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These equivalent semantic de�nitions gave rise to two alternative ways of computing the meaningof a program. The �rst one, denoted here by model generation, relies on a �xpoint operator T MPthat operates on sets of Herbrand interpretations and whose least �xpoint is the set of minimalHerbrand models of the program. This operator was originally introduced by Fern�andez and Minkerin [4] (see also [2, 5]) for the case of disjunctive logic programs without function symbols.The second approach, developed by Minker and Rajasekar [12], is based on a �xpoint operatorT sP de�ned on sets of positive disjunctions called states. This operator uses hyperresolution toconstruct the model state of the program as its least �xpoint. We refer to this approach as stategeneration.In this paper, we further investigate the nature of model and state generations and prove someuseful relationships between them. In particular, we investigate the problem of continuity of thetwo operators T sP and T MP . It is known that the operator T sP is continuous [12], and so it reachesits least �xpoint in at most ! steps. On the other hand, the question of whether T MP is continuouswhen applied to arbitrary disjunctive logic programs (with function symbols) has been open. Weargue that this problem is ill{posed as the domain of T MP is not closed under least upper bounds.We then give a natural extension of T MP in terms of a new operator T INTP de�ned on a more suitabledomain and reformulate the continuity problem for the new operator. We prove, by means of acounterexample, that T INTP is not continuous. Nevertheless, from a relationship that we show existsbetween state generation by T sP and model generation by T INTP , we prove that T INTP reaches its least�xpoint in at most ! steps, too.We de�ne an iterative version of T INTP that computes the perfect model semantics of strati�eddisjunctive logic programs. On each stratum of the program, this operator converges in at most !steps. Due to the characterizations of the stable and the partial stable (and so the well{founded)semantics respectively presented in [3] and [16], this iterative operator can be used to construct thestable models and partial stable models (the well{founded model in particular) of normal disjunctivelogic programs.The paper consists of the following sections: Section 2 presents some basic de�nitions andnotation. Section 3 summarizes the main properties of state generation. Section 4 surveys modelgeneration, de�nes the new operator T INTP and shows that it is not continuos. This section alsoproves the existence of minimal models of disjunctive logic programs. Section 5 establishes someuseful relationships between model generation and state generation. As a consequence of theserelationships, it is proven that T INTP reaches its least �xpoint in at most ! steps. Section 6 providesan iterated version of the operator T INTP that constructs the perfect models of strati�ed disjunctivelogic programs, and is used to generate the (partial) stable models of normal disjunctive logicprograms. Section 7 concludes the paper.2 Basic De�nitions and NotationsGiven a �rst order language, a disjunctive logic program P consists of logical inference rules of theform A1 _ : : :_Ak  B1 ^ : : :^Bm; (1)where Ai, i 2 h1; k i, and Bi, i 2 h1; m i, are (positive) atoms in the language and k;m 2 IN0.1A rule is called a fact if m = 0. The set of all ground instances of the rules and facts in P is1By IN+ we denote the set f 1; 2; 3; : : : g of positive natural numbers, whereas IN0 denotes the set f 0; 1; 2; : : : g ofall natural numbers. 2



denoted by gnd (P). A disjunctive logic program P is called a disjunctive deductive database if theprogram does not contain any function symbols. Two important concepts are associated with alogic program P :(i) First, a subset I � HBP of the Herbrand base HBP is called a Herbrand interpretation. Theset of all Herbrand interpretations is denoted by HIP . A Herbrand interpretation I is calleda model of P if for all ground rules of the form (1) in P , it holds that fBi j i 2 h1; m i g � Iimplies that there exists i 2 h1; k i such that Ai 2 I . The set of all Herbrand models of P isdenoted byMODP , and sometimes byMOD(P).(ii) Secondly, the set DHBP of all ground disjunctions A1 _ : : :_Ak, k 2 IN0, that can be formedby atoms Ai 2 HBP is called the disjunctive Herbrand base of P . A subset S � DHBP is calleda disjunctive Herbrand state.For reasoning with disjunctive deductive logic programs two main approaches have been developed.The �rst approach generates the set MMP of all minimal Herbrand models of P . A model I iscalled minimal if there is no smaller model I 0 of P for which I 0 ( I . The second approachuses hyperresolution for deriving the set MSP of all ground disjunctions C 2 DHBP that are logicalconsequences of the logic program, i.e., the disjunctions that hold in all models of the logic program.This set is called the minimal model state of the logic program [12].Below, we put together some important notation and results on partial orderings and latticesand on �xpoint theory on complete lattices, cf. e.g. [9, 1].Let O = hS;�i, where S is a set and � is a binary relation on S. O is called a partial orderingon S, if � is re
exive, transitive and antisymmetric. A partial ordering O is called a complete lattice,if for all subsets X � S there exists a least upper bound, denoted by lub (X), and a greatest lowerbound, denoted by glb(X), in S.2 A very common example of a complete lattice that will occur inthis paper is O = h2U ;�i where 2U is the power set of some set U , ordered by set inclusion, andleast upper bounds and greatest lower bounds are given by the operations union and intersection,respectively.Certain mappings T : L! L on a complete lattice O = hL;�i are of special interest: monotonicmappings which preserve the partial ordering and continuous mappings which commute with theleast upper bound operator of the lattice. T is called monotonic, if x1 � x2 implies T (x1) � T (x2),for all elements x1; x2 2 L. A subset X � L is called directed, if for every �nite subset X 0 of Xthere exists an upper bound of X 0 in X . T is called continuous, if T (lub(X)) = lub (T (X)) for alldirected subsets X � L, where T (X) = f T (x) j x 2 X g: Every continuous mapping on a completelattice is also monotonic. The converse, however, is not true.The elements of a lattice which are invariant under a mapping on the lattice are called �xpointsof the mapping. That is, an element x 2 L is called a �xpoint of T , if T (x) = x. A �xpoint x 2 Lof T is called the least �xpoint of T , denoted by lfp (T ), if x � x0 for all �xpoints x0 of T .3Given a mapping T : L! L on a complete lattice O = hL;�i we can de�ne its ordinal powers{ corresponding to repeated applications of the mapping { as new mappings on the same lattice byusing trans�nite recursion on � in conjunction with the least upper bound operation on the lattice.The ordinal powers T "� : L! L of T are de�ned as follows:T "0(x) = x;2The notations lub (X) and glb(X) are justi�ed since for every set X its least upper bound and its greatest lowerbound are unique if they exist.3The notation lfp(T ) is justi�ed since for every mapping T its least �xpoint is unique if it exists.3



T "�(x) = T (T "��1(x)); for a successor ordinal �;T "�(x) = lub (f T "�(x) j � < � g); for a limit ordinal �:For the important special case of the bottom element ? = glb(L) of O, the ordinal powers T " � ofT are lattice elements given by T " � = T "�(?): The well-known theorem of Knaster and Tarski,cf. [8] and [20], relates the �xpoints of a monotonic mapping on a complete lattice to the ordinalpowers: If T is monotonic, then the collection of �xpoints of T forms a complete lattice and so Thas a unique least �xpoint lfp (T ). For any ordinal �, it holds T " � � lfp (T ); and there existsan ordinal �, such that T " �0 = lfp(T ) for all �0 � �. The smallest such � is called the closureordinal of T . If T is continuous, then T " ! = lfp(T ) (see [7]).3 State GenerationThe �xpoint semantics of a disjunctive logic program is based on a disjunctive consequence operatorT sP given in [12] (see also [10]).De�nition 3.1 (Consequence Operator T sP)Let P be a disjunctive logic program and let S � DHBP be a disjunctive Herbrand state.The disjunctive consequence operator T sP : 2DHBP ! 2DHBPof P is de�ned asT sP(S) = S [ f C _ C1 _ : : :_ Cm j C;C1; : : : ; Cm 2 DHBP andthere is a rule C  B1 ^ : : :^ Bm 2 gnd (P) :8 i 2 h1; m i : Bi _ Ci 2 S g:Note that according to the above de�nition the result of applying the operator T sP to a disjunctiveHerbrand state S contains the state S as well as all disjunctions that can be derived from S andthe rules in P by one step of hyperresolution.Minker and Rajasekar show in [12] that the disjunctive consequence operator T sP is continuouswith respect to the complete lattice O = h2DHBP ;�i on disjunctive Herbrand states, and hence alsomonotonic. The bottom element of O is ? = ;. Following the general setting given in Section 2,the ordinal powers of the disjunctive consequence operator are de�ned with respect to the latticeO as follows.De�nition 3.2 (Ordinal Powers for T sP on O = h2DHBP ;�i)Let P be a disjunctive logic program.(i) For S � DHBP , the ordinal powers T sP"�(S) are de�ned byT sP"0(S) = S;T sP"�(S) = T sP(T sP"��1(S)); for a successor ordinal �;T sP"�(S) = [�<�T sP"�(S); for a limit ordinal �:(ii) The ordinal powers T sP " � are de�ned by T sP " � = T sP"�(;):4



Example 3.3 (Disjunctive Transitive Closure)Consider the disjunctive logic programP = f path(X; Y ) arc(X;Z) ^ path(Z; Y );path(X; Y ) arc(X; Y );arc(a; b)_ arc(a; c); arc(b; d); arc(c; d) g;that consists of the classical transitive closure rules and some disjunctive facts for the arc{relation,cf. Figure 1. ����a ����b����c ����d������QQQQQQ3s QQQQs����3Figure 1: Graph with disjunctive arcsThe ordinal powers Sn = T sP " n = T sP"n(;), n � 1, are given byS1 = f arc(a; b)_ arc(a; c); arc(b; d); arc(c; d) g;S2 = S1 [ f arc(a; b)_ path(a; c); path(a; b)_ arc(a; c);path(b; d); path(c; d) g;S3 = S2 [ f path(a; b)_ path(a; c); path(a; d) _ arc(a; c);path(a; d) _ arc(a; b);path(a; d) _ path(a; c); path(a; d)_ path(a; b) g;S4 = S3 [ f path(a; d) g;Sn = S4; for all n � 4:Thus, T sP " ! = T sP " 4: This example shows that T sP can also derive de�nite facts from disjunctivefacts.A disjunction C0 is called a sub-disjunction of another disjunction C if every atom appearing inC0 also appears in C. C0 is called a proper sub-disjunction of C if C0 6= C and C0 is a sub-disjunctionof C. For a disjunctive Herbrand state S, letcan (S) = f C 2 S j 6 9C 0 2 S : C 0 is a proper sub-disjunction of C g;exp (S) = f C 2 DHBP j 9C0 2 S : C 0 is a sub-disjunction of C g:can (S) and exp (S) are respectively the canonization and the expansion of S, and it holds thatcan (S) � S � exp (S). Two disjunctive Herbrand states S1 and S2 are called equivalent if exp (S1) =exp (S2). This is denoted by S1 �� S2.The minimal model state MSP is equivalent to the least �xpoint of the disjunctive consequenceoperator T sP , and it can be derived as MSP = exp (T sP " !), as was proven by Minker and Rajasekarin [12]. 5



Theorem 3.4 (Characterization of MSP [12])Let P be a disjunctive logic program. ThenMSP �� lfp(T sP) = T sP " �;where � is the closure ordinal of T sP on O = h2DHBP ;�i:4 Model GenerationThe model generation approach constructs the minimal Herbrand models of a given logic program.For a de�nite logic program P (without disjunctions) and a given Herbrand interpretation I theclassical consequence operator TP of van Emden and Kowalski [21] computes the Herbrand inter-pretation J that consists of the head atoms of all rules in gnd (P), such that the bodies of therules are satis�ed by I . The unique minimal Herbrand model of the program is precisely the least�xpoint of this operator.For disjunctive logic programs, model generation deals with sets of Herbrand interpretations.For conciseness, we abbreviate the set of Herbrand interpretations as coin (collection of interpreta-tions). We use the following two operations min and exp for a coin I:min (I) = f I 2 I j 6 9J 2 I : J ( I g;exp (I) = f I 2 2HIP j 9J 2 I : J � I g:Note that we use the operator exp for states as well as for coins, but it will be clear from thecontext to which case we are refering. A coin I is called canonical if it does not contain twodi�erent Herbrand interpretations I; J such that I ( J , i.e. if I = min (I). A coin I is calledexpanded if for each Herbrand interpretation I 2 I it also contains all Herbrand interpretationsthat are supersets of I , i.e. if I = exp (I). E.g. for the Herbrand base HBP = f a; b; c g and the coinI = f fag; fa; bg; fb; cg g; we get min (I) = f fag; fb; cg g and exp (I) = I [ f fa; cg; fa; b; cg g:The following consequence operator T INTP generalizes the operator TP of van Emden and Kowal-ski to the case of disjunctive logic programs P . T INTP maps coins to coins.De�nition 4.1 (Consequence Operators T INTP and T MP )Let P be a disjunctive logic program.(i) The consequence operator T INTP : 2HIP ! 2HIPoperates on sets I 2 2HIP of Herbrand interpretations:T INTP (I) = [I2IMOD(T sP(I)):(ii) The consequence operator T MP : 2HIP ! 2HIPoperates on sets I 2 2HIP of Herbrand interpretations:T MP (I) = min (T INTP (I)):6



For each I 2 I, T INTP (I) contains all Herbrand interpretations J which extend I and at the sametime satisfy all ground rules of P whose bodies are satis�ed by I . Thus, from each interpretationseveral interpretations may be derived. Furthermore, the result T INTP (I) is expanded.The operator T MP was originally introduced by Fern�andez and Minker [4] (see also [2, 5]) tocompute the minimal Herbrand models of a disjunctive deductive database (i.e. a disjunctivelogic program with no function symbols). In this case, due to the fact that the Herbrand baseof a database is �nite, coins are �nite sets of �nite interpretations and so have the property thatT INTP (I) = exp (T MP (I)). 4Example 4.2 (Consequence Operator T MP )Consider the disjunctive deductive database P of Example 3.3.(i) For the Herbrand interpretation I = ; the rules whose bodies are satis�ed by I are preciselythe facts of P . Thus, T MP (f;g) = I1 = fI1; J1g; is the set of minimal Herbrand interpretationsof the facts of P , where I1 = f arc(a; b); arc(b; d); arc(c; d) g;J1 = f arc(a; c); arc(b; d); arc(c; d) g:(ii) For the Herbrand interpretations in I1 the bodies of some ground instances of the second ruleare satis�ed. Thus, T MP extends I1; J1. We get T MP (I1) = I2 = fI2; J2g; whereI2 = I1 [ f path(a; b); path(b; d); path(c; d) g;J2 = J1 [ f path(a; c); path(b; d); path(c; d) g:Fern�andez and Minker (cf. [5]) investigated some of the properties of the consequence operatorT MP based on the following subsumption relation v de�ned for coins I;J 2 2HIP :I v J i� 8 J 2 J : 9 I 2 I : I � J:E.g. for I = f fag; fa; bg; fb; cg g and J = f fag; fcg g we get J v I:The pair O = h2HIP ;vi however is only a quasi-ordering, since on 2HIP the relation v isre
exive and transitive, but not antisymmetric. To overcome this, one can work with equivalenceclasses of coins as follows: Two coins I;J 2 2HIP are called equivalent with respect to the quasi-ordering v, denoted by I �v J , if they subsume each other, i.e.I �v J i� I v J and J v I:Fern�andez and Minker then restricted the domain of T MP to Omin = h2HIPmin ;vi; where 2HIPminconsists of all canonical coins. This subdomain does form a partial ordering. For disjunctivedeductive databases, this partial ordering is also complete since the Herbrand base of a such adatabase is �nite. Based on this, they proved the monotonicity of T MP on Omin and the followingcharacterization of the set MMP of minimal Herbrand models of P in terms of the consequenceoperator T MP and its ordinal powers T MP " � = T MP "�(f ; g) with respect to Omin .4For an arbitrary disjunctive logic program P, a coin can be an in�nite set and it can contain in�nite interpreta-tions. Thus, this property may not hold for P, since there may exist some I 2 T INTP (I) for which there is no minimalinterpretation in T INTP (I) contained in I. 7



Theorem 4.3 (Characterization of MMP [5])Let P be a disjunctive deductive database. ThenMMP = lfp (T MP ) = T MP " �;where � is the closure ordinal of T MP on Omin = h2HIPmin ;vi:Since the Herbrand base of a disjunctive deductive database is �nite, the operator T MP reachesits least �xpoint in a �nite number of iterations.Example 4.4 (Disjunctive Transitive Closure)For the disjunctive logic program P of Example 3.3 all ordinal powers T MP " n = f In; Jn g, n � 1,consist of two Herbrand interpretations, where I1; J1 and I2; J2 have been given in Example 4.2and I3 = I2 [ f path(a; d) g;J3 = J2 [ f path(a; d) g:It holds In = I3 and Jn = J3, for all n � 3. Thus, the set of minimal Herbrand models of P isgiven by MMP = f I3; J3 g.In principle, one can apply the operator T MP to disjunctive logic programs containing functionsymbols. The question of whether or not the operator is continuous in this extended context hasbeen open. Notice however that, in the extended context, the partial ordering Omin = h2HIPmin ;viis not a complete lattice (the least upper bound of a collection X of canonical coins may not exist).Hence the question of continuity in this subdomain is ill{posed.We reformulate the continuity problem in a more appropriate domain Oexp = h2HIPexp ;vi; where2HIPexp consists of all expanded coins. It is easy to show that in this subdomain of expanded coinsthe relation v reduces to superset inclusion, since for all I;J 2 2HIP it holdsI v J i� exp (I) � exp (J ):This shows that Oexp = h2HIPexp ;vi is a complete lattice, and that the least upper bound and thegreatest lower bound of a set X � 2HIPexp of expanded coins are given bylub exp(X) = \I2X I; glb exp(X) = [I2X I:The bottom element of Oexp is the coin ?exp = HIP consisting of all Herbrand interpretations.Note that both the intersection and the union of a set X of expanded coins is an expanded coin.5We remark that the construction of Oexp is similar to the concept of free !-completion of partialorderings, cf. [23].In the domain Oexp we can work with the operator T INTP that produces expanded coins. Forevery coin I it holds I v T INTP (I); since every Herbrand interpretation J 2 T INTP (I) is derivedby extending an Herbrand interpretation I 2 I, where I � J . Moreover, the operator T INTP ismonotonic on O = h2HIP ;vi (and hence in Oexp ):I v J implies T INTP (I) v T INTP (J ):Following the general setting given in Section 2, the ordinal powers of T INTP are de�ned with respectto the complete lattice Oexp as follows.5This does not hold for canonical coins. 8



De�nition 4.5 (Ordinal Powers for T INTP on Oexp = h2HIPexp ;vi)Let P be a disjunctive logic program.(i) For I 2 2HIPexp , the ordinal powers T INTP "�(I) are de�ned byT INTP "0(I) = I;T INTP "�(I) = T INTP (T INTP "��1(I)); for a successor ordinal �;T INTP "�(I) = \�<�T INTP "�(I); for a limit ordinal �:(ii) The ordinal powers T INTP " � are de�ned by T INTP " � = T INTP "�(?exp):For disjunctive deductive databases it can be shown that the respective ordinal powers of theoperators T INTP and T MP are equivalent, i.e. T INTP " � �v T MP " �: It holds T INTP " � = exp (T MP " �)and T MP " � = min (T INTP " �):We show now by means of a counterexample that the operator T INTP is not continuous.Example 4.6 (Non{continuity of Model Generation through T INTP )Consider the disjunctive logic programP = f a0  a(X) ^ a(Y ) ^ di� (X; Y );a(X) a(Y );d(f(c)) d(c) gand the complete lattice Oexp = h2HIPexp ;�i: Consider the following Herbrand interpretation for thepredicate symbol di� : Idi� = f di� (fm(c); fn(c)) jm;n 2 IN0; m 6= n g:This Herbrand interpretation Idi� says that for di� (X; Y ) to be true, it must hold that X and Ydenote di�erent terms. Let an denote the atom a(fn(c)), for all n 2 IN+, and let Ia = fan jn 2 IN+g.We are interested in the following expanded coins In, where all I 2 In contain the Herbrandinterpretation Idi� : In = exp (f famg [ Idi� jm � n g); for n 2 IN+:The set X = f In j n 2 IN+ g of coins forms a chain, since it holds In � Ik; for all n � k: Thus, Xis a directed set of coins. The least upper bound of X is given bylub exp(X) = \n2IN+ In = f I � HBP j I \ Ia is in�nite and Idi� � I g;i.e. it consists exactly of those Herbrand interpretations I , which contain in�nitely many of theatoms an and also contain the whole Herbrand interpretation Idi� . Thus, each of these Herbrandinterpretations I contains at least two di�erent atoms an = a(fn(c)) and ak = a(fk(c)) and thecorresponding atom di� (fn(c); fk(c)). This implies that the �rst rule of the logic program willextend I with the atom a0, and that the second rule of the logic program will extend I with allother atoms am 2 Ia. Thus, it holdsT INTP (lub exp(X)) = exp (f fa0g [ Ia [ Idi� g):9



On the other hand it holdsT INTP (In) = exp (f Ia [ Idi� g); for all n 2 IN+;i.e. all coins T INTP (In), n 2 IN+, are identical. Thus,lub exp(f T INTP (In) j n 2 IN+ g) = \n2IN+ T INTP (In) = exp (f Ia [ Idi� g):This shows that the operator T INTP does not commute with lub exp , i.e.T INTP (lub exp(X)) 6= lub exp (f T INTP (In) j n 2 IN+ g):This implies also that T INTP is not continuous with respect to Oexp = h2HIPexp ;vi nor with respectto O = h2HIP ;vi. 2In the next section we show that even though T INTP is not continuous it reaches its least �xpointin at most ! steps. Furthermore, based on the operator T INTP , we are able to generalize thecharacterization of the minimal Herbrand model semantics that Fern�andez and Minker obtainedfor disjunctive deductive databases to arbitrary disjunctive logic programs, namely thatMMP �vlfp (T INTP ) = T INTP " ! (see Theorem 5.5).The following lemma is used in the next section. It shows that the set of minimal Herbrandmodels of a disjunctive logic program is equivalent to the set of all Herbrand models of the logicprogram with respect to the quasi-ordering v. In other words, this means that each Herbrandmodel of the logic program contains a minimal Herbrand model of the program. This result is nottrivial since, for an arbitrary disjunctive logic program P , it could have been the case that therewere an in�nitely decreasing chain M1 )M2 )M3 ) : : : of models of P .Lemma 4.7 (Existence of Minimal Models)Let P be a disjunctive logic program. ThenMMP �vMODP :Proof:For each M 2 MODP we want to show that there exists some I� 2MMP such that I� � M .Let IM = f I 2 MODP j I � M g. We prove below that each chain K � IM 6 has a lower boundI� in IM . Using Zorn's lemma, this implies that the coin IM contains a minimal element. Hence,MMP vMODP : The statementMODP vMMP is trivial, since MMP �MODP :Now let K � IM be a chain of Herbrand models. Obviously, the Herbrand interpretationI� = \I2K Iis a lower bound of K and I� �M . We want to show that I� is also a model of P , i.e. I� 2 MODP .Consider a rule A1 _ : : :_ Ak  B1 ^ : : :^Bm 2 gnd (P)such that I� j= B1 ^ : : :^Bm. Since K is a chain, we get thatJ = f I \ fA1; : : : ; Ak g j I 2 I g6i.e. for each I; J 2 K it either holds I � J or J � I. 10



is a chain, too. Since all elements of J have a �nite cardinality between 0 and k, there exists anelement J 0 2 J with minimal cardinality. Since J is a chain, it holds8J 2 J : J 0 � J:Consider the Herbrand interpretation I 0 2 K, such that J 0 = I 0 \ fA1; : : : ; Ak g. Since I� j=B1^ : : :^Bm and I� � I 0, it holds I 0 j= B1^ : : :^Bm. From I 0 2 MODP we get I 0 j= A1 _ : : :_Ak,i.e. J 0 = I 0 \ fA1; : : : ; Ak g 6= ;. Since all elements of J are supersets of J 0, we get8I 2 K : J 0 � I:This shows that J 0 � I�, i.e. I� j= A1 _ : : :_ Ak. Thus, I� is a Herbrand model of P contained inIM . 25 Relationships between State Generation and Model GenerationFor disjunctive logic programs P the minimal model state MSP and the set MMP of minimalHerbrand models of P are dual concepts, i.e., they can be derived from each other. According to[10], it holds MMP = MM(MSP);MSP = MS(MMP);where the dualization operations are de�ned byMS(I) = fC 2 DHBP j 8I 2 I : I j= C g;MM(S) = min (fI 2 HIP j 8C 2 S : I j= C g):This resembles the duality between the conjunctive and the disjunctive normal form of booleanformulas, since MSP represents the conjunction of its disjunctions, whereas MMP represents thedisjunction of the conjunctions formed by its models.This duality relates the least �xpoints MSP andMMP ( �vMODP ) of the consequence oper-ators T sP and T INTP , respectively (see Figure 2). In the following we also compare the intermediateresults of the respective �xpoint iterations. Corollary 5.3 establishes the relationship between theordinal powers T sP " n and T INTP " n.Lemma 5.1 (Connection between T sP and T INTP [17])Let P be a disjunctive logic program, let I be a coin, and let S � DHBP be a disjunctive Herbrandstate, such that I � MOD(S). ThenT INTP (I) � MOD(T sP(S));T sP(S) � MS(T INTP (I)):11



T sP " 0 = ;T sP " nT sP " ! �� MSP T INTP " 0 = ?expT INTP " nT INTP " ! �v MMP
MODMSMODMST sP T INTPT sP T INTP?? ??-� -�Figure 2: Comparing Fixpoint ComputationsProof:(i) Assume M is a Herbrand interpretation, such thatM 2 T INTP (I):We will show that M 2MOD(T sP(S)):There is some I 2 I, such thatM 2MOD(T sP(I)). Thus, I �M . Since I � MOD(S), we getI 2 MOD(S). Since I is a model of S, we get thatM is a model of S. For each C 2 T sP(S)nS,there is a rule C 0  B1 ^ : : : ^Bm 2 gnd (P)and there are facts Bi _Ci 2 S; such that C = C0 _C1 _ : : :_Cm: If I j= C1 _ : : :_Cm, thenM j= C. Otherwise, since I j= Bi_Ci, 1 � i � m, we get I j= B1^: : :^Bm. Thus, C 0 2 T sP(I).Since M 2 MOD(T sP(I)), we get that M j= C0: Thus, again M j= C. Summarizing, M is amodel of T sP(S) n S.This shows that M 2 MOD(T sP(S)), i.e.T INTP (I) �MOD(T sP(S)):(ii) Application of MS to (i) yieldsMS(MOD(T sP(S))) � MS(T INTP (I)):Since T sP(S) � MS(MOD(T sP(S))); we getT sP(S) � MS(T INTP (I)): 2From this connection we can derive some relationships between state generation and modelgeneration, i.e., between the ordinal powers T sP " � of the operator T sP on disjunctive Herbrandstates and the ordinal powers T INTP " � of the operator T INTP on sets of Herbrand interpretations.12



Theorem 5.2 (State Generation vs. Model Generation)Let P be a disjunctive logic program, let S � DHBP be a disjunctive Herbrand state of P and letI be a coin, such that I � MOD(S) and S � MS(I). For all ordinals � it holdsT INTP "�(I) � MOD(T sP"�(S));T sP"�(S) � MS(T INTP "�(I)):Proof:(i) The �rst set inclusion is shown by induction on �.� = 0 : The induction basis is shown byT INTP "0(I) = I � MOD(S) =MOD(T sP"0(S)):�! �+ 1 : Using the induction assumption for � and the monotonicity of T INTP we getT INTP "�+1(I) = T INTP (T INTP "�(I)) � T INTP (MOD(T sP"�(S))):Let I0 = MOD(T sP"�(S)) and S 0 = T sP"�(S). Then I 0 = MOD(S0). Applying the �rstset inclusion of Lemma 5.1 to S0 and I0 yields T INTP (I0) �MOD(T sP(S 0)); i.e.,T INTP (MOD(T sP"�(S))) �MOD(T sP(T sP"�(S)))) =MOD(T sP"�+1(S)):By transitivity we get: T INTP "�+1(I) �MOD(T sP"�+1(S)):� a limit ordinal: Intersecting the set inclusions for all � < � yields\�<�T INTP "�(I) � \�<�MOD(T sP"�(S)):Since T�<� T INTP "�(I) = T INTP "�(I); and\�<�MOD(T sP"�(S)) =MOD([�<�T sP"�(S)) =MOD(T sP"�(S));we get that T INTP "�(I) �MOD(T sP"�(S)):(ii) If we apply MS to the �rst set inclusion we getMS(MOD(T sP"�(S))) � MS(T INTP "�(I)):By chaining with T sP"�(S) � MS(MOD(T sP"�(S))) we get the second set inclusion. 2Corollary 5.3 (State Generation vs. Model Generation)Let P be a disjunctive logic program. For all ordinals � it holdsT INTP " � � MOD(T sP " �);T sP " � � MS(T INTP " �):13



Sometimes, the set inclusions in Corollary 5.3 are strict, as the following example shows.Example 5.4 (State Generation vs. Model Generation)Given some n 2 IN+, consider the disjunctive logic programP = f a bi j 1 � i � n g [ f b1 _ : : :_ bn gwith n rules and one fact. Let Sm = T sP "m and Im = T MP "m: For n = 2 we getS1 = f b1 _ b2 g;S2 = f b1 _ b2; a _ b1; a _ b2 g;I1 = f f b1 g; f b2 g g;I2 = f f b1; a g; f b2; a g g:Thus, for the atom a we get a 2 MS(I2); but a 62 S2: For n � 2 we get the disjunctive Herbrandstates Sm = f b1 _ : : :_ bn g [f a _ bi1 _ : : :_ bik j fi1; : : : ; ikg � h1; ni; n �m+ 1 � k � n� 1 g;for all m 2 IN+;where hn;mi denotes the interval fn; n+ 1; : : : ; m g of all natural numbers between n and m. Onthe other hand, I1 = f fb1g; : : : ; fbng g;Im = f f bi; a g j 1 � i � n g; for all m � 2:The least �xpoint of T MP is always reached after two steps: lfp (T MP ) = I2; whereas the least �xpointof T sP is reached after n + 1 steps: lfp(T sP) = Sn+1 = Sn [ fag. We can show thatMOD(Sn) = exp (In [ fIbg);MS(In) = exp (Sn [ fag);where Ib = f bi j 1 � i � n g. This shows that a 2 MS(In) n Sn; Ib 2 MOD(Sn) n In; i.e., the setinclusions in Corollary 5.3 are strict.Since the operator T sP is continuous (see [12]), its ordinal powers converge towards its least�xpoint in at most ! steps, i.e., lfp (T sP) = T sP " ! �� MSP : Corollary 5.3 helps to show that theordinal powers of the operator T INTP converge towards its least �xpoint in at most ! steps, too.That is, the closure ordinal of T INTP on Oexp is !. Moreover, this least �xpoint is equivalent to theset MMP of the minimal Herbrand models of the program.Theorem 5.5 (Convergence of Model Generation by T INTP )Let P be a disjunctive logic program. ThenMMP �v lfp(T INTP ) = T INTP " !:Proof:We will show thatMMP v T INTP " ! and that T INTP " ! vMMP :14



(i) From Corollary 5.3 we know that T INTP " ! �MOD(T sP " !): With T sP " ! �� MSP ; we getMOD(MSP) v T INTP " !:From Lemma 4.7 we know that MM(MSP) �v MOD(MSP); and from [12] we know thatMM(MSP) =MMP : This shows thatMMP v T INTP " !:(ii) From T INTP " 0 = ?exp vMMPand T INTP (MMP) =MMP and the monotonicity of the operator T INTP on the partial orderingOexp = h2HIPexp ;vi, by induction on n 2 IN0 we get thatT INTP " n vMMP ; for all n 2 IN0:This shows that T INTP " ! = lub exp(f T INTP " n jn 2 IN0 g) vMMP :Hence T INTP " ! �v MMP : Since MMP is a �xpoint of T INTP , i.e., T INTP (MMP) = MMP , thisimplies that lfp(T INTP ) �v MMP : 2Thus, the operator T INTP is an example of a monotonic operator that is not continuous, butnevertheless reaches its least �xpoint in at most ! steps.6 Iterative Model Generation of Perfect and (Partial) Stable Se-manticsIn [5], Minker and Fern�andez de�ned an iterative method to compute the perfect models of astrati�ed disjunctive deductive database. In this section we extend their method to work witharbitrary strati�ed disjunctive logic programs by using the operator T INTP de�ned on Section 4.Given a �rst order language, a normal disjunctive logic program P consists of logical inferencerules of the form A1 _ : : : _Ak  B1 ^ : : :^Bm ^ not C1 ^ : : :^ not Cn; (2)where Ai, i 2 h1; k i, Bi, i 2 h1; m i, and Ci, i 2 h1; n i, are (positive) atoms in the language;k;m; n 2 IN0; and not is the negation-by-default operator. Given a predicate p in the language,the de�nition of p in P is the set of all rules in P whose heads (i.e. A1 _ : : : _ Ak) contain anatom in which p appears. The de�nition of an atom A is taken to be the de�nition of the predicatesymbol appearing in A.A normal disjunctive logic program P is called strati�ed (see [13]) if it is possible to partitionthe set of rules of P into sets fP1; : : : ;Prg, called strata, such that for every rule of the form (2) inP there exists a constant c, 1 � c � r, such that: (1) the de�nition of each Ai is contained in Pc;(2) the de�nition of each Bj is contained in Ss�c Ps; and (3) the de�nition of each Cl is containedin Ss<c Ps. Any partition fP1; : : : ;Prg of P satisfying the above conditions is called a strati�cationof P . 15



The intended meaning of a strati�ed disjunctive logic program P is given by its collectionof perfect models as de�ned in [13]. It is well{known (see e.g. [13]) that this collection can beconstructed by induction on the strata as follows. Given a strati�cation fP1; : : : ;Prg of P , let PMidenote the set of perfect models of the �rst i strata of P , i.e. of the logic program Ss�i Ps. Byde�nition, the lowest stratum P1 (which may be the empty set) is free of negation{by{default andits set of perfect models is given by PM1 =MMP1 . When PMi has been constructed, it is used toevaluate the negated by default literals appearing in the i+1 stratum as follows: If I 2 PMi, thenPIi+1 is the disjunctive logic program:PIi+1 = f A1 _ : : :_Ak  B1 ^ : : :^BmjA1 _ : : :_Ak  B1 ^ : : :^Bm ^ not C1 ^ : : :^ not Cn 2 Pi+1 andfC1; : : : ; Cng \ I = ;g:PIi+1 is called the Gelfond{Lifschitz transformation of Pi+1 with respect to I . The perfect modelsof the �rst i+ 1 strata are then taken to be SI2PMiMMPIi+1[I . The collection of perfect modelsof P is exactly PMr. It is worth noticing that this collection of models is the same independentlyof the particular strati�cation of P used in the induction.For the case of function{free logic programs, Minker and Fern�andez used an iterative version oftheir operator T MP to compute this collection of perfect models [5]. We extend now this procedureto arbitrary strati�ed disjunctive logic programs by de�ning the iterative version of our operatorT INTP .De�nition 6.1 (Iterative version of T INTP )Let P be a strati�ed disjunctive logic program and fP1; : : : ;Prg be a strati�cation of P . Theiterative version of T INTP is de�ned as follows:T IhP1i = min (T IP1 " �h 1;; i);T IhP1;:::;Pn+1i = [I2T IhP1;:::;Pnimin (T I(PIn+1[I) " �hn+1;I i)where �h i;I i is the closure ordinal of T I(PIi [I).The set of perfect models of P is given by T IhP1;:::;Pri. Notice that, due to Theorem 5.5, each ofthe closure ordinals �Ii in the previous de�nition is at most !.Fern�andez et al. [3] showed how to transform an arbitrary normal disjunctive logic program Pinto a strati�ed one, denoted by PE , in such a way that the perfect models of PE that satisfy a givenset of integrity constraints correspond to the stable models of P (as de�ned in [14]). They calledthis transformation the evidential transformation. Using this characterization of stable models, theiterative version of T INTP can be used to construct the stable semantics of P .Similarly, the operator T INTP can be used to generate the collection of partial (or 3{valued) stablemodels ([15]) of a normal disjunctive logic program P by using a characterization of this collectionof models given by Ruiz and Minker in [16]. This characterization is based on a transformationcalled the 3S-transformation which applied to a normal disjunctive logic program P produces aconstrained logic program (free of negation-by-default) P3S, whose minimal (2-valued) consistentmodels correspond to the partial stable models of the original program P . Since the well{foundedmodel ([22]) is a distinct partial stable model of a normal logic program (see [15]), then modelgeneration for the well{founded semantics is also achieved using the operator T INTP together withthe 3S-transformation. 16



7 ConclusionsGiven a disjunctive logic program P , there are two approaches for deriving the minimal model stateMSP and two approaches for deriving the setMMP of minimal models of the database. Both setscan be derived based on hyperresolution as well as on model generation from P .� Using hyperresolution, MSP is computed as the least �xpoint of the disjunctive consequenceoperator T sP . Using model generation, MMP is computed as the least �xpoint of the conse-quence operator T INTP .� By dualization of the minimal model state MSP we get the set of minimal models of P asMM(MSP). Similarly, dualization ofMMP yields MSP as MS(MMP).As shown in this paper, both approaches converge in at most ! steps. For the case of disjunctivedeductive databases, these approaches have been implemented within the disjunctive deductivedatabase engine DisLog7, cf. [19], developed at the University of T�ubingen. Experimenting withDisLog, we have observed that the e�ciency of each approach depends on the relation between thenumber n = jcan (MSP)j of minimal8 disjunctions in MSP and the number m = jMMP j of minimalmodels. We conjecture that the following may be the case.� If n andm are about equal, then for each derivation it is better to use the specialized approach,i.e., to derive MSP by hyperresolution and to derive MMP by model generation.� If n is much bigger than m, then the fastest is to use model generation for deriving MMPand to derive MSP from MMP by dualization.� If n is much smaller than m, then the fastest is to use hyperresolution for deriving MSP andto derive MMP from MSP by dualization.Based on the theorems of Section 5 it has been shown in [18] that during a �xpoint iterationwith T sP it is possible to switch to some iterations of model generation. Intermediate informationabout the size of the ordinal powers T sP " n can be used to decide if this would be advantageous.However, general criteria to decide in advance which method is more e�cient when faced with aparticular disjunctive logic program are still to be determined.Using model generation by T INTP , perfect, well{founded, stable and partial stable models ofnormal disjunctive logic programs can also be computed. For a strati�ed disjunctive logic programP , the perfect models of P can be computed by an iterative model generation applied to the strata.For a normal disjunctive logic program P , the stable models and the partial stable models (thewell{founded model in particular) of P can be respectively computed by model generation with theevidential transformation PE ([3]) and by model generation with the 3S-Transformation P3S ([16]).References[1] B.A. Davey, H.A. Priestley: Introduction to Lattices and Order, Cambridge University Press, 1990.[2] J.A. Fern�andez: Disjunctive Deductive Databases, Ph.D. Thesis, University of Maryland, 1993.[3] J.A. Fern�andez, J. Lobo, J. Minker, V.S. Subrahmanian: Disjunctive LP + Integrity Constrains =Stable Model Semantics, Annals of Mathematics and Arti�cial Intelligence, vol. 8 (3-4), 1993, pp. 449-474.7for a demo version of DisLog visit http://www.informatik.uni-tuebingen.de/dislog.html8a disjunction C in MSP is minimal if there is no sub-disjunction C 0 of C in MSP .17
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