
ABSTRACT

Title of dissertation: ALGORITHMS FOR DATA DISSEMINATION
AND COLLECTION

Yung-Chun Wan, Doctor of Philosophy, 2005

Dissertation directed by: Professor Samir Khuller
Department of Computer Science

Broadcasting and gossiping are classical problems that have been widely studied for decades.

In broadcasting, one source node wishes to send a message to every other node, while in gossiping,

each node has a message that they wish to send to everyone else. Both are some of the most basic

problems arising in communication networks. In this dissertation we study problems that generalize

gossiping and broadcasting. For example, the source node may have several messages to broadcast

or multicast. Many of the works on broadcasting in the literature are focused on homogeneous

networks. The algorithms developed are more applicable to managing data on local-area networks.

However, large-scale storage systems often consist of storage devices clustered over a wide-area

network. Finding a suitable model and developing algorithms for broadcast that recognize the

heterogeneous nature of the communication network is a significant part of this dissertation.

We also address the problem of data collection in a wide-area network, which has largely

been neglected, and is likely to become more significant as the Internet becomes more embedded in

everyday life. We consider a situation where large amounts of data have to be moved from several

different locations to a destination. In this work, we focus on two key properties: the available

bandwidth can fluctuate, and the network may not choose the best route to transfer the data

between two hosts.

We focus on improving the task completion time by re-routing the data through intermediate

hosts and show that under certain network conditions we can reduce the total completion time by

a factor of two. This is done by developing an approach for computing coordinated data collection

schedules using network flows.

ALGORITHMS FOR DATA DISSEMINATION
AND COLLECTION

by

Yung-Chun Wan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Professor Samir Khuller, Chair/Advisor
Professor Bobby Bhattacharjee
Professor Leana Golubchik
Professor Mark Shayman
Professor Aravind Srinivasan

c© Copyright by

Yung-Chun Wan

2005

DEDICATION

To my parents

ii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to all people who supported

me and helped me making this thesis possible.

The first and foremost person I would like to thank is my advisor, Professor Samir Khuller,

for his guidance and support. I thank him for first seeing my potential and talent ever since I was

taking his course in my first semester at the University of Maryland. Since then he has been very

patient with me and has been constantly providing me guidance. His door is always open, and

I thank him for spending hours discussing problems with me. For each problem I worked on, he

often suggested a few potential directions to tackle the problem. I also thank him for encouraging

and generously supporting me to go to conferences and present papers there. He also encouraged

me to go for summer internships, which have been a very valuable experience to me.

I am grateful to have a chance to work with Professor Leana Golubchik. She taught me

how to do great system research and how to write good systems papers.

I thank Professors Samir Khuller, Bobby Bhattacharjee, Leana Golubchik, Mark Shayman,

and Aravind Srinivasan for serving on my dissertation committee. I thank them for reading my

thesis and giving suggestions. I also thank David Mount for serving on my preliminary examination

committee.

I gratefully acknowledge funding support from NSF under the Awards CCR-9820965 and

CCR-0113192 to Samir Khuller.

I would like to thank my mentors, including Michael R. Lyu, Jimmy Ho-Man Lee, John

C.S. Lui, and Irwin King, in the Chinese University of Hong Kong. They helped me a lot and

equipped me for the challenging graduate studies, and encouraged me to go abroad to pursue a

Ph.D. degree. I also thank Connie Mansim Cheng, who inspired and encouraged me to come to

the United States for further studies.

iii

I am very fortunate to have to a chance to work with many dedicated fellow students.

I learned a lot from Yoo-Ah Kim, who comes up with ideas quickly and thinks problems very

carefully. Cheng-Fu Chou is always like a big brother to me. He made my transition to living in

the States much easier. I also remember that we had great time together discussing and arguing

research problems. I thank Rajiv Gandhi for encouraging me to work with Samir Khuller when I

was a first-year Ph.D. student, and gave me many useful professional advice.

I am graceful to have wonderful friends during my studies. Without Sheung-Wah Ng, Chiu-

Yuen Koo, Starsky Ho-Yin Wong, Nan Wang, Adam Woei-Jyh Lee, Sernam Lim, and Yingqian

Zhang, I could only imagine I would have a dull life in Maryland. We worked hard and played

hard, and I thank them for all their support.

Last but not the least, I would like to thank my family. I thank my brothers for their

support for the family and taking care of everything while I was away from home. My deepest

gratitude goes to my parents, for their unconditional love and support. My parents give all they

have to my brothers and me. I dedicate this thesis to them.

iv

TABLE OF CONTENTS

List of Figures viii

1 Introduction 1

1.1 Preliminaries . 5

1.2 Organization and Overview of Contributions . 6

1.2.1 Data Dissemination Problems . 6

1.2.2 Coordinated Data Collection . 13

2 Related Work 17

2.1 Computing Data Layout . 17

2.2 Generalized Broadcasting and Gossiping . 18

2.3 Broadcasting in Two-tier Communication Networks 20

2.4 Coordinated Data Collection . 21

3 Single-Source Multicasting 23

3.1 Problem Specification . 23

3.1.1 Model . 23

3.2 Algorithm Single-Source Multicast . 24

3.3 Details of Phase I . 26

3.4 Analysis . 29

4 Multi-Source Broadcasting 31

4.1 Problem Specification . 31

4.2 Algorithm Multi-Source Broadcast . 31

4.3 Analysis . 33

5 Multi-Source Multicasting 38

5.1 Problem Specification . 38

v

5.1.1 Background . 39

5.2 Algorithm Multi-Source Multicast . 39

5.2.1 Analysis . 40

5.3 3 + o(1)-approximation Algorithm . 43

5.4 Allowing Bypass Disks . 47

5.5 Bounded-Size Matching Model . 48

5.6 NP-hardness Result . 50

6 Broadcasting in Two-tier Communication Networks 53

6.1 Problem Specification . 53

6.2 Broadcasting . 54

6.2.1 Analysis . 55

6.2.2 Bad Example . 61

6.3 Multicasting . 61

6.3.1 Analysis . 62

6.4 Bounding Global Transfers . 64

6.4.1 Bounded Degree Model . 64

6.4.2 Bounded Degree Model: Multicasting . 66

6.4.3 Bounded-Size Matching Model . 67

6.4.4 Bounded-Size Matching Model: Multicasting 68

6.5 Postal Model . 69

6.5.1 Analysis of LCF . 69

6.5.2 Interleaved LCF . 72

6.6 Experiments . 74

6.6.1 Results . 75

7 Coordinated Data Collection 78

7.1 Problem Specification . 78

vi

7.2 Overview of Data Collection Approaches . 79

7.2.1 Direct Methods . 80

7.2.2 Non-coordinated Methods . 81

7.2.3 Our Coordinated Approach . 81

7.3 Graph Theoretic Formulation . 83

7.4 Transfer Schedule Construction . 89

7.5 Performance Evaluation . 94

8 Conclusions and Future Work 111

Bibliography 115

vii

LIST OF FIGURES

1.1 An example of a single-source multicast instance. 9

3.1 An example of a single-source broadcast instance. 25

3.2 An example of Phase I in Algorithm Single-Source Multicast. 26

3.3 An example of Phase II in Algorithm Single-Source Multicast. 26

3.4 Behavior of disks in Di in Phase I. 27

3.5 Choosing disks in Dp
i in Phase I. 28

4.1 An example to illustrate the main idea behind Algorithm Multi-Source Broadcast. 32

4.2 Partitioning the last group of disks in Step 4 in Algorithm Multi-Source Broadcast. 34

4.3 An example of Case III in Algorithm Multi-Source Broadcasting. 36

6.1 An illustration of how Algorithm Modified LCF works. 56

6.2 An example to show the inter-cluster transfers processor i experiences. 58

6.3 The i-th and p-th step of LCF under the postal model. 71

6.4 A histogram of the cluster sizes. 76

6.5 The performance of different algorithms under inaccurate information. 77

7.1 A high-level example. 83

7.2 Network topology and a corresponding overlay graph. 85

7.3 Time-expanded graph GT with T = 4. 86

7.4 Solution obtained after flow decomposition. 93

7.5 The simulation topology. 95

7.6 Direct, non-coordinated, and coordinated methods under the makespan metric. . . 98

7.7 Non-coordinated and coordinated methods under the storage metric. 101

7.8 Direct, non-coordinated and coordinated methods under the throughput metric. . 102

7.9 Effect of UDP, and symmetric and asymmetric traffic under the makespan metric. 108

7.10 Sensitivity to bandwidth estimation under the makespan metric. 109

viii

7.11 Effect of dynamic changes in the number of background flows. 110

ix

Chapter 1

Introduction

Broadcasting and gossiping are some of the most basic problems arising in communication networks.

In this thesis, we are primarily concerned with problems related to broadcasting and gossiping that

arise when managing large amounts of data. We study several different problems, all of which are

related to data dissemination and collection on both local-area and wide-area networks.

The problems of broadcasting and gossiping have been widely studied for decades [66, 44, 48,

10, 11, 51]. The broadcasting problem is defined as follows: there are n nodes, and one source node

needs to convey an item to every other node. In the gossiping problem, each node has an item that

they wish to communicate to everyone else. We may treat the gossip problem as simultaneously

performing n broadcasts. Communication is typically done in rounds, where in each round a node

may send (or receive) an item to (or from) at most one other node. One typical objective function

is to minimize the number of communication rounds. In this thesis, we use this objective function

as the performance metric. Another typical objective function considered in the literature is to

minimize the number of calls placed.

In the first part of this thesis we develop algorithms for problems that generalize broadcasting

and gossiping. Large data storage systems store data on a collection of disks, connected via a fast

local-area network. To deal with high demand for data, as well as for fault-tolerance, we may wish

to have multiple copies of the same data item stored on a number of disks. Disks typically have

constraints on storage and the number of clients that can simultaneously access data from it. A

data layout specifies how many copies to have for each item, and which subset of disks to put it on.

Given the demand for data items, computing a data layout that maximize the number of satisfied

demands is NP-hard [86, 39]. Golubchik et al. [39] develop a polynomial time approximation

scheme for this problem. Let us first consider a simple motivating example: suppose we initially

have a collection of data items stored on a single disk (this could be tertiary storage) how do we

1

create an initial layout? Each item has to be sent to an arbitrary subset of the disks. Moreover, we

would like to create the layout as quickly as possible, because of the large amount of data involved.

We call this problem the single-source multicast problem. (By multicast, we mean only a subset

of nodes want an item.) This is a generalization of the single-source broadcast problem which has

been solved optimally by Cockayne, Thomason, and Farley [23, 29]. In some cases, the data items

are stored at different locations initially, and we still would like to create an initial layout. We call

this problem the multi-source multicast problem. The data migration problem is a generalization of

the above three problems, and constant factor approximation algorithm has been developed [59].

See Section 2.2 for details of this problem.

Another reason to study the broadcasting problem is because it is a primitive operation

in many collective communication routines such as MPI (message-passing interface) [77, 40, 52].

Broadcasting arises when one wants to quickly distribute data to an entire network for processing.

It is easy to see applications of single-source multicast and multi-source multicast problems in such

systems. We will introduce the two problems and other generalizations in Section 1.2.1. Note that

in some situations, when sending a small amount of data, latency is what is important. In other

situations, when performing bulk transfers, bandwidth is important. By minimizing the number

of communication rounds, we address both types of problems.

Many of the works on broadcasting and gossiping in the literature are focused on homoge-

neous networks. The algorithms developed are more applicable to managing data on local-area

networks. However, large-scale storage systems often consist of storage devices distributed over

a wide-area network, where data transfers over the wide-area network is much slower than data

transfers through a local-area network. Therefore we wish to develop algorithms to create a data

layout quickly over heterogeneous networks. We concentrate on studying the broadcasting prob-

lem in wide-area networks since it is the simplest problem, as well as the most basic one in the

context of data dissemination. Another motivation for studying this problem is that broadcasting

operations in many collective communication routines such as MPI [77] do not address the issue of

optimizing the performance of communications on heterogeneous networks. For example, Networks

2

of Workstations (NOWs) are a popular alternative to massively parallel machines and are widely

used (for example the Condor project at Wisconsin [80] and the Berkeley NOW project [4]). By

simply using off-the-shelf PC’s, a very powerful workstation cluster can be created, and this can

provide a high amount of parallelism at relatively low cost. With the recent interest in grid com-

puting [33] there is an increased interest to harness the computing power of these clusters to have

them work together to solve large applications that involve intensive computation. Several projects

such as MagPIe [64] are developing platforms to allow applications to run smoothly by providing

primitives for performing basic operations such as broadcast, multicast, scatter, reduce, etc. By

recognizing and taking advantages of the heterogeneous nature of the underlying communication

network, we may be able to implement broadcast faster. Some of the collective communication

routines have been extended to clustered wide-area systems (see [64, 63, 15]). However, many of

these primitives are implemented using simple heuristics without approximation guarantees. In

the second part of this thesis we are interested in developing suitable model and understanding

the difficult issues and challenges in implementing broadcasting and multicasting over clustered

wide-area networks.

In the third part of this thesis we are interested in a data collection problem. Data collection

in wide-area network, which has largely been neglected in the past, is likely to become more

significant as the Internet becomes more embedded in everyday life. In particular, large-scale

data collection problems correspond to a set of important upload applications. These applications

include online submission of income tax forms, submission of papers to conferences, submission

of proposals to granting agencies, Internet-based storage, and many more. Another example of a

data collection problem is for high-performance computing applications where large amounts of

data need to be transferred from one or more data repositories to one or more destinations, where

computation on that data is performed. One more example is data mining applications where

large amounts of data may need to be transferred to a particular server for analysis purposes. One

characteristic of data collection that differs from data dissemination is that the destination node has

to receive all the data, while in a data dissemination problem, other nodes may send data items for

3

the source node. Using a graph-theoretic formulation, we develop a data collection algorithm that

returns a coordinated data collection schedule which would afford maximum possible utilization

of available network resources. Due to the discrepancy between our graph-theoretic abstraction

and the way a TCP/IP network works on the Internet, we also present a comprehensive study

which compares the performance, robustness, and adaptation characteristics of three potential

approaches to the problem.

We often like to complete the data dissemination or collection process as soon as possible

for various reasons. However, the communication network between storage devices is usually the

bottleneck in transferring data, especially in such large-scale settings in the motivating examples

mentioned above. It is critical to find efficient algorithms to schedule the transfer of data to

fully utilize the network. We can model these scheduling problems as combinatorial optimization

problems. Unfortunately many of these problems are hard to solve optimally. We classify a problem

as hard to solve if it is known to be NP-hard. An algorithm is efficient if its worst-case running

time is bounded by a polynomial function of its input size. Under the widely believed conjecture of

P 6= NP, efficient algorithms to find the optimal solution, do not exist for NP-hard problems. Most

of the interesting data dissemination problems are at least of moderate sizes. Therefore it takes too

much time to run inefficient algorithms to obtain the optimal solution. It is then natural not to opt

for getting the optimal solution, but to settle for obtaining efficient algorithms that may not always

return the optimal solution. Fortunately, there exist efficient algorithms that are guaranteed to

produce solutions that are within a certain factor of the optimal solution. This class of algorithms

is called approximation algorithms, and is often used for NP-hard optimization problems, because it

trades quality for tractability. This class of algorithms was formally introduced by Garey, Graham,

and Ullman [36] and Johnson [54]. Johnson noted that although all NP-complete optimization

problems are equally hard to find the optimal solution, close-to-optimal solutions are easier to

find for some problems. Approximation algorithms have been an active field of research over the

past two decades. Many works have been done on developing techniques to prove approximation

guarantees, and some works have been devoted to show that approximating a problem better than

4

a certain factor is impossible unless P = NP. Books by Hochbaum [45] and Vazirani [89] provide

good starting points for further readings on these topics.

There are other ways to evaluate the performance of an algorithm. While approximation

algorithms provide a guarantee on the worst-case performance of an algorithm, we can evaluate

the typical performance of an algorithm by running simulations using typical inputs. Problems

under sophisticated models may be too difficult to analyze mathematically, and thus experimental

evaluation allows us to evaluate algorithms running on much more complex systems using more

sophisticated models. Moreover, experimental evaluations can be used to compare the typical

performance of an approximation algorithm to its worst-case guarantee. This often gives us an

idea as to whether the upper bound on the performance of the algorithm and the lower bound

on the optimal solution are tight or not. Thus it provides us an insight on how to improve the

analysis of the algorithm.

We want to emphasize that these two performance evaluation techniques are complementary.

In this thesis, both techniques are used where appropriate.

1.1 Preliminaries

The formal definition of an approximation algorithm is as follows.

Definition 1.1.1 A ρ-approximation algorithm, A, for a minimization problem, is a polynomial-

time algorithm, such that for every valid instance I, A returns a solution of cost at most ρ·OPT(I),

where ρ > 1 and OPT(I) denotes the objective function value of an optimal solution to instance I

(we will shorten this to OPT). The ratio ρ is called the approximation ratio or the approximation

guarantee of the algorithm.

A general approach in obtaining an approximation algorithm is to find in polynomial time

a lower bound to the cost of the an optimal solution. For the problems considered in this thesis,

we compute lower bounds by exploiting the combinatorial structure of the problems. If the upper

bound on the worst-case performance of our algorithm is within ρ times the lower bound, we have

a ρ-approximation algorithm.

5

A polynomial time approximation scheme (PTAS) for a problem is an algorithm that, for

each fixed ε > 0, gives a (1 + ε)-approximation algorithm with running time polynomial in the

size of the input (but maybe exponential in 1/ε). Therefore we can compute a solution arbitrarily

close to the optimal solution.

Makespan is used to measure the performance of many scheduling problems, and is defined

as follows.

Definition 1.1.2 By makespan, we refer to the time it takes to finish all data transfers for data

dissemination and collection problems.

1.2 Organization and Overview of Contributions

This thesis is organized in eight chapters. We survey the work related to the research presented

in this thesis in Chapter 2. In Chapters 3 to 6 we describe several data dissemination problems

that generalize broadcasting and gossiping problems. We develop approximation algorithms to

solve these problems. In Chapter 7 we describe a coordinated data collection problem. Since

the communication model is quite involved, we evaluate the performance of our algorithms by

simulations. We conclude and describe future work in Chapter 8.

We now describe the motivations and contributions of this thesis in the remainder of this

chapter.

1.2.1 Data Dissemination Problems

We consider several data dissemination problems which are generalizations of broadcasting and

gossiping problems under a local-area network. We then study the broadcasting problem under a

more complex model, which tries to model characteristics of a wide-area network. The difficulty of

the broadcasting and gossiping problems depends on the assumptions in the underlying communi-

cation model. We first describe a few models commonly found in the literature, then we describe

the models we use, the problems we consider, and our results.

Different underlying communication graphs are considered in the literature. Bumby [16]

6

developed an optimal algorithm for the gossiping problem by assuming the underlying communi-

cation graph is complete, i.e., any two nodes can directly communicate with one another. Bar-Noy

et. al. [8] assume the communication graph is complete with arbitrary costs on the edges. This

model allows different pairs of nodes to communicate at different costs, but it makes the prob-

lem much harder. They have a polynomial-time O(log n)-approximate algorithm, which involves

solving a linear program, for the broadcasting problem. Moreover, arbitrarily connected graphs

have been considered, i.e., only adjacent nodes in the graph can communicate. Elkin-Kortsarz [28]

give a polynomial-time O(log n
log log n)-approximation algorithm, which also involves solving a linear

program, for the broadcasting problem. Special graphs, for example, trees [87], grids [30, 31],

hypergraphs [81, 69], and directed graphs [43], are also considered.

Besides the communication graph, different works assume different ways to exchange items.

Communication is typically done in rounds; in the telephone model [41], a node may communicate

with at most one other node in each call (and each call takes one round). This is in contrast of

having a broadcast channel, where one node may inform several other nodes in one round. There

are two sub-models of interest. The half-duplex model [67, 44, 34] allows a node to send (receive)

some information to (from) one other node in a single round. The full-duplex model [67, 44, 34]

allows each node to participate in at most one call in each round, and allows two nodes to exchange

all the information they know in each call. Note that both sender and receiver are busy during the

transfer of information. Conveying an item from one node to another can be viewed as sending

a message. In the postal model [9], each message simply has a latency of C time units when the

message is sent from one node to another. The sender is busy for only one time unit while the

message is being injected into the network. The message takes C time units of transit time and

the receiver is busy for one time unit when the message arrives. This send-and-forget nature of

passing messages with communication latencies essentially captures the communication pattern as

discussed in several papers that deal with implementations of systems to support such primitives

(see [64, 63]). The LogP model [24] is a more realistic model where it takes both latency and

throughput of the underlying network into account.

7

In the past most work has been concentrated on allowing arbitrarily large message size,

meaning that two nodes may exchange all the information that they have in one round. However,

in the gossiping problem, the message size may grow with the number of nodes. If each piece

of data item is large, and the cost of setting up a call is small when compared to the cost of

transferring an item, a more suitable model is to assume one can exchange only a single item in a

call (i.e., in constant time). Bermond et al. [10, 11] considered this “short messages” model, and

give an optimal algorithm for the gossiping problem.

We now describe two of our works which are related to broadcasting and gossiping.

Generalized Broadcasting and Gossiping

As stated at the beginning of the introduction, this part of our work is motivated by the problem of

creating initial data layouts in parallel disk systems. This problem can be treated as generalizations

of the broadcasting and gossiping problem. Each node models a disk in the system, and a data

item needs to be transferred to a set of disks. If each disk had exactly one data item, and needs

to copy this data item to every other disk, then it is exactly the problem of gossiping.

The communication model we use is the half-duplex telephone model, where only one data

item may be communicated between two communicating nodes during a single round. Each node

may communicate (either send or receive an item of data) with at most one other node in a round.

This model, the same as in the work by [42, 3], best captures the connection of parallel storage

devices that are connected on a local-area network and is most appropriate for our application.

Note that this is also a “short messages” model because only one data item can be transferred in

one round.

The basic generalizations of gossiping and broadcasting problems that we are interested in

are of two kinds: (a) each data item needs to be communicated to only a subset of the nodes, and

(b) several data items may be known to one node. Similar generalizations have been considered

before by Liben-Nowell [72], and Richards and Liestman [81], but they assume transferring long

messages is allowed. In Section 2.2 we discuss in more detail the relationships between our problem

8

and the ones considered in those papers.

Suppose we have N nodes and ∆ data items. The problems we are interested in are:

1. Single-source multicast. There are ∆ data items stored on a single node (the source). We

need to send data item i to a specified subset Di of nodes. Figure 1.1 shows the initial and

target layouts, and their corresponding Di’s for a single-source multicast instance when ∆ is

4.

2. Multi-source broadcast. There are ∆ data items, each stored separately at a single node.

These need to be broadcast to all nodes. We assume that data item i is stored on node i,

for i = 1 . . . ∆.

3. Multi-source multicast. There are ∆ data items, each stored separately at a single node.

Data item i needs to be sent to a specified subset Di of nodes. We assume that data item i

is stored on node i, for i = 1 . . . ∆.

D1={2}

D2={2,3}

D3={2}

D4={3}

1 2 3 4 - -

1 2 3 4 1 2 3 2 4

Target Layout

Initial Layout

disk 1 disk 2 disk 3

Figure 1.1: An example of a single-source multicast instance.

Considering the multicast problems, we use no bypass (intermediate) nodes as holding points

for the data, i.e., we move data only to nodes that need the data. However, bypass nodes can

be used to hold data temporarily so that we can finish the multicasting in a shorter time. For

example, a source for item i may send i to a bypass node, which later forwards the item to a node

in Di even though the bypass node itself is not in Di.

One potential concern with the communication model is that it allows an arbitrary number

of nodes to communicate simultaneously in each round. This is of concern if the network connecting

the nodes do not have enough capacity to permit such arbitrary communication patterns. We may

9

restrict the total number of simultaneous transfers that may be going on in each round. We call

this model bounded-size matching model.

In joint work with S. Khuller and Y. Kim [61, 58], we develop algorithms for these three

problems. We summarize our results as follows.

1. In Chapter 3 we discuss the single-source multicast problem and give a polynomial-time

algorithm that outputs a solution where the number of rounds is at most OPT + ∆.

2. In Chapter 4 we discuss the multi-source broadcast problem and give a polynomial-time

algorithm that outputs a solution where the number of rounds is at most OPT + 3. In

particular the number of rounds needed is
⌈
log N

∆

⌉
+ 2∆.

3. In Chapter 5 we discuss the multi-source multicast problem and prove that the problem is

NP-hard. We give a polynomial-time algorithm that outputs a solution where the number of

rounds is at most 4OPT +2. Then we present an improved algorithm that outputs a solution

where the number of rounds is at most (3 + o(1))OPT . We also present a 3-approximation

algorithm for the special case in which the source disks are not in any subset Di. If bypass

nodes are allowed, we obtain a polynomial-time algorithm that outputs a solution where the

number of rounds is at most 3OPT + 6.

4. In Section 5.5 we develop a method to convert any constant factor approximation algorithm

for the full matching model to a constant factor approximation algorithm for the bounded-

size matching model. The only constraint is that no bypass disks are allowed. Therefore, we

obtain constant factor approximation algorithms for all of the above three problems.

Broadcasting in Two-tier Communication Networks

As mentioned at the beginning of the introduction, we are interested in developing suitable models,

and understanding the difficult issues and challenges in implementing broadcast and multicast

operations on systems that run on clustered wide-area networks. It has applications in Networks

of Workstations and grid computing.

10

To model a heterogeneous network, one may want to change the model of the underly-

ing communication graph in the broadcasting problem. Many different underlying communication

graphs have been considered in the literature. For example, Elkin-Kortsarz [28] considered arbitrar-

ily connected graphs, with the property that only nodes adjacent in the graph may communicate.

However, this model is too restrictive and allows direct communication only between nodes adjacent

in a certain communication graph. The postal [9] and LogP [24] models take user-specified param-

eters such as latency and throughput into account to better model the underlying communication

network. However, broadcast algorithms proposed for both models are running on homogeneous

networks and thus not well suited for our applications. Therefore we need a communication model

which allows some pairs of nodes to communicate quicker than some other pairs. Various models

for heterogeneous environments have been proposed in the literature. One general model is the

one proposed by Bar-Noy et al. [8] where the communication costs between links are not uniform.

In addition, the sender may engage in another communication before the current one is complete.

An approximation algorithm with a guarantee of O(log k) is given for the operation of performing

a multicast of size k. However, the algorithm is complicated and involves solving a linear program.

See Section 2.3 for descriptions of other models for heterogeneous networks.

Consider several clusters of workstations. Each local cluster (sometimes this is also called

a subnet) is connected on a fast local area network, and inter-cluster communication is via a

wide-area network. In such situations, the time taken for a pair of nodes in the same cluster

to communicate, can be significantly smaller than the communication time of a pair of nodes in

different clusters. In fact, in the work by Lowekamp and Beguelin [74] they also suggest methods

for obtaining the subnets/clusters based on communication delays between pairs of nodes.

Motivated by this, the communication model we consider is the following. There are k

clusters of nodes. Cluster i has size ni. We will assume that in one time unit, a node can send a

message (or a data item) to any one node in its own cluster. However, sending a message from one

node to another node in a different cluster takes C time units. Even if the nodes in a cluster are

heterogeneous, their transmission times are usually much less than the communication time across

11

clusters. We also assume that a node can be sending or receiving a message from only one node at

any point of time (a matching). We believe that this model well captures the heterogeneous nature

of clustered wide-area systems, yet simple enough for us to design efficient algorithms with good

approximation ratio. In this model Lowekamp and Beguelin [74] propose some simple heuristics

for performing broadcast and multicast. However, these heuristics may produce solutions that are

arbitrarily far from optimal.

Similar to the model used in generalized broadcasting and gossiping, one potential concern

with the above two-tier communication model is that it allows an arbitrary number of nodes to

communicate simultaneously in every time step. This is of concern if the global network connecting

the different clusters does not have enough capacity to permit such arbitrary communication

patterns. There are several ways in which we can restrict the model. One model that we propose

is the bounded degree model where each cluster i is associated with a parameter di that restricts

the number of nodes from this cluster that can communicate with nodes outside this cluster in

each time step. Another possible manner is to use the bounded-size matching model. We restrict

the total number of simultaneous global transfers that may be going on in each time step without

restricting the number of transfers into/out of a single cluster.

In addition, we consider the postal model [9] version where each message simply has a

latency of C time units when the message is sent from one node to another node belonging to a

different cluster. The sender is busy for only one time unit while the message is being injected

into the network. The message takes C units of transit time and the receiver is busy for one unit

of time when the message arrives. This model essentially captures the communication pattern as

discussed in several papers that deal with implementations of systems to support such primitives

(see [64, 63]).

In joint work with S. Khuller and Y. Kim [60], we develop broadcasting and multicasting

algorithms in two-tier communication networks. We summarize our results as follows.

1. We propose Algorithm LCF (Largest Cluster First) for performing broadcasting in the basic

two-tier model, and develop multicasting algorithm based on LCF. We show that these

12

algorithms produce solutions where the makespan is not more than the optimal by a factor

of 2. Moreover, the analyses are tight for both algorithms.

2. For the bounded degree model we show how to reduce the broadcasting and multicasting

problems to instances of the basic model to develop algorithms with approximation ratio of

3 for both problems.

3. For the bounded-size matching model we develop algorithms with approximation ratio of 2,

using algorithms in the basic model, for both broadcasting and multicasting.

4. For the postal model, Algorithm LCF gives a factor 3 approximation. In addition, we present

another algorithm, called Interleaved LCF, and show that the makespan is at most 2 times

OPT ′ where OPT ′ is the minimum makespan among schedules that minimize the total

number of global transfers.

One issue with our broadcasting protocol is that it assumes knowledge of the sizes of the

clusters. In some applications, the cluster sizes may not be known accurately in advance. In the

basic two-tier model, we study the effect of having inaccurate information regarding the sizes of

the clusters to the LCF algorithm in Section 6.6. In fact, as we demonstrate, even if there is a

multiplicative factor of 2 inaccuracy in the sizes of the clusters, there is hardly any change in the

performance of LCF.

We will describe these works in Chapter 6.

1.2.2 Coordinated Data Collection

As mentioned at the beginning of the introduction, we are interested in developing algorithms for

large-scale data collection in wide-area network. In the data collection problem, we have a set of

source hosts, each stores some amount of data. We would like to find a transfer schedule which

minimizes the makespan to collect all data to a given destination host. Using a graph-theoretic for-

mulation, we develop data collection algorithm that returns a coordinated data collection schedule

which would afford maximum possible utilization of available network resources. One difficult issue

13

is due to the discrepancy between our simple graph theoretic abstraction and the way a TCP/IP

network works on the Internet. For example, in the graph-theoretic abstraction we assume the

available bandwidth between a pair of hosts has a fixed value. However, the background traffic on

the Internet may change dynamically and so a network may not be able to sustain the same amount

of traffic at a later time. Moreover, we may want to take into account the slow start behavior of

Transmission Control Protocol (TCP) and possible shared congestion links in scheduling transfers.

The available bandwidth may also depend on the number of TCP connections connected to other

hosts at that time. Modeling these properties of TCP exactly is extremely complex. Therefore,

we evaluate our algorithms by simulations.

We study application-level approach to improve performance of a large-scale data collection

problem (from multiple source hosts to a destination server) in the context of an upload archi-

tecture Bistro. Bistro is a scalable and secure application-level architecture for wide-area upload

applications [13]. Hosts which participate in this architecture are termed bistros. Given a large

number of clients that need to upload their data to a given destination server, Bistro breaks the

upload process into three steps: (1) a timestamp step to ensure that the data is submitted on-time,

for applications with deadlines, without having to actually transfer the data, (2) a data transfer

step, where clients push their data to bistros, and (3) a data collection step, where the destina-

tion server pulls data from bistros. We note that during step (2) receipts corresponding to clients’

transfers are sent by the bistros to the destination server; hence the destination server knows where

to find all the data which needs to be collected during step (3). We also note that in this context

there are no deadline issues, as any deadlines associated with an upload application are taken care

of in step (1) above.

Consequently, our data collection problem can be stated as: Given a set of source hosts,

the amount of data to be collected from each host, a common destination host for the data,

and available link capacities between hosts, our goal is to construct a data transfer schedule which

specifies on which path, in what order, and at what time should each “piece” of data be transferred

to the destination host, where the objective is to minimize the time it takes to collect all data from

14

the source hosts, i.e., makespan. Since we are focusing on application-level solutions, a path

(above) is defined as a sequence of hosts, where the first host on the path is the source of the data,

intermediate hosts are other bistros (hosts) in the system, and the last host on the path is the

destination host. The transfer of data between any pair of hosts is performed over TCP/IP, i.e.,

the path the data takes between any pair of hosts is determined by IP routing.

There are, of course, simple approaches to solving the data collection problem; for instance:

(a) transfer the data from all source hosts to the destination host in parallel, or (b) transfer the

data from the source hosts to the destination host sequentially in some order, or (c) transfer the

data in parallel from a subset of source hosts at a time, and possibly during a predetermined

time slot, as well as other variants (refer to Section 7.2 for details). We refer to these methods as

direct, since they send data directly from the source hosts to the destination host. However, long

transfer times between one or more of the hosts (holding the data) and the destination server can

significantly prolong the amount of time it takes to complete a large-scale data collection process.

Such long transfer times can be the result of poor connectivity between a pair of hosts, or it can

be due to wide-area network congestion conditions, e.g., due to having to transfer data over one or

more peering points whose congestion is often cited as cause of delay in wide-area data transfers

[71]. Given the current state of IP routing, congestion conditions may not necessarily result in a

change of routes between a pair of hosts, even if alternate routes exist.

Another approach to dealing with such congestion problems might be to use application-

level re-routing techniques as we stated above. However, we believe that in the case of a large-scale

data collection problem, the issue is not only to avoid congested link(s), but to devise a coordinated

transfer schedule which would afford maximum possible utilization of available network resources

between multiple sources and the destination. (We formulate this notion more formally below.)

Given the above stated data collection problem, additional possible constraints include (a)

ability to split chunks of data into smaller pieces, (b) ability to merge chunks of data into larger

pieces, and (c) storage related constraints at the hosts. To focus the discussion, we consider the

following constraints. For each chunk of data we allow (a) and (b) to be performed only by the

15

source host of that data and the destination host. We also do not place storage constraints on

hosts but rather explore storage requirements as one of the performance metrics.

In joint work with C. Chou, W. Cheng, L. Golubchik, and S. Khuller [19], we propose an ap-

proach for computing coordinated data collection schedules. We also present a comprehensive study

which compares the performance, robustness, and adaptation characteristics of the three potential

approaches to large-scale data transfers in IP-type networks, namely direct, non-coordinated, and

coordinated approaches. We do this using ns2 [50] simulations and within the context of our graph-

theoretic model. (The specific performance metrics used in this comparison are defined in Section

7.5.) This study (also in our previous work [21]) shows that coordinated methods can perform

better than non-coordinated and direct methods under various degrees and types of network con-

gestion. These improvements are achieved under low storage requirement overheads and without

significant effects on other network traffic throughput. In addition, the study (also in our previous

work [22]) shows that coordinated methods are more robust than non-coordinated methods under

inaccuracies in network condition information. Furthermore, we compare the adaptation char-

acteristics of the coordinated vs. non-coordinated methods under changes in network conditions.

These changes occur after the data transfer schedule is computed and while the corresponding data

transfer is already in progress. An adaptation to network conditions study is important because

the above stated applications are long lasting (i.e., correspond to large data transfers). Hence, it

is very likely that network conditions will change while the data transfer process is in progress.

Our adaptation study shows that the coordinated approach has a greater potential for adaptation

than a non-coordinated method and hence results in better performing data transfers.

16

Chapter 2

Related Work

In this chapter, we give a brief literature survey of research related to the work in this thesis. We

first discuss previous work on how to compute a data layout, because a data layout forms input

instances of several of the data dissemination problems considered in this thesis. We then discuss

related work on broadcasting and gossiping problems, broadcasting in two-tier communication

networks, and coordinated data collection.

2.1 Computing Data Layout

One motivating example of our work on generalizations of broadcasting and gossiping is the data

placement problem, which arises in the context of storage systems. In a homogeneous storage

system, there are several disks. Each disk has the same storage capacity, and the same load

capacity, the maximum number of clients that it can serve simultaneously. Given a number of

data items and the number of clients requesting the items, the goal is to find a placement of items

on disks so as to maximize the total number of clients satisfied, subject to the capacity constraints.

Golubchik et al. [39] develop an algorithm that can always pack a (1 − 1
(1+

√
k)2

)-fraction

of items for any instance of homogeneous storage systems, where k is the storage capacity of a

disk. They also give a polynomial time approximation scheme for the problem. They also consider

a variant of the problem, called uniform ratio storage systems, where disks are not identical.

Instead, the problem only requires a uniform ratio of the load to the storage capacity is identical

for each disk. They develop an algorithm that can always pack a (1 − 1
(1+

√
Cmin)2

)-fraction of

items, where Cmin is the minimum storage capacity of any disk. They also give a polynomial time

approximation scheme for this problem. Kashyap and Khuller [56] studied the data placement

problem for homogeneous storage systems where data items may have different sizes, and give a

polynomial time approximation scheme.

17

2.2 Generalized Broadcasting and Gossiping

The simplest problem under our model in generalized broadcasting and gossiping is the single-

source broadcast problem. There are ∆ data items stored on a single node (the source). We

need to broadcast all items to all N − 1 remaining nodes. This problem was solved optimally by

Cockayne, Thomason and Farley [23, 29]. The schedule takes 2∆ − 1 + blog Nc rounds for odd N

and
⌈

∆(N−1)−2blog2 Nc+1
bN/2c

⌉
+ blog Nc rounds for even N .

One general problem of interest is the data migration problem when data item i resides in

a specified (source) subset Si of nodes, and needs to be copied to a (destination) subset Di. This

problem is more general than multi-source multicast problem where we assumed that |Si| = 1

and that all the Si’s are disjoint. For the data migration problem we have developed a 9.5-

approximation algorithm [59]. While this problem is a generalization of single-source broadcast,

multi-source broadcast, and the multi-source multicast problem (and clearly also NP-hard since

even the special case of multi-source multicast is NP-hard), the bounds developed in [59] are not

as good as the bounds we obtain for the specific problems. The methods used for single-source

multicast and multi-source broadcast are completely different from the algorithm in [59]. Using the

methods in [59] one cannot obtain additive bounds from the optimal solution. The algorithm for

multi-source multicast presented in Chapter 5 is a simplification of the general algorithm developed

[59], and we obtain a much better approximation factor of 4. By using new ideas we can improve

it to 3 + o(1).

Hall et al. [42] studied a special case of the data migration problem. Given a specified

subset of nodes in which each data item resides, and a set of move operations, where each move

operation specifies which data item needs to be moved from one node to another, the problem is to

schedule these move operations to minimize makespan. Without space constraints, this problem is

can be reduced to edge-coloring on a multigraph. With space constraints, they give approximation

algorithms using bypass nodes and without bypass nodes.

Many generalizations of gossiping and broadcasting have been studied before. For example,

the paper by Liben-Nowell [72] considers a problem very similar to multi-source multicast with

18

∆ = N . However, the model that he uses is different than the one that we use. In his model, in each

telephone call, a pair of nodes can exchange all data items that they know (i.e., long messages).

The objective is to simply minimize the total number of phone calls required to convey data item

i to set Di of nodes. In our case, since each data item might take considerable time to transfer

between two nodes, we cannot assume that an arbitrary number of data items can be exchanged

in a single round (i.e., we allow only short messages). Several other papers use the same telephone

call model [6, 16, 41, 51, 88]. Liben-Nowell [72] gives an exponential time exact algorithm for the

problem.

Other related problem that has been studied is the set-to-set gossiping problem [70, 81]

where we are given two possibly intersecting sets A and B of nodes and the goal is to minimize

the number of calls required to inform all nodes in A of all the items known to members in B.

The work by Lee and Chang [70] considers minimizing both the number of rounds as well as the

total number of calls placed. The main difference is that in a single round, an arbitrary number of

items may be exchanged. For a complete communication graph they provide an exact algorithm

for the minimum number of calls required. For a tree communication graph they minimize the

number of calls or number of rounds required. Liben-Nowell [72] generalizes this work by defining

for each node i the set of relevant items that they need to learn. This is just like our multi-source

multicast problem with ∆ = N , except that the communication model is different, as well as the

objective function. The work by [76] also studies a set-to-set broadcast type problem, but the cost

is measured as the total cost of the broadcast trees (each edge has a cost). The goal is not to

minimize the number of rounds, but the total cost of the broadcast trees. In [34] they also define a

problem called scattering which involves one node broadcasting distinct messages to all the other

nodes (very much like our single-source multicast, where the multicast groups all have size one and

are disjoint).

19

2.3 Broadcasting in Two-tier Communication Networks

Broadcasting efficiently is an essential operation and many works are devoted to this under a

number of communication models (see [81, 44, 55, 9, 12] and references therein). For example,

Elkin-Kortsarz [28] consider minimizing the broadcast time in arbitrarily connected graphs, with

the property that only adjacent nodes in the graph may communicate. However, the approxi-

mation guarantee is O(log n
log log n). The postal model [9] captures the communication latency when

passing a message, and optimal broadcast algorithm was developed. The LogP model [24] suggests

an alternative framework when dealing with nodes in a single cluster, and it captures both the

communication latency and throughput in the network. Broadcasting algorithms [55] for the LogP

model have been developed and shown to be optimal. However, all algorithms under the above

models only work under homogeneous environment.

Various models for heterogeneous environments have been proposed in the literature. One

general model is the one proposed by Bar-Noy et al. [8] where the communication costs between

links are not uniform. In addition, the sender may engage in another communication before the

current one is complete. An approximation algorithm with a guarantee of O(log k) is given for the

operation of performing a multicast of size k. Another simple model for heterogeneous networks of

workstations was proposed by Banikazemi et al. [7]. In this model, heterogeneity among processors

is modeled by a non-uniform speed of the sending processor. A heterogeneous cluster is defined as

a collection of processors p1, p2, . . . , pn in which each processor is capable of communicating with

any other processor. Each processor has a transmission time which is the time required to send a

message to any other processor in the cluster. Thus the time required for the communication is a

function of only the sender. Each processor may send messages to other processors in order, and

each processor may be receiving only one message at a time. They proposed a simple heuristic

called the Fastest Node First (FNF) heuristic, which was studied further by Liu [73] and by Khuller

and Kim [57, 62]. However, in this model it is assumed that the time taken by a processor to send

a message to any other processor is the same. This is the main limitation of the model.

Lowekamp and Beguelin [74] considered the same two-tier communication network model

20

as in our work in Chapter 6. However, the heuristics they proposed for broadcasting may produce

solutions arbitrarily far from optimal.

2.4 Coordinated Data Collection

Many works have been done to provide ways to deliver data by not following the default network

route. Although some works exist on multipoint-to-point aggregation mechanisms at the IP layer

[5, 17], such solutions have focused on reduction of overheads due to small packets (e.g., ACKs) and

usually require the use of an active networks framework which is not currently widely deployed over

the public Internet. Another approach is application-level re-routing, which is used to improve end-

to-end performance, or provide efficient fault detection and recovery for wide-area applications.

For instance, in [84] the authors perform a measurement-based study of comparing end-to-end

round-trip time, loss rate, and bandwidth of default routing vs alternate path routing. Their

results show that in 30% to 80% of the cases, there is an alternate path with significantly superior

quality. Their work provides evidence for existence of alternate paths which can outperform default

Internet paths. Other frameworks or architectures which consider re-routing issues include Detour

[83] and RON [2]. The Detour framework [83] is an informed transport protocol. It uses sharing

of congestion information between hosts to provide a better “detour path” (via another node)

for applications to improve the performance of each flow and the overall efficiency of the network.

This work also provides evidence of potential long-term benefits of “detouring” packets via another

node by comparing the long-term average properties of detoured paths against default Internet

paths. The Resilient Overlay Network (RON) [2] is an architecture allowing distributed Internet

applications to detect failure of paths (and periods of degraded performance) and recover fairly

quickly by routing data through other (than source and destination) hosts. It also provides a

framework for implementing expressive routing policies. The above mentioned re-routing schemes

focus on architectures, protocols, and mechanisms for accomplishing application-level re-routing

through the use of overlay networks. They provide evidence that such approaches can result

in significant performance benefits. We consider a similar environment (i.e., application-level

21

techniques in an IP-type wide-area network) in Chapter 7. However, an important distinction is

that previous works (except ours [21, 22]), do not consider coordination of multiple data transfers.

All data transfers are treated independently, and each takes the “best” application-level route

available. We refer to such techniques as “non-coordinated” data transfers. In contrast, our goal

is to construct application-level coordinated data transfers.

22

Chapter 3

Single-Source Multicasting

In this chapter1, we consider single-source multicasting problem, where there is one source disk s

that has all ∆ items and others do not have any item in the beginning, and we would like to send

item i to disks in set Di. We develop an algorithm where Di can be an arbitrary subset of disks.

The number of rounds required by our algorithm is at most ∆+OPT where OPT is the minimum

number of rounds required for this problem. Our algorithm is obviously a 2-approximation for

the problem, since ∆ is a lower bound on the number of rounds required by the optimal solution.

We may apply this algorithm to create a new data layout from one server to servers at different

locations, where each item has to distribute to different subset of servers.

3.1 Problem Specification

Suppose we have N disks and ∆ data items. The single-source multicast problem is defined as

follows:

Single-source multicast. There are ∆ data items stored on a single disk (the source). We

need to send data item i to a specified subset Di of disks. Figure 1.1 shows the initial and target

layouts, and their corresponding Di’s for a single-source multicast instance when ∆ is 4. Our goal

is to find a schedule using the minimum number of rounds, that is, minimizing the makespan,

subject to the following communication model.

3.1.1 Model

We assume that the underlying network is complete and the data items are all of the same size;

in other words, it takes the same amount of time to migrate an item from one disk to another.

The crucial constraint is that each disk can participate in the transfer of only one item—either
1This is joint work with S. Khuller and Y. Kim [61, 58].

23

as a sender or receiver. This is the same model as in the work by [42, 3] where the disks may

communicate on any matching. For example, Storage Area Networks support a communication

pattern that allows for devices to communicate on a specified matching. Moreover, as we do not

use any bypass disks, all data is only sent to disks that desire it.

Note that after a disk receives item i, it can be a source of item i for other disks that have

not received the item as yet.

3.2 Algorithm Single-Source Multicast

Our algorithm consists of two phases. In the first phase, we make exactly b|Di|/2c copies for all

items i. Once each item i has b|Di|/2c copies, in second phase we can finish migrating one item at

each round by copying from the current copies to the remaining b|Di|/2c disks in Di which have

not received item i as yet and using the source disk to make another copy if |Di| is odd.

It is easy to see that the second phase can be scheduled without conflicts as we deal with

only one item in each round. For the first phase, let us consider the simple example shown in

Figure 3.1. In this example, all Di are identical and include all disks (thus the problem is the

same as single-source broadcast [23, 29]) and ∆ = 4, |Di| = 12 for each item i. At each round,

the source disk makes a new copy. For other items, the numbers of copies are doubled if possible.

Consider Round 4. Since there are four copies of item 1, only two copies need to be created to

make |Di|/2 = 6 copies. For items 2 and 3, we can double the number of copies, and a new copy

for item 4 is created by the source disk.

Without loss of generality, we assume that |D1| ≥ |D2| ≥ · · · ≥ |D∆| (otherwise renumber

the items). Let di be the largest index such that 2di ≤ |Di|. For example, if |Di| = 12, then di = 3.

Phase I. At the t-th round, we do the following.

1. The source disk s creates a new copy for item t if t ≤ ∆.

2. For items j (j < t), double the number of copies until the number of copies becomes b|Dj |/2c.

In other words, if the current number of copies of item j is less than or equal to 2dj−2,

24

1

1

1 4

1

2 1

2 1 3 1 2 1

2 1 3 3 1 2 1

1 2 1 2

Round 1

Round 2

Round 3

Round 4

Source

Source

Source

Source

Figure 3.1: An example of a single-source broadcast instance.

every disk having item j makes another copy of it so that the number of copies is doubled.

Otherwise if the current number of copies of item j is 2dj−1, then only b|Dj |/2c−2dj−1 disks

need to make copies (thus the number of copies of item j becomes exactly b|Dj |/2c).

Phase II. After Phase I, each item j has exactly b|Dj |/2c copies. Therefore, at each round, we

finish the migration of one item. At the t-th round, we copy item t from the current copies to the

remaining b|Dt|/2c disks in Dt which did not receive item t as yet, and we use the source disk to

make one more copy if |Dt| is odd.

Figure 3.2 and Figure 3.3 show an example of data transfers in Phase I and Phase II, where

|D1|, |D2|, and |D3| are 16, 12, and 8, respectively (i.e., all |Di| are even).

Since migrations of several items happen at the same time in Phase I, and Di’s are arbitrary,

25

we need to carefully choose which subset of disks will participate in the migration of each item.

We explain the details of how we can perform Phase I without conflicts in the next section.

D1

Round 1

D2 D3

D1 Round 2

D2 D3

D1
Round 3

D2 D3

D1

Round 4

D3

D1 Round 5

D2 D3

Done

D2 D3

D1

D2

SourceSource Source

Source Source Source

Figure 3.2: An example of Phase I in Algorithm Single-Source Multicast.

Round 1 Round 2 Round 3 Done

D2 D3

D1

D2 D3

D1

D2 D3

D1

D2 D3

D1

Figure 3.3: An example of Phase II in Algorithm Single-Source Multicast.

3.3 Details of Phase I

Recall that we assume that |D1| ≥ |D2| ≥ · · · ≥ |D∆| and make copies starting from D1, D2,

Let Dp
i be the disks in Di that participate in either sending or receiving item i at the (i + p)-th

round. Then the size of Dp
i should be

|Dp
i | =




2p if p ≤ di − 1

2
(⌊

|Di|
2

⌋
− 2di−1

)
if p = di

26

D0
i is the first disk receiving i from the source s, and the size is doubled at each round until the

number of copies becomes b|Di|/2c. Figure 3.4 shows how disks in Dp
i behave in Phase I where

|Di| = 24 + 22 + 21.

We build Dp
∆ first as follows. For Dd∆

∆ , choose 2(b|D∆|/2c − 2d∆−1) disks arbitrarily from

D∆. When we choose Dd∆−1
∆ , choose b|D∆|/2c−2d∆−1 disks from Dd∆

∆ and choose 2d∆ −b|D∆|/2c

disks from D∆ \ Dd∆
∆ so that the size of Dd∆−1

∆ is 2d∆−1. For each Dp
∆ (p < d∆ − 1), choose 2p

disks from Dp+1
∆ . Note that for all p, exactly half of disks in Dp

∆ are included in Dp−1
∆ (which will

be used as senders) and the remaining half is not included (which will be used as receivers). For

example, if the size of D∆ is 12, then we choose 1, 2, 4 disks for Dp
∆ (p = 0, 1, 2) respectively and

for D3
∆, include 2 disks from D2

∆ and 2 disks from D∆ \ D2
∆.

Source

Source

Source

Round 5Round 4

Round 3

Source

Round 2Round 1

Source

D1
4D2

3

D2
1

D1
1

D0
5

D0
4

D0
1

D3
2

D1
3

D0
3

D2
2

D1
2

D4
1

D3
1

D0
1

Figure 3.4: Behavior of disks in Di in Phase I.

We now decide Dp
i , given all Dp′

j (j > i). At the (i + p)-th round (when disks in Dp
i

27

participate in migration for item i), disks in Di+p−j
j for all j (i < j ≤ min(i+p,∆)) also participate

in either sending or receiving item j at the same time. We have to decide which disks belong to

Dp
i to avoid conflicts with Di+p−j

j s (j > i).

Consider Ddi
i . The set should not be overlapped with any set Di+di−j

j (j > i) since they

also participate in migration at the (i + di)-th round. Therefore we define

D′
i = Di −

∆⋃
j=i+1

Di+di−j
j

and choose Ddi
i from D′

i. Similarly, set Ddi−1
i should not be overlapped with any set Di+di−1−j

j ,

j > i. Therefore, we define

D′′
i = Di −

∆⋃
j=i+1

Di+di−1−j
j

and choose set Ddi−1
i from D′′

i . Figure 3.5 shows how to choose disks in Dp
i in Phase I where

|Di| = 24 + 22 + 21. Note that half of Ddi
i should be included in Ddi−1

i (to be senders) and the

remaining half should be excluded from Ddi−1
i (to be receivers). For Dp

i (p < di − 1), we can

choose half the disks from Dp+1
i .

D2
i+1

D1
i+2D2

i+2

D0
i+3

D3
i

D0
i+4

D1
i+3

D3
i+1

D4
iD4

i

D′′
iD′

i

Figure 3.5: Choosing disks in Dp
i in Phase I.

Lemma 3.3.1 We can find a migration schedule in which we perform every round in phase I

without conflicts.

28

Proof First we show that there are enough disks to build Dp
i as described above. Because

|Dp
j | ≤ 2p,

|D′′
i | =

∣∣∣∣∣∣Di −
∆⋃

j=i+1

Di+di−1−j
j

∣∣∣∣∣∣
≥ |Di| −

∆∑
j=i+1

2i+di−1−j

≥ |Di| −
di−2∑
m=0

2m

> |Di| − 2di−1

Therefore, even after excluding b|Di|/2c−2di−1 disks in D′
i from D′′

i , we have at least |Di|/2 ≥ 2di−1

disks, from which we can take 2di−1 disks for Ddi−1
i . Also we know that

|D′
i| =

∣∣∣∣∣∣Di −
∆⋃

j=i+1

Di+di−j
j

∣∣∣∣∣∣ > |Di| − 2di .

Because we only need 2b|Di|/2c − 2di disks for Ddi
i , we have enough disks to choose from.

Now we argue that there is no conflict in performing the migration if we do the migration

according to Dp
i . Since Ddi

i ⊂ D′
i and D′

i

⋂
Di+di−j

j = ∅ (j > i), there is no conflict between i and

j at the (i + di)-th round. For p ≤ di − 1, since Dp
i ⊂ D′′

i and D′′
i

⋂
Di+p−j

j = ∅ (j > i), there is

no conflict between i and j at the (i + p)-th round. Therefore, we can perform the migration in

Phase I without conflicts. ut

3.4 Analysis

We prove that our algorithm uses at most ∆ more rounds than the optimal solution for single-source

multicasting. Let us denote the optimal makespan of an migration instance I as C(I).

Theorem 3.4.1 For any migration instance I, C(I) ≥ max1≤i≤∆(i + blog |Di|c).

Proof Consider the instance where there is no overlap among Di’s. After a disk in Di receives i

from s for the first time, we need at least blog |Di|c more rounds to make all disks in Di receive i even

if s copies item i several times after the first copy. Therefore, C(I) ≥ max1≤i≤∆(f(i) + blog |Di|c)

29

where f(i) is the round when Di receives the first copy from s. Because s can be involved in copying

only one item at a time, f(i) 6= f(j) if i 6= j. Also copying the same item from s more than once

during the first ∆ rounds will only increase f(i) of some sets. Therefore, C(I) can be minimized

by choosing f(i) as a permutation of 1, . . . ,∆. Now we show that max1≤i≤∆(f(i) + blog |Di|c) ≥

max1≤i≤∆(i + blog |Di|c) for any permutation f(i). Suppose there is a set Di that f(i) 6= i when

max1≤i≤∆(f(i) + blog |Di|c) is minimum. Let Di be the set which have the smallest f(i) among

such sets. Then f(i) < i and there should be a Dj such that j = f(i) and f(j) > j. Even if we

exchange the order of two sets, the value does not increase because

max(f(i) + blog |Di|c, f(j) + blog |Dj |c) = f(j) + blog |Dj |c

≥ max(j + blog |Dj |c, f(j) + blog |Di|c).

Thus when f(i) = i for all i, max1≤i≤∆(f(i) + blog |Di|c) is minimized. ut

Lemma 3.4.2 The total makespan of our algorithm is at most max1≤i≤∆(i + blog |Di|c) + ∆.

Proof In phase I, Di receives i from s at the i-th round for the first time. Because the number

of copies doubles until it reaches b|Di|/2c, the number of copies of item i reaches b|Di|/2c in

i + blog |Di|c rounds. Phase II takes at most ∆ rounds because we finish one item in each round.

Therefore, the lemma follows. ut

Corollary 3.4.3 The total makespan of our algorithm is at most the optimal makespan plus ∆.

Proof Follows from Lemma 3.4.1 and Lemma 3.4.2. ut

Theorem 3.4.4 We have a 2-approximation algorithm for the single-source multicasting problem.

Proof Because ∆ ≤ max1≤i≤∆(i + blog |Di|c), the algorithm is 2-approximation. ut

30

Chapter 4

Multi-Source Broadcasting

Suppose we have N disks and ∆ data items. Disk i, 1 ≤ i ≤ ∆, has item numbered i. The goal for

multi-source broadcasting problem is to send each item i to all N disks, for all i. In this chapter1,

we consider this problem and present an algorithm that takes at most 3 more rounds than the

optimal solution.

4.1 Problem Specification

Suppose we have N disks and ∆ data items. The multi-source broadcast problem is defined as

follows:

Multi-source broadcast. There are ∆ data items, each stored separately at a single

disk. These need to be broadcast to all disks. We assume that data item i is stored on disk i,

for i = 1 . . . ∆. Our goal is to find a schedule using the minimum number of rounds, that is,

minimizing the makespan, subject to the same communication model described in Section 3.1.1.

4.2 Algorithm Multi-Source Broadcast

For the high-level description we assume for simplicity that N is a multiple of ∆. The main idea

behind the algorithm is the following. We first partition the disks into ∆ equally sized groups

G1, . . . , G∆. Group Gi contains the source disk of item i. We now perform broadcasts in parallel

for each group so that each disk in group Gi contains item i. We now make N
∆ new groups of size

∆ by picking one disk from each group. Since each disk contains a different item, this is exactly

the gossip problem for a set of ∆ disks. We solve all these gossip problems in parallel. Now all

disks contain all the items. Figure 4.1 shows an example to illustrate this main idea, when N = 18

and ∆ = 6. The actual algorithm is a little more complicated since it works for arbitrary values
1This is joint work with S. Khuller and Y. Kim [61, 58].

31

Figure 4.1: An example to illustrate the main idea behind Algorithm Multi-Source Broadcast.

of N , and is described as follows.

1. We partition the N disks into ∆ sets Gi such that disk i ∈ Gi, for all i = 1 . . . ∆. Let q be

⌊
N
∆

⌋
and r be N − q∆. |Gi| = q + 1 for i = 1 . . . r, and |Gi| = q for i = r + 1 . . . ∆. We

do broadcasts in parallel for each group Gi of item i. This takes maxdlog |Gi|e rounds by

doubling the number of items in each round. (Each disk that receives an item, sends it out

in each subsequent round until all the disks in the group have the item.)

2. We now partition the N disks into q−1 groups of size ∆ each, by picking one disk from each

Gi, and one group of size ∆ + r that contains all the remaining disks.

3. Consider the first q − 1 groups; each group consists of ∆ disks, with each having a distinct

item. Using the gossiping algorithm in [11], every disk in the first q − 1 groups receives all

∆ items in 2∆ rounds2.

4. In parallel with Step 3, consider the last gossiping group, for each of the items numbered
2The number of rounds required is 2∆ if ∆ is odd, otherwise it is 2(∆ − 1)

32

1, . . . , r, there are exactly two disks having this item. For each of the items numbered

r + 1, . . . ,∆, there is exactly one disk having this item. Note that each disk has exactly one

item. If r is zero, we can finish all transfers in 2∆ rounds using the algorithm in [11]. For

non-zero r, we claim that all disks in this gossiping group still receive all items in 2∆ rounds.

We divide the disks in the last gossiping group into two groups, GX and GY of size ∆ −
⌊

∆−r
2

⌋
and r +

⌊
∆−r

2

⌋
respectively. Figure 4.2 shows how the last group of disks in Step 4

in Algorithm Multi-Source Broadcast is partitioned into GX and GY . Each of the items

numbered 1, . . . , r appear in both GX and GY ; disks having items r + 1, . . . ,∆− ⌊
∆−r

2

⌋
are

in GX , and the remaining disks (having items ∆ − ⌊
∆−r

2

⌋
+ 1, . . . ,∆) are in GY . Note that

the sizes of the two groups differ by at most 1. The general idea of the algorithm is as follows

(The details of these step are non-trivial and covered in the proof of Lemma 4.3.1):

(a) The Gossip algorithm in [11] is applied to each group in parallel. After this step, each

disk has all the items belonging to its group.

(b) In each round, disks in GY send item i to disks in GX , where i is ∆−⌊
∆−r

2

⌋
+1, . . . ,∆.

Note that only disks in GY have these items, but not the disks in GX . Since the group

sizes differ by at most 1, the number of rounds required is about the same as the number

of items transferred.

(c) The step is similar to the above step but in the reverse direction. Item i, where i is

r + 1, . . . ,∆ − ⌊
∆−r

2

⌋
, is sent from GX to GY .

Thus, our algorithm takes
⌈
log N

∆

⌉
+ 2∆ rounds. The first term comes from the broadcast

in Step 1. The second term comes from the number of rounds required by the gossiping algorithm

in Steps 3 and 4.

4.3 Analysis

Lemma 4.3.1 For a group of disks of size ∆ + r, where 1 ≤ r < ∆, if every disk has one item,

exactly two disks have items 1, . . . r, and exactly one disk has item r+1, . . . ,∆, all disks can receive

33

...

...

... ...

r

Item 1 2 ... r−1 r r+1

∆ − r

GX

∆∆ − d∆−r
2

e

GY

Figure 4.2: Partitioning the last group of disks in Step 4 in Algorithm Multi-Source Broadcast

into GX and GY .

all ∆ items in 2∆ rounds.

Proof We have three cases.

Case I: If ∆ + r is even: Step 4a can be done in 2(∆ − ∆−r
2) rounds because ∆ − ∆−r

2 is the

group size. In Steps 4b and 4c, we can finish one item in one round since the size of the two

groups is the same. All disks can participate in transferring data without any conflict. There are

(∆−r
2)+ (∆− r− ∆−r

2) items to be sent in these 2 steps. Thus, the total number of rounds needed

is (2(∆ − ∆−r
2)) + (∆−r

2) + (∆ − r − ∆−r
2) = 2∆.

Case II: If ∆+r is odd and |GX | = ∆− ∆−r−1
2 is even: Step 4a can be done in 2(∆− ∆−r−1

2 −1)

rounds. In Step 4b, ∆−r−1
2 items have to be copied to GX but |GY | is smaller than |GX | by one.

Instead of keeping one disk idle all the time, we shift the disk not receiving an item in each round.

After this step finishes, only ∆−r−1
2 disks in GX miss an item, while other disks in GX receive all

∆−r−1
2 items. By using one more round, all disks in GX can receive all items needed from GY . In

Step 4c, ∆ − r − ∆−r−1
2 items have to be copied to GY , and we have enough source disks in GX .

Thus, it requires (2(∆ − ∆−r−1
2 − 1)) + (∆−r−1

2 + 1) + (∆ − r − ∆−r−1
2) = 2∆ rounds.

Case III: If ∆ + r is odd and |GX | = ∆ − ∆−r−1
2 is odd: Since |GX | is odd, Step 4a takes

2(∆ − ∆−r−1
2) rounds. We claim that in this step, in addition to receiving items from its group,

all disks in GX , except the disk that has item 1 originally, have item ∆, and all disks in GY have

item ∆ − ∆−r−1
2 (i.e., the highest-numbered item in GX). We use the algorithm in [11] to form a

34

schedule for GX with the constraint that (i) the disk that has item 1 originally should be idle during

the first two rounds, and (ii) the disk that received item ∆ − ∆−r−1
2 , except the disk having item

1 originally, should be idle in the next two rounds. It is not difficult to check that such a schedule

exists. The disk that has item ∆ − ∆−r−1
2 originally is idle during the last 2 rounds. We sort the

disks in GX according to the item number it has, and label the disks as disk 1, 2, . . . ,∆ − ∆−r−1
2 .

We also sort disks in GY , but label the disks as 2, 3, . . . ,∆− ∆−r−1
2 . Disk 1 in GY is an imaginary

disk which does not exist. Whenever disk x and y in GX exchange data in the gossiping schedule

of GX , disk x and y in GY also exchange data in the same round. Moreover, starting at round 3,

the idle disk in GX , which should have item ∆ − ∆−r−1
2 , will exchange data with the idle disk in

GY , which should have item ∆. If a disk in GY is supposed to exchange data with disk 1 in GY

(i.e., the imaginary disk), the disk would actually be idle in that round. Here we give an example,

as shown in Figure 4.3, with ∆ = 6 and r = 3. GX has 5 items and GY has 4 items. Performing a

gossip operation in GX and GY takes 10 rounds (twice the size of the larger group). Notice that

in 10 rounds, we are also able to send the highest-numbered item (item 6) in GY to all the disks

in GX except disk 1. At the same time, we are able to send the highest-numbered item (item 5)

in GX to all the disks in GY . Thus when we send items between GX and GY we are able to save

rounds.

Note that we just exploit the idle cycles in the gossiping schedule. The number of rounds

required is still 2(∆− ∆−r−1
2). One disk in GX always exchanges data with one disk in GY except

in the first two rounds. All disks in GX and GY , except disk 1 in GX , receive one extra item from

the other group.

In Steps 4b and 4c, the analysis is similar to that in Case II except that we save one round

in each step because each disk has already received one item from the other group in Step 4a.

The disk in GX which does not have item ∆, can receive it in the last round of Step 4b because

∆−r−1
2 + 1 ≤ |GY |.

Thus, the total number of rounds is 2(∆−∆−r−1
2)+(∆−r−1

2)+(∆−r−∆−r−1
2 −1) = 2∆. ut

The proof of the following theorem follows trivially from the above Lemma.

35

Theorem 4.3.2 Our multi-source broadcast algorithm takes
⌈
log N

∆

⌉
+ 2∆ rounds.

GX GYGX GYGX GY

1

2

3

4

5

1

2

3

6

Start After 2 rounds

1

2,3

2,3

4,5

4,5

1,2

1,2

3,6

3,6

1,2

1,2,3

2,3,5

4,5,6

3,4,5

1,2

1,2,6

3,5,6

2,3,6

1,2,4

1,2,3,5

2,3,5,6

1,4,5,6

2,3,4,5

1,2,6

1,2,5,6

3,5,6

1,2,3,6

1,2,4,5

1,2,3,5,6

2,3,4,5,6

1,3,4,5,6

1,2,3,4,5

1,2,5,6

1,2,3,5,6

2,3,5,6

1,2,3,6

1,2,3,4,5

1,2,3,4,5,6

1,2,3,4,5,6

1,2,3,4,5,6

1,2,3,4,5,6

1,2,3,5,6

1,2,3,5,6

1,2,3,5,6

1,2,3,5,6

After 4 rounds

After 8 roundsAfter 6 rounds

GX GYGX GYGX GY

After 10 rounds

Figure 4.3: An example of Case III in Algorithm Multi-Source Broadcasting with ∆ = 6 and

r = 3. Recently received items are in bold.

To show our algorithm is close to optimal, we will show a lower bound of any algorithm for

the problem.

Theorem 4.3.3 The time required for any migration instance of multi-source broadcasting is at

least
⌊
log N

∆

⌋
+ 2(∆ − 1).

Proof Consider a transfer graph of the optimal solution, where vertices are disks and an edge

from i to j represents one item that is copied from disk i to disk j at a certain time. Each of the

36

∆ source disks needs ∆ − 1 items. For each of the remaining N − ∆ disks, they need all ∆ items.

Therefore, there should be ∆(∆− 1)+ (N −∆)∆ = ∆(N − 1) edges (corresponding to the number

of transfers).

In the initial
⌊
log N

∆

⌋
rounds, some disks have to be idle because of the limited number of

sources. For example, if there are x non-empty disks at a certain round, one can perform at most

x transfers. If all the transfers send data to other empty disks, one can perform 2x transfers in

the next round, while other schemes cannot support 2x transfers in the next round. Therefore, the

best scheme is to keep on doubling all items in each round until all disks have at least one item.

This takes at least
⌊
log N

∆

⌋
rounds. Now, at most N − ∆ transfers are done.

The total degree of the transfer graph after removing the edges corresponding to the first

⌊
log N

∆

⌋
rounds is at least 2(∆(N − 1) − (N − ∆)) = 2N(∆ − 1). Note that each disk can send

or receive only one item in a round. All N disks can reduce the degrees of the graph by N in a

round. The total time is at least
⌊
log N

∆

⌋
+ 2N(∆−1)

N =
⌊
log N

∆

⌋
+ 2(∆ − 1). ut

Thus, our solution takes no more than 3 rounds more as compared to the optimal.

37

Chapter 5

Multi-Source Multicasting

Suppose we have N disks. Disk i, 1 ≤ i ≤ ∆ ≤ N , has data item i. The goal for multi-source

multicasting problem is to send item i to a subset Di of disks that do not have item i. (Hence

i /∈ Di.) In this chapter1, we first present a simple polynomial-time 4-approximation algorithm for

this problem. We then show how to improve it to give a (3 + o(1))-approximation algorithm. We

also present a 3-approximation algorithm for the special case in which the source disks are not in

any subset Di. After that we present a 3-approximation algorithm that allows the use of bypass

disks, where bypass disks are disks that are used as temporary holding points of data. We also

look at a communication model where the network does not have unlimited bandwidth. Under this

model, we have constant factor approximation algorithms for the single-source multicast, multi-

source broadcast, and multi-source multicast problems. Lastly in Section 5.6 we show that finding

a schedule with minimum number of rounds is NP-hard.

5.1 Problem Specification

Suppose we have N disks and ∆ data items. The multi-source multicast problem is defined as

follows:

Multi-source multicast. There are ∆ data items, each stored separately at a single disk.

Data item i needs to be sent to a specified subset Di of disks. We assume that data item i is stored

on disk i, for i = 1 . . . ∆. Our goal is to find a schedule using the minimum number of rounds, that

is, minimizing the makespan, subject to the same communication model described in Section 3.1.1.
1This is joint work with S. Khuller and Y. Kim [61, 58].

38

5.1.1 Background

Our algorithms make use of a known result on edge coloring of multi-graphs. Given a graph G

with max degree ∆G and multiplicity µ the following result is known (see [14] for example). Let

χ′ be the edge chromatic number of G.

Theorem 5.1.1 (Vizing [90]) If G has no self-loops then χ′ ≤ ∆G + µ.

5.2 Algorithm Multi-Source Multicast

A high-level description of the algorithm is as follows: we first create a small number of copies

of each data item i (the exact number of copies will be dependent on |Di|). We then assign each

newly created copy to a set of disks in Di, such that it will be responsible for providing item i

to those disks. The assignment will be used to construct a transfer graph, where each directed

edge labeled i from v to w indicates that disk v must send item i to disk w. We will then use an

edge-coloring of this graph to obtain a valid schedule [14]. The main difficulty here is that a disk

containing an item as its source, may also be the destination for several other data items. Before

we describe the algorithm, we first define a value β which is used in the algorithm.

We define β to be maxj=1...N |{i|j ∈ Di}|. In other words, β is an upper bound on the

number of different sets Di to which a disk j may belong. Note that β is a lower bound on the

optimal number of rounds, since the disk that attains the maximum, needs at least β rounds to

receive all the items i such that j ∈ Di, because it can receive at most one item in each round.

Algorithm Multi-Source Multicast

1. We first compute a disjoint collection of subsets of disks Gi, i = 1 . . . ∆. We ensure that

Gi ⊆ Di and |Gi| =
⌊
|Di|

β

⌋
. (In Lemma 5.2.1, we will show how such Gi’s can be obtained

by using network flows.)

2. Since the Gi’s are disjoint, we have the source for item i (namely disk i) send the data to

the set Gi using dlog |Di|e + 1 rounds as shown in Lemma 5.2.2. Note that disk i may itself

belong to some set Gj . Let G′
i = {i} ∪ Gi. In other words, G′

i is the set of disks that have

39

item i at the end of this step.

3. We now create a transfer graph as follows. Each disk is a node in the graph. We add directed

edges from each disk in G′
i to disks in Di \ Gi such that each node in G′

i sends item i to at

most β−1 disks and each node in Di\Gi receives item i from one disk in G′
i. (In Lemma 5.2.3

we show how that this can be done.) This ensures that each disk in Di receives item i, and

that each disk in G′
i does not send item i to more than β − 1 disks.

4. We now find an edge coloring of the transfer graph (which is actually a multigraph) and the

number of colors used is an upper bound on the number of rounds required to ensure that

each disk in Dj gets item j. (In Lemma 5.2.4 we derive an upper bound on the degree of

each vertex in this graph.)

5.2.1 Analysis

Lemma 5.2.1 (Step 1) There is a way to choose disjoint sets Gi for each i = 1 . . . ∆, such that

|Gi| =
⌊
|Di|

β

⌋
and Gi ⊆ Di.

Proof First note that the total size of the sets Gi is at most N .

∑
i

|Gi| ≤
∑

i

|Di|
β

=
1
β

∑
i

|Di|.

Note that
∑

i |Di| is at most βN by definition of β. This proves the upper bound of N on the

total size of all the sets Gi.

We now show how to find the sets Gi. We create a flow network with a source s and a

sink t. In addition we have two sets of vertices U and W . The first set U has ∆ nodes, each

corresponding to a disk that is the source of an item. The set W has N nodes, each corresponding

to a disk in the system. We add directed edges from s to each node in U , such that the edge (s, i)

has capacity
⌊
|Di|

β

⌋
. We also add directed edges with infinite capacity from node i ∈ U to j ∈ W

if j ∈ Di. We add unit capacity edges from nodes in W to t. We find a max-flow from s to t

in this network. The min-cut in this network is obtained by simply selecting the outgoing edges

from s. We can find a fractional flow of this value as follows: saturate all the outgoing edges from

40

s. From each node i there are |Di| edges to nodes in W . Suppose λi =
⌊
|Di|

β

⌋
. Send 1

β units of

flow along λiβ outgoing edges from i. Note that since λiβ ≤ |Di| this can be done. Observe that

the total incoming flow to a vertex in W is at most 1 since there are at most β incoming edges,

each carrying at most 1
β units of flow. An integral max flow in this network will correspond to

|Gi| units of flow going from s to i, and from i to a subset of vertices in Di before reaching t. The

vertices to which i has non-zero flow will form the set Gi. ut

Lemma 5.2.2 Step 2 can be done in maxidlog |Di|e + 1 rounds.

Proof First we assume that maxi |Di| > 2 and β ≥ 2 since otherwise the problem becomes

trivial.

We arbitrarily choose a new source disk s′i in each Gi and send item i from disk i to s′i.

Because a disk i may send item i to s′i and receive item j if i = s′j , this initial transfer can take 2

rounds unless the transfer makes odd cycles (we will consider the case of odd cycles later).

Because the sets Gi are disjoint, it takes dlog |Gi|e rounds to send item i from s′i to all

disks in Gi. The result follows from considering the non-trivial case where β ≥ 2, dlog |Gi|e ≤
⌈
log |Di|

β

⌉
≤ dlog |Di| − 1e.

Now let us consider the case of odd cycles. If any Gi in the odd cycle is of size at least 2,

then we can break the cycle by selecting other disk in Gi as s′i. Otherwise if the size of all Gi’s is

one, then this step can be done in 3 rounds (no broadcasting is needed inside Gi) and therefore

the lemma is true. ut

Lemma 5.2.3 Consider a transfer graph only for item i in Step 3. We can construct a transfer

graph for item i such that the in-degree of each node in Di \Gi from Gi is 1 and the out-degree of

each node in Gi, to Di \ Gi is at most β − 1.

Proof We divide each Di \ Gi into disjoint sets Di1, . . . , Dimi
where mi =

⌈
|Di|

β

⌉
such that

|Dij | = β − 1 for j = 1, . . . , mi − 1 and |Dimi
| = |Di \Gi| − (β − 1)(mi − 1). For each set Dij , we

choose a different disk from G′
i and add a directed edge from the disk to all disks in Dij . Because

41

|Dij | < β and each disk in Di \ Gi will have an incoming edge from one disk in G′
i, we have a

transfer graph as described in Step 3. ut

Lemma 5.2.4 The in-degree of any disk in the transfer graph is at most β. The out-degree of any

disk in the transfer graph is at most 2β − 2. Moreover, the multiplicity of the graph is at most 4.

Proof Note that each disk i may belong to at most β sets Dj . Due to its membership in set Dj

it may have one incoming edge from some disk in G′
j .

The out-degree of disk i is β−1 due to membership in the set G′
i. These are the β−1 edges

added in Step 3. In addition, i may be in some set Gk (and thus in G′
k); this may cause an extra

out-degree of β − 1. This gives a total out-degree of at most 2β − 2.

Each disk can be a source for two items because it can be the original source of an item

i and also belongs to Gk (k 6= i). Since the subgraph with edges for only one item is a simple

graph, for any pair of disks p, q, there can be two edges from p to q and two more edges in another

direction. Therefore, the multiplicity of the transfer graph is at most 4. ut

Theorem 5.2.5 The total number of rounds required for the multi-source multicast is maxidlog |Di|e+

3β + 3.

Proof Because of Lemma 5.2.4, we can find an edge coloring of the graph using at most 3β + 2

colors (see Theorem 5.1.1). Combining with Lemma 5.2.2, we can finish the multi-source multicast

in maxidlog |Di|e + 3β + 3 rounds. ut

Theorem 5.2.6 The total number of rounds required for the multi-source multicast problem is at

most 4OPT + 2.

Proof Let βj be |{i|j ∈ Di}|, i.e., the number of different sets Di, that disk j belongs to. Thus,

the in-degree of disk j in any solution (not using bypass disks) is βj . Consider any source disk si for

item i. In the transfer graph described in Step 3, its total degree is therefore βsi
+(β−1)+(β−1).

In the optimal solution, the out-degree of any disk si must be at least one, since si must send its

42

item to some other disk. Thus, OPT ≥ maxi(βsi
+ 1). The maximum degree of any source disk si

in the transfer graph is maxi βsi
+(β − 1)+ (β − 1) ≤ OPT +2β − 3. Consider any disk j which is

not the source, its total degree is βj +(β−1). Note that OPT ≥ maxj βj and β ≥ 2, the maximum

degree of any non-source disk is maxj 6=si
βj +(β−1) = OPT +(β−1) ≤ OPT +2β−3. Therefore,

the maximum degree of the transfer graph is at most OPT + 2β − 3. We have an algorithm that

takes at most (maxidlog |Di|e+ 1) + (OPT + 2β − 3) + 4 rounds. As maxidlog |Di|e and β are also

the lower bounds on the optimal number of rounds, the total number of rounds required is at most

4OPT + 2. ut

For the special case in which the source disks are not in any subset Di, we can develop

better bounds.

Corollary 5.2.7 When the source disks are not in any subset Di, the total number of rounds

required for the multi-source multicast is maxidlog |Di|e + 2β + 1.

Proof Step 2 can be done in maxidlog |Di|e rounds since we can save one round to send item

i to s′i. Also as the original sources do not belong to any Gi, the transfer graph in Step 4 has

out-degree at most β − 1 and multiplicity at most 2. Therefore, the corollary follows. ut

Thus we have a 3-approximation for this special case.

5.3 3 + o(1)-approximation Algorithm

In this section we present a polynomial-time approximation algorithm with a factor of 3 + o(1), as

β goes to infinity, for the Multi-Source Multicast problem.

In the previous algorithm, the sets Gi were disjoint. When the size of Di is small, say 2β−1,

the size of Gi is 1, and the sole disk in Gi is responsible for sending data to β − 1 disks, while

disk i is responsible for sending data to the remaining β − 1 disks. By allowing a disk to belong to

multiple Gi sets, we can decrease the number of disks for which disk i is responsible for sending

items. The out-degree of a disk in the transfer graph is reduced, and we can obtain a better bound.

43

Suppose a disk can now belong to upto p (≤ β) different Gi sets. In other words, imagine

that there are p slots in each disk, and each Gi will occupy exactly
⌊
p |Di|

β

⌋
slots. If Gi occupies a

slot in a disk, the disk will be responsible for sending the item to either
⌊

β
p

⌋
− 1 or

⌈
β
p

⌉
− 1 disks

in Di \ Gi.

Changes to the algorithm

• In Step 1, we create a modified flow network to compute a (not necessarily disjoint) collection

of subsets Gi, where |Gi| is
⌊
p |Di|

β

⌋
. In addition, each disk belongs to at most p subsets. We

show in Lemma 5.3.1 how such Gi’s can be obtained.

• In Step 2, although the Gi’s are not disjoint, sending items from si to Gi is actually another

smaller multi-source multicast problem, where β′, the upper bound on the number of different

destination sets (Gi) to which a disk j in some Gi may belong, is p. Lemma 5.3.2 describes

the details.

• In Step 3, if Gi occupies a slot in disk j, we would like the disk to satisfy either
⌊

β
p

⌋
− 1 or

⌈
β
p

⌉
−1 disks in Di \Gi. Moreover, we would like to keep the total out-degree of disk j to be

at most β − p, while disks in Gi together have to satisfy
⌊⌊

p |Di|
β

⌋
(β

p − 1)
⌋

disks in Di \ Gi.

We show in Lemma 5.3.3 how this can be achieved by a network flow computation. We also

show the source si is responsible for at most
⌈

β
p

⌉
disks.

Lemma 5.3.1 In Step 1, there is a way to choose sets Gi for each i = 1 . . . ∆, such that Gi

occupies exactly one slot in each of
⌊
p |Di|

β

⌋
disks, and Gi ⊆ Di. Moreover, each disk has p slots.

Proof

The basic idea of the proof is similar to that of Lemma 5.2.1.

First note that we have enough slots for Gi (we have N disks and each disk has p slots).

∑
i

⌊
p
|Di|
β

⌋
≤ p

β

∑
i

|Di| ≤ p

β
(βN) = pN.

Now we show how to assign Gi to the slots using a flow network. We create a flow network with

a source s and a sink t. We also have two sets of vertices U and W . The first set U has ∆ nodes,

44

each corresponding to an item. The set W has N nodes, each corresponding to a disk. We add

directed edges from s to each node i in U with capacity λi =
⌊
p |Di|

β

⌋
. We add unit capacity edges

from node i ∈ U to j ∈ W if j ∈ Di. We also add edges with capacity p from nodes in W to t. We

find a max-flow from s to t in this network. We can find a fractional flow of this value as follows:

saturate all the outgoing edges from s. From each node i there are |Di| edges to nodes in W . Send

λi
1

|Di| units of flow along each of the |Di| outgoing edges from i. Note that since λi
1

|Di| ≤
p
β ≤ 1

this can be done. Observe that the total incoming flow to a vertex in W is at most p since there

are at most β incoming edges, each carrying at most λi
1

|Di| ≤
p
β units of flow. The min-cut in this

network is obtained by simply selecting the outgoing edges from s. An integral max flow in this

network will correspond to |Gi| units of flow going from s to i, and from i to a subset of vertices

in Di before reaching t. The vertices to which i has non-zero flow will form the set Gi. The unit

capacity edges between U and W ensures that Gi only occupies one slot in each disk, and thus

|Gi| is exactly
⌊
p |Di|

β

⌋
. ut

Lemma 5.3.2 Step 2 can be done in maxi log
⌊
p |Di|

β

⌋
+ 3p + 4 steps.

Proof

Observe that sending items from disk i to Gi is just another smaller multi-source multicast

problem. The upper bound on the number of different destination sets (Gi) to which a disk j in

some Gi may belong is p. Therefore, using the 4-approximation algorithm described in the previous

section, we can send items to all disks in Gi in (maxi log
⌊
p |Di|

β

⌋
+2)+(p+((p−1)+(p−1)))+4 =

maxi log
⌊
p |Di|

β

⌋
+ 3p + 4 rounds (by Theorem 5.2.5). ut

Lemma 5.3.3 In Step 3, we can find a transfer graph to satisfy all requests in Di \Gi, where the

in-degree is at most β, the out-degree is at most (β − p) +
⌈

β
p

⌉
, and the multiplicity is at most

2(p + 1).

Proof To find out how many disks (in Di \ Gi) a disk j in Gi should send item i to, while

satisfying the constraints stated in the description of Changes to the algorithm, we create a

45

flow network with a source s and a sink t. We also have two sets of vertices U and W . The first

set U has ∆ nodes, each corresponding to an item. The set W has N nodes, each corresponding

to a disk. We add directed edges from s to each node i in U with capacity γi =
⌊⌊

p |Di|
β

⌋
(β

p − 1)
⌋
.

We add edges from node i ∈ U to j ∈ W if j ∈ Gi with capacity
⌈

β
p

⌉
− 1. We also add edges with

capacity β − p from nodes in W to t. We find a max-flow from s to t in this network. The min-cut

in this network is obtained by simply selecting the outgoing edges from s. We can find a fractional

flow of this value as follows: saturate all the outgoing edges from s. From each node i there are

|Gi| edges to nodes in W . Send γi/
⌊
p |Di|

β

⌋
units of flow along each of the |Gi| outgoing edges

from i. It is easy to see that γi/
⌊
p |Di|

β

⌋
≤ β

p − 1, and therefore we do not violate the capacity

constraints on edges from U to W . Observe that the total incoming flow to a vertex in W is at

most β−p since there are at most p incoming edges, each carrying at most β
p −1 units of flow. An

integral max flow in this network will correspond to γi units of flow going from s to i, and from i

to all vertices in Gi before reaching t. If f units of flow fare sent from node i ∈ U to node j ∈ W

means that disk j will send item i to f disks in Di \ Gi.

Construct a transfer graph, similar to the method stated in Lemma 5.2.3, to satisfy all disks

in Di \ Gi. As in Lemma 5.2.4, the in-degree of this transfer graph is at most β. For each disk

which belongs to some Gi, its out-degree is at most β − p. Among all disks in Di,
⌊
p |Di|

β

⌋
disks

are satisfied in Step 2 since they belong to Gi, and Gi can satisfy
⌊⌊

p |Di|
β

⌋
(β

p − 1)
⌋

disks in Step

3. The number of disks that still need item i are:

|Di| −
⌊
p
|Di|
β

⌋
−

⌊⌊
p
|Di|
β

⌋
(
β

p
− 1)

⌋
= |Di| −

⌊⌊
p
|Di|
β

⌋
β

p

⌋
≤ |Di| −

⌊
|Di| −

⌈
β

p

⌉⌋
=

⌈
β

p

⌉
.

Source si is responsible for all these disks. Therefore the out-degree of si is at most
⌈

β
p

⌉
, and the

total out-degree of a node is at most (β − p) +
⌈

β
p

⌉
.

Similar to Lemma 5.2.4, each disk can be a source for up to p + 1 items, because it can be

the original source of item i, and it also belongs to p different Gk (k 6= i) sets. Thus there are upto

p + 1 directed edges in each direction. ut

Theorem 5.3.4 The total number of rounds is maxi log
⌊
p |Di|

β

⌋
+ 2β +

⌈
β
p

⌉
+ 4p + 6. When p is

46

Θ(
√

β), the total number of rounds is minimized, and is equal to maxi log |Di| + 2β + O(
√

β).

Proof The number of rounds taken in Step 3 is 2β +
⌈

β
p

⌉
+ p + 2 from Lemma 5.3.3 and

Theorem 5.1.1. Combined with Lemma 5.3.2, the first result can be easily obtained. The second

result is obtained by substituting p with Θ(
√

β). ut

As maxi log |Di| and β are lower bounds of the problem, from Theorem 5.3.4 and as β goes

to infinity, we have a polynomial-time 3 + o(1)-approximation algorithm.

5.4 Allowing Bypass Disks

The main idea is that without bypass disks, only a small fraction of the N disks are included in

Gi for some i, if one disk requests many items while, on average, each disk requests few items. If

we allow bypass disks then we do not require that Gi is a subset of Di. With bigger Gi sets, we

can reduce the out-degree of the transfer graphs and thus reduces the total number of rounds.

Algorithm Multi-Source Multicast Allowing Bypass Disks

1. We define β as 1
N

∑
i=1...N |{j|i ∈ Dj}|. In other words, β is the average number of items a

disk requires, averaging over all disks. We arbitrarily choose a disjoint collection of subsets

Gi, i = 1 . . . ∆ with a constraint that |Gi| =
⌊
|Di|
dβe

⌋
. By allowing bypass disks, Gi is not

necessarily a subset of Di.

2. This is the same as Step 2 in the Multi-Source Multicast Algorithm, except that the source

for item i (namely disk i) may belong to Gj for some j.

3. This step is similar to Step 3 in the Multi-Source Multicast Algorithm. We add dβe edges

from each disk in Gi to satisfy dβe ·
⌊
|Di|
dβe

⌋
disks in Di, and add at most another dβe − 1

edges from disk i to satisfy the remaining disks in Di.

4. This is the same as Step 4 of the Multi-Source Multicast Algorithm.

Theorem 5.4.1 The total number of rounds required for the multi-source multicast algorithm, by

allowing bypass disks, is maxidlog |Di|e + β + d2βe + 6.

47

Proof The analysis is very similar to the case without bypass disks and here we only highlight

the differences. We now show that the total size of the sets Gi is at most N .

∑
i

|Gi| ≤
∑

i

|Di|
dβe ≤ 1

β

∑
i

|Di|.

Note that
∑

i |Di| is βN by the definition of β. This proves the upper bound of N on the total size

of all the sets Gi. Step 2 takes maxidlog |Di|e + 2 rounds. Note that this is 1 round larger than

the bound in Lemma 5.2.2 as dβe can be 1. The in-degree of any disk in the transfer graph is still

at most β, while the out-degree of any disk in the transfer graph is at most dβe + (dβe − 1). The

multiplicity of the graph is still at most 4. Thus, the total number of rounds is (maxidlog |Di|e +

2) + β + dβe + (dβe − 1) + 4 ≤ maxidlog |Di|e + β + d2βe + 6. ut

We now argue that d2βe is a lower bound on the optimal number of rounds. Intuitively, on

average, every disk has to spend β rounds to send data, and another β rounds to receive data. As

a result, the total number of rounds cannot be smaller than d2βe. This can be seen by simply com-

puting the total number of required transfers, and dividing by the number of transfers that can take

place in each round. Allowing bypass disks does not change the fact that max(maxidlog |Di|e, β)

is the other lower bound. Therefore, we have a 3-approximation algorithm.

5.5 Bounded-Size Matching Model

So far, we assume communications can be performed on any matchings of the disks in each round.

This model assumes unbounded bandwidth in the network. In this section we consider bounded-

size matching model, where only a limited number of transfers are allowed in each round. We have

a method to convert any constant factor approximation algorithm for the full matching model

to a constant factor approximation algorithm for the bounded-size matching model. The only

constraint is that no bypass disks are allowed.

Suppose that at most B transfers are allowed in each round, the method is as follows. Let

Ei be the transfers in i-th round in the algorithm for the full matching model. Then we split each

Ei into d|Ei|/Be sets of size at most B and perform each set in a round. Let us denote the number

48

of rounds required in an optimal solution for the full matching model and bounded-size matching

model as OPT and OPT ′, respectively.

Theorem 5.5.1 Given a ρ-approximation algorithm for the full matching model, we have 1 +

ρ(1−1/B)-approximation algorithm for the bounded-size matching model, where B is the maximum

number of transfers allowed in a round.

Proof Denote the number of rounds in our algorithm as t and t′. Note that since we move data

only to disks that need the data, the total number of data transfers performed by the algorithm

is the minimum possible. Thus OPT ′ ≥ ∑
i |Ei|/B. Since t ≤ ρOPT and OPT ≤ OPT ′, we have

t ≤ ρOPT ′.

Therefore,

t′ =
t∑

i=1

⌈ |Ei|
B

⌉

≤
t∑

i=1

(|Ei| − 1
B

+ 1
)

=
1
B

t∑
i=1

|Ei| + t

(
1 − 1

B

)

≤ OPT ′ + ρOPT ′
(

1 − 1
B

)

=
(

1 + ρ

(
1 − 1

B

))
OPT ′

ut

Similarly, we can obtain the following theorem.

Theorem 5.5.2 Given an approximation algorithm that takes at most OPT +k rounds for the full

matching model, we have an approximation algorithm that takes at most (2− 1
B)OPT ′ + k(1− 1

B)

rounds for the bounded-size matching model, where B is the maximum number of transfers allowed

in a round.

When combined with the results in previous chapters, we have constant factor approxima-

tion algorithms for the single-source multicast, multi-source broadcast, and multi-source multicast

problems.

49

Corollary 5.5.3 We have an approximation algorithm that takes at most (2−1/B)OPT +∆(1−

1/B) rounds for the single-source multicast problem using the bounded-size matching model.

Corollary 5.5.4 We have an approximation algorithm that takes at most (2− 1/B)OPT + 3(1−

1/B) rounds for the multi-source broadcast problem using the bounded-size matching model.

Corollary 5.5.5 We have a (1+(3+o(1))(1−1/B))-approximation algorithm for the multi-source

multicast problem using the bounded-size matching model.

5.6 NP-hardness Result

We will prove the multi-source multicasting problem to be NP-hard by showing a reduction from

a restricted version of 3SAT. Papadimitriou [79] showed that 3SAT remains NP-complete even for

expressions in which each variable is restricted to appear at most three times, and each literal at

most twice. We denote this problem as 3SAT(3).

We assume that each literal appears at least once in the given instance. If not, we can

always simplify the instance so that each literal appears at least once.

Given a 3SAT(3) instance, we create a multi-source multicast instance such that the 3SAT(3)

instance is satisfied if and only if the corresponding multi-source multicast instance can transfer

all items in 3 rounds.

Part I. For each variable xi, we create (i) a source disk having item xi, (ii) a set of

destination disks Xi of size 3 which need item xi, (iii) a source disk having item xi, (iv) a set of

destination disks Xi of size 3 which need item xi, (v) a source disk having item si, (vi) a disk wi

(we call it a switch disk) which wants to receive items xi, xi and si, and (vii) 6 disks which need

item si.

Part II. For each clause j, we create (i) a source disk having item cj , and (ii) a set of

destination disks Cj of size 2 (the size should be 4 instead, if there are only two literals in clause

j) that need item cj . Moreover, for each literal in clause j, arbitrarily pick one disk in the set of

destination disks corresponding to the literal, and that disk, which originally only needs the item

corresponding to the literal, will also need item cj . For example, if clause j is xp ∨ xq ∨ xr, then

50

one disk d in Xp, one disk in Xq and one disk in Xr, need item cj . If there is another clause j′

contains literal xp, we pick one disk in Xp \ {d} and that disk now needs item j′.

Lemma 5.6.1 If the 3SAT(3) instance is satisfiable, there exists a valid schedule to finish all data

transfers in 3 rounds.

Proof It is easy to see that all seven disks demanding item si can be scheduled in three rounds.

In particular, we schedule switch disk wi to receive si in round 3 for all i. If variable xi is true, we

schedule switch disk wi to receive xi and xi in round 1 and 2 respectively. xi can be sent to a disk

in Xi in round 1, making Xi receive items faster than Xi. After round 2, two disks in Xi received

item xi, while only 1 disk in Xi received item xi. In round 3, the source disk of xi can satisfy the

last disk in Xi which has not received xi. Note that the remaining two disks in Xi are idle and

they can receive item cj from other disks. Furthermore, since a disk in Xi gets item xi in round

1 (but not in round 2), it is not difficult to see that the two disks in Xi can receive item cj from

other disks in either round 2 or round 3, and still all requests in Xi can be satisfied. On the other

hand, the remaining two disks in Xi can be satisfied in round 3 by the source and one disk in Xi.

Note that all disks in Xi and the source of xi are busy in this round. Thus, all requested items

appeared in Part I are satisfied. If the variable is false, we schedule the switch disk to receive xi

in round 1, then xi in round 2. As a result, two disks in Xi are idle in round 3, while all disks in

Xi are busy in round 3.

We claim that both disks in Cj , for all j, can be satisfied as well. For example, if clause j is

xp ∨ xq ∨ xr, and suppose xp is true in a satisfying assignment. From the argument above, there

exists a schedule such that the disk in Xp, which needs xp and cj , is idle in round 3. However, if

xq and xr are false, the disk in Xq, which needs xq and cj , and the disk in Xr, which needs xr

and cj , are busy getting an item xq and item xr, respectively, in round 3. Even when xq or xr is

true, we can schedule the transfers of item xq and xr such that the disk in Xq, which needs xq

and cj , or the disk in Xr, which needs xr and cj , is busy getting an item in round 3. We can do

this because if variable xi is true, two disks in Xi can receive item cj at either round 2 or round

3. A valid schedule can send item cj from the source to one disk in Cj in round 1. In round 2, we

51

now have two copies of cj to satisfy disks in Xq and Xr. In round 3, without the help of disks in

Xq and Xr, we can satisfy 2 more disks, namely the second disk in Cj and the disk in Xp. If there

are only two literals in clause j, the argument is similar. We need to satisfy two more disks in Cj ,

but, in round 2, we need to satisfy only one disk, instead of two disks, which cannot contribute

item cj in round 3. Thus, all requested items that appeared in Part II are satisfied as well. ut

Lemma 5.6.2 If there is a valid schedule to finish all data transfers in 3 rounds, then the 3SAT(3)

instance is satisfiable.

Proof Since there are 7 disks that need item si, if we have to finish all transfers in 3 rounds,

once a disk receives si, it will be busy until round 3. Note that all switch disks have to receive si,

xi and xi. Therefore, all switch disks have to receive item xi and xi in the first two rounds, and si

in round 3. If switch disk i receives item xi in round 1, we set literal xi to be true. Otherwise, we

set literal xi to be true. Consider the former case: disks in Xi receive item xi starting at round

2, meaning that all disks in Xi should be busy in round 3 to send or receive xi. Suppose literal

xi appears in clauses j and k. Two disks in Xi may have to receive item cj and ck in the first

2 rounds. Thus, our construction restricts that if a literal xi is set to false, disks in Xi cannot

receive item cj in round 3.

Consider a clause j, for instance, xp ∨ xq ∨ xr, a disk in Xp, a disk in Xq, a disk in Xr, and

both disks in Cj need item cj . If all three literals are false, it is possible to satisfy the first three

disks in the first 2 rounds. However, since all these three disks are busy in round 3, the source of

cj cannot satisfy both disks in Cj , which is a contradiction. Therefore, clause j has at least one

true literal. If there are only two literals in clause j, the argument is similar. Because Cj is larger,

all requests of item cj cannot be satisfied when both literals are false. ut

Theorem 5.6.3 The multi-source multicasting problem is NP-hard

Proof It is easy to see that the reduction is polynomial, and together with Lemma 5.6.1 and

Lemma 5.6.2, we conclude that the problem is NP-hard. ut

52

Chapter 6

Broadcasting in Two-tier Communication Networks

In this chapter1, we study problems of broadcasting and multicasting in two-tier communication

networks, which arises in Networks of Workstations [80, 4], grid computing [33], and clustered

wide-area network systems [64, 63, 15]. We first give an approximation algorithm for this problem.

Using this algorithm as a building box, we give an approximation algorithm for the multicast

problem. We also give algorithms for the broadcast and multicast problems where the first-tier

network does not have unlimited bandwidth. We then consider the postal model [9] version of

the problems and give approximation algorithms. Lastly, we present an experimental study of the

effect of having inaccurate information regarding the sizes of the clusters.

6.1 Problem Specification

We assume we have k clusters of processors. Cluster Ki has size ni, i = 0 . . . (k − 1), the number

of processors in the i-th cluster. The total number of processors, denoted by N , is
∑k−1

i=0 ni. We

will assume that the broadcast/multicast originates at a processor in K0. We order the remaining

clusters in non-increasing size order. Hence n1 ≥ n2 ≥ . . . ≥ nk−1. Clearly, n0 could be smaller or

larger than n1, since it is simply the cluster that originates the broadcast/multicast.

In the broadcast problem, the goal is to minimize the number of rounds needed to convey

the message from the source processor in K0 to all other processors. In the multicast problem, the

goal is to minimize the number of rounds needed to convey the message from the source processor

in K0 to a specified subset of processors, while the remaining processors may help to forward the

message for others.

A message may be sent from a processor, once it has received the message. If the message

is sent to a processor in its cluster, the message arrives one time unit later. If the message is sent
1This is joint work with S. Khuller and Y. Kim [60].

53

to a processor in a different cluster then the message arrives C time units later. Both the sending

and receiving processors are busy during those C time units. In addition, in our algorithms we

assume that each cluster advertises a single address to which messages are sent. Each cluster thus

receives a message only once at this processor and then the message is propagated to different

processors in the cluster. Thus new processors may be added or dropped without having to inform

other clusters of the exact set of new addresses (we only need to keep track of the sizes of the

clusters). Another advantage of this approach is that the total number of global communications,

which are often costly, is minimized. In some cases, the broadcast time can be reduced by having

many messages arrive at the same cluster. However, when we compare to the optimal solution we

do not make any assumptions about the communication structure of the optimal solution.

In Section 6.5 we consider a slightly different model, the postal model, where a processor

is busy for only one time unit when it sends a message. The time a message arrives at a receiver

depends on whether the sender and receiver are in the same cluster or not— it takes one time unit

if it is a local transfer, and C time units otherwise.

6.2 Broadcasting

The high level description of the algorithm is as follows. The source node first performs a local

broadcast within its cluster. This takes dlog n0e rounds. After all the nodes of K0 have the

message, we broadcast the message to the first n0 clusters. Each node in K0 sends a message

to a distinct cluster. This takes exactly C rounds. Each cluster that receives a message, does a

local broadcast within its cluster. All nodes that have received the message then send the message

to distinct clusters. Again this takes C more rounds. While doing this, every node in K0 keeps

sending a message to a cluster that has not received a message as yet. Repeat this until all the

processors receive the message. We call this algorithm Largest Cluster First (LCF) as we always

choose the largest cluster as a receiver among clusters that have not received the message.

Algorithm LCF

54

1. Broadcast locally in K0 (this takes dlog n0e rounds).

2. Each cluster performs the following until all processors get informed.

(a) cluster Ki in which all processors have messages, picks the first ni clusters that have

not received a message, and sends the message to them at every C time unit. Repeat

until all clusters have at least one message.

(b) Each cluster which received a message does local broadcasting until all processors in

the cluster have messages2.

Note that in our algorithm each cluster receives only one message from other clusters. That

is, the total number of global transfers is minimized (we need k−1 global transfers). This property

is important since we want to avoid consuming unnecessary wide-area bandwidth which is usually

expensive.

6.2.1 Analysis

In this subsection, we prove that LCF gives a 2-approximation. For the purpose of analysis, we

modify LCF slightly. The makespan of the schedule by the modified algorithm may be worse than

the original algorithm (but no better) and it is at most 2 times the optimal.

In Modified LCF, local and global phases take place in turn (see Figure 6.1). Let Li be the

set of clusters that receive the message at the i-th global step. For example, L0 includes K0 and

L1 includes all clusters that receive the message from K0 at the end of the first global phase. Let

Ni be the total number of processors in clusters belonging to Li. That is, Ni =
∑

K∈Li
|K|. At

the i-th step, all processors in clusters K ∈ Lj (j = 0, . . . , i − 1) send messages to Li and then

clusters in Li perform local broadcasting. Therefore, the i-th step takes C + dlog Aie rounds.

Algorithm Modified LCF
2We interrupt all local broadcasting and do one global transfer, if the number of processors having the message

is at least the number of clusters that have not received a message.

55

L1 A1
B1

L2 A2
B3

L
p

Ap

Lp-1
Ap-1 Bp-1

C

C

C

log n0

log A1

log A2

log Ap-1

log Ap

(a) Modified Largest Cluster First

L0

Li Ai
Bi

C

log Ai

Li-1 Li-2 L0

(b) i-th step

Figure 6.1: (a) Local and global phases in Modified LCF take place in turn (b) At the i-th

step, all processors in clusters K ∈ Lj (j = 0, . . . , i − 1) send messages to Li and then clusters in

Li perform local broadcasting.

1. Broadcast locally in K0. Then we have that L0 = K0 and N0 = n0.

2. At the i-th step (repeat until all processors get informed)

(a) Global phase: Pick
∑

j=0...i−1 Nj largest clusters that are not informed as yet. Each

processor in
⋃

j=0...i−1 Lj sends one message to each of those clusters.

(b) Local phase: Clusters in Li do local broadcasting.

Let p be the number of global transfer steps that Modified LCF uses. Then we have the

following theorem.

Theorem 6.2.1 The broadcast time of our algorithm is at most 2 log N + pC + 3.

Define Ai (Bi) to be the biggest (smallest) cluster in Li. We need the following two lemmas to

prove this theorem.

Lemma 6.2.2 For i = 0 . . . p − 1, n0 · |B1| · · · |Bi| ≤ Ni.

Proof We prove this by induction. For i = 0, it is true since N0 = n0. Suppose that for i = l

(< p − 1) we have n0 · |B1| · · · |Bl| ≤ Nl. Since at the (l + 1)-th global transfer step, every node

56

in Nl will send the message to a cluster in Ll+1, |Ll+1| ≥ Nl. Furthermore, the size of clusters in

Ll+1 is at least |Bl+1| by definition. Therefore,

Nl+1 =
∑

K∈Ll+1

|K|

≥
∑

K∈Ll+1

|Bl+1|

= |Ll+1| · |Bl+1|

≥ Nl · |Bl+1|

≥ n0 · |B1| · · · |Bl| · |Bl+1|.

ut

Lemma 6.2.3 log |A1| < log N − (p − 2).

Proof After we have all processors in A1 receive the message we need p−1 more global transfer

steps. With |A1| copies, we can make |A1| ·2i processors receive the message after i global transfer

steps by doubling the number of copies in each global step. Therefore |A1| · 2p−2 < N (otherwise,

we do not need the p-th global broadcasting step). ut

Proof of Theorem 6.2.1. The upper bound of the total broadcast time for local transfer phases

is dlog n0e + dlog |A1|e + . . . + dlog |Ap|e. Since we have |Ai| ≤ |Bi−1| (for 2 ≤ i ≤ p) in LCF, it

is upper bounded by dlog n0e + dlog |A1|e + dlog |B1|e + . . . + dlog |Bp−1|e. By Lemma 6.2.2 and

Lemma 6.2.3, the total broadcast time only for local transfer steps is at most

dlog n0e + dlog |A1|e + dlog |B1|e + . . . + dlog |Bp−1|e

≤ log n0 + log |B1| + . . . + log |Bp−1| + log |A1| + p + 1

< log n0 · |B1| · · · |Bp−1| + log N − (p − 2) + p + 1

≤ log Np−1 + log N + 3

≤ 2 log N + 3.

Our schedule uses p global transfer steps, taking a total of pC additional rounds. ut

57

Source

i

local transfer

inter-cluster transfer

e0 = 3

e1 = 2

e2 = 2

e3 = 4

a1

a2

Figure 6.2: An example to show the inter-cluster transfers processor i experiences.

In the next lemma, we prove that pC is a lower bound on the optimal broadcast time. To prove

this we count the number of inter-cluster transfers a processor experiences as follows. Given a

broadcast schedule, let the path from the source to the processor i, be a0, a1, . . . , al = i. That

is, the source a0 sends the message to a1 and a1 sends to a2 and so on. Finally al−1 sends the

message to processor i (= al). Let ej (j = 0 . . . l − 1) represent the number of processors that

receive the message from aj via inter-cluster transfers until aj+1 receives the message (including

the transfer to aj+1 if they are in different clusters). In addition, let el be the number of processors

that receive the message from processor i via inter-cluster transfers. That is, i sends the message

to el processors in other clusters. Then we say processor i experiences e inter-cluster transfers

where e =
∑l

j=0 ej . Figure 6.2 shows an example of how to count the number of inter-cluster

transfers that a processor experiences. In the example, processor i experiences 3 + 2 + 2 + 4 = 11

inter-cluster transfers. If there is any processor that experiences p inter-cluster transfers, then pC

is a lower bound on the optimal solution.

Lemma 6.2.4 At least one node in the optimal solution experiences p inter-cluster transfers.

Proof Imagine a (more powerful) model in which once a node in a cluster receives the message,

all nodes in the cluster receives the message instantly (That is, local transfers take zero unit of

time). In this model the broadcast time is given by the maximum number of inter-cluster transfers

58

that any processor experiences. We will prove that LCF gives an optimal solution for this model.

Since LCF uses p global transfer steps, the optimal broadcast time is pC in this model. Since this

lower bound is for a stronger model, it also works in our model.

Suppose that there is a pair of clusters Ki and Kj (0 < i < j < k) such that Kj receives

the message earlier than Ki in the optimal solution. Let Ki receive the message at time ti and Kj

receive at time tj (ti > tj). Modify the solution as follows. At time tj − C we send the message

to Ki instead of Kj and Ki performs broadcasting as Kj does until ti (This can be done since the

size of Ki is at least as big as Kj .) At time ti, Kj receives the message and after that the same

schedule can be done. This exchange does not increase the broadcast time and therefore, LCF

gives an optimal solution for the model with zero local transfer costs.

We now prove the lemma by contradiction. Suppose that there is an optimal solution (for

the original model) in which all processors experience at most p − 1 inter-cluster transfers. Then

in the model with zero local transfer costs we should be able to find a solution with broadcasting

time (p − 1)C by ignoring local transfers, which is a contradiction. ut

Using the above lemma, we know that pC is a lower bound on the optimal broadcast time.

Since log N is also a lower bound on the optimal solution, this gives us 3-approximation (and an

additive term of 3). However, the lower bound pC considers only the global communications of

the optimal solution. On the other hand, the lower bound logN only counts the local transfers.

To get a better bound, we prove the following theorem that combines the lower bounds developed

above.

Theorem 6.2.5 The optimal solution has to take at least (p − 1)(C − 1) +
⌈
log N

2

⌉
rounds.

Proof Consider an optimal schedule, in the end all N nodes receive the message. We partition

all nodes into two sets, Sl and Ss, where Sl contains all nodes which experienced at least p−1 inter-

cluster transfers, and Ss contains all nodes which experienced at most p− 2 inter-cluster transfers.

We now show that |Ss| < N
2 . Suppose this is not the case, it means that the optimal solution

can satisfy at least N
2 nodes using at most p − 2 inter-cluster transfers. Using one more round of

59

transfers, we can double the number of nodes having the message and satisfy all N nodes. This is

a contradiction, since we use less than p inter-cluster transfers. Therefore we have |Sl| ≥ N
2 . Since

originally we have one copy of the message, satisfying nodes in Sl takes at least
⌈
log N

2

⌉
transfers.

So at least one node in Sl experienced
⌈
log N

2

⌉
transfers (either inter-cluster or local transfers).

We know that all nodes in Sl experienced at least p− 1 inter-cluster transfers. The node needs at

least (p − 1)C + (
⌈
log N

2

⌉ − (p − 1)) rounds to finish. ut

We now prove a central result about Algorithm LCF which will be used later.

Theorem 6.2.6 Our algorithm takes at most 2OPT +7 rounds. Moreover, it takes at most 2OPT

rounds when both p and C are not very small (i.e., when (p − 2)(C − 2) ≥ 7).

Proof If C is less than 2, we can treat the nodes as one large cluster and do broadcasting. This

takes at most Cdlog Ne and is a 2-approximation algorithm. The problem is also trivial if p is 1,

because in this case n0 ≥ k − 1. Therefore we consider the case where both values are at least 2.

Here we make use of Theorems 6.2.1 and 6.2.5.

(2OPT + 7) − (2 log N + pC + 3)

≥
(

2
(

(p − 1)(C − 1) +
⌈
log

N

2

⌉)
+ 7

)
− (2 log N + pC + 3)

≥ (p − 2)(C − 2)

≥ 0 (when p ≥ 2 and C ≥ 2).

ut

Remark: Our algorithm takes at most 2OPT rounds when both p and C are not very small (i.e.,

when (p − 2)(C − 2) ≥ 7).

Corollary 6.2.7 We have a polynomial-time 2-approximation algorithm for the broadcasting prob-

lem.

60

6.2.2 Bad Example

There are instances for which the broadcast time of LCF is almost 2 times the optimal. Suppose

that we have 2 clusters, K0 and K1, each of size n0 and n1 (n0 ≤ n1), respectively. In addition,

there are n0−1 more clusters, each of size 1. A node in K0 has a message to broadcast. It is easy to

see that the makespan of our algorithm is dlog n0e+C+dlog n1e. However, the broadcasting can be

made faster by sending a message to K1 before local broadcast in K0 is finished. A possible schedule

is (i) make one local copy in K0 (ii) one processor in K0 send a message to K1 and another processor

does local broadcast in K0 (iii) after finishing local broadcast, processors in K0 send messages to

the remaining n0 − 1 clusters (iv) clusters other than K0 do local broadcasting as soon as they

receive a message. The makespan of this solution is 1 + max{C + dlog n1e, dlog(n0 − 1)e + C}. In

the case where n0 ≈ n1 and log n0 � C, the makespan of LCF is almost 2 times the optimal.

6.3 Multicasting

For multicasting, we need to have only a subset of processors receive the message. We may reduce

the multicast time significantly by making use of large clusters that may not belong to the multicast

group. Let n′
i denote the number of processors in Ki that belong to the multicast group. Let M

denote the set of clusters (except K0) in which some processor wants to receive the message and

k′ denote the size of set M . Formally, M = {Ki|n′
i > 0 and i > 0} and k′ = |M |.

Let LCF (m) be algorithm LCF to make m copies. That is, LCF (m) runs in the same way

as LCF but stops as soon as the total number of processors that received the message is at least m

(we may generate up to 2(m − 1) copies). For example, LCF for broadcasting is LCF (N). Here

is the algorithm.

Algorithm LCF Multicast

Phase 1: Run LCF (k′) by using any processor whether it belongs to the multicast group or not.

Phase 2: Send one copy to each cluster in M if it has not received any message yet.

Phase 3: Do local broadcast in clusters of M .

61

6.3.1 Analysis

Let p′ be the number of global transfer steps LCF (k′) uses. Suppose D be the number of rounds

taken in the last local broadcast step in LCF (k′) (after the p′-th global transfer steps). Note

that some nodes in clusters performing the last local broadcast may not receive the message,

since we stop as soon as the total number of nodes having the message is at least k′, and hence

D ≤ dlog |Ap′ |e. Nevertheless, D may be greater than dlog |Bp′ |e and thus some clusters may stop

local broadcast before the D-th round. Let Ap′+1 be the biggest cluster among clusters which have

not received a copy after LCF (k′) has finished.

To get a 2-approximation algorithm, we need the following lemma, which bounds the sum

of the number of rounds taken in the local phases in LCF (k′) and in the last local broadcast in

clusters of M . The lemma still holds even when a cluster performing local broadcast in Phase 3

needs to broadcast to the whole cluster (i.e., n′
i = ni).

Lemma 6.3.1 (log n0 · |B1| · · · |Bp′−2| + D) + max(dlog |Ap′ |e − D, dlog |Ap′+1|e) ≤ log k′ + 2

Proof Case I: dlog |Ap′ |e − D > dlog |Ap′+1|e. It is easy to see that (log n0 · |B1| · · · |Bp′−2| +

D) + (dlog |Ap′ |e − D) ≤ log n0 · |B1| · · · |Bp′−1| + 1 ≤ log k′ + 1, and the lemma follows.

Case IIa: dlog |Ap′ |e − D ≤ dlog |Ap′+1|e and D > dlog |Bp′ |e. Note that 2D ≤ 2|Ap′ | ≤

2|Bp′−1| and |Ap′+1| ≤ |Bp′ |; we have (log n0 · |B1| · · · |Bp′−2| + D) + (dlog |Ap′+1|e) < log n0 ·

|B1| · · · |Bp′ | + 2 ≤ log Np′−1 · |Bp′ | + 2. After the p′-th global transfer step, one node in each of

Np′−1 clusters has just received the message. Each of these clusters will generate at least |Bp′ |

copies (since D > dlog |Bp′ |e), so Np′−1 · |Bp′ | < k′, and the lemma follows.

Case IIb: dlog |Ap′ |e − D ≤ dlog |Ap′+1|e and D ≤ dlog |Bp′ |e. Note that |Ap′+1| ≤ |Bp′−1|;

we have (log n0 · |B1| · · · |Bp′−2|+D)+(dlog |Ap′+1|e) ≤ log n0 · |B1| · · · |Bp′−1| ·2D +1 ≤ log Np′−1 ·

2D + 1. After the p′-th global transfer step, each cluster which has just received the message will

generate at least 2D copies, so log Np′−1 · 2D−1 < k′, and the lemma follows. ut

62

Theorem 6.3.2 Our multicast algorithm takes at most 2 log k′ + p′C + C + 4 rounds.

Proof In a manner similar to the proof of Theorem 6.2.1, the broadcast time spent only in local

transfer steps in LCF (k′) is at most

dlog n0e + dlog |A1|e + . . . + dlog |Ap′−1|e + D

≤ log n0 + log |B1| + . . . + log |Bp′−2| + D + log |A1| + p′

< log n0 · |B1| · · · |Bp′−2| + D + log k′ + 2.

The second inequality holds because log |A1| < log k′ − (p′ − 2) by Lemma 6.2.3. Moreover, the

global transfer steps in LCF (k′) and the second phase take p′C and C rounds, respectively. Note

that n′
i ≤ ni. In the third phase, all clusters which receive a message during the first phase need at

most dlog |Ap′ |e−D rounds to do local broadcast. The remaining clusters, which receive a message

during the second phase, are of size at most |Ap′+1|. Therefore local broadcasting takes at most

dlog |Ap′+1|e rounds. Using Lemma 6.3.1, we have the theorem. ut

Lemma 6.3.3 At least one node in the optimal solution experiences p′ inter-cluster transfers.

Proof The basic argument is the same as the one in Lemma 6.2.4. Note that LCF (k′) uses any

processor whether it belongs to the multicast group or not. If the optimal solution does not use any

processor that LCF (k′) uses, it cannot create new copies of the message faster than LCF (k′). ut

Theorem 6.3.4 The optimal solution takes at least (p′ − 1)(C − 1) +
⌈
log k′

2

⌉
rounds.

Proof The proof is very similar to the proof of Theorem 6.2.5. We partition all nodes into two

sets, Sl and Ss. We now show that there are less than k′
2 distinct multicast clusters in Ss. Suppose

this is not the case, it means that OPT can satisfy at least k′
2 distinct multicast clusters using

at most p′ − 2 inter-cluster transfers. Using one more round of transfers, all k′ multicast clusters

can receive the message, which is a contradiction. Therefore we have at least k′
2 distinct multicast

clusters in Sl and |Sl| ≥ k′
2 . ut

63

Theorem 6.3.5 Our algorithm takes at most 2OPT + 10 rounds. Moreover, it takes at most

2OPT rounds when both p′ and C are not very small (i.e., when (p′ − 3)(C − 2) ≥ 10).

Proof By making use of Theorems 6.3.2 and 6.3.4, and an analysis similar to that in Theo-

rem 6.2.6, we can show that (2OPT +10)− (2 log k′ +p′C +C +4) ≥ (p′−3)(C −2). The problem

is trivial when C is less than 2 or p = 1. When p′ = 2, we can do an exhaustive search on the

number of clusters in M which receives the message in the first global transfer step in LCF (k′).

It is not difficult to prove that this also takes at most 2OPT + 10 rounds. ut

Remark: Our algorithm takes at most 2OPT rounds when both p′ and C are not very small (i.e.,

when (p′ − 3)(C − 2) ≥ 10).

Corollary 6.3.6 We have a polynomial-time 2-approximation algorithm for the multicast problem.

6.4 Bounding Global Transfers

In the model we considered, we assume any node may communicate with any other node in other

clusters, and the underlying network connecting clusters has unlimited capacity. A more practical

model is to restrict the number of pairs of inter-cluster transfers that can happen simultaneously.

In this section we present two models to restrict the network capacity. The bounded degree model

restricts the number of inter-cluster transfers associated with a particular cluster. This model

reflects the characteristics of a global network like the Internet, where the bottlenecks tend to

occur at the edge of the global network. On the other hand, the bounded-size matching model

restricts the total number of inter-cluster transfers at any given time. The bottleneck occurs at

the core of the inter-cluster network, which is an appropriate model when homogeneous networks

are arranged hierarchically.

6.4.1 Bounded Degree Model

Associate an additional parameter di with each cluster i, that limits the number of inter-cluster

transfers from or to nodes in cluster i in a time unit. We call this limitation a degree constraint.

64

We denote an instance of this model be I(ni, di), meaning that there are ni nodes in cluster Ki,

and at most di of those may participate in inter-cluster transfers at any given time.

Algorithm Bounded Degree Broadcast

Given Instance I(ni, di), arbitrarily select a subset K ′
i of di nodes in each cluster, and consider

only the K ′
i. We have a new instance I(di, di). Note that I(di, di) can be viewed as an instance

of the general broadcast problem on the unrestricted model. In phase 1, run Algorithm LCF in

Section 6.2 on I(di, di). In phase 2, since there are di informed nodes in each cluster, we do local

broadcasting to send the message to the remaining ni − di nodes.

An important observation is that since there is only a unique message, it does not matter

which subset of nodes in a cluster perform inter-cluster transfers. What matters is the number

of informed nodes in the clusters at any given time. The following lemma compares the optimal

number of rounds taken by instances using the two different models.

Lemma 6.4.1 The optimal schedule of Instance I(di, di) takes no more rounds than the optimal

schedule of the corresponding instance I(ni, di).

Proof We argue that given an optimal schedule, which completes in OPT rounds, of Instance

I(ni, di), we can create a schedule, which completes in at most OPT round, of the corresponding

Instance I(di, di).

Given an optimal schedule of Instance I(ni, di), let Si be a set of the first di nodes in Ki

that receive the message in the schedule. We can safely throw out all transfers (both inter-cluster

and local transfers) in the schedule of which the receiving node is in Ki \Si, because we only need

di nodes in I(di, di). Let ti be the time at which the last node in Si receives the message. Consider

any inter-cluster transfer which starts after ti and is originated from a node in Ki \ Si, we can

modify the transfers so that it is originated from a node in Si instead. It is not difficult to see

that we can always find such a remapping, since there are at most di inter-cluster transfers at any

given time, and nodes in Si do not perform any local transfers after time ti. Moreover, no node

65

in Ki \ Si initiates a transfer on or before time ti, because they have not received the message

yet. Therefore we have removed all transfers involving nodes in Ki \ Si. We can safely remove all

the nodes in Ki \ Si, effectively making the schedule applicable to Instance I(di, di). Since we do

not add any new transfers, the total number of rounds used cannot go up. Therefore the optimal

number of rounds for I(di, di) is at most that of I(ni, di). ut

Theorem 6.4.2 Our algorithm takes at most 3OPT + 7 rounds.

Proof Using Theorem 6.2.6 and Lemma 6.4.1, the first phase takes at most 2OPT + 7 rounds.

Moreover in phase 2, local broadcasting takes at most maxi

⌈
log ni

di

⌉
rounds, which is at most

OPT . ut

6.4.2 Bounded Degree Model: Multicasting

In this model only a subset Mi (possibly empty) of nodes in cluster Ki needs the message. Nodes

in Ki \ Mi may help passing the message around. Let n′
i be |Mi|. Observe that although we may

make use of nodes in Ki \ Mi, we never need more than di nodes in each cluster, because of the

degree constraint in the number of inter-cluster transfers. Similarly if di ≤ n′
i, nodes in Ki \ Mi

are never needed. Therefore set ni to be max(di, n
′
i). Arbitrarily select di nodes for each cluster,

with priority given to nodes in Mi. Run the LCF Multicast algorithm on the selected nodes. Now

there are di nodes having the message in each cluster belongs to the multicast group, so we can

do local broadcasting to satisfy the remaining nodes.

Theorem 6.4.3 Our algorithm takes at most 3OPT + 10 rounds.

Proof We may run the LCF Multicast algorithm on the selected nodes, because there are at

most di selected nodes from each cluster, all selected nodes can communicate each other freely as

if there is no bounded degree constraint. Using the same idea as in Lemma 6.4.1, we can show that

the optimal schedule of the instance given to the LCF Multicast algorithm takes no more rounds

than the optimal schedule of the original bounded degree multicasting instance. We can apply

66

the same idea because any schedule only need to use up to ni = max(di, n
′
i) nodes in each cluster

for multicasting. By Theorem 6.3.5, the multicast steps takes 2OPT + 10 rounds. Moreover, the

local broadcasting phase only need to satisfy at most n′
i − di nodes, which takes at most OPT

rounds. ut

6.4.3 Bounded-Size Matching Model

In this model, we bound the number of inter-cluster transfers that can be performed simultaneously.

Let us assume that we allow only B inter-cluster transfers at a time. Note that we can assume

B ≤ bN/2c since this is the maximum number of simultaneous transfers allowed by our matching-

based communication model.

Algorithm BoundedSizeBroadcast

Phase 1: We run LCF (B) to make B copies of the message.

Phase 2: Every C time units we make B more copies by inter-cluster transfers until all clusters

have at least one copy of the message.

Phase 3: Do local broadcast to inform all the processors in each cluster.

Let pB be the number of global transfer steps LCF (B) uses, and pL be the number of global

transfer steps in the second stage of the algorithm.

Theorem 6.4.4 We need 2 log B + pBC + pLC +4 rounds for broadcasting when we allow only B

inter-cluster transfers at a time.

Proof Note that the algorithm resembles the LCF Multicast algorithm. In phase 1 we use

LCF (B) instead of LCF (k′). In phase 2 we need pL global transfer steps instead of 1 global

transfer step to create at least one copy of the message in every cluster. In phase 3 the local

broadcast always fills the entire cluster. (i.e., we can treat n′
i = ni.) Despite the differences, we

can use the same techniques to prove the stated bound. ut

67

Lemma 6.4.5 In any schedule, there is a processor that experiences pB+pL inter-cluster transfers.

Proof The proof is similar to the proof of Lemma 6.2.4. In the model where local transfers

take zero unit of time, the same exchange argument will show that the optimal broadcast time is

(pB + pL)C.

If there is a schedule in which all processors experience less that pB+pL inter-cluster transfers

(in the original model), it is a contradiction to the assumption that the optimal broadcast time is

(pB + pL)C in the model with zero local transfer costs. ut

Theorem 6.4.6 The optimal solution takes at least (pB + pL − 1)(C − 1) + dlog Be rounds.

Proof The proof is very similar to the proof of Theorem 6.2.5. Note that in this case |Ss| <

N − B, otherwise there is a way to satisfy all nodes using pB + pL − 1 rounds of inter-cluster

transfers. Therefore |Sl| ≥ B and the theorem follows. ut

Theorem 6.4.7 Our algorithm takes at most 2OPT + 6 rounds.

Proof Using the proof technique in Theorem 6.2.6, the theorem follows from Theorem 6.4.4 and

Theorem 6.4.6. ut

Remark: Note that by setting B = bN/2c, we can improve the makespan of the basic broadcasting

(without any bound on the global transfers) by one round. This is because in this algorithm

we stop performing local transfers when the number of copies is bN/2c (as more copies cannot

contribute to global transfers) and start global transfers.

6.4.4 Bounded-Size Matching Model: Multicasting

In this model only a subset Mi of nodes in cluster Ki needs the message. Define M = {Ki|n′
i >

0 and i > 0} and k′ = |M |. We assume k′ > B or otherwise we can use the LCF Multicast

algorithm. We run LCF (B) by using any processor available. Then every C time units we make

B more copies by inter-cluster transfers until all clusters in M have at least one copy of the

68

message. Lastly do local broadcast to inform all the processors in each cluster in M . Using the

same techniques used to prove the bound on broadcasting under bounded-size matching model, we

have the following theorem.

Theorem 6.4.8 The algorithm takes at most 2OPT + 10 rounds.

6.5 Postal Model

In this section, we consider a slightly different model. This model is motivated by the interest in

grid computing [33] and computing on clusters of nodes. In fact, the work on the MagPIe project

[64, 63] specifically supports this communication model. In previous sections, we assumed that

when processor pi sends a message to processor pj in another cluster, pi is busy until pj finishes

receiving the message (this takes C time units). However, in some situations, it may not be realistic

since pi may become free after sending the message and does not have to wait until pj receives the

message.

In this section, we assume that a processor is busy for only one time unit when it sends a

message. The time a message arrives at the receiver depends on whether the sender and receiver

are in the same cluster or not—it takes one time unit if it is a local transfer (within the cluster),

and C time units if it is an inter-cluster transfer.

We first show that LCF gives a 3-approximation in this model. In addition, we present

another algorithm, which we call Interleaved LCF. Recall that we want to minimize the total

number of global transfers as well as minimizing the makespan. Let OPT ′ denote the minimum

makespan among all schedules that minimize the total number of global transfers. We can show

that the makespan of the schedule generated by Interleaved LCF is at most 2 times OPT ′.

6.5.1 Analysis of LCF

The analysis is similar to the one presented in Section 6.2.1. We modify the algorithm (for the

analysis purpose) so that we have local and global phases in turn. However, in this model a

processor can initiate more than one global transfer in a global phase since senders are busy for

69

only one time unit per global transfer. We define Ai, Bi, Li as follows. Let A0 = |K0|. After

finishing local transfers in K0, all processors in K0 start global transfers. They can initiate a

global transfer at every time unit. After C time units, n0 clusters receive a message (denoted as

L1). Let A1(B1) be the biggest(smallest) cluster among them. Now K0 stops global transfers for

dlog A1e rounds (global transfers already initiated continue to be done). For those dlog A1e rounds,

every cluster that received the message performs (only) local broadcasting. For all the clusters

that receive the message in this step, they have exactly dlog A1e rounds of local broadcasting. So

for example, if a cluster receives t time unit later than A1 then it can only start its global transfers

t time units later than A1 (it will be idle even if it finishes local broadcasting earlier). Note that

A1 is the biggest cluster in L1 and therefore, dlog A1e is enough for local broadcasting of those

clusters. After dlog |A1|e time units, we have all clusters that have finished local broadcasting

phase perform global transfers every time unit for C rounds. Clusters that have not finished local

phase keep performing local broadcasting (or wait) and then start global transfers. Repeat this

until all processors get informed. In general, we define Li as clusters that receive messages in the

first global transfers of the i-th step (so they can participate in global phase of the (i + 1)-th step

from the beginning). Figure 6.3(a) shows the i-th step. In this example C = 4 so a processor

can initiate (at most) 4 global transfers. Dotted clusters belong to Li. Ai (Bi) is the biggest

(smallest) cluster in Li. Suppose that the schedule has p global phases. Then it is easy to see that

Lemmas 6.2.2 and 6.2.3 hold. There is one subtle case where there are some clusters that receive

the message later than Ap by the transfers initiated in the p-th global phases (see Figure 6.3(b)).

We first analyze the makespan of the simple case where Ap is one of the last clusters that

receive the message.

Theorem 6.5.1 The makespan of Modified LCF is at most 2 log N + pC + 3 when Ap is one of

the last clusters that receive the message, and 2 log N + pC + c′ + 3 when there are some clusters

that receive the message c′ time units later than Ap.

Proof The total makespan taken for local transfers is

dlog n0e + dlog |A1|e + · · · + logd|Ap|e

70

Ai

C

log Ai

Li-1

(a) i-th step

Ap

Lp-1

(b) p-th step

All other clusters that finished local phase

C

c’

All other clusters that finished local phase

Bi

Bp

Figure 6.3: (a) The figure shows the i-th step of LCF under the postal model. Dotted clusters

belong to Li. (b) In the p-th step, there can be some processors that receive messages later than

Ap. The dark circle is the last cluster that receives the message

≤ log n0 + log |A1| + · · · + log |Ap| + (p + 1)

≤ log n0 + log |A1| + log |B1| · · · + log |Bp−1| + (p + 1)

= log n0 · |A1| · |B1| · · · |Bp−1| + (p + 1)

≤ log |A1| + log Np−1 + (p + 1) (by Lemma 6.2.2)

≤ 2 log N + 3 (by Lemma 6.2.3)

Therefore, the makespan of the schedule is at most 2 log N + pC + 3. ut

We prove that pC is a lower bound for the optimal solution.

Lemma 6.5.2 If we assume that local transfers take zero unit of time, the makespan is at least

pC when Ap is one of the last clusters that receive the message. If there are some clusters that

receive the message c′ time units later than Ap then the makespan is at least pC + c′.

Proof In the case when there are other clusters that receive the message later than Ap, let Ap+1

71

denote the biggest cluster that receives the message last, and it receives the message c′ time units

later than Ap (c′ < C since otherwise we would have another global phase). We need additional

c′ + dlog |Ap+1|e time units (it is less than c′ + dlog |Bp|e). ut

We thus conclude:

Theorem 6.5.3 The makespan of the schedule generated by LCF is at most 3 times the optimal

(with an additive term of 3) when Ap is one of the last clusters that receive the message.

We now deal with the case when there are other clusters that receive the message later than Ap.

Let Ap+1 denote the biggest cluster that receives the message last, and it receives the message c′

time units later than Ap (c′ < C since otherwise we would have another global phase). We need

additional c′ + dlog |Ap+1|e time units (it is less than c′ + dlog |Bp|e).

Lemma 6.5.4 n0 · |B1| · · · |Bp| ≤ Np.

Lemma 6.5.5 pC + c′ is a lower bound on the optimal solution.

Proof Suppose that local transfers take zero unit of time. Then in LCF, Ap+1 receives the

message c′ time units later than Ap (since the schedule can be obtained by ignoring local phases).

Therefore pC + c′ is a lower bound on the optimal solution. ut

Theorem 6.5.6 The makespan of the schedule generated by LCF is at most 3 times the optimal

(with additive term of 4).

6.5.2 Interleaved LCF

We present another algorithm called Interleaved LCF. We show that it is 2-approximation among

schedules that use the minimum number of global transfers.

Algorithm Interleaved LCF

At every two rounds, a processor that has the message alternately performs the following two steps.

72

1. Local transfer: if there is any processor in the same cluster that has not received the message,

then send the message to it.

2. Global transfer: if there is any cluster that has not received the message, choose the biggest

cluster among them and send the message to a processor in the cluster.

We only consider a set of schedules (denoted as S) that minimize the total number of global

transfers. Note that schedules in S have the property that each cluster receives only one message

from outside (k − 1 in total). Let OPTS be the minimum makespan among all schedules in S.

Lemma 6.5.7 There is a schedule in S with makespan OPTS in which for any pair of clusters

Ki, Kj (ni > nj), Ki receives a message no later than Kj.

Proof Given a schedule in S with makespan OPTS , if there is a pair of clusters Ki, Kj (ni > nj)

and Ki receives a message at time ti and Kj receives a message at time tj (ti > tj), then we can

modify the schedule so that Ki receives the message no later than Kj without increasing the

makespan.

At time tj , Ki (instead of Kj) receives the message. Ki can do all transfers that Kj does till

time ti. At time ti, Kj receives a message. Let xt processors in Ki received the message just after

time t in the original schedule. Similarly, let yt processors in Kj received the message just after

time t. Then xti
= 1 and yti

≤ nj . Note that we cannot swap the roles of two clusters just after

ti since Ki has yti
messages and Kj has only one message. Therefore, Ki should keep performing

transfers as if it is Kj for some time. Let t′ be the last time when xt′ ≤ yt′ . That is, xt′+1 > yt′+1.

At time t′+1 we need to carefully choose which transfers we should do. Note that just before

time t′ +1, Ki has yt′ messages and Kj has xt′ messages. In Ki we choose xt′+1−yt′ processors to

make local transfers so that after t′ + 1, Ki has xt′+1 copies of message. Since xt′+1 ≤ 2xt′ ≤ 2yt′ ,

xt′+1 − yt′ ≤ yt′ and therefore, we have enough processors to choose. Similarly, in Kj yt′+1 − xt′

processors do local transfers so that Kj has yt′+1 after t′ +1. The total number of global transfers

coming from Ki and Kj in the original schedule is at most xt′ + yt′ − (xt′+1 −xt′)− (yt′+1 − yt′) =

73

xt′ + yt′ − (yt′+1 − xt′) − (xt′+1 − yt′) and this is exactly the number of remaining processors.

Therefore, we have the remaining processors enough to make global transfers. After time t′ + 1,

we can do transfers as in the original schedule. ut

We can now consider schedules with the property in Lemma 6.5.7 only. Due to the property,

a processor knows the receiver to send a message when it performs a global transfer— the largest

cluster that has not received any message. The only thing a processor needs to decide at each time

is whether it will make a local transfer or global transfer. By performing local and global transfer

alternatively, we can bound the makespan by a factor of two.

Theorem 6.5.8 The makespan of Interleaved LCF is at most 2 times OPTS.

Proof Given an optimal schedule with the property in Lemma 6.5.7, modify the schedule so

that each operation takes 2 units of time. That is, if a processor performs a local transfer then it

is idle in the next time slot and if a processor performs a global transfer, it is idle in the previous

time slot. The makespan of the modified schedule is at most 2 times the optimal. It is easy to

see that the schedule by Interleaved LCF should not be worse than the modified schedule since

in Interleaved LCF, the processors performs local and global transfers alternatively with no idle

time. ut

6.6 Experiments

One issue with our broadcasting protocol is that it assumes knowledge of the sizes of the clusters.

In some applications, the cluster sizes may not be known accurately in advance. What effect can

this have on the broadcasting algorithm Largest Cluster First for example? In the simplest model,

we study the effect of having inaccurate information regarding the sizes of the clusters.

We run the LCF algorithm using the correct cluster sizes; in addition, we run the LCF

algorithm by basing the order on advertised sizes that may be off by a factor of 2. For example,

for each cluster we let the advertised size be fixed, but change the actual size randomly by either

doubling it, or halving it. We now run the protocol where the cluster ordering is made by using the

74

advertised size. We found that there is hardly any change in the performance of the broadcasting

algorithm.

In the following experiment, we have roughly 2000 clusters and each cluster has advertised

size between 1 and 100 nodes. We choose the actual cluster size using a Zipf distribution, i.e.,

Prob(a cluster having size i) = c
i1−θ , ∀i = 1, . . . , 100 and 0 ≤ θ ≤ 1, where c = 1

H1−θ
M

, H1−θ
M =

∑100
j=1

1
j1−θ , and θ determines the degree of skewness. We assign θ to be 0. Figure 6.4 shows a

histogram of the cluster sizes. We also let C be a parameter and vary this from 10 to 1000. This

is a reasonable range as we expect the time to send a message across clusters to be within this

range, assuming that the time to send a message within a cluster takes unit time. (If it takes a few

milliseconds to send a message from one node to another locally, it may take upto a few hundred,

or thousand milliseconds to send a message to a node belonging to another cluster.)

(Actual) records the broadcast time when the cluster sizes are the same as their advertised

sizes. (Advertised) records the broadcast time when the cluster sizes are either half or double

their advertised sizes (this choice is made independently and randomly for each cluster). We also

compare both these methods to the broadcast time if the algorithm were to use a random ordering

of the clusters (Random). We also illustrate these times and compare them to the best lower

bounds from Section 6.2.1.

6.6.1 Results

As shown in Figure 6.5, we found that (Actual) performs the best. This is unsurprising because it

has completely accurate information. Note that in all the experiments we ran, it performs at most

1.5 times the lower bound, which is smaller than the theoretical bound of 2. (However, we believe

that the broadcasting time is a much closer to the optimal solution even though our lower bounds

are not strong enough to argue this.) Moreover, (Advertised) performs very close to (Actual) (it

takes only one more round in all instances). This behavior shows that one needs not to have

completely accurate information on the size of the clusters for our Largest Cluster First algorithm

to perform well. On the other hand, if the algorithm uses a random ordering of the clusters, it

75

5 15 25 35 45 55 65 75 85 95
0

200

400

600

800

1000

1200

Cluster Size

N
um

be
r

of
 C

lu
st

er
s

Figure 6.4: A histogram of the cluster sizes.

takes, on average, at least 24% more number of rounds than (Actual). In addition, as C increases,

(Actual) performs closer and closer to the optimal.

76

Figure 6.5: The ratio of the number of rounds taken by the algorithms to the lower bound,

averaged over 5 inputs, with different values of C (10, 30, 100, and 1000). The maximum ratio

appears on the top of each bar.

77

Chapter 7

Coordinated Data Collection

In this chapter1, we present our work on a large-scale data collection problem, which arises naturally

in the context of wide-area upload applications. The communication model considered in this

chapter is more sophisticated than the models considered in previous chapters. We allow different

communication capacities between devices and also allow a device to communicate with several

other devices simultaneously.

We focus on application-level approaches to improving the performance of large-scale data

collection (i.e., our approach does not require changes in the routers in the network). We do this

in the context of Bistro upload framework. We first devise a coordinated transfer schedule which

would afford maximum possible utilization of available network resources between multiple sources

and the destination. We then present a comprehensive study which compares the performance,

robustness, and adaptation characteristics of three potential approaches to large-scale data trans-

fers in IP-type networks, namely direct, non-coordinated, and coordinated approaches. We do this

using ns2 [50] simulations and within the context of our graph-theoretic model.

7.1 Problem Specification

Our data collection problem can be stated as: Given a set of source hosts, the amount of data to

be collected from each host, a common destination host for the data, and available link capacities

between hosts, our goal is to construct a data transfer schedule which specifies on which path,

in what order, and at what time should each “piece” of data be transferred to the destination

host, where the objective is to minimize the time it takes to collect all data from the source hosts,

i.e., makespan. Since we are focusing on application-level solutions, a path (above) is defined as

a sequence of hosts, where the first host on the path is the source of the data, intermediate hosts
1This is joint work with C. Chou, W. Cheng, L. Golubchik, and S. Khuller [19].

78

are other bistros (hosts) in the system, and the last host on the path is the destination host. The

transfer of data between any pair of hosts is performed using TCP/IP, i.e., the path the data takes

between any pair of hosts is determined by IP routing.

We note that the choice of the makespan metric is dictated by the applications stated above,

i.e., there are no clients in the data collection problem and hence metrics that are concerned with

interactive response time (such as mean transfer times) are not of as much interest here. Since the

above mentioned applications usually process the collected data, the total time it takes to collect it

(or some large fraction of it) is of greater significance. Note, however, that our problem formulation

(below) is versatile enough that we can optimize for other metrics (if desired), e.g., mean transfer

times. We also note that we do not require a distributed algorithm for the above stated problem

since Bistro employs a server pull approach, with all information needed to solve the data collection

problem available at the destination server. Also not all hosts participating in the data transfer

need to be sources of data; this does not change the formulation of our problem since such hosts

can simply be treated as sources with zero amount of data to send to the destination.

Moreover, all hosts participating in the data transfer need not be sources of data; this does

not change the formulation of our problem since such hosts can simply be treated as sources with

zero amount of data to send to the destination.

Although in this work we present our methodology in the context of a single destination,

for ease of exposition, we can solve the multi-destination problem as well (by employing either

multicommodity flow algorithms [1], or a single commodity min-cost flow algorithm, as in Sec-

tion 7.3, depending on the requirements). We can also solve the multi-destination problem with

multicommodities using multicommodity flow algorithms.

7.2 Overview of Data Collection Approaches

In this section, we give a brief overview of the data collection methods evaluated.

79

7.2.1 Direct Methods

• All-at-once. Data from all source hosts is transferred simultaneously to the destination server.

• One-by-one. The destination server randomly repeatedly selects one source host from a set

of hosts which still have data to send; all data from that source host is then transferred to

the destination server.

• Spread-in-time-GT . The destination server chooses values for two parameters: (1) group size

(G) and (2) time slot length (T). At the beginning of each time slot, the destination server

randomly selects a group (of size G) and then the data from all source hosts in that group is

transferred to the destination server; these transfers continue beyond the time slot length T ,

if necessary. At the end of a time slot (of length T), the destination server selects another

group of size G and the transfer of data from that group begins regardless of whether the

data transfers from the previous time slot have completed or not.

• Concurrent-G. The destination server chooses a group size (G). It then randomly selects

G of the source hosts and begins transfer of data from these hosts. The destination server

always maintains a constant number, G, of hosts transferring data, i.e., as soon as one of

these hosts completes its transfer, the destination server randomly selects another source

host and its data transfer begins.

Clearly, there are a number of other direct methods that could be constructed as well as variations

on the above ones. However, this set is reasonably representative for us to make comparisons (in

Section 7.5).

We note, that each of the above methods has its own shortcomings. For instance, if the

bottleneck link is not shared by all connections, then direct methods which explore some form of

parallelism in data transfer such as the all-at-once method might be able to better utilize existing

resources and hence perform better than those that do not exploit parallelism. On the other hand,

methods such as all-at-once might result in worse effects on (perhaps already poor) congestion

conditions. Methods such as concurrent and spread-in-time require proper choices of parameters

80

and their performance is sensitive to these choices.

Regardless of the specifics of a direct method, due to their direct nature, none of them are

able to take advantage of network resources which are available on routes to the destination server

other than the “direct” ones (as dictated by IP). Coordinated methods described below are able

to take advantage of such resources and therefore result in significantly better performance, as

illustrated in Section 7.5.

7.2.2 Non-coordinated Methods

We consider a non-coordinated approach in which each source host chooses a single application-

level (“nearly”) best path (in term of available bandwidth) to transfer its data to the destination

host. Specifically, this non-coordinated method is similar2 to the current approaches used in RON

[2] and Detour [83]. As suggested in [2, 83], in this non-coordinated approach, we only consider re-

routing traffic through at most one intermediate host on the way to the destination host. Moreover,

for each source host, we first choose a path, p, with one intermediate host, and consider p as the

current “best” path. We then consider another potential path, q, and choose q instead of p, if q’s

available bandwidth is more than 105% of p’s available bandwidth, as in [2]. We continue in this

manner, until all paths have been considered.

7.2.3 Our Coordinated Approach

An overview of our approach to the problem stated in Section 7.1 and the subsequent evaluation

of that approach is as follows:

• Step 1. Construct a graph representation of the hosts and the corresponding communica-

tion network. This includes specification of nodes, connectivity between nodes, (estimated)

capacities of the corresponding connections, and so on.

• Step 2. Generate a time-expanded version of the graph constructed in Step 1.
2We are not able to use the exact re-routing algorithm in [2, 83] as the details of these algorithms are not stated

there.

81

• Step 3. Determine a data transfer schedule on the time-expanded graph by optimizing a

given objective function under the appropriate set of constraints. In this chapter, we focus

on the objective of minimizing the total amount of time it takes to collect the data from the

source hosts, i.e., makespan, and we place some constraints on splitting and merging of data

chunks.

• Step 4. Convert the solution produced in Step 3 under the graph-theoretic formulation to a

data transfer schedule for a communication network, taking into consideration the network

protocols to be used for the transfers (e.g., TCP/IP). As stated in Section 7.1, this schedule

must specify on what path and in what order should each “piece” of data be transferred to

the destination host, where a path is defined as a sequence of hosts, with the first host on

the path being the source of the data, intermediate hosts on the path being other hosts, and

the last host on the path being the destination host.

• Step 5. Execute the data transfer schedule produced in Step 4 using ns2 [50] in order to

evaluate the “goodness” of this data transfer schedule (i.e., this step is performed to evaluate

our approach).

The details of Steps 1 through 3 are given in Section 7.3. The details of Step 4 are given in Section

7.4. Moreover, the details of Step 5 (as well as determination of parameters needed in Step 1) and

the corresponding performance evaluation results are given in Section 7.5.

Lastly, we use Figure 7.1 to give a high-level example which illustrates the intuition behind

the differences among the three approaches described above. Assume that both source hosts S1

and S2 have 1 unit of data to upload to the destination host D. Normally, this would go through

network N1. Let us further assume that there is a bottleneck link somewhere between N1 and D

and this link has unit capacity available. Therefore, if D pulls data simultaneously from both S1

and S2. It will take 2 units of time to complete the transfer.

Another host, denoted by K, can transfer data to D at rate twice the unit capacity. However,

its connection to hosts S1 and S2 is limited at unit capacity. If both S1 and S2 choose to use K

to reroute the data to D, it will take 2 units of time to transfer data to K and another unit of

82

S1

D

K

S2

L1/1
L3/2

L2/1

S

D

K

link abstraction (label
is Name/Capacity)

:

intermediate host:

network:

shared point of congestion:

source host:

destination host:

N1
N2

N3

N

Figure 7.1: A high-level example.

time to transfer data from K to D. The total transfer time is 3 in this case. Chances are that

uncoordinated approaches will not choose this solution.

However, if we coordinate the data transfers in the following fashion, we can cut the total

data transfer time to 1.5 units of time. During the first unit of time, S1 transfers its data directly

to D and, simultaneously, S2 transfers its data to K. At the end of this time period, there is 1 unit

of data left at K. It would take another 0.5 units of time to complete the data transfer3. As far

as the makespan metrics are concerned, the data transfer from S2 to K is free because it occurs

in parallel with the data transfer from S1 to D. It does not compete with the other data transfer.

This parallelism cannot be exploited explicitly with other approaches. We believe that in a large

network, there is a lot of such parallelism which can be exploited using our approach.

7.3 Graph Theoretic Formulation

In general, the network topology can be described by a graph GN = (VN , EN), with two types

of nodes, namely end-hosts and routers, and a capacity function c which specifies the available

capacity on the links in the network. The sources S1, . . . Sk and the destination host D are

a subset of the end-hosts. The example of Figure 7.2(a) illustrates the potential benefits of a
3We note that our graph-theoretic coordinated data transfer algorithm given below is able to construct a solution

which reduces the total transfer time in the above example to 1.2 time units.

83

coordinated approach. Here, some chunk of data can be transferred between S3 and D, while

another is transferred, in parallel, between S2 and S1 (as staging for the final transfer from S1

to D). These two transfers would not interfere with each other while attempting to reduce the

makespan metric by utilizing different resources in the network in parallel.

Note that, our algorithm (below) does not know either the topology of the network or the

capacity function. In addition, background traffic exists, which affects the available bandwidth on

the links. Hence, we model the network by an overlay graph consisting of the set of source hosts

and a destination host. (For ease of presentation below we discuss our methodology in the context

of source hosts and destination host; however, any end-host can be part of the overlay graph, if it

is participating in the Bistro architecture. In that case, the node corresponding to this host would

simply have zero amount of data to send in the exposition below.) We refer to the overlay graph as

GH = (VH , EH). The overlay graph is a directed (complete) graph where VH = {S1, . . . , Sk}∪{D}.

(See Figure 7.2(b) for an example corresponding to Figure 7.2(a); outgoing edges from D are not

shown since they are never used.) The capacity function in GH models available capacity c′ on

each edge and is assigned as the bandwidth that is available for data transfer between end-hosts.

(This takes into account the background traffic, but not any traffic that we are injecting into the

network for the movement of data from the sources to the destination.) In other words, this is

the bandwidth that is available to us on the path which the network provides us in the graph GN ,

subject to the background traffic. Since we may not know the underlying topology or the routes

that the paths take, we may not be able to properly model conflicts between flows. In other words,

node S2 may not simultaneously be able to send data at rate 1 to each of D and S3 since the

paths that are provided by the network share a congested link and compete for bandwidth. Such

knowledge (if available) could be used to specify a capacity function on sets of edges, and one

could use Linear Programming [25] to obtain an optimal flow under those constraints.

From the overlay graph GH we construct a “time-expanded” graph GT ′ [32, 46] (see Fig-

ure 7.3) which is the graph that our algorithm will use for computing a schedule to route the data

from the sources to the destination4. Given a non-negative integer T ′, we construct this graph as
4For clarity of presentation, we omit edges in Figure 7.3 which are not useful for the corresponding data transfer

84

Host
Router
Network Link
Congested Link
IP Route

S2

S1

D

S3

(a)

S2

S1

D

S3

(b)

5

7

1

4

1

3

3

1

1

Overlay
Graph GHNetwork

Graph GN

Figure 7.2: Network topology and a corresponding overlay graph.

follows: for each node u in GH we create a set of T ′ + 1 vertices u(i) for i = 0 . . . T ′ and a virtual

destination D′ in GT ′ . We pick a unit of time t (refer to Section 7.5 for the choice of t) and for

each edge (u, v) in GH , add, for all i, edges in GT ′ from u(i) to v(i + 1) with capacity t · c′(u, v).

(For example, suppose we have available capacity from u and v of 20 Kbps and define t to be

2 seconds. Then, we can transfer 40 Kb of data from u to v in “one unit of time”.) Thus, the

capacity of the edge from u(i) to v(i + 1) models the amount of data that can be transferred from

u to v in one unit of time. We will discuss the discrepancies between the model and a TCP/IP

network in Section 7.4. In addition, we have edges from D(i) to the virtual destination D′, and

edges from u(0) to u(i) which are referred to as the “holdover” edges. The latter just corresponds

to keeping the data at that node without sending it anywhere.

We first define the min-cost flow problem [1]: given a graph in which each edge has a capacity

and unit transportation cost, some vertices are supply nodes supplying flows, some are demand

nodes demanding flows, while the total supply equals to the total demand. We want to satisfy all

demands, by flows from the supply nodes with the minimum total cost. We use Goldberg’s code

[37, 38] to find an optimal flow efficiently. We now define a min-cost flow instance on GT ′ : let the

supply of Si(0) be the amount of data to be collected from the source host Si, and the demand

example.

85

of D′ be the total supply. Figure 7.2(b) shows 12, 15, and 14 units of data have to be collected

from S1, S2, and S3, respectively, and the total demand of D′ is 41 units. We define the cost of

each edge later. Note that by disallowing edges from u(i) to u(i + 1) for i > 0, we hold flow at

the source nodes until it is ready to be shipped. In other words, flow is sent from S2(0) to S2(1)

and then to S1(2), rather than from S2(0) to S1(1) to S1(2) (which is not allowed since there is no

edge from S1(1) to S1(2)). This has the advantage that the storage required at the intermediate

nodes is lower. Hoppe and Tardos [47] argue that allowing edges of the form u(i) to u(i + 1) does

not decrease the minimum value of t (i.e., makespan).

D
,

i=0 i=1 i=2 i=3

S1

S2

S3

D

i=4

12

15

14

5

1111

111

1 1

6 6 1

55 5 5

17 7 2

1
6

4 4

13 13 8 7

Figure 7.3: Time-expanded graph GT with T = 4.

Our first goal then is to compute the minimum value of T ′ such that we can route all the

data to the destination D′ in GT ′ , because, with respect to our flow abstraction, the makespan of

our algorithm is T ′. Suppose the minimum value of T ′ is T , we can find it in O(log T) time by

doing a doubling search, followed by a binary search once we find an interval that contains the

minimum T for which a feasible solution exists. In other words, we test sequentially if a feasible

86

flow exists in G1, G2, G4, ... until we find a minimum T ∗ such that a feasible flow exists in GT∗ but

not in GT∗/2. Then we can obtain T by a binary search in the range T ∗/2 + 1 and T ∗.

Once we know T , we apply a min-cost flow algorithm in the time-expanded graph GT to

obtain an optimal flow solution fT , e.g., the number on the edge in Figure 7.3 corresponds to how

much data will be sent by that link at that time, as follows. First note that there could be several

feasible flows in GT that can route all the data to D′. Imposing unit transportation costs on edges

guides the algorithm to obtain a feasible flow with certain desirable properties. We associate a

cost of C1 − C2 · c′(u, v) with every transfer edge u(i) to v(i + 1), where C1 and C2 are constants

and C1 � C2 � 1. Thus, our solution would prefer sending data over high capacity links if two

solutions have the same total number of transfers. This also provides a more regular pattern in the

flow solution. (which can be useful in the PathMerge algorithm described in Section 7.4). To every

holdover edge u(0) to u(i), we assign a cost of i. This ensures that data is sent as soon as possible.

In other words, among all feasible flows, we prefer the ones with the property that the data arrives

earlier at D′. Lastly, the cost is 0 for all other edges. Modifications to this cost function can be

made if other properties are desired (e.g., based on network and/or protocol characteristics).

The min-cost flow algorithm runs in O(n2m log nC), where n, m, and C are the number of

vertices, the number of edges, and the maximum capacity of a link, in the network flow graph,

respectively. If we have b bistros, then n = (T + 1)b, m = (T + 1)b(b − 1)/2, and C = (maximum

amount of data that can be sent in one time unit) / (data unit size). Thus, the total running

time (in worst case) of our algorithm is O(T 3b4(log TbC)(log T)). In our experiments, the entire

computation takes on the order of a few seconds on a Pentium III 650 MHz, and typical values of

T , b, and C are 150, 8, and 30, respectively. Moreover, in our problem T is not large so it is feasible

to build the entire time-expanded graph and run a min-cost flow algorithm on it. Otherwise, one

could use other algorithms (see Hoppe and Tardos [46, 47]) which run in polynomial time rather

than pseudo-polynomial time.

Note that in our formulation, we compute the capacity function once initially (refer to

Section 7.5), to estimate the available capacity between pairs of hosts. We then assume this to be

87

the available bandwidth for the entire duration of the transfer. Of course, if the transfer is going

to take a long time, we cannot assume that the network conditions are static. In this case, we

can always compute a new estimate of available bandwidth during the scheduling of the transfer

and compute a new transfer schedule for the remaining data. (Our algorithm itself is very fast,

and so this does not cause a problem even if the current transfer is stopped, and the schedule is

changed.) In fact, the algorithm itself can detect when transfer times are not behaving as predicted

and compute a new estimate of capacities. Therefore, we also perform an adaptation study to

changing network conditions in Section 7.5. Also note that our algorithm is not complicated to

implement since we are working at the application layer, where we only need to control the route

within the overlay network without any changes to the network protocols (such as IP or TCP).

We also note that for ease of exposition, we do not explicitly include I/O bandwidth constraints

in our formulation; however, this can easily be included in capacity constraints within the same

graph-theoretic formulation. We do not include this in our experiments (below) as currently, I/O

bandwidth is not the bottleneck resource in our application. Lastly, the formulation above is quite

robust and we can use it to model situations where data may be available at different sources at

different times.

Remark: An alternative approach might be to use the overlay graph, GH , to compute the

“best” path in GH from each host to the destination, independently, e.g., S2 may choose the

path (S2, S1, D) since it is the maximum capacity path to D, and send all of its data along this

path. This would correspond to the non-coordinated approach, and hence, our coordinated ap-

proach formulation includes the non-coordinated approach as a special case. However, this option

does not permit for (a) any coordination between transfers from different source hosts, (b) explicit

load balancing, as each node makes an independent decision as to which route to send the data

on, and (c) maximum possible utilization of available network resources between a source and the

destination. More formally, in our time-expanded graph, the non-coordinated method corresponds

to a feasible flow in a graph GTi
for some Ti. Note that Ti ≥ T where T is the minimum value

obtained by our algorithm, which allows for sending of data along multiple paths between a source

88

and the destination. In fact, by sending the data along several paths, our algorithm obtains a

better solution than the non-coordinated method. This difference becomes especially significant, if

several good application level routes exist, but non-coordinated methods send their data along the

“best” path, thus causing congestion along this path. In this chapter, we show that the coordinated

approach performance significantly better (refer to Section 7.5).

7.4 Transfer Schedule Construction

What remains is to construct a data transfer schedule, fN (defined as the goal of our data collection

problem in Section 7.1), from the flow function fT computed in Section 7.3, while taking into

consideration characteristics of wide-area networks such as the TCP/IP protocol used to transfer

the data. This conversion is non-trivial partly due to the discrepancies between the graph-theoretic

abstraction used in Section 7.3 and the way a TCP/IP network works. (Below we assume that

each data transfer is done using a TCP connection.)

One such discrepancy is the lack of variance in data transfers in the graph-theoretic formu-

lation, i.e., a transfer of X units of data always takes a fixed amount of time over a particular

link. This is not the case for data transferred over TCP in a wide-area network, partly due to

congestion characteristics at the time of transfer and partly due to TCP’s congestion avoidance

mechanisms (e.g., decrease in sending rate when losses are encountered). Another discrepancy

in the graph theoretic formulation is that it does not matter (from the solution’s point of view)

whether the X units are transferred as a single flow, or as multiple flows in parallel, or as multiple

flows in sequence. However, all these factors affect the makespan metric when transferring data

over TCP/IP. Again, these distinctions are partly due to TCP’s congestion avoidance mechanisms.

Thus, we believe that the following factors should be considered in constructing fN , given

fT : (a) size of each transfer, (b) parallelism in flows between a pair of hosts, (c) data split and

merge constraints, and (d) synchronization of flows. In this chapter, we propose several different

techniques for constructing fN from fT , which differ in how they address issues (a) and (d). We

first give a more detailed explanation of these issues and then describe our techniques. Note that,

89

we use the term “transfer” to mean the data transferred between two hosts during a single TCP

connection.

Size of each transfer.

If the size of each transfer is “too large” we could unnecessarily increase makespan due to lack

of pipelining in transferring the data along the path from source to destination (in other words,

increased delay in each stage of application-level routing). For example, suppose fT dictates a

transfer of 100 units of data from node S2 to S3 to D. S3 does not start sending data to D until

all 100 units of data from S2 have arrived. If the size of each transfer is 10 units, S3 can start

sending some data to D after the first 10 units of data have arrived. On the other hand, if the size

of each data transfer is “too small” then the overheads of establishing a connection and the time

spent in TCP’s slow start could contribute significantly to makespan.

In this work, we address the “too small” problem as follows: we ensure that each transfer is

of a reasonably large size by carefully picking the time unit and data unit size parameters in the

graph construction step (refer to Section 7.5 for details). Second, we can provide a mechanism for

merging data transfers which are deemed “too small” (we omit this approach in the interests of

brevity; please refer to [20]). The “too large” problem is addressed by a proper choice of the time

unit parameter (see Section 7.5).

Parallelism between flows.

One could try to obtain a greater share of a bottleneck link for an application by transferring

its data, between a pair of hosts, over multiple parallel TCP connections. However, we do not

explore this option here, mainly because it is not as useful (based on our simulation experiments) in

illustrating the difference between the data collection methods since all these methods can benefit

from this. In fact, we made a comparison between a direct method employing parallel connections

and our coordinated methods without parallel connections, and the coordinated methods could

still achieve better performance.

Data split and merge constraints.

The fT solution allows for arbitrary (although discrete) splitting and merging of data being trans-

90

ferred. However, in a real implementation, such splitting and merging (of data which represents

uploads coming from many different clients) can be costly. For instance, in the income tax submis-

sion forms example, if we were to arbitrarily split a user’s income tax forms along the data transfer

path, we would need to include some meta-data which would allow piecing it back together at the

destination server. Since there is a cost associated with splitting and merging of data, we allow it

only at the source of that data and the destination. To ensure this constraint is met, the first step

in our fN construction techniques is to decompose fT into flow paths (see details below).

Evaluation of potential additional benefits of splitting and merging is ongoing work. For

instance, if we do not want to allow any splitting of the data, we could consider formulating

the problem as an unsplittable flow problem. Unfortunately, unsplittable flow problems are NP-

complete [65]. Good heuristics for these have been developed recently, and could be used [26].

Synchronization of flows.

The fT solution essentially synchronizes all the data transfers on a per time step basis, which

leads to proper utilization of link capacities. This synchronization comes for free given our graph-

theoretic formulation of the data collection problem. However, in a real network, such synchro-

nization will not occur naturally. In general, we could implement some form of synchronization in

data transfers at the cost of additional, out-of-band, messages between bistros. Since the Bistro

architecture employs a server pull of the data, this is a reasonable approach, assuming that some

form of synchronization is beneficial. Thus, we explore the benefits of synchronization.

Splitting the flow into paths.

Given that splitting and merging of data is restricted, we now give details of decomposing fT into

paths, which is the first step in constructing fN from fT . To obtain a path from fT , we traverse the

time-expanded graph (based on fT) and construct a path from the nodes we encounter during the

traversal as follows. We start from a source host which has the smallest index number. Consider

now all hosts that receive non-zero flows from it. Among those we then choose the one with the

smallest index number, and then proceed to consider all hosts that receive non-zero flows from it.

We continue in this manner until the virtual destination is reached. The data transferred over the

91

resulting path p is the maximum amount of data that can be sent through p (i.e., the minimum

of flow volume over all edges of p). We note that a path specifies how a fixed amount of data is

transferred from a source to the destination. For example (in Figure 7.3), a path can be specified

as (S2(0), S2(1), S1(2), D(3), D′), which says that a fixed amount of data is transferred from node

S2 to node S1 at time 1, and then from node S1 to the destination D at time 2 (and D′ is the

virtual destination). In fact, for this path the value of the flow is 4.

To split the flow network into paths, we first obtain a path using the procedure described

above. We then subtract this path from fT . We then obtain another path from what remains of fT

and continue in this manner until there are no more flows left in fT . At the end of this procedure,

we have decomposed fT into a collection of paths. (An example of this flow decomposition is given

under the description of the PathSync algorithm below and in Figure 7.4.)

Imposing Synchronization Constraints.

What remains now is to construct a schedule for transferring the appropriate amounts of data along

each path. We propose the following methods for constructing this schedule which differ in how

they attempt to preserve the time synchronization information produced by the time-expanded

graph solution.

The PathSync Method.

In this method we employ complete synchronization as prescribed by the time-expanded graph

solution obtained in Section 7.3. That is, we first begin all the data transfers which are supposed

to start at time step 0. We wait for all transfers belonging to time step 0 to complete before

beginning any of the transfers belonging to time step 1, and so on. We continue in this manner

until all data transfers in the last time step are complete. We term this approach PathSync100

(meaning that it attempts 100% synchronization as dictated by fT).

Recall that the capacity of an edge in the time-expanded graph is the volume of data that

can be sent over it during one time unit. Since estimates of available capacity may not be accurate

(refer to Section 7.5), and since we may not know which transfers do or do not share the same

bottleneck link (unless, e.g., we employ techniques in [82]), it is possible, that some transfers may

92

take a significantly longer time to finish than dictated by fT . Given the strict synchronization rules

above, one or two slow transfers could greatly affect makespan. An alternative is to synchronize

only X% of the transfers. That is, as long as a certain percentage of the data transfers have

completed, we can begin all the transfers corresponding to the next time step, except, of course,

those that are waiting for the previous hop on the same path to complete. We term this alternative

PathSyncX where X indicates the percentage of transfers needed to satisfy the synchronization

constraints.

An example of PathSync is depicted in Figure 7.4 which shows a collection of paths obtained

from decomposing fT . At time step 0, PathSync100 starts the transfer from S1(0) to D(1), S2(0)

to S3(1), S2(0) to D(1), and S3(0) to D(1), since all these transfers belong to time step 0. When

all these transfers have finished, PathSync100 starts the transfers belonging to time step 1, namely

S1(1) to D(2), S2(1) to S1(2), S2(1) to S3(2), etc.

6115

11

41

1

1

T=0 T=1 T=2 T=3

S1

S2

S3

D

T=4

12

15

14

1

5 1

6

67

111

1111

55 4

1

14 4

1 1

11141715 1141

1
4 11

4

D
,

Figure 7.4: Solution obtained after flow decomposition.

The PathSync method performs quite well (refer to Section 7.5), especially when the per-

93

centage of transfers that satisfy the synchronization requirements is a bit lower than 100%. This is

an indication that it is worth while to attempt to preserve the timing constraints prescribed by the

solution of the time-expanded graph (as long as these benefits are not subsumed by the harmful

effects of potentially high variance in the transfers). Since synchronization between hosts is not

free in a real implementation, we also consider a method which does not require it.

The PathDelay Method.

In the PathDelay method we do not attempt synchronization between transfers once a transfer

along a particular path begins. That is, as long as a particular data transfer along one hop of

a path completes, the transfer of that data begins along the next hop of that path. The only

synchronization performed in this method is to delay the transfer of that data from the source

node until an appropriate time, as dictated by fT , i.e., no inter-host synchronization is needed.

For example, after the decomposition of fT into paths, there is a path (S2(0), S2(2), S1(3), D(4), D′)

of size 4 (see Figure 7.4). Since the data is held at the source S2 until time step 2 in fT , we schedule

the S2(2) to S1(3) transfer at “real” time 2 · t, where t is our time unit (refer to Section 7.5).

One could also create variations on PathDelay by expanding or contracting the time unit,

used in computing fT , when constructing fN , again to account for variance in data transfer in a

real network as compared to the graph-theoretic formulation. For instance, PathDelayX would

refer to a variation where the time unit t in fT is modified to be Xt in fN .

7.5 Performance Evaluation

In this section we evaluate the performance of the various data transfer methods and illustrate the

benefits of using a coordinated approach. This evaluation is done through simulation; all results

are given with at least 95% ± 5% confidence.

Simulation Setup

For all simulation results reported below, we use ns2 [50] in conjunction with the GT-ITM topology

generator [49] to generate a transit-stub type graph with 152 nodes for our network topology. The

number of transit domains is 2, where each transit domain has, on the average, 4 transit nodes with

94

there being an edge between each pair of nodes with probability of 0.6. Each node in a transit

domain has, on the average, 3 stub domains connected to it; there are no additional transit-

stub edges and no additional stub-stub edges. Each stub domain has, on the average, 6 nodes with

there being an edge between every pair of nodes with probability of 0.2. A subset of our simulation

topology (i.e., without stub domain details) is shown in Figure 7.5. The capacity of a “transit node

B2

A1 B1

B3

B0
B4

A0

A2

link across different
trasnit domains

:

link to stub domain:

transit domain:

transit node:

link within
a transit domain

:

Figure 7.5: The simulation topology.

to transit node” edge within the same transit domain is 10 Mbps. The capacity of a “transit node

to transit node” edge across different transit domains is 5 Mbps. The capacity for a “transit node

to stub node” edge or a “stub node to stub node” edge is 2.5 Mbps. Our motivation for assigning

a lower capacity to the “transit node to transit node” edge across different transit domains is to

emulate poorer performance conditions that exist at the peering points [71]. Moreover, we linearly

scale the propagation delay between nodes generated by the GT-ITM topology generator [49] such

that the maximum round trip propagation delay in our topology is 80 ms. Note that, the size and

parameters of our network model and the simulation setup are motivated by what is practical to

simulate with ns2 in a reasonable amount of time. However, since our goal is a relative comparison

of the methods, this will suffice.

We locate the destination server in the stub domain connected to A1, and we locate 7 other

bistros in stub domains connected to other transit nodes. Each bistro holds a total amount of data

which is uniformly distributed between 25 and 75 MBytes with an additional constraint that the

95

total amount of data in all bistros is 350 MBytes. In addition to the data collection traffic, we

setup 0 to 120 background traffic flows from nodes attached to transit domain B to nodes attached

to transit domain A. In our experiment, the ratio of the number of background flows in peering

point (B0,A0) to the number of background flows in peering point (B1,A1) is 1:3 (asymmetric).

We also investigated how the methods behave under different ratios between the peering points

such as 1:1 (symmetric), 2:1, and 1:2; the results indicate similar trends. (We do not include them

here in the interests of brevity.) The background traffic pattern is similar to that in [82]. Each

background flow is an infinite FTP with a probability of 0.75. Otherwise, it is an on-off CBR

UDP flow. The average on-time and off-time is chosen uniformly between 0.2 and 3 seconds. The

average rate (including the off periods) is chosen so that the expected total volume of UDP traffic

through a peering point takes up 5% of the capacity of that point. (Similar trends persist under

different volumes of UDP traffic; we do not include details of these results here in the interests

of brevity.) To illustrate a reasonably interesting scenario, all nodes participating in background

traffic are located in stub domains that are different from those holding the bistros participating

in data collection traffic. This choice avoids the non-interesting cases (for makespan) where a

single bistro ends up with an extremely poor available bandwidth to all other bistros (including

the destination server) and hence dominates the makespan results (regardless of the data transfer

method used).

Construction of Corresponding Graph

We now give details of constructing graph GH of Section 7.3 from the above network. The eight

bistros make up the nodes of GH , with the destination bistro being the destination node (D)

and the remaining bistros being the source nodes (Si) with corresponding amounts of data to

transfer. The link capacities between any pair of nodes in GH are determined by estimating

the end-to-end mean TCP throughput between the corresponding bistros in the network. In our

experiments these throughputs are estimated in a separate simulation run, by measuring the TCP

throughput between each pair of bistros separately while sending a 5 MByte file between these

bistros. We repeat the measurement 10 times and take the average to get a better estimation. These

96

measurements are performed with background traffic conditions corresponding to a particular

experiment of interest but without any data collection traffic or measurement traffic corresponding

to other bistro pairs. Although a number of different measurement techniques exist in the literature

[18, 27, 53, 68, 75, 85], we use the above one in order to have a reasonably accurate and simple

estimate of congestion conditions for purposes of comparison of data collection methods. However,

we note, that it is not our intent to advocate particular measurement and available bandwidth

estimation techniques. Rather, we expect that in the future such information will be provided

by other Internet services, e.g., such as those proposed in SONAR [78], Internet Distance Map

Service (IDMaps) [35], Network Weather Service (NWS) [91], and so on. Since these services will

be provided for many applications, we do not consider bandwidth measurement as an overhead of

our application but rather something that can be amortized over many applications.

In order to construct GT from GH we need to determine the time unit and the data unit size.

The bigger the time unit is, the less costly is the computation of the min-cost flow solution but

potentially (a) the less accurate is our abstraction of the network (due to discretization effects) and

(b) the higher is the potential for large transfer sizes (which in turn contribute to lack of pipelining

effects as discussed in Section 7.4). The smaller the time unit is, the greater is the potential for

creating solutions with transfer sizes that are “too small” to be efficient (as discussed in Section

7.4). Similarly, the data unit size should be chosen large enough to avoid creation of small transfer

sizes and small enough to avoid significant errors due to discretization (as discussed in Section

7.4).

In the experiments presented here we use a time unit which is 100 times bigger than the

maximum propagation delay on the longest path, i.e., 8 sec. (This choice is motivated by the fact

that in many cases we were not able to run ns simulations with smaller time units as the resulting

number of flows was too large; a smaller time unit did not present a problem for our theoretical

formulation.) The data unit size is chosen to ensure that the smallest transfer is large enough to get

past the slow start phase and reach maximum available bandwidth without congestion conditions.

Since without background traffic a bistro can transmit at a maximum window size of 2.5 Mbps ×

97

80 ms (on the longest path), we use a data unit size a bit larger than that, specifically 64 KBytes.

Performance Metrics.

The performance metrics used in the remainder of this section are: (a) makespan, i.e., the time

needed to complete transfer of total amount of data from all bistros, (b) maximum storage re-

quirements averaged over all bistros (not including the destination host since it must collect all

the data), and (c) mean throughput of background traffic during the data collection process, i.e.,

we also consider the effect of data collection traffic on other network traffic. We believe that these

metrics reflect the quality-of-service characteristics that would be of interest to large-scale data

collection applications (refer to Section 7.1).

Evaluation Under the Makespan Metric.

We first evaluate the direct methods described in Section 7.2 using the makespan metric. As

illustrated in Figure 7.6(a) direct methods which take advantage of parallelism in data delivery

(such as all-at-once) perform better under our simulation setup. Intuitively, this can be explained

as follows.

2

4

6

8

10

12

14

16

0 50 100

of background flows

M
ak

es
pa

n
(s

ec
)

x
10

3

(a)

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

of background flows

M
ak

es
pa

n
(s

ec
)

x
10

3

(b)

PathSync100
PathSync95
PathDelay
Non-coordinated
All-at-once

Spread-in-time_2_100s
Spread-in-time_2_500s
Spread-in-time_3_100s
Spread-in-time_3_500s
All-at-once
One-by-one
Concurrent3

Figure 7.6: Direct, non-coordinated, and coordinated methods under the makespan metric.

Given the makespan metric, the slowest bistro to destination server transfer dominates the

makespan metric. Since in our case, the bottleneck which determines the slowest transfer in direct

methods is not shared by all bistros, it makes intuitive sense to transfer as much data as possible,

through bottlenecks which are different from the one used by the slowest transfer, in parallel with

98

the slowest transfer.

Since all-at-once is a simple method and it performs better than or as well as any of the

other direct methods described in Section 7.2 under the makespan metric in our experiments, we

now compare just the all-at-once method to our coordinated methods. We include non-coordinated

methods in this comparison for completeness. This comparison is illustrated in Figure 7.6(b) where

we can make the following observations. All schemes give comparable performance when there is

no other traffic in the network (this makes intuitive sense since the capacity near the server is the

limiting resource in this case). When there is congestion in the network and some bistros have

significantly better connections to the destination server than others, our coordinated methods

result in a significant improvement in performance, especially as this congestion (due to other

traffic in the network) increases. For instance, in Figure 7.6(b), using PathSync95 we observe

improvements (compared to direct methods) from 1.9 times under 24 background flows to 3.7

times when the background traffic is sufficiently high (in this case at 120 flows). PathSync95 is

1.7 times better than the non-coordinated method under 120 flows.

As shown in Figure 7.6(b), enforcing full synchronization (as in PathSync100) can be harmful

which is not surprising since a single slow stream can lead to (a) significant increases in overall data

collection time (although nowhere as significant as the use of direct methods) and (b) increased

sensitivity to capacity function estimates and parameter choices in GH and GT . We can observe

(a), for instance, by comparing the overall performance of PathSync100 and PathSync95 in Figure

7.6(b). Regarding (b), intuitively, overestimating the capacity of a link may result in sending too

much data in one time slot in a particular transfer in our schedule, which may delay the whole

schedule as we fully synchronize all transfers (in the interests of brevity; please refer to [20]).

We note that if the packet size of the background traffic at the time the capacity estimations

were done is different from those at the time the data is collected, PathSync100 performed anywhere

from almost identically to two times worse; this is another indication that it is sensitive to capacity

function estimates. We also tried modifications to data unit size (during the discretization step

in constructing GH and GT) and observed similar effects on PathSync100, for reasons similar to

99

those given above. (We do not include details of these results here in the interests of brevity).

Above observations raise another question, which is how much synchronization is really

needed in the data collection schedule. By comparing PathDelay with PathSync (and its variants)

one might say that ensuring that transfers are initiated at the appropriate times (and then not

synchronizing them along the way) is sufficient, since PathDelay performs pretty well in the ex-

periments of Figure 7.6(b). However, the experiments in this figure are relatively small scale and

hence have relatively few hops in the paths constructed from fT . Other experiments indicate that

as the number of hops on a path (in GT) increases, PathDelay begins to suffer from getting out of

sync with the schedule computed in fT and performs much worse than PathSync95, for instance.

(We do not include details of these results here in the interests of brevity.)

Remark: One question might be whether the notion of simply assigning time slots (to bistros)

during which to transfer data directly to the destination server is a reasonable approach. Since

this is essentially the idea behind direct methods such as spread-in-time, and since they performed

significantly worse than the coordinated methods in the experiments illustrated above, we believe

that such methods do not lead to sufficiently good solutions.

Evaluation Under the Storage Metric.

Next, we evaluate the different methods with respect to the storage requirements metric. We note

that the direct methods do not require additional storage, i.e., beyond what is occupied by the

original data itself. In contrast, non-coordinated and coordinated methods do, in general, require

additional storage, since each bistro might have to store not only its own data but also the data

being re-routed through it to the destination server.

Figure 7.7 illustrates the normalized maximum per bistro storage requirements, averaged

over all bistros (other than the destination), of the non-coordinated and coordinated methods

as a function of increasing congestion conditions. These storage requirements are normalized by

those of the direct methods. We use the direct methods as a baseline since they represent the

inherent storage requirements of the problem as noted above. As can be seen from this figure,

the additional storage requirements of our coordinated algorithms are small. In all experiments

100

0

10

20

30

40

50

0 20 40 60 80 100 120

of background flows

%
 in

cr
ea

se
 r

el
at

iv
e

to
 d

ir
ec

t m
et

ho
ds

PathSync100
PathSync95
PathDelay
Non-coordinated

Figure 7.7: Non-coordinated and coordinated methods under the storage metric.

performed by us, storage overheads of all PathSync variations were no more than 5%. PathDelay

resulted in storage overheads of no more than 15% (this makes sense since greater storage is needed

when less stringent flow synchronization is used). We believe these are reasonable given the above

improvements in overall data collection times (and, also given the current storage costs). Note

that the storage requirement of the non-coordinated method is high because multiple data flows

from different source hosts may be re-routed to the same intermediate host at the same time.

Evaluation Under the Throughput Metric.

We also evaluate the non-coordinated and coordinated methods under the normalized mean through-

put metric, i.e., their effect on the throughput of the background traffic which represents other

traffic in the network. The results are normalized by the throughput achieved by the background

ftp traffic without presence of the data collection traffic.

We first evaluate the throughput of the direct methods. As illustrated in Figure 7.8(a),

the one-by-one method allows for the highest background traffic throughput. This is not sur-

prising, since one-by-one is the most conservative direct method in the sense that it injects the

data collection traffic into the network one flow at a time. As can be seen in Figure 7.8(b), the

non-coordinated and coordinated methods result in lower background traffic throughput, but not

significantly. The largest difference we observed was no more than 16% (for coordinated and non-

101

92

93

94

95

96

97

98

99

20 40 60 80 100 120

of background flows

bg
 F

T
Ps

 th
ro

ug
hp

ut
 r

el
at

iv
e

to
no

 b
is

tr
o

tr
af

fi
c

th
ro

ug
hp

ut
 (

%
)

84

86

88

90

92

94

96

98

20 40 60 80 100 120

of background flows

bg
 F

T
Ps

 th
ro

ug
hp

ut
 r

el
at

iv
e

to
no

 b
is

tr
o

tr
af

fi
c

th
ro

ug
hp

ut
 (

%
)

(a) (b)

PathSync100
PathSync95
PathDelay
Non-coordinated
All-at-once
One-by-one

Spread-in-time_2_100s
Spread-in-time_2_500s
Spread-in-time_3_100s
Spread-in-time_3_500s
All-at-once
One-by-one
Concurrent3

Figure 7.8: Direct, non-coordinated and coordinated methods under the throughput metric.

coordinated methods). This, of course, is not surprising since the coordinated and non-coordinated

methods are more aggressive than direct methods in taking advantage of bandwidth available in

the network. We believe that this is an indication that they are taking such advantage without

significant adverse effects on other traffic in the network.

Remark: Since our extensive evaluation of a variety of direct methods showed that “All-at-once”

method performs as well as any of the other direct methods in term of makespan metric, we use

that method as a representative “direct method”. Similarly, we use the “PathSync95” method as

our a representative “coordinated” method.

Effect of UDP traffic

We investigate the effect of UDP traffic on the makespan metric. In Figures 7.9(a) and (b), 7.9(c)

and (d), and 7.9(e) and (f) show the makespan metric under 0%, 5%, and 20% of UDP traffic,

respectively. Figures 7.9(a), 7.9(c), and 7.9(e) show the symmetric case (1:1) and Figures 7.9(b),

7.9(d), and 7.9(f) show the asymmetric case (2:1). As we can see, Figures 7.9(a), 7.9(c), and 7.9(e)

are very similar, so as Figures 7.9(b), 7.9(d), and 7.9(f). Qualitatively, the observations we made

above, in comparing direct, non-coordinated, and coordinated methods, still hold under different

volumes of UDP traffic, i.e., similar trends persist.

Robustness Study

The motivation for us to do a robustness study of different data collection methods is (i) it is

not easy to get a good estimate of available bandwidth of a path and (ii) network congestion

102

conditions might change over time, and hence it is important to see how sensitive the results are to

the accuracy of available bandwidth information. To this end we use perturbed values of available

bandwidth in computing the data transfer schedule for both non-coordinated and coordinated

methods. That is, we deviate available bandwidth values from the actual estimates to emulate

inaccuracies in available bandwidth estimates. Note that, the direct method does not use available

bandwidth estimation information, and is therefore unaffected by the errors in the estimation.

Since more interesting scenarios correspond to inaccuracies in bandwidth estimation of con-

gested points, (B0,A0) and (B1,A1), we consider the following two cases: (a) increasing the mis-

estimates of the available bandwidth of paths passing through link (B0,A0) while decreasing the

mis-estimates of the available bandwidth of paths passing through link (B1,A1), and (b) decreasing

the mis-estimates of the available bandwidth of paths passing through link (B0,A0) while increas-

ing the mis-estimates of the available bandwidth of paths passing through link (B1,A1). We ran

a number of experiments corresponding to different loadings on peering points and different vol-

umes of UDP traffic, and the results were qualitatively similar. Therefore, we only present an

experiment with the ratio of traffic loads between peering point (B0,A0) and peering point(B1,A1)

being 1:3. Figure 7.10 shows a series of results from over-estimating the available bandwidth of

paths passing through the more congested link by 70% in (a), 50% in (b), and 30% in (c), to

accurate estimation in (d), to under-estimating the available bandwidth of paths passing through

the more congested link by 50% in (e), and 70% in (f). Although the coordinated method is

affected by estimation errors in all paths, since it uses multiple paths to perform transfers, the

effect is relatively small. For instance, even when the available bandwidth of the paths passing

through the more congested link is over-estimated by 70%, as in Figure 7.10(a), the makespan is

increased by 46% when comparing to the same method with accurate bandwidth estimation. If we

under-estimate the available bandwidth by 70%, as in Figure 7.10(f), the makespan is increased

by 24%. However, note that in all cases, the non-coordinated method performs worse than the

coordinated method, anywhere from 37% to 142%. Furthermore, for the non-coordinated method,

a mis-estimation can be more dangerous; e.g., a high over-estimation of the available bandwidth

103

of a more congested link, as in Figures 7.10(a) and 7.10(b), can result in most of the traffic being

routed through the more congested path. Thus, the resulting performance would degrade sharply

and can be even worse than that of the direct method. As shown in Figure 7.10(a), the makespan

of the non-coordinated method is more than double of the makespan of the same method with

accurate bandwidth estimation. On the other hand, since the non-coordinated method chooses

the best path (in term of available bandwidth), this over-estimation needs to be sufficiently high

in order to force the wrong choice of best path. For instance, in Figure 7.10(c), it does not affect

the makespan. We note that, under-estimating the available bandwidth of paths passing through

a highly congested link does not affect the non-coordinated method since the method never picks

that path.

Adaptation Study

In order to explore the potential for adaptation to changes in network conditions of the various data

collection methods, we consider a comparison of our coordinated approach with a non-coordinated

method in a more dynamic network environment. (We do not include direct methods in this study

as it is not possible for them to adapt.) Specifically, by more dynamic network conditions we mean

that the changes occur in network conditions, at the session level of the background traffic, while

the data collection process is in progress. We note that, although the background traffic used in

the above experiments is dynamic at the packet level, it is basically static at the session level, i.e.,

the number of background traffic flows does not change while the data collection process proceeds.

Therefore, in this adaptation study we not only consider the background traffic conditions explored

above, but we also allow background traffic flows to join and leave while the data collection process

is in progress.

To illustrate a more interesting scenario, we consider the case where changes in the back-

ground traffic (i.e., the dynamic network conditions) occur in flows going through links (B0,A0)

and (B1,A1). That is, at the beginning of the simulation the ratio of traffic loads between peering

point (B0,A0) and peering point (B1,A1) is 1 : r with r > 1; after some time passes, i.e. , Tdyn

sec later, the ratio of traffic loads between the above two peering points becomes r : 1. In order to

104

give a fair comparison between the non-coordinated and our coordinated methods, both schemes

are given the same end-to-end network information and Tdyn values. That is, we assume that both

methods know exactly when the background traffic conditions change. Given the above informa-

tion, both the non-coordinated method and our coordinated method use the same approach to

adjust their data transfer schedules, which is as follows. At time Tdyn both the non-coordinated

method and our coordinated method will (i) immediately stop all current data transfers and (ii) re-

compute their data transfer schedules (using their respective algorithms) according to the current

location and amount of data which has not yet reached the destination host. That is, the system’s

state (in terms of new network conditions and state of data transfer) at time Tdyn is taken as the

(new) input to the coordinated and non-coordinated algorithms, and these algorithms are re-run

(on these new initial conditions) to produce new data transfer schedules. After this computation

is done, both methods will then proceed with the new data transfer schedules until all transfers

are completed.

We note that, in the performance study below we do not take into consideration or evaluate,

for either method, the various overheads associated with the adaptation process, such as the time

needed to coordinate hosts during the transfer schedule modification process. (We also assume

that this is done through an out-of-band control channel as in other control processes in Bistro.)

A reason for not evaluating such overhead here is that they are largely a function of the specific

control protocols used between the hosts participating in the transfers. We do acknowledge that

such overheads will likely be different in the coordinated and the non-coordinated methods. And,

a reasonable evaluation of these overheads is part of our on-going research efforts.

Of course, in a real system one would also need an approach for detecting or predicting

when network conditions have changed or rather when they have changed sufficiently to make the

computation and use of a new transfer schedule worth-while. In order to make an appropriate

decision of whether or not to adapt a data transfer schedule under these circumstances, we would

require an approach for evaluating the associated costs (overheads) and benefits (reduced makespan

time) of this adaptation process. These are not simple issues, and they are also part of our ongoing

105

research efforts.

Figure 7.11 depicts results of our adaptation study, where we compare our coordinated

method with the non-coordinated method using the makespan metric. In this figure, we use r = 3

with 5% background UDP traffic in the peering points, where the number of background FTP

flows is indicated by the X-axis. The only difference between Figures 7.11(a) and 7.11(b) is that

we use Tdyn = 200 in Figure 7.11(a), and we use Tdyn = 700 in Figure 7.11(b). In the results of

Figure 7.11 our coordinated method performs better than the non-coordinated method — it shows

an up to a 118% improvement in makespan in Figure 7.11(a) and an up to a 182% improvement

in makespan in Figure 7.11(b). Moreover, the following interesting observations about the results

in Figure 7.11 can be made.

Firstly, in both cases, (a) Tdyn = 200 and (b) Tdyn = 700, makespan of the non-coordinated

method under 36 background flows is worse than under 60 (or 48) background flows. Intuitively,

the makespan metric should increase as the number of background flows increases. This unin-

tuitive result might be explained as follows. By time Tdyn when network conditions change, the

non-coordinated approach may have already transferred too much data in the “wrong” direction,

i.e., to the wrong intermediate host, which may have been a good choice for the network con-

ditions before Tdyn but a bad choice for the network conditions after that time. That is, since

the non-coordinated method only chooses a single “best” path, it is in a sense too aggressive

about application-level re-routing of the data around the current network congestion points on

that path. And, by the time network conditions change, it is “too committed” to what becomes

(after Tdyn) a poor application-level path. Hence, it suffers a greater penalty for re-routing data

to what becomes (after Tdyn) a better path. On the other hand, our coordinated method attempts

to utilize all available application-level paths, in an appropriate manner, and hence appears to be

more “immune” or more robust to future changes in network conditions. (This is consistent with

our robustness study above.) Of course, the model of changes in network conditions used in this

study may in a sense be too drastic. However, it is used here in order to simplify the exposition

of the differences between the two approaches. A study using a more gradual model of network

106

condition changes is part of our future research efforts.

Another interesting observation is that the performance of the non-coordinated method in

Figure 7.11(b) is worse than its performance in Figure 7.11(a). Since Tdyn is larger in Figure

7.11(b) than in Figure 7.11(a), more data may have ended up being re-routed in this case to the

“wrong” intermediate node (as explained above) before changes in network conditions occurred.

Of course, further increasing Tdyn can improve the performance of the non-coordinated method,

as compared to case in Figure 7.11(a), as this would allow time for a greater fraction of the data

to reach the final destination before changes in network conditions occur.

Lastly, we note that we performed many more adaptation experiments, using various values

for Tdyn as well as for the ratio of traffic loads in the peering points. Qualitatively, the results show

similar trends as in Figure 7.11. Hence, we do include results of these experiment in the interests

of brevity.

In summary, we believe that the above adaptation study illustrates that our coordinated

approach has a greater potential for adaptation than non-coordinated methods. This is largely due

to its efforts to utilize all available network resources in constructing a data transfer schedule.

107

Coordinated

Non-coordinated

Direct

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(b) 2:1, 0% UDP

1.00

1.5

2.0

2.5

3.0

3.5

0 20 40 60

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(a) 1:1, 0% UDP

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(c) 1:1, 5% UDP

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(d) 2:1, 5% UDP

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(e) 1:1, 20% UDP

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(f) 2:1, 20% UDP

1.00

1.50

2.00

2.50

3.00

0.00 20.00 40.00 60.00

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

0 20 40 60

Coordinated

Non-coordinated

Direct

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60

Coordinated

Non-coordinated

Direct

Figure 7.9: Makespan comparison under the effect of UDP traffic, and symmetric (1:1) and

asymmetric (2:1) traffic.

108

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(b) +50%

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(a) +70%

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(c) +30%

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(d) Actual value

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(e) -50%

M
ak

es
pa

n
(1

03 s
ec

)

of background flows
(f) -70%

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60

Coordinated

Non-coordinated

Direct

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60

Coordinated

Non-coordinated

Direct

Figure 7.10: Sensitivity to bandwidth estimation under 5% UDP traffic and ratio of loads on

peering points of 1:3, under the makespan metric. Individual figure captions indicate the percentage

of mis-estimation of paths going through (B1,A1).

109

(a) Tdyn=200

coordinated

non-coordinated

of background flows

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 20.0 40.0 60.0

coordinated

non-coordinated

of background flows

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 20.0 40.0 60.0

M
ak

es
pa

n
x

10
3

M
ak

es
pa

n
x

10
3

(b) Tdyn=700

Figure 7.11: Non-coordinated and coordinated methods under dynamic changes in the number

of background flows.

110

Chapter 8

Conclusions and Future Work

In this thesis we studied a number of data dissemination and collection problems that arise when

managing large amounts of data over a communication network. Broadcasting and gossiping

problems resemble some of the data dissemination problems we considered. However, previous

works have mainly concentrated on assuming two parties may exchange all the information they

know in constant time, and assuming the underlying communication model is homogeneous. Our

work addressed these assumptions, and provides a broadcasting algorithm that is more applicable

on a wide-area network. Moreover, to collect data from a set of hosts in a large-scale public network

like the Internet, we addressed two key problems: the available bandwidth can fluctuate, and the

network may not choose the best route to transfer the data between two hosts.

In this thesis, we studied problems in three main areas: data dissemination problems that

generalizes broadcasting and gossiping in a local-area network (Chapters 3 to 5), broadcasting in

a wide-area network (Chapter 6), and large-scale data collection (Chapter 7). In the first two

parts, we developed approximation algorithms for these problems, and proved one of the problems

is NP-hard. In the third part, we proposed a coordinated approach for computing data collection

schedules using network flows. We now summarize our contributions for each of the above problems

and list several possibility of future work.

In Chapter 3, we considered the single-source multicast problem, where there is one source

disk s that has all ∆ items and others do not have any item in the beginning, and we would

like to send item i to disks in set Di. We developed an algorithm where Di can be an arbitrary

subset of disks. The number of rounds required by our algorithm is at most ∆ + OPT where

OPT is the minimum number of rounds required for this problem. Our algorithm is obviously a

2-approximation for the problem, since ∆ is a lower bound on the number of rounds required by

the optimal solution.

111

In Chapter 4, we considered the multi-source broadcast problem and presented an algorithm

that takes at most 3 more rounds than the optimal solution.

In Chapter 5, we first presented a polynomial-time 4-approximation algorithm for the multi-

source multicast problem. We then showed how to improve it to give a (3 + o(1))-approximation

algorithm. After that we presented a 3-approximation algorithm that allows the use of bypass

disks, where bypass disks are disks that are used as temporary holding points of data. We also

looked at the bounded-size matching communication model, where the network does not have

unlimited bandwidth. Under this model, we gave an approximation algorithm that takes at most

(2 − 1/B)OPT + ∆(1 − 1/B) rounds for the single-source multicast problem, an approximation

algorithm that takes at most (2 − 1/B)OPT + 3(1 − 1/B) rounds for the multi-source broadcast

problem, and a (1 + (3 + o(1))(1 − 1/B))-approximation algorithm for the multi-source multicast

problem. At the end of this chapter, we showed that finding a schedule with minimum number of

rounds is NP-hard.

In Chapter 6, we studied problems of broadcasting and multicasting in two-tier communica-

tion networks, which arise in Networks of Workstations, grid computing, and clustered wide-area

network systems. We first gave a 2-approximation algorithm, called LCF, for this problem. Using

this algorithm as a building box, we gave a 2-approximation algorithm for the multicast prob-

lem. We also considered two new communication models, bounded degree model and bounded-size

matching model, which remove the assumption that the global network has unlimited bandwidth.

We gave algorithms with approximation ratio of 3 for both broadcast and multicast problems un-

der the bounded degree model, and algorithms with approximation ratio of 2 for both problems

under the bounded-size matching model. We then considered the postal model version of the

problems, and showed that LCF Algorithm gives a factor of 3 approximation. We developed a

2-approximation algorithm if the optimal solution are also required to minimize the total number

of global transfers. We also presented an experimental study of the effect of having inaccurate

information regarding the sizes of the clusters.

There are several open problems regarding the NP-hardness of the problems we considered

112

in this thesis. We only know the multi-source multicast problem of minimizing the makespan is

NP-hard. The hardness of the single-source multicast problem is unknown. We believe the multi-

source broadcast problem is polynomial time solvable, but no polynomial-time exact algorithm is

known. Moreover, we do not know if the broadcasting or multicasting problem in any of the two-tier

communication models we considered is NP-hard or not. In Chapters 4 and 5 we studied multi-

source broadcasting and multi-source multicasting problems in a local-area network. It would be

interesting to develop algorithms to solve these problems under the two-tier communication model.

Eventually we want to solve the data migration problem under this model. We would also like to

consider other primitive operations like scatter and gather under this model. Moreover, there are

several interesting generalizations of the two-tier communication model. For example, we would

like to consider the model when the communication time in different clusters may be different due

to different speed networks and different speed processors. Another direction of future work is to

investigate the effect of variation in the speed of the global network (i.e., the value of C). It is

because the total available bandwidth of the global network may change over time. Moreover, the

LogP model [24] suggests an alternative framework when dealing with nodes in a single cluster.

We would like to have a “two-tier LogP” model with different throughput and latency parameters

for the local networks (intra-cluster) and global networks (inter-cluster).

In Chapter 7 we focused on improving the task completion time by re-routing the data

through intermediate hosts. We developed a coordinated approach for computing data collection

schedules using network flows. We then gave a comprehensive performance study of possible ap-

proaches to the data collection problem, and specifically we studied our coordinated method as

compared to non-coordinated and direct methods. The performance improvements of our coor-

dinated method are achieved under low storage requirement overheads and without significant

detrimental effects on other network traffic throughput. Moreover, we have showed that under

mis-estimation situations coordinated methods still perform better than non-coordinated methods.

Under high degree of mis-estimation, the performance of coordinated methods are less sensitive

to such mis-estimation than the performance of non-coordinated methods. We also showed that

113

coordinated methods has a greater potential for adaptation than non-coordinated methods. Given

the graph-theoretic model, our coordinated data transfer algorithm gives an optimal data transfer

schedule, with respect to the makespan metric. That is, non-coordinated and direct solutions are

part of the feasible solutions within this graph-theoretic model but not necessarily optimal ones.

We have also established experimentally (through ns simulations), that the lack of knowledge of

the paths provided by the network to send data, are not a significant barrier. Of course, the more

we know about the available capacity and paths chosen by the network, the better potentially our

modeling can be.

Eventually, we would like to extend the model which also models shared congestion links.

Another related question is how to infer the shared link information from end-to-end measurements.

Because the transfers may take a long time to finish, and the background traffic between devices

may change, we would like to develop some dynamic adaptation schemes to adjust the transfer

schedule dynamically. Lastly, we would like to test our coordinated data collection approach under

real network environments and incorporate the additional cost of collecting useful information such

as the link capacities into our evaluation studies as well as understanding the corresponding effects

on our coordinated approach.

114

BIBLIOGRAPHY

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient overlay networks.

In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pages 131–145,

Banff, Canada, Oct. 2001.

[3] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. Karlin, J. Saia, R. Swaminathan, and

J. Wilkes. An experimental study of data migration algorithms. In Proceedings of the 5th

International Workshop on Algorithm Engineering, LNCS 2141, pages 145–158, New York,

NY, 2001. Springer-Verlag.

[4] T. Anderson, D. Culler, D. Patterson, and the NOW team. A case for NOW (networks of

workstations). IEEE Micro, 15(1):54–64, Feb. 1995.

[5] B. R. Badrinath and P. Sudame. Gathercast: An efficient mechanism for multi-point to point

aggregation in IP networks. Technical Report DCS-TR-362, Computer Science Department,

Rutgers University, Piscataway, NJ, July 1998.

[6] B. Baker and R. Shostak. Gossips and telephones. Discrete Mathematics, 2:191–193, 1972.

[7] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient collective communication on het-

erogeneous networks of workstations. In Proceedings of the 1998 International Conference on

Parallel Processing, pages 460–467. IEEE Computer Society, 1998.

[8] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Multicasting in heterogeneous networks. In

Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 448–453,

1998.

[9] A. Bar-Noy and S. Kipnis. Designing broadcast algorithms in the postal model for message-

passing systems. Mathematical Systems Theory, 27(5), 1994.

115

[10] J. Bermond, L. Gargano, and S. Perennes. Optimal sequential gossiping by short messages.

Discrete Applied Mathematics, 86(2–3):145–155, 1998.

[11] J. Bermond, L. Gargano, A. A. Rescigno, and U. Vaccaro. Fast gossiping by short messages.

SIAM Journal on Computing, 27(4):917–941, 1998.

[12] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in distributed

heterogeneous systems. Journal of Parallel and Distributed Computing, 63(3):251–263, 2003.

[13] S. Bhattacharjee, W. C. Cheng, C.-F. Chou, L. Golubchik, and S. Khuller. Bistro: A plat-

form for building scalable wide-area upload applications. ACM SIGMETRICS Performance

Evaluation Review, 28(2):29–35, Sep. 2000.

[14] J. A. Bondy and U. S. R. Murty. Graph Theory with applications. Elsevier, 1976.

[15] J. Bruck, D. Dolev, C. Ho, M. Rosu, and R. Strong. Efficient message passing interface

(MPI) for parallel computing on clusters of workstations. Journal of Parallel and Distributed

Computing, 40(1):19–34, Jan. 1997.

[16] R. T. Bumby. A problem with telephones. SIAM Journal on Algebraic and Discrete Methods,

2(1):13–18, Mar. 1981.

[17] K. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and S. Wen. Concast: Design and implemen-

tation of an active network service. IEEE Trans. on Networking, 19:426–437, 2000.

[18] R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in packet-switched networks.

Performance Evaluation, 27–28:297–318, 1996.

[19] W. Cheng, C. Chou, L. Golubchik, S. Khuller, and Y.-C. Wan. A coordinated data col-

lection approach: Design, evaluation, and comparison. IEEE Journal on Selected Areas in

Communications—Special Issue on Design, Implementation and Analysis of Communication

Protocols, 22(10):2004–2018, Dec. 2004.

116

[20] W. C. Cheng, C.-F. Chou, L. Golubchik, S. Khuller, and Y.C. Wan. On a graph-theoretic

approach to scheduling large-scale data transfers. Technical Report CS-TR-4322, University

of Maryland, College Park, MD, Jan. 2002.

[21] W.C. Cheng, C.-F. Chou, L. Golubchik, S. Khuller, and Y.-C. Wan. Large-scale data collec-

tion: A coordinated approach. In Proceedings of IEEE INFOCOM, Mar.–Apr. 2003.

[22] C.-F. Chou, Y.-C. Wan, W. C. Cheng, L. Golubchik, and S. Khuller. A performance study

of a large-scale data collection problem. In Proceedings of the 7th International Workshop on

Web Content Caching and Distribution, pages 259–272, Aug. 2002.

[23] E. J. Cockayne and A. G. Thomason. Optimal multi-message broadcasting in complete graphs.

Utilitas Mathematica, 18:181–199, 1980.

[24] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Sub-

ramonian, and T. von Eicken. LogP: Towards a realistic model of parallel computation. In

Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 1–12, 1993.

[25] G. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,

1963.

[26] Y. Dinitz, N. Garg, and M. Goemans. On the single source unsplittable flow problem. In

Proceedings of 39th Annual IEEE Symposium on Foundations of Computer Science, pages

290–299, 1998.

[27] A. B. Downey. Using pathchar to estimate Internet link characteristics. In Proceedings of

ACM SIGCOMM 1999, pages 241–250, 1999.

[28] M. Elkin and G. Kortsarz. A sublogarithmic approximation algorithm for the undirected

telephone broadcast problem: a path out of a jungle. In Proceedings of the 14th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 76–85, 2003.

117

[29] A. M. Farley. Broadcast time in communication networks. SIAM Journal on Applied Mathe-

matics, 39(2):385–390, 1980.

[30] A. M. Farley and S. Hedetniemi. Broadcasting in grid graphs. In Proceedings of the 9th

SE Conference on Combinatorics, Graph Theory and Computing, pages 275–288. Utilitas

Mathematica, 1978.

[31] A. M. Farley and A. Proskurowski. Gossiping in grid graphs. Journal on Combinatorial

Information Systems Science, 5:161–172, 1980.

[32] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,

NJ, 1962.

[33] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann, 1998.

[34] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual networks.

Discrete Applied Mathematic, 53(1-3):79–133, 1994.

[35] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. Gryniewicz, and Y. Jin. Internet Distance Map

Service. http://idmaps.eecs.umich.edu/, 1999.

[36] M. R. Garey, R. L. Grahma, and J. D. Ullman. An analysis of some packing algorithms.

Combinatorial Algorithms (Courant Computer Science Symposium, No. 9), pages 39–47, 1972.

[37] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. Jour-

nal of Algorithms, 22(1):1–29, 1997.

[38] A. V. Goldberg. Andrew Goldberg’s Network Optimization Library.

http://www.avglab.com/andrew/soft.html, 2001.

[39] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algorithms

for data placement on parallel disks. In Proceedings of the 11th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 223–232, 2000.

118

[40] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation

of the MPI message passing interface standard. Parallel Computing, 22(6):789–828, 1996.

[41] A. Hajnal, E. C. Milner, and E. Szemeredi. A cure for the telephone disease. Canadian

Mathematical Bulletin, 15(3):447–450, 1972.

[42] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes. On algorithms for efficient data

migration. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 620–629, 2001.

[43] F. Harary and A. J. Schwenk. The communication problem on graphs and digraphs. Journal

of The Franklin Institute, 297:491–495, 1974.

[44] S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman. A survey of gossiping and broadcasting

in communication networks. Networks, 18:319–349, 1988.

[45] D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing,

1997.

[46] B. Hoppe and É. Tardos. Polynomial time algorithms for some evacuation problems. In

Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 512–

521, 1994.

[47] B. Hoppe and É. Tardos. The quickest transshipment problem. In Proceedings of the 5th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 443–441, 1995.

[48] J. Hromkovic, R. Klasing, B. Monien, and R. Peine. Dissemination of information in in-

terconnection networks (broadcasting and gossiping). In D.-Z. Du and D.F. Hsu, editors,

Combinatorial Network Theory, pages 125–212. Kluwer Academic Publishers, Netherlands,

1996.

[49] http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html. Georgia Tech Internetwork topology

generator.

119

[50] http://www.isi.edu/nsnam/ns/. The Network Simulator—ns-2.

[51] C. A. J. Hurkens. Spreading gossip efficiently. Nieuw Archief voor Wiskunde, 5(1):208–210,

2000.

[52] P. Husbands and J. Hoe. MPI-StarT: Delivering network performance to numerical applica-

tions. In Proceedings of the IEEE/ACM SC98 Conference, page 17, Nov. 1998.

[53] V. Jacobson. pathchar. http://www.caida.org/tools/utilities/others/pathchar/, 1997.

[54] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer

and System Sciences, 9:256–278, 1974.

[55] R. Karp, A. Sahay, E. Santos, and K. Schauser. Optimal broadcast and summation in the

LogP model. In Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 142–153, 1993.

[56] S. Kashyap and S. Khuller. Algorithms for non-uniform size data placement on parallel disks.

In Proceedings of the 23rd Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, LNCS 2914, pages 265–276, New York, NY, 2003. Springer-

Verlag.

[57] S. Khuller and Y. A. Kim. On broadcasting in heterogeneous networks. In Proceedings of the

15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1011–1020. Society for

Industrial and Applied Mathematics, 2004.

[58] S. Khuller, Y. A. Kim, and Y.-C. Wan. On generalized gossiping and broadcasting. In

Proceedings of the 11th Annual European Symposium on Algorithms (ESA’03), LNCS 2832,

pages 373–384, 2003.

[59] S. Khuller, Y. A. Kim, and Y.-C. Wan. Algorithms for data migration with cloning. SIAM

Journal on Computing, 33(2):448–461, 2004.

[60] S. Khuller, Y. A. Kim, and Y.-C. Wan. Broadcasting on networks of workstations. Manuscript,

2005.

120

[61] S. Khuller, Y. A. Kim, and Y.-C. Wan. On generalized gossiping and broadcasting. Accepted

for publications in Journal of Algorithms, 2005.

[62] S. Khuller, Y. A. Kim, and G. J. Woeginger. Approximation schemes for broadcasting in

heterogeneous networks. In Proceedings of the 7th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems (APPROX’04), LNCS 3122, pages 163–

170, 2004.

[63] T. Kielmann, H. Bal, and S. Gorlatch. Bandwidth-efficient collective communication for

clustered wide area systems. In Proceedings of the 14th International Symposium on Parallel

and Distributed Processing, page 492, 2000.

[64] T. Kielmann, R. Hofman, H. Bal, A. Plaat, and R. Bhoedjang. MagPIe: MPI’s collective

communication operations for clustered wide area systems. In Proceedings of the 7th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 131–140,

1999.

[65] J. M. Kleinberg. Single-source unsplittable flow. In Proceedings of the 37th Annual IEEE

Symposium on Foundations of Computer Science, pages 68–77, 1996.

[66] W. Knodel. New gossips and telephones. Discrete Mathematics, 13:95, 1975.

[67] D. W. Krumme, G. Cybenko, and K. N. Venkataraman. Gossiping in minimal time. SIAM

Journal on Computing, 21(1):111–139, 1992.

[68] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck link bandwidth. In Proceed-

ings of the USENIX Symposium on Internet Technologies and Systems, pages 123–134, Mar.,

2001.

[69] K. Lebensold. Efficient communication by phone calls. Studies in Applied Mathematics,

52:345–358, 1973.

[70] H. M. Lee and G. J. Chang. Set to set broadcasting in communication networks. Discrete

Applied Mathematics, 40(4):411–421, 1992.

121

[71] T. Leighton. The challenges of delivering content on the Internet. In Proceedings of ACM

SIGMETRICS 2001, page 214, Cambridge, MA, June 2001.

[72] D. Liben-Nowell. Gossip is synteny: incomplete gossip and an exact algorithm for syntenic

distance. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 177–185, 2001.

[73] Pangfeng Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Journal

of Algorithms, 42(1):135–152, 2002.

[74] B. Lowekamp and A. Beguelin. ECO: Efficient collective operations for communication on het-

erogeneous networks. In Proceedings of the 10th International Parallel Processing Symposium,

pages 399–405, Honolulu, HI, Apr. 1996.

[75] B. A. Mah. pchar. http://www.kitchenlab.org/www/bmah/Software/pchar/, 2001.

[76] G. De Marco, L. Gargano, and U. Vaccaro. Concurrent multicast in weighted networks.

In Proceedings of the 6th Scandanavian Workshop on Algorithm Theory, LNCS 1432, pages

193–204. Springer-Verlag, 1998.

[77] Message passing interface forum, Mar. 1994.

[78] K. Moore, J. Cox, and S.Green. SONAR—A network proximity service. IETF Internet-Draft,

1996.

[79] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[80] J. Pruyne and M. Livny. Interfacing condor and PVM to harness the cycles of workstation

clusters. Journal on Future Generations of Computer Systems, 12(1):67–85, 1996.

[81] D. Richards and A. L. Liestman. Generalization of broadcasting and gossiping. Networks,

18:125–138, 1988.

[82] D. Rubenstein, J. F. Kurose, and D. F. Towsley. Detecting shared congestion of flows via

end-to-end measurement. In Proceedings of ACM SIGMETRICS 2000, pages 145–155, 2000.

122

[83] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman, J. Snell,

A. Vahdat, G. Voelker, and J. Zahorjan. Detour: A case for informed Internet routing and

transport. IEEE Micro Magazine, 19:50–59, Jan. 1999.

[84] S. Savage, A. Collins, and E. Hoffman. The end-to-end effects of Internet path selection. In

Proceedings of ACM SIGCOMM 1999 Conference on Applications, technologies, architectures,

and protocols for computer communication, pages 289–299, 1999.

[85] S. Seshan, M. Stemm, and R.H. Katz. SPAND: Shared passive network performance discovery.

In Proceedings of the 1st USENIX Symp. on Internet Technologies and Systems, pages 285–

294, Dec. 1997.

[86] H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack prob-

lem. Algorithmica, 29:442–467, 2001.

[87] P. J. Slater, E. Cockayne, and S.T. Hedetniemi. Information dissemination in trees. SIAM

Journal on Computing, 10:692–701, 1981.

[88] R. Tijdeman. On a telephone problem. Nieuw Archief voor Wiskunde, 19(3):188–192, 1971.

[89] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[90] V. G. Vizing. On an estimate of the chromatic class of a p-graph (Russian). Diskret. Analiz.,

3:25–30, 1964.

[91] R. Wolski and M. Swany. Network Weather Service. http://nws.cs.ucsb.edu/, 1999.

123

