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In the first part of this dissertation, we address the problem of representing 2D and

3D shapes. In particular, we introduce a novel implicit shape representation based on

Support Vector Machine (SVM) theory. Each shape is represented by an analytic deci-

sion function obtained by training an SVM, with a Radial Basis Function (RBF) kernel,

so that the interior shape points are given higher values. This empowers support vector

shape (SVS) with multifold advantages. First, the representation uses a sparse subset of

feature points determined by the support vectors, which significantly improves the dis-

criminative power against noise, fragmentation and other artifacts that often come with

the data. Second, the use of the RBF kernel provides scale, rotation, and translation invari-

ant features, and allows a shape to be represented accurately regardless of its complexity.

Finally, the decision function can be used to select reliable feature points. These features

are described using gradients computed from highly consistent decision functions instead

of conventional edges. Our experiments on 2D and 3D shapes demonstrate promising

results.

The availability of inexpensive 3D sensors like Kinect necessitates the design of



new representation for this type of data. We present a 3D feature descriptor that represents

local topologies within a set of folded concentric rings by distances from local points to

a projection plane. This feature, called as Concentric Ring Signature (CORS), possesses

similar computational advantages to point signatures yet provides more accurate matches.

CORS produces compact and discriminative descriptors, which makes it more robust to

noise and occlusions.

It is also well-known to computer vision researchers that there is no universal rep-

resentation that is optimal for all types of data or tasks. Sparsity has proved to be a good

criterion for working with natural images. This motivates us to develop efficient sparse

and non-linear learning techniques for automatically extracting useful information from

visual data. Specifically, we present dictionary learning methods for sparse and redun-

dant representations in a high-dimensional feature space. Using the kernel method, we

describe how the well-known dictionary learning approaches such as the method of opti-

mal directions and KSVD can be made non-linear. We analyse their kernel constructions

and demonstrate their effectiveness through several experiments on classification prob-

lems. It is shown that non-linear dictionary learning approaches can provide significantly

better discrimination compared to their linear counterparts and kernel PCA, especially

when the data is corrupted by different types of degradations.

Visual descriptors are often high dimensional. This results in high computational

complexity for sparse learning algorithms. Motivated by this observation, we introduce

a novel framework, called sparse embedding (SE), for simultaneous dimensionality re-

duction and dictionary learning. We formulate an optimization problem for learning a

transformation from the original signal domain to a lower-dimensional one in a way that



preserves the sparse structure of data. We propose an efficient optimization algorithm

and present its non-linear extension based on the kernel methods. One of the key fea-

tures of our method is that it is computationally efficient as the learning is done in the

lower-dimensional space and it discards the irrelevant part of the signal that derails the

dictionary learning process. Various experiments show that our method is able to capture

the meaningful structure of data and can perform significantly better than many competi-

tive algorithms on signal recovery and object classification tasks.

In many practical applications, we are often confronted with the situation where the

data that we use to train our models are different from that presented during the testing.

In the final part of this dissertation, we present a novel framework for domain adapta-

tion using a sparse and hierarchical network (DASH-N), which makes use of the old

data to improve the performance of a system operating on a new domain. Our network

jointly learns a hierarchy of features together with transformations that rectify the mis-

match between different domains. The building block of DASH-N is the latent sparse

representation. It employs a dimensionality reduction step that can prevent the data di-

mension from increasing too fast as traversing deeper into the hierarchy. Experimental

results show that our method consistently outperforms the current state-of-the-art by a

significant margin. Moreover, we found that a multi-layer DASH-N has an edge over the

single-layer DASH-N.
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Chapter 1

Introduction

We live in a complex visual world. A typical visual scene is composed of a large

number of image elements that vary in luminance, color, shape, and motion. Unfortu-

nately, the information of interests is often highly non-linear. High-level concepts such

as car or human form very convoluted regions within the image space. Several theorists

have proposed that natural images lie along a continuous curved ‘manifold’ embedding in

the high-dimensional state space of images. The manifold represents the smooth changes

that follow from the transformations, such as translations and rotations that are likely to

occur in natural scenes. For this reason, finding a good way to represent images or videos

is not a trivial task.

Good representations of data are crucial to the successes of many computer vision

systems. However, there is no universal representation that is optimal for all types of data.

As a result, significant research efforts have been spent on designing good representations

that are appropriate for specific tasks such as detection and recognition. The availability

of new sensor modalities, such as 3D and hyperspectral sensors capable of collecting

high-dimensional data in real-time, necessitates the design of new representations and

processing techniques. In this dissertation, we address the problems of designing rep-

resentations for 2D and 3D shapes. In addition, we propose novel learning techniques

capable of learning non-linear and sparse representations directly from a set of images.
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2D shapes are often represented by a set of features that are computed based on

boundaries or edges points. The most popular features include shape context [1] and in-

ner distance shape context [2]. While these approaches are widely used to design features

for 2D shape matching, the have some disadvantages. For example, the constructions of

these features are sensitive to various effects such as missing pixels, internal discontinu-

ities, and branching offshoots. As opposed to the conventional approach, in chapter 2 we

propose to represent a shape as an analytic function similar to the decision function of

the support vector machine [3]. This representation enables the extraction of a novel set

of invariant features that is robust against the above-referenced degradations. These fea-

tures are extracted from highly consistent decision function’s gradients instead of edges

as in conventional approaches. Our experiments demonstrate promising results of shape

matching and object recognition on several datasets including MPEG7.

Range images are more and more popular due to the availability of inexpensive sen-

sors like Kinect. However, it is not straight-forward to extend the traditional 2D features

into this sensor modality. The reasons include low resolution, irregular sampling den-

sity, and differences in underlying physics. Common 3D feature extractors such as spin

image [4], 3D shape context [5], and spherical harmonic [6] are often computationally

expensive. These drawbacks motivate the design of new features for this type of data. In

this dissertation, we propose a novel feature for 2.5D range images called the Concentric

Ring Signature (CORS) [7]. Our feature is patch-based and thus is a natural choice for

range images. Unlike volume-based features (e.g. spin image and spherical harmonics)

that require the normalization of the sampling density at every 3D voxel, CORS is more

compact and robust against irregular sampling effects. CORS achieves state-of-the-art
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recognition results on several difficult datasets including TOSCA and MIAN which con-

sist of multiple objects and scenes that come with various non-rigid 3D transformations.

The process of designing representations for visual data is tedious and time con-

suming. It requires a deep understanding and a careful examination of the underlying

physics that governs the generation of data. Recently, there is an explosion of interest in

modelling data using sparse representation. It has been shown that sparse methods can

automatically extract useful information such as edges, corners as well as more complex

structures from natural images. The set of techniques learned sparse representations di-

rectly from the data is called dictionary learning. The dictionaries designed by MOD [8]

and KSVD [9] are based on a linear representation of the data. However, linear repre-

sentations are almost always inadequate for representing non-linear structures of the data

which arise in many practical applications. For example, images of a human face are sub-

jected to various sources of non-linear transformations such as rotation and deformation.

In addition, many types of descriptors in computer vision have intrinsic non-linear

similarity measure functions. The most popular ones include the spatial pyramid descrip-

tor [10] which uses a pyramid match kernel, and the region covariance descriptor [11]

which uses a Riemannian metric as the similarity measure between two descriptors. Both

of these distance measures are highly non-linear. The linear model used by the traditional

dictionary learning methods, e.g. MOD and KSVD, inevitably leads to poor performances

for many datasets, e.g., object classification of Caltech-101 [12] dataset, even when dis-

criminant power is taken into account during the training [13].

Motivated by the drawbacks of the current methods and the needs of many practical

applications, in chapter 3 we propose kernel dictionaries which are basically dictionaries
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in high dimensional feature spaces. Our dictionary learning methods yield representations

that are more compact than kernel principal component analysis (KPCA) [14] and are able

to handle the non-linearity better their linear counterparts.

To enhance the efficacy and adaptability of kernel dictionary, we introduce a novel

framework, called sparse embedding (SE), for simultaneous dimensionality reduction and

dictionary learning in chapter 4. We formulate an optimization problem for learning a

transformation from the original signal domain to a lower-dimensional one in a way that

preserves the sparse structure of data. We propose an efficient optimization algorithm

and present its non-linear extension based on the kernel methods. One of the key fea-

tures of our method is that it is computationally efficient as the learning is done in the

lower-dimensional space and it discards the irrelevant part of the signal that derails the

dictionary learning process. Various experiments show that our method is able to capture

the meaningful structure of data and can perform significantly better than many competi-

tive algorithms on signal recovery and object classification tasks.

In many practical computer vision applications, we are often confronted with the

situation where the data that we use to train our algorithm have different distribution or

representation from that presented during the testing. The ubiquity of this problem is well-

known to computer vision researchers. For instance, indoor images are quite different

from outdoor images, just as videos captured with a high definition camera are from those

collected with a webcam. This detrimental effect is often a dominant factor accounting for

the poor performances of many computer vision algorithms. As an example of the effect

of distribution mismatch, Ben-David et al. [15] show that, under certain assumption, the

bound on the test error linearly increases with the ℓ1 divergence between the training
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and testing distributions. Even worse, data from the test domain are often scarce and

expensive to obtain. This makes it impractical to re-train an algorithm from the scratch

since a learning algorithm would generalize poorly when insufficient amount of data is

presented [16].

In order to address this issue, chapter 5 proposes a novel approach for domain adap-

tation, based on the sparse embedding framework, that possesses the following advan-

tages. First, the adaptation is performed on multiple levels of the feature hierarchy in

order to maximize the knowledge transfer. The hierarchical structure allows the trans-

fer of useful information that might not be well captured by existing domain adaptation

techniques. Second, domain adaptation is done jointly with feature learning. Our method

learns a hierarchy of sparse codes and uses them to describe a visual object instead of re-

lying on any low-level feature. Finally, unlike existing hierarchical networks, our network

is more computationally efficient with a mechanism to prevent the data dimension from

increasing too fast as the number of layer increases. We provide extensive experiments to

show that our approach outperforms the current state-of-the-art by a large margin. This

is interesting since our training is entirely generative followed by a linear SVM while

several other methods employ discriminative training together with non-linear kernels.
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Chapter 2

Shape Representations

Shape of an object represents the geometrical information that is independent of

the transformational (scaling, rotation, articulation, etc) effects. Understanding shape

is essential in many computer vision applications from recognition of people and their

actions in video surveillance to design and inspection in industrial manufacturing [17, 18].

Recent psychophysical findings [19] suggest that the perceptual representation of

a shape is primarily based on qualitative properties whose topological structures remain

relatively stable over transformational conditions. Other empirical studies [20, 21] have

shown that the neural processing of shape in the brain is broadly distributed throughout

the ventral (what) pathway that is involved in object recognition, and the dorsal (where)

pathway that is involved in spatial localization. In other words, an adequate mathematical

representation of shape needs to be invariant to viewpoint changes and articulated object

motion, and discriminative enough to enable detection and classification.

2.1 Related Work On 2D and 3D Shape Representations

Two main approaches dominate previous work on shape representation: global ap-

proaches model an object as a whole segment, while part-based approaches advocate seg-

mentation of shape into constituent regions. The drawback of a purely global approach

is the exclusion of articulation and the sensitivity to occlusion. The drawback of a purely
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part-based approach is that a consistent partitioning is generally not possible in the face

of numerous combinations of possibilities and object shape variations. Besides, segmen-

tation itself is ill-posed, except under controlled environments or in restricted application

domains.

2.1.1 Global Approaches

Prominent global shape representations include variational [22] and level set ap-

proaches [23, 24]. These approaches have been applied for scene segmentation [25] and

tracking [26, 27]. Brookstein initiated the use of thin-plate splines [28] to analyze de-

formable shape, which were then improved by [29, 30]. These methods are landmark-

based and suffer from inconsistency in landmark selection. [31] fits a parametric model

to a shape using mixture of Gaussian densities. This method requires a clustering process

to estimate cluster centers and therefore has the same drawback with other landmark-

based approaches. [32] assigns every internal point of the silhouette a value proportional

to mean time of random walk from the point to the boundary. This can be achieved by

solving a Poisson equation. Other popular methods are statistical moments [33], eigen-

shapes [34], curvature scale space [35], elastic matching [36], parametric curves (poly-

lines), image signatures, etc. Zernike moments are a class of orthogonal moments that are

invariant to rotation and translation. Eigenshapes decompose a distance matrix of bound-

ary points into an ordered set of eigenvectors and finds the modes of these eigenvectors.

Elastic matching evaluates the similarity as a sum of local deformations needed to change

one shape into another. Scale space representation successively smooths contour while
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decreasing the number of curvature zero crossings. In general, global models need addi-

tional mechanisms to compensate for articulated motion and non-rigid deformation.

2.1.2 Part-Based Approaches

In comparison, part-based approaches describe shapes in terms of their part struc-

ture. Parts are defined to be nearly convex shapes separated from the rest of the object

at concavity extrema [37, 38, 39, 40]. It is possible to build a discriminative classifier

from a collection of parts [41] or a bag-of-feature to solve correspondence [42]. These

methods often require a multitude of training samples, prior knowledge on the number

of parts, and a precise formulation of articulation. Other part-based methods try to learn

the part structure by considering the shape interior. For instance, shock graphs [43] are

defined as the cyclic tree of singularities of a curve evolution. The inner distance [44],

geodesic distance [45] and random walk [46] also consider the interior of the shape to

build descriptors. Given a pair of points, the inner distance is determined by finding their

closest points on the shape skeleton, then measuring the distance along the skeleton. The

geodesic distance is the length of the shortest path on the surface. While shock graphs

benefit from the skeletons robustness to articulation they suffer from boundary noise. The

inner and geodesic distances are robust to disturbances along boundaries, yet they are

highly sensitive to occlusions and fragmentations. Recently, [47] proposed Gibbs Ran-

dom Fields to model shapes as spatial compositions of simple parts.

Pioneering work on the spin image [48] describes the relative spatial distribution

of shape points around a set of feature points. It considers a cylindrical support region
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and accumulates a histogram of points. The shape context [49, 50] is similar to the spin

image except that the support region is a sphere. Since both generate sparse matrices,

the distance computation is sensitive to the shape structure. In [51] each shape is indexed

based on a variety of features such as inner distance, Euclidean distance, contour distance,

etc. that characterize pairwise geometric relationships between interest points on the

shape. Shapes in the database are ordered according to their similarity with the query

shape and similar shapes are retrieved using a scheme which does not involve shape-wise

alignment.

2.2 Support Vector Shape Representation

The above referenced methods provide satisfactory results under ideal conditions

with strong priors and clean segmentation masks. Their representation capacity substan-

tially degrades when the shape boundary is noisy (part-based methods, shock graphs),

shape has internal crevices, branching offshoots and excessive discontinuities (inner-

distance, spin images, shape context), and non-conforming articulations (global models).

Besides, they would not necessarily extend to higher dimensions or generalize over most

shape classes.

Quite different from existing approaches, we propose a novel implicit shape repre-

sentation based on SVM theory. Each shape is represented by a classification decision

function obtained by training an SVM with interior and exterior shape points providing

positive and negative training samples, respectively. The RBF kernel is used with SVM

to make our representation rotation and translation invariant. The decision boundary is
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a hypersurface on the high-dimensional feature space that separates the positive labelled

points, shape, from the negative labelled points, its surroundings. Our shape represen-

tation is not just the shape boundary or the decision function boundary but the function

itself. Instead of using the edge or surface gradients on a discrete grid, we use the gradient

of the classification decision function, which is an analytic function that is defined every-

where in the data space. Furthermore, the use of the RBF kernel enables SVM to model

any complicated shape due to the infinite dimensional nature of the associated Hilbert

space. Several other advantages are explained in the following section.

To summarize the main contributions, this chapter

1. proposes a novel method to represent 2D and 3D shapes using support vector clas-

sifiers,

2. provides an in depth theoretical analysis for a better understanding of this represen-

tation, and

3. presents experimental results on several datasets to evaluate its performance on

challenging datasets.

2.2.1 Formulation of Support Vector Shape

We define the SVS representation to be the decision function of a classifier. The

name SVS comes from the fact that the decision function is parametrized by a set of

support vectors, learned from an SVM. Through out the chapter, the terms “SVS” and

“decision function” are used interchangeably. This representation facilitates the extrac-

tion of feature points that correspond to salient components of the shape, which are then
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described using local statistics of the decision function around each point.

To the best of our knowledge, this is the first effort that considers the shape repre-

sentation as a classification problem. This classifier-based representation offers several

advantages. First, it is general enough to be applied to 2D shapes and 3D volumes. Sec-

ond, the classification function depends only on a sparse subset of key points, which

makes the representation robust against noise, missing data, and other artifacts including

interior fragmentations. Finally, the descriptors are also more discriminative and stable

against transformation and disturbances than edge-based descriptors [48, 52, 44] since

they are extracted from the dense gradient field of the decision function but not from the

original data.

Basically, SVS involves the following tasks:

1. Learn a decision function from a given shape,

2. Select feature points using the gradient, i.e. the first derivative, of the decision

function. (sec. 2.2.2),

3. Compute local descriptors (sec. 2.2.3).

which are explained in the following sections.

As it will be clear, SVS enables selecting a small set of salient features for shape

matching and retrieval. These features are described using local statistics of the decision

function around each point. For instance, a 2D variant of SVS features picks the high

gradient points of the decision function as feature points and uses the local histogram of

oriented gradients computed on the decision function as the descriptors.
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2.2.1.1 Learning a Decision Function:

Let S = {xn}Nn=1 be a set of points representing a shape1 and S̄ be the set of points

not in S, i.e outside. We wish to learn a classifier:

f(x) =


≥ 0, x ∈ S

< 0, x ∈ S̄

(2.1)

Two classifiers, f(x) and g(x), are said to represent the same shape if

sign[f(x)] = sign[g(x)] =


≥ 0, x ∈ S

< 0, x ∈ S̄

(2.2)

The following theorem states that if the binary shapes generated by taking the zero-level

crossings of these classifiers are equivalent (as in 2.2) to each other then the decision

functions are equivalent with a constant factor:

Theorem 2.1 (Curtis ‘87 [53]). Let f(x) and g(x) be real, 2D, band-limited and irre-

ducible functions. If f(x) and g(x) take on both positive and negative values in a closed

bounded region D ⊂ R2, and sign[f(x)] = sign[g(x)] for all x in D, then f(x) = κg(x),

where κ is a real positive constant.

Here, irreducible function means that its Fourier transform is not factorable. The

band-limited condition implies the Fourier transform will exist and it will have a com-

pact region of support for finite-energy signals (interested readers are referred to [54] for

further discussions on band-limitedness condition).
1We denote vectors in bold letters
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The above theorem suggests that the gradient orientation is equivalent for such two

functions satisfying the above constraints. In other words, two decision functions rep-

resenting the same shape will be consistent and exhibit invariance properties in terms of

their gradient orientations if these functions are real, 2D, band-limited, irreducible, and

have almost identical responses.

One such example is the radial basic function (RBF) an SVM [55] operates on. It is

real and band-limited: it has the form of the sum of finite number of weighted exponential,

thus, its Fourier transform is a sum of weighted exponentials, which has finite-energy

and a compact region of support especially when insignificant coefficients of the radial

kernels are disregarded. A Theorem for the irreducibility of the general class of functions

including the RBF kernel is given below with a proof in Sec. 2.2.5.

Theorem 2.2. A function of the following form:

f(x) =
m∑
i=1

αig(x− x∗
i ), m ≥ 5 (2.3)

is irreducible if the Fourier transform of g(x) does not have any zero (either real or

complex).

For an ideal shape classifier as defined in (2.1), the decision function is positive for

the shape regions, zero on the shape boundary B, and negative otherwise. In other words,

the gradient of the decision function along the tangent space of a point on the boundary

B is zero (see Figure 2.1). This means that the gradient of the decision function must

be perpendicular to the tangent plane, thus, the gradient itself coincides with the normal

vector of the shape.
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Proposition 2.1. Gradient∇f(x) at a shape boundary point is a close approximation for

the normal vector at that point.

Figure 2.1: Illustration of SVS decision boundary. The dotted line is the tangent space.

This property is very desirable for SVS since the normal direction is an essential

input for the construction of many descriptors [49, 56, 48]. It is especially useful for com-

puting descriptors from 3D point clouds where the knowledge about points orientations

is missing.

As moving from the boundary B to the interior of shape, the gradient ∇f(x) are

an indication of the combined effects of local edge segments. This effectively fuses local

topologies and enhances the discriminative power of local descriptors (Section 2.2.3).

We are interested in representing a shape by a continuous function that has the

mathematical form of (2.3) and at the same time satisfies (2.1) as much as possible. No-

tice that the class of functions in (2.3) contains the decision function of SVM with the

RBF kernel [57, 58]. Therefore, we employ SVM to learn our parametric shape repre-

sentation. To our advantage, the SVM decision function is analytic, i.e., it is in the form

of weighted sum of kernel responses, thus its gradient can be efficiently computed at a

point in the space. Furthermore, the RBF kernel functions can effectively map data xn to

an infinite-dimensional space where S and S̄ would be linearly separable, thus even for

intricate boundaries a high classification performance, and accurate shape representation,
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is guaranteed.

SVMs construct a hyperplane in a high (or infinite) dimensional feature space be-

tween a set of labelled input vectors x that can be either +1 for shape pixels, or −1 for

non-shape pixels by definition for binary SVMs. The decision boundary is defined in

terms of a typically small subset of training examples, called as support vectors, that re-

sult in a maximum margin separation between these classes. The decision function of

SVM is given as

f(x) =
m∑
i=1

αi[Φ(x).Φ(x∗
i )] (2.4)

where x∗
i are support vectors, αi are the corresponding weights of the support vectors,

m is the number of non-zero support vectors, and Φ is a mapping function in some dot

product spaceH. By defining a similarity measure k inH as

k(x,x∗
i ) = Φ(x).Φ(x∗

i ), (2.5)

every dot product in the decision function is replaced by a kernel function. This allows

efficient computations without having to venture into the high dimensional feature space

H. The transformation may be non-linear; thus though the classifier is a hyperplane in

H, it may be non-linear in the original input space. If the kernel used is a Gaussian, the

corresponding feature space is a Hilbert space of infinite dimension

Φ(x).Φ(x∗
i ) = exp(−γ||x− x∗

i ||2) (2.6)

where γ stands for the Gaussian kernel width. By using the RBF, it is always possible to

find a decision function that perfectly represents a shape. Such a decision function has

the form

f(x) =
m∑
i=1

αi exp(−γ||x− x∗
i ||2) (2.7)
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Figure 2.2: Orientation of∇f(x) remains stable even if the shape transforms and different set of

parameters and points are used to train the SVS on the right.

and the final classification is made by l(x) = sign[f(x)]. It is worth noting that the set of

support vectors is usually small in comparison with the entire training set.

Since the decision function in (2.7) only depends on the distance between points,

the SVS representation is robust to translation and rotation2. This can be observed from

the Figure 2.2 which shows that the gradient directions, computed from SVS decision

functions of transformed versions of the same shape, are almost same.

Furthermore, the γ multiplier in the kernel function is inversely proportional to the

squared scale change. For a given shape with unknown scale change from its original, the

mean of pairwise distances between all points can be used to normalize the shape. This

scale normalization technique has been used in shape context [50] and has been proven to

be effective. In addition, our analysis demonstrates that small variations of γ would not

perturb the best possible classification accuracy.

For training, we select a random subset of internal points to be positive training

2Note that, for linear and polynomial kernels such an invariance does not apply as they impose inner

products of point coordinates
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Figure 2.3: Support vectors (red circles αi > 0, blue circles αi ≤ 0), the decision function

boundaries f(x) = 0 (yellow), and the original shape (green) for support vector numbers 25, 44,

and 61. Classifier accuracies are 93%, 97.2%, and 99.8%, respectively. Original shape contains

∼54K points (∼1K points on the boundary), yet only a small fraction (e.g. 61) of points are

needed to encode the shape.

samples from a given shape. Another random subset of points surrounding the shape is

chosen to be negative samples. Random selection is preferred just for computational effi-

ciency. The input to the classifier is the coordinates and the corresponding inside/outside

labels of the training points.

Figure 2.3 shows support vectors and decision boundaries for a sample shape. It can

be noticed that support vectors are not required to lie on shape edges. This is because the

kernel mapping data to the high dimensional space, where non-edge points might happen

to lie on the decision boundary of the learning algorithms. The number of support vectors

typically varies from 0.1% to 3% of the total number of points.

2.2.1.2 ν−SVM and One-Class SVM:

We employ ν−SVM [57] and one-class SVM [58] for learning the decision function

as its parameters have a natural interpretation for shapes. Given a set of labelled samples
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Figure 2.4: Comparison of the decision function responses for noise-free and noisy shapes. In

the first experiment, a car shape is distorted by randomly removing 20% and 50% of points and

adding speckle noise to the background. In the second experiment, the letter A is interleaved with

blank spaces. The differences of decision function for both cases are hardly noticeable. They are

both trained using one-class SVM.

(xi, yi), the learning problem of ν−SVM is formulated as the minimization of

argmin
w,ξ,ρ

1

2
||w||2 − νρ+

1

l

l∑
i=1

ξi (2.8)

subject to:

yi.(w.Φ(xi) + b) ≥ ρ− ξi, (2.9)

ξi ≥ 0, ρ ≥ 0 (2.10)

where Φ is a function that maps the input data to some Hilbert space. The above opti-

mization tries to correctly classify as many data as possible by penalizing the misclassified

samples through variable ξi. At the same time, the minimization of ||w|| keeps the model

as simple as possible, and the margin is made as large as possible through maximization

of variable ρ.

The trade-off between the model complexity and the training error is controlled by

parameter ν ∈ [0, 1]. It is also the lower and upper bound on the number of examples
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that are support vectors and lie on the wrong side of the hyperplane, respectively. The

larger (smaller) we make ν the more (less) points are allowed to lie inside the margin,

which gives coarser (finer) shape representations. It is possible to use a small value which

results in a larger number of support vectors to allow accurate representation of complex

shapes, while smaller numbers of support vectors enhance robustness against corrupted

training data.

The formulation and parameters of one-class SVM is similar with ν−SVM. The

only difference is that one-class SVM allows learning from data with positive samples

only. It separates data from the origin in the feature space instead of separating positive

samples from negative samples. This becomes extremely useful to deal with missing data

due to occlusion and camera sampling error.

The selection of parameters for SVM algorithms (e.g. kernel width γ of (2.6), error

margin ν of (2.8) ) is done automatically by imposing a constraint on the cross-validation

accuracy. Specifically, we divide the data points into two subsets, one for training and

another one for testing. We then perform cross-validation and select the set of parameters

that produce a classification accuracy higher than 99%. Note that if heavy occlusions are

present, we allow the classification accuracy to be lower.

Figure 2.4 illustrates the robustness of SVS representation under different noise

effects. In particular, we compare the color-coded response of the decision functions for

a car shape and an A-letter shape before and after being distorted. As for the car, we

randomly remove pixels from the shape and also add noise to the background. The A-

letter shape is interwoven with white spaces to create distortion of the shape boundary.

For both cases, it can be seen from Figure 2.4 that the color-coded responses, thus, the
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associated decision functions remain quite stable.

From the computational perspective, the SVS complexity is essentially the same

with that of SVM algorithms. In general, it is polynomial in the number of input points.

In our experiments, it takes about 0.15 seconds to compute SVS for a shape in the MPEG7

dataset [59] using a 2.4 GHz Quad Core machine. The learning process can be signifi-

cantly speed up using approximate variants of SVM [60, 61]. The query of the decision

function is very efficient. It is linear in the number of support vectors, which is a small

fraction of the total number of points (e.g. 1%). In addition, it can be accelerated by two

orders of magnitude [62] using statistical approximations.

2.2.2 SVS Feature Points

Shape matching algorithms using SVS representation comprise two constituents:

feature (interest) points and their descriptors. This section discusses possible ways of

selecting the feature points. All these methods are based on the previously explained

decision function f(x).

The feature points are desired to be stable under local and global shape perturba-

tions (including affine transformations and articulated motion) as well as noise and other

artifacts. Such feature points should be reliably computed with high degree of repro-

ducibility. In addition, the local descriptors computed at these feature points have to be

discriminative enough for reliable shape matching and registration, therefore structure

around the feature points should be rich in terms of local information content. In what

follows we will elaborate on different possibilities of selecting good feature points for
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SVS representation.

2.2.2.1 Gradient-based Feature Points

A corollary of Theorem 2.1 is that the gradient orientation is stable while gradient

magnitude differs only by a constant factor. The gradient orientation is given by

∇f(x)
||∇f(x)||

, where (2.11)

∇f(x) = 2γ
m∑
i=1

αi exp(−γ||x− x∗
i ||2)(x∗

i − x). (2.12)

To evaluate the stability of the gradient orientation, we randomly choose a set of 500

points on each of 70 SVSs created from different shapes in the MPEG7 database [59] and

examine their gradients as the training parameters (γ, ν) vary (γ by 6× and ν by 10×with

respect to the smallest value of each parameter). Note that each different parametrization

may generate a different decision function in magnitude, however we are interested in

how the direction of the gradient of the decision function changes. Therefore, to account

for the multiplication factor of the decision function, we normalize the decision function

values by their mean value yielding relative magnitudes.

Figure 2.5 shows how the standard deviation of gradient direction changes with re-

spect to the relative gradient magnitudes for 500 points from one of the 70 SVSs. One

can easily notice that the gradients vary with respect to the training parameters. This is

because large variation of the training parameters (γ, ν) results in different classification

functions that do not satisfy strictly the condition sign[f(x)] = sign[g(x)] as in Theo-

rem 2.1.

However, the variation exhibits a strong dependency on gradient magnitude. The
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Figure 2.5: The relative gradient magnitude at a point is computed by dividing its gradient mag-

nitude by mean of gradient magnitude across the entire shape.

higher the gradient magnitude gets, the smaller the standard deviation is. For points with

gradient magnitude of more than two, the standard deviation, which directly corresponds

to direction changes, is as small as 4◦. Note that in practice the variation should be

smaller than what we see in Figure 2.5 since the constraint of high classification accuracy

implicitly requires a consistent set of parameters (γ, ν).

Since the gradient orientation is stable especially for higher gradient magnitude

points we choose a small subset of such points for matching. We apply iterative search

method that finds the maximum gradient magnitude point on ∇f(x) until it selects 100

points and build a list by ordering them according to their angles from the center of the

shape in a circular fashion. The starting (0◦) orientation of circular sweep is set with

respect to a dominant gradient direction of ∇f(x).

Severe occlusions or distortions might lead to change of the dominant gradient di-

rections. In such a scenario, we allow the generation of multiple sets of descriptors corre-
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Figure 2.6: Decision function responses (left) and the gradient magnitude of the decision function

(right) for the SVS representing Stanford Bunny. Points with higher values in ∇(fx) seem to be

good candidates to be selected as discriminative feature points. Black circles are the 51 feature

points (102 support vectors).

sponding to different tentative orientations. During the shape matching phase, the distance

between two shapes is the smallest matching cost among all the orientations. Figure 2.6

shows the selected feature points for a sample shape.

2.2.2.2 Support Vector-based Feature Points

The support vectors are sufficient to construct the decision function and its gradient,

thus they are good candidates for feature points.

One can ask whether the set of support vectors enable reliable shape matching. The

answer to this question largely depends on the problem at hand. For non-articulated trans-

formations, the support vectors remain stable. In Figure 2.7 we show that support vector

locations are quite stable when the kernel width varies 2×. Constraining the classification

accuracy to be sufficiently high (e.g. 99%) and preventing the kernel width from chang-

ing too much would produce similar support vectors. Yet, if the kernel width changes too

much, e.g. 20×, support vectors change significantly as in Figure 2.3. Besides, the sup-

port vectors are sensitive to shape articulations due to the topology changes as illustrated
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in Figure 2.7 bottom-pair.

2.2.2.3 Curvature-based Feature Points

It is possible to select points with high-curvature on SVS by looking at the Hes-

sian matrix of a decision function. More specifically, for the 2D case, we first solve the

eigenvalues of the Hessian matrix, which is proportional to curvatures.

H =

 ∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f
∂x2

2

 = Q

λ1 0

0 λ2

Q−1 (2.13)

Points with high curvatures associate with large eigenvalues of both dimensions (λ1, λ2).

We randomly sample 200 points to compute curvatures. Feature points are chosen where

the first eigenvalue λ1 and the second eigenvalue λ2 are larger than the median of λ1

and λ2, respectively. To mitigate noise effects, the decision function can be smoothed at

different scales before computing curvatures. Gaussian smoothing of the decision func-

tion (2.7) is a mixture of Gaussian functions, which can be computed efficiently with a

closed-form expression.

An advantage of this selection scheme is that local descriptors are highly discrimi-

native. For instance, SIFT can be computed to find point-wise correspondences for align-

ing two similar shapes. However, this point selection method is not appropriate for shape

matching. For example, choosing only those points around corners makes it impossible to

differentiate a rectangle from a square. This disadvantage arises for shapes characterized

mainly by their dimensions and shapes characterized by the arrangement of similar local

structures. Another disadvantage of this method is the difficulty of computing curvatures

when generalizing to higher dimensions.
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Figure 2.7: Stability of support vectors with respect to variation of RBF kernel width (γ) and

articulation. (top) Support vectors when γ varies. γ = 0.0027 in the first shape, and γ = 0.0054

in the second shape. 62 out of 78 support vectors in the first shape appear in the second shape.

The overall positioning of the support vectors is very similar. (bottom) Support vectors with shape

articulation. Blue circles indicate SVs that do not have correspondences on the other shape. 83

out of 114 SVs in the first shape appear in the second shape.

2.2.2.4 Entropy-based Feature Points

Another possibility is selecting a small subsets of points whose local gradient orien-

tation have high entropy. To compute this entropy, we first create a histogram of gradients

over the local window of size 0.25× 0.25 (with respect to mean pairwise distances). The

entropy is then computed as follows:

−
n∑

i=1

pilog2(pi) (2.14)

where pi is the weight of the ith bin and n is the number of bins in the histogram. High

entropy is equivalent to high variation of gradient orientations. Therefore, it is a good
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indication of complex local topologies of SVS, thus, more discriminative local descrip-

tors. This strategy is similar to the high-curvature selection method. However, it does not

involve the computation of principal curvatures which can be difficult for higher dimen-

sional cases.

2.2.3 SVS Descriptors

SVS facilitates the computation of a set of descriptors extracted from the decision

function. Below, we give only an examples of possible descriptors.

We compute a local histogram of oriented gradients (HOG) descriptor around each

point on the decision function gradient ∇f but not on the conventional edge gradient,

thus our HOGf is significantly different from existing descriptors.

For a given feature point, a 4×4 array of 8-bin orientation histograms is constructed

within a local window. The size of the window is set to be 0.25×0.25 (relative with respect

to mean pairwise distance). Our experiments indicated that this size provides satisfactory

results for both very coarse and fine shapes. A histogram is populated for each sub-block

by aggregating the gradient magnitude of the decision function into the corresponding

orientation bin of the gradient direction of the decision function.

Since gradients with larger magnitudes are more stable, the contribution of each

gradient to the histogram is set to be proportional to its magnitude. We impose a Gaussian

kernel to weight gradients based on their relative distances with respect to the feature

point. This spatial weighting puts more emphasis on gradients that are closer to the center

and helps improve the discriminative power of the local descriptors.
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Figure 2.8: Comparison of IDSC with the SVS computed at four locations indicated by square

dots on the shapes. Descriptors are displayed from left to right corresponding to the following

order of dots’ colors: red, yellow, green, cyan. The second image has a crack in the shape. IDSC

changes drastically (it highly depends on the boundary) while the SVS remains robust generating

almost the identical descriptors. Box color indicates the severity of the mismatch: Green (< 20%)

; Orange (20→ 50%); Red (> 50%).

To prevent problems due to the coarse binning issues, the value of each gradient

point is interpolated into adjacent histogram bins. Finally, the mean of gradients for

the local window is taken to be the orientation of the descriptor and the histogram bins

are reoriented accordingly with respect to this mean orientation to achieve the rotation

invariance of the descriptor. The histograms are then concatenated into a 128-dimensional

vector.

Figure 2.8 shows a comparison of the Inner Distance Shape Context descriptors

(IDSC) [44] with the SVS descriptors for a pair of images where one contains irregularity
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Figure 2.9: Comparison of Shape Context (SC) with the SVS computed at four locations indi-

cated by square dots on the shapes. Descriptors are displayed from left to right corresponding to

the following order of dots’ colors: red, yellow, green, cyan. Box color indicates the severity of

the mismatch: Green (< 20%) ; Orange (20→ 50%); Red (> 50%).

in the shape (assuming even after some morphology such artifacts remain). The inner

distance responses change drastically while the descriptors computed from SVS stays

very robust. Figure 2.9 demonstrates the strength of the SVS descriptors even for very

noisy data (note that, fitting an outer shell, morphological filtering, etc. would not help

for this shape as the noise is dispersed into the background). In this case, we compare

with Shape Context (SC) since IDSC will not work due to the presence of disconnected

interior. To the best of our knowledge, there is no other representation that gives such

a robustness that SVS provides for heavily noisy and disconnected data. For all of the

experiments presented in Figure 2.8, and 2.9, we use one-class SVM to learn the decision

functions.
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2.2.4 Experiments

For our experiments, we need to establish the distance between two shapes. Given

two SVS decision functions fA(x) and fB(x), for shapes A and B respectively, we com-

pute a distance score between their descriptors.

As we explained before, since the feature points are already ordered with respect

to the dominant gradient direction, initial alignment for the shapes with similar overall

structures is almost accurate. Next, we use the local descriptors for comparison of two

shapes. The advantage of using local descriptors is that they are robust against occlusion

and shape articulation.

Let two sets of the descriptors for two shapes A and B be ΛA : {λA
1 , λ

A
2 , ..λ

A
t }

and ΛB : {λB
1 , λ

B
2 , ..λ

B
s } where t does not have to be equal to s assuming t ≥ s. The

correspondence is established through a mapping function h such that h : ΛB → ΛA. If a

descriptor λB
i is matched to another λA

j then h(i) = j. We define a cost function as

E(h) =
∑
1≤i≤s

ϵ(h(i), i) (2.15)

where the descriptor distance is computed using χ2 statistic

ϵ(h(i), i) =
∑

1≤k≤128

[λA
h(i)(k)− λB

i (k)]
2

λA
h(i)(k) + λB

i (k)
. (2.16)

This cost represents the overall distance for the corresponding pairing of the descriptors.

Note that, the mapping h is neither one-to-one nor overlapping, but keeps the ordering of

the descriptors.

To minimize E, we use dynamic programming to find the solution to (2.16). It is

worth noting that the start points and the end points of two sequences are already roughly
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aligned for the dynamic programming algorithms to converge to the correct solution. Un-

der certain conditions, the initial alignment provided by the ordered lists may not be valid.

To overcome this, we find and compensate for the angle that maximizes the correlation

between two ‘global’ histogram of oriented gradients, which are defined as HOGf yet

computed for the entire shapes, of two given shapes before minimizing the above cost

function.

We run the first set of experiments on the entire MPEG7 shape benchmark dataset [59],

which has 70 classes and 20 shapes for each class, a total of 1400 images. The perfor-

mance is measured by the standard Bullseye test. For each shape, the retrieval accuracy

is measured by counting how many of twenty correct shapes are in the top forty matches.

For the gradient-based method, we apply an iterative search method that finds the

maximum gradient magnitude point on∇f(x) until it selects 100 features. In the entropy-

based feature selection method, 200 points are randomly selected in each shape where

HOGf descriptors and their entropy are computed. Points associated with entropy larger

than 1.5 times the median of overall entropy value are selected for matching. In the

curvature-based method, we also randomly sample 200 points to compute curvatures.

Table 2.1: Comparison of MPEG7 classification results using four different feature point se-

lection methods in Section 2.2.2 based on gradients, support vectors, curvatures, and entropies.

The last column shows the baseline classification result when gradients are computed from edges

instead of SVS.

Method Gradient SV Curvature Entropy Edges

Accuracy (%) 91.07 70.13 72.52 62.25 30.25
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Feature points are chosen where the first eigenvalue λ1 and the second eigenvalue λ2 are

larger than the median of λ1 and λ2, respectively. For the support vector-based method,

we randomly select half of the support vectors set as feature points for shape matching

(we observed using only the most significant support vectors is in fact deteriorates the

performance).

Algorithm Accuracy (%)

Gopalan [63] 93.67

IDSC + LCDP [64] 93.32

Mixture of Gaussian + tSL [65] 89.1

Shape-tree [66] 87.7

IDSC + DP + EMD [67] 86.56

Biswas [51] 86.48

Hierarchical Proscrustes [68] 86.35

IDSC + DP [44] 85.4

Algorithm Accuracy (%)

Shape L’Âne Rouge [69] 85.25

Generative Models [70] 80.03

Curve Edit [71] 78.14

SC+TPS [49] 76.51

Visual Parts [59] 76.45

CSS [72] 75.44

SVS + DP 91.07

Table 2.2: Comparison for the MPEG7 dataset.

Table 2.1 gives the correct retrieval percentages for four feature point selection

methods (gradient-based, support vector-based, curvature-based, and entropy-based) pre-

sented in Section 2.2.2. Results indicate that the gradient-based method produces more

consistent feature points and better matching performances. We also compare our perfor-

mances with HOG computed on the edges gradients (30.25%) to verify that SVSs improve

the discriminative power of our descriptors. Edge gradients are commonly used to extract

feature points for 2D shape representation.

As in Table 2.1, the best overall accuracy on MPEG7 dataset using the Bulleyes
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Figure 2.10: SVS results: red circles show the incorrect matches. Note that none is in top 4

rankings.

Figure 2.11: Comparison of the retrieval results for noisy dataset. Accuracy of IDSC is 57.0%,

SVS is 93.7%. Red circles show incorrect matches.

test is 91.07%, which is based on the gradient-based feature selection method. This is

better than the performances of SC [49] (76.51%), IDSC [44] (85.40%), the post-refined

version of [51] (86.48%), and shape tree [66] (87.70%) as summarized in Table 2.2. The

best performance 93.67% is reported in [63], however their part-based algorithm is highly

sensitive to segmentation errors especially for noisy data. A matching scheme [64], which

takes into account the influence of the other shapes while computing the similarity of a
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Table 2.3: MPEG7 classification results versus the number of features selected using the gradient-

based selection strategy.

♯ Features 10 50 100 200 300

Accuracy (%) 15.93 68.83 91.07 90.38 89.92

Table 2.4: Random distortion results on partial MPEG7 dataset

Method IDSC Denoised IDSC SVS-BoW SVS-DP

Accuracy 57.0% 85.9% 81.4% 93.7%

pair of shapes, has reported an accuracy of 93.32%. SVS can be effectively used as the

shape representation in [64]. Fig. 2.10 shows sample retrieval results in the descending

order of matching scores using the gradient-based features.

We also investigate the trade-off between the model complexity and the classifica-

tion performance by varying the number of feature points from 10→ 300. The results are

summarized in the Table 2.3. In general, more feature points would yield better accura-

cies. However, it can be noticed that the classification accuracy slightly suffers when the

number of features exceeds 100. It is because a large number of features inevitably leads

to less-discriminative interest points to be selected, therefore, negatively interfering with

the shape matching algorithm.

In the second experiment, we pick a subset of 6 shape classes (8 samples per class)

from the MPEG7 database and add random distortions into them. The performance is

measured by counting how many of 8 correct shapes appear in the first 16 matches for

each shape. Instead of using ν−SVM algorithm like in the first two experiments, we use
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Figure 2.12: Samples from the articulation database. Note that, each column corresponds to a

different object.

one-class SVM for this experiment since it produces better retrieval results. In addition

to classification using SVS and IDSC, we zero-threshold our SVS representations to re-

construct the original binary shapes. These binary shapes are then used as the input for

computing IDSC. We call this scheme denoised IDSC.

The overall performance of IDSC is 57.0%, while the SVS method, using gradient-

based feature points, gives 93.7% as given in Table 2.4. Besides, Table 2.4 shows that

denoised IDSC (85.9%) performs significantly better than IDSC. The result implies that

our shape representation provides some denoising effects over random distortions. We

also compare the performance of SVS when using the bag-of-word approach (81.4%) in-

stead of the dynamic programming technique. Figure 2.11 shows retrieval results for both

IDSC and SVS methods in descending order of the matching scores. IDSC’s performance

dramatically degrades on this database because artifacts within a shape severely changes

the inner distances. Shape context and other edge-based methods will also have the same

issue. In contrast, the SVS method invariably gives accurate retrieval results thanks to

classifier-based representation.

In the third set of experiments, we test our matching algorithm, with the gradient-
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Table 2.5: Matching results on the articulation dataset

Descriptor type 1st Match 2nd Match 3rd Match 4th Match

ℓ2 (baseline) 25/40 15/40 12/40 10/40

SC [49] 20/40 10/40 11/40 5/40

IDSC [44] 40/40 34/40 35/40 27/40

Biswas [51] 40/40 38/40 33/40 20/40

Lin [73] 40/40 38/40 36/40 33/40

SVS HOGf 40/40 38/40 35/40 31/40

based feature selection strategy, on the articulation database reported in [44]. This database

includes 40 images from 8 objects with different articulations as shown in Figure 2.12.

This consists of highly similar shapes like types of scissors with only minor differences

but significant articulations. The recognition result is evaluated for each shape by choos-

ing four most similar matches and then sort them according to their matching scores.

Table 2.5 summarizes the matching results. We compare against the ℓ2 distance on a

bag-of-features, the shape context (SC), the inner distance with shape context (IDSC), the

multiple feature indexing [51], and the layered graph matching [73]. In this experiment,

the SVS uses the gradient-based feature point selection. It is apparent that our method

handles articulation as well as (even better for later matches) IDSC, and much more ac-

curately than the SC thanks to the robust nature of the SVS feature point selection and the

locality of its descriptor.

35



2.2.5 Proof of SVM-RBF Irreducibility

The decision function of SVM with RBF kernel has the following form:

f(x) =
m∑
i=1

αi exp(−γ||x− x∗
i ||2) (2.17)

Fourier transform of the function is as follows:

F(ω) =
m∑
i=1

αiF{exp(−γ||x− x∗
i ||2)} =

m∑
i=1

αiF{exp(−γ||x||2)} exp(−jωx∗
i )

=
m∑
i=1

αi

[√
π

γ

]n
exp

(
−π2

γ
||ω||2

)
exp(−jωx∗

i ) = Φ(ω)Ψ(ω) (2.18)

where n is the dimension of x and,

Φ(ω) =

[√
π

γ

]n
exp

(
−π2

γ
||ω||2

)
(2.19)

Ψ(ω) =
m∑
i=1

αi exp(−jωx∗
i ) (2.20)

where n is the dimension of x. The Fourier transform of RBF kernel obviously does not

have any zero.

From now on, consider Φ(ω) as the Fourier transform of an arbitrary kernel func-

tion. By assumption, the entire function Φ(ω) never vanishes, i.e. it does not have any

zero just like the case of the RBF kernel. Therefore, it remains to show that the function

Ψ(ω) is not factorable to conclude that f(x) is irreducible.

Assume that Ψ(ω) is reducible. It means that it can be factored into a product of

two entire functions. These functions are required to have non-empty zeros set (either

real or complex). Then they must have the following form:

K∑
k=1

ak exp(−jωyk)
L∑
l=1

bl exp(−jωzl) =
K∑
k=1

L∑
l=1

akbl exp{−jω(yk + zl)} (2.21)
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Note that an exponential function ejωτ never vanishes. This property together with non-

empty zeros set constrain implicitly require:

K ≥ 2, L ≥ 2 (2.22)

The number of constrains when equating (2.21) to (2.20) is (KL +m). The breakdown

of constrains is as follows:

• KL constrains to equate the set of exponents {yk + zl} with the set {x∗
i }.

• m constrains to equate {akbl} with {αi}.

The total number of variables is 2(K + L), and we require this to be at least equal to the

total number of constrains, which gives:

2(K + L) ≥ KL+m (2.23)

It is easy to verify that this condition does not hold because K ≥ 2, L ≥ 2, m ≥ 5 due to

(2.22) and our initial our assumption. Therefore f(x) in (2.3) is irreducible.

2.3 Concentric Ring Signature

In the second part of this chapter, we present a 3D feature descriptor that represents

local topologies within a set of folded concentric rings by distances from local points to

a projection plane. This feature, called as Concentric Ring Signature (CORS), possesses

similar computational advantages to point signatures yet provides more accurate matches.

CORS produces compact and discriminative descriptors, which makes it more robust to

noise and occlusions.
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Figure 2.13: a) CORS is constructed at p by finding a spherical support region S . b) A

plane is fitted to local neighborhood and translated to the point p. The normal direction

is taken to be z-axis c) Selecting a reference orientation for x-axis and projecting the

distances from the surface to plane into the corresponding patches.

2.3.1 CORS Construction

To construct CORS we first find the 3D data points within the local support region,

then determine a plane of projection, decide the reference orientation in that plane, and

finally compute the patch responses that are arranged into a matrix form as illustrated in

Fig. 2.13.

Local Support

Let p a point in a 3D cloud data and r the radius of a spherical volume centered on

p. We assign the set of points falling within the spherical volume as the local support S =

{pi : ||pi − p|| ≤ r}. The choice of the radius r is data-dependent. For example, larger

radius is preferred for smooth and rigid shapes while smaller radius is preferred for shapes

with articulations or structural variations. As r increases, CORS is more discriminative

but more vulnerable against occlusions. A good choice of r would balance well these two
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factors. We perform cross-validation on a subset of databases to choose the value r that

gives best results.

Plane of Projection and Reference Axes

A plane P is fitted to the local support S . There are two possible choices for fitting

planes. One can use the all data points within the local support, fit a plane by least-squares

as the system is almost always over-determined, and parallel move the origin of P at p.

Alternatively, it is possible to select a subset of points along the perimeter of the local

support, e.g. intersecting the sphere support with the object surface.

Fitting to the perimeter would be more appropriate particularly for the points along

ridges as illustrated in Fig. 2.14. It is more meaningful for the plane of projection to be

tangent to the surface rather than slice into it as our descriptor is based on elevations of

points. In case the projection plane slices into the surface, the resulting descriptor would

be zero.

We define a local reference coordinates so that the local descriptor is invariant to

camera view. Let c be the (Karcher) mean, that is the coordinate having the minimal

overall distance to the other points in the local support c = argmin
∑

i ∥pi − c∥. We

set the z-axis to be orthogonal to P and pointing in a direction such as the dot product

of the unit vector z⃗ with vector c⃗p is positive. We define a local reference axis (x-axis)

so that the local descriptor is invariant to camera view. x-axis points away from p to the

projection of the 3D point that has the maximum distance from the fitted plane P within

the local support S . y-axis is defined by the cross product z⃗ × x⃗. With such assignments,
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P corresponds to the xy plane going through point p. These two conditions define z-axis

without any ambiguity.

Figure 2.14: A special case where fitting a plane to local support is different from fitting a

plane to its perimeter. a) Fitting to the perimeter results in a tangent plane, while b) fitting

to the entire local neighborhood results in a slicing plane

In case the projection distances from P to the xy plane have more than one peak,

multiple reference axes can be generated. When this situation occurs during training

phase, multiple descriptors, each corresponds to one peak, are computed and stored in the

database. During the matching phase, only one descriptor corresponding to the largest

peak is needed for each query point, even when its projection distances have multiple

similarly large peaks. The reason is because the query descriptor can always find its

correct match in the model database where multiple descriptors have been generated to

take into account ambiguity of peaks. We observe that this situation occurs at only around

1% of points and the inclusion of multiple peaks improves matching of descriptors.
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Populating Patches

After fitting the plane and determining the reference axes, each 3D point pi in the

local neighborhood S is now represented by a tensor pi(x, y, z) independent of the camera

viewing angle. The z coordinates pi(z) correspond to the distance from the plane in this

tensor, and the xy-plane coordinates pi(x, y) correspond to the projection on the plane P .

We estimate a representative elevation value of the given data points within the patches of

this grid as follows:

1. We apply a polar grid along azimuth and radial directions on the xy plane centered

on the original point p. The patches of this grid can be considered as the 2D his-

togram bins. Let {(k, l)} be the set of sampled grid locations with k = 1 . . . K

and l = 1 . . . L, where K and L are the numbers of sampling intervals along the

radial and the azimuthal directions, respectively. In other words, we will extract a

2D matrix FK×L on this grid where each coefficient corresponds to a patch of the

grid.

2. At each grid location (k, l), we estimate a representative elevation value F (k, l). El-

evation at a location is estimated by interpolating the elevation values of the given

3D points within the immediate patches. This significantly improves sparsity re-

lated issues, e.g. sudden jumps of the estimated elevation when there are insuffi-

cient number of 3D points and boundary issues e.g. being very close to boundary

but falling into another bin, etc.

The representative elevation score F (k, l) is estimated as follows:
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Figure 2.15: Illustration of CORS (red border) and spin image (black border) at different

points on a 3D human face. The radius of support region is set to 15 for both descriptors.

The number of azimuthal and radial quantizations of CORS are 10 and 5, respectively.

The bin size of spin image is set equal to the scanner resolution as suggested by its author.

For this setting, the dimension of CORS is around 6.5× more compact than that of spin

image.

F (k, l) =

∑
iwi.pi(z)∑

iwi

(2.24)

where pi are 3D points within the immediate neighboring bins of the bin of (k, l)

and the weight is computed as:

wi =



1/α, d ≤ α

1/d, α ≤ d ≤ 2α

0, otherwise

(2.25)

and d = ∥(k, l)− pi(x, y)∥.

Basically, F (k, l) is the weighted average of elevation of points surrounding (k, l).

The contribution of each surrounding point’s elevation to the estimation of representative
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elevation is controlled by a weight wi negatively proportional to distance to (k, l). the

parameter α controls the smoothness of a descriptor. Higher α values yield smoother

descriptors while a smaller α makes the descriptor sensitive to positional shifts. The

choice of α depends on the sampling interval along azimuth and radial directions. We

observed that the average Euclidean distance between bin centers and their adjacent bins

is a satisfactory value. Using a fixed value of α makes bins close to the origin in a polar

coordinate system look more similar than those further away. α could be set in an adaptive

manner to overcome this issue. Also, imposing a minimum distance constraint enables

improving the robustness against small differences in shape very close to the center.

In addition to the mean orthogonal distance from S to the P , the standard deviation

of the projection distances and the density of points falling into each bin also possess

complementing discriminant power and can be incorporated into similar matrices. An

advantage of the mean distance is that it does not require point density estimation and

normalization. Figure 2.15 provides a visual illustration of CORS computed at different

locations on a 3D data cloud of human face. Note that the dimension of CORS is 6.5 times

smaller than that of spin image. Such dimensional reduction increases the descriptors

matching efficiency, yet does not compromise the discriminative power as shown in the

experimental analysis section.

2.3.2 Fast Approximation CORS

In practice, the computation of CORS can be significantly speed up by using the

normal vectors whenever available as z-axis of the local reference frame. This eliminates
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Fast CORS Point Signature CORS Spin Image

1.02s 1.27s 1.34s 2.76s

Table 2.6: Amount of time taken to compute 500 descriptors.

the need for fitting a plane to the neighborhood at every location. Table 2.6 compares the

computation of CORS, speed-up CORS, and other descriptors. As visible, CORS is as

fast or faster than the conventional methods. In this experiments, we use models from

TOSCA dataset, each of which has around 50K-60K points. The computation times are

for 500 descriptors. No normals are available beforehand for CORS.

A wide spectrum of applications involve 2.5D image that is a view-point specific

simplified representation of 3D data in which every pixel on the camera’s image plane

contains only one depth value measuring its distance to the scene. This data structure is

effectively a 2D hash table allowing efficient constant-time retrieval of local neighborhood

S around a point p.

To speed up the matching of a CORS descriptor to large databases (hundreds of

thousands of signatures), a coarse-to-fine approach can be adapted. For each CORS de-

scriptor, we row-sum up all elements of the K × L matrix, i.e. those lying on the same

ring to create a subordinate signature. This can be used for quickly pruning unlikely

candidates.
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2.3.3 Similarity Measure and Matching

Euclidean distance is used as the dissimilarity measure between two CORS matri-

ces:

dist(F1, F2) =

√∑
k,l

(F1(k, l)− F2(k, l))2 (2.26)

Matching of CORS descriptors is not limited to Euclidean distance. Since the represen-

tation of CORS is in a matrix form, it can be considered to possess a manifold structure

where the matching score is defined as the geodesic distance connecting two CORS de-

scriptors on the manifold. In addition, a manifold can be flattened using ISOMAP, etc. In

this work, we concentrate on the Euclidean distance.

The dissimilarity measure is mainly dictated by the applications at hand and the

contributions of different bins can be modified accordingly. For example, if the goal is to

highlight symmetric local structures, CORS with similar bin values along the azimuthal

dimension should be weighted significantly higher than the others.

The best match of a query descriptor can be efficiently extracted using approximate

nearest neighbor techniques such as kd-trees and box decomposition tree based search.

2.3.4 Experimental Results

We conducted several detection, recognition, registration, and retrieval experiments

to analyse the performance of CORS descriptors in comparison to existing descriptors

including spin images and point signatures.

45



2.3.4.1 Saliency

In the first experiment, we use five synthetic models, each of around 150K points,

to compare the saliency, i.e. discriminative power, of point signature, spin image, and

CORS. A reference database of 10K signatures is computed at random points on each

model. Another 10K set of signatures at randomly sampled points on the same model is

used as the query database. We make sure that no point from the reference set is selected

for the query set. A query signature at location qi is said to have a good match to its

model at location mi if their distance di = |mi − qi| ≤ ϵ. We chose ϵ to be 5 times of the

scanner resolution. Figure 2.16 shows the percentage of correct matches within the first k

nearest neighbors. CORS out performs both point signature and spin image. The correct

matching rate of CORS is approximately 2.5 times higher than that of point signatures.

The error rate reduces from 18% for spin image to 12% for CORS, which is more than

33% of improvement.

Figure 2.16: Percentage of correct matches within k-nearest neighbors.
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Discriminant Ratio

Finding descriptor correspondence is essential to many recognition and retrieval

problems. It is desirable to have a robust mechanism of filtering out potentially erroneous

matches and keeping only the useful ones for further processing. When searching de-

scriptors into a large database or finding correspondences within noisy observations, the

nearest neighbor matching would result in a large number of incorrect pairs. For instance,

Fig. 2.17 shows that the rate of finding correct correspondences (dashed lines) decrease

with the noise and the database size.

Figure 2.17: Comparison of correct correspondences for two methods: random selection

and selecting with the discriminant ratio τ ≥ 1.5. Gaussian noise is added to all descrip-

tors before matching. The noise standard deviation varies from 0.1 to 2, and database size

varies from 10K to 100K.

To deal with this issue, it is possible to impose a global threshold on the Euclidean

47



distances of the descriptors to their closest matches. However, applying a threshold does

not work as most of the less discriminative descriptors tend to have multiple matches with

only small distances.

Taking a similar approach to [74], we compare the distance of the closest neighbor

to that of the second nearest neighbor. We define the discriminant ratio as a measure for

this comparison:

τ =
dist2
dist1

(2.27)

where dist1 and dist2 are the Euclidean distances between a query descriptor and its

first and second best matches in the database, respectively. Higher discriminant ratios

require correct matches to have the closest neighbor significantly closer than the closest

incorrect matches. As a result, matches with high discriminant ratios tend to be much

more reliable. For false matches, there will likely be a number of other false matches

within similar distances due to the high dimensionality of the feature space.

Imposing a limit on the discriminant ratio dramatically increases the correct cor-

respondence rate. Figure 2.17 shows the probability of correct correspondences within

selected points under different settings. Shapes from TOSCA and Mian datasets are used

to construct the descriptor databases. Dashed lines represent the conventional correspon-

dences by the nearest neighbor matching and random point selection. Solid lines represent

the refined correspondences by the nearest neighbors with the constraint that their dis-

criminant ratios are at least τ ≥ 1.5. While the performance of the conventional method

degrades almost linearly with the Gaussian noise standard deviation, the performance of

the second method remains high and stable as the noise level increases. Impressively, the
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correct correspondence rate of the refined method reaches up to 100% for the the database

of the largest size (100K), while the conventional method has the lowest performance on

this setting (see red lines). The reason is that as more false matches are available, the

comparison based on the distance to the closest neighbor and to the second closest neigh-

bor becomes more robust. In other words , a point that can stand out from a crowded

database, in terms of discriminant ratio, must be more reliable.

Although the reliability of selected points is proportional to the discriminant ratio,

the number of detected points reduces as the discriminant ratio increases. We observed

that τ ≥ 1.5 is a good trade-off between the correct correspondences rate and the number

of total correspondences. We use both Mian and TOSCA datasets to create the descriptors

databases. CORS parameters set are as follows: the local support radius r = 12, K =

10, L = 20, where the value is relative to scanner resolution. Figure 2.18 gives sample sets

of correspondences found using the proposed discriminant ratio. Feature correspondences

are demonstrated to be very accurate even under nonrigid transformations and occlusions.

2.3.4.2 Shape Detection and Registration

Given a 2.5D range scan query scene the task is to make a reliable decision whether

the scene contains the objects of interests. If an instance of the target is detected, either

complete or partially occluded, the algorithm will estimate the transformation that regis-

ters the complete model to the target in the scene. This problem is challenging for sev-

eral reasons. First, range scan images usually contain hundreds of thousands of points,

posing a question of how to process them in an efficient yet reliable manner. Second,
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(a) Tosca Non-rigid Shapes (b) Mian Occluded Shapes

Figure 2.18: Correspondences of CORS with the discriminant ratio τ ≥ 1.5 a) Two

shapes taken from TOSCA dataset with nonrigid transformations (Note that all corre-

spondences for this pair are correct while the plotted lines are sometimes hidden behind

the surface giving an impression of matching the face with the back of the head). b) A

model and an occluded scene from Mian et al. dataset. (All correspondences, except two

on the leg of the reference model, are correct.)

target is only partially visible due to the self-occlusion and the cluttering effects (see Fig-

ure 2.18b), rendering many global shape descriptors useless. Three main steps of our

detection method using CORS, then, can be listed as:

• Computate CORS for a subset of randomly distributed points in the scene,

• Find correspondence between the query signatures of the randomly distributed

points and the model signatures computed off-line, and

• Iteratively estimate motion parameters with geometric constraints within the RANSAC
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framework to locate and find the pose of the object.

We evaluate our method on the datasets provided by Mian [75], which consists of

5 models and 50 scenes taken with a Konica-Minolta range scanner. The scenes in this

dataset are highly occluded and cluttered by putting objects very close to each other. We

are interested in evaluating the recognition rate that is defined as the number of correct

detections over the total number of the scenes. An object is said to be correctly detected if

the resulting errors of the translation and pose estimations, compared to the ground truth,

are smaller than one-tenth of the object’s diameter and 12 ◦, respectively. These criteria

are the same with that of Drost et al. [56], therefore allowing the comparison to their

methods.

Figure 2.19: Comparison of the recognition rates vs. the percentage of occlusions: for

spin image, tensor matching, Drost method, and CORS.

Our algorithm converges after, on average, only 3 RANSAC iterations. It produces

satisfactory estimates of R and t even without any further processing. Figure 2.20 shows
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Figure 2.20: Recognition and registration of 3D model point clouds into the occluded

scenes. The cyan and pink colors are used to render the scenes and models, respectively.

The transformed models closely overlap with the targets within all the scenes. 50 different

scenes are used for testing our approach.

the registration results of four different models without any refinement. Figure 2.19 shows

the overall recognition result of our method. As given, it outperforms all other methods

in terms of the recognition rate with respect to occlusions. The key to the higher ro-

bustness against occlusions lies in the facts that the detected correspondences are highly

reliable and accurate, and the use of the discriminant ratio constraint successfully filters
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out potentially invalid matches.

2.3.4.3 Shape Recognition and Retrieval

Figure 2.21: Six different articulations from a model in the TOSCA dataset.

Given a query shape, the goal is to extract all instances of this shape, which might

come with 3D non-rigid articulations, from the database . It is necessary for an algorithm

to be 3D articulation-independent in order to perform well on this test.

A bag-of-feature approach is used to retrieve 3D shapes. We compare CORS at a

subset of salient points to evaluate the similarity between a model and a query. Similar

to the approach in the previous section, we perform salient points selection and shapes

retrieval jointly. Given a query point clouds, we first compute CORS at a subset of ran-

domly selected points. Two best matches for each query CORS are extracted from the

model database from which discriminant ratios are computed. We define a dissimilar-

ity score δ between a query and a model using only those correspondences with high

discriminant ratios. More specifically, it is computed as:

δ =
1

|Sτ |
∑
qi∈Sτ

dist1(qi), Sτ = {qi : τqi ≥ τ0} (2.28)

where Sτ is the set of feature points having discriminant ratio higher than a threshold τ0.
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In contrast to the previous section where the threshold τ0 is kept constant, here we keep

the size of |Sτ | fixed (50 in our experiments) and let τ0 to vary. This effectively forces

two dissimilar shapes to accept some poor matches leading to higher dissimilarity score.

Shapes with dissimilarity score lower than a predefined threshold are considered to be

from the same object.

We evaluate our algorithm on the TOSCA dataset which consists of 9 models and

80 shapes. This is a challenging database since all models come with various nonrigid

shape transformations. Figure 2.21 shows a model in the dataset with six different 3D

articulations. We perform a leave-one-out matching experiment. In other words, each

shape is excluded from and matched against the rest of the database. The recognition

rate is computed by counting how many best matches that come from the same models of

query shapes. Recognition and retrieval results of our method are presented in Fig. 2.22.

Our method achieves 100% correct recognition and retrieval rate, i.e. all shapes from cor-

rect models are retrieved before those from incorrect models. The recognition rate of spin

image is only 55%, and the retrieval result is presented in Fig. 2.23. It is easy to observe

that our method produces consistent scores. This makes it possible to impose a threshold

on the score and reject shapes from incorrect models. On the contrary, dissimilarity scores

of spin image are quite erratic inhibiting the determination of the cut-off point between

correct and incorrect models.
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Figure 2.22: Top retrieval shapes of our CORS method. All shapes are correctly retrieved.

(The 5th model gorilla has three and the 9th model wolf has two instances in the dataset.)
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Figure 2.23: Top four retrieval shapes of spin image. Wrong retrievals are highlighted

with orange boxes. Distance scores are erratic (see red underlines) inhibiting the determi-

nation of a cut-off value between the correct and incorrect shapes.
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Chapter 3

Sparse Representations

3.1 Background on Sparse Coding and Dictionary Learning

Sparse and redundant signal representations have recently drawn much interest in

vision, signal and image processing [76], [77], [78], [79]. This is due in part to the fact

that signals and images of interest can be sparsely represented or compressible given an

appropriate dictionary. In particular, we say a signal y ∈ Rn is sparsely represented by

a dictionary D ∈ Rn×K when it can be well approximated by a linear combination of a

few columns of D as y ≈ Dx, where x ∈ RK is the sparse representation vector and

D is a dictionary that contains a set of basics (atoms) as its columns. Finding a sparse

representation vector entails solving the following optimization problem

x̂ = argmin
x
∥x∥0 s.t. ∥y −Dx∥2 ≤ ε, (3.1)

where ε is an error tolerance, ∥x∥0 is the ℓ0 sparsity measure that counts the number of

nonzero elements in the vector x, and ∥y−Dx∥2 is the mean squared error resulted from

the sparse approximation. Solving (3.1) is NP-hard and can be approximated by various

methods [80], [81], [82].

Instead of using a pre-determined dictionary, one can directly learn a dictionary

from the data. Indeed, it has been observed that learning a dictionary directly from the

training data rather than using a predetermined dictionary (e.g. wavelet) usually leads
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to a more compact representation and hence can provide better results in many image

processing applications such as restoration and classification [76], [77], [78] [83], [84],

[85].

Several algorithms have been developed for the task of learning a dictionary. Two

of the most well-known algorithms are the method of optimal directions (MOD) [8] and

the KSVD algorithm [9]. Given a set of N signals Y = [y1, · · · ,yN ], the goal of KSVD

and MOD algorithms is to find a dictionary D and a sparse matrix X that minimize the

following representation error

(D̂, X̂) = argmin
D,X
∥Y −DX∥2F s.t.

∥xi∥0 ≤ T0, ∀i = 1 . . . N

(3.2)

where xi represents the i-th column of X, ∥A∥F denotes the Frobenius norm of A, and

T0 denotes the sparsity level. Both MOD and KSVD are iterative methods that alternate

between sparse-coding and dictionary update steps. First, a dictionary D with ℓ2 normal-

ized columns is initialized. Then, the main iteration is composed of the following two

stages:

• Sparse coding: In this step, D is fixed and the following optimization problem is

solved to compute the representation vector xi for each example yi

min
xi

∥yi −Dxi∥22 s.t. ∥xi∥0 ≤ T0, ∀i = 1 . . . N (3.3)

• Dictionary update: This is where both MOD and KSVD algorithms differ. The

MOD algorithm updates all the atoms simultaneously by solving an optimization

problem whose solution is given by D = YX†, where X† denotes the Moore-

Penrose pseudo-inverse. Even though the MOD algorithm is very effective and
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usually converges in a few iterations, it suffers from the high complexity of the

matrix inversion as discussed in [9]. In the case of KSVD, the dictionary update is

performed atom-by-atom in an efficient way rather than using a matrix inversion. It

has been observed that the KSVD algorithm requires fewer iterations to converge

than the MOD method.

3.2 Non-Linear Kernel Dictionary Learning

The dictionaries designed by MOD and KSVD are based on a linear representation

of the data. However, linear representations are almost always inadequate for representing

non-linear structures of the data which arise in many practical applications. For example,

many types of descriptors in computer vision have intrinsic non-linear similarity measure

functions. The most popular ones include the spatial pyramid descriptor [10] which uses

a pyramid match kernel, and the region covariance descriptor [11] which uses a Rieman-

nian metric as the similarity measure between two descriptors. Both of these distance

measures are highly non-linear. Unfortunately, the traditional dictionary learning meth-

ods, e.g. MOD and KSVD, are based on a linear model. This inevitably leads to poor

performances for many datasets, e.g., object classification of Caltech-101 [12] dataset,

even when discriminant power is taken into account during the training [13]. Motivated

by the drawbacks of the current methods and the needs of many practical applications, we

propose kernel dictionaries which are basically dictionaries in high dimensional feature

spaces. Our dictionary learning methods yield representations that are more compact than

kernel principal component analysis (KPCA) [14] and are able to handle the non-linearity
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better their linear counterparts.

3.2.1 Problem Formulation

Let Φ : Rn → F ⊂ Rñ be a non-linear mapping from Rn into a dot product

space F . We restrict our formulation to Hilbert spaces. The reason is because a Hilbert

space associates each pair of vectors with a dot product. This allows the use of Mercer

kernels to carry out computations implicitly without venturing into the high-dimensional

feature space. It is worth noting that in practice ñ is often much larger than n, and possibly

infinite. More discussion on the use of Mercer kernels is delayed until later in this section.

Our goal is to learn a non-linear dictionary D = [d1, . . . ,dK ] in the feature space

F by solving the following optimization problem:

argmin
D,X

∥Φ(Y)−DX∥2F s.t

∥xi∥0 ≤ T0, ∥dj∥2 = 1, ∀i, j.

(3.4)

where Φ(Y) = [Φ(y1), . . . ,Φ(yN)], D ∈ Rñ×K is the sought dictionary, X ∈ RK×N is a

matrix whose i-th column is the sparse vector xi corresponding to the sample Φ(yi), with

maximum of T0 non-zero entries.

The following proposition facilitates the re-formulation of (3.4). To the best of our

knowledge, none of the previous work on dictionary learning has proven this property.

Proposition 3.1. There exists an optimal solution D∗ to (3.4) that has the following form:

D∗ = Φ(Y)A, (3.5)

for some A ∈ RN×K .
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Table 3.1: Parameters’ dimensions.

Y Φ(Y) D A X di xi

n×N ñ×N ñ×K N ×K K ×N ñ× 1 K × 1

Proof. See Appendix 3.5.

At first sight, the solution in (5.9) might look similar to the double-sparsity model

D = BA proposed in [86]. However, there are significant differences between the two

models. First, we prove in the proposition 3.1 that B = Φ(Y) is a natural choice for

our case instead of relying on any manual selection of B. In addition, we do not require

columns of D to be sparse with respect to the base B as in [86]. Although B is fixed in

both models, the dictionary can be tuned to the training data via modifying the coefficient

matrix A. For the reader’s convenience, table 3.1 summarizes the dimensions of all im-

portant parameters. Parameters that involve ñ are those associated with the feature space

F . As a result, we can seek an optimal dictionary through optimizing A instead of D. By

substituting (5.9) into (3.4), the problem can be re-written as follows:

argmin
A,X

∥Φ(Y)− Φ(Y)AX∥2F s.t.

∥xi∥0 ≤ T0, ∀i = 1 . . . N.

(3.6)

An important property of this formulation is that the objective function in (3.6) can be

minimized through the use of Mercer kernels as we shall see shortly in the next section.

A Mercer kernel is a function κ(x,y) that satisfies Mercer’s condition [87] [88]:

For all data {yi}Ni=1, the function gives rise to a positive semi-definite matrix [Kij] =
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[κ(yi,yj)]. If κ satisfies the Mercer’ condition, it can be shown that κ corresponds to

some mapping Φ in the Hilbert feature space F . That is, κ(x,y) = ⟨Φ(x),Φ(y)⟩. Mer-

cer kernels are often used to implicitly specify the mapping Φ. It helps avoid the com-

putationally expensive mapping of data into the high-dimensional feature space. Some

commonly used kernels include polynomial kernels κ(x,y) = ⟨(x,y⟩+c)d and Gaussian

kernels κ(x,y) = exp(−∥x−y∥2
c

), where c and d are the parameters.

In order to see the advantage of the formulation in (3.6) over the original one, we

will examine the objective function. Through some algebraic manipulations, the cost

function can be re-written as:

∥Φ(Y)− Φ(Y)AX∥2F = ∥Φ(Y)(I−AX)∥2F =

tr((I−AX)TΦ(Y)TΦ(Y)(I−AX))

tr((I−AX)TK(Y,Y)(I−AX)),

(3.7)

where K(Y,Y) is a kernel matrix whose elements are computed from κ(yi,yj) = Φ(yi)
TΦ(yj).

It is more efficient to optimize this objective function since it only involves a kernel matrix

of finite dimension K ∈ RN×N , instead of dealing with a possibly infinite dimensional

dictionary in the original formulation (3.4).

In order to illustrate this point, we take an example where training data are images

of size 16 × 16 pixels. That is, n = 256. Assuming that a polynomial kernel of degree

4 is used, then the dimension of the feature space is in order of ñ ∼
(
256
4

)
∼ 108. This

is often much larger than the number of training samples. For instance, Caltech-256

dataset only contains n = 30607 images for both training and testing. If a Gaussian

kernel is used, the corresponding feature space is the Hilbert space of infinite dimension.

Therefore, it is computationally prohibited to carry out computations directly on feature
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spaces. Instead, we can work with the kernel matrix as in (3.7) and achieve a better

computational efficiency.

3.2.2 Optimization Procedure

In this section, we present our approach for learning dictionaries in the feature

space. Just as in the case of KSVD and MOD, our method of learning dictionaries involve

two stages: sparse coding and dictionary update. In what follows, we describe them in

detail.

3.2.2.1 Kernel Orthogonal Matching Pursuit (KOMP)

In this stage, the matrix A is assumed to be fixed and then we seek for the sparse

codes contained in the matrix X. Note that, the penalty term in (3.6) can be re-written as

∥Φ(Y)− Φ(Y)AX∥2F =
N∑
j=1

∥Φ(yi)− Φ(Y)Axi∥22. (3.8)

Hence, (3.6) can be reformulated as solving N different problems of the following form

min
xi

∥Φ(yi)− Φ(Y)Axi∥22 s.t ∥xi∥0 ≤ T0, (3.9)

for i = 1, · · · , N. The above problem can be solved by any pursuit algorithms [80, 81],

with the modification that signals are now in the feature space with a very high dimen-

sionality. In what follows, we show how the well-known orthogonal matching pursuit

algorithm (OMP) [81, 82] can be generalized using kernels to solve (3.11).

In this stage, the matrix A is assumed to be fixed and then we seek for the sparse
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codes contained in the matrix X. Note that, the penalty term in (3.6) can be re-written as

∥Φ(Y)− Φ(Y)AX∥2F =
N∑
j=1

∥Φ(yi)− Φ(Y)Axi∥22. (3.10)

Hence, (3.6) can be reformulated as solving N different problems of the following form

min
xi

∥Φ(yi)− Φ(Y)Axi∥22 s.t ∥xi∥0 ≤ T0, (3.11)

for i = 1, · · · , N. The above problem can be solved by any pursuit algorithms [80, 81],

with the modification that signals are now in the feature space with a very high dimen-

sionality. In what follows, we show how the well-known orthogonal matching pursuit

algorithm (OMP) [81, 82] can be generalized using kernels to solve (3.11).

Given a signal z ∈ Rn and the kernel dictionary represented via A, we seek a sparse

combinations of dictionary atoms that approximate z in the feature space:

Φ(z) = Φ(Y)Axs + rs = Φ(Y)νs + rs. (3.12)

Here, νs = Axs ∈ RN is an intermediate notation. We can also think of it as the current

loading of the signal Φ(z) over a base Φ(Y). Finally, rs is the current residual.

The pseudo-code for KOMP is given in the Fig. 3.1. Let Is denote the set of indices

of the atoms that have already been selected. In the first step, the residual is projected

onto the remaining dictionary atoms di = Φ(Y)ai, where i /∈ Is and ai is the i-th column

of A. Let τi denote the projection of the residual onto di, which is computed simply by:

τi = rTs (Φ(Y)ai) =
(
Φ(z)− Φ(Y)νs

)T (
Φ(Y)ai

)
=
(
K(z,Y)− νT

s K(Y,Y)
)
ai, i /∈ Is

(3.13)
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Input: A signal z, a kernel function κ, a coefficient matrix A, and a sparsity level T0.

Task: Find a coefficient vector x ∈ RK with at most T0 non-zero coefficients such that

∥Φ(Y)Ax− Φ(z)∥2 is minimized.

Initialize: s = 0, I0 = ∅, x0 = 0, ν0 = 0

Procedure:

1. τi =
(
K(z,Y)− νT

s K(Y,Y)
)
ai, ∀i /∈ Is−1

2. imax = argmaxi|τi|, ∀i /∈ Is−1

3. Update the index set Is = Is−1

∪
imax

4. xs =
(
AT

Is
K(Y,Y)AIs

)−1
(K(z,Y)AIs)

T

5. νs = AIsxs

6. s← s+ 1; Repeat steps 1–6 T0 times

Output: Sparse vector x ∈ RK satisfying x(Is(j)) = xs(j),∀j ∈ Is and zero elsewhere.

Figure 3.1: The KOMP algorithm.

where, with a slight abuse of notation, we denote

K(z,Y) = [κ(z,y1), κ(z,y2), . . . , κ(z,yN)]. (3.14)

The algorithm then selects a new dictionary atom in the remaining set that gives the largest

projection coefficient in (3.13). This selection guarantees the biggest reduction of the

approximation error.

In the fourth step of Fig. 3.1, we want to update the coefficients in x corresponding
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to the selected indices in Is. Let xs denote a vector formed by removing from x all

coefficients whose indices do not belong to Is. Similarly, let AIs indicate the set of

dictionary atoms whose indices are from the set Is. Then xs is obtained by projecting the

signal Φ(z) onto the subspace spanned by the selected dictionary atoms Φ(Y)AIs . Note

that the matrix

(Φ(Y)AIs)
T (Φ(Y)AIs) = AT

IsK(Y,Y)AIs (3.15)

is positive semi-definite since K(Y,Y) is positive semi-definite. The projection coeffi-

cients are obtained as follows:

xs =
(
(Φ(Y)AIs)

T (Φ(Y)AIs)
)−1(

Φ(Y)AIs

)T
Φ(z)

=
(
AT

IsK(Y,Y)AIs

)−1(K(z,Y)AIs

)T (3.16)

Note also that the computation in (3.16) can be efficiently implemented in a re-

cursive manner as in [81]. Once the coefficients xs are found, the representation νs are

updated as in step 5 of Fig. 3.1. We can think of νs as the current loading vector of the

signal Φ(z) over the base Φ(Y). The procedure is repeated until T0 atoms are selected.

3.2.3 Dictionary Update with Kernel MOD

Once the sparse codes for each training data are calculated, the dictionary is updated

such that the error,

∥Φ(Y)− Φ(Y)AX∥2F (3.17)

is minimized. Note that unlike the traditional dictionary learning framework, a kernel

dictionary is learned by optimizing the coefficient matrix A instead of the dictionary D.

Taking the derivative of this error with respect to A and after some manipulations, we
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have:
∂∥Φ(Y)− Φ(Y)AX∥2F

∂A
=

∂tr((I−AX)TK(Y,Y)(I−AX))

∂A
=

− 2K(Y,Y)(I−AX)XT

(3.18)

By setting (3.18) to zero, we obtain the relation A = XT (XXT )−1 which leads to the

following iterative update:

Ak+1 = XT
k (XkX

T
k )

−1 = X†
k. (3.19)

where the subscript k denotes iteration index. This procedure of updating the dictionary

is essentially the idea behind the MOD method [8]. We call this kernel MOD, since this

is done in the feature space. As discussed in [9], one of the major drawbacks of MOD is

that it suffers from the high complexity of matrix inversion during the dictionary update

stage. Specifically, the inversion of matrix XkX
T
k has the complexity of O(K3), where

K is the number of dictionary atoms. This becomes very expensive as the dictionary size

is usually large. Several other methods have also been proposed that focus on reducing

this complexity. One such algorithm is KSVD [9]. This algorithm eliminates the need of

a large-matrix inversion and converges faster than MOD [9]. Following the procedure of

KSVD, in what follows, we describe a more sophisticated way of updating the dictionary.

3.2.4 Dictionary Update with Kernel KSVD

Let ak and xj
T denote the k-th column of A and the j-th row of X, respectively.

The error

∥Φ(Y)− Φ(Y)AX∥2F (3.20)

67



Input: A set of signals Y, a kernel function κ.

Task: Find a dictionary via A to represent these signals as sparse decompositions in the

feature space by solving the optimization problem in (3.6).

Initialize: Set a random element of each column in A(0) to be 1. Normalize each column

in the initial dictionary to a unit norm. Set iteration J = 1.

Stage 1: Sparse coding

Use the KOMP algorithm described in Fig. 3.1 to obtain the sparse coefficient matrix X(J)

given a fixed dictionary A(J−1).

Stage 2: Dictionary update

For each column a
(J−1)
k in A(J−1), where k = 1, . . . , K, update it by

- Define the group of examples that use this atom: ωk = {i|1 ≤ i ≤ N,xk
T (i) ̸= 0}

- Define the representation error matrix, Ek, by (3.24).

- Restrict Ek by choosing only the columns corresponding to ωk by: ER
k = EkΩk

- Apply SVD decomposition to get

(ER
k )

TK(Y,Y)(ER
k ) = V△VT .

Choose updated a
(J)
k = σ−1

1 ER
k v1, where v1 is the first vector of V corresponding to the

largest singular value σ2
1 in △.

- Set J = J + 1. Repeat from stage 1 until a stopping criterion is met.

Output: A and X.

Figure 3.2: The kernel KSVD algorithm.
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can be re-written as: ∥∥∥∥∥Φ(Y)− Φ(Y)
K∑
j=1

ajx
j
T

∥∥∥∥∥
2

F

(3.21)

=

∥∥∥∥∥Φ(Y)

(
I−

∑
j ̸=k

ajx
j
T

)
− Φ(Y)(akx

k
T )

∥∥∥∥∥
2

F

(3.22)

= ∥Φ(Y)Ek − Φ(Y)Mk∥2F (3.23)

where,

Ek =

(
I−

∑
j ̸=k

ajx
j
T

)
, Mk = (akx

k
T ). (3.24)

Φ(Y)Ek indicates the error between the approximated signals and the true signals when

removing the k-th dictionary atom. Φ(Y)Mk indicates the contribution of the k-th dic-

tionary atom to the estimated signals.

At this stage, we assume that only (ak,xk
T ) are variables and the rest are fixed,

hence Ek is also constant for each k. The minimization of the above problem is equiva-

lent to finding (ak,x
k
T ) such that the rank-1 matrix Φ(Y)Mk best approximates Φ(Y)Ek

in terms of mean squared error. The optimal solution can be obtained via a singular value

decomposition (SVD). However, there are two reasons that make the direct SVD inappro-

priate. Firstly, it would yield a dense vector xk
T , which increases the number of non-zeros

in the representation X. Secondly, the matrix might have infinitely large row dimension,

which is computationally prohibitive.

In order to minimize the objective function while keeping the sparsity of all the

representations fixed, we work only with a subset of columns. Note that the columns of

Mk associated with zero-value elements of xk
T are all zero. These columns do not affect

the minimization of the objective function. Therefore, we can shrink the matrices Ek
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and Mk by discarding these zero columns. An advantage of working with the reduced

matrices is that only the non-zero coefficients in xk
T are allowed to vary and therefore the

sparsity are preserved [9].

Define ωk as the group of indices pointing to examples {Φ(yi)} that use the atom

(Φ(Y)A)k:

ωk = {i|1 ≤ i ≤ N, xk
T (i) ̸= 0}. (3.25)

Let Ωk be a matrix of size N × |ωk|, with ones on the (ωk(i), i)-th entries and zeros

elsewhere. When multiplying with Ωk, all zeros within the row vector xk
T will be dis-

carded resulting in the row vector xk
R of the length |ωk|. The column-reduced matrices

are obtained as

ER
k = EkΩk; MR

k = MkΩk. (3.26)

We can now modify the cost function in (3.21) so that its solution has the same

support with the original xk
T:

∥∥Φ(Y)ER
k − Φ(Y)MR

k

∥∥2
F
=∥∥Φ(Y)ER

k − Φ(Y)akx
k
R

∥∥2
F
.

(3.27)

Recall the fact that Φ(Y)akx
k
R is a rank-1 matrix. Therefore, the optimal solution

of (3.27) can be obtained by first decomposing Φ(Y)ER
k into rank-1 matrices using SVD,

and then equating Φ(Y)akx
k
R to the rank-1 matrix corresponding to the largest singular

value. That is,

Φ(Y)ER
k = UΣVT (3.28)

Φ(Y)akx
k
R = σ1u1v

T
1 , (3.29)
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where u1 and v1 are the first columns of U and V corresponding to the largest singu-

lar value σ1 = Σ(1, 1), respectively. A valid breakdown for the assignment (3.29) is

given. The reason for putting the multiplier σ1 in (3.30) instead of in (3.31) will become

clearer when solving for ak. Basically, such an assignment guarantees that the resulting

dictionary atom on the feature space is normalized to unit-norm

xk
R = σ1v

T
1 (3.30)

Φ(Y)ak = u1. (3.31)

However, as mentioned before, we can not perform direct SVD decomposition on

Φ(Y)ER
k as in (3.28) since this matrix can have infinitely large row dimension. This is an

important difference between the linear KSVD and kernel KSVD algorithm. A remedy

for this issue comes from the fact that SVD decomposition is closely related to eigen-

decomposition of the Gram matrix, which is independent of the row dimension.

(
Φ(Y)ER

k

)T (
Φ(Y)ER

k

)
=

(ER
k )

TK(Y,Y)(ER
k ) = V△VT ,

(3.32)

where △ = ΣTΣ ∈ RN×N . This gives us v1 as the first column of V, and σ1 =√
△(1, 1). Hence, xk

R can be found using the relation in (3.30).

To solve for ak, we first observe that by right-multiplying both sides of (3.28) by V

and considering only the first column, we get

Φ(Y)ER
k v1 = σ1u1. (3.33)

The solution for ak is obtained by substituting (3.31) into (3.33), yielding:

Φ(Y)ER
k v1 = σ1Φ(Y)ak. (3.34)
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(a) (b)

Figure 3.3: Comparison of error ratios for (a) KSVD and (b) Kernel KSVD on a common

logarithm scale.

Hence,

ak = σ−1
1 ER

k v1. (3.35)

One can easily verify that this updating procedure of ak results in a dictionary atom of

unit-norm in the feature space. The pseudo-code for the kernel KSVD algorithm is given

in Fig. 3.2.
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Figure 3.4: Comparison between the level curves of the projection coefficients for three

different dictionary atoms corresponding to linear KSVD and kernel KSVD. In this figure,

the first row corresponds to KSVD and the second row corresponds to kernel KSVD.
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3.3 Experimental Results

In this section, we present several experimental results demonstrating the effective-

ness of the proposed dictionary learning method for classification tasks. In particular,

we present classification results on the USPS digit dataset and the Caltech-101 object

dataset. We first examine the effectiveness of a learned dictionary in the feature space

using synthetic data.

3.3.1 Synthetic Data

In the first set of experiments, we generate 1500 samples for a two-class problem

by randomly sampling a two dimensional circle {y = [y1, y2] ∈ R2 | y21 + y22 = r2}.

The radius r of the first circle (class 1) is a half that of the second circle (class 2). The

radius of the second circle is set to 1 in this experiment. Separate dictionaries are learned

for different classes and different methods. This means that we learn two different dictio-

naries for two classes using KSVD, and two kernel dictionaries using kernel KSVD. The

following parameters are used to learn dictionaries using both KSVD and kernel KSVD:

dictionaries are learned with 30 atoms, T0 = 3, and the maximum number of training

iterations is set to 80. For kernel KSVD, we use a polynomial kernel of degree 2.

Fig. 3.3 shows the color-coded map of the error ratios obtained by dividing recon-

struction errors of the second class to that of the first class for all points on the R2 plane.

The reconstruction errors are computed when the sparse coding only use one dictionary

atom (i.e. T0 = 1). Since data samples from the two classes lie roughly on the same linear

subspace, which is the entire plane in R2, dictionaries learned using KSVD are indistin-
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guishable for the two classes. This is clearly seen from Fig. 3.3 (a), where the error ratios

are quite random even for points lying on the circles.
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Figure 3.5: Comparison of error percentage using kernel KSVD and kernel PCA.

On the other hand, as can be seen from Fig. 3.3 (b), error ratios corresponding to a

dictionary learned in the feature space exhibit strong differences between the two classes.

In particular, error ratios are very high for points lying close to the first class, and very

small for points lying close to the second class. Moreover, points on the same circle

have similar error ratios. This observation implies that kernel KSVD correctly learns the

non-linear structure of the data and embeds this information into kernel dictionary atoms.

In the second set of synthetic experiments, we learn dictionaries from 1500 data

samples that are generated from a 2-dimensional parabola {y = [y1, y2] ∈ R2 | y2 = y21}.

All parameters are set to the same values as before. Fig. 3.4 shows the level curves of

the projection coefficients for three different dictionary atoms. The curves are obtained

as follows. First, we project every point y ∈ R2 onto the selected dictionary atom di to

get the projection coefficients. Then, the points with the same projection coefficients are

shown with the same color map. In other words, every contour in Fig. 3.4 is a collection
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of points with the same projection coefficients onto a dictionary atom. For kernel KSVD,

the projection coefficients for a specific y is computed on the feature space:

Φ(y)Tdi = Φ(y)TΦ(Y)ai = K(y,Y)ai (3.36)

Here, Y denotes the set of points sampled along the parabola and y is any point in R2.

The direction in which the projection coefficient varies (e.g. the direction in which the

contour’s color changes) indicates the direction of the dictionary atom. For instance, in

the top left image of Fig. 3.4, the KSVD dictionary atom points in the horizontal direction,

from left to right. Similarly, for the second and third images in the first row of Fig 3.4,

the KSVD dictionary atoms point diagonally.

In contrast to KSVD coefficients, the coefficients of kernel KSVD (second row) in

Fig. 3.4 change in non-linear manners. Each kernel dictionary atom captures variations

along both branches of the parabola. This observation implies that our dictionary learning

method can capture nonlinearities within the data and provide more compact representa-

tions.

3.3.2 Kernel sparse representation

In this section, we examine the representation obtained by kernel KSVD and kernel

PCA using the USPS dataset. Fig. 3.5 compares the mean-squared-error (MSE) of an

image from the USPS dataset when approximated using the first m dominant kernel PCA

components and m = [1, . . . , 20] kernel dictionary atoms (i.e. T0 = m). It is clearly

seen that the MSE decays much faster for kernel KSVD than kernel PCA with respect

to the number of selected bases. This observation implies that the image is nonlinearly
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sparse and learning a dictionary in the high dimensional feature space can provide a better

representation of data.

3.3.3 Digit Recognition

We apply our dictionary learning approach on the real-world handwritten digits

classification problem. We use the USPS database [89] which contains ten classes of

256-dimensional handwritten digits. In other words, input training samples are the vec-

torizations of USPS digit images with the dimension of n = 256. For each class, we

randomly select N = 500 samples for training and Ntest = 200 samples for testing. The

selection of parameters is done through a 5-fold cross-validation. Specifically, we choose

the following parameters for learning the dictionaries for all classes: each class dictionary

is learned with K = 300 atoms, T0 = 5, maximum number of training iterations is set

to 80. A polynomial kernel of degree 4 is used for both kernel KSVD and kernel PCA

unless otherwise stated.

Figure 3.6: The pre-images of the kernel KSVD dictionary atoms.

We first use a sparse subspace approach for classification. Let Yi = [yi,1 . . .yi,N ] ∈
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R256×500 represents the set of training samples of the i-th class, where i ∈ {1 . . . 10}. Let

Di = Φ(Yi)Ai denote the learned kernel dictionary for each class, where Ai ∈ R500×300.

Given a query image z ∈ R256, we first perform KOMP separately for each Di, as in

Fig. 3.1, to get the sparse code xi. Since sparse coding is done separately for each class,

we call this a distributive approach. The sparse setting is the same as the training phase,

i.e., T0 = 5. The reconstruction error is then computed as:

ri = ||Φ(z)− Φ(Yi)Aixi||22 = K(z, z)− 2K(z,Yi)Aixi

. . .+ xi
TAT

i K(Yi,Yi)Aixi , ∀i = [1 . . . 10] (3.37)

The test sample is simply classified to the class that gives the smallest reconstruction

error.

We also evaluate the classification performance using a collective approach where

dictionaries from all classes are concatenated to form a common dictionary D = [D1 . . .D10].

This approach is different from the first approach only in the sparse coding step. For a

given test sample z, the sparse coding is done jointly using KOMP on D to obtain a sparse

coefficient x = [x1, . . . ,x10] ∈ R3000, where xi contains the sparse coefficients associ-

ated with the dictionary Di. The sparsity level T0 is chosen to be 10, which is the setting

that yields the best performance on a 5-fold cross validation. The residual of each class

is computed as in (3.37). The test sample is classified in a similar fashion with that of the

distributive approach. Our method can be considered as the kernel version of [90].

For kernel PCA, we follow the same approach as in [14] to perform classification.

First, we aggregate training samples from all classes. This results in a training set of 5000

samples Y = [Y1, . . . ,Y10] ∈ R256×5000. Training samples are projected onto the first
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Figure 3.7: Comparison of digit recognition accuracies for different methods in the pres-

ence of Gaussian noise and missing-pixel effects. Red color and orange color represent

the distributive and collective classification approaches for kernel KSVD, respectively.

3000 principal components of largest eigenvalues, which are found by applying the kernel

PCA method on Y. Classification is then done by learning a linear SVM classifier trained

on the 3000-dimensional projection coefficients.

3.3.3.1 Pre-images of learned atoms

In order to visualize the learned kernel dictionary atoms, we find images that lie

on the input space and best approximate these atoms in terms of the mean square er-

rors. Recall that the k-th kernel dictionary atom of the i-th class is represented by

Φ(Yi)ai,k, where ai,k ∈ RN is the representation of the kernel dictionary atom with

respect to the base Φ(Yi) in the feature space F . The pre-image of Φ(Yi)ai,k is ob-

tained by seeking a vector in the input space di,k ∈ Rn that minimizes the cost function

||Φ(di,k) − Φ(Yi)ai,k||22. Due to various noise effects and the generally non-invertible
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mapping Φ, the exact pre-image does not always exist. However, the approximated pre-

image can be reconstructed without venturing into the feature space using the techniques

described in [91, 92]. Fig. 3.6 shows the pre-images of the kernel KSVD dictionary atoms

for 10 digits.

3.3.3.2 Classification results

In the first set of experiments, we present the results for the situation where the test

samples are corrupted by random Gaussian noise with different standard deviations as

shown in Fig. 3.7a. Likewise, Fig. 3.7b shows the results obtained when pixels are ran-

domly removed from the test images. In both experiments, kernel KSVD (both distribu-

tive and collective) and kernel MOD (distributive) consistently outperform linear KSVD

and kernel PCA. As the distortion level increases the performance difference between

kernel dictionaries and linear dictionaries become more drastic. Another interesting ob-

servation is that the distributive classification approach outperforms the collective one

for the cases with high noise levels. For this reason, we choose the former classification

scheme for all other experiments on the USPS dataset.

The second set of experiments examines the effects of parameters choices on the

overall recognition performances. Fig. 3.8 shows the classification accuracy of kernel

KSVD as we vary the degree of polynomial kernel. The best error rate of 1.6% is achieved

with the polynomial degree of 4. This error rate is lower than the error rates from other

methods in the literature: nearest neighbor (5.6%) [93], neural net (4.2%) [94], neural

net + boosting (2.6%) [94], invariant support vectors (3%) [95], supervised dictionary
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learning (3.54%) [96].

We also compare the performance of our method in the case of missing pixels. For

the case when 50% of the pixels in the test samples are randomly removed, the kernel

KSVD method shows similar trend of performance. For instance, the accuracy peaks

when the polynomial degree 4 is used and as the polynomial degree increases further, the

accuracy goes down slightly and becomes saturated. For this reason, we fix the polyno-

mial degree to be 4 for all other experiments on the USPS dataset.

Fig. 3.9 compares the performances of KSVD, kernel PCA, and kernel KSVD when

varying the sparsity T0 in the range from 5 → 50. For kernel PCA, sparsity means

the number of principal components or the dimension of the PCA subspace. It can be

easily seen that the performance of KSVD is very sensitive to the sparsity parameter,

while kernel KSVD and kernel PCA remain rather stable against this variation. Kernel

KSVD also outperforms other methods considered here for all Gaussian noise levels and
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Figure 3.8: Kernel KSVD classification accuracy versus the polynomial degree of the

USPS dataset.
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Figure 3.9: Comparison of digit recognition accuracies for different sparsity levels in

the presence of Gaussian noise with standard deviation σ. All algorithms train on clean

images and test on noisy images. The dictionary size is set to 50 for this experiments.
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Figure 3.10: Comparison of digit recognition accuracies for different dictionary sizes in

the presence of Gaussian noise with standard deviation σ. All algorithms train on clean

images and test on noisy images. The sparsity is set to T0 = 5 in this experiment.
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all sparsity settings. This can be seen by examining the curves of the same colors in the

three plots in Fig. 3.9. Interestingly, while KSVD (with a proper sparsity setting) beats

kernel PCA for cases with moderate noise levels, its performance rapidly deteriorates as

noise level increases and becomes even worse than kernel PCA for the case of heavy

noise, e.g. σ ≥ 1.5.

Fig. 3.10 compares the recognition accuracies on USPS dataset for different number

of dictionary atoms and principal components. Both KSVD and kernel KSVD exhibit a

similar trend. In particular, in the presence of noise, their performances decrease as the

number of dictionary atoms increases. The performance of KSVD decreases at a faster

rate than kernel KSVD. In addition, both KSVD and kernel KSVD are rather indifferent

to the variation of number of dictionary atoms when there is no noise. These observations

are quite understandable since larger dictionaries do not generalize well, making them

more brittle in dealing with noise. Interestingly, kernel PCA performs slightly better when

allowing more principal components. This is the case because principal components are

orthogonal to each others, thus, they are less compact and need more components to

capture enough useful information. The benefit of additional information outweighs the

inclusion of noise and leads to a slightly better performances for kernel PCA. Overall,

we observe that the setting with dictionary size K = 200 and sparsity setting T0 = 5

provides a good trade-off between the performance, the robustness against noise, and the

computational complexity for this experiment.
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3.3.4 Caltech-101 Object Recognition

We report the results of object recognition experiments using the Caltech-101 database [97].

This database comprises 101 object classes, and 1 background class collected randomly

from Internet. Each category contains from 31 to 800 images. Most objects are cen-

tered in the foreground and same-class objects are aligned to similar stereo-typical pose.

The average size of images is about 300 × 300 pixels. The database is very diverse and

challenging as it includes objects like buildings, musical instruments, animals and natural

scenes.

We combine 39 different features using the boosting approach as in [98]. These

features include the spatial pyramid [10], the PHOG shape [99], the region of covari-

ance [11], the local binary patterns (LBP) [100], the V1S+ [101], etc. All features have

non-linear distance metrics. For instance, the χ2 distance is used for the PHOG shape and

the LBP descriptors, the geodesic distance is used for region of covariance descriptor,

whereas the Gaussian kernel is used for all other types of features. Kernel functions are

computed as κ = exp(−d(yi,yj)/δ), with d being the distance and δ set to the mean of

pairwise distances. Any learning method should be able to take these non-linear similar-

ity measures into account to be effective. Our kernel dictionary learning algorithm fits

naturally into the framework of the multiple features combination. In contrast, the current

dictionary learning techniques [12, 13], which use the Euclidean distance as the simi-

larity measure between feature vectors, are unable to adequately capture the non-linear

structures of the feature space.

We follow the suggested protocol in [10, 12, 102], namely, we train on N images,

83



where N ∈ {5, 10, 15, 20, 25, 30}, and test on the rest. Note that because some categories

are very small, we might end up with just one single image for testing. To compensate

for the variations in class sizes, we normalize the recognition results by the number of

test images to get per-class accuracies. The final recognition accuracy is then obtained by

averaging per-class accuracies across 102 categories.

We use similar approaches as in Sec.3.3.3 for classification. The algorithm starts

with learning a dictionary for each class. In particular, we aggregate descriptors of all

training images for each category into Yi = [yi,1 . . .yi,N ], where i ∈ {1 . . . 102}. The

kernel KSVD algorithm is then run on Yi with the sparsity level T0 = 3 and the maxi-

mum number of iterations set to 80. The dictionary size is equal to {4, 8, 12, 15, 20, 25},

respectively. The parameter selection is done with a 5-fold cross validation.

Let Di = Φ(Yi)Ai denotes the learned kernel dictionary, where Ai ∈ RN×K .

In order to perform classification on a newly given test feature yt using the collective

approach, we first concatenate dictionaries from all classes:

D = [D1 . . .D102] = [Φ(Y1)A1 . . .Φ(Y102)A102] (3.38)

The final dictionary D is then used in kernel OMP to solve the sparse decomposi-

tions of yt, as in Fig. 3.1, yielding the sparse coefficients xt = [x1,t . . .x102,t], where xi,t

contains the sparse coefficients associated with the dictionary Di of the i-th class. During

the testing phase, we set the sparsity level to be T0 = 10. The reconstruction error is
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computed by:

ri = ∥Φ(yt)− Φ(Yi)Aixi,t∥22

=
(
(Φ(yt)− Φ(Yi)Aixi,t)

T (Φ(yt)− Φ(Yi)Aixi,t)
)

= K(yt,yt)− 2K(yt,Yi)Aixi,t + xT
i A

T
i K(Yi,Yi)A

T
i xi

(3.39)

The classification is done simply by assigning the test feature to the class with smallest re-

construction error. The distributive classification scheme is similar except that the sparse

coding is done separately for each dictionary.

(a) Minaret (100%) (b) Panda(100%)

(c) Okapi (100%) (d) Face easy (99.75%)

(e) Wild cat (25%) (f) Background (34%)

(g) Beaver (37.5%) (h) Crocodile (40%)

Figure 3.11: The first two rows and the last two rows show the classes that our method

performed the best and worst, respectively.

Table 3.2 and table 3.3 show the average recognition accuracy of our algorithm

in comparison with other methods on the Caltech-101 and Caltech-256 datasets, respec-
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Table 3.2: Comparison of recognition results on Caltech-101 dataset

Number of train samp. 5 10 15 20 25 30

Malik [103] 46.6 55.8 59.1 62.0 - 66.2

Lazebnik [10] - - 56.4 - - 64.6

Griffin [104] 44.2 54.5 59.0 63.3 65.8 67.6

Irani [105] - - 65.0 - - 70.4

Grauman [102] - - 61.0 - - 69.1

Venkatesh [106] - - 42.0 - - -

Gemert [107] - - - - - 64.16

Yang [108] - - 67.0 - - 73.2

Wang [109] 51.15 59.77 65.43 67.74 70.16 73.44

SRC [90] 48.8 60.1 64.9 67.7 69.2 70.7

KSVD [9] 49.8 59.8 65.2 68.7 71.0 73.2

D-KSVD [13] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD [12] 54 63.1 67.7 70.5 72.3 73.6

LP-β [98] 54.2 65.0 70.4 73.6 75.7 77.8

D-Kernel KSVD 52.1 63.5 68.3 72.4 74.6 76.8

C-Kernel KSVD 56.5 67.2 72.5 75.8 77.6 80.1
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Table 3.3: Comparison of recognition results on Caltech-256 dataset

# train samples 15 30

Griffin [104] 28.3 34.1

Gemert [107] - 27.2

Yang [110] 34.4 41.2

D-Kernel KSVD 34.5 41.4

C-Kernel KSVD 34.8 42.5

tively. Kernel KSVD with a collective dictionary outperforms all the methods for any

number of training images n. In contrast to the previous experiments on the USPS dataset,

we notice that the collective classification approach significantly outperforms the distribu-

tive approach on the Caltech-101 dataset. An explanation for this observation is that the

set of training data is insufficient (less than 30 samples per class). Consequently, the

learned dictionaries do not generalize well enough. This leads to a deterioration of the

distributive classification scheme which highly depends on the representation power of

the learned dictionaries.

It is worth noting that the best recognition performance of [98] using multiple fea-

tures with boosting techniques on Caltech-101 is only 77.8% in comparison with 80.1%

of our method. Since the classifier in [98] is learned directly from the feature vectors, it

is quite brittle and may not generalize well, especially in the case where the number of

training samples is small (e.g., less than 30 per class). A more robust approach would
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be to extract sparse features that are common among images of the same category and

learn a classifier on top of these features. LC-KSVD [12] follows such an approach,

which uses the spatial pyramid descriptors in addition to the discriminative dictionary

learning algorithm to improve the classification result. One drawback of this approach

is that the pyramid match kernel or any other non-linear kernel cannot be incorporated

within this algorithm. As a result, the learning algorithm operates in the Euclidean space

instead of the manifold that the combined features lie on. This inhibits the learning of

common non-linear structures that can be very useful for classification. For these rea-

sons, the recognition accuracies of both methods ([98] and LC-KSVD [12]) are lower

than our results. This observation justifies the effectiveness of kernel dictionary learning

and recognizes its important role in improving the classification accuracy.

Fig. 3.12 plots the confusion table between all categories for our best result (i.e.

80.1%). Fig. 3.13 displays per-class accuracy where classes are sorted in the ascending

order of recognition accuracies. There are 15 categories that achieve perfect recognition.

Fig. 4.6 displays a few of the “easiest” and the “hardest” object categories. The successful

classes include “Okapi” and “Minaret”, and the difficult classes include “Beaver” and

“Crocodile”. This is consistent with the result in [10]. Interestingly, several classes like

“Ant” have the rather high performances while they are among the hardest classes in [10].

This shows the benefit of combining multiple features with dictionary learning.
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Average Recognition Accuracy = 80.1 
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Figure 3.12: Confusion matrix of our recognition performances on Caltech 101 dataset

using kernel KSVD. The rows and columns correspond to true labels and predicted labels,

respectively. The dictionary is learned from 3030 images where each class contributes 30

images. The sparsity is set to be 30 for both training and testing. Although the confusion

matrix contains all classes, only a subset of class labels is displayed for better legibility.

3.4 Discussion and Conclusion

We have presented two non-linear dictionary learning algorithms that exploit spar-

sity of data in high dimensional feature space by extending MOD and KSVD dictionary

learning algorithms through an appropriate choice of kernel. Experimental results indi-

cate that exploiting non-linear sparsity via learning dictionaries in a non-linear feature

space can provide better discrimination than the traditional linear approaches and kernel

PCA. Significant improvements over the current state of the art on two standard datasets
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Figure 3.13: Average accuracy of each class in Caltech-101 dataset. Classes are sorted in

the ascending order of their recognition accuracies.

show that the kernel dictionary learning technique is superior over its linear counterpart

in terms of classification accuracy. Especially, kernel dictionary demonstrates robustness

with respect to noise allowing robust recognition and better tolerance against different

types of degradations.

3.5 Proof of Proposition 3.1

Proof. Using the standard orthogonal decomposition, we can write D∗ as follows:

D∗ = D̃+D⊥ (3.40)
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where D̃ and D⊥ are matrices whose columns lie within and orthogonal to column sub-

space of Φ(Y), respectively. In other words, D̃ = Φ(Y)A and Φ(Y)TD⊥ = 0. The

optimal cost is equivalent to:

||Φ(Y)−D∗X∗||2F = ||Φ(Y)− (D̃+D⊥)X
∗||2F

=||Φ(Y)(I−AX∗)−D⊥X
∗||2F

=tr
(
[Φ(Y)(I−AX∗)−D⊥X

∗]T [Φ(Y)(I−AX∗)−D⊥X
∗]
)

=tr[(I−AX∗)TΦ(Y)TΦ(Y)(I−AX∗)]

+ tr[(X∗)TDT
⊥D⊥X

∗]. (3.41)

The second terms can be expressed as:

tr[(X∗)TDT
⊥D⊥X

∗] =
n∑

i=1

xT
i D

T
⊥D⊥xi ≥ 0

The inequality comes from the fact that DT
⊥D⊥ is a positive semidefinite matrix. As a

result, the second term of (3.41) can only increase the cost function. For the cost to be

optimal, the second term must vanish. In short, D⊥ = 0 and D∗ = D̃ = Φ(Y)A is an

optimal solution.
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Chapter 4

Sparse Representations On Low-Dimensional Feature Space

In this chapter, we propose a novel framework, called sparse embedding (SE), that

brings the strength of both dimensionality reduction and sparse learning together. In this

framework, the dimension of signals is reduced in a way such that the sparse structures

of signals are promoted. The algorithm simultaneously learns a dictionary in the reduced

space, yet, allows the recovery of the dictionary in the original domain. This empowers

the algorithm with two important advantages: 1) Ability to remove the distracting part

of the signal that negatively interferes with the learning process, and 2) Learning in the

reduced space with smaller computational complexity. In addition, our framework is able

to handle sparsity in non-linear model through the use of Mercer kernels.

4.1 Motivation and Related Work

Signals are usually assumed to lie on a low-dimensional manifold embedded in a

high dimensional space. Dealing with the high-dimension is not practical for both learn-

ing and inference tasks. As an example of the effect of dimension on learning, Stone [111]

showed that, under certain regularity assumption including that samples are identically

independent distributed, the optimal rate of convergence for non-parametric regression

decreases exponentially with the dimension of the data. As the dimension increases, the

Euclidean distances between feature vectors become closer to each other making the infer-
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ence task harder. This is known as the concentration phenomenon [112], To address these

issues, various linear and non-linear dimensionality reduction (DR) techniques have been

developed [113]. Some examples include PCA [114], ISOMAP [115], LLE [116], Lapla-

cian Eigenmaps [117], etc. In general, these techniques map data to a lower-dimensional

space such that non-informative or irrelevant information in the data are discarded.

Recently, there has been an explosion of activities in modelling a signal using ap-

propriate sparse representations (see [118] and references therein). This approach is mo-

tivated by the observation that most of signals encountered in practical applications are

compressible. In other words, their sorted coefficient magnitudes in some basis obey

power law decay. For this reason, signals can be well-approximated by linear combina-

tions of a few columns of some appropriate basis or dictionary D. Although predefined

basis such as wavelets or Fourier basis give rather good performances in signal compres-

sion, but it has been shown that dictionaries learned from the data can be more compact

leading to better performance in many important tasks such as reconstruction and classi-

fication [119, 90].

However, the current algorithms for finding a good dictionary have some draw-

backs. The learning of D is challenging due to the high dimensional nature of the training

data, as well as the lack of training samples. Therefore, DR seems to be a natural solution.

Unfortunately, the current DR techniques are not designed to respect and promote under-

lying sparse structures of data. Therefore, they cannot help the process of learning the

dictionary D. Note that the recently developed DR technique [120] based on the sparse

linear model is also not suitable for the purpose of sparse learning since it assumes that

the dictionary is given. Ideally, we want an algorithm that can discard non-informative
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part of the signal and yet does not destroy the useful sparse structures within the data.

The second disadvantage of the current sparse learning framework is its inability to

handle sparse signals within non-linear models. Linear model used for learning D is often

inadequate to capture the non-linear relationships within the data that naturally arise in

many important applications. For example, in [121, 122, 123] it has been shown that by

taking into account non-linearity, one can do better in reconstruction and classification. In

addition, spatial pyramid [10], a popular descriptor for object and scene classification, and

region of covariance [11], a popular descriptor for object detection and tracking, both have

non-linear distance measures thus making the current sparse representation inappropriate.

4.2 Sparse Embedding Framework

The classical approach to learn sparse representations [9] is by minimizing the

empirical lost over a finite set of signals subject to some sparsity constraint. Let Y =

[y1, . . . ,yN ] ∈ Rn×N denotes the matrix of N input signals, where yi ∈ Rn. A popular

formulation is:

{D∗,X∗} = argmin
D,X

∥Y −DX∥2F , (4.1)

subject to: ∥xi∥0 ≤ T0, ∀i

where D = [d1,d2, . . . ,dK ] ∈ Rn×K is called the dictionary that we seek to learn,

X = [x1,x2, . . . ,xN ] ∈ RK×N is the sparse representation of Y over D, and T0 is the

sparsity level. The cost function in (4.1) promotes a dictionary D that can best represents

Y by linearly combining only a few of its columns. This type of optimization can be done

efficiently using the current methods [123, 9].
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Different from the classical approaches, we develop an algorithm that embeds input

signals into a low-dimensional space, and simultaneously learns an optimized dictionary.

LetM denote the mapping that transforms input signals into the output space. In general,

M can be non-linear. However, for the simplicity of notations, we temporarily restrict

our discussion to linear transformations. The extension to the non-linear case will be

presented in section 4.4. As a result, the mapping M is characterized using a matrix

P ∈ Rd×n. We can learn the mapping together with the dictionary through minimizing

some appropriate cost function CY:

{P∗,D∗,X∗} = argmin
P,D,X

CY(P,D,X) (4.2)

This cost function CY needs to have several desirable properties. First, it has to promote

sparsity within the reduced space. At the same time, the transformation P resulting from

optimizing CY has to retain the useful information within the original signals. The second

criterion is needed in order to prevent the pathological case when everything is mapped

into the origin, which obtains the sparsest solution but is obviously of no interest. Towards

this end, we propose the following optimization:

{P∗,D∗,X∗} = argmin
P,D,X

(
∥PY −DX∥2F + λ∥Y −PTPY∥2F

)
(4.3)

subject to: PPT = I, and ∥xi∥0 ≤ T0, ∀i

where I ∈ Rd×d is the identity matrix, λ is a non-negative constant, and the dictionary is

now in the reduced space, i.e., D = [d1,d2, . . . ,dK ] ∈ Rd×K . The first term of the cost

function promotes sparsity of signals in the reduced space. The second term is the amount

of energy discarded by the transformation P, or the difference between low-dimensional
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approximations and the original signals. In fact, the second term is closely related to PCA

as by removing the first term in (4.3), it can be shown that the solution of P coincides

with the principal components of the largest eigenvalues, when the data are centered.

In addition, we also require rows of P to be orthogonal and normalized to unit norm.

P plays the role of selecting the right subspace, or equivalently the right features, in which

the useful sparse structures within data are revealed. There are several compelling reasons

to keep the orthogonality constraint. First, this constraint leads to a computationally effi-

cient scheme for optimization and classification. Second, it allows the extension of SE to

the non-linear case. Note that the columns of the dictionary D still form a non-orthogonal

basis in the output space despite the orthogonality constraint of P.

4.3 Optimization Procedure

Proposition 4.1. There exists an optimal solution P∗ and D∗ to the problem (4.3) that

has the following form:

P∗ = (YA)T ; D∗ = ATYTYB (4.4)

for some A ∈ RN×d, and some B ∈ RN×K .

Proof. See Appendix 4.7

As a corollary of the proposition 4.1, it is sufficient to seek an optimal solution for

the optimization in Eq. (4.3) through A and B. By substituting Eq. (4.4) into Eq. (4.3),

we have:

CY(P,D,X) = ∥ATK(I−BX)∥2F + λ∥Y(I−AATK)∥2F (4.5)
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where K = YTY and λ is a regularization parameter. The equality constraint becomes

PPT = ATKA = I (4.6)

The solution can be derived as

{A∗,B∗,X∗} = argmin
A,B,X

(
∥ATK(I−BX)∥2F + λ∥Y(I−AATK)∥2F

)
(4.7)

subject to: ATKA = I, and ∥xi∥0 ≤ T0

The advantage of this formulation will become clear later. Basically, this formulation

allows a joint update of P and D via A. As we shall see later in section 4.4, because the

objective function is not explicitly represented in terms of Y, it is then possible to use

the kernel method to make the algorithm non-linear. Despite (4.7) being non-convex, our

experiments show that effective solutions can be found through iterative minimization.

Solving for A

In this stage, we assume that (B,X) are fixed. As a result, we can remove the spar-

sity constraint of (4.7). The following proposition shows that A can be solved efficiently

after some algebraic manipulation:

Proposition 4.2. The optimal solution of (4.7) when B and X are fixed is:

A∗ = VS− 1
2G∗ (4.8)

where V and S come from the eigendecomposition of K = VSVT , and G∗ ∈ RN×d is
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the optimal solution of the following minimum eigenvalues problem:

{G∗} = argmin
G

tr
[
GTHG

]
(4.9)

subject to: GTG = I

where H = S
1
2VT ((I−BX)(I−BX)T − λI)VS

1
2 ∈ RN×N .

Proof. The cost function can be expanded as follows:

CY(P,D,X) = ∥ATK(I−BX)∥2F + λ∥Y(I−AATK)∥2F (4.10)

= tr
[
(I−BX)(I−BX)TKTQTK+ λ(K− 2KTQTK+KTQTKQK)

]
(4.11)

where Q = AAT ∈ RN×N . The constraint ATKA = I leads to the new constraint

AATKAAT = AAT or QKQT = Q. Using this equality constraint, and also notice

that tr(K) is a constant, the objective function in (4.11) can be simplified to a more

elegant form:

C̃Y(P,D,X) = tr
[
((I−BX)(I−BX)T − λI)KTQTK

]
(4.12)

With a simple change of variable G = S
1
2VTA, and noting that Q = AAT , the cost

function can be further simplified as:

C̃Y(P,D,X) = tr
[
((I−BX)(I−BX)T − λI)VS

1
2 (S

1
2VTA)(ATVS

1
2 )S

1
2VT

]
= tr

[
GTS

1
2VT ((I−BX)(I−BX)T − λI)VS

1
2G
]
= tr

[
GTHG

]
(4.13)

On the other hand, the equality constraint can also be simplified as:

ATKA = ATVS
1
2S

1
2VTA = GTG = I (4.14)
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Eqs. (4.13) and (4.14) show that the original optimization in (4.7) is equivalent to (4.9),

and the optimal solution A∗ can be recovered as in (4.8), i.e., A∗ = VS− 1
2G∗. Note that

since K is a positive semidefinite matrix, the diagonal matrix S has non-negative entries.

S− 1
2 is obtained by setting non-zero entries along the diagonal of S to the inverse of their

square root and keeping zero elements the same. This completes the proof.

Solving for B and X

In order to solve for B, we keep A and X fixed. The second term in (4.7) disap-

pears, and the objective function reduces to:

∥ATK(I−BX)∥2F = tr
(
KTQK− 2XTBTKTQK+XTBTKTQKBX

)
(4.15)

A possible way of solving for B is by taking the derivative of the objective function with

respect to B and setting it to zero, which yields:

−2(KTQK)XT + 2(KTQK)B(XXT ) = 0 (4.16)

B = XT (XXT )† (4.17)

This is similar to the method of optimal direction (MOD) [124] updating step except that

B is not the dictionary but its representation coefficients over the training data Y.

It is also possible to update B using the KSVD algorithm [9]. First, let us rewrite the

objective function (4.15) to a more KSVD-friendly form:

∥ATK(I−BX)∥2F = ∥Z−DX∥2F (4.18)
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where Z = ATK ∈ Rd×N is the set of output signals. We can solve for B in two steps.

First, we apply the KSVD algorithm to learn a dictionary Dksvd from Z. Second, we try

to recover B from Dksvd. From proposition 1, it follows that the optimal dictionary has

to be in the columns subspace of the input signals Z. We can observe from the KSVD

algorithm that its output dictionary also obeys this property. As a result, we can recover

B exactly by simply taking the pseudo-inverse:

B = (Z)†Dksvd (4.19)

We choose a KSVD-like updating strategy because it is more computationally efficient.

Our experiments show that both updating strategies produce similar performances for

applications like object classification.

Sparse coding that solves for X can be done by any off-the-shelves pursuit algo-

rithms. We use the orthogonal matching pursuit (OMP) [81] due to its high efficiency

and effectiveness. Note that sparse coding is the most expensive step in many dictionary

learning algorithms. Kernel KSVD [122] is an extreme example where sparse coding has

to be done in the high-dimensional feature space. Our algorithm performs sparse coding

in the reduced space leading to a huge computational advantage, yet, is capable of taking

into account the non-linearity as we shall demonstrate in the next section.

4.4 Non-linear Extension of Sparse Embedding

There are many important applications of computer vision that deal with non-linear

data [10, 11]. Non-linear structures in data can be exploited by transforming the data into

a high-dimensional feature space where they may exist as a simple Euclidean geometry.
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Input: A kernel matrix K, sparse setting T0, dictionary size K, dimension d, and λ.

Task: Find A∗ and B∗ by solving Eq. (4.4).

Initialize:

- Set iteration J = 1. Perform eigendecomposition K = VSVT

- Set A = V(:, I0), where I0 is the index set of d largest eigenvalues of K

Stage 1: Dictionary Update

- Learn a dictionary D and X from the reduced signals Z = ATK using KSVD

- Update B = (Z)†D

Stage 2: Embedding update

- Compute H = S
1
2VT ((I−BX)(I−BX)T − λI)VS

1
2

- Perform eigendecomposition of H = UΛUT

- Set G = U(:, IJ), where IJ is the index set of d smallest eigenvalues of H

- Update A = VS− 1
2G

- Increment J = J + 1. Repeat from stage 1 until stopping conditions reached.

Output: A, B and X.

Figure 4.1: The SE algorithm for both linear and non-linear cases.

In order to avoid the computational issues related to high-dimensional mapping, Mercer

kernels are often used to carry out the mapping implicitly. We adopt the use of Mercer

kernels to extend our analysis to the non-linear case.

Let Φ : Rn → H be a mapping from the input space to the reproducing kernel

Hilbert space H. Let k : Rn × Rn → R be the kernel function associated with Φ. The
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mappingM from the input space to the reduced space is no longer linear. It, however, can

be characterized by a compact, linear operator P : H → Rd that maps every input signal

s ∈ Rn to PΦ(s) ∈ Rd. Similar to the proposition 1, by letting K = ⟨Φ(Y),Φ(Y)⟩H =

[k(yi,yj)]
N
i,j=1, we can show that:

P∗ = ATΦ(Y)T ; D∗ = ATKB, (4.20)

Using Eq. (4.20), we can write the mappingM in an explicit form:

M : s ∈ Rn → PΦ(s) = AT ⟨Φ(Y),Φ(s)⟩H = AT [k(y1, s), . . . , k(yN , s)]
T (4.21)

Similar to the linear case, the non-linear SE gives rise to the following cost function:

∥PΦ(Y)−DX∥2F + λ∥Φ(Y)−PTPΦ(Y)∥2H (4.22)

which can be expressed in terms of A and B using Eq. (4.20), yielding an equivalent

optimization:

{A∗,B∗,X∗} = argmin
A,B,X

∥ATK(I−BX)∥2F + λtr
[
(I−AATK)TK(I−AATK)

]
subject to: ATKA = I, and ∥xi∥0 ≤ T0, ∀i (4.23)

The resulting optimization can be solved in the same way as in the linear case. Fig. 4.1

summarizes the SE algorithm. Note that in the non-linear case, the dimension of the

output space can be higher than the dimension of the input space, and is only upper

bounded by the number of training samples.

4.5 Experiments

In this section, we evaluate our algorithm on both synthetic and real datasets. In ad-

dition, we propose a novel classification scheme that leads to competitive performances
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on 3 different datasets: USPS, Caltech-101, and Caltech-256. We also analyse and com-

pare our method with the state of the art. For all the experiments in this section, we set

the maximum number of iteration J for our SE algorithm shown in Fig. 4.1 and that of

the KSVD algorithm to 5 and 80, respectively.

4.5.1 Recovery of Dictionary Atoms

Similar to the previous works [9, 81], we first run our algorithm on a set of synthetic

signals. The goal is to verify if our algorithm is able to learn the sparse patterns from a

set of training data that comes with distortions.

Generation of Training Signals: Let D ∈ R80×50 be a generating dictionary. The

first 30 elements in each column of D are generated randomly, and the last 50 elements

are set to zero. Each column of D, which we will call a dictionary atom, is normalized

to unit norm. 2000 training signals are generated by linearly combining 3 random atoms

from this dictionary and superimposed with distortion signals:

Y = DX+ αE (4.24)

where α is the distortion level; X ∈ R50×2000 is a matrix where each of its column has at

most 3 non-zero elements at independent locations with random values; E ∈ R80×2000 is

a matrix where each of its column is called a distortion signal and generated as follows:

The first 30 elements in each column of E are set to zero, and the last 50 elements are

generated randomly and independently under Gaussian distribution. Each column of E is

also normalized to unit norm.

Our task is to recover D from Y. We will first use SE to simultaneously reduce the
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dimension via A and learn a dictionary via B. The original dictionary can be estimated

as D̂ = YB. We compare our results with KSVD. To demonstrate the benefit of our

proposed joint dimensionality reduction and dictionary learning, we also compare our

results with the approach when the dimensionality reduction is done using PCA before

learning the dictionary using KSVD.

Let Ppca represent the PCA transformation. We learn a dictionary, denoted Dpca,

using KSVD on the set of reduced signals PpcaY. The original dictionary is recovered by

first computing the coefficient matrix Bpca = (PpcaY)†Dpca, and then D̂ = YBpca. Note

that since the columns of Dpca are in the column subspace of PpcaY, the computation of

the coefficient matrix Bpca is exact.

0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

Distortion Level α

N
um

be
r 

of
 r

ec
ov

er
ed

 a
to

m
s

Dimension = 40

 

 

Sparse Embedding
KSVD
PCA+KSVD

0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

Distortion Level α

N
um

be
r 

of
 r

ec
ov

er
ed

 a
to

m
s

Dimension = 20

 

 

Sparse Embedding
KSVD
PCA+KSVD

Figure 4.2: Comparison of number of recovered dictionary atoms over 40 trials.

Verification of Recovered Dictionaries: For all methods, the computed dictionary

was compared against the generating dictionary. This comparison is done by sweeping

through the columns of the generating dictionary to find the closest column (in ℓ2 dis-

tance). The distance is measured by
(
1− |dT

i d̂i|
)

, where d̂i is the i-th estimated dictio-

nary atom, and di is its closest atom in the original dictionary. A distance of less than 0.01

is considered a success. We learn dictionaries with sparsity level T0 = 3, the dictionary
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Figure 4.3: Average number of successfully recovered dictionary atoms versus the dimen-

sion of the reduced space for different distortion level α. Blue color line corresponds to

results for PCA+KSVD scheme, green color line for KSVD, and red color line for SE.

size K = 50, and λ = 1.1.

Fig. 4.2 compares the number of successes over 40 trials. Fig. 4.3 plots the aver-

age number of success versus the dimension of the output space for different distortion

levels. SE consistently outperforms both KSVD and PCA+KSVD with larger and larger

performance gaps as the distortion level increases. Fig. 4.3 shows that the performance of

PCA+KSVD decreases drastically not only when the level of distortion level increases,

but also when the dimension gets smaller than 30, which is the true dimension of our

PCA
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Figure 4.4: Comparison of PCA mapping (left) and the transformation P learned from

SE (right). Distortion level α = 1, dimension of the reduced space is 40.
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sparse signals. In contrast, SE outperforms KSVD even when the dimension goes below

30. Interestingly, for the high distortion level like α = 1.2, it is beneficial to reduce the

dimension to even below the true dimension of sparse signals (see the right most chart of

Fig. 4.3).

In order to understand the reason behind the good results of SE, we visually inspect

the transformation P. Fig. 4.4 shows the images of P and the PCA mapping. The first

30 rows of the P weight heavily on the first 30 dimensions of Y. In other words, SE

efficiently preserves sparse structures of signals and discards non-sparse distortions. In

contrast, PCA does not preserve the sparse patterns since it is attempting to capture more

of the signal variation. Only around 24 rows of PCA focus on the first 30 dimensions and

the rest put more emphasis on non-sparse structures. Being able to get rid of distortions

while preserving the sparse structures enables SE to achieve a higher recovery rate.

4.5.2 Latent Sparse Embedding Residual Classifier (LASERC)

Classification is an important component in many computer vision applications. In

this section, we propose a novel classification scheme motivated by the SE framework.

For generality, we will consider the non-linear setting. Let there be C different classes

of signals {Yi = [yi
j]
Ni
j=1 ∈ Rn×Ni}Ci=1. We use the SE algorithm in Fig. 4.1 to learn

{Ai,Bi}Ci=1, which implicitly provides {P i,Di}Ci=1. Given a new test sample st, the

classification is done in three steps:
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I) We compute output signals zi by mapping st viaMi,

Mi : st → zi = P iΦ(st) = AT
i ⟨Φ(Yi),Φ(st)⟩H = AT

i ki,t (4.25)

where: ki,t = [k(yi
1, st), . . . , k(y

i
Ni
, st)]

T ∈ RNi (4.26)

II) We obtain the sparse code xi for zi over the dictionary Di = AT
i KiBi using the OMP

algorithm, where

Ki = ⟨Φ(Yi),Φ(Yi)⟩H = [k(yi
j,y

i
k)]

Ni
j,k=1 ∈ RNi×Ni (4.27)

III) We compute the residual for each class as follows:

ri = ∥Φ(st)−PT
i Dixi∥2H = k(st, st)− 2kT

i,tAiDixi + xT
i D

T
i A

T
i KiAiDixi (4.28)

Here, Dixi is the estimated signal in the output space, and PT
i Dixi is the estimated

signal in the feature space. The sparse coding step makes our algorithm more resilient to

noise. Finally, each signal is assigned to the class that yields the smallest reconstruction

residual. We call this latent sparse embedding residual classifier (LASERC). The term

“latent” comes from the fact that the residual errors are computed in the feature space

instead of the input space which does not take into account the non-linearities of the

signal. The output space is also not suitable for classification because it does not retain

sufficient discriminatory power due to its low-dimensional nature.

4.5.2.1 USPS Digit Recognition

We apply our classifier on the USPS database [89] which contains ten classes of

256-dimensional handwritten digits. A dictionary is learned for each class using samples
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Figure 4.5: (a,b) Comparison of classification accuracy against noise level. (c) Accuracy

versus dimension. (d) Projection coefficient of all samples onto a dictionary atom.

from the training set with the following parameters setting: 500 dictionary atoms, T0 = 5,

d = 100, λ = 1.1, and the maximum number of iterations is set to 80. A polynomial

kernel of degree 4 with the constant of value 1 is used for SE, kernel KSVD, and kernel

PCA.

Our first experiment presents the results for the case when the pixels are randomly

removed from the test images shown in Fig. 4.5(a), and when the test samples are cor-

rupted by Gaussian noise with different standard deviations shown in Fig. 4.5(b). In both

scenarios, LASERC consistently outperforms kernel KSVD, linear KSVD, and kernel

PCA. As the distortion level increases the performance differences between sparse em-
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bedding and linear KSVD become more drastic.

It is also worthwhile to investigate cases when the objective function in (4.7) has

only the first term (λ = 0), denoted by LASERC1, and when there is only the second term

(λ → ∞), denoted by LASERC2. Fig 4.5(a) and 4.5(b) show that LASERC2 performs

better for the low-noise cases and worse for the high-noise cases in comparison with

LASERC1.

In order to see the effect of dimension on the classification performance of LASERC,

we compare the results for different values of dimension d = {5, 10, 100, 200, 500}. The

corresponding sparsity level is T0 = {2, 3, 5, 5, 10}. Fig. 4.5(c) shows that the classifica-

tion result improves as the dimension increases from 5→ 100. Beyond 100, the accuracy

decreases slightly for the noiseless case, but faster for the very noisy cases like Gaussian

noise with σ = 1.2.

We project test samples onto a random dictionary atom of the first class (digit 0).

Fig. 4.5(d) plots the sorted projection coefficients of all the samples, color-coded by their

class labels. We can observe from the plot 4.5(d) that, in the feature space, the dictionary

atom is almost perpendicular to all samples except those from the first class (orange color

at the two ends). This implies that the learned dictionary has taken into account the non-

linearities of signals.

4.5.2.2 Caltech-101 and Caltech-256 Object Detection

We perform the second set of object recognition experiments on the Caltech-101

database [97]. This database comprises of 101 object classes, and 1 background class
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(a) Okapi (100%) (b) Leopard (100%) (c) Face (100%)

(d) Mayfly (20%) (e) Cougar (35%) (f) Seahorse (42%)

Figure 4.6: Sample images from the classes corresponding to the highest accuracy (top

row) and the lowest accuracy (bottom row) of LASERC.

# train samples 5 10 15 20 25 30

Malik [103] 46.6 55.8 59.1 62.0 - 66.2

Lazebnik [10] - - 56.4 - - 64.6

Griffin [104] 44.2 54.5 59.0 63.3 65.8 67.6

Irani [105] - - 65.0 - - 70.4

Yang [108] - - 67.0 - - 73.2

Wang [109] 51.15 59.77 65.43 67.74 70.16 73.44

SRC [90] 48.8 60.1 64.9 67.7 69.2 70.7

KSVD [9] 49.8 59.8 65.2 68.7 71.0 73.2

D-KSVD [13] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD [12] 54.0 63.1 67.7 70.5 72.3 73.6

LASERC 55.2 65.6 69.5 73.1 75.8 77.3

# train samples 15 30

Griffin [104] 28.3 34.1

Gemert [107] - 27.2

Yang [110] 34.4 41.2

LASERC 35.2 43.6

Time Train (s) Test (ms)

SVM 2.1 8.1

Ker. KSVD 2598 3578

SRC N/A 520

D-KSVD 450 12.8

LASERC 7.2 9.4

Table 4.1: Comparison of recognition results on Caltech-101 dataset (left), recognition

results on Caltech-256 dataset (upper right), and the computing time (lower right).

collected from Internet. The database contains a diverse and challenging set of images

from buildings, musical instruments, animals and natural scenes, etc. Spatial pyramid
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descriptors [10] are used with the following settings: 16 × 16 patch size, 8 pixels grid

spacing, 3 pyramid levels, 200 quantized clusters of feature vectors. This results in a 4200-

dimensional descriptor. The similarity is measured using the pyramid match kernel [10],

which is also a Mercer kernel.

We follow the suggested protocol in [10, 102], namely, we train on m images, where

m ∈ {5, 10, 15, 20, 25, 30}, and test on the rest. The corresponding parameters settings

of SE are: T0 = {3, 4, 5, 7, 8, 9}, d = {5, 10, 15, 20, 25, 30}, and λ = 1.1. To compensate

for the variation of the class size, we normalize the recognition results by the number of

test images to get per-class accuracies. The final recognition accuracy is then obtained by

averaging per-class accuracies across 102 categories. We also repeat the same experiment

on Caltech-256 dataset.
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Figure 4.7: Caltech-101 Per Class Accuracy

Table 4.1 shows the comparison of our classification accuracy with the state of the

art. It is interesting that our method significantly outperforms the other discriminative ap-

proaches like LC-KSVD [12] and D-KSVD [13]. Thanks to the help of DR, our method
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Figure 4.8: Caltech-101 Confusion Matrix

achieves a significant speed-up in the training process over the other sparse learning meth-

ods as shown in table 4.1. Fig. 4.6 shows sample images from the easiest classes as well as

the most difficult classes. Fig. 4.7 shows the recognition accuracy per class, and Fig. 4.8

shows their confusion matrix.

4.6 Conclusion

This chapter presented a novel framework for a joint dimensionality reduction and

sparse learning. It proposes an efficient algorithm for solving the resulting optimization

problem. It designs a novel classification scheme leading to a state-of-the-art perfor-

mance and robustness on several popular datasets. Through extensive experimental re-

sults on real and synthetic data, we showed that sparse learning techniques can benefit

significantly from dimensionality reduction in terms of both computation and accuracy.
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4.7 Proof of Proposition 4.1

The proposed optimization:

{P∗,D∗,X∗} = argmin
P,D,X

(
∥PY −DX∥2F + λ∥Y −PTPY∥2F

)
(4.29)

subject to: PPT = I, and ∥xi∥0 ≤ T0, ∀i

Recall the proposition that we want to prove:

Proposition 4.1. There exists an optimal solution P∗ and D∗ to (4.29), for sufficiently

large λ, that has the following form:

D∗ = ATYTYB P∗ = (YA)T ; (4.30)

for some A ∈ RN×d, and some B ∈ RN×K .

Proof. First, we will show that for a specific P, there exist an optimal solution of D that

has the form PYB, for some B ∈ RN×K .

Let D∗
p be an optimal solution corresponding to P. For simplicity of notation, we will

write D∗ instead of D∗
p. Since the columns of D∗ have the same dimension with the

columns of PY, we can express D∗ using the orthogonal decomposition as follows:

D∗ = D∥ +D⊥ (4.31)

where: D∥ = (PY)B and DT
⊥(PY) = 0 (4.32)

for some appropriate B ∈ RN×K . Basically, columns of D∥ and D⊥ are in and orthogonal

to the column subspace of PY, respectively. Since P is fixed, the cost function in (4.3)
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only depends on the first term:

∥PY −D∗X∥2F = ∥PY − (D∥ +D⊥)X∥2F (4.33)

= tr
(
YTPTPY +YTPT (D∥ +D⊥)X+XT (D∥ +D⊥)

T (D∥ +D⊥)X
)

(4.34)

= tr
(
YTPTPY +YTPTD∥X+XTDT

∥D∥X+XTDT
⊥D⊥X

)
(4.35)

≥ tr
(
YTPTPY +YTPTD∥X+XTDT

∥D∥X
)

(4.36)

The last equality is true because XTDT
⊥D⊥X is a positive semi-definite matrix, thus, its

trace is non-negative. In order for D∗ to be an optimal solution, the cost function must

achieve the smallest value, i.e., the term in (4.35) has to be equal to the term in (4.36).

A sufficient condition is D⊥ = 0. In other words, D∥ is also an optimal solution. As a

result, there exists an optimal solution of D for each P of the form:

D∥ = PYB (4.37)

Moreover, the optimal solution of this form has smallest Frobenius norm among all opti-

mal solutions of D because ∥D∗∥2F = ∥D∥∥2F + ∥D⊥∥2F ≥ ∥D∥∥2F or ∥D∗∥F ≥ ∥D∥∥F .

Second, we will show that the optimal solution of P, denoted by P∗, must have the

form P∗ = (YA)T , for some A ∈ RN×d.

Using the orthogonal decomposition of P∗, we have:

P∗ = P∥ +P⊥ (4.38)

where: P∥ = (YA)T and P⊥Y = 0 (4.39)

for some appropriate A ∈ RN×d. Rows of P∥ and P⊥ are in and orthogonal to the column

subspace of Y, respectively. Using Eqs. (4.37) and (4.38), we can rewrite the first term
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of the objective function in (4.3),

∥P∗Y(I−BX)∥2F = ∥(P∥ +P⊥)Y(I−BX)∥2F (4.40)

= ∥P∥Y(I−BX)∥2F = tr
(
P∥Y(I−BX)(I−BX)TYTPT

∥
)

(4.41)

and the second term,

∥Y −P∗TP∗Y∥2F = tr
(
YTY − 2YTP∗TP∗Y +YTP∗TP∗P∗TP∗Y

)
(4.42)

= tr
(
YTY −YTP∗TP∗Y

)
= tr

(
YTY −YT (P∥ +P⊥)

T (P∥ +P⊥)Y
)

(4.43)

= tr
(
YTY −YTP∥

TP∥Y
)
= tr

(
YTY −P∥YYTP∥

T
)

(4.44)

From Eq. (4.42) to Eq. (4.43), we use the constraint P∗P∗T = I. Putting Eqs. (4.39)

(4.41) (4.44) together, and let K = YTY, the objective function becomes

tr(K)− tr
(
P∥Y

(
λI− (I−BX)(I−BX)T

)
YTPT

∥
)

(4.45)

= tr(K)− tr
(
ATK

(
λI− (I−BX)(I−BX)T

)
KA

)
(4.46)

Let K = VSVT , H̃ = S
1
2VT

(
λI− (I−BX)(I−BX)T

)
VS

1
2 , and G = S

1
2VTA.

Note that H̃ is positive semi-definite for sufficiently large value of λ. We can derive the

lower bound of the cost function

tr(K)− tr
(
ATVS

1
2 H̃S

1
2VTA

)
(4.47)

= tr(K)− tr
(
GT H̃G

)
≥ tr(K)−

d∑
i=1

αi (4.48)

where αi is the i-th largest eigenvalue of H̃. In order for the objective function to achieve

its minimum, columns of G have to be the same with eigenvectors corresponding to

largest eigenvalues of H̃. Therefore, GTG = I. Equivalently,

GTG = ATKA = P∥P
T
∥ = I−P⊥P

T
⊥ = I (4.49)
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which means that P⊥ = 0. In short, the optimal solution of P has the form

P∗ = P∥ = (YA)T (4.50)

This also solution has the smallest Frobenius norm since all optimal solutions of P have

Frobenius norm equal to
√
d:

∥P∗∥F =

√
tr(P∗TP∗) =

√
tr(P∗P∗T ) =

√
tr(I) =

√
d (4.51)

Using the form of P∗ and Eq. (4.37), we conclude that there exist an optimal solution of

D that has the form D∗ = P∗YB = ATYTYB. This completes the proof.
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Chapter 5

Domain Adaptation Using a Sparse and Hierarchical Network

5.1 Motivation

In many practical computer vision applications, we are often confronted with the

situation where the data that we use to train our algorithm have different distribution or

representation with that presented during the testing. The ubiquity of this problem is well-

known to computer vision researchers. For instance, indoor images are quite different

from outdoor images, just as videos captured with a high definition camera are from that

collected with a webcam. This detrimental effect is often a dominant factor accounting for

the poor performances of many computer vision algorithms. As an example of the effect

of distribution mismatch, Ben-David et al. [15] show that, under certain assumption, the

bound on the test error linearly increases with the ℓ1 divergence between the training

and testing distributions. Even worse, data from the test domain are often scarce and

expensive to obtain. This makes it impractical to re-train an algorithm from the scratch

since a learning algorithm would generalize poorly when insufficient amount of data is

presented [16].

Understanding the problem caused by domain change has received substantial at-

tention in recent years (see [125] and references therein). The problem can be informally

stated as follows. Given a source domain whose representation or distribution can be dif-

ferent from that of the target domain, how to effectively utilize the model trained on the
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source to achieve a good performance on the target data. It is also often assumed that the

source domain has plentiful labelled training samples while there are only a few (both

labelled and unlabelled) samples available from the target domain. It has been shown in

[126, 127, 128, 129, 130] that domain adaptation techniques can significantly improve the

performance of computer vision tasks such as visual object detection and recognition.

Although the formulation differs, most of the algorithms for adapting a recognition

system to a new visual domain share a common architecture containing two main stages.

First, features are extracted separately for source and target using hand-crafted feature

descriptors, followed by the second stage where transformations are learned in order to

rectify the discrepancy between the two domains. This architecture has several draw-

backs. Without any knowledge about the target domain, the feature extraction performed

on the source data can ignore information important to the target data. For instance, let us

consider a picture of a small bird in a forest background. The forest features apparently

dominate the picture description. While these features might be sufficient for classifying

the picture into land animals or sea animals, they do not benefit the target domain which

has the same task on images of animals without background.

Another issue is that discriminative information can be embedded in multiple levels

of the features hierarchy. High-level features are sometimes more useful than low-level

ones. In fact, this is one of the main motivations behind the development of hierarchical

networks (e.g. [131, 132]) so that more complex abstraction from a visual object can be

captured. The traditional framework of domain adaptation employs a shallow architecture

containing a single layer. This ignores the possibility of transferring at multiple levels of

the feature hierarchy.
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Finally, the process of designing features, such as SIFT [133] or SURF [134], is

tedious and time-consuming. It requires a deep understanding and a careful examination

of the underlying physics that governs the generation of data. Such requirements might

be impractical given that the data from the target domain are often very scarce.

Contributions: In order to address the limitations of existing approaches, we pro-

pose a novel approach for domain adaptation that possesses the following advantages:

• Adaptation is performed on multiple levels of the feature hierarchy in order to maxi-

mize the knowledge transfer. The hierarchical structure allows the transfer of useful

information that might not be well captured by existing domain adaptation tech-

niques.

• Adaptation is done jointly with feature learning. Our method learns a hierarchy of

sparse codes and uses them to describe a visual object instead of relying on any

low-level feature.

• Unlike existing hierarchical networks, our network is more computationally effi-

cient with a mechanism to prevent the data dimension from increasing too fast as

the number of layer increases.

We provide extensive experiments to show that our approach outperforms the current

state-of-the-art by a large margin. This is interesting since our training is entirely gen-

erative followed by a linear support vector machine while several other methods employ

discriminative training together with non-linear kernels. Furthermore, we introduce a new

set of data for benchmarking the performance of our algorithm. The new dataset has two

domains containing half-toning and edge images, respectively.
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5.2 Related Works

While domain adaptation was first investigated in speech and natural language pro-

cessing [135, 136], it has been studied extensively in other areas such as machine learn-

ing [125, 15] and computer vision, especially in the context of visual object recogni-

tion [126, 127, 128, 129, 130]. For instance, the semi-supervised approach proposed by

Saenko et al. [126] employed metric learning to learn the domain shift using partially la-

beled data from the target domain. This work was extended by Kulis et al. [127] to handle

asymmetric domain transformations. Gopalan et al. [128] addressed the problem of un-

supervised domain adaptation, where samples from the target domain are unlabeld, using

an incremental approach based on Grassmann manifolds. By formulating a geodesic flow

kernel, [129, 137] extended this approach to integrate an infinite number of subspaces on

the geodesic flow from the source domain to the target domain.

Sparse methods have also been used to address the domain shift problem [138, 139].

In particular, [138] modelled dictionaries across different domains with a parametric map-

ping function, while [139] enforced different domains to have a common sparse represen-

tation on some latent domain. Another class of techniques performed domain adaptation

by directly learning a target classifier from classifiers trained on the source domain(s)

[140, 141]. A drawback of the existing approaches is that the domain shifting transforma-

tion is considered only at a single layer and may not capture adequately the shift between

the source and target domain. It is worth noting that although [142] also named their

method hierarchical domain adaptation, it is not quite related to ours. They made use of

hierarchical Bayesian prior while we employ a multi-layer network of sparse representa-
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tion.

The design of multi-layer networks has been an active research topic in computer

vision. Some of the early work includes [143], which used a multistage system to extract

salient features in the image at different spatial scales. By learning higher-level feature

representations from unlabelled data, deep belief networks (DBN) [131] and its variants,

such as convolutional DBNs [132] and deep autoencoders [144], have been shown to be

effective when applied to classification problems. Motivated by recent works on deep

learning, multi-layer sparse coding networks [145, 146, 147] proposed to build feature

hierarchies layer by layer using sparse codes and spatial pooling. A common problem

with these hierarchical approaches is that the dimension of the learned feature vectors

keeps increasing after each layer and thus, may make the computations become costly.

5.3 Proposed Approach

In this section, we briefly summarize some related work in sparse coding and dic-

tionary learning. Recent advances in feature learning using hierarchical sparse coding are

also discussed. We then proceed to introduce the main formulation of DASH-N.

5.3.1 Latent Sparse Representation

Given a set of training samples Y = [y1, . . . ,yn] ∈ Rd×n, the problem of learning

a dictionary together with the sparse codes is typically posed as the minimization of the

following cost function over (D, X):

∥Y −DX∥2F + β∥X∥1 s.t. ∥di∥2 = 1,∀i ∈ [1, K] (5.1)
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Figure 5.1: An illustration of DASH-N algorithm. The source domain is RGB images

and the target domain is halftone images. First, images are divided into small overlap-

ping patches. These patches are vectorized while maintaining their spatial arrangements.

(a) Performing contrast-normalization and dimensionality reduction using PS for source

images and PT for target images. The circular feedbacks between PS and PT indicate

that these two transformations are learned jointly. (b) Obtaining sparse codes using the

common dictionary D1. (c) Performing max pooling. The process then repeats for layer

2 (d & e), except that the input is the sparse codes from layer 1 instead of pixel intensities.

At the final stage, spatial pyramid with max pooling are used to create image descriptors.

Classification is done using linear support vector machine.

122



where D = [d1, . . . ,dK ] ∈ Rd×K is the sought dictionary, X = [x1, . . . ,xn] ∈ RK×n is

the horizontal concatenation of the sparse codes, and β is a non-negative constant. The ℓ1

constraint is well-known for promoting sparsity of the coefficients in X. ℓ0 pseudo-norm

can also be used for sparse regularization. However, we choose to use ℓ1 norm because

the optimization algorithms possesses a better theoretical guarantee for successfully re-

covering the true sparse signals due to its convex nature [148].

From the observation that signals often lie on a low-dimensional manifold, sev-

eral authors have proposed to perform dictionary learning and sparse coding on a latent

space [149, 150]. We call it latent sparse representation to distinguish from the formula-

tion in (5.1). This is done by minimizing the following cost function over (P, D, X):

L(Y,P,D,X, α, β) =

∥PY −DX∥2F + α∥Y −PTPY∥2F + β∥X∥1

s.t. PPT = I and ∥di∥2 = 1, ∀i ∈ [1, K] (5.2)

where P ∈ Rp×d is a linear transformation that brings the data to a low-dimensional

feature space (p < d). Note that the dictionary is now in the low-dimensional space

D ∈ Rp×K . Besides the computational advantage, [150] shows that this optimization can

recover the underlying sparse representation better than the traditional dictionary learning

methods. This formulation is attractive since it allows the transformation of the data into

another domain to better handle different sources of variation such as illumination and

geometric articulation.
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5.3.2 Multi-layer Feature Learning

Designing features for visual object is a time-consuming and challenging task that

requires a deep understanding of the domain knowledge. It is also non-trivial to adapt

these manually designed features to new types of data such as hyperspectral or range-

scan images. For this reason, learning features from the raw data has become increas-

ingly popular and demonstrated competitive performances on practical computer vision

tasks [146]. In order to capture the richness of data, a hierarchical network is employed

to learn a spectrum of features, layer by layer.

Very recently, multi-level sparse coding networks including hierarchical sparse cod-

ing [145, 146, 147] have been proposed for feature learning. These networks contain a

coding layer and a pooling layer. A dictionary is learned at each coding layer, using (5.1),

which then serves as a codebook for obtaining sparse codes from image patches or pooled

features. Spatial pooling schemes, most notably max-pooling, group the sparse codes

from adjacent blocks into common entities. This operation makes the resulting features

more invariant to certain changes caused by translation and rotation. The pooled sparse

codes from one layer serve as the input to the next layer. While feature learning has been

successfully applied to object recognition on RGB images and 3-D point clouds [151],

to the best of our knowledge, our method is one of the first attempts for integrating the

feature learning step into domain adaptation.
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5.3.3 Hierarchical Domain Adaptation

Motivated by the work of [146], we propose a method to perform hierarchical do-

main adaptation jointly with feature learning. Figure 5.1 shows an overview of the pro-

posed method. The network contains multiple layers, each of which contains 3 sub-layers

as illustrated in Figure 5.1. The first sub-layer performs contrast-normalization and di-

mensionality reduction on the input data. Sparse coding is carried out in the second sub-

layer. In the final sub-layer, adjacent features are max-pooled together to produce a new

features. Output from one layer becomes the input to the next layer. For the simplicity

of notation, we consider a single source domain. The extension of DASH-N to multiple

source domains is straight forward (see the supplementary).

In each layer of DASH-N, we learn a joint latent sparse representation. This can be

formulated as the minimization of the following cost function w.r.t. (PS,PT ,D,XS,XT ):

L(YS,PS,D,XS, α, β) + λL(YT ,PT ,D,XT , α, β) (5.3)

s.t. PSP
T
S = PTP

T
T = I, ∥di∥2 = 1, ∀i ∈ [1, K] (5.4)

where (α, β, λ) are the non-negative constants and D ∈ Rp×K is the common dictionary.

Ys ∈ RdS×nS and YT ∈ RdT×nT are the input data at each layer, PS ∈ Rp×dS and

PT ∈ Rp×dT are the transformations to the latent domain, XS ∈ RK×nS and XS ∈ RK×nS

are the sparse codes of the source and the target, respectively. In this formulation, two

domains are forced to share a common dictionary in the latent domain. Together with

sparsity constraint, the common D provides a coupling effect that promotes the discovery

of common structure between the two domains.

In our experiments, we learn a network of two layers as we found empirically that
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adding a third layer did not provide significant improvements over the first two layers.

Layer 1: We perform dense sampling on each training image to get a set of overlap-

ping patches of size 5×5 pixels. These patches are then contrast-normalized as explained

in layer 2. In order to make the computation more efficient, only a random subset of

patches from each image is used for learning the latent sparse representation. We found

that setting this number to 150 for images of maximum size of 150× 150 provides a good

trade-off between accuracy and computational efficiency. After learning the dictionary

D1 and the transformations (P1
S,P

1
T ), the sparse codes (X1

S,X
1
T ) are computed for all

sampled patches by solving:

min
X1

∗
∥P1

∗Y
1
∗ −D1X

1
∗∥22 + β1∥X1

∗∥1, (5.5)

where ∗ indicates that it can be either source or target. Each column of Y1
∗ is the vector-

ized pixel values inside a patch. A fast implementation of the LARS algorithm is used for

solving this optimization problem [152].

Spatial max pooling is used to aggregate the sparse codes over each 4 × 4 neigh-

borhood as this pooling method is particularly well-suited for the separation of sparse

features [153].

Layer 2: In this layer, we perform similar computations except that the input is the

sparse codes from layer 1 instead of image pixels. The features obtained from the pre-

vious layer are aggregated by concatenation over each 4 × 4 neighborhood and contrast-

normalized. This results in a new representation that is more robust to occlusion and

illumination. If f is an aggregated feature vector, the contrast-normalization can be per-
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formed as in [147]

f̂ =
f√
∥f∥2 + ϵ

, (5.6)

where ϵ = 0.1 is found to work well in our experiments. Similar to layer 1, we also

randomly sample 150 normalized feature vectors f̂ from each image for training. ℓ1 opti-

mization is again employed to compute the sparse codes of the normalized features f̂ .

At the end of layer 2, the sparse codes are then aggregated using max pooling in a

multi-level patch decomposition (spatial pyramid max pooling). At level 0 of the spatial

pyramid, a single feature vector is obtained by performing max pooling over the whole

image. At level 1, the image is divided into four quadrants and max pooling is applied

to each quadrant, yielding 4 feature vectors. Similarly for level 2, we obtain 9 feature

vectors, and so on. In this chapter, max pooling using a three level spatial pyramid is

used. As a result, the final feature vector returned by the second layer for each image is a

result of concatenating 14 feature vectors from the spatial pyramid.

5.4 Optimization Procedure

In this section, we elaborate on the details of how the cost function in (5.3) is

minimized. First, let us define

KS = YT
SYS, KT = YT

TYT , K =

 KS 0

0
√
λKT

 (5.7)

to be the Gram matrix of source, target, and their block diagonal concatenation, respec-

tively. It can be shown that (see the supplementary) the optimal solution of (5.3) takes the
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form:

PS = (YSAS)
T , PT = (YTAT )

T (5.8)

D = [AT
SKS,

√
λAT

TKT ]B (5.9)

for some AS ∈ RnS×p, AT ∈ RnT×p and B ∈ R(nS+nT )×K . Notice that rows of each

transformation live in the column subspace of the data from its own domain. In contrast,

columns of the dictionary are jointly created by the data of both source and target.

Solving for (AS,AT ): The orthogonal constraint in (5.4) can be re-written us-

ing (5.8) as:

AT
SKSAS = I, AT

TKTAT = I. (5.10)

By substituting (5.8), (5.9) into (5.3) and making use of the orthogonal constraint in (5.10),

the formulation can be simplified to (see derivation in the supplementary):

min
G

tr(GTHG) s.t. GT
SGS = GT

TG
T
T = I. (5.11)

where H is defined as:

H = Λ
1
2VTK((I−BX)(I−BX)T − αI)KVΛ

1
2 (5.12)

V =

 VS 0

0 VT

 , Λ =

ΛS 0

0
√
λΛT

 , (5.13)

KS = VSΛSV
T
S , KT = VTΛTV

T
T , (5.14)

where (5.14) is given by the eigen-decompositions of Gram matrices. Finally, G is de-
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fined as:

G = [GS,
√
λGT ], (5.15)

GS = Λ
1
2
SV

T
SAS, GT = Λ

1
2
TV

T
TAT . (5.16)

The optimization in (5.11) is non-convex due to the orthogonality constraints. However,

G can be learned efficiently using the algorithm proposed by [154]. Given G, the solution

of (AS,AT ) is simply given by

AS = VSΛ
− 1

2
S GS, AT = VTΛ

− 1
2

T GT . (5.17)

We note that the optimization step involves the eigen-decompositions of large Gram ma-

trices whose dimensions equal to the number of training samples (≈ 105 in our experi-

ments). This is computationally infeasible. We propose a remedy for this. The source is

taken for the illustration purpose and the computation for the target is similar. First, we

compute the eigen-decomposition of the matrix:

CS = YSY
T
S = USΛ

′
SU

T
S ∈ RdS×dS (5.18)

then the dS dominant eigenvectors of KS can be recovered as in (5.19). The relationship

in (5.19) between VS and US can be easily verified using an SVD-decomposition of YS .

VS = YT
SUSΛ

′
S
− 1

2 . (5.19)

The signal dimension dS is much smaller than the number of training samples nS in our

experiments (e.g. 103 versus 105). The eigen-decomposition of CS is therefore much

more efficient than that of KS . Finally, non-zero eigenvalues in ΛS are given by the

diagonal coefficients of Λ′
S .
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Solving for (B,X): If we fix (AS,AT ), then learning (B,XS,XT ) can be done

using any dictionary learning algorithms. In order to see this, let us define:

Z = [ASKS,
√
λATKT ], (5.20)

X = [XS,
√
λXT ]. (5.21)

The cost function can be re-written in a familiar form

∥Z−DX∥2F + β(∥XS∥1 + λ∥XT∥1). (5.22)

We use the Lasso to solve for the sparse codes X and the efficient online dictionary

learning algorithm [152] to solve for D. The solution of B can be recovered, using the

relationship in (5.9), simply by B = Z†D, where † denotes the Moore-Penrose pseudo-

inverse.

5.5 Experiments

The proposed algorithm is evaluated in the context of object recognition using a

recent domain adaptation dataset [126], containing 31 classes, with the addition of im-

ages from the Caltech-256 dataset [155]. There are 10 common classes between the two

datasets (BACKPACK, TOURING-BIKE, CALCULATOR, COMPUTER-KEYBOARD,

HEADPHONES, LAPTOP-101, COMPUTER-MONITOR, COMPUTER-MOUSE, COFFEE-

MUG, and VIDEO-PROJECTOR) which contain a total of 2533 images. Domain shifts

are caused by variations in factors such as pose, lighting, resolution, etc., between images

in different domains. Figure 5.2 shows example images from the LAPTOP-101 class with

respect to different domains. We compare our method with state-of-the-art adaptation al-
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(a) (b) (c) (d)

Figure 5.2: Example images from the LAPTOP-101 class in different domains: (a) Ama-

zon, (b) Caltech, (c) DSLR, (d) Webcam. First row: original images, second row: halftone

images, third row: edge images.

gorithms such as [126, 128, 129, 139]. In order to better assess the ability to adapt to a

wide range of domains, experimental results are also reported on new images obtained

by performing halftoning [156] and edge detection [157] algorithms on images from the

datasets in [126, 155].

5.5.1 Experiment Setup

We follow the experimental set-ups of [129]. The results using 10 as well as 31

common classes are reported. In both cases, experiments are performed in 20 random

trials for each pair of source and target domains. If the source domain is Amazon or

Caltech, 20 samples are used in the training. Otherwise, only 8 training samples are used

for DLSR and Webcam. The number of target training samples is always set to 3. The

remaining images from the target domain in each split are used for testing.
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Table 5.1: Recognition rates of different approaches on four domains (C: Caltech, A:

Amazon, D: DSLR, W: Webcam). 10 common classes are used. Red color denotes the

best recognition rates. Blue color denotes the second best recognition rates.

Method C→ A C→ D A→ C A→W W→ C W→ A D→ A D→W

Metric [126] 33.7± 0.8 35.0± 1.1 27.3± 0.7 36.0± 1.0 21.7± 0.5 32.3± 0.8 30.3± 0.8 55.6± 0.7

SGF [128] 40.2± 0.7 36.6± 0.8 37.7± 0.5 37.9± 0.7 29.2± 0.7 38.2± 0.6 39.2± 0.7 69.5± 0.9

GFK (PLS+PCA) [129] 46.1± 0.6 55.0± 0.9 39.6± 0.4 56.9± 1.0 32.8± 0.1 46.2± 0.6 46.2± 0.6 80.2± 0.4

SDDL [139] 49.5± 2.6 76.7± 3.9 27.4± 2.4 72.0± 4.8 29.7± 1.9 49.4± 2.1 48.9± 3.8 72.6± 2.1

DASH-N (1st layer) 60.3± 2.7 79.6± 3.1 52.2± 2.1 74.1± 4.6 45.31± 3.7 68.7± 2.9 65.9± 2.1 76.3± 2.3

DASH-N (1st+2nd layers) 71.6± 2.2 81.4± 3.5 54.9± 1.8 75.5± 4.2 50.2± 3.3 70.4± 3.2 68.9± 2.9 77.1± 2.8

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
X = 43
Y = 0.0119

Atom number

R
es

po
ns

e

Training data for BACKPACK

X = 103
Y = 0.0123

X = 136
Y = 0.0113

X = 160
Y = 0.0108

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

X = 43
Y = 0.0101

Atom number

R
es

po
ns

e

Test data for BACKPACK
X = 103
Y = 0.0126

X = 136
Y = 0.0112

X = 160
Y = 0.0106

Figure 5.3: Dictionary responses of training (left) and testing (right) data for the BACK-

PACK class for the pair DSLR-Webcam domains in the first layer.

Parameter Settings: In our experiments, all images are resized to be no larger than

150× 150 with preserved ratio and converted to grayscale. The patch size is set to 5× 5.

Parameter λ is set to 4 in order to account for less training samples from the target than

that from the source, and α is set to 1.5 for all experiments. We also found that using
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Table 5.2: Single-source recognition rates on all 31 classes.

Method A→W D→W W→ D

Metric [126] 44 31 27

RDALR [130] 50.7± 0.8 36.9± 19.9 32.9± 1.2

SGF [128] 57± 3.5 36± 1.1 37± 2.3

GFK (PLS+PCA) [129] 46.4± 0.5 61.3± 0.4 66.3± 0.4

SDDL [139] 50.1± 2.5 51.2± 2.1 50.6± 2.6

DASH-N (1st layer) 59.9± 2.7 65.8± 1.3 69.6± 2.1

DASH-N (1st+2nd layers) 60.6± 3.5 67.9± 1.1 71.1± 1.7

βtrain = 0.3 for training and βtest = 0.15 for testing yields best performance. Smaller

sparsity constant often makes the decoding more stable, thus, leads to more consistent

sparse codes. This is similar to the finding in [146]. The number of dictionary atoms is

set to 200 and 1500 in the first and second layer, respectively. The dimension of the latent

domain is set to 20 and 750 in the first and second layer, respectively. It is worth noting

that the input feature to layer 2 has the dimension of 3200. This results from aggregating

sparse codes obtained from the first layer over a 4 × 4 spatial cell (4 × 4 × 200). By

projecting them into a latent domain of dimension of 750, the computations become more

tractable. A three level spatial pyramid, partitioned into 1 × 1, 2 × 2, and 3 × 3, is used

to perform the max pooling in the final layer. Linear SVM [158] with the regularization

parameter of 10 is employed for classification.

Computation Time: It takes an average of 35 minutes to perform the dictionary

learning and feature extraction of all training samples using our Matlab implementation
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Table 5.3: Multiple-source recognition rates on all 31 classes

Method {D, A} →W {A, W} → D {W, D} → A

A-SVM [159] 30.4± 0.6 25.3± 1.1 17.3± 0.9

RDALR [130] 36.9± 1.1 31.2± 1.3 20.9± 0.9

SGF [128] 52± 2.5 39± 1.1 28± 0.8

FDDL [160] 41.0± 2.4 38.4± 3.4 19.30± 1.2

SDDL [139] 57.8± 2.4 56.7± 2.3 24.1± 1.6

DASH-N (1st layer) 61.7± 2.5 64.1± 3.5 39.6± 1.3

DASH-N (1st+2nd layers) 64.5± 2.3 68.6± 3.7 41.8± 1.1

on a computer with a 3.8 GHz Intel i7 processor. It takes less than 2 seconds to compute

the feature for a test image of size 150× 150 using both layers of the hierarchy.

5.5.2 Object Recognition

10 Common Classes: The recognition results of different algorithms on 8 pairs of

source-target domains are shown in Table 5.1. It can be seen that DASH-N outperforms

all compared methods in 7 out of 8 pairs of source-target domains. For pairs such as

Caltech-Amazon, Webcam-Amazon, or DSLR-Amazon, we achieve more than 20% im-

provements over the next best algorithm used in the comparison (from 49.5% to 71.6%,

49.4% to 70.4%, and 48.9% to 68.9%, respectively). It is worth noting that while we

employ a generative approach for learning the feature, our method consistently achieves

better performance than [139], even that this method uses discriminative training together

with non-linear kernels. It is also clear from the table that the multi-layer DASH-N out-
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performs the single-layer DASH-N. In the case of adapting from Caltech to Amazon, the

performance gain by using a combination of features obtained from both layers rather

than just features from the first layer is more than 10% (from 60.3% to 71.6%) .

In order to illustrate the encoding of features using the learned dictionary in the first

layer, Figure 5.3 shows the responses of the training and testing data for the BACKPACK

class with respect to each atom of the dictionary in the first layer for the pair DSLR-

Webcam domains. The sparse codes for all the patches of the training and testing images

belong to the class are computed. The absolutes of these sparse vectors are summed

together and normalized to unit length. Small components of the normalized sparse codes

are thresholded to better show the correspondences between the training and testing data.

It can be seen from the figure that the sparse codes for the training and testing data for the

BACKPACK class both have high responses in four different dictionary atoms (43, 103,

136 and 160).

31 Classes and Multiple Sources: We also compare the recognition results for all

31 classes between our approach and other methods in both cases of single (Table 5.2)

and multiple source domains (Table 5.3). It can be seen from Tables 5.2 and 5.3 that

our results, even using only features extracted from the first layer, are consistently better

than that of other algorithms in all the domain settings. This proves the effectiveness of

the feature learning process. The performance of our algorithm further increases when

combining features learned from both layers of the hierarchy. Especially in the case of

adapting from Webcam and DSLR to Amazon, we achieve an improvement of more than

15% compared to the result of SDDL [139] (from 24.1% to 41.8%).

Dimensions of Latent Domains: These are important parameters affecting the per-
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formance of DASH-N. Figure 5.4(a) shows the recognition rates with respect to different

dimensions of the latent domain in the first layer for three pairs of source-target domains

(Amazon-DSLR, Caltech-Amazon and Webcam-DSLR), while keeping the dimension of

latent domain in the second layer to 750. As the patch size is set at 5 × 5, we vary the

dimension of the first layer dictionary from 5 to 25. It can be seen from the figure that if

the latent domain dimension is too low, the accuracy decreases. The optimal dimension

is achieved at 20.

Similarly, the recognition rates with respect to different dimensions of the second

layer latent domain are shown in Figure 5.4(b) while the first layer latent dimension is

kept at 20. It can be seen from Figure 5.4(b) that the curves for all three pairs of source-

target domains peak at the dimension 750. Once again, we observe that the performance

decreases if the dimension of the latent domain is too low. More interestingly, as we can

observe for the pair Caltech-Webcam and Webcam-DSLR, setting the dimension of the

latent domain too high is as detrimental as setting it too low. In all of our experiments,

we set the dimension of the latent domain using the cross validation technique.

5.5.3 Half-toning and Edge

In order to evaluate the ability of DASH-N in adapting to a wide range of domains,

we also perform experiments on object recognition from the original image domain to

two new domains generated by applying half-toning and edge extraction algorithms to the

original images. Half-toning images, which imitate the effect of jet-printing technology in

the past, are generated using the dithering algorithm in [156]. Edge images are obtained
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Figure 5.4: Recognition rates with respect to different dimensions of the latent domain in

the first and second layer.

by applying the Canny edge detector [157] with the threshold set to 0.07.

Figure 5.5 is the visualization of the reconstructed dictionaries atoms at layer 1

when adapting the original images (source) to edge images (target). Reconstructed dic-

tionaries are obtained by D̂1
∗ = (P1

∗)
†D1, where † denotes the Moore-Penrose pseudo-

inverse. We observe that the dictionary atoms of original images contain rather fat and

smooth regions. In contrast, dictionary atoms of edge images have many thin and highly

varying patterns that are more suitable for capturing edges.

Table 5.4 shows the performance of different algorithms when adapting to these

new domains. It can be seen from the table that DASH-N outperforms other methods

used in the comparison in both cases of half-toning and edge images. This proves the

ability of our approach to adapt well to new domains.
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(a) Source: Amazon original images (b) Target: Amazon edge images

Figure 5.5: The reconstructed dictionaries at layer 1.

5.6 Conclusion

We have presented a hierarchical method for performing domain adaptation using

multi-layer representations of images. In the proposed approach, the features and domain

shifts are learned jointly in each layer of the hierarchy in order to obtain a better repre-

sentation of data from different domains. Unlike the other hierarchical approaches, our

method prevents the dimension of feature vectors from increasing too fast as the number

of layers increase. Experimental results show that the proposed approach significantly

outperforms the other domain adaptation algorithms used in the comparison. In the fu-

ture, we plan to incorporate non-linear learning frameworks to DASH-N.
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Table 5.4: Recognition rates of different approaches on the half-toning and edge datasets.

10 common classes are used.

(a) Half-toning

Method C→ A C→ D A→ C A→W W→ C W→ A D→ A D→W

kNN 50.1± 5.1 41.9± 5.5 29.8± 4.3 42.9± 2.8 28.9± 2.5 48.3± 2.1 48.6± 1.1 41.4± 4.1

Metric [126] 41.1± 6.4 38.8± 5.6 31.9± 5.4 49.4± 3.4 32.8± 3.2 49.9± 3.3 43.8± 2.6 49.3± 2.6

SDDL [139] 52.2± 3.9 66.7± 5.5 34.1± 3.5 69.2± 4.2 34.6± 2.8 51.2± 3.4 54.1± 2.7 71.6± 5.3

DASH-N (1st layer) 68.1± 3.1 76.6± 3.5 49.7± 2.8 85.4± 3.1 42.1± 3.7 62.7± 3.2 66.4± 2.1 79.3± 2.5

DASH-N (1st+2nd layer) 70.2± 2.7 79.6± 4.3 52.4± 2.3 86.2± 4.1 43.3± 3.9 66.1± 3.7 67.2± 3.5 80.7± 2.1

(b) Edge

Method C→ A C→ D A→ C A→W W→ C W→ A D→ A D→W

kNN 50.8± 1.8 50.4± 1.4 32.8± 2.9 47.5± 4.2 30.4± 3.3 51.9± 3.1 48.9± 1.8 50.2± 2.1

Metric [126] 42.8± 2.7 43.8± 2.5 35.2± 2.1 53.6± 1.4 36.8± 1.8 53.2± 3.1 40.8± 3.9 54.5± 2.7

SDDL [139] 52.9± 5.2 63.8± 6.3 32.4± 3.2 62.5± 5.7 33.5± 2.9 55.2± 2.8 55.4± 3.3 65.3± 4.7

DASH-N (1st layer) 68.3± 4.2 72.9± 3.3 33.1± 2.1 66.2± 4.2 42.6± 3.4 59.9± 2.7 62.7± 2.3 61.5± 2.6

DASH-N (1st+2nd layer) 74.2± 3.9 75.7± 2.6 44.3± 2.5 74.2± 4.5 46.7± 3.1 68.9± 2.2 67.7± 3.4 74.5± 3.2
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Chapter 6

Future Works

This chapter will discuss several potential directions for the future research. They

includes learning invariant representation, learning transformation models to relate im-

ages, and learning useful representation of data from compressed observation.

6.1 Invariant Representations

There are various sources that cause the variations of a visual scene such as lumi-

nance, shape, pose, etc. While these variations are important to some applications like

shape from shading, they are detrimental to many other important applications such as

object recognition and detections. Good representations should be sensitive to desirable

variations while being invariant to other types of variations.

Recall that we have proposed novel approaches such as kernel KSVD and sparse

embedding for learning sparse and non-linear representations directly from the data. Ef-

fectively, these methods approximate the manifold of possible scenes by using a set of

subspaces in a non-linear feature domain. Careful analyses and designs of sparse learning

algorithms might make it possible to capture desirable variations while being insensitive

to other effects. Future research work will focus on extending our algorithms to learn

invariant representations directly from the data.
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6.2 Learning Transformation Models

The human visual system is excellent not only in recognizing objects but also in

predicting their possible movements and deformations. Human can even make accurate

predictions on an entirely novel object that are not presented to them beforehand. This

suggests that human brains might learn a set of universal transformations which can be

applied to predict motions and deformations of a data. For example, generic transforam-

tions such as translation, rotation and scaling are likely to be embedded somewhere in our

visual system. This observation motivates the development of new methods for learning

transformation models to relate images.

An example in this research direction is the work by Memisevic et al. [161] who

proposed the relational autoencoder model for learning transformations from pairs of im-

ages. The work of Wang et al. [162] follows a similar spirit, however, requires the

transformation to have a Lie group structure. An exciting research direction would be

investigating what role sparsity plays in learning these transformation model.

6.3 Representations On Compressed Domain

Random projection has been proven to be efficient for data collection and dimen-

sionality reduction. It has many desirable properties. First, if the dimension of the map-

ping is significantly large, which is in the order of Klog(N) where K is the sparsity level

and N is the original signal dimension, then we can recover the original signals from the

compressed one with an overwhelming probability. In addition the well-known Johnson-

Lindenstrauss lemma implies that geometric structures of data are well-preserved under
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this transformation.

While much works have been focused on signal reconstruction with random pro-

jection, there is little effort in analysing the performances of and designing algorithms for

computer vision tasks such as object detection and recognition in a compressed domain

associated with the random projection mapping. Lying at the heart of this problem is the

issue of finding representations of data, such as videos and images, in the compressed do-

main. Our future works will address this question. This will enable many computer vision

tasks such as object recognition and detection to be performed directly on the compressed

domain.

Our first step toward solving this problem is to examine the effects of different ran-

dom and deterministic measurement matrices on the performances of object recognition

for USPS and Caltech-101 datasets. In this experiment, we will use the compressed mea-

surements of entire images as the primary features. Based on the experimental insights,

we would develop algorithms for extracting more compact and discriminative features

from the compressed measurements for recognition and detection tasks.
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