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sparse algebraic eigenvalue problems with spectral transformations. In many appli-
cations, if people are interested in a small number of interior eigenvalues, a spectral
transformation is usually employed to map these eigenvalues to dominant ones of
the transformed problem so that they can be easily captured. At each step of the
eigenvalue algorithm (outer iteration), the matrix-vector product involving the trans-
formed linear operator requires the solution of a linear system of equations, which is
generally done by preconditioned iterative linear solvers inexactly if the matrices are
very large. In this thesis, we study several efficient strategies to reduce the computa-
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that arise when inexact Rayleigh quotient iteration, subspace iteration and implic-
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transformations. We provide new insights into a special type of preconditioner with

“tuning” that has been studied in the literature and propose new approaches to use



tuning for solving the linear systems in this context. We also investigate other strate-
gies specific to eigenvalue algorithms to further reduce the inner iteration counts.
Numerical experiments and analysis show that these techniques lead to significant
savings in computational cost without affecting the convergence of outer iterations to

the desired eigenpairs.
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1 Introduction

The theory and computation of eigenvalue problems are among the most success-
ful and widely used tools of applied mathematics and scientific computing. Matrix
eigenvalue problems arise naturally from a wide variety of scientific and engineering
applications, including acoustics, control theory, earthquake engineering, graph the-
ory, Markov chains, pattern recognition, quantum mechanics, stability analysis and
many other areas. For a partial list of these applications, see [69, 91]. The increasing
number of applications and the ever-growing scale of the problems have motivated
fundamental progress in the numerical solution of eigenvalue problems in the past few
decades. New insights and extensions of existing computational methods usually go
hand in hand with the development of new algorithms and software packages.

The current state of the art is that excellent numerical methods have been used
with great success for decades for dense matrices of small to medium size. The QR and
QZ algorithms for standard eigenvalue problems Av = Av and generalized problems
Av = ABv are available in MATLAB [50], LAPACK [1] and many other commercial
and public software packages. These algorithms are designed to compute the complete
set of eigenvalues with full accuracy, and for problems of order n, they require O(n?)
floating point operations and storage of size O(n?). Excellent introductions to the
two methods can be found in [32, 86].

However, the QR and QZ algorithms are not practical for large and sparse eigen-
value problems, where only a small number of eigenvalues and eigenvectors are usu-
ally desired. The main reason is that the time complexity and storage requirements
become very prohibitive for large n. Savings of the computational cost cannot be
achieved if only a few eigenpairs are needed, as these methods cannot be adapted to

compute only a partial set of eigenvalues. In addition, these algorithms do not take



advantage of matrix structure such as sparsity and they cannot be used in circum-
stances where the matrices are not formed and stored explicitly; in this case, the only
operation that can be performed on them is the matrix-vector multiplication.

To compute the desired eigenpairs of large sparse matrices, people have designed
and implemented a large variety of eigenvalue algorithms based on the techniques
of subspaces and projections. The general framework of these methods is to gener-
ate a sequence of subspaces V;, Vs, ... of small dimensions commensurate in size with
the number of desired eigenvalues and project the large matrices onto these small
subspaces; see [71] for a unified description of this approach. Ideally, the subspaces
generated are expected to contain increasingly better approximations to the desired
eigenvectors, and therefore some eigenvalues of the small projected matrices become
progressively more accurate approximations to the desired eigenvalues. A most com-
monly used projection method is the Rayleigh-Ritz procedure; see [3, 86] for details.

The subspace-based methods differ from each other in the ways to generate the
sequence of subspaces. One class of algorithms, which includes both single-vector and
multiple-vector iterations, work with subspaces of fixed dimensions. These classical
eigenvalue algorithms include the power method, inverse power method, Rayleigh
quotient iteration [15, 32, 62, 94] and subspace iteration (also called orthogonal or
simultaneous iteration) [15, 32, 69, 86]. Starting from a subspace Vg, these methods
generate the next subspace Vi1 of the same dimension by applying a linear operator
A on V.. As k increases, V), contains better approximate eigenvectors corresponding
to the eigenvalues of A with largest magnitude (referred to as dominant eigenvalues).

A second class of methods use subspaces whose dimensions increase as the iteration
proceeds. These methods are in general more efficient than fixed-dimension methods.
A most important subclass is the Krylov subspace methods [3, 32, 86]. Starting from a
single vector space K1 (A, v) = span{v}, Krylov subspace methods expand the Krylov

subspace K1(A,v) = span{v, Av, A%, ..., A¥"'v} in the k-th iteration to Ky i1(A,v);



the new member vector of Kx,1(A, v) is generated by applying A to the last member of
Kr(A,v). Tt is known that as the subspace dimension k increases, Kx (A, v) generally
contains quickly improving approximations to eigenvectors corresponding to extremal
eigenvalues of A; these eigenvectors are sometimes called “extremal eigenvectors”
for convenience. Here, extremal eigenvalues refer to those located near both ends
of the spectrum of a Hermitian A, or those near the boundary of the convex hull
of the spectrum of a non-Hermitian A; they are also called exterior or peripheral
eigenvalues. Dominant eigenvalues belong to the set of extremal eigenvalues.

For Hermitian problems, the most important Krylov subspace eigenvalue algorithm
is the Lanczos method [44, 60]. This method computes a set of orthonormal basis
vectors of (A, v) through the well-known three-term recurrence relation [32]. The
superior convergence rate of approximate extremal eigenvalues was studied by Kaniel
[42] and Paige [60]. It was later shown by Saad [70] that as k increases, ICy(A,v)
contains approximations that converge at least linearly to the eigenvectors of A cor-
responding to extremal eigenvalues, though the actual convergence rate can be faster
[86]. For non-Hermitian problems, the Arnoldi method [2] was first presented by Saad
[72] as an effective eigenvalue algorithm. This method generates an orthonormal set
of basis vectors of the Krylov subspace by the k-term recurrence formula [32], where
the cost of orthogonalization increases as the method proceeds. A convergence re-
sult of eigenvector approximation of the Arnoldi method can be found in [72, 69].
In addition, some nonsymmetric Lanczos methods are also used occasionally for non-
Hermitian problems. The advantage of these methods is their fixed cost per iteration:
they generate two sequences of Krylov subspaces through the three-term recurrence
of the biorthogonalization process. However, their convergence properties are not as
well-developed as those of the Hermitian Lanczos and the Arnoldi method; see [37, 38]
for a survey. Both the Arnoldi and the non-Hermitian Lanczos methods naturally

reduce to the regular Lanczos method for Hermitian problems.



For Hermitian problems where eigenvectors are needed or non-Hermitian problems,
as CPU time and memory needed to manage the Krylov subspace increase with
its dimension, a subspace restarting strategy is necessary. Roughly speaking, the
restarting strategy builds a new subspace of smaller dimension by extracting the
desired approximate eigenvectors from the current subspace of larger dimension. For
the Arnoldi method, an elegant implicit restarting strategy based on the shifted-
QR algorithm [32, 86] was proposed by Sorensen [85]. This method generates a new
Krylov subspace of smaller dimension without using matrix-vector products involving
A. The resulting implicitly restarted Arnoldi (IRA) method has been implemented
in ARPACK [49], a software package of high quality that has become the standard
solver for practical large-scale eigenvalue problems.

Another subclass of algorithms generates non-Krylov type subspaces of increasing
dimensions, such as the Davidson method [12] and the Jacobi-Davidson method |3,
22, 83]. For example, at each iteration step, the Jacobi-Davidson method expands the
subspace by adding the solution of a correction equation. This newly added vector
is orthogonal to the current subspace and provides the current desired eigenvector
with a correction direction that comes from an approximate Newton iteration. The
eigenvalue residual is expected to be significantly reduced with the new corrected
approximate eigenvector. The restarting strategy is more straightforward for the
Jacobi-Davidson method than for the Arnoldi method since no special structure of
the non-Krylov subspace needs to be preserved.

It is well known that both the single and multiple-vector iterations and the Krylov
subspace methods provide good approximations quickly to well-separated extremal
eigenvalues [3, 86]. In many cases, however, the desired eigenvalues are not well-
separated, or they are located in the interior of the spectrum, or they are substan-
tially smaller in magnitude than other eigenvalues. In these situations, a spectral

transformation is usually employed to map these eigenvalues to well-separated ex-



tremal ones of a transformed problem. Two commonly used spectral transforma-
tions are the shift-invert (As = (A — 0B)™'B) and Cayley transformations (A¢ =
(A—01B) (A —09B)); see [53] for details. The main difficulty associated with this
approach is that at each step of the eigenvalue algorithm (outer iteration), a matrix-
vector product involving the transformed operator Ag or Ac requires the solution of
a linear system of the form (A — oB)x = y. For some large-scale applications, for ex-
ample, finite element discretization of three-dimensional partial differential equations,
the matrices are so large that direct linear solvers based on matrix factorizations (e.g.,
sparse LU or Cholesky) are too expensive to apply. In these situations, it is necessary
to use iterative methods (inner iteration) to solve these linear systems to some pre-
scribed tolerances. This is the motivation to use inexact eigenvalue algorithms with
“inner-outer” structure. The main focus of this thesis is to analyze some existing
techniques and study new approaches to improve the effectiveness of various inexact
eigenvalue algorithms, such as Rayleigh quotient iteration, subspace iteration and the
implicitly restarted Arnoldi method, when they are used to solve eigenvalue problems
with spectral transformations.

Clearly, the effectiveness of inexact eigenvalue algorithms strongly depends on that
of the inner iteration. The fundamental approach to enhance the inner iteration effi-
ciency is to use a proper iterative linear solver with a strong preconditioner, so that
the linear systems can be solved to prescribed tolerances in a small or moderate num-
ber of steps. The most popular class of general purpose iterative linear solvers is
also based on Krylov subspaces, which produces an approximate solution from the
Krylov subspaces constructed from the system coefficient matrix and the right-hand
side. Typical Krylov subspace solvers include the Conjugate Gradient method (CG)
for Hermitian positive-definite systems, the Minimum Residual method (MINRES)
for Hermitian indefinite systems, and the Generalized Minimum Residual method

(GMRES) and variant biorthogonalization methods for non-Hermitian systems. The



efficiency and robustness of iterative linear solvers can be improved by precondition-
ing. For example, to solve the linear system Gz = b, a preconditioner P can be
used to transform the linear system to GP™'Z = b and 2z = P~'Z. In general, P
should approximate GG in some sense and be such that it is inexpensive to solve linear
systems Px = y. With appropriate preconditioning, iterative solvers applied to the
preconditioned linear system are expected to converge significantly faster. In fact,
the efficiency and reliability of iterative techniques usually depend much more on
the quality of the preconditioner than on the specific choice of a Krylov subspace
method. In this thesis, we assume that a reasonably good preconditioner P is already
available for solving the linear systems arising in inexact eigenvalue algorithms. For
a comprehensive introduction to Krylov subspace linear solvers and preconditioning
techniques, we refer to [36, 68].

In some situations, however, the performance of preconditioners for solving linear
systems in general settings may not be indicative of their effectiveness in the setting
of eigenvalue computation. The behavior of inner solves may be changed significantly
by certain minor modifications of the preconditioner. Some other factors can also
have significant effects on the performance of inner solves arising in inexact eigen-
value algorithms. For instance, the tolerance for the approximate solution of the
linear system in some outer iterations may be relaxed without obviously affecting the
convergence rate of the eigenvalue algorithm. These important issues associated with
inexact eigenvalue algorithms must be carefully studied and properly handled so that
the inner iteration counts can be adequately reduced.

For example, suppose inexact Rayleigh quotient iteration (RQI) is used to compute
the lowest eigenpair of a Hermitian positive definite matrix. When solving the linear
systems arising in inexact RQI, regular preconditioned MINRES does not perform as
well as what is expected from its performance in the usual setting of solving Hermitian

indefinite systems. To overcome this difficulty, a special low-rank modification (also



called “tuning”) of preconditioning operators was proposed in [26]. The function of
tuning is to change the preconditioning operator slightly so that the right-hand side
of the linear system is an approximate eigenvector of the preconditioned coefficient
matrix. Though tuning does not reduce the effective condition number of the precon-
ditioned operator, this modification leads to considerably improved performance of
MINRES algorithm in this setting. The first major part of the thesis gives a detailed
analysis of the performance of preconditioned MINRES for solving the linear systems
arising in inexact RQI. We provide new perspectives on the difficulties of precon-
ditioned MINRES without tuning and show how tuning improves the performance.
We also explore an initial period of slow convergence exhibited by MINRES in this
context. We show that if tuning is applied, this initial period of slow convergence
becomes longer as the outer iteration proceeds, but the rate at which the MINRES
iterate converges to the desired eigenvector does not slow down; it only depends on a
certain “effective condition number” of the preconditioned system matrix.

To study inexact eigenvalue algorithms to compute a few eigenpairs of generalized
eigenvalue problems, without loss of generality, we assume that the transformed oper-
ator can be expressed in the generic form A = A~!B. For inexact subspace iteration,
a linear system with multiple right-hand sides (block system), namely AY ®) = BX®
needs to be solved in the ith outer iteration, where X® is the approximate desired
invariant subspace therein. It is shown in [65] that to retain the linear convergence of
the outer iteration, AY® = BX® need be solved to only a modest accuracy in the
first few outer iterations (when ¢ is small), but the accuracy requirement (tolerance)
needs to be made gradually more stringent as the outer iteration proceeds. As a re-
sult, the inner iteration counts keep increasing with the outer iteration. It is shown in
[65] that tuning can also be applied to make the right-hand side BX® an approximate
invariant subspace of the preconditioned coefficient matrix and consequently keep the

inner iteration counts from increasing. In the second part of thesis, we propose a



new two-phase strategy to solve AY® = BX®: in the first phase, an approximate
solution Yl(i) is obtained by applying a single step of block-GMRES iteration with
tuning to AY® = BX®_ or by solving an inexpensive least squares problem; in the
second phase, a correction equation AdY® = BX® — AYl(i) is solved by block lin-
ear solvers without tuning to a fized relative tolerance, and Y «— Yl(i) +dY® is
the solution to AY® = BX®  We show that this algorithm also keeps the inner
iteration counts from increasing, and we discuss its close connection to the inverse
correction scheme [33, 67] and the residual inverse power method [87]. In addition,
we study a few additional enhancements that can be applied in the second phase to
further decrease the inner iteration counts. One of the enhancements is the use of
subspace recycling [61] with iterative linear solvers to efficiently solve a sequence of
linear systems. Numerical experiments show that the inner iteration cost tends to
decrease with the progress of outer iterations if these strategies are used all together.

The two-phase strategy can also be applied to the linear systems arising in an
inexact implicitly restarted Arnoldi (IRA) method. Specifically, at the jth Arnoldi
step in the 7th cycle of IRA, Ay = Buy}rl needs to be solved, where ugﬁ)rl is the last
Arnoldi vector in that step. We first propose and study a new tuning strategy con-
structed using solution vectors of previously solved linear systems in both the current
and previous IRA cycles. We show that a single step of GMRES iteration with this
tuned preconditioner applied to Ay = Bugé)rl gives a good approximate solution y,
that is roughly a linear combination of those solution vectors. With this approximate
solution, the correction equation Az = Buﬁl — Ay, can be solved without tuning

(@)

to a tolerance much larger than that required for the original system Ay = Bu;,.

Therefore, the inner iteration counts needed solve the correction equation can be
()
j+

addition, it is shown in [74, 28] that the allowable tolerances of Ay = Buﬂl can be

considerably smaller than those required to solve Ay = Bu;,, without tuning. In

relaxed as the IRA method converges to the desired invariant subspace. Consequently,



the inner iteration counts needed to solve the linear system will decrease as the IRA
cycle proceeds. To estimate the allowable tolerances, [28] gives a sufficient condition
for the tolerances which guarantees the desired approximate invariant subspace will
not be contaminated by the errors introduced in the solution of Ay = Buﬁl. Our
analysis, on the other hand, discusses a necessary condition for the tolerances, the
violation of which necessarily leads to contamination of the desired approximate in-
variant subspace by excessive errors of inner solves. From this observation, we derive
a theoretically more accurate estimate of the allowable tolerances which slightly out-
performs the estimate from [28]. The use of subspace recycling to solve the correction
equations is also discussed. Numerical experiments show that the combined use of
these strategies significantly reduces the inner iteration cost.

The thesis is organized as follows. In Chapter 2, we review the basic theory, tools
and solvers needed to study inexact eigenvalue algorithms, and we discuss some re-
lated work in the literature. Chapter 3 investigates the convergence of preconditioned
MINRES with and without tuning for solving the linear systems arising in inexact
Rayleigh quotient iteration. Chapter 4 provides some new insights into tuning and
studies the new two-phase strategy and some additional enhancements to solve the
block linear systems in inexact subspace iteration. Chapter 5 explores a new way to
construct tuning for the two-phase strategy and gives a refined analysis of allowable
tolerances for solving the linear systems in an inexact implicitly restarted Arnoldi
method. Finally, in Chapter 6, we summarize the thesis and suggest some areas for

future research.



2 Background

This chapter gives a brief review of the basic definitions, tools and theories needed
to study inexact eigenvalue problems. This background introduction includes eigen-
value problems, Krylov subspace projection methods, eigenvalue algorithms, spectral
transformations, preconditioned Krylov subspace linear solvers and related work in

literature.

2.1 Basic definitions and tools of eigenvalue problems

In this section, we briefly review some basic definitions, properties and theories of
algebraic eigenvalue problems. Let A be a n X n square matrix, A a scalar, and v a

nonzero column vector of length n, such that
(2.1) Av = do.

This equation is referred to as the standard eigenvalue problem. Here, X is an eigen-
value of A, v is the corresponding right eigenvector, and (A, v) is called an eigenpair.
Similarly, a left eigenvector is defined by the equation w*A = A\w*, where w* is the
conjugate transpose of w. Unless otherwise stated, the term eigenvector refers to
the right eigenvector. In addition, we assume that eigenvectors are normalized, i.e.,
the norm of any eigenvector equals one. Throughout the thesis, we use the ordi-
nary Euclidean norm ||z|| = (z,2)Y? for a vector € C" and the induced 2-norm
| Fl| = supj=q [[Fz]| for a matrix F* € C™™. If G € C™" is Hermitian positive
definite, the G-norm of an vector x is defined as ||z = vV2*G.

Eigenvalues of A are the roots of the characteristic polynomial p(A) = det(A — A).
An eigenvalue is called a simple one if it is a simple root of p(\) (with algebraic mul-

tiplicity one); otherwise it is a multiple eigenvalue. The full set of eigenvalues of A is
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called the spectrum and is denoted by A(A) = {A1, Aa, ..., Ay }. The spectrum of A re-
mains invariant under similarity transformations, i.e., if X is square and nonsingular,
then for any A = X TAX, \(A) = A(A).

A subspace V that satisfies v € V = Av € V is called an invariant subspace
(eigenspace) of A. An eigenvector spans a one-dimensional invariant subspace. A
desired invariant subspace refers to a space spanned by the eigenvectors corresponding
to a group of wanted eigenvalues.

If A has n linearly independent eigenvectors, it can be diagonalized as
(2.2) A=VAVH

where V' = [vy, v, ..., v,] contains the eigenvectors of A, and A = diag(Aq, A2, ..., An)
is a diagonal matrix containing the corresponding eigenvalues. In particular, if A has
distinct eigenvalues, it is diagonalizable. A Hermitian matrix A (A* = A) is diago-
nalizable; it has only real eigenvalues and a complete orthonormal set of eigenvectors.
The diagonalization is also called the spectral decomposition.

In addition to the spectral transformation, for any matrix A, there exists a Schur
decomposition A = UTU* where U is a unitary matrix (U* = U~!) and the Schur
form T is upper triangular. The diagonal entries of T are eigenvalues of A. The
columns of U are called Schur vectors. By proper choice of U, the eigenvalues of A
can appear in any order on the diagonal of T

Let A = UTU* be the Schur decomposition of A, where U = [Uy, Us] with U; €

Tll T12 . _ _
Cnxp7 T = with 77, € CP*P and Ty, € C=p)x(n=p)  Then AU, = U Ty

0 Ty
is called a partial Schur decomposition of A. Here U; contains orthonormal columns

that span the invariant subspace of A corresponding to the eigenvalues that appear
on the diagonal of T71;.

A most important tool connecting a block triangular matrix with a block diagonal
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matrix is the Sylvester equation. For example, consider the block diagonalization of

Ty Tio
the matrix T" = . Suppose @ is the solution of the Sylvester equation

0 T
T11Q — QT = —Tis. Then

(2.3) I, —Q JATRAY I, @
B Ty ThQ — QT + T B T 0
L 0 T22 0 T22

In general, given K € CP*P and M € C9*9, the Sylvester operator S : CP*¢ — CP*4
associated with these two matrices is defined as a linear transformation § : G —
S(G) = KG—GM. This transformation is nonsingular if and only if A(K)NA(M) = 0.
The separation between K and M is defined as

and the norm of § is defined as
(2.5) S| = ”zlﬁglllKG—GMll-

We have so far reviewed some preliminary definitions and tools to study standard
eigenvalue problems. The definitions and tools of generalized eigenvalue problems
Av = ABw, though more complicated, are largely parallel to what is presented in this
section. In particular, the generalized problem is equivalent to the standard problem
B~!'Av = M\ for nonsingular B. To simplify the analysis, we assume throughout the

thesis that B is nonsingular, unless otherwise stated.
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2.2 The framework of Krylov subspace projection methods

2.2.1 Definition and basic properties of Krylov subspaces

Krylov subspaces are among the most widely used building blocks of iterative linear
solvers and eigenvalue algorithms for large sparse matrices. Given a linear operator
A and a nonzero initial vector ui, the k-th order Krylov subspace is ICp(A, uy) =
span{uy, Auy, ..., A¥"1u; }. The generation of Krylov subspaces only needs the oper-
ation of matrix-vector product involving A. If A is a large sparse matrix with nnz
nonzero entries, each matrix-vector product generating a new member vector of the
Krylov subspace can be computed in only nnz floating point operations.

It can be readily shown that ICp (A, uq) C Kri1(A, u1), ACp(A, u1) C Kii1 (A, uq),
Kr(A up) = Kir(sA,uy) = Ki(A, sug) for any nonzero scalar s, and Ki(A,uy) =
Ki(A — ol,uy) for any scalar o.

An important property of Krylov subspaces is that the K (A, u;) contains quickly
improving approximations to eigenvectors corresponding to extremal eigenvalues of
A. To simplify the introduction, we only present the result for Hermitian 4 with
eigenvalues A\; > Ao > ... > \,. For a given eigenvector v; of A, the quality of the
best approximation to v; contained in Ky(A,u;) can be measured by the tangent
of the angle between v; and its orthogonal projection onto Ky(A,u;), denoted by
tan Z(v;, Kg(A,uq)). It is obvious from the structure of the Krylov subspaces that
any vector v € (A, up) can be written as q;_, (\A)uy, where q;_, is some polynomial
of degree k—1. The problem of finding the orthogonal projection of v; onto K (A, uq) is
equivalent to finding a polynomial q;_; for which tan Z(v;, q;_; (A)u;) is minimized.
This polynomial itself does not have a simple analytic form, but it is well known that

the Chebyshev polynomial can be used to provide an upper bound of this angle. In
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fact, it is shown in [86] that

tan Z(vy,uy) tan Z(vy,uy)
2.6 tan Z(vy, Kp(A, uy1)) < < ,
(2:6) (01, KA, ) cr-1(1+2n) ™ (14 2/n + n2)k-1

where 7 = 2552, and ¢, (t) = (1 + VE -1+ (1 4+ V2 =1)"F for [t > 1

is the (k—1)-th order Chebyshev polynomial of the first kind. Similar results can

be obtained for the approximation to vy and other eigenvectors. This bound shows
that the best approximation contained in Cx (A, u1) to eigenvectors corresponding to
extremal eigenvalues converges at least linearly. In practice, this convergence rate
of eigenvector approximation tends to be superlinear, as observed in [86, 45]. The

superlinear convergence in the setting of Krylov subspace linear solvers is studied in

[76].

2.2.2 The Arnoldi and Lanczos processes

The original form of the Krylov subspace basis {uy, Auy, ..., A*"'u;} becomes pro-
gressively ill-conditioned as k increases, because A*~!u; converges to the dominant
eigenvector(s) of A. To resolve this difficulty, the Arnoldi process [2] computes a set

of orthonormal basis vectors for ICj (A, u;) as described in Algorithm 2.1.

Algorithm 2.1 The Arnoldi Process

Given a unit vector uy, Uy = [u1], Hy_; is an empty 1 x 0 matrix
for k=1,2,...,do

1. hk = U;Auk, v = Auk — Ukhk

N Hy_ h
2. hig1k = ||vll2; k41 = v/ Ptk U1 = [Uk, Ug1], Hi = k=1 k
Orx(k—1) hk+1k

end for

In short, the Arnoldi process computes Auyg, orthogonalizes it against U, and
normalizes the result to ug, 1. This process gives the Arnoldi decomposition AUy =
Uk+1flk = UpHy + hgyipursael, where H, = U AU, € CP* is an upper Hes-
senberg matrix containing the leading k£ rows of H, = Ui AU, € CH+DxE - and

el = (0,0,...,0,1) € Rk, Tt can be shown readily that the orthonormal column
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vectors of Uy, span Ky(A, uq).

For Hermitian A, the Arnoldi process naturally reduces to the Lanczos process
[44], where Auy, is automatically orthogonal to uy, ..., ug_o and thus only needs to be
orthogonalized against u;_; and u; and then normalized to ug.1. This procedure is
described by the well-known three term recurrence formula. Therefore the Lanczos
decomposition is usually written as AU}, = U, Ty, + Brupsier , where T}, is a tridiagonal
real symmetric matrix with a; = ujAu; (1 < j < k) on the main diagonal and
B; = | Au; — aju; — Bi—1uj_1ll2 (1 <j<k—1) on the sub- and super-diagonals. In
floating point arithmetic, the loss of orthogonality of Lanczos vectors may prevent Ritz
vectors from approximating the desired eigenvectors, and some reorthogonalization

procedure is necessary to resolve this difficulty; see [86] and references therein.

2.2.3 Some projection methods

Given a Krylov subspace Ki(A,u1), an approximate eigenpair (u,w) of A can be
obtained by several projection methods which extract w from KC(A,u;). The most
commonly used method is the Rayleigh-Ritz procedure based on the Galerkin con-
dition. Specifically, this condition requires that the eigenvalue residual vector be

orthogonal to the Krylov subspace:
(2.7) Aw —pw L Kp(A,uq), or, equivalently o*(Aw—pw) =0 Yo € Ki( A, uyq).

Let w = Uy € Ki(A, uq), where the columns of Uy are orthonormal basis vectors of

Ki(A,uy). The Galerkin condition can be translated into the matrix problem
(2.8) U AUy = py.

The above derivation leads to the Rayleigh-Ritz procedure as given in Algorithm 2.2.
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Algorithm 2.2 Rayleigh-Ritz procedure

1. Compute an orthonormal set of basis Uy, = [u1, ug, ..., ug] of Ki (A, u1)
2. Compute Hy, = U} AUy, i.e., the projection of A onto Kj (A, u1)

3. Compute an eigenpair (u,y) of Hy,

4. (u,Uyy) is an approximate eigenpair of A

Here, p is called a Ritz value, and Uyy is the associated Ritz vector. The Rayleigh-
Ritz procedure essentially projects the original large problem onto the small subspace
Kr(A,up) to get a small eigenvalue problem of order k. It naturally fits into the
Arnoldi and Lanczos process, where Uy, and Hy (or T}) are computed.

Ritz pairs tend to approximate extremal eigenpairs better than interior ones. An
analysis of the quality of the Ritz pair (i, Uxy) as an approximate eigenpair of A can
be found in [86].

The Rayleigh-Ritz procedure is based on the orthogonal projection where the eigen-
value residual Aw — pw L KCp(A,uy) and w € (A, u1). An approximate eigenpair
(fi,) can also be obtained by an oblique projection where, for example, a Petrov-
Galerkin condition Aw — pw L AKL(A,uy) with @ € Kp(A,u;) is imposed. The

matrix form of this condition is
(2.9) Uy A" AUy = U, A*Ugy.

In the Arnoldi process, this equation can be written as H ,’jf[kgj = [Hyy. The quan-
tities i and Uy are referred to as harmonic Ritz value and harmonic Ritz vectors.
The formal introduction to harmonic Ritz pairs (f, Ury) and their connection with
Ritz pairs (u, Upy) is given in [63]. In general, harmonic Ritz pairs are preferred as
approximations to interior eigenpairs; see Chapter 3 of [3].

The Ritz and harmonic Ritz pairs can also be defined and extracted from generic
non-Krylov subspaces, for example, the subspaces generated by the Jacobi-Davidson
method, in a similar way as they are constructed from the Krylov subspaces; see [3]

for details.
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2.3 Eigenvalue algorithms

In Section 2.2, we have outlined the framework of the Arnoldi and Lanczos methods for
computing approximate eigenpairs of non-Hermitian and Hermitian matrices. These
methods are based on a combination of the Arnoldi (or Lanczos) process that gener-
ates Krylov subspaces for the candidate approximate eigenvectors, and the Rayleigh-
Ritz or Petrov-Galerkin procedure, which extracts the approximate eigenvectors from
the subspaces. For a complete treatment of theoretical and computational background
of important eigenvalue algorithms for large sparse matrices, especially the Jacobi-
Davidson method, we refer to [3]. In this section, we briefly review three algorithms
studied in detail in this thesis: Rayleigh quotient iteration, subspace iteration, and
the implicitly restarted Arnoldi (IRA) method.

Rayleigh quotient iteration is a simple single-vector iteration for computing a sim-

ple eigenpair of a symmetric matrix A. For a given vector u, elementary calculus

u* Au
u*u

shows that the Rayleigh quotient o(u) = minimizes the eigenvalue residual
norm ||Au — o(u)ul|. Therefore, if u is an approximate eigenvector, then o(u) is a
good corresponding approximate eigenvalue. Combining the Rayleigh quotient with

the inverse power method leads to the Rayleigh quotient iteration.

Algorithm 2.3 Rayleigh quotient iteration (RQI)

Given z(® with ||1;(0)|| -1
for : = 0,1, ..., until convergence do

2% Az @

1. Compute the Rayleigh quotient o(?) —

2. Solve (A — oW )y = @

3. 2D — 4@ /]| and test for convergence
end for

It is shown in [62] that if (?) is already a good approximate eigenvector, the rate of
converge of RQI is cubic. Details about the practical implementation of this method
can also be found in [62].

The Rayleigh quotient iteration described in Algorithm 2.3 can also be applied
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to compute a simple eigenpair of a non-Hermitian matrix A; the resulting method
is usually called inverse iteration with Rayleigh quotient shift. In general, it is not
applicable for computing a few eigenvalues. In this situation, subspace iteration (also
called orthogonal or simultaneous iteration), a straightforward block generalization
of the power method, can be used. A basic version of this algorithm is outlined in

Algorithm 2.4.

Algorithm 2.4 Subspace iteration (basic version)

Given X(© € C™P with X©*x©) =7
for : = 0,1, ..., until convergence do
1. Compute Y@ — AX®
2. Orthogonalize Y into X(t1) and test for convergence
end for
3. Solve the projected small eigenvalue problem X (W*AX () =y,
the approximate eigenpairs of A are (u;, X (i)wj)

Subspace iteration computes simultaneously several dominant eigenpairs of the
linear operator A, whose eigenvalues satisfy [\ < ... < | A—p| < [Anepi1| < oo <Al
It can be shown that span{X®} converges to the invariant subspace corresponding

. Therefore the convergence can be very slow

to {1, Ag, ..., Ay} at a linear rate ‘Aii—;il
if the gap between |\,_,| and |\,_,4+1| is not sufficiently large. Some techniques to
speed up the convergence rate and save matrix-vector products involving A can be
found in [86].

The main advantages of subspace iteration are its robustness and simple imple-
mentation. On the other hand, the linear rate of convergence makes it generally less
attractive than the algorithms working with subspaces of increasing dimensions and
projections, for example, the Arnoldi (or Lanczos) method [72, 44]. As introduced in
the previous section, these Krylov subspace methods usually provide good approxi-
mations that may converge superlinearly to eigenvectors corresponding to extremal
eigenvalues. However, as these methods proceed, both CPU time and storage needed
to manage the Krylov subspace and invoke the Rayleigh-Ritz procedure increase. To

keep the computational costs under control, various restarting strategies have been
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developed. Starting from the current perhaps large Krylov subspace, these strate-
gies compute a new starting vector u; rich in the desired eigenvectors, from which a
new Krylov subspace is generated. One of these restarting strategies, called implicit
restarting, offers a particularly efficient and numerically stable formulation. The re-
sulting algorithm is the well-known implicitly restarted Arnoldi method [85] described
in Algorithm 2.5.

Algorithm 2.5 Implicitly restarted Arnoldi (IRA) method

Given a unit vector ugo), integers k and m, compute a m-step Arnoldi decomposition AUr(éJ ) =

U0 gOUD £ O 0

m+1,m
for i = 0,1, ..., until convergence do

Compute /\(H,(,?) = {p1, 2, ..., b} and select m —k shifts, for example, pgy1, k42, - s fhm;
set, ngl) — I
for j=k+1,...,mdo

QR factorize " - wil =Q;R;;

Hy) — RjQj + il = QjHWQ;: Qul — Q@

d f
D . G g1k 1R
1 Q ( 1.k+1) H, — Hyp'(1:k,1:k);
hl(cz-i—l k< H(Z (k+1,k); qu QS ( s k);
~(i+1 1 7 7 7 )
ul(chl) hl(w)ﬂ kul(cJ)rl + (h5n)+1 m%(n)k) gn)+1§
i+1) i+1 (i+1
hl(chl k H“k+1” ul(chl) k+1)/hk+1 k

Beginning with the restarted k-step Arnoldi decomposition AU(H_I) = U(H_I)H(Hl) +
h,(;_tll)k ;Cl+1)ek, perform m—k Arnoldi steps to get AUSTY = U(Hl)H(H_l) + h(zill)m (Hl) el
and test for convergence

end for

In the first step of this algorithm, the shifts {zyy1,...ptm} C A(H,,) consist of the
set of unwanted Ritz values, whereas {1, ..., i} is the set of wanted ones which are
approximations to the user’s desired eigenvalues, for example, those with smallest
real parts or largest magnitude. This choice of Ritz values is called the exact shifts
strategy, the default configuration in ARPACK [49]. Other shift strategies use har-
monic Ritz values, or the roots of certain Chebyshev polynomials, Leja polynomials
and least squares polynomials; see [3] and references therein.

It can be shown that the result of performing this computation corresponds to an

implicit construction of the new k-dimensional Krylov subspace with starting vector
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WS = (A = D)o (A = Dl up to a scaling factor. That is, the unwanted
approximate eigenvector components corresponding to {1, ... 0} are filtered out
by the implicit application of the filter polynomial. Therefore the new starting vector

is expected to be richer in wanted eigenvectors than ugi).

u D
Convergence analysis of IRA can be found in [85, 47, 4]. In practice, this algorithm

generally converges superlinearly to the desired eigenpairs .

2.4 Spectral transformations

In many applications, the desired eigenvalues may not be well separated or are lo-
cated in the interior of the convex hull of eigenvalues. Iterative eigenvalue methods
introduced in the previous section usually have difficulties converging to these eigen-
values, because they provide approximations quickly only to well-separated extremal
eigenvalues. In these situations, it is necessary to use a spectral transformation to
map these eigenvalues to well-separated ones of a transformed eigenvalue problem.
After the eigenpairs of the transformed problems are computed, the eigenvalues are
transformed back to those of the original problem.

For the generalized eigenvalue problem Av = ABw, the shift-invert and the gener-

alized Cayley transformation (see [53]) are as follows:

(2100v =ABv & (A—o0B)'Bv= )\ v (shift-invert)

)\—0'2

Av=ABv & (A—0,B)"(A—0B)v= v (generalized Cayley).

)\—0'1

It is easy to see that the shift-invert operator Ag = (A — 0y B)~' B maps eigenvalues
of Av = ABuw closest to o; to eigenvalues of largest magnitude of Agv = pv and
those far from o; to eigenvalues of small magnitude. The Cayley operator Ao =

(A — 01B)"Y(A — 0,B) maps the line R(\) = r (r # o1) to a circle with center

1+ 2‘8:33) and radius 2‘(’7{:2); in particular, it maps eigenvalues of Av = ABv to the
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right of R(A) = 2F2 to eigenvalues of Acv = v outside the unit circle and those to
the left of this line to ones inside the unit circle (assuming that o; > o3).

There is a simple connection between the shift-invert and Cayley transformations:
Ac = I+ (01 —039)As. Therefore, for a given starting vector uy, the Krylov subspaces
Ki(Ag,u1) = Kp(Ac, up) (see Section 2.2.1). Suppose the ordinary Arnoldi method

(without restarting) is applied to Ag and A¢ respectively for m steps with the same

starting vector u;. The resulting Arnoldi decompositions are AsUS = USHS +
Ny mUmar 6, and AcUS = USHS + S ul el where uf = uf = uy, the

approximate eigenpairs are (p7, Usw?) and (u§, USwS), with (15, w?) and (u$, wf)
being the eigenpairs of H> and HS respectively (1 < j < m). Then we have the

following lemma which can be derived immediately from Lemma 2.5 in [53].

Lemma 2.4.1 Given the above Arnoldi decompositions, the two sets of approximate

eigenpairs can be ordered such that ujc =14 (01 — 0'2),uj and USw C =USw S

In other words, with the same staring vector uy, there is no essential difference between
Ags and A¢ for the ordinary Arnoldi method. However, it should be made clear that
the two operators do make a difference for the implicitly restarted Arnoldi (IRA)
method. Specifically, assume we have the above two Arnoldi decompositions at the
end of the first IRA cycle. Then for the restart, IRA chooses m —k members of
smallest magnitude from {5} and {u§'} respectively as shifts for the two operators.
However, given the ordering of the two sets of approximate eigenvalues in Lemma
2.4.1, it is obvious that the shifts for Ag do mot correspond to those for Ac. In
other words, the eigenvector components filtered out for the two operators during the
restart are different. Consequently, for the restarted (the second) IRA cycle, the two
k-dimensional subspaces spanned by the new Arnoldi vectors U ,f @ and U ,? @ are not
the same; each subspace is rich in eigenvectors corresponding to dominant eigenvalues
of its associated transformation operator.

In each step (outer iteration) of eigenvalue algorithms for the transformed problem,
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one or a few matrix-vector products involving the transformation operator need to be
computed. This requires the solution of linear systems of the form (A — oB)z = v.
Traditionally (before the late-1990s), it was recommended that this solve be done us-
ing either sparse direct solvers based on factorizations of A — o B (whenever possible)
or iterative solvers with tolerances slightly smaller than those used for the stopping
criterion of the eigenvalue algorithms. When the matrices are so large that the so-
lution by direct solvers becomes infeasible, iterative linear solvers (inner iteration)
must be used in this setting to solve the linear systems to prescribed tolerances. This
provides the prospect of inexact eigenvalue algorithms with “inner-outer” structure.
The major focus of this thesis is to study some existing techniques and various new
strategies to improve the effectiveness of several inexact eigenvalue algorithms when

they are used to solve large sparse eigenvalue problems with spectral transformations.

2.5 Preconditioned Krylov subspace linear solvers

The most well known family of general purpose sparse iterative linear solvers is based
on Krylov subspaces. Given a linear system of equations Gz = b of order n and
a starting vector zy € C™ for the solution, Krylov subspace methods compute an
approximate solution z, = 2y + d; in the k-th iteration, where d; belongs to the

Krylov subspace
(2.11) Ki(G,70) = span{ro, Gro, ..., G* 11y},

where g = b — Gz is the initial residual vector. Since any vector in (G, 7o) can
be written as a polynomial in G times g, dj, = Zf;ol a;Girg = q;_1(G)ro for some
polynomial q,_,(t) = Z?;& a;t’ of degree no greater than k—1. We measure the

convergence of Krylov subspace methods through the residual vector
(212) T = b— G,Zk =b— G(Zo + dk) =T — qu_l(G)’/’g = pk(G)To,
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where the residual polynomial p,(t) = 1 — tq,_,(t) with degree no greater than k
satisfies p,(0) = 1. Different Krylov subspace methods compute dj by choosing
different polynomials q;,_,(t).

For a Hermitian positive definite G, the conjugate gradient method (CG) [39] is
the most frequently used algorithm. Let z = G~'b be the true solution of the linear
system, and (z — z, 2z — zk)gz = ||z — zx||¢ be the G-norm of the error. It can be
shown that z, generated by the conjugate gradient method is the unique member

of the translated Krylov space zy + K (G, 19) for which the G-norm of the error is

minimized, or alternatively, the Galerkin condition
(2.13) r, L Ki(G, 7o)

is satisfied. The conjugate gradient method satisfies the following inequality

k
k—1
(2.14) ||Z_ZkHG§2<\é; 1) 12 = 2o0l|c,

Amaz (G)

e is the condition number of G. This means the convergence of CG

where Kk =
tends to be faster for smaller condition number of the coefficient matrix.
For a Hermitian indefinite G, the minimum residual method (MINRES) [64] com-

putes the optimal approximate solutions in the translated Krylov space zo+ Ky (G, 19)

for each k, in the sense that it minimizes the 2-norm of the residual vector

(2.15) [rell = min [|pp(G)roll = min [|b— Gzl
PrEP 2p=20+dg
p;(0)=1 dp €K (G,ro)

Here Py is the set of all polynomials with degree no greater than k. This minimum

residual property is equivalent to the Petrov-Galerkin condition that

(2.16) Tk 1 G/Ck(G, 7“0).
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Note that the MINRES residual norm ||r;|| monotonically decreases with k as the

minimizer z is taken from a larger translated Krylov subspace. It is shown in [36]

that
1 k—1
/{ —
(2.17) [ ( s 1) 7ol
_ max{|[\G)[}
Where R = m

Both CG and MINRES are closely related to the Lanczos method introduced in
Section 2.2.1 for estimating extremal eigenvalues of Hermitian matrices. The compu-
tational work of both linear solvers in each iteration are fixed: the conjugate gradient
method requires one matrix-vector product, two inner products and three vector
updates, and MINRES only needs two additional vector updates. In addition, the
conjugate gradient iterate can be recovered easily from the MINRES iterate. See
Chapter 2 of [19].

If the coefficient matrix GG is non-Hermitian, the generalized minimum residual
method (GMRES) [73] is the standard approach for constructing iterates satisfying
the optimality condition same as that of MINRES for Hermitian G. In fact, the min-
imum residual property and Petrov-Galerkin condition for MINRES apply verbatim
to GMRES. Roughly speaking, the extension of MINRES to GMRES can be derived
by replacing the Lanczos method with the Arnoldi method. The convergence theory
of GMRES is more complicated than those of CG and MINRES due to the geometry
of the eigenvectors of non-Hermitian G. Specifically, let G = VAV ™! where A is the

diagonal matrix of eigenvalues of G. It can be shown that

&l IRITRN
2.18 —= < [|[V|||IV min max ).
(2.18) ol = VIV Jnin ma P (A))]
pr(0)=1

Here, the polynomial p, satisfying the “minimax” condition does not have an explicit

form. In general, its asymptotic convergence can be bounded by the Chebyshev

24



polynomial or Faber polynomial in the complex plane, as long as the numerical range

W(G) = {£5 : 2 € C",z # 0} does not include the origin; see [68, 21].

The work for orthogonalization of Arnoldi vectors and storage requirements of
GMRES are proportional to kn at step k, and these costs become prohibitive for
large k. A widely used approach to deal with this issue is to restart GMRES when
k becomes large. In other words, an upper bound m on the dimension of the Krylov
subspace is specified. If the residual norm has not decreased to the specified tolerance
for k < m, then GMRES is stopped and restarted with z, in place of z, as the
initial iterate. This method is referred to as the GMRES(m) method. However, if
the restart is invoked before the asymptotic convergence behavior of GMRES takes
place, GMRES(m) may never converge at the asymptotic rate.

An alternative way for developing Krylov subspace linear solvers for non-Hermitian
G is to force the computational costs in each iteration to be fixed. This can be
achieved by a variant of the Lanczos algorithm based on biorthogonalization of two
Krylov subspaces. This class of algorithms include the biconjugate gradient method
(BICG) [23], the quasi-minimal residual (QMR) method [31], the transpose-free QMR
[30], the biconjugate gradient stabilized method (BICGSTAB) [93] and BICGSTAB()
[80]. In this thesis, we restrict our attention to MINRES and GMRES for the inner
solves.

When applied to the linear systems Gz = b directly, Krylov subspace linear solvers
are likely to suffer from slow convergence and lack of robustness. In these situations,
preconditioning is a key strategy for improving performance. The basic idea of pre-
conditioning is to transform the original linear system by a linear process into a new
system with the same solution, but that is likely to be easier to solve with an itera-
tive linear solver. For instance, a preconditioning matrix P can be found and used
to transform Gz = b to GP~'Z = b with z = P7'2. It is well known that the conver-

gence of Krylov subspace methods strongly depends on the eigenvalue distribution of
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the (preconditioned) coefficient matrix GP~!. If P is a good approximation to G in
some sense, the iterative solvers applied to GP~'Z = b are expected to converge much
more quickly because the eigenvalues of GP~! tend to be well-clustered. For this idea
to work, it is necessary that application of the action of P~1, i.e., solution of a linear
system of the form Pz = y, be inexpensive. This condition guarantees that the cost
of the preconditioned matrix-vector product involving G P~! is not prohibitive.

The preconditioning process can be defined in many different ways. Some widely
used preconditioning techniques include diagonal scaling, Jacobi, Gauss-Seidel and
successive overrelaxation (SSOR), incomplete LU factorizations, approximate inverse
and polynomial preconditioners, domain decomposition, multigrid, and many strate-
gies which exploit the structure and spectral properties of the coefficient matrix (for
example, preconditioners developed for G with specific saddle-point structures aris-
ing in fluid dynamics and numerical optimization). The development and analysis
of efficient preconditioning techniques are essential to the success of iterative solu-
tion of linear systems of equations. The quality of the preconditioner generally has
much more impact on the reliability and effectiveness of iterative techniques than
the particular choice of a Krylov subspace solver. In this thesis, we assume that a
reasonably good preconditioner is already available for the iterative solution of linear

systems arising in inexact eigenvalue algorithms.

2.6 Related work

The development and analysis of inexact algorithms for eigenvalue problems with
spectral transformation have attracted considerable interest in the past decade. In
this subsection, we briefly review the literature closely related to this thesis.

Inexact inverse iteration is the most simple inexact eigenvalue algorithm and the
best understood one. Early references [33, 43] establish the linear convergence of the

outer iteration for non-Hermitian problems, assuming that the algorithm uses a fixed
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shift and a sequence of decreasing tolerances for the solution of the linear systems.
Inexact Rayleigh quotient iteration for symmetric matrices is studied in [84] and [58],
where the authors explore how the error of the solution to the linear systems affects
the convergence of the outer iteration. Systematic analysis of this algorithm is given
by Spence and his collaborators; see [5, 6, 7, 26, 25]. A major concern in these papers
is the connection between the error of the inner solve and the convergence of the
outer iteration, with different choices of variable shifts, tolerances and formulations
of the linear systems. Meanwhile, there has been increasing interest in reducing the
inner iteration cost to enhance the effectiveness of the algorithm. Reference [75] gives
some new insights into preconditioning the linear systems arising in inexact Rayleigh
quotient iteration by modifying the right hand side of the preconditioned system.
This idea is extended in [5, 6, 7] and further refined in [25, 26] for inexact inverse
iteration or Rayleigh quotient iteration, where a special type of preconditioner with
“tuning” is constructed and analyzed. We will introduce this idea in the next section.

Inexact subspace iteration is a straightforward block extension of inexact inverse
iteration with a fixed shift. Reference [65] establishes linear convergence of the outer
iteration of this algorithm for standard eigenvalue problems and show by the block-
GMRES [68] convergence theory that tuning keeps the block-GMRES iteration counts
roughly constant for solving the block linear systems, though the inner solve is re-
quired to be done with increasing accuracy as the outer iteration proceeds.

In all these algorithms, tuning makes the preconditioned right hand side of the
linear system an approximate eigenvector (or invariant subspace) of the precondi-
tioned system matrix, and hence the inner iteration counts are considerably reduced.
Recently, it was found that the single and multiple vector iteration algorithms have
a close connection with the simplified Jacobi-Davidson method; see [27, 29].

In the meantime, some developments have been made in understanding inexact

projection-based eigenvalue algorithms, such as the Lanczos and the Arnoldi method.
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Reference [8] carried out a large number of tests of the Arnoldi method and concluded
that the matrix-vector product must be computed accurately in the initial Arnoldi
steps, but the accuracy can be relaxed as the Arnoldi method proceeds without com-
promising the convergence of approximate eigenpairs. In other words, a sequence of
increasing tolerances can be used for the solution of linear systems in the Arnoldi
steps. This behavior was also discovered in [35] for the Lanczos method. Reference
[74] used matrix perturbation theory to give an analysis of this observation for an
inexact Arnoldi method. The use of inexact matrix-vector products has also been
studied in the setting of Krylov subspace linear solvers; see [9, 10],[77, 78, 79] and
(82, 92].

To further study the inexact Arnoldi method, [28] extends the tuning strategy and
the relaxed accuracy of matrix-vector products to IRA with shift-invert transforma-
tion for standard eigenvalue problems. The authors construct tuning with Arnoldi
vectors in the current IRA cycle, and show that an ILU preconditioner with tuning
considerably reduces the inner iteration counts for a test problem from Matrix Mar-
ket [51]. It is observed there and in Chapter 4 of the thesis that this improvement
is mainly due to the fact that tuning helps cluster the eigenvalues of the precondi-
tioned system matrix of the linear system in each Arnoldi step (outer iteration). In
addition, [28] proposes a heuristic estimate of the allowable relaxed tolerances for the
solution of the linear systems, using the distance between the spectra of two matrices
containing the wanted and unwanted Ritz values to replace the separation between
the two. Numerical experiments show that the combined use of tuning and relaxed
tolerances greatly reduces the inner iteration counts.

Another important inexact eigenvalue algorithm developed recently is the shift-
invert residual Arnoldi method (SIRA) [45, 46]. This method has a few similarities
to the Jacobi-Davidson method: both aim at only one eigenpair at a time and ex-

pand the subspace with the solution to a correction equation where the right-hand
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side is the current eigenvalue residual vector (the coefficient matrices are different
for the two methods, though); in the initial steps, the inner solves can be done with
only a moderate accuracy, but the tolerance for the inner solves decreases as the
outer iteration proceeds. A major difference between the two methods is that the
Jacobi-Davidson method requires an orthogonal correction for the current approxi-
mate eigenvector. The convergence of the Jacobi-Davidson method is based on the
analysis of Newton’s method, whereas the SIRA method is studied through the clas-
sical analysis of Krylov subspaces. Reference [45] compared the SIRA method with
the inexact Arnoldi method (without restart) to compute six smallest eigenvalues of
a non-Hermitian problem of order 10000 and concluded that SIRA outperforms the
inexact Arnoldi method. It would be interesting to carry out a complete theoretical
and numerical comparison of SIRA with the inexact IRA method developed in this

thesis.

2.7 Preconditioning with tuning

In this section, we give a unified description of a preconditioning technique used for
the iterative solution of linear systems arising in all the three inexact eigenvalue al-
gorithms studied in this thesis. This strategy, referred to as preconditioning with
“tuning,” was proposed and studied by Spence and his collaborators for various inex-
act eigenvalue algorithms. The key idea can be summarized as “making the right-hand
side of the linear system an approximate eigenvector of the coefficient matrix with
the tuned preconditioner”. The effect of this approach is that a good approximate
solution can be constructed in the first inner iteration by properly using previously
solved linear systems.

In the setting of inexact eigenvalue algorithms, given a preconditioning matrix P
for the inner solve, tuning chooses an appropriate orthonormal set of vectors X of

small dimension and constructs a special low-rank modification P of P, such that
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PX = AX, where A comes from the eigenvalue problem Av = Av or Av = ABv. In
other words, the tuned preconditioner P acts like A on X. For instance, it may be
defined as P = P + (AX — PX) (X*(A— P)X)™' (AX — PX)* for Hermitian A and
PorP=P+ (AX — PX)X*=AXX* + P(I — XX*) for non-Hermitian A and P.
Note that PX = AX is equivalent to AP~}(AX) = AX, i.e., the column vectors of
AX span an invariant subspace of AP~! with eigenvalue 1. In the following, let X be
the space spanned by the columns of X.

The success of the tuning strategy depends on the proper choice of X for the linear
systems arising in specific inexact eigenvalue algorithms. For all the three inexact
eigenvalue algorithms studied in this thesis, given the linear system in a specified
outer iteration, X is chosen to be the space spanned by the the solution vector(s) of
the linear system(s) in the last one or few outer iterations. We show that with this
choice of X, the right-hand side of the linear system in the given outer iteration can
be well approximated by vectors in AX, and is therefore an approximate eigenvector
of the coefficient matrix of this linear system with the tuned preconditioner P. This

idea will be explained in detail in later chapters.
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3 Inexact Rayleigh quotient iteration

In this chapter, we present a detailed analysis of preconditioned MINRES for
approximately solving the linear systems that arise when Rayleigh Quotient Itera-
tion is used to compute the lowest eigenpair of a symmetric positive definite matrix.
We provide some insights into the initial stagnation of MINRES iteration in both
a qualitative and quantitative way, and show that both the asymptotic MINRES
convergence rate and the rate at which MINRES iterate approximates the desired
eigenvector mainly depend on how quickly the unique negative eigenvalue of the pre-
conditioned shifted coefficient matrix is approximated by its corresponding harmonic
Ritz value. By exploring when the negative Ritz value appears in MINRES iteration,
we obtain a better understanding of the limitation of preconditioned MINRES in this
context and the virtue of a new type of preconditioner with “tuning”. Comparison of
MINRES with SYMMLQ in this context is also given. Finally we show that tuning
based on a rank-2 modification can be applied with little additional cost to guarantee

positive definiteness of the tuned preconditioner.

3.1 Introduction

In this chapter, we study an inexact Rayleigh quotient iteration (RQI) for computing
the lowest eigenpair of a Hermitian positive definite matrix A. RQI is one of the most
basic eigenvalue algorithms, which refines the inverse power method by using the
Rayleigh quotient o as the shift to obtain increasingly accurate eigenpair estimates.
Given a good starting eigenvector estimate, this algorithm converges cubically to
the desired eigenpair if the shift-invert matrix-vector product (A — ol)~'z in each
(outer) iteration is computed exactly. This accurate computation is usually realized

by solving (A — ol)y = = with a direct sparse linear solver. In this chapter, we
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are interested in the situation where the size of A is so large that direct solution is
impractical, and thus this linear solve is carried out by some iterative methods (inner
iteration), for example, by some variants of the MINRES algorithm. Specifically, we
will investigate the long initial slow convergence period of MINRES iteration in this
setting, analyze difficulties that arise when ordinary preconditioned MINRES is used
for the inner solve, and provide new insights into a special type of preconditioner with
tuning that avoids these difficulties and enhances the efficiency of the inner iteration.

For inexact Rayleigh quotient iteration where a Krylov subspace method is used for
the inner solve, it is known that the linear solver inevitably suffers from a long period
of initial slow convergence; that is, the residual norm of this linear system decreases
very slowly in a large number of initial steps before it goes down at a reasonable
steady rate during the asymptotic convergence period. This long initial latency is
caused by the near singular coefficient matrix A — ol where the Rayleigh quotient o
is very close to the desired eigenvalue. Fortunately, reference [75] shows that the initial
latency of the inner iteration may be accompanied by significant improvement of the
eigenvector approximation by the inner iterate, and therefore the inner iteration can
be terminated with a considerably improved eigenvector estimate before the linear
residual norm becomes small enough. This perspective was also discussed in [58],
where it was remarked that the linear residual norm is not a good measure of the
error of inner solves for the purpose of eigenvalue computation. An alternative metric
of the inner solve errors was proposed there to accurately evaluate the eigenvector
improvement, and then was used to estimate the actual convergence rate of inexact
RQI.

In this chapter, we first extend the observation in [75]. We give a qualitative
description of the initial latency of unpreconditioned MINRES iteration in the setting
of inexact RQI. Then, by analyzing unpreconditioned MINRES behavior in depth, we

show how quickly the angle between the MINRES iterate and the desired eigenvector

32



decreases as the MINRES iteration proceeds. We provide some evidence that the
rate at which the MINRES iterate converge to the desired eigenvector is not affected
by the initial latency of MINRES iteration; it only depends on an effective condition
number of the shifted coefficient matrix. The analysis depends on the fact that the
right-hand side of the unpreconditioned system is an approximate eigenvector of the
coefficient matrix; it is based on the properties of harmonic Ritz values and their
connection with the MINRES residual polynomial.

In practice, a symmetric positive definite preconditioner P need be used with
MINRES for the inner solve. In this case, however, the right hand side of the pre-
conditioned linear system is generally far from a good approximate eigenvector of
the preconditioned coefficient matrix. The convergence theory of MINRES indicates
that the inner iteration steps needed to reach a prescribed relative tolerance will grow
significantly as the outer iteration proceeds. To resolve this difficulty, [75] introduces
some new perspectives on preconditioning in this setting, namely, that faster conver-
gence of inner iterations can be obtained by properly modifying the right hand side of
the preconditioned linear system. However, cubic convergence rate of outer iterations
is lost with this approach, because the linear system solved is different from that in
RQI. This idea was refined in [26], where an alternative preconditioning approach
called tuning is proposed and analyzed. Tuning defines a rank-1 modification of P
which forces the tuned preconditioner P to behave in the same way as A on the current
approximate eigenvector. It was shown there that tuning makes the right-hand side
an approximate eigenvector of the preconditioned coefficient matrix; as a result, the
inner iteration counts can be considerably reduced. In addition, cubic convergence of
outer iterations can be retrieved, as tuning does not change the linear system.

To extend the study in [75, 26|, we provide new insights into the limitations of
preconditioning without tuning and show how tuning leads to a major improvement.

Specifically, we show that without tuning, the starting Lanczos vector in the MIN-
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RES iteration is far from a good approximate eigenvector, and therefore it takes large
number of MINRES steps for the subspace for candidate solutions to be rich in the
desired eigenvector. In addition, the number of these ineffective MINRES steps in-
creases as the outer iteration proceeds. On the other hand, if MINRES with the tuned
variant of P is used, considerably fewer MINRES steps are needed to get an obvious
improvement of eigenvector approximation because the starting Lanczos vector is al-
ready close to the desired eigenvector. The analysis of unpreconditioned MINRES can
be applied directly to the preconditioned MINRES with tuning. We then introduce a
tuning strategy based on a rank-2 modification which avoids some potential numerical
difficulties associated with the original tuning and guarantees positive definiteness of
the tuned preconditioner.

This chapter is organized as follows. Section 3.2 reviews some preliminary facts
for later discussions. Section 3.3 gives detailed convergence analysis of the inner
iteration with zero starting vector for the three versions of MINRES and provides some
comments on the different performance of MINRES and SYMMLQ in this setting.
A rank-2 modification tuning is introduced in Section 3.4 as an improvement of the
rank-1 modification tuning of [26]. Numerical experiments supporting the analysis

are given in Section 3.5. Finally, we summarize the chapter in Section 3.7.

3.2 Preliminaries

We want to compute the lowest eigenpair of a symmetric positive definite matrix by

Rayleigh Quotient Iteration. Consider the eigenvalue problem

(3.1) Av = v,

where A is symmetric positive definite with eigenvalues 0 < A7 < Ay < ... < A,
Let V' = [v1,vg, ..., v,] = [v1, V5] be the matrix of orthonormal eigenvectors and A =

diag(A1, Aa, ..., \n) so that VT AV = A. Algorithm 3.1 describes a typical version of
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inexact Rayleigh Quotient Iteration to find a simple eigenpair.

Algorithm 3.1 Inexact Rayleigh Quotient Iteration
Given () with ||z =1
for : = 0,1, ..., until convergence do
1. Compute the Rayleigh Quotient o(® «— z(W7T Az
2. Choose 7" and solve (A — o)y = 2 inexactly such that ||z — (A —c@1)y®| < 7
3. Update 201 «— y@ /||| and test for convergence
end for

From here through the end of the chapter, we drop the superscripts (i) that denote
the count of the outer iteration, because we are interested in the convergence of inner

iterations. Suppose a normalized outer iterate x is close to v; such that

n

(3.2) x = Z VRCL = U1 COS Y + usin @,
k=1

where w is a unit vector orthogonal to vy; ¢ is the angle between x and vy, so that

cosp = ¢; = viz, and sinp = ||[0, Vo]Tz|| = /2 + - - - + 2 is small.
The Rayleigh quotient associated with z is

(3.3) oc=x"Ax =c"Ac =\ + Z()\k —A)cg = A+ (A = Ap)sin? g,

k=2
where \ = Z?:z(%p\i € [Aa, A, is a weighted average of Ao, ..., A, uniquely de-
termined by w. Assume that \; is well-separated from Ay, and ¢ is so small that
A — o] = O(sin® p) < |A\y — | = O(1); hence v, is the dominant eigenvector of
(A—ol)™! and the cubic convergence of RQI (see [62], p. 76) is easily established.
Recall that there is a connection between the Lanczos algorithm for eigenvalues of

a symmetric matrix G and the MINRES and SYMMLQ methods for solving systems

Gy = b. Given the starting vector u; = b/||b||, the Lanczos algorithm leads to

(34) GUm = Ume + 6m+1um+16717—‘7, = m—l—le
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where the tridiagonal matrix 7, = tridiag[s;, oy, Bj+1] (1 < j < m) comes from
the well-known three-term recurrence formula. Our analysis mainly results from the
convergence of the leftmost harmonic Ritz value to the leftmost eigenvalue of GG, which
depends on the approximation from the Krylov subspace range(U,,) to the associated
eigenvector of G as m increases.

We will use a major theorem from [63], which characterizes the MINRES iterate
and establishes a connection between the residual polynomial and the harmonic Ritz
values. Our analysis builds on this theorem and the interlacing property of Ritz and
harmonic Ritz values. We use MATLAB notation w(1) to denote the first entry of a

vector w.

Theorem 3.2.1 Suppose MINRES is applied to solve the system Gy = b. At the
m-th MINRES iteration step with the corresponding Lanczos decomposition in (3.4),
the MINRES iterate is

(35) Ym = UmMr:Lszelﬂh

where M? = TfnTm, B1 = |[b||. The residual of the linear system is

(3.6) 'm = b= GYp = Upsrww(1)Br, [Irn| = [w(1)[5
where ||w|| =1, wIT,, = 07,
(3.7) [w(D)] = Bt fn(DI/ (L + Bl )2,

and fo, = Tle,. Moreover, the residual can be written as

(3.8) Tm = Xm(G)b/Xm(0)

where x(A) = T (A — €7™) = det[A,, — T;'M2] is the residual polynomial whose
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roots are the harmonic Ritz values £§m), defined as eigenvalues of the pencil M? —
&T,,. It can be shown that GU,,M." has orthonormal columns and 1/52-(7”) are the
eigenvalues of H,, = (GU,, M, )Y'G~GU,, M ') = M TT, M,".

3.3 Convergence of MINRES in inexact RQI

In this section, we analyze the convergence of the three versions of MINRES for
solving the linear system in RQI. We consider in turn unpreconditioned MINRES,
preconditioned MINRES with an ordinary symmetric positive definite preconditioner
P (without tuning), and preconditioned MINRES with a tuned variant of P. For all
the three cases, we assume that MINRES iteration starts with a zero starting vector
Yo = 0.

The analysis is based on properties of harmonic Ritz values. To fix notation in the
following subsections, we use 6 for Ritz values, £ for harmonic Ritz values, quantities
with hat for the preconditioned system without tuning and those with tilde for the
preconditioned system with tuning. GG and b are respectively the shifted system matrix

and right hand side of the (preconditioned) system in step 2 of Algorithm 3.1.

3.3.1 Unpreconditioned MINRES

It is observed in [75] that the convergence of unpreconditioned MINRES for (A —
ol)y = x can be very slow when the Rayleigh quotient o is close to Aj, i.e., when
¢ = Z(x,vy) is small enough. That is, the residual norm ||r,| = ||z — (A — o 1)ynl|
remains still close to 1 for quite large m. We call this phenomenon initial slow
convergence and describe it in the theorem below. To make the exposition smooth,

we defer the proof to Section 3.6.1.

Theorem 3.3.1 Suppose unpreconditioned MINRES is used to solve (A —ol)y =x
in RQI, where x = vy cosy + usiny (see (3.2)). Assume that u has components of

at least m eigenvectors of A so that MINRES will not give the exact solution at the
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first m steps. For any such fived u, lim,_o||7%|| = 1 for any k < m. Moreover, for

any given k < m, if ¢ is small enough®, then 1 — ||| = O(sin’ p).

Remark 3.1. This residual norm estimate shows qualitatively that the initial slow
convergence of the inner iteration is more pronounced as the outer iterate x becomes
closer to the true eigenvector v;. For any given k < m, the theorem shows that ||r||
tends to be closer to 1 as ¢ becomes smaller.

In the context of using MINRES in RQI to compute (A1, v;), we are more interested
in how quickly Z(yy,,v1) decreases with m. Theorem 4.1 of [75] establishes the fact
that although the MINRES iteration appears to stagnate in its initial steps, Z(yy,, v1)
may decrease considerably during these iterations. We restate the theorem, and
expand on the result by showing that the leftmost harmonic Ritz value Sim) plays a

critical role in the behavior of Z(y,,, v1).

Theorem 3.3.2 Let (u;,v;) be the eigenpairs of the shifted matric G = A — ol
with eigenvalues ordered as 0 < |u1| < |po| < ... < |pa|. Let x be a unit norm
approzimation to vy with small ¢ = Z(x,vy). Let y,, be the MINRES approzimate

solution in K, (G, x) and ry, = v — GYm = pm(G)x be the associated linear residual.

If [pm(p)| < 1, then

(39) tan Llymor) < ! (1+ (ol = P (g2 cos® W?) tan
C T 2l 1= p(pa)| sin
or approrimately,
(3.10) a2l on) < L1 ma [pos()) tan
. Ym, V1) > |,U2| 9<i<n Pm\ g 2

Proof The result (3.9) is established in [75]. For (3.10), first recall that as ¢ is small,
G = A—o1 has only one negative eigenvalue 11 = A\; —o = O(sin? ) and the smallest

positive eigenvalue is s = Ay — 0 = O(1). Recall also the interlacing property

1How small is small enough depends on k; for bigger k, this threshold tends to be smaller
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mentioned in [63], that the Ritz values {H,Sm)} interlace the harmonic Ritz values
{1 U{0}. Since det[Ty] = —32 = 8765 < 0, we have &7 < 0% < 0 < 6% < &P,
To analyze the convergence of MINRES, recall from Theorem 3.2.1 that the harmonic
Ritz values f,im) are zeros of the residual polynomial p,,(G) = xm(G)/xm(0). That

is,
(3.11) =TT - wel™
k=1

Therefore, the residual vector can be represented as

(312) Tm = pm( r = pm Z CiVy = me(,u/i)civi
=1

= o) cosp vy 4 sing S (er/ sin @)oo o)
=2

= COSQOH ]'_Ml/gk Ul‘l‘SIHQPszH ,UZ/S Um
=2

where p; = A\; — 0 and w; = ¢;/sing is such that Z?:z w? = 1. As siny is small
and cos ¢ ~ 1, it is clear that to make [|ry,|| small, p,,(11) = [[i—, (1 — ul/g,(j”)), the
product of m factors, has to be small. This condition is satisfied if and only if the
first factor (1 —puy/ §§m)) is small, because the product of the second through the m-th
factor is slightly bigger than 1. In fact, as u; < 0 and § 0(k=2,..,n),

(313) 1< [T — /e = 1= /e™ < 1+ (m—1)|m|/p2 = 1+ O(sin® ).
k=2 k=2

Here we use the first order approximation of the product based on the facts that
w1/ pe = O(sin? ) < 1 and, from the interlacing property, that fém) approximates fio
from above as m increases.

To get the new bound in (3.10), we need to estimate ||r,,]|* — |pm(11)]? cos? ¢ and
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|1 — pp(p1)] in (3.9). Since {v;} are orthonormal, we know from (3.12) that

&

2
) P(p15)? < sin’ o max p, (11)%,

2<i<n

(3:14) [Irmll* = |pm (1) [? cos® p = sin® so; (singo

where the inequality comes from the relation Y ., (¢;/sing)? = 1. The estimation
of |1 — pm(p1)| can be simplified using (3.13):

m

(315) 1= pu(u)l = 1= [0 = m /€7 = 11 = (1 = pun/E™)| = Jpa /™).
k=1

The new bound (3.10) is easily established from the above two estimates and (3.9).

Remark 3.2. The above theorem shows that, as also observed in [75], improvements
of the approximate eigenvector can be obtained during the period of initial slow
convergence of MINRES. In fact, since p,, (1) (cos ¢)v; is the dominant term in r,, (see
(3.12)), MINRES is almost stagnant when p,,(u1) stays close to 1 during the initial
steps. However, in such a scenario, |1 — p,,(u1)| = |11/ §1m)\ may be increasing from
a minuscule number (say, 107!%) to a moderately small number (say, 1073 or 1072).
As this quantity appears in the denominator in (3.9), tan Z(y.,,v;) may decrease
significantly even though the MINRES residual remains close to 1.

Remark 3.3. Note that maxao<i<y, |[pm ()| in (3.10) might not have significant effect
on the behavior of Z(y,,,v1) when m is not too large. Intuitively, if G has a wide
spectrum (which is often the case if it is unpreconditioned), maxao<;<y, |[pm(1i)| does
not decrease considerably for small and moderate m since many eigenvalues p; cannot
indeed be approximated by any harmonic Ritz value ,gm); it becomes small only when
m is large enough so that each eigenvalue p; is well-approximated by some harmonic
Ritz value. Therefore, Z(y,,,v1) decreases with m mainly because £§m) approximates
w1 < 0 from below (|§§m)\ decreases to |p1]). The behavior of MINRES for Gy = x

and the decrease of Z(y,,,v1) both depend on how quickly f%m) approches ;.
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To explore this point, we need to use the relation between Ritz values and the
reciprocals of harmonic Ritz values. It is shown in Section 5 of [63] that for a Lanczos
decomposition in (3.4), the reciprocals of the harmonic Ritz values of G are Ritz
values of G™! from an orthonormal basis of range(GU,,). Hence the convergence
of €™ to pu; depends on the convergence of the extreme Ritz value 1 /dm) of G71
to the corresponding eigenvalue 1/44, which in turn depends on the convergence
of angles between the Krylov subspace range(GU,,) and the eigenvector v; of G~*
associated with 1/p;. Since the columns of GU,, form a basis of GK,,(G, x), when
Z(v1, GK, (G, x)) is small, the eigenvalue 1/p1 of G™' can be well-approximated by
the extreme Ritz value of G™!, namely 1/ §§m), obtained from an orthonormal basis
of GK,,(G,z) = K,,(G, Gx).

The following two lemmas from Chapter 4 of [86] show the quality of the approx-
imation from GKC,,(G, x) to vy, and lead to our main theorem, which describes how

quickly ém) approximates p; as MINRES iteration proceeds.

Lemma 3.3.3 Suppose G is symmetric and has an orthonormal system of eigenpairs

(i, v;), with its eigenvalues ordered so that py < pg < -+ < u,. Then

tan Z(vy,u) where 1 = 1 —

3.16 tan Z(vr, K (G, u)) < ,
3.16) Lo Ki(Gw) < P

< -1

Here cp(1+2n) = (14+2y/n+n?)f + (1 + 2y/n+n?)7" is the k-th order Chebyshev
polynomial of the first kind for |1+ 2n| > 1.

Lemma 3.3.4 Let (\,v) be an eigenpair of a symmetric matriz C. Suppose U, is
a set of orthonormal column vectors for which ¢ = Z(v,range(U,)) is small. Then
the Rayleigh quotient H, = UL CU, has an eigenvalue X, such that X\ = A | < ||E, ||,

where || E,|| < —Z2E=|C| = tan||C.

\/1—sin? o
Let v = Gz in Lemma 3.3.3 and C = G~! in Lemma 3.3.4. Recalling that s,

is the eigenvalue of G closest to zero so that ||G7!|| = 1/|u|, we immediately have
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the following main theorem. This theorem shows how quickly the leftmost harmonic
Ritz value §£m) approaches the corresponding eigenvalue p; < 0 from below as the
MINRES iteration proceeds. This result can be applied to (3.10) in Theorem 3.3.2

to show how quickly tan Z(y,,, v1) decreases.

Theorem 3.3.5 Suppose unpreconditioned MINRES is used to solve Gy = x in
Rayleigh Quotient Iteration where G = A — ol and x is defined in (3.2). Let ém) be

the leftmost (also the unique negative) harmonic Ritz value. Then

1 1 tanZ(vy, Gx) . | <tan4(vl,G:c)

1
(3.17) - “ e S o)

_S ,
™ T | epea (14 2n)

Suppose mg (depending on ¢ and 7) is the smallest integer for which the second
upper bound in (3.17) is smaller than 1. Note that as §£m) < p1 < 0and 1—,u1/§1m) <
1 for all m, (3.17) holds trivially for m < mg because the upper bound is not smaller
than 1. Therefore this theorem describes how quickly f%m) approaches p; from below
(|§§m)| decreases to |u1|) for m > mg. It provides insight into MINRES convergence
and also sheds some light on the behavior of tan Z(y,,,v1) (m > mg) described by
(3.10) in Theorem 3.3.2. These points are elaborated on as follows.

We first analyze the numerator of the upper bound to explore MINRES conver-
gence. Note that Gz = (A — oI) 31 covi = (A — o) cos vy + S (N — o)y,
and

[[(A2 = a)ca, .. (An = o)l
(A1 = 0) cos |

(A, — o) singp —O( 1 )
O(sin®pcosg)  \sinpcosp /)’

Therefore, for a fixed 7, as the outer iteration proceeds and x becomes closer to vy (¢

(3.18) tan Z(vy, Gx)

becomes smaller), (3.12), (3.17) and (3.18) indicate that mg becomes bigger and more
MINRES iterations are needed to make ém) close to p; and 1 — py/ ém) obviously

smaller than 1. Hence, MINRES suffers a longer initial slow convergence period, as
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it takes more iterations to significantly reduce the dominant component vy in 7,,.

To see how rapidly tan Z(y,,,v1) and ||r,,|| decrease for m > mg, note that the
denominator of the upper bound behaves like (1 + QW)’”‘I asymptotically
(Lemma 3.3.3). Hence we define (1 + QW)_l as the asymptotic convergence
factor (smaller than 1). Given ¢, as bigger |n| corresponds to smaller asymptotic
convergence factor and smaller mg, we expect faster convergence of ém) to py for
m > mg. This indicates that tan Z(y,,,v1) decreases with m (m > mg) more quickly
and in addition, MINRES will converge more quickly after its initial slow convergence
period.

Though (3.17) holds trivially for m < my, one may speculate that tan Z(y,, v1)
still decreases at a rate controlled by 7 in the initial MINRES steps. This speculation
is corroborated to some extent by the following arguments. Reference [58] analyzes
the case where the conjugate gradient (CG) method is used to perform the the sys-
tem solve required by the Jacobi-Davidson method, and shows that the convergence
of CG for the correction equation simply depends on the effective condition number
of (I —xxT)(A —oI)(I — xx™), which is essentially the reduced condition number of
A — ol. On the other hand, [75] shows that when solving (A — ol)y = x, Jacobi-
Davidson with CG delivers the same inner iterate (up to a constant) as SYMMLQ.
This result is extended in [27] for the preconditioned solve of non-Hermitian systems,
when tuning is used for the full orthogonalization method (FOM). It can be shown
readily that preconditioned SYMMLQ with tuning is equivalent to Jacobi-Davidson
with preconditioned CG. Our numerical experiments in Section 5 show that when
tuning is used (to make the preconditioned solve behave qualitatively like the un-
preconditioned solve), the eigenvalue residual curves of the MINRES and SYMMLQ
iterates usually go hand in hand. Thus it is reasonable to conclude that tan Z(y,,, v1)
decreases at a rate only depending on 7. As the numerical experiments show, though

 is quite small in the last outer iteration, the eigenvalue residual of the inner iterate
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still decreases at a reasonable rate in the initial MINRES steps with tuning.

One caveat mentioned in Chapter 4 in [86] is that the bound of angles in (3.16)
might be far from sharp when the algebraically smallest eigenvalues of GG are clustered
together so that |n| could be very close to 1, whereas the actual convergence of the
angles might be much faster. Nonetheless, bigger |n| is still a reliable predictor of

faster convergence of dm). In fact, n is closely related to the reduced condition

number K = fi, /12 of the coefficient matrix since |n| = [E2=E2] =1 + £2252 “and
1 2 2
(3.19) 1+ 14+ <12 1y .
k=1 P — A2 P — A2 k—1

Hence smaller k corresponds to bigger |n| and smaller asymptotic convergence factor,
and is helpful to make 1 — p;/ ém) decrease to 0 more rapidly. This agrees with the
result in [26] that smaller x tends to make MINRES converge more quickly.

We end this subsection with a comment on the assumption in Theorem 3.3.2 that
Pm(p1) < 1, which might not always be true for small m. However, this has minimal

impact on our convergence analysis. Section 3.6.2 gives some details on this.

3.3.2 Preconditioned MINRES with no tuning

It is observed in [75] and [25] that solving (A—oI)y = x by MINRES with a symmetric
positive definite preconditioner is considerably slower than one might expect based
on performance of such preconditioners in the usual setting of linear system solution.

More specifically, let P ~ A be some symmetric positive definite preconditioner of

A, for example, an incomplete Cholesky factorization. We then need to solve
(3.20) Gi=L Y A—oL =Lz,

where § = LTy and LLT = P. Let fi; < 0 be the eigenvalue of G closest to zero and
01 be the corresponding eigenvector. It follows from (3.11) that a necessary condition

of MINRES convergence for the preconditioned system is that for any nonnegligible
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eigenvector component in the right hand side, the corresponding eigenvalue must be
well-approximated by some harmonic Ritz value. Though the right hand side L'z
is not close to 01, it usually still has a large component of ©;. Therefore, it is possible
to eliminate the component of 7y in 7, (hence making ||7,,| small enough) only if
the leftmost harmonic Ritz value ém) approximates fi; < 0 well enough. However,
the following theorem suggests that the number of MINRES steps required for this
good approximation to appear tends to increase as the outer iteration proceeds with

G becoming more nearly singular.

Theorem 3.3.6 Consider the preconditioned system Gjj = L™ (A—ol) LT = L™ 'z
arising in RQIL. Let the eigenvalues ofé be ordered as fiy < fia < ... < [in, and let

the m-step Lanczos decomposition be G’Um = Ume + Bj+1ﬂj+1ejr. Then a necessary

condition for T, to be indefinite is satisfied, if

log(\/ fin /| 11| tan £ (61, L™1x)) N e 1
(3.21) m > —— +1, wheren == —.
log(1 4 24/7 + 7?) i — fl2

Proof Recall that the eigenvalues of G = A — ol satisfy u; < 0 < o, and by
the Sylvester inertia law for G = L™'GL™T, we have fiy < 0 < fio. Using the
eigendecompositions G = Vdiag(jiy, ..., in)V" and T, = 5,0,,5% = UL GU,,, [63]

shows that

(3.22) O = (UnSm) " G(UnS,) = WEdiag(fir, ..., fin) Wi
where Wm = VTUmSm has orthonormal columns. In other words, the Ritz value 0 is
a weighted average of the eigenvalues fi; (see Section 5 of [63]).

To see the condition for 7}, being indefinite, we need to explore if v; can be well-
represented in Wi, so that i1 < 0 can be well-approximated by éim’ Consider any,
say, the i-th, column of UniSon: t; = U,y Sine; = 9y cos + usiny € range(Um), where

Y > Z(y,range(U,,)) (recall that Z(01, range(U,,)) is the smallest angle between 0

45



and any vector in range(U,,)), @ € span{ds, ..., 0, } and ||| = 1. Then

(3.23) O™ = (V') diag(iu, ... i) (V) (1<i<m)
= (costpe, +sinper ) diag(fiy, ..., fin)(cos ey + sinper)

= [y cos® ¢ + ¥ sin ),

where e; = [1,0,...,0]", |ley|| = 1, and @* = (ey)"diag(fin, ..., fin)(e1) € [fi2, ftn].

Hence all Ritz values are positive if and only if tan? ¢ > |i1|/4*. It follows that, since

Y > Z(ty,range(Uy,)), T, is positive definite if tan? Z (01, range(Uy,)) > |fia] /"
Therefore tan® Z(9y, range(Uy,)) < |fi1]/fi* is a necessary condition to make T},

indefinite (hence 9§m) < 0). By Lemma 3.2, since

tan Z(0y, L~ :B) tan Z(0y, L~ x)

cm-1(1+27) 1+2«/77+n

the necessary condition holds if the last term in (3.24) is smaller than +/|/i1|/fi,. The

(3.24) tan Z(é1, range(U,n)) <

conclusion follows by taking the logarithm of both sides. |

Remark 3.5. This theorem simply suggests that during the initial steps of precon-
ditioned MINRES, the leftmost harmonic Ritz value ém) will not approximate the
negative eigenvalue fi; of G, and therefore ||7,,|| will not be greatly reduced. In fact,
as T, is positive definite for small m, it follows that ém) > [1o > 0, by the property
of harmonic Ritz values. Therefore (3.12) implies that the component 0; in 7, is
indeed magnified, since all factors of [}, (1 — fi1/ ¢ ,im)) are bigger than 1. It is hence
impossible for MINRES to perform well during these iterations.

Note that (3.10) in Theorem 3.3.2 cannot be used here to describe tan Z(y,, v1)
where v, = L™, is the recovered iterate from preconditioned MINRES iterate.
This is because the right hand side of (3.20) is in general far from an approximation
of 01, and there is no obvious relation between the eigenpair of G and that of G. Our

numerical experiments in Section 3.5 also suggest that no significant improvement of
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eigenvector approximation can be obtained during the initial MINRES iterations. In
the next subsection, we show how tuning solves this difficulty and makes Theorem
3.3.2 applicable to the preconditioned system.

In addition, the number of the initial “bad” MINRES steps tends to grow as
the outer iterate becomes closer to the true eigenvector. In fact, it is shown in
[5] (Theorem 9.1) that f; = (A — o)/||Lv1||? + O((\ — 0)?) = O(sin® ). Since

in general /(0;, L™'z) = O(1), the bound of m given in the above theorem is like

IOg‘sig¢‘ /log(1 + 24/ + 1?), which increases as the outer iteration proceeds. This
estimate of the number of bad MINRES steps clearly shows a major limitation of
preconditioned MINRES without tuning when it is used in the setting of RQI. This

insight is supported by numerical experiments in section 3.5.

3.3.3 Preconditioned MINRES with tuning

One way suggested in [75] to address the fact that preconditioning does not do as
well as expected in this setting is to replace the preconditioned system L7'(A —
ol)L7Tj = L7'a by L7Y(A — oI)L77§j = L. This idea comes from the fact that
the aim is not to accurately solve the original preconditioned system, but to make
the eigenvalue residual associated with MINRES iterate decrease more quickly. The
authors show that the modified right hand side L”x is close to the eigenvector of the
system matrix corresponding to the negative eigenvalue and MINRES convergence
can be considerably improved. References [34] and [56] also advocate the use of
LTz as the starting vector of preconditioned Lanczos algorithm to compute a few
eigenpairs of symmetric matrices. One needs to notice that the recovered MINRES
iterate y,, in this case converges to (A —oI)"*LL"z instead of (A — o I)~*x. Though
(A—ol)"'LLTx is not as good as (A—ol)~'z to approximate vy, it is in practice still
better than x. This strategy works because ¥, approximates (A — o) 'LLTx so fast

that for small and moderate m, it is a better approximation to v; than its counterpart
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obtained from the standard use of preconditioned MINRES for (A — oI)~'z, though
the latter would win when m is large enough.

However, this method is not RQI iteration, and the cubic convergence of the outer
iteration is lost. An alternative approach introduced in [26], known as “tuning”,
entails a rank-1 modification of the Cholesky factor L of the symmetric positive
definite preconditioner P = LL” so that the tuned preconditioner P = LILT satisfies
Pz = Az (the construction of LL is discussed in Section 3.4 below). The preconditioned

system with tuning is thus
3.25 Gi=L Y A-oL Tg=1L"2
(3.25) 7 g :

leaving the RQI structure unchanged. Therefore the cubic convergence of the outer
iteration is preserved.

Suppose @7 is the eigenvector of G corresponding to the eigenvalue fi; < 0. There
is a straightforward relation between (ji1, 91) and the eigenpair (py,v1) of G = A—ol.

Note that as Pz = Az, Pvy &~ Av; as the RQI outer iterate x — v;. It follows that

(326) (A — O'I)’Ul = U1V1 = & >\1U1 = & A’Ul ~ & PUl,
A A1 A

and hence
(3.27) LA - o)L T (L ) =~ L7! (ﬂ)ml = (ﬂ) (L% vy).

The relation (fiy, 1) ~ (u1/ 1, L7v;) is thus established (see Lemma 3.1 in [26]).

Similarly, the right hand side of (3.25) is

1 1
(328) L_II ~ L_l’(}l = ]L_l <>\—) >\1’Ul = (A—)]L_IAQH
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In other words, the right hand side of the preconditioned system with tuning au-
tomatically approximates the starting vector L7z proposed by [34] and [56] in the
preconditioned Lanczos method and by [75] in preconditioned MINRES used in the
context of RQI. In addition, it is an approximate eigenvector of the system matrix
corresponding to ji; < 0. Recall that this is the case for the unpreconditioned system
(A —ol)y = z. In fact, it is shown in [26] that sin @ = sin (91, L™ 'z) = O(sin p).
Therefore, the analysis of unpreconditioned MINRES directly applies to (3.25). The
Ritz value éim’ and harmonic Ritz value ém) are negative at the very beginning of the
MINRES iterations, as in the unpreconditioned case. Compared to preconditioned
MINRES with no tuning, the overhead of performing “bad” MINRES iterations in
which ém) > 0 is avoided with the tuned preconditioner. As a result, MINRES be-
gins to converge earlier and more importantly, tan Z(y,,,v1) (where y,, = L=7¢,,)
decreases much more rapidly in the initial steps. See the figures in Section 3.5.
Similar to the unpreconditioned case, the convergence of preconditioned MINRES
with tuning and decrease of tan Z(y,,, v;) basically depends on how quickly ém) ap-
proaches fi; from below. We have the following bound just like (3.17):
A1 — fin

— < —1.
Hn — H2

(3.20) ) ju__ tan Z (01, GL™ )

— = —~  wheren =
&V T aa(1+27) !

Preconditioned MINRES with tuning converges much more quickly than unprecon-
ditioned MINRES, because the asymptotic convergence factor of the former is con-
siderably smaller than that of the latter. See section 3.5 for comparisons of the two
quantities. Note that by definition, 7 of the unpreconditioned MINRES is a constant
that only depends on the eigenvalues of A, whereas 1 and 7 may change as the outer
iteration proceeds; in our experience, these changes in the preconditioned eigenvalues
tend to be small.

Preconditioned MINRES with tuning also has an initial slow convergence period if

the outer iterate z is close to v;. In Section 3.6.1 we show that the relative linear resid-
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ual ||7,||/IIL7 7| = 1 — O(sin? @) holds in the same way as for the unpreconditioned
MINRES solve. The initial slow convergence is less pronounced for the preconditioned

case with tuning because its asymptotic convergence factor is smaller.

3.3.4 Comparison of SYMMLQ and MINRES used in RQI

To solve the linear systems arising in RQI, a natural alternative to MINRES is
SYMMLQ. With extensive numerical tests, Dul in [16] claimed that MINRES im-
proves eigenvector approximation to some prescribed level in considerably fewer iter-
ations than SYMMLQ. Rigorous analysis and comparison of the two methods is not
seen in the literature. Here we provide some comments on the two solvers in this
context.

Our experience is that MINRES is better than SYMMLQ in general, but the
advantage may vary considerably depending on the preconditioned problem. In one
of our sample problems with appropriate tuned preconditioner, there is little difference
between the two methods, but for ill-conditioned problems without a preconditioner,
as shown in [16], SYMMLQ might not even be able to improve the eigenvalue residual
in a reasonable number of iterations.

To compare the MINRES iterate yM# and SYMMLQ iterate y F, we see that the
MINRES linear residual for Gy = z is # — GyME = pME(G)x (by the definition of

the MINRES residual polynomial p,,), so that
yn = G = pi(@))e = (I = ph GG 2) = (I = pp(G) Y b
i=1

(330) = Y (1—ph(u)bivi = Z(l -T[a- m/&}’“)))bm,

i=1 =1 j=1

where G™1z = )" | bjv; is the true solution. Similarly for SYMMLQ, we have

R SUEN R ui (B § () I

i=1 i=1 7j=1
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The above expressions show clearly that the difference between yf and y>F as
approximations to v; simply results from the different quality of approximation to
the extreme eigenvalue 1 and the interior eigenvalues p; by harmonic Ritz and Ritz
values. Since Z(y,,v1) largely depends on the ratio of the magnitudes of eigenvectors
corresponding to interior eigenvalues to that of v; contained in y,,, we speculate that
the reason for Z(yM% v,) < Z(y5F, v1) is that harmonic Ritz values tend to be better
approximations to the interior eigenvalues, though p, is better approximated by the
Ritz value 6™ (see [54], [63] and [81]).

Reference [16] also shows that the curve of eigenvalue residuals of MINRES iterates
is generally smooth, whereas that of SYMMLAQ iterates tends to be oscillatory. This
phenomenon can be explained qualitatively by the fact the interior eigenvalues are
susceptible to being impersonated by non-converged Ritz values. That is, an interior
eigenvalue py can be well-approximated by some Ritz value at the m-th step of the
Lanczos process when the angle between the eigenvector v, and the current Krylov
subspace range(U,,) is not small [86]. At the m-th SYMMLQ step, a small number
of interior eigenvalues p; might be impersonated by some “incorrect” Ritz value
91(1(71?) (the subscript j(k) is a function of k; 1 < j(k) < m) so that 1 — ,uk/ﬁj(?z)) is
fairly small, and hence 1 — [T/, (1 — ux/ Hj(m)) decreases dramatically. But in the
next SYMMLQ step the impersonation may disappear and this quantity recovers
its magnitude in the step before impersonation. This causes Z(y>L v;) to fluctuate
considerably. MINRES does not have this problem, however: a harmonic Ritz value
would not well approximate an eigenvalue unless the corresponding eigenvector is
well-represented in range(U,,) (see page 293 of [86], equation (4.19)). As a result,
=TI (1 — e/ §§m)) will not fluctuate greatly as m increases, and the decreasing
curve of eigenvalue residuals is smoother. We use this observation in Section 3.5 to

develop stopping criteria for the inner iterations.
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3.4 Preconditioner with tuning based on a rank-2 modifica-
tion

The symmetric preconditioner with tuning defined in [26] is based on a rank-1 mod-
ification of the Cholesky factor L of the ordinary symmetric positive definite precon-
ditioner P = LLT. We restate Lemma 3.2 from [26] to construct the tuned Cholesky

factor.

Lemma 3.4.1 Suppose P = LLT ~ A is a symmetric positive definite preconditioner
of A. Let x be an approximation of vy and w = Ax— Px. The tuned Cholesky factor 1L
is defined as L = L+ aw(L™'w)T, where a is the real solution of (L™ w)T (L™ w)a?+
200 — —+— = 0. Then LL 2z = Ax.

wlz =
The tuned preconditioner P = LIL” can also be defined equivalently as a symmetric

rank-1 modification of P. In fact,

(3.32) P = LL" = (L + aw(L™*w)") (L + aw(L w)")”

’UJU)T

= LL" + 2cww” 4+ ((L7'w)" (L7 'w))a*ww’ = P +

(Ax — Px)(Az — Px)T
(Az — Px)Tx ’

wlx

P+

such that Px = Ax. This definition has the advantage enabling P to be defined for
preconditioners not specified by Cholesky factors.

The tuned preconditioner P has to be positive definite for MINRES. It is shown in
[26] that two conditions must be satisfied to guarantee positive definiteness, namely

(Ax — Px)TQ ' (Az — Px) -

: Az — Px)” 1
(3.33) (Ax x)'x#0, and 1+ (Av = Po)Ts >

However, it is possible that (Az — Pz)Tx is 0 or small enough to cause numerical
problems. Moreover, it is shown in [26] that in cases where (Ar — Pz)Tz < 0,

the second condition above is satisfied only if ||A — P|| is very small. The latter
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requirement is difficult to enforce except in cases where the Cholesky factor is very
dense; for example, P can be the incomplete Cholesky preconditioner with very small
drop tolerance.

Positive definiteness of a tuned preconditioner can be enforced with less stringent
constraints by using a rank-2 modification of P. This approach is used to construct
approximate Hessians for quasi-Newton methods in optimization ([57], Ch 11). In
particular, we can use the BFGS modification

(Pa)(Pr)" | (Az)(Az)"

(3:34) F=r- (Px)Tx (Ax)Tx

It is easy to see that Px = Az. Lemma 11.5 in [57] shows that if the denominator of
the last term in (3.34) is positive (which is the case here), IP is positive definite.

A tuned preconditioner based on the rank-2 modification is slightly more expensive
to apply than that based on the rank-1 modification. One should try the rank-1
modification and turn to the rank-2 version only when the former is not positive

definite, i.e., when there is no real solution to the equation in Lemma 3.4.1.

3.5 Numerical Experiments

We compare unpreconditioned MINRES, preconditioned MINRES without tuning,
and preconditioned MINRES with tuning for solving the linear system in RQI, in
numerical experiments on three benchmark eigenvalue problems from MatrixMarket
[51]. The first problem nos5.mtx is a real symmetric positive definite matrix of order
468 coming from finite element approximation to a biharmonic operator that describes
beam bending in a building. The second consists of two matrices K = besstk08.mtx
and M = besstm08.mtx of order 1074 that define a generalized symmetric posi-
tive definite eigenvalue problem Kx = AMz used for dynamic modeling of a struc-

ture. This generalized problem can be easily transformed to the standard problem

M=\2KM=Y2(MY22) = \(M'?z) where the coefficient matrix can be formed di-
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rectly because M is a positive definite diagonal matrix. The last one is a generalized
symmetric positive semi-definite problem of order 2003 from fluid flows defined by
symmetric positive definite K = besstkl3.mtx and symmetric positive semi-definite
M = besstml13.mtx with rank 1241. The first two examples show the differences
among the three versions of MINRES. The third problem suggests that tuning might

be used for more complex eigenvalue problems.

3.5.1 Stopping criteria for inner iterations

Efficiency of each solver is evaluated by the MINRES iteration counts needed in
a given outer iteration to satisfy some stopping criterion. Note that in MINRES
iteration, we can easily monitor the SYMMLQ iterate also because it can be obtained
for free [19]. We define eigresM” and eigres>L to be the eigenvalue residual associated

with the MINRES iterate y# and the SYMMLQ) iterate y>F respectively, and we stop

SL

the MINRES iteration when the relative changes of ||[yM£||, eigresM® and eigres>:

are all small enough. In other words, the stopping criterion is

(3.35) stop(||yml|) & stop(eigres™ ) & stop(eigresL),

where

(3.36) stop((lymll) = ”ym—kH — “yﬂ”—’“—l” e k=01,
Ym—k

MR

1Y) are defined similarly.

and stop(eigres™®) and stop(eigres

We elaborate on this strategy as follows: Our aim is to stop MINRES as soon
as Z(Ym,v1) = Z(Yexact, V1) (the cubic convergence of the outer iteration is thus
preserved). The first criterion is adopted by [75], where it is shown to be roughly
equivalent to the condition stop(|1 — p,(u1)]). This is a necessary condition for

P (1) < 1 (say pm(p1) is of order 1073 to 1072), which in turn implies that MINRES

has started to converge. Our experience is that Z(y,,, v1) & Z(Yezact, v1) usually holds

54



when MINRES has started to converge. The second criterion is directly connected
to the eigenvalue problem: since the right hand side is dominated by vy, we expect
L(Ym;v1) = Z(Yexact, V1) once the eigenvalue residual stops decreasing. However,
with just these two criteria, MINRES might stop prematurely due to a possibly slow
approximation process. The criterion stop(eigres>E) helps prevent an early stop, since
eigresSt tends to be oscillatory until Z(y,,,v1) approximates Z(Yesacr, v1) well (see
Section 3.3.4), whereas in our experience, eigres™ tends to stagnate slightly before
this (see Figures 3.1-3.3). Finally, we require the stopping criteria to be satisfied for
two successive steps to further ensure that MINRES does not stop prematurely.

One could instead choose a smaller €;,,., and stop MINRES when the criteria are
satisfied for only one step, but this usually makes MINRES continue for quite a few
steps after Z(ym,v1) & Z(Yewact; V1). We take €6, = 0.01 for all the criteria in the
tests. The combined criteria guarantee a fair comparison of preconditioned MINRES
without and with tuning for solving the linear systems in RQI.

Note that we choose not to use the residual of the linear system, ||z —(A—ol)yml,
in the stopping criteria, because as Figures 3.1-3.3 show, it is not possible to specify
an extent to which the norm of the linear residual should be decreased for all problems

when Z(Ym, v1) = Z(Yezact, v1) holds.

3.5.2 Results and comments

We use the incomplete Cholesky preconditioner from MATLAB 7.4 with drop toler-
ance 0.25 for problem 1 and 2, and 0.0015 for problem 3. In each test the starting
vector z(® is chosen to be close enough to the target eigenvector v; so that the
Rayleigh quotient o satisfies |\, — 0@ | < [Ay — 0(@|. The results for MINRES in
the third outer iteration of RQI on these problems are shown in Figures 3.1-3.3 and
Tables 3.1-3.3.

Tables 3.1-3.2 show clearly that unpreconditioned MINRES converges slowly; as
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shown in Section 3.3.2, this is because tan(vy, Gx) = O(m), and the asymptotic
convergence factor is very close to 1 (i.e., the reduced condition number is big); see
(3.17) and (3.19). In fact, unpreconditioned MINRES fails to satisfy the stopping
criteria in the specified maximum number of steps. From now on, we only compare

the preconditioned MINRES without and with tuning.

10° 10
l,.’\
.
10" ! R N 10°
_____ :
B 1

107 T ] 1072
@ \ @
£ \ g
Sio* . \ S0 |
4 ., v 4 ¥
E ' T‘; Gl PR
S 10° 1 S 10° S,
‘7 ' ‘2 N
) ) ) ="
& \ &, e

10 \ 10 L3

-~
v - -~
” linres-MINRES \ " linres—-MINRES ~
10 - = = eigres-MINRES \ : 10 - = = eigres-MINRES %
' eigres-SYMMLO e ] 1 eigres-SYMMLQ ¢ e ——
10'12 I 10 12 L L L
[ 20 40 60 80 100 o 20 40 60 80 100

MINRES step (inner iteration) MINRES step (inner iteration)

Figure 3.1: MINRES linear residual, MINRES and SYMMLQ eigenvalue residual in the third
outer iteration on Problem 1, with drop tol 0.25. Left: preconditioned solve without tuning.

Right: preconditioned solve with rank-1 tuning.
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Figure 3.2: MINRES linear residual, MINRES and SYMMLQ eigenvalue residual in the third
outer iteration on Problem 2, with drop tol 0.25. Left: preconditioned solve without tuning.
Right: preconditioned solve with rank-2 tuning.

It is obvious from Figures 3.1-3.2 that preconditioned MINRES with tuning sig-
nificantly outperforms the version without tuning. The cross marks on the curves

indicate the MINRES iteration at which the stopping criteria are satisfied. It takes

more steps for preconditioned MINRES without tuning to satisfy the stopping crite-
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ria than the version with tuning. The eigenvalue residual curve (dashed lines) of the
tuned MINRES iterate is well below that of the untuned one, and the norm of the
residual of the linear system (solid lines) also decreases more quickly due to tuning.
Moreover, 1) the eigenvalue residual curve decreases slowly in the first dozens of steps
of MINRES without tuning, and 2) the eigenvalue residual curve of preconditioned
MINRES without tuning starts at a value much larger than the value at which the

curve of the version with tuning starts.

Non No tuning Tuning
MINRES iter 160* 94 68
neg Ritz shows in 2 64 1
aymptotic cvg. factor 0.9901 0.9189 0.9189
reduced cond. number | 8.6172e+3 | 5.1497e+2 | 5.1509e+-2
initial angle 3.6915e-3 | 3.6942e-1 | 3.9601le-5

Table 3.1: Comparison of three MINRES methods in the third outer iteration on Problem 1

Non No tuning Tuning
MINRES iter 200* 95 69
neg Ritz shows in 2 31 1
aymptotic cvg. factor 0.9984 0.9347 0.9347

reduced cond. number | 1.5154e+6 | 8.2201e+2 | 8.2201e+2
initial angle 1.5345e-4 | 2.3665e-3 | 1.1692e-6

Table 3.2: Comparison of three MINRES methods in the third outer iteration on Problem 2

Both the phenomena 1) and 2) can be explained by the fact that tuning forces the
preconditioning operator to behave like A on the current outer iterate x. The reason
for phenomenon 1) is given in Section 3.3.2: in the initial steps of MINRES without
tuning, the negative eigenvalue of the preconditioned coefficient matrix cannot be
approximated by any harmonic Ritz value because T, is positive definite, and hence
MINRES cannot perform well. Moreover, Table 3.3 shows that the number of these

“bad” MINRES steps increases as the outer iteration proceeds, as Theorem 3.3.6
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suggests. To explain phenomenon 2), first suppose gy = 0 for the preconditioned
MINRES without tuning. It follows that §; € gy + K1(G,b) is a multiple of the
preconditioned right hand side b= L=z, and the recovered iterate y; = L~7g, is a
multiple of L~"L~'z = P~'x, which is in general far from a good approximation of
v1. Similarly for the preconditioned MINRES with tuning, y; is a multiple of P~!z.
Since P and A behave in the same way on x =~ vy, it is reasonable to expect that
P~z ~ A~z ~ A\ 'v;, which is a much better approximation to v; than P~'x.
Tables 3.1-3.2 provide data supporting the above comparison. First, note that
there is little difference in the asymptotic convergence factor and the reduced con-
dition number between the preconditioned MINRES without and with tuning. The
difference comes from the last rows in the two tables: the angle between the precon-
ditioned right hand side and the eigenvector of the preconditioned coefficient matrix
corresponding to the unique negative eigenvalue is much bigger in the case without
tuning than it is in the case with tuning. As explained, it is this very fact that makes
the first MINRES iterate with tuning (P~'z) a much better approximation to v; than
that without tuning (P~'z). Moreover, for the untuned preconditioner, T, is posi-
tive definite in the first 63 steps in Problem 1 and in the first 30 steps in Problem 2.
One can see from Figures 3.1-3.2 that the eigenvalue residual curves start to decrease

quickly soon after T, becomes indefinite.

We show by the third test that tuning can also be used for generalized eigen-
value problems that cannot be converted into standard eigenvalue problems. Since
M = besstm13.mix is singular, one has to solve (K — o M)y = Mz in Rayleigh Quo-
tient Iteration. Similar to the previous standard problems, the tuned preconditioner
P is a rank-1 modification of the preconditioner P ~ K such that Pr = Kz. Our
convergence analysis of MINRES may not be applied directly, because the eigenvec-
tors are now M-orthogonal and expressions of the entries of the tridiagonal matrix

T,, become less clear. Moreover, the fact that Mz is not close to the “negative”
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Residual Norms

linres-MINRES

linres—-MINRES
= = = gigres-MINRES
eigres-SYMMLQ

= = = gigres-MINRES
eigres-SYMMLQ

o 20 40 60 0 100 120 140 0 20 40 60 80 100 120 140
MINRES step (inner iteration) MINRES step (inner iteration)

Figure 3.3: MINRES linear residual, MINRES and SYMMLQ eigenvalue residual in the third
outer iteration on Problem 3, with drop tol 0.0015.  Left: preconditioned solve without tuning.
Right: preconditioned solve with rank-2 tuning.

eigenvector of K — oM makes the Ritz value analysis more complicated. However,
Figure 3.3 and Table 3.3 show that the pattern observed in the previous two standard
eigenvalue problems still holds for this problem.

Tables 3.4-3.5 show some cases when the rank-2 tuning has to be used. In prob-
lems 2 and 3, the rank-1 tuning makes the tuned preconditioner indefinite when the
drop tolerance is above some threshold, and rank-2 tuning works with any drop tol-
erance. In the three test problems, there is little performance difference between
preconditioned MINRES with the rank-1 and the rank-2 tuning. As the drop tol-
erance increases, the iteration counts of preconditioned MINRES with and without

tuning both increase, but the difference between them becomes more pronounced.

3.6 Some technical details

3.6.1 Proof of initial slow convergence
3.6.1.1 Unpreconditioned MINRES

The proof of Theorem 3.3.1 is given as follows:

: _ 2 _ n c
Proof Note from (3.2) that sinp = \/c5+ -+ andu=>_,_, \/ﬁvk That
is, u is uniquely determined by the ordered set {cx/\/c3+ -+ c2}; one can fix u
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Outer Iteration | 1| 2 | 3 | 4
Problem 1 7119 | 64
Problem 2 1113144
Problem 3 11 8 |82

Table 3.3: Numbers of preconditioned MINRES iteration steps without tuning needed to have
o™ <0

Drop tolerance | 0.05 | 0.07 | 0.1 | 0.25 | 0.3 | 0.35

No Tuning 51 75 | 82 | 95 | 111 | 139
Rank-1 Tuning | 35 51 60 —
Rank-2 Tuning | 36 52 | 59 | 69 7| 97

Table 3.4: Number of preconditioned MINRES iteration steps needed to satisfy the stopping crite-
rion in the third outer iteration for Problem 2

Drop tolerance | 2.5e-4 | 5.0e-4 | 7.5e—4 | 1.0e-3 | 1.25e-3 | 1.5e-3
No Tuning 76 84 103 112 122 133

Rank-1 Tuning 71 73 90 — — -

Rank-2 Tuning 65 73 89 99 107 115

Table 3.5: Number of preconditioned MINRES iteration steps needed to satisfy the stopping crite-
rion in the third outer iteration for Problem 3

and only change ¢ by increasing/decreasing {c;}(2 < k < n) by a common factor, to
see qualitatively how MINRES convergence is affected by ¢.
One can see from (3.5) that y; = 0 since 77 = [0]. We now assume that m > 2.

Recall the spectral decomposition of A, the Rayleigh quotient (3.3) and Lanczos
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decomposition (3.4). For any k£ < m, we have

(337)  a"(A-oD)fz=c"(A=ol)fe=> (A —0o)fc+ (M — o)
=2
2

k
= sin (pZ( Al — O’ )\ — )\1)> <51r?2g0) + ()\1 — a’)k COS2S0

k

02

(Al—U)j(Ai—Al)k_j)< = )+(>\1—U)k0052<ﬂ

sin” ¢

n

_ sin2<pzk: k (M — o) (Z(Ai—Al)k_j<si§z<p>

1=2

) + (A — 0)Fcos® .

Letting Iy = > o (A — A1)%( < ) € [A2 — A1, A — A\q] (which depends only on {\;}

sin® ¢

and u, but not on @) be a weighted average of {(A\; — \1)°}(0 < s < k), and using
A — 0 = (A — \)sin® ¢, we then have

k
k . ,
(3.38) 2T (A —ol)*z = Z Lo j(M — A7 sin® %2 o + (A — A" sin?* p cos? ¢
i=0 \ J
k _ k _
= [psin®p+ lii(A — AN)sinto + -+ LA = N)Ftsin®
1 k—1
+(A1 = A)Fsin?* 2 o 4 (A — X)*sin?* p cos® o

k - -
= sin® w(lk +ooo < L =N+ (- A)k) sin? 2 w)
k-1

= qk_l(sin2 ) sin? o,

where g1 is a polynomial of degree k — 1 whose coefficients depend on {\;} and u;
in particular, [, the constant term of g,_1, is independent of ¢.

We can thus find the first few entries of 7T, in closed form. For example,
(3.39) =2 (A—cl)x=0—-0=0,
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(3.40) By = |[(A—ol)x —ayz|| = /2T (A—0ol)?x = \/ql(sin2 @) sin? ¢
=/ q1(sin? ) sin p = \/Esin ¢ + O(sin® p),

Ba) o = d(4-onu = (B0 >°”“)T<A —on ()

o B2
_ 2T (A —ol)3x _ ¢2(sin? @) sin? @ _ ¢2(sin? )
5 qi(sin® ) sin®p g1 (sin’ )’
and
A—oal)z ag(A—ol)x
(342) By = [(A—oD)us— Box — s = Hg gy Q2o
Ba Ba
T(A — o)A
— \/%j%@%jtag—Qﬁg—Qa%%—Qazal
2
el(A—ol)'z  (2T(A—ol)Pz\>
_ _ —aT(A— o)
\/xT(A “ ol (xT(A Ty U ATl
s 02 s 2 2
= Q3(S?n2 0) _ qg(s%n2 A q1(sin? ) sin”
q1(sin® ) q1(sin® )

One can similarly evaluate a3 and (4, though the expressions for other entries become
much more complicated. Note that as the coefficients of ¢,_; are uniquely determined
by u, for any fixed u, all the entries in T}, are functions of sin?  only. (Obviously, if z
consists of m + 1 eigenvectors of A, then (A — oI)Uy11 = Ups1 Ty With B0 = 0,
and ||741|| = 0. This is why we restrict our analysis to how ||| (1 < k < m) is
affected as ¢ goes to zero.)

To show that lim,_ ||rx]| = 1 for all £ with 1 < k < m, we only need to establish
the result for £k = m, since the MINRES residual norm decreases monotonically. In
light of Theorem 3.2.1, the key point is to show that f,,(1) is the unique dominant

entry in f,, = T, 'e,,. In fact, the entries of f,, can be evaluated by Cramer’s rule as
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follows:

|det[em, Trn(1:m,2:m)]| [T, B
(343) [ (1)] |det[ T}, ]| N 6§det[Tm(k3 cm,3:m)]
1 HZ”:?, B

By |det[T7,(3 : m, 3 :m)]|’

and therefore

1 o |det[T(3:m,3:m)])\”
(34 e =4 )

where T, (i : m, j : m) is the submatrix of T}, consisting of its ith through mth rows

and jth through mth columns.

We now show that m = O(sin® p) and hence limgp_)om = 0. Simple

observation from (3.38) shows that lim,_o gx—1(sin? p) = I (the constant term of the
polynomial), and thus the limit of as and (3 are I3/l and m /15 respectively.
We can show by induction that all ay and 5 have some nonzero limit (independent
of ) except for a; = 0 and By ~ /Iy sin . Since all 8 (3 < k < m) and all entries in
det[T},,(3 : m,3 : m)]| have a nonzero limit as ¢ — 0, the term in (3.44) multiplying
/32 also has a nonzero limit. Recalling from (3.40) that 32 = ¢;(sin? ) sin” ¢, we have
1

= O(sin2 ¢) and lim,_o fm M — 0.

Note that 35 in the second column of 7, is the only nonzero entry of the first row,

1
|fm (D)2

and hence f,,(2) = 0. Then

(3.45) n(3)] = |det[Tr, (1 :m,1:2), e, Trn(1:m,4: m)|

|det[T:,]|
. ﬁ% H?:4 DB _ HZL4 DB
B3|det[T (3 :m,3:m)]|  |det[T,,(3:m,3:m)]|’
Therefore, |f,,(3)| has a nonzero limit as ¢ — 0, and lim,_.g ;:g’;i = 0. One can
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show in the same way that lim,_ Lnm(k7 _ (4 <k <m). Using (3.7), we have

fm(1)2
1 1+ 62 fml? 1 2 f (k)2

(3.46) - 25 +1||f! __ 2+1+Zf()2

w(1)] 1| (1) 1l fm(1)] —~ fm(1)

= 1+ 0(sinp)

The assertion follows immediately from (3.6). |
3.6.1.2 Preconditioned MINRES with tuning
We can use the same reasoning to show that lim,_¢ |7 ||/|| L~ 2| = 1 for precondi-

tioned MINRES with tuning.

Let éﬁm = (7me + Bj+1ﬂj+le;p be the m-step Lanczos decomposition. The first
Lanczos vector 4y = L'z /||[L™ x| = 0, cos @ + @sin @, where @ L ¢ and |[a] = 1.
Since the smallest eigenvalue of G is ji; = O(sin? @) (by Theorem 9.1 of [5]), we have

the first entry of T, as follows:

(3.47) & = 4Gy = (9 cos @ + usin @)TG(v; cos ¢ + @i sin P)

= [ipcos® ¢ + fisin® p = O(sin? ),

where fi € [fig, fin]. In light of (3.40) and (3.41), we can show easily that £, = O(sin @),
G, (3 and all other entries have a nonzero limit as @ goes to zero (where we recall
from the comment right after (3.25) that sin 3 = O(sin ¢). Analysis of f,, = T:> e,

is similar to that of f,,, as follows:

|det[em, Thn(1:m,2:m)]|

(348)  [|fm(V)] = |det[T},]]

| Bk
|Gydet[T,,,(2 : m, 2 : m)] — B2det[T},,(3 : m,3 : m)]|
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\det[Tm(l im, 1),em,Tm(1 :m, 3 :m)|
|det[T},,]|
|6 | T B
\ozldet[ [0(2:m, 2 :m)] — B2det[T,(3 : m, 3 : m)]|

_ ( ) _o(1)

(349)  |fu(2)| =

One can show other entries of f,, also have a nonzero limit, and hence f,,(k)/fm(1) =
O(sin @)(2 < k < n). Using exactly the same reasoning in Section 3.6.1.1, we can show
that limg o 1/|w(1)]* = 1 and the relative linear residual limg_¢ |7 ||/||[ L~ 2| = 1.
Similar to the unpreconditioned solve, if ¢ is small enough, then 1 — ||7,,||/|| L~ z|| =
O(sin? ).

3.6.2 Assumption of Theorem 3.3.2

In fact,

pu(m) = [ = /&™) ~ (1= /™)1 =3 /™)
k=1 k=2
(3.50) =1—Zm@ — (/™)@ = /M),
k=2

which is smaller than 1 if and only if

m 1_Zm: Nl/g(m)
(3.51) ¢ >>—< k=2 ok )
1 S, /6

On the other hand, we can find the closed form of 552) and 552) by the definition
of harmonic Ritz values. We do this by solving the generalized eigenvalue problem

Mzw = £Tyw, where, by Theorem 3.2.1,

o a? + 32 a1+« a
(3.52) MEZ=TIT,= 10 At a) Ty = 1 b

Bo(on + o) 5+ a3 + (3 Ba
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We solve the equivalent problem T, 'M?w = éw with oy = 0 and find that

@ 2= /a3 +405+40F  ay—+/o} + 483 4+ O(sin’ p)
=

(3.53)

2 2 ’

where (5, as and (3 are given in (3.40) through (3.42). Note that this is a negative
number bounded below independent of ¢, and ém) increases with m to approximate

p1 from below. Therefore, in the first few MINRES iterations, p,,(u1) > 1 if

(354 0y — /o] T4+ 45 _ (1 -2 m/@i’”’)

2 Y, 1/6"
For some problems, p,,(p1) > 1 holds in the initial MINRES iteration steps, but it
will not take many iterations in practice before p,,(p1) < 1 so that Theorem 3.3.2

can be applied and the bound in (3.10) becomes informative.

3.7 Concluding remarks

We have presented a detailed convergence analysis of three versions of MINRES to
solve the linear systems in Rayleigh Quotient Iteration to find the lowest eigenpair
of a symmetric positive definite matrix. Based on insight about the behavior of
Ritz and harmonic Ritz values, our analysis includes qualitative and quantitative
understanding of initial slow convergence of MINRES iterations, the main weakness
of ordinary preconditioning without tuning in inexact RQI, the virtue of tuning, and
the advantage of MINRES over SYMMLQ.

Using the idea of the BFGS formula in quasi-Newton methods, we propose a tuning
method based on a rank-2 modification which guarantees positive definiteness of the
symmetric tuned preconditioner. Other rank-2 modification formulas, such as DFP
in quasi-Newton methods, could also be used.

Considering the performance of the three preconditioned MINRES solves on the

last test problem, we speculate that our convergence analysis of MINRES on standard
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eigenvalue problems can be extended to generalized eigenvalue problems.

In fact, the inner solve of inexact RQI can be performed in two ways. The first
way is to solve the shifted linear system (A — ol)y = x directly, and the second
is to solve a simplified Jacobi-Davidson correction equation (I — za*)(A — ol)(I —
za*)(dr) = —(A — o)z and let y = x + dz. The first methodology is studied in
[75, 26] and this chapter; the second is investigated in [58]. It was shown in [27, 29|
that for a given preconditioning matrix P, solving the shifted linear system by the
full orthogonalization method (FOM) with P (the tuned version of P) is equivalent
to solving the Jacobi-Davidson correction equation by FOM with P (untuned), in
the sense that the inner iterates obtained by the two approaches in the same inner
step are identical up to a scaling factor. This equivalence can be explained as follows.
It can be shown that if the shifted linear system is preconditioned by P, a good
approximate solution can be computed in the first inner iteration. This approximate
solution is also very close to the approximate desired eigenvector in the current outer
iteration. Therefore, in the subsequent inner iteration steps, what is essentially done
is to compute a correction to this approximate eigenvector. The corrected eigenvector
obtained after this inner solve is expected to be a better approximation to the desired
eigenvector. This effect is precisely consistent with what is achieved by the inner
solves of the simplified Jacobi-Davidson method. We will discuss the connection
between the motivation of tuning and that of the Jacobi-Davidson method in the

next chapter for inexact subspace iteration.
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4 Inexact subspace iteration

In this chapter, we study an inexact subspace iteration for solving generalized
non-Hermitian eigenvalue problems with spectral transformation, with focus on a few
strategies that help accelerate preconditioned iterative solution of the linear systems
of equations arising in this context. We provide new insights into the preconditioner
with tuning that has been studied for this algorithm applied to standard eigenvalue
problems and propose a two-phase algorithm to use the tuned preconditioner in a
simplified way to achieve similar performance for generalized problems. We discuss
the connection between the two-phase algorithm and some methods for efficiently
solving the linear systems arising in inexact inverse power method. In addition, we
show that the cost of iterative solution of the linear systems can be further reduced by
using deflation of converged Schur vectors, special starting vectors constructed from

previously solved linear systems, and iterative linear solvers with subspace recycling.

4.1 Introduction

We have studied an inexact Rayleigh quotient iteration (RQI) for computing the low-
est eigenpair of a Hermitian positive definite matrix in Chapter 3. RQI can also be
applied to compute a simple eigenpair of a non-Hermitian matrix. Nevertheless, this
method works with only a single vector and is generally not useful for computing sev-
eral eigenpairs. In this situation, subspace iteration (also referred to as orthogonal or
simultaneous iteration) can be used to compute a few dominant eigenpairs of a linear
operator A. As introduced in Chapter 2, subspace iteration is a straightforward block
generalization of the power method which works with subspaces of a fixed dimension.
The subspaces generated contain approximate desired Schur vectors that converge

linearly as the (outer) iteration proceeds, if the matrix-vector products involving A
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are computed accurately.

In this chapter, we study an inexact subspace iteration for computing a few non-
dominant eigenpairs of the generalized non-Hermitian eigenvalue problem Av = ABw.
For this computation, A is chosen to be a proper shift-invert or Cayley transformation
operator which maps the desired eigenvalues to well-separated dominant ones of a
transformed problem. Without loss of generality, we use the notation A = A™!'B,
and we are interested in the k eigenvalues of Av = ABv with smallest magnitude
(i.e., k dominant eigenvalues of A = A™!'B). This notation covers both shift-invert
and Cayley transformation operators (2.10) with arbitrary shifts. For example, one
canlet A=A—0,Band B=A— 0,8 , so that the generalized Cayley operator is
A=A"'B. Asa result, in each outer iteration, a linear system of the form AY = BX
with multiple right-hand sides need be solved. We assume that the matrices are so
large that this linear solve has to be done by iterative solvers (inner iteration). The
major concern of this chapter is to study several techniques to reduce the cost of the
inner iteration.

Inexact subspace iteration for standard eigenvalue problems was studied in [65],
where the linear convergence of outer iterations is established with the assumption
that the inner solve is performed with reasonable accuracy. A second major contribu-
tion of [65] is the extension of the preconditioner with tuning [25, 26] to the iterative
solution of the block systems AY = BX arising in inexact subspace iteration. By
the block-GMRES [68] convergence theory, it is shown there that tuning keeps the
block-GMRES iteration counts roughly constant for solving these block linear sys-
tems, though the inner solve is required to be done with increasing accuracy as the
outer iteration proceeds.

In this chapter, this idea is extended to generalized eigenvalue problems and is
improved by a new two-phase algorithm. Specifically, we show that tuning can be

limited to just one step of preconditioned block-GMRES to get an approximate solu-
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tion, after which a correction equation can be solved to a fized relative tolerance with
proper preconditioned block linear solvers where tuning is not needed. We show that
the effect of tuning is to reduce the residual in a special way, and that this effect can
be also achieved by other means, in particular by solving a small least squares prob-
lem. Moreover, we show that the two-phase strategy is closely related to an inverse
correction scheme presented in [67, 33] and the residual inverse power method in [87].

The second phase of this algorithm, in addition to using a simplified precondition-
ing strategy, can also be simplified in other ways to achieve additional reduction of

inner iteration cost. We explore three techniques to attain the extra speedup:

1. Deflation of converged Schur vectors (see [86]) — Once some Schur vectors have
converged, they are deflated from the block linear systems in subsequent outer
iterations, so that the block size becomes smaller. This approach is independent

of the way the block linear systems are solved.

2. Special starting vector — We find that the right hand sides of a few successive
correction equations are often close to being linearly dependent; therefore an
appropriate linear combination of the solutions to previously solved correction

equations can be used as a good starting vector for solving the current one.

3. Subspace Recycling — Linear solvers with recycled subspaces (see [61]) can be
used to solve the sequence of correction equations, so that the search space for
each solve does not need to be built from scratch. In addition, if the same
preconditioner is used for all correction equations, the recycled subspaces avail-
able from solving one equation can be used directly for the next without being

transformed by additional preconditioned matrix-vector products.

We discuss the effectiveness of these ideas and show by numerical experiments that
they generally result in significant savings in the number of preconditioned matrix-

vector products performed in inner iterations.
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An outline of this chapter is as follows. In Section 2, we describe the inexact
subspace iteration for generalized non-Hermitian eigenvalue problems, restate some
preliminary results taken from [65] about block decomposition of matrices, and discuss
a new tool for measuring closeness of two subspaces. In Section 3, we briefly discuss
the behavior of unpreconditioned and preconditioned block-GMRES without tuning
for solving the block linear systems arising in inexact subspace iteration, and present
new insights into tuning that lead to our two-phase strategy to solve the block linear
systems. In Section 4, we discuss deflation of converged Schur vectors, special starting
vector and linear solvers with recycled subspaces and the effectiveness of the combined
use of these techniques for solving the block systems. Section 5 includes a series of
numerical experiments to show the performance of our algorithm for problems from
Matrix Market [51] and those arising from linear stability analysis of models of two-
dimensional incompressible flows. We finally make concluding remarks in Section

6.

4.2 Inexact Subspace Iteration and Preliminary Results

In this section, we review an inexact subspace iteration for the generalized non-
Hermitian eigenvalue problem Av = ABv (A, B € C"*") with spectral transformation,
block Schur and eigen-decomposition of matrices, and metrics that measure the error

of the current approximate invariant subspace.
4.2.1 Inexact Subspace Iteration
Algorithm 4.1 describes the inexact subspace iteration.
In Step 1, X is the space spanned by the current outer iterate X. The error
of X® is defined as the sine of the largest principal angle between AX® and BX®.

It decreases to zero as X® converges to an invariant subspace of the matrix pencil

(A, B). This error can be computed by MATLAB’s function subspace based on
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Algorithm 4.1 Inexact Subspace Iteration with 4 = A~'B

Given ¢ > 0 and X € C"*P with X(O*X©) =T (k< p)
for i = 0,1, ..., until £ Schur vectors converge do
1. Compute the error () = sin Z(AX®, Bx ()
2. Solve AY(®) = BX (¥ inexac(t)ly su(cl)l that
HB)ﬁBX(I?))H/ I « Se(®
3. Perform the Schur-Rayleigh-Ritz procedure
to get X (1) with orthonormal columns from Y ()
and test for convergence
end for

the relative residual norm

singular value decomposition (see Algorithm 12.4.3 of [32]), and will be discussed in
detail in Proposition 4.2.2.

The Schur-Rayleigh-Ritz (SRR) procedure (see Chapter 6.1 of [86]) in Step 3 will
be applied to deflate converged Schur vectors. The procedure and its use for deflation
will be explained in detail in Section 4.4. The most computationally expensive part
of the algorithm is Step 2, which requires an inexact solve of the block linear system

AY® = BX®_ The major concern of this chapter is to reduce the cost of this solve.

4.2.2 Block eigen-decomposition

To briefly review the basic notations and description of the generalized eigenvalue
problem, we restate some results from [65] on block eigen-decomposition of matri-
ces and study a new tool to measure the error of X for generalized problems. To
simplify our exposition, we assume that B is nonsingular. This assumption is valid
for problems arising in a variety of applications. In addition, though B is only posi-
tive semi-definite in linear stability analysis of incompressible flows, one can instead
solve some related eigenvalue problems with nonsingular B that share the same finite
eigenvalues as the original problem; see [11] for details.

As B is nonsingular, we assume that the eigenvalues of B~!'A are ordered so that

0 < A1) < ol < e S I < Apsa] < oo < M-
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The Schur decomposition of B~*A can be written in block form as

Tll T12

(4.1) B'A= [V, Vi i, Vit]7,

0 Ty
where [V;, V] is a unitary matrix with V; € C™? and Vi € C™*("P) Ty, € CP*»
and Ty € C=P)*x(=P) are upper triangular, A(Th;) = {A1,..., A} and A(Ty) =
{A\ps1s s An}. Since Ti; and Tyy have disjoint spectra, there is a unique solution
Q € CP*(=P) 0 the Sylvester equation QTsy — T11Q = Tha (see Section 1.5, Chapter
1 of [86]). Then B~'A can be transformed to block-diagonal form as follows:

(4.2) B'A= [V, V1] I I B Vi, Vi
0 1 0 Ty | |0 I
7.0 )
= Vi, wQ+vh | (Vi = Vi Q"), Vit]
| 0 Ty
T} X
= Vi, ViQ+VvhHep'l | " (Vi = V-Q"), Vi*Qp]
0 QDT22Q51

K 0 ) K 0 »
- [‘/17 ‘/2] [Wh WQ] - [‘/17 ‘/2] [‘/17 ‘/2]
0 M 0 M

where Qp = (I+Q*Q)Y?, Vo = (V1Q + Vi1)Q}p' with orthonormal columns, K = Ty,
M = QDTQQQf)l with the same spectrum as Ty, W, = V) — VEQ* and W, = V1Q)p
such that [Wl, Wg]* = [Vl, ‘/é}_l. From the last expression of (4.2), we have

(4.3) AV; = BViK, and AV, = BV, M.

Recall that we want to compute V; and corresponding eigenvalues (the spectrum of

K) by inexact subspace iteration.
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4.2.3 Tools to measure the error

The basic tool to measure the deviation of X = span{X®} from V; = span{V;} is
the sine of the largest principal angle between X' and V; defined as (see [65] and

references therein)

(4.4) sin Z(X0, V1) = [|(ViH) X9 = IXO(X9) = vivy|

= min | XY -ViZ| = min |V - X®2Z].
ZeCpxp

ZeCpxp

This definition depends on the fact that both X® and V; have orthonormal columns.

We assume that X @ has the following decomposition
(4.5) X =100 4+ 1,80,

where C) = WX € Cr*p SO = Wy X® € C=P)*P_ Intuitively, ||[S@| — 0 as
X@ — V. Properties of C® and the equivalence of several metrics are given in the

following proposition.

Proposition 4.2.1 (PROPOSITION 2.1 in [65]) Suppose X is decomposed as in (4.5).
Let 50 = [SOCOY1 and 10 = sOCO||. Then

1) C9 is nonsingular and thus s is well-defined. The singular values of OV satisfy
(4.6) 0<1— |89 <ou(C?) <1459, k=1,2,...,p

and CO = UD + YO where UD is unitary and | Y@ < [|SO|| < 1.

. i i i 14]S® i
2a) sin Z(X® V) < ||SD] < 5@ < <1J_FHS(1')H> 15@

3 7 i S(4)
) s 20060, 9) <19 < 50

2¢) S < 1+ QI sin £(XV, V).

The proposition states that as X — V;, O gradually approximates a unitary

matrix, and sin Z(X® V), [|SP||, s&) and ) are essentially equivalent measures of
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the error. These quantities are not computable since V; is not available. However,
the computable quantity sin Z(AX®, BX®) in Step 1 of Algorithm 4.1 is equivalent

to ||S@||, as the following proposition shows.

Proposition 4.2.2 Let X be decomposed as in (4.5). Then
(4.7) || S| < sin Z(AX®, BXD) < 6|59,

where ¢ and ¢y are constants independent of the progress of subspace iteration.

Proof We first show that as X@ — V;, AX® ~ BX®. In fact, from (4.3) and (4.5)

we have

(4.8) BXY = BViCY + BV,SW = AViK~1C® + AV,M 15O
= AXY 18N (CNHTTK10D - AVM 1 SD

= AXOD(COTKLC® — AV, (S(i)(c(i))—lK—lc(i) — M—IS(i)) )

Roughly speaking, AX® and BX® can be transformed to each other by postmulti-
plying (C®)~K~*C® or its inverse, with a small error proportional to ||S@|.

Let DY = (XO*A*AX )12 DY) — (X0*p*BX©1)=1/2 ¢ CP*P_ 50 that both
AX (i)DX) and BX (i)Dg) have orthonormal columns. Then by (4.4)

(4.9) sin Z(AX©, BXY) = min, 1AXD DY — px®pl g
< AxODY - BXUDY (DY) H(CV) KCODY)|
= | (AX(i) — BX(i)(C(i))_lKC(i))DX)}}
= [|AVL(SD — MLSD(CNTTRCO) DY (see (4.8))
= || BVa(MSD — SO(CO)TKCO) DY (see (4.3))

< |IBVRIIDD IS S,

where S; is the Sylvester operator G — S;(G) : MG —G(C®)"'KC®. Note that as i
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increases, ||S;|| — ||S]| where S : G — S(G) = MG — GK, as the following derivation

shows:

HMG — G(CHZLKCD||
irefl

H (M(G(ED)) = (GeD) ) K)o
sup —— . ;
(G(C®)=H) O

(4.10) S|

(G c (C(n—:n)X:n)

and therefore

MG - GK MG — GK|r(CD) -
(4.11) Supw < [|Si]] < sup MG G~ I-(C™) (G € Cm=p)xp)
¢ [Gls(CO) G Ttel
or I1S|/6(CD) < ||Si| < [IS]|&(CD).

As 1< k(C0) = szzgg(fj; < }j“ﬁﬁj” (Proposition 4.2.1, 1)) and [|S®| — 0, ||S;|| —
|S]| follows. In addition, as Dﬁf) is derived from the projection of A*A onto X — Vy,
HDX) || is bounded above by some constant independent of 7. The upper bound in (4.7)
is thus established.

To study the lower bound, we have

(4.12) sinl(AX(i),BX(i)): min ||AX(’ () _Bx® D(z Al
ZeCpxp
= min ||B(BAXY - XD Z(DY) ) DY
cCpXxp
> min [|B7AXY — XOZ)0,0(B)owin(DY).
ZeCpxp

Let o) = O’mm(B)O'mm(DX)) = Omin(B)||(X* A* AX@)1/2||. Since the minimizer Z
in the last inequality is K@) = X@*B~1AX® (see Chapter 4, Theorem 2.6 of [86]),
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we have

(4.13)  sin Z(AX®, BXD) > 60 B71AXO — xO KO

> oWV ) (BTAXY - XOKO) (Vi =1)

= oV Tn(Vi ) XY = (V) XOKO| - (Vi) BT A = Tn(Vi)"; see (4.1))
> oWsep(Thy, KO)||(ViH)* XD = 0Dsep(Tay, K©)sin Z(Vy, XD)

> oWsep(Taa, KDY (1+[|Q*)"2|SW||.  (Proposition4.2.1, 2c))

For similar reasons for ||DX)||, oW = amm(B)amm(DX)) is bounded below by some
constant independent of i. Moreover, as X — V;, KO = XO*B=1AX® — K up
to a unitary transformation, and hence sep(Thy, K¥)) — sep(Tsy, K) (see Chapter 4,
Theorem 2.11 in [86]). This concludes the proof. |}

Remark 2.1. In [65] the authors use [|[AX® — X® (X®*AX®) || to estimate the
error of X for standard eigenvalue problems, and show that this quantity is essen-
tially equivalent to ||S@||. The p x p matrix X @*AX® is called the (block) Rayleigh
quotient of A (see Chapter 4, Definition 2.7 of [86]). For the generalized eigenvalue
problem, we have not seen an analogous quantity in the literature. However, Propo-

sition 4.2.2 shows that sin Z(AX®, BX®) is a convenient error estimate.

4.3 Convergence Analysis of Inexact Subspace Iteration

We first demonstrate the linear convergence of the outer iteration of Algorithm 4.1,
which follows from Theorem 3.1 in [65]. In fact, replacing A=* by A~!B in the proof
therein, we have

tO + Wi B I(CO)HHIRD

(4.14) t < K1) . e T
L= Wy B=HH[(CO)H| [[RO]
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where |[(CD)™| = 1/0min(CP) — 1, and

(4.15)  ||RY| = ||IBX®D — AY®| < §||BXD||sin L(AX, BX®)

< 6C,||BXD /1 + Q™. (see Proposition 4.2.1)

Thus X® — V; linearly for ||K||||M~!|| < 1 and small enough 4.

In this section, we investigate the convergence of unpreconditioned and precon-
ditioned block-GMRES without tuning for solving AY® = BX® to the prescribed
tolerance, and provide new perspectives on tuning that lead to a new two-phase

strategy for solving this block system.

4.3.1 Unpreconditioned and preconditioned block-GMRES with no tun-
ing

It is shown in [65] that when solving the block linear systems AY ® = X arising in
inexact subspace iteration for standard eigenvalue problems, as the tolerance of this
solve decreases with the outer iteration progress, the unpreconditioned block-GMRES
iteration counts remain roughly constant, but the number of preconditioned block-
GMRES iterations without tuning increases. The reason is that the right hand side
X @ is an approximate invariant subspace of the system matrix A, whereas with pre-
conditioning, there is no reason for X to bear such a relation to the preconditioned
system matrix AP~! (assuming right preconditioning is used).

For generalized eigenvalue problems, however, both the unpreconditioned and pre-
conditioned block-GMRES iteration counts increase progressively. To see this point,
we study the block spectral decomposition of the system matrix and right hand side
and review the block-GMRES convergence theory. We present the analysis of the
unpreconditioned solve; the results apply verbatim to the preconditioned solve.

We first review a generic convergence result of block-GMRES given in [65]. Let G

be a matrix of order n where the p smallest eigenvalues are separated from its other

78



n — p eigenvalues. As in (4.2), we can block diagonalize G as

Kg

0 Mg

(4.16) G = [Ver, Ve [Ver, Vas]

where Vg, € C™? and Vo € C™(?) have orthonormal columns, A\(K¢) are the
p smallest eigenvalues of GG, and A\(Mg) are the other eigenvalues of GG. Recall the
definitions of the numerical range W(Mg) = {Z2¢%: 2 € C"P, 2 # 0} and the e
pseudospectrum A (Mg) = {\ € C : 0,pin(AM — Mg) < €}. The role of the right hand
side in the convergence of block-GMRES is described in the following lemma, which

follows immediately from Theorem 3.7 of [65].

Lemma 4.3.1 Assume the numerical range W (Mg) or the e-pseudospectrum A.(Mc)
is contained in a convex closed bounded set E in the complex plane with 0 ¢ E.
Suppose block-GMRES is used to solve GY = Z where Z € C"*P can be decomposed
as Z = Vg1Cg + Vg Sa with Vgr and Vg given in (4.16). Here Sg € CP)XP and
we assume Cg € CP*P 4s nonsingular. Let Yy be the approzimate solution of GY = Z

obtained in the k-th block-GMRES iteration with Yy = 0. If

CallllSaCAt
(4.17) k>14+C, (Cb+log I%lll15aCq H),
1Z]|7
then ”ZH%YIC” < 1. Here C, and C, are constants that depend on the spectrum of G.

Remark 3.1. For details about C, and Cj, see [65], [40] and [21]. These details
have minimal impact on our subsequent analysis.

Remark 3.2. This generic convergence result can be applied to any specific block
linear systems with or without preconditioning. For example, to study the behavior
of unpreconditioned block-GMRES for solving AY® = BX® let G = A in (4.16)
and Lemma 4.3.1, and decompose relevant sets of column vectors in terms of V,; and

Vao.
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In the following, we will assume that for nontrivial B (B # I), there is no patholog-
ical or trivial connection between the decomposition of (4.16) for the case G = A and
that of B~1A in (4.2). Specifically, we assume there exist a nonsingular C, € CP*P
and a full rank Sy € C""P)*P for which both ||C|| and ||S;C; || are not too small or

too large, such that
(4.18) Vi = V4 Cr 4+ VoS

That is, V; of the generalized eigenvalue problem is not dominated by either invariant
subspace of A specified in (4.16) (with G = A). This assumption is generally far
from stringent, and is consistent with our numerical experiences. Similarly, let the
decomposition of V; be Va = V41054 V495, with Cy € CP*(=P) and S, € Cn—p)x(n=p),

Lemma 4.3.1 and the assumptions above lead to the following theorem, which

qualitatively describes the behavior of block-GMRES for solving AY®) = BX®),

Theorem 4.3.2 Assume that unpreconditioned block-GMRES is used to solve the
linear system AY ) = BX® to the prescribed tolerance in Step 2 of Algorithm 4.1. If
the assumption (4.18) holds, and X9 — Vy linearly, then the bound on block-GMRES
iteration counts that gquarantees satisfaction of the prescribed the tolerance increases

as the outer iteration proceeds.

Proof With (4.3), (4.5), (4.16) and (4.18), we have

(4.19) BX®Y = BV,CY + BV,S® = AViK~1C® + AV,M~15®
= A(VyCy 4 VaaS1)K1CW 4 AV, Oy + VigpSy) M~1S®
= (Vi KACy 4 VaaMuS)K1CY 4 (Vg K 4Ch + Vag M 4 S) M—1S®
= VaKA(CiK'CW + CoM18D) 4 Vo M4 (S1 K10 + Sy M—1S)

= VAlCﬁf) + VAQSX).
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Since |S@| — 0 and 04(C®) — 1(k = 1,2,...,p) (see Proposition 4.2.1, 1)), we
have ||[CV|| — |[KAC K| and [|ST(CO) Y| — [|MaSiC K7, both of which
are moderate quantities under our assumption for (4.18).

From Step 2 of Algorithm 4.1 and (4.9), the relative tolerance for AY® = BX®
is 7 = §sin Z(AXD, BXD) < §||BV|||IDP|[|S:)||S@]] — 0. Then from (4.17) and
(4.19), the lower bound on the unpreconditioned block-GMRES iteration counts which
guarantees satisfaction of the prescribed tolerance is

(@) @) () —1
(4.20) H”zl+CzG%+k% ICA IS (a7 ).
SIBXO[|BVIDY 1S 159

Note that |BXD| — BV, [ DY|| — [[(ViA*AV1)~12]| and [|Si]| — [|S]| (see the
proof of Proposition 4.2.2). Therefore all terms in the argument of the logarithm
operator approach some nonzero limit except ||[S®|| — 0, and hence the bound on
k™ which guarantees satisfaction of the tolerance increases as the outer iteration

proceeds. |

Remark 3.3. This result only shows that an upper bound on k™ increases but
doesn’t establish that the actual block-GMRES iteration counts will grow. However,
numerical experiments in [65] and Section 4.5 this chapter do indicate that this result
is indicative of performance. The gradual increase of inner iteration counts depends
on the assumption of (4.18) that V; has “regular” components of V4; and Vyo. This
assumption guarantees that BX® does not approximate the invariant subspace Va;
of A. The proof also applies word for word to the preconditioned solve without tuning:
one only needs to replace (4.16) by the decomposition of the preconditioned system

matrix AP~ and write BX® in terms of the invariant subspace of AP~

4.3.2 Preconditioned block-GMRES with tuning

To accelerate the iterative solution of the block linear system arising in inexact sub-

space iteration, [65] proposes and analyzes a new type of preconditioner with tuning.
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Tuning constructs a special low-rank update of the existing preconditioner, so that
the right hand side of the preconditioned system is an approximate eigenvector or
invariant subspace of the preconditioned system matrix with tuning. Specifically,

given a preconditioner P, the tuned preconditioner in the i-th outer iteration can be

defined as
(4.21) PO = P4 (AX® — pxO)x O

from which follow PO X® = AX® and A(PO)~1(AX®) = AX® . In other words,
AX® is an invariant subspace of A(P®)~! with eigenvalue 1. Intuitively, as X® —
Vi, we have X ~ AX® for the standard eigenvalue problem, or BX® ~ AX®
for the generalized problem. Therefore, the right hand side of A(P®)~1y® = x@
or A(PD)~1y® = BX® (with Y@ = (P@)~1y®) spans an approximate invariant
subspace of A(P®)~1. The difficulty of block-GMRES without tuning discussed in
subsection 4.3.1 is thus resolved, and the block-GMRES iteration counts with tuning
do not increase with the progress of the outer iteration (see Theorem 4.5 of [65]).
The matrix-vector product involving (P®)~! is built from that for P~ using the

Sherman-Morrison-Woodbury formula as follows:
122)  (BO) = (1— (PTLAXO - XO)(XOPAXD) " x07) pot

Note that P~*AX® — X® and X@*P~1AX® can be computed before the block-
GMRES iteration. In each block-GMRES step, (P®)~! requires an additional p?
inner products of vectors of length n, a dense matrix-matrix division of size p X p,
and a multiplication of a dense matrix of size n X p with a p X p matrix. This extra
cost is relatively small in general, but it is not free.

We now provide a new two-phase algorithm for solving AY® = BX®  which

essentially eliminates the overhead of tuning but keeps the block-GMRES iteration
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counts from progressively increasing. The strategy provides some new perspectives
on the use of tuning. In addition, we will discuss some connections between this

algorithm and the methods in [67, 33] and [87].

Algorithm 4.2 Two-phase strategy for solving AY () = BX ()
1. Apply a single step of preconditioned block-GMRES with tuning to get an approximate solution
y
2. Solve the correction equation AdY® = BX®) — AYl(i) with proper preconditioned it-

erative solver to get an approximate solution dYk(i), so that Yk(j_)l = Yl(i) + dYk(i) satisfies
(i) _ (i) X . . (i) _ (4)y_ (i)
% < §sin Z(AX®  BX®) or equivalently, dYk(l) satisfies 1BX AV ) AdY, 7]l

BXH—Ay, || -
§sin L(AXD BxO)|BXD ||
BX®—Ay ™|

Note in particular that tuning need not be used to solve the correction equation,
and thus we can work with a fixed preconditioned system matrix for the correction
equation in all outer iterations.

Obviously, Phase II can be equivalently stated as follows: solve AY® = BX(®)
with proper preconditioned iterative solver and starting vector Yl(i) from Phase I.
The phrasing in Algorithm 4.2 is intended to illuminate the connection between this
strategy and the methods in [67, 33] and [87].

The analysis of Algorithm 4.2 is given in the following main theorem. For this,
we make an assumption concerning the right hand side of the correction equation
analogous to the assumption made for (4.18): with

(4.23) BX® — AV = V1 CD 4 V0 89)

ceq ceq
where V4 and V4o have orthonormal columns, we assume that HSC(Q;(C;}I)U)H =

O(1). Given the fact that both V4; and Vo have orthonormal columns, we further

assume that ||C.e|| is proportional to |[BX® — AY] 2)|| This implies that the term

ICE, 1Sy (Coe) |
IBX0—Ay{?|

, which appears in (4.17), does not depend on i. We have no proof
of these assumptions but they are consistent with all our numerical experience. In

the subsequent derivation, let e; € R” be a standard unit basis vector with 1 in entry
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7 and zero in other entries.

Theorem 4.3.3 Suppose the two-phase strategy (Algorithm 4.2) is used to solve
AY® = BXO . Then v = XO(CO)K1COF + AD where F = [f1,..., f,]
with f; = argmin ;ccy |BXWe; — APOLBXDF|| and |AD|| = O(||SD). In addi-
tion, the residual norm | BX® — AY"|| = O(||SD||). Thus, if block-GMRES is used
to solve the correction equation, the inner iteration counts will not increase with the

progress of the outer iteration.

Proof The approximate solution to A(P®)~'Y = BX® in the k-th block-GMRES

iteration starting with zero starting vector is

(4.24) Y € span{ BX® AP 1BXD . (APD)") I BX DY

It follows from (4.8) and (P™)"'AX® = X that

(4.25) v = @)y = (D) 1BXOF
— (P(i))—l<AX(Z')(C(Z'))—1K—10(Z') — AV(SD(CO) K100 — M—lg(i)))p
X(l’)(c(i))—lK—le(i)F + (P(i))_lAX/Q (M—ls(i) _ S(i)(c(i))—lK—lc(i))F

_ XOC KO R 4 AD)

where the jth column of F' € CP*? minimizes |[BXWe; — A(PW)1BX@f||, ie., the

residual norm of the jth individual system (property of block-GMRES), and
(4.26) [AO) < |PD) AV FIISHS1I,

where the Sylvester operator S; : G — S;(G) = M~'G — G(CD)*K~1C®. Using
the same derivation as in the proof of Proposition 4.2.2, we can show ||S;|| — [|S]|,
where S : G — S(G) = M~'G — GK~'. In addition, since X) — V) in (4.21), it
follows that P®) — P = P+ (AV; — PV})Vy. Thus ||[A@| = O(||S@||) is established.
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We now investigate the residual norm ||BX® — AYl(i) || of the linear system after
Phase I of Algorithm 4.2. Recall the property of tuning that ([—A(P(i))_l) AX® =0,
and the property of block-GMRES that the approximate solution 171(“ € span{BX "}
As block-GMRES minimizes the residual norm of each individual linear system of the

block system, the j-th column of the block residual is

(4.27) 1(BX® = A®D) 7Y )ey| —;ggg,llBX — AP H(BXY S
< |(T-A® 1) BXWe;|| < [|(T - A@Y)™) BXY|
= ||(I = A AVL(SOCO)T KO — MDY || (see (4.8))
< [[(7 = A@D) ) AV SIS = OIS,

from which follows

p
(4.28) IBXD — AV <3 H (BX® — A(IP)(“)‘%(“)ejH = O(|IS™)).

Finally in Phase II of Algorithm 4.2, Yk(i)l = Yl(i) + dYk(i), where dYk(i) is an ap-
proximate solution of the correction equation AdY ¥ = BX® — AYI(Z'). The stopping

criterion requires that

IBXO — AV [BXD — A + ay,?))|

(4.29)

||BX || | BX @]
BX® — AY"y — A4aYy?| |BX® — AY") . .
_ I ) = 2 ] . | < §sin L(AXD, B,
IBX6 — AV [ BXW]

Note that [(BXO —Ay ) —aay, V| .
| BX () Ay(“n

nd |IBX D — AY o
IIBX(Z)II

is the relative residual norm of the correction equation
for dYk(i , is the relative residual norm of the original equation for

Yl(i). Therefore the prescribed stopping criterion of the inner iteration is satisfied if
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I(BX®—av{))—ady?| .

is bounded above by

IBX®D -y
(4.0%3)(@ | sin Z(AX®, BX®) . 5||BX )||oWsep(Thyy, K0) 0.

IBX0 — Ay 0| 17— ACD) ) AV[I151/T Q"

where we apply the lower bound on sin Z(AX®, BX®) in (4.13) and the upper bound
on |BX®D — AY"| in (4.28).

To study p¥, recall from the end of the proof of Proposition 4.2.2 that sep(Th, K@) —
sep(Tho, K) > 0, and 0@ = g, (B)|[(XD* A* AX 2| — 0,0, (B) || (Vi A* AV V2| >
0. In addition, ||(Z — A(PD)")AVs|| — ||(I — AP~)AV;|| and ||S;|| — ||S||. This
means p¥, a lower bound on the relative tolerance for the correction equation, can
be fixed independent of 7. It then follows from Lemma 4.3.1 and our assumption
concerning the decomposition (4.23) of BX® — AYl(i) that if block-GMRES is used
to solve the correction equation, the inner iteration counts do not increase with the

progress of the outer iteration. |

4.3.3 A general strategy for the phase I computation

It can be seen from Theorem 4.3.3 that the key to the success of the two-phase
strategy is that in the first phase, an approximate solution Yl(i) is obtained whose
block residual norm |BX® — AY,?|| = O(||S®||). It is shown in Section 4.3.2 that
such a Yl(i) can be constructed inexpensively from a single step of block-GMRES with
tuning applied to AY® = BX® _ In fact, a valid Yl(i) can also be constructed in other
ways, in particular, by solving a set of least squares problems

(4.31) min | BXDe; — AXO | 1< <p.

fecr
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This is easily done using the QR factorization of AX®. The solution f; satisfies

(4.32) |BXDe; — AXD f;)| = min |BXWe; — AXOf|
< [|BXWe; — AXD(CC )1K LoWe)
= [|AV; (S(i)(C(i))_lK_lC(i) — M~'SW) ¢ (see (4.8))

< A [ISiIIIS@1 = Oo(IS?)).
Thus, with ¥ = X® [f1, s fp), it follows immediately that

p
(433)  IBXO - AV < 3 IBX Ve, — AXOfi] < O( SV,
j=1
so that the conclusion of Theorem 4.3.3 is also valid for this choice of Yl(i)
This discussion reveals a connection between the two-phase strategy and the in-
verse correction method [67, 33] and the residual inverse power method [87], where
the authors independently present essentially the same key idea for inexact inverse

(+1) by adding a small correction z® to ™.

iteration. For example, [87] constructs
Here, 2 is the solution of Az = px® — Az® where p = 2* Az is the Rayleigh
quotient, and puz® — Az® is the current eigenvalue residual vector that satisfies
| 2@ —Az@ || = mingec ||az® —Az@||. In Algorithm 4.2, we compute Yk(jr)l by adding
dYk(i) to Yl(i), where dYk(i) is an approximate solution of AdY® = BX® —AYI(i). Here
Y satisfies span{Y;"”} ~ span{X®} (see (4.25)), and | BX® — AY,”|| is minimized
by a single block-GMRES iteration. For both methods, the relative tolerance of the
correction equation can be fixed independent of the outer iteration. The least squares
formulation derived from (4.31) can be viewed as a generalization to subspace itera-
tion of the residual inverse power method of [87].

Remark 3.4. In fact, all these approaches are also similar to what is done by the

Jacobi-Davidson method. To be specific, the methods in [67, 33, 87] essentially com-

pute a parameter 3 explicitly or implicitly such that || B(32®)—Az® || is minimized or
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close to being minimized, then solve the correction equation Az = B(Bz®) — Az
and get z0*Y by normalizing ¥ + 2. The right hand side B(Bz®) — Az® is
identical or similar to that of the Jacobi-Davidson correction equation, i.e., the cur-
rent eigenvalue residual vector. The difference is that the system solve required
by the Jacobi-Davidson method forces the correction direction to be orthogonal to
the current approximate eigenvector (. In addition, [26] shows that for inexact
Rayleigh quotient iteration, solving the equation (A — oW I)y® = z® (¢® is the
Rayleigh quotient) with preconditioned full orthogonalization method (FOM) with
tuning is equivalent to solving the simplified Jacobi-Davidson correction equation
(I —2D20) (A - D)1 - 20200 = —(A — )20 with preconditioned FOM,

as both approaches give the same inner iterate up to a constant.

4.4 Additional strategies to reduce inner iteration cost

In this section, we propose and study the use of deflation of converged Schur vectors,
special starting vector for the correction equation, and iterative linear solvers with

recycled subspaces to further reduce the cost of inner iteration.

4.4.1 Deflation of converged Schur vectors

With proper deflation of converged Schur vectors, we only need to apply matrix-
vector products involving A to the unconverged Schur vectors. This reduces the inner
iteration cost because the right hand side of the block linear system contains fewer
columns. To successfully achieve this goal, two issues must be addressed: (1) how to
simplify the procedure to detect converged Schur vectors and distinguish them from
unconverged ones, and (2) how to apply tuning correctly to the block linear systems
with reduced size, so that the relative tolerance of the correction equation can be
fixed as in Theorem 4.3.3.

The first issue is handled by the Schur-Rayleigh-Ritz (SRR) procedure in Step
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3 of Algorithm 4.1. The SRR step recombines and reorders the columns of X+,
so that its leading (leftmost) columns are approximate Schur vectors corresponding
to the most dominant eigenvectors. Specifically, it forms the approximate Rayleigh
quotient O = Xy ~ XO* AX®  computes the Schur decomposition O =
WOTOW®* where the eigenvalues are arranged in descending order of magnitude
in 7® and orthogonalizes Y W@ into XY (see Chapter 6 of [86]). As a result,
i+1

the columns of X +Y) will converge in order from left to right as the outer iteration

proceeds. Then we only need to detect how many leading columns of X+ have
converged; the other columns are the unconverged Schur vectors.

To study the second issue, assume that X = [Xéi),Xb(i)} where X\ has con-
verged. Then we deflate X% and solve the smaller block system AY})(O = Blei).
When a single step of preconditioned block-GMRES with tuning is applied to this
system (Phase I of Algorithm 4.2), it is important to not deflate X in the tuned
preconditioner (4.21). In particular, the effect of tuning (significant reduction of the
linear residual norm in the first block-GMRES step) depends on the fact that BX®)
is an approximate invariant subspace of A(P®)~!. This nice property is valid only if
we use the whole X® to define tuning.

To see this point, recall the partial Schur decomposition B~1AV, = Vi T}, in (4.1).

We can further decompose this equality as

« Tﬁ

(4.34) B7'AV; = B A[Via, Vi) = [Via, Vo] | 1 1 | = T
0o T

It follows that AV}, = BVlaTlﬁl + BV 1Y, or equivalently

(4.35) (—AVAL(TE) T, + AV ) (T7) ™! = BVay.

In short, span{BVi,} C span{AVi,} U span{AVi,}, but span{BVy,} ¢ span{AVy,},

because of the triangular structure of the partial Schur form in (4.34). If X =, is
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the set of converged dominant Schur vectors, and X éi) ~ V71, is the set of unconverged
Schur vectors, then these observations show that B/'\fb(i) has considerable components
in both AX" and AXb(i). Therefore, when solving AY;(i) = BXéi), if we use only Xéi)
to define tuning in (4.21), so that AX.” is not an invariant subspace of A(P®)~1,
then the right hand side BXISi) does not span an approximate invariant subspace of
A(P®)~L. Thus the large one-step reduction of the linear residual norm (see (4.28))
will not occur, and many more block-GMRES iterations would be needed for the

correction equation.

4.4.2 Special starting vector for the correction equation

The second additional means to reduce the inner iteration cost is to choose a good
starting vector for the correction equation, so that the initial residual norm of the
correction equation can be greatly reduced. We find that a good starting vector
for the current equation can be constructed from a proper linear combination of
the solutions of previously solved equations, because the right hand sides of several
consecutive correction equations are close to being linearly dependent. Note that the
feasibility of this construction of starting vector stems from the specific structure of
the two-phase strategy: as tuning defined in (4.21) need not be applied in Phase 11
of Algorithm 4.2, the preconditioner does not depend on X, and thus we can work
with preconditioned system matrices that are the same for the correction equation in
all outer iterations.

To understand the effectiveness of this special starting vector, we need to see why
the right hand sides of a few successive correction equations are close to being linearly
dependent. Some insight can be obtained by analyzing the simple case with block
size p = 1. To begin the analysis, consider using Algorithm 4.2 to solve Ay = Bx®,
where 9 = v1¢® + V5,5 is the normalized current approximate eigenvector (see

(4.5)). Here ¢ is a scalar and S® € C»~1D*1 is a column vector.
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In Phase I of Algorithm 4.2, we apply a single step of preconditioned GMRES
to solve A(P®)~15® = Bz® and get y!” = (P®)~13{". Then ¢y\? = a(P®)~1Bz®

where

. . . D) AP B2y,
_ : @ _ N1 () (B A( Vo
(4.36)  a = argmin,||Bx aA(PY) Bz = TAPO) T BiOE o

To evaluate «, noting that K = A; in (4.2), we have from (4.8) that
(4.37) Ba™ = X\ Az® — AVy(A\ T — M8,

From the tuning condition (4.21), A(P®)~'(A2®) = Az, and therefore
(4.38) AP 1Bz = A7 AzD — AP TAV (AT — M1 SD,

To simplify the notation, let J; = AVo(A\['T—M~1) in (4.37) and J, = A(P®W)~1];
in (4.38). Substituting (4.37) and (4.38) into (4.36), we get the numerator and de-

nominator of o as follows:

(4.39) Vo = A\ 2| AzD)? = AT AzDY () + J5) S + SO 1 1,80,
and
(4.40) fta = A2 Az |12 — 207 (AzD)* J,80 4 O 1 1,80

Both v, and p, are quadratic functions of S@. As ||S®|| — 0, we use the first order

approximation of a = v, /. (neglecting higher order terms in S®) to get

A1

4.41 ~1 -
(4.41) SRR VeI

(AzxD)*(Jy — J;)SD,

Assume that M = Uy AUyt where Ay, = diag(Ma, A3, ..., A,) and M has normal-

ized columns. It follows that VLU, = [Ug, V3, ..e, Un] are the normalized eigenvectors
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of (A, B) and AVoUy = BVaUp Ay, Suppose 20 = cyvy + 307, cpvp. If the sys-
tem Ay = Bz is solved exactly for all i, then () = cjv; + > "1_, ce(A1/Ax) 0%
up to some constant scaling factor. On the other hand, we know from (4.5) that

20 = 0@ 4 V580 = 0,cD + VaUp (U, S®). Therefore,

(4.42) UA}IS(i) - (C2<i—:)i,03<i—;>i, .oty Cpy (i—i>2>*

up to some constant. If {|As|, |3, ..., |\|} are tightly clustered and well-separated
from {| A1), -, [An]}, the magnitudes of the first [ — 1 entries of U,/ S are signifi-
cantly bigger than those of the other entries.

With (4.37), (4.38), (4.41) and (4.42), using the first order approximation again,

we can write the right hand side of the correction equation as

(4.43) Bz — Ay%i) = Bz — a A(PY) ! B2®

Az® Az@® \ * , '
/S — (-1 _ —17 _ A-1 -1 o (d)
<I ||Az(i)||<||A$(i)||) >(A(P )7 = DAVRUM) (AT = Ay ) (U S,

where the vector (VoUy ) (AT T — A} ) (U S®) is dominated by a linear combination
of {vg,...,v;}. In addition, as () — v, the first matrix factor in the second line of
(4.43) filters out the component of Av;. As a result, for big enough 4, the right hand
side of the current correction equation is roughly a linear combination of those of [ —1
previous consecutive equations.

Using the above observation, a starting vector dYO(i) for the correction equation

can be constructed as follows:

(4.44) Ay = dY, 1y, where dY, ; = [dY 1D gy =52 gy =] and

I

where RHS,_; = [BX(i_l+1)—A)/'1(i_l+1)’ . BX(i—l)_Ayvl(i—l)}'

(4.45) y = argmin, i HRHSI—1y _ (BX(“ _Ayl(z’))

In practice, we find that [ = 3 or 4 is enough to generate a good starting vector. The
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cost of solving this small least squares problem (4.45) is negligible.

4.4.3 Linear solvers with recycled subspaces

In Phase II of Algorithm 4.2, we need to solve the correction equation AdY® =
BX® — AYl(i). The third strategy to speed up the inner iteration is to use linear
solvers with subspace recycling to solve the sequence of correction equations. This
methodology is specifically designed to efficiently solve a long sequence of slowly-
changing linear systems. After the iterative solution of one linear system, a small set
of vectors from the current subspace for the candidate solutions is carefully selected
and the space spanned by these vectors is “recycled”, i.e., used for the iterative
solution of the next linear system. The cost of solving subsequent linear systems can
usually be reduced by subspace recycling, because the iterative solver does not have
to build the subspace for the candidate solution from scratch. A typical solver of this
type is the Generalized Conjugate Residual with implicit inner Orthogonalization
and Deflated Restarting (GCRO-DR) in [61], which was developed using ideas for
the solvers with special truncation [14] and restarting [55] for a single linear system.

In [61], the preconditioned system matrix changes from one linear system to the
next, and the recycled subspace taken from the previous system must be transformed
by matrix-vector products involving the current system matrix to fit into the solu-
tion of the current system (see the Appendix of [61]). In the setting of solving the
sequence of correction equations, fortunately, this transformation cost can be avoided
with Algorithm 4.2, because the preconditioned system matrix is the same for the
correction equation in all outer iterations.

We implement a block version of GCRO-DR to solve the correction equation. The
block generalization is very similar to the extension of GMRES to block-GMRES.
The residual norm of the block linear system is minimized in each block iteration

over all candidate solutions in the union of the recycled subspace and a block Krylov
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subspace (see [61] for details). The dimension of the recycled subspace can be chosen
independent of the block size. The authors of [61] suggest choosing the harmonic
Ritz vectors corresponding to smallest harmonic Ritz values for the recycled sub-
spaces. The harmonic Ritz vectors are approximate “smallest” eigenvectors of the
preconditioned system matrix. If they do approximate these eigenvectors reasonably
well, this choice tends to reduce the duration of the initial latency of GMRES conver-
gence, which is typically observed when the system matrix has a few eigenvalues of
very small magnitude; see [20]. We also include dominant Ritz vectors in the recycled
subspace, as suggested in [61]. As our numerical experiments show (see Section 4.5),
when the use of harmonic Ritz vectors fails to reduce the inner iteration cost, the set

of dominant Ritz vectors is still a reasonable choice for subspace recycling.

4.5 Numerical experiments

In this section, we test the effectiveness of the strategies described in Sections 4.3
and 4.4 for solving the block linear systems arising in inexact subspace iteration. We
show that the two-phase strategy (Algorithm 4.2) achieves performance similar to
that achieved when tuning is used at every block-GMRES step (the approach given
in [61]): both methods keep the inner iteration cost from increasing, though the
required tolerance for the solve decreases progressively. The numerical experiments
also corroborate the analysis that a single block-GMRES iteration with tuning reduces
the linear residual norm to a small quantity proportional to ||S®]|, so that the relative
tolerance of the correction equation remains a moderately small constant independent
of |S™||. We have also seen experimentally that the least squares strategy of Section
4.3.3 achieves the same effect. The Phase I step is somewhat more expensive using
tuned preconditioned GMRES than the least squares approach, but for the problems
we studied, the former approach required slightly fewer iterations in Phase II, and

the total of inner iterations is about the same for the two methods. For the sake of
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brevity, we only present the results obtained by the two-phase strategy where tuning
is applied in Phase I.

We also show that deflation gradually decreases the inner iteration cost as more
converged Schur vectors are deflated. In addition, the use of subspace recycling and
special starting vector lead to further reduction of inner iteration counts.

We first briefly explain the criterion to detect the convergence of Schur vectors in
Step 3 of Algorithm 4.1. Let I,; = (I; 0)7 € R so that X, ; contains the first
4 columns of X®. Right after the SRR step, we find the largest integer j for which

the following criterion is satisfied:
(4.46) |BXOL,; = AXOLTY| < | BXOL e,

where Tj(i) is the j x j leading block of T coming from the SRR step (see Section
4.1 for details). If (4.46) holds for j but not for j + 1, we conclude that exactly
J Schur vectors have converged and should be deflated. This stopping criterion is
analogous to that of the EB12 function (subspace iteration) of HSL (formerly the
Harwell Subroutine Library) [41, 48].

We use four test problems. The first one is MHD4800A /B from Matrix Market
[51], a real matrix pencil of order 4800 which describes the Alfvén spectra in magne-
tohydrodynamics (MHD). We use the shift-invert operator A = (A — 0 B)™'B with
o close to the left end of the spectrum. Since it is very hard to find a preconditioner
for A, we use the ILU preconditioner for A — o B with drop tolerance 1.5 x 10~7 given
by MATLAB’s ilu. Using MATLAB’s nnz to count the number of nonzero entries,
we have nnz(A — oB) = 120195, and nnz(L) + nnz(U) = 224084. In fact, a slightly
bigger tolerance, say 1.75 x 1077, leads to failure of ilu due to a zero pivot.

The second problem is UTM1700A/B from Matrix Market, a real matrix pen-
cil of size 1700 arising from a tokamak model in plasma physics. We use Cayley

transformation to compute the leftmost eigenvalues A\ o = —0.032735 £ 0.33477 and
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A3 = 0.032428. Note that S(A;2) is 10 times bigger than A3, and there are some real
eigenvalues to the right of A3 with magnitude smaller than &(A;2). We choose the
ILU preconditioner with drop tolerance 0.001 for A — o1 B.

Problems 3 and 4 come from the linear stability analysis of a model of two-
dimensional incompressible fluid flow over a backward facing step, constructed using
the IFISS software package [17, 18]. The domain is [—1, L] x [—1, 1], where L = 15
in Problem 3 and L = 22 in Problem 4; the Reynolds numbers are 600 and 1200
respectively. Let u and v be the horizontal and vertical components of the velocity,

p be the pressure, and v the viscosity. The boundary conditions are as follows:

(4.47) u=4y(1 —y), v =0 (parabolic inflow)  onx = -1,y € [0,1];
0 0
”% —p=0, 8_Z = 0 (natural outflow) onz =L,y € [-1,1];
u=1v =0 (no-slip) on all other boundaries.

We use a biquadratic/bilinear (Q2-Q);) finite element discretization with element
width % (grid parameter 6 in the IFISS code). The sizes of the two problems are
72867 and 105683 respectively. Block linear solves are done using the least squares
commutator preconditioner [19]. For Problems 3 and 4, we try both shift-invert (sub-
problem (a)) and Cayley transformation (subproblem (b)) to detect a small number

of critical eigenvalues.

plk| o(o1) o9 1) € |l

Prob1l |9 7] —370 ~ [ 2x107% | 5x 107" | 5 | 10
Prob2 |3 |3 ] —0.0325| 0.125 | 1 x107° | 5x 107" | 5 | 10
Prob3(a) | 7 | 7 0 ~ [ 1x1073 | 5x107 | 0 | 20
Prob 3(b) | 5| 3 0 —046 | 1x107* | 5x1071° | 0 | 20
Prob 4(a) | 5 | 4 0 ~ | 1x1073 | 5x1071 | 0 | 30
Prob 4(b) | 4 | 4 0 —0.24 | 5x107* [ 5x107'° | 0 | 30

Table 4.1: Parameters used to solve the test problems
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For completeness, we summarize all parameters used in the solution of each test
problem in Table 4.1. These parameters are chosen to deliver approximate eigenpairs
of adequate accuracies, show representative behavior of each solution strategy, and

keep the total computational cost moderate.

L. p,k — we use X with p columns to compute k eigenpairs of (A, B)

2. 0,01,09 — the shifts of A= (A—oB)'Band A= (A—0,B)"'(A—0,B)
3. § — the relative tolerance for solving AY® = BX® is §sin Z/(AX®, BX®)
4. € — the error in the convergence test (4.46)

5. 11,1y — we use [; harmonic Ritz vectors corresponding to harmonic Ritz values of

smallest magnitude and l; dominant Ritz vectors for subspace recycling
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Figure 4.1: Performance of different solution strategies for Problem 1  (a): preconditioned matrix-
vector product counts of the inner iteration against the outer iteration (b): behavior of the
two-phase strategy and starting vector.

The performance of different strategies to solve AY® = BX© for each problem is
shown in Figures 4.1-4.4. We use Problem 1 as an example to explain the results. In
Figure 4.1(a), the preconditioned matrix-vector product counts of the inner iteration
are plotted against the progress of the outer iteration. The curves with different

markers correspond to solution strategies as follows:

1. “NO-TN” (no marker with dotted line) — Solve AY® = BX® by preconditioned
block-GMRES without tuning.
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Figure 4.2: Performance of different solution strategies for Problem 2  (a): preconditioned matrix-
vector product counts of the inner iteration against the outer iteration  (b): behavior of the
two-phase strategy and starting vector.

2. “TNA” (a» marker with solid line) — Solve AY® = BX® by preconditioned
block-GMRES with tuning.

3. “INA+DF” (v marker with solid line) — Apply “TNA” and deflation of con-

verged Schur vectors.

4. “TN1” (o marker with dashed line) — Solve AY® = BX® by Algorithm 4.2,

without any additional enhancements.

5. “IN14+DF” (O marker with dashed line) — Apply “TN1” and deflation of con-

verged Schur vectors.

6. “IN14+DF+RC” (& marker with dashed line) — Apply “IN1+DF” and use

GCRO-DR to solve the correction equation in Phase I of Algorithm 4.2.

7. “IN14+DF+RC+SV” (% marker wish dashed line) — Apply “TN1+DF+RC”

and use the special starting vector for the correction equation.

From Figure 4.1(a), we see that if no tuning is used, the matrix-vector product
counts in each outer iteration increase gradually to over 160, whereas they are fixed
at 110 if the two-phase strategy (without any additional enhancements) is applied
(O TN1). If converged Schur vectors are deflated, the matrix-vector product counts

decrease gradually from 100 to 80, 70, and finally to about 50 (O TN1+DF). The
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use of recycled subspace of dimension 15 further reduces the counts by approximately
15 (¢ TN14+DF+RC). The special starting vector makes an additional significant
improvement: the counts are reduced to less than 20 after the 23rd outer iteration,

and even to less than 10 after the 35th outer iteration (% TN1+DF+RC+SV).

Figure 4.1(b) plots four quantities against the outer iteration as follows:

1. “Tol-OrigEqn” (o marker) — The relative tolerance ¢ sin Z(AX® BX®) for the
original linear system AY ® = BX )

IBX® Ay

TBXO] after one

2. “Res-OneStep” (< marker) — The relative residual norm

step block-GMRES iteration with tuning (Phase I of Algorithm 4.2).

. @ | si @, pati)
3. “Tol-CrtEqn” (0 marker) — The relative tolerance 22X ”EL';Z)L (‘:;((i)l’lBX ) for the
- 1

correction equation AdY® = BX® — Ay,").

4. “Res-CrtEqn-SV” (a marker) — Given the starting vector dYE)(i), the initial rela-

I(BXD —Av") - Advy"|
|BX®—Ay?)

tive residual norm of the correction equation.

It is clear from Figure 4.1(b) that one step of block-GMRES with tuning re-
duces the residual norm of AY® = BX® to a small quantity proportional to [|S@||
(“Res-OneStep”), so that the relative tolerance of the correction equation (“Tol-
CrtEqn”) is approximately a constant. In addition, the special starting vector dYO(i)
considerably reduces the initial residual norm of the correction equation. For ex-
ample, in the 45th outer iteration, the relative tolerance for AY®*) = BX®) ig
§sin Z(AX®) BX®)) ~ 1071°; a single block-GMRES iteration with tuning de-

IBXU9) Ay L0 (45)

(XU AV - AdV s
[BX 35 — Ay = ’

. . (45) _ Ay (45)y_ (45)
(4.29) for details. Moreover, the starting vector dYb(45) makes 18X 4% ) (ﬁ)dy‘) I
|BXG9 4y ™|

creases the relative linear residual norm to

for the correction equation only needs to satisfy

almost as small as 1074, so that little additional effort is needed to solve the correction

equation.
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Figure 4.4: Performance of different solution strategies for Problems 4(a) and 4(b): preconditioned
matrix-vector product counts of the inner iteration against the outer iteration.

Table 4.2 shows the number of preconditioned matrix-vector products when dif-
ferent strategies are used to solve the block linear systems AY®) = BX® for each
problem. For Problems 1 and 2, we achieve a speed up ratio of 3.4 and 4.4 respectively
by the combined use of all strategies, compared to the original use of tuning (“TNA”)
proposed in [65]; for Problems 3(a) and 3(b), we reduce the inner iteration cost by over
50%; for Problem 4(a) and 4(b), the savings are 36% and 45% respectively. Recall
from (4.22) that tuning requires an application of the Sherman-Morrison-Woodbury
formula in each inner iteration. The two-phase strategy uses tuning only in one
block-GMRES iteration and hence avoids the overhead of tuning. The additional

strategies of Section 4.4 only entail computation of the recycled subspaces and the
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NO-TN | TNA | TN1 TNA | TN1 | TN1+DF | TN14DF

+DF | +DF +RC +RCHIG
Prob 1 6435 3942 4761 2606 3254 2498 1175
Prob 2 19110 12183 | 15357 | 10854 | 13886 7220 2744
Prob 3(a) - 11704 | 13097 | 8270 9370 7863 5785
Prob 3(b) - 17475 | 18600 | 12613 | 13792 11806 8521
Prob 4(a) - 15785 | 19350 | 11978 | 14578 12183 10100
Prob 4(b) - 17238 | 17468 | 12624 | 12892 10197 9428

Table 4.2: Number of preconditioned matrix-vector products for different solution strategy for each
problem

starting vector (both costs are small) for the block system in each outer iteration.

One can see from Figures 4.1-4.4 that the two-phase strategy without subspace
recycling and special starting vector generally requires slightly more inner iterations
than the original tuned version of the solves (compare “TN1” with “TNA” and
“TN1+DF” with “TNA+DF”). The reason is that the tuned version of a precon-
ditioner P has two possible advantages over its untuned version P:

1. With a tuned preconditioner, the right hand side of A(P®)~'Y® = BX® is an

approximate invariant subspace of the preconditioned operator A(P®))~1,

2. In addition, A(P®)~! typically has more favorable properties, such as better

eigenvalue clustering, for Krylov subspace methods than AP~

The first advantage is the original motivation for the use of tuning, as studied in
25, 26, 65] and this chapter. The second one is studied in [28] for solving linear
systems that arise when inexact Arnoldi method is applied to compute a few smallest
eigenvalues of a matrix from Matrix Market. We attribute the slight increase in inner
iteration counts associated with Algorithm 4.2 to its use of untuned preconditioners
in the second phase. However, with Algorithm 4.2, the overhead of tuning is avoided,
and further reduction of inner iteration counts can be achieved by using subspace

recycling (no transformation of subspaces needed) and special starting vectors.
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Moreover, our experience suggests that the second advantage of tuning tends to
be less of a factor if the untuned preconditioner P is very strong (most eigenvalues of
AP~ are clustered around 1). For instance, for Problem 1, compared to the strategy
“TNA” where tuning is used in every inner iteration, the two-phase strategy “TN1”
requires about 18 more preconditioned matrix-vector products (or a 20% relative in-
crease) for each block linear system after the 20th outer iteration; see Figure 4.1(a).
Similarly for Problem 2, “I'N1” needs about 15 more matrix-vector multiplications
(or a 25% relative increase) than “ITNA” for each system after the 75th outer itera-
tion. However, for Problems 3(a), 3(b) and 4(b), the relative increase is only about
10% in the last tens of outer iterations; for Problem 4(a), though “TNA” obviously
outperforms “TN1” in the first 67 outer iterations, the relative difference between the
two approaches still falls far below 20% in the last 22 outer iterations. The reason
is that the “clustering” effect of tuning is more pronounced when the relatively weak
ILU preconditioners are used in Problems 1 and 2, and is less influential for Problems
3 and 4 where the strong least square commutator preconditioner [20] is used.

In all numerical experiments, deflation of converged Schur vectors always reduces
the preconditioned matriz-vector product counts, but the inner iteration counts tends
to increase slightly. This agrees with our experience with the behavior of block linear
solvers. For instance, if it takes 10 block iterations to solve a block system with 8
right hand sides to some tolerance, then it usually takes more than 10 but less than
20 block iterations to solve the system with block size 4 to the some tolerance.

We successfully reduce some inner iteration cost by using block GCRO-DR (sub-
space recycling). However, a conclusive evaluation of the effectiveness of this approach
is beyond the scope of this chapter. To the best of our knowledge, block GCRO-DR
has not been mentioned in the literature. The dimensions of the recycled subspaces
we use in block GCRO-DR are commensurate with those used in single-vector GCRO-

DR [61]. Since block GCRO-DR generally needs much bigger subspaces to extract
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candidate solutions than its single-vector counterpart, it might be beneficial to use
recycled subspaces of bigger dimensions. In addition, the harmonic Ritz vectors cor-
responding to smallest harmonic Ritz values are not necessarily a good choice for
recycling if, for example, the smallest eigenvalues of the preconditioned system ma-
trix are not well-separated from other eigenvalues [13]. We speculate this is the case
in Problems 3 and 4, where there are several very small eigenvalues and some small
ones when the least squares commutator preconditioner is used (see [20]). In this

case, it is the dominant Ritz vectors that are useful.

4.6 Concluding remarks

We have studied inexact subspace iteration for solving generalized non-Hermitian
eigenvalue problems with shift-invert and Cayley transformations. We provide new
perspectives on tuning and discuss the connection of the two-phase strategy to the in-
verse correction method, the residual inverse power method and the Jacobi-Davidson
method. The two-phase strategy applies tuning only in the first block-GMRES itera-
tion and solves the correction equation with a fixed relative tolerance. It prevents the
inner iteration counts from increasing as the outer iteration proceeds, as the original
approach in [65] does. Three additional strategies are studied to further reduce the
inner iteration cost, including deflation, subspace recycling and special initial guess.
Numerical experiments show clearly that the combined use of all these techniques

leads to significant reduction of inner iteration counts.
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5 Inexact implicitly restarted Arnoldi method

In this chapter, we study an inexact implicitly restarted Arnoldi (IRA) method for
computing a few eigenpairs of generalized non-Hermitian eigenvalue problems with
spectral transformation, where in each Arnoldi step (outer iteration) the matrix-
vector product involving the transformed operator is performed by iterative solution
(inner iteration) of the corresponding linear system of equations. We provide new
perspectives and analysis of two major strategies that help reduce the inner iteration
cost: the preconditioner with tuning and a sequence of gradually relaxed tolerances
for the solution of the linear systems. We study a new tuning strategy constructed
from vectors in both previous and the current IRA cycles, and show how the tuning
is used in a new two-phase algorithm to greatly reduce inner iteration counts. We
give an upper bound of the allowable tolerances of the linear systems and propose
an alternative estimate of the tolerances. In addition, the inner iteration cost can be

further reduced through the use of subspace recycling with iterative linear solvers.

5.1 Introduction

In Chapter 4, we studied an inexact subspace iteration for computing several non-
dominant eigenpairs of generalized non-Hermitian eigenvalue problems Av = ABuv.
This algorithm works with subspaces of fixed dimensions larger than one, and con-
verges linearly if the inner solve is carried out with reasonable accuracy. In many
cases, however, the linear convergence may not be satisfactory as it entails a large
number of outer iterations. In addition, the inner solve performed by block-GMRES
or block GCRO-DR may require a prohibitive amount of storage.

In this chapter, we investigate an inexact implicitly restarted Arnoldi method

(IRA) with spectral transformation to find a few non-extremal eigenpairs of Av =

104



ABv. Both the convergence rate and storage requirement can be improved by the
use of inexact IRA. Specifically, IRA works with subspaces of increasing dimensions
and usually converges superlinearly in practice. Furthermore, this method may have
less demand of storage because the inner solve is performed for a linear system with
a single right-hand side. The primary concern of this chapter, similar to that of
Chapters 3 and 4, is to study some critical techniques for efficient iterative solution
of the linear systems that arise when the inexact IRA is used to solve eigenvalue
problems.

In the past decade, considerable developments have been made in understanding
inexact projection-based eigenvalue algorithms, such as the Lanczos and the Arnoldi
methods. It was found in [35] and [8] that the matrix-vector product must be com-
puted accurately in the initial Lanczos or Arnoldi steps, but the accuracy can be
relaxed as the algorithm proceeds without obviously affecting the convergence of ap-
proximate eigenpairs. An analysis of this phenomenon is given in [74] for the Arnoldi
method, using perturbation theory of invariant subspaces. It is shown there that the
allowable errors of matrix-vector products in Arnoldi steps should be inversely pro-
portional to the eigenvalue residual norm of the desired eigenpair. Therefore, as the
Arnoldi method proceeds and converges to the eigenpair of interest, the accuracy of
matrix-vector products can be relaxed. The use of inexact matrix-vector products has
also been studied in the setting of Krylov subspace linear solvers; see [9, 10],[77, 78, 79]
and [82, 92].

Further study of inexact Arnoldi methods is given in 28], where the tuning strategy
and the relaxed accuracy of matrix-vector products are extended to inexact IRA with
shift-invert transformation for standard eigenvalue problems. For the linear systems
arising in Arnoldi steps (outer iterations) in a given IRA cycle, tuning is developed
using all available Arnoldi vectors in that cycle. Numerical experiments show that

for a test problem from Matrix Market [51], an ILU preconditioner with this tuning
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considerably reduces the inner iteration counts. It is observed there and confirmed
in this chapter that this improvement is mainly due to the fact that tuning helps
cluster the eigenvalues of the preconditioned system matrix of the linear system in
each Arnoldi step. In addition, [28] proposes a practical estimate of the allowable
relaxed tolerances for the solution of the linear systems, using the distance between
the spectra of two matrices containing the wanted and unwanted Ritz values to replace
the separation [86] between the two. Numerical experiments show that the total inner
iteration counts of inexact IRA can be substantially reduced by the combined use of
tuning and relaxed tolerances.

In this chapter, we refine the tuning strategy and further study the allowable tol-
erances for inner solves of the inexact IRA method for generalized non-Hermitian
eigenvalue problems. We first study a new tuning strategy constructed for a given
Arnoldi step using the solutions of linear systems in previous Arnoldi steps. In ad-
dition, we propose a two-phase strategy to solve the linear system in the current
Arnoldi step. Specifically, we apply only one step of preconditioned GMRES with
tuning to the current linear system to get an approximate solution, then solve the
correction equation with any appropriate preconditioned linear solver; in particular,
tuning is not needed for the correction equation. We show that the approximate
solution obtained in the first phase can be a very good one if enough solution vectors
from previous Arnoldi steps are used. With this special approximate solution, the
correction equation can be solved with a relative tolerance much larger than that
of the original linear system, and inner iteration counts can hence be reduced con-
siderably. In addition, we use a special type of iterative linear solver with subspace
recycling to solve the sequence of correction equations as the IRA method proceeds.
We show that subspace recycling is cheap to use in this setting and can further reduce
the inner iteration counts substantially.

A second goal of this chapter is to present a refined analysis of the allowable

106



tolerance for the linear systems in the inexact IRA method. We first give an upper
bound of the allowable tolerance, showing that violation of this bound necessarily
leads to contamination of the desired approximate invariant subspace by excessive
errors of inner solves. We then give a theoretically more accurate estimate of the
allowable tolerance, which is between the upper bound and a conservative lower bound
from [28]. As this estimate contains information not available until the end of the
current IRA cycle, we use a computable substitute obtained at the end of the previous
IRA cycle. We then compare this heuristic estimate with that from [28] and discuss
the impact of the accuracy of the estimate on the inner solves.

This chapter is organized as follows. In Section 2, we briefly review spectral trans-
formations, the IRA method and some properties of the algorithm when exact shifts
(unwanted Ritz values) are used in filter polynomials. We discuss a few strategies for
the inner solves in Section 3, studying the properties of the new tuning strategy and
the new two-phase strategy for solving the linear system in each Arnoldi step. We
also explain the effectiveness of the linear solver with subspace recycling applied to
solve the correction equations. In Section 4, we study the allowable tolerances of the
linear systems and give an necessary upper bound for the tolerance. A new heuristic
estimate of the allowable tolerance is proposed and used in numerical experiments to
corroborate the accuracy of the estimate from [28]. Numerical experiments in Section
5 show that the combined use of the new tuning, subspace recycling and relaxed tol-
erances greatly reduces the total inner iteration counts. In Section 6 we make some

concluding remarks.

5.2 Review: the implicitly restarted Arnoldi method

To make the exposition smooth, we briefly review the implicitly restarted Arnoldi
(IRA) method. IRA was developed by Sorensen [85] in 1992 and is a most well-

known breakthrough in the area of eigenvalue computation. This robust algorithm
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has been implemented in ARPACK [49], a mathematical software package of high
quality which has become the standard solver for large non-Hermitian eigenvalue
problems.

The key technique of the IRA method is the implicit application of a filter poly-
nomial to a given Arnoldi decomposition to produce the effect of several steps of a
restarted Arnoldi computation without any matrix-vector multiplications. Specifi-

cally, at the end of the ¢th IRA cycle we have an m-step Arnoldi decomposition
(5.1) -AU(Z U(l ‘l' h(z+1 mU gr?ﬂeT

Suppose K1, K, ..., km—r € C are estimates of m — k eigenvalues of A obtained from
this process corresponding to a part of the spectrum we are not interested in. We
then use these numbers as shifts to apply m — k shifted QR steps to HY and get a

Krylov decomposition
(5.2) AU = O + byl i (e1,Q),

where Q¥ = Q1Q5...Q,n_4 is the product of m—k upper Hessenberg unitary matrices,
U9 = Do, 7l = Q0700 is upper Hessenberg, and el QU is the last row
of Q¥ with k — 1 zero leading entries. For details, see [85], or [32, 86].

The restarted Arnoldi decomposition is then obtained from the first & columns of

the above Krylov decomposition as follows

(5.3) AULEZ) = Uzgl) hk+1kuk+lek (h'(l—i-lmqr(;i)k) 57?+1€;;F, or,
AU,giH) _ U}gi+1)H(z+1 +h/(;:11k ,f“)ef.

Here qﬁ,?k is the (m, k) entry of QW U(Hl) = U(i), and H(Hl) = IZI(i). Note that both

u,(;)rl and u&)ﬂ are orthogonal to U(Z‘Jrl Let (™" ilk+1 k~](;+l 4 (h(2+1 mng)k) 57?“7

then h,(;:ll)k = ||12,(f+1)||, and u( (h,g:f o)~ u,(c Y. Clearly, no additional matrix-
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vector product involving A is used for the restart. For the restarted Arnoldi decom-
position, it can be shown that u{™" = (A — k1) (A — kaI)...(A = ki Dul” up to a
constant scaling factor. In other words, the eigenvector component corresponding to
the unwanted spectrum in ugi) is filtered out by the filter polynomial.

An inexact implicitly restarted Arnoldi method is given in Algorithm 5.1.

Algorithm 5.1 inexact implicitly restarted Arnoldi (IRA) method

Given a normalized ugo) eChj=1

for i =10,1,2,... until convergence do ‘
1. Compute Au; () by solving Ay = Bu‘gl)

, so that the approximate solution
. A
Yr+1 satisfies % < ),

Here 6(%7) is a relative tolerance specified or computed by some means.

2. Expand the Arnoldi decomposition by orthogonalizing y against ugi), e ug-i)

and normalizing; the new Arnoldi decomposition is AU; U(Z)H @ 4 hg:l j 5:)-1%
J—J+1
3. If j = m, test for convergence.
If not converged, invoke the implicit restart procedure to get
AU =0V Y ¢ h Vel and o k+ 1
end for

In this study, we choose the “exact shifts” strategy for the IRA method, which uses
the unwanted eigenvalues of H\Y (Ritz values) as shifts for the implicit restart. This is
the default choice in ARPACK and has proved successful in many applications. Some

properties of the IRA method with the exact shifts strategy are given as follows.

Proposition 5.2.1 (Corollary 2.3, Chapter 5 of [86]) Suppose i1, ..., i, are eigen-
values of HY. If the implicit QR steps are performed with shifts { k1, ka2, -y fom }
then

O 0

)

(5.4) D = Qi) — |
0 H7Y

where HZY is an upper triangular matrix with fg 1, ko, -\ fbm 0N its diagonal.

The proposition shows that hk v11 = 0 if exact shifts are used. This observation

immediately leads to the following result.
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Proposition 5.2.2 Let the Schur decomposition of g% e 7Y = wOTOW ,
where WY = [Wr}l(i), W,%(i)} 1s unitary, and

(5.5) 70 T T

m

0 T

with )\(T;ll(l)) = {:uh:u%"'nu’k}) )\(Tgf(l)> = {:uk-i-lvlu’k—l-%' 7:U’m} and A(Tll(l) N
NTZDY = (. Then

(56)  [JAUOWLD _ gOwloTua| — || Au&tD - g@h i) g
(5.7) RS B WO = R el

Proof Let Q¥ = [Q'@, @Q*"]. From (5.4) and (5.5) we have QI+ QL) = IZI,S)
and Wal" HOWO = 73! Since MH) = MT ™) = {11, p1a, ., juc}, there exists
a k x k unitary matrix V® such that V' *ﬁ[,gz VO = 7D and Wil = QO @),
Note from (5.2) and (5.3) that U Q'@ = U™, Therefore

(5.8) JAUOWIO — gOplOile)
— JAUOQIO YO _ g0 O Ia @6

_ ||(AUI§Z+1) . U(Z"rl H )V(Z || _ ||AU ’l+1 Ulgl'i‘l)ﬁllgl)n

Since th . = 0, we have hkzillk wrher (h(ZJrl mqm)k) @ el from (5.3), and there-
fore
(i+1) 7 (i+1) (%) 7 7
(5.9) gL s en WO = [[B5 Y, b Q1Y)
i+1 i z—l—l 2+1
= ([ S us ek || = b i Vel |

For the exact IRA method (where the matrix-vector products involving A are
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computed exactly), (5.7) can be derived from (5.6). For inexact IRA, however, the
“true eigenvalue residuals” in (5.6) and the “estimated eigenvalue residuals” in (5.7)
are different. Proposition 5.2.2 shows that the two types of eigenvalue residual norms
are ‘“restart-invariant” if exact shifts are used: both quantities at the end of the ith
IRA cycle are the same as those at the beginning of the (i+1)-th IRA cycle.

We have so far reviewed the derivation and some properties of the ordinary IRA
method. For generalized eigenvalue problems with singular B, an alternative B-
orthogonal IRA has been studied and recommended in the literature. For generalized
Hermitian problems with positive (semi)definite B, the original motivation of the
B-orthogonal Lanczos method is to preserve symmetry of the shift-invert operator
A = (A—0B)™!'B with respect to the B-inner product (see Section 4.2, Chapter 6 of
[86]). However if B is only semidefinite, the B-orthogonal Lanczos method may suffer
from severe growth of null-space errors as the Lanczos method proceeds. Reference
[59] presents a strategy to purge Ritz vectors of null-space errors. For generalized non-
Hermitian problems with semidefinite B, [52] observes and analyzes similar growth of
null-space errors in the B-orthogonal Arnoldi method and proposes an implicit restart
with a zero-shift to purge the null-space errors. A recent study in [66] considers a
type of generalized non-Hermitian problems with saddle point structure and shows
that the ordinary IRA applied to an equivalent problem of reduced size is much less
vulnerable to null-space errors. This observation is corroborated by [90], where the
author suggests using the ordinary IRA to solve non-Hermitian problems with singular
B. In this chapter, we use the ordinary IRA for eigenvalue problems arising in linear
stability analysis (where B is symmetric positive semidefinite) and successfully obtain

approximate eigenpairs of accuracies close to machine precision.
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5.3 New strategies for solving linear systems in inexact IRA

To improve the efficiency for solving the linear systems arising in inexact eigenvalue
algorithms, a special type of preconditioner with “tuning” is studied in [25, 26, 65, 28].
Given an existing preconditioner P, tuning constructs a special low-rank update of P
such that the tuned preconditioner P behaves like the system matrix A on a certain
set of vectors X. It is shown in these papers that the inner iteration counts needed
to solve the linear system preconditioned by PP are substantially smaller than those
required to solve the system preconditioned by P.

For example, consider inexact subspace iteration with A = A~! used to detect a
few smallest eigenvalues of A. In each outer iteration, we approximately solve the
block linear system AY® = X @ where X contains the current approximate Schur
vectors (therefore X@*X® = I). It is shown in [65] that a decreasing sequence
of tolerances for the block systems is necessary to guarantee the linear convergence
of X® to the desired invariant subspace. As a result, the block-GMRES iteration
counts required to solve AP~1Y® = X® (with Y® = P~'Y®) increases gradually
as the outer iteration progresses. To resolve this difficulty, P is replaced by the tuned

preconditioner defined as
(5.10) PO =P+ (A— P)XOX0O*

for which POX® = AXO or equivalently, A(P®)"1(AX®) = AX®. That is,
AX® spans an invariant subspace of the preconditioned system matrix with tuning
corresponding to eigenvalue 1. The authors show that for A(P®)~1y®) = X the
right hand side X(® spans an approximate invariant subspace of A(P®)~! and the
block-GMRES iteration counts needed for solving this preconditioned system do not
increase with the outer iteration progress.

The tuning strategy is extended in [28] to an inexact IRA method for standard

112



eigenvalue problems. Let m and k be the order of the Arnoldi decomposition, i.e., the
number of columns in the Hessenberg matrix right before and after the implicit restart.
Assume after the jth (0 < j < m—k—1) Arnoldi step in the ith IRA cycle, an Arnoldi

decomposition AUéﬁj = U,nglg?rj + hl(fJ)errLkHugine{H is already computed, and

Ay = u,(ﬁrj +1 needs to be solved in the (j+1)-th Arnoldi step. The authors define
the tuned preconditioning matrix as IP’,(QFJ.Jrl =P+ (A—-P)XX* where X = U,giljﬂ
contains the Arnoldi vectors in the ith IRA cycle. They find that inner iteration
counts required to solve A(IP’,@F]. )7 = u,(ﬁr] 41 are smaller than those needed to
solve AP~y = u,(ﬁr] 1, because A(IP,(QF]. +1)" has better eigenvalue clustering than
that of AP~!. This “clustering” effect of tuning is quite different from the original

(4)

hije1 18 generally

motivation of this strategy studied in [25, 26, 65]. In particular, u
not a very good approximate eigenvector of zél(IED](;J)r i L)7h

In this section, we propose and study a new tuning strategy for solving the linear
systems of equations that arise in inexact IRA for generalized non-Hermitian eigen-
value problems. To study the new tuning strategy under ideal conditions, we assume
in this section that the linear system in each Arnoldi step is solved accurately (to
machine precision). We will see from numerical experiments in Section 5 that the
property of tuning under ideal conditions still holds approximately when the inner
solves are performed inexactly, except for the last few IRA cycles when the allowable
tolerances are relaxed significantly. We show how this tuning can be used in a new
two-phase algorithm to solve the linear systems in each Arnoldi step. In addition, we

discuss the use of subspace recycling with iterative solvers in the second phase of the

two-phase algorithm.

5.3.1 The new tuning strategy

The motivation for the new tuning strategy is similar to that discussed in [25, 26, 65].

The aim to make the right hand side of the linear system in the current Arnoldi step
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an approximate eigenvector of the preconditioned system matrix, so that the inner
iteration counts can be greatly reduced. Suppose we are in the ith IRA cycle and
already have AU,gi) U,glﬂ kzﬂ h,(jﬂﬂ kﬂu,(ﬁrjﬂekﬂ We then compute .AukﬂJr1
by solving Ay = Bu](;)r ;11 during the current step. Recall that for a given X with
orthonormal columns, the tuned preconditioner P = P+ (A — P) X X* satisfies PX =
AX ie., AP7'(AX) = AX. The motivation behind tuning requires that X be chosen
so that the right-hand side Bu,(ﬁrj 41 of the current linear system approximately lies

in the subspace spanned by AX, an invariant subspace of AP~

Consider the following choice of X:
i i—1 i
(5.11) X0 = [AUGD, AUEED, o AU AU

where U,S_Bl:m stands for the (k+1)-th through the mth columns of US, and p =(m—k)({-1)
+m+7 is the number of the vectors in XI(,“). We refer to X,(,i’l) as the set of “solution
vectors”, because its columns are solutions of the linear systems in previous Arnoldi
steps. For example, the first vector in X is AulZ 2 , the solution of Ay = BugZ 2
in the first step of the (i—[)-th IRA cycle. Note that this system may not literally be

solved in practice due to the implicit restart.

Let U = U0, UL US| and U5 = span{U5™Y}, 5% = span{ X"},
Ax = Buy™ = span{BUy ", BUS Y BUL),, }. In the following deriva-

tion, we use the calligraphic letter to stand for the subspaces spanned by some
set of column wvectors denoted by the same letter in Roman fonts. For instance,

Z/{k = span{U,gézj}. To study the relation between Bu,(;}errl and AX" | we begin

+Jj

with the following lemma, which shows that the range of Ulgi’l) is a Krylov subspace.
Lemma 5.3.1 Suppose IRA does not break down. Then Z/{éi’l) = IK,(A, ugi_l)),

Proof First, U +11 = K1 (A, u™). Since u,ﬁ";f“) is a linear combination of

w1 and uszl e U (see (5.3)), span{USi ™" ,(;JJH)} = Komi1 (A ul™) holds.
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1+1) i—14+1)

As we have orthogonalized Auk L1 against Uk Cs an{U ,(;JJH)} (note
that U < U, see (5.3)) to get ulia™V, span{Us- k’+1l+1 ulthy =

Kmta(A, ugi_l)) follows. Similar reasoning holds for all following Arnoldi vectors if

IRA does not break down, and the theorem is established. |

The angle between a vector v and a subspace U (denoted as Z(v,U)) is defined as
the angle between v and the orthogonal projection of v onto U. Obviously, v € U if
and only if Z(v,U) = 0. Therefore, Bu,(f}rj .1 approximately lies in A?C'p(i’l) = Bu,S“)
if and only if Z(Bu,(jﬂﬂ,

(4)

0p = A(Uk 4 +1,Z/{(”) is small. The following theorem suggests that, given the

BI/{(Z ) is small, and this small angle condition holds if

starting vector Aul D of X,g” , gpg) can be small enough for large p, because it

decreases linearly with p when p > m.

Theorem 5.3.2 Let o)y = Z(u’,;, Uy™) (1 <j < m—k), so that u; = u,-y cos g, 1+

p—1
PN ()

o_18inp, "y, where u, 1 € Z/IISZ_’ll and up_l J_L{ 1 are unit vectors. Let the orthogonal

(3,0)

u
projection of ||Au;_1||—1Au$ij onto U™ be wyny,, where w, € Uy’ is a unit vector,
and let oy, = Z(Au,y_ 1, U Uy, and 8, = 4(wp,u,$ﬂ) Then
sin ay,
npsin 3,

(5.12) tan gpg) =1, sin <p1(21, where v, = (1<j<m-—k)

(Note that «a,, 3,, 1, and v, all depend on the IRA cycle number i. To simplify the

notation, we omit the superscripts for these scalars.)

Proof Let p = ”iui 1” Since U™ = IC, (A, u{™), we have
1

(5.13) Aukﬂ Au,_q cos <p1(21 + Au,_ sin 90;(21
(%)
p—1

= [[Auyy |y pcos )

(@)

+ [ AUy || (w2 cos oy, + w, sin oy, sin @,

(@)

p—1

= pllAu,_y [|wpr cos o

(@) )

. 1 . .
1 T Wp2 COS Qv SIN ), " + W), SIN Qyp SIN P,

= [l Aul, || (wym, + whsin a,sing ),
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where w1, wp2,w, € uﬁ’” and w; uE uIS“) are unit vectors, and wy,n, = wy1p cos <p1(21 +
, (i+1)
1(21 is the orthogonal projection of T ’“j L i onto Uy G Tt follows imme-
—1
(@)

sin Qp sin gpp 1

p

W2 COS (yp SIN P
diately that tan Z(Aul(c?-pu;gi’l)) B
We then orthogonalize Auy, ; against Uy, € Us™ to get ui’),,. Let Uy} be the

orthogonal complement of 24\ . in U™, Then w, = wys cos 8, + wyysin B,, where

k+j
Wys € Z/{,ﬁzj and wyy € Z/{,ﬁzj are unit vectors, and (3, = 4(wp,u,§"+)j). Orthogonaliz-
ing Au,(jij against Z/{,gilj removes the w,3 component from w,, so that u,(;)r i1
(i)

p—1

equals
W = wpp sin 3, + wy- sin oy, sin,”; up to a constant scaling factor. It follows that

sin ayp sin
tan 4(1Lk+]+1,2/{(Z Dy = 2% and (5.12) is established. |

Mp sin Bp

Remark 3.1. In Theorem 5.3.2 we are interested in the non-trivial case where [ > 0.
If ] =0, then p =k + j, and L{(Z 0 L{]gzj. Therefore 3, = 4(wp,u,§+)]) 0 (because
wy, € Up (i.0) by definition), v, is infinity, and gpg) = m/2. This is consistent with the
fact that Arnoldi vectors in the same IRA cycle are orthogonal.

Remark 3.2. We have assumed that exact shifts are used for the implicit restart.
In this case u,(fil = uSL +11); see (5.3) and Proposition 5.2.1. Therefore Theorem 5.3.2
also holds for j = 0, with uk +; replaced by ul™.

It is obvious from (5.12) that gog) decreases linearly with p if v, remains a constant
smaller than 1. In practice v, is not a constant, but we have solid empirical evidences
that <p,(,i) does decrease with p linearly.

Theorem 5.3.2 shows that with the choice of X" in (5.11), 4( ,fﬂﬂ,u(” ) is

small for large enough p. As a result, Z(Bu\” . ., BUS"™") = Z(Bu! Ax") is

k+j+1
()

k+j+1

k—l—j—l—l?
is an approximate eigenvector of AP~! (where

the tuned preconditioner P is constructed using X,gi’l)

also small. In other words, Bu;’
), because it approximately lies
in A/'\fp(i’l), an invariant subspace of AP~!. In the following subsection, we show how

this observation can be used in a new two-phase algorithm for solving Ay = Bu,(ﬁr i1
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5.3.2 A two-phase strategy to solve the linear systems in Arnoldi steps

With the new tuning discussed in subsection 5.3.1, we now propose a new two-phase
algorithm for efficiently solving Ay = Bu,(j}rj 41 in Step 1 of Algorithm 5.1. This

algorithm provides new insights into the use of tuning and its properties.

(@)

k+j+1

1. Construct tuning using (5.11) and apply a single step of preconditioned GMRES with tuning
to get an approximate solution y;.

2. For a given €, choose either a fixed tolerance § = d5(¢), or a relaxed tolerance § = d,(¢) by some
means. Solve the correction equation Az = Bu,(;)r 1 Ay with any appropriate preconditioned

iterative solver to get an approximate correction zg, such that the corrected iterate Yg+1 = Y1+ 24
()

Algorithm 5.2 Two-phase strategy for solving Ay = Bu

. |Bu,Y . —Ayg+1ll . . . (B u —Ay1)—Azq||
satisfies —H4L ——"— < §, or equivalently, the correction z, satisfies ’”]J)l = <
) ”Buk+]‘+1H “Buk+J+17Ay1”
81 Bul)
1Buy ), 0~ Al

k+j+1

In particular, tuning need not be used to solve the correction equation. Thus we
can work with a fixed preconditioned system matrix for the correction equation in all
Arnoldi steps.

Let u\” = UpCyp S+ Uy Sp (D) where u, € uﬁ’” and Lu,ﬁi’” are unit vectors,

k+]+1 =
(zl

zl
)

and s ) are the cosine and sine of Z(Uk +i+1,Up ). We have shown by Theorem

5.3.2 that spi’ can be small enough for large p. The analysis of Algorithm 5.2 is given

in the following major theorem.

Theorem 5.3.3 Suppose Algorithm 5.2 is used to solve Ay = BukJerrl Then Phase

I of Algorithm 5.2 gives y, = Auycy -0 + O(sp (.0 ) (up to a constant scaling factor) and
1B Ejlj(j)l Al _ o560y
1B

stopping criterion of Algom'thm 5.2 1s satisfied if and only if the relative residual of

the corresponding relative residual norm . Consequently, the

ll(Bu HJH —Ay1)— Az 5||Bu,jlj+1|| s
- NG
1Bul) o —Aull  ~ IBu), —Aunl O(9D)

the correction equation

Proof It is shown in Section 5.3.1 that if the preconditioning matrix IP’I(,i’l) is con-
structed using X\, then A(PS™)-1(AXS) = AXSD. That is, A" = BUS™ is

an invariant subspace of dimension p of A(IP’](f’l))‘1 corresponding to eigenvalue 1. It
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follows that for u, € 4", (BS")~1(Bu,) = A_I(Bup).

The approximate solution to A(IP)(” yly = Bu,(i)rj 4
(@)

iteration is ¢, € span{BukZHH}, ie., 1 = vBukJerrl with some scalar 7. Therefore

after one step of GMRES

(5.14) 1 = (PU) ' = (YD) (vBuyl;,,) = y(BSD) ™ (Buyel) + Bugy )

— fy( lBup (3,0) + (Pl()i,l)>—lBu;_S(zl ) _ (Aup (3,0) _'_5(” )

il il i,l il
where [|35°Y]| = 55 [ (BS") " But|| = O(s5™).

Now consider the residual norm after one step of GMRES with tuning:

(5.15) 1B = Awll = min | Buyl; = AR (Buif )
< |IBu) 0 — A@SY)” (Bul(;-i-]-i-l)H
= [1Buf); ) — AR (Buyel + Bugs()|
= HBupc(” + BuLs(” A(A_lBup)cl(f’l) _ A(P(i’l))_lBujSS’l))]|

= IR = DB

(4:0)y—1 uJ_
Therefore the relative residual norm is s,(, DIAR ) ~1)Buy |l _

1Bu{) |

Finally, Phase II of Algorithm 5.2 requires that

(5.16) HBukﬂH Ayg 1| _ ||Buk+y+1 Ay ||Buk+j+1 Ay <5

||Buk+]+l|| ||Buk+j+1 — Ay| ||Buk+]+l||

which is satisfied if and only if the relative residual of the correction equation
(5.17)
||(Buk+j+1 Ayy) — AZqH ||Buk+g+1 qu+1|| < 5||Buk+g+1|| o )
o DN
|Buy ;0 — A 1B 0 = Al By — Anll - O(s)

The proof is thus concluded. [

Remark 3.3. The theorem shows that y; obtained in Phase I of Algorithm 5.2

equals Aupcl(,i’l) plus a small quantity proportional to sg’l). As u, € u,ﬁi’”, Au, €
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00 = 2D gee (5.11). Recall that X3 consists of the “solution vectors” of
the linear systems in previous Arnoldi steps. Therefore, by constructing tuning as
in Section 5.3.1 and applying one step of preconditioned GMRES with tuning to
Ay = Bu,(:}rj 41, We get a good approximate solution y; which is roughly a linear

combination of those solution vectors. The reason for the success of this approach is

that Z(Bu"

ki1 BZ/{ISi’l)) is small, i.e., Bu,(;}errl is roughly a linear combination of the

right hand sides of the previously solved systems. This perspective is quite different
from the motivation of tuning in all previous literature [25, 26, 65] and [28].

Remark 3.4. The theorem shows that a good approximate solution y; can be

BulY) | _A i
computed inexpensively in Phase I by tuning so that W = O(SI(; ’l)) < 1
Yhotj+1

In fact, a valid y; can also be obtained in other ways, in particular, by solving a least

squares problem
(5.18) m;n||Buk+J+1—AX(” fll,

which can be easily done using the QR decomposition of AX, ) — B U,Si’l) (recall the

definition of X5 in (5.11)). Given that u,(fijﬂ upcg Dy Uy sp (-0 where U, € U

and uj J_Ll,gi’l), we have

(5.19) mln ||Buk+]Jrl — AX(” fll= II11I1 ||Buk+J+1 Ulgi’l)fH
< ||B(up0”) +uy sy ) = Buye V| = 550 Buy |
i ul) g —A i uy i .
Therefore, with y; = X,(, ’l)f, we have w = é’”% = O(sl(, ’l)). Sim-
”B“k+]‘+1” ||Buk+j+1”

ilar to the observation in Chapter 4, the Phase I computation is somewhat cheaper
for the least squares approach than the one step tuned preconditioned GMRES, but
the former method required slightly more iterations in Phase II for our test problems,
and the total inner iteration counts are about the same for the two approaches. In

the following, for the sake of brevity, we only study the two-phase strategy where
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tuning is applied in Phase I.

Remark 3.5. Due to the one-step large reduction of the linear residual norm in
1Bul), —Aygill

D < ¢ is satisfied
| Buy

Phase I, the stopping criterion in Algorithm 5.2 that ”
i+l

I(Bu) , —Ay1)—Azg|| ;

I1Buy) ., —Aui

if and only if the relative residual of the correction equation

6||Bu§:j’j+1” _ ) )
i - il .
IBug)  —Aul  O(sy™)

This larger relative tolerance implies that the inner iterations required for solving

bounded by the much less stringent relative tolerance

the correction equation can be considerably smaller than those needed to solve the

original equation directly.

5.3.3 Linear solvers with subspace recycling for the correction equation

Step 2 of Algorithm 5.2 can be further refined by the use of linear solvers with subspace
recycling to further reduce the number of inner iterations. This methodology has
proved efficient for solving a long sequence of slowly-changing linear systems. When
the iterative solution of one linear system is done, a small set of vectors from the
current subspace for the candidate solutions is selected and “recycled”, i.e., used for
the solution of the next system in the sequence. Subspace recycling usually reduces
the cost of solving subsequent linear systems, because the iterative solver does not
have to build the candidate solution subspace from scratch. A popular solver of this
type is the Generalized Conjugate Residual with implicit inner Orthogonalization and
Deflated Restarting (GCRO-DR) [61] developed using ideas of special truncation [14]
and restarting [55] for solving a single linear system.

Reference [61] makes a general assumption that the preconditioned system matrix
changes from one linear system to the next, and thus the recycled subspace taken
from the previous system must be transformed by matrix-vector products involving
the current system matrix to fit into the solution of the current system. In the setting
of solving the sequence of correction equations in Algorithm 5.2, fortunately, this

transformation can be avoided, because the preconditioned system matrix without
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tuning is the same for the correction equation in all Arnoldi steps.

It is suggested in [61] that the harmonic Ritz vectors corresponding to smallest
harmonic Ritz values can be chosen to span the recycled subspaces. These vectors
are approximate eigenvectors of the preconditioned system matrix corresponding to
smallest eigenvalues. If the harmonic Ritz vectors are good approximate eigenvectors,
this strategy tends to reduce the duration of the initial latency of GMRES conver-
gence typically observed when the system matrix has some eigenvalues of very small
magnitude; see [20]. Our subspace recycling also includes dominant Ritz vectors, as
suggested in [61]. In Section 5.5, our numerical experiments show that the set of dom-
inant Ritz vectors is an effective choice for subspace recycling if the use of harmonic

Ritz vectors fails to reduce the inner iteration counts.

5.4 A refined analysis of allowable errors in Arnoldi steps

Reference [8] is one of the earliest papers on inexact Krylov subspace eigenvalue al-
gorithms, where a large number of numerical tests were carried out for the ordinary
Arnoldi method (without restarting). It was observed empirically that the matrix-
vector products involving A must be computed with high accuracy in the initial
Arnoldi steps, whereas the accuracy can be relaxed as the Arnoldi method proceeds.
A similar phenomenon is also observed in [35] for an inexact Lanczos method. An
analysis based on matrix perturbation theory given in [74] shows that the allowable
errors in the Arnoldi steps can be relaxed to a quantity inversely proportional to
the eigenvalue residual norm of the current desired approximate invariant subspace,
while the quality of the approximate invariant subspace is still under control (and is
expected to improve) after these inexact Arnoldi steps. This relaxation strategy is
extended in [28] to the inexact IRA method, where a practical estimate of the allow-
able tolerance is proposed for the linear systems in Arnoldi steps. Ideally, accurately

estimated allowable tolerances can help reduce the inner iteration counts to the best
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extent possible without compromising the convergence of the IRA method to the de-
sired invariant subspace. In this section, we give a refined analysis of allowable errors
in Arnoldi steps and an alternative estimate of allowable tolerances for the linear
systems.

Suppose the matrix-vector product involving A = A~ B is applied inexactly for m
Arnoldi steps, with an error f; (1 < j < m) introduced at each step. Thus we have

the following inexact Arnoldi decomposition:
(5.20) AU, + Fp = (A+ Fo Ui ) Uy = U Hypy + hngt Ui 160,

where U, spans a Krylov subspace of the perturbed matrix A+ F,,U},. Let the Schur

decomposition of H,, be

Wll W12 Tll T12
(5.21)  Hp =W T W5, with W, =| ™ " | andTpu=| ™ ™ |,
w2 Wz 0 T2

where T € CF*k T22 ¢ CP*P (the size of other blocks can be determined accord-
ingly). Assume that A(T}}!) are the wanted Ritz values, and A\(T??) are the unwanted
Ritz values. Then we use the Rayleigh-Ritz method (Section 4.1, Chapter 4 of [86])
Wit
T2l }
contains the wanted Ritz vectors. From (5.20) and (5.21), the corresponding eigen—

to extract the desired approximate invariant subspace U,, W} where W' = [

value residual is

(5.22) AU WY — U, H, W} = AU, W} — U, WLTH

- hm+1,mum+1e?nwy}q - Fmerp
from which follows
(5.23) (AU W, = Un W To1) = hopstmttmegrem || = 1 En W .
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Here, as introduced in Section 5.2, AU, W} — U,,W: T is the true eigenvalue resid-
ual, and R, = hm+1,mum+1e£W% is the estimated residual (referred to as the “com-
puted residual” in [74, 28]). The difference between the two residuals depends on
|F;nWL|. For the inexact Arnoldi method, we want to keep the quality of U, W}
under control in spite of the presence of the error matrix F,,. To achieve this goal,
we need to control ||F,, W], such that the desired approximate invariant subspace
UmW,iL contained in U, is not obviously contaminated by F},, i.e., the true residual
is still reasonably close to the estimated residual. This perspective addresses the
concern in [89] that the estimated residual may be an unreliable estimate of the true
residual, if the matrix-vector products in Arnoldi steps are computed with errors.

To see why the allowable errors at some Arnoldi steps can be relaxed, note that
(5.24) IE Wl < ITEWR 4 1 Eks i Wikl < T Eell + [ Frsrom | W]

Therefore, for a given k-step inexact Arnoldi decomposition with a small enough || Fy |,
| Fis1.m || does not have to be very small as long as ||[IW2!]], i.e., the magnitude of the
last m — k entries of the wanted Ritz vectors W (see (5.21)), is small enough. The
next theorem, which extends Theorem 3.2 of [28], shows that ||[W?2!|| is proportional

to the estimated residual at step k.

Theorem 5.4.1 Let AUy + Fy, = UpHy + hii1pugsier be a k-step inexact Arnoldi
decomposition, where the Schur decomposition of Hy is Hy, = W, TR,W;. We then
carry out m — k additional inexact Arnoldi steps to get an m-step decomposition
AU, + F,, = U,,H,, + hm+17mum+1efn. The Schur decomposition of H,, is given in
(5.21). Let Ry = AUW, — U Hi Wy, = hiy1puprref Wy be the estimated residual at
Arnoldi step k. Then

|| R

5.25 R L 2|
(5.25) op(Th, T7)’

||Rk|| 21
e S IWall <
| BR[| + [| Sl
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where Sy, is the Sylvester operator G — 8,,(G) : T2G—GTy, || S|l = max)gj=1 [|Sm(G)],
and sep(Ty, T7) = minjgy=1 [|Sm(G)|-

Proof We only need to prove the lower bound, as the upper bound is established in

Theorem 3.2 of [28]. The estimated residual norm at step k is
(5.26)

| Ri|l = 1P wttnsrer Wil = Pusriller Wil = Bisr e

An interesting observation shows that the following quantity also equals the estimated

residual norm:

Wy Wy,
(5.27) H,, - T,
0 0
He  H2\ (W, Wi
- _ T,
hk+17keleg H?nz 0 0
_ H,, W, — Wi, T - H H W), — W,Ty, H
B erer 0 hii1 kerer Wy,
0 T
= H = hiyielles Well = hiyi-

T
hi41 perer, Wi

Since W, is unitary, with the first expression in the last line of (5.27), we have

W, W,
(5.28) [ Ry | = me (Hm _ Tk) H
0 0
B H (W (Wi 0 H_H hicr 1k (Wit ) ereq Wi H
(W7717,2)* (ng)* hk—l—l,kelesz hk+1,k(W312)*616£Wk
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On the other hand, using the Schur decomposition of H,,, we also have

* W W,
(5.29) HRM=¢W@<Hm - n)'
0 0
W W
— |l W T,
0 0

_ <Zﬁ?ﬁ)(%ﬂﬂ%)_(%ﬂﬂ%>ﬂ
0 T2/ N (W) Wy (W) Wi

| TRV Wi — (WA WRTy + T2 (W12

O -

Since all matrices except for Ry in the argument of the norm operator in (5.28) and
(5.29) are identical, we take the upper block from (5.28) and lower block from (5.29)

to get

sw (e )

< bk (W) exeg Wil + [T52 (W7 ) Wi — (W) WaTi|
< Ppreller Wellled Wl + 1Sl (W7) W

IRk llet Wl + 1S lIW2 Il < IRV + 1S TR

Note that in the last line of (5.30), |[(W2)*Wy|| = [W.'2|| = [[W2!|| (Theorem 2.6.1
in Golub and van Loan [32]). The lower bound in (5.25) is thus established. |

As observed above, for a given k-step inexact Arnoldi decomposition with small
| F%||, the error matrix || Fii1.,|| associated with the upcoming m—Fk inexact Arnoldi
steps must be controlled appropriately to make sure that U,, W, is not obviously
contaminated after these steps. In particular, || fr11|| cannot be too big. The following

theorem gives an upper bound of || fx41]|-
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Theorem 5.4.2 Given e¢; > 0, suppose we have a k-step inexact Arnoldi decomposi-
tion AUy, + Fy = UpHy + hiy1pupsaer, where |[Fyl| < €. Then for the next Arnoldi
step,

[Spl
[ R

(5.31) || frexrll < (1 + ) (61 +€2) (where Sgyq is defined in Theorem 5.4.1)

is a necessary condition to make ||(AUp 1 Wity — Upd Wi Tity) — Risa || < €

Proof Let m = k + 1. We have the following estimate of the difference between the

computed and true residual,

(5.32) H(AUk—I-IWk—i—l - Uk+1Wk+1 k+1) Ry || = HFk+1Wk1+1||
= | FWeis + fen WLl 2> (1 Wik = 1FW |
| 22
2 | eIVl = 1 IWisal = [ fesal — €1.
AlllWess b TR ([ Sk
Note that || frr1 WAl = || fes1l[IWA | because fri1 and W2, are respectively a
column vector and row vector, and ||[W,, || < Wi, ] = 1. It follows immediately

that (5.32) is bigger than €y if || fri1] > (1 + ”ﬁg:'l'”)(el + €3). |

In practice, we usually choose €2 = ¢; and denote both quantities as e. Similarly, us-

ing the upper bound of ||[IW?2!|| in Theorem 5.4.1, we can show that || fr41| < 7@”{%’; |’|Tk)

is sufficient to make ||(AUy1 Wiy — Upa Wi Tity) — Risa|] < 2e. However, both

€

conditions for || fx+1]| might not be appropriate to estimate the actual allowable error
in the (k+1)-th Arnoldi step. In fact, sep(T;22,, T)) and ||Sg41|| are analogous to the
smallest and the largest singular values of the Sylvester operator Si.;. The necessary
condition is generally too weak, as an obviously smaller || fx, || may still not suffice
to keep the approximate invariant subspace from being contaminated. On the other
hand, the sufficient condition might be overly conservative, giving excessively small
tolerance for the linear system Ay = Bujij+1 (0 < j < m — k — 1) and leading

to unnecessary extra inner iterations. To give a practical estimate of the allowable
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| Fret 1:m ], [28] substitutes min [A(T},) — A(T22)] for sep(T}?2, Ty), which is difficult to es-
timate. Since min |\(Ty) — AN(T2%)| > sep(T22, Tj) for non-normal A, this substitution
essentially gives a less conservative estimate.

A better estimate should be a trade-off between the two conditions. Theorem
3.2 of [28] uses | T22(W2) Wy, — (W)W Tk || > sep(T22, T ||(W,22)* Wy ]|, whereas
Theorem 5.4.1 above applies ||[T2(W )W, — (WA W,. Tyl < [|Sm || (W22)* Wy |l.
Therefore, a more accurate estimate can be obtained by replacing the lower bound
sep(T72,T},) and upper bound ||S,,| by

T2 (Wl ) Wi = (W) Wil 112 (W)™ — (W) Hi
(W32 ) Wl W2l ’

(5.33)

which takes into account the actual effect of S, on (W12)*WW,. Here we use the fact
that Hy = W, T, W} is a Schur decomposition.

The above strategy gives a theoretically more accurate estimate of || Fy1.,||. How-
ever, like the estimate min |[A(T;) — A(7??)| in [28], it depends on the Schur decom-
position of H,,, which is not available at step k. The practical (heuristic) solution
is to use the decomposition of H,, from the previous IRA cycle and Hj, of the cur-
rent cycle. Specifically, suppose at the beginning of the ith IRA cycle, we have
AUY + B =uP gl th wus) el Then we define

22(i—1 12(i—1)y & 12(i—1)\ 4 77(3
T2 (Wl — (Wt H D |

(6 —
(534) Ocst = HWnlf(l—l)H

Y

which is very easy to compute. Note that H, 0 — IZI (=1 if the exact shift strategy is

used; see (5.3). Substituting o) for sep(Th 200 T(Z ) in the relaxation strategy (3.13)

est

n [28], we have the following heuristic estimate of the allowable errors:
(5.35) 150 < 5 (i=11<j<m), and
(i)

€ oot . .
. (1>1,0<j<m-—k-1).
2(m — k) | RY||

(et
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Remark. To the best of our knowledge, given a k-step inexact Arnoldi decom-
position with small || F||, none of the existing practical (computable) estimates of
allowable || Fjy1.m|| can theoretically guarantee that the desired approximate invari-
ant subspace U, W will not be contaminated after m — k inexact Arnoldi steps.
The estimate in [74] is for the ordinary Arnoldi method, assuming that the computed
eigenvalue residual at step k is already small enough, which might not be the case for
a given k-step Arnoldi decomposition; reference [28] uses min |A\(7, k(l)) - \NT, %2(i_1))|
i)

o In our new estimate. We will

in place of sep(Tk(i), Tﬁ?(i)), which is replaced by aé
compare the new estimate with that in [28] in Section 5.5.

Finally, we point out the || F},|| should be properly scaled. In fact, as AU,, + F,, =

[ Em |l

AU should be used to measure the

U,.H,, + hm+17mum+1e£, the relative quantity
magnitude of errors, especially if || AU,,| is too small or too large. Specifically, at

the (k+j+1)-th Arnoldi step, the linear system Ay = Buyy,+1 needs to be solved

I fetrivall lly— A= Bujy 1]
lAug 11l lA= Bug sl

inexactly. The relative error is not available because we do

not have A~'Buy 1. A reasonable and convenient substitute is the relative residual

| Ay—Bujetj+1l

. . For our inexact IRA method, we require this
|1 Bugtj+1ll

norm of this linear system

quantity to be bounded above by the new estimate in (5.35).

5.5 Numerical Experiments

We present and discuss the results of numerical experiments in this section, showing
the effectiveness of the new tuning strategy, subspace recycling and the new estimated

relaxation. The following issues are addressed:

1. We show that the tuning strategy constructed using solution vectors obtained

from previous Arnoldi steps works as Theorem 5.3.3 describes: a single GMRES

(4)

ki j+1 8lves a good approximate solution

step with this tuning applied to Ay = Bu

: : 1Bu) , — Al (i)
yy for which the residual norm B = O(sp”’) < 1, and therefore
Uetj+1

the correction equation can be solved with a less stringent relative tolerance
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3l|Buy?) ;.

I1Buy) ., —Aui |

Ay = Bu,(ﬁrj +1- The new tuning strategy is compared with the original tuning

> §, no matter if § is a fixed or relaxed relative tolerance for

strategy in [28].

2. We compare inexact IRA methods with non-relaxed (fixed) tolerances 6y = -
where € and k are given in Table 5.1 (this d; is used in [28] for inexact IRA with
a fixed tolerance for the inner solve) and relaxed tolerances ¢, given by either

the original estimate in [28] or the new estimate in (5.35). The accuracy of the

two estimates is discussed based on the numerical results.

3. We show that further reduction of inner iteration counts can be achieved at little

cost by proper subspace recycling.

We first explain the stopping criterion for the inexact IRA method. Suppose at
the beginning of the ith IRA cycle, we have AU,S) + Féi) = U() Kt th kukileg

Let (QJ(Z , JZ ) (1 < j < k) be a Ritz pair, i.e., an eigenpair of Hk . Post-multiplying
the above equation by v](-i), we have
(5.36) AW 0) = 00U = (o it = —Fv),

where v,(fj) is the k-th (last) entry of vj(-i). Here U,gi)vj(-i) is an approximate eigenvector
of A, A(U,gi) @y — Q(Z w (Z)) is the true eigenvalue residual, and (h,(;r1 KUR) )uéil is
the estimated residual. As the magnitude of errors has been kept under control to

guarantee that the true residual is close enough to the estimated one, we check if

hl(;+1 kY klg)

6\

J

MA@ - 070w
67"

J

(5.37)

is smaller than some prescribed tolerance €q,. Using estimated residuals avoids the

overhead of the Rayleigh-Ritz procedure.

129



Another issue is that k does not have to be equal to the number of desired eigen-
pairs k. One can choose a slightly bigger k for the IRA method, and only test
|(9§i))_1hgl7kv,§?| in (5.37) for 1 < j < k,. Our experience is that for fixed m—k
(the number of Arnoldi steps in each restarted IRA cycle), more often than not, this
choice of k reduces the number of IRA cycles. We speculate that this strategy makes
the unwanted Ritz values more separated from the desired eigenvalues; therefore it
is less likely for the filter polynomial to damp the desired eigenvector components
during the restart.

Four test problems are used in our numerical experiments. The first is SHER-
MANS5 from MatrixMarket [51], a real matrix of order 3312 arising from oil reservoir
modeling. We use the shift-invert operator A = A~! (with B = I) to detect some
eigenvalues closest to zero. The inner solve is done with ILU preconditioner with
drop tolerance 0.008 given by MATLAB’s ilu function. This example is used in [28]
to show the effectiveness of the tuning and the relaxation strategy therein.

The second through the fourth test problems are used in Chapter 4 for inexact
subspace iteration. The parameters used to solve the test problems are given below;

their values for each individual problem are summarized in Table 5.1.

1. ky, k,m — we use the IRA method to compute k,, eigenpairs; m and k are the

order of the Arnoldi decomposition right before and after the implicit restart.
2. 0,01,0, — the shifts of A= (A—oB)"'Band A= (A —0,B)"'(A—03B)

3. 7 — we stop the IRA method if the estimated residual in (5.37) is smaller than

7 for all k,, desired approximate eigenpairs

4. € — the small quantity used in 5.35) to estimate the allowable tolerances for the

linear systems

5. Iy, 15 — I; harmonic Ritz vectors corresponding to harmonic Ritz values of smallest

magnitude and [, dominant Ritz vectors are used for subspace recycling
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ko | p| k o (o1) o2 T € Il | Is

Prob 1 8 | 8112 0 - 2x 107 | 2x 107 | 10 | 10

Prob 2 3 149 |-00325] 0125 | 2x107° | 2x 10719 | 10 | 10

Prob3(a) | 5 | 7| 13 0 - 5x 10719 | 5x 1072 | 0 | 30
Prob 3(b) —0.46

Prob 4(a) - 0 | 45
Prob 4(b) —0.24

Table 5.1: Parameters used to solve the test problems

A Tol—OriginaI_Eqn—-‘t‘)f
107 |:|Tc:l-Corro:u:tic:m_Eqn-(Sf
v Tol-()riginal_Eqn-ér
-4

r o Tol-Correction_Eqn-ﬁr

107 -

Tolerances for some linear systems

0 5 10 15 20 25 30 35 40 45 50
Arnoldi steps (outer iterations)

Figure 5.1: Problem 1: relative tolerances for the original systems and correction equations

Figure 5.1 plots the relative tolerances ¢ for the original systems Ay = Bu,(;)r it

(4)
5||B“kl+j+1 Il
1Bug) ,, —Au|

Ay; (dashed lines) against the Arnoldi steps for Problem 1.

(solid lines) and the derived relative tolerances for the correction equa-

tions Az = Bu,(ZJ)FjJrl —
It corroborates the property of the two-phase algorithm described in Theorem 5.3.3.
Specifically, by applying one step of GMRES with the new tuning to the original

system, we get a good approximate solution y; for which the relative residual norm

Bt nll _ 66Dy < 1 and therefore the derived relative tol £ th
W - (Sp ) < 1, an ererore € derived relative tolerance o (§]
J

3l|Buf) ;|

”Bu(i)

correction equation
kg1~ Al

> ¢§. The curves in Figure 5.1 are as follows:

e 2 Tol-Original_Eqn-d; and O Tol-Correction_Eqn-d; — The fixed relative toler-

ance 0; = = ~ 107" for the original system Ay = Bu,(j}rj .1 and the derived
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8¢lBul)

1By ., —Aui |

relative tolerance for the correction equation Az = Bul(;)r i1 — Ay

e v Tol-Original Eqn-é, and {» Tol-Correction_Eqn-d, — The relaxed relative toler-

ances ¢, estimated by (5.35) for Ay = Bu'” .. and the derived relative tolerance

k+j+1
5o Bul | ;
T(i) k4j+1 for Az = Bu](;_),_ - Ay1
”Buk+j+1_Ay1” J

In the tests in Figure 5.1, Phase I computations use the new tuning strategy with

solution vectors from the current and 5 previous IRA cycles. We see from Figure
8By 41l

1B . —Aui |

obviously larger than the tolerances ¢ for the original systems (solid lines), no matter

5.1 that the tolerances for the correction equations (dashed lines) are
if 6 stands for the fixed tolerance d; (») or relaxed (v) tolerance d,. For example,
suppose fixed tolerances are used for the original systems. In the 34th Arnoldi step,

. 5| Bull) ‘ . .
the derived tolerance —I2%ktatil o0 110 correction equation Az = Bu" Ay

1Bug? ;y—Av hti+l

is about 1078, or 10* times as large as the tolerance d; for the original system Ay =
Bul(;)r ;+1- The larger tolerances indicate that fewer inner iterations are needed to solve
the correction equations than those required to solve the original systems without
tuning.

The reduction of inner iterations by the two-phase algorithm (with the new tuning
used in Phase I) can be seen from Figure 5.2, where the inner iteration counts required
by three different strategies for solving Ay = Bu,(ﬁr ;11 are plotted against the Arnoldi

steps:

e “No Tuning” (dotted line) — Solve the original systems Ay = Bu,(:}rj +1 by pre-

conditioned GMRES to the fixed tolerance ¢y = 57 without any enhancements.

e “Original Tuning” (4, solid line) — Solve Ay = Bul” by GMRES with the

k+j+1
original version of tuning in [28] to the fixed tolerance d; (note that the original
tuning needs to be applied at each GMRES step; it cannot work with the two-

phase strategy).
e “New Tuning (5 previous cycles)” (O, dashed line) — Solve Ay = Bu,(:}rj .1 by the
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Figure 5.2: Performance of different strategies with fixed tolerances of inner solves for Problems 1,
2, 3(a) and 4(a)

two-phase algorithm to the fixed tolerance d; in the first phase, the new tuning

is constructed using solution vectors from the current and 5 previous IRA cycles.

Clearly, compared to the “No Tuning” strategy, the two-phase algorithm (OJ, with the
new tuning used in Phase I) requires fewer inner iterations due to the larger relative
tolerances for the correction equations.

We now compare the effectiveness of the two-phase algorithm (the new tuning is
used in Phase I only for a single GMRES step) and the original tuning strategy that
is applied at each GMRES step. In Figure 5.2, we see that for Problems 1 and 2, the
relative reduction of inner iterations obtained by the use of the two-phase algorithm
is only 15% at most; for Problems 3(a) and 4(a), however, the relative reduction can
be as large as 30% — 40%. On the other hand, the original tuning strategy works well
for the first two problems, but fails to obviously reduce the inner iterations for the

latter two.

133



Residual norms of some linear systems
-
o

0 10 20 30 40 50
Inner iterations

Figure 5.3: Problem 1: residual norms of Ay = Bu‘gi) or Az = Bu§i) — Ay; at a single Arnoldi step,
for three solution strategies

The reason can be seen from Figure 5.3, which plots the relative residual norms

of Ay = Bug}rﬂl or Az = Bu"

iijr1 — Ayr against inner iterations at a single Arnoldi

step (step 34):

. : : (B, —Ar) Az
e Relres-CrtEqn (Solid line) — relative residual norms 2 of the
' 1Buy); oy~ A
correction equation Az = Bu,(ﬁrj +1 — Ay solved by preconditioned GMRES

without tuning in Phase II of the two-phase strategy.

IBuy) ,,  —Auq|

e Relres-OrigEqn (Dashed line) — residual norms of the original sys-

1Bug) ., i
tem Ay = Bu](;)r 11 solved by GMRES with the original version of tuning (two-
phase strategy cannot be used here).
WD A As
e Relres-CrtEqn (Dash-dot line) — residual norms Itz Bl A=Al o the cor-
||B“k+j+1_Ay1”

rection equation solved by GCRO-DR (using subspace recycling) in Phase IT of

the two-phase strategy.

Here a fixed tolerance oy = 57 is used for Ay = Bu,(;)r j11- We include the behavior of

the linear solver with subspace recycling (GCRO-DR), for reasons explained below. In

this Arnoldi step, we see from Figure 5.1 that the relative tolerances for Ay = Bu,(;)r it
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5f||5“1(3j+1” ~
I1Buy) ., —Aui |

Therefore, as shown in Figure 5.3, 47 GMRES steps without tuning are needed to

and Az = Bug}rﬁl — Ay, are §; ~ 107'? and 107® respectively.

L

solve the correction equation (48 GMRES steps in total for solving the original system,
including the one step in Phase I), 36 GMRES steps with the original tuning are
needed for solving the original system, and only 20 GCRO-DR stepsare required for
the correction equation (21 inner steps in total for solving the original system). The
asymptotic convergence rate of the three solves are roughly the same.

It is clear from Figure 5.3 that there are two types of strategy to reduce the
inner iteration counts: one is to reduce the length of the latencies observed in the
initial inner iteration steps, and the other is to use larger tolerances for the inner
solves. The first type of strategy include the original tuning and linear solvers with
subspace recycling. Specifically, let P be an existing untuned preconditioner, and P
be the tuned version defined in [28]. It is shown that the preconditioned operator
AP~! tends to have better eigenvalue clustering than AP~!, especially if P is not
strong. For linear solvers with subspace recycling, the recycled subspaces are spanned
by approximate eigenvectors corresponding to smallest and/or largest eigenvalues
of AP~!. Both approaches essentially eliminate the eigenvalues of smallest and/or
largest magnitude of the preconditioned system matrix; these are usually the source
of the initial latencies exhibited during the inner iterations.

However, the original tuning is not always effective for this purpose. As Figure 5.2
shows, for Problems 3 and 4, the solution strategy with the original tuning (a) requires
almost as many inner iterations as the plain inexact IRA (dotted line), while the new
tuning (OJ) reduces the inner iteration counts considerably. The reason is that the
linear solves for these two problems are performed with the least square commutator
preconditioner [19, 20], for which the preconditioned system matrix AP~ has most
eigenvalues clustered around 1 and only a small number of outliers [20]. For this

strong preconditioner, in our experience, it is hard for the original tuning to further
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cluster the eigenvalues and reduce the initial latencies of GMRES iterations.
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Figure 5.4: Performance of different strategies with relaxed tolerances of inner solves for Problems
1, 2, 3(a) and 4(a)

The second type of strategy includes the two-phase algorithm and the relaxation
strategy. The motivation of the two-phase algorithm is to generate a good approxi-
mate solution y; for Ay = Bu,(f}rj +1 by one GMRES step with the new tuning, such
that the tolerance for the correction equation can be much larger than that of the
original system. Additional larger tolerances can be obtained by the use of the re-
laxation strategy: as Section 5.4 shows, the allowable tolerances for Ay = Bu,(:jrj +1
are inversely proportional to the current eigenvalue residual norm. Therefore as the
IRA method proceeds and converges to the desired invariant subspace, the relaxed
tolerances keep increasing. Figure 5.4 shows the inner iteration counts required by

four strategies with relaxed tolerances for solving Ay = Bu,(;}r i1

7

e “No Tuning-Fix” (dotted line) — Solve the original systems Ay = Bu§) with

preconditioned GMRES to the fired tolerance 6y = 5. This performance of
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this strategy is already given in Figure 5.2; it is shown again to illustrate the

performance improvement obtained by the following advanced strategies.

e “Orig_Tuning-Orig_Relax” (v, solid line) — Solve Ay = Bul(fij +1 by GMRES with

the original tuning to the relazed tolerances d, given by the original estimate.

e “New_Tuning(5)-New_Relax” (<, dashed line) — Solve Ay = Bu,(j}rj 41 by the two-
phase strategy to the new estimated tolerances ¢, in (5.35); tuning is constructed

using solution vectors from the current and 5 previous IRA cycles.

e “New_Tuning(5)-New_Relax-Recycling” (¥, dashed line) — Solve Ay = Bu,(;)r it
by by the two-phase strategy to the new estimated tolerances ¢,; in addition,

subspace recycling is used to solve the correction equations.

It is clear from Figure 5.4 that the relaxed tolerances help gradually reduce the inner
iteration counts to very small numbers (curves with v, <», and ¥%).

Figure 5.4 also shows the effectiveness of subspace recycling. For Problems 1 and
2, the use of this technique reduces the inner iteration counts by 40%-50% in initial
Arnoldi steps (compare curves with { to those with ¥). For Problems 3 and 4,
where the original tuning does not perform well (see Figure 5.2), subspace recycling
still decreases the inner iteration counts by numbers commensurate to the dimensions
of recycled subspaces. As we discussed, subspace recycling achieves this improvement
because it helps reduce the initial latencies of inner iterations. In addition, 5.3.3
shows that the recycled subspaces obtained from one correction equation can be
applied directly to the solution of the next equation, because the preconditioned
system matrix is identical for the correction equations in all Arnoldi steps. This
makes subspace recycling very cheap to use.

Table 5.2 summarizes the total inner iteration counts needed for each strategy for
solving Ay = Blii—i)—j 41 arising in inexact IRA. Here, “New Tuning + New Relaxation

+ Subspace Recycling” and “Original Tuning 4+ Original Relaxation” are the most
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No New New New New Original Original

Tuning | Tuning Tuning Tuning Tuning Tuning Tuning
New New Original Original
Relaxation | Relaxation | Relaxation Relaxation

Subspace Subspace
Recycling Recycling

Prob 1 2687 2430 1560 787 806 1842 1184
Prob 2 5524 5090 3631 1401 1469 4549 3494
Prob 3(a) 10114 7780 5334 3930 4163 10263 7619
Prob 3(b) 9966 8129 5775 4641 4786 9889 7193
Prob 4(a) 17321 14294 9934 7584 7897 17299 11365
Prob 4(b) | 21186 17099 12570 9446 9635 21072 14424

Table 5.2: Inner iteration counts for different solution strategy for each problem

efficient strategies in this chapter and [28] respectively. Clearly, the best approach is
to combine the two-phase algorithm (with the new tuning), relaxation strategy and
subspace recycling.

For all problems, we found that solution strategies with the new estimated al-
lowable tolerances (5.35) require slightly smaller number of inner iterations as those
needed for strategies with the original estimated tolerances. Table 5.2 shows that
the new estimated tolerances help decrease the inner iteration counts by about 2%-—
5% (compare the “New Tuning + New Relaxation + Subspace Recycling” with ”New
Tuning + Original Relaxation 4+ Subspace Recycling”) when used with the two-phase
strategy and subspace recycling. In fact, the new estimated tolerances tend to be a
small multiple (say, 2 to 10) of the original estimated ones in most IRA cycles for all
test problems.

Some heuristic remarks can be made for the two estimations. First, the substi-
tution of min |[A(T}) — MN(T22)| for sep(T2?,T;) in the original estimation seems rea-
sonable, in the sense that the former is usually not obviously larger than the latter.
In fact, in the setting of eigenvalue computation, we expect two basic properties to
hold: (1) the desired Ritz vectors generated by the Rayleigh-Ritz procedure is not

far from the best approximation available in subspace from which the Ritz vectors

138



are extracted, and (2) small eigenvalue residual of the desired approximate invariant
subspace implies good eigenvector approximation. However, by analogy to the re-
sults in [88] and Chapter 2 of [45], both properties may not be true if sep(7722, Tj)
is considerably smaller than ||77}2|| or min|A(7}) — A(T??)| in our context. In the
usual situations when the two properties hold, min [A\(T;) — A(T??)| is expected to be
not much larger than sep(72%,7},). Second, numerical evidences help to understand
why the new estimate tends to be slightly larger than the original estimate. In fact,
note that min |[\(T;) — A(T22)| and max |\(T}) — A\(T??)] are the smallest and largest
eigenvalue of the Sylvester operator S, (G — S,.(G) : TG — GTy); see [86], page
17. For the test problems with spectral transformation, it was consistently found that
the largest eigenvalue of S,, is only about 10 — 100 times of the smallest eigenvalue of
S, as long as the shift is not too close to an eigenvalue of the matrix pair (A4, B). As
the quantity in (5.33) used in the new estimation is always between the two extreme
eigenvalues of §,, in practice, it is not unexpected that this quantity tends to be
small multiple of min [A(T;) — A(7??)]. In conclusion, the original estimated allowable

tolerance seems reasonably accurate for the test problems.

5.6 Concluding remarks

We have studied the inexact implicitly restarted Arnoldi (IRA) method for solving
generalized eigenvalue problems with shift-invert and Cayley transformations, with
focus on a few strategies that help reduce the inner iteration counts. We present a
new tuning strategy using the solution vectors from the current and previous IRA
cycles, and discuss a two-phase algorithm involving a correction equation for which
the tolerance can be considerably bigger than that for the original system. In addition,
subspace recycling can be used easily for the correction equation to further reduce the
inner iteration counts. We analyze the allowable errors in Arnoldi steps and propose

an alternative estimate of relaxed tolerances for the original linear systems. Numerical
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experiments show that the combined use of these strategies lead to significant speedup

of inner iterations.

140



6 Conclusions and future work

This thesis is concerned with numerical solution of eigenvalue problems with spec-
tral transformations. Specifically, we studied inexact Rayleigh quotient iteration
(RQI), subspace iteration and implicitly restarted Arnoldi method (IRA) for com-
puting one or a few eigenpairs of a matrix A or a matrix pencil (A, B), for which
the shift-invert or Cayley transformations are used to map the desired eigenvalues to
dominant ones of a transformed problem. Matrix-vector products involving the spec-
tral transformations require solutions to corresponding shifted linear systems, which
are done by iterative solvers when direct solvers are not an option, such as when the
matrices are very large and sparse. In these cases, inexact eigenvalue algorithms with
structure of “inner-outer” iteration need be used. Our major focus is on the study of
a variety of techniques that help reduce the inner iteration counts without obviously
affecting the convergence of the outer iteration for computing eigenvalues. The main

results achieved in each chapter are summarized as follows.

e In Chapter 3, we present a detailed analysis of several versions of the MINRES
algorithm for approximately solving the linear systems that arise when RQI is
used to compute the lowest eigenpair of a symmetric positive definite matrix.
We show that the initial slow convergence of MINRES does not affect the rate
at which the MINRES iterate converge to the desired eigenvector, and this rate
only depends on an effective condition number of the shifted coefficient matrix.
We obtain a better understanding of the limitation of ordinary preconditioned
MINRES in this context and the virtue of a new type of preconditioner with “tun-
ing.” A new tuning strategy based on a rank-2 modification of a preconditioner

can be applied to guarantee positive definiteness of the tuned preconditioner.
e In Chapter 4, we study an inexact subspace iteration for solving generalized non-
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Hermitian eigenvalue problems with spectral transformation. We provide new
insights into the tuning strategy that has been studied for this algorithm ap-
plied to standard eigenvalue problems and propose an alternative way to use the
tuned preconditioner to achieve similar performance for generalized problems.
In addition, we show that the cost of inner iterations can be further reduced by
using deflation of converged Schur vectors, special starting vectors constructed
from previously solved linear systems, and iterative linear solvers with subspace

recycling.

In Chapter 5, we investigate an inexact IRA method for computing a few eigen-
pairs of generalized non-Hermitian eigenvalue problems with spectral transfor-
mation. We study a new tuning strategy constructed from solution vectors in
both previous and the current IRA cycles, and show that tuning can be used
in a new two-phase algorithm to greatly reduce inner iteration counts. We give
a refined analysis of allowable errors for the inexact solves used in the Arnoldi
steps, from which a new heuristic estimate of the allowable tolerances of inner
solvers is proposed. In addition to the use of tuning and relaxed tolerances,
the inner iteration cost can be further reduced by using subspace recycling with

iterative linear solvers.

It should be noted that for both inexact Rayleigh quotient iteration and inexact

subspace iteration, the inner solves done with tuning have close connections with

solves performed by the basic Jacobi-Davidson method. In addition, we mentioned

in Chapter 2 that the shift-invert residual Arnoldi method, a variant of the Arnoldi

method based on Krylov subspaces, also has a few similarities to the Jacobi-Davidson

method. Roughly speaking, the generic idea of these approaches is to solve a correc-

tion equation where the right-hand side is some variant of the eigenvalue residual vec-

tor of the desired eigenpairs, and then to add the computed correction to the current

approximate eigenvector or to a subspace for the candidate approximate eigenvectors.
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Other research directions related to inexact eigenvalue algorithms or other branches

of scientific computing include:

e better refined allowable errors in Arnoldi steps of IRA; the error can be different

for individual Arnoldi steps in a given IRA cycle;

e a complete theoretical and numerical comparison of the shift-invert residual

Arnoldi method with the inexact IRA developed in this thesis;

e efficient strategies of subspace restarting and some techniques for further reduc-

ing the inner iteration counts for the shift-invert residual Arnoldi method;

e the relation between the errors of inner solves and the convergence of outer

iterations for the full Jacobi-Davidson method;

e potential hybrid inexact methods that properly combine inexact eigenvalue al-
gorithms that work with an increasing sequence of tolerances (e.g., subspace
iteration and shift-invert residual Arnoldi method) and those working with a de-
creasing sequence of tolerances (e.g., IRA), so that the tolerance of inner solves

may be kept modest throughout the progress of outer iterations;

e inexact eigenvalue algorithms for nonlinear problems, e.g., quadratic eigenvalue

problems, and those with orthogonality constraints (see [3]);

e possible applications of preconditioners with low-rank modification and other
ideas studied in this thesis to linear systems arising in different settings, for

example, interior-point method for numerical optimization.
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