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Electric vehicle (EV) batteries tend to have accelerated degradation due to high 

peak power and harsh charging/discharging cycles during acceleration and 

deceleration periods, particularly in urban driving conditions. An oversized energy 

storage system (ESS) can meet the high power demands; however, it suffers from 

increased size, volume and cost. In order to reduce the overall ESS size and extend 

battery cycle life, a battery-ultracapacitor (UC) hybrid energy storage system (HESS) 

has been considered as an alternative solution. In this work, we investigate the 



 

 

optimized configuration, design, and energy management of a battery-UC HESS. One 

of the major challenges in a HESS is to design an energy management controller for 

real-time implementation that can yield good power split performance. We present 

the methodologies and solutions to this problem in a battery-UC HESS with a DC-DC 

converter interfacing with the UC and the battery. In particular, a multi-objective 

optimization problem is formulated to optimize the power split in order to prolong the 

battery lifetime and to reduce the HESS power losses. This optimization problem is 

numerically solved for standard drive cycle datasets using Dynamic Programming 

(DP). Trained using the DP optimal results, an effective real-time implementation of 

the optimal power split is realized based on Neural Network (NN). This proposed 

online energy management controller is applied to a midsize EV model with a 

360V/34kWh battery pack and a 270V/203Wh UC pack. The proposed online energy 

management controller effectively splits the load demand with high power efficiency 

and also effectively reduces the battery peak current. More importantly, a 38V-

385Wh battery and a 16V-2.06Wh UC HESS hardware prototype and a real-time 

experiment platform has been developed. The real-time experiment results have 

successfully validated the real-time implementation feasibility and effectiveness of 

the real-time controller design for the battery-UC HESS. A battery State-of-Health 

(SoH) estimation model is developed as a performance metric to evaluate the battery 

cycle life extension effect. It is estimated that the proposed online energy 

management controller can extend the battery cycle life by over 60%.  
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Chapter 1: Introduction to Electric Vehicles and Energy Storage 

Systems 

1.1 Background 

The early electric vehicles (EVs) had low driving ranges and poor driving 

performances due to limited battery energy capacity and power density. During the 

last two decades, worldwide environmental concerns and lower efficiency of the 

petroleum-based transportation have renewed the interest in the transportation 

electrification.  

The U.S. Department of Energy's Vehicle Technologies Office’s initiatives to 

support development of innovative battery technologies, novel wide band gap 

semiconductor devices, enhancement of high-temperature DC capacitors, and 

advanced power electronics and electrical machines technologies have contributed to 

the advancement and adoption of EVs. This has created new opportunities for the 

electrified transportation. More recently, the Department of Energy’s investment in 

battery research and development has helped to cut the EV battery costs by 50% over 

four years from 2011 to 2014 [1]. In addition to the EV battery cost reduction, the 

battery power performance, energy and durability have been improved, which in turn 

have increased the popularity of EVs. It is estimated that more than 415,458 plug-in 

electric vehicles (PEVs), which includes both EVs and plug-in hybrid electric 

vehicles (PHEVs), and 3.3 million hybrid electric vehicles (HEVs) are on the road in 

the U.S. today [2] [3]. 
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1.2 EV Definitions 

Pure EVs are powered entirely on electric energy, typically propelled by one or 

more electric motors with a large battery pack. The battery pack is charged by 

plugging the vehicle into the electric grid either at home or at a public charging 

station. EVs do not have an internal combustion engine (ICE) and therefore do not 

use petroleum.  

PHEVs and HEVs rely on two energy sources, typically an ICE and an electric 

battery with an electric machine. The battery pack is charged through the ICE. Unlike 

EVs and PHEVs, HEVs are not plugged-in to charge the battery [4] [5] [6]. 

1.3 EV Configurations 

The typical power architecture of an EV is shown in Fig. 1.1. In an EV, usually a 

high voltage and high energy battery pack is used as the energy storage system. In 

addition to the energy storage system, an EV is composed of various main power 

electronic interfaces (PEIs) as shown in the dashed blocks in Fig. 1.1. 
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Figure 1.1 Typical Power Architecture of an EV. 

These PEIs are used for (a) powering onboard appliances, (b) electric power 

propulsion and regenerative braking, and (c) onboard charging, respectively. The PEI 

for onboard appliances contains mainly a DC-DC conversion stage which steps down 

the high voltage battery pack voltage to 12V voltage to provide power to the onboard 

electric appliances, such as the air conditioning, headlights, car stereo systems, etc. 

Energy flow in this PEI is unidirectional. The PEI for electric power propulsion and 

regenerative braking mainly consists of a DC-DC converter and a motor inverter for 

the electric machine. The inverter controls the electric machine’s operation during 

propulsion and regenerative braking. In propulsion mode, the power is transferred 

from the ESS to the electric machine. In regenerative braking mode, the electric 

machine works as a generator and transfers the regenerative braking power to the 

ESS. The bi-directional DC-DC converter is used to control battery charging and 
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discharging power [6]. The PEI for onboard charger is used to charge the battery pack 

from the electric grid.  

1.4 EV Characteristics 

EVs have several advantages over the conventional ICE vehicles [7]. First of all, 

EVs are more energy efficient. EVs can convert about 59% - 62% of the electrical 

energy from the grid to power at the wheels while the conventional ICE vehicles only 

convert about 17% - 21% of the energy stored in gasoline to the power at the wheels 

[7] [8] [9] [10]. Second, EVs are environmental friendly. There is zero tailpipe 

emission from EVs. Third, EVs show performance benefits as the electric machines 

can provide quiet and smooth operation with stronger vehicle accelerations. Electric 

machines also require less maintenance than ICEs. 

1.5 Challenges in EV Development 

EVs face various energy storage related challenges. 

(1) Driving range: Most EVs have electric ranges of 50 - 200 miles before 

recharging while the conventional ICE vehicles can go over 300 miles without 

refueling. 

(2) Weight, volume and cost: The battery pack is heavy and takes up considerable 

vehicle space. Furthermore, a large battery pack increases the vehicle cost [11].  

(3) Lifetime: The average lifetime for batteries is less than 10 years under 

recommended operating conditions [12] [13]. For EV applications under daily drive, 

the battery lifetime span may be shortened due to frequent instantaneous high power 
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exchange between the electric machine and ESS during propulsion and regenerative 

braking. Thus, the battery could degrade in an accelerated way [14]. 

(4) Recharge time: It takes about 5 minutes to refuel the tank in a conventional 

ICE vehicle; however, depending on the available power and battery capacity, it 

might take much longer, to recharge the battery of an EV [15] [16]. 

1.6 EVs on Market  

The specifications of some of the commercially available EVs in the market as of 

March 2016 are listed in Table 1.1.  

Table 1.1 Specifications of some of the commercially available EVs in the market as 

of March 2016. 

Model 
ESS Energy 

[kWh] 

Motor 

 Power 

[kW] 

Range 

[Mile] 

Curb  

Weight [kg] 

Tesla Model S P85D  85 515 253  2239  

Nissan Leaf  24  80  84 1493  

Mitsubishi i-MiEV  16  47  62  1080  

Toyota Rav4 EV  41.8  114  95 1829  

Ford Focus Electric  23  106  76  1651  

Chevy Volt  18.4  111 53 1721  

BMW i3  22 127  80  1315  
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Here, the electric range of EVs in Table 1.1 are the range test results based on the 

US Environmental Protection Agency (EPA) Federal Test Procedure, commonly 

known as FTP-75 for the city driving cycle. Another commonly used drive cycle for 

vehicle driving range test is the New European Driving Cycle (NEDC). 

Among these EVs on market, the Tesla Model S, equipped with a 85 kWh battery 

pack containing 7,104 lithium-ion battery cells, can provide an electric range of 253 

miles. However, the batteries take up considerable vehicle space, and increase the 

curb weight and cost of the vehicle. 

1.7 Batteries 

The future development and commercialization of EVs are highly dependent on 

the energy storage technologies in terms of the energy capacity, power performances, 

weight/size, lifetime, cost, etc. The proper assessment of these factors and parameters 

is a key consideration in determining the applicability of energy storage components 

[17] [18]. This section introduces these key parameters of the battery energy, power 

and lifetime. 

1.7.1 Energy Density.  

For EV applications, a battery pack is the main energy storage component. The 

energy storage capacity [kWh] of a battery pack directly determines the electric range 

of an EV and the battery mass. The ratio of the battery energy capacity to the total 

battery mass or volume is defined as the energy density [Wh/kg] or specific energy 

[Wh/L].  
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1.7.2 Current Rate (C-rate). 

The battery current is often expressed as a C-rate in order to normalize against the 

battery capacity. A C-rate is a measure of the rate at which a battery is charged or 

discharged relative to its maximum capacity. This capacity refers to the coulometric 

capacity, which is the total Amp-hours [Ah] available when the battery is discharged 

at a certain discharge current from its nominal voltage at full capacity to the minimum 

allowable voltage. At 1C rate discharge current, the battery will entirely discharge in 

1 hour. 

1.7.3 State-of-Charge (SoC).  

Battery SoC is an expression of the battery capacity as a percentage of maximum 

battery capacity. With this definition in place, the SoC of a battery cell can be 

expressed as a function of time. Suppose the initial SoC value of a battery cell is 

denoted as SoC(0), nominal battery capacity is Qb, the current of this battery cell is Ib, 

which is positive for discharge current and negative for charge current. The SoC 

value of a battery cell at time t can be expressed as [19], 

   
 

0
0

t
b

b

I
SoC t SoC d

Q





        (1.1) 

The useable SoC window also determines the available battery energy capacity. 

For example, for a 40kWh battery with a SoC operation window from 90% to 30%, 

the actual available energy is 24kWh.  
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1.7.4 Depth-of-Discharge (DoD).  

The DoD is referred to the percentage of battery capacity that has been discharged 

of its maximum capacity. A DoD of 80% or more is referred as a deep discharge [20]. 

1.7.5 Power Density.  

The power density of a battery is defined as the maximum available power per 

unit mass or volume. The power density, in units of [W/kg] or [W/L], is a 

characteristic of the battery chemistry and packaging. Lithium-ion batteries are highly 

competitive among all kinds of alternatives, due to their comparatively high power 

density, high energy density, low self-discharging [21] [22]. The excellent 

characteristics make Lithium-ion batteries widely adopted for the current EV 

applications. 

1.7.6 Lifetime.  

U.S. Advanced Battery Consortium (USABC) has defined the battery end-of-life 

(EOL) as a condition reached when the device under test is no longer capable of 

meeting the applicable USABC goals [20]. A typical EOL refers to 20% degradation 

of the battery nominal capacity. 

The calendar life is defined as the time required to reach the battery EOL at a 

reference temperature at open-circuit (corresponding to key-off/standby conditions in 

EV). The cycle life is defined as the number of discharge-charge cycles the battery 

can experience before it reaches the EOL at the reference temperature. Simply put, 

calendar life is the battery life at storage, and cycle life is the number of discharge 

and charge cycles the battery can survive [20] [23]. 
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The calendar (storage) life is mainly affected by the battery temperature and 

storage time. The accelerated battery cycle life is strongly affected by battery DoD, 

temperature and the battery current rate during the discharge/charge cycles.  

1.8 Ultracapacitors 

UC are electrochemical energy storage devices, which are well known for their 

extremely high power density, very low internal resistances, high cycle lifetime and 

cycling efficiency. The UC stores energy by physically separating positive and 

negative charges. These charges are stored on two parallel plates divided by an 

insulator. Since there are no chemical variations on the electrodes, therefore, UCs 

have a long cycle life but low energy density [6]. 

An UC pack consists of cells in series and possibly also in parallel as is the case 

for batteries. In most cases, a number of cells are combined into modules for the 

assembling convenience for the EV applications. 

1.8.1 Energy.  

The total energy stored in an UC can be expressed as, 

21

2
uc ucE CV . [Ws]     (1.2) 

Here C refers to the UC capacitance and Vuc is the UC voltage. The minimum 

voltage of an UC is generally set by users to avoid deep discharge of the UC. A 

completely discharged UC may draw extremely high charging current during 
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recharge if not well controlled. By setting the minimum UC voltage, the available 

energy from UC is also constrained.  

Typically, UC has much lower energy density in comparison to the energy density 

of the lithium-ion battery.  

1.8.2 Power.  

The key cell performance characteristic for determining the UC maximum pulse 

power is its internal resistance Ruc. Often the power capability of an UC cell is 

calculated from the relationship of (Vuc)
2
/4Ruc. This UC power capability is achieved 

with a power efficiency of 50% which results in high losses and high heat generation 

at this low power efficiency. Therefore, it is not desirable to operate or use UC at this 

high power level with low efficiency due to the loss and heat considerations. More 

practical UC usage for EV application is at efficiency of 75-80% and of 90-95% for 

hybrid vehicle operation [24].  

1.8.3 State-of-Art of UC.  

UC cells from various manufacturers are tested at the University of California, 

Davis with the test results summarized in Table 1.2 [21].  

 

 

 

 

Table 1.2 Summary of the Performance Characteristics of UC Devices. [21] 
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Manufacturer 

Rated 

voltage 

[V] 

C 

[F] 

Ruc 

[mOhm] 

Energy 

Density 

[Wh/kg] 

Power 

Density 

[W/kg] 

Weight 

[kg] 

Volume 

[L] 

Maxwell 2.7 2885 0.375 4.2 994 0.55 0.414 

Ness 2.7 1800 0.55 3.6 975 0.38 0.277 

Panasonic 2.5 1200 1.0 2.3 514 0.34 0.245 

EPCOS 2.7 3400 0.45 4.3 760 0.60 0.48 

LS Cable 2.8 3200 0.45 4.3 760 0.60 0.48 

BatScap 2.7 2680 0.20 4.2 2050 0.50 0.572 

Fuji 3.8 1800 1.5 9.2 1025 0.232 0.143 

ApowerCap 2.7 55 4 5.5 5695 0.009 --- 

Here the UC power density [W/kg] is measured with 95% efficiency. According 

to Table 1.2, the Fuji offers a UC cell with highest rated voltage and energy density. 

The ApowerCap offers a UC cell that achieves the maximum power density among 

the other manufacturers. 

1.9 Fuel Cells 

Fuel cells generate electricity from fuels. During the generation process, the 

reactant flows in, whereas the reaction products flow out. The fuel cell is able to 

generate electricity as long as the reactant flows are maintained. Different 

combinations of fuels and oxidants are possible fuels for fuel cells. Hydrogen is an 

ideal fuel for fuel cells as it has the highest energy density than any other fuel and its 
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reaction product is just water, which is nonpolluting. The advantages of the fuel cell 

include good energy conversion efficiency from fuel to electrical energy, quite 

operation, zero or very low emission, waste heat recoverability, fuel flexibility, 

durability and reliability. Different from batteries, the fuel cell needs to be refilled 

with the reactants before they are used up. A specific fuel tank should be included on 

board for vehicular applications. With an energy density about 2.6kWh/L for liquid 

hydrogen (compared with 6kWh/L for petrol), a large fuel tank is required on board. 

The disadvantages of fuel cells include relatively longer response time in 

comparison to that of the batteries and UCs. Another drawback is the high cost of fuel 

cells. Fuel cells cost about five times more than the traditional ICEs [6].  

1.10 Hybrid Energy Storage Systems 

Nowadays, the vehicle manufacturers use lithium-ion batteries as the only source 

to supply the energy and power to the vehicle. To provide longer driving range, high 

energy density batteries are preferred in EVs. In current and upcoming EVs, the 

batteries are oversized in order to deliver high power and avoid unwanted degradation 

due to acceleration and deceleration. 

Topologies to hybridize different ESSs for EVs, HEVs, fuel cell hybrid vehicles 

and PHEVs have been proposed and developed in order to make advantages of their 

complementary advantages. The developed hybrid systems include the battery-UC, 

battery-fuel cell, UC-fuel cell and the battery-UC-fuel cell hybrid energy systems. In 

this work, we mainly focus on the design of battery-UC HESS. 

The integration of a high energy density battery pack and an UC pack in the EV 
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powertrain creates a battery-UC HESS that combines the high energy density 

attribute of batteries and the high power density of UCs. With these complementary 

features, a battery-UC HESS can achieve high power capabilities and large energy 

storage at the same time with smaller size and weight in comparison to the high 

power battery-only ESS counterpart. Hybridization of UCs with batteries also 

enhances battery lifetime through peak power shaving, improved dynamic 

performance and thermal burden relief [12] [25] [26] [27] [28] [29] [30] [31].  

1.11 Sizing Problem in HESS 

An important aspect of the ESS design is its proper sizing. The ESS sizing is to 

calculate the size of different energy storage components that are required to satisfy 

the load demands at the minimum weight, volume and cost. The battery-UC HESS 

sizing problem is to find an optimal combination of the battery-UC cell number (Nbat, 

Nuc) in order to minimize the HESS weight, size or cost, and to fulfill all the EV 

specifications in terms of range, power requirement, acceleration time, etc. 

The trade-offs between the ESS size/weight, battery lifetime, economic cost, 

overall vehicle efficiency and driving range have been studied partly in the literature, 

which are reviewed in Section 2.2, Chapter 2 of this dissertation. The design 

methodologies and the general sizing approaches are to determine the load 

requirements and size the energy storage components based on the transient power 

requirements and constraints imposed by the main energy source needs. One of the 

major challenges in the HESS sizing problem is that the existence of the 

interdependence between the HESS energy management problem and the HESS 
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sizing. With different numbers of the battery or UC cells, the HESS power split can 

be determined differently. Likewise, the HESS energy management techniques also 

provide insight on how to size the HESS in order to satisfy the transient power 

requirements and the energy sources needs. We investigated into the interdependence 

between HESS sizing and energy management problems. 

1.12 Energy Management Problems  

Energy management in vehicles is an important issue because it can significantly 

influence the vehicle performances. An optimal energy management strategy can 

provide substantial advantages such as reducing fuel consumption, decreasing 

emission, reducing pollution, and improving the vehicle driving performance. 

In HEVs and PHEVs, a combination of an ICE and an electric machine is used to 

deliver the power demand. The energy management problem in these vehicles is to 

split the requested power between the ICE and electric machine. For HEV and PHEV 

applications, one main objective of energy management is to optimize the fuel 

consumption and reduce emissions.  

In EV applications with a battery-UC HESS, the energy management problem is 

to decide the power split between the battery and UC. The main objective of the 

energy management problem includes improving the HESS operation efficiency and 

extending the battery lifetime. 

Though this work will be mainly focused on the battery-UC HESS for EV 

applications, the proposed energy management control strategy and the design 
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methodology will be extendable to any hybrid system including the battery, UC, fuel 

cell, flywheel or any combination of various energy storage systems. 

1.13 Summary and Dissertation Overview 

A key consideration in EV development is the ESS design. The characteristics of 

different ESS are introduced and discussed with a focus on the battery and UC as they 

are promising energy storage components for EV applications.  

It has been demonstrated that the integration of battery and UC would 

significantly reduce the maximum power output required from the battery and 

therefore can reduce the stress on the batteries. With an appropriate sizing design of 

the energy storage system, it would effectively reduce the system weight and cost. To 

maximum the benefit of the battery-UC HESS, an energy management control 

strategy is needed to split the power demand between the battery and UC.  

This dissertation consists of six chapters.  

Chapter 1 gives the introduction to EV and ESS. The ESS sizing problem and the 

energy management problem are outlined in this chapter.  

Chapter 2 provides the detailed overview of the state of art of the HESS 

configurations, the HESS sizing problem and the HESS energy management 

problems. A comprehensive review and comparisons of the HESS energy 

management control strategies are presented and discussed. 

Chapter 3 presents the HESS sizing problem. The HESS sizing problem and a 

convex optimization-based power split problem are combined to investigate the 

interdependence between the sizing problem and the energy management problem. A 
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systematic approach to optimize the HESS sizing is proposed to evaluate the HESS 

sizing and the power split objectives simultaneously. With different optimization 

objectives, vehicle models, HESS energy management strategies and design 

variables, this HESS sizing approach can be adapted. 

Chapter 4 presents the development of a real-time implementable HESS energy 

management controller. A multi-objective optimization problem is formulated with 

the objectives to reduce the HESS losses and extend the battery cycle life. This 

nonlinear multi-objective optimization problem is solved offline using DP algorithm 

to obtain the global optimal power split results. The obtained DP results are used as 

the training sets to a NN, which will be implemented online for the real-time HESS 

energy management. To evaluate the proposed energy management controller, a 

battery SoH estimation model is developed as the performance metric. The simulation 

results are presented. It is estimated that the proposed online energy management 

controller can extend the battery life by over 60%.  

Chapter 5 presents the development of the 38V-385Wh battery module and a 

16V-2.06Wh UC HESS hardware prototype and a real-time experiment platform. The 

performance of the real-time energy management strategy is tested using standard 

drive cycles, which validated the effectiveness of the real-time energy management 

controller design and implementations.  

Finally, we conclude in Chapter 6 with a summary of the main contributions of 

the dissertation work and considering potential future prospects in this research area. 

The major contributions in this work are listed as follows. 
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 Developed a new battery state-of-health estimation model under realistic drive 

cycles. 

 Formulated the multi-objective energy management optimization problem. 

 Implemented an offline energy management control strategy for EVs with 

hybrid battery-UC storage systems. 

 Proposed an innovative real-time implementable energy management control 

strategy for hybrid energy storage systems, which demonstrated > 95% 

efficiency and 60% battery lifetime extension. 

 Developed a novel real-time experimental platform to validate the design of 

real-time controllers. 
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Chapter 2: Literature Review and State-of-the-Art 

2.1 HESS Configurations 

Different HESS configurations have been discussed in the literature [6] [32] [33] 

[34]. The general topologies of HESS are shown in Fig. 2.1.  
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Figure 2.1 Different HESS topologies. 
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The topologies in Fig. 2.1(a)-Fig. 2.1(c) are called passive parallel connection. 

Researchers [35] [36] [37] [38] have considered direct parallel connection of the two 

energy storage components as the simplest way to connect the battery and the UC 

and/or the fuel cell to the DC bus. The advantage of this topology is the simplicity of 

implementation and relatively low cost; however, it has two major drawbacks. First, 

the battery and the UC and/or the fuel cell cannot be separately controlled. It is not 

possible to control or determine which energy storage component to use because both 

energy storage devices are charged and discharged concurrently. Second, the UC 

utilization is low. The UC voltage experiences very small and slow variation as the 

UC voltage is clamped to the battery terminals or the fuel cell terminals.  

The passive parallel connection topology of the battery and the UC pack in Fig. 

2.1(a) can be improved by adding a DC-DC converter between the battery pack and 

the UC pack as shown in Fig. 2.1(d) and Fig. 2.1(e) [39] [40].  

In a battery-UC HESS, a DC-DC converter is used to interface the battery and/or 

the UC with the DC bus. In the topology in Fig. 2.1(e), the battery is decoupled from 

the DC bus through a unidirectional or a bi-directional DC-DC converter. With a 

unidirectional DC-DC converter, the battery voltage can be boosted to a higher level; 

thus a smaller sized battery could be selected to reduce cost. However, the battery can 

neither be charged by the regenerative braking energy nor by the UC due to the 

unidirectional boost converter [6]. With a bi-directional DC-DC converter, both the 

battery power input and output can be controlled through the control of the bi-

directional DC-DC converter. Thus, the battery current or power can be more 

efficiently controlled in comparison with the passive parallel connection.  
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One advantage of this topology in Fig. 2.1(e) is that energy management control 

strategies can be implemented to split the power demand for both the battery and the 

UC pack. The drawback of this topology is that a high voltage UC pack is required in 

order to drive the motor inverter. In addition, the UC voltage swing is limited by the 

inverter input voltage range. Hence, the UC utilization may be limited. 

To improve the operation range of UC, another bi-directional DC-DC converter is 

added between the UC and the DC bus. This forms a cascaded converter topology as 

shown in Fig. 2.1(j). In this topology, two DC-DC converters are used. The DC-DC 

converter between battery and UC is used to control the current input or output of the 

battery, while the UC supplies the remaining power to the load. The other DC-DC 

converter decouples the UC from the DC bus.  

By swapping the position of the battery and UC in the battery/UC topology as 

shown in Fig. 2.1(e), the UC/battery topology is obtained as shown in Fig. 2.1(d) [41] 

[42] [43]. 

As shown in Fig. 2.1(d), the UC is decoupled from the DC bus. Thus, the UC 

voltage can be used in a wide range. The UC power can be controlled through the 

control of the DC-DC converter. In this topology, the power rating of the DC-DC 

converter is determined by the UC power. In addition, the nominal voltage of the UC 

can be lower, which may reduce the UC size and cost. The battery is connected 

directly to the DC bus; as a result, the DC bus voltage is maintained around the 

battery nominal voltage and will not be varied much. 

Both the topologies in Fig. 2.1(d) and Fig. 2.1(e) are called partially decoupled 

configurations or semi-active topologies because either the battery or the UC is 
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decoupled from the DC bus via a DC-DC converter. Although the DC-DC converter 

adds additional cost and weight to the system, it offers the major advantage that 

allows separate control of the battery and the UC, which cannot be achieved in the 

topology as shown in Fig. 2.1(a) with passive parallel connections. 

Instead of the cascaded connection of the two converters given in Fig. 2.1(j), the 

multiple converters parallel the output of the two DC-DC converters as shown in Fig. 

2.1(k) - Fig. 2.1(n) [44] [45] [46] [47]. The topology in Fig. 2.1(k) is called a full 

active battery-UC system or a fully decoupled configuration as both the battery and 

the UC are decoupled from the DC bus. The battery and UC are connected to the DC 

bus in parallel and interfaced by two different DC-DC converters. In this topology, 

both the battery and UC present a lower voltage level than the DC bus voltages. The 

voltages of the battery and the UC will be leveled up when there is a power demand 

from the drive train and will be stepped down for regenerative braking conditions. 

This topology offers the highest flexibility and full control on the operation of the 

battery and the UC. However, the system is expected to be heavier, larger, more 

complex to control and more expensive than other topologies with the two integrated 

DC-DC converters [6]. Besides, the system may have increasing energy losses due to 

a larger number of power electronics devices and passive components. 

Instead of the topology with two full-size DC-DC converters, the multiple inputs 

converter topology is proposed in [48] [49]. The circuit diagram of a multiple inputs 

DC-DC converter is shown in Fig. 2.2. 
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Fig. 2.2 Multiple Inputs DC-DC converter in [44]. 

 In this multiple input DC-DC converter, both the battery and UC are connected to 

one common inductor by anti-parallel switches. Each switch is paired with a diode, 

which is designed to avoid short circuit between the battery and the UC. The power 

flow between multiple inputs and the load is managed by controlling the multiple 

inputs DC-DC converter. In this topology only one inductor is needed even if more 

inputs are added into the system. This will reduce the size and cost of the system in 

comparison to the topology in Fig. 2.1(k). However, the energy management strategy 

and the power flow management of the multiple inputs DC-DC converter are more 

complicated [6]. In addition, it is not practical to charge the battery and UC 

simultaneously.  

The characteristics of these three main types of HESS topologies are summarized 

in Table 2.1. 
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Table 2.1 A Comparison of HESS Topologies. 

Topology Advantages Disadvantages 

Passive 

(1) Simplicity 

(2) High reliability 

(3) Low cost 

(1) Cannot be actively 

controlled 

(2) Has limited utilization of 

energy storage components 

Semi-Active 

(1) Can implement semi-active 

control strategies 

(2) Can expand the operation 

range of the actively controlled 

energy storage components to 

enhance HESS performance 

(3) Provides partial flexibility to 

reduce size/voltage of some of 

the actively controlled energy 

storage components 

(1) As batteries are preferred to 

interface with the DC bus to 

provide stable voltage, they 

may expose to load fluctuations 

if active controls are not well 

implemented. 

Full-Active 

(1) Highest flexibility and full 

active control on all the energy 

storage components 

(2) Can expand the operation 

range of all energy storage 

components thus enhancing 

HESS power performance 

(3) Has potential to reduce 

size/voltage of all the energy 

storage components 

(1) Large system size/weight 

and high cost due to need for 

more DC-DC converters 

(2) High power losses due to 

more power electronics 
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2.2 HESS Sizing Strategies 

Researchers have proposed different solutions to HESS sizing problem. The 

HESS sizing problems with different ESS combinations have been studied, such as 

the battery-fuel cell [50] [51], the battery-UC [25] [52] [53] [54] [55] [56] [57], the 

UC-fuel cell [50], and the battery-UC-fuel cell combinations [50]. Though different 

combinations of ESSs have been designed, the sizing design methodologies can be 

generalized and adopted for all these different combinations. 

In [54], the influence of the battery-UC HESS sizing on battery lifetime has been 

investigated for a fuel cell hybrid electric vehicle (FCHEV). The main purposes of the 

energy storage components in a FCHEV are to provide power to the load during the 

heating up of the fuel cell stack, or to supply peak power to the load to reduce the 

required power rating of the fuel cell stack, and to capture the braking energy. Sizing 

the battery based on its energy usage does not prevent it from deep discharges, which 

might reduce the battery lifetime. Thus, in this application, a sufficient sizing of the 

battery and the UC is an important issue in order to obtain an appropriate tradeoff 

between the system volume, mass and the battery lifetime. 

As a starting point of the sizing problem, a base maximum power and energy 

rating for both the battery and UC are predefined as 
,max, 5.4bat baseP kW , 

,max, 16.8uc baseP kW , 
,max, 770bat baseE Wh , 

,max, 13.5uc baseE Wh  respectively, based 

on the system model and design experience [54]. With these values, the power and 

energy requirements of the battery and UC can both be satisfied when the UC 

provides the transient peak power and the battery delivers the slower average load 
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power. The goal of this sizing problem is to investigate how the system volume, mass 

and the battery lifetime will be affected if either the battery or UC is oversized. A set 

of oversize/overrate factor is defined as  , 1, 2, 3, 4, 5or bat      relative to the base 

values of the maximum power and energy. Thus, the power and energy rating of the 

battery are given by, 

,max , ,max,bat or bat bat baseP P      (2.1) 

,max , ,max,bat or bat bat baseE E      (2.2) 

Obviously, if the battery is oversized, it will experience less deep discharge cycles 

in tradeoff between the increased system mass and volume. 

Similarly, an oversize factor is defined for UC with  , 1, 2, , , 8,10or uc       . 

With a set of comprehensive simulation and case studies, it is concluded that it is 

not advantageous to overate the UC more than a factor of 
, 2or uc  , since better 

tradeoff between system size and the battery lifetime can be achieved by overrating 

the batteries instead of the UCs.  

This work investigates the sizing influence on the battery lifetime. The provided 

analysis also gives recommendations on the design of the battery and UC energy 

storage systems for the FCHEV.  

[25] also provides a sizing methodology that considers the battery lifetime. In this 

work, the battery-UC HESS is sized for a HEV application. In this sizing problem, 

the authors assume that a life requirement should be satisfied with an energy 

throughput of the total ESS module of 25MWh over 10 years and 100k mile. To 
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sustain this energy throughput requirement within 10 years, the battery would have a 

3% or less DoD for every 50Wh discharge-charge event according to a rough 

estimation model in [25]. The UC is sized in a separate way to ensure it can operate at 

an average 85% efficiency based on a UC power efficiency model.  

This work provides the sizing considerations, however, the results are obtained 

based on coarse estimation models.  

Instead of these coarse sizing methodologies, [57] uses simple control strategies 

and proposes a sizing methodology by setting the size of the primary source based on 

the mean power of drive cycles. This sizing methodology can provides a general good 

choice but the sizing results can be improved with a specific drive cycle [51].  

In [51], a new sizing methodology is proposed by combining the sizing and 

energy management problem. The study finds the best sizing for the fuel cell and the 

battery, assuming that an optimal power split is implemented for a specific drive 

cycle. Two interlinked optimization loops are built to run simultaneously. A first 

optimization is run on sizing by choosing various combinations of the fuel cell rated 

power and the battery capacity. Each combination is then used as an input to the 

energy management problem in the second optimization loop, which determines the 

optimal power split strategy that can achieve a minimization of the fuel consumption. 

The proposed two interlinked optimization loops can return the best sizing and the 

corresponding optimal energy management results based on the design optimization 

algorithms . 

For the battery-UC HESS sizing problem, [52] [56] have investigated the 

interdependence between the energy management strategy and the sizing. The HESS 
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is designed by assuming that the power split between the sources is performed with a 

frequency-based strategy, i.e., UC is used to handle the high frequency peak power 

while the battery provides the low frequency power or the average power demands. 

With the power demand split among the energy sources, the total energy storage and 

power requirement for each energy source can be estimated. Therefore, the optimal 

sizing can be determined based on these energy demands and power requirements.  

2.3 HESS Energy Management Strategies 

Effectively splitting the load demand between the battery and UC is a major 

challenge. To optimally split the power between batteries and UCs, it is difficult to 

develop a deterministic control equation or strategy as many factors and parameters 

are involved, such as the trip length, the driver command, the electric motor/generator 

speed, and the UC SoC, etc. The effects of these factors become even more complex 

with uncertainties. For real-time driving, the future driving trend and the trip length 

are not available. Without these data and information, one may make shortsighted 

control for the power split problem.  

The main objectives in the HESS power split problem is to meet the load demand, 

sustain the battery and UC charge, improve the HESS efficiency and extend the 

battery lifetime. A good energy management strategy should provide a good tradeoff 

among these objectives. 

Different energy management strategies have been proposed in literature for 

power split in HEVs, PHEVs or hybrid energy storage systems in EVs. Majority of 

the prior work is proposed for power decoupling between ICEs and electric machines 
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or power decoupling between fuel cell systems with UC and/or batteries. Similar 

energy management techniques can be adopted for battery/UC hybridization. Mainly, 

the energy management strategies can be categorized into two types, (i) rule-based 

methods and (ii) optimization-based strategies. This section extensively discusses the 

main proposed energy management strategies. The advantages and disadvantages of 

each method are explained.  

2.3.1 Rule-Based Energy Management Methods 

Strategies that are based on heuristics or empiric experience can be easily 

implemented by rule-based control algorithms [58] [59] [60] [61] [52] [62]. In these 

rule-based control algorithms, the heuristics or empiric experience are utilized to 

design deterministic rules, generally implemented via if-then rule expressions or 

look-up tables. According to these rules, the power demand is split between different 

energy storage components or power sources. 

Rule-based control algorithms have been applied to the power split problem in 

HEVs [58] and PHEVs [59]. For HEV and PHEV power split problems, the energy 

management problem is employed to split the power demand between the ICE and 

the battery such that these power sources are operated at high efficiency. In [58], the 

energy management rules are designed based on the values of selected variables 

including the power demand, the driver's acceleration command and the battery SoC. 

Given the status or value of the power demand, the acceleration command and the 

battery SoC, the if-then rules are designed to split the power and assign to the ICE, to 

the battery, or to a combination of both.  
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A rule-based control strategy is described in [63] for the power split problem in a 

hybrid electric truck. Based on the engine efficiency map [63], a predefined “engine 

on” power line Pe_on  and a “motor assist” power line Pm_a, are chosen to avoid engine 

operation in inefficient areas with Pe_on  < Pm_a. If the power demand is less than the 

“engine on” power level, the electric machine with the battery will supply the demand 

power while the engine is not working. This avoids the engine operating in low 

efficiency region. Above the “engine on” power level, the engine replaces the electric 

machine to provide the total demand power. Once the demand power exceeds the 

defined “motor assist” power, it means that the engine cannot efficiently generate the 

total demand power by its own. The engine provides the “motor assist” power Pm_a 

and the electric machine is activated to supply the additional power to satisfy the 

demand. 

A similar rule-based control strategy is proposed in [60] for a battery-UC HESS 

power split problem. In this control strategy, a pre-selected reference battery power 

with the value of Pmin is used. The rule-based control strategy is set up based on the 

following rules. (1) If the load demand power Pdmd is below 0 (i.e. there is 

regenerative braking power), the UC receives all the regenerative braking power 

within its charging limit; (2) If the load demand power Pdmd is greater than Pmin, UC 

delivers (Pdmd -Pmin) or its max discharging power at that state while battery provides 

Pmin; (3) Otherwise, battery supplies the discharging power within the battery 

discharging limit. 
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Using this rule-based control strategy, the authors have shown that the hybridized 

battery-UC system can effectively reduce the battery peak current and to extend the 

battery lifetime [60].   

Another representative rule-based energy management control strategy is the 

frequency based power decomposition strategy, which is employed in [61] [52] for 

the power split in a battery-UC HESS. In this strategy, the demand power of the 

HESS is decomposed as a sum of a low frequency and high frequency signals. 

According to the demand power decomposition, the batteries and UCs are used to 

provide the low and high frequency contents of the load demand power, respectively. 

However, the filter-based strategies have several deficiencies. One critical 

disadvantage of a simple filter-based method is that it introduces large phase shift as 

reported in [61]. The effectiveness of using UC system in reducing the battery current 

and losses is degraded due to this phase shift. In addition, one needs to adjust the 

cutoff frequency or other parameters in the filter design for different load demands in 

order to obtain effective power split results in different situations.  

Despite being simple and numerically efficient, these control strategies and 

methods are heuristic controllers, not optimal power split solutions. These heuristic 

controllers do not guarantee an effective control in different driving situations. 

2.3.2 Fuzzy Logic-Based Energy Management Methods 

As an extension to the conventional rule-based control methods, the fuzzy logic 

approach is proposed [64] [65] [66] [67] [68] [69] [70]. Fuzzy logic based control 

strategies, which are good at dealing with model uncertainty and complex decisions, 
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have been proposed and applied for vehicle control and energy management. For 

energy management problems, there are many factors and parameters involved in the 

complicated control and model systems. The effect of many control factors and model 

parameters may be known, but not clearly. The basic idea of a fuzzy logic based 

control strategy is to use the available knowledge about the problem to construct a 

number of fuzzy rules to formulate human intelligence and reasoning, which can be 

represented as a collection of if-then rules based on heuristics or empiric experience. 

The main advantages of the fuzzy logic based methods are the following: 1) 

robustness and tolerant to imprecise measurements and component variations, and 2) 

flexibility and adaptation, as the fuzzy logic rules can be easily tuned.  

Fuzzy logic based control strategy have been applied and implemented in HEV 

control. In [64], a set of fuzzy logic control rules has been developed using the driver 

commands, the battery SoC and the motor/generator speed as the fuzzy logic 

controller input. The fuzzy logic controller outputs the optimal generator power for 

the electric machine and a scaling factor for the electric machine when the electric 

machine is used as a motor. This scaling factor is (close to) zero when the battery 

SoC is at very low level. In that case, the electric machine is not used to deliver the 

power in order to prevent the battery damage. The scaling factor equals one when the 

battery SoC is high enough. In that case, the electric machine is used to deliver the 

power instead of the ICE in order to reduce fuel use. The developed fuzzy logic based 

energy management control strategy effectively split the power between the two 

power plants: the electric machine and the ICE to improve the operational efficiency 

of all components and the fuel economy. 
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In [69], fuzzy logic based control strategy were used in the energy management 

problem in a PHEV to improve the fuel economy and reduce emissions. In [65] [66], 

the fuzzy logic control strategies are introduced in a power split problem between fuel 

cells, batteries and UCs. Real vehicle test data are provided, which showed the fuzzy 

logic control strategy can achieve the power split target while maintaining the battery 

SoC within a specified range for PHEV applications. 

For EV applications with a battery-UC HESS, a fuzzy logic supervisory controller 

based on frequency decoupling strategy is proposed in [68]. The proposed fuzzy logic 

supervisory controller evaluates the load power demand and the UC SoC and then 

modifies the power references for both battery and UC achieved from the frequency 

decomposition strategy. In this fuzzy logic controller, the load demand power and the 

UC SoC are defined as the two input membership functions. Based on these two 

inputs, given rules, input and output membership functions, a fuzzy number with a 

normalized membership function is produced. For the input UC SoC, three 

membership functions are used, namely “Low”, “Medium”, and “High”, whereas the 

input of the load demand power is represented by five membership functions, namely 

“Regen”, “Light”, “Med”, “Heavy”, and “VHeavy”. The rules for this fuzzy logic 

controller, which basically dictate 12 different conditions, are determined based on 

the experience and the real physical system. 

The fuzzy logic controller generates a positive power value regardless of demand 

power when the UC SoC is at the 'High' state, which will discharge UC. As the UC 

SoC is at the 'Medium' state, UC can store a portion of the regenerative braking 

energy when the demand power is less than zero or assist the battery to deliver the 



33 

 

propulsion power if the demand power is greater than 0. When the UC SoC is at the 

'Low' state, UC captures the regenerative braking energy completely during braking 

or partially assists battery in the case when the demand power is greater than 0. The 

fuzzy logic controller outputs a power value based on these rules. The output power 

value is then added to the UC power references generated by the frequency 

decomposition methods to modify the frequency decomposition results based on 

different states of the demand power and UC SoC.  

This proposed fuzzy logic method is more robust than the conventional rule-based 

control strategy because it takes the load demand and UC state variations into account 

to generate the power references for HESS power split, instead of only using the 

frequency decomposition for power split. Both fuzzy logic and rule-based control 

strategies are real-time implementable. However, the fuzzy logic control strategy 

cannot guarantee an effective control or the optimal control under different driving 

situations as it still depends on rules and experiences. Another disadvantage of the 

fuzzy logic based method is that the defuzzification process consumes memory and 

time in the controller. 

2.3.3 Global Optimization Based Control Strategy 

By optimizing a cost function representing efficiency or fuel consumption or 

other objectives over a drive cycle, an optimization problem is formulated to find the 

global optimal operating points for power split. Linear programming [71] and 

dynamic programming are utilized to solve the aforementioned global optimization 

problem. Dynamic programming is discussed in details. 
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DP is a powerful numerical tool to determine the optimal control policies or 

trajectories explicitly using the Bellman’s optimality principle [72]. Therefore, the DP 

solution is the global optimum even for nonlinear systems with constraints [73] [74]. 

Kolmanovsky et al. [75] describe how to apply DP to obtain the optimal powertrain 

control policies from a software implementation perspectives. 

Unlike the rule-based methods, the DP algorithm usually relies on a model to 

compute the best control strategy. This model can be either analytical or numerical. 

Based on the model, the best power split control strategy can be obtained by solving 

the DP problem.  

In order to find the global optimal solution of the energy management problems, 

DP has been first applied to the power split problem in HEV [63] [76] [77] [78] [79] 

[80]. In [77], DP is utilized to find the optimal control actions including the gear-

shifting sequence and the power split between the engine and the electric motor while 

subject to a battery SoC-sustaining constraint.  

In [77], the DP problem is formulated with the control variables of the fuel 

injection rate to the engine [kg/cycle], the desired output torque from the motor [Nm] 

and the gear shift command to the transmission. A numerical DP approach is applied 

to solve the finite horizon optimization problem. The optimal, time-varying, state-

feedback control policy is obtained at each of the quantized states and time states. In 

this way, DP creates a family of optimal paths for all possible initial conditions. Once 

the initial state of the battery SoC is given, the optimal policy is applied to find an 

optimal path that can achieve the minimal fue1 consumption. 
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In [74], DP is applied in the energy management problem in a series HEV with 

the objectives of maximizing the vehicle fuel economy and also minimizing the 

battery usage, which is represented by the battery cumulative bulk mechanical stress 

(BCBMS). The instantaneous cost function is a weighted sum of the normalized fuel 

consumption, the normalized bulk stress and the normalized battery current. In this 

problem, the battery power is used as the control variable and the battery SoC and the 

engine power are used as the state variables. By solving this problem with DP, the 

optimal solution is obtained with the tradeoff between fuel consumption and battery 

cycle life discussed in [74]. 

DP is applied in a PHEV energy management problem in [81]. In a PHEV, the 

charge-depletion mode is more appropriate or desired for the purpose of improving 

fuel economy, i.e. the battery SoC is expected to drop to a preselected low threshold 

when the vehicle reaches the destination of the trip. In [81], charge-depletion control 

of PHEV is nearly globally optimized with a two-scale DP approach based on trip 

modeling with the real-time and historical traffic data. By specifying the starting 

point and the end point of a trip, the trip model, i.e. the drive cycle, is first obtained 

by averaging the historic traffic data. DP is applied to the overall macro-scale 

problem to obtain the global optimal path of the battery SoC. To adapt this global 

optimal control strategy during the real-time vehicle operation, a micro-scale 

framework is proposed by dividing the whole trip into a number of segments. For 

each segment, a smaller DP will be solved using the online traffic data within this 

segment. The online traffic data is transmitted to the vehicle from the traffic flow 

sensors. At the end of the trip, the battery SoC, obtained in the macro-scale DP 
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solution, is reinforced to be the final value. Simulation study based on this two-scale 

DP algorithm has been performed on a hybrid SUV model from ADVISOR software 

on a defined trip [81]. The simulation results demonstrated significant improvement 

in fuel economy using DP based charge-depletion control in comparison to a rule 

based control strategy. 

DP is well-known for requiring high computations that grow exponentially with 

the number of states [63]. To reduce the number of states, simplified vehicle models 

are developed for the optimization purposes [63] [74]. For DP algorithms applied in 

the power split problems, they usually assume that the entire drive cycle and load 

demand profile are known. Therefore, the DP algorithms are not implementable in 

real-time due to their preview nature and the heavy computational requirements. 

Nevertheless, DP algorithms are good design tools and provide benchmarks against 

which other energy management control strategies can be compared and improved. 

2.3.4 Stochastic Dynamic Programming Based Control Strategy 

In an earlier work [63], Lin et al. proposed a design procedure that uses DP (or 

deterministic DP) to find the optimal power split solution and then extracts rules to 

implement a real-time rule-based control strategy. The DP algorithms can be applied 

to solve global optimization problem for a specific drive cycle. The obtained rule-

based control policy might be neither optimal nor charge-sustaining under other drive 

cycles. In addition, the optimal solution obtained from DP is not directly 

implementable. To extract an implementable control rules based on the DP optimal 

solution might be also time-consuming [63]. To overcome these drawbacks, a design 
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procedure based on stochastic dynamic programming (SDP) optimization techniques 

is proposed by Lin et al. in [82]. The proposed SDP algorithm is applied to address 

the power split optimization problem in a HEV with the objective of maximizing the 

fuel economy and reducing the exhaust missions. Instead of being optimized over a 

given specific drive cycle, the power management strategy is optimized over a family 

of representative drive cycles in an average sense. In order to obtain a time-invariant 

control strategy, an infinite-horizon optimization problem is formulated and solved 

using SDP. The key benefit of generating a time-invariant control policy is that the 

control policy can be directly used in real-time implementations. 

In most power split problem where DP algorithm is applied, the power demand is 

used as a-priori information (e.g., a known power demand path to follow a given 

specific drive cycle). In order to formulate an infinite-horizon optimization problem, 

the power demand is modeled as a discrete-time stochastic dynamic process [82] [83] 

[84] [85]. A stationary Markov chain is used to generate the power demand from the 

driver, which is assumed to take on a finite number of values [82] as, 

 1 2, , ..., pN

dmd dmd dmd dmdP P P P       (2.3) 

where Np represents the total number of the possible discrete values of the power 

demand. Moreover, the wheel speed is also discretized into a finite number of values 

as, 

 1 2, , ...,
N

wh wh wh wh
          (2.4) 
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The dynamics of the power demand is assumed to be
, 1dmd k kP w  , where the 

probability distribution of kw is assumed to be, 

  ,Pr , ,

, 1, 2, ...., , 1, 2, ..., 

      

      

j i l

dmd dmd dmd wh wh il j

p

w P P P p

i j N l N   (2.5) 

where k is the time index,  
,il jp  represents the one-step transition probability that the 

system will be with the power demand of j

dmdP  at time step k + 1, given the system is 

with power demand of i

dmdP  and the wheel speed of l

wh  at time step k.  

A natural way to determine the transition probabilities values is to estimate them 

on the basis of the observed sample drive cycles, such as the past driving records, or 

standard representative drive cycles. From the speed profiles, the power demand dmdP

and the wheel speed wh  could be calculated given the vehicle model. Using the 

nearest-neighbor quantization, the sequence of observations ( dmdP , wh ) is mapped 

into a sequence of quantized states. The transition probabilities could be estimated 

based on this sequence of quantized states. 

After the Markov model of the power demand is built, the stochastic hybrid 

vehicle model is constructed [82]. This model includes three state variables: the 

battery SoC, wheel speed and the power demand. The Markov model of the power 

demand is used to determine the probability distribution of future power demands and 

to generate a sequence of a random drive cycle. A power management controller is 
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then optimized on the basis of this stochastic model. The expected total cost over an 

infinite horizon can be represented as,  

    
1

0

0

lim ,
N

k

k k
N

k

J x E g x x  





 
  

 
    (2.6) 

where g(xk, π(xk)) represents the instantaneous cost function, 0 < γ < 1 is the discount 

factor, and Jπ(x0) is the expected cost or the cost-to-go function when the system 

starts at state x0 and follows the control policy π thereafter [82]. By solving this 

infinite horizon optimization problem, the time-invariant control policy is obtained. 

The SDP algorithm is also applied in PHEV power management problem with the 

objective to minimize both the fuel and electricity cost in a PHEV [86]. Similar to 

[82], a Markov model of the power demand is built based on a finite number of power 

demand and vehicle speed samples from standard drive cycles. After that, the SDP 

approach begins with a discretization of the admissible state and control input sets. 

Given the discrete-valued state variable sets, a policy iteration algorithm is applied to 

compute the optimal power management cost function and policy. This algorithm 

consists of two successive steps, namely, policy evaluation and policy improvement. 

For each possible state, the policy evaluation step approximates the corresponding 

cost-to-go function over a stochastic distribution of drive cycles starting at that state, 

given a control policy. The policy improvement step then finds a new optimal control 

policy by minimizing the cost-to-go function value with respect to this policy for each 

possible state. This process iterates until a convergence criterion is satisfied. The 

policy evaluation and policy improvement steps are presented in details in [86] [87]. 
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Based on the above discussion of the SDP approach, it can be concluded that SDP 

is not a real-time solution by its nature. The SDP methods are appealing because of 

their ability to optimize a power split problem for a probabilistic distribution of drive 

cycles, rather than a single specific cycle. To obtain the a probabilistic distribution of 

the power demand, the power demand and vehicle speed or other related state 

variables are discretized. The discretization makes the problem amenable to computer 

calculations, but generally produces suboptimal results of the power split control 

policy [86]. The obtained time-invariant control policy could be directly used in real-

time implementations [88].  

One main drawback of the SDP based methods is their well-recognized 

computational complexity [72]. Another drawback is that to construct the Markov 

model for the power demand, a large set of drive cycles are required to obtain the 

enough data. If the data set is not rich enough to cover the whole state space, the 

transition probability may be zero, which will affect the control policy. The computed 

control policy is represented as a large table of state-action pairs and is only defined 

for states that were previously observed in the dataset, while it is desired to construct 

a more general energy management strategy that can be applied to a wider range of 

driving scenarios. In addition, there may be storage memory problem with the SDP 

control policy implementation. The generated control policy from SDP is usually a n-

D (dimensional) static mapping that states the control decision to be delivered at 

given states. Here, n is the number of the states in the SDP problem. In [89], a 4-D 

static mapping is generated based on the states of speed, acceleration, battery SoC 

and a binary state of the engine on-off state. The drawback of implementing such a 4-
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D static mapping controller are mentioned in [89] as it is difficult to store such a large 

quantity of data in the commercial electronic controller unit (ECU) as the ECU 

storage memory is limited.  

2.3.5 Model Predictive Control  Based Control Strategy  

Model Predictive Control (MPC) is a control methodology that computes an 

optimal control solution based on a model of a dynamical system and its predicted 

future evolution. The control objective and the dynamic system model are formulated 

as a real-time optimization problem that repeatedly computes the control inputs to the 

physical system. Only the computed control inputs associated with the current time 

step is actuated on the physical system. With new measurements of the physical 

system, a new state of the dynamic system is estimated and the real-time optimization 

procedure is repeated [47] [90] [91] [92] [93]. 

Borhan et al. applied MPC based control strategy for the first time to solve the 

energy management problem of power-split HEVs [94]. In their work, a nonlinear 

optimization problem is formulated over a future time window, during which the 

objective is to (1) minimize the fuel use to improve the fuel economy of the power-

split HEV; (2) reduce service brake use, and (3) prevent over-charge and over-

discharge of the battery. In this energy management problem, equality and inequality 

constraints should also be taken into account to maintain the engine, motor, generator, 

and the battery under normal operation. To reduce the computational cost of this 

nonlinear optimization problem, the nonlinear plant model (powertrain model) and 

the nonlinear constraints are linearized at each sample time. In this way, the nonlinear 
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optimization problem is reduced to a quadratic optimization problem for which 

efficient real-time solutions may exist. The solution to this nonlinear optimization 

problem determines the power demand distribution between the ICE and the electric 

motor/generator. It is demonstrated that the fuel economies achieved with this 

proposed MPC based control strategy outperforms that reported by the rule-based 

energy management strategy used in PSAT simulation software [94]. 

To analyze the potential benefits of integrating UC in the ESS unit of a power-

split HEV, Borhan et al. proposed the work in [95] to develop a MPC controller for 

the power split among battery, UC and ICE. Different from the work in [94], the 

number of states is increased by one as the UC is added in the system. In addition, the 

number of degrees of freedom is increased as the power split factor of ESS has 

increased by one dimension. Similar approach to [94] is employed in this work for 

online linearization of the nonlinear plant model around the current operation 

conditions. The linear MPC is applied to find the control inputs to the plant model. 

In this paper [95], the plant model of a power-split HEV with an UC and battery 

is developed. Then, based on the optimization objectives of minimizing the fuel 

consumption and also reducing the battery high peak power, an online supervisory 

controller based on MPC is constructed. With both the plant and controller model, a 

closed-loop model of the system is developed and simulated, which shows that 

combining battery and UC can reduce the battery discharge intensity to extend the 

battery life.  

In the MPC based control strategy applied in [94] [95], the optimization is solved 

over a future prediction horizon of 5 seconds. With this short prediction horizon, it is 
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likely to make short-sighted decisions. However, with a long prediction horizon, the 

solution of the optimal control problem may require high computation effort. In 

addition, the driving cycle information over long time horizons is not generally 

known in the real-time driving conditions. Usually, the future load demand is 

assumed to be constant or to be exponentially decreasing over the prediction horizon. 

In view of these problems, Borhan et al. [96] reformulated this MPC fuel 

minimization problem to include not only the finite horizon cost of fuel but also an 

approximate cost-to-go beyond the planning horizon represented as a terminal cost in 

the optimization problem. This proposed approach is based on breaking the fuel cost 

for an entire trip into a receding horizon stage cost and an approximation of the 

minimum cost-to-go cost as a function of battery SoC. With the breakdown to a short-

horizon, the updated MPC problem is solved by DP over the prediction horizon. 

Thus, the fuel minimization problem is solved in real-time while considering the 

nonlinearities in both the plant model (the powertrain model) and the constraints. 

Based on the simulation results, it is concluded that with this new approach, the fuel 

economy of a power-split HEV is improved noticeably in comparison to the MPC 

controller developed in [94]. However, for this reformulated MPC problem, the 

optimal solution is dependent on the design of the terminal cost function.  

MPC based control strategies have been applied to the battery-UC HESS power 

split problems in [97] [98]. In [98], a multi-objective optimization problem is 

formulated to (1) minimize the battery current variations and (2) minimize the UC 

voltage deviation from a reference voltage. By adding the second objective, it helps to 

maintain the UC voltage around the required reference value to avoid the UC from 
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over-charge or over-discharge. This is a similar approach as presented in [96] with 

adding a terminal cost. The value of the reference voltage and the trade-off factors 

between the two objectives have to be chosen carefully to achieve good results. To 

solve this optimization problem formulated in [98], similar approach in [94] [95] has 

been applied to linearize the nonlinear plant model around each operating point. The 

proposed MPC based energy management control strategy has been experimentally 

verified for a hybrid battery-UC power source.  

For the MPC based energy management control strategies in [94] - [98], it is 

shown that it has the potential to be real-time implementable. To prevent the 

computational cost of a nonlinear optimization problem, the nonlinear constraints and 

models are linearized at each sample time, which may compromise the model 

accuracy [94] [95]. Another problem with MPC based control strategy is that one 

need to choose the appropriate prediction horizon: a MPC problem with short 

prediction horizon may result in shortsighted decisions while a MPC problem with 

long prediction horizon may be computationally demanding. One possible solution to 

this problem is adding a terminal cost function [96] [98]. However, the design of the 

terminal cost function depends on heuristics or empiric experience. 

2.3.6 Instantaneous Optimization Based Control Strategy 

For energy management approaches, it is desired to have accurate predicted 

information of the future power demand and trip information. However, it is not easy 

to acquire the accurate power demand profiles in advance because the vehicle 

movement relies on many factors, such as the traffic on the road or the driving pattern 
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of driver. To solve an energy management problem with no future operating 

information available, Choi et al. [99] [100] [101] formulate an instantaneous 

optimization problem for a battery-UC HESS power split problem. The optimal 

power split between the battery and UC is computed at each instant. 

In order to utilize the UC efficiently, the UC should be charged or discharged 

properly. For example, the UC SoC needs to be high before the electric machine 

requires a large propulsion power. Otherwise, the UC may not provide the requested 

peak power. It is also desired to set the UC SoC at a relatively low value before there 

is regenerative braking. Otherwise, the UC may not receive or recover the 

regenerative braking energy properly. As it is hard to expect the future power demand 

profile, a simple strategy [100] is used to adjust the UC SoC according to the vehicle 

speed (denoted as vs): When vs is high, UC should be operated in a low SoC range in 

order to capture the regenerative braking energy as much as possible. On the contrary, 

the UC SoC needs to be high if the vehicle speed vs is low because an electric 

machine may require a large peak power for future accelerations when the vehicle is 

at low speed. Especially, the electric machine usually requires a large power when the 

vehicle speed increases from zero. Thus, a reference UC voltage ref

ucV is adjusted 

using the following equation. 

,min ,max

, ,max

,max


 uc uc

uc ref s uc

s

V V
V v V

v
    (2.7) 

where 
,minucV  and 

,maxucV are the boundary of the UC voltage values and 
,maxsv  is the 

maximum vehicle speed. The UC reference voltage is repeatedly computed and 
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updated according to the real-time vehicle speed. This UC reference voltage value is 

used in the instantaneous optimization problem as a given parameter. In the proposed 

optimization problem, the objective function is to minimize a sum of the battery 

current magnitude, the battery current fluctuation and the difference or gap between 

the UC voltage and the corresponding reference voltage value. In [99], a convex 

optimization problem is formulated, which can be repeatedly computed by general 

solvers in polynomial time.  

The advantage of this instantaneous optimization based control strategy is that it 

does not depend on the future vehicle operating profile. However, to ensure that UC 

can provide or receive sufficient power at each instant, the UC reference voltage is set 

based on experience, which is not guaranteed to be optimal. 

2.3.7 Neural Networks Based Control Strategy   

NN has the capacity to represent or emulate human knowledge and take 

intelligent decisions. The NNs have been widely applied to system identification, 

process control, prediction, diagnosis, etc [42].  

  An efficient energy management system for HEV, using NNs is developed and 

tested in [42]. In this work, an auxiliary energy system (AES) is used in an HEV to 

receive regeneration and give peak power during high acceleration periods. The use 

of AES allows using energy systems (gas turbines, fuel cells, etc.) with lower power 

ratings or with power ratings that close to the average power consumption. In the 

AES adopted in [42], batteries are used as the "main source" while UCs are used as 

the "auxiliary source". It is essential to develop an energy management system to 
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control the power flow between these two sources. An optimization problem is 

formulated to minimize the battery discharge. A numerical solution to this 

optimization problem is derived to find the optimal path for the UC current. In order 

to obtain a simple implementation of the control strategy, in real-time, NN is utilized 

on system identification to approximate the optimization function of the UC current. 

As a first step to built the NN, various city drive datasets are resolved based on the 

optimal control obtained from numerical solutions, generating the required input and 

output data for NN training. The current demand and power demand of the AES are 

used as the NN input, together with the vehicle speed and the kinetic energy. The data 

output of the NN is the ideal UC current output. The trained NN is implemented and 

tested using an urban test course. It is shown that the AES, using the optimal control 

implemented with NNs, can improve the system efficiency.   

NN is also applied to learn the energy management optimization with specific 

roadway types and traffic congestion levels in [102] [103]. In this work, NNs are 

trained to predict the roadway type and traffic congestion levels. Different NNs are 

trained to predict driving trends and to learn the optimal engine speed and optimal 

battery power command.  

First of all, 11 standard drive cycles, called facility-specific (FS) cycles, are used 

as the standard measure of roadway type and traffic congestion levels. These cycles 

represent passenger car and light truck operations over a broad range of facilities and 

congestion levels in urban areas. A multilayered and multiclass NN, for the prediction 

of roadway types and traffic congestion levels is constructed and trained using these 
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FS cycle data. The output of this NN is the predicted roadway type and traffic 

congestion level.  

Another NN is developed for predicting the driving trend at any given time step. 

The NN is trained based on the average speed, maximum speed, minimum speed, 

average acceleration during a past time period window. The vehicle speed at the start 

and end point of this past time period window is also used as the NN input. The 

output of the NN is the vehicle driving trend, which is defined into five classes: "No 

Speed", "Low Speed Cruise", "High Speed Cruise", "Acceleration" and 

"Deceleration". With this NN, the driving trend can be obtained based on the driving 

history data. 

The next step is to construct an NN to learn the optimal power split results. In this 

work, the optimal power split between the battery and engine is obtained for each FS 

cycle, with the optimal power split and settings associated with each specific roadway 

type and traffic congestion level. The optimal sequence of the two control variables, 

i.e., engine speed and the battery power are used as the training data for NNs. Two 

sets of NN (
eng

iNN , 
bat

i

PNN ) are developed to learn the engine speed and the battery 

power respectively,  for each of the 11 FS cycle roadway type and congestion levels 

with i = 1, 2, ... 11. 
bat

i

PNN  is used to predict the battery power with the NN inputs of 

vehicle speed, driving trend, battery SoC, and the total power demand. 
eng

iNN is used 

to predict the optimal engine speed with the input of vehicle speed, battery SoC and 

the total power demand. Based on these NNs, an intelligent online power controller is 

developed and presented in [103]. 
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In addition, NN based method is applied in similar energy management problems 

[37] [43] [104] for vehicle applications to obtain the real-time implementation of the 

power split control strategies. The use of NN in energy management problem is very 

efficient and effective for real-time implementations. 

The pros and cons of the main energy management strategies have been 

summarized in Table 2.2. 

Table 2. 2 Characteristics of Energy Management Control Strategies. 

Energy 

Management 
Advantages Disadvantages References 

Rule-based 

(1) Simple implementation 

(2) Computational efficiency 

(3) Real-time implementable 

(1) Dependent on 

heuristics 

(2) Do not provide 

optimal control 

[60] [61] 

Fuzzy logic 

(1) Robust and good with 

model uncertainties and state 

variations 

(2) Real-time implementable 

(1) Dependent on 

heuristics 

(2) Do not provide 

optimal control 

[66] [67] 

[68] 

Dynamic 

programming 

(1) Guarantees the global 

optimal solution for energy 

management optimization 

problem 

(1) DP is not real-time 

implementable. 
[74] [81] 

Stochastic 

Dynamic 

Programming 

(1) Generate a time-invariant 

control policy. 

(2) Has ability to optimize a 

(1) state-action pairs are 

only defined for states 

that were previously 

[82] [83] 

[84] [85] 
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power split problem for a 

probabilistic distribution of 

drive cycles, rather than a 

single specific cycle. 

observed. 

(2) May have memory 

storage issues for SDP 

implementations. 

Model 

predictive 

control 

(1) Has potential for real-time 

implementations; 

(2) Easy to handle constraints 

directly in the design 

procedure. 

(1) May compromise 

model accuracy by 

using linearized model. 

(2) May need large 

memory for heavy 

computations 

[98] 

Neural 

networks 

(1) Robust responses to new 

input information and 

different load demand profiles 

(2) Real-time implementable 

(1) Require proper 

training input and a 

proper training 

procedure in the neural 

network design 

(2) It does not guarantee 

optimality. 

[105] 

2.4 Summary 

In this chapter, the main HESS topologies have been discussed and compared 

comprehensively for the battery-UC HESS applications. The HESS sizing 

methodologies are introduced and discussed. It is concluded that the interdependence 

between the energy management control strategy and the sizing of different energy 

sources should be taken into account. 
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The energy management strategies for hybrid energy systems have been 

extensively discussed and classified into seven main categories, including rule-based 

methods, fuzzy logic methods, global optimization, stochastic dynamic programming, 

model predictive control, instantaneous optimization and neural network based 

methods. The advantage and disadvantage of each energy management control 

strategy is discussed. 
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Chapter 3: Optimal Sizing of a Battery-UC Hybrid Energy 

Storage System for EV applications 

This chapter targets the interdependence between sizing and power split 

optimization of HESS in EVs. In particular, a high energy density battery with an UC 

hybrid system is investigated as a benchmark. A convex optimization problem is 

formulated to optimize the power split between battery and UC offline. Based on this 

simplified power split optimization, a HESS sizing optimization problem is 

developed to minimize the HESS weight and to fulfil the EV specifications of driving 

range and acceleration time. It shows that the benefit of size/weight reduction is more 

effective for EV with relatively low or median range. For EV with extended driving 

range, the improvement of acceleration time is more impressive using the battery-UC 

HESS. 

This chapter is organized as follows: in Section 3.1, the HESS power split 

optimization is formulated as a convex optimization problem; in Section 3.2, the 

interdependence between sizing and power split optimization is investigated and a 

comprehensive sizing analysis is conducted. Furthermore, HESS sizing for EV with 

different specifications is discussed. Finally, the contribution of this work is 

summarized in Section 3.3. 
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3.1 HESS Power Split Optimization 

UC packs can supply the high power demand to alleviate the stress on battery 

packs and contribute to battery life extension. To explore the maximum benefit of a 

HESS, an optimization-based power split problem is formulated as described below. 

The objective of power split is to share the load power demand into the battery 

power and the UC power. To achieve the optimization objective, the power split is 

designed to reduce the overall battery power magnitude and to avoid high peak 

charging/discharging power to/from the battery. The battery cycle life can be 

extended due to the reduced battery current rate.    

3.1.1 Problem Formulation for the Power Split Optimization   

An offline optimization problem is formulated based on specific driving cycles. 

The load power demand schedule {Pdmd (k), k = 1, 2, ..., N} is discretized with the 

sampling time of ∆T = 1 second. At each time step k, the sum of the instantaneous 

battery and UC power equals to the load power demand. 

( ) ( ) ( ), 1, 2, ...,     bat uc dmdP k P k P k k N    (3.1) 

The UC energy is related to UC power as shown in Eq. (3.2). 

( 1) ( ) ( ) , 1, 2, ...,        uc uc ucE k E k P k T k N    (3.2) 

Note that Puc(k) is the instantaneous UC output power at time step k. It is assumed 

that the discharging power is positive and the charging power is negative. It is also 

assumed that Puc(k) remains constant from time step k∆T to (k+1)∆T.  
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The UC energy is related with the UC voltage as, 

 21
( ) ( ), 1, 2, ...,

2
    uc ucE k CV k k N     (3.3) 

where, C is the equivalent UC pack capacitance. 

The UC energy storage is constrained by its maximum storable energy limits 

Euc,max and the minimum allowable energy Euc,min, as shown in Eq. (3.4). 

 
, min , max( ) , 1, 2, ...,      uc uc ucE E k E k N     (3.4) 

Thus, Euc(k) - Euc,min is the usable energy from UC at time step k.  

Given the number of UC cells, the initial energy in a UC is given as a constant 

value of Einit.  

 (1)uc initE E       (3.5) 

To ensure a successful power split, the instantaneous UC power is limited by its 

maximum discharging and charging power at each time step k, as in Eq. (3.6).  

 
,min ,max( ) ( ) ( ), 1, 2, ...,     uc uc ucP k P k P k k N    (3.6) 

 If the UC internal resistance is neglected in an ideal condition, the UC max 

discharging/charging power can be expressed by Eq. (3.7) and Eq. (3.8).   

 
,max ,maxuc uc ucP V I      (3.7) 

 
,min ,minuc uc ucP V I      (3.8) 
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Iuc,max (>0) is the maximum discharging current that can be delivered by UC and Iuc,min 

(<0) is the maximum charging current. The maximum discharging/charging currents 

are determined by the UC characteristics [106]. 

The decision variable in this optimization problem is the UC power vector 

PucR
N
. A quadratic function of the decision variable is designed as the objective 

function, shown in Eq. (3.9). 

 
2

0 2
( )uc dmd ucf P P P       (3.9) 

The power split optimization problem is formulated as below.  

 
 N

ucP R
Minimize   f0 (Puc)     (3.10) 

        s.t.  

 
T

uc init ucE E B P       (3.11) 

,min ,max( ) , 1, 2, ...,     uc uc ucE E k E k N   (3.12) 

,max( ) 2 ( ) / , 1, 2, ...,    uc uc ucP k I E k C k N   (3.13) 

,min( ) 2 ( ) / , 1, 2, ...,    uc uc ucP k I E k C k N   (3.14) 

where, B
T
R

(N+1)×N
 is a given constant matrix. Eq. (3.11) computes the UC energy 

EucR
N+1

 over the horizon of a given drive cycle. The constraint functions in Eq. 

(3.12) limit UC energy storage within an usable range. The last two constraints limit 

the UC power by its physical limitations. 
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3.1.2 Convex Optimization  

The objective function in Eq. (3.9) is a quadratic convex function. The first 

equality constraint is linear (affine) and the second constraint is a linear inequality 

equation. The last two inequality constraints are convex with their second-order 

derivative on Puc always positive. Thus, the problem formulation as shown in Eq. 

(3.10) - Eq. (3.14) is a convex optimization problem. This problem can be solved 

efficiently using the MATLAB software CVX [107] [108]. Despite its simple 

formulation, this optimization problem provides effective power split which can 

result in battery power reduction and peak shaving. 

3.2 HESS Sizing Optimization and Analysis 

The HESS sizing optimization problem is to find an optimal combination of (Nbat, 

Nuc) to minimize the HESS weight and to fulfill all the EV specifications in terms of 

range, acceleration time, etc. With an increasing number of UC cells, the benefit of 

battery power shaving can be enhanced in tradeoff with the increased HESS weight. 

In order to make a comprehensive comparison, the battery-only ESS is analyzed first 

with the assumption of Nuc = 0. 

3.2.1 Battery-only ESS Sizing Optimization 

The battery-only ESS sizing optimization problem is formulated in Eq. (3.15) – 

Eq. (3.19). In a battery-only ESS, the battery pack is directly connected to DC bus 

with the input voltage range from Vdc,min to Vdc,max. This voltage range constrains the 

battery pack terminal voltage that is dependent on the number of series-connected 

battery cells Nb,ser, in Eq. (3.16) and Eq. (3.17).  
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The sizing optimization problem is formulated to minimize the number of battery 

cells that can satisfy the transient power requirements and the energy needs imposed 

by range requirements, as given in Eq. (3.18) and Eq. (3.19). The maximum storable 

energy in one battery cell is denoted as Eb,cell. The maximum discharge power of 

batteries and UC cells are denoted as Pb,cell,max and Puc,cell,max.  

 
batN

Minimize


  Nbat ∙mb,cell     (3.15) 

   s.t.  

, ,minbat ser bat dc
V VN       (3.16) 

, ,maxbat ser bat dc
V VN       (3.17) 

  
, ,max ( ), 1, 2,...,    bat b cell dmdN P P k k N   (3.18) 

 
, ( ), 1, 2,...,    bat b cell dmd

k

N E P k k N   (3.19) 

Fig. 3.1 shows the optimal sizing result for high energy density and high power 

density battery-only ESS under UDDS drive cycles for different range specifications. 

To deliver the same range, it requires a much larger number of high power density 

batteries in comparison to the high energy density batteries due to their different 

energy densities. 
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Figure 3.1 (a) High energy density battery-only ESS optimal sizing; (b) High Power 

battery-only ESS optimal sizing. 

As shown in Fig. 3.1(a), the power and energy constraints give different lower 

bounds on the high energy density battery cell number. For an EV with all electric 

range less than 140 miles, oversized high energy density batteries are used to satisfy 

the power requirements. In this case, there is a chance to reduce the battery size by 

hybridizing them with UCs, which can lower the load power requirement on batteries. 

With the optimal power split, this load power requirement on batteries can be 

reduced. Thus, the number of battery cells can be reduced. 



59 

 

Notice that UDDS drive cycle with a high percentage of regenerative braking is 

considered in this simulation case. Therefore, the energy storage requirement on 

battery may be underestimated in this sizing analysis. 

3.2.2 Battery-UC HESS Sizing Optimization 

3.2.2.1HESS Sizing Optimization (Case 1: EV range≤ 140Miles) 

Similar to the battery-only ESS sizing problem, the HESS sizing optimization 

problem is formulated to minimize the HESS weight, in Eq. (3.20) - Eq. (3.23). 

,bat ucN N
Minimize

 
  Jm(Nbat,Nuc) = Nbat ∙mb,cell + Nuc ∙muc,cell  (3.20) 

   s.t. 

, ,max ( ), 1, 2,...,    bat b cell batN P P k k N    (3.21) 

, ,max ( ), 1, 2,...,    uc uc cell ucN P P k k N    (3.22)

, ( ), 1, 2,...,    bat b cell dmd

k

N E P k k N    (3.23) 

where, Pbat(k) and Puc(k) are determined by the optimal power split.  

In this case, the battery power reduction and peak shaving effect is influenced by 

the number of UC cells. A combined HESS sizing and power split optimization 

objective can be defined to find the pareto points between Jm(Nbat,Nuc) and f0 (Puc) as 

shown in Fig. 3.2. In this case, a 160 battery cells are used with the energy storage of 

22.4kWh which can provide a low to median driving range. Different number of UC 

cells are integrated into the ESS. 
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Figure 3.2 (a) Values of Jm(Nbat, Nuc) and f0 (Puc); (b) Pareto points. 

Fig. 3.2(a) shows that an increasing number of UC cells results in a larger HESS 

weight Jm(Nbat,Nuc) and a lower value of the power split objective function f0 (Puc). 

Notice that the total weight of the battery-UC HESS in a real vehicle will be much 

heavier than the result of Jm(Nbat,Nuc) as a packing factor over 1.5 is reasonable in 

realistic situations.  

Fig. 3.2(b) plots the pareto frontiers in objective function domain to show the 

trade-offs between HESS sizing and power split objective. Based on the results, the 

EV manufacturers can make decisions on how to achieve the best trade-offs between 
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the battery-UC weight and the power split goals of the battery peak shaving, 

according to different EV design requirements.  

3.2.2.2 HESS Sizing Optimization (Case 2: EV range>140Miles) 

For EVs with high AER specifications, a HESS shows no advantage in weight 

reduction since a large number of batteries are always required to deliver such a long 

driving range. To explore the benefit of HESS for high range EV, the AER and power 

performance (acceleration time) at different combinations of (Nbat, Nuc) are discussed.  

The EV acceleration time from 0 to 60mph is evaluated with the assumption that 

HESS delivers a continuous power at its maximum power value during the 

acceleration time. This maximum continuous power is dependent on the number of 

battery and UC cells as the more energy storage components and power sources, the 

more propulsion power can be provided by the vehicle. With more energy storage 

components, the vehicle mass is also increased. Thus, a heavier vehicle will have a 

larger power requirement when the vehicle is accelerated to the same target speed.  

In this work, a midsize EV model from the Autonomie software is used [109]. 

The sizing influence on the EV range and its acceleration time from 0 to 60mph is 

investigated. Given a combination of (Nbat, Nuc), the corresponding range and 

acceleration time are estimated. The estimation results are shown in Fig. 3.3. 
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NbatNuc(a)
 

NbatNuc(b)
 

Figure 3.3 (a) EV Range vs. (Nbat, Nuc); (b) Acceleration time vs. (Nbat, Nuc). 

Based on Fig. 3.3, the optimal HESS sizing for EV with specific range and 

acceleration time can be determined. For example, to build a high performance EV 

with AER of 160 miles and acceleration time within 6.5s, two horizontal planes at 

160 miles range and 6.5s acceleration time are set to form intersections with the plots 

and determine the feasible region of (Nbat, Nuc). The optimal HESS sizing is attained 

when Jm(Nbat,Nuc) reaches the minimal value in this feasible region. For these 

particular EV specifications, the optimal HESS sizing is achieved at (Nbat=275, 

Nuc=101) with the minimal battery/UC cell weight of Jm(Nbat,Nuc)=283.86kg.  
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In light of this analysis, the HESS optimal sizing are determined for different EV 

specifications with ranges from 100 to 220 miles and acceleration times from 6 s to 

10 s. The optimal HESS weight (only the weight of the battery and UC cells) is 

shown in Fig. 3.4. The optimal combination of (Nbat, Nuc) is given in Fig. 3.5.  
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Figure 3.4 HESS optimal sizing at different range / acceleration time specifications. 
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Figure 3.5 (a) Nbat at optimal HESS sizing; (b) Nuc at optimal HESS sizing.  

Fig. 3.5 reveals the simulation results for HESS optimal sizing design. A smaller 

energy storage system has less power for vehicle acceleration. Therefore, it requires a 

longer period of acceleration time to reach the target speed. With a more strict 

specification on acceleration time, it requires more UC cells. Thus, for EVs with large 

range and small acceleration time specifications, a HESS with a large UC pack shows 

benefits in sizing optimization [110]. 

3.3 Summary 

In this chapter, an ESS sizing problem and a convex optimization-based power 

split problem are combined and investigated. The results show that the hybridization 

of UCs with high energy density batteries can achieve high power capabilities and 

large energy storage at the same time with smaller size and weight in comparison to 

the high power density battery-only ESS counterpart. This chapter also reveals that 

the benefit of size reduction by HESS is very effective for EVs with median driving 

ranges. For large range EVs, HESS provides good trade-offs between high driving 
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range and fast acceleration. In particular, for a high performance EV with strict 

specifications of acceleration time, more UC cells are required in a HESS for optimal 

sizing and improved power performance. 

 The main contribution of this chapter is to introduce a systematic approach to 

optimize the HESS sizing which takes the interdependence between the HESS energy 

management and sizing into account. Following this systematic approach, the HESS 

design can be evaluated in terms of the sizing and the power split objectives 

simultaneously. This HESS sizing approach can be adapted to different optimization 

objectives, vehicle models, HESS energy management strategies and design 

variables. 
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Chapter 4: A Supervisory Energy Management Control Strategy 

in a Battery-Ultracapacitor Hybrid Energy Storage System 

One of the major challenges in a battery-UC HESS is to design a supervisory 

controller for real-time implementation that can yield good power split performance. 

This chapter presents the design of a supervisory energy management strategy that 

optimally addresses this issue. In this work, a multi-objective optimization problem is 

formulated to optimize the power split in order to prolong the battery lifetime and to 

reduce the HESS power losses. In this HESS energy management problem, a detailed 

DC-DC converter model is considered to include both the conduction losses and the 

switching losses. The optimization problem is numerically solved for standard drive 

cycle datasets using DP. Trained using the DP results, an effective and intelligent 

online implementation of the optimal power split is realized based on neural 

networks. The proposed online intelligent energy management controller is applied to 

a midsize EV. The proposed online energy management controller effectively splits 

the load demand and achieves excellent result of the system efficiency. It is also 

estimated that the proposed online energy management controller can extend the 

battery life by over 60% under New York drive cycle as the daily commute 

assumptions, which greatly outperforms rule-based control strategies. 

In this chapter, Section 4.1 provides a system-level model of HESS, including the 

efficiency model of the bi-directional DC-DC converter that interfaces the UC pack 

with the battery pack. A multi-objective optimization problem is formulated in 

Section 4.2 and solved using DP. Section 4.3 presents the developed NN for the 
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online energy management. The battery SoH improvement of both the offline and 

online optimization results are evaluated in Section 4.4. Finally, this chapter is 

summarized in Section 4.5. 

4.1 HESS Model 

This section describes the models used in the HESS including the battery pack, 

the UC pack and the bi-directional DC-DC converter. The propulsion machine and 

inverter group is modeled as a current source connected to its DC bus, which draws 

the current determined by the drive cycle profiles. In this work, we use the drive cycle 

information from the Autonomie software developed by Argonne National Lab.  

In the designed HESS, a bi-directional DC-DC converter is used to interface the 

UC to the DC bus. Different HESS topologies have been discussed extensively in [6] 

[32]. In this work, we adopt the topology of Fig. 4.1.  
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M
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Dc-dc Converter
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Figure 4.1 Bi-directional DC-DC converter in the HESS. 

This bi-directional DC-DC converter is composed of an inductor L, two power 

MOSFETs S1 and S2, and two body diodes D1 and D2. The low-side voltage of the 
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DC-DC converter is equal to the UC voltage Vuc; and the high-side voltage is the 

battery voltage Vb. Decoupled from the DC bus, the UC voltage can swing in a wider 

range; thus, it can improve the utilization of UC.  

The circuit models of the HESS components are shown in Fig. 4.2. The following 

sections describe the HESS modeling based on these circuit models. 

Rj

Vj,oc

Ij
+
- Vj

=

UCBat(a)

L RL

(b) (d) VD

RD

=

(c)

RSW=

Rj

C

Ij Vj

 

Figure 4.2 The model of (a) battery/UC; (b) inductor; (c) MOSFET; (d) body diode. 

4.1.1 Battery/UC Model 

The battery/UC circuit model is shown in Fig. 4.2(a). The voltage source Vj,oc 

represents the open-circuit voltage for battery/UC and Rj is the internal resistance, 

with j = {b, uc}. In this work, the battery open-circuit voltage Vb,oc is assumed 

constant during one drive cycle. This is because the battery has a flat discharge curve 

in the usable discharge range from 90% SoC to 30% SoC. This work uses a pack of 

K2 Energy battery cells with the energy storage of 34kWh. One hundred BCAP 2000 

UC cell from Maxwell Technology are connected in serial as the UC pack of 203Wh 

energy storage. This 34kWh battery pack weights 324kg and the UC pack weights 

36kg. The battery pack volume is 145 Liter while the UC pack is 29.2Liter. Given a 
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packing factor of 1.4, the total mass of the battery-UC HESS is 504kg with 244Liter 

volume. The battery and UC cell characteristics are listed in Table 4.1. 

Table 4.1 Battery and UC cell characteristics. 

Specifications Battery UC 

Nominal voltage (V) 3.2 2.7 

Nominal capacity (Ah) 2.6 N/A 

Rated capacitance (F) N/A 2000 

Energy storage (Wh) 8.5 2.03 

Weight (kg) 0.0805 0.36 

4.1.2 Bi-directional DC-DC Converter Model 

The bi-directional DC-DC converter works in two different operation modes, as 

Boost mode and Buck mode. The Boost and Buck operation modes are shown in Fig. 

4.3 with the current direction indicated.   
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Figure 4.3 The DC-DC converter operation modes. (a) and (b) are in Boost mode, and 

(c) and (d) are in Buck mode. (a) S2 is on and D1 is off; (b) S2 is off and D1 is on; (c) 

S1 is on and D2 is off; (d) S2 is on and D2 is on. 

In Boost mode, the bi-directional DC-DC converter transfers energy from UC to 

the DC bus by triggering the power MOSFET S2; in Buck mode, the UC pack 

captures the regenerative braking energy from DC bus through bi-directional DC-DC 

converter by triggering the power MOSFET S1.  

The equivalent circuit model of each component shown in Fig. 4.2. The 

inductance of the inductor is represented as L and the inductor winding resistance is 

represented by RL. The inductor current is IL, which is equal to the UC current Iuc. The 

MOSFET is modeled by the on-resistance RSW in its conducting state as shown in Fig. 

4.2(c). The body diode is modeled by a resistance RD and a voltage source VD 

representing the voltage drop across the forward-biased diode in its conducting state 

as shown in Fig. 4.2 (d). The output capacitance of the DC-DC converter is C and Vc 
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denotes the voltage across. With these circuit parasitic included, a state space average 

model is analyzed as below [111].  

(1) Boost Mode of Operation: 

The equivalent circuit model of the converter at boost mode of operation is shown 

in Fig. 4.4. When the gate drive signal of S2 is high, S2 turns on and the diode D1 is 

reverse-biased. The equivalent circuit in this condition is shown in Fig. 4.4 (a). 
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Figure 4.4 Boost Mode. (a) S2 is on and D1 is off; (b) S2 is off and D1 is on. 

The steady state differential equation for the circuit of Fig. 4.4(a) is, 
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 (4.1) 

When the gate signal of S2 is low, S2 turns off. The diode D1 becomes forward-

biased by the inductor current. The equivalent circuit is shown in Fig. 4.4(b). The 

differential equation for this circuit is, 
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   (4.2) 

For steady-state analysis, we have the inductor volt-balance equation and the 

capacitor charge balance equation as Eq. (4.3) and Eq. (4.4), 

 
0

0
sT

Lv t dt      (4.3) 

 
0

0
Ts

ci t dt       (4.4) 

where, Ts is the switching period of the DC-DC converter, vL(t) = L
      

  
 is the 

inductor voltage, ic(t) is the current in the output capacitor with ic(t) = C
      

  
.  

Based on the inductor volt-balance equation and the capacitor charge balance 

equation, the average capacitor voltage Vc and the duty cycle Dboost of the DC-DC 

converter can be solved by integrating the Eq. (4.3) and Eq. (4.4) with state variable 

X =  
   

  
 ,  
   

  
  over one switching period, for the two switching intervals as DboostTs 

and (1-Dboost)Ts.  

The obtained average capacitor voltage is, 

 , 1  c b oc boost b L b dmdV V D R I R I        (4.5) 
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Based on the capacitor charge balance equation, the relationship between the 

input and output currents is derived in Eq. (4.6), 

 1conv boost LI D I        (4.6) 

The boost duty cycle Dboost, in the range of (0, 1), is then obtained by integrating 

the Eq. (4.4) over one switching period, 

 , 12

2

b oc D dmd b L D sw b

boost

L b

V V I R I R R R
D

I R

      
   (4.7) 
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      

       
  (4.8) 

(2) Buck Mode of Operation: 

The bi-directional DC-DC converter circuit model in Buck mode is shown in Fig. 

4.5. 
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Figure 4.5 Buck Mode. (a) S1 is on and D2 is off; (b) S2 is on and D2 is on. 
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When the gate drive signal of S1 is high, MOSFET S1 turns on and the diode D2 is 

reverse-biased. The circuit then reduces to Fig. 4.5(a). When S1 turns off, D2 is 

forward-biased and the equivalent circuit is shown in Fig. 4.5(b). The differential 

equation Eq. (4.9) and Eq. (4.10) are derived for these two switching intervals in Fig. 

4.5(a) and Fig. 4.5(b) based on steady-state analysis. 
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   (4.10) 

Based on the steady-state analysis as describe above, the average value of Vc is 

obtained as, 

,c b oc buck b L b dmdV V D R I R I       (4.11) 

The input and output currents relationship is, 

conv buck LI D I      (4.12) 

The duty cycle Dbuck in the range of (0, 1) is, 
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 , 2

2

b oc D dmd b L sw D

buck

L b

V V I R I R R
D

I R

      
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4.1.3 Power Losses in HESS 

In this study, the conduction and switching losses of the DC-DC converter are 

considered for both Boost and Buck modes. The DC-DC converter conduction losses 

is, 
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 (4.15)  

The DC-DC converter switching losses is,  

  2

,

1 1

2 2
sw loss s c L r f c oss t g c rrP f V I t t V C QV V Q

 
     

 
  (4.16) 

Here, fs is the switching frequency. tr and tf denotes the rise-time and fall-time 

transitions of MOSFETs during switching periods. Coss is the output capacitance of 

MOSFET. Qt is the gate charge due to charging the gate capacitance by gate voltage. 

Qrr denotes the reverse recovery charge. The part parameters for DC-DC converter 

are shown in Table 4.2. 
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Table 4.2 Parameters for DC-DC converter. 

Parameter Symbol Value Unit 

Inductor winding resistance RL 10 [mΩ] 

Switch on resistance Rsw 43 [mΩ] 

Body diode resistance RD 40 [mΩ] 

MOSFET rise-time tr 13 [ns] 

MOSFET fall-time tf 12 [ns] 

MOSFET output capacitance Coss 1860 [pF] 

Gate charge Qt 490 [nC] 

Gate voltage Vg 30 [V] 

Reverse recovery charge Qrr 2 [μC] 

Considering both the conduction losses and switching losses, the DC-DC 

converter efficiency is evaluated for both operation modes as, 
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  (4.17) 

Using the part parameters for DC-DC converter as given in Table 4.2, the 

efficiency maps for both Boost mode and Buck mode are demonstrated in Fig. 4.6.  
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Figure 4.6 (a) The efficiency map of the DC-DC converter in Boost mode; (b) the 

efficiency map of the DC-DC converter in Buck mode. 

In this efficiency map, the UC current value range is from 5A to 200A and the UC 

open-circuit voltage varies from 135V to 270V. It can be observed that the DC-DC 

converter has lower efficiency when it operates at light-load condition. The total 

power losses in HESS is the sum of power losses in the bi-directional DC-DC 

converter and in the battery/UC as, 

2 2

, ,loss dc loss sw loss b b uc ucP P P I R I R        (4.18) 
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4.2 HESS Energy Management Problem Formulation 

The HESS energy management problem is to effectively split the load demand 

between battery and UC. The driving schedule {vs(k), k = 1, 2, ..., N}, and the load 

demand current {Idmd(k), k = 1, 2, …, N} are known as a priori for offline 

optimization problem. This optimization problem is a multi-step decision problem: at 

each time instant, one decides the demand current split for battery and UC for the 

next time step, to achieve the minimum objective value while satisfying the 

constraints. To find the optimal control sequence, DP algorithm is applied to solve the 

problem. 

4.2.1 Objective Functions 

Two cost functions are considered in the HESS energy management problem as, 

   ,max1 , 1,2, ,( ) ...    los sl sosf kk Pk P N     (4.19) 
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 
  

b b b

b b

I k I k I k N
f k

I k I k

 (4.20) 

Here, both cost functions are normalized because the scales of these two cost 

functions are different. The value of Ploss,max   is set to 2000W and the ΔIb,max is set to 

20A. Minimizing the objective function, f1, results in reduced power losses. 

Minimizing the objective functions f2 will result in the battery current 

magnitude/variations reduction, which in turn will prolong the battery lifetime. The 

optimization problem, as given in Eq. (4.21), is to minimize a weighted sum of these 
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two functions over the entire drive cycles, while satisfying several constraints for 

each time step. 

    1 1 2 2

1

N

k

w f k w f k


      (4.21) 

Here, w1, w2 ≥ 0 are the weight factors of the two cost functions.  

4.2.2 Problem Formulation 

In this optimization problem, the DC-DC converter output current is chosen as the 

control variable. The battery current can be obtained based on the load demand 

current conservation equation as, 

     , 1, 2,...,    b dmd convI k I k I k k N    (4.22) 

The UC current, which is equal to IL, can be derived based on the state space 

average model of the bi-directional DC-DC converter as,  
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 (4.23) 

The constraints in this problem include the limits on the battery/UC current and 

voltage operation ranges, 

 , min , max  b b bI I k I    

 , min , max  uc uc ucI I k I   
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  , min , max , 1, ...,      uc uc ucV V k V k N   (4.24) 

where the subscripts of min and max denote the minimum and maximum value of 

each variable.  

Thus, the optimization problem is formulated as, 

Minimize
 N

convI R

  Eq. (4.21)    (4.25) 

    . .s t  Eq. (4.22) - Eq. (4.24) 

4.2.3 Dynamic Programming 

In this optimization problem, the control variable Iconv is denoted as μ. The 

objective f2(k) at time step k involves both Ib(k) and Ib(k-1). While Ib(k) is determined 

by the control value μ(k) at time step k; Ib(k-1) depends on the previous control 

value. To fit within the standard dynamic programming model, we make Ib(k-1) a 

state variable x1(k). In view of Eq. (4.22), we have, 

       1 1 , 1, ...,       b dmdx k I k I k k k N    (4.26) 

which we write more compactly as, 

    1 11 , 1,2, ...,     kx k g k k N     (4.27) 

where the subscript k reflects the dependence on Idmd(k). 
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Next, to allow for the constraint Eq. (4.24) on the UC voltage, we make the UC 

state-of-charge SoCuc a second state variable, x2.  The associated state equation is 

written as, 

      2 2 21 , , 1,2, ...,     kx k g x k k k N   (4.28) 

Eq. (4.27) and Eq. (4.28) are grouped into a 2-dimensional state equation. 

      1 , , 1, ...,     x k g x k k k N    (4.29) 

where x(k) = [x1(k), x2(k)]. We re-write the objective function Eq. (4.21) compactly as, 

      
1

,
N

k

k

J J x k k 


      (4.30) 

where μ denotes the N-vector μ(k), k=1,2,..., N. The subscript k in Jk reflects 

dependence of f1(k) on Idmd(k). The constraints in Eq. (4.24) are generalized on x and 

μ as, 

    , 0, 1, ...,      k x k k k N     (4.31) 

A cost-to-go function, Vτ(ξ), is constructed for each time step τ and each state 

level ξ = [ξ1, ξ2]. This cost-to-go function keeps track of the minimum objective 

function value that can be achieved when the initial time is τ and the initial state is ξ. 

With this cost-to-go function, the optimal control decision at time τ and the state ξ can 

be found, according to Bellman’s principle of optimality, 
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This cost-to-go function is recursively evaluated using backwards induction from 

τ = N to τ = 1 and for all the states xR
2
. The optimal decision at time τ with state ξ is 

obtained as, 

     1( ) arg m n , ,i
u U

g uVuJ


    


     (4.33) 

where Uτξ, the set of admissible controls at time τ and state ξ, is given by, 

   : , 0U u u          (4.34) 

4.2.4 DP Implementations and Optimization Results  

To implement DP, we first discretize the state variable of x1(k). The feasible area 

of the battery current is set by the bounds of Ib,max and Ib,min. This area is mapped onto 

a fixed grid with grid size of ΔIb, such that q+1 discrete state levels are considered, 

,max ,minb b

b

I I
I

q


         (4.35) 

Similarly, the state variable of x2(k) is discretized. A feasible area of SoCuc is set 

by the bounds of SoCuc,max and SoCuc,min. This area is mapped onto a fixed grid with 

grid size of ΔSoCuc, such that exactly m+1 state levels are considered, 

,max ,minuc uc

uc

SoC SoC
SoC

m


       (4.36) 

Problem in Eq. (4.33) is then solved as follows.  
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First, at each step τ, Vτ (ξ) is computed for state ξ in the finite set Ξ = {[ξ1, ξ2]: 

ξ1{ ξ1
1 
, ... , ξ1

q+1
 }, ξ2{ ξ2

1 
, ... , ξ2 

m+1
 }}. Second, for each state ξΞ, the minimization 

with respect to μ is performed over the finite set Ũ = {μ
1
, ..., μ

q+1 
} by evaluating the 

right-hand side of Eq. (4.33) at each grid point. Third, in effecting this minimization, 

g(ξ, μ) is replaced by its nearest point (coordinate-wise) in Ξ.   

As a result, this computation generates a table containing, the optimal control 

μτ(ξ) for each time step τ=1,2,..., N, and each state ξΞ. In the simulation, this table is 

invoked to give the optimal control decision at each current state with the state value 

rounded to its nearest point in Ξ. 

The flowchart of the DP algorithm is shown in Fig. 4.7. 
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Figure 4.7  The flowchart of DP implementation. 

As shown in Fig. 4.7, there are three iteration loops in this DP algorithm. The 

algorithm starts backwards iteration from time k=N to k=1. At each time step, the 

cost-to-go function is updated based on the control variable iteration results at each 

state by minimizing the objective function value. After the state iterations, DP 

generates a look-up table of the optimal decision variable at each state at each time 

step.  
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With an initial state, the optimal decision at this state can be determined and 

performed according to the generated look-up table. Based on the state transition 

process, the next state and the corresponding optimal decision at the next time step 

are found. With the optimal decision performed at each time step, the optimal 

decision sequence is determined. 

4.2.5 Numerical Results 

The DP algorithm is applied to the Urban Dynamometer Driving Schedule 

(UDDS) with the weight factors set as w1 = w2 = 0.5 to give the equal importance for 

the two objective functions. With the standard drive cycle data, the load demand is 

obtained based on the EV model parameters. In this work, the total mass of the EV 

model is 1600kg. The frontal area of the EV is 2.25m
2
, the aerodynamic drag 

coefficient is 0.3 and the wheel radius is 0.3m. The DC bus voltage is 360V. With 

these EV model parameters, the load demand for the HESS is derived [5]. 

The feasible area of the UC voltage is set by the bounds of Vuc,max = 270 and 

Vuc,min =135. The limits on the battery/UC current are set as Ib,max = 360A, Ib,min = -90A 

and Iuc,max = 120A, Iuc,min = -120A, according to the battery/UC characteristics. In this 

work, the number of discrete state levels are set with q = 225 and m = 200 for the 

consideration of quantization errors and the computation complexity. Therefore, the 

state grid size of ΔIb is 2A and the ΔSoCuc is 0.25%. 

Fig. 4.8 shows the optimization results, including the load current, the battery/UC 

current and the DC-DC converter output current. The DC-DC converter efficiency is 

evaluated according to Eq. (4.17). 
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Figure 4.8 Optimization results of DP algorithm under UDDS cycle. 

The optimization result shows that UC effectively reduces the battery current 

peak. In this optimized HESS, the peak battery discharging and charging currents 

have been reduced by 46% and 82% in comparison to the battery-only ESS. In 

addition, the DC-DC converter works with high efficiency during the entire drive 

cycle, which minimizes the HESS power losses. This offline optimization framework 
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using DP algorithm has been applied to various drive cycles, obtaining the training 

data to construct the NN.   

4.3 Real-Time HESS Energy Management 

The goal is to construct an effective online implementation of the control strategy 

described in offline optimization. As mentioned in Section 4.2, DP algorithm 

explicitly depends on the future load demand or the future vehicle trip information, 

thus it is infeasible for real-time implementations. It is also difficult to derive a 

deterministic equation of the optimal energy management control strategy due to the 

system complexity. NN, with the capacity to represent or emulate human knowledge, 

can be effectively used for system approximation of complex systems. In this way, 

NN is applied to learn the optimal results by DP.  

4.3.1 NN Training Data 

As a first step in constructing the NN, the offline optimization program is solved 

for different representative drive cycle datasets, obtaining the required input and 

target data to train the NN.  

In this work, the standard drive cycle datasets are used, obtained from Autonomie 

software by Argonne National Laboratory, including UDDS, NEDC, Extra-Urban 

Driving Cycle (EUDC), CUDEC, Japan 10 Mode, Japanese 10-15 Mode, Japanese 

JC08, SC03, Unified LA92 and FTP75 drive cycles [109].  

For each drive cycle, the DP optimization described in Section 4.2 is solved to 

obtain the optimal decision sequences of the battery/UC current. With the optimal 

data vectors/sequences of the battery current (Ib), UC current (Iuc) determined, the UC 
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SoC (SoCuc) sequence is also obtained. These obtained data vectors are used as the 

net input including the load current (Idmd), the UC SoC and the battery current at the 

previous time step (Ib_prev). These inputs are used because the energy management 

control strategy is influenced by these factors according to the DP algorithm. In 

addition, the vehicle speed (vs), and the vehicle acceleration (a) are used as the net 

inputs. Note that unlike the DP algorithm, the NN does not depend on future load 

demand or future drive cycle information. However, it does not preclude the 

opportunity to use the current or the past drive cycle information to improve the 

energy management performances. The vehicle speed and the acceleration data 

provide knowledge about the driving trend, which also influence the energy 

management control strategy. Given these net input data, the optimal decision of Iuc is 

used as the target data. With these training data, the NN is trained with the net 

architecture shown in Fig. 4.9.  

Demand current

Hidden Layer

Output

Vehicle speed

Accelerations

Battery current

UC voltage

UC current ref.

 

Figure 4.9 The NN architecture for online energy management controller. 

4.3.2 NN Training  

This NN is designed and trained using the Neural Network Toolbox software in 

MATLAB [112]. This feed-forward NN is designed with five input nodes for the five 
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different inputs, with one hidden layer and one output node. There are 20 neurons in 

the hidden layer. This hidden layer of 20 neurons with nonlinear transfer functions 

allow the network to learn nonlinear relationships between the input vectors and the  

output vector. To train the NN, Levenberg-Marquardt algorithm is used as it is 

characterized by its fast convergence and robustness. The NN training performance is 

measured by the mean quadratic errors (MSEs) [112].  

To create and configure this two layer NN, the feedforwardnet command in 

Matlab have been used with the following command lines. 

hiddenLayerSize = 20; 

net = feedforwardnet(hiddenLayerSize); 

To configure the NN training algorithm, the training algorithm 'net.tranFcn' is set 

to 'trainlm' as the Levenberg-Marquardt algorithm is selected. The performance 

function 'net.performFcn' is set to 'mse'. The following command lines are 

implemented in Matlab to configure the NN for the selected training algorithm and 

performance function. 

net.trainFcn = 'trainlm';  

net.performFcn = 'mse'; 

To validate the NN, the relationship between the outputs of the NN and the actual 

target value is plotted as shown in Fig. 4.10.  
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Figure 4.10 Performances of NN in output prediction. (a) Train data; (b) Test data. 

Fig. 4.10(a) illustrates the results in the training phase while Fig. 4.10(b) shows 

the results in the test phase, respectively. Two ±25% error lines are added for 

comparisons. As shown in Fig. 4.10, the NN model performs well in terms of 

prediction accuracy. 

4.3.3 Intelligent Online Energy Management Controller 

The trained and validated NN is implemented as an intelligent online energy 

management controller. By taking the real-time data for the NN inputs, the NN 

outputs the command value of the DC-DC converter current. 
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4.3.4 Test Results 

The proposed online energy management controller is applied to test drive cycles. 

The online power split results are illustrated in Fig. 4.11 over a test drive cycle. 
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Figure 4.11 Online energy management results vs. offline DP optimization results.  

The power split performance generated by NN is analyzed and compared with 

those generated by DP in offline, which is used as the benchmark of the optimal 

performances. The online results are shown in dotted lines and the offline results are 

presented in solid lines. It can be observed that the power split performance generated 

by the NN closely follows the offline optimization results. The study also involves the 

analysis of the battery peak shaving effect by UC and the battery lifetime as described 

in the following section. 
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4.4 Battery State-of-Health Evaluation 

While the system efficiency and fuel economy have been extensively used for 

evaluation of energy management in HEV applications, there is no standardized 

performance measure to evaluate the effectiveness of control strategies for EV 

applications. The battery life, as one critical performance metric, is not often 

considered/evaluated for EV applications due to the battery life modeling difficulty, 

especially under realistic driving conditions [113] [114] [115]. 

4.4.1 Battery State-of-Health Estimation Model 

For different real-time energy management methodologies, problem formulations 

and implementation processes are different. To perform a comparative analysis for 

different control strategies, a standard performance measure for various energy 

management methodologies is crucial. 

A typical battery EOL refers to 20% degradation in the battery nominal energy 

capacity. In this case, the estimation of the battery SoH is determined by the 

estimation of the battery capacity degradation. The battery capacity degradation can 

be estimated by measuring the battery SoC-OCV (open circuit voltage) relationship 

[116] [117]. Various methods of battery capacity estimation are summarized in [116]. 

These methods require extensive laboratory investigations and large experimental 

data sets. These large test data of the battery characteristics and conditions are used to 

develop battery capacity fade model. The battery capacity fade models have been 

primarily categorized as physics-based model [118] [119] and empirical model [117] 

[120]. The physics-based models are derived based on complex battery 
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electrochemical models, which require the investigation and measurements of the 

battery material properties, internal structures and parameters. This information, in 

general, is not easily available. Different models have been developed to account for 

various incidents responsible for capacity loss such as the parasitic side reactions 

[121], SEI (solid electrolyte interface) formation [122], and impedance increase 

[123]. The computation burden of these physics-based models makes them 

impractical for EV battery real-time SoH estimation [124] [125]. Therefore, an 

empirical model is more suitable for battery SoH estimation for EV application. For 

empirical model development, experimental data are essential for statistical 

evaluation and validation. Bloom et al. presents the testing results and develops a 

battery capacity fade prediction model using large experimental data set [120]. This 

model is later adopted as a starting point by Wang et al. [117] to develop a physically 

justified empirical model as shown in Eq. (4.37), 

 a

z

t

E

RT
lo s psQ Be Q



       (4.37) 

Here, ΔQloss is the battery capacity degradation percentage number. T is the absolute 

temperature and R is the gas constant of 8.314 Jmol
-1

K
-1

. Qtp is the charge throughput 

(in [Ah]) that leads to the capacity degradation. z is the power law factor with the 

value of 0.55. B and Ea are the fitting parameter and the activation energy from 

Arrhenius law [117], respectively. The activation energy Ea is a function of the 

current rate as shown in Eq. (4.38). 

31700 370.3a brE I      (4.38) 
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where, the battery current rate Ibr is defined as the ratio between battery current and 

its nominal capacity (in [Ah]) in Eq. (4.39). 

| |b
br

b

I
I

Q
       (4.39) 

The pre-exponential parameter B under different current rates is obtained based on the 

empirical fitting as shown in Table 4.3.  

Table 4. 3 Parameter B with respect to current rates [117]. 

Current rate Ibr 0.5 2 6 10 

B 31630 21681 12934 15512 

In order to account for the effect of realistic drive cycle on EV battery life, a 

throughput-based battery capacity fade model is adopted [124] [126]. This 

throughout-based model assumes that a battery can deliver or take a certain amount of 

charge throughput under constant operation condition before it reaches EOL. Based 

on this throughput-based battery capacity fade model [124], the battery SoH is given 

as a function of battery current, shown in Eq. (4.40). 
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Therefore, the battery SoH variation from the initial time to time t is defined in Eq. 

(4.41), 

0

,max

| ( ) |
( )

3600

 
 


t

b

tp

I d
SoH t

Q
     (4.41) 



95 

 

In this model, both charging and discharging currents are assumed to have the 

same impact, in contributing to the battery aging. Thus, the absolute value of battery 

current is integrated. The SoH(0) represents the initial battery SoH and Qtp,max (in 

[Ah]) is the maximum amount of charge throughput that a battery can have before it 

reaches its EOL. As dτ is considered in the unit of second, the number 3600 in the 

denominator is used for unit conversion from second to hour. 

The derivative of each side of Eq. (4.41) is derived to evaluate the effect of 

battery current rate on the battery SoH variation rate. 

 ,max3600Q
  br b

t

ra e

p br

tSOH
I Q

I
     (4.42) 

Under different battery current rates, the maximum charge throughput, Qtp,max, is 

different. It is assumed that under a certain current rate, a battery can deliver a certain 

amount of charge throughput [124]. To evaluate the maximum amount of charge 

throughput, Qtp,max, under different current rates, the capacity degradation percentage 

number ΔQloss  is set to 20. Using Eq. (4.39), Qtp,max can be expressed by Eq. (4.43).  

 

 
  

1/

,max

20

a br

z

tp br E I

RT
br

Q I

B I e



 
 

  
 
 

    (4.43) 

Substituting Eq. (4.43) into Eq. (4.42) gives, 
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Though various factors may impact the battery SoH, the proposed battery SoH 

estimation model emphasizes the relative impact of the battery current rate, which can 

provide a performance measure for real-time EV energy management strategies. This 

simplified control-oriented battery SoH estimation model permits its application in 

real-time realistic drive cycles. To evaluate the battery SoH variation during one drive 

cycle, the Eq. (4.44) is integrated obtain ∆SoH as defined in Eq. (4.41). This battery 

∆SoH estimation is used as one performance measure for different real-time energy 

management strategies under realistic drive cycles. 

In order to extend this battery SoH estimation model to different scenarios with 

current rates below 10C, a piecewise-defined function is used to fit and derive the 

relationship between the value of ∆SoHrate and the intermediate current rates. The 

value of ∆SoHrate under different battery current rates is evaluated and plotted in Fig. 

4.12.  
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Figure 4.12  rateSoH as a function of battery current rate.  
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With higher battery current rate, the effect on SoH is greater. At room 

temperature of T = 25˚C, the relationship between  rateSoH and the battery current 

rate is fitted using a piecewise-defined function for current rates in [0,6] and (6,10] 

with k1 = -3.1327∙10
-8 

and k2 = -2.7977∙10
-7

. 
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In this way, the battery SoH derivative is expressed as a function of battery 

current. This model can be adopted to evaluate the battery SoH under various current 

rates for EV application.  

4.4.2 Results and Analysis 

The battery peak shaving and its SoH are evaluated. These results of the proposed 

online intelligent energy management controller are analyzed through comparison 

with the offline optimization results and the results obtained by a rule-based control 

strategy as described below. 

This rule-based energy management control strategies set UC voltage references 

based on heuristics [60]. Typically, when the vehicle starts, it requires a large amount 

of power. Thus, the UC voltage references are set to high levels when the vehicle is 

stopped or at very low speed in order to prepare sufficient power to the motor 

whenever needed for accelerations. In urban driving situation, UC captures 

regenerative braking energy when the vehicle speed decreases from high speed. 
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Therefore, the control strategy sets UC voltage references to allow room for receiving 

the regenerative braking energy. The UC voltage reference profile is given as [60],  

 
 

, , max

3
1

160
  s

uc ref uc

v k
V k V     (4.46) 

Here, the unit of vs(k) is mi/h. According to this defined UC voltage reference, the 

UC discharge and charge current is controlled based on rules explained in details in 

[60]. In this rule-based algorithm, UC is used to receive the regenerative braking 

current as much as possible while battery receives the rest within the battery charging 

current limit. In discharging mode, a battery discharging current limit is set. When 

there is a large demand current, the battery delivers the maximum discharging current 

while UC supplies any remaining current if UC voltage is above the reference 

voltage. In this way, this rule-based algorithm aims at reducing the battery peak 

current through peak shaving by UC. In this work, we implemented this rule-based 

control strategy for result comparisons. 

Fig. 4.13 presents the objective function evaluation for different drive cycles. The 

objective function values are also normalized by the drive cycle length. Four test 

drive cycles are used for results evaluation including the New York city drive cycle, 

the Artemis drive cycle, the West Virginia city drive cycle and the Manhattan drive 

cycle. 
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Figure 4.13 Normalized objective function value evaluated under different 

methodologies for four different drive cycles. 

Tables 4.4 - Table 4.6 summarize the results obtained by DP, the proposed online 

controller and the rule-based control strategy, under different drive cycles. Table 4.4 

presents DC-DC converter operation efficiency in both propulsion and regeneration 

modes.  

Table 4.4 Bi-directional DC-DC converter operation efficiency in both propulsion 

mode and regenerative braking mode [%]. 

Cycle Name 
DP Online Rule-Based 

Propulsion Regen. Propulsion Regen. Propulsion Regen. 

NY_City 98.1 98.6 98 98.2 94.6 94.5 

Artemis 98.1 97.7 97.9 98 94.9 95.3 

WVU 97.7 97.6 97.6 97.1 92.7 94.8 

Manhattan 98 97.2 97.8 97.2 94.9 94.5 

As shown in Table 4.4, the proposed supervisory energy management controller 

has improved the bi-directional DC-DC converter operation efficiency by about 4% 

in comparison to the rule-based control strategy.  
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Fig. 4.14 presents the simulation results of the battery peak current under different 

drive cycles. 

 

Figure 4.14 Battery peak current value |Ib| under different drive cycles [A]. 

The proposed energy management controller effectively reduces the battery peak 

current by 60% in comparison to the battery-only ESS, while the rule-based strategy 

can only reduce 20% of the battery peak current, in average. The proposed energy 

management controller can achieve good battery peak current shaving results for all 

the test drive cycles; while the rule-based controller cannot guarantee effective 

performance under different driving situations. 

In addition, the battery remaining SOH after 10 years are estimated based on the 

battery SoH estimation model. Here, a daily commute cycle is constructed as a 

repeated sequence of the corresponding drive cycles to cover 40 miles. The battery 

remaining SoH after 10 years is estimated based on the assumption that the EV 

repeats the same daily commute every day. In Table 4.5 -Table 4.6, the results in a 
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battery-only ESS are also evaluated for comparison. The improvement achieved by 

the proposed online controller over the battery-only ESS is shown in the last column. 

Table 4.5 Battery SoH Estimation After Different Drive Cycles. 

Cycle Name DP Online Rule-base Bat-only improvement 

NY_City 0.88 0.83 0.73 0.72 14.9% 

Artemis 0.89 0.88 0.77 0.72 21.6% 

WVU 0.91 0.87 0.84 0.84 3.3% 

Manhattan 0.89 0.89 0.76 0.75 18.4% 

The proposed online intelligent energy management controller obtains effective 

results in comparison to the benchmark results obtained by DP algorithm. In addition, 

this proposed online controller improves the battery SoH by 15% in average, in 

comparison to the battery-only ESS, while the rule-based strategy achieves very small 

improvement of the battery SoH. Based on the battery SoH estimation, the battery 

cycle life (in number of daily commute cycles) before the battery reaches a 20% SoH 

reduction is also evaluated based on the daily commute cycle assumptions. 

Table 4.6 Battery Cycle Life Estimation Result. 

Cycle Name DP Online Rule-base Bat-only Improvement 

NY_City 6080 4290 2700 2600 64% 

Artemis 6640 6080 3170 2600 134% 
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WVU 8110 5620 4560 4560 23% 

Manhattan 6640 6640 3040 2920 127% 

The proposed online energy management controller shows the potential to extend 

the battery cycle life by 64 % in comparison to the battery-only ESS, while the rule-

based control strategy only improves the battery cycle life by less than 5%, using the 

New York city drive cycles as daily commute. This shows that the proposed real-time 

energy management controller can greatly outperform the simple rule-based energy 

management control. 

4.5 Summary 

In this work, a supervisory energy management strategy for a battery-UC HESS is 

presented. In the battery-UC HESS modeling stage, a detailed DC-DC converter 

model is considered in order to include both the conduction losses and the switching 

losses in the energy management problem. This accurate model gives more insight on 

how to control the DC-DC converter to avoid light-load operation with low 

efficiency. In the supervisory energy management controller design state, a multi-

objective optimization problem is formulated to prolong the battery lifetime while 

maintains high efficiency operation of the HESS. The problem is solved by DP and 

the results are used to develop the neural network for online implementation. As a 

result, an intelligent real-time energy management controller is implemented. The 

proposed online energy management controller effectively splits the load demand and 

achieves excellent result of the battery current peak shaving. It is concluded that the 
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proposed online energy management controller can effectively reduce the battery 

peak current by 60% in comparison to the battery-only ESS while the HESS system is 

operated under high average power efficiency over 95%. Based on the proposed 

battery SoH estimation model, it is estimated that the battery cycle life can be 

extended by over 60%, which greatly outperforms the rule-based control strategy. 
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Chapter 5: Experiment Design and Real-Time Controller 

Implementation for a Battery-Ultracapacitor Hybrid Energy 

Storage System 

In this work, the proposed real-time energy management strategy has been 

investigated for the optimal current split between batteries and UCs in EV 

applications. The proposed NN based strategy is implemented as an intelligent 

controller for the battery-UC HESS. A 38V-385Wh battery and a 16V-2.06Wh UC 

HESS hardware prototype has been developed and a proposed real-time experiment 

platform has been built for energy management controller validation, using xPC 

Target and National Instrument data acquisition system (DAQ). Both the simulation 

and real-time experiment results have successfully validated the real-time 

implementation feasibility and the effectiveness of the real-time controller design. 

In this chapter, the system modeling and integration is introduced in Section 5.1, 

followed by real-time simulation platform introduction and the construction details in 

Section 5.2. As an extension to the real-time simulation platform, a DAQ system is 

configured to provide access to the hardware features prior to the final hardware 

system construction as described in Section 5.3. The hardware prototype of the 

battery-UC HESS is described in Section 5.4. The experiment results using the 

proposed real-time controller and the built battery-UC hardware prototype is 

presented in Section 5.5 followed by the chapter conclusions in Section 5.6. 
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5.1 Modeling and System Integration 

In the designed EV powertrain, a 34kWh battery pack and a 203Wh UC pack are 

integrated as the HESS for a mid-sized EV. In this work, a scaled-down hardware 

prototype will be designed with a 385Wh battery pack and a 2.06Wh UC pack. The 

battery/UC models and their specifications are described in this Section 5.1. 

A semi-active HESS topology, shown in Fig. 5.1, is considered. With this 

topology, the UC current Iuc can be controlled through the control of the DC-DC 

converter. In addition, as the UC pack is decoupled from the DC bus, its voltage can 

be lower than the DC bus voltage, and consequently the size and cost of UC can be 

reduced. 

DC Bus

DC

DC

UC

Battery

Ib

IdmdIuc

 

Figure 5.1 The semi-active topology of the battery-UC HESS. 

5.1.1 Battery/UC Characteristics 

The scaled-down HESS prototype is constructed using a 38V battery pack and a 

16V UC pack. The battery pack consists of 40 battery cells with 4 parallel branches 

including 10 cells in serial connection in each branch. The 16V UC module consists 

of 6 small UC cells in serial connection. The UC pack is connected to the input of the 
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DC-DC converter. The battery/UC pack specifications and operation ranges are given 

in Table 5.1. 

Table 5.1 The battery/UC specifications. 

Parameter Value Unit 

Battery Voltage Operation Range 36 ~ 40 [V] 

Battery Capacity 10.4 [Ah] 

Battery Energy Storage 385 [Wh] 

Maximum Battery Current 20 [A] 

UC Voltage Operation Range 8~16 [V] 

UC Capacitance 58 [F] 

UC Energy Storage 2.06 [Wh] 

Maximum UC Current 12 ~ 19 [A] 

5.1.2 Battery/UC Models 

For the real-time simulation, the battery-UC HESS is modelled using high fidelity 

models from Autonomie software developed by Argonne National Laboratory [127]. 

The battery cell equivalent circuit model is shown in Fig. 5.2(a). Based on this 

equivalent circuit model, the relationship between battery voltage Vb and the current 

Ib is derived as Eq. (5.1), 

1 2

0 1 2

p p

b oc b p p

b b

I I
V V I R R R

I I

 
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Voc is the battery open-circuit voltage, R0 is the ohmic resistance, Rp1 and Rp2 are 

the polarization impedances. The parameters are obtained through curve fitting of the 

battery test data. The two RC networks have time constants τ1 = Rp1Cp1 and τ1 = 

Rp1Cp1 with τ1 = 22.8 second and τ2 = 270 second, respectively [128]. The battery 

parameters are implemented as a look-up table using battery SoC as input. Based on 

the battery equivalent circuit model, the battery discharge curve under 0.5C current 

rate is shown in Fig. 5.2(b).  
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Figure 5.2 (a) Battery equivalent circuit model; (b) Battery discharge curve under 

0.5C current rate. 

The UC pack is modelled with its capacitance C and an internal resistance Ruc as 

shown in Fig. 5.3. 
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Figure 5.3 UC equivalent circuit model. 

 The two parameters of C and Ruc  are implemented as look-up tables with input of 

the UC current based on UC cells test data [127]. 

5.1.3 DC-DC Converter Model 

The DC-DC converter controls the current flow of the UC pack. Therefore, it is 

important to model the DC-DC converter efficiency-map under different operation 

and load conditions. In this work, both the conduction losses and switching losses are 

included in the DC-DC converter efficiency analyses as the DC-DC converter 

operates at 120kHz. The efficiency of the DC-DC converter at given input voltage 

values presented in Fig. 5.4. 
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Figure 5.4 DC-DC converter efficiency-map. 

5.2 Real-Time Simulation Setup 

The entire experiment setup consists of three main subsystems: the real-time 

controller implemented in the target computer, the hardware plant system and the DC 

electronic load. Each subsystem setup will be introduced in details.  

A block diagram of this experiment platform is shown in Fig. 5.5. 
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Figure 5.5 The Experiment Setup Diagram. 
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Based on the battery/UC and DC-DC converter system modeling and the 

controller system integration, a closed-loop system is configured with the controller 

and plant interfaced with each other as shown in Fig. 5.6.  

Controller

Output
System 

input

HardwareI/O Bus

I/O Bus

 

Figure 5.6 The closed-loop system model for testing. 

In this closed-loop system model, the system input provides the drive cycle 

information, i.e., the vehicle speed, the vehicle acceleration and the load demand 

current, to both the controller and the plant. The plant system consists of the 

battery/UC and the DC-DC converter. Output from the plant system, the battery/UC 

voltage and current will be measured and used as the input to the controller system. 

This closed-loop system is configured in Matlab/Simulink. 

Generally, Simulink models are non-real-time simulation models, which may not 

be configured directly for hardware-in-the-loop simulations. To bridge the gap 

between a non-real-time simulation and a hardware experiment, a real-time 

simulation platform is built using xPC Target [129]. An xPC Target real-time system 

consists of a host computer and a target computer. The non-real-time simulation 

model in the host computer is transformed into a real-time xPC Target model using 

Real-time workshop and MS Visual C++ [129], which generates code directly from 
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the Simulink model. The generated code is downloaded and deployed on the target 

computer over an Ethernet host-target link. As the target computer is booted using a 

high performance kernel, which requires very little memory and can be run in real-

time, it enables the closed-loop system for real-time simulation. 

5.2.1 Target Computer 

Different target computers are compatible with the real-time application generated 

by the real-time workshop. Desktop PC, rack-mount or industrial PC, compact PCI, 

all-in-one embedded PC are all good candidates for the target computer. To determine 

an appropriate target computer for the real-time simulation platform, one needs to 

understand the environment constraints of the real-time application and other physical 

limitations. The typical environment constraints include the operating temperature, 

water and dust, mechanical vibration/shock and electromagnetic interference (EMI). 

The physical limitations include the physical dimensions and the PCI I/O board 

expandability. For the real-time simulation platform setup in the lab, a desktop 

computer is selected as the target computer which satisfy all the required 

environmental and physical constraints and have good performance-to-cost ratio. For 

in-vehicle use, a mobile real-time target machine can be used which can withstand 

high levels of shock, vibration, and electromagnetic noise. 

5.2.2 Ethernet Connection Setup between the Host computer and the Target 

Computer 

To setup a real-time simulation and testing platform, a connection between the 

host computer and the target computer is configured via Ethernet connection using 



112 

 

the xpcexplr tool. This tool is executed from the Matlab command line and used to 

define the network connection between the host computer and the target computer. 

The network can be a LAN, the Internet, or a direct connection using a crossover 

Ethernet cable. Both the host and target computers are connected to the network via 

Ethernet adapters using the TCP/IP protocol for communication. To configure the 

Ethernet connection between the host computer and the target computer, an Intel 

EXPI9301CT Gigabit CT PCI-e desktop adapter is used in target desktop computer, 

as shown in Fig. 5.7. 

Target Computer

app.exe

Ethernet
TCP/IP

xPC 

OS

app.exe

Simulink model

Real-Time 
Workshop

Visual 
C++

1) SETUP

2) BUILD

Host Computer

3) RUN

xpcexplr

Data Logging

Network Boot

Ethernet
TCP/IP

Intel EXPI9301CT Gigabit CT 
PCI-e Desktop Adapter  

Figure 5.7 Configuration between the host computer and target computer. 

In order to set up the Ethernet connections between the host computer and the 

target computer, this supported Ethernet card is plugged into a free PCI bus slot of the 

target computer. A static IP address is assigned to the target computer Ethernet card.  
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For example, the target computer IP address is set to: 

IP address: 192.168.1.3 

Port: 22222 

Subnet mask: 255.255.255.0 

With this PCI Ethernet adapter connected with the host computer via an Ethernet 

cable, the host-to-target communication hardware setup can be configured. In the host 

computer, the controller and/or the plant system is developed. The developed 

Simulink model is used to generate C code. The generated C code is then downloaded 

to the target computer for real-time simulation. 

5.3 Real-Time Experiment Platform Setup 

To mimic the real system, where a real-time controller and the physical system 

would communicate through an I/O bus with the hardware, the Simulink controller 

models are modified by adding I/O driver blocks to interface with the prototype 

hardware or even the actual plant hardware. The I/O driver blocks in the Simulink 

model are provided by the xPC Target. The xPC Target supports a wide range of 

third-party I/O boards. In this work, a National Instrument DAQ board PCI-6070E is 

used as the I/O board for signal and data acquisition [130]. With this DAQ board 

installed in the PCI slot, the target computer can be connected to a physical system as 

shown in Fig. 5.8.  
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Figure 5.8 The DAQ system for target computer. 

As most sensors and transducers require signal conditioning before a computer-

based measurement system acquires the signal, a shielded I/O connector block is used 

as the I/O terminals. The signal conditioning system may include functions as signal 

amplification, filtering, electrical isolation, etc. A shielded I/O cable is used to 

connect the DAQ board with the I/O terminal block. Equipped with this DAQ system, 

the target computer can communicate via the I/O terminals by generating/receiving 

analog and digital signals. 

The selected DAQ components are listed in Table 5.2. 

Table 5.2 DAQ components. 

Function Device 

DAQ Card NI PCI-6070E 

Shielded I/O Cable SH68-68-EP Shielded Cable 
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Terminal Block SCB-68 

With the target computer set up for real-time simulation and the DAQ system 

configured for physical signal exchange, the real-time experiment system is prepared 

as shown in Fig. 5.8 (a). 

5.4 Battery-UC Hybrid Energy Storage System Hardware Prototype Design 

This hardware prototype system consists of a battery pack, an UC pack, a DC-DC 

converter and a DC electric load which mimics the function of a propulsion machine 

in a real EV. This physical system is shown in Fig. 5.9 (b). 
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Target 

Computer

Ethernet cable for 

Host-Target link

Shielded I/O CableShielded I/O Connector Block Real - Time xPC 

Target Monitor
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Figure 5.9 (a) The real-time experiment platform. (b) The battery-UC hybrid energy 

storage system for experiment test. 

5.4.1 DC Electronic Load 

A 8526 model of the DC electronic load from BK Precision is used in this work 

[131]. This 8500 series DC electronic load has wide operating ranges up to 500V and 

120A. The DC electronic load can operate in constant current (CC), constant voltage 

(CV), constant resistance (CR) or constant power (CP) mode while the current, 

voltage, resistance and power values are set, measured and displayed in real-time. 

In this work, the DC electronic load is used in the constant current (CC) mode. 

Thus, the load will sink a current based on the programmed current value regardless 

of the input voltage. The CC mode can be used for load regulation test of DC power 

supplies or for characterizing the discharge profile of a battery or a battery-UC HESS.  

In this work, a USB to TTL serial interface between a personal computer and the 

DC electronic load is enabled in order to remotely control the DC electronic load for 

real-time load demand variation. An IT-E132 isolated communication cable is used to 
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set up this USB to TTL serial interface. A PV8500 software from BK Precision is 

used to remotely control the DC electronic load and set the operation modes [131]. 

5.4.2 DC-DC Converter Hardware 

The DC-DC converter is used to interface the UC pack with the DC electronic 

load. Given the operating voltage of the UC pack and the battery module, the 

input/output voltage of the DC-DC converter can be set. In the experiment, the DC-

DC converter specifications is selected in order to satisfy the test requirement. The 

DC-DC converter specifications are listed in Table 5.3. 

Table 5.3 DC-DC Converter Specifications. 

Parameter Value Unit 

Input Voltage 2.8-80 [V] 

Output Voltage 1.3-80 [V] 

Maximum Inductor Current 26 [A] 

Operating Frequency 120 [kHz] 

 

A high performance LT8705 buck-boost switching regulator controller is 

integrated in the DC-DC converter which enables wide operation voltage range and 

provides input or output current monitor and limit. This high performance controller  

is also compatible with most solar, automotive, telecom and battery-powered systems 

[122]. 

5.4.2.1.  Inductor Selection 
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The DC-DC converter works using inductor current mode control. The peak of 

the inductor current is sensed across a sensing resistor. With this sensing resistor 

Rsense, the DC-DC converter input-output power relationship is derived considering 

the inductor current ripple ∆IL in Eq. (5.2), 

1

2

 
   

 

Rsense
in L out out

sense

V
V I V I

R
    (5.2) 

Here, the Vin and Vout are the DC-DC converter input and output voltage. VRsense is 

the sensing voltage of the inductor current. In this DC-DC converter, a high accuracy 

3mOhm sensing resistor is used to sense the inductor current. 

An inductor is used in the DC-DC converter. A small value inductor will result in 

increased current ripples and thus, due to the limited peak inductor current, decreases 

the maximum average current that can be provided to the load, especially in boost 

operation region. In order to provide adequate load current at low input voltage in 

boost operation region, the minimum inductance value is given by Eq. (5.3), 

,min ,max

min

,max




in boost

sw L

V D
L

f I
      (5.3) 

The maximum inductor ripple current can be derived based on Eq. (5.2) as, 

,max ,max

,max

,min

2 Rsense out out

L

sense in

V I V
I

R V

 
    

 

     (5.4) 

Substitute Eq. (5.4) into Eq. (5.3), the minimum inductance value can be obtained 

as in Eq. (5.5). 
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Here, Dboost,max = 79% is the maximum duty cycle percentage in boost operation 

for this DC-DC converter based on the input/output voltage relationship. fsw = 

120kHz is the switching frequency. The maximum inductor current sense voltage 

value of VRsense,max = 85mV is obtained based on the typical performance 

characteristics of the maximum inductor current sense voltage graph given in the DC-

DC converter product application note [132]. Rsense = 3mOhm is the inductor current 

sensing resistor. Based on the calculation, the minimum inductance value is obtained 

as 3.1 μH. 

Another consideration in the inductor selection is that the inductor must have a 

current rating greater than its peak operating current to prevent the inductor 

saturation, which will result in efficiency loss. The peak inductor current can be 

derived based on Eq. (5.6), 

,min ,max

,max ,max

,min 2

in boostout
L out

in sw

V DV
I I

V Lf

 
   

 
    (5.6) 

Based on Eq.(5.6), the inductor current rating of at least 25 A should be satisfied 

given an inductance at 22μH. For high frequency application, it is important to choose 

an inductor with low core loss. In addition, the inductor is required to have low DC 

resistance to reduce the I
2
R losses during high current operation. In order to reduce 

the radiated noise, ferrite, pot core or shielded bobbin inductor is suggested [132]. In 

this work, a 22μH ferrite core inductor with a current rating over 26A is used. 
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5.4.2.2. Power MOSFET Specifications 

It is very important to consider the power dissipation in the power MOSFET 

selection. The power MOSFET with high power dissipation will impact the DC-DC 

converter power efficiency. Thus, it is critical to limit the power dissipation to avoid 

overheating which may even damage the devices. 

In this work, the power MOSFET IPP023NE7N3 from Infineon Technology Inc. 

is used. This power MOSFET features as ideal for high frequency switching and DC-

DC converter application. The specification of the MOSFET is provided in Table 5.4. 

Table 5.4 Power MOSFET specifications. 

Parameter Symbol Value Unit 

Breakdown voltage VBR,DSS 75 [V] 

Threshold voltage VGS,th 3.1 [V] 

Continuous drain current ID 20 [A] 

Pulsed drain current ID,pulse 480 [kg] 

Switch on-state resistance Ron 2.1 [mΩ] 

MOSFET output capacitance Coss 2420 [pF] 

Reverse recovery charge Qrr 129 [nC] 

Reverse recovery time trr 72 [ns] 

Gate charge Qt 155 [nC] 
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MOSFET rise time tr 26 [ns] 

MOSFET fall time tf 22 [ns] 

  

 

 

5.4.2.3. Cin and Cout Selection 

For DC-DC converter design, the input and output capacitance is necessary to 

reduce the voltage ripple of the input and output voltage. 

Ceramic capacitors should be placed near the regulator input and output to 

suppress high frequency switching spikes. Ceramic capacitors are selected because of 

their low ESR (equivalent series resistance) characteristics, which can reduce the 

input voltage ripples and help reduce the power losses in comparison to the higher 

ESR bulk capacitors. In order to achieve high capacitance and low ESR, a parallel 

combination of the capacitors is typically used.  

In this work, a bank of three 1μF capacitors are connected in parallel with an 

820μF polarized capacitor as the input capacitor network. 

The output capacitance is used to suppress the output voltage ripples caused by 

the ripple in the output and the load currents. Similar to the input capacitance 

selection, a parallel combination of multiple capacitors are placed near the output pin. 

In this work, a bank of three 1μF capacitors are connected in parallel with two 820μF 

polarized capacitors as the output capacitor network. 

5.4.3 DC-DC Converter Control Technique 

DC-DC converters are widely used in power electronics. Various DC-DC 

converter control techniques are discussed in literature [133], including the voltage 
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mode control, current model control, PID (proportional-integral-derivative) control, 

sliding mode control, etc. Among which, the voltage mode control and the current 

mode control techniques have been widely adopted by industry.  

The voltage mode control technique regulates the DC-DC converter output 

voltage and maintain a constant or fixed output voltage regardless of the load current 

or input voltage. On the other hand, a current mode controller regulates the converter 

current directly. The most popular method in the current mode control is the fixed 

frequency peak current mode control [134]. In this method, the peak inductor current 

is regulated using a control reference.  

Fig. 5.10 shows the schematic of a DC-DC converter with current mode control in 

boost operation region. 
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Figure 5.10 The DC-DC converter with current mode control. 

As shown in Fig. 5.10, this current mode controller regulates the peak inductor 

current with a control signal Vc. A compensating ramp is added to the inductor current 
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sense signal VRsense to provide slope compensation, which improves stability in 

constant frequency current mode control architectures by preventing subharmonic 

oscillations, especially at high duty cycles [134].  

In this work, a current mode control based switching regulator controller LT8705 

is used. The control reference signal Vc is generated based on the input/output current 

monitor circuits. The input current monitor and regulation circuit is shown in Fig. 

5.11. 
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Figure 5.11 The input current monitor and regulation circuit in the controller [132]. 

The input current IIN is sensed through a 3mOhm sensing resistor Rsense1 which 

develops a voltage across the CSPIN and CSNIN pins in the LT8705 controller chip. 

This voltage across CSPIN and CSNIN is converted to a current by multiplying 
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1mA/V. This current is flowing out the pin IMON_IN and into the resistor RIMON_IN. 

The resulting voltage over the resistor RIMON_IN is derived as, 

 _ 1 _1 / IMON IN IN SENSE IMON INV I R mA V R     (5.7) 

This voltage is proportional to the input current of the DC-DC converter. As 

shown in Fig. 5.11, when this voltage VIMON_IN is greater than 1.208V, it causes the Vc 

voltage to reduce; when the voltage VIMON_IN is smaller than 1.208V, it causes the Vc 

voltage to increase therefore regulates the inductor and input currents [132].  

The relationship between the input current reference and the resistor value of 

RIMON_IN  is given in Eq. (5.8), 

,

1 _

1.208

1 /
 

 
in ref

SENSE IMON IN

V
I

R mA V R
    (5.8) 

The range of the resistance value RIMON_IN can be determined based on the input 

current range. If the maximum input current is set to 25A, the minimum value of 

RIMON_IN  should be 16.1kOhm. In this work, the RIMON_IN  resistor is selected to be the 

sum of a fixed 18kOhm and a digital potentiometer with the maximum value of 

500kOhm. The fixed 18kOhm is used for current limiting and protection. The digital 

potentiometer is used to set the input current reference. For a given input current 

reference, the digital potentiometer resistance value in the unit of [kOhm] is given in 

Eq. (5.9).  
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Therefore, the DC-DC converter current control is implemented by setting 

different values of the digital potentiometer. The design and implementation details 

are explained in Section 5.4.4. 

5.4.4 Interface between the Real-Time Controller and DC-DC Converter  

The DC-DC converter current mode control technique is explained in Section 

5.4.3. The DC-DC converter input current can be regulated based on a given current 

reference. To set the DC-DC converter input current reference, the resistance of the 

resistor RIMON_IN is varied accordingly. To vary the resistance of RIMON_IN, a digital 

potentiometer with a resistance value in the range of 0 to 500kOhm is set by the real-

time supervisory controller. 

In this work, an AD5235 digital potentiometer from Analog Devices Inc., is 

utilized [135] and directly connected to the RIMON_IN with the DC-DC converter 

regulator controller, as shown in Fig. 5.11. This AD5235 dual channel digitally 

controlled potentiometer with 1024 step resolution can provide enhanced resolution in 

comparison to the mechanical potentiometer. In each channel, the maximum nominal 

resistance is 250kOhm. By connecting the two channels in series, a nominal 

resistance of 500kOhm is obtained. 

The digital potentiometer resistance value is determined by the position of the 

wiper. The position of the wiper is directly controlled by a scratchpad RDAC register. 

This scratchpad RDAC register can load values via a Serial Peripheral Interface (SPI) 

compatible serial interface, which allows the adjustment of the resistance value of the 

potentiometer. For example, if the scratchpad RDAC register loads all 0s, the digital 
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potentiometer value is set to 0 Ohm. If the register value is set to all 1s, the digital 

potentiometer will output the maximum nominal resistance value, which gives 500 

kOhm as the sum of two channel resistance. To implement the SPI communication, 

an Arduino Uno board is employed to send the serial data input to the digital 

potentiometer.  

To configure the interface between the real-time controller and the digital 

potentiometer, the real-time controller computes the input current reference based on 

the supervisory energy management control strategy. The computed input current 

reference is translated into an analog voltage value within 0 to 5V. This analog 

voltage value is then used to set the digital potentiometer resistance value via the SPI 

interface. The analog voltage reference value can be computed as Eq. (5.10), 
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  (5.10) 

Notice that, when the current reference Iin,ref value is smaller than 0.08A, the 

analog voltage reference value should be limited with the maximum of 5V for device 

safety considerations. This analog voltage reference is then output through the DAQ 

system to the Arduino Uno board. By reading this analog voltage reference, the 

Arduino Uno board converts the analog voltage value into a serial data input to the 

scratchpad RDAC register of the digital potentiometer. The resistance of the digital 

potentiometer Rdp is generated as a function of the analog voltage value as Eq. (5.11), 

210 /dp refR V kOhm V       (5.11) 
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The resistance value of RIMON_IN is the sum of Rdp and a fixed 18kOhm. With the 

resistance value of RIMON_IN set by the supervisory energy management control 

strategy, the DC-DC converter input current can be regulated based on the reference 

current according to Eq. (5.8).  

The control interface between the target computer and the hardware prototype is 

shown in Fig. 5.12. 

 

Figure 5.12 The control interface between the target computer and the hardware 

prototype. 

5.4.5 Sensor Network and DAQ Configuration 

For a closed-loop experiment platform, the sensor network with proper current 

sensors and voltage sensors should be configured in order to provide feedback signals 

to the real-time controller system. 

In the battery-UC HESS, two voltage sensors are required to monitor the voltages 

of the battery module and the UC module to ensure that both energy storage 

components are working under allowed operation ranges. In addition, two current 
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sensors are used to monitor the UC current, the battery current. The current sensors 

and the voltage sensors convert the measurements into a proportional analog voltage 

signals within the range of 10V. These feedback analog voltage signals are taken to 

the DAQ analog input channels through the shielded I/O connector block terminals. 

Therefore, the sensor feedback signals are read into the target computer as inputs to 

the real-time controller system.  

Different supervisory energy management control strategies may require different 

input signals (feedback) from the hardware plant system. Based on the real-time 

controller requirements, the sensor network can be flexibly configured. 

5.4.5 Experiment Setup 

The major components and their specifications in this experimental platform are 

summarized in Table 5.5. 

Table 5.5 The Experiment Test Components. 

Name Model Description 

BK Precision 8526 

Programmable DC load 
Maximum operation at 500V and 120A. 

DAQ system 
National Instrument PCI-6070E DAQ card, SH68-68-EP 

shielded cable and SCB-68 terminal block. 

Host computer A Personal laptop. 

Target Computer 
Lab desktop with Intel(R) Core i7-2640M 

CPU@2.80GHz and 8GB RAM. 
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5.5 Experiment Results 

The performance of the real-time energy management strategy [105] are tested 

using standard drive cycles including the ECE drive cycle, New York City drive 

cycle, and highway driving (HWFET) drive cycle.  

The 195-second ECE urban drive cycle captures the low to median speed drive 

and stop-and-go features in one test cycle. Although the dynamics of this ECE drive 

cycle is low, it is quite representative for the urban driving scenarios. The New York 

City drive cycle also features low speed urban driving with more frequent stops, 

which represents a congested urban driving situations. As a supplemental test, 

HWFET drive cycle is developed to test vehicles at high speeds and high 

accelerations during aggressive highway driving conditions. The speed profiles of 

these three test drive cycles are displayed in Fig. 5.13. 
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Figure 5.13 The test drive cycles. (a) ECE drive cycle; (b) New York City drive cycle; 

(c) HWFET drive cycle. 

The demand power of these test drive cycles in simulation is downscaled 

proportionally considering the power rating and energy storage downscaling factor of 

the battery-UC HESS hardware prototype. The demand current of these test drive 

cycles are given in Fig. 5.14. 
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Figure 5.14 The demand current based on the test drive cycles. (a) ECE drive cycle; 

(b) New York City drive cycle; (c) HWFET drive cycle. 

In this experiment test, the built hardware prototype is tested without considering 

regenerative braking, as the programmable electronic load does not have sourcing 

features. Under this driving condition, the real-time energy management controllers 

sustain the charge in both battery and UC packs and provide robust response to the 

load dynamics. The developed real-time energy management strategy is tested using 
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the developed experimental platform to validate the real-time implementation 

feasibility and effectiveness. The experiment results of the battery voltage/current and 

the UC voltage/current are presented in Fig. 5.15 to Fig. 5.17. 
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Figure 5.15 The real-time experiment results under ECE drive cycle. The redline 

shows the load current. 
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Figure 5.16 The real-time experiment results under New York City drive cycle. The 

redline shows the load current. 
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Figure 5.17 The real-time experiment results under HWFET drive cycle. The redline 

shows the load current. 

The proposed real-time energy management strategy presents its robust control 

capability to precharge the UC for the future high current peak, which can improve 

the DC-DC converter power efficiency as the input voltage is increased. The 

experiment results reveal that the DC-DC converter operates under high average 

efficiency over 95% and the overall HESS system efficiency is at 94.2% evaluated 

based on Eq. (4.17). The experiment result shows that the real-time energy 

management control strategy have greatly reduced the battery current magnitude for 

peak shaving by over 50%. The battery current smoothing effect achieved by the 

proposed energy management control strategy is also appealing. It can be observed 
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that the battery is protected from the aggressive transient demand due to its relatively 

slow dynamics. Instead, the UC delivers the remaining current with fast response to 

satisfy the transient demand.  

5.6 Summary 

This chapter presents the work on hardware prototype design and real-time 

experiment implementations. A real-time experiment platform and a data acquisition 

system is constructed and integrated. A scaled-down hardware prototype, including 

the battery pack, UC pack and a DC-DC converter, is developed to validate the 

proposed control strategies using the proposed platform. This platform provides a 

dual computer real-time environment that is cost-effective, reliable and practical for 

the validation of the proposed real-time control strategy for a battery-UC HESS 

prototype. Using this real-time experiment platform, the proposed supervisory energy 

management control strategy is tested to validate its real-time implementation 

feasibility and effectiveness. The hardware experiment is performed under scaled 

standard drive cycles to capture the performance of the battery-UC HESS for EV 

applications. The experiment results are presented, which shows effective 

implementation of the proposed real-time energy management strategy. It is 

concluded that the proposed real-time energy management strategy exhibits excellent 

performance and high robustness with different driving scenarios. 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 

EVs face significant energy storage related challenges, including the range 

anxiety, high cost, and battery degradation. Batteries, as the energy storage 

components in majority of current and upcoming EVs, deliver energy to the electric 

machine during propulsion and recover energy during regenerative braking. During 

urban drive cycles with frequent stop-and-go, the frequent high power exchange 

between the electric machine and the ESS results in accelerated battery aging. The 

battery aging decreases the battery capability of storing energy and providing power 

over the battery lifetime. One potential solution to this problem is to integrate high-

energy density batteries with high-power density UCs as a battery-UC HESS. 

In this work, a systematic approach is presented to the energy management 

problem of battery-UC HESS for EVs. This energy management problem 

encompasses multiple energy storage resource planning and sizing, power distribution 

and an effective hardware design for the real-time system implementation. This 

complex and multidisciplinary problem of the battery-UC HESS development is 

decomposed into four stages. In the first stage, a comprehensive review of the 

previous and ongoing research in this area is provided to present an in-depth 

investigation of the state-of-the-art of the battery-UC HESS design, especially for 

vehicular applications. Following this comprehensive review in Chapter 2, the sizing 

of the battery-UC HESS and the system integration issues have been discussed in 

Chapter 3. In this stage, the sizing design demonstrates the combination of a high 
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energy density battery pack and a UC pack that can achieve a smaller size and weight 

in comparison to a high power density battery counterpart. Primarily, the challenges 

in this battery-UC HESS lies in the energy management between the battery pack and 

the UC pack, determining the power split and establishing methods to interface the 

two energy storage devices. In this stage, a real-time energy management supervisory 

controller is developed and described in Chapter 4, which provides a new perspective 

to the battery-UC HESS energy management problem. After a thorough exploration 

of the battery/UC technologies, the system integration and the energy management 

strategies, we develop and implement the hardware prototype of a scaled-down 

battery-UC HESS and perform experimental test and empirical validation of the 

energy management controller in the final stage. 

The major contributions of this dissertation are as follows.  

First, we formulate a battery-UC sizing problem and take into account the 

interdependence between sizing and energy management. In this sizing analysis, the 

trade-off between sizing and EV specifications are analyzed. 

Second, we formulate an optimization problem for the battery-UC HESS energy 

management problem to improve the system efficiency and extend the battery 

lifetime. To solve this problem, a combined DP and NN method is proposed for real-

time energy management. In addition, the battery SoH under realistic driving 

scenarios is evaluated. This provides a performance measure for real-time EV energy 

management strategies.  

Last, we address the complete implementation process of a working system of the 

battery-UC HESS hardware prototype and the real-time energy management 
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controller. This demonstrates a complete structured framework for the battery-UC 

HESS design, sizing, control and hardware implementations, which provides a 

foundation for continuing hybrid energy storage research. 

The focus of this work was to address one of the main challenges in the EV 

energy storage system by developing and implementing a battery-UC HESS that can 

potentially provide reliable operation for over 10 years. With extended battery 

lifetime and without substantially increasing the system weight/cost, the battery-UC 

HESS has potential to improve the EV performance, lower the energy storage system 

life time cost and potentially facilitate the mass adoption of EVs. Furthermore, the 

proposed real-time experiment platform provides a cost-effective method for energy 

management controller prototyping, validation and verification. This helps us to 

explore the energy management controller design and to fully exploit the advantages 

of the battery-UC HESS, which will result in fundamental improvement in the hybrid 

energy storage research and EV system power-energy-weight tradeoffs.  

6.2 Future Work 

Developing an online, optimized and real-time implementable battery-UC HESS 

for vehicular application is challenging and several problems need to be addressed for 

its effectiveness and practicality. 

First, a more accurate battery SoC estimation can be incorporated into the battery 

management system (BMS). To improve the accuracy of the SoC estimation, a 

separate parameter estimation frame along with the thermal models can be developed 

to account the battery parameter variations under different operation conditions. A 
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more precise battery SoC gauge can provide more accurate driving range estimation 

for the vehicle driver. 

Second, in this work the battery-UC HESS is developed and tested as a stand-

alone component. The next step can be to implement this battery-UC HESS into a 

scaled EV powertrain system by interfacing the battery-UC HESS with inverters and 

electric machines. Furthermore, various EV powertrain architectures can be explored 

as shown in Fig. 6.1. In Fig. 6.1(a), the battery-UC HESS is connected with one 

inverter and one electric machine for a simple and basic EV powertrain topology. In 

more complex systems as shown in Fig. 6.1(b) and Fig. 6.1(c), the dual electric 

machine powertrain architectures are proposed to enhance the propulsion efficiency 

[136]. The dual electric machine architecture is composed of two propulsion 

machines with complimentary torque-speed efficiency maps, and coupled either using 

a torque coupler, or installed on the same shaft. In the case of using a torque coupler, 

the torques generated by the two propulsion machines are added. In the case of using 

same shaft architectures, the two propulsion machines rotate at the same angular 

frequency. The individual inverters control these two machines. The supervisory 

controller generates the power references for the inverters, such that the two 

propulsion machines operate at their corresponding highest efficiencies. The 

supervisory controller also gives control commands to the battery-UC HESS to 

optimally split the power demand between the battery and UC pack to effectively 

prolong the battery lifetime. 

In the future work, the complete EV powertrain can be developed to provide 

substantial groundwork for the EV research and development. 
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Figure 6.1 The potential EV powertrain architectures. 
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