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Hydrologic modeling is central to the solution of many flooding and water quality 

issues.  As the complexity of these issues increases, model complexity increases.  The 

purpose of this research was to determine the effects of model and data complexity on 

hydrologic model prediction accuracy.  A complex hydrologic model was developed and 

then simplified based on structural complexity and the change in accuracy was assessed.  

Analyses of data complexity were also conducted.  The results showed that complex 

models containing excessive low sensitivity parameters did not significantly improve 

prediction accuracy.  However, a lack of complete representation of the physical 

processes of the hydrologic cycle did affect prediction accuracy.  Data analyses revealed 

that misalignments between rainfall and runoff gauges may cause poor prediction of 

peaks and grab samples may adequately represent the mean value but not the distribution 

of a population.  Guidelines were developed to improve future development and 

application of hydrologic models. 
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CHAPTER 1  
 

 

INTRODUCTION 
 

 

1.1 Introduction 

Computer modeling enables engineers and scientists to analyze complex systems 

and changes to complex systems in order to achieve specific goals and objectives.  

Hydrologic modeling is an important tool for designing, planning, and regulating 

development.  For example, with the increase in development and the decrease in 

pervious land, stormwater management for both water quantity and quality control is a 

growing issue for engineers and hydrologists.  Water quantity modeling is necessary to 

predict runoff values, such as the peak discharge or total runoff volume, in order to assess 

the needs for storm water management.  Accurate predictions of these hydrologic metrics 

are necessary to decrease flooding and, therefore, decrease the risk of property damage.  

In addition to development, the recent flooding that caused massive damage in the 

Midwest reveals the need for more accurate water quantity modeling to reduce the risk of 

loss of life as a result of poor water management planning.  Accuracy in water quantity 

modeling is essential to reduce the risk of life and property loss due to flooding. 

Water quality is another issue of concern in hydrologic modeling.  Good water 

quality is becoming difficult to maintain with the increase in pollutants being released 

through municipal, industrial, and agricultural activities.  Upon the generation of 

pollutants, physical transport into the water environment occurs.  Chemicals from these 

sources can leach through the subsurface layer and contaminate groundwater.  Storm 
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runoff transports the pollutants that remain on the surface to nearby lakes and streams.  

The integration of these pollutants into water bodies can cause many water quality 

problems, such as low dissolved oxygen levels, high bacterial levels, eutrophication, and 

high toxic chemical levels.  These changes can cause disease transmission, imbalances in 

the ecosystem, and aesthetic changes, such as color and odor of water (Thomann and 

Mueller 1987).  Accurate water quantity modeling is essential in predicting the transport 

of pollutants through the water system and is necessary to develop water quality 

regulations and decrease water pollutants. 

The number and complexity of problems in which the hydrologic processes are 

fundamental elements have increased in the last decade.  Reduction of peak discharges 

and the control of eroded soil are no longer the only issues that concern society.  Public 

concern has been raised over the levels of pharmaceuticals and even the concentration of 

sun blocking chemicals in streams.  These more complex problems require more complex 

models, at least in terms of the physical, biological, and chemical processes that the 

model must include as components.  More complex models require greater varieties of 

input data, more detailed fitting methods, a better understanding of criteria used to judge 

prediction accuracy, and more knowledge of the model user. 

1.1.1 Problem: Components of Model Development and Application 

 While the need for accurate models is great, model development is a complicated 

process.  The modeling process involves five components: (1) formulation of the model 

structure; (2) assembling the calibration data; (3) identifying model constraints; (4) 

selecting calibration criteria; and (5) selecting the calibration fitting method.  Each 

component contributes to the process of efficiently developing a model that provides the 



   3 

 

desired prediction accuracy while remaining within the available resources.  Inexperience 

with any of the five components may hinder the efficiency and accuracy of model 

development and calibration. 

1.1.2 Problem: Complexity and Model Development 

Formulating the model structure involves selecting the physical processes to 

represent the system and the equations that best describes these processes.  Complex 

model structures often include more processes and nonlinear equations when deemed 

necessary.  As a result, complex model structures tend to include more parameters than 

simpler models.    The selection of processes and equations depends on the resources and 

physical knowledge available.  Models are limited by the scientific knowledge available 

to represent these physical processes.  Likewise, a lack of adequate resources may require 

a simpler model that contains fewer parameters and simplifies the physical processes. 

The trend in hydrologic engineering is toward increased model complexity.  

While models such as the Rational method are still widely used for small project design, 

more complex models such as SWMM and HSPF are being required for many design 

projects.  The trend is motivated by the fact that more complex models are conceptually 

more rational and allow for greater variation in design conditions.  However, increased 

complexity adds a burden on the model user facing the task of calibrating the model.  The 

user must have a better understanding of both the fitting process and the interpretation 

and balancing of an array of goodness-of-fit criteria.  A lack of experience and 

knowledge of complex model fitting can result in a model that lacks optimal goodness of 

fit and has parameter values that do not reflect the physical processes being modeled.  If 
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the trend for requiring more complex models outstrips the growth of knowledge of the 

modeling process, then inaccurate designs are likely. 

1.1.3: Problem: Complexity of Data 

Data selection is an important component because poor quality data will most 

likely result in poor prediction capabilities of the model.  Data that are unrepresentative 

of the watershed being modeled may result in calibrated parameters that do not truly 

represent the physical processes for the watershed.  Incomplete or short data records also 

make it difficult to accurately calibrate the model.  Selection of calibration data must take 

into account these issues. 

Complexity in the modeling process is not limited just to the length of the 

computer program and the number of model parameters that require calibration.  

Complex models require more complex data bases and with the growth of GIS systems 

and remotely sensed data, the fitting process has become more difficult.  The model user 

must know how to deal with inconsistencies in data, as the inaccuracy of the results can 

depend as much on the lack of data quality as on the difficulty in optimizing the 

parameter values. Many users fail to review the data and then misunderstand the effect 

that poor data quality can have on the assumed optimum model. 

1.1.4: Problem: Complexity and Model Constraints 

Constraints also must be considered in model development.  For example, 

calibrated parameter values should be constrained to be hydrologically rational.  A 

calibrated model that yields goodness-of-fit criteria indicating sufficient prediction 

accuracy is not a good model if the parameter values are irrational.  Parameters based on 
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poor calibration technique will most likely not accurately represent the physical 

processes.  Likewise, rational outputs from model components must be assessed to ensure 

the development of a physically rational model.  Prediction accuracy capabilities may 

decrease when an irrational model is applied to other watersheds. 

Highly complex models representing numerous physical processes may prove 

difficult to evaluate constraints on parameter values.  For example, lack of adequate 

empirical data for complex physical processes may make it impossible to evaluate the 

hydrologic rationality of parameters.  Likewise, it may be more difficult to ensure the 

rationality of each parameter value as the number of parameters increase with more 

complex models.  On the contrary, simple models may be forced to adjust parameter 

values outside a rational range in order to account for missing processes in the model. 

Therefore, model complexity may influence the ability to ensure the rationality of the 

hydrologic processes being modeled. 

1.1.5 Problem: Complexity and Calibration Criteria Selection 

 The selection of calibration criteria is an important step in the modeling process.  

Calibration criteria often include goodness-of-fit statistics such as the relative bias, the 

relative standard error, and the correlation coefficient.  Graphical analyses can be used as 

calibration criteria to develop a visual representation of the model prediction capabilities.  

Also, fitting of extreme values, such as base flows or peak discharges in hydrologic 

modeling, can be included in the calibration criteria.  The selection of calibration criteria 

is an important aspect of the modeling process and should be determined prior to 

beginning calibration to ensure consistency throughout the process. 
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 The selection of calibration criteria adds complexity to model development and 

calibration.  The use of different criteria in calibrating the same model may result in 

variations in the calibrated parameter values.  This will result in different model outputs 

and, therefore, possibly different designs based on these different results.  Likewise, 

calibration criteria such as best fit of extremes may limit the applicability of using the 

calibrated model for additional purposes.  Also, the more calibration criteria used, the 

more complicated the steps of calibration become.  Calibration criteria should be 

thoughtfully selected to ensure an efficient and effective calibration process. 

1.1.6 Problem: Complexity and Model Calibration Fitting Methods 

Fitting methods in calibration can vary including subjective optimization, 

objective optimization, numerical optimization, and more.  Within these methods are 

additional factors such as the objective functions used to assess model prediction 

accuracy and the criteria used to determine further calibration changes.  For example, 

parameter sensitivity may be used as a criterion for determining which parameter values 

should be adjusted in the calibration process. 

Fitting methods can vary in complexity from simple graphical methods to 

complex trial-and-error, or subjective, fitting.  The more complex models generally 

require more complex fitting methods. However, the more complex fitting methods 

require the user to have greater knowledge of the physical processes, statistical analysis, 

the modeling process, and the model being calibrated.  Attempting to calibrate the model 

without this prerequisite knowledge can lead to a model that has irrational coefficients, 

less then optimum goodness of fit, and inaccurate sensitivities.  Better knowledge of 

complex model fitting can avoid these problems. 
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1.1.7 Summary of Issues in Model Complexity 

 Each of the components in the modeling process is influenced by complexity.  

More complex models may require more scientific knowledge, greater rationality 

constraints, more complicated fitting processes, and complete data records.  However, 

much debate exists regarding the importance of complexity of models in accurately 

representing the system.  It is arguable that the more complex a model, the less sensitive 

the individual components become and, therefore, the less likely the prediction accuracy 

will increase.  Likewise, the effects of issues within the data on the accuracy and 

goodness of fit is yet to be determined.  Further knowledge of the effects of complexity 

on model development is required to ensure beneficial advancements in hydrologic 

modeling. 

1.2 Goals and Objectives 

The goal of this research was to analyze the issue of complexity in hydrologic 

modeling. Complexity can enter through each one of the five components of modeling 

identified above.  Greater knowledge of issues related to complexity can improve 

modeling results.  This goal was achieved through the following objectives: 

1) To formulate and analyze a series of different model structures to study the 

relationship between model complexity and prediction accuracy  

2) To assess the effects of data anomalies on prediction accuracy of hydrologic 

models 

3) To assess the ability of randomly as well as systematically selected water quality 

grab samples to adequately represent a population 
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4) To demonstrate the use of model sensitivity in improving efficiency of subjective 

optimization 

5) To show the effect of calibrating to optimally fit peak discharge rates or to 

optimally fit baseflows on overall prediction accuracy 

6) To develop guidelines for improving all components of modeling of complex 

hydrologic models 

Guidelines are needed to assist engineers and hydrologists in the model development 

process in order to produce accurate and efficient water quantity models. 

1.3 Implications 

The use of complex hydrologic and water quality models for problem solving and 

engineering design requires a greater accuracy of skills than that required of using simple 

models such as the Rational method or unit hydrograph models.  Models such as HSPF 

that have hundreds of parameters that can be adjusted should not be used without a full 

appreciation of the vagaries that can result when using a complex model and complex 

data base.  A user, even one with considerable experience with simple models, needs 

guidelines to follow when fitting model parameters and subsequently interpreting the 

model output.  Fulfilling the above objectives should lead to guidelines related to proper 

use of complex models in solving complex problems that involve water quantity and 

quality related issues. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 
 

 

2.1 Introduction 

 Much research has been done in the areas of model development and calibration 

for hydrologic modeling.  Previous research addressing model structure, calibration 

fitting methods, model constraints, and data complexity are discussed in this chapter.  

Explanations of certain hydrologic processes are also discussed. 

2.2 Model Structure  

Rushton et al. (2006) developed a rainfall-runoff model that estimates 

groundwater recharge in various climates.  Runoff and infiltration calculations take into 

account soil moisture deficit.  Evapotransporation calculations take into account bare soil 

and crop type and actual evapotransporation values are determined based on soil 

properties and root depths.  The model was tested for two different climates and proved 

to be reliable in estimating groundwater recharge. 

Mandeville et al. (1970) tested a rainfall runoff model on the drier and more 

variable climate of the Ray Catchment at Grendon Underwood.  The model incorporates 

simple runoff and routing descriptions as well as the effects of soil moisture on actual 

evaporation and transpiration in a climate in which soil moisture deficit occurs.  The 

results show that runoff volume is better represented by a two or three independent 
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parameter model than a “coaxial graphical correlation”.  Also, the hydrograph is better 

forecasted when simply routing elements are included in the model.  The authors state 

that optimization of interdependent parameters should be avoided to obtain stable 

optimized values. 

Saxton (1983) emphasizes the importance of soil water when modeling 

hydrologic or agricultural systems.  He reviews methods for simulating soil water for 

hydrologic and agricultural uses including mathematical representations and simulation 

models. He explains that input values must depend on climate, soil characteristics, and 

vegetation type to adequately represent the mass balance of soil water.  Saxton developed 

SPAW, a soil water simulation model, and applied it to both corn and wheat in varying 

climates to demonstrate the capability of models to account for factors effecting input 

values and more accurately represent soil water hydrology. 

Dawdy and O’Donnell (1965) discuss the two types of models: over-all models 

and “complete specification” models.  Over-all models are lumped models consisting of 

components based on empirical relationships.  The parameters and construction of 

components are adjusted so that the results are within a certain tolerance of known 

outputs based on known inputs.  “Complete specification” models are less empirical and 

more based on relationships of physical properties.  Dawdy and O’Donnel developed a 

model of catchment behavior based on both of these model types and utilized a computer 

program to optimize the parameters.  The results show that computers are capable of 

optimizing parameters in an objective manner. 

Holtan et all. (1967) developed a mathematical model to simulate the infiltration 

process.  The model consisted of the rainfall-runoff process, soil moisture accounting, 
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and evapotranspiration.  The parameter values were based on available data and 

information regarding soil and vegetation. 

Madramootoo and Broughton (1987) developed a deterministic model to simulate 

surface and subsurface flow from agricultural fields.  The model simulated the most 

important hydraulic and hydrologic processes on an hourly basis during the growing 

season.  These processes included rainfall, interception, depression storage, infiltration, 

evapotranspiration, drainage, and overland flow.  The drainage consisted of both 

subsurface and surface methods.  The model was applied to two hypothetical 20 ha 

agricultural fields.  The results imply that subsurface drainage lowers the water table 

faster.  Therefore, this drainage method provides more opportunity for infiltration and 

reduces flooding in agricultural fields. 

Bennis and Crobeddu (2007) developed an improved rational hydrograph method 

for modeling runoff on small urban catchments.  The improved method takes into account 

rainfall with varying intensity, pervious and impervious areas in determining the runoff 

coefficient, and calibration of parameters in sequence.  The new model is a linear model 

that was calibrated for low and high intensity rainfall events in sequence.  Six rainfall 

events were analyzed with the new model on two urban catchments.  The results showed 

good agreement to actual runoff values and equivalent runoff values to a more complex 

non-linear reservoir model which was used as an alternative comparison. 

2.3 Fitting Methods 

Mein and Brown (1978) developed a statistical method to determine the 

sensitivity of parameters based on the response surface shape.  The method applies to 

parameters optimized with a quadratic object function, such as the sum of squares.  The 
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method is applied to the Boughton Model, which is a watershed model.  The results 

suggest that model results are not overly sensitive to individual parameter values.  

However, relationships between parameter values and watershed characteristics are 

imprecise.  Therefore, it cannot be assumed that changing a parameter value will 

represent changes in the watershed characteristic. 

Dawdy and O’Donnel (1965) developed a simple, 9 parameter model of the 

hydrologic cycle.  The model was optimized using computing techniques that were 

developing at the time to decrease subjectivity.  The results showed that computer 

techniques are a feasible approach to modeling the hydrologic cycle and eliminating 

subjectivity in the optimization of parameters. 

Nash et al. (1970) discuss the principles involved in modeling river flow and 

provide suggestions.  The model should reflect physical characteristics of the area being 

modeled if expected to be applied to other areas.  The simpler the model is, the more 

optimal the parameters will be defined.  Automatic optimization is suggested to eliminate 

subjectivity in fitting the model to data. 

2.4 Model Constraints 

Benaman and Shoemaker (2004) address the difficulty in calibrating complex 

models, such as TMDL models.  In their research, complex models involve multiple 

parameters with a wide range of suggested values.  They provide a method for reducing 

parameter ranges by taking into account site-specific data before calibration or sensitivity 

analyses are completed for the models.  The steps include selecting parameters and 

determining parameter range, conducting an initial Monte Carlo analysis, conducting an 

interval-spaced sensitivity analyses, selecting a threshold, reducing the parameter range, 
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and confirming the new parameter range with a final Monte Carlo analysis.  The method 

was applied to the Soil and Water Assessment Tool Model in the Cannonsville Reservoir 

System Watershed.  Both hydrology and sediment output were considered, but sediment 

proved early to be the most sensitive out put component to parameter changes.  The 

method successfully reduced the range of sediment load outputs simulated from the 

model.  This method can potentially reduce the calibration process for models used in 

developing TMDLs. 

O’Connel et al. (1970) applied a simple river flow model to the Brosna Catchment 

at Ferbane and conducted multiple tests to optimize the six parameters.  In each test, 

certain parameters were optimized, while others were set to a fixed value, some values 

eliminating the parameter completely.  The results determined that it is easy to account 

for 80-85% of the initial variance with a model.  To better obtain optimum values of 

parameters, avoiding interdependent parameters is suggested. 

2.5 Data Complexity 

Schilling and Fuchs (1986) explain the sources of inaccuracies involved in 

modeling, including input data error, simplification of processes in model, parameter 

errors, and numerical problems.  They compare hydrograph results from simple models 

with a complex reference model to evaluate the sources of error in modeling.  The models 

were spatially distributed.  Simplifications of the reference model were conducted one at 

a time to determine the effects of each model component on the accuracy of the results.  

Based on the analyses, they determined that spatial resolution of the rainfall data has the 

greatest impact on the accuracy of hydrograph simulation.  Inaccurate representation of 

spatial rainfall distribution also contributes to error in modeling runoff from real storms.  
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Simplification of an insensitive model component did not seriously affect the model 

accuracy, assuming that the model parameters are correct and the spatial rainfall 

distribution is realistically represented. 

2.6 Hydrologic Processes 

Allen et al. (1998) present a method to calculate evapotranspiration rates for 

agricultural purposes.  The method is based on a reference crop evapotranspiration rate 

(ETo), which is defined as evapotranspiration from a hypothetical grass reference surface 

that is never short of water.  ETo is only affected by climatic parameters.  Allen et al. 

adjust ETo based on crop type and environmental conditions.  A rate for crop 

evapotranspiration under standard conditions (ETc) is developed by adjusting ETo for a 

particular crop, still assuming the water supply is not lacking.  ETc is calculated with the 

following equation: 

ETc = ETo * Kc     Eq. (2-1) 

where Kc is the crop coefficient.  Kc incorporates factors in addition to climate to the 

calculation of ETc.  The value of Kc is based on the crop type and the time during the 

growing season.  Kc is lowest during the initial stages of the growing season and 

increases linearly during the developing stage of the crop until the crop reaches a 

maximum height.  The middle stage is assigned the maximum Kc value.  In the final 

stage, the crop development has ceased and less water is required for transpiration.  The 

land cover is at a maximum, which decreases evaporation capabilities.  Therefore, the 

value of Kc decreases linearly until the harvest point.  Allen et al. (1998) provide a table 

of Kc values based on the crop type and growing stage.  
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 Kc can be divided into coefficients to represent the individual processes of 

evaporation and transpiration.  These supplemental crop coefficients are known as the 

basal crop coefficient, Kcb, for transpiration, and the evaporation coefficient, Ke.  The 

sum of Kcb and Ke equals Kc.  The final adjustment is for non-standard conditions.  

Allen et al. represent the effects of environmental and water stresses on crop 

evapotranspiration by multiplying ETc by a water stress coefficient, Ks.  The 

evapotranspiration values calculated by this method can be used as guidelines in 

determining the amount of water required for agricultural practices to compensate for 

evapotranspiration losses. 

Lu et al. (2005) define the concept of potential evapotranspiration (PET) as the 

maximum rate of evapotranspiration that can occur from a short green crop, standing at a 

uniform height and completely shading the ground.  The value of PET is based on an 

infinite supply of water and only limited by available energy.  Numerous empirical 

relationships exist to estimate the potential evapotranspiration.  Lu et al. (2005) introduce 

the Thornthwaite method (Thornthwaite 1948), which estimates potential 

evapotranspiration based on average monthly temperature and represents a 12 hour day 

and 30-day month: 
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where PET = monthly PET (cm), jT = mean monthly temperature (degrees Celsius), dL  

is the time from sunrise to sunset in multiples of 12 hours,  and the exponent a is given 

by: 
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and I is the annual head index, given by: 
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CHAPTER 3 
 

 

METHODOLOGY 
 

 

 

 The first task was to develop a multi-component model that reflected important 

processes of the hydrologic cycle.  Each component was based on the continuity of mass: 

inflow minus outflow equals the change in storage.  Each component is represented by a 

function, often linear, with one or two parameters to be fitted.  The data required to fit the 

coefficients are limited to rainfall and runoff.  Because data bases for daily rainfall and 

runoff depths are commonly available, a daily time increment, rather than hourly, was 

selected. 

3.1 Model Development 

3.1.1 Model Components 

A complex model was developed to simulate the processes in the hydrologic 

cycle.  The model simulates rainfall, interception, infiltration, surface runoff, 

evapotranspiration, interflow, and baseflow.  The model was divided into five layers or 

zones: (1) interception layer; (2) surface layer; (3) root zone; (4) vadose zone; and (5) 

saturated zone.  Figure 1 represents the hydrologic processes and zones simulated by the 

model.  The model uses daily rainfall data as input and simulates the processes to 

generate daily runoff depth and discharges that can be compared to the measured runoff 

data for the watershed. 



   18 

 

Developing a new model was an alternative to applying an existing model.  This 

alternative enabled the model to have characteristics that are important to assessing the 

effects of complexity.  Specifically, the model components were assembled such that 

gradual changes in structural complexity could be made.  Additionally, the individual 

components were designed such that each had just one or two parameters that controlled 

its functioning.  When a component was removed, then the change in the number of 

parameters would be minimal. 

 

Figure 3.1. Flowchart of Hydrologic Processes and Zones Simulated by the Model 

3.1.2 Rainfall 

 Rainfall data were collected from the National Oceanic and Atmosphere 

Association’s National Climate Data Center (http://www.ncdc.noaa.gov/oa/ncdc.html).  
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The rainfall gauge used was located in Front Royal, Virginia, and is identified by the 

COOP ID number 443229.  The rain gauge is located at 38 degrees and 54’ north and 78 

degrees and 11’ west.  Data from January 1, 2003, to December 31, 2006 was used.  Four 

years of daily precipitation depths were used totaling to 1460 data values.  The data were 

recorded in inches per day and converted to millimeters per day for the purpose of this 

research.  The data had an average rainfall depth of 2.92 mm/day.  The standard deviation 

equaled 7.59 mm.  The maximum rainfall event equaled 61.45 mm. 

3.1.3 Interception 

In the event of precipitation, the interception layer is the first layer to intercept 

and store rainfall.  The maximum amount of storage in the interception layer is a set 

value from Madramootoo and Broughton (1987).  For this analysis a value equal to 0.5 

mm was used.  When the storage maximum of the interception layer is reached, the 

excess rainfall overflows and is added to the surface storage.   

3.1.4 Surface Runoff 

Once the maximum depth of interception is reached, the excess rainfall is added 

to the surface storage depth.  Surface storage can be depleted through surface runoff, 

infiltration, or evaporation.  Surface runoff, which is part of the total runoff, is a function 

of surface storage, landcover, and drainage area.  The equation for surface runoff is: 

2*1 PSZSSZPSZQS =      Eq. (3-1) 

where QS = surface runoff depth (mm), PSZ1 = calibrated surface runoff interception 

parameter, SSZ = surface storage depth (mm), and PSZ2 = calibrated surface runoff 

shape parameter.  For each time period, Eq. 2 is used to compute the potential surface 
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runoff.  If the calculated depth of runoff exceeds the depth of water in surface storage, 

then the runoff depth equals the surface storage depth and storage is set to zero. 

3.1.5 Infiltration 

Infiltration is simulated with or without rainfall, assuming the water storage 

conditions in each layer are favorable.  Water infiltrates from the surface layer to the root 

zone; the root zone to the vadose zone; and the vadose zone to the saturated zone.  The 

infiltration rates vary with soil moisture in the appropriate zone.  Infiltration from the 

surface zone into the root zone depends on the soil moisture of the root zone, the storage 

depth in the surface zone, and a calibrated infiltration parameter specific to the surface 

zone.  The equation for computing infiltration depth into the root zone is: 

ISZ = PISZ*SSZ*(1-SRZ/DR)    Eq. (3-2) 

where ISZ = infiltration into the root zone (mm), PISZ = infiltration parameter specific to 

the surface zone, SSZ = storage depth in the surface zone (mm), SRZ = storage depth in 

the root zone (mm), and  DR = depth of the root zone (mm).  The parameter PISZ is 

dimensionless.  If the depth of infiltration calculated exceeds either the depth of water 

stored in the surface layer or the available depth in the root zone, then the depth of 

infiltration is set equal to the minimum of these two depths.  The final computed depth is 

subtracted from the surface zone storage and added to the root zone storage. 

Infiltration into the vadose zone depends on the soil moisture of the vadose zone 

and a maximum infiltration rate specific to the layer.  The infiltration depth increases as 

the root zone storage increases and as the vadose zone soil moisture decreases.  The 

equation for infiltration into the vadose zone is: 

   IRZ = PIRZ*(SRZ/DR)*(1–SVZ/DV)  Eq. (3-3) 
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where IRZ = infiltration into the root zone (mm), PIRZ = calibrated infiltration parameter 

specific to root zone (mm), SRZ= storage depth in the root zone (mm), DR= depth of the 

root zone (mm), and SVZ = storage depth in the vadose zone (mm), and DV = depth of 

the vadose zone (mm).  If the depth of infiltration calculated exceeds either the depth of 

water stored in the root zone or the available depth in the vadose zone, then the depth of 

infiltration is set equal to the minimum of these two depths.  The computed depth is 

subtracted from the root zone storage and added to the root zone storage. 

The infiltration into the saturated zone is directly related to the soil moisture of 

the vadose zone and the infiltration parameter for the vadose zone.  The equation for 

infiltration into the saturated zone is: 

IVZ = PIVZ*(SVZ/DV)    Eq. (3-4) 

where IVZ = infiltration into the saturated zone (mm), PIVZ = infiltration parameter 

specific to the saturated zone (mm), SVZ = depth of storage in the vadose zone (mm), 

and DV = depth of the vadose zone (mm).  As the soil moisture increases, the infiltration 

depth increases.  If the depth of infiltration calculated exceeds the depth of water stored 

in the vadose zone, then the depth of infiltration is set equal to the depth of water in the 

vadose zone.     

3.1.6 Evaporation and Transpiration 

 Evapotranspiration occurs daily based on a maximum daily rate calculated 

throughout the year.  The maximum amount of water that can be depleted daily through 

evapotranspiration depends on a maximum crop specific evapotranspiration rate (MET).  

MET is calculated based on the method derived by Allen et al. (2005) and explained in 

Chapter 2.  MET is a function of the potential evapotranspiration (PET), which accounts 
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for only climatic factors, and a crop based coefficient, which accounts for the effects of 

crop type on transpiration and evaporation.       

The potential evapotranspiration (PET) depth, calculated using Eq. 2-2, is used to 

represent Allen et al.’s Reference Crop Evapotranspiration (ETo).  ETo represents the 

maximum amount of evapotranspiration that can occur from a reference crop assuming 

that the water supply is sufficient.  Temperature is the only climatic factor in calculating 

ETo for the purpose of this model.  The average monthly temperatures for the state of 

Maryland were determined from the Environmental Data Service (1968).  Monthly PET 

values were calculated and the following sinusoidal function was fit to represent the daily 

changes in PET (mm): 

PET = PPET * (0.193+ 0.185*sin(6.283*(ID + 250)/365))*10 Eq. (3-5) 

where PPET = potential evapotranspiration parameter and ID = day of year.   

The maximum daily evapotranspiration rate, MET was calculated by using 2-1 

from Allen et al. (1998).  For this research, ETc is referred to as MET and ETo is referred 

to as PET.  The values specified for these terms were used in place of the terms identified 

by Allen et al.  The crop coefficient for field corn was used, provided by Allen et al.  

MET was then divided into a maximum crop specific evaporation rate (ME) and 

transpiration rate (MT).  These maximum values represent the total daily amount of 

evaporation and transpiration that would occur for a specific crop, assuming water 

shortage never occurs, and sum to the MET.  The division is based on the stage of the 

crop’s growing season.  As a crop matures, the area of land that is shaded by the crop 

increases.  An increase in shaded area decreases the amount of evaporation.  However, 

crop growth increases the amount of water that can be transpired.  Therefore, 
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transpiration is directly and evaporation is indirectly related to stage of development of 

the crop.   

Weighted coefficients for evaporation and transpiration, WE and WT, 

respectively, were calculated based on the height of the crop, which is related to the 

maturity of the crop.  As WE increases, WT decreases, with the sum always equal to 1.  

The respective weighted coefficient is multiplied by MET to calculate ME or MT, the 

daily maximum values of transpiration and evaporation, respectively.   

The actual amount of water evaporated and transpired is updated as the model 

simulates the processes in each layer.  If the actual amount for either process exceeds the 

maximum value allotted for that day, the process ceases.  For example, if the actual 

amount of evaporation equals ME after evaporation is applied to the surface layer, the 

evaporation process will not occur in the remaining zones for that time period.  The 

model updates the maximum allowable rates for evaporation and transpiration (ME and 

MT, respectively) by subtracting the actual depths that occur in each layer from ME and 

MT throughout the daily simulation. 

The actual amount of evaporation that occurred in each layer was based on the 

water supply available, the daily potential evapotranspiration (PET), and the evaporation 

parameters specific to the layer.  In the interception layer, the actual amount of 

evaporation is calculated by: 

EI = PEXI * STI     Eq. (3-6) 

where EI = actual amount of evaporation from interception layer (mm), PEXI = 

calibrated evaporation parameter for the interception layer, and STI = storage depth in the 

interception layer (mm).  Therefore, as the storage in the interception zone increased, the 
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evaporation rate increased.  If EI exceeds either the storage in the interception or the 

maximum allowable daily evaporation depth, then EI is made equal to the smaller of 

these two values.  It is subtracted from the surface storage and added to the daily total. 

In the surface zone, evaporation is simulated after runoff and infiltration.  The 

actual amount of evaporation is calculated with the following equation: 

ESZ = PESZ*TO*SSZ   Eq. (3-7) 

where ESZ = actual amount of evaporation from surface zone (mm), PESZ = calibrated 

evaporation parameter for the surface zone (Celsius 1− ), TO = daily temperature (Celsius), 

and SSZ = storage depth in the interception layer.  If the calculated depth of evaporation 

exceeds either the storage in the surface zone or the maximum allowable daily 

evaporation depth, then ESZ is made equal to the smaller of these two values and is 

subtracted from the surface zone storage. 

The actual evaporation from the root zone is calculated by: 

ERZ = PERZ * SRZ/DR    Eq. (3-8) 

where ERZ = actual amount of evaporation from root zone (mm), PERZ = calibrated 

evaporation parameter for the root zone (mm), SRZ = depth of storage in the root zone 

(mm), and DR = depth of the root zone (mm).  PERZ acts as a maximum evaporation 

depth for the root zone and the depth of evaporation increases with an increase in the soil 

moisture in the root zone.  If ERZ exceeds either the storage in the root zone or the 

maximum allowable daily evaporation depth, then ERZ is made equal to the smaller of 

these two values. 

The vadose zone is the final zone in which evaporation occurs.  As in the root 

zone, the evaporation parameter acts as a maximum rate and the actual evaporation 
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increases with soil moisture.  The actual amount of evaporation from the vadose zone 

was calculated by: 

EVZ = PEVZ * SVZ/DV    Eq. (3-9) 

where EVZ = actual evaporation from the vadose zone (mm), PEVZ = calibrated 

evaporation parameter for the vadose zone (mm), SVZ = depth of storage in the vadose 

zone (mm), and DV = depth of the vadose zone (mm).  If EVZ exceeds either the storage 

in the vadose zone or the maximum allowable daily evaporation depth, then EVZ is made 

equal to the smaller of these two values. 

The model only simulates transpiration in the root zone.  The actual amount of 

water transpired is based on the soil moisture of the root zone and the maximum amount 

of transpiration allotted for that time period.  The actual depth of transpiration is 

calculated by: 

TRZ = TXH * SRZ/DR    Eq. (3-10) 

where TRZ = actual depth of water transpired in the root zone (mm), TXH = maximum 

depth of transpiration allotted for that day (mm), SRZ = storage depth of water in the root 

zone (mm), and DR = depth of root zone (mm).  The fraction SRZ/DR represents the soil 

moisture in the root zone; therefore, transpiration increases with soil moisture in the root 

zone.  If TRZ exceeds either the storage in the root zone or the maximum allowable daily 

transpiration depth, then TRZ is made equal to the smaller of these two values. 

3.1.7 Outflow 

 Groundwater is depleted from the vadose zone and saturated zone as interflow 

and baseflow, respectively.  The amount of groundwater flow depleted from each layer is 

calculated based on Darcy’s law given by the following equation: 



   26 

 

Q=k*I*A      Eq. (3-11) 

where Q = discharge depth, k = hydraulic conductivity of layer, i = hydraulic gradient, 

and A = area of the watershed.  The model developed for this research works with depths 

as opposed to volumes; therefore, the area component was placed with the storage depth 

for the appropriate zone.  The hydraulic conductivity is identified as SK   and UK  for the 

saturated and unsaturated, or groundwater and vadose, zones, respectively.  The hydraulic 

gradient is specific to each zone and is a calibrated parameter. 

3.1.7.1 Interflow 

 Interflow is the daily outflow from the vadose zone.  The following equation was 

used to calculate the daily interflow from the vadose zone:  

=QV SVZ*KU/(PQV1+PQV2*sin(6.283*(ID+61)/365))  Eq. (3-12) 

where QV = depth of interflow (mm), SVZ = storage depth in the vadose zone (mm), KU 

= unsaturated hydraulic conductivity (mm/hour), PQV1 = interflow parameter 

(mm/hour), PQV2 = parameter representing the cyclical component of interflow 

(mm/hour), and ID = day of the year.  The intent of the cyclical component was to allow 

the model to account for seasonality.  In the event that seasonality is not a factor, PQV2 

would have no effect on the prediction accuracy.  The unsaturated hydraulic conductivity, 

UK , varies with the soil moisture content as well as the soil type.  Therefore, the 

hydraulic conductivity of the vadose zone is calculated based on the soil moisture of the 

vadose zone using the following equation from Todd and Mays (2005):   
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where UK = unsaturated hydraulic conductivity (mm/hour), SK = saturated conductivity 

discussed below (mm/hour), and SM = soil moisture in the vadose zone.  The hydraulic 

gradient is represented by the parameter PQV1 and is calibrated in the model.  A second 

parameter, PQV2, is added to Darcy’s equation to include a seasonal effect.  It was 

assumed that more outflow would occur in the winter because of less evaporation 

occurring.  Therefore, PQV2 was multiplied by a sinusoidal function to vary the daily 

outflow throughout the year.   

3.1.7.2 Baseflow 

Baseflow occurs in the saturated zone.  The following equation was used to 

calculate the outflow from the saturated zone: 

 QG = SGZ*KS/PQGZ    Eq. (3-14) 

where QG = baseflow (mm), SGZ = storage depth of the saturated zone (mm), KS = 

saturated hydraulic conductivity (mm/hour), and PQGZ = baseflow parameter 

(mm/hour).  The hydraulic conductivity, SK , of the saturated zone is a constant value 

based on the soil type.  The values used were based on empirical data provided by Smith 

(2002).  The hydraulic gradient is represented by the parameter PQGZ and is calibrated in 

the model.   

3.2 Steps in the Mass Balance Process  

The processes previously defined are simulated in a specific order by the model 

and the depth of water stored in each layer is updated continuously based on the mass 

balance equation: input minus output equals the change in storage.  The processes in the 

interception layer are simulated first.  During a rainfall event, precipitation is added to the 
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interception storage depth, STI.  Once the maximum interception storage depth is 

reached, the remaining rainfall is stored as excess rainfall.  Evaporation is simulated next 

in the interception layer.  The actual amount of evaporation is calculated and subtracted 

from the interception layer storage, STI.  If the actual depth is greater than the maximum 

allowable evaporation depth allotted for that day, then the depth is set equal to the 

maximum allowable depth.  

Next, the processes in the surface layer are simulated.  Excess rainfall from the 

interception layer is added to the storage depth of the surface layer, SSZ.  Then, the 

amount of infiltration and runoff are calculated and subtracted from the storage depth.  

The infiltration depth is added to the root zone depth, SRZ, and the runoff depth is added 

to the total outflow of the model.  Finally, the depth of water lost to evaporation is 

calculated and subtracted from the storage depth, SSZ.  If the actual depth is greater than 

the maximum allowable evaporation depth allotted for that day, then the depth is set 

equal to the maximum allowable depth and subtracted from storage. 

The model then simulates the root zone processes.  The depth of water that 

infiltrates into the vadose zone is calculated.  The depth is subtracted from the storage 

depth of the root zone, SRZ, and added to the storage depth of the vadose zone, SVZ.  

Next, evapotranspiration is simulated.  Evaporation is simulated first.  The actual 

evaporation depth is calculated and subtracted from the root zone storage, SRZ.  If the 

actual depth is greater than the maximum allowable evaporation depth, then actual the 

depth is set equal to the maximum allowable depth.  Next, transpiration is simulated.  The 

actual depth of transpired water is calculated and subtracted from the root zone storage 

depth, SRZ.   
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The processes in the vadose zone are then simulated.  The depth of infiltration 

into the saturated zone is calculated.  This depth is depleted from the vadose zone 

storage, SVZ, and added to the saturated zone storage, SGZ.  Next, the depth of interflow 

is calculated.  The interflow is subtracted from the vadose zone storage depth, SVZ, and 

added to the total outflow of the system.  Finally, evaporation is simulated and depleted 

from the vadose zone storage, SVZ.  If the actual depth is greater than the maximum 

allowable evaporation depth allotted, then the depth is set equal to the maximum 

allowable depth. 

The baseflow process in the saturated zone is simulated.  The depth of baseflow 

for the time period is calculated.  The baseflow is subtracted from the depth of the 

saturated zone, SGZ, and added to the total outflow from the system.   

The entire cycle is then repeated for the next day.   

3.3 Subjective Optimization Calibration 

 For each version of the model, the parameters were calibrated using the subjective 

optimization process.  A maximum of 14 parameters were available for calibration, 

depending on the model.  The process involved multiple steps.  First, initial parameter 

values were entered into the program.  These estimates were developed based on average 

daily rainfall and runoff values from the calibration data and climatic and crop 

characteristics for the month of June.  Developing reasonable initial estimates should 

minimize the number of required iterations to achieve the optimum.  Second, the model 

output was analyzed based on criteria to determine the prediction accuracy of the model 

total outflow compared to the observed total outflow.  Third, based on the analysis, 

changes were made to selected parameters.  No more than two to four parameters were 
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changed at a time, which should enable the sensitivities of the individual parameters to be 

qualitatively assessed.  It was important that changes were made to parameters that were 

independent of each other so that independent effects could be assessed.  When the model 

yielded results that best satisfied the criteria for accuracy, the calibration process ended 

and the respective parameters were used as the final model. 

3.3.1 Goodness-of-Fit and Model Assessment 

 The calibration criteria were based on a combination of goodness-of-fit statistics 

and graphical analyses.  Overall goodness-of-fit statistics including the correlation 

coefficient, standard error of estimate, relative standard error, average bias, and relative 

bias were analyzed.  Calibration was conducted with the goal of increasing the correlation 

coefficient to increase the association between the observed and the predicted runoff of 

the model.  This would suggest good prediction accuracy.  Another calibration goal was 

to decrease the standard error and relative standard error.  A relative standard error close 

to one suggests that the model does not provide greater prediction accuracy than using a 

mean value of the observed data to predict the runoff values.  Therefore, minimizing the 

standard error and relative standard error through calibration will improve the accuracy of 

the model.  Finally, the average and relative biases should optimally be near zero.  Bias 

reveals whether the model is overpredicting or underpredicting the observed values.  The 

greater the bias, the greater the need for continuing the calibration process.  These 

statistics as a group portrayed the prediction accuracy of the entire model.   
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3.3.2 Peak Discharge Prediction Accuracy 

The overall accuracy prediction of the model is based on the goodness-of-fit 

statistics.  When necessary, however, additional criteria and graphical analyses were used 

to analyze individual problems in predictions and to determine which parameters would 

be changed to most effectively improve the goodness of fit.  The accuracy of the 

predicted peak discharge rates was analyzed.  The highest discharge for each month for 

the observed data and the corresponding computed peak for that same day were 

compared.  The prediction accuracy of the computed peak discharges was analyzed based 

on the standard error and bias for each monthly peak value.  The greater the standard 

error, the less accurate the prediction capability of the model and the greater the need for 

further calibration.  Ideally, the model should be calibrated to avoid overall and local 

biases for predicted peak discharges.  Biases suggest poor prediction accuracy.   

In addition to the computed bias, biases were identified by plotting the observed 

peak values on the x-axis and the predicted peak values on the y-axis, when necessary.  A 

model with perfect prediction accuracy would reveal a line at a 45 degree angle on the 

graph.  Deviation from this line reveals the bias in prediction accuracy.  If the plotted 

points lie above the 45 degree line, the model is overpredicting the peak discharge values.  

If the plotted points lie under the 45 degree angle line, the model is underpredicting the 

peak discharge value.  The further that the points lie from the straight line, the more 

necessary it is to continue the calibration process to attain better prediction accuracy.   

Model parameter changes are necessary to correct biases in peak discharge 

prediction.  To correct the overprediction of peaks, surface infiltration parameters can be 

increased to limit the occurrence of surface runoff.  Decreasing the surface runoff 
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parameters can also improve positive biases of peak discharge rates.  Increasing the 

evaporation will decrease the overall runoff and, therefore, also decrease the peak 

discharge rates.  Decreasing the surface infiltration and evaporation parameters and 

increasing the surface runoff parameters will have the opposite effect, and, therefore, 

correct the underprediction of peak, or negative bias. 

3.3.3 Low Flow Prediction Accuracy 

Similar to the peak discharge rates, the lowest flow observed and predicted value 

for the same day for each month of record was identified and defined as the monthly base 

flow.  The values were plotted against each other to identify overall or local biases, when 

necessary.  The standard error and bias for each monthly base flow value was analyzed.  

Where poor standard error and significant bias existed, changes were made to improve 

the accuracy of prediction.  For example, if a negative bias exists for low flows, the 

model is underpredicting compared to the observed low flow values.  To correct this, the 

parameters influencing the groundwater outflow should be increased.  Likewise, for 

overpredictions or a positive lowflow bias, the groundwater outflow parameters should be 

decreased.  Other possible solutions include adjusting the evaporation or infiltration 

parameters accordingly. 

3.3.4 Water Balance Prediction Accuracy 

The water balance and the storages for each zone in the model were reported at 

the end of each calendar year simulated.  The water balance is defined as the total runoff 

and evapotranspiration subtracted from the total rainfall for each year, as shown in the 

following equation:   
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WB = P – Q – ET     Eq. (3-15) 

where WB = water balance, P = total rainfall, Q = total runoff, and ET = total 

evapotranspiration.  The storages for each zone refer to the depth of water in each zone.  

The storage in the surface layer refers to the water remaining after infiltration, 

evaporation, and runoff has occurred.  The storage in the root zone is the depth of water 

remaining following infiltration and evapotranspiration from the root zone.  The storage 

in the vadose zone is the remaining depth of water after infiltration, evaporation, and 

interflow has occurred.  And the storage in the groundwater refers to the remaining depth 

of water following the occurrence of baseflow.  It would be expected that the storages in 

each zone would remain fairly constant and the water balance would equal zero.  This 

suggests that the rainfall each year is equal to the amount of water lost to 

evapotranspiration, surface runoff, and baseflow.  The further the water balance deviated 

from zero and the greater the changes in storage, the less accurate the model, and the 

greater the need to continue calibrations. 

A positive water balance suggests that the rainfall is exceeding the amount of 

evapotranspiration and runoff that occurs.  To correct this, it is necessary to analyze the 

distribution of water throughout the hydrologic cycle.  If the water leaves dominantly 

through evapotranspiration, it may be beneficial to increase the amount of runoff by 

changing surface runoff or groundwater outflow parameters.  This will increase the 

amount of water leaving the surface and groundwater zones and improve the positive 

water balance.  If the water leaves dominantly through surface runoff or groundwater, it 

would be beneficial to increase evapotranspiration parameters.  This will allow more 

water to leave through evapotranspiration and improve the positive water balance.  A 
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negative water balance means that the amount of rainfall is less than the amount of runoff 

and evapotranspiration.  Therefore, based on the water distribution throughout the 

hydrologic cycle, decreasing the evapotranspiration, runoff, or outflow parameters for the 

appropriate layer in the ground would correct the negative water balance.  

3.3.5 Graphical Analysis 

 When necessary, a graphical analysis was conducted to visually represent the 

prediction accuracy.  The daily values of the observed rainfall, observed runoff, and 

predicted runoff were plotted for each year.  From the graphical analysis of the first year, 

the accuracy of the initial storage values can be determined.  Poor predictions in the 

beginning of the data record reveal poor initial storage values.  If this is the case, changes 

to the initial storage values in the interception, surface, root, vadose, or groundwater zone 

must be made.  This can be considered an initial condition calibration in which the 

storages rather than the parameter values are adjusted.  The interception storage would 

have the least effect on the prediction accuracy, as only evaporation occurs within the 

interception zone.  If the model is over predicting in the first few years, it would be 

beneficial to decrease the storages.  Likewise, if the model is undepredicting in the first 

few years, increasing the initial storages may be necessary. 

The accuracy of the hydrograph recessions of the watershed being modeled is also 

apparent through graphical analysis.  The recessions reveal how accurately the model 

represents the watershed.  If the recessions are too steep, the model is simulating runoff 

too quickly following the peaks.  Therefore, changes should be made to the infiltration, 

evapotranspiration, and runoff for the surface zone.  Conversely, if the computed 
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recessions are too flat, the model is not simulating runoff at a fast enough rate following 

the peaks and the opposite parameter changes should be made.   

The surface zone parameters have the most influence on the peak discharges 

because peaks occur during or following a rainfall event.  Surface runoff has the greatest 

impact on the total runoff during this time, because the storage in the surface layer is 

immediately increased from the rainfall. The remaining zones are increased at a slower 

rate following the simulation of infiltration through each zone as well as evaporation and 

transpiration.  Therefore, the outflow from the groundwater occurs at a much steadier rate 

then the runoff from the surface layer.   

By increasing the parameters for infiltration from the surface into the root zone, 

the peaks will be decreased because less water will be available in the surface to runoff 

during a rainstorm.  Decreasing the infiltration parameters will therefore increase the 

runoff by allowing more water to remain in storage in the surface zone and, therefore, be 

available to become surface runoff.  Increasing the surface runoff parameters will 

increase the peaks by allowing more water to leave the surface storage at a time.  

Likewise, decreasing the surface runoff parameters will decrease the peaks by limiting 

the amount of surface runoff that can occur.   

Finally, increasing or decreasing the evapotranspiration parameters will decrease 

or increase, respectively, the amount of water available in the storages of the surface, 

root, and vadose zone and, therefore, influence the total amount of water available for 

runoff in either of the zones.  Without the graphical analysis, the inaccuracies in recession 

prediction would be difficult to detect. 
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The timing and magnitude of the peaks is observed along with the recessions 

through graphical analysis.  The program outputs the monthly observed peak and the 

predicted runoff corresponding to the time of the observed peak.  However, for the 

remaining peaks, a graphical analysis is necessary to determine the prediction accuracy.  

Trends such as over or under prediction of peaks or error in the timing of the peaks can 

be detected through graphical analysis and corrected by altering parameters.   

3.3.5 Optimization Guidelines 

 Based on the calibration criteria and graphical analyses, changes were made to 

selected parameters to improve the prediction accuracy.  General rules were developed to 

follow during the calibration process to provide guidance for parameter adjustments: 

(1) Problem: Biased water balance.  First, analyze the water distribution throughout 

the zones in the model. Then:  

A. Negative Bias 

i. If the water distribution is dominantly runoff from the surface layer 

a. decrease the surface runoff  

b. increase the infiltration into the root zone 

c. increase evaporation from the surface 

ii. If the water distribution is dominantly baseflow from the saturated 

zone 

a. decrease the saturated zone outflow  

b. decrease infiltration into the groundwater 

c. increase evaporation from the root and vadose zone 

iii. If the water distribution is dominantly evapotranspiration 

a. decrease the evaporation from the zone with the greatest 

evaporation 

b. decrease the transpiration from the root zone 

B. Positive Bias  

i. If the water distribution is dominantly runoff 

a. increase the surface runoff  

b. decrease the infiltration into the root zone 

c. decrease evaporation from the surface 

ii. If the water distribution is dominantly baseflow 

a. increase the saturated zone outflow  

b. increase infiltration into the groundwater 

c. decrease evaporation from the root and vadose zone 
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iii. If the water distribution is dominantly evapotranspiration 

a. increase the evaporation from the zone with the greatest 

evaporation 

b. increase the transpiration from the root zone 

(2) Problem: Biased Peaks 

A. Overpredicted 

i. Decrease the surface runoff 

ii. Increase the surface evaporation 

iii. Increase the surface infiltration 

iv. Increase evaporation in root zone and vadose zone to increase 

available storage for infiltration 

B. Underpredicted 

i. Increase the surface runoff 

ii. Decrease  the surface evaporation 

iii. Decrease the surface infiltration 

iv. Decrease evaporation in root zone and vadose zone to decrease 

available storage for infiltration 

(3) Problem: Biased Baseflow 

A. Overpedicted 

i. Decrease the groundwater outflow 

ii. Increase evaporation from the root zone  

iii. Decrease infiltration into the groundwater 

B. Underpredicted 

i. Increase the groundwater outflow 

ii. Decrease evaporation from the root zone  

iii. Increase infiltration into the groundwater 

(4) Problem: Poor accuracy in first year 

A. Overpredicting 

i. Decrease initial storage values 

B. Underpredicting 

i. Increase initial storage values 

(5) Problem: Inaccurate Recessions 

A. Too fast 

i. Increase infiltration from surface 

ii. Decrease surface runoff 

iii. Increase surface evaporation 

B. Too slow 

i. Decrease infiltration from surface 

ii. Increase surface runoff 

iii. Decrease surface evaporation 

 

Based on the analysis of the goodness-of-fit criteria and the graphical analysis, these 

guidelines can be followed to determine the most effective parameter changes in the 
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model to increase the prediction accuracy.  For example, if the model output reveals that 

the model is overpredicting the peaks, the parameter in the surface runoff equation, PSZ1, 

could be reduced.  If the water balance is negative, the parameters for evaporation, PESZ, 

PERZ, or PEVZ can be adjusted appropriately.  Such adjustments are made until the 

goodness-of-fit statistics and graphical analysis suggest that the model is capable of 

adequate predictions. 

3.4 Model Complexity Reduction Process  

Objective 1 aims to determine the affect of model structure complexity on 

prediction accuracy.  The model previously described represents the most complex model 

in this study.  To explore the effects of model structure complexity, the model was 

simplified 15 times to represent reductions in the complexity of model structure.  Each 

new model was recalibrated and the prediction accuracies were compared.  Reductions 

were made based on two criteria: (1) parameter sensitivities and (2) physical rationality.  

A sensitivity analysis was conducted for Model 1.  Statistically speaking, sensitivities 

reflect the importance of a parameter in a model.  For example, the most sensitive 

parameter is the most important parameter in model prediction and vice versa.  The 

parameters were ranked from the most important to the least important parameter.  These 

rankings were a key component in determining the simplifications of the model. 

 For each of the eliminations, the least important parameter was identified and 

eliminated.  This implies that the value was set equal to zero, resulting in the elimination 

of the entire process, for the case of linear equations.  For example, if the evaporation 

parameter for the root zone, PERZ, was eliminated and set equal to zero, the value of root 

zone evaporation would always equal zero.  Therefore, the root zone evaporation process 
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was essentially eliminated.  The only exception occurred for exponential parameters, 

such as the surface runoff parameter PSZ2.  The elimination of PSZ2 involved setting 

PSZ2 equal to one, resulting in a linear equation for the surface runoff.  This eliminated 

PSZ2; however the equation still contained the parameter PSZ1, which explains why the 

entire process of surface runoff was not eliminated. 

 The second criterion for eliminations was physical rationality.  In some cases, the 

elimination of the least sensitive parameter influenced other processes remaining in the 

model, making the parameter infeasible to eliminate.  For example, at one point, 

eliminating the root zone infiltration parameter, PIVZ, would cease water from 

infiltrating into the groundwater zone.  Without replenishing the groundwater zone 

through infiltration from the upper zones, the zone would be completely depleted through 

outflow.  When such instances occurred, choices were made based on physical 

rationality.  In some cases, zones were combined, such as the vadose zone and the 

groundwater zone, to enable the parameter elimination without isolating any zone from 

receiving water.  In other cases, the second least important parameter was eliminated 

instead.  Each of the eliminations, and the reasons supporting them, are explained as the 

steps of model complexity reduction are discussed herein. 

3.5 Grab Sample Analysis Procedure 

The goal of the grab sample data analysis was to determine the number of grab 

samples needed to provide accurate statistics that reflected the statistics of the entire 

record.  This goal was achieved through the following four analyses:  

• Compute statistical characteristics of an entire record of suspended sediment data, 

including the mean and probability distribution. 
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• Randomly eliminate specified percentages of the data record to simulate grab 

measurements and recompute the same statistical characteristics. 

• Randomly eliminate data points that reflect measurements during storm events to 

represent grab samples and recompute the same statistical measures. 

• Randomly eliminate data points that reflect measurements during low flows and 

recomputed the statistical characteristics. 

These analyses will be used to indicate whether or not grab samples, both random and 

systematic, can provide statistics that represent a full record of data. 

The observed data used in this study was provided by USGS and collected from 

the Rappahannock River in Remington, Virginia, identified as site 01446000 in the 

USGS records.  The watershed was 619 square miles.  Four years of data records, totaling 

to 1461 daily data values, were collected from the years 1989 to 1992.  The water quality 

data consisted of suspended sediment loads (tons/day).  The mean of the observed record 

equaled 271 and the standard deviation equaled 44.6.  These statistical characteristics of 

the observed data record were compared to the random and systematic grab sample 

subsets analyzed in the study.  The analysis was repeated using the concentrations from 

the same data record; however, significant differences in the results did not exist.   

3.5.1 Analysis Procedure 

A computer program was developed to randomly select values from the observed 

data record to represent the grab sample subset.  The program performs statistical tests to 

determine whether or not the total observed record of data and the subsets have the same 

mean and are from the same distribution.  For the statistical tests analyzed, the total 
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observed record refers to the entire four year water quality record and the grab sample 

subsets refers to the random and systematic reductions to the entire data record. 

 The hypothesis of equal means was examined with three tests: (1) the one-sample 

Z-test; (2) the one-sample t-test; and (3) the two-sample t-test.  Each test makes different 

assumptions regarding the sample and population.  The one-sample Z-test assumes that 

the complete observed data record represents the entire population and the grab samples 

subset represents the sample.  Accepting this hypothesis would suggest that the mean of 

the grab samples subset is representative of the mean of the complete observed data 

record.  The variance of the observed data record is known and is assumed to be the 

population variance.   

The one-sample t-test assumes that the population variance is unknown.  Use of 

this test recognizes that the observed data of n years is an incomplete record of the entire 

population.  Therefore, accepting the null hypothesis for the one-sample t-test assumes 

that the mean of the grab sample measurements can represent the true population mean of 

past, present, and future concentrations.  This is the most continuously applied test of 

grab samples.   

The two-sample t-test assumes that both the observed data record and the grab 

samples subset represent samples of the population and random variation exists in the 

complete data record as well as in the subset.  Rejection of the null hypothesis would 

suggest that the two samples give different assessments of the population mean.  In most 

case, this would imply that he mean of a small subset of grab samples is inaccurate 

 The Kolmogorov-Smirnov one-sample test was used to determine whether or not 

the complete observed data record and the grab sample subset represent the same 
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probability distribution.  The test is nonparametric, meaning a specific distribution is not 

assumed.  Rejection of the null hypothesis might occur because the probability 

distribution was a poor assumption or because the parameters of the assumed population 

were wrong.  Acceptance of the null hypothesis would suggest that probabilities based on 

the grab samples would be representative of the n-year record and, therefore, the 

population. 

 The results for each test were analyzed for both random and systematic data 

reductions.  For the random reductions of the observed data record, approximately 50%, 

25%, 10%, 5%, 2.5%, and 1% of the total record were selected to represent the grab 

sample record subset.  The results were analyzed to evaluate the record length of the grab 

sample subset at which characteristics of the subset no longer represent those of the 

complete observed data record.  In some historical records, grab sample measurements 

appear to have been made only during high flows, while with other records, 

measurements seem to have been made only during low flows.  For these systematic 

reductions, two analyses were made.  First, the observed daily record was separated into a 

subset of TSS values that were above the mean; values below the mean were discarded.  

Then a proportion (50%, 25%, etc.) of these values were selected at random to represent 

the grab sample subset. The six tests described previously were then applied using the 

grab sample subset and complete record of TSS values.  Second, the observed daily 

record was separated into a subset of TSS values that were below the mean; values above 

the mean were discarded.  Then a proportion of these values were selected at random to 

represent the grab sample subset.  The six tests previously described were then applied 
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using the grab sample subset and the complete record of TSS values.  The results were 

analyzed to determine the effect of grab samples selected randomly and systematically.   

3.5.2 Analysis Procedure of Grab Samples Using Systematic Elimination 

Water quality samples are not always temporally collected at random.  In some 

cases, the grab samples are collected during high flows, while in other cases, sampling 

occurs during low flows.  To assess the effect of the proportion of grab samples relative 

to the record length on the accuracy of statistics, two analyses were conducted.  First, an 

intermediate subset of the total observed data record was formed to contain only values 

above the mean flow.  This subset represents the practice of collecting samples during 

storm events.  Then the samples subset was compiled by randomly selecting values from 

the subset of high flows, with the proportions of 50%, 25%, 10%, 5%, 2.5%, and 1%.   

Second, an intermediate subset of the total observed data record was formed to 

contain only values below the mean flow.  This subset represented the policy of 

collecting samples in the absence of storm events.  The samples subset was compiled by 

randomly selecting values from the subset of low flows, with the proportions of 50%, 

25%, 10%, 5%, 2.5%, and 1%.  In both analyses, the results were analyzed using the 

same statistical tests as in the random elimination analysis to determine whether the 

mean, variance, and distribution of the grab sample subsets represent the total observed 

data record.  The results are discussed herein. 
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CHAPTER 4 
 

 

MODEL CALIBRATION 
 

 

 Subjective optimization was used in fitting the parameters to the data set.  

Multiple fitting criteria (i.e., water balance, runoff bias, the correlation coefficient, the 

standard error ratio, and the relative bias) were used.  Both annual values and 4-year 

averages were considered in optimizing the coefficients.  A primary intent was to 

understand how prediction accuracy varied with model complexity. 

4.1 Model 1 

 The 14-parameter model previously described is considered the optimum model 

for this research and identified as Model 1.  It is the most complex models and is 

hypothesized to provide the most accurate predictions of runoff from the watershed.  The 

final parameter values calibrated for Model 1 are shown in Table 4.1-1.  The results of 

the initial calibration for initial storage values are shown in Table 4.1-2. 

  Table 4.1-1. Calibrated Parameter Values for Model One 

PEXI  PXI 

(mm) 

PSZ1 PSZ2 PISZ PESZ 

(C
1−

) 

PIRZ 

(mm) 

PERZ 

(mm) 

PQV1 

(mm/hr) 

PQV2 

(mm/hr) 

PIVZ 

(mm) 

PEVZ PQGZ 

(mm/hr) 

PPET 

0.5 0.5 0.15 0.9 0.2 150 15 7.5 0.004 0.00375 0.6 8 0.000024 3.9 

 

Table 4.1-2. Initial Calibration Results of Initial Storage Values 

STI 

(mm) 

SSZ 

(mm) 

SRZ 

(mm) 

SVZ 

(mm) 

SGZ 

(mm) 

0.01 0.001 100 2450 2162.5 
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4.1.1 Prediction Accuracy of Model 1 

The goodness of fit statistics that result from these parameters values in model 

one are shown in Table 4.1-2 and the graphical representation of the predicted and 

observed runoff for each year of data are shown in Figures 1:A-D in Appendix A.  The 

relative biases for each individual year alternates from negative to positive, suggesting 

that the model does not consistently over or underpredict.  The biases for the individual 

years range from negative 0.19 to positive 0.31, suggesting that in those years, the 

predicted values may be contain an error of -19 and 31 percent, respectively.  The overall 

bias, however, is only 0.001, suggesting that on average, the model overpedicts by only 

0.1 percent for all four years. 

The water balances for years 1 and 3 have the greatest magnitude and are roughly 

equal in value but opposite in sign.  This is most likely because year 1 and 3 are the 

wettest and driest years, respectively.  The goal of the calibration was to have the 

individual year water balances as near to zero as possible, but ultimately to produce a 

final water balance near zero, which was attained.   

The runoff bias for the entire four years equals 3 mm.  This suggests that the 

model neither consistently under or overpredicts the runoff, because the total bias is near 

zero.  The bias for the individual years range from -178 to 112 mm.  This suggests the 

models inability to accurately adjust to the varying rainfall and storage values for each 

individual year.  However, the final runoff bias is near zero, which suggests that the 

model adjusts by neither over or underpredicting and, therefore, an overall bias does not 

exist.   
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The R values for years 1, 3, and 4 suggest that the model explains 38, 50, and 33 

percent of the variation for each year, respectively.  In year 2, the model explains 10 

percent of the variation.  However, based on the cross correlation results for Year 2, the 

observed runoff is poorly correlated with the rainfall recorded, as it had the lowest 

correlation of the four years.  A cross correlation analysis between the predicted runoff 

and observed rainfall revealed a higher correlation than the observed runoff by 0.2.  

Therefore, it can be assumed that the model is predicting consistently based on the 

rainfall, and Year 2 contains unexplainable observed runoff based on the rainfall data 

available.  The same explanation is applicable to the poor Se/Sy value for year 2, as the 

correlation coefficient, R, is a function of Se/Sy. 

Table 4.1-2. Goodness of Fit Statistics for Model 1 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 203 -178 0.62 0.8 -0.19 

2 -57 95 0.32 0.96 0.17 

3 -181 -26 0.71 0.72 -0.07 

4 -27 112 0.58 0.83 0.31 

Total -63 3  0.78 0.001 

4.1.2 Calibration Process of Model 1 

The data used to calibrate the model was from a watershed in Front Royal, 

Virginia.  The watershed is 11.2 square miles.  The runoff and rainfall gauges were 

located 3 miles apart.  The stream observed was Manassus Run.  Both the rainfall and 

runoff data were provided as daily averages for the years 2003-2007.  The rainfall and 

runoff data were provided by NOAA and USGS, respectively.   

A cross correlation analysis between the rainfall and runoff revealed the following 

results for years 1 through 5, respectively: (1) 0.54, (2) 0.36, (3) 0.52, (4) 0.44, and (5) 
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0.2.  Upon first calibrating the data, the goodness of fit statistics were considerably lower 

for the fifth year, regardless of the parameter values.  Based on the poor cross correlation 

results, it was decided to discard the fifth year of data and calibrate with the remaining 

four years, each of which had a significantly higher cross correlation value. 

Many calibration issues occurred during the subjective optimization process.  The 

first year in the data used to calibrate the model experienced much more rainfall than the 

following three years.  Year one received around 1500 mm of rainfall, whereas the 

second highest depth of rainfall was only 1145 mm.  As a result, the calibrated 

parameters that best fit the final three years resulted in a large underprediction of the first 

year in total runoff.  In order to correct this, the initial storage values for year one were 

adjusted.  The vadose zone storage was increased.  Outflow from the vadose zone is 

directly related to the storage in the vadose zone.  Therefore, by increasing the initial 

depth of water in the vadose zone, more water will be released from groundwater to 

contribute to the total runoff.  This change compensates for the high runoff observed on 

the watershed without effecting the calibration for the remaining years that did not 

receive high rainfall depths and, therefore, did not have high runoff depths.  

A constant problem which is apparent in the figures is the underprediction of 

large peaks and the overprediction of smaller peaks.  A compromise had to be found 

between these two problems, because fixing one would negatively affect the other.  The 

peaks are a function of the storage in the surface layer as well as the parameters PSZ1 

and PSZ2.  These parameters were adjusted until the optimal results were found in which 

the bias was low and the water balance and runoff bias were close to zero.  PSZ2 was 

particularly important, because it influences the shape of the runoff function, as opposed 
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to just the magnitude as in PSZ1.  Therefore, while the peak discharge prediction contains 

biases associated with the storm magnitude, the overall bias of the peaks is near zero 

resulting in the most optimal model.   

The model generally overpredicted the baseflows for each year.  However, 

decreasing the baseflow by adjusting the groundwater outflow parameters would affect 

the overall runoff bias by decreasing the total runoff and reducing the peaks.  While this 

would correct the overprediction of the smaller peaks, it would increase the error in the 

larger peaks, which have a greater impact on the correlation coefficient value.  Therefore, 

a compromise again had to be found between these different criteria.  The infiltration 

parameter in the surface zone was decreased to solve the problem.  This decreased the 

amount of water infiltrating into the ground and, therefore, the amount available for 

baseflow.  The change also increased the peak discharge values because more water was 

available as surface runoff.  This decreased the error in predicting the greater peaks and 

increased the error in the smaller peaks.  The change in the peaks was to a certain extent 

balanced by the decreased baseflow.  Likewise, the runoff bias was not affected greatly 

because the surface runoff was increasing while the baseflow was decreasing.   

4.1.3 Sensitivity Analysis of Model 1 

 Parameter sensitivity is a measure of parameter importance.  High relative 

sensitivities are associated with parameters that are important to prediction accuracy.  

Sensitivity is calculated as the change in the prediction value divided by the percent 

change in the parameter.  A sensitivity analysis was conducted on each parameter in the 

full calibrated model to determine the first simplification in model complexity to be 

made.  Each parameter value was individually decreased by 20% of the calibrated value.  
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The goodness-of-fit statistics were noted and compared.  The relative bias was deemed 

the most important criterion.  The water balance was used as the second most important 

criteria.  The relative standard error and correlation coefficient were viewed as equally 

important and used as the third comparison.  The runoff bias was considered the least 

important criterion.  The relative sensitivities for each model parameter were compared 

for each of the goodness-of-fit criteria.  For example, the relative sensitivities of PSZ1 

and PSZ2 in terms of the relative bias were compared.  The parameter with greatest 

relative sensitivity was considered the more important of the two parameters. 

Table 1 of Appendix B compares the goodness-of-fit statistics for the calibrated 

Model 1 with the goodness-of-fit statistics that resulted from each parameter change.  The 

parameters can be ranked as having high, medium, or low relative sensitivity.  The 

parameters PSZ2, PPET, PSZ1, and PISZ have the highest sensitivities, changing the 

relative bias by 12%, 8%, 6%, and 4%, respectively.  The parameters PQVZ, PQGZ, 

PIRZ, PEVZ, and PIVZ have moderate sensitivities, changing the relative bias by 2%, 

2%, 1.5%, 0.8%, and 0.7%, respectively.  The parameters PXI, PERZ, PEXI, PQVZ2, 

and PESZ have the lowest sensitivities with near zero percent changes in the relative bias. 

The results showed the following general trends.  The surface parameters were the 

most important parameters, with PSZ2 being the most influential on the prediction 

accuracy.  PSZ2 most likely had the greatest significance because it is the only 

exponential parameter in the model.  The infiltration parameters in each zone were of 

moderate significance, as they determine how the water is distributed between zones.  

However, the importance of the infiltration parameters decreased as the parameters 

represented lower zones in the system.  The outflow parameters from the groundwater 
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layers, PQGZ and PQV1, were of equal and moderate importance in prediction accuracy; 

however, both were significantly less than PSZ1 and PSZ2, suggesting that the surface 

layer contributes to the majority of the total runoff.  With an exception for PPET and 

PEVZ, the evaporation parameters had little effect on the prediction accuracy of the 

model.  The interception parameters, PEXI and PXI, proved to be the least important in 

affecting the prediction accuracy, as they contribute to such a small depth of water.   

4.2 Model 2 

 

 As a result of the sensitivity analysis, modifications to the interception process 

were selected for Model 2.  The interception parameters proved to have the least effect on 

the model prediction accuracy.  Therefore, setting the value of parameters PEXI and PXI 

equal to zero was the first simplification from the optimal model.  This implies that the 

interception process no longer occurs, and the rainfall is added directly to the surface 

storage in the surface zone.  The rest of the model remained the same and calibration 

through subjective optimization was conducted for the 12 remaining parameters.  Figure 

4.2-1 shows the flow chart of the hydrologic processes and zones simulated by Model 2. 
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Figure 4.2-1. Flow Chart of Hydrologic Processes and Zones Simulated by Model 2 

4.2.1 Calibration Process of Model 2 

 

 The calibration process for each model involved multiple steps.  A minimal 

amount of parameters was changed in each step to ensure that the effects of each change 

were understood.  Each calibration step was labeled with the model number and the 

appropriate letter representing the rank in the calibration process for that model.   

4.2.1.1 Calibration Run 2A 

 The first calibration run for Model 2, labeled Calibration Run 2A, was conducted 

with the optimal parameters from Model 1.  The results are shown in Table 4.2-1.  Model 

2 worsens the water balance by 4 mm, the runoff balance by 8 mm, and the relative bias 

by less than 1%.  The relative standard error remains the same.  These changes are not 

hydrologically meaningful; however, calibration runs were still made to attempt to 

improve the prediction accuracy.  
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Table 4.2-1. Goodness of Fit Statistics for Model 2A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 202 -176 0.62 0.8 -0.18 

2 -59 97 0.31 0.96 0.18 

3 -182 -24 0.71 0.71 -0.04 

4 -27 114 0.57 0.83 0.27 

Total -67 11   0.78 0.004 

4.2.1.2 Calibration Run 2B 

 To calibrate Model 2, the values of the most sensitive parameters were adjusted, 

based on the sensitivity analysis for Model 1.  In Calibration Run 2B, the value of PSZ2 

was changed from 0.9 to 0.925 in an attempt to improve the peak prediction problem 

reported in the Model 1 analysis.  PSZ2 was selected because the sensitivity analysis 

determined that PSZ2 was the most significant of the 14 parameters.  The results are 

shown in Table 4-2-2.  While this change improved the prediction of larger peaks, the 

overall goodness-of-fit statistics worsened.  Compared to Model 1, the water balance 

became more negative by roughly 41 mm; the runoff bias increased by 64 mm; the 

relative standard error increased by 2%; and the relative bias increased by almost 3%.  

Therefore, the optimal value of PSZ2 still remains at 0.9 as in Model 1. 

Table 4-2-2. Goodness-of-Fit Criteria for Model 2B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 180 -150 0.63 0.79 -0.16 

2 -66 108 0 1 0.2 

3 -184 -17 0.71 0.71 -0.03 

4 -34 126 0.43 0.92 0.3 

Total -104 67   0.8 0.03 

4.2.1.3 Calibration Run 2C 

 The second most significant parameter, based on the sensitivity analysis, was 

PSZ1.  Therefore, for Calibration Run 2C, the value of PSZ1 was adjusted next from 0.15 
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to 0.165 in an attempt to fix the peak values.  Again, the prediction of larger peaks 

improved, but the overall goodness-of-fit criteria worsened, as shown in Table 4.2-3.  

Compared to Model 1, the water balance became more negative by 51 mm per year; the 

runoff bias increased by 78 mm; the relative standard error increased by 1%; and the 

relative bias increased by almost 1%.  Therefore, as with PSZ2, the optimal value of 

PSZ1 remains at 0.15 as in Model 1. 

Table 4.2-3. Goodness-of-Fit Criteria for Model 2C 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 174 -144 0.63 0.79 -0.15 

2 -68 112 0.17 1 0.2 

3 -186 -14 0.71 0.72 -0.02 

4 -34 127 0.45 0.9 0.3 

Total -114 81   0.79 0.03 

4.2.1.4 Calibration Run 2D 

 Finally, for Calibration Run 2D, the value of PPET was adjusted from 3.9 to 3.95 

in an attempt to correct the runoff bias by increasing evaporation slightly.  PPET was the 

third most significant parameter based on the sensitivity analysis.  The results are shown 

in Table 4.2-4.  Compared to Model 1, the water balance became more negative by 14 

mm; the runoff bias improved by roughly 3 mm and has a zero bias; the relative bias 

decreased by 0.08%; and the standard error remains the same.  While the goal of attaining 

zero bias in total runoff was achieved through this calibration change, the change in 

goodness of fit is not hydrologically meaningful enough to declare that the new value of 

PPET is optimal.  Therefore, the original values calibrated for Model 1 were determined 

to be the most optimal parameter values for Model 2. 

Table 4.2-4. Goodness-of-Fit Statistics for Model 2D 
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Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 197 -177 0.6 0.8 -0.19 

2 -61 95 0.31 0.96 0.17 

3 -184 -28 0.71 0.71 -0.05 

4 -28 110 0.58 0.83 0.26 

Total -76 0   0.78 0.0002 

4.2.2 Prediction Accuracy of Model 2 

 Based on this analysis, the optimal parameter values remained the same for Model 

2 as in Model 1 and Table  4.1-1.  The goodness-of-fit statistics for the calibrated Model 

2 are shown in Table 4.2-1.  The water balance, runoff bias, and relative bias worsen in 

comparison to Model One.  However, they are not significantly different from those of 

Model 1, suggesting that neither Model 1 nor 2 is more accurate than the other.  In Model 

1, the maximum depth of water that the interception layer could store was 0.5 mm.  

Therefore, in comparison to model two, the surface layer, root zone, vadose zone, and 

saturated zone would only receive an extra 0.5 mm a day of rainfall.  In comparison to a 

range of 1,000 to 1,500 mm a year, 0.5 mm is not a significant deduction to affect the 

prediction accuracy.  This is reflected in the sensitivity analysis, since the interception 

parameters were proven to be the least significant of the 14 parameters.  This implies that 

complexity based on the number of parameters in the model is only beneficial if the 

parameters included are of a certain level of sensitivity.   

4.3 Model 3 

 Based on the initial sensitivity analysis of Model 1, the next simplification was to 

set the value of the second least important parameter equal to zero.  The evaporation 

parameter from the root zone, PERZ, was chosen since the model accuracy was less 

sensitive to the evaporation parameters than parameters for other processes.  Therefore, 
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the evaporation process was eliminated and only transpiration and infiltration occurred in 

the root zone for Model 3.  Model 3 was then calibrated based on the remaining eleven 

parameters.  

4.3.1 Calibration Process of Model 3 

4.3.1.1 Calibration Run 3A 

 Calibration Run 3A contained the optimal parameters from Models 1 and 2.  The 

results are shown in Table 4.3-1.  In comparison to the results from Model 1, Model 3 

improved the water balance by 33 mm; worsened the runoff bias by 18 mm and the 

relative bias less than 1%; and produced an equal value for the relative standard error.  

The time series graphs, shown in (Appendix A) Figures A-2:A-D, that the model 

overpredicts small peaks and underpredicts larger peaks.  This problem existed in the 

previous two models as well. 

Table 4.3-1. Goodness-of-Fit Statistics for Model 3A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 215 -177 0.62 0.8 -0.19 

2 -50 98 0.3 0.97 0.18 

3 -177 -20 0.71 0.71 -0.03 

4 -19 119 0.57 0.83 0.28 

Total -30 21   0.78 0.008 

4.3.1.2 Calibration Run 3B 

 In an attempt to improve the prediction of larger peak discharges, the parameter, 

PSZ2, was increased from 0.9 to 0.95 for Calibration Run 3B.  The results are shown in 

Table 4.3-2.  While the change improved the accuracy of the larger peaks, it had negative 

effects on other goodness-of-fit criteria.  The smaller peaks increased as well, which 

caused an increase in the runoff bias by 133 mm and worsened the overall relative bias by 
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almost 5%, compared to the Model One.  The increase in the runoff bias caused the water 

balance to become more negative, by 44 mm.  The relative standard error worsened, 

resulting in a correlation coefficient of 0.0 for years 2 and 4.    

Table 4.3-2. Goodness-of-Fit Criteria for Model 3B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 171 -125 0.63 0.79 -0.13 

2 -64.5 121 0 1.06 0.22 

3 -181 -5 0.71 0.72 -0.008 

4 -33 145 0 1.02 0.34 

Total -107 136   0.82 0.05 

4.3.1.3 Calibration Run 3C 

 In order to find a compromise between improving the greater peak discharge 

predictions and the overall goodness of fit, a smaller change in PSZ2 was tested in 

Calibration Run 3C at the value of 0.91.  The results are shown in Table 4.3-3.  

Compared to Model 1, the relative standard error increased by 1%; the relative bias 

increased by 1.6%; the water balance became improved by 16 mm; and the runoff bias 

increased by 38 mm.  The results from this calibration were better than the second and 

slightly worse than the first, although the difference between this calibration and the first 

calibration run were insignificant.  Therefore, the initial parameter value of PSZ2, which 

equaled 0.9, is deemed optimal. 

Table 4.3-3. Goodness-of-Fit Criteria for Model 3C 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 206 -167 0.62 0.79 -0.18 

2 -53 102 0.25 0.98 0.19 

3 -178 -17 0.71 0.71 -0.03 

4 -21 124 0.52 0.87 0.29 

Total -46 43   0.79 0.017 
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4.3.1.4 Calibration Run 3D 

 The next problem addressed through calibration was the water balance and runoff 

bias.  The second parameter change involved PEVZ, the evaporation parameter from the 

vadose zone.  In Model 3, evaporation does not occur in the root zone, meaning that more 

evaporation will occur from the vadose zone.  However, the rate of evaporation in the 

vadose zone was less than the rate of evaporation from the root zone, as it is located at a 

greater depth in the ground, so the increase in evaporation from the vadose zone does not 

counteract the loss of evaporation from the root zone.  Therefore, as shown in the results 

from the Calibration Run 3A in Table 4.3-1, the total evaporation decreases, causing an 

increase in runoff.  However, since the evaporation decreased at a greater rate than the 

runoff increased, the water balance improved from the optimal results from Model 1.   

Based on these findings, adjustments were made to PEVZ to attempt to balance 

the bias in the water balance.  For Calibration Run 3D, PEVZ was decreased from 8 to 

7.5 to decrease evaporation from the vadose zone and, therefore, correct the water 

balance.  The results are shown in Table 4.3-4.  Compared to the first run the water 

balance improved and the runoff bias worsened, each by an insignificant amount per 

year.  The relative bias worsened by 0.3% and the relative standard error did not change.  

However, further decreasing the value of PEVZ in an attempt to correct the water balance 

only worsened the relative bias and the runoff bias.   

Table 4.3-4. Goodness-of-Fit Criteria for Model 3D 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 216 -176 0.62 0.8 -0.19 

2 -48 100 0.3 0.97 0.18 

3 -174 -18 0.71 0.71 -0.03 

4 -17 122 0.57 0.83 0.29 
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Total -23 27   0.78 0.011 

4.3.1.5 Calibration Run 3E 

The next change, for Calibration Run 3E, was to increase PEVZ from 8 to 8.5, in 

an attempt to improve the runoff bias.  The results are shown in Table 4-3-5.  As 

expected, the water balance worsened from the first run in the Model 3 calibration, and 

the runoff improved slightly.  However, the change in runoff bias was not significant 

enough to affect the relative bias or the relative standard error.  Therefore, the negative 

effects on the water balance are more significant than the positive effects on the runoff 

bias, and further changes in PEVZ would not be beneficial to the overall goodness of fit. 

Table 4.3-5. Goodness-of-Fit Criteria for Model 3E 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 215 -175 0.62 0.8 -0.18 

2 -54 99 0.3 0.96 0.18 

3 -181 -21 0.71 0.71 -0.04 

4 -23 117 0.57 0.83 0.28 

Total -44 19   0.78 0.008 

4.3.2 Prediction Accuracy of Model 3 

 Changes to the parameter values during the calibration process resulted in 

changes in the goodness of fit of the model.  While parameter changes may improve 

individual goodness-of-fit criteria, the overall goodness of fit did not experience 

hydrologically meaningful improvements to suggest more optimal parameter values than 

the original values.  Therefore, Model 3A is deemed the most optimal.  In comparison to 

the results from Model 1, Model 3 improved the water balance by a 33; worsened the 

runoff bias by 18 mm and the relative bias less than 1%; and produced an equal value for 

the relative standard error.  These changes, however, are not hydrologically significant.  
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Therefore, the process of evaporation in the root zone does not contribute to improving 

the prediction accuracy of the model and the simplified Model 3 and the most 

complicated model have equal prediction capabilities. 

4.4 Model 4 

 Based on the sensitivity analysis, PQV2 was the next parameter to be set equal to 

zero.  PQV2 was the seasonal component for the vadose zone which allowed more runoff 

in the winter than the summer, assuming that the root zone is frozen in the winter, and 

less evaporation occurs.  Therefore, Model 4 was based on Model 3, with the PQV2 

parameter removed.  The remaining ten parameters in Model 4 were then calibrated. 

4.4.1 Calibration Process of Model 4 

4.4.1.1 Calibration Run 4A 

 Calibration Run 4A was conducted using the optimal parameters from the 

previous three models.  The results are shown in Table 4.4-1. 

Table 4.4-1. Goodness-of-Fit Statistics for Model 4A 

 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 207 -169 0.59 0.82 -0.18 

2 -51 98 0 1.007 0.18 

3 -174 -23 0.69 0.73 -0.04 

4 -14 115 0.51 0.87 0.27 

Total -32 20   0.806 0.008 

 

Compared to Model 1, the water balanced improved by 31 mm; the runoff bias worsened 

by 17 mm; the relative standard error worsened by less than 3%; and the relative bias 

worsened by less than 15.  Also, in Year 2, the correlation coefficient is now zero.  

However, it is important to consider that the correlation coefficient is based on the 

relative standard error.  In year 2, the relative standard error increased by less than 5% 
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from Model 3 to Model 4.  Based on a graphical analysis, a seasonal problem occurs in 

all four years.  The model tends to overpredict runoff in the summer and fall and 

underpredict in the winter leading into the spring.  This is a result of the removal of a 

seasonal parameter that would otherwise control this error.  This trend, however, does not 

greatly affect the overall bias of the model.  Based on the goodness-of-fit statistics, the 

elimination of PQV2 slightly worsens the overall goodness of fit of the model and further 

calibration may be necessary. 

4.4.1.2 Calibration Run 4B 

 PQV2 represented seasonal changes in the groundwater outflow.  For Calibration 

Run 4B, in an attempt to compensate for the elimination of a seasonal component in the 

model, PEVZ was increased from 8 to 10.  Evaporation is the only process remaining in 

the program that has a seasonal component.  It is based on the temperature, which varies 

with the seasons. Therefore, increasing PEVZ, the evaporation parameter in the vadose 

zone, may counteract the effects of eliminating the cyclical component PQV2 and, 

therefore, improve the goodness-of-fit statistics.  The results are shown in Table 4.4-2.  

The water balance worsened from the Model 1 by 29 mm; the runoff bias increased by 20 

mm; the relative standard error worsened by less than 3%, and the relative bias worsened 

by less than 1%.  These values are not a significant change from the Calibration 4A 

results.  Therefore, changing PEVZ does not improve the calibration of Model 4. 

Table 4.4-2.  Goodness-of-Fit Statistics for Model 4B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 194 -173 0.59 0.82 0.18 

2 -66 88 0 1.002 0.16 

3 -190 -38 0.69 0.73 -0.06 

4 -30 99 0.52 0.86 0.23 
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Total -92 23   0.804 -0.009 

4.4.1.3 Calibration Run 4C 

For Calibration Run 4C, changes were made based on the sensitivity analysis.  

PSZ2 was determined the most sensitive parameter and was, therefore, changed for 

Calibration 4C.  PSZ2 was increased from 0.9 to 0.925 in an attempt to correct the 

continuous problem of underpredicting large peaks.  The results are shown in Table 4.4-

3.  Compared to Model 1, the water balanced worsened by 6 mm; the runoff bias 

increased by 73 mm; the relative standard error increased by 4%; and the relative bias 

worsened almost 3%.  Therefore, based on the goodness-of-fit criteria, Calibration Run 

4C is not an improvement to Calibration Run 4A. 

Table 4.4-3. Goodness-of-Fit Statistics Model 4C 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 186 -144 0.59 0.81 -0.15 

2 -58 109 0 1.05 0.2 

3 -176 -16 0.69 0.73 -0.03 

4 -21 127 0.34 0.95 0.3 

Total -69 76   0.82 0.03 

4.4.1.4 Calibration Run 4D 

 For Calibration Run 4D, the next most significant parameter, PPET, was 

increased from 3.9 to 4.  This was also an attempt to affect the seasonal problem and 

improve the runoff bias.  The results are shown in Table 4.4-4.  Compared to the Model 

1, the water balance improved by 13 mm; the runoff bias improved by 3 mm; the relative 

standard error worsened by 3%; and the relative bias improved by less than 1%.  Also, 

the correlation coefficient for Year 2 equals zero.  Calibration Run 4D was deemed the 
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most accurate calibration with goodness-of-fit statistics comparable to the Model 1, 

despite the zero correlation in Year 2. 

Table 4.4-4. Goodness-of-Fit Statistics for Model 4D  

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 200 -172 0.59 0.82 -0.18 

2 -54 93 0 1.005 0.17 

3 -178 -29 0.69 0.73 -0.05 

4 -17 109 0.52 0.86 0.26 

Total -50 0   0.81 0.0001 

4.5 Model 5 

For Model 5, PESZ, the surface evaporation parameter, was set equal to zero; 

therefore, the surface evaporation process was eliminated.  PESZ was the next most 

insignificant parameter based on the sensitivity analysis.  This elimination means that 

evaporation only occurs in the vadose zone.  The remaining nine parameters were 

calibrated for Model 5. 

4.5.1 Calibration Process of Model 5 

4.5.1.1 Calibration Run 5A 

Calibration Run A for Model 5 was run using the optimal parameters calibrated 

for Model 4.  The results are shown in Table 4.5-1.  Compared to Model One, the water 

balance worsens by 132 mm; the runoff bias worsens by 235 mm; the relative standard 

error worsens by 3%; and the relative bias worsens by almost 10%.  The significant 

change in prediction accuracy is the result of eliminating a process that is of importance 

to the model.     

Table 4.5-1. Goodness-of-Fit Statistics for Model 5A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 
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1 133 -87 0.6 0.81 -0.09 

2 -94 151 0 1.03 0.27 

3 -195 14 0.69 0.73 0.02 

4 -38 161 0.43 0.91 0.38 

Total -195 238   0.81 0.1 

4.5.1.2 Calibration Run 5B 

For Calibration Run 5B, the main goal was to fix the runoff bias and water 

balance bias.  The model overpredicts the runoff because evaporation is no longer 

occurring from the surface zone and the water that would normally evaporate is 

remaining in storage.  Surface runoff is a function of storage.  Therefore, runoff is 

occurring at higher rates as a result of the increased storage.  To correct this, PISZ, the 

surface infiltration parameter, was increased as well as PPET, the overall evaporation 

parameter.  This forces the excess surface water to be infiltrated and increasing the 

amount that will evaporate from the Vadose Zone.  The results are shown in Table 4.5-2.  

Compared to the Model One, Calibration B improves the water balance by 34 mm; 

worsens the runoff bias by 5 mm; worsens the relative standard error by 2%; and worsens 

the relative bias by less than 8%.  These goodness-of-fit statistics are an improvement 

from Calibration Run 5A. 

Table 4.5-2. Goodness-of-Fit Statistics for Model 5B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 222 -204 0.57 0.83 -0.22 

2 -61 84 0.29 0.97 0.15 

3 -184 -38 0.68 0.74 -0.07 

4 -13 97 0.59 0.81 0.23 

Total -37 -61   0.8 -0.02 
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4.5.1.3 Calibration Run 5C 

Calibration Run 5B overcorrected the runoff bias resulting in a negative bias.  

Therefore, for Calibration Run 5C, PISZ was decreased to .275, a value three quarters of 

the way between the value in Calibration Runs 5A and 5B.  The results are shown in 

Table 4.5-3.  Compared to the Model One, the water balance worsens by 9 mm; the 

runoff bias is unchanged; the relative standard error worsens by 2%; and the relative bias 

is unchanged.  These differences are not hydrologically significant, suggesting that 

Model Five is capable of attaining prediction accuracies at the same level as Model One.   

Table 4.5-3. Goodness-of-Fit Statistics for Model 5C 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 202 -180 0.58 0.82 -0.19 

2 -68 97 0.25 0.98 0.18 

3 -187 -29 0.69 0.74 -0.05 

4 -19 109 0.57 0.83 0.26 

Total -72 -3   0.8 -0.001 

4.6 Model 6 

Based on the Model 1 sensitivity analysis, the least important of the remaining 

parameters is PIVZ, the infiltration parameter from the vadose zone to the saturated zone.  

Following PIVZ in order of decreasing importance are PIRZ, PEVZ, and PQV1 and 

PQGZ with equal importance.  Of these five parameters, it would be physically irrational 

to eliminate PEVZ, as evaporation in the vadose is the only remaining evaporation 

process.  Eliminating PIRZ would stop water from infiltrating beyond the root zone 

causing all rainfall to become surface runoff and the initial storage of the groundwater 

would eventually be lost through outflow.  Likewise, eliminating PIVZ would stop 

groundwater from infiltrating into the groundwater zone, and eventually the groundwater 
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zone would be eliminated as well.  Therefore, for Model 6, the Saturated and Vadose 

Zone were combined into one zone labeled the Groundwater Zone, eliminating PIVZ and 

PQGZ.  Water now infiltrates from the root zone into the groundwater zone.  The water 

then is either evaporated or released as groundwater outflow from the Vadose Zone.  

Figure 6.6-1 shows the hydrologic processes and zones simulated by Model 6.  The 

remaining seven parameters in Model 6 were calibrated. 

 

Figure 6.6-1. Flowchart of Hydrologic Processes and Zones Simulated by Model 6 

4.6.1 Calibration Process of Model 6 

4.6.1.1 Calibration Run 6A 

The parameters calibrated for Model 5 were used for the calibration of Model 6A.  

The results are shown in Table 4.6-1.  Compared to the Model 1, the water balance 

worsened by 1237 mm; the runoff bias worsened by 1093 mm; the relative standard error 



   66 

 

increased by 14%; and the relative bias increased by roughly 44%.  Compared to Model 

5, the water balance worsened by 1228 mm; the runoff bias worsened by 1096 mm; the 

relative standard error worsened by 12%; and the relative bias worsened by roughly 44%.  

Model 5 had required a change in the optimal parameter values, which suggested a less 

physically rational model.  Likewise, Model 6 requires further calibration of the optimal 

parameter values from Model 5, suggesting an even less physically rational model.   

Table 4.6-1. Goodness-of-Fit Statistics for Model 6A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 -612 586 0 1.09 0.62 

2 -325 321 0 1.05 0.58 

3 -296 56 0.69 0.73 0.1 

4 -66 136 0.55 0.84 0.32 

Total -1300 1099   0.92 0.44 

 

The results for Calibration Run 6A show that the model is greatly overpredicting 

runoff which causes a negative water balance.  The individual breakdown of the water 

process for each year shows that in comparison to the calibrated Model 5 breakdown, 

more water is released from the Groundwater zone through outflow, evaporation, and 

transpiration than was released from the Vadose and Saturated Zone in Model 5.  The 

surface runoff remained unchanged.  And as expected, water is not released from the 

Saturated Zone, as it was eliminated for Model 6.   

The addition of the initial water storage in the saturated zone to the vadose zone is 

reflected in the positive runoff bias.  The soil moisture in the Vadose Zone for Models 

One through Five and the Groundwater Zone for Model Six is calculated by dividing the 

storage depth by the depth of the respective zone.  The initial storages for the Vadose 

Zone in Models One through Five produced an initial soil moisture of roughly 50%.  By 
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adding the Saturated Zone into the Vadose Zone, the ratio between the initial storage of 

water and the depth of the entire Groundwater Zone increases and, therefore, the initial 

soil moisture increases.  Outflow and evaporation from the vadose zone, which is now the 

saturated zone, is a direct function of soil moisture.  Therefore, more water will be 

released through these processes, contributing to the negative water bias and positive 

runoff bias.   

4.6.1.2 Calibration Run 6B 

To correct this, PQV1 was first drastically decreased from 0.004 to 0.00028 to 

decrease the outflow from the Groundwater Zone for Calibration Run 6B.  The results are 

shown in Table 4.6-2.  Compared to Calibration Run 6A, the parameter change improved 

the runoff bias by decreasing the outflow from the Groundwater Zone.  The water 

balance improved by 1119 mm; runoff bias improved by 782 mm; the relative standard 

error improved by 11%; and the relative bias improved by 31%.  The improvement, 

however, was not sufficient to produce goodness-of-fit statistics that are comparable to 

previous models.  Also, the runoff bias was overcorrected and went from being positive 

to negative.  Therefore, while the water balance is still negative, suggesting more water is 

released than precipitated, the model is now producing too little runoff. 

Table 4.6-2. Goodness-of-Fit Statistics for Model 6B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 213 -269 0.54 0.85 -0.28 

2 -84 5 0.25 0.97 0.01 

3 -233 -105 0.67 0.75 -0.18 

4 -78 52 0.59 0.82 0.12 

Total -181 -317   0.81 -0.13 
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4.6.1.3 Calibration Run 6C 

For Calibration Run 6C, the negative water balance and now negative runoff bias 

were addressed.  PPET, overall evaporation parameter, was decreased from 4.1 to 3.7.  

Theoretically, this will decrease the amount of evaporation that occurs, and improve the 

negative water balance.  However, the increase storage remaining in the model will 

increase the runoff and outflow, as both are a function of storage.  Therefore, the 

parameter change will also improve the negative runoff bias.   The results are shown in 

Table 4.6-3.  Compared to Calibration Run 6B, this change improved the water balance 

by 132 mm; improved the runoff bias by 46 mm; the relative standard error remained 

unchanged; and decreased the relative bias by almost 2%.  While this is an improvement, 

further calibration is still necessary. 

Table 4.6-3. Goodness-of-Fit Statistics for Model 6C 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 256 -266 0.54 0.85 -0.28 

2 -46 16 0.24 0.98 0.03 

3 -201 -90 0.68 0.74 -0.15 

4 -58 69 0.58 0.82 0.16 

Total -49 -271   0.81 -0.11 

4.6.1.4 Calibration Run 6D 

Despite the significant improvements in calibration Run 6C, the water balance 

and runoff are still negatively biased.  Changing PPET improved the water balance at a 

faster rate than it improved the runoff bias.  Therefore, for Calibration Run 6D, changes 

to both PPET and PQV1 were made.  PPET was decreased to 3.35 and PQV1 was 

increased to 0.00031.  The results are shown in Table 4.6-4.  Compared to Calibration 

6C, the water balance bias worsened by 23 mm; the runoff bias improved by 99 mm; the 
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relative standard error remained unchanged; and the relative bias improved by 4%.  

Further calibration is still necessary. 

Table 4.6-4.  Goodness-of-Fit Statistics for Model 6D 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 289 -248 0.55 0.84 -0.26 

2 -16 40 0.23 0.98 0.07 

3 -168 -62 0.68 0.74 -0.11 

4 -33 98 0.56 0.83 0.23 

Total 72 -172   0.81 0.07 

4.6.1.5 Calibration Run 6E 

 For Calibration Run 6E, PQV1 was increased to the value 0.0004 to increase the 

runoff from the Groundwater zone.  Increasing the runoff will improve both the negative 

runoff bias and the positive water balance bias.  The results are shown in Table 4.6-5.  

The change improved the water balance by 36 mm; improved the runoff bias by 114 mm; 

the relative standard error remained unchanged; and the relative bias was decreased by 

5%.  These goodness-of-fit statistics for Calibration E are comparable, although still 

show less accuracy than the previous models.  However, one last parameter adjustment 

was conducted. 

Table 4.6-5. Goodness-of-Fit Statistics for Model 6E 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 250 -209 0.57 0.83 -0.22 

2 48 73 0.22 0.98 0.13 

3 -191 -37 0.68 0.73 -0.06 

4 -48 115 0.56 0.84 0.27 

Total -36 -58   0.81 -0.02 

4.6.1.6 Calibration Run 6F 

 Calibration Run 6F was a final attempt to improve the water balance and runoff 

bias.  By decreasing PPET to 3.25, Calibration Run 6F attempted to again decrease the 
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amount of evaporation that occurs within the model and, therefore, improve the water 

balance.  The newly negative runoff bias will also be improved, because as more storage 

remains in the system, more runoff is simulated.  The results are shown in Table 4.6-6. 

 The parameter change for Calibration Run 6F improved the water balance by 29 

mm; improved the runoff bias by 20 mm; the relative standard error remained unchanged; 

and the relative bias decreased by 0.5%.  In comparison to the Optimal Model, Model 6 

improves the water balance by 56 mm; increases the runoff bias by 35 mm; increases the 

relative standard error by 3%; and increases the relative bias by 1.4%.  The water balance 

is a positive improvement from the Model 1 and the increase runoff and relative biases 

are insignificant changes.  However, the 3% increase in the relative standard error shows 

the Model 6 has poorer prediction accuracy than the Optimal Model.  Also, the parameter 

values are beginning to deviate from the original values in order to compensate for the 

processes that have been eliminated and attain a comparable goodness of fit.  This migh 

lead to a model that is less physically rational and not applicable to outside data sets.  

These findings show that at a certain stage in the simplification of model complexity, the 

physical rationality and prediction accuracy of the model diminishes. 

Table 4.6-6. Goodness-of-Fit Statistics for Model 6F 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 263 -208 0.57 0.83 -0.22 

2 -36 78 0.21 0.98 0.14 

3 -180 -30 0.68 0.73 -0.05 

4 -40 124 0.55 0.84 0.29 

Total 7 -38   0.81 -0.015 

4.7 Model 7 

 Based on the sensitivity analysis, PIRZ, the infiltration parameter for the root 

zone, is the least significant of the remaining parameters.  Therefore, for Model 7, PIRZ 
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was eliminated.  The root zone and groundwater zone were combined.  Therefore, the 

remaining model has only two zones: the surface zone and the groundwater zone.  Only 

runoff and infiltration occur in the surface layer and transpiration, evaporation, and 

outflow each occur in the groundwater zone.  The remaining six parameters were 

calibrated.  Figure 4.7-1 shows the hydrologic processes and zones simulated  

 

Figure 4.7-1. Flowchart of the Hydrologic Processes and Zones Simulated by Model 7 

4.7.1 Calibration Process of Model 7 

4.7.1.1 Calibration Run 7A 

Calibration Run 7A, the first calibration run for Model 7, was conducted using the 

optimal parameters from Model 6.  The results are shown in Table 4.7-1.  Compared to 

the optimized results for Model 6, the amount of transpiration nearly doubled for each of 

the four years, while the evaporation rate remained the same.  The surface runoff 

increased and the outflow from the vadose zone decreased for each of the four years.  
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Transpiration and evaporation are each of function of soil moisture.  For Model 6, 

transpiration is a function of soil moisture in the root zone; whereas, in Model 7, 

transpiration is a function of soil moisture in the groundwater zone.  Therefore, the 

increase in transpiration from Model 6 to Model 7 suggests that the soil moisture in the 

groundwater zone in Model 7 is greater than the soil moisture in the root zone in Model 

6.  Evaporation remained the same for both models, suggesting that the maximum depth 

of evaporation was achieved and, therefore, the change in soil moistures did not affect the 

total evaporation.   

The infiltration rate from the surface zone in Model 6 was based on the root zone 

soil moisture; however, in Model 6, the infiltration rate is based on the groundwater zone 

soil moisture.  As a result of the increase in soil moisture in the groundwater of Model 6 

compared to the root zone of Model 7, the infiltration of surface water decreased from 

Model 6 to Model 7.  This explains the increase in surface runoff, because more water is 

stored in the surface storage and converted to runoff.   

In Model 6, the outflow from the vadose zone was directly related to the soil 

moisture of the vadose zone.  In Model 7, the outflow from the groundwater is related to 

the soil moisture of the previous vadose and root zone combined, or the new groundwater 

zone.  While the soil moisture increased when comparing the root zone of Model 6 to the 

groundwater zone of Model 7, the vadose zone soil moisture of Model 6 decreased in 

comparison to the groundwater zone of Model 7.  Therefore, the outflow from the 

groundwater decreased from Models 6 to 7. 

These changes in the distribution of the water throughout the model are reflected 

in the goodness-of-fit criteria shown in Table 4.7-1.  Compared to Model 1, the water 
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balance worsened by 563 mm; the runoff bias increased by 33 mm; the relative standard 

error increased by 4%; and the relative bias increased by 1.3%.  The large change in the 

water balance is a result of the increase in transpiration.  Further calibration of the 

remaining parameters for Model 7 is required. 

Table 4.7-1.  Goodness-of-Fit Statistics for Model 7A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 60 -140 0.58 0.82 -0.15 

2 -207 77 0 1.02 0.14 

3 -339 -61 0.69 0.73 -0.1 

4 -140 88 0.45 0.9 0.21 

Total -626 -36   0.82 -0.014 

 

4.7.1.2 Calibration Run 7B 

 To correct the largely negative water balance, the transpiration rate was 

addressed.  The model does not contain a parameter that directly affects the transpiration 

rate.  However, the parameter PPET controls the maximum amount of evapotranspiration 

that can occur each day.  Therefore, for Calibration 7B, PPET was decreased from 3.25 to 

2.5.  The results are shown in Table 4.7-2.  Compared to Calibration Run 7A, the water 

balance improved by 444 mm; the runoff bias worsened by 84 mm; the relative standard 

error increased by 1%; and the relative bias increased by 3.6%.  The change in PPET 

greatly improved the water balance by decreasing the depth of water lost to transpiration.  

However, with more water available in storage, more water is available as runoff, 

resulting in the increase in runoff bias and relative bias.  Further calibration is needed to 

correct the runoff bias.  

Table 4.7-2. Goodness-of-Fit Statistics for Model 7B 
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Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 191 -127 0.58 0.82 -0.13 

2 -87 114 0 1.04 0.21 

3 -222 -12 0.69 0.73 -0.02 

4 -64 145 0.36 0.94 0.34 

Total -182 120   0.83 0.05 

  

4.7.1.3 Calibration Run 7C 

 

Calibration Run 7B resulted in a negative water balance and positive runoff bias.  

Therefore, the runoff must be decreased, which would fix both the water balance and 

runoff bias.  To decrease the runoff, the surface runoff parameter PISZ was decreased 

from 0.15 to 0.125.  The results are shown in Table 4.7-3.  Compared to Calibration Run 

7B, the water balance improved by 149 mm; the runoff bias improved by 70 mm; the 

relative standard error improved by 1%; and the relative bias improved by 3%.  

Compared to Model 1, Model 7 improves the water balance by 30 mm; increases 

the runoff bias by 47 mm; increases the relative standard error by 3%; and increases the 

relative bias by almost 2%.  While the water balance and runoff bias show insignificant 

changes, the relative standard error and relative bias begin to show the decrease in 

prediction capabilities with the decrease in model complexity.  Furthermore, the 

parameter values of Model 7 continue to deviate from the rational parameter values 

calibrated for Model 1. 

Table 4.7-3. Goodness-of-Fit Statistics for Model 7 C 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 258 -196 0.56 0.84 -0.21 

2 -51 73 0.2 0.99 0.13 

3 -200 -41 0.68 0.74 -0.07 

4 -40 113 0.57 0.83 0.27 
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Total -33 -50   0.81 -0.02 

4.7.2 Sensitivity Analysis of Model 7 

With Model 7, the goodness-of-fit statistics began to show a change.  Therefore, 

the sensitivities were expected to change as the parameter values influence the goodness 

of fit. Model 7 included roughly 50% of the parameters of the original model.  Sensitivity 

analyses were conducted to determine the most important of the remaining six parameters 

in the model and, therefore, make rational future eliminations.  While the goodness of fit 

of the model 7 predictions are still consistent with Model 1, the analysis was conducted to 

determine the effects of simplifications on the importance of the remaining six 

parameters compared to the original 14 parameters.  Each of the remaining parameter 

values was decreased by 20% from the optimal parameters values of Model 7C.  The 

goodness-of-fit criteria resulting from each parameter change are compared to the Model 

7C results in Table 2 of Appendix B.  The order of importance of the goodness-of-fit 

criteria is as follows: (1) relative bias; (2) water balance; (3) relative standard error; (4) 

runoff bias; and (5) rational coefficient.   

The analysis showed similar results to sensitivity analysis from Model 1.  The 

parameters are ranked as follows in regards to significance: (1) PSZ2; (2) PSZ1; (3) 

PQVZ; (4) PEVZ and PPET; and (5) PISZ.  Each of these six parameters had high-to-

moderate importance in model 1.  Therefore, it was expected that all six were significant 

in Model 7, as well.  However, the ranking and magnitude of significance changed 

slightly from Model 1 to Model 7.  PSZ2 and PSZ1 continue to be highly sensitive 

parameters, changing the relative bias of the predictions by 55% and 40%, respectively.  

However, PPET has reduced slightly in significance and is ranked as moderate, with a 
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29% change in relative bias.  PQV1, PEVZ, and PISZ also have moderate sensitivities, 

changing the relative bias by 31%, 30%, and 22%, respectively.  These values are similar 

to the percent change caused by PPET; however, PPET changes the water balance by 

1444 mm, whereas PQV1, PEVZ, and PISZ change the water balance by 1150 mm, 1231 

mm, and 971 mm, respectively. In Model 1, PISZ was more sensitive than both PQVZ 

and PEVZ; however, in Model 7, the methods of outflow and evaporation have been 

reduced with the elimination of parameters, which caused these parameters to become 

more sensitive.  Considering that the parameters with low sensitivity were eliminated in 

the first simplifications, it is expected that Model 7 does not include any low sensitivity 

parameters.   

As model parameters were eliminated, the prediction accuracy became more 

sensitive to the remaining parameters.  This is apparent by comparing the results from the 

Model 1 sensitivity analysis in Table 4.1-2 with the results from the Model 7 sensitivity 

analysis in Table 4.7-3.  The percent change for each goodness-of-fit component 

increased in magnitude from the Model 1 sensitivity analysis to the Model 7 sensitivity 

analysis.  This is not apparent when looking at the total percent change because the time 

span of four years balances out the biases and reduces the impact of the changes; 

however, analysis of the individual years reveals the increase in magnitude of the percent 

change for each goodness-of-fit criterion.  For example, for a 20% change in PSZ2, the 

total relative bias for Models 1 and 7 changed by -6767% and -2756%, respectively.  This 

would suggest that parameters in Model 1 are more sensitive than Model 7.  However, for 

Model 1, a 20% decrease in PSZ2 resulted in an 84%, -60%, 175%, and 58% change in 

the relative bias for years 1, 2, 3, and 4, respectively.  In Model 7, a 20% decrease in 
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PSZ2 resulted in a 162%, -377%, 543%, and -163% change in the relative bias for years 

1, 2, 3, and 4, respectively.  It is apparent that the overall relative bias is misleading and 

the individual years reveal the greater change in Model 7.  Therefore, the parameter 

sensitivity increased from Model 1 to 7 as the number of parameters in the model 

decreased. 

4.8 Model 8 

 For Model 8, the least significant of the remaining parameters in Model 7, PQV1, 

was set equal to zero, eliminating the process of interflow from the vadose zone.  PQV1 

controlled the outflow from the groundwater zone.  Therefore, Model 8 only portrays 

surface runoff, infiltration into the groundwater, and evapotranspiration from the 

groundwater.  Figure 4.8-1 shows the hydrologic processes and zones simulated by 

Model 8. 

 

Figure 4.8-1. Flowchart of the Hydrologic Processes Simulated by Model 8 
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4.8.1 Calibration Process of Model 8 

4.8.1.1 Calibration Run 8A  

For Calibration Run 8A, the model was run using the parameters calibrated for 

Model 7D.  The results are shown in Table 4.8-1.  The elimination of PQV1 alters the 

distribution of water throughout the model.  Eliminating the outflow from the 

groundwater increases the storage in the groundwater zone and, therefore, decreases the 

depth of water capable of infiltrating into the groundwater.  With decreased infiltration, 

the surface storage increases, causing an increase in runoff from the surface.  An increase 

in groundwater storage would also increase evapotranspiration, but evaporation is already 

at a maximum depth for each day.  The transpiration, however, increased slightly.   

Despite these changes in the distribution of water throughout the system, the 

overall runoff decreased because of the loss of groundwater outflow.  This is apparent 

based on the negative runoff bias of 506 mm, from a runoff bias of -3 mm from Model 

7D.  The positive water balance bias also reflects the under prediction of runoff.  

Therefore, for Calibration Run 8B, parameter values were adjusted to increase the surface 

runoff. 

Table 4.8-1. Goodness-of-Fit Statistics for Model 8A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 383 -325 0.48 0.88 -0.34 

2 71 -59 0.12 0.997 -0.11 

3 -108 -152 0.65 0.76 -0.26 

4 23 30 0.58 0.82 0.07 

Total 368 -506   0.83 -0.2 
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4.8.1.2 Calibration Run 8B 

 PSZ1 and PSZ2 are the surface parameters that control surface runoff.  PSZ1 

influences the magnitude of the runoff function, while PSZ2 controls the shape.  By 

manipulating the values through multiple calibrations, it became apparent that increasing 

PSZ1 improved the runoff bias, but worsened the relative standard error.  Decreasing 

PSZ2 improved the relative standard error but worsened the runoff bias.  Therefore, both 

parameters were adjusted until a compromise between the two criteria was established.  

The results are shown in Table 4.8-2.   

Compared to Model 7D, the water balance improved by 29 mm or about 7 mm/yr; 

however, the values for individual years are comparable.  The runoff bias worsened by 52 

mm or 13 mm/yr; however, again, the individual years were comparable.  The relative 

standard error increased by 2%, while the relative bias worsened by 2%.  While these 

changes suggest that the reduction of complexity provides equal goodness of fit, the 

parameter values were changed greatly: PSZ2 decreases from 0.9 to 0.65 and PSZ1 

increased from 0.15 to 0.375.  This suggests that the model parameter values are 

deviating from physically rational values and may affect the ability to apply the model to 

further data sets. 

Table 4.8-2. Goodness-of-fit Statistics for Model 8B 

  

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 253 -191 0.52 0.86 -0.2 

2 -30 52 0.14 0.99 0.09 

3 -183 -60 0.66 0.76 -0.1 

4 -36 108 0.52 0.86 0.25 

Total 4 -92  0.83 -0.04 
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4.9 Further Reductions in Complexity 

 Further parameter reductions in complexity were conducted through three 

different approaches.  The first approach, titled the sensitivity track, was based solely on 

the sensitivity analysis and ignores to some extent on physical model structure.  In the 

second and third approach, titled the sensitivity processes track and processes track, 

respectively, eliminations were made with the purpose of comparing the importance of 

sensitivity and physical rationality.  Physical rationality was represented by maintaining 

the three hydrologic processes: runoff, infiltration, and evaporation, as long as possible.  

Sensitivity was represented by keeping the parameter PSZ2 in the model, the most 

important parameter, as long as possible. 

For the sensitivity track, parameter eliminations were made in the following 

order: (1) PSZ1; (2) PPET; (3) PEVZ and PISZ, titled Models 9, 10, and 11, respectively.  

While PPET is more significant than PEVZ and PISZ, eliminating PEVZ before PPET 

would be inefficient, as PEVZ is the only means of evaporating water.  PPET influences 

only the magnitude of the function representing the maximum amount of 

evapotranspiration possible as opposed to the actual amount of water evaporated.  

Likewise, PISZ is more significant than PEVZ, but eliminating one at a time would be 

irrational because without a means to remove water from the groundwater zone, 

infiltrating water into the groundwater will only increase storage.  The final model 

contains only the parameter PSZ2 and the surface runoff process.   

 In comparing sensitivity with the processes, both approaches eliminated PPET 

first, titled Model 12.  The sensitivity processes track consisted of eliminations in the 

following order: (1) PSZ2 and (2) PEVZ and PISZ, titled Models 13 and 14, respectively.  
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The processes track consisted of eliminations in the following order: (1) PEVZ and PISZ 

and (2) PSZ2, titled Models 15 and 16, respectively.  The final model for both approaches 

contains only the surface runoff parameter PSZ1.  Figure 1 in Appendix C outlines the 

different elimination tracks.  The results for all three approaches are discussed herein. 

4.10 Sensitivity Track 

4.10.1 Model 9 

The next parameter was eliminated based on the sensitivity analysis of Model 7 

was PSZ1, the surface runoff parameter that controlled the magnitude of the surface 

runoff equation.  Because the surface runoff equation contains to parameters, PSZ1 was 

set equal to one to enable the surface runoff process to remain but be represented by a 

simpler equation.  For Calibration Run 9A, the model was run using the optimized 

parameters from Model 8B.  The results are shown in Table 4.10.1-1.   

4.10.1.1 Calibration Run 9A 

Eliminating PSZ1 increased the amount of surface runoff and created a negative 

water balance.  Eliminating PSZ1 is the equivalent to setting PSZ1 equal to 1, which 

represents a large increase from 0.375, the optimized value from the previous model, i.e., 

8D.  Therefore, eliminating PSZ1 caused an increase of 1895 mm in surface runoff bias 

compared to Model 8B.  The relative bias increased by 0.75 and the relative standard 

error increased by 2.27, which resulted in a correlation coefficient equal to zero for each 

of the four years.   

Table 4.10.1-1. Goodness-of-Fit Statistics for Model 9A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 -405 484 0 2.4 0.51 
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2 -469 536 0 3.9 0.98 

3 -529 366 0 2.5 0.62 

4 -426 600 0 4.9 1.41 

Total -1829 1987   3.1 0.79 

 

4.10.1.2 Calibration Run 9B 

 To correct the runoff bias in Model 9A, the surface parameter PSZ2 was 

decreased from a value of 0.65 to 0.35.  The results are shown in Table 4.10.1-2.  

Compared to Model 8B, the water balance worsened by 66 mm; the runoff bias improved 

by 65 mm; the relative standard error worsened by 4%; and the relative bias improved by 

3%.  However, the relative bias for the individual years worsened overall.  To attain these 

results, however, the parameter PSZ2 was decreased by almost 50%, suggesting further 

deviation from physically rational parameter values. 

Table 4.10.1-2. Goodness-of-Fit Statistics for Model 9B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 220 -158 0.43 0.91 -0.17 

2 -72 98 0.17 0.99 0.18 

3 -204 -35 0.57 0.82 -0.06 

4 -45 122 0.42 0.91 0.29 

Total -100 27  0.87 0.01 

 

4.10.2 Model 10 

Based on the sensitivity analysis, PPET is the second most important parameter.  

However, the remaining less significant parameters, PEVZ and PISZ cannot be 

eliminated before PPET.  Without PEVZ, the evaporation parameter from the 

groundwater, PPET lacks a purpose.  Likewise, without PISZ, water cannot infiltrate into 

the groundwater to be evaporated.  Therefore, for Model 10, the evaporation parameter 

PPET was eliminated.  The elimination required PPET to be set equal to one because the 
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concept of the maximum daily evaporation, PET, still exists, only the ability to adjust the 

magnitude, represented by PPET, was eliminated.  The model was run based on the 

optimized parameter from Model 9B.  The results are shown in Table 4.10.2-1.   

4.10.2.1Calibration Run 10A 

The elimination of PPET had little effect on the runoff bias, relative standard 

error, relative bias, or correlation coefficient.  However, the bias in the water balance 

increased significantly because the maximum amount of allowable evapotranspiration 

decreased without the parameter PPET available to increase the mean of the function.  

With a large decrease in evaporation and insignificant compensation by the surface 

runoff, the rainfall is greater than the combined evaporation and runoff which caused a 

positive water balance bias. 

Table 4.10.2-1. Goodness-of-Fit Statistics for Model 10A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 506 152 0.43 0.91 -0.16 

2 243 115 0 1 0.21 

3 144 -6 0.57 0.83 -0.01 

4 246 164 0.3 0.96 0.39 

Total 1139 121   0.88 0.05 

4.10.2.2 Calibration Run 10B 

 To fix the water balance of Model 10A, evaporation or runoff must be increased.  

However, the runoff bias is already positive; which implied either that the predicted 

runoff must decrease to correct the runoff bias.  Also, increasing PEVZ, the groundwater 

evaporation parameter, did not effect on the amount of evaporation simulated, suggesting 

that evaporation is already at a daily maximum.  Therefore, the only option for calibration 

was to improve the runoff bias, as the water balance will always be positive with the 
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maximum evaporation already attained.  PSZ2 was decreased from 0.35 to 0.335 to 

decrease the total runoff and correct the bias.  PISZ was increased from 0.275 to 0.3 to 

increase the infiltration of rainwater into the groundwater zone and, therefore, decrease 

runoff.  The results are shown in Table 4.10.2-2.  Compared to Model 9B, the runoff bias 

improved by 24 mm; the water balance bias worsened by 1156 mm; the relative standard 

error worsened by 1%; and the relative bias worsened by less than 1%, although the 

individual years worsened overall.   

Table 4.10.2-2. Goodness-of-Fit Statistics for Model 10B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 548 -194 0.4 0.92 -0.2 

2 271 86 0.19 0.98 0.16 

3 167 -32 0.56 0.83 -0.05 

4 270 138 0.38 0.93 0.32 

Total 1256 -3   0.88 -0.001 

4.10.3 Model 11 

 For Model 11, two of the three remaining parameters were eliminated: PEVZ and 

PISZ.  It was necessary to eliminate both simultaneously because without infiltration, 

water can not enter the groundwater zone to evaporate.  Likewise, without evaporation 

from the groundwater, infiltrated water can not be removed from the groundwater zone.   

Therefore, each parameter was set equal to zero, eliminating the evaporation and 

infiltration processes.  This elimination creates a one-parameter model that simulates only 

precipitation and surface runoff with the parameter PSZ2.   
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Figure 4.10-1. Flowchart of Hydrologic Processes and Zones Simulated by Model 11. 

4.10.3.1 Calibration Run 11A 

Model 11A was first run using the parameters calibrated from Model 10B.  The 

results are shown in Table 4.10.3-1.  Compared to Model 10, the water balance worsened 

by 887 mm; the runoff bias worsened by 2220 mm; the relative standard error worsened 

by 38%; and the relative bias worsened by 89%.  This is because the process of 

infiltration and evaporation were completely eliminated, leaving only surface runoff as 

the outlet for precipitation.  The value of remaining parameter, PSZ2, must be greatly 

adjusted to account for these changes. 

Table 4.10.2-1. Goodness-of-Fit Statistics for Model 11A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 -53 523 0 2.6 0.55 

2 -110 608 0 1.5 1.1 

3 -120 428 0 1.08 0.73 

4 -86 663 0 1.75 1.56 

Total -369 2223   1.26 0.89 

4.10.3.2 Calibration Run 11B 

To improve the goodness-of-fit statistics, PSZ2 was decreased to reduce the 

surface runoff simulated.  The calibrated value of PSZ2 decreased from 0.335 to 0.075.  

The results are shown in Table 4.10.3-2.  Compared to Model 10B, the total runoff bias 
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worsened by 43mm; the water balance bias worsened by 643 mm; the relative standard 

error worsened by 13%, with all correlation coefficients equaling zero; and the relative 

bias increased by less than 2%.   

While the overall runoff bias and relative bias did not change significantly from 

Model 10B, the individual years experience drastic changes in both of these statistics.  

The runoff biases range from -382 mm to 220 mm for Model 11B.  For Model 10B, the 

runoff biases range from -194 mm to 138 mm.  This suggests a decrease in accuracy and 

is reflected in the poor relative standard error of the model.  Likewise, the relative bias 

for individual years ranged from decreasing by 4% to increasing by 20% compared to 

Model 10B.  Therefore, while the overall goodness-of-fit statistics may not reflect the 

biases that exist, the statistics for the individual years reveal the poor prediction accuracy 

of this one-parameter model. 

Table 4.10.3-2. Goodness-of-Fit Statistics for Model 11B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 853 -382 0 1.08 -0.4 

2 430 68 0 1.01 0.12 

3 259 49 0 1.00 -0.08 

4 358 220 0 1.08 0.52 

Total 1899 -46   1.01 -0.02 

 

4.11 Sensitivity vs. Hydrologic Processes  

4.11.1 Model 12 

 For Model 12, the parameter PPET was eliminated in an attempt to maintain the 

rationality of the surface runoff equation.  The elimination involved PPET being set equal 

to one to maintain the equation for the maximum daily evaporation rate, but remove the 
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ability to adjust the magnitude of this rate.  Then, the remaining model contained four 

parameters: PISZ, PEVZ, PSZ2, and PSZ1.  With these parameters, the surface runoff, 

infiltration, and groundwater evaporation processes were simulated.  The four parameters 

were calibrated and results compared to Model 8B. 

4.11.1.1 Calibration Run 12A 

 Model 12A was run using the calibrated parameters from Model 8B.  The results 

are shown in Table 4.11-1.  Eliminating PPET limits the ability to adjust the magnitude 

of the function for daily allowable evapotranspiration.  Evapotranspiration is still a 

cyclical function; however, the mean of the function can no longer be increased or 

decreased.  This affects the water balance greatly as is apparent by Table 4.11-1.  The 

elimination, however, has an insignificant effect on the runoff bias and remaining 

goodness-of-fit statistics.  Compared to Model 8B, the water balance bias worsened by 

1224 mm; the runoff bias improved by 66 mm; the relative standard error worsened by 

1%; and the relative bias improved by less than 1%.  Further calibrations were conducted 

to improve the goodness-of-fit statistics. 

Table 4.11-1. Goodness-of-Fit Statistics for Model 12A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 538 -184 0.52 0.86 -0.19 

2 282 74 0 1.01 0.13 

3 161 -25 0.65 0.76 -0.04 

4 247 161 0.39 0.93 0.38 

Total 1228 26   0.84 0.01 

 

4.11.1.2 Calibration Run 12B 

The water balance is positive because the combined depth of runoff and 

evapotranspiration is less than the precipitation depth.  However, the runoff bias is 
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positive, suggesting that increasing the runoff simulated is unnecessary.  Increasing the 

only remaining evaporation parameter, PEVZ, does not increase the amount of 

evaporation that occurs, suggesting that the model has reached the daily maximum 

allowable evaporation rate.  Therefore, the only further improvement to the model is to 

decrease the runoff bias.  

The runoff parameters, PSZ1 and PSZ2, were changed from 0.375 to 0.41 and 

0.65 to 0.615, respectively.  The results are shown in Table 4.11-2.  Compared to Model 

8B, the runoff bias improved by 81 mm; the water balance worsened by 1246 mm; the 

relative standard error worsened by 1%; and the relative bias improved by almost 4%, 

although the individual years worsened overall.   

 

Table 4.11-2. Goodness-of-Fit Statistics for Model 12B 

 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 546 -192 0.51 0.86 -0.2 

2 286 70 0.1 0.999 0.13 

3 164 -29 0.65 0.77 -0.05 

4 253 154 0.44 0.9 0.36 

Total 1250 3   0.84 0.001 

 

4.12 Sensitivity Processes 

4.12.1 Model 13 

 For Model 13, the parameter PSZ2 was eliminated by setting the value equal to 

one.  PPSZ2 is the most sensitive parameter; however, the goal of approach 2 is to 

maintain the three hydrologic processes: runoff, infiltration, and evaporation, for as long 

as possible.  This enables the comparison between the importance of sensitivity and 

rationality in prediction accuracy.  The three-parameter model was calibrated and 



   89 

 

compared to Model 12B.  Figure 4.12-1 shows the hydrologic processes and zones 

simulated by Model 13. 

 

Figure 4.12-1. Flowchart of Hydrologic Processes and Zones Simulated by Model 13. 

4.12.1.1 Calibration Run 13A 

 Model 13A was first run with the calibrated parameters from Model 8B.  The 

results are shown in Table 4.12.1-1.  Eliminating PSZ2 decreased the rationality and 

flexibility of the surface runoff equation.  It is also the most sensitive parameter in the 

model.  Therefore, eliminating PSZ2 caused runoff to increase greatly, as the exponent is 

essentially increasing from a value of 0.615 to 1 through elimination.  This is apparent 

through the goodness-of-fit statistics.  Compared to Model 8B, the water balance bias 

improved by 1155 mm; the runoff bias worsened by 1412 mm; the relative standard error 

worsened by 1.21%; and the relative bias worsened by almost 56%.  Further adjustment 
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was conducted to improve the prediction accuracy and compensate for the elimination of 

PSZ2. 

Table 4.12.1-1. Goodness-of-Fit Statistics for Model 13A 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 64 295 0 1.53 0.31 

2 -29 398 0 2.62 0.72 

3 -89 246 0 1.61 0.42 

4 -42 476 0 3.42 1.12 

Total -95 1415  2.05 0.56 

 

 

4.12.1.2 Calibration Run 13B 

 To decrease the runoff, the remaining surface runoff parameter, PSZ1, was 

decreased from 0.41 to 0.125.  The results are shown in Table 4.12.1-2.  Compared to 

Model 8B the water balance worsened by 10 m; runoff bias worsened by 8 mm; the 

relative standard error worsened by 8%; and the relative bias worsened by 0.005%.  The 

correlation coefficient values for years 2 and 4 now equal zero as a result of 17% and 

36% increase in the relative standard error for the respective years compared to Model 

12B.  Therefore, while the overall runoff bias and relative bias did not change much, the 

relative standard errors reflect a reduction in prediction accuracy as a result of 

eliminating a highly sensitive parameter.  Also, the value of parameter PSZ1 decreased 

by almost 75%.  This suggests that the parameter values may have deviated from 

physically rational values, resulting in a physically irrational model.   

Table 4.12.1-2. Goodness-of-Fit Statistics for Model 13B 

  

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 539 -185 0.56 0.83 -0.19 

2 299 57 0 1.17 0.1 

3 173 -28 0.65 0.76 -0.07 

4 230 178 0 1.26 0.42 
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Total 1240 11   0.92 0.005 

 

4.12.3 Model 14 

 The evaporation and infiltration parameters, PEVZ and PISZ, were eliminated for 

the final model in Track 2.  Both parameters were set equal to zero to remove the 

processes of evaporation and infiltration.  The remaining one-parameter model contained 

the surface parameter, PSZ1.  The model simulated only rainfall and surface runoff.  

Model 14 was calibrated and compared to Model 13B.  Figure 4.12-1 shows the 

hydrologic processes and zones simulated by Model 14. 

 

Figure 4.12-1. Flowchart of the Hydrologic Processes and Zones Simulated by Model 14 

4.12.3.1 Calibration Run 14A 

 Eliminating the groundwater zone and processes left only surface runoff.  This 

eliminated the entire physical processes of infiltration and evapotranspiration. Surface 

storage increased as the water is incapable of infiltrating.  Surface runoff is a function of 

surface storage, resulting in an increase in surface runoff.  This is shown in the goodness-

of-fit statistics in Table 4.12.3-1.  Compared to Model 13B, the water balance improved 

by 870 mm; the runoff bias worsened by 2214 mm; the relative standard error worsened 

by 46%; and the relative bias worsened by almost 89%.  The correlation coefficients for 
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all four years equaled zero.  The remaining model parameter, PSZ1, was adjusted to 

improve the prediction accuracy. 

Table 4.12.3-1. Goodness-of-Fit Statistics for Model 14A 

 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 -73 543 0 1.12 0.57 

2 -97 596 0 1.78 1.08 

3 -116 424 0 1.06 0.72 

4 -84 661 0 2.17 1.56 

Total -370 2225   1.38 0.89 

 

4.12.3.2 Calibration Run 14B 

 The water balance is impossible to correct, as the model is already at the 

maximum allowable daily evapotranspiration rate.  Therefore, the runoff bias is the only 

improvement possible.  PSZ1 was decreased from of 0.125 to 0.0012.  The results are 

shown in Table 4.12.3-2.  Compared to Model 13B, the water balance bias increased by 

544 mm; the runoff bias worsened by 69 mm; the relative standard error worsened by 

19%; and the relative bias worsened by 3%.  Analyzing the goodness of fit for the 

individual years reflects even poorer prediction accuracy when compared with Model 

13B.  The runoff biases range from -660 mm to 442 mm for Model 14B; whereas for 

Model 13B, runoff biases only range from -185 to 178.  Likewise the relative bias for 

Model 14B ranges from -0.60 to 1.04; for Model 13B, the relative standard bias only 

ranges from -0.19 to 0.42.  Therefore, while the total biases may provide deceivingly 

accurate predictions, the individual years reflect the poor prediction accuracy of Model 

14B.   

Table 4.12.3-2. Goodness-of-Fit Statistics for Model 14B 

 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 
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1 1130 -660 0 1.23 -0.69 

2 419 80 0 1.04 0.15 

3 100 208 0 1.04 0.36 

4 135 442 0 1.26 1.04 

Total 1784 70   1.11 0.03 

 

4.13 Hydrologic Processes 

4.13.1 Model 15 

 The third approach focuses on maintaining the most sensitive parameter, PSZ2 as 

long as possible.  Therefore, for Model 15, the groundwater infiltration and evaporation 

parameters, PISZ and PEVZ, respectively, were eliminated.  Both parameters were set 

equal to zero to eliminate the process of infiltration and evaporation.  The remaining 

model consisted of two parameters, PSZ1 and PSZ2, and simulated only rainfall and 

surface runoff.  Model 15 was calibrated and compared to the results from Model 12B.  

Figure 4.13-1 shows the hydrologic zones and processes simulated by Model 15. 

 

Figure 4.13-1. Flowchart of Hydrologic Processes and Zones Simulated by Model 15 

4.13.1.1 Calibration Run 15A 

 Model 15 was run using the calibrated parameter values from Model 12B.  The 

results are shown in Table 4.13.1-1.  Eliminating the groundwater processes of 

infiltration and evaporation results in an increase in runoff, because runoff is the only 
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outlet for the rainfall.  As a result, the runoff bias increases greatly, which effects the 

remaining goodness-of-fit criteria.  Compared to Model 12B, the runoff bias increased by 

2224 mm; the water balance improved by 877 mm; the relative standard error increased 

by 43%; and the relative bias worsened by almost 89%.  The correlation coefficient 

equals zero for all four years.  Further calibration is necessary to improve the goodness of 

fit of the model. 

Table 4.13.1-1. Goodness-of-Fit Statistics for Model 15A 

 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 -71 541 0 1.11 0.57 

2 -101 599 0 1.6 1.09 

3 -116 424 0 1.03 0.72 

4 -86 663 0 1.84 1.56 

Total -373 2227   1.27 0.89 

 

4.13.1.2 Calibration Run 15B 

 To improve the runoff bias, the runoff parameters, PSZ1 and PSZ2, were changed 

to 0.725 and 0.125, respectively.  The results are shown in Table 4.13.1-2.  Compared to 

Model 12B, the runoff bias increased by 25 mm; the water balance increased by 577 mm; 

the relative standard error increased by 18%; and the relative standard error increased by 

almost 1%.  The correlation coefficients are now zero for each of the four years.  The 

goodness-of-fit statistics for the individual years reveal much poorer prediction accuracy.  

The individual year runoff bias for Model 15B ranges from -396 to 255; whereas, for 

Model 12B, the runoff bias ranges from -192 to 154.  Likewise, the relative bias ranges 

from -0.41 to 0.6 for Model 15B and only -0.2 to 0.36 for Model 12B.  Therefore, while 

the overall goodness-of-fit may not seem to decrease much, the accuracy within the years 

has worsened with the elimination of the infiltration and evaporation processes. 
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Table 4.13.1-2. Goodness-of-Fit Statistics for Model 15B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 864 -396 0 1.08 -0.41 

2 411 87 0 1.02 0.16 

3 229 79 0 1.01 0.13 

4 322 255 0 1.1 0.6 

Total 1827 28   1.02 0.01 

 

4.13.2 Model 16 

 The final model of the third approach eliminates PSZ2, the exponent parameter 

for the surface runoff equation.   PSZ2 was set equal to one.  The remaining model only 

consists of the surface parameter PSZ1 and only simulates rainfall and runoff, which is 

the same as Model 14.  It represents a linear reservoir model.  Model 16 was calibrated 

and compared to Model 15B.   

4.13.2.1 Calibration Run 16A 

 Model 16 was first run with the calibrated parameters from Model 15B.  The 

results are shown in Table 4.13.2-1.  Compared to Model 15B, the water balance 

improved by 1,443; the runoff bias worsened by 2,210 mm; the relative standard error 

worsened by 236%; and the relative bias worsened by almost 89%.  The surface storage  

is increasing because rainfall can not infiltrate into the groundwater.  Surface runoff is a 

function of surface storage; therefore, an increase in surface storage causes an increase in 

runoff resulting in the drastic increase in positive runoff bias.  Further calibration is 

necessary to correct the runoff bias. 

Table 4.13.2-1. Goodness-of-Fit Statistics for Model 16A 

 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 -83 553 0 2.57 0.58 
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2 -97 595 0 4.28 1.08 

3 -112 420 0 2.72 0.72 

4 -92 670 0 3.38 0.89 

Total -384 2238   3.38 0.89 

 

4.13.2.2 Calibration Run 16B 

 To correct the runoff bias, the runoff parameter, PSZ1, was decreased from 0.75 

to 0.0012.  The results are shown in Table 4.13.2-2.  Compared to Model 15B, the runoff 

bias increased by 42 mm; the water balance decreased by 43 mm; the relative standard 

error increased by 9%; and the relative bias increased by 2%.  However, the goodness-of-

fit statistics for the individual years show much poorer prediction accuracy.  For Model 

16B, the runoff bias ranges from -660 to 442; whereas in Model 14B, the bias ranges 

from -396 to 255 mm.  Likewise, the relative bias ranges from -0.69 to 1.04 for Model 

16B and from -0.41 to 0.6 for Model 15B.  Therefore, while the overall goodness-of-fit 

may not suggest a great reduction in prediction accuracy by eliminating the most 

sensitive parameter, the individual years reflect the inaccuracy.  Also, the value of PISZ 

decreased significantly, suggesting a deviation from the rational parameter value 

calibrated in Model 1.  This affects the physical rationality of the model. 

Table 4.13.2-2. Goodness-of-Fit Statistics for Model 16B 

Year WB (mm) Runoff Bias (mm) R Se/Sy e/y 

1 1130 -660 0 1.23 -0.69 

2 419 80 0 1.04 0.15 

3 100 208 0 1.04 0.36 

4 135 442 0 1.26 1.04 

Total 1784 70   1.11 0.03 
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CHAPTER 5 
 

 

ANALYSES AND RESULTS 
 

 

 Once the model was calibrated, it could be used to study other factors about 

complexity.  The following issues were studied: the effect of the lack of correlation 

between rainfall and runoff, the effect of calibrating to provide a reasonable fit to all 

flows versus fitting to optimize predictions of selected events such as high flows or low 

flows, the value of sensitivity analyses in calibration, the importance of assessing the 

hydrologic rationality of the optimized parameters, and the ability of incomplete data 

sets, such as water quality grab samples, to represent the population.  The results for each 

analysis as well as the calibration of the models varying complexity are discussed herein. 

5.1 Results of Model Structure Complexity Simplifications 

 

 Objective One aimed to examine the relationship between model structure 

complexity and prediction accuracy.  Through the calibration of the 16 models, each with 

varying complexity, it was apparent that model structure complexity does effect goodness 

of fit.  The goodness-of-fit statistics shown in Chapter 4 for each calibrated model 

reflected the change in prediction accuracy with decreasing complexity.  

Based on the goodness-of-fit statistics for each of the models, it is apparent that 

the runoff bias was near zero regardless of the model structure complexity.  However, the 

relative standard error did show significant changes.  Figure 5.1-1 shows the change in 

the relative standard error based on the rank of eliminations in the Sensitivity I and the 

Sensitivity II track.  The Sensitivity I track consisted of a final model containing only one 
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parameter, PSZ1, the scale parameter of the runoff equation.  The Sensitivity II track 

consisted of a final model containing only one parameter, PSZ2, the shape or exponent 

parameter of the runoff equation.  Based on the graph, it is apparent that the 

simplifications ranging from 1 to 8 eliminations for both tracks do not show as significant 

change in the relative standard error.  However, beyond 8 eliminations, significant 

changes occurred.  It is important to not that the final model for the Sensitivity II track 

has poorer prediction accuracy than that of the Sensitivity I track.  This suggests that the 

shape parameter is more important to prediction accuracy than the scale parameter. 
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Figure 5.1-1. Change in the Relative Standard Error based on Rank of Eliminations for 

the Sensitivity I and the Sensitivity II Paths. 

 

 Figure 5.1-2 shows the change in the relative standard error based on the rank of 

eliminations in the Sensitivity II and Hydrologic Processes or Physical Rationality paths.  

As in Figure 5.1-1, the first 8 eliminations do not reveal a significant change in prediction 

accuracy.  However, beyond 8 eliminations, significant changes occur.  The tenth 

elimination reveals the difference in maintaining the most sensitive parameter in the 

model, PSZ2, versus the main physical processes, evaporation and infiltration.  It is 
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apparent from the graph that eliminating the hydrologic processes causes a greater 

increase in the relative standard error, implying poorer accuracy in predictions.  This 

suggests that it is better to maintain important physical processes than the most important 

parameter for prediction accuracy. 
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Figure 5.1-2. Change in the Relative Standard Error based on Rank of Eliminations for 

the Sensitivity II and the Hydrologic Processes Paths. 

 

 Table 5.1-1 shows the parameter values for each of the calibrated models.  It is 

apparent that changes were insignificant for the beginning eliminations, but increased as 

the complexity of the model structure decreased.  This is because models containing 

fewer parameters most likely contain parameters with higher sensitivities than models 

with more parameters.  Therefore, as model complexity decreased, the importance of the 

remaining parameters increased as well.  Therefore, further eliminations required 

adjustments to the values of remaining parameters to compensate for the elimination of 

sensitive parameters.  It is also important to note that the need for parameter value 

changes may result in values deviating from physically rational values.  Knowledge of 

parameter rationality is important to ensure the model does not provide irrational results. 
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Table 5.1-1. Parameter Values for Models 1 through 16. 

 

 

5.2 Effect of Rainfall Misalignment 

 

 Issues outside of model development can play an important role in the prediction 

accuracy capabilities of a model.  In some cases, the complexity is not the cause of poor 

prediction accuracy, but errors existing outside of the model.  For example, the process of 

collecting data used for calibration can contain human error.  Also, choosing data 

recorded from rainfall and runoff gauges located some distance apart may result in time 

series of rainfall and runoff that is not correlated.  Data issues must be considered in 

order to fully understand the prediction capabilities of a model. 

 While the reductions in model complexity in this research reveal decreases in 

goodness of fit, the relative standard error, correlation coefficients, and relative bias for 

even Model 1 do not reveal good prediction accuracy.  The values for the relative 

standard error and relative bias are as high as 0.96 and 0.31, respectively, and as low as 

Model PEXI PXI PSZ1 PSZ2 PISZ PESZ PIRZ PERZ PQV1 PQV2 PIVZ PEVZ PQGZ PPET 

1 0.5 0.5 0.15 0.9 0.2 150 15 7.5 0.004 0.00375 0.6 8 0.000024 3.9 

2     0.15 0.9 0.2 150 15 7.5 0.004 0.00375 0.6 8 0.000024 3.9 

3     0.15 0.9 0.2 150 15   0.004 0.00375 0.6 9 0.000024 3.8 

4     0.15 0.9 0.2 150 15   0.004   0.6 8 0.000024 4 

5     0.15 0.9 0.275   15   0.004   0.6 8 0.000024 4.1 

6     0.15 0.9 0.275   15   0.0004     8 0.000024 3.25 

7     0.125 0.9 0.275       0.0004     8 0.000024 2.5 

8     0.375 0.65 0.275             8   2.5 

9       0.35 0.275             8   2.5 

10       0.335 0.3             8     

11       0.075                     

12     0.41 0.615 0.275             8   2.5 

13     0.125   0.275             8     

14     0.0012                       

15     0.725 0.125                     

16     0.0012                       
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0.32 for the correlation coefficient.  An analysis was needed to assess the potential effect 

of poor cross correlation influencing the inability of the model to achieve high prediction 

accuracy.  The data were analyzed to explain the poor overall goodness of fit despite the 

calibration process and high model complexity.   

 In basic correlation analysis, large data values can exert a large influence on a 

computed statistics.  For example, the correlation coefficients and relative standard error 

are greatly influenced by sample points of high magnitude.  A single large predicted or 

measured peak discharge can distort goodness-of-fit statistics.  Because of the poor 

goodness of fit and obvious differences between computed and measured peak discharge 

rates, rainfall and runoff on days of high discharges were analyzed individually.  Upon 

comparing the rainfall records with the runoff records, it was apparent that some large 

rainfall depths occurred on days different from the corresponding peak runoffs.    For 

example, a rainfall might occur the day before or the day after the measured peak runoff.  

An example of this is shown in Figure 5.2-1.   

   

Figure 5.2-1. Graph of Misaligned Rainfall and Runoff Peak. 
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Rainfall and runoff misalignment is most likely the result of the distance between 

the locations of the rain and runoff gauge and the path and velocity of the storm.  The 

peak of the storm may cause measured rainfall to occur before the storm moves over the 

watershed, or the rainfall may occur over the watershed before the storm moves over the 

rain gauge.  This can introduce a source of variation into the data for which the model is 

not able to compensate.  Additionally, a storm event may occur in one portion of the 

watershed, but not at the rain gauge.  Likewise, the storm event may occur late in the 

evening on the watershed and reach the gauge in early morning, resulting in misaligned 

records, with the rainfall appearing to occur on the day before the storm runoff.  As a 

result, the model will predict a peak runoff the day after the storm event, causing poor 

prediction accuracy. 

 To evaluate the potential effect of the problem, 12 misaligned rainfall events 

throughout the four years of data, i.e., 0.8% of the data record and 25% of all the peaks, 

were shifted to occur on the day of the corresponding runoff.  Figure 5.2-2 graphs the 

adjustment of the rainfall and runoff that was shown in Figure 5.2-1.  In all cases, the day 

of the rainfall was moved, not the runoff record.  The rainfall depths switched so that 

rainfall was not lost.  The changes are documented in Table 5.2-1.  The total rainfall 

volume remained unchanged.  The runoff and adjusted rainfall time series were then used 

as input to the model using the optimum calibrated parameter values.  The results are 

shown in Table 5.2-2.   
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Figure 5.2-2. Adjusted Rainfall and Runoff from Figure 5.1-2. 

The goodness-of-fit statistics with the altered rainfall series were compared with 

the statistics for the calibrated Model 1.  The relative standard error decreased by 5%, 

while the individual years experienced decreases ranging from 1% to 13%.  The 

correlation coefficients for the individual years increased by 1%, 25%, 4%, and 9%.  The 

relative bias increased overall by 0.1%, which is an insignificant change.  However, the 

individual years remained unchanged for years 1 and 2, but decreased by 2% and 5% for 

years 3 and 4, respectively.  The water balance and runoff bias remained unchanged, 

which would be expected considering the total rainfall volume was not affected. 

In addition to the goodness-of-fit statistics, the peak prediction accuracy increased 

as a result of the altered rainfall data.  Peak prediction accuracy is measured by 

calculating the difference between the measured and predicted peaks for each month.  A 

total bias was calculated for the four years.  Figures 5.2-1 and 5.2-2 show the graphs of 

the measured peaks versus the predicted peaks for Model 1 with unaltered rainfall data 

and altered rainfall data, respectively.  Figure 5.2-1 reveals that Model 1 underestimates 

the peak discharge rates causing a negative bias.  This is apparent because the majority of 
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the values fall below the 45-degree line.  The graph for the altered rainfall data better 

distributes the values both above and below the 45-degree line, which indicates that the 

peaks are better predicted and neither a positive nor a negative bias exists.  These 

observations are supported by the model output, which reveals a decrease in peak bias by 

almost 25%, from -2.6 mm to -2.0 mm.   

 The results support the hypothesis that the misaligned rainfall and runoff 

observations can introduce significant inaccuracy in overall predictions, regardless of the 

prediction capabilities of the model.  Altering less than 1% of the rainfall data, or 25% of 

the peaks, resulted in significant improvements in the goodness-of-fit statistics.  As a 

result of these findings, it is important to consider data collection when assessing the 

accuracy of a model.  It may be useful to incorporate readings from more than one rain 

gauge, by taking an average value, in order to account for a lack of uniformity of rain 

events or poor timing of events over the watershed. 
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Table 5.2-1. Observed and Adjusted Rainfall Data for Data Complexity Analysis 

 

  Observed Adjusted 

Year Day 
Rainfall 

(mm) 
Runoff 
(mm) Day 

Rainfall 
(mm) 

Runoff 
(mm) 

172 17.780 9.025 172 5.080 9.025 

173 5.080 10.121 173 17.780 10.121 

323 1.016 7.844 323 45.720 7.844 
1 

325 45.720 5.820 325 1.016 5.820 

37 13.462 8.434 37 20.320 8.434 

38 20.320 4.723 38 13.462 4.723 

102 38.608 4.554 102 13.716 4.554 

103 13.716 11.217 103 38.608 11.217 

121 5.080 1.687 121 0.000 1.687 

122 25.400 5.988 122 5.080 5.988 

123 0.000 8.772 123 25.400 8.772 

271 13.716 16.362 271 109.220 16.362 

272 109.220 7.506 272 13.716 7.506 

331 27.178 0.675 331 0.000 0.675 

2 

332 0.000 5.482 332 27.178 5.482 

91 3.810 3.880 91 0.000 3.880 

92 43.180 11.386 92 3.810 11.386 

93 0.000 12.483 93 43.180 12.483 

333 6.604 17.290 333 61.976 17.290 

3 

334 61.976 13.579 334 6.604 13.579 

18 3.048 3.964 18 10.922 3.964 

19 10.922 3.289 19 3.048 3.289 

244 134.112 2.952 244 5.334 2.952 

245 5.334 10.543 245 134.112 10.543 

320 0.000 8.603 320 40.640 8.603 

4 

321 40.640 5.820 321 0.000 5.820 

 

Table 5.2-2. Goodness-of-Fit Statistics for the Adjusted Rainfall Data 

 

Year WB Runoff Bias R Se/Sy e/y 

1 203 -178 0.63 0.79 -0.19 

2 -58 95 0.57 0.83 0.17 

3 -182 -26 0.75 0.67 -0.05 

4 -26 112 0.67 0.76 0.26 

Total -63 3   0.73 0.002 
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Figure 5.2-1. Peak Accuracy for Model 1 
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Figure 5.2-2. Peak Accuracy for Model 1 with Altered Rainfall Data 
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5.3 Optimization for Design Criteria  

 

 Modeling is beneficial for engineering design purposes such as flood control as 

well as for water quality issues to determine pollutant loads.  These models often have 

required specific modeling criteria.  For example, accurate peak prediction is required for 

flood control, whereas for water quality estimates, it is important to accurately predict 

base flows so as to avoid biased predictions of pollutant concentrations.  These separate 

criteria are necessary to develop flood management designs as well as to address water 

quality regulations.  However, calibrating a model to accurately fit one criterion may 

have negative effects on the overall accuracy of the model and provide misleading 

results.  Additionally, a model calibrated with an emphasis on fitting either peaks or 

baseflows will likely not yield a model that accurately reflects watershed processes not 

associated with the peaks or baseflows.  Parameters that reflect the other watershed 

processes will be disturbed. 

To determine the effects of modeling for a specific design criteria, a comparison 

was conducted using two different criteria to calibrate Model 1, the 14-parameter model.  

Model 1 was recalibrated first, to eliminate the overall peak prediction bias and second, 

to eliminate the base flow bias in order to determine the effects of focusing on the main 

design criteria rather than the overall goodness-of-fit.  The results for the specialty 

calibrations were compared to accuracy when calibrating to optimize the overall 

goodness of fit (see Table 5.3-1).  The results will indicate the importance of considering 

all aspects of the calibration process and multiple criteria in determining parameter values 

that provide the best prediction accuracy.  The hypothesis being tested is that calibrating 

to provide accurate estimates of either peak flows or base flow will distort the other 
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parameters and then the ability to reflect all physical processes.  The calibration results 

for the two criteria are discussed and compared herein. 

Table 5.3-1. Goodness of Fit Statistics for Model One 

Year WB Runoff Bias R Se/Sy e/y 

1 203 -178 0.62 0.8 -0.19 

2 -57 95 0.32 0.96 0.17 

3 -181 -26 0.71 0.72 -0.07 

4 -27 112 0.58 0.83 0.31 

Total -63 3  0.78 0.001 

5.3.1 Calibration for Peak Discharge Prediction Accuracy 

The model was first calibrated to accurately fit the monthly peak flows.  The 

model identifies the greatest runoff flow of each month and provides a comparison of the 

measured and the predicted for the day.  Peak prediction accuracy was analyzed based on 

the bias between the predicted and measured flow volume.  The goal was to minimize the 

yearly average peak prediction bias and attain an overall bias for the four-year period 

equal to zero.  The parameter values for the model optimized for peak flows are shown in 

Table 5.3-2.  The surface parameters PSZ1 and PSZ2 were increased by 5% and 20%, 

respectively, in order to optimally fit the peak flows.  The peak prediction biases are 

shown in Table 5.3-3 for both Model 1 and the model optimized for the peak discharge.  

The average peak prediction bias was reduced by 71%, 57%, 78%, and 60 % for years 1, 

2, 3, and 4, respectively.  The overall peak prediction bias for all four years was reduced 

by 77%, from -2.6 mm to -0.06 mm, through the optimization process, proving to be a 

better fit for the peak discharge rates. 

Table 5.3-2. Parameter Values for Peak Discharge Optimization 

PEXI  PXI 

(mm) 

PSZ1 PSZ2 PISZ PESZ 

(C
1−

) 

PIRZ 

(mm) 

PERZ 

(mm) 

PQV1 

(mm/hr) 

PQV2 

(mm/hr) 

PIVZ 

(mm) 

PEVZ PQGZ 

(mm/hr) 

PPET 
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0.5 0.5 0.2 1.08 0.2 150 15 7.5 0.004 0.00375 0.6 8 0.000024 3.9 

 

 

 

Table 5.3-3. Peak Prediction Bias for Model 1 and the Model Optimized for Peaks 

 

 Peak Prediction Bias  

Model  Year 1 Year 2 Year 3 Year 4 Average 

High 2.03 5.07 2.26 5  

Low -17.36 -14.39 -5.24 -6.31  

Difference 19.39 19.46 7.5 11.31  
Model 1 

Average -4.19 -2.92 -3.25 -0.05 -2.603 

High 3.91 8.23 8.15 24.16  

Low -11.83 -13.57 -15.3 -6.56  

Difference 15.74 21.8 23.45 30.72  

Optimized 
for Peaks 

Average -1.21 -1.27 -0.71 2.97 -0.055 

 

 Figures 5.3-1 and 5.3-2 show the measured peaks versus the predicted peaks for 

Model 1 and the model calibrated for the peak flows, respectively.  It is apparent through 

observation of Figure 5.3-1 that Model 1 underestimates the peaks fairly consistently.  

More than 80% of the observed peaks are underestimated.  This is supported by the 

average bias equal to -2.603 mm.  However, the graph of the model optimized to fit the 

peak flows (see Figure 5.3-2) distributes the values both above and below the 45-degree 

line, suggesting that neither a positive nor negative bias exists.  This is also supported by 

the -0.05 mm bias calculated by the model.  Both figures reveal errors in prediction; 

however, the model optimized for peak flows distributes the errors to avoid bias in 

predictions of peaks. 
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Figure 5.3-1. Peak Prediction Accuracy for Model 1 
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Figure 5.3-2. Peak Prediction Accuracy for Peak Optimization Model 

 

The goodness-of-fit statistics for the model optimized for the peaks are shown in 

Table 5.3-4.  Based on the goodness-of-fit statistics, the overall relative standard error 

increased by 35%; the relative bias increased by almost 18%; the runoff bias worsened by 

452 mm; and the water balance worsened by 363 mm compared to Model 1.  The 

correlation coefficients for years 2 and 4 were reduced to zero while years 1 and 3 

decreased by 14% and 19%, respectively.   
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Table 5.3-4. Goodness-of-Fit Criteria for the Model Optimized for Peaks  

Year WB Runoff Bias R Se/Sy e/y 

1 41 13 0.48 0.89 0.014 

2 -119 187 0 1.5 0.34 

3 -203 37 0.52 0.87 0.06 

4 -85 217 0 1.85 0.51 

Total -366 455   1.13 0.18 
 

These results show that optimizing the model parameters to provide a best fit of 

the peak discharge rates can cause poor accuracy of the remaining prediction criteria.  

Therefore, while an in experienced modeler may choose to focus on calibrating for 

accurate peak predictions to meet the demands of engineering purposes such as storm 

water management design, calibrating for only one criterion will most likely result in 

poor overall prediction accuracy.   

5.3.2 Calibration for Base Flows Prediction Accuracy 

  The model was then calibrated to provide accurate predictions of the base flows.  

Similar to the peak flow analysis, measured base flows were identified monthly and 

compared to the predicted base flow for the respective day.  The accuracy of prediction 

was measured based on the bias between the predicted and observed flows.  The average 

bias for each year as well as the total bias for the four years of data were calculated.  The 

parameter values for the model optimized for base flows are shown in Table 5.3-5.  The 

outflow parameters PQGZ for the groundwater zone and PQV1 for the vadose zone were 

decreased by 85% and 99%, respectively, to optimally fit the peaks.  The results are 

shown in Table 5.3-6.  Optimizing for the base flows resulted in a decrease of 80%, 78%, 

80%, and 35% for the Year 1, 2, 3, and 4 biases, respectively.  The average bias for the 

four years of data was decreased by 98%, from 0.363 to -0.007 compared to Model 1.   
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Table 5.3-5. Parameter Values for Model Optimized for Base Flows 

PEXI  PXI 

(mm) 

PSZ1 PSZ2 PISZ PESZ 

(C
1−

) 

PIRZ 

(mm) 

PERZ 

(mm) 

PQV1 

(mm/hr) 

PQV2 

(mm/hr) 

PIVZ 

(mm) 

PEVZ PQGZ 

(mm/hr) 

PPET 

0.5 0.5 0.2 0.9 0.2 150 15 7.5 0.00005 0.00375 0.6 8 0.0000036 3.9 

 

Table 5.3-6. Base Flow Prediction Results  

for Model 1 and the Model Optimized for Base Flow 

 

  Base Flow Prediction Bias   

Model   Year 1 Year 2 Year 3 Year 4 Average 

High 4.110 0.920 1.560 0.660   

Low -0.640 0.000 -0.920 -0.130   

Difference 4.750 0.920 2.480 0.790   
Model 1 

Average 0.460 0.380 0.430 0.180 0.363 

High 4.520 0.413 1.782 0.571   

Low -1.046 -0.382 -0.854 -0.420   

Difference 5.566 0.795 2.636 0.991   

Optimized 
for Base 

Flow 
Average 0.090 -0.085 0.086 -0.117 -0.007 

 

 Figures 5.3-3 and 5.3-4 graph the measured and predicted base flows for Model 1 

and the model calibrated to accurately predict base flows.  The graph for Model 1 reveals 

a positive bias in base flow prediction, as about 80% of the values are located above the 

45-degree line.  The model calibrated to accurately predict the base flows does not 

contain an overall bias, but instead distributes the values more evenly around the 45-

degree line.  Therefore, the model calibrated for base flows effectively reduces the bias in 

base flow prediction. 
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Figure 5.3-3. Base Flow Prediction Accuracy for Model 1 
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Figure 5.3-4. Base Flow Prediction Accuracy for the Model Optimized for Base Flows 

 

 While prediction of the base flows improved, the remaining goodness-of-fit 

criteria worsened as a result of calibrating for the base flows.  The goodness-of-fit results 

are shown in Table 5.3-5.  Compared to Model 1, calibrating to fit the base flows 

increased the water balance bias by 188 mm; increased the runoff bias by 283 mm; 

increased the relative standard error by 8%; and increased the relative bias by almost 

11%.  The correlation coefficients for years 2 and 4 were reduced to zero and years 1 and 
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3 decreased by 6% and 4%, respectively.  Therefore, by calibrating for base flow 

prediction accuracy alone, the remaining goodness-of-fit criteria worsen compared to 

Model 1, resulting in overall poor prediction accuracy.   

Table 5.3-5. Goodness-of-Fit Results for Baseflow Optimization 

 

Year WB Runoff Bias R Se/Sy e/y 

1 288 -251 0.56 0.84 -0.26 

2 51 -6 0 1.1 -0.01 

3 -100 -104 0.67 0.76 -0.18 

4 12 74 0 1.06 0.17 

Total 251 -286   0.86 -0.11 
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5.4 The Importance of Parametric Sensitivity 

 

 Knowing the sensitivity of model parameters is central to model calibration.  It is 

hypothesized that sensitive parameters cause greater variation in the degree of model 

fitting than the less sensitive parameters.  Insensitive parameters may not approach a 

value that reasonably reflects a value appropriate for the hydrologic process.  It is 

difficult to support the idea that the value of an insensitive parameter reflects the 

hydrologic effect of that parameter.  For example, if parameter X is insensitive, then 

variation of the parameter about the optimized value can not be expected to change the 

goodness of fit and secondly, we will not know that the optimized value reflects the 

physical processes. 

Complex models contain multiple parameters, each with varying levels of 

importance.  The sensitivity of the model output to changes in the parameter value is an 

indication of its importance.  Less sensitive parameters have less influence on the 

goodness of fit as opposed to highly sensitive parameters.  As stated previously in the 

sensitivity analysis of the 14-parameter model, the model predictions are most sensitive 

to the surface parameters and less sensitive to the parameters from the interception, 

vadose, and saturated zones.  An analysis was conducted to show the effects of varying 

parameters with high sensitivity versus low sensitivity.   

 The sensitivity analysis of the calibrated Model 1 showed that the surface storage 

parameter PSZ2 was sensitive while PIVZ was relatively insensitive.  Therefore, these 

were chosen as the parameters used to demonstrate the importance of understanding 

parametric sensitivities.  The surface parameter, PSZ2, was selected as the high 

sensitivity parameter in the analysis.  The infiltration parameter, PIVZ, from the vadose 
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zone was chosen as the low sensitivity parameter.  Each of the parameter values were 

changed to a near zero value of 0.1 and to 100% of the calibrated value.  The parameter 

values were adjusted to 0.1 rather than 0 because the goal was not to eliminate the 

parameter from the model, but to determine the effects of varying the values.  The results 

were compared to the goodness-of-fit statistics of Model 1, shown in Table 5.4-1. 

Table 5.4-1. Goodness of Fit Statistics for Model One 

Year WB Runoff Bias R Se/Sy e/y 

1 203 -178 0.62 0.8 -0.19 

2 -57 95 0.32 0.96 0.17 

3 -181 -26 0.71 0.72 -0.07 

4 -27 112 0.58 0.83 0.31 

Total -63 3  0.78 0.001 

5.4.1 High Parameter Sensitivity 

The optimal value of PSZ2 was calibrated as 0.9 in the development of Model 1.  

Thus, the extreme values tested were 0.1 to 1.8.  The results for the high sensitivity 

parameter adjustments are shown in Tables 5.4-2 and 5.4-3.  Table 5.4-2 shows the 

results for the 100% increase in PSZ2 and Table 5.4-3 shows the results for the near zero 

value of PSZ2.  Increasing the value by 100% caused a 363 mm increase in the water 

balance bias; a 744 mm increase in the runoff bias; a 25% increase in the relative 

standard error, and almost a 3% increase in the relative bias.  The correlation coefficients 

for years 1, 3, and 4 were reduced to 0 and year 2 was reduced by 11%.  Reducing the 

value to be near zero increased the water balance bias by 1568 mm; increased the runoff 

bias by 2321 mm; increased the relative standard error by 374%; and increased the 

relative bias by almost 93%.  The correlation coefficients for each of the four years were 

reduced to zero. 
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Table 5.4-2. Goodness-of-Fit Statistics for Sensitive Parameter  

with a 100% increase from Calibrated Value 

 

Year WB Runoff Bias R Se/Sy e/y 

1 548 -579 0 1.17 -0.6 

2 21 -41 0.21 0.99 -0.08 

3 -174 -104 0 1.01 -0.18 

4 31 -23 0 1.05 -0.05 

Total 426 -747   1.03 -0.3 
 

Table 5.4-3. Goodness-of-Fit Statistics for Sensitive Parameter  

with Near Zero Value. 

 

Year WB Runoff Bias R Se/Sy e/y 

1 -487 643 0 3.57 0.68 

2 390 591 0 5.83 1.08 

3 -376 417 0 3.71 0.71 

4 -317 673 0 7.33 1.58 

Total -1571 2324   4.52 0.93 
 

5.4.2 Low Parameter Sensitivity 

 In the calibration of Model 1, the optimum value of PIVZ was 0.6.  In this 

analysis, the parameter is varied to a low value of 0.1 and a high value of 1.2.  The results 

for the adjustments to the low sensitivity parameter, PIVZ, are shown in Tables 5.4-4 and 

5.4-5.  Table 5.4-4shows the goodness-of-fit statistics for the 100% increase in PIVZ and 

Table 5.4-5 shows the goodness-of-fit statistics for the near zero value of PIVZ.  

Increasing PIVZ by 100% increased the water balance bias by 87 mm; increased the 

runoff bias by 77 mm; did not change the relative standard error; and increased the 

relative bias by almost 3%.  Decreasing PIVZ to nearly zero decreased the water balance 

bias by 29 mm; increased the runoff bias by 75 mm; did not change the relative standard 

error; and increased the relative bias by almost 3%.  For both changes, the correlation 

coefficients were increased by a maximum of 1%. 



   118 

 

Table 5.4-4. Goodness-of-Fit Statistics for Sensitive Parameter  

with a 100% increase from Calibrated Value 

 

Year WB Runoff Bias R Se/Sy e/y 

1 195 -170 0.62 0.97 -0.18 

2 -81 117 0.31 0.97 0.21 

3 -210 -1 0.71 0.71 -0.002 

4 -53 134 0.57 0.83 0.31 

Total -150 80   0.78 0.03 
 

Table 5.4-5. Goodness-of-Fit Statistics for Sensitive Parameter with  

Near Zero Value 

 

Year WB Runoff Bias R Se/Sy e/y 

1 213 -187 0.61 0.8 -0.2 

2 -31 71 0.32 0.96 0.13 

3 -151 -52 0.71 0.72 -0.09 

4 2 90 0.58 0.83 0.21 

Total 32 -78   0.78 -0.03 
 

5.4.3 Discussion of Results 

The analysis revealed that adjusting insensitive parameters has only a minor effect 

on the goodness-of-fit statistics.  Changes in the sensitive parameter, however, had a 

significant impact on each of the goodness-of-fit criteria.  While the difference in the 

effect on the goodness-of-fit statistics would be expected from varying values of 

parameters with different significance levels, it is important to note the minimal degree of 

change that occurred within the low sensitivity analysis.  Sensitive parameters will 

converge to an optimal value because the goodness-of-fit statistics will change 

significantly throughout the calibration process until the optimal value is selected.  

However, low sensitivity parameters may never converge to an optimal value, because 

they can take on a wide range of values within the calibration process without affecting 

the results.  Therefore, more complex models may not always contain physically rational 
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values for low sensitivity parameters, unless the calibrator is aware in advance of rational 

values of the parameters and purposely assigns these values to parameters with low 

sensitivity.  

Likewise, less sensitive parameters may not be needed in a model as they don’t 

contribute to improvements in model prediction accuracy.  Parameters with low 

sensitivity may also reflect on the importance of the process itself, suggesting that the 

process is not important and can be removed from the model.  It is important to represent 

all of the important physical processes, but including parameters with low sensitivities 

may only increase difficulties in calibration and create a model with more parameters but 

less rational values.  Likewise, two different calibrators may end up with different 

calibrated values for parameters as a result of the low sensitivity parameters.  Calibrators 

should consider the importance of parameter values before finalizing a model and take 

into account the range of rational values of insensitive parameters. 

5.5 Hydrologic Rationality of Parameters 

An analysis was conducted to assess the hydrologic meaning of the fitted 

parameter values.  Since Model 1 was considered the most representative of the physical 

processes, it was chosen for the analysis.  The hydrologic meaning of each parameter 

value for Model 1 was analyzed using yearly average storage values and depths for each 

zone determined.  The average storage depths are as follows: interception storage of 0.22 

mm; surface zone storage of 0.587 mm; root zone storage of 166 mm; vadose zone 

storage of 2425 mm; and groundwater zone storage of 2180 mm.  The average zone 

depths are as follows: root zone depth of 1350 mm; vadose zone depth of 6470 mm; and 

groundwater zone depth of 2181 mm.  For the model components that take into account 
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the time of year or crop characteristics, values for the month of May were used, assuming 

that May represents moderate temperatures and the beginning to middle of the growing 

season.  The formulas that represented each physical process in each zone were analyzed 

based on the average storages and depths and the calibrated parameter values to 

determine whether the model is producing hydrologically rational outputs. 

5.5.1 Interception Zone 

 The model allows a maximum interception of 0.5 mm, which is a rational 

maximum daily interception depth based on Madramootoo and Broughton (1987).  Based 

on the average interception storage, 0.28 mm of rainfall is intercepted.  The evaporation 

process in the interception zone is represented by the following equation from Chapter 3: 

EI = PEXI * STI     Eq. (5-1) 

where EI = actual amount of evaporation from interception layer (mm), PEXI = 

calibrated evaporation parameter for the interception layer, and STI = storage depth in the 

interception layer (mm).  For model 1, PEXI equals 0.5; therefore, 50% of the storage in 

the interception zone to be released through evaporation. Based on the average storage 

depth, 0.14 mm is evaporated from the interception zone on an average daily basis, which 

equals less than 5% of the maximum allowable evaporation for the middle of May, the 

time period chosen for this analysis.  This is rational, because interception is a small 

component in the hydrologic process and would not be expected to contribute greatly to 

the total evaporation. 
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5.5.2 Surface Zone 

 The surface zone simulates surface runoff, infiltration, and evaporation.  The 

interception parameter, PSZ1, equals 0.15 and the exponential parameter, PSZ2, equals 

0.9 for the calibrated Model 1.  As explained in Chapter 3, the following equation defines 

surface runoff: 

2*1 PSZSSZPSZQS =      Eq. (5-2) 

where QS = surface runoff depth (mm), PSZ1 = calibrated surface runoff interception 

parameter, SSZ = surface storage depth (mm), and PSZ2 = calibrated surface runoff 

shape parameter.  Since the value of PSZ2 is near 1, it was assumed that the equation is 

essentially linear, and 15% of the surface storage is released through runoff.  This is 

comparable to values from the Rational method.  The Rational coefficient for cultivated 

land can range from 0.08 to 0.31 depending on the slope of the land (McCuen 2005).  

This implies that runoff values that range from 8% to 31% of rainfall are reasonable.  The 

model allows roughly 15% of surface zone storage to runoff, which is within the range of 

rationality according to the Rational method. 

 The infiltration model component uses the surface storage, the complement of the 

soil moisture in the root zone, and the infiltration parameter, PISZ.  The infiltration depth 

is calculated with the following equation from chapter 3: 

ISZ = PISZ*SSZ*(1-SRZ/DR)     Eq. (5-3) 

where ISZ = infiltration into the root zone (mm), PISZ = infiltration parameter specific to 

the surface zone, SSZ = storage depth in the surface zone (mm), SRZ = the storage depth 

in the root zone (mm), and DV = depth of the root zone (mm).  The average soil moisture 

in the root zone is roughly 12.3%.  The value of PISZ is 0.2.  Therefore, on average, the 
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model allows roughly 17.5% of the surface storage to infiltrate.  This value can vary with 

changes in the root zone soil moisture. 

 The evaporation from the surface zone is based on the surface storage, the 

parameter PESZ, and a temperature component and represented by the following 

equation from chapter 3: 

ESZ = PESZ*TO*SSZ   Eq. (5-4) 

where ESZ = actual amount of evaporation from surface zone (mm), PESZ = calibrated 

evaporation parameter for the surface zone (Celsius 1− ), TO = daily temperature (Celsius), 

and SSZ = storage depth in the interception layer.  For the month of May, the temperature 

component equals roughly 15.  The evaporation parameter, PESZ, equals 0.19.  

Therefore, when multiplied by the temperature component, 285% of the surface storage 

will be evaporated.  This explains why PESZ is an insensitive component, considering if 

storage is available it will be depleted through evaporation.  Regardless of the 

insignificance of PESZ, it is rational that the surface zone storage would be depleted by 

the end of the day.  Therefore, after a rain event, the surface storage contributes 

significantly to the total evaporation.  However, in the absence of rain events, the storage 

is empty and does not contribute to the total evaporation. 

5.5.3 Root Zone 

 The infiltration from the root zone to the vadose zone is a function of soil 

moisture in the root zone, the complement of the soil moisture in the vadose zone, and the 

parameter PIRZ and is represented by the following equation from chapter 3: 

IRZ = PIRZ*(SRZ/DR)*(1–SVZ/DV)   Eq. (5-5) 
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where IRZ = infiltration into the root zone (mm), PIRZ = calibrated infiltration parameter 

specific to root zone (mm), SRZ= storage depth in the root zone (mm), DR= depth of the 

root zone (mm), SVZ = storage depth in the vadose zone (mm), and DV = depth of the 

vadose zone (mm).  The parameter PIRZ acts as a maximum allowable infiltration rate, 

and the value is reduced based on the soil moisture fractions.  PIRZ is calibrated to equal 

15, suggesting that if the root zone is 100% saturated and the vadose zone is empty, 15 

mm will be infiltrated.  The average soil moisture in the root zone and vadose zone equal 

12.3% and 37.5%, respectively.  Therefore, 1.15 mm is infiltrated on average based on 

Eq. (5-5), totaling to roughly 421 mm per year. 

 The evaporation from the root zone is a function of the soil moisture and the 

parameter PERZ and is represented by the following function from chapter 3: 

EVZ = PERZ * SVZ/DV    Eq. (5-6) 

where EVZ = actual evaporation from the vadose zone (mm), PERZ = calibrated 

evaporation parameter for the vadose zone (mm), SVZ = storage depth in the vadose 

zone, and DV = depth of the vadose zone.  Similar to the infiltration, PERZ acts as a 

maximum evaporation rate.  At a calibrated value of 0.93 and with an average soil 

moisture of 12.3%, only 0.11 mm is evaporated from the root zone on an average daily 

basis.  While this is a small contribution to the total daily evaporation, the root zone is the 

only component in the model in which transpiration can occur.  Therefore, it is rational to 

assume that transpiration is a greater outlet than evaporation in the root zone, justifying 

the small depth of evaporation that results from PERZ. 
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5.5.4 Vadose Zone 

 The outflow from the vadose zone is a function of the vadose zone storage, the 

unsaturated hydraulic conductivity, and the parameters PQV1 and PQV2.  The daily 

depth of outflow is calculated with the following equation from chapter 3: 

=QV SVZ*KU/(PQV1+PQV2*sin(6.283*(ID+61)/365))  Eq. (5-7) 

where QV = depth of interflow (mm), SVZ = storage depth in the vadose zone (mm), KU 

= unsaturated hydraulic conductivity (mm/hour), PQV1 = interflow parameter 

(mm/hour), PQV2 = parameter representing the cyclical component of interflow 

(mm/hour), and ID = day of the year.  The unsaturated hydraulic conductivity was 

estimated to equal 0.04 based on the average soil moisture calculated.  The maximum 

value would occur when the sine function component is equal to one.  Based on the 

calibrated values of PQV1 and PQV2, which equal 0.004 and 0.00375, respectively, the 

maximum average outflow from the vadose zone is 0.03% of the storage, or 0.73 mm, 

equaling roughly 266.5 mm per year. 

 The infiltration from the vadose zone into the groundwater is a function of the 

parameter PIVZ and the soil moisture in the vadose zone and is calculated from the 

following equation from Chapter 3: 

IVZ = PIVZ*(SVZ/DV)     Eq. (5-8) 

where IVZ = infiltration into the saturated zone (mm), PIVZ = infiltration parameter 

specific to the saturated zone (mm), and SVZ = storage depth in the vadose zone (mm), 

and DV = depth of the vadose zone (mm).  As the soil moisture increases, the infiltration 

depth increases.  PIVZ is calibrated to equal 0.6.  Based on the average soil moisture, an 

average of 0.22 mm is infiltrated into the groundwater daily, totaling to 82 mm per year.  
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A low infiltration depth is rational considering the groundwater zone is saturated and not 

extracting water at a fast rate from the vadose zone. 

 The evaporation from the vadose zone is a function of the soil moisture in the 

vadose zone and the parameter PEVZ.  The depth of evaporation is calculated with the 

following equation from chapter 3: 

EVZ = PERZ * SVZ/DV    Eq. (5-9) 

where EVZ = actual evaporation from the vadose zone (mm), PERZ = calibrated 

evaporation parameter for the vadose zone (mm), SVZ = storage depth in the vadose zone 

(mm), and DV = depth of the vadose zone (mm).  PEVZ acts as a maximum evaporation 

rate and has a calibrated value equal to 8 mm/day.  The average soil moisture for the 

vadose zone equals 37.5%, suggesting that on average, 3 mm is evaporated from the 

vadose zone.  Considering the maximum daily evaporation rate equals 3.2 mm, and the 

previous zones contributed only a small amount of storage to evaporation, the 

evaporation from the vadose zone can be considered rational.  Therefore, the vadose zone 

is the main source of evaporation in the model which explains the higher sensitivity of 

PEVZ compared to other evaporation parameters. 

5.6 Confirmation 

A fifth year of data, which was from the same runoff and rain gauge stations used 

to calibrate the 16 models, was used to verify the prediction capabilities of the model.  

Each of the models was run with the parameters calibrated for the specific model and the 

fifth year of data.  The goal of the confirmation process was to determine whether or not 

the model can provide accurate estimates of runoff beyond the range of the data used for 

calibration.  The results are shown in Table 5.6-1. 
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5.6.1 Runoff Bias 

The runoff bias for the confirmation data is comparable to the individual runoff 

biases for the four-year data.  For Model 1, the runoff bias for the confirmation data 

equals 170 mm, while the bias for the individual years within the four-year data ranges 

from -178 to 95.  For Model 7, the runoff bias for the confirmation data equals 157 mm, 

while the bias for the four-year data ranges from -196 to 113 mm.  For Model 16, the 

runoff bias for the confirmation data equals -121, while the bias for the four-year data 

ranges from -178 to 112 mm.  Therefore, the confirmation data results in a runoff bias 

within the range of the four-year data, and often times an improvement to the biases in 

the four-year data. 

The total runoff bias for Models 1, 7, and 16 was 3, 50, and 70 mm, respectively, 

for the four-year data.  Compared to the results for the confirmation data, Model 1 and 16 

have less bias while Model 7 has an equal bias.  The poorer runoff bias can be explained 

by the lack of additional years to offset the runoff biases in the confirmation data.  

Therefore, based on both the range and total runoff biases, the confirmation data proves 

that the model is capable of predicting runoff at a similar level of accuracy for additional 

data. 

5.6.2 Water Balance 

The water balance is similar for the confirmation data record and the four-year 

data record.  Each of the water balances in the confirmation data set is within the range of 

the water balances for an individual in the four year data set.  For Model 1, the water 

balance ranges from -181 to 203 mm for the four-year data and equals -231 mm for the 

confirmation data.  For Model 7, the water balance ranges from -200 to 258 mm for the 
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four-year data and equals -255 mm for the verification data.  For Model 16, the water 

balance ranges from 100 to 1130 mm for the four-year data and equals 550 mm for the 

confirmation data.  The total water balance for the four-year data is incomparable, 

considering it is the sum of four years of data and, therefore, would realistically equal 

four times the value of the confirmation data.  Both data sets have a positive change in 

the water balance at Model 10, the point at which PPET is eliminated.  However, the four 

year data set experiences a greater change because it is the culmination of four years 

rather than one.  Therefore, the based on the results for the water balance, confirmation 

data set is representative of the results for the models calibrated with four years of data, 

suggesting the model can be extended to other data sets. 

5.6.3 Relative Standard Error and Correlation Coefficient 

The relative standard error is consistently worse for the confirmation data 

compared to the results from the four years of data.  The total relative standard error for 

the four year data set ranges from 10 to 45% better than the confirmation data set.  The 

relative standard errors for the fifth year of data all exceeded one, resulting in correlation 

coefficients equal to zero.  Both sets of data experienced similar trends in the relative 

standard error for Models 1 through 8.  For both data sets, the relative standard errors 

were fairly constant in magnitude for Models 1 through 3, increased in the relative 

standard error for Model 4, remained constant in magnitude until Model 7, and increased 

again for Model 8.  The results suggest that the model simplifications had the same effect 

on the goodness of fit for both sets of data.  Models 9 through 16 do not follow a 

decreasing trend, but do not contain significant differences, with relative standard errors 

ranging from 1.17 to 1.33. 
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5.6.4 Relative Bias  

The relative bias varies from 0.0001 to 0.04 for the four year model and does not 

follow a pattern based on complexity simplifications.  The confirmation model relative 

bias ranges from 0.45 to 0.87 and also does not follow a pattern based on complexity 

simplifications.  While the relative bias for the confirmation data is much greater in 

magnitude than the total relative bias for four years, the results for the individual years 

within the four years of data are closer in magnitude.  For example, the relative bias of 

individual years for models run with the four year data set had a range of -0.69 mm to 

1.04 for the less complex models.  The additional years were able to compensate for the 

greater range of bias and result in an overall relative bias near zero.  Therefore, while the 

bias in the confirmation model is worse than those of the models run with four years of 

data, it can be explained to an extent by the lack of additional years to compensate for the 

negative and positive biases as well as the smaller average runoff value. 

5.6.5 Confirmation Analysis 

 While the confirmation showed that the fifth year of data produced results 

following similar trends and with values in the range of the results from the four years of 

data, the prediction accuracy was not as good as in the calibrated models.  This may be 

explained by the following observations.  First, the increase in magnitude for the relative 

bias in the confirmation data can be explained by the difference in average runoff 

observed between the four years of data and the fifth year of data.  The four years of data 

had an average of 1.72 mm/day of runoff whereas the confirmation data only had an 

average of 0.73 mm/day.  Therefore, the average value less than 1 inflates the relative 

bias resulting in greater values than occurred with the four years of data.   
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 The decrease in prediction accuracy may also be the result of a lower runoff-to-

rainfall ratio in the confirmation data than in the preceding four years.  The runoff-to-

rainfall ration ranged from 0.39 to 0.63 for the four years of calibration data but was 0.33 

for the confirmation data.  Therefore, the ratio is lowest in the confirmation data implying 

a smaller portion of runoff was produced than expected using the calibrated model.  

These factors explain the tendency of the calibrated model to overpredict with the 

confirmation data.  The overprediction is more evident from Figure 5.3-1, which reveals 

the large oveprediction of runoff for Model 1 with the confirmation data. 

 Based on graphical analysis, data anomalies may exist between the rainfall and 

observed runoff.  Figure 5.6-1 shows the predicted and measured runoff, while Figure 

5.6-2 shows the daily rainfall for the confirmation year.  The graphs suggest that the 

watershed was nonresponsive to the rainfall that occurred from days 191 to 300.  

However, the model does respond and predicts runoff during this time period.  As 

discussed in this research, error in the runoff gauge or misalignments between the rainfall 

and runoff may contribute to poor prediction accuracy.  Therefore, the decrease in 

accuracy in year five may be the result of data anomalies rather than the inability to apply 

the calibrated model to other rainfall and runoff data. 
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Table 5.6-1. Verification Results for Year 5 

Model WB 
Runoff 
Bias R Se/Sy e/y 

1 -231 170 0 1.1 0.64 

2 -233 174 0 1.1 0.65 

3 -227 173 0 1.1 0.65 

4 -255 168 0 1.14 0.63 

5 -238 189 0 1.15 0.71 

6 -218 174 0 1.16 0.65 

7 -255 157 0 1.13 0.59 

8 -270 172 0 1.23 0.64 

9 -327 231 0 1.33 0.87 

10 64 214 0 1.3 0.8 

11 203 225 0 1.23 0.84 

12 100 178 0 1.23 0.67 

13 147 131 0 1.29 0.49 

14 550 -121 0 1.17 -0.45 

15 229 199 0 1.21 0.75 

16 550 -121 0 1.17 -0.45 
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Figure 5.6-1. Runoff vs. Time for Year 5 Verification Data and Model 1. 
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Figure 5.6-2.  Rainfall vs. Time for Year 5 Verification Data 
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5.7 Assessment of Data Complexity in Water Quality Data 

Data complexity is an important issue in hydrologic modeling.  Processes in 

nature are characterized by variation, whether it is cyclical variation caused by seasonal 

changes, secular variation caused by temporal changes introduced by land development, 

or random variation caused by unknown factors.  Sample data that are insufficient to 

characterize such variation will cause unrepresentative results when used in modeling.  

For example, poorly representative data will result in poorly calibrated model parameters, 

especially affecting the rationality of parameter values.  Poorly calibrated parameters will 

reduce the prediction accuracy of the model.  They also affect the ability to apply a model 

to additional systems for prediction because the values pertain to the unrepresentative 

data rather than the actual physical characteristics of the system.  It is important that the 

complexities of data be understood and considered in hydrologic modeling in order to 

ensure rationality in calibration and accuracy of predictions. 

Water quality data are inherently complex with considerable variation.  However, 

measured water quality data are often only available as grab samples, which may not be 

representative of the entire population of data.  Grab sample measurements are often 

made at irregular intervals rather than on a systematic temporal basis.  Small samples are 

the norm.  Thus, data sets may lack the total variation that would be inherent to longer 

records, and with small samples, the variation may not contain extreme variation.  Thus, 

statistics based on grab samples may not reflect those of the population from which the 

grab samples were taken. 

If a water quality record of n years of daily data was available, this would represent a 

sample from the population.  This sample of 365*n values would have characteristics that 
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are likely representative of the population of all possible values of the pollutant: past, 

present, and future.  Variations in rainfall and runoff characteristics introduce variances 

into the n-year record of water quality measurements that cause it to deviate from the 

population, which is unknown. 

When a record of daily values is not measured and instead grab samples are collected, 

the m grab samples represent a sample of a sample.  Since the population is not known, 

but grab sample statistics would be used to represent characteristics of the population, it 

is necessary to examine how grab sample statistics would reflect the corresponding 

statistics of a complete n-year sample.  From this analysis, the representativeness of grab 

sample records can be assessed. 

While mean concentrations on loads computed from grab samples are of general 

interest, the distribution of the water quality parameters should be of central importance.  

Values in the tails of the distribution are important as are probability estimates, such as 

95% exceedences.  Therefore, evaluations of the ability of grab samples to provide 

accurate characteristics of underlying probability distribution are likely to be of greater 

value than the computation of mean values. 

The goal of the grab sample data analysis was to determine the number of grab 

samples needed to provide accurate statistics that reflected the statistics of the entire 

record.  This goal was achieved through the following four analyses which were 

discussed in Chapter 3: 

• Compute statistical characteristics of an entire record of suspended data, 

including mean and probability distribution 



   134 

 

• Randomly eliminate specified percentages of the data record to provide a 

sample of grab measurements and recomputed the same statistical 

characteristics. 

• Randomly eliminate data points that reflect measurements during storm events 

to represent grab samples and recomputed the same statistical measures. 

• Randomly eliminate data points that reflect measurements during low flows 

and recomputed the statistical characteristics. 

These analyses were conducted using the procedure from Chapter 3 and the results are 

discussed herein. 

5.7.1 Results for Random Elimination of Samples 

 The results for the analysis for the random selection of grab samples are shown in 

Table 5.7-1 for the 5% level of significance.  Column 1 identifies the statistical test being 

made; Column 2 identifies the approximate percentage of the total observed record 

selected to represent the grab sample measurements; Column 3 identifies the sample size 

of the grab sample subset; Column 4 shows the calculated value for the subset for each 

statistical test; and Column 5 reveals whether the null hypothesis for each test is accepted 

or rejected.  Results for the 1% and 10% levels of significance are given in Table 1 

Appendix D.   

 The results for the one-sample Z-test, one-sample t-test, and two-sample t-test on 

the means indicate that the mean of the grab sample subset can represent the mean of the 

total observed record, regardless of the percentage of the total observed record 

eliminated.  The only exception occurred for the one-sample t-test on the sample subset 

with only 1% of the observed data.  The rejection of the null hypothesis occurred because 
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the standard deviation of the subset equaled 7.4, whereas the standard deviation of the 

entire observed data record equaled 44.6.  The denominator of the t-test statistic contains 

the standard deviation of the subset of the total observed record; therefore, a small 

standard deviation yields a large value of the test statistic.  Acceptance of the test depends 

on the calculated test statistic being less than the critical test statistic.  Whereas the two-

sample t-test accounts for the variation in both samples, the one-sample t-test only uses 

the variation of the smaller subset.  Therefore, rejection would be more likely, and it 

occurred for the 1% subset size.   

The extremely low standard deviation in the 1% analysis is a result of both the 

random selection of data points and the small sample size used.  The standard deviation is 

affected by both the sample size and random selection of data points.  The smaller the 

sample size, the less probability of selecting very high valued points from a population 

made up of dominantly low values.  However, if a large grab sample value happens to be 

selected, especially in a small sample, the standard deviation would be large because the 

small number of small values is not sufficient to offset the one extreme value.  If a large 

sample value is not selected, as in the 1% anlaysis, the sample standard deviation will be 

relatively small.  In such cases, the standard deviation of the grab sample subset will not 

reflect the mean of the total observed record.   

 The Kolmogorov-Smirnoff test results reveal that the grab sample subset is not 

representative of the total observed data set for eliminations with 50%, 25%, 10%, and 

5% of the data remaining.  For smaller samples containing 2.5% and 1% of the data, 

however, the test accepted the null hypothesis.  This is most likely due to sampling 

variation within the sample selections.  Also, a very large difference is required in order 
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to reject the null hypothesis for small samples.  Therefore, it is assumed that the poor 

representation of the distribution by 50% of the total observed data record implies that 

further reduction is unlikely to improve the distribution representation. 

5.7.2 Grab Samples from below Mean Value 

 The results for the subsets of the observed values below the mean are shown in 

Table 5.7-2 for the 5% level of significance.  Results for the levels of significance of 1% 

and 10% are shown in Table 2 in Appendix D.  The results show that for the subset in 

which only 50% of the observed values below the mean were selected, the mean differs 

significantly from the mean of the total observed data record for each of the one-sample 

Z-test, one-sample t-test, and two-sample t-test at the 1%, 5%, and 10% levels of 

significance.  For the remaining smaller subsets, the null hypothesis of equal means was 

rejected for the one sample t-test regardless of the sample size or level of significance.  

However, the null hypothesis was accepted for the Z-test and the two sample t-test for 

samples containing less than 50% of the data points below the mean.  This is because the 

test statistics for the Z-test and two sample t-test contain the population standard 

deviation in the denominator.  The population standard deviation, or the standard 

deviation of the total observed record, is much greater than that of the sample, which only 

contains a percentage of data points below the mean.  Therefore, it is expected that both 

tests would have lower calculated test statistics, which are more likely to be accepted, 

than the one-sample t-test statistic.  However, it is irrational to suggest that the subset 

containing less than 50% of the observed data below the mean better represents the subset 

containing 50% of the observed data below the mean.  Therefore, the results show that 

grab samples collected in the absence of storms events are a poor representation of the 



   137 

 

mean of the total grab sample data.  Exceptions to the rejection of this null hypothesis for 

smaller samples result from the decreasing power of statistical tests as the sample size is 

reduced. 

 The Kolmogorov-Smirnoff test reveals that the grab sample subset of values 

below the mean does not follow the same distribution as the total observed data record 

for the sample size containing 50%, 25%, 10%, and 5% of the total grab samples below 

the mean.  Similar to the variance results, this is expected because the grab sample subset 

does not represent the spread of the data that occurs in the entire observed record.  

However, the results suggest that for the subsets containing 2.5% and 1% of the values 

below the mean, the distributions are the same.  This is due to the small sample size, 

which results in a greater critical value and, therefore, greater likelihood of accepting the 

null hypothesis.  Therefore, the Kolmogorov-Smirnoff is less powerful for smaller 

sample sizes.  Therefore, the acceptance of the null hypothesis is ignored for the smaller 

subsets, and it is concluded that grab samples taken systematically in the absence of 

storm events will poorly represent the distribution of the total water quality record.   

5.7.3 Grab Samples from above the Mean  

 The results for the selection of observed record values only collected during storm 

events, i.e., above the mean, are shown in Table 5.7-3 for the 5% level of significance.  

Results for the levels of significance of 1% and 10% are shown in Table 3 in Appendix 

D.  The analysis of the mean values shows that the null hypothesis is rejected for the grab 

sample subset representing 50% of the observed data above the mean, regardless of the 

level of significance or test statistic used.  However, the null hypothesis was accepted for 

the subset containing 25% of the values above the mean for the 2-sample t-test; the subset 
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containing 10% of the values above the mean for the 1-sample t-test; the subset 

containing 5% of the values above the mean for the 1-sample Z-test and 2-sample t-test; 

and for all tests containing only 2.5% and 1% of the observed record above the mean.  

Further analysis showed that the standard deviations of the subsets varied greatly as a 

result of the random elimination of data.  Values ranged from being significantly greater 

to significantly smaller then the total observed data record for the standard deviations for 

each of the random eliminations.  This in combination with the effects of smaller sample 

sizes on the power of statistical tests explains the inconsistent acceptance and rejection of 

the null hypothesis as the sample size decreased.  Therefore, as with the analysis 

conducted for values below the mean, it is assumed that the results for the 50% sample 

size are the most accurate in determining the extent to which the smaller grab sample 

subsets represent the total observed data record. 

 The results for the Kolmogorov-Smirnoff test show that the data selected from 

values above the mean do not follow the same distribution as the total observed data 

record regardless of the sample size or the level of significance.  Considering the 

rejection of the null hypothesis for the mean, this result would be expected.  The majority 

of the data points in the total grab sample lie below the mean.  Therefore, a sample of 

data points taken above the mean will most likely follow a much different cumulative 

distribution than the entire observed data record.   

5.7.4 Analysis of Data Complexity of Grab Samples  

The results from the grab sample analysis in which data were randomly 

eliminated revealed that the mean could be accurately represented from smaller sample 

sizes; however, the distribution of the total grab samples is poorly represented by even 
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50% of the entire observed data record.  The results from the grab sample analysis of 

values both above and below the mean revealed that the mean and distribution are poor 

representations of the total observed data record.  This analysis represents grab samples 

collected consistently either during or in the absence of storm events.  The random and 

systematic analyses revealed that randomness inherent in data as well as the selection 

processes influences the capability of representing the total sample and may cause 

misleading results.  For example, smaller samples may be more representative than larger 

samples if the few data points collected represent the range of the population data.  This 

does not imply, however, that smaller samples are more reliable than larger samples.   

Based on these results, it is apparent that grab sample data should be used with 

caution for modeling purposes.  Neither grab samples collected in the absence of storm 

events nor during storm events are representative of the total sample.  Grab samples 

collected at random are representative of only the mean of the data points.  Therefore, use 

of grab sample data for calibration purposes in modeling will most likely cause results 

that are misrepresentative of the actual system.  The sample size of available data and the 

effect of missing data on prediction capabilities should be considered.  

Table 5.7-1. Statistical Analysis for  

Grab Samples Selected through Random Elimination  

at a 5% Level of Significance 

 

Test 
% of 
Pop 

Sample  
Size 

Calculated 
Value Decision 

50 689 0.57602 Accept 

25 355 -0.46843 Accept 

10 138 0.02148 Accept 

5 66 -0.16182 Accept 

2.5 45 -0.04097 Accept 

One-
Sample Z-

Test 

1 19 -0.54072 Accept 

50 689 0.34701 Accept One-
Sample  t- 25 355 -0.69151 Accept 
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10 138 0.03126 Accept 

5 66 -0.36866 Accept 

2.5 45 -0.10303 Accept 

Test 

1 19 -19.51606 Reject 

50 689 0.322488 Accept 

25 355 -0.39146 Accept 

10 138 0.020046 Accept 

5 66 -0.157488 Accept 

2.5 45 -0.040239 Accept 

Two-
Sample t-

Test 

1 19 -0.537198 Accept 

50 689 0.93336 Reject 

25 355 0.906867 Reject 

10 138 0.713786 Reject 

5 66 0.39591 Reject 

2.5 45 0.137453 Accept 

KS-1 Test 

1 19 0.217082 Accept 

 

 

 

 

 

 

 

Table 5.7-2. Statistical Analysis for Grab Samples below the Mean Value Selected 

through Random Elimination at a 5% Level of Significance 

 

Test 
% of 
Pop 

Sample 
Size 

Calculated 
Values Decision 

50 636 -4.173 Reject 

25 299 -2.346 Accept 

10 110 -1.348 Accept 

5 72 -1.053 Accept 

2.5 24 -0.6 Accept 

One-
Sample 
Z-Test 

1 10 -0.402 Accept 

50 636 -150.843 Reject 

25 299 -80.093 Reject 

10 110 -62.385 Reject 

5 72 -46 Reject 

2.5 24 -38.343 Reject 

One-
Sample  
t-Test 

1 10 -30.277 Reject 

50 636 -3.136 Reject 

25 299 -2.092 Accept 

10 110 -1.296 Accept 

5 72 -1.027 Accept 

Two-
Sample 
t-Test 

2.5 24 -0.595 Accept 
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1 10 -0.401 Accept 

50 636 1.031 Reject 

25 299 0.951 Reject 

10 110 0.694 Reject 

5 72 0.481 Reject 

2.5 24 0.175 Accept 

KS-1 
Test 

1 10 0.183 Accept 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.7-3. Statistical Analysis for Grab Samples above the Mean Value Selected 

through Random Elimination at a 5% Level of Significance 

 

Test 
% of 
Pop 

Sample 
Size 

Calculated 
Values Decision 

50 75 10.084 Reject 

25 38 2.61 Reject 

10 13 3.918 Reject 

5 10 0.504 Accept 

2.5 3 1.531 Accept 

One-
Sample  
Z-Test 

1 3 1.335 Accept 

50 75 2.714 Reject 

25 38 4.883 Reject 

10 13 1.315 Accept 

5 10 3.806 Reject 

2.5 3 1.239 Accept 

One-
Sample   
t-Test 

1 3 1.252 Accept 

50 75 7.613 Reject 

25 38 2.567 Reject 

10 13 3.767 Reject 

5 10 0.502 Accept 

Two-
Sample  
t-Test 

2.5 3 1.528 Accept 
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1 3 1.333 Accept 

50 75 0.904 Reject 

25 38 0.906 Reject 

10 13 0.904 Reject 

5 10 0.912 Reject 

2.5 3 0.92 Reject 

KS-1 
Test 

1 3 0.91 Reject 
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CHAPTER 6 
 

 

GUIDELINES FOR EFFICIENT MODELING 
 

 

Guidelines regarding data analysis, calibration, goodness of fit, and model 

development were established.  Each guideline is based on the results from the analyses 

within this research.  Following the data analysis guidelines will lead to a better 

understanding of model results affected by poor data quality.  Consideration of 

calibration guidelines will improve the efficiency of the calibration process.  

Acknowledgement of the goodness of fit guidelines will improve the prediction accuracy 

resulting from the calibration process.  And implementing the model development 

guidelines will improve the ability of a model to represent a system at an appropriate 

level of complexity. 

6.1 GUIDELINES ON DATA ANALYSIS 

Guideline: Data should be analyzed for anomalies before used for calibration or 

verification. Poor model prediction accuracy may be caused by data complexities rather 

than an inaccurate model.  The goodness-of-fit statistics may suggest the model is 

inaccurate when, in fact, problems with the data base may actually be the cause.   

In the analysis reported here, poor goodness of fit was influenced by poor 

correlation between the rain and runoff observations during storm events.  Through 

analysis of the data, misaligned runoff and rainfall events were identified and altered, 

which resulted in a significant increase in prediction accuracy for the model.  While it is 
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unrealistic to alter data in model development, this analysis draws attention to the effects 

of data anomalies on the calibration and prediction capabilities of the model.   

The following practices are suggested to minimize errors resulting from data 

anomalies. 

a) Make a priori analyses of the data to identify anomalies that might 

possibly lead to poor goodness of fit.  For example, conduct a cross-

correlation analysis to determine the relation between the input data and 

output data used in calibration. 

b) Consider the distance between the rainfall and runoff gauge when 

selecting data for model calibration to assess the potential for poor 

goodness of fit. 

c) To avoid the effects of non-uniform rainfall events over a watershed, a 

weighted average of data records from multiple rain gauges near the 

watershed could be used. 

d) To avoid the effects of non-uniform rainfall events over a watershed, use 

radar rainfall data. 

Implementing this guideline is important for models with specific data 

characteristics.  For example, a model that is being applied to different watersheds within 

which different rainfall and runoff gauges apply will be affected by the data used.  The 

goodness of fit attained at one watershed may not be applicable to another watershed if 

the data are less significantly correlated.  Model users must be aware of the effects of 

different data on the prediction capabilities of the model.   
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When calibrating with data characterized by high variance of flows, the prediction 

accuracy will be affected greatly by poorly correlated data.  For example, rainfall events 

can range from a 2-year to a 100-year to a 500-year storm event.  The depth of rainfall 

that occurs in each storm event varies significantly, resulting in a wide range of runoff 

values depending on the rainfall event.  Therefore, as shown through this research, if the 

rainfall and runoff values are poorly aligned, the high peaks will be inaccurately 

predicted and result in poor goodness of fit.  For example, if a 500-year storm is observed 

by a rainfall gauge on Day 1, but the storm does not affect the outflow until Day 2, the 

data is misaligned.  The magnitude of the storm will cause a great difference between the 

predicted runoff and the observed runoff value for Day 1, as the model will respond to 

the storm on the same day it occurred.  This will result in poor peak predictions.  

Therefore, it is important that data characterized by high variance values in particular be 

analyzed for data anomalies. 

Models calibrated with short data records will be affected by the data issues 

addressed in this guideline.  Short records contain few moderate to low flows, which are 

unable to compensate for any misaligned peak values.  Therefore, the more accurate low 

flows cannot mask the poor predictions and produce reasonable goodness-of-fit statistics.  

Without analyzing the data first, the shorter data records will most likely result in poor 

prediction accuracy. 

Guideline: When data samples are used to calibrate complex models, analyses 

should be conducted to determine whether or not the available data statistically 

represents the actual population before using the data in hydrologic modeling.  

Water quality data are rarely available as a complete data set, i.e., collected at sampling 
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interval needed.  Grab samples are commonly used to calibrate models such as HSPF.  

However, grab samples are not always representative of the population and should be 

used with recognition of the representativeness of the data.  Likewise, the procedure 

within which grab samples are collected may influence the ability of samples to represent 

the population.  The following practices are suggested based on the grab sample analyses 

conducted within this research:  

1) Grab samples should be used for the purpose of representing the long term mean 

value of a population rather than the distribution.  As shown in the random grab 

sample subset, the mean values for the subset and total observed record were not 

significantly different, while the distribution differed significantly.  Therefore, use 

of grab samples to model the distribution of the total yearly record would result in 

poor accuracy of predictions as well as irrational parameters. 

2) Compare the statistical characteristics of the corresponding discharges with those 

of the entire yearly record to determine whether water quality grab sampling was 

conducted systematically or randomly.  The systematic analysis determined that 

grab samples taken during or in the absence of storm events poorly represented 

the mean, variance, and distribution of the total observed record.  Therefore, by 

analyzing the discharges corresponding to the grab samples with the yearly record 

of streamflows, the method in which the grab samples were selected can be 

determined.  Discharges consistently above or below the mean of the yearly 

record would represent sampling strategically conducted during or in the absence 

of storms.  If this is the case, the grab samples should be discarded for any 

purpose in modeling. 
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Implementing this guideline will improve the prediction capabilities of modeling 

by increasing the accuracy of data used in calibration.  The more representative the 

available water quality data is of the population, the more likely the model results will the 

process being modeled.  This is useful particularly with water quality data sets that often 

include only a few grab samples per year.  Parameters that are fitted such that model 

predictions agree with grab sample measurements can be inaccurate if the grab samples 

themselves were not representative of the population from which the data were sampled.  

Inputting a small sample into a model that uses daily rainfall and streamflow data will 

require assumptions to be made regarding the missing data.  Specifically, the statistical 

characteristics of the grab samples are assumed to accurately reflect the characteristics of 

the processes.  Also, the goodness-of-fit statistics used to determine the prediction 

accuracy will be less reliable considering fewer data points are available to compare with 

the model outputs.  If only a small sample of data is available, limitations on the model 

prediction accuracy can result from the inability of the sample to represent the population 

data. 

6.2 GUIDELINES ON CALIBRATION  

Guideline: Knowledge of parameter sensitivity is essential to efficiently and 

effectively calibrate a model.  As shown in the parametric sensitivity exercise, a change 

in a highly sensitivity parameter has a much greater effect on the overall goodness of fit 

than a change of equal magnitude of a less sensitive parameter.  Therefore, a lack of 

knowledge of parameter sensitivities may result in a calibration strategy where 

insensitive parameters are altered.  This will produce little change in the prediction 

accuracy from that based on inaccurate initial parameter estimates.  Iterations where little 
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improvement in overall accuracy occurs because insensitive parameters are being 

changed can discourage continuing the calibration process.  This may lead to drastic and 

unnecessary changes in parameter values in order to attain results that could be attained 

with more subtle changes to sensitive parameters.  A lack of awareness of sensitivities 

may lead to assigning physically irrational values to insensitive parameters in order to 

acquire the desired goodness of fit.  Also, realistic potential changes to sensitive 

parameters may be ignored. 

 This guideline is especially important in models with a large amount of 

parameters.  The greater the number of parameters, the more likely the model is to 

contain insensitive parameters.  Therefore, the probability of manipulating insensitive 

parameters is high.  This would be prevented if a sensitivity analysis had been conducted 

prior to the start of calibration.  Those calibrating highly complex models that contain 

many parameters should be aware of the importance of understanding parameter 

sensitivities to avoid irrational parameter values and inefficient calibration. 

Guideline: When calibrating a model, emphasis should be placed on optimizing the 

parameters so that they reflect the physical processes that they represent (rather 

than calibrating to reflect only part of the data and the corresponding physical 

processes).  Optimizing a model to meet specific design criteria may result in less than 

optimum goodness of fit and parameter values.  Measured data reflect all of the physical 

processes; therefore, the calibration criteria selected should reflect all of the physical 

processes and not processes that are specific to selected parts of the data such as peak 

flows or low flows.  As one part of this research, the model was calibrated using three 

objectives: (1) the best overall fit; (2) the best fit of the peak flows; and (3) the best fit of 
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the low flows.  The data base reflected all of the physical processes, not those specific 

just to peak flows or to low flows.  The results showed that optimizing to meet one 

specific criterion caused poor goodness-of-fit statistics in regards to other criteria.  For 

example, while calibration to ensure accurate fitting of peak flows, the overall water 

balance and runoff bias significantly worsened, as did the relative standard error and 

relative bias.  Likewise, calibrating to get good prediction of the low flows resulted in 

poor prediction of the high flows.   

In addition to the effect on goodness-of-fit criteria, model parameters based on the 

specific criterion such as fitting peak flows may be distorted from rational values for the 

physical processes represented by the model.  The distortion occurs because the 

parameters attempt to compensate for the emphasis placed on the parameters principally 

responsible for the criterion of interest.  For example, in the calibration to get unbiased 

estimates of the peak discharge rates, the parameter PSZ2 was modified.  This required 

distortion of parameter PSZ1 to compensate for the emphasis on the peaks.   

The following practices are suggested to avoid negative effects of these 

calibration issues: 

1) If a model is calibrated to provide good predictions of one criterion, e.g., 

peaks, the model should not be used to predict other criteria, such as daily or 

low flows. 

2) Consider the physical rationality of parameter values when emphasizing 

predictions of a single criterion. 

3) Consider the physical rationality of model outputs when calibrating for a 

single criterion (i.e., the effects of accurate peak discharge on the total runoff). 
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4) With more complex objective functions, parameters could possibly be 

individually calibrated for low or high flows in order to better fit all ranges of 

flows. 

Consideration of this guideline is important for models with a variety of users.  A 

model calibrated with a specific goal may contain parameter values that do not apply to 

additional criteria.  Lack of knowledge of initial calibration goals could result in misuse 

of the model.  For example, if HSPF was calibrated to specifically predict peak volumes 

and then a user unknowingly used the calibrated parameters to trace nitrogen values 

through the water cycle, the predicted loads could be inaccurate because the parameters 

do not reflect the total range of flows.  Specifically, the low flows and baseflows will be 

inaccurate resulting in poorly predicted concentrations.  Therefore, models with a 

potential wide range of uses should be calibrated for overall goodness of fit rather than 

with specific goals, unless users are warned in advance of the calibration criteria. 

Guideline: Examine the rationality of model parameters as rationality depends on 

complexity of the model.  As the number of model parameters decreases, the values of 

the model parameters remaining deviate from rational values in order to compensate for 

the processes and parameters not included in the model.  This is apparent by the 

parameter value changes that occurred as the model complexity decreased.  While the 

prediction accuracy may remain the same, the model may not be representing the 

processes of the hydrologic cycle rationally.  Therefore, it is unlikely that the model can 

be applied to other watersheds, because the parameter values are only representative of 

the data used for calibration.  To avoid this issue, it is beneficial to identify a range of 

rational parameter values before beginning the calibration process. Assessing the 
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hydrologic rationality of the model outputs, as was done in this research, is also 

beneficial in identifying irrational parameter values, 

6.3 GUIDELINES FOR ASSESSING GOODNESS OF FIT 

Guideline: As a model with an overall bias of zero may still have significant local 

biases, time series plots and goodness-of-fit statistics should be used to ensure that 

fitting did not lead to local biases.  Local biases occur when a model overpredicts 

consistently during one segment of a time series and underpredicts consistently in 

another.  The overall bias may be good, however, upon closer examination, the model 

contains biases.  For example, suppose a model component with a cyclical trend is 

represented by the mean value of the component.  The local biases that occur at the 

maximum and minimum of the function will balance each other, resulting in an overall 

bias of zero.   

Likewise, a model calibrated with multiple years of data may overpredict some years 

and underpredict others.  This example occurred throughout this research.  As the model 

complexity was simplified, the range of runoff bias within the individual years increased 

while the overall bias remained unchanged.  This does not imply that the model has 

acceptable goodness of fit.  However, it would go undetected unless the calibrator makes 

additional analyses.  This guideline is significant when multiple years of data are used in 

calibrating a model.  It is difficult to fully understand the prediction accuracy for 

individual years over a large time span when the goodness-of-fit statistics represent only 

the overall results.  The following suggestions are made to identify local biases: 
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1) Analyze model results over smaller time increments, i.e., monthly or yearly, as 

well as over the entire data record in order to identify local biases that exist within 

portions of the data. 

2) Conduct a graphical analysis to attain a visual representation of the prediction of 

the data and identify local biases such as in years of high or low rainfall. 

Guideline: Goodness-of-fit measures that separately reflect bias and accuracy 

should be used.  An unbiased model may not necessarily yield the greatest accuracy.  

Model bias reflects systematic error variation.  Biases alone do not necessarily reflect the 

actual prediction accuracy of the data, as accuracy involves both bias and precision, or 

systematic and nonsystematic error variation, respectively.  A model could greatly 

overpredict for parts of the data record and underpredict for other parts but still maintain 

good overall unbiasedness, because the errors compensate for each other.  This is 

apparent as the model complexity was decreased.  The range of yearly biases increased, 

while the overall biases remained near zero.  It is important to not only focus on the 

overall bias, but the overall prediction accuracy of the model. 

Guideline: In addition to the overall prediction accuracy, the accuracy of subsets of 

the data, e.g., individual years of a multi-year data base, should be assessed and 

used in guiding the calibration.  Statistics that reflect the overall prediction accuracy 

may be misleading when the biases and accuracy for individual years are highly variable 

and suggest poor goodness of fit.  The simplification in model complexity conducted 

through this research showed little change in the overall goodness-of-fit statistics until 

only a few parameters remained.  However, analyzing the goodness-of-fit statistics for 

the individual years revealed a decrease in accuracy and an increase in the range of biases 



   153 

 

for the individual years.  The poor statistics for individual years occurred despite a 

consistent overall average bias of near zero for the water balance and runoff.  Therefore, 

it is important that calibrators analyze the statistics for individual years to ensure that the 

overall accuracy of prediction is not misleading.   

 The same level of overall prediction accuracy can be achieved from several 

different combinations of parameters.  This is sometimes referred to as “The Non 

Uniqueness Problem).  The differences in the parameter values produce models that 

reflect the physical processes differently.  Any one combination of parameter values can, 

therefore, yield different predictions for a given rainfall pattern such as the annual time 

series.  Additionally, different sets of parameter values will yield different estimates of 

sensitivities.  As the parameters are changed, the effect on predictions for each year will 

be different.  In addition to changes on annual goodness-of-fit statistics, the different sets 

of parameters will influence other subsections of the data base, such as peaks or low 

flows.  The different values will place different emphasis in the processes responsible for 

peaks and low flows. 

This may be an issue for models that contain a large number of parameters and 

high complexity, such as the HSPF model.  It may difficult when calibrating a model to 

determine the individual effects of each parameter on the individual years, and it may be 

more convenient to only focus on the overall goodness-of-fit.  However, a thorough 

calibration should involve examining the individual years and determining if the accuracy 

of any one year can be improved without decreasing the overall goodness of fit. 
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6.4 GUIDELINES ON MODEL DEVELOPMENT 

Guideline: In developing a model, all important physical processes should be 

represented. Maintaining physical processes is more important then parameter 

sensitivity; however, if all physical processes are represented, model eliminations should 

be based on parameter sensitivities.  Parametric sensitivities have more meaning when 

the model includes components to represent all important physical processes. 

Comparison of the goodness-of-fit statistics for Models 13 and 15 shows that parameter 

sensitivity is not always the most important aspect of calibration.  Model 13 included 

parameters for surface runoff, surface infiltration, and evaporation from the groundwater 

zone.  Therefore, Model 13 represented three of the main hydrologic processes.  Model 

15 represented only one physical process, surface runoff, and included two parameters, 

PSZ2 and PSZ1.  PSZ2 was consistently the most sensitive parameter throughout all 

stages of complexity.  The analyses showed that maintaining the physical processes 

provided better prediction accuracy than including the most sensitive parameter.  This 

suggests that even the most sensitive parameter can not compensate for the effect of 

maintaining physical rationality within a model.  The parameters of the three physical 

processes were able to compensate for the variation associated with PSZ2.  The following 

practices are suggested based on this finding. 

1. Identify parameter sensitivities before calibrating a model. 

2. Model complexity should be sufficient by including all important physical 

processes.  This is necessary to ensure physical rationality of model 

outputs. 
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It is important to consider this guideline when simplicity is an important criterion 

of model development.  The significance of including all physical processes in order to 

attain accurate results may not be recognized, which can lead to an inferior model.  A 

compromise between simplicity of the processes modeled and the acceptable level of 

goodness of fit should be considered in model development. 

Guideline: Where effects are of interest, model complexity must be sufficient to 

represent relevant physical processes.  If a prediction is the only requirement of a 

model, then a relatively simple model may be adequate.  However, if an estimate of an 

effect is needed, such as the effect of an infiltration rate on the amount of groundwater 

flow or evaporation, then a more complex, process simulating model is needed.  The goal 

of modeling is to fit a function or functions to reflect the variation that exists within the 

data.  The total variation in data is composed of two types of variation: (1) explained or 

systematic and (2) unexplained or unsystematic.  Explained variation can be classified as 

secular, periodic, or cyclical and can be fit with one or more functions.  The function or 

functions remove the explained variation from the total variation, leaving only 

unexplained variation.  Unexplained variation is the result of physical occurrences that 

cannot be measured.  Multiple functions better explain the individual processes and 

remove explained variation, however, the unexplained variation still exists which 

contributes to bias and inaccuracies.  Therefore, regardless of the complexity of the 

functions contained in the model, unexplained variation will still exist.  The same 

goodness of fit can be achieved with a simpler model that contains one main process as 

with a more complex model with components representing multiple processes.   



   156 

 

In simple models, however, individual effects may be distorted because the 

calibration places an unbalanced measure of importance on the component principally 

responsible for the effect.  For example, as the model complexity decreased in this 

research, the model was still capable of accurately predicting the total daily runoff.  

However, beginning in Model 8, surface runoff was the only contributor to the total 

runoff.  The goodness-of-fit statistics indicated that predictions remained relatively 

accurate because the parameters still in the model were able to adjust for the missing 

parameters and functions.   However, the rationality of the amount of surface runoff was 

most likely unrealistic, as groundwater is a large contributor to total runoff in reality.    

This is an important guideline to consider when modeling for purposes beyond 

simply prediction accuracy.  For example, in water quality modeling, the goal might be to 

trace chemicals or pollutants throughout the hydrologic cycle.  If the water quantity 

components of the model are of low complexity, then the model will not accurately 

reflect the movement of either water or dissolved chemicals through the system.  

Therefore, if the goal is only a final prediction, then a simple model may be adequate.  

However, more complex goals require more complex models to reflect the physical 

reality of the system and the effects on the individual processes.  

Guideline: Model components should be structured to reflect the physical process 

that they represent. This guideline is illustrated in the comparison of Model 11 with 

Models 14 and 16.  The runoff process is commonly represented as a nonlinear function.  

For example, the SCS method represents the runoff depth as a squared function of the 

precipitation and initial abstraction.  All of the USGS peak discharge equations use a 

nonlinear power-model form (Jennings et al. 1994).  The slope-area method of discharge 
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estimation represents the peak discharge as a function of the square root of the energy 

gradient of the area of interest.  Therefore, it may be physically irrational to represent 

runoff with a linear function.  Model 11 includes only one parameter, PSZ1.  Models 14 

and 16 are both one-parameter models that contain only PSZ2.  The parameter PSZ1 

forms a linear function, whereas the use of parameter PSZ2 forms a power function, both 

based on surface storage, to represent the runoff process.  The results show that 

representing the runoff process with a linear function rather than with a nonlinear 

function caused an increase in runoff bias as well as relative bias.  Not only did the 

overall bias increase, but the range of runoff biases for the individual years increased 

significantly when compared with the nonlinear model.  The measured data reflects the 

nonlinear watershed processed; therefore, the nonlinear model yielded more accurate 

results than the simpler linear model. 

 The structure of model components is important to consider when developing 

complex models to represent multiple hydrologic processes.  It is often simpler to utilize 

linear functions in order to minimize the total number of parameters to be calibrated.  

Minimizing the number of parameters is a valid objective.  For example, the HSPF 

model, which reflects a wide range of physical processes, uses a number of linear 

functions.  The model assumes that the large number of linear functions will mimic the 

effect of nonlinearity inherent to the data.  However, consideration must be made in 

regards to the effects of simplifying inherently nonlinear functions on the prediction 

biases.  A compromise between the simplicity of the model and the acceptable prediction 

biases that result from poorly represented physical processes should be considered. 
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 When a model requires specific goals in prediction, poorly structured model 

components will result in poor prediction for the individual effects that may be needed to 

attain these goals.  For example, if the goal is prediction of peak discharge rates and the 

model uses a linear function to predict runoff, the overall bias may remain accurate while 

the peaks are poorly predicted.  Therefore, stormwater management will be poorly 

designed to adequately control peak discharges as a result of the poorly predicted peaks.  

Accurately structured model components will improve the portrayal of specific effects 

and allow the model to be used for specific design or research goals. 
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CHAPTER 7 
 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

7.1 Conclusions  

 The goal of this research was to explore the effects of model and data complexity 

on representing the physical processes of a watershed.  This goal was accomplished 

through the following objectives: (1) to formulate and analyze a series of different model 

structures to study the relationship between model complexity and prediction accuracy; 

(2) to assess the affects of data anomalies and incomplete data sets on prediction accuracy 

of hydrologic models; (3) to demonstrate the use of model sensitivity in improving the 

efficiency of subjective optimization; (4) to show the effect of calibrating to optimally fit 

peak discharge rates or to optimally fit baseflows on overall prediction accuracy; and (5) 

to develop guidelines for improving all components of modeling of complex hydrologic 

systems.  The results will improve the existing state of model development and 

calibration by enhancing the knowledge of data complexity, model complexity, and 

calibration. 

 The complexity of modeling varies with respect to model structure, calibration 

data, goodness-of-fit criteria, model constraints, and calibration fitting method.  The 

model structure is complicated by the number of processes modeled as well as the 

formula structure representing the processes.  More complex models require greater data 

bases, often containing inconsistencies that complicate the modeling process.  Model 

constraints, such as the physical rationality of parameter values, make it difficult to 
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rationally calibrate models that contain a large number of parameters.  The complexity of 

the calibration criteria influences the efficiency of the calibration process as well as the 

applicability of the model for other purposes.  The more complicated the model, the more 

sophisticated the fitting method must be, requiring greater user knowledge.  These factors 

of model complexity were explored through the model simplifications and analyses 

within this research. 

 To achieve these objectives, a 14-parameter model was developed.  The model 

represented the following hydrologic processes: (1) rainfall, (2) interception, (3) surface 

runoff, (4) interflow, (5) groundwater flow, (6) infiltration, and (7) evapotranspiration.  

The model included five layers: the interception, surface, root, vadose, and groundwater 

zones.  These formed the most complex model, which was calibrated by subjective 

optimization using observed rainfall and runoff data.   

 The model was subjected to 15 different simplifications.  The simplifications were 

made based on parameter sensitivities as well as the rationality of eliminating processes 

in a certain order.  Each simplified model was calibrated with subjective optimization 

using the same observed rainfall and runoff data.  The goodness-of-fit statistics were 

compared.  Significant changes were identified and guidelines were developed regarding 

the effects of the simplifications in model complexity on the prediction capabilities of the 

model.   

Additional analyses were conducted to explore other effects of complexity on the 

prediction capabilities of the model.  The effects of data anomalies and incomplete data 

sets in hydrologic modeling were established.  The effect of optimizing for specific 

design criteria on overall goodness of fit was demonstrated, and the role of parameter 
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sensitivity in the calibration process was explained.  Guidelines were developed based on 

these findings. 

The guidelines provided as a result of this research can improve current state of 

model development, calibration, and use.  They can be applied to multiple areas of 

modeling and types of models.  Modelers attempting to attain simple models must be 

aware of the sacrifices in goodness of fit that will occur.  Likewise, increasing the 

complexity of a model may not improve its goodness of fit and the calibration efficiency 

may not improve.  Guidelines were provided through this research as to the effects of 

model complexity on the prediction capabilities of a model.   

Regardless of the complexity of the model structure, data complexity can limit the 

prediction capabilities.  Ignorance to the effect of data anomalies may result in poor 

model development and a frustrating calibration process.  Likewise, incomplete data sets 

or data sets selected systematically are most likely not representative of the distribution 

of the population data and may provide model results that are not reflective of reality.  

Suggestions were made through this research to identify and avoid data anomalies as well 

as incomplete and systematically selected data sets.   

Inexperienced calibrators will benefit from the guidelines regarding the 

calibration process and calibration criteria.  Multi-parameter models will be more easily 

calibrated with knowledge of parameter sensitivity.  Calibrators concerned with the 

individual effects of a process, such as in tracing nutrients through the hydrologic cycle, 

will benefit from the suggestions provided within to ensure rational parameter values and 

good overall prediction accuracy.  Models with a variety of uses will be more applicable 

if not calibrated for specific design goals, as shown through this research. 
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7.2 Recommendations 

 While this research has improved the current state of model development and 

calibration, advancements in the field are still needed.  The following are recommended 

research areas that will further progress the field of modeling and calibrating. 

7.2.1 Data Analyses 

1. Compare the effect of varying the distance between rainfall and runoff gauges for the 

calibration data. 

2. Analyze the effects of increasing the data record length data on sensitivities of 

parameters and goodness of fit of the model. 

i) Include measured data for temperature, wind speed, radiation, etc. to better 

represent evaporation. 

ii) Determine the effects of modeling different soil types.  This research only 

modeled clay; however, the model is capable of representing other soil types. 

3. Determine if the data type (i.e., suspended solids, nutrients, etc.) affects the ability of 

incomplete or systematically selected data samples to represent the population data. 

7.2.2 Model Structure 

1. Analyze the effects of using more complicated functions to represent the hydrologic 

processes on the sensitivity of parameters and the goodness of fit of the model. 

i) Represent infiltration with a non-linear function such as Horton’s equation. 

ii) Represent evaporation with a more physically based function such as 

Penman’s equation. 
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2. Extend the analysis to include a water quality model.  Determine the effects of the 

complexity of water quantity on the accuracy of water quality results. 

3. Develop a more accurate portrayal of groundwater flow and Darcy’s law 

i) Actual measurements of hydraulic gradient 

ii) Effect of K-values on results.  K can take on multiple values. 

7.2.3 Model Calibration  

1. Calibrate components individually and compare to overall calibration 

i) Calibrate with available evaporation data to have more accurate parameters 

ii) Groundwater flow data 

2. Determine if the sensitivity of individual components is based on the complexity of 

the functions used to represent them. 

3. Determine the applicability of the model to other watersheds, i.e., different crop type, 

soil type, rainfall and runoff data.   

i) Does the model require recalibration?   

ii) Does the applicability vary based on the model complexity? 

7.2.4 Parameter Sensitivity 

1. Determine what makes certain parameters more sensitive than others. 

2. Remove sensitive parameters and determine how insensitive parameters react. 

3. Develop a method of approximately the standard errors of the parameters. 
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 APPENDICES 

Appendix A: Graphical Analyses of the Hydrologic Model 

Figure A-1a. Graph of predicted and observed runoff versus time for year 1 of calibrated 

Model 1. 
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Figure A-1b. Graph of predicted and observed runoff versus time for year 2 of calibrated 

Model 1. 
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Figure A-1c. Graph of predicted and observed runoff versus time for year 3 of calibrated 

Model 1. 
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Figure A-1d. Graph of predicted and observed runoff versus time for year 4 of calibrated 

Model 1. 
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Figure A-2a. Graph of predicted and observed runoff versus time for year 1 of Model 3A. 
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Figure A-2b. Graph of predicted and observed runoff versus time for year 2 of Model 3A. 
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Figure 2C. Graph of predicted and observed runoff versus time for year 3 of Model 3A. 
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Figure A-2d. Graph of predicted and observed runoff versus time for year 4 of Model 3A. 
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Appendix B: Sensitivity Analyses 

Table 1. Sensitivity Analysis of Model 1 based on a 20% decrease in each parameter 

value.  The table shows the values for each goodness-of-fit criterion for the calibrated 

Model 1 and the changed values for each parameter change. 

  Year WB Runoff Bias R Se/Sy e/y 

1 203 -177 0.62 0.8 -0.19 

2 -59 96 0.32 0.96 0.175 

3 -183 -26 0.71 0.72 -0.04 

4 -29 111 0.58 0.83 0.26 

Model 1 

Total -67 4   0.78 0.0018 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 261 -245 0.58 0.83 -0.26 

2 -40 67 0.45 0.91 0.12 

3 -177 -44 0.7 0.73 -0.08 

4 -17 84 0.72 0.71 0.2 

PSZ1 

Total 28 -138   0.76 -0.06 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 338 -334 0.43 0.92 -0.35 

2 -22 38 0.52 0.87 0.07 

3 -174 -63 0.61 0.81 -0.11 

4 1.5 46 0.74 0.69 0.11 

PSZ2 

Total 143 -312   0.81 -0.12 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 267 -153 0.63 0.79 -0.16 

2 -21 145 0.27 0.98 0.26 

3 -148 34 0.72 0.71 0.06 

4 -12 171 0.55 0.85 0.4 

PPET 

Total 87 197   0.78 0.08 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 208 -176 0.62 0.8 -0.19 

2 -46 101 0.31 0.97 0.18 

3 -170 -16 0.71 0.71 -0.03 

4 -16 124 0.58 0.83 0.29 

PEVZ 

Total -23 33   0.78 0.01 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 218 -192 0.62 0.8 -0.2 

2 -47 84 0.33 0.96 0.15 

3 -171 -38 0.71 0.72 -0.06 

4 -18 99 0.59 0.82 0.23 

PQGZ 

Total -18 -47   0.78 -0.019 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 203 -177 0.62 0.8 -0.19 

2 -59 96 0.32 0.96 0.175 

3 -183 -26 0.71 0.72 -0.04 

4 -29 111 0.58 0.83 0.26 

PEXI 

Total -68 4   0.78 0.0018 
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Parameter Year WB Runoff Bias R Se/Sy e/y 

1 162 -128 0.63 0.79 -0.13 

2 -69 117 0.19 0.998 0.212 

3 -186 -10 0.72 0.71 -0.017 

4 -38 133 0.5 0.88 0.31 

PISZ 

Total -132 112   0.79 0.045 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 203 -177 0.62 0.8 -0.19 

2 -59 96 0.32 0.96 0.175 

3 -183 -26 0.71 0.715 -0.04 

4 -29 111 0.58 0.83 0.26 

PESZ 

Total -68 5   0.78 0.0019 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 197 -183 0.61 0.8 -0.19 

2 -61 82 0.31 0.97 0.15 

3 -187 -37 0.71 0.715 -0.06 

4 -33 103 0.58 0.83 0.24 

PIRZ 

Total -84 -33   0.78 -0.013 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 203 -178 0.62 0.8 -0.19 

2 -57 95 0.32 0.96 0.17 

3 -182 -26 0.71 0.72 -0.044 

4 -27 112 0.58 0.83 0.26 

PERZ 

Total -63 3   0.78 0.0013 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 201 -175 0.62 0.8 -0.19 

2 -65 101 0.32 0.97 0.18 

3 -189 -20 0.71 0.715 -0.034 

4 -35 116 0.58 0.83 0.27 

PIVZ 

Total -88 22   0.78 0.009 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 203 -177 0.62 0.8 -0.19 

2 -59 97 0.32 0.96 0.175 

3 -183 -25 0.71 0.72 -0.04 

4 -29 112 0.58 0.83 0.26 

PXI 

Total -68 6   0.78 0.0024 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 231 -205 0.61 0.81 -0.22 

2 -41 76 0.33 0.96 0.14 

3 -178 -35 0.71 0.72 -0.06 

4 -29 108 0.59 0.82 0.25 

PQVZ 

Total -15 -56   0.78 -0.02 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 201 -176 0.61 0.8 -0.19 

2 -59 96 0.3 0.97 0.175 

3 -182 -26 0.71 0.72 -0.04 

4 -28 110 0.57 0.83 0.26 

PQVZ2 

Total -68 5   0.78 0.0018 
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Table 2. Sensitivity Analysis of Model 7 based on a 20% decrease in each parameter 

value.  The table shows the values for each goodness-of-fit criterion for the calibrated 

Model 1 and the changed values for each parameter change. 

 

Run Year WB Runoff Bias R Se/Sy e/y 

1 258 -196 0.56 0.84 -0.21 

2 -51 73 0.2 0.99 0.13 

3 -200 -41 0.68 0.74 -0.07 

4 -40 113 0.57 0.83 0.27 

  
Model 7 

Calibration C 
  
  Total -33 -50   0.81 -0.02 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 687 -519 0.14 0.995 -0.55 

2 312 -196 0.21 0.98 -0.36 

3 101 -261 0.55 0.84 -0.45 

4 204 -74 0.7 0.72 -0.17 

PSZ1 

Total 1304 -1050   0.88 -0.42 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 783 -619 0 1.11 -0.65 

2 371 -265 0 1.01 -0.48 

3 145 -316 0.37 0.93 -0.54 

4 257 -139 0.63 0.78 -0.33 

PSZ2 

Total 1556 -1339   0.97 0.533 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 672 -440 0.37 0.94 -0.46 

2 340 -134 0.19 0.99 -0.24 

3 157 -203 0.62 0.79 -0.35 

4 242 -7 0.65 0.77 0.02 

PPET 

Total 1411 -784   0.85 -0.31 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 635.0 -441.0 0.4 0.9 -0.5 

2 287.0 -138.0 0.2 1.0 -0.3 

3 88.0 -211.0 0.6 0.8 -0.4 

4 187.0 -21.0 0.7 0.8 -0.1 

PEVZ 

Total 1198.0 -810.0   0.9 -0.3 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 545 -370 0.45 0.9 -0.39 

2 219 -87 0.16 0.99 -0.16 

3 35 -170 0.64 0.77 -0.29 

4 138 19 0.61 0.8 0.04 

PISZ 

Total 938 -608   0.84 -0.24 

Parameter Year WB Runoff Bias R Se/Sy e/y 

1 614 -442 0.36 0.94 -0.47 

2 265 -141 0.2 0.99 -0.26 

3 68 -216 0.61 0.8 -0.37 

4 170 -28 0.65 0.76 -0.07 

PGVZ 

Total 1117 -827   0.85 -0.33 
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Appendix C: Model Simplifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1. Model Parameter Eliminations 
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Appendix D: Grab Sample Analyses Tables 

Table D-1. Grab Sample Analysis for Random Elimination 
% of 

Population Test 
Level of 

Sig. Critical Value 
Calculated 

Value Decision 

One-Sample Z 1% 2.58 0.57602 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 0.34701 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 0.322488 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.062098054 0.93336 Reject 

  5% 0.05   Reject 

50 

  10% 0.05   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -0.46843 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -0.69151 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 -0.39146 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.09 0.906867 Reject 

  5% 0.07   Reject 

25 

  10% 0.06   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 0.02148 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 0.03126 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 0.020046 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.14 0.713786 Reject 

  5% 0.12   Reject 

10 

  10% 0.10   Reject 
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% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -0.16182 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -0.36866 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 -0.157488 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.20 0.39591 Reject 

  5% 0.17   Reject 

5 

  10% 0.15   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -0.04097 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -0.10303 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 -0.040239 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.24 0.137453 Accept 

  5% 0.20   Accept 

2.5 

  10% 0.18   Accept 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -0.54072 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -19.51606 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 -0.537198 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.37 0.217082 Accept 

  5% 0.31   Accept 

1 

  10% 0.28   Accept 
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Table D-2. Grab Sample Analysis Results for Data Points above the Mean Value 
% of 

Population Test 
Level of 

Sig. Critical Value 
Calculated 

Value Decision 

One-Sample Z 1% 2.58 10.084 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

One-Sample t 1% 2.58 2.714 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 7.613 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

KS-1 1% 0.19 0.904 Reject 

  5% 0.16   Reject 

50 

  10% 0.15   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 2.61 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

One-Sample t 1% 2.58 4.883 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 2.567 Accept 

  5% 1.96   Reject 

  10% 1.64   Reject 

KS-1 1% 0.26 0.906 Reject 

  5% 0.22   Reject 

25 

  10% 0.20   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 3.918 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

One-Sample t 1% 2.58 1.315 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 3.767 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

KS-1 1% 0.43 0.904 Reject 

  5% 0.34   Reject 

10 

  10% 0.30   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 
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One-Sample Z 1% 2.58 0.504 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 3.806 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 0.502 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.49 0.912 Reject 

  5% 0.41   Reject 

5 

  10% 0.37   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 1.531 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 1.239 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 1.528 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.83 0.92 Reject 

  5% 0.71   Reject 

2.5 

  10% 0.64   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 1.335 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 1.252 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

2-Sample t 1% 2.58 1.333 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.83 0.91 Reject 

  5% 0.71   Reject 

1 

  10% 0.64   Reject 
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Table D-3. Grab Sample Results for Values below the Mean Value 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -4.173 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

One-Sample t 1% 2.58 -150.843 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 -3.136 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

KS-1 1% 0.06 1.031 Reject 

  5% 0.05   Reject 

50 

  10% 0.05   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -2.346 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -80.093 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 -2.092 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.09 0.951 Reject 

  5% 0.08   Reject 

25 

  10% 0.07   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -1.348 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -62.385 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 -1.296 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.16 0.694 Reject 

  5% 0.13   Reject 

10 

  10% 0.12   Reject 
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% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -1.053 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -46 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 -1.027 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.19 0.481 Reject 

  5% 0.16   Reject 

5 

  10% 0.14   Reject 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -0.6 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -38.343 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 -0.595 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.24 0.175 Accept 

  5% 0.20   Accept 

2.5 

  10% 0.18   Accept 

% of 
Population Test 

Level of 
Sig. Critical Value 

Calculated 
Value Decision 

One-Sample Z 1% 2.58 -0.402 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

One-Sample t 1% 2.58 -30.277 Reject 

  5% 1.96   Reject 

  10% 1.64   Reject 

2-Sample t 1% 2.58 -0.401 Accept 

  5% 1.96   Accept 

  10% 1.64   Accept 

KS-1 1% 0.32 0.183 Accept 

  5% 0.27   Accept 

1 

  10% 0.24   Accept 

 



   178 

 

REFERENCES 
 

Allen, R.G., Pereira, L.S., Raes, D., and M. Smith (1998). Crop Evapotranspiration:  

Guidelines for Computing Crop Water Requirements. Food and Agriculture  

Organization of the United States, Rome. 

Benaman, J. and C.A. Shoemaker (2004). Methodology for Analyzing Ranges of  

 Uncertain Model Parameters and Their Impact on Total Maximum Daily Load  

 Process. Journal of Environmental Engineering 130(6):648-656. 

Bennis, S. and E. Crobeddu (2007). New Runoff Simulation Model for Small Urban  

 Catchments. Journal of Hydrologic Engineering 12(5):540-544. 

Dawdy, D.R. and T. O’Donnell (1965). Mathematical Model of Catchment Behavior.  

 Journal of the Hydraulics Division 91(HY4):123-137. 

Environmental Data Service (1968). Climatic Atlas of the United States. U.S. 

Government Printing Office, Washington, D.C. 

Holtan, H.N., England, C.B., and W.H. Allen, Jr. (1967). Hydrologic Capacities of Soils  

 in Watershed Engineering. International Hydrology Symposium Fort Collins, CO,  

 September:218-226. 

Jenings, M.E., Thomas, Jr., W.O., and H.C. Riggs (1994). Nationwide Summary of U.S.  

 Geological Survey Regional Regression Equations for Estimating Magnitude and  

 Frequency of Floods for Ungaged Sites, 1993.  WRI Report 94-4002. Reston, VA. 

Lu, Sun, McNulty, and Amatya (2005). A comparison of Siz Potential Evapotranspiration  

 Methods for Regional Use in the Southeastern United States. Journal of American  

 Water Resources Association, 41(3):621-633. 

Madramootoo, C.S. and R.S. Broughton (1987). A Computer Simulation Model of  



   179 

 

 surface and Subsurface Flows From Agricultural Areas. Canadian Water  

 Resources Journal 12(1):20-43. 

Mandeville, A.N., O’Connell, P.E., Sutcliffe, J.V., and J.E. Nash (1970). River Flow  

 Forecasting Through Conceptual Models Part III- The Ray Catchment at Grendon  

 Underwood. Journal of Hydrology 11:109-128. 

McCuen, R.H. (2005). Hydrologic Analysis and Design: Third Edition. Prentice Hall, 

 Upper Saddle River. 

Mein, R.G. and B.M. Brown (1978). Sensitivity of Optimized Parameters in Watershed  

 Models. Water Resources Research 114(2):299-303. 

Nash, J.E., and J.V. Sutcliffe (1970). River Flow Forecasting through Conceptual Models  

 Part 1-A Discussion of Principles. Journal of Hydrology 10:282-290. 

O’Connel, P.E., Nash, J.E., and J.P. Farrell (1970). River Flow Forecasting Through  

 Conceptual Models Part II - The Brosna Catchment at Ferbane. Journal of  

 Hydrology 10:317-329. 

Risser, D. W. and Siwiec, S.F., 1996, Water-Quality Assessment of the Lower  

 Susquehanna River Basin, Pennsylvania and Maryland:  Environmental Setting:   

 U.S. Geological Survey Water Resources Investigations Report 94-4245, 70  

 pages. 

Rushton, K.R., Eilers, V.H.M, and R.C. Carter (2006).  Improved Soil Moisture Balance 

Methodology for Recharge Estimation. Journal of Hydrology 318:379-399. 

Saxton, K.E. (1983). Soil Water Hydrology: Simulation for Water Balance  

 Computations. New Approaches in Water Balance Computations (Proceedings of  

the Hamburg Workshop, August 1983). IAHS Publ. no. 148 



   180 

 

Schilling, W. ad L. Fuchs (1986). Errors in Stormwater Modeling- A Quantitative  

 Assessment. Journal of Hydraulic Engineering 112(2):111-123. 

Thomann, R.V. and Mueller, J.A. (1987). Principle of Surface Water Quality Modeling  

 and Control. Harper Row, Cambridge. 

Todd, D.K., and L.W. Mays (2005). Groundwater Hydrology: Third Edition. John Wiley  

 & Sons, Inc., Hoboken. 

 


