fixpoint of the disjunctive consequence
operator 75. Using model generation, MMp is computed as the least fixpoint of the conse-
quence operator 75",

o By dualization of the minimal model state MSp we get the set of minimal models of P as
MM(MSp). Similarly, dualization of MMp yields MSp as MS(MMp).

As shown in this paper, both approaches converge in at most w steps. For the case of disjunctive
deductive databases, these approaches have been implemented within the disjunctive deductive
database engine DisLoG7, cf. [19], developed at the University of Tiibingen. Experimenting with
DisLog, we have observed that the efficiency of each approach depends on the relation between the
number n = |can(MSp)| of minimal® disjunctions in MSp and the number m = |MMp| of minimal
models. We conjecture that the following may be the case.

e If n and m are about equal, then for each derivation it is better to use the specialized approach,
i.e., to derive MSp by hyperresolution and to derive MMp by model generation.

o If n is much bigger than m, then the fastest is to use model generation for deriving MMp
and to derive MSp from MMp by dualization.

o If n is much smaller than m, then the fastest is to use hyperresolution for deriving MSp and
to derive MMp from MSp by dualization.

Based on the theorems of Section 5 it has been shown in [18] that during a fixpoint iteration
with 75 it is possible to switch to some iterations of model generation. Intermediate information
about the size of the ordinal powers 75 | n can be used to decide if this would be advantageous.
However, general criteria to decide in advance which method is more efficient when faced with a
particular disjunctive logic program are still to be determined.

Using model generation by 75", perfect, well-founded, stable and partial stable models of
normal disjunctive logic programs can also be computed. For a stratified disjunctive logic program
P, the perfect models of P can be computed by an iterative model generation applied to the strata.
For a normal disjunctive logic program P, the stable models and the partial stable models (the
well-founded model in particular) of P can be respectively computed by model generation with the
evidential transformation P¢ ([3]) and by model generation with the 3S-Transformation P3° ([16]).
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