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Bounded codes or waveforms are constructed whose autocorrelation is the in-

verse Fourier transform of certain positive functions. For the positive function F ≡ 1

the corresponding unimodular waveform of infinite length, whose autocorrelation is

the inverse Fourier transform of F, is constructed using real Hadamard matrices.

This waveform has a autocorrelation function that vanishes everywhere on the inte-

gers except at zero where it is one. In this case error estimates have been calculated

which suggest that for a pre-assigned error the number (finite) of terms from this

infinite sequence that are needed so that the autocorrelation at some non-zero k is

within this given error range is ‘almost’ independent of k. In addition, such uni-

modular codes (both real and complex) whose autocorrelation is the inverse Fourier

transform of F ≡ 1 has also been constructed by extending Wiener’s work on Gen-

eralized Harmonic Analysis (GHA) and a certain class of exponential functions. The

analogue in higher dimensions is also presented.

Further, for any given positive and even function f defined on the integers

that is convex and decreasing to zero on the positive integers, waveforms have been



constructed whose autocorrelation is f. The waveforms constructed are real and

bounded with a bound that depends on the value of f at zero.
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Chapter 1

Introduction

Our ultimate goal is to construct codes, x, which have constant amplitude and

whose autocorrelation is the inverse Fourier transform of a given positive bounded

Radon measure. We use Wiener’s Generalized Harmonic Analysis(GHA) to ap-

proach the problem. There are also significant components from measure theory,

number theory and functional analysis.

There are two main reasons that the waveforms x should have constant am-

plitude. First, a transmitter can operate at peak power if x has constant peak

amplitude - the system does not have to deal with the surprise of greater than

expected amplitudes. Second, amplitude variations during transmission due to ad-

ditive noise can be (theoretically) eliminated at the receiver end without distorting

the message. The problem of waveform design is relevant in several applications

in the areas of radar and communications. In the former, the waveforms x can

play a role in effective target recognition, e.g., [1], [17], [20], [25]; and in the latter

they are used to address synchronization issues in cellular (phone) access technolo-

gies, especially code division multiple access (CDMA), e.g., [28], [29]. The radar

and communication methods combine in recent advanced multifunction RF systems

(AMRFS).
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1.1 Notation

We shall use the standard notation from harmonic analysis, e.g., [4], [24]. Let

Z be the set of integers, and its dual group T = R/Z, R the real numbers. N is the

set of natural numbers. In a d-dimensional space, Zd = Z×· · ·×Z (d factors). C(Td)

is the space of complex valued continuous functions on Td = Rd/Zd, and A(Td) is

the subspace of absolutely convergent Fourier series. M(Td) is the space of Radon

measures on Td, i.e., M(Td) is the dual space of the Banach space C(Td) taken

with the sup norm. We designate the characteristic function of S ⊆ Rd by
�

S. The

λ-dilation of a function f is defined by fλ(t) = λf(λt). A sequence {pn} is positive

definite if for all (c0, . . . , cN) ∈ CN+1\{0}, ∑06j,k6N pj−kckcj > 0. A positive definite

sequence, {pn}, is denoted by {pn} � 0. Formally, the autocorrelation Ax : Z → C

of x : Z→ C is defined as

∀k ∈ Z, Ax[k] = lim
N→∞

1

(2N + 1)

∑

−N6m6N

x[k + m]x[m].

If F ∈ A(Td) we write F̌ = f = {fk}, i.e., F̌ [k] = fk and for all k ∈ Zd, fk =

∫
Td F (γ)e2πik.γdγ. There is an analogous definition for µ̌ where µ ∈M(Td).

1.2 Motivation

Because of recent work in waveform design [1], [5], [26], [2], [13], we are resur-

recting certain aspects of Wiener’s Generalized Harmonic Analysis (GHA).

Suppose a complicated signal x cannot be analyzed directly but it is possible

to quantify its autocorrelation Ax. In GHA, a function x is analyzed for its frequency

information by computing its autocorrelation Ax and its power spectrum µ, which
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is the inverse Fourier transform of the autocorrelation. In signals containing non-

square-integrable noise and/or random components the harmonic analysis of a non-

square-integrable function is desired. GHA includes the Wiener-Plancherel formula

for L∞, which is an analogue of the L2-Parseval-Plancherel formula. In one direction,

if Ax is the autocorrelation of x, then by the Herglotz-Bochner theorem there exists

µ ∈ M+
b (R) such that µ̌ ≡ Ax. A natural question is the following: for any µ ∈

M+
b (R̂) does there exist x whose autocorrelation Ax exists, and for which Ax = µ̌?

The deterministic and constructive affirmative answer to this is the Wiener-Wintner

Theorem.

1.3 Background

There are established algebraic approaches [13] for constructing unimodular

(amplitude 1) K− periodic sequences u with the property that the autocorrelation

Au vanishes outside of the periodic dc-domain points nK, n ∈ Z. Such sequences are

called CAZAC (constant amplitude zero autocorrelation) codes. The zero autocor-

relation ensures minimum interference between signals sharing the same channel.

We would like to construct our codes analytically with the purpose of making

the design flexible and the codes stable under modest perturbations.

1.3.1 The Wiener Wintner Theorem in R

In the setting of R, we have the following theorem due to Wiener and Wintner

[32], which was later extended to Rd in [3], [15].
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Theorem 1.1 (Wiener-Wintner). Let µ be a bounded positive measure on R.

There is a constructible function f ∈ L∞
loc(R) such that its autocorrelation Af exists

for all t ∈ R, and Af = µ̌ on R, i.e.,

∀t ∈ R, lim
T→∞

1

2T

∫ T

−T

f(t + x)f(x)dx =

∫

R

e2πitxdµ(x).

1.3.2 Uniform distribution

For a real number x, let [x] denote the integral part of x, that is, the greatest

integer 6 x; let {x} = x− [x] be the fractional part of x.

Let a = (a1, · · · , ad) and b = (b1, · · · , bd) be two points in Rd. We say that

a < b (a 6 b) if aj < bj (aj 6 bj) for j = 1, 2, · · · , d. The set of points x =

(x1, x2, . . . , xd) ∈ Rd such that a 6 x < b will be denoted by [a, b). The other d-

dimensional intervals such as [a, b] have similar meanings. The d-dimensional unit

cube Id is the interval [0, 1), where 0 = (0, · · · , 0) and 1 = (1, · · · , 1). The integral

part of x = (x1, · · · , xd) is [x] = ([x1], · · · , [xd]) and the fractional part of x is

{x} = ({x1}, · · · {xd}).

Let (xn), n = 1, 2, . . . , be a sequence of vectors in Rd. For a subset E of Id,

let A(E; N) denote the number of points {xn}, 1 6 n 6 N, that lie in E.

Definition 1.2. The sequence (xn), n = 1, 2, . . . , is uniformly distributed modulo 1

(u.d.mod 1) in Rd if

lim
N→∞

A([a, b); N)

N
= Πd

j=1(bj − aj)

for all intervals [a, b) ⊆ Id.
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1.4 Outline of the thesis

In Chapter 2 we state and prove the Wiener-Wintner Theorem in Zd i.e. we

prove that given a positive bounded measure, µ, there exists a locally bounded

function x whose autocorrelation is the Fourier transform of µ. Due to our desire

of constructing waveforms of constant amplitude we would like the function x con-

structed in the Wiener-Wintner theorem to be uniformly bounded. This issue is

discussed in Chapter 3. The chapter starts by demonstrating how uniformly dis-

tributed sequences suggest a way to give uniformly bounded waveforms though we

are able to show that the method of using uniformly distributed sequences is not

feasible. In Chapter 4 we take the function F ≡ 1 on T and construct several dif-

ferent unimodular functions whose autocorrelation is the Fourier series of F. The

Fejér function is a positive function whose inverse Fourier transform is an isosce-

les triangle of height 1 and symmetric about the origin. In Chapter 5 we discuss

functions whose autocorrelation is such a triangle (inverse Fourier transform of the

Fejér function) and sum of such triangles (inverse Fourier transform of sums of Fejér

functions). In this chapter we also show that given a positive and even function f

on Z that is convex and decreases to zero over Z+, one can construct a function x

on Z whose autocorrelation is f. Chapter 6 gives a summary of the main results of

this thesis along with concluding remarks and some avenues for future research.

5



1.5 Contributive results

The contribution that comes from the work in this thesis can be listed as

follows:

(i) In Chapter 2 the Wiener-Wintner Theorem is proved for Zd.

(ii) As already mentioned, our ultimate goal is to construct waveforms that have

constant amplitude. Chapter 3 discusses an approach that could help us con-

struct waveforms that are uniformly bounded. This would be a step towards

our goal. Unfortunately, our attempt at using uniformly distributed sequences

for this purpose turns out to be futile. Chapter 3 ends with a proof that one

cannot use uniformly distributed sequences to get uniformly bounded wave-

forms.

(iii) Chapter 4 presents numerous cases of unimodular functions on Z whose auto-

correlation is one at zero and zero everywhere else. Such functions or wave-

forms have been constructed using elements of real Hadamard matrices. Error

estimates have been calculated which suggest that for a pre-assigned error

the number (finite) of terms from this infinite sequence that are needed so

that the autocorrelation at some non-zero k is within this given error range

depends on the logarithm of k and so is ‘almost’ independent of k. In addi-

tion, it has been shown that such unimodular codes (both real and complex)

whose autocorrelation is the Fourier series of F ≡ 1 can also be constructed

using Wiener’s Generalized Harmonic Analysis (GHA) and a certain class of
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exponential functions. Thus in this chapter we have functions whose autocor-

relation is the Fourier series of the positive function F ≡ 1 on T. The extension

to higher dimensions of the same has also been done.

(iv) Using Wiener’s technique, Chapter 5 constructs functions on Z whose auto-

correlation is an isosceles triangle of base length a given integer M and height

a given positive number K. Note that such a triangle is the inverse Fourier

transform of the Fejér function. Based on this result it has been shown that

given a positive and even function f on Z that is convex and decreasing to

zero on Z+ one can construct a function x on Z whose autocorrelation is f.

Thus even though our ultimate goal was to construct waveforms with constant

amplitude whose autocorrelation is the inverse Fourier transform of any given

positive function we have reached a point where we can construct bounded

waveforms whose autocorrelation is the inverse Fourier transform of a sum of

sinusoids.
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Chapter 2

Wiener Wintner Theorem in Zd

The Wiener Wintner Theorem on R as stated in Section 1.3.1 was extended

to Rd in [3], [15]. In this chapter we state and prove the Wiener Wintner theorem

on Zd.

For any N ∈ N, we denote the d-dimensional square in Zd by S(N) and so by

S(N) we shall mean

S(N) = {m = (m1, m2, · · · , md) ∈ Zd : −N 6 mi 6 N, i = 1, · · · , d}.

Also, for k = (k1, · · · , kd) ∈ Zd,

∑

S(N)

x[k + m]x[m] =
∑

m∈S(N)

x[k + m]x[m] =

N∑

m1=−N

N∑

m2=−N

· · ·
N∑

md=−N

x[k + m]x[m].

For a function x : Zd → C the autocorrelation Ax : Zd → C is defined as

Ax[k] = lim
N→∞

1

(2N + 1)d

∑

S(N)

x[k + m]x[m].

2.1 Approximation by discrete measures

Let F > 0 in A(Td) have Fourier coefficients {pn}n∈Zd. {pn} is positive definite,

i.e., {pn} � 0. Let δω be the Dirac measure supported by {ω}. Consider the d-

dimensional unit square [0, 1)× · · · × [0, 1) (d factors). Let {ωj,n; j = 1, . . . , nd} be

points on this square where each edge has n equally spaced points. For each n we
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choose Ln such that ∀j = 1, 2, · · · , nd,

∣∣∣∣∣∣

∑

`∈S(Ln)

p`e
−2πi`.ωj,n

∣∣∣∣∣∣
=

∑

`∈S(Ln)

p`e
−2πi`.ωj,n . (2.1)

This can be done since F ∈ A(Td) and hence ‖F − SN(F )‖L∞(Td) → 0 as N →∞.

Define

µn =
1

nd

nd∑

j=1

∑

k∈S(Ln)

pke
−2πik·ωj,nδωj,n

. (2.2)

Proposition 2.3. Let F ∈ A(Td) have Fourier coefficients {pk} ∈ `1(Zd) and define

µn as in (2.2). Then assuming that Ln →∞ as n→∞,

∀f ∈ C(Td), lim
n→∞

∫

Td

f(γ)dµn(γ) =

∫

Td

f(γ)F (γ)dγ. (2.4)

Proof.

∣∣∣∣
∫

Td

f(γ)F (γ)dγ −
∫

Td

f(γ)dµn(γ)

∣∣∣∣

=

∣∣∣∣∣∣

∑

k∈Zd

pk

(∫

Td

f(γ)e−2πik·γdγ

)
− 1

nd

nd∑

j=1

∑

k∈S(Ln)

pke
−2πik·ωj,nf(ωj,n)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

k∈Zd

pk

(∫

Td

f(γ)e−2πik·γdγ

)
−

∑

k∈S(Ln)

pk

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)

∣∣∣∣∣∣

=

∣∣∣∣∣
∑

k∈Zd

pk

(∫

Td

f(γ)e−2πik·γdγ

)
−

−


∑

k∈Zd

pk

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)−
∑

k∈ZdrS(Ln)

pk

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)



∣∣∣∣∣

6

∣∣∣∣∣∣

∑

k∈Zd

pk



∫

Td

f(γ)e−2πik·γdγ − 1

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)



∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

∑

k∈ZdrS(Ln)

pk

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)

∣∣∣∣∣∣

9



6
∑

k∈Zd

|pk|

∣∣∣∣∣∣

∫

Td

f(γ)e−2πik·γdγ − 1

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)

∣∣∣∣∣∣
+

+
∑

k∈ZdrS(Ln)

|pk|
nd

nd∑

j=1

|f(ωj,n)|

=
∑

k∈Zd

|pk|Ak,n + Bn

∑

k∈ZdrS(Ln)

|pk| . (2.5)

We now estimate the two sums in the right side of (2.5) and show that both

go to zero as n goes to infinity.

Bn

∑

k∈ZdrS(Ln)

|pk| =
∑

k∈ZdrS(Ln)

|pk|
nd

nd∑

j=1

|f(ωj,n)|

6 ‖f‖L∞(Td)

∑

k∈ZdrS(Ln)

|pk| . (2.6)

Since {pk} ∈ `1(Zd) and Ln →∞ as n →∞, the right side of (2.6) goes to 0

as n→∞. Thus Bn

∑
k∈ZdrS(Ln) |pk| → 0 as n→∞.

Next we note that ∃N1 such that ∀n > N1

∣∣∣∣∣∣

∫

Td

|f(γ)| dγ − 1

nd

nd∑

j=1

|f(ωj,n)|

∣∣∣∣∣∣
< 1. (2.7)

So,

∣∣∣∣∣∣

∫

Td

f(γ)e−2πik·γdγ − 1

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)

∣∣∣∣∣∣

6

∫

Td

|f(γ)| dγ +
1

nd

nd∑

j=1

|f(ωj,n)| (by the triangle inequality)

6

∣∣∣∣∣∣
1

nd

nd∑

j=1

|f(ωj,n)| −
∫

Td

|f(γ)| dγ

∣∣∣∣∣∣
+ 2

∫

Td

|f(γ)| dγ (again, by the triangle inequality)

6 1 + 2‖f‖L1(Td) (using (2.7)). (2.8)

10



Since f ∈ C(T), it is integrable and so for each k,

lim
n→∞

|pk|

∣∣∣∣∣∣

∫

Td

f(γ)e−2πik·γdγ − 1

nd

nd∑

j=1

e−2πik·ωj,nf(ωj,n)

∣∣∣∣∣∣
= 0. (2.9)

Due to (2.8) and (2.9) we can apply the Lebesgue Dominated Convergence Theorem

for Zd to obtain that limn→∞
∑

k∈Zd |pk|Ak,n = 0.

Since both the terms on the right side of (2.5) go to 0 we have shown that

limn→∞
∣∣ ∫

Td f(γ)F (γ)dγ−
∫

Td f(γ)dµn(γ)
∣∣ = 0 which implies (2.4) and thus proves

the proposition.

We have shown in Proposition 2.3 that a function F ∈ A(Td) can be approxi-

mated by discrete measures, µn, in the sense of 2.4.

2.2 Constructing x for a given F

Let F > 0 in A(Td) have Fourier coefficients {pn}n∈Zd . For ωj,n as defined in

Section 2.1 define

xn[k] =
nd∑

j=1


 1

nd

∑

`∈S(Ln)

ple
−2πi`·ωj,n




1
2

e2πik·ωj,n . (2.10)

Then,

‖xn‖∞ 6

nd∑

j=1

∣∣∣∣∣∣
1

nd

∑

`∈S(Ln)

p`e
−2πi`·ωj,n

∣∣∣∣∣∣

1
2

6
√

nd


 ∑

`∈S(Ln)

|p`|




1
2

=
√

nd‖F‖
1
2

A(Td)
. (2.11)

Lemma 2.12. For each n,

lim
N→∞

1

(2N + 1)d

∑

m∈S(N)

xn[k + m]xn[m] = µ̌n[k] (2.13)

11



uniformly on Zd where xn and µn are as defined in (2.10) and (2.2) respectively.

Proof. Let aj,n = 1
nd

∑
`∈S(Ln) p`e

−2πi`·ωj,n . Then

µn =

nd∑

j=1

aj,nδωj,n
, where ωj,n = (ω

(1)
j,n, · · · , ω(d)

j,n).

µ̌n[k] =

nd∑

j=1

aj,ne2πik·ωj,n , and

xn[m] =

nd∑

j=1

a
1
2
j,ne2πim·ωj,n . (2.14)

Now let us try to evaluate the limit in (2.13).

1

(2N + 1)d

∑

m∈S(N)

xn[k + m]xn[m]

=
1

(2N + 1)d

∑

m∈S(N)

[
nd∑

j=1

a
1
2
j,ne

2πi(k+m)·ωj,n ×
nd∑

r=1

ar,n
1
2 e−2πim·ωr,n

]

=
1

(2N + 1)d

∑

m∈S(N)

[
nd∑

j=r;j=1

a
1
2
j,naj,n

1
2 e2πik·ωj,n +

nd∑

j 6=r;j,r=1

a
1
2
j,nar,n

1
2 e2πi(k·ωj,n+m·(ωj,n−ωr,n))

]
.

(2.15)

Since F is positive we can choose Ln (in the definition of µn and xn, (2.2) and (2.10)

respectively) such that aj,n is positive. So for the sum involving j = r we have

1

(2N + 1)d

∑

m∈S(N)

nd∑

j=r;j=1

a
1
2
j,naj,n

1
2 e2πik·ωj,n =

1

(2N + 1)d

∑

m∈S(N)

nd∑

j=1

|aj,n|e2πik·ωj,n

=
1

(2N + 1)d

∑

m∈S(N)

nd∑

j=1

aj,ne
2πik·ωj,n =

(2N + 1)d

(2N + 1)d

nd∑

j=1

aj,ne
2πik·ωj,n

=
nd∑

j=1

aj,ne
2πik·ωj,n = µ̌n[k]. (2.16)
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For j 6= r,

∣∣∣∣∣∣
1

(2N + 1)d

∑

m∈S(N)

nd∑

j 6=r;j,r=1

a
1
2
j,nar,n

1
2 e2πi(k·ωj,n+m·(ωj,n−ωr,n))

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

(2N + 1)d

nd∑

j 6=r;j,r=1

a
1
2
j,nar,n

1
2 e2πik·ωj,n


 ∑

m∈S(N)

e2πim·(ωj,n−ωr,n)



∣∣∣∣∣∣

6
1

(2N + 1)d

nd∑

j 6=r;j,r=1

|aj,n|
1
2 |ar,n|

1
2

∣∣∣∣∣∣

∑

m∈S(N)

e2πim·(ωj,n−ωr,n)

∣∣∣∣∣∣

=
1

(2N + 1)d

nd∑

j 6=r;j,r=1

|aj,n|
1
2 |ar,n|

1
2

∣∣∣∣∣

∏d
i=1 sin(N + 1

2
)2π(ω

(i)
j,n − ω

(i)
r,n)

∏d
i=1 sin π(ω

(i)
j,n − ω

(i)
r,n)

∣∣∣∣∣

6
1

(2N + 1)d

nd∑

j 6=r;j,r=1

|aj,n|
1
2 |ar,n|

1
2

1
∏d

i=1

∣∣∣sin π(ω
(i)
j,n − ω

(i)
r,n)
∣∣∣

(2.17)

The right side of (2.17), being independent of k and the sum there being finite, goes

to 0 uniformly as N →∞. This in combination with (2.16) proves that

lim
N→∞

1

(2N + 1)d

∑

m∈S(N)

x[m + k]x[m] = µ̌n[k].

It is easy to prove the following lemma.

Lemma 2.18. Let {Nn : n = 1, 2, · · · } ⊆ N increase to ∞, and let y : Zd → C. For

k ∈ Zd and q ∈ N,

lim
N→∞

1

(2N + 1)d

∑

m∈S(Nq)

y[k + m]y[m] = 0. (2.19)

We are now in a position to define a waveform x on Zd but first let us make a

few important observations.

By the uniform convergence in Lemma 2.12, we have an increasing sequence,

13



{Km : m ∈ N} ⊆ Z+, such that ∀k ∈ Zd and ∀N > Kn,

∣∣∣∣∣∣
1

(2N + 1)d

∑

m∈S(N)

xn[k + m]xn[m]− µ̌n[k]

∣∣∣∣∣∣
<

1

2n+1
. (2.20)

Set

Nn = (K1 + 1)(K2 + 2) · · · (Kn + n). (2.21)

Therefore, Nn > n! and the sequences

{Nn},
{

Nn+1

Nn

}
= {Kn+1 + n + 1} and

{Nn+1 −Nn} = {(K1 + 1) · · · (Kn + n)(Kn+1 + n)} increase to infinity.

(2.22)

For {Nn} defined in (2.21), set

x[k] =





xn[k] for k ∈ S(Nn+1) \ S(Nn)

0 for k ∈ S(N1).

(2.23)

Lemma 2.24.

lim
n→∞

1

n!

n∑

j=2

max(‖xj−1‖∞, ‖xj‖∞) max(‖xj‖∞, ‖xj+1‖∞) = 0. (2.25)

Proof. We provide the proof for the one dimensional case but it can be extended to

d dimensions.

1

n!

n∑

j=2

max(‖xj−1‖∞, ‖xj‖∞) max(‖xj‖∞, ‖xj+1‖∞)

6
1

n!

n∑

j=2

‖F‖A(T)

√
j
√

j + 1 (due to (2.11))
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6
1

n!
‖F‖A(T)

n∑

j=2

(j + 1) =
1

n!
‖F‖A(T)

n+1∑

j=3

j

6
1

n!
‖F‖A(T)

n+1∑

j=1

j =
(n + 1)(n + 2)

2n!
‖F‖A(T) → 0

as n goes to infinity.

2.3 Statement of the theorem and proof

Theorem 2.26 (The Wiener Wintner Theorem on Zd). Given a positive µ ≡

F ∈ A(Td) with corresponding functions {xn} and x. Then, for each k ∈ Zd,

lim
N→∞

1

(2N + 1)d

∑

S(N)

x[k + m]x[m] = µ̌[k]. (2.27)

Proof of the Wiener Wintner Theorem on Zd. (a) Given k ∈ Zd, k = (k1, k2, · · · , kd)

and ε > 0. Recall the sequence {Nn} defined in (2.21). Choose q1 = q1(k) such that

if k0 = max16i6d{|ki|} then

∀m > q1 = q1(k), Nm+1 − k0 > Nm + k0. (2.28)

This is possible due to the fact (2.22). Choose q2 = q2(ε, k) > q1 such that

∀n > q2, |µ̌n[k]− µ̌[k]| < ε. (2.29)

Note that (2.29) is obtained by using f(γ) = e2πiγk in (2.4) of Proposition 2.3.

To prove the result of the theorem we shall find q = q(ε, k) > q2 such that for

all sufficiently large N,

∣∣∣∣∣∣
1

(2N + 1)d

∑

m∈S(Nq)

x[k + m]x[m]

∣∣∣∣∣∣
< ε (2.30)
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and

∣∣∣∣∣∣
1

(2N + 1)d

∑

m∈S(N)\S(Nq)

x[k + m]x[m]− µ̌[k]

∣∣∣∣∣∣
< ε(8 + 4d+1 + 22d+1). (2.31)

Then for all large N,

∣∣∣∣∣∣
1

(2N + 1)d

∑

m∈S(N)

x[k + m]x[m]− µ̌[k]

∣∣∣∣∣∣
6

∣∣∣∣∣∣
1

(2N + 1)d

∑

m∈S(Nq)

x[k + m]x[m]

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

(2N + 1)d

∑

m∈S(N)\S(Nq)

x[k + m]x[m]− µ̌[k]

∣∣∣∣∣∣
< ε(9 + 4d+1 + 22d+1) (2.32)

which is what is required to prove the theorem. (2.30) is valid due to Lemma 2.18

and so we just need to prove (2.31).

(b) For each q > q2 and each N > Nq, write

1

(2N + 1)d

∑

m∈S(N)\S(Nq)

x[k + m]x[m]

=

n−1∑

j=q

(b(j, N) + c(j, N)) +
1

(2N + 1)d

∑

m∈S(N)\S(Nn)

x[k + m]x[m] (2.33)

where b(j, N) = 1
(2N+1)d

∑
S(Nj+1−k0)rS(Nj)

x[k + m]x[m],

c(j, N) = 1
(2N+1)d

∑
S(Nj+1)rS(Nj+1−k0)

x[k + m]x[m] and

n = n(N) is the largest integer n for which Nn 6 N.

(c) In this part we shall verify that for q > q1 and the c(j, N) defined in part

(b),

lim
N→∞

n−1∑

j=q

c(j, N) = 0. (2.34)
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∣∣∣∣∣

n−1∑

j=q

c(j, N)

∣∣∣∣∣ =

∣∣∣∣∣∣

n−1∑

j=q

1

(2N + 1)d

∑

S(Nj+1)rS(Nj+1−k0)

x[k + m]x[m]

∣∣∣∣∣∣

6
1

(2N + 1)d

n−1∑

j=q

∑

S(Nj+1)rS(Nj+1−k0)

∣∣∣x[k + m]x[m]
∣∣∣

=
1

(2N + 1)d

n−1∑

j=q

∑

S(Nj+1)rS(Nj+1−k0)

∣∣∣x[k + m]xj[m]
∣∣∣ (2.35)

If m ∈ S(Nj+1) \ S(Nj+1 − k0) then k + m ∈ S(Nj+2) \ S(Nj). Thus, x[k + m] is

either xj[k + m] or xj+1[k + m]. So, setting pj = ‖xj‖∞ max(‖xj‖∞, ‖xj+1‖∞), we

have from (2.35)
∣∣∣∣∣

n−1∑

j=q

c(j, N)

∣∣∣∣∣ 6
1

(2N + 1)d

n−1∑

j=q

pj(2k0)
d

=
(2k0)

d

(2N + 1)d

n−1∑

j=q

pj 6
(2k0)

d

(2N)d

n−1∑

j=q

pj

=
kd

0

Nd

n−1∑

j=q

pj 6
kd

0

(n!)d

n−1∑

j=q

pj (since N > Nn > n!). (2.36)

Due to (2.25) the right side of (2.36) goes to zero as N goes to infinity and thus we

have shown (2.34).

Parts (d) - (h) are devoted to showing that there are q3 = q3(ε, k) > q2 and

N(ε, k) > q3 such that, for N(ε, k) > q > q3 and ∀N > N(ε, k)

n−1∑

j=q

b(j, N) =
µ̌[k]

(2N + 1)d

n−1∑

j=q

(
(2(Nj+1 − k0) + 1)d − (2Nj + 1)d

)
+ r(q, N, k) (2.37)

where |r(q, N, k)| < ε(4d+1 + 22d+1 + 1) + 1
2q−1 . Parts (i) - (k) contain the proof that

∀N > N(ε, k)

1

(2N + 1)d

∑

S(N)\S(Nn)

x[k + m]x[m] = µ̌[k]

(
1−

(
2Nn + 1

2N + 1

)d
)

+ s(N, k) (2.38)

where s(N, k) < 4ε + 1
2n . The proof of (2.31) is completed in part (l) by invoking

(2.34), (2.37) and (2.38) in (2.33).
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(d) In order to estimate b(j, N) we define the sets

Aj(N) = {m ∈ S(Nj+1 − k0) \ S(Nj) : m + k ∈ S(Nj+1) \ S(Nj)} and

Aj−1(N) = {m ∈ S(Nj+1 − k0) \ S(Nj) : m + k ∈ S(Nj) \ S(Nj−1)}.

Then for q > q1, S(Nj+1− k0) \S(Nj) = Aj(N)∪Aj−1(N), a disjoint union, and we

have

b(j, N) =
1

(2N + 1)d

∑

Aj(N)

xj[k + m]xj [m] +
1

(2N + 1)d

∑

Aj−1(N)

xj−1[k + m]xj [m]

=
1

(2N + 1)d

∑

Aj(N)∪S(Nj )

xj[k + m]xj [m]− 1

(2N + 1)d

∑

S(Nj)

xj[k + m]xj [m] +

+
1

(2N + 1)d

∑

Aj−1(N)

xj−1[k + m]xj[m]. (2.39)

We shall estimate the three sums on the right side of (2.39). In the process of making

these estimates we need the following lemma.

Lemma 2.40. For an integer d and a sequence {Nn} as defined in (2.21)

1

(2Nn + 1)d

n∑

j=1

(2Nj + 1)d
6 22d+1. (2.41)

Proof. We first show that

1

Nd
n

n∑

j=1

Nd
j 6 2. (2.42)

In fact, the left side of (2.42) is

1

Nd
n

(
Nd

1 + Nd
2 + · · ·+ Nd

n−1 + Nd
n

)

= 1 +

(
Nn−1

Nn

)d

+ · · ·+
(

N2

Nn

)d

+

(
N1

Nn

)d

= 1 +
(K1 + 1)d · · · (Kn−1 + n− 1)d

(K1 + 1)d · · · (Kn−1 + n− 1)d(Kn + n)d
+ · · ·+ 1

(K2 + 2)d · · · (Kn + n)d

= 1 +
1

(Kn + n)d
+ · · ·+ 1

(K2 + 2)d · · · (Kn + n)d
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6 1 +
1

nd
+

1

(n(n− 1))d
+ · · ·+ 1

(2 · 3 · · ·n)d

6 1 +
1

nd
+

1

(n(n− 1))d
+ · · ·+ 1

(2 · 3 · · ·n)d
+

1

(n!)d

=
1

(n!)d

n∑

j=0

(j!)d =
1

(n!)d

(
(n!)d + ((n− 1)!)d + · · ·+ (2!)d + (1!)d + (0!)d

)

6 1 +
n((n− 1)!)d

(n!)d
6 1 +

(n!)d

(n!)d
= 1 + 1 = 2.

Thus,

1

(2Nn + 1)d

n∑

j=1

(2Nj + 1)d
6

∑n
j=1(2Nj + 2Nj)

d

(2Nn + 1)d
=

4d
∑n

j=1 Nd
j

(2Nn + 1)d

6
4d

Nd
n

n∑

j=1

Nd
j 6 4d · 2 = 22d+1

which establishes (2.41).

(e) Our initial step in estimating the first sum on the right side of (2.39) is to

prove that ∃ q3 = q3(ε, k) such that ∀j > q3,

X =
∣∣∣∣∣∣

1

(2(Nj+1 − k0) + 1)d


 ∑

S(Nj+1−k0)

xj[k + m]xj [m]−
∑

Aj(N)∪S(Nj )

xj[k + m]xj [m]



∣∣∣∣∣∣
< ε.

(2.43)

The difference of the two sums in the left side of (2.43) is the summation over

Aj−1(N). Thus

X =

∣∣∣∣∣∣
1

(2(Nj+1 − k0) + 1)d


 ∑

Aj−1(N)

xj[k + m]xj [m]



∣∣∣∣∣∣

6
1

(2(Nj+1 − k0) + 1)d

∑

Aj−1(N)

∣∣∣xj[k + m]xj [m]
∣∣∣ . (2.44)
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Again if m ∈ Aj−1(N) then m ∈ S(Nj + k0) \ S(Nj). So from (2.44)

X 6
1

(2(Nj+1 − k0) + 1)d

∑

S(Nj+k0)rS(Nj)

∣∣∣xj[k + m]xj[m]
∣∣∣

6
‖xj‖2∞

(2(Nj+1 − k0) + 1)d
(2k0)

d. (2.45)

The right side of (2.45) goes to 0 as j →∞ due to (2.25) and we have (2.43).

Therefore,
∣∣∣∣∣∣

1

(2(Nj+1 − k0) + 1)d

∑

Aj(N)∪S(Nj )

xj[m + k]xj[m]− µ̌[k]

∣∣∣∣∣∣

=

∣∣∣∣∣
1

(2(Nj+1 − k0) + 1)d


 ∑

Aj(N)∪S(Nj )

xj[k + m]xj [m]−
∑

S(Nj+1−k0)

xj[k + m]xj [m]


+

+
1

(2(Nj+1 − k0) + 1)d

∑

S(Nj+1−k0)

xj[k + m]xj[m]− µ̌j[k] + µ̌j[k]− µ̌[k]

∣∣∣∣∣

6 ε +
1

2j+1
+ ε = 2ε +

1

2j+1
(by the triangle inequality, (2.43), (2.20) and (2.29)).

(2.46)

We can write (2.46) in the form

1

(2(Nj+1 − k0) + 1)d

∑

Aj(N)∪S(Nj)

xj[m + k]xj[m] = µ̌[k] + βj(k)

(
2ε +

1

2j+1

)
(2.47)

where |βj(k)| < 1 and j > q3.

(f) To estimate the second sum on the right side of (2.39) we use the triangle

inequality, (2.20) and (2.29) to get for all j > q2,
∣∣∣∣∣∣

1

(2Nj + 1)d

∑

S(Nj)

xj[k + m]xj [m]− µ̌[k]

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

(2Nj + 1)d

∑

S(Nj)

xj[k + m]xj [m]− µ̌j[k] + µ̌j[k]− µ̌[k]

∣∣∣∣∣∣

6
1

2j+1
+ ε. (2.48)
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This yields

1

(2Nj + 1)d

∑

S(Nj)

xj[k + m]xj[m] = µ̌[k] + γj(k)

(
ε +

1

2j+1

)
(2.49)

where |γj(k)| < 1 and j > q2.

(g) Since Aj−1(k) ⊆ S(Nj + k0) \ S(Nj), the third sum on the right side of

(2.39) is bounded by

1

(2N + 1)d

∑

S(Nj+k0)rS(Nj)

|xj−1[k + m]xj[m]| 6 1

(2N + 1)d
‖xj−1‖∞‖xj‖∞(2k0)

d.

(2.50)

(h) By parts (e), (f) and (g) we can write

n−1∑

j=q

b(j, N) =
1

(2N + 1)d

n−1∑

j=q

(2(Nj+1 − k0) + 1)d

(
µ̌[k] + βj(k)

(
2ε +

1

2j+1

))
−

− 1

(2N + 1)d

n−1∑

j=q

(2Nj + 1)d

(
µ̌[k] + γj(k)

(
ε +

1

2j+1

))
+

+
1

(2N + 1)d

n−1∑

j=q

∑

Aj−1(k)

xj−1[k + m]xj[m]

=
µ̌[k]

(2N + 1)d

n−1∑

j=q

(
(2(Nj+1 − k0) + 1)d − (2Nj + 1)d

)
+ r(q, N, k)

(2.51)

where

r(q, N, k) =
1

(2N + 1)d

n−1∑

j=q

(2(Nj+1 − k0) + 1)dβj(k)

(
2ε +

1

2j+1

)
−

− 1

(2N + 1)d

n−1∑

j=q

(2Nj + 1)dγj(k)

(
ε +

1

2j+1

)
+

+
1

(2N + 1)d

n−1∑

j=q

∑

Aj−1(k)

xj−1[k + m]xj[m].
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Using the triangle inequality and (2.50)

|r(q, N, k)| 6 2ε

n−1∑

j=q

(2(Nj+1 − k0) + 1)d

(2N + 1)d
+

n−1∑

j=q

1

2j+1
+ ε

n−1∑

j=q

(2Nj + 1)d

(2N + 1)d
+

+
n−1∑

j=q

1

2j+1
+

(2k0)
d

(2N + 1)d

n−1∑

j=q

‖xj−1‖∞‖xj‖∞.

Using (2.41) we further get

|r(q, N, k)| 6 2ε · 22d+1 +
n−1∑

j=q

1

2j
+ ε · 22d+1 +

(2k0)
d

(2N + 1)d

n−1∑

j=q

‖xj−1‖∞‖xj‖∞.

(2.52)

Due to (2.25) the last term in the right side of (2.52) is less than ε for large enough

N. Therefore,

|r(q, N, k)| 6 ε · 4d+1 +
1

2q−1
+ ε · 22d+1 + ε.

So, at this point we have estimated
∑n−1

j=q b(j, N) as described in (2.37).

(i) Looking back at part (b) we see that having estimated
∑n−1

j=q b(j, N) and

∑n−1
j=q c(j, N) we now have to estimate the last sum on the right side of (2.33). We

define the sets

An−1(k) = {m : m ∈ S(N) \ S(Nn) and m + k ∈ S(Nn) \ S(Nn−1)}

An(k) = {m : m ∈ S(N) \ S(Nn) and m + k ∈ S(Nn+1) \ S(Nn)}

An+1(k) = {m : m ∈ S(N) \ S(Nn) and m + k ∈ S(Nn+2) \ S(Nn+1)}.

Then,

1

(2N + 1)d

∑

S(N)rS(Nn)

x[k + m]x[m] =
1

(2N + 1)d

∑

An−1(k)

xn−1[k + m]xn[m] +

+
1

(2N + 1)d

∑

An(k)

xn[k + m]xn[m] +
1

(2N + 1)d

∑

An+1(k)

xn+1[k + m]xn[m]
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=
1

(2N + 1)d

∑

An(k)∪S(Nn)

xn[k + m]xn[m]− 1

(2N + 1)d

∑

S(Nn)

xn[k + m]xn[m] +

+
1

(2N + 1)d


 ∑

An−1(k)

xn−1[k + m]xn[m] +
∑

An+1(k)

xn+1[k + m]xn[m]


 .

(2.53)

(j) The inclusions An−1(k) ⊆ S(Nn + k0) \ S(Nn) and An+1(k) ⊆ S(N) \

S(Nn+1 − k0) are valid and it should be observed that An+1(k) can be empty if

N < Nn+1 − k0. In any case the last term in (2.53) is dominated by

1

(2N + 1)d

( ∑

S(Nn+k0)rS(Nn)

|xn−1[k + m]xn[m]|+

∑

S(N)rS(Nn+1−k0)

|xn+1[k + m]xn[m]|
)

6
1

(2N + 1)d

{
‖xn−1‖∞‖xn‖∞(2k0)

d + ‖xn+1‖∞‖xn‖∞(2k0)
d
}

=
(2k0)

d

(2N + 1)d
‖xn‖∞ (‖xn−1‖∞ + ‖xn+1‖∞)

< ε for large enough N . (2.54)

(k) To estimate the first sum of (2.53) we note that

∣∣∣∣∣∣
1

(2N + 1)d


∑

S(N)

xn[k + m]xn[m]−
∑

An(k)∪S(Nn)

xn[k + m]xn[m]



∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

(2N + 1)d

∑

An−1(k)∪An+1(k)

xn[k + m]xn[m]

∣∣∣∣∣∣

6
‖xn‖2∞

(2N + 1)d
(|An−1(k)|+ |An+1(k)|)

6
‖xn‖2∞

(2N + 1)d

(
(2k0)

d + (2k0)
d
)

< ε for large enough N . (2.55)
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So,

∣∣∣∣∣∣
1

(2N + 1)d

∑

An(k)∪S(Nn)

xn[k + m]xn[m]− µ̌[k]

∣∣∣∣∣∣

=

∣∣∣∣∣
1

(2N + 1)d


 ∑

An(k)∪S(Nn)

xn[k + m]xn[m]−
∑

S(N)

xn[k + m]xn[m]


+

+
1

(2N + 1)d

∑

S(N)

xn[k + m]xn[m]− ˇµn[k] + ˇµn[k]− µ̌[k]

∣∣∣∣∣

6 ε +
1

2n+1
+ ε = 2ε +

1

2n+1
(by the triangle inequality, (2.55), (2.20) and (2.29)).

So,

1

(2N + 1)d

∑

An(k)∪S(Nn)

xn[k + m]xn[m] = ˇµ[k] + βN,n(k)

(
2ε +

1

2n+1

)
(2.56)

where |βN,n(k)| < 1.

For the second term of (2.53) we have

∣∣∣∣∣∣
1

(2Nn + 1)d

∑

S(Nn)

xn[k + m]xn[m]− µ̌[k]

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

(2Nn + 1)d

∑

S(Nn)

xn[k + m]xn[m]− µ̌n[k] + µ̌n[k]− µ̌[k]

∣∣∣∣∣∣

6
1

2n+1
+ ε (by the triangle inequality, (2.20) and (2.29)).

(2.57)

So,

1

(2Nn + 1)d

∑

S(Nn)

xn[k + m]xn[m] = µ̌[k] + γN,n(k)

(
ε +

1

2n+1

)
(2.58)

where |γN,n(k)| < 1.

Therefore, the last term in the right side of (2.33) which we are in the process of
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estimating is

1

(2N + 1)d

∑

S(N)\S(Nn)

x[k + m]x[m] = µ̌[k] + βn(k)

(
2ε +

1

2n+1

)
−

− (2Nn + 1)d

(2N + 1)d

(
µ̌[k] + γn(k)

(
ε +

1

2n+1

))
+

+
1

(2N + 1)d


 ∑

An−1(k)

xn−1[k + m]xn[m] +
∑

An+1(k)

xn+1[k + m]xn[m]




= µ̌[k]

(
1−

(
2Nn + 1

2N + 1

)d
)

+ s(N, k)

where

s(N, k) = βn(k)

(
2ε +

1

2n+1

)
− γn(k)

(
ε +

1

2n+1

)(
2Nn + 1

2N + 1

)d

+

+
1

(2N + 1)d


 ∑

An−1(k)

xn−1[k + m]xn[m] +
∑

An+1(k)

xn+1[k + m]xn[m]


 .

By the triangle inequality, (2.56), (2.58) and (2.54),

|s(N, k)| 6 2ε +
1

2n+1
+ ε +

1

2n+1
+ ε = 4ε +

1

2n
.

By this we have verified (2.38).

(l) This part completes the proof of the theorem by combining what we ob-

tained in the previous parts. For q > q3 and for all large N, n(N) > q, the right

side of (2.33) is

µ̌[k]

(2N + 1)d

(
n−1∑

j=q

(
(2(Nj+1 − k0) + 1)d − (2Nj + 1)d

)
)

+ r(q, N, k) +

+ µ̌[k]

(
1−

(
2Nn + 1

2N + 1

)d
)

+ s(N, k) +
n−1∑

j=q

c(j, N)

= µ̌[k] +
µ̌[k]

(2N + 1)d

[
n−1∑

j=q

(
(2(Nj+1 − k0) + 1)d − (2Nj + 1)d

)
− (2Nn + 1)d

]
+

+ s(N, k) + r(q, N, k) +

n−1∑

j=q

c(j, N). (2.59)
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On the right side of (2.59) we see that ∃ Nc such that ∀N > Nc,

∣∣∣∣∣s(N, k) + r(q, N, k) +
n−1∑

j=q

c(j, N)

∣∣∣∣∣ 6 4ε +
1

2n
+ ε · 4d+1 +

1

2q−1
+ ε · 22d+1 + ε + ε. (2.60)

The second term on the right side of (2.59) is,

µ̌[k]

(2N + 1)d

[
(2(Nn − k0) + 1)d − (2Nn−1 + 1)d + (2(Nn−1 − k0) + 1)d −

− (2Nn−2 + 1)d + (2(Nn−2 − k0) + 1)d − (2Nn−3 + 1)d + · · ·+

+ (2(Nq+1 − k0) + 1)d − (2Nq + 1)d − (2Nn + 1)d
]

6
µ̌[k]

(2N + 1)d

[
(2Nn + 1)d − (2Nn−1 + 1)d + (2Nn−1 + 1)d − (2Nn−2 + 1)d +

+ (2Nn−2 + 1)d − (2Nn−3 + 1)d + · · ·+ (2Nq+1 + 1)d − (2Nq + 1)d − (2Nn + 1)d
]

which after the appropriate cancellations is in absolute value

=

∣∣∣∣
µ̌[k]

(2N + 1)d
(2Nq + 1)d

∣∣∣∣ < ε for all N large enough. (2.61)

Using (2.60) and (2.61) we get

∣∣∣∣∣∣
1

(2N + 1)d

∑

S(N)\S(Nq)

x[k + m]x[m]− µ̌[k]

∣∣∣∣∣∣
< ε(8 + 4d+1 + 22d+1) (2.62)

and this proves (2.31). One can refer to part (a) to recall that this is what we needed

in order to finish the proof of the theorem.
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Chapter 3

Construction of Uniformly Bounded Waveforms

We have shown in Chapter 2 that the function x : Zd → C as constructed in the

Wiener-Wintner Theorem on Zd is locally bounded. Having uniform boundedness in

x would be a step towards our ultimate goal of constructing waveforms with constant

amplitude. In this chapter we discuss how one can try to get the waveform x to be

uniformly bounded. We try to use uniformly distributed sequences to achieve this.

Though this might seem a natural approach it can be shown that it is impossible to

use uniformly distributed sequences to make x uniformly bounded.

For any positive function F ∈ A(Td), the space of absolutely convergent

Fourier series on Td, our problem is to construct a complex-valued bounded function

x : Zd → C whose autocorrelation Ax is the Fourier transform of F. Formally, the

autocorrelation Ax is defined as

∀k ∈ Zd, Ax[k] = lim
N→∞

1

(2N + 1)d

∑

m∈S(N)

x[k + m]x[m] ,

where

S(N) = {m = (m1, m2, . . . , md) ∈ Zd : −N 6 mi 6 N, i = 1, ..., d}

and the Fourier transform of F ∈ A(Td) is

∀k ∈ Zd, pk =

∫

Td

F (γ)e2πik.γdγ.
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3.1 Theory of uniform distribution

Definition 3.1. Let A = (ank) be a matrix which satisfies the following two condi-

tions:

(i) For all n and k, ank > 0.

(ii) limn→∞
∑∞

k=1 ank = 1.

Definition 3.2. Let A = (an,k) be a matrix as in Definition 3.1, and let (xn),

n = 1, 2, · · · , be a sequence of points in Rd. For 0 6 x < 1, let
�

x be the character-

istic function of the interval [0, x). The function g(x), x ∈ Td, is the A-asymptotic

distribution function modulo 1 (A-a.d.f(mod 1)) of (xn) if the sequence (
�

x({xn})),

n = 1, 2, · · · , is summable by A to the value g(x) for x ∈ Td; that is, if

lim
n→∞

∞∑

k=1

ank
�

x({xk}) = g(x) (3.3)

In the case g(x) = x for x ∈ Td, the sequence (xn) is called A-u.d. mod 1. The

following result is found in [16].

Theorem 3.4. Let A = (ank) be a matrix as in Definition 3.1. A sequence (xn) has

the continuous A-a.d.f.(mod 1) g(x) if and only if for every real-valued continuous

function f on Td,

lim
n→∞

∞∑

k=1

ankf({xk}) =

∫

Td

f(x)dg(x). (3.5)

Suppose g(x) = x and A = (ank) is a matrix as defined in Defintion 3.1 which

is lower triangular. Then (3.5) becomes

lim
n→∞

n∑

k=1

ankf({xk}) =

∫

Td

f(x)dx (3.6)

for every real valued continuous function f on Td.
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3.2 Solving the problem using uniformly distributed sequences

As already said we would like to establish the following assertion.

Let F ∈ A(Td) be non-negative. There is x ∈ `∞(Zd) such that, for each

k ∈ Zd,

lim
N→∞

1

(2N + 1)d

∑

m∈S(N)

x[k + m]x[m] = F̌ [k] (3.7)

where S(N) = {m = (m1, m2, · · · , md) ∈ Zd : −N 6 mi 6 N, i = 1, · · · , d}.

Due to the Wiener Wintner Theorem on Zd which we proved in Chapter 2

it is natural to try to prove this in the following way. Suppose the given positive

function F ∈ A(Td) has Fourier coefficients {pk}k∈Zd i.e., F̌ = {pk}. In order to

construct the desired uniformly bounded waveform x, F is first approximated by a

sequence of discrete measures, i.e., a sequence {µn}n∈Zd ⊆ M(Td). For each n, the

discrete measure µn is supported in the set {γj : j = 1, . . . , n} ⊆ Id where {γj} is

A-u.d. mod 1. We define

µn =

n∑

j=1

anj


 ∑

k∈S(Ln)

pke
−2πik·γj


 δγj

. (3.8)

The sequence {µn} converges to F in the weak-∗ σ(M(Td), C(Td)) topology. This

can be shown as a result of 3.6 and following the proof of Proposition 2.3.

Next a sequence {xn} ⊆ `∞(Zd) is constructed based on the µns such that

each Axn
= µ̌n, where µ̌n : Zd → C is the inverse Fourier transform of µn. Define

xn[k] =
n∑

j=1

a
1
2
nj


 ∑

`∈S(Ln)

p`e
−2πi`·γj




1
2

e−2πik·γj . (3.9)

In fact, it can be shown that there is an increasing positive sequence {Kn}

such that
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∀k ∈ Zd and ∀N > Kn,
∣∣∣∣∣∣

1

(2N + 1)d

∑

m∈S(N)

xn[k + m]xn[m]− µ̌n[k]

∣∣∣∣∣∣
<

1

2n+1
.

Then, setting

Nn = (K1 + 1)(K2 + 2) · · · (Kn + n)

the xns already constructed are used to define x : Zd → C as follows:

x[k] =





0 for k ∈ S(N1)

xn[k] for k ∈ S(Nn+1) \ S(Nn).

Finally, it is checked that Ax[k] = pk.

One observes that

|xn[k]| 6

n∑

j=1

a
1
2
nj


 ∑

`∈S(Ln)

|p`|




1
2

6

∞∑

j=1

a
1
2
nj


 ∑

`∈S(Ln)

|p`|




1
2

<

( ∞∑

j=1

a
1
2
nj

)
‖F‖

1
2

A(Td)
<∞. (3.10)

Thus we can get {xn} and so also x to be bounded if we require the matrix

A = (ank) to satisfy

∀n,
∞∑

k=1

√
ank 6 C, C independent of n. (3.11)

As a possible approach to construct an appropriate uniformly distributed se-

quence {γj} and a corresponding matrix A, [9] and [16] show that the sequence {jθ}

with θ irrational is A−u.d. mod 1 if the matrix A satisfies limn→∞
∑∞

k=1 |an,k+1 −

ank| = 0 and for all k = 1, 2, · · · , limn→∞ ank = 0 along with conditions 1 and 2 of

Definition 3.2. Thus the matrix A = (an,k) we need so that {nθ} is A-u.d. mod 1

and the waveform x : Z→ C is bounded should satisfy the following properties:
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(i) an,k > 0.

(ii) limn→∞
∑∞

k=1 an,k = 1.

(iii) For all n,
∑∞

k=1

√
an,k 6 C, where C is a constant independent of n.

(iv) For all k = 1, 2, . . . , limn→∞ an,k = 0.

(v) limn→∞
∑∞

k=1 |an,k+1 − an,k| = 0.

(vi) There are only finitely many terms on each row.

Condition (vi) is needed to prove (3.7), the outline of the proof of which has been

given.

We have the following examples each of which miss at least one of the above

six conditions.

3.2.1 Illustrative examples

Example 1.

an,k =





1
2k if 1 6 k 6 n

0 if k > n.

So,

A =




1
2

0 0 . . .

1
2

1
22 0 . . .

1
2

1
22

1
23 . . .

...
...

...
. . .




.

31



Properties:

(i) an,k > 0.

(ii) limn→∞
∑∞

k=1 an,k = limn→∞
∑n

k=1
1
2k =

∑∞
k=1

1
2k = 1.

(iii)
∑∞

k=1

√
an,k =

∑n
k=1

1√
2k

=
∑n

k=1

(
1√
2

)k

6
∑∞

k=1

(
1√
2

)k

= 1√
2

1
“

1− 1√
2

” .

(iv) For any k, limn→∞ an,k = 1
2k 6= 0.

(v) limn→∞
∑∞

k=1 |an,k+1 − an,k| =
(

1
2
− 1

22

)
+
(

1
22 − 1

23

)
+· · ·

(
1

2n−1 − 1
2n

)
+
(

1
2n − 0

)
=

1
2
6= 0.

(vi) There are n terms in row n.

Example 2 (Cesàro summation matrix of order 1).

A =




1 0 0 0 0 0 . . .

1
2

1
2

0 0 0 0 . . .

1
3

1
3

1
3

0 0 0 . . .

...
...

...
...

...
...

. . .

1
n

1
n

1
n

. . . 1
n

0 . . .

...
...

...
...

...
...

. . .




.

Properties:

(i) an,k > 0.

(ii) limn→∞
∑∞

k=1 an,k =
∑n

k=1
1
n

= n · 1
n

= 1.

(iii)
∑∞

k=1

√
an,k =

∑n
k=1

1√
n

= n · 1√
n

=
√

n which cannot be bounded by some

constant independent of n.
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(iv) For k = 1, 2, . . . , limn→∞ an,k = limn→∞
1
n

= 0.

(v) limn→∞
∑∞

k=1 |an,k+1 − an,k| = limn→∞
1
n

= 0.

(vi) There are n terms in row n.

Example 3.

A =




1 0 0 0 0 0 0 . . .

1
22

3
4

0 0 0 0 0 . . .

1
32

1
32

7
9

0 0 0 0 . . .

1
42

1
42

1
42

13
16

0 0 0 . . .

...
...

...
...

...
...

...
...

1
n2

1
n2

1
n2 . . . 1

n2
n2−n+1

n2 0 . . .

...
...

...
...

...
...

...
...




.

Properties:

(i) an,k > 0.

(ii) limn→∞
∑∞

k=1 an,k = 1.

(iii) For any n,
∑∞

k=1

√
an,k =

∑n−1
k=1

(
1
n

)
+
√

n2−n+1
n2 = n−1

n
+
√

1 +
(−1

n

)
+ 1

n2

6 1 +
√

1 + 1
n2 6 1 +

√
2.

(iv) For k = 1, 2, . . . , limn→∞ an,k = limn→∞
1
n2 = 0.

(v) limn→∞ |an,k+1 − an,k| =
∣∣∣ 1
n2 − n2−n+1

n2

∣∣∣+ n2−n+1
n2 = n2−n

n2 + 1− 1
n

+ 1
n2 9 0.

(vi) There are n terms in row n.
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Example 4.

A =




1 0 0 0 0 0 0 . . .

2 · 1
22 2 · 2

22 0 0 0 0 0 . . .

2 · 1
32 2 · 2

32 2 · 3
32 0 0 0 0 . . .

2 · 1
42 2 · 2

42 2 · 3
42 2 · 4

42 0 0 0 . . .

...
...

...
...

...
...

...
...

2 · 1
n2 2 · 2

n2 2 · 3
n2 2 · 4

n2 . . . 2 · n
n2 0 . . .

...
...

...
...

...
...

...
...




.

Properties:

(i) an,k > 0.

(ii) limn→∞
∑∞

k=1 an,k = limn→∞
2(1+2+···n)

n2 = limn→∞
2n(n+1)

2n2 = limn→∞
n2+n

n2 = 1.

(iii)
∑∞

k=1

√
an,k =

√
2(

√
1+

√
2+···+√

n)
n

=
√

2
n

∑n
k=1

√
k ∼

√
2

n

∫ n

1

√
xdx = 2

√
2

3n
(n

3
2 − 1)

which cannot be bounded by any constant independent of n.

(iv) For k = 1, 2 · · · , limn→∞ an,k = limn→∞ 2 · k
n2 = 0.

(v) limn→∞
∑∞

k=1 |an,k+1 − an,k| = limn→∞
∣∣− 2

n2 + 2n
n2 + 2

n

∣∣

= limn→∞
{
(n− 1) · 2 · 1

n2 + 2
n

}
= 0.

(vi) There are n elements in row n.

Example 5. A = an,k is a matrix such that the nth row is

3

n4
3 · 2

2

n4
· · · 3 · n

2

n4︸ ︷︷ ︸
block 1

3 · n
2

n4
· · · 3 · 2

2

n4
3 · 1

n4︸ ︷︷ ︸
block 2

3

n4
3 · 2

2

n4
· · · 3 · n

2

n4︸ ︷︷ ︸
block 3

· · ·

and there are n such blocks in the nth row.
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Properties:

(i) an,k > 0.

(ii) limn→∞
∑∞

k=1 an,k = limn→∞
3(12 + 22 + · · ·+ n2)

n4︸ ︷︷ ︸
sum of each block

·n = limn→∞
3
n3 · n(n+1)(2n+1)

6

= limn→∞
n(n+1)(2n+1)

2n3 = 1.

(iii)
∑∞

k=1

√
an,k =

√
3(1+2+···+n)

n2 · n =
√

3
n

n(n+1)
2

=
√

3
2

(n + 1) which is not bounded

by any constant independent of n.

(iv) For k = 1, 2, · · · limn→∞ an,k = 0.

(v) To compute limn→∞
∑∞

k=1 |an,k+1 − an,k| first observe that from each block the

sum of |an,k+1 − an,k| is either 3
∣∣∣
(

22

n4 − 12

n4

)
+
(

32

n4 − 22

n4

)
+ · · ·+

(
n2

n4 − (n−1)2

n4

)∣∣∣

or 3
∣∣∣
(

n2

n4 − (n−1)2

n4

)
+ · · ·

(
32

n4 − 22

n4

)
+
(

22

n4 − 12

n4

)∣∣∣ each of which is equal to

3
(

n2−1
n4

)
. Also, the last term of each block is the same as the first term of the

next block and so the difference is 0. Thus,

∞∑

k=1

|an,k+1 − an,k| =




(
n · 3(n2−1)

n4 + 3 · n2

n4

)
= 3(n2−1)

n3 + 3
n2 if the nth block ends in 3n2

n4

(
n · 3(n2−1)

n4 + 3 · 1
n4

)
= 3(n2−1)

n3 + 3
n4 if the nth block ends in 3 1

n4 .

So, limn→∞
∑∞

k=1 |an,k+1 − an,k| = 0.

(vi) There are n2 elements in row n.

Example 6. Let the matrix A be defined by

an,k =





0 if k < Kn

cn

kJn
if k > Kn. (Actually Kn 6 k 6 Kn + K(n), where K(n) is large.)
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Properties:

(i) Due the way the matrix elements are defined we have an,k > 0.

(ii)
∑∞

k=1 an,k ∼ cn

∫∞
Kn

dx
xJn

= cn

(−Jn+1)

[
x−Jn+1

]∞
Kn

= cn

Jn−1
K−Jn+1

n .

Set cn = (Jn − 1)KJn−1
n .

Then limn→∞
∑∞

k=1 an,k ∼ 1.

(iii) Based on the calculation in part (ii)

an,k =





0 if k < Kn

(Jn−1)KJn−1
n

kJn
if k > Kn.

(3.12)

Therefore,

∞∑

k=1

√
an,k =

∞∑

k=Kn

√
(Jn − 1)K

Jn
2

n√
Knk

Jn
2

∼
√

(Jn − 1)K
Jn
2

n√
Kn

∫ ∞

Kn

dx

x
Jn
2

=

√
(Jn − 1)K

Jn
2

n√
Kn

[
x−Jn

2
+1

(
−Jn

2
+ 1
)
]∞

Kn

=

√
(Jn − 1)K

Jn
2

n√
Kn

K
−Jn

2
+1

n(
Jn

2
− 1
)

=
√

Kn

√
Jn − 1(

Jn

2
− 1
) 6

√
KnJn(

Jn

2
− 1
) . (3.13)

We want the right side of (3.13) to be bounded by some constant independent

of n.

(iv) For k > Kn,

an,k =
(Jn − 1)KJn−1

n

kJn
=

(Jn − 1)

Kn

(
Kn

k

)Jn

. (3.14)

We would like the right hand side of (3.14) to go to zero as n goes to infinity.
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(v) Row n of our matrix looks like

0 0 · · · 0 0 cn

KJn
n

cn

(Kn+1)Jn

cn

(Kn+2)Jn
· · · cn

(Kn+K(n))Jn
0 · · · 0.

∞∑

k=1

|an,k+1 − an,k| = an,Kn
+ (an,Kn

− an,Kn+1) + (an,Kn+1 − an,Kn+2) + · · ·

+ (an,Kn+K(n)−1 − an,Kn+K(n)
) + an,Kn+K(n)

= 2an,Kn
=

2(Jn − 1)

Kn
.

(3.15)

We would like the right side of (3.15) to go to zero as n goes to infinity.

If we want the right side of (3.15) to go to zero as n goes to infinity we ought

to have Kn → ∞ and Jn

Kn
→ 0, i.e., Kn → ∞ faster than Jn. Then automatically

the right side of (3.14) goes to 0 as n goes to ∞ but the right side of (3.13) is not

bounded some constant independent of n. To bound the right side of (3.13) by a

constant independent of n we may take Kn to be bounded or even Kn, Jn → ∞

at the same rate, for example, Jn = n, Kn = n but then the right side of (3.14)

does not go to 0 as n goes to ∞. If Jn = nx and Kn = ny, for the right side of

(3.14) to go to 0 we need y > x and for the right side of (3.13) to go to 0, we need,

y
2

+ x
2

6 x⇒ y 6 x. A contradiction.

The next theorem shows that there cannot be a matrix which satisfies all of

the six conditions at the same time which means that the sequence (nθ) with θ

irrational cannot be used for our purpose.

Theorem 3.16. It is impossible to create a matrix satisfying

(i) ank > 0.
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(ii) limn→∞
∑∞

k=1 ank = 1.

(iii)
∑∞

k=1

√
ank 6 C, where C is independent of n.

(iv) For k = 1, 2, 3, . . . limn→∞ ank = 0.

(v) limn→∞
∑∞

k=1 |an,k+1 − ank| = 0.

(vi) There are finitely many elements in each row.

Proof. For a fixed n we can write
∑∞

k=1 ank as

∞∑

k=1

ank =

∞∑

k=1

√
ank

√
ank

which implies,
∞∑

k=1

ank 6 ||√ank||`∞(k)

∞∑

k=1

√
ank.

Since there are finitely many terms in each row

||√ank||`∞(k) = max
k

√
ank =

√
max

k
ank =

√
||ank||`∞(k).

So,

∞∑

k=1

ank 6

√
||ank||`∞(k)

∞∑

k=1

√
ank (3.17)

Claim: ||ank||`∞(k) → 0 as n→∞.

The left side of 3.17 goes to one as n goes to infinity and given our claim the

right side goes to zero as n goes to infinity because we require
∑∞

k=1

√
ank 6 C,

where C is independent of n. This gives us the contradiction that 1 6 0 and so such

a matrix cannot exist.
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Proof of claim. Since {||ank||`∞(k)} is a bounded sequence, it has a convergent

subsequence, {||anmk||`∞(k)}. We prove the claim by contradiction. We assume that

||anmk||`∞(k) → a > 0. For notational convenience let us write ank instead of anmk.

So we assume that ||ank||`∞(k) → a > 0.

Since limn→∞
∑∞

k=1 ank = 1, given ε > 0, there exists N1 such that

∀n > N1,

∣∣∣∣∣

∞∑

k=1

ank − 1

∣∣∣∣∣ < ε.

Define M ∈ N \ {1} by Ma > 1 + 3ε.

Define γ by γ = ε
M(M−1)

2

.

Define δ by δ = ε
M

.

Take N2 such that for all n > N2

∣∣||ank||`∞(k) − a
∣∣ < δ

i.e.,

a− δ < ||ank||`∞(k) < a + δ.

Take N3 such that for all n > N3

∞∑

k=1

|an,k+1 − ank| < γ.

This implies that

|an,k+1 − ank| < γ

i.e.,

ank − γ < an,k+1 < ank + γ.

Let N = max{M, N1, N2, N3}.
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For a given n suppose supk ank is at ank1 , k1 = k1(n). Then for all n > N

∞∑

k=1

ank > ank1 + an,k1+1 + an,k1+2 + · · ·

> (a− δ) + (a− δ − γ) + (a− δ − 2γ) + · · ·+ ((a− δ)− (M − 1)γ)

= Ma−Mδ − γ(1 + 2 + · · ·+ (M − 1))

= Ma−Mδ − γM(M − 1)

2

> 1 + 3ε− ε− ε = 1 + ε, (3.18)

a contradiction.

3.2.2 Generalization of the notion of uniform distribution mod 1 due

to M. Tsuji ([27])

In this section we investigate the prospect of using summation methods other

than the matrix summation method discussed in the last section.

Let λn > 0 be a sequence which satisfies the following condition

(A) :





λ1 > λ2 > . . . > λn > 0,

∑∞
n=1 λn =∞.

If for any open interval I in [0, 1],

lim
n→∞

λ1
�
({x1}) + · · ·+ λn

�
({xn})

λ1 + λ2 + · · ·+ λn
= |I|

then we say that (xn) is (λn) - uniformly distributed mod 1. The uniform distribution

mod 1 is a special case, where λn = 1(n = 1, 2, . . .).

The following theorem has been proved in [27].

40



Theorem 3.19. The necessary and sufficient condition that (xn) is (λn) - uniformly

distributed mod 1 is that, for any Riemann integrable function f(x) in [0, 1],

lim
n→∞

λ1f({x1}) + · · ·+ λnf({xn})
λ1 + λ2 + · · ·+ λn

=

∫ 1

0

f(x)dx. (3.20)

Weyl’s Criterion: The necessary and sufficient condition that (xn) is (λn) - uni-

formly distributed mod 1 is that, for m = ±1,±2, . . .

n∑

k=1

λke
2πimxk = o

(
n∑

k=1

λk

)

as n goes to infinity.

Let the symbol logk n mean log(logk−1 n). Let g(t) = atσ(log t)σ1 · · · (logk t)σk

where a > 0, 0 6 σ < 1 and σ, σ1, . . . , σk are such that the first one of σ, σ1, . . . , σk,

which is not zero, is positive and the other σi may be greater than, equal to or

less than 0. Then g(t) goes to infinity as t goes to infinity and it was shown in

[27] that (g(n)) is
(

1
n log n··· logk−1 n

)
- uniformly distributed mod 1. So here λn =

(
1

n log n··· logk−1 n

)
.

Comparing this situation to what we discussed earlier we see that the cor-

responding weights of the matrix summation method are am = λm
Pn

m=1 λm
. For our

purpose we want

n∑

m=1

am =
n∑

m=1

√
λm∑n

m=1 λm

=

∑n
m=1

√
λm√∑n

m=1 λm

=

∑n
m=1

1√
n log n··· logk−1 n√∑n

m=1
1

n log n··· logk−1 n

∼

∫ n

1
dx√

x log x··· logk−1 x√∫ n

1
dx

x log x··· logk−1 x

(3.21)

to be bounded by some constant independent of n. We will now show that this

cannot be done. First let us try to evaluate the denominator on the right hand side
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of (3.21). Note that

d(logk x)

dx
=

d(log(logk−1 x))

dx
=

1

logk−1 x

d(log(logk−2 x))

dx

=
1

logk−1 x logk−2 x

d(logk−2 x)

dx
= · · · = 1

logk−1 x logk−2 x · · · log x

d(log x)

dx

=
1

logk−1 x logk−2 x · · · log x · x. (3.22)

So
∫ n

1

dx

x log x · · · logk−1 x
= logk x

∣∣n
1

= logk n. (3.23)

Therefore, the denominator on the right hand side of (3.21) is just
√

logk n. To

estimate the numerator on the right side of (3.21) suppose that tk is a value for

which log tk > 0, log2 tk > 0, . . . logk−1 tk > 0. Note that tk has to be greater than 1.

Then

∫ n

tk

dx1√
x1 log x1 · · · logk−1 x1

>

∫ n

tk

dx1

x1

√
log x1 · · · logk−1 x1

x2=log(x1)︷︸︸︷
=

∫ log n

log tk

dx2√
x2 log x2 · · · logk−2 x2

>

∫ log n

log tk

dx2

x2

√
log x2 · · · logk−2 x1

x3=log(x2)︷︸︸︷
=

∫ log(log n)

log(log tk)

dx3√
x3 log x3 · · · logk−3 x3

>

∫ log2 n

log2 tk

dx3

x3

√
log x3 · · · logk−3 x3

· · · >
∫ logk−2 n

logk−2 tk

dxk−1

xk−1

√
log xk−1

xk=log(xk−1)︷︸︸︷
=

∫ logk−1 n

logk−1 tk

dxk√
xk

= 2
√

xk

∣∣∣
logk−1 n

logk−1 tk
= 2
√

logk−1 n− 2
√

logk−1 tk.

So the right side of (3.21) is greater than or equal to

2
√

logk−1 n− 2
√

logk−1 tk√
logk n

which goes to infinity as n goes to infinity and so cannot be bounded.
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3.3 Why this method fails

At this point one is inclined to ask the following question. Can there exist a

sequence (xk) and a matrix A = (ank
) satisfying

(i) ank
> 0

(ii) limn→∞
∑∞

k=1 ank
= 1 and

(iii) ∀n,
∑∞

k=1

√
ank

6 C (C does not depend on n)

so that (xk) is A−u.d. mod 1 i.e.,

∀f ∈ C(T), lim
n→∞

∞∑

k=1

ank
f(xk) =

∫ 1

0

f(x)dx ? (3.24)

The answer is no and that suggests that we cannot apply the technique of

using sequences which are uniformly distributed with respect to some matrix A for

obtaining the desired boundedness in the function x that we construct.

Let us now prove why we cannot have such a sequence and a corresponding

matrix.

Claim. supk

√
ank → 0 as n→∞.

Once we prove that the claim is true we can argue as follows:

∞∑

k=1

ank =

∞∑

k=1

√
ank

√
ank

6 sup
k

√
ank

∞∑

k=1

√
ank

6 sup
k

√
ankC. (3.25)
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Taking limits on both sides of (3.25) we get 1 6 0 which is impossible.

Proof of claim. Suppose supk ank → δ as n→∞. We will show that δ = 0.

Given ε (ε << δ), there exists a N1 ∈ N such that for all n > N1,

∣∣∣∣sup
k

ank − δ

∣∣∣∣ < ε1

or,

δ − ε1 < sup
k

ank < ε1 + δ.

Given ε2, there exists N2 ∈ N such that for all n > N2 and for all f ∈ C(T),

∣∣∣∣∣

∞∑

k=1

ankf(xk)−
∫ 1

0

f(x)dx

∣∣∣∣∣ < ε2

or,
∞∑

k=1

ankf(xk)− ε2 <

∫ 1

0

f(x)dx <
∞∑

k=1

ankf(xk) + ε2. (3.26)

Let N = max(N1, N2). By the definition of supremum there exists a K such

that given ε3,
∣∣∣∣aNK − sup

k
aNk

∣∣∣∣ < ε3 (3.27)

or,

sup
k

aNk − ε3 < aNK < sup
k

aNk + ε3.

So,

|aNK − δ| = |aNK − sup
k

aNk + sup
k

aNk − δ|

6 |aNK − sup
k

aNk|+ | sup
k

aNk − δ| < ε3 + ε1.
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Let {ε̃m} be a sequence which goes to zero aas m goes to infinity. For the K

in (3.27) let Em = [xK − ε̃m, xK + ε̃m].

Let
�

Em
be the characteristic function of Em. For each m there is a sequence

of functions, {fj(m)} ∈ C(T) such that fj(m) →
�

Em
in L1, i.e.,

lim
j→∞

∫
|fj(x)− �

Em
(x)| dx = 0

or, given ε4 there exists a J ∈ N so that for all j > J

∣∣∣∣
∫ 1

0

(fj(x)− �
Em

(x)) dx

∣∣∣∣ 6
∫ 1

0

|fj(x)− �
Em

(x)| dx < ε4

or,
∫ 1

0

�
Em

(x)dx− ε4 <

∫ 1

0

fj(x)dx <

∫ 1

0

�
Em

(x)dx + ε4. (3.28)

From (3.26)
∞∑

k=1

aNkfJ(xk)− ε2 <

∫ 1

0

fJ(x)dx.

Also, since for all k, aNk > 0 and fJ > 0 for the same K in (3.27)

aNkfJ(xK)− ε2 <

∞∑

k=1

aNkfJ(xk)− ε2 <

∫ 1

0

fJ(x)dx. (3.29)

Since fJ(xK) = 1 (3.29) becomes

aNk − ε2 <

∞∑

k=1

aNkfJ(xk)− ε2 <

∫ 1

0

fJ(x)dx <︸︷︷︸
by (3.28)

∫ 1

0

�
Em

(x)dx + ε4.

Using (3.27) we get

sup
k

aNk − ε3 − ε2 < aNk − ε2 <

∫ 1

0

�
Em

(x)dx + ε4.

Therefore,

sup
k

aNk <

∫ 1

0

�
Em

(x)dx + ε2 + ε3 + ε4. (3.30)
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When m → ∞,
∫ 1

0

�
Em

(x)dx → 0. Thus in (3.30) supk aNk < ε2 + ε3 + ε4 = ε.

Since any n > N would yield supk ank < ε therefore supk ank → 0 as n → ∞. This

completes the proof of the claim.
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Chapter 4

Unimodular Sequences whose Autocorrelation is δ

Let us define the function δ as

δ(k) =





1 if k = 0

0 if k 6= 0.

If we consider the positive function F ≡ 1 on T then the Fourier coefficients of

F are p0 = 1 and for all other n 6= 0, pn = 0. In other words, pk = δ(k) or

{pk} = δ. In this chapter we construct several examples of unimodular sequences

whose autocorrelation is δ.

4.1 A sequence of the form e2πin
α
θ, α ∈ N \ {1} and θ irrational

To begin with let us recall two important theorems of the theory of uniform

distribution.

Theorem 4.1 (Weyl Criterion [16]). The sequence (xn), n = 1, 2, · · · , is u.d.

mod 1 if and only if

lim
N→∞

1

N

N∑

n=1

e2πihxn = 0, for all integers h 6= 0. (4.2)

Theorem 4.3. [16] Let p(x) = αmxm+αm−1x
m−1 +· · ·+α0, m > 1, be a polynomial

with real coefficients and let at least one of the coefficients αj with j > 0 be irrational.

Then the sequence (p(n)), n = 1, 2, · · · , is u.d. mod 1.
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4.1.1 Autocorrelation of the function e2πin
α
θ

Let x : Z→ C be defined for all n ∈ N by

x[n] = e2πinαθ, θ /∈ Q, α ∈ N \ {1}. (4.4)

The autocorrelation of x at k, denoted by Ax[k], is, from the definition,

Ax[k] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πi(m+k)αθe−2πimαθ

= lim
N→∞

1

2N + 1

N∑

m=−N

e2πiθ(mα+(α
1)mα−1k+···+( α

α−1)mkα−1+kα)e−2πimαθ

= lim
N→∞

e2πikαθ

2N + 1

N∑

m=−N

e2πiθ((α
1)mα−1k+(α

2)mα−2k2+···+( α
α−1)mkα−1). (4.5)

Let p(x) = θ
(

α
1

)
kxα−1 + θ

(
α
2

)
k2xα−2 + · · ·+ θ

(
α

α−1

)
kα−1x. Since θ /∈ Q we can apply

Theorem 4.3 when k 6= 0 to say that the sequence (p(n)) is u.d. mod 1. Therefore,

according to the Weyl criterion, taking h = 1 and xn = p(n) in (4.2), the right side

of (4.5) is zero if k 6= 0. If k = 0 then

Ax[0] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πimαθe−2πimαθ

= lim
N→∞

1

2N + 1

N∑

m=−N

1 = 1. (4.6)

Thus,

Ax[k] =





1 if k = 0

0 if k 6= 0.

So we have a unimodular code whose autocorrelation is the same as the Fourier

coefficients of the function F ≡ 1 on T.
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4.1.2 Cross-correlation of e2πin
α
θ

Let x : Z→ C be defined for all n ∈ Z as

x[n] = e2πinαθ, θ /∈ Q, α ∈ N \ {1}

and let y : Z→ C be defined for all n ∈ Z by

y[n] = e2πinβφ, φ /∈ Q, β ∈ N \ {1}.

The cross-correlation Cxy[k] between x and y is defined as

Cxy[k] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πi(m+k)βφe−2πimαθ (4.7)

where θ, φ /∈ Q and α, β ∈ N \ {1}.

Case: α < β.

Cxy[k] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πiφ(mβ+(β
1)mβ−1k+···+( β

β−1)mkβ−1+kβ)e−2πimαθ

= lim
N→∞

e2πikβφ

2N + 1

N∑

m=−N

e2πiφ(mβ+(β
1)mβ−1k+···+( β

β−1)mkβ−1)e−2πimαθ.

Since α < β, there exists n, 1 6 n 6 β − 1, such that α = β − n. Therefore,

Cxy[k] = lim
n→∞

e2πikβφ

2N + 1

N∑

m=−N

e2πiφ(mβ+(β
1)mβ−1k+···+(β

n)φknmβ−n+···+( β
β−1)mkβ−1)e−2πimβ−nθ

= lim
N→∞

e2πikβφ

2N + 1

N∑

m=−N

e2πi(mβφ+(β
1)mβ−1kφ+···+((β

n)φkn−θ)mβ−n+···+( β
β−1)mkβ−1φ).

(4.8)

Let p(x) = φxβ +
(

β
1

)
kφxβ−1 + · · ·+ (

(
β
n

)
φkn − θ)xβ−n + · · ·+

(
β

β−1

)
kβ−1φx. When

k = 0, p(x) = xβφ− θxβ−n. So for all k, p is a polynomial satisfying the hypotheses
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of Theorem 4.3 and so the sequence (p(n)) is u.d. mod 1. Therefore, by the Weyl

criterion, taking h = 1 and xn = p(n) in (4.2), we get the right side of (4.8) to be

zero. Thus in this case, for all values of k, Cxy[k] = 0.

Case: α > β.

Cxy[k] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πiφ(mβ+(β
1)mβ−1k+···+( β

β−1)mkβ−1+kβ)e−2πimαθ

= lim
N→∞

e2πikβφ

2N + 1

N∑

m=−N

e2πi(−mαθ+mβφ+(β
1)mβ−1kφ+···+( β

β−1)mkβ−1φ). (4.9)

Let p(x) = −θxα + φxβ +
(

β
1

)
kφxβ−1 + · · · +

(
β

β−1

)
kβ−1φx. Note that when k = 0,

p(x) = −θxα + φxβ. Once again the hypotheses of Theorem 4.3 are satisfied and so

(p(n)) is u.d. mod 1. By the Weyl Criterion, taking h = 1 and xn = p(n) in (4.2),

we get from (4.9) that for all values of k, Cxy[k] = 0.

Case: α = β, θ 6= φ.

Cxy[k] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πiφ(mβ+(β
1)mβ−1k+···+( β

β−1)mkβ−1+kβ)e−2πimαθ

= lim
N→∞

e2πikβφ

2N + 1

N∑

m=−N

e2πi(mβ(φ−θ)+(β
1)mβ−1kφ+···+( β

β−1)mkβ−1φ). (4.10)

Let p(x) = (φ− θ)xβ +
(

β
1

)
kφxβ−1 + · · ·+

(
β

β−1

)
kβ−1φx. If k 6= 0 the hypotheses of

Theorem 4.3 are satisfied and so (p(n)) is u.d. mod 1. Therefore, in this case by

the Weyl Criterion, letting h = 1 and xn = p(n) in (4.2), we get from (4.10) that

for k 6= 0, Cxy[k] = 0.

If k = 0, p(x) = (φ− θ)xβ and we have to consider the following two cases.

(a) Let φ − θ be irrational. Then the hypotheses of Theorem 4.3 are satisfied and
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so by the Weyl criterion Cxy[0] = 0.

(b) Let φ − θ be rational. Suppose φ − θ = p
q

where p and q have been reduced to

their lowest terms and p, q ∈ Z. Then

Cxy[0] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πi p
q
mα

. (4.11)

If φ− θ = p
q

where q = 1, that is, when φ− θ is an integer,

Cxy[0] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πipmα

= 1. (4.12)

Results are inconclusive when φ− θ = p
q

and q 6= 1.

Thus for this case we can summarize as follows:

Cxy[k] =





0 if k 6= 0.

0 if k = 0 and φ− θ is irrational.

1 if k = 0 and φ− θ is an integer.

Inconclusive if k = 0 and φ− θ is a rational fraction.

Case: α 6= β, θ = φ.

Cxy[k] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πiθ(mβ+(β
1)mβ−1k+···+( β

β−1)mkβ−1+kβ)e−2πimαθ

= lim
N→∞

e2πiθkβ

2N + 1

N∑

m=−N

e2πiθ(−mα+mβ+(β
1)mβ−1k+···+( β

β−1)mkβ−1). (4.13)

Let p(x) = −xα+xβ+
(

β
1

)
xβ−1k+· · ·+

(
β

β−1

)
xkβ−1. If β < α then p(x) is a polynomial

of degree α otherwise it is a polynomial of degree β. If k = 0 then p(x) = −θxα+θxβ.

In any case, the sequence (p(n)) is u.d. mod 1 by Theorem 4.3 and so according to

the Weyl Criterion if we take h = 1 and xn = p(n) in (4.2) we get from (4.13) that

∀k, Cxy[k] = 0.

51



Case: α = β, θ = φ.

Cxy[k] = lim
N→∞

1

2N + 1

N∑

m=−N

e2πi(m+k)βφe−2πimαθ

= lim
N→∞

1

2N + 1

N∑

m=−N

e2πi(m+k)αθe−2πimαθ

= Ax[k].

So the computations are exactly as in Section 4.1.1 and we have

Cxy[k] = Ax[k] =





1 if k = 0

0 if k 6= 0.

4.1.3 Autocorrelation of the function e2πin
α
θ when α is not an integer.

Numerical results support the claim that in this case the sum

1

2N + 1

N∑

m=−N

x[m + k]x[m]

grows unbounded for non-zero integers k and so the autocorrelation will not be δ.

4.1.4 Higher dimensions

Suppose we would like to construct unimodular codes on Zd whose autocorrela-

tion can be computed in a manner discussed so far on Z. Let n = (n1, n2, · · ·nd) ∈ Zd

and |n| =
√

n2
1 + n2

2 + · · ·+ n2
d. A natural way of extending the unimodular codes

to Zd is to define codes x : Zd → C as

∀n ∈ Zd, x[n] = e2πi|n|αθ, θ /∈ Q, α ∈ N. (4.14)

Let

S(N) =
{
m = (m1, m2, · · · , md) ∈ Zd : −N ≤ mi ≤ N, i = 1, · · · , d

}
.
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Let us define the autocorrelation Ax : Zd → C of x as

Ax[k] = lim
N→∞

1

(2N + 1)d

∑

S(N)

x[k + m]x[m]. (4.15)

So for the x defined in (4.14),

Ax[k] = lim
N→∞

1

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

e2πi|m+k|αθe−2πi|m|αθ. (4.16)

Let α = 2. Then

Ax[k] = lim
N→∞

1

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

e2πi(|m+k|2−|m|2)θ

= lim
N→∞

1

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

e2πi(|k|2+2(m1k1+···+mdkd))θ

= lim
N→∞

e2πi|k|2θ

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

e4πi(m1k1+···+mdkd)θ

= lim
N→∞

e2πi|k|2θ

(
1

2N + 1

N∑

m1=−N

e4πim1k1θ

)
· · ·
(

1

2N + 1

N∑

md=−N

e4πimdkdθ

)

=





0 if k 6= 0

1 if k = 0.

Another way to define unimodular codes x : Zd → C is as follows. Let n =

(n1, n2, · · · , nd) ∈ Zd and θ = (θ1, · · · , θd) has the property that θ1, · · · , θd are not

in Q. Define nα := (nα
1 , nα

2 , · · · , nα
d ). Let

x[n] = e2πinα·θ. (4.17)

Let α = 2. Then

Ax[k] = lim
N→∞

1

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

e2πi(m+k)2·θe−2πim2·θ
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= lim
N→∞

1

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

e2πi(k2
1θ1+···+k2

d
θd+2(m1k1θ1+···+mdkdθd))

= lim
N→∞

e2πik2·θ

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

e4πi(m1k1θ1+···+mdkdθd)

= lim
N→∞

e2πik2·θ

(
1

2N + 1

N∑

m1=−N

e4πim1k1θ1

)
· · ·
(

1

2N + 1

N∑

md=−N

e4πimdkdθd

)

=





0 if k 6= 0

1 if k = 0.

Yet another way to define a code x : Zd → C is as follows. For α ∈ N \ {1}

and some irrational number θ suppose y : Z → C is defined by y[n] = e2πinαθ and

for n = (n1, n2, . . . , nd) ∈ Zd let x[n] = x(n1, . . . , nd) = y[n1]. Then for any given

k = (k1, k2, . . . , kd),

Ax[k] = lim
N→∞

1

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

x[m + k]x[m]

= lim
N→∞

1

(2N + 1)d

N∑

m1=−N

· · ·
N∑

md=−N

y[m1 + k1]y[m1]

= lim
N→∞

1

(2N + 1)

N∑

m1=−N

e2πi(m1+k1)αθe−2πimα
1 θ

= Ay[k1]

=





0 if k1 6= 0

1 if k1 = 0.

Here the autocorrelation is 1 not just at the origin but at all points on the hyperplane

k1 = 0. If one defines x[n] = y[ni], i = 1, · · · , d then the autocorrelation is 1 along

the hyperplane ki = 0.
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4.2 Sequence obtained from Wiener’s Generalized Harmonic Analy-

sis

It will be discussed in detail in Chapter 5 that if λ ∈ (0, 1) has binary expansion

0.α1α2 . . . then the function x : Z→ C given as

x[k] =





2α2n+1 − 1 if k = n + 1, n ∈ N ∪ {0}

2α2n − 1 if k = −n + 1, n ∈ N

has autocorrelation

Ax[k] =





1 if k = 0

0 if k 6= 0

(4.18)

for almost every λ ∈ (0, 1). Note that x takes values ±1. Here the aim is to show

that such a x can be constructed deterministically [34].

Proposition 4.19. The result in (4.18) would not be true for any rational λ in

(0, 1).

Proof. We will show that there exists some non-zero k for which Ax[k] cannot be

zero. Every rational number has a non-periodic part followed by a periodic part.

Let λ = 0. q1q2 . . . qk︸ ︷︷ ︸
non-periodic part

qk+1qk+2 . . . qk+r︸ ︷︷ ︸
periodic with period r

qk+1qk+2 . . . qk+rqk+1 . . .

Case 1. When k = r
2

and r is even.

Ax[k] = lim
N→∞

1

2N + 1

N∑

−N

x[m + k]x[m]. (4.20)

For p > 0, let x[p] come from qk+1. We denote this by x[p] : qk+1. Then x[p+1] : qk+3

and so on.
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x[p] : qk+1

x[p + 1] : qk+3

x[p + 2] : qk+5

...

x[p + r
2
] : qk+r+1 = qk+1

x[p + r
2

+ 1] : qk+3

...

Note that x[p] and x[p+ r
2
] both come from qk+1 and so have the same value. This is

true for any two xs separated by r
2
. Thus, x[p]x[p + r

2
] = 1, x[p + 1]x[p + 1 + r

2
] = 1,

so on. Then from (4.20)

Ax[k] = Ax[
r

2
] = lim

N→∞

1

2N + 1

p−1∑

m=−N

x[m +
r

2
]x[m] + lim

N→∞

1

2N + 1

N∑

m=p

x[m +
r

2
]x[m]

= lim
N→∞

1

2N + 1

p−1∑

m=−N

x[m +
r

2
]x[m] + lim

N→∞

1

2N + 1

N∑

m=p

1

= lim
N→∞

1

2N + 1

p−1∑

m=−N

x[m +
r

2
]x[m] + lim

N→∞

N − p + 1

2N + 1
6= 0.

Case 2. When k = r is odd.

As before, for some p > 0 suppose that x[p] comes from qk+1 and so on.

x[p] : qk+1

x[p + 1] : qk+3

x[p + 2] : qk+5

...

x[p + r−1
2

] : qk+r

x[p + r+1
2

] : qk+r+2 = qk+2
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...

x[p + r − 1] : qk+2r−1 = qk+r−1

x[p + r] : qk+2r+1 = qk+1

...

Note that in this case x[p] and x[p + r] come from the same bit, qk+1, and so will

have the same value of either +1 or −1. Two xs at points differing by r will have

the same value. Thus x[p]x[p + r] = x[p + 1]x[p + r + 1] = · · · = 1.

Ax[r] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m + r]x[m]

= lim
N→∞

1

2N + 1

p+1∑

m=−N

x[m + r]x[m] + lim
N→∞

1

2N + 1

N∑

m=p

x[m + r]x[m]

= lim
N→∞

1

2N + 1

p+1∑

m=−N

x[m + r]x[m] + lim
N→∞

1

2N + 1

N∑

m=p

1

= lim
N→∞

1

2N + 1

p+1∑

m=−N

x[m + r]x[m] + lim
N→∞

N − p + 1

2N + 1
6= 0.

Now we discuss Wiener’s technique of deterministically constructing a se-

quence out of ±1s whose autocorrelation is given by (4.18). On the positive integers

let x take values in the following order

[1,−1] (this row is repeated 20 = 1 time and has 1.21 elements).

[1, 1; 1,−1;−1, 1;−1,−1] (is repeated 21 = 2 times and has 2.22 elements).

[1, 1, 1; 1, 1,−1; 1,−1, 1; 1,−1,−1;−1, 1, 1;−1, 1,−1;

−1,−1, 1;−1,−1,−1] (is repeated 22 = 4 times and has 3.23 elements).

...
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i.e., x[1] = 1, x[2] = −1, x[3] = 1, x[4] = 1, . . . . In addition let x[0] = 1 and for

k ∈ N let x[−k] = x[k]. One can observe that the number of elements in each row

is a number of the form n2n, n = 1, 2, . . . .

Consider any row of length n2n. There are 2n−1 such rows. Take p < n.

Consider any p tuple of ±1s.

Question: How many such equivalent p tuples are there? (i.e., how many

repetitions?) Call this kp. Take any non-equivalent p tuple (i.e. non-equivalent to

the given one). Prove there are the same number as the original one.

Answer: From the way the construction is being done, each p tuple is equally

likely to occur in a row as any other p tuple. In other words, if one randomly picks a

p tuple in any row then the probability of getting a given p tuple is 1
2p . This should

be the same as the relative frequency of the occurrence of the given p tuple in the

row. i.e.,

kp

n2n
=

1

2p
.

Thus for each p < n, kp = n2n−p.

Suppose we wish to calculate the relative frequency of the occurrence of a

particular sequence of p consecutive terms among the first N terms. Then we might

have to stop in the middle of a row. Recall that a row with j2j elements is repeated

2j−1 times. So N would be

N = 1.21.20 + 2.22.21 + 3.23.22 + . . . + M2M .2M−1 + P (M + 1)2M+1 + Q

58



where 0 6 P < 2M and 0 6 Q < (M + 1)2M+1. Here M →∞ as N →∞. Thus,

N =
M∑

j=1

j2j2j−1 + P (M + 1)2M+1 + Q

=
M∑

j=1

j22j−1 + P (M + 1)2M+1 + Q

= S + Q.

For a fixed p, let us denote the number of occurrences of a particular p tuple

in a row of length 1.21 by n1, the number of occurrences in a row of length 2.22 by

n2, so on. Therefore,

lim
N→∞

No. of repetitions of a fixed p tuple in the first N

N

= lim
N→∞

[
20.n1

N
+

21.n2

N
+ · · ·+ 2M−1nM

N
+

PnM+1

N
+

no. of repetitions in the last Q

N

]

= lim
N→∞

[
20.n1

S + Q
+

21.n2

S + Q
+ · · ·+ 2M−1nM

S + Q
+

PnM+1

S + Q
+

no. of repetitions in the last Q

N

]

= lim
N→∞

[
20.n1

S

1 + Q
S

+
21.n2

S

1 + Q
S

+ · · ·+ 2M−1 nM

S

1 + Q
S

+
P nM+1

S

1 + Q
S

+
no. of repetitions in the last Q

N

]
.

(4.21)

We shall soon show that Q
S
→ 0 as N →∞ and so Q

S+Q
= Q

N
→ 0 as N →∞ which

means that the last term in (4.21) is zero. Thus the right side of (4.21) is

20n1

S
+ 21n2

S
+ · · ·+ 2M−1nM

S
+ P

nM+1

S

=
20.n1 + 21.n2 + · · ·+ 2M−1nM + PnM+1

S

=
20.n1 + 21.n2 + · · ·+ 2M−1nM + PnM+1∑M

j=1 j22j−1 + P (M + 1)2M+1

=
1

2p
.
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To summarize,

lim
n→∞

No. of repetitions of a fixed sequence of p consecutive terms in the first N

N
=

1

2p
.

(4.22)

Now let us show that Q
S
→ 0 as N →∞.

0 <
Q

S
<

(M + 1)2M+1

∑M
j=1 j22j−1 + P (M + 1)2M+1

6
(M + 1)2M+1

∑M
j=1 22j−1 + P (M + 1)2M+1

=
(M + 1)2M+1

∑M−1
j=0 22(j−1)−1 + P (M + 1)2M+1

=
(M + 1)2M+1

1
23

∑M−1
j=0 22j + P (M + 1)2M+1

=
(M + 1)2M+1

1
23

22M−1
3

+ P (M + 1)2M+1
. (4.23)

The right side of (4.23) goes to 0 as M →∞. Therefore, Q
S
→ 0, as N →∞.

Note: The above calculation also suggests that the ratio of the number of

terms in a row to that in all previous rows approaches zero. It is for this reason that

it is necessary to have to repeat each row a certain number of times, otherwise, this

wouldn’t be true.

Theorem 4.24. Given an integer k the autocorrelation of x is

Ax[k] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]x[m] =





1 if k = 0

0 if k 6= 0.

Proof. For k = 0,

Ax[0] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m]x[m] = lim
N→∞

1

2N + 1

N∑

m=−N

1 = 1.

For the case when k 6= 0 it is enough to prove the result just for positive k as

the autocorrelation function is even. Also, it is enough to prove that

lim
N→∞

N∑

m=1

x[m + k]x[m] = 0.
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For clarity, first consider k = 1. Then x[m]x[m + 1] comes from sequences of length

2. These sequences look like

11︸︷︷︸
x[m]x[m+1]

, 1 −1,−1 1,−1 −1. The first and the last combinations give x[m]x[m+1]

a value of 1 while the middle two combinations give x[m]x[m + 1] a value of −1.

Note that out of 4 possible combinations 2 give the value 1 and the remaining 2 give

the value −1. Also as we have discussed (see (4.22)), each of these sequences occur

equally often, their relative frequency approaching 1
22 = 1

4
. Therefore,

lim
N→∞

N∑

m=1

x[m + 1]x[m]

= lim
N→∞

[no. of times (11) is repeated in N terms

N
· (+1)

+
no. of times (1 − 1) is repeated in N terms

N
· (−1)

+
no. of times (−1 1) is repeated in N terms

N
· (−1)

+
no. of times (−1 − 1) is repeated in N terms

N
· (+1)

]

=
1

22
· (+1) +

1

22
· (−1) +

1

22
· (−1) +

1

22
· (+1) = 0.

Now let k = 2. The values of x[m]x[m + 2] now come from the product of the first

and last elements of sequences of length 3 i.e., from the following 23 possibilities.

1︸︷︷︸
x[m]

1 1︸︷︷︸
x[m+2]

−→ x[m]x[m + 2] = 1,

11− 1 −→ x[m]x[m + 2] = −1,

1− 11 −→ x[m]x[m + 2] = 1,

1− 1− 1 −→ x[m]x[m + 2] = −1,

−111 −→ x[m]x[m + 2] = −1,
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−11− 1 −→ x[m]x[m + 2] = 1,

−1− 11 −→ x[m]x[m + 2] = −1,

−1− 1− 1 −→ x[m]x[m + 2] = 1.

Again exactly half the number of sequences (four in this case) give x[m]x[m + 2] a

value of +1 and the remaining four sequences give x[m]x[m + 2] a value of −1. So,

lim
N→∞

N∑

m=1

x[m + 2]x[m] = lim
N→∞

[No. of repetitions of 111 in N terms

N
(+1) +

+
No. of repetitions of 11− 1 in N terms

N
(−1) + · · ·

]

=
1

23
(+1) +

1

23
(−1) + · · ·

= 4 · 1

23
(+1) + 4 · 1

23
(−1) = 0.

So, for any general k = p, the values of x[m]x[m + p] would come from the product

of the first and last element of sequences of length p + 1 and there are 2p+1 possible

sequences each of which would be repeated equally often, the relative frequency

approaching 1
2p+1 . Out of the 2p+1 sequences, 2p of the sequences cause x[m]x[m+p]

to be +1 and 2p of the sequences cause x[m]x[m + p] to be −1. Thus,

lim
N→∞

N∑

m=1

x[m + p]x[m] = 2p · 1

2p+1
(+1) + 2p · 1

2p+1
(−1) = 0.

4.3 Sequence obtained from n roots of unity

Instead of the function x taking values +1 or −1 let us construct x so that it

takes values which are one of the n roots of unity where n > 2. For example, if we

62



choose n = 3 then x takes values from {a1 = 1, a2 = ei 2π
3 , a3 = ei 4π

3 }. The following

sequence represents the values of x over the positive integers.

[a1, a2, a3] repeated 30 = 1 times.

[a1, a1; a1, a2; a1, a3; a2, a1; a2, a2; a2, a3; a3, a1; a3, a2; a3, a3] repeated 31 = 3 times.

[a1, a1, a1; a1, a1, a2; a1, a1, a3; a1, a2, a1; a1, a2, a2; a1, a2, a3;

a1, a3, a1; a1, a3, a2; a1, a3, a3; a2, a1, a1; a2, a1, a2; a2, a1, a3; . . . ] repeated 32 = 9 times.

...

Let x[0] = 1 and for all k ∈ N, x[−k] = x[k]. The number of elements in each row is

a number of the form j3j. Let us fix p. In a particular row having j3j elements where

p 6 j, any finite sequence of length p occurs as often as any other finite sequence of

the same length. At this point using an identical argument to that used in Section

4.2 we can say that if one is dealing with n roots of unity then

lim
N→∞

No. of repetitions of a fixed sequence of p consecutive terms in the first N

N
=

1

np
.

(4.25)

Theorem 4.26. Given an integer k the autocorrelation of x is

Ax[k] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]x[m] =





1 if k = 0

0 if k 6= 0.

Proof. When k = 0,

Ax[0] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m]x[m] = lim
N→∞

1

2N + 1

N∑

m=−N

|x[m]|2

= lim
N→∞

1

2N + 1

N∑

m=−N

1 = 1.
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For non-zero values of k it is enough to prove the result only for positive k since the

autocorrelation is an even function. Besides, it is enough to show that

lim
N→∞

1

N

N∑

m=1

x[m + k]x[m] = 0.

For simplicity let us start with discussing the case when k = 1 and we are dealing

with just n = 3 roots of unity. One should note that if k = p the value of x[m+p]x[m]

is the product of the first (actually, its conjugate) and last element of some sequence

ai1 . . . aip+1, ain ∈ {a1, a2, a3}. There would be 3p+1 such sequences. When k = 1,

x[m + 1]x[m] can come from any one of the following 32 = 9 tuples.

a1a1︸︷︷︸
x[m]x[m+1]

= 1,

a1a2 = e
2πi
3 ,

a1a3 = e
4πi
3 ,

a2a1 = e
−2πi

3 = e
4πi
3 ,

a2a2 = e
−2πi

3 e
2πi
3 = 1,

a2a3 = e
−2πi

3 e
4πi
3 = e

2πi
3 ,

a3a1 = e
−4πi

3 = e
2πi
3 ,

a3a2 = e
−4πi

3 e
2πi
3 = e

4πi
3 ,

a3a3 = e
−4πi

3 e
4πi
3 = 1. Therefore,

lim
N→∞

1

N

N∑

m=1

x[m + 1]x[m] = lim
N→∞

No. of repetitions of a1a1

N
· 1

+ lim
N→∞

No. of repetitions of a1a2

N
· e 2πi

3 + lim
N→∞

No. of repetitions of a1a3

N
· e 4πi

3

+ lim
N→∞

No. of repetitions of a2a1

N
· e 4πi

3 + lim
N→∞

No. of repetitions of a2a2

N
· 1
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+ lim
N→∞

No. of repetitions of a2a3

N
· e 2πi

3 + lim
N→∞

No. of repetitions of a3a1

N
· e 2πi

3

+ lim
N→∞

No. of repetitions of a3a2

N
· e 4πi

3 + lim
N→∞

No. of repetitions of a3a3

N
· 1.

(4.27)

Using (4.25) with p = 2 and n = 3, (4.27) reduces to

lim
N→∞

1

N

N∑

m=1

x[m + 1]x[m] =
1

32
· 1 +

1

32
· e 2πi

3 +
1

32
· e 4πi

3 +
1

32
· e 4πi

3 +
1

32
· 1 +

+
1

32
· e 2πi

3 +
1

32
· e 2πi

3 +
1

32
· e 4πi

3 +
1

32
· 1

=
1

32
·
(
1 + e

2πi
3 + e

4πi
3

)
· 3

= 0 (since 1 + e
2πi
3 + e

4πi
3 = 0).

In general, for k = p and n = 3 roots of unity

lim
N→∞

1

N

N∑

m=1

x[m + p]x[m] =
1

3p+1

(
1 + e

2πi
3 + e

4πi
3

)
· 3p = 0.

Generalizing the argument further to n(n > 3) roots of unity, let wk =

e
2πik

n , k = 0, 1, 2, . . . , n − 1 be the n roots on unity. Let x be a function which

can take values from {w0, w1, . . . , wn−1}. On the positive integers let x be defined

to take values in the following order:

[w0, w1, . . . , wn−1] repeated n0 = 1 times.

[w0, w0; w0, w1; . . . ; w0, wn−1; w1, w0; w1, w1; . . . ; w1, wn−1; . . . ;

wn−1, w0, wn−1, w1, . . . , wn−1, wn−1] repeated n1 = n times.

[w0, w0, w0; w0, w0, w1; . . . w0, w0, wn−1; . . . ; wn−1, wn−1, w0; . . . ;

wn−1, wn−1, wn−1] repeated n2 times.

...

For k ∈ N, let x[−k] = x[k] and x[0] = 1.
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Following a working identical to what we did for n = 3 we can show that

lim
N→∞

1

N

N∑

m=1

x[m + p]x[m] =
1

np+1

(
1 + e

2πi
n + · · ·+ e

2πi(n−1)
n

)
· np = 0

= 0 (since 1 + e
2πi
n + · · ·+ e

2πi(n−1)
n = 0).

4.4 Sequence obtained from Hadamard matrices

Definition 4.28. A real Hadamard matrix is a square matrix whose entries are

either +1 or −1 and whose rows are mutually orthogonal.

Examples of Hadamard matrices were actually first constructed by James

Joseph Sylvester. Let H be a Hadamard matrix of order n. Then the matrix




H H

H −H




is a Hadamard matrix of order 2n. This observation can applied repeatedly to obtain

the following sequence of Hadamard matrices.

H1 =

[
1

]
,

H2 =




H1 H1

H1 −H1


 =




1 1

1 −1


 ,
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H4 =




H2 H2

H2 −H2


 =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




,

and H2k =




H2k−1 H2k−1

H2k−1 −H2k−1


 .

We say that the Hadamard matrix H2k is of size 2k × 2k or has size 2k. To

construct our desired unimodular function x let H1 be repeated once (20 = 1), H2

be repeated twice (21), H4 be repeated four (22) times, H8 be repeated eight (23)

times and so on. For the positive integers let x take values from the elements of the

sequence of matrices

H1, H2, H2, H4, H4, H4, H4, H8, · · ·

Let x[0] = 1 and for any k ∈ N, x[−k] = x[k]. Having defined x on the set of

integers we proceed to show that the autocorrelation of x is one at zero and zero

everywhere else.

Lemma 4.29. For a fixed k = 2j (for some j ∈ N), let Hk be the k × k Hadamard

matrix. For every Hadamard matrix of size m × m where m > k (i.e., m =

2j+1, 2j+2, · · · ) let

p = number of occurrences of HkHk or −Hk −Hk in all the rows of the matrix Hm

and

n = number of occurrences of Hk−Hk or −HkHk in all the rows of the matrix Hm.
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Then p = n.

Proof of Lemma 4.29. We prove this by induction on m.

Step 1. Let m = 2j+1. In this case

Hm =




H2j H2j

H2j −H2j


 =




Hk Hk

Hk −Hk


 .

HkHk occurs once and Hk −Hk occurs once. Therefore, p = n = 1.

Step 2. Assume that the result is true for m = 2j+N for some natural number N.

Step 3. Now suppose m = 2j+N+1. Let j + N = J. So in this case Hm = HJ+1 is



HJ HJ

HJ −HJ


 .

By our assumption in Step 2 the result is true in each HJ and −HJ . So here we

need to pay attention to the Hks forming the boundary between the two columns

of HJs in the matrix HJ+1. In the upper half if we have a1 occurrences of HkHk

or −Hk − Hk in the boundary then in the lower half we have a1 occurrences of

Hk −Hk or −HkHk. Similarly if there are b1 occurrences of Hk −Hk or −HkHk in

the boundary in the upper half then there are b1 occurrences of HkHk or −Hk−Hk

in the boundary in the lower half.

In each HJ let p = pJ and n = nJ . Note that due to our assumption pJ = nJ .

Then in HJ+1 = Hj+N+1,

p = 4pJ + a1 + b1 and

n = 4nJ + b1 + a1. Since pJ = nJ we have p = n.
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Lemma 4.30. Let,

S =

N∑

m=1

x[m + k]x[m] (4.31)

where N is such that counting the first N values of x will end at the last element of

some Hadamard matrix in the sequence already described. Let k > 0 be given. Then

there exists n such that 2n−1 < k 6 2n. The contribution to the sum in (4.31) due

to the function values (x[m]s) coming from all Hadamard matrices of size 2n+1 and

bigger is 0.

Proof. Step 1. We will be looking at rows of the submatrix H2n in H2n+1, H2n+2 , H2n+3, . . . .

Let us try to explain the idea with the case k = 3. Then 22−1 < 3 6 22 i.e., n = 2.

So we would be looking at rows of H4 in H8, H16, H32 . . . . Here is the figure just for

H8.

H8 =




H4 H4

H4 −H4




=




1 1︸︷︷︸
x[m]

1︸︷︷︸
x[m]

1︸︷︷︸
x[m]

1︸︷︷︸
x[m+3]

1︸︷︷︸
x[m+3]

1︸︷︷︸
x[m+3]

1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

−− −− −− −− −− −− −− −−

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1




.
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The elements in the k = 3 columns (columns 2 to 4) in each occurrence of H4 in

H8, H16, H32, . . . (except for the last H4 in each row of H4s) get multiplied to elements

in the adjacent H4. See the elements indicated in the matrix H8. The elements from

these columns will have zero contribution to the sum in (4.31). This is true because

according to Lemma 4.29, H4 occurs next to H4 as often as it occurs next to −H4

causing cancellations.

More generally, the elements in the k columns (columns 2n − k + 1 to 2n) in

each occurrence of H2n in H2n+1 , H2n+2 , H2n+3, . . . (except for the last H2n in each

row of H2ns) get multiplied to elements in the adjacent H2n . The elements from

these columns will have zero contribution to the sum in (4.31). This is true because

according to Lemma 4.29, H2n occurs next to H2n as often as it occurs next to −H2n

in each of H2n+1 , H2n+2 , H2n+3, . . . causing cancellations.

Step 2. What is the contribution from the last H2n(= H4) submatrix in each

row of the matrix H2n+1(= H8) or H2n+2
(= H16) etc. ? The question is also only

for the elements from the k columns discussed in Step 1.

The answer is zero for the following reason. Due to the structure of the

Hadamard matrices the last column of ±H2ns in any higher order matrix like

H2n+1 , H2n+2, . . . has the same number of H2n as −H2n . In any Hadamard matrix of

higher order the elements of the specified k columns of these ±H2ns interact with

H2ns occurring in the first column of ±H2ns . But the first column of each higher or-

der matrix just has +H2n (no −H2ns). So enough cancellations result a contribution

of zero.

Step 3. Now consider the contribution to the sum coming from elements in
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columns 1 to 2n − k of the H2n submatrices in each row of H2n in H2n+1 , H2n+2 , . . ..

To analyze this part we think of the Hadamard matrices H2n+1 , H2n+2, . . . as made

up of rows and columns of H2n−1(= H2 when k = 3). Following is the situation in

H8 when k = 3.

H8 =




1︸︷︷︸
x[m]

1 | 1 1︸︷︷︸
x[m+3]

| 1 1 1 1

1 −1 | 1 −1 | 1 −1 1 −1

−− −− | −− −− −− −− −− −− −−

1 1 | −1 −1 | 1 1 −1 −1

1 −1 | −1 1 | 1 −1 −1 1

−− −− −− −− −− −− −− −− −−

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1




.

We can then use the argument used in Step 1 by replacing H2n(= H4) by H2n−1(=

H2) and conclude that the contribution to the sum in (4.31) due to these columns

is also zero.

Theorem 4.32 (Zero autocorrelation). The function x constructed from the

Hadamard matrices in this section has a autocorrelation function which is

Ax[k] =





1 if k = 0

0 otherwise.
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Proof of Theorem 4.32. When k = 0,

Ax[0] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m]x[m] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m]2

= lim
N→∞

1

2N + 1

N∑

m=−N

1 = 1.

Let k > 0 be given and n be such that 2n < k 6 2n+1. It is enough to show that

AC[k] =
1

N

N∑

m=1

x[m + k]x[m] (4.33)

goes to zero as N goes to infinity. It is important to observe that N can be such

that x[N ] occurs somewhere in the middle of a matrix. Each Hadamard matrix of

size 2n has 4n elements. Recall that each such matrix will be repeated 2n times.

Thus,

N =
n+1∑

j=0

2j4j +
M∑

j=n+2

2j4j + P4M+1 + S = Q + R + P̃ + S (4.34)

where 0 6 P < 2M+1, 0 6 S < 4M+1 and M →∞ as N →∞. Therefore,

AC[k] =
1

N

[ Q∑

m=1

x[m + k]x[m] +

Q+R∑

m=Q+1

x[m + k]x[m] +

Q+R+P̃∑

m=Q+R+1

x[m + k]x[m] +

+

Q+R+P̃+S∑

m=Q+R+P̃+1

x[m + k]x[m]
]
. (4.35)

Due to Lemma 4.30, the second and the third sums in (4.35) is equal to zero. So we

have

AC[k] =
1

N

[ Q∑

m=1

x[m + k]x[m] +

Q+R+P̃+S∑

m=Q+R+P̃+1

x[m + k]x[m]
]
.

Thus

|AC[k]| 6
1

N




Q∑

m=1

|x[m + k]x[m]| +
Q+R+P̃+S∑

m=Q+R+P̃+1

|x[m + k]x[m]|




=
1

N
(Q + S) . (4.36)
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Q depends on k and is finite. So limN→∞
Q
N

= 0.

S

N
<

4M+1

N
=

4M+1

∑n+1
j=0 2j4j +

∑M
j=n+2 2j4j + P4M+1 + S

<
4M+1

∑M
j=0 8j

=
4M+1

8M+1−1
7

∼ 7
1

2M+1
. (4.37)

Since M → ∞ as N → ∞, limN→∞
S
N

goes to zero as N goes to infinity. From

(4.36) this means that AC[k]→ 0 as N →∞ for k > 0. This proves that the auto-

correlation is zero for all positive integers k but since the autocorrelation function

is even it means that the autocorrelation is zero for all non-zero k.

4.4.1 Error estimates

For practical purposes we would like to do the following: given ε > 0 find

N ∈ N such that for all non-zero k ∈ Z

|AC[k]| =
∣∣∣∣∣
1

N

N∑

m=1

x[m + k]x[m]

∣∣∣∣∣ < ε.

From (4.36) in the proof of Theorem 4.32 we have

|AC[k]| 6
1

N




Q∑

m=1

|x[m + k]x[m]| +
Q+R+P̃+S∑

m=Q+R+P̃+1

|x[m + k]x[m]|




=
1

N
(Q + S) .

From (4.37) we know that S
N

< 7 1
2M+1 , which is independent of k. Now Q =

∑n+1
j=0 8j

(see (4.34)) and n depends on k as 2n < k 6 2n+1. Consider the following table.

k 2 < k 6 4 5 6 k 6 8 9 6 k 6 16 . . .

No. of values in Q
∑2

j=0 8j
∑3

j=0 8j
∑4

j=0 8j . . .

log2(k) 1 < log2(k) 6 2 2 < log2(k) 6 3 3 < log2(k) 6 4 . . .
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Therefore, dlog2(k)e is the upper limit of the summation in Q and

Q =

dlog2(k)e∑

j=0

8j =
8dlog2(k)e+1 − 1

7

Thus,

|AC[k]| 6 1

N

8dlog2(k)e+1 − 1

7
+ 7

1

2M+1
. (4.38)

The left hand side of (4.38) depends on k but the dependence is logarithmic

and due to the slow rate of increase of the log function this means that AC is ‘almost’

independent of k..

Actually, due to (4.38) we have the following theorem.

Theorem 4.39. Given ε > 0 and K the smallest N such that

∀ 0 < |k| 6 K,

∣∣∣∣∣
1

N

N∑

1

x[m + k]x[m]

∣∣∣∣∣ < ε

satisfies

1

N

8dlog2(K)e+1 − 1

7
+ 7

1

2M+1
< ε

where M is obtained from (4.34).

4.5 Multidimensional case

Let x be the function defined in section 4.2, 4.3 or 4.4. So for any given integer

m, x[m] = am where am = ±1 or some other root of unity, this being determined

by the choice of x.
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We define a function h : Zd → C as follows

h[m] = h(m1, m2, . . . , hd) = x[m1]. (4.40)

We denote the d−dimensional square by S(N) that is,

S(N) = {(m1, m2, . . . , md) : −N 6 mi 6 N, i = 1, 2, . . . , d}.

For k = (k1, k2, . . . , kd) ∈ Zd,

Ah[k] = lim
N→∞

1

(2N + 1)d

∑

m∈S(N)

h[m + k]h[m]

= lim
N→∞

1

(2N + 1)d

N∑

m1=−N

N∑

m2=−N

· · ·
N∑

md=−N

h[m + k]h[m]

= lim
N→∞

1

(2N + 1)d

N∑

m1=−N

N∑

m2=−N

· · ·
N∑

md=−N

x[m1 + k1]x[m1]

= lim
N→∞

1

2N + 1

N∑

m1=−N

x[m1 + k1]x[m1]

=





0 if k1 6= 0

1 if k1 = 0.

(4.41)

So in this case the autocorrelation Ah is one on the hyperplane (0, k2, . . . , kd). If one

defines h[m] = x[mi], i = 1, · · · , d then the autocorrelation is 1 along the hyperplane

defined by ki = 0.
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Chapter 5

Functions whose Autocorrelation is the Fourier Transform of the

Fejér Kernel

Let 4(t) = max(1 − |t|, 0). On [−1, 1], the graph of 4 consists of the equal

legs of an isosceles triangle of height 1; 4 vanishes outside [−1, 1]. Let ω(γ) =

1
2π

(
sin γ/2

γ/2

)2

. We refer to ω as the Fejér function. The Fourier transform of 4

is ω2π. We begin this chapter with a discussion of functions defined on Z whose

autocorrelation at integers is the triangle 4. For a given integer M, we construct a

function whose autocorrelation is the triangle max(1− |t|
M

, 0). Given a positive, even

function f that is decreasing and convex on Z+ we can approximate f by a sum of

triangles of the form 4 and construct a function x on Z whose autocorrelation is f.

5.1 Background and preliminary results

It has been shown in [34] that if λ is a number in (0, 1), with binary expression

0.α1α2α3 · · · and we define a function as

y[k] =





2α2n+1 − 1 if k = n + 1, n ∈ N ∪ {0}

2α2n − 1 if k = −n, n ∈ N

(5.1)

then for almost all values of λ the autocorrelation of y, Ay, is

Ay[k] =





0 ∀k 6= 0

1 if k = 0.

(5.2)
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In other words, if y has the value +1 or the value −1 and if each choice of

these values is independent of all others, then the probability is 0 that Ay will not

have the value given by (5.2). One should observe that Ay = 4 on integers. Let us

work out the details of this result following Wiener’s work ([34]).

First let us discuss the necessary reduction of probabilities to Lebesgue mea-

sure. Let B(R) be the Borel algebra of subsets of the real line. We know from

[23] that there is a one-to-one correspondence between probability measures P on

(R, B(R)) and the distribution functions F on the real line R. The measure P

constructed from the function F by assigning

P (a, b] = F (b)− F (a)

for all a, b,−∞ 6 a < b < ∞ is usually called the Lebesgue-Stieltjes probability

measure corresponding to the distribution function F. The case when

F (x) =





0, x < 0,

x, 0 6 x 6 1,

1, x > 1

(5.3)

is particularly important. In this case, the corresponding probability measure (de-

noted by λ) is the Lebesgue measure on [0, 1]. Clearly λ(a, b] = b − a, which is the

Lebesgue measure of (a, b] (as well as any of the intervals (a, b), [a, b] or [a, b)).

Recall that

Ay[k] = lim
N→∞

1

2N + 1

N∑

m=−N

y[m + k]y[m] (5.4)

if the limit exists. We now establish that except for a set of values of λ of measure

zero, Ay[0] = 1 and Ay[k] = 0 when k is an integer other than 0. That Ay[0] = 1
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is an immediate consequence of the fact that |y[n]| = 1. If we can now show that

for each particular non-zero integer k, Ay[k] = 0 except for a set of values of λ with

zero measure, we may appeal to the theorem that the logical sum of a denumerable

set of measure zero sets is of measure zero to complete the verification of (5.2).

Let us now consider y[m + k]y[m] for a fixed k and variable m. For any m it

assumes either the value +1 or the value −1, and if we take any finite consecutive

set of numbers m, any sequence of signs is as probable as any other - that is, any

sequence of signs corresponds to a region of λ of the same Lebesgue measure as

that corresponding to any other. If we take 2N consecutive values of y[m + k]y[m],

there are 22N possible sequences and if we have (N − j) +1s then we have (N + j)

−1s (where 0 6 j 6 N) and the absolute value of the sum of these values will be

N + j − (N − j) = 2j. So the sum of these values exceeds Nε in absolute value if

[
Nε
2

]
6 k 6 N. The number of ways of having (N − j) +1s or (N + j) −1s is

(
2N

N−j

)
=
(

2N
N+j

)
. Therefore, the probability that the sum of 2N consecutive values

exceeds Nε in absolute value is

∑N
j=[Nε

2 ]
(

2N
N−j

)

22N
=

∑N
j=[Nε

2 ]
(2N)!

(N−j)!(N+j)!

22N

(by Stirling’s formula)

∼ 1

2N

N∑

j=[Nε
2 ]

√
2π(2N)2N+ 1

2 e−2N

√
2π
√

2π(N − j)N−j+ 1
2 (N + j)N+j+ 1

2 e−N+je−N−j

=
1√
π

N∑

j=[Nε
2 ]

√
NN2N

NN−j+ 1
2

(
1− j

N

)N−j+ 1
2 NN+j+ 1

2

(
1 + j

N

)N+j+ 1
2

=
1√
π

N∑

j=[Nε
2 ]

√
NN2N

N2N+1
(
1− j

N

)N−j (
1 + j

N

)N+j√
N − j

√
N + j( 1

N
)
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=
N∑

j=[Nε
2 ]

1
(
1− j

N

)N−j (
1 + j

N

)N+j

(
N

π (N2 − j2)

) 1
2

∼
N∑

j=[Nε
2 ]

e
k
N

(N−j−N−j)

(
N

π(N2 − j2)

) 1
2

= O
(
N

1
2 e−

Nε2

2

)
. (5.5)

In as much as
∑∞

N=1 N
1
2 e−

Nε2

2 converges, the probability is zero that there

should fail to be an integral value of N such that, from that value on,

∣∣∣∣∣

N∑

m=−N

y[k + m]y[m]

∣∣∣∣∣ 6 Nε + 1.

(5.6)

Thus, except for a set of values of λ of measure zero,

lim
N→∞

∣∣∣∣∣
1

2N + 1

N∑

m=−N

y[k + m]y[m]

∣∣∣∣∣ 6 lim
N→∞

∣∣∣∣∣
1

2N

N∑

m=−N

y[k + m]y[m]

∣∣∣∣∣ 6
ε

2
+ lim

N→∞

1

2N

=
ε

2

and since ε is arbitrary, and the sum of a denumerable set of measure zero sets has

measure zero, we have

lim
N→∞

1

2N + 1

N∑

m=−N

y[k + m]y[m] = 0 (5.7)

for almost every λ. This completes the proof of (5.2).

Remark. It was already discussed in Chapter 4 that Wiener has shown in [34] that

it is possible to deterministically construct a function whose autocorrelation is the

triangle (5.2).
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5.2 Functions whose autocorrelation is a triangle

Keeping in mind the function y of Section 5.1 we are now in a position to state

the following theorem.

Theorem 5.8. Given M ∈ N there exists a constructible unimodular function x :

Z→ C such that its autocorrelation Ax is

Ax[k] =





1− |k|
M

if |k| 6 M

0 if |k| > M.

(5.9)

Note that Ax is a triangle symmetric about the origin, has a base of length 2M,

where M is an integer, and height 1.

Proof. Given M ∈ N we now define a function x : Z→ C as

x[k] =





2α2n+1 − 1 if Mn < k 6 M(n + 1), n ∈ N ∪ {0}

2α2n − 1 if −Mn < k 6 M(1− n), n ∈ N

(5.10)

where the αs are as obtained in (5.1). Note that x[k] = y[d k
M
e]. From Section 4.2 we

know that such a y (and hence x) can be deterministically constructed. Also note

that both x and y are unimodular.

We show that the autocorrelation of x is Ax. Since the autocorrelation function

is an even function we will prove the result only for k > 0. Let 0 6 Mp 6 k 6

M(p + 1), p ∈ N ∪ {0}. Let Nn be the smallest integer such that N < M(Nn + 1).

Then we have

Ax[k] = lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]x[m]

= lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]x[m]
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= lim
N→∞

1

2N + 1

MNn∑

m=−MNn

x[k + m]x[m] + lim
N→∞

1

2N + 1

∑

MNn<|m|6N

x[m + k]x[m]

= S1 + S2. (5.11)

First we calculate bounds on S2.

|S2| =

∣∣∣∣∣∣
lim

N→∞

1

2N + 1

∑

MNn<|m|6N

x[m + k]x[m]

∣∣∣∣∣∣

6 lim
N→∞

1

2N + 1

∑

MNn<|m|6N

|x[m + k]x[m]| . (5.12)

Now x[m + k]x[m] is either 1 or −1, so,

|S2| 6 lim
N→∞

1

2N + 1

∑

MNn<|m|6N

1 = lim
N→∞

2(N −MNn)

2N + 1
.

We know from the property of n that N −MNn < M. Therefore,

|S2| 6 lim
N→∞

2M

2N + 1
= 0, or, S2 = 0. (5.13)

Now we consider S1.

S1 = lim
N→∞

1

2N + 1

MNn∑

m=−MNn

x[k + m]x[m]

= lim
N→∞

1

2N + 1

Nn∑

n=−Nn

M(n+1)∑

m=Mn+1

x[k + m]x[m] + lim
N→∞

1

2N + 1
x[−Nn + k]x[−Nn].

(5.14)

By a property of the function x and the fact that the last term in (5.14) goes to 0

as N goes to infinity we have

S1 = lim
N→∞

1

2N + 1

Nn∑

n=−Nn

M(n+1)∑

m=Mn+1

x[m + k]x[M(n + 1)]

= lim
N→∞

1

2N + 1

(
Mn+M(p+1)−k∑

m=Mn+1

x[M(n + p + 1)]x[M(n + 1)]

)
+

+

M(n+1)∑

Mn+M(p+1)−k+1

x[M(n + p + 2)]x[M(n + 1)]
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= lim
N→∞

1

2N + 1

Nn∑

n=−Nn

(
Mn+M(p+1)−k∑

m=Mn+1

y[n + p + 1]y[n + 1] +

+

M(n+1)∑

m=Mn+M(p+1)−k+1

y[n + p + 2]y[n + 1]

)

= lim
N→∞

1

2N + 1

Nn∑

n=−Nn

(
(M(p + 1)− k)y[n + p + 1]y[n + 1] +

+ (k −Mp)y[n + p + 2]y[n + 1]
)

= lim
N→∞

M(p + 1)− k

2N + 1
(2Nn + 1)

1

2Nn + 1

Nn∑

n=−Nn

y[n + p + 1]y[n + 1] +

+ lim
N→∞

(k −Mp)

2N + 1
(2Nn + 1)

1

2Nn + 1

Nn∑

n=−Nn

y[n + p + 2]y[n + 1].

Since Nn →∞ as N →∞ we have

S1 = lim
N→∞

M(p + 1)− k

2N + 1
(2Nn + 1)Ay[p] + lim

N→∞

k −Mp

2N + 1
(2Nn + 1)Ay[p + 1]

= lim
N→∞

(
p + 1− k

M

)
(2Nn + 1)M

2N + 1
Ay[p] + lim

N→∞
(

k

M
− p)

(2Nn + 1)M

2N + 1
Ay[p + 1].

(5.15)

Before we proceed further let us evaluate the following limit:

lim
N→∞

(2Nn + 1)M

2N + 1
. (5.16)

Note that the limit in (5.16) is the same as limN→∞
2NnM
2N+1

since limN→∞
M

2N+1
= 0.

From the choice of n, we have,

MNn 6 N < M(Nn + 1)

or, 2MNn 6 2N < 2M(Nn + 1)

or, 2MNn + 1 6 2N + 1 < 2M(Nn + 1) + 1
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or,
1

2M(Nn + 1) + 1
<

1

2N + 1
6

1

2MNn + 1

or,
2MNn

2M(Nn + 1) + 1
<

2MNn

2N + 1
6

2MNn

2MNn + 1
. (5.17)

Nn goes to infinity as N goes to infinity and so taking limits throughout as N goes

to infinity we get

1 < lim
N→∞

2MNn

2N + 1
6 1. (5.18)

By the sandwiching principle

lim
N→∞

2MNn

2N + 1
= 1

which means

lim
N→∞

M(2Nn + 1)

2N + 1
= 1 (5.19)

and we have evaluated (5.16). Using (5.19) in (5.15) gives

S1 =

(
p + 1− k

M

)
Ay[p] +

(
k

M
− p

)
Ay[p + 1].

Since we evaluated S2 to be zero we have from (5.11) that

Ax[k] = S1 =

(
p + 1− k

M

)
Ay[p] +

(
k

M
− p

)
Ay[p + 1] (5.20)

If 0 6 k 6 M then p = 0. For every other range of k, p is non-zero. Using the

values of Ay[p] as given by (5.2) and the fact that Ax is an even function one gets

the desired result of (5.9).

Remark. The triangle considered in Theorem 5.8 can have any arbitrary height.

However, the corresponding code x will not be unimodular. In this case, letting
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λ ∈ (0, 1) have binary expansion .α1α2α3 . . . the code x : Z→ C defined, for a given

positive number K and a positive integer M, as

x[k] =





√
K(2α2n+1 − 1) if Mn < k 6 M(n + 1), n ∈ N ∪ {0}
√

K(2α2n − 1) if −Mn < k 6 M(1− n), n ∈ N

(5.21)

will have autocorrelation

Ax[p] =





K(1− |p|
M

), 0 6 |p| 6 M

0 otherwise.

Ax is a triangle symmetric about the origin having base of length 2M and height

K. The code x is such that |x| =
√

K. In this case the code x is bounded.

5.3 Functions whose autocorrelation is the sum of triangles

Theorem 5.22. Suppose we are given two distinct positive integers M1 and M2. We

know from Section 5.2 that one can construct functions x : Z → C and y : Z → C

such that

Ax[k] =





1− |k|
M1

, 0 6 |k| 6 M1

0 otherwise

and

Ay[k] =





1− |k|
M2

, 0 6 |k| 6 M2

0 otherwise.

The function z such that Az = Ax + Ay is given by z = x + y.

Note that for convenience we have considered codes x and y whose autocorre-

lation functions Ax and Ay are triangles symmetric about the origin with height 1

and bases of length 2M1 and 2M2 respectively. Referring to the remark at the end
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of Theorem 5.8 and based on the proof of Theorem 5.22 that will follow, it is worth

noting that if instead Ax and Ay were triangles of height K1 and K2 respectively,

the result of Theorem 5.22 would still hold i.e., z = x+y would have autocorrelation

Az = Ax + Ay.

Proof of Theorem 5.22.

Az[k] = lim
N→∞

1

2N + 1

N∑

m=−N

z[m + k]z[m]

= lim
N→∞

1

2N + 1

N∑

m=−N

(x[m + k] + y[m + k])(x[m] + y[m])

= lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]x[m] + lim
N→∞

1

2N + 1

N∑

m=−N

y[m + k]y[m] +

+ lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]y[m] + lim
N→∞

1

2N + 1

N∑

m=−N

y[m + k]x[m]

= Ax(k) + Ay(k) + lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]y[m] +

+ lim
N→∞

1

2N + 1

N∑

m=−N

y[m + k]x[m]. (5.23)

Let us denote the last two terms in the right side of (5.23) by S1 and S2 respectively.

We want to show that S1 = 0 and S2 = 0.

S1 = lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]y[m]. (5.24)

Since y is real valued, (5.24) becomes

S1 = lim
N→∞

1

2N + 1

N∑

m=−N

x[m + k]y[m]. (5.25)

Let PN be the largest integer so that

M2PN 6 N 6 M2(PN + 1). (5.26)
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Then S1 can be written as

S1 = lim
N→∞

1

2N + 1

−M2PN−1∑

m=−N

x[m + k]y[m] + lim
N→∞

1

2N + 1

N∑

m=M2PN+1

x[m + k]y[m] +

+ lim
N→∞

1

2N + 1

M2PN∑

m=−M2PN

x[m+]y[m]. (5.27)

Let us denote the first two terms of (5.27) by s1 and s2 respectively. Now,

|s1| 6
−M2PN−1∑

m=−N

1 = N −M2PN

and

|s2| 6
N∑

m=M2PN +1

1 = N −M2PN .

From (5.26),

N −M2PN 6 M2(PN + 1)−M2PN = M2

which means |s1| 6 M2 and |s2| 6 M2. Therefore,

lim
N→∞

|s1|
2N + 1

6 lim
N→∞

M2

2N + 1
= 0

and also

lim
N→∞

|s2|
2N + 1

6 lim
N→∞

M2

2N + 1
= 0.

Thus,

S1 = lim
N→∞

1

2N + 1

M2PN∑

m=−M2PN

x[m + k]y[m]

= lim
N→∞

1

2N + 1

PN−1∑

n=−PN

M2(n+1)∑

m=M2n+1

x[m + k]y[m] +

+ lim
N→∞

1

2N + 1
x[−M2PN + k]y[−M2PN ]

(the second term goes to 0 as N →∞)
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= lim
N→∞

1

2N + 1

PN−1∑

n=−PN

M2(n+1)∑

m=M2n+1

x[m + k]y[M2(n + 1)]. (5.28)

y[M2(n + 1)] is either +1 or −1. Between (M2n + 1) and M2(n + 1) there are M2

terms. So there are M2 values of x. Suppose that of these M2 values there are j

that have the value +1 and (M2 − j) that have the value −1. Upon multiplication

by y(M2(n + 1)) we have either j values that are −1 and (M2 − j) values that are

+1 or vice versa.

In the sum on the right side of (5.28) there are 2PN blocks of length M2.

Let us say that the first block has j1 terms equal +1 and (M2 − j1) terms equal

to −1, the second block has j2 terms equal to +1 and (M2 − j2) terms equal to

−1 and so on. Together, there are (j1 + j2 + · · · + j2PN
) terms equal to +1 and

(M2 − j1 + M2 − j2 + · · · + M2 − j2PN
) = 2PNM2 − (j1 + j2 + · · · + j2PN

) terms

equal to −1. Let PNM2 = M and j1 + j2 + · · ·+ j2PN
= M − j where 0 6 j 6 M.

Then 2PNM2 − (j1 + j2 + · · · + j2PN
) = 2M − (M − j) = M + j. So out of 2M

consecutive values of x[m+k]y[m] there are (M− j) values that are +1 and (M + j)

values that are −1. So the absolute value of the sum of 2PNM2 consecutive values of

x[m+k]y[m] would be M +j−(M−j) = 2j. So the sum of these values exceeds Mε

in absolute value if [Mε] 6 2j 6 2M. The number of ways of having (M − j) +1s

and (M + j) −1s is
(

2M
M−j

)
=
(

2M
M+j

)
. Therefore, for a given ε, the probability that

the sum of 2M consecutive values of x[m + k]y[m] exceeds Mε in absolute value is
PM

j=[ Mε
2 ]

22M

(
2M

M−j

)
. It can be shown in a manner identical to that in (5.5) that this goes

to zero as M goes to infinity. Thus, the probability is zero that there should fail to
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be an integral value of M = PNM2 such that from that value on (see (5.28))

∣∣∣
M∑

m=−M

x[m + k]y[m]
∣∣∣ 6 Mε + 1.

Therefore,

limN→∞ =
∣∣∣ 1

2N + 1

M∑

m=−M

x[m + k]y[m]
∣∣∣ 6 Mε + 1

2N + 1
=

PNM2ε

2N + 1
+

1

2N + 1
. (5.29)

From (5.26),

PNM2

2N + 1
6

N

2N + 1
→ 1

2

as N goes to infinity. So, the left side of (5.29) is less than ε
2

and for almost all λ,

lim
N→∞

N∑

m=−N

x[m + k]y[m] = 0.

In a similar way one can show that

lim
N→∞

N∑

m=−N

x[m]y[m + k] = 0

for almost every λ. This concludes showing that if z[k] = x[k] + y[k] then Az =

Ax + Ay.

Remark. One should note that even though the argument in the proof of Theorem

5.22 appears to be probabilistic, the deterministic construction of such a z from

some suitable x and y can be done (see proof of Theorem 5.8).

Theorem 5.30. An even, non-negative function on Z that is convex and decreasing

to zero on Z+ and has finite support can be written as a finite sum of triangles.

Each triangle in the sum is symmetric about the origin, has base length 2M for

some integer M and height K where K is a positive number.
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M1 M2

y1

y2

h

Figure 5.1: Sum of two triangles.

Proof. Since the function is even we will restrict ourselves only on the positive

integers, Z+. We will determine the height and base of the defining triangles. If one

were to imagine the function defined on R instead of Z then the function satisfying

the properties stated in the theorem would be piecewise linear. In this case let the

points of discontinuity be the set {M1, M2, . . . , Mn} such that M1 > M2 > · · · > Mn.

Suppose that f [0] = y1, f [M1] = y2, f [M2] = y3, . . . , f [Mn−1] = yn, f [Mn] = 0. So

on Z+ the support of f is contained in [0, Mn]. The function f will be the sum of

triangles with base lengths M1, M2, . . . , Mn. The problem is to find the heights of

these triangles.

We first demonstrate this for the simple function shown in Figure 5.1. We

are given y1 and y2. Thus we know h. The function is made up of the two triangles

shown in Figure 5.2. We have to find their heights r1 and r2. Now

r1 = h.
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M1 M2

r2

r1

Figure 5.2:

Besides,

r1 + r2 = h1, or, r2 = h1 − r1 = h1 − h.

Moving on to a function that could be the sum of three triangles let us look at

Figure 5.3.

We have to find the heights r1, r2 and r3 of these triangles. Since we are given

y1, y2 and y3 we know P1 and P2.

P1 = r3,

P2 = r1 + r3 =⇒ r1 = −r3 + P2 = −P1 + P2,

h1 = r1 + r2 + r3 =⇒ r2 = h1 − r1 − r3 = h1 − P2.

Following are the necessary steps to show this for a function that is the sum

of n triangles. See Figure 5.4.

(i) We are given the points (0, y1), (M1, y2), (M2, y3), (M3, y4), · · · , (Mn−1, yn), (Mn, 0).
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M1 M2 M3

y1

P2

y2

P1

y3

Figure 5.3: Sum of three triangles.

y1

P1

yn

y2

y3

Pn

MnM_n−1M1 M2

Figure 5.4: Sum of n triangles.
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(ii) We extend the line joining (Mn−1, yn) and (Mn, 0) till it joins the y axis. Let

is intersect the y axis at P1. See Figure 5.4. Then the triangle with base Mn

has height P1.

(iii) Next we extend the line joining (Mn−1, yn) and (Mn−2, yn−1) to make it inter-

sect the y axis. Let this line intersect the y axis at P2.

(iv) Suppose the heights of the n triangles whose sum is the given function is

r1, r2, . . . , rn with base lengths M1, M2, . . . , Mn respectively. We already found

out that rn = P1. Now,

P2 = rn + rn−1 =⇒ rn−1 = P2 − rn = P2 − P1.

(v) Just as we did in (iii) we extend the line joining (Mn−2, yn−1) and (Mn−3, yn−2)

and let its points of intersection with the y axis be P3.

P3 = rn + rn−1 + rn−2.

Since we already know rn and rn−1 we would get

rn−2 = P3 − rn − rn−1.

(vi) If we continue as above then we would finally get r1 + r2 + · · · rn = y1 where

r2, . . . , rn are known by now and we can find r1.

Corollary 5.31. One can approximate the class of even and positive functions on

Z that decrease to zero and are convex on Z+ by a finite sum of triangles.
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Proof. For any given ε > 0, let Mε be the integer such that for all m ∈ N with

|m| > Mε, f [m] 6 ε. This is possible due to the decreasing property of our even

function.

Let us now define the function fε as

fε[m] =





f [m] if |m| 6 Mε

0 if |m| > Mε.

One can observe that for all m ∈ Z, |f [m]− fε[m]| 6 ε.

fε has support contained in [−Mε, Mε] i.e., it has compact support and so fε

can be approximated by a sum of triangles as shown in Theorem 5.30.

5.4 Remarks

We know from [4] that

max(1− |t|, 0)←→
(

sin πγ

πγ

)2

.

Letting ω(γ) = 1
2π

(
sin γ/2

γ/2

)2

one has for λ > 0,

max(1− 2π|t|
λ

, 0)←→ ωλ(λ)

where ωλ is the dilation of ω i.e., ωλ(γ) = λ(ω(λγ)) = λ
2π

(
sin( λγ

2
)

λγ
2

)2

.

Let |t|
M

= 2π|t|
λ

. Then λ = 2πM. So

max(1− |t|
M

, 0)←→ ω2πM(γ).

Note that ω2πM(γ) = M
(

sinπMγ
πMγ

)2

. If we wish to consider triangles of arbitrary
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height K i.e., K max
(
1− |t|

M
, 0
)

then

K max
(
1− |t|

M
, 0
)
←→ Kω2πM(γ) = KM

( sin πMγ

πMγ

)2

.

It is rather obvious that the function
√

Kx (where x is as defined in (5.10)) has its

autocorrelation at some non-zero integer k to be K max
(
1− |k|

M
, 0
)
.

As something pertinent to section 5.3 one should also note that using properties

of the Fourier transform one has, for given K1, K2, . . . , Kn and M1, M2, . . . , Mn,

n∑

i=1

Ki max(1− |t|
Mi

, 0)←→
n∑

i=1

KiMi

(sin πMiγ

πMiγ

)2

.

Thus the function f described in Theorem 5.30 is the inverse Fourier transform of a

positive function of the form K1M1

(
sinπM1γ

πM1γ

)2

+K2M2

(
sin πM2γ

πM2γ

)2

+KnMn

(
sinπMnγ

πMnγ

)2

.

It should be noted that due to Theorem 5.22 the waveform x whose autocorrelation is

f can be constructed deterministically as x = x1 + · · ·xn where each xi(i = 1, . . . , n)

has autocorrelation equal to Ki max(1− |t|
Mi

, 0).
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Chapter 6

Conclusion

6.1 Summary of results

Here is a summary of the main results of the thesis.

(i) The Wiener-Wintner Theorem is proved in the setting of Zd. This gives the

construction of a locally bounded function x whose autocorrelation is the in-

verse Fourier transform of a given positive function.

(ii) Since the codes constructed by the Wiener Wintner Theorem is only locally

bounded and we are aiming at getting codes with constant amplitude we next

give an approach using u.d. mod - 1 sequences that could give bounded codes

that has autocorrelation equal to the inverse Fourier transform of a given

positive function. We however, show that it is impossible to use our technique

of u.d. mod - 1 sequences for the purpose.

(iii) We construct a number of unimodular codes whose autocorrelation is zero

everywhere except at the origin where it is one. This solves the problem when

the given positive function is F ≡ 1 on T. The following codes are constructed:

(a) x[n] = e2πinαθ where α ∈ N and θ /∈ Q.

(b) For a given integer n > 2 let the n roots of unity be {w1, . . . , wn}. Let x

take values on the positive integers in the order
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[w0, w1, . . . , wn−1] repeated n0 = 1 times.

[w0, w0; w0, w1; . . . ; w0, wn−1; w1, w0; w1, w1; . . . ; w1, wn−1; . . . ;

wn−1, w0, wn−1, w1, . . . , wn−1, wn−1] repeated n1 = n times.

[w0, w0, w0; w0, w0, w1; . . . w0, w0, wn−1; . . . ; wn−1, wn−1, w0; . . . ;

wn−1, wn−1, wn−1] repeated n2 times.

...

and for k ∈ N, let x[−k] = x[k].

(c) Let H2n be the real Hadamard matrix of size 2n×2n. Let x take values on

the positive integers from elements of the Hadamard matrices arranged

in the following order.

H1 (H1 is repeated once (20)).

H2 H2 (H2 is repeated twice (21).

H4 H4 H4 H4 (H4 is repeated 22 = 4 times).

...

and for k ∈ N, let x[−k] = x[k].

(iv) For a given positive integer M and a positive number K the triangle identified

by K max
(
1− |t|

M
, 0
)

is the Fourier transform of the function KM
(

sinπMγ
πMγ

)2

.

We construct codes x whose autocorrelation is the triangle K max
(
1− |t|

M
, 0
)

and also codes whose autocorrelation is the sum
∑n

i=1 Ki max
(
1 − |t|

Mi
, 0
)
.

Based on this we construct codes x whose autocorrelation is a function that

is positive and even on Z, convex and decreasing to zero on Z+.
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6.2 Future research

• It seems that it might be possible to try other techniques to construct uni-

modular codes whose autocorrelation is zero everywhere except at the origin

where it is one.

(i) The classical Rudin-Shapiro construction produces a sequence of polyno-

mials with coefficients that are ±1. One could use these coefficients to

construct a sequence with the zero autocorrelation property.

(ii) The N × N Discrete Fourier Transform (DFT) matrix DN is defined as

( 1√
N

W mn
N ), m, n = 0, . . . , N − 1 where WN = e−2πi/N , i.e.,

DN =




1 1 1 · · · 1

1 e−2πi/N e−2πi2/N · · · e−2πi(N−1)/N

1 e−2πi2/N e−2πi4/N · · · e−2πi2(N−1)/N

...

1 e−2πi(N−1)/N e−2πi2(N−1)/N · · · e−2πi(N−1)(N−1)/N




.

One observes that the elements of this matrix are unimodular and so

might be used to construct sequences having zero autocorrelation. Also,

the rows of the DFT matrix are mutually orthogonal and this is actually

an example of a complex Hadamard matrix.

• It would be interesting to delve into the case of the unimodular codes defined

by x[n] = e2πinαθ where θ is irrational but α is not an integer.

When α is an integer we have discussed several multidimensional cases when
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α is equal to 2. Calculations get very complicated when α is greater than 2

but it would be nice to resolve this.

• For the codes constructed from Hadamard matrices or roots of unity we have

addressed one way of extending such codes to higher dimensions but there

can be other interesting constructions and it would be nice to see what the

autocorrelation looks like. For example, in Z2, one could define a code as

shown in Figure 6.1, where x[0], x[1], . . . are the values of the corresponding

function (from Hadamard or others) in Z.

• An approximation problem: Given a positive measure µ and ε > 0. Suppose

µ has Fourier transform Aµ. Take a positive definite compactly supported

version of Aµ, Aµε
(ε away from Aµ in some norm, i.e., ||µ − µε||1 < ε). Aµε

can be approximated by triangles. Aµε
is the autocorrelation of some fε. Does

fε converge to a bounded function?
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0 1 2 3

−1
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−3
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−1−2−3
x[0] x[1]

x[2]x[3]
x[4]

x[5]

x[6]
x[7]

x[8]

x[9]

x[10]

Figure 6.1: Unimodular codes in Z2.
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