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Interaction between viscous fluids models two important phenomena in geo-

physics: (i) the evolution of partially molten rocks, and (ii) the dynamics of Ultralow-

Velocity Zones. Previous attempts to numerically model these behaviors have been

plagued either by poor resolution at the fluid interfaces or high computational costs.

We employ the Fast Multipole Boundary Element Method, which tracks the evo-

lution of the fluid interfaces explicitly and is scalable to large problems, to model

these systems.

The microstructure of partially molten rocks strongly influences the macro-

scopic physical properties. The fractional area of intergranular contact, contiguity,

is a key parameter that controls the elastic strength of the grain network in the

partially molten aggregate. We study the influence of matrix deformation on the

contiguity of an aggregate by carrying out pure shear and simple shear deformations

of an aggregate. We observe that the differential shortening, the normalized differ-

ence between the major and minor axes of grains is inversely related to the ratio



between the principal components of the contiguity tensor.

From the numerical results, we calculate the seismic anisotropy resulting from

melt redistribution during pure and simple shear deformation. During deformation,

the melt is expelled from tubules along three grain corners to films along grain

edges. The initially isotropic fractional area of intergranular contact, contiguity,

becomes anisotropic due to deformation. Consequently, the component of contiguity

evaluated on the plane parallel to the axis of maximum compressive stress decreases.

We demonstrate that the observed global shear wave anisotropy and shear wave

speed reduction of the Lithosphere-Asthenosphere Boundary are best explained by

0.1 vol% partial melt distributed in horizontal films created by deformation.

We use our microsimulation in conjunction with a large scale mantle deep

Earth simulation to gain insight into the formation of anisotropy within dense and

transient regions known as Ultralow-Velocity Zones, where there is an observed

slowdown of shear waves. The results demonstrate a geometric steady state of the

dynamic reservoirs by mechanical processes. Within the steady state Ultralow-

Velocity Zones, we find significant anisotropy that can explain the speed reduction

in shear waves passing through the region.
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Preface

Numerical models are a critical component to scientific research. Modern sim-

ulations allow scientists and engineers to virtually experiment and analyze physical

systems too large, too extreme, or too costly for a laboratory. Computational re-

sources, which have been increasing exponentially, allow for novel high resolution

models. Advancements in mathematics, computer science, and the sciences have

led to interdisciplinary ventures where methods are derived, designed, and tuned

for specific applications. This work is an embodiment of the interaction across skill

sets and knowledge bases. Specifically, this thesis connects mathematical physics,

numerical analysis, computer science, and geophysics to implement an algorithm for

simulating physical behavior at new larger scales.

The thesis uses the Fast Multipole Boundary Element Method to simulate the

flow of and interaction between multiple fluids. The Boundary Element Method

is specifically chosen for its ability to model sharp interfaces between fluids more

accurately than domain-based numerical methods. The Fast Multipole Method

enables simulations to scale from the current state of handling several fluids to the

presented work involving thousands.

I divide my work into five chapters. Chapter 1 provides motivation for the

work and an overview of the research. Chapter 2 presents governing equations, nu-

merical methods, and acceleration techniques used in the Fast Multipole Boundary

Element Method. Chapters 3 & 4 are derived from a two part article, Development of

anisotropic texture in deforming partially molten aggregates I: Theory and fast multi-

pole boundary element method and Development of anisotropic texture in deforming

ii



partially molten aggregates II: Implications for the lithosphere-asthenosphere bound-

ary, submitted to the Journal of Geophysical Research. The chapters use numerical

experiments and analysis related to the microstructure for the Earth’s upper man-

tle to make predictions about the microstructure based on seismic measurements.

Chapter 5 uses the numerical implementation to model the evolution, coalescence,

and anisotropy of large structures located deep in the Earth’s mantle.
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Chapter 1: Introduction

Creeping motion of viscous fluids, governed by the conservation of mass, mo-

mentum, and energy, controls the pattern and evolution of flow in a wide variety of

natural situations and industrial applications. For example, microstructural evolu-

tion of partially molten rocks, deformation of red blood cells near capillary walls,

and micro-fluid flow in chemical engineering are governed by the interaction be-

tween a large number of viscous particles embedded in a viscous medium. While

governed by the classical Partial Differential Equations (PDEs) of Stokes flow, the

many-body interaction inherent to these situations renders simulating such flows

computationally challenging.

In geophysical modeling, similar to many other applications, information re-

garding the shape of each participating particle or grain is required. While domain

discretization methods such as Finite Element Method (FEM), Finite Difference

Method (FDM), or Finite Volume Method (FVM) can be used to provide scalable

and stable numerical implementation of flows within a domain, tracking the shapes

of multiple interfaces in a multiphase flow is not computationally feasible in these

techniques.

The Boundary Element Method (BEM) addresses the issue of dynamic inter-
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action between adjacent particles, leading to their deformation, by converting the

governing PDEs into a set of Boundary Integral Equations (BIEs) on the interface of

each particle. By coupling the BIEs with level set equations that govern the evolu-

tion of each particle shape, we model the interaction between a number of particles

and their resulting deformation. While the BIE reduces the dimension of the prob-

lem by moving the calculation from the domain to the boundary, the calculations

become computationally expensive as the number of particles grows, increasing the

Degrees of Freedom (DOFs) of the discretized set of algebraic equations. The com-

putational expense of the BEM poses a challenge in carrying out simulations with a

large number of grains. The work in this thesis resolves this issue by implementing

the Fast Multipole Boundary Element Method (FMBEM), which reduces the com-

putational cost of solving the dense system of linear equations resulting from the

discretization of the BIE by employing fast multipole expansions.

This is the first collection of work to use the FMBEM to address rock physics

with direct geophysical applications. We follow a majority of computational geo-

physical work and use two-dimensional models to represent three-dimensional phys-

ical systems. The results are often representative of higher dimensional behavior

in addition to being computationally less demanding. Comparisons between two-

and three-dimensional models show qualitative similarities between results. Cer-

tainly two-dimensional models are subject to error, specifically when dealing with

interface measurements. However, the novelty of our approach and current state of

two-dimensional geophysical simulations makes this an acceptable choice.

Chapter 2 provides an overview of the derivation of the BEM and the numerical
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methods. We present the strong form of the PDEs governing the two-dimensional

flow for viscous fluids. From the dimensional PDEs, we derive dimensionless BIEs

describing two-dimensional flow involving multiple viscous particles with boundary

conditions appropriate for geophysical situations. We highlight the discretization of

the geometry and BIEs. Finally, we describe the application of the Fast Multipole

Method (FMM) acceleration technique to the BIE. The numerical approximation

technique is central to our ability to simulate the high resolution behavior of many

fluids in later chapters.

In the Earth’s deep interior, rocks deform in a time-dependent, viscous man-

ner. If partially molten, the distribution of the melt within the network of mineral

grains is highly sensitive to the state of stress. Chapter 3 presents simulations of

the evolution of melt distribution in a partially molten rock under an applied stress.

This chapter is under revision as the Journal of Geophysical Research with the

title “Development of Anisotropic Contiguity in Deforming Partially Molten Aggre-

gates I: Theory and Fast Multipole Boundary Element Method” [Drombosky and

Hier-Majumder , 2014]. The geometry of melt distribution strongly influences the

macroscopic physical properties through the fractional area of intergranular contact,

contiguity. Contiguity controls the elastic strength of the grain network in the par-

tially molten aggregate, influencing the speed of seismic waves traveling through the

aggregate.

In this chapter, we study the influence of matrix deformation on the contiguity

of an aggregate. We employ an FMBEM model that tracks the evolution of grain

shape and contiguity during deformation. We carry out a pure shear deformation of
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an aggregate of 1200 grains up to 47% shortening and a simple shear deformation

of 900 grains up to a shear strain of 0.75. Our results demonstrate that the initially

isotropic, scalar contiguity becomes strongly anisotropic during deformation. We

also observe that the differential shortening, the normalized difference between the

major and minor axes of grains, is inversely related to the ratio between the principal

components of the contiguity tensor. In pure shear, the principal components of the

contiguity tensor remain parallel to the irrotational principal axes of the applied

strain. In simple shear, however, the principal components of the contiguity tensor

rotate continually during the course of deformation in this study.

As the contiguity of partially molten rocks becomes anisotropic, the speed of

seismic waves traveling through these rocks varies based on their directions of prop-

agation and polarization, a phenomenon called seismic anisotropy. In Chapter 4,

we calculate the seismic anisotropy resulting from melt redistribution during pure

and simple shear deformation. This chapter is under revision as the Journal of Geo-

physical Research with the title “Development of Anisotropic Contiguity in Deform-

ing Partially Molten Aggregates II: Implications for the Lithosphere-Asthenosphere

Boundary” [Hier-Majumder and Drombosky , 2014]. During deformation, the melt

is expelled from tubules along three grain corners to films along grain edges. The

initially isotropic contiguity becomes anisotropic due to deformation. Consequently,

the component of contiguity evaluated on the plane parallel to the axis of maximum

compressive stress decreases. In pure shear deformation, the principal contiguity di-

rections remain stationary while they rotate during simple shear. The ratio between

the principal components of the contiguity tensor decreases from 1 in an undeformed
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aggregate to 0.1 after 45% shortening in pure shear and to 0.3 after a shear strain

of 0.75 in simple shear. In both pure and simple shear experiments, anisotropy

in the shear wave velocity increases with the strain in a strongly nonlinear fash-

ion. In pure shear deformation, the steady state microstructure produces nearly 3%

anisotropy between shear waves vibrating perpendicular and parallel to the planes

of melt films. We demonstrate that the observed global shear wave anisotropy and

shear wave speed reduction of Earth’s Lithosphere-Asthenosphere Boundary (LAB)

are best explained by 0.1 vol% partial melt distributed in horizontal films created

by deformation. Chapters 3 and 4 are currently in revision in the Journal of Geo-

physical Research.

The bottom of the Earth’s mantle is marked by a number of dynamic struc-

tures. Two large antipodal structures in the lower mantle, geographically located be-

neath the Pacific Ocean and Africa and termed Large Low Shear Velocity Provinces

(LLSVPs), are caused by thermal and chemical anomalies in the mantle. Along the

bottom periphery of the LLSVPs, a patchwork of dense, low-viscosity structures,

termed Ultralow-Velocity Zones (ULVZs), have been observed in seismic records. In

Chapter 5, we simulate the evolution of two-dimensional ULVZ patches driven by

a cavity-like flow in the LLSVP. Driven by a balance between buoyancy forces and

entrainment by circulation within the LLSVP, we find that only high density UL-

VZs accumulate near the bottom corner of the LLSVPs. In the absence of a density

contrast, the ULVZs are stirred and mixed within the LLSVP such that they won’t

be detectable by current seismic methods. We also find the dominant strain within

the ULVZ patches varies based on the location of the ULVZ within the LLSVP.
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Combined with the results from Chapters 3 and 4, we predict the nature of seismic

anisotropy will also be distinct based on the locations of the ULVZs.
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Chapter 2: Governing Equations and Numerical Methods

The Boundary Element Method (BEM) provides a boundary-only technique

for solving Partial Differential Equations (PDEs) describing the flow of multiple

viscous fluids through a collection of Boundary Integral Equations (BIEs). The BIEs

are discretized, leading to a linear system of algebraic equations, which can be solved

numerically. Näıve implementation of the BEM scales poorly for large simulations.

The Fast Multipole Method (FMM) approximation technique accelerates the BEM,

allowing the method to be applied to high resolution simulations involving many

viscous fluids.

This chapter provides an overview of the Stokes flow equations and Fast Mul-

tipole Boundary Element Method (FMBEM) for the geophysical simulations pre-

sented in Chapters 3, 4, and 5. Section 2.1 presents the strong form of the govern-

ing equations for Stokes and creeping flow. Section 2.2 provides the derivation of

a collection of BIEs used in the BEM. We provide an overview of discretization in

Section 2.3. Section 2.4 presents details on the application of the FMM to the BEM

for Stokes flow. Finally, Section 2.5 displays results of validation and analysis of the

algorithm.
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2.1 Governing equations

In a viscous, incompressible, creeping fluid, conservation of mass leads to the

PDE,

ui,i(x) = 0 x ∈ Ω, (2.1)

where ui is the i-th component of velocity. In the absence of acceleration, the

momentum conservation equation arises from a balance between dynamic pressure,

viscous deformation, and body forces, leading to

−P,i(x) + µui,jj(x) + ρgi = 0 x ∈ Ω, (2.2)

where P is the pressure, ui is the velocity, µ is the constant viscosity, ρ is the density

of the fluid, and gi is the gravity. Equation (2.2) is valid for any point x in the open

set Ω.

To convert the momentum conservation equation (2.2) into a BIE, it is useful

to introduce the stress tensor, σij , defined as

σij = −δijP +
µ

2
(ui,j + uj,i) , (2.3)

where δij is the Kronecker delta function.

Differentiating (2.3) with respect to xi and substituting into (2.2) yields the
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conservation of momentum equation in the presence of a body force,

σij,i + ρgj = 0, (2.4)

which balances the forces generated from changes in the fluid stress against the force

from gravitational acceleration.

The evolution of a viscous particle is described using the kinematic condition.

Let Ω′ ⊂ Ω with interface Γ′ = ∂Ω′ defined by the level set F (x, t) = 0. Incompress-

ibility of the fluid dictates that the volume of the particle must remain constant

while the shape changes due to deformation, leading to

F,t(x, t) + ui(x, t)F,i(x, t) = 0. (2.5)

The gradient of the level set F,i is in the direction of the outward-facing normal

vector, by choosing F (x, t) < 0 if x ∈ Ω′ and F (x, t) > 0 if x /∈ Ω′.

2.2 Boundary Integral Equations

The BEM requires the development of BIEs from the governing PDEs for

mass and momentum conservation. The following sections present the steps taken

to developing this BIE from the PDEs. Section 2.2.1 develops the BIEs for a homo-

geneous fluid in a single domain. The BIEs for the special case multipole domains,

each containing a homogeneous fluid, are derived from the single domain equations

in Section 2.2.2. Section 2.2.3 describes the boundary conditions applied at the in-
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terface between distinct fluids. Section 2.2.4 covers nondimensionalization schemes

used, based on boundary conditions, to more amicably map physical problems to a

computer simulation.

2.2.1 Single domain

The BIE for a homogeneous viscous fluid relates the stresses and velocities

along the boundary. Consider two solutions to the governing PDE (2.2) designated

as ui and u
′
i, respectively. The reciprocity equation relates these two velocities with

their corresponding stress tensors, σij and σ
′
ij , by [Pozrikidis , 1991]

u′i,j(x)σij,j(x)− ui,j(x)σ
′
ij,j(x) = 0 x ∈ Ω. (2.6)

Integrating (2.6) over the domain and applying Gauss’s theorem produces a

boundary integral relationship between the two solutions:

0 =

∫

Γ

[
u′i(x)σij(x)− ui(x)σ

′
ij(x)

]
n̂j(x) dΓ, (2.7)

where Γ = ∂Ω is the boundary of the domain and n̂i is the outward-facing unit

normal vector. The integral reciprocity equation in (2.7) is the first step toward

deriving the BIE for the Stokes flow equations. Next, carefully chosen velocity and

stress fields for the prime fluid in (2.7) extract information about the unknown flow.

A canonical choice for the prime solution is the fundamental solution to the
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forced Stokes flow equation,

−P,i(x) + µui,jj(x) + giδ(x− x0) = 0 x ∈ Ω, (2.8)

where δ is the Dirac delta function representing a point source force at x0, an

arbitrary location that may or may not be in the domain. Because the Dirac delta

is a singularity distributed around x0, the point x0 is referred to as a pole point.

The velocity solution to (2.8) is given by

ui(x) =
1

4πµ
Uij(x,x0)gj, (2.9)

where Uij is the Green’s function for the velocity. The corresponding pressure and

stress are written as

P (x) =
1

4π
Pj(x,x0)gj (2.10)

σik(x) =
1

4π
Tijk(x,x0)gj, (2.11)

where Pj is the Green’s function for the pressure and Tijk is the Green’s function

for the stress. Green’s functions Uij, Pj , and Tijk are referred to as the Stokeslet,

Pressurelet, and Stresslet, respectively.

The expression for the Stokeslet depends on the domain shape and boundary

conditions. For example, shear flow in a doubly periodic domain and motion of a vis-

cous particle against a wall can modify the form of the Stokeslet tensor [Pozrikidis ,
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1990; Li and Pozrikidis , 1996]. Here we focus on the free-space Green’s function for

an infinite domain given by

Uij(x,x0) = −δij log(r) +
x̂ix̂j
r2

+ cij , (2.12)

where x̂ = x−x0, r = ‖x̂‖2, and cij is an arbitrary constant tensor. A more detailed

discussion on the choice for Green’s function is given in Appendix A.

The Pressurelet and Stresslet are derived by inserting (2.12) into (2.8) and

(2.3), while expressing the pressure and stress given by equations (2.10) and (2.11),

respectively, leading to

Pi(x,x0) = 2
x̂i
r2

(2.13)

Tijk(x,x0) = −4
x̂ix̂j x̂k
r4

. (2.14)

Next, we replace the velocity and stress in the reciprocity equation (2.6) by the

expressions in equations (2.9) and (2.11), and substitute the Stokeslet and Stresslet

tensors from equations (2.12) and (2.14) leading to

Uij,k(x,x0)σik,k(x)− µui,k(x)Tijk,k(x,x0) = 0 x ∈ Ω. (2.15)

Here the arbitrary gj from (2.9) and (2.11) has been dropped, resulting in a set of

reciprocity equations.

Integrating (2.15) over the domain and applying Gauss’s theorem to arrive at
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a BIE requires extra care since the solutions composed of Uij(x,x0) and Tijk(x,x0)

have a singularity at x = x0. Three cases lead to three separate BIEs when

1. x0 /∈ Ω, the pole point is neither in the computational domain nor on the

boundary.

2. x0 ∈ Ω, the pole point is in the computational domain.

3. x0 ∈ Γ, the pole point is on the boundary of the computational domain.

In the simplest case, x0 /∈ Ω, integration over Ω and application of Gauss’s

theorem for (2.15) is straightforward, resulting in

0 =

∫

Γ

Uij(x,x0)fi(x) dΓ − µ

∫

Γ

ui(x)Tijk(x,x0)n̂k(x) dΓ x0 /∈ Ω, (2.16)

where fi = σikn̂k is the traction along the boundary.

Each of the two integrals in equation (2.16) has a unique physical interpre-

tation. The first integral on the right hand side, commonly called the single-layer

potential, represents the distribution of the surface forces of the unknown flow field

along the boundary. The second integral on the right hand side, commonly called

the double-layer potential, arises from stresses at the boundary.

In the next case, we consider x0 ∈ Ω. Let Ωǫ = B(x0, ǫ) be the ball of radius

ǫ centered at x0 with ǫ small enough such that Ωǫ ⊂ Ω, as illustrated in Figure

2.1. Following the methods outlined by Pozrikidis [1991], we carry out the integral

as ǫ→ 0. Then applying the divergence theorem, boundary integral representation
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Figure 2.1: The original domain, Ω, has an ǫ-ball centered at x0, removing the singularity
from the new domain, Ω′. The boundary of the original domain is labeled Γ, and the
boundary of the ǫ-ball is labeled Γǫ. The vectors along the boundaries represent the
direction of the unit normal vector pointing outward from Ω′.

becomes

uj(x0) =
1

4πµ

∫

Γ

Uij(x,x0)fi(x) dΓ − 1

4π

∫

Γ

ui(x)Tijk(x,x0)n̂k dΓ x0 ∈ Ω.

(2.17)

The BIE in (2.17) is used to calculate the velocity of a fluid at any point within

the computational domain once the velocity at the boundary is known. We use this

equation to visualize the velocity field within the fluid domain.

The final BIE arises when x0 ∈ Γ. We perform a similar analysis as in the

x0 ∈ Ω case, defining the sphere of radius ǫ around the pole point. Next, we integrate

(2.15) over Ω′, apply Gauss’s theorem, and take the limit ǫ → 0, approaching the

boundary from both inside and outside the volume. Since both limits should yield
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the same result as the boundary is approached, we obtain

uj(x0) =
1

2πµ

∫

Γ

Uij(x,x0)fi(x) dΓ − 1

2π

∫ PV

Γ

ui(x)Tijk(x,x0)n̂k(x) dΓ x0 ∈ Γ

(2.18)

when the normal vector on Γ is continuous in a neighborhood about x0, i.e., Γ is a

Lyapunov surface.

The above derivation of the Stokes flow BIEs is valid when the viscosity, den-

sity, and body force are constant throughout the domain. A more general analysis

of the strong form of the PDEs is required if these terms are a function of position.

The special case where µ and ρ are piecewise constant throughout the domain is

covered in the next section.

2.2.2 Multiple domains

The BIEs for a fluid that has piecewise constant physical properties are devel-

oped by combining the BIEs derived for a single homogeneous fluid and enforcing

boundary conditions between the fluid domains that reflect the material discontinu-

ities. Suppose there is an infinite domain Ω1 containing a homogeneous fluid with

viscosity µ1. Within the infinite domain is a simply- or multi-connected bounded

domain Ω2 containing a second homogeneous fluid with viscosity µ2. We then define

Γ to be the interface between the two fluids.

The no-slip boundary condition is applied at the interface, enforcing continuity
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of velocity across the interface; that is,

u
(1)
i (x)|

Γ
= u

(2)
i (x)|

Γ
, (2.19)

where the superscript (p) indicates the property corresponds with fluid in Ωp. No-

slip boundary conditions are used when stress generated by physical discontinuities

between the two domains drives fluid velocities. This is appropriate when studying

the interaction of viscous fluids.

Suppose the pole point is centered at x0 ∈ Ω1. Then, we can express this

velocity both as an interior flow for Ω1 using (2.17) and an exterior flow for Ω2

by using equation (2.16). Combining these equations, we can obtain an integral

equation for the velocity u
(1)
j (x0), internal to the domain Ω1:

u
(1)
j (x0) = − 1

4πµ1

∫

Γ

∆fi(x)Uij(x,x0) dΓ +
1− λ

4π

∫

Γ

ui(x)Tijk(x,x0)n̂k dΓ,

(2.20)

where ∆fi = f (1) − f (2) is the interfacial stress jump and λ = µ2/µ1 is the viscosity

ratio between the fluids.

Next, we repeat the same process to obtain an integral equation for the velocity

u
(2)
j (x0) within the domain Ω2:

u
(2)
j (x0) = − 1

4πµ1λ

∫

Γ

∆fi(x)Uij(x,x0) dΓ +
1− λ

4πλ

∫

Γ

ui(x)Tijk(x,x0)n̂k dΓ.

(2.21)
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Finally, we notice that when the pole point lies on the boundary, the BIE can be

written in a manner similar to (2.18) using both domains Ω1 and Ω2. Since both

velocities are equal at the boundary due to the no-slip boundary condition, we arrive

at the BIE for the velocity at the interface,

uj(x0) =
2

1 + λ

[
− 1

4πµ1

∫

Γ

∆fi(x)Uij(x,x0) dΓ

+
1− λ

4π

∫ PV

Γ

ui(x)Tijk(x,x0)n̂k dΓ

]
. (2.22)

As before, there is the assumption that Γ is a Lyapunov surface.

Equations (2.20), (2.21), and (2.22) may be generalized for an infinite sus-

pending fluid with viscosity µs containing P distinct fluids where the p-th fluid has

viscosity µp by adding the relationship between the velocity and stress along the

boundary from the perspective of that particle. As before, the bounded domain of

the p-th fluid Ωp may be single- or multi-connected. In addition, a known far-field

velocity, u∞j can be applied to the system, leading to the BIEs

uj(x0) =u
∞
j (x0)−

1

4πµs

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+

P∑

p=1

1− λp
4π

∫

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp x0 ∈ Ωs, (2.23)

17



uj(x0) =
1

λq
u∞j (x0)−

1

4πµsλq

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+

P∑

p=1

1− λp
4πλq

∫

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp x0 ∈ Ωq, (2.24)

uj(x0) =
2

1 + λq

[
u∞j (x0)−

1

4πµs

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+
P∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
x0 ∈ Γq, (2.25)

for the cases where the pole point is in the infinite suspending fluid, Ωs; in a bounded

fluid, Ωp; and on a fluid interface, Γp.

The three BIEs (2.23), (2.24), and (2.25) are the most general integral equa-

tions for multiple viscous fluids with no-slip boundary conditions. Although the

equations were derived for bounded fluids that directly interface with an infinite

suspending fluid, the equations support nested fluids with minor changes to the def-

inition of the interfacial stress jump, viscosity ratio, and direction of normal vector.

Two steps remain before discretizing the BIEs and obtaining numerical solu-

tions. First, Section 2.2.3 derives the interfacial stress jump based on the physical

model of the interface and stresses that arise from discontinuities of physical prop-

erties across the interface. Second, the BIEs in this section are dimensional; that is,

the variables have units attached to them. The equations may be used to describe

fluids from physical systems that differ by orders of magnitude. Section 2.2.4 covers

the derivation of dimensionless BIEs that have normalized length and time scales
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appropriate for numerical solvers.

2.2.3 Boundary conditions

Boundary conditions between the embedded fluids reflect the discontinuities of

physical properties between the fluids while also enforcing continuity of the velocity

and momentum throughout the aggregate. Already the no-slip boundary condition

has been applied to the derivation of the BIEs in Section 2.2.2. No-slip boundary

conditions are used when stress generated by the physical discontinuities between

the two domains drives fluid velocities.

Conservation of momentum requires that the stress be balanced across the

interface of the fluids. Each term in (2.4) may contain a discontinuity at the fluid

interface due to discrete jumps in physical properties. The interfacial surface force

term becomes

∆fi = f
(s)
i − f

(p)
i =

[
σ
(s)
ij + ρsgkxkδij − σ

(p)
ij − ρpgkxkδij

]
n̂j . (2.26)

Regrouping the stress and density terms, the interfacial stress jump may be written

as

∆fi = ∆ρgkxkδijn̂j +∆σijn̂j , (2.27)

where ∆ρ = ρs−ρp and ∆σij = σ
(s)
ij −σ(p)

ij . The first term represents buoyancy forces

due to the density contrast between the fluids, with the second term representing
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Figure 2.2: The portion of the boundary Γp,ǫ of the larger boundary Γp, which separates
the p-th fluid from the suspension. The unit normal vector to the boundary is represented
by n̂, and the vector t is the unit vector tangent to the boundary of Γp,ǫ on the fluid
interface.

stresses driven by the physical properties of the interface.

Resolving the fluid stress jump, ∆σij , depends on the physical properties of

the interface. Derivation of this term for common types of interfaces is covered in

Pozrikidis [2001]. Here we examine the interfacial surface stresses originating from

isotropic surface tension along a clean interface. The force balance between the

surface tension γ and the normal fluid stress jump ∆σijn̂j on a small element of the

interface is given by

∫

Γp,ǫ

∆σn̂ dΓp,ǫ =

∫

∂Γp,ǫ

γn̂× t̂ d∂Γp,ǫ

=

∫

Γp,ǫ

[n̂∇ · (γn̂)−∇ (γn̂) · n̂] dΓp,ǫ, (2.28)

where Γp,ǫ is a small continuous portion of the interface Γp, ∂Γp,ǫ is the boundary

of the interface, and t̂ is the unit tangent vector to the interface as shown in Figure

2.2. Using a few identities, we can rewrite equation (2.28) in the indicial notation
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as

∆σijn̂j = γκn̂i − (δij − n̂in̂j) γ,j, (2.29)

where the principal curvature is given by κ = n̂i,i.

The stresses induced by the two terms in (2.29) are referred to as the Laplace

and Marangoni terms, respectively. The Laplace term arises from curvature driven

surface tension force and describes the forces normal to the interface due to surface

tension. The second term, often called the Marangoni term, arises from surface ten-

sion variations along the interface. The Marangoni term represents forces tangential

to the interface, as indicated by the tangential projection operator, (δij−n̂in̂j). Vari-

ations in the tension on the grain surface can arise from either crystal anisotropy or

midrange forces generated by interactions with neighboring grains [Kang , 2005].

Combining (2.27) and (2.29), we can express the stress jump across the inter-

face as a function of buoyancy forces and isotropic surface tension,

∆fi = ∆ρgjxjn̂i + γκn̂i − (δij − n̂in̂j) γ,j. (2.30)

We use variations of (2.30) for the numerical experiments in Chapters 3, 4, and 5

where we assume fluid interfaces are clean.
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2.2.4 Nondimensionalization

The BIEs in equations (2.23), (2.24), and (2.25) may be used to describe fluids

that cover a wide range of physical characteristics. For instance, the length scale of

features of interest may be on the scale of micrometers or tens of kilometers. Simi-

larly, the time scales of the fluids may range from meters per second to centimeters

per year. Handling the extreme range of physical properties is a computational chal-

lenge. The nondimensionalization process creates dimensionless BIEs, which have

length and time scales appropriate for computation while capturing the influence of

the physical parameters through a collection of dimensionless parameters.

This section describes three nondimensionalization processes of (2.25) based

on the interfacial stress jump described in Section 2.2.3. The three dimension-

less equations will represent the cases when the interfacial stress jump is driven by

buoyancy and surface tension, buoyancy, and surface tension. Derivation of dimen-

sionless forms of the BIE for a point in the infinite suspension and in the domain of

a bounded fluid are straightforward from the dimensionless form of (2.25).

Nondimensionalization performs a change of variables in the BIE. The new

variables are “dimensionless,” lacking any physical units originally present. We

first define the change of variables for the position and velocity variables. The

relationships between the dimensional and dimensionless values are given by

xi = xcx
′
i (2.31)

ui = ucu
′
i, (2.32)
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where the non-prime variables are dimensional and the prime variables are dimen-

sionless. The scalars xc and uc are the characteristic length and velocity scales,

respectively. Characteristic scales represent the typical order of magnitude of values

in the dimensional problem.

The dimensionless stress jump condition (2.30) can be expressed as

∆f ′
i = Bpĝjx

′
jn̂i + γ′κ′n̂i − (δij − n̂in̂j) γ

′
,j. (2.33)

The dimensionless coefficient in front of the buoyancy term is referred to as the

Bond number, which represents the ratio between the buoyancy forces and surface

tension, given by

Bp =
∆ρpgx

2
c

γc
. (2.34)

As implied by the p subscripts, the Bond number may differ at each fluid inter-

face. Specifically, a change in a Bond number represents a difference in the density

contrast between two fluids.

Setting the characteristic velocity to uc =
γc
µs
, we arrive at the dimensionless

BIE when both buoyancy and surface tension forces are present:

uj(x0) =
2

1 + λq

[
u∞j (x0)−

1

4π

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓ
′
p

+
P∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
x0 ∈ Γq. (2.35)
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If buoyancy forces are significantly larger than surface tension forces, the sur-

face tension is approximated by γ ≈ 0, changing the interfacial force term. The

surface force is rewritten as

∆fi = ∆ρgxc
[
ĝjx

′
jn̂i

]
, (2.36)

where the dimensionless values in the square brackets compose the dimensionless

interfacial stress, ∆f ′
i . The BIE is rewritten as

uj(x0) =
2

1 + λq

[
u∞j (x0)−

P∑

p=1

Rp

4π

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+

P∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
x0 ∈ Γq. (2.37)

The dimensionless coefficient to the single-layer potential integral is commonly re-

ferred to as the compositional Rayleigh number, which represents the ratio of buoy-

ancy terms to the viscous flow and is given by

Rp =
∆ρpgx

2
c

ucµs

. (2.38)

As implied by the p subscripts, the compositional Rayleigh number may differ at

each fluid interface. Specifically, a change in the compositional Rayleigh number

represents a difference in the density contrast between two fluids.

Finally, when buoyancy is negligible compared to surface tension, implying
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Bp ≪ 1, we obtain a different form of the BIE,

uj(x0) =
2

1 + λq

[
u∞j (x0)−

1

4πCa

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+
P∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
, x0 ∈ Γq, (2.39)

where the dimensionless capillary number,

Ca =
µsuc
γc

, (2.40)

represents the ratio between the viscous forces and surface tension.

Equations (2.35), (2.37), and (2.39) are dimensionless versions of the dimen-

sional BIE from (2.25). In practice, the BIE for the pole point located on the

boundary is the most important. These equations are used to obtain numerical so-

lutions on the fluid interfaces. Then, if desired, the other BIEs are used to compute

the velocities in the domain through a post-processing step. The dimensionless ver-

sions of the other BIEs are developed in the same straightforward manner and have

been omitted for brevity.

2.3 Discretization

Solving the BIEs presented in Section 2.2 requires discretizing the geometry

and integral equations to form an algebraic linear system of equations. Section 2.3.1

discusses the details of the discretization, interpolation, and adaptive refinement

methods of fluid interface in two dimensions. Section 2.3.2 covers the discretization
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Figure 2.3: Possible arrangements for a geometry containing multiple fluids with various
properties contained within an infinite suspending fluid, Ωs. The different domains may
have the same physical properties (denoted by color) as Ω1 and Ω4, or different properties
as with Ω2 and Ω3. A bounded fluid may be completely contained within another bounded
fluid as is the case with Ω3 and Ω2.

of the BIEs and produces a linear system of equations used to solve for the unknown

velocities, as well as the numerical implementation of the kinematic condition for

creeping flow.

2.3.1 Geometry

The discretization scheme for the geometry must be able to represent sufficiently-

complicated geometries that capture the behavior of fluids encountered in physical

models. In addition, an interpolation scheme for the discretized geometry is re-

quired for the integration of the BIEs. The discretization must also be adaptable,

allowing for high-resolution features of the fluid interfaces to form while minimiz-

ing computational costs for representing low resolution geometry. Figure 2.3 is an

example geometry that may be used in conjunction with the Stokes flow BIEs for

multiple fluids presented in Section 2.2. Each closed curve contains a homogeneous

fluid with properties distinct from adjacent fluids. Figure 2.4 shows the discretiza-
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Figure 2.4: Discretization of the p-th fluid interface, Γp. The nodes are ordered coun-
terclockwise with cyclic indexing used for convenience. The e-th boundary element of the
fluid is denoted Γp,e and is the segment between xp,e and xp,e+1.

tion of a closed curve Γp into np boundary nodes. The nodes, labeled xp,1, . . . ,xp,np

and oriented in the counterclockwise direction, are indexed in cyclical fashion, e.g.,

xp,0 = xp,np
and xp,np+1 = xp,1. The segment between consecutive nodes xp,e and

xp,e+1 is the boundary element denoted by Γp,e. We interpolate the position within

each boundary element using cubic spline interpolation, thus ensuring the interface

is a Lyapunov surface with a continuous normal vector along the entire boundary.

The distance between the nodes, δ, dictates the resolution of the geometry.

There is an inherent link between the curvature of the geometry and the δ required

to sufficiently represent the features. We follow the work of Dritschel [1989], which

developed an optimal empirical relationship between the curvature and node den-

sity. It was found that δ ∝ κ
2

3 provided the best representation of high resolution

geometry while minimizing computational cost.

In addition to the relationship between node spacing and curvature, we place

bounds on the maximum and minimum boundary element length and bounds on
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the maximum-allowed curvature in the interface. Specifically, the high curvature

features correspond to high-resolution features in the interface. If the curvature at

a node rises beyond the predetermined threshold, surgery is performed to reduce

the curvature. The modification creates error in the model; however, that error is

deemed acceptable as any numerical model is only capable of finite resolution.

2.3.2 Linear system

The BIE (2.25) is a Fredholm equation of the second type, which can be

discretized and solved using the method of collocation. In the method of collocation,

the field point is placed on a boundary node. Then, the pole point is placed over

the boundary nodes. Each of the integrals on each particle is thus expressed as a

sum of integrals carried out on the boundary elements. The majority of boundary

element integrals are regular and integrated using the standard eight-point Gaussian

quadrature.

However, the integrals become singular when the pole point xq,f is located

on the boundary element. Due to the choice of geometry discretization, singular

integration occurs when integrating over Γq,f−1 and Γq,f . For each pole point there

are four boundary element integrals that must be handled with care. The single-

layer potential integrals are weakly singular with the integral being finite despite the

integrand diverging. The double-layer potential integrals are strongly singular with

the integral being finite only in the sense of Cauchy principal value. Both types of

singularities must be handled with care when integrating numerically.
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We employ the radial integration method in two dimensions (RIM) introduced

byGao [2006] to numerically approximate the weakly and strongly singular integrals.

The RIM separates the singular integral into finite and infinite parts by performing

a change of variables and approximating the integrand as a power series. The new

integral is written completely in terms of the radial distance from the singularity,

which allows for the separation into singular and non-singular components. For

weakly singular integrals, the singular integral goes to zero. The singular integral

for strongly singular integrals is exactly the portion of the integral that becomes

zero in the sense of Cauchy principal value.

There are N =
∑P

p=1 np summations over boundary elements for each pole

point xq,f as well as N entries in the vectors representing the interfacial stress

jump and velocity at the interface. Taken together, the boundary integrals may be

represented as square matrix multiplications

U∆f and Tu, (2.41)

representing the single- and double-layer potential integrals, respectively. Each entry

in U or T represents an evaluation of a boundary element integral. The matrices

encompass information about the specific kernel function as well as the interpolation

scheme for the variables along the boundary. The vectors u and ∆f represent the

unknown velocity and interfacial stress jump at pole points along the boundary,

respectively.

Plugging in the representations from (2.41) into the BIE (2.25) yields an alge-
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braic system of linear equations approximating the BIE for Stokes flow with multiple

fluids,

u = λ

[
u∞ − 1

4πµs

U∆f +
1

4π
Tu

]
, (2.42)

where λ is a diagonal matrix given by

λii =
2

1 + λq
, (2.43)

where the i-th pole point is located on the interface of the q-th fluid. Rearranging

the matrix equation isolates the unknown velocities u:

(
λ−1 − 1

4π
T

)
u = u∞ − 1

4πµs

U∆f . (2.44)

The linear system (2.44) provides a numerical method for obtaining the un-

known velocity or stress of the fluid along the boundary. The matrices U and T

are known, involving the Stokeslet, Stresslet, interpolation scheme, and geometry.

The viscosity matrix λ and viscosity of the suspension are known from the phys-

ical parameters of the problem. Likewise, the imposed velocity u∞ is prescribed.

Depending on boundary conditions, either the interfacial stress jump or velocity is

prescribed at each pole point, leaving the other unknown.

After the velocity is obtained from (2.44), the geometry evolves through the

kinematic condition (2.5). For the discretization scheme, pole points on the fluid
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interfaces evolve in a forward Lagrangian manner with

x(t+∆t)
p,e = x(t)

p,e +∆tu(t)
p,e, (2.45)

where ∆t is the time step size, x
(t)
p,e is the position of the pole point at time t, x

(t+∆t)
p,e

is the pole point at the next time step, and u
(t)
p,e is the velocity at the pole point at

time t. After the geometry evolves, it is rediscretized based on the new geometry as

outlined in Section 2.3.1.

We use an adaptive fourth order Runge-Kutta (RK4) method to update grain

shapes from equation (2.5) using the velocities obtained from the BIE. In this adap-

tive scheme, the location of boundary nodes were updated using both one RK4

iteration of step size ∆t and two RK4 iterations, each of step size ∆t/2. If the

L1 norm of the difference between the pole positions for every node is less than a

prescribed tolerance, then we use the result as the more refined evolution of the next

time step. Otherwise, the process is repeated with ∆t/2. When the time stepping

scheme is successful, the next evolution attempts a time step of size 2∆t, as long as

the new larger time step is not larger than the maximum-allowed time step.

2.4 Fast Multipole Method

The system of linear algebraic equations arising from discretization of (2.25)

is dense and generally asymmetric, requiring direct matrix inversion to solve. Direct

methods require O(N3) time and O(N2) storage, where N is the number of pole

points. The FMM uses series expansions to approximate the dense matrix-vector
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multiplications [Appel , 1985; Barnes and Hut , 1986; Ambrosiano et al., 1988; Carrier

et al., 1988; Greengard and Gropp, 1990; Board and Schulten, 2000]. The series

expansions separate the pole points from the integrals over the field points, removing

the requirement of a unique evaluation for every combination of pole point and

boundary element. The end result is an approximate matrix-vector multiplication

that takes O(N) time and space. The accelerated multiplication, in conjunction

with iterative methods such as the general minimal residual method [Saad , 2003],

solves the linear system (2.44) in O(N) time.

The boundary element integrals in the discretized BIE are written generally

as

I(x0) =
∑

e∈E

∫

Γe

f(x,x0) dΓe, (2.46)

where E is the collection of N boundary elements and f(x,x0) is a generic function

dependent on both the pole and field point. The sum divides into

I(x0) =
∑

e∈Enear

∫

Γe

f(x,x0) dΓe

︸ ︷︷ ︸
Near-field

+
∑

e∈Efar

∫

Γe

f(x,x0) dΓe

︸ ︷︷ ︸
Far-field

, (2.47)

where the first sum represents integrals over boundary elements near the pole point,

while the second sum represents integrals over boundary elements far from the pole

point, with |Enear| ≪ |Efar|.

The FMM exploits the well-behaved kernels by representing a boundary el-

ement integral located away from the pole point with a series expansion approxi-
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mation about some point, xc. Using a series approximation for distant boundary

element integrals, equation (2.47) is approximated by

I(x0) ≈
∑

e∈Enear

∫

Γe

f(x0,x) dΓe

︸ ︷︷ ︸
Near-field

+

p∑

k=0

gk(x0,xc)ck(xc)

︸ ︷︷ ︸
Far-field

, (2.48)

where the second summation on the right hand side has been replaced by a truncated

series expansion that approximates the value of the integrals over distant boundary

elements. The functions gk are basis functions of the series expansions, which depend

only on the pole point and the expansion center. The series coefficients ck contain

information about the distant boundary element integrals and do not depend on

the pole points. With the series evaluation taking O(1) time, and |Enear| ∈ O(1), it

only takes O(1) time to compute (2.48) versus O(N) for (2.47).

The following sections describe the mechanics for creating, translating, and

evaluating the series expansion coefficients required for the FMM. Two types of

series expansions are required to produce a final equation like (2.48). One section is

dedicated for each type of expansion. The last section covers the details for domain

partitioning, the required bookkeeping that maximizes the efficiency of the FMM.
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2.4.1 Far-field expansions

The single-layer potential integrals from (2.25) may be rewritten as a complex

integral using the canonical mapping from two dimensions to the complex plane,

Ip,e(z0) =

∫

Γp,e

∆fi(z)Ui1(z, z0) dΓp,e + i

∫

Γp,e

∆fi(z)Ui2(z, z0) dΓp,e, (2.49)

where i =
√
−1, z = x1+ ix2, z0 is the complex representation of a pole point, and z

is a complex point on the e-th boundary element of the p-th interface. The complex

boundary element integral is expressed using the complex series expansion

Ip,e(z0) =
1

2

[
∞∑

k=0

Ok(z0 − zc)Mk(zc)

+ z0

∞∑

k=0

Ok+1(z0 − zc)Mk(zc)

+
∞∑

k=0

Ok(z0 − zc)Nk(zc)

]
, (2.50)

where () denotes the complex conjugate, the auxiliary functions are

Ik(z) =
zk

k!
k ≥ 0 and Ok(z) =





− log(z) k = 0

(k−1)!
zk

k > 0

, (2.51)
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and the far-field series coefficients are

Mk(zc) =

∫

Γp,e

Ik(z − zc)∆f(z) dΓp,e k ≥ 0, (2.52)

Nk(zc) =





∫
Γp,e

∆f(z) dΓp,e k = 0

∫
Γp,e

[
Ik(z − zc)∆f(z)− zIk−1(z − zc)∆f(z)

]
dΓp,e k ≥ 1

, (2.53)

where ∆f = ∆f1 + i∆f2 is the complex interfacial stress jump. Series expansion

(2.50) is only valid when |z − zc| ≪ |z0 − zc|, which is to say the pole point must

be located far away from the expansion center in relation to the field points on the

boundary element.

Far-field expansion series may be translated from expansion center zc to a new

expansion center at z′c using a matrix-vector multiplication defined by

Mk(z
′
c) =

k∑

l=0

Ik(zc − z′c)Ml(zc) (2.54)

Nk(z
′
c) =

k∑

l=0

Ik(zc − z′c)Nl(zc). (2.55)

The new coefficients are valid under the additional constraint |z − z′c| ≪ |z0 − z′c|.

Translating and adding far-field expansion series coefficients allows us to combine

the coefficients from different far-field expansions series representing many distinct

boundary element integrals.

Next, the double-layer potential integral is first written in complex form using
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the canonical mapping from two dimensions to the complex plane,

Jp,e(z0) =

∫

Γp,e

ui(z)Ti1k(z, z0)n̂k(z) dΓp,e + i

∫

Γp,e

ui(z)Ti2k(z, z0)n̂k(z) dΓp,e. (2.56)

Then the complex integral is approximated using the far-field series expansion

Jp,e(z0) =

∞∑

k=1

Ok(z0 − zc)M̃k(zc)

+ z0

∞∑

k=1

Ok+1(z0 − zc)M̃k(zc)

+
∞∑

k=1

Ok(z0 − zc)Ñk(zc). (2.57)

The coefficients for a Stresslet boundary element integral are given by

M̃k(zc) =

∫

Γp,e

Ik−1(z − zc)n̂(z)u(z) dΓp,e k ≥ 1, (2.58)

Ñk(zc) =





∫
Γp,e

[
n̂(z)u(z) + n̂(z)u(z)

]
dΓp,e k = 1

∫
Γp,e

{
Ik−1(z − zc)

[
n̂(z)u(z) + n̂(z)u(z)

]
k ≥ 2

−zIk−2(z − zc)n̂(z)u(z)
}
dΓp,e

, (2.59)

where u = u1 + iu2 is the complex velocity and n̂ = n̂1 + in̂2 is the complex unit

normal vector along the boundary. Equations (2.54) and (2.55) translate the coeffi-

cients of the far-field series expansions for the Stresslet boundary element integrals

as well, replacing the non-tilde coefficients with the tilde coefficients.
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2.4.2 Near-field expansions

Near-field series expansions gather more boundary element integral informa-

tion in series, while still ensuring the series is valid for a meaningful collection of

pole points. Unlike the far-field series expansions, near-field series expansions are

valid only near the expansion center. The near-field coefficients centered about zL

are constructed from far-field coefficients through

Ll(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Mk(zc) (2.60)

Kl(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Nk(zc) (2.61)

for both the Stokeslet and Stresslet coefficients. Equations (2.60) and (2.61) are

derived by relating the far- to near-field series expansions through the boundary

element integrals for the potential equation [Liu and Nishimura, 2006].

As the name implies, near-field series are only valid when |z0−zL| ≪ |zc−zL|,

which is to say the pole point must be much closer to the near-field expansion

center than the far-field series expansion center. The near-field series are translated

through

Ll(z
′
L) =

∞∑

m=l

Im−l(z
′
L − zL)Lm(zL) (2.62)

Kl(z
′
L) =

∞∑

k=l

Im−l(z
′
L − zL)Km(zL) (2.63)

under the additional constraint |z0−z′L| ≪ |zc−z′L|. The near-field expansion series
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for the single- and double-layer boundary element integrals are evaluated by

∑

e∈Efar

Ie(z0) =
1

2

[
∞∑

l=0

Ll(zL)Il(z0 − zL)

− z0

∞∑

l=1

Ll(zL)Il−1(z0 − zL)

+

∞∑

l=0

Kl(zL)Il(z0 − zL)

]
, (2.64)

where Efar is the set of the boundary elements sufficiently far from z0 represented

by the near-field series coefficients.

2.4.3 Domain partitioning

The computational domain is partitioned using the Morton numbering scheme

[Morton, 1966]. The scheme aids with the creation, translation, and combination

of series coefficients, achieving the efficiency of the FMM without itself being com-

putationally burdensome. The Morton numbering scheme partitions the domain

into nested square cells based on an index generated from the cell’s position in the

physical domain. A typical cell has a parent, neighbors, and child cells, all of which

can be computed in O(1) time given the Morton number of the cell. Cells with no

children are commonly referred to as leaf cells.

By centering the far- and near-field series expansions in the cells, we can

quickly determine their validity when translating and evaluating the series. This

is critical to the linear speed and memory footprint of the FMM. Using an exact

distance calculation between pole points and boundary elements would take O(N2)
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time and space, which is an order slower than the optimal FMM multiplication

scheme.

The Morton number of a point is based on its position. Given x ∈ [0, 1)2,

the point is represented in binary as x = (0.a1a2a3a4 . . . , 0.b1b2b3b4 . . .)2. The 8-bit

Morton number for x is given by (a1b1a2b2a3b3a4b4)2, where the significant digits of

the point are interleaved. The Morton number scheme leads to a natural partitioning

of the domain into cells organized in a quadtree.

The quadtree is used to track the validity of series expansions, using the L1

scheme to replace the näıve O(N2) internode distance test using L2 distances. At

any given level of the tree, a far-field series expansion in level l is valid in every

cell except for the cell it is centered in and neighboring cells. A near-field series

expansion in level l is valid only in the cell in which the expansion is centered.

Translating and combining far- and near-field series up and down the quadtree,

near-field series representing O(N2) boundary elements are calculated at each leaf

cell in O(N) by

1. creating far-field series at the center of each leaf cell.

2. translating and merging near-field series up the quadtree.

3. translating far-field series to near-field series in non-neighboring cells.

4. translating and merging near-field series down the quadtree.

5. evaluating the near-field expansion in a leaf cell at all pole points in the cell.

6. directly evaluating the boundary element integrals in a pole point’s leaf cell
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and neighboring cells.

The result of the upward and downward pass is a near-field series in each leaf

cell representing O(N) of the boundary element integrals. The series are evaluated

in O(1), relying only on the pole point, expansion center, and near-field coefficients.

There are O(1) integrals not represented by a near-series, which must be computed

directly. In all, the FMM reduces the time to perform a matrix-vector multiplication

from O(N2) time and storage to O(N).

2.5 Validation and benchmarking

The FMBEM is implemented in the Fortran 2008 language using the Intel R©Math

Kernel Library (MKL) for linear algebra operations, including the GMRES solver,

and the Intel R©ComposerXE Fortran compiler. The algorithm is parallelized for

shared memory machines using OpenMP directives. We validate our implementation

against the Hadamard-Rybczyñski solution for a steady state viscous drop settling

in an infinite fluid [Kim and Karilla, 2005; Happel and Brenner , 1983]. Asymptotic

analysis of the program’s runtime confirms the algorithm is implemented correctly,

and properly scales with both problem size and computer hardware.

BIE (2.25) is a Fredholm equation of the second type when solving for the

velocity at the fluid interfaces, allowing for straightforward discretization and solv-

ing. The resulting linear system has both positive and negative eigenvalues all with

magnitude less than or equal to unity, thus the convergence of GMRES is governed

by the condition number of the matrix, κ. The condition number depends on the
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boundary discretization and the viscosity ratio with κ ∝ exp(| log λ|). In our nu-

merical experiments, | log λ| ≤ 2 resulting in well conditioned linear systems, which

were experimentally confirmed. The convergence theorem for positive definite ma-

trices guarantees accurate solutions when the relative error of the residual is less

than 10−8.

2.5.1 Hadamard-Rybczyñski analytical solution

The Hadamard-Rybczyñski analytical solution (HR) provides steady state an-

alytical approximation of the velocities for a viscous sphere translating in an infinite

fluid. The solution is built from Lamb’s general solutions both inside and outside of

an axis-symmetric sphere. The coefficients of the spherical harmonics are calculated

based on the boundary conditions at the interface between the fluids. Similar to

the boundary conditions used in the derivation of the BIE, HR prescribes no-slip

velocities and conservation of momentum along the fluid interface. An additional

kinematic condition is prescribed to ensure the velocities for the drop are indeed a

steady state solution, i.e., the shape of the sphere does not change.

The spherical drop, denoted Ω2, is embedded in an infinite suspending fluid

Ω1, as seen in Figure 2.5. The drop of radius a is represented in spherical coordi-

nates, centered at r = 0. The geometry and solution are axis-symmetric about the

azimuthal angle θ, leading to tangential variations in the velocity along the polar

angle φ.

Using Lamb’s general solutions, the velocity outside the spherical drop is de-
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Figure 2.5: Geometry of the axis-symmetric translating sphere with radius r = a in
spherical coordinates. The fluids are symmetric about the φ = 0 axis, hence the lack of
the azimuthal angle in the geometry. The polar angle is measured from the left edge of
the sphere. The exterior fluid is set to translate from right to left, over and under the
sphere.

scribed by

u(1)r (r, φ) =

[
A1

(a
r

)
− 2B1

(a
r

)3
]
uc cos φ (2.65)

u
(1)
φ (r, φ) = −

[
A1

2

(a
r

)
+B1

(a
r

)3
]
uc sinφ, (2.66)

where uc is the HR velocity for the settling drop. A similar formulation is derived

for the velocity inside of the drop:

u(2)r (ρ, φ) =

[
a1
10

(r
a

)2

+ b1

]
uc cosφ (2.67)

u
(2)
φ (r, φ) = −

[
a1
5

(r
a

)2

+ b1

]
uc sinφ. (2.68)

Determining the coefficients of (2.65), (2.66), (2.67), and (2.68) requires four

constraints. Specifically, at the boundary of the drop, r = a, we require

1. u
(1)
r = uc cosφ for no-slip and kinematic conditions.
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2. u
(2)
r = uc cosφ for no-slip and kinematic conditions.

3. uφ be continuous for the no-slip condition.

4. σφr be continuous for conservation of momentum.

The resulting coefficients for Lamb’s general solution for a translating viscous sphere

are:

A1 =
2 + 3λ

2(1 + λ)
B1 =

λ

4(1 + λ)
a1 = − 5

1 + λ
b1 =

3 + 2λ

2(1 + λ)
. (2.69)

We tested a range of viscosity ratios and density differences for the drop prob-

lem. For each test, N = 100 pole points were evenly distributed along the interface.

Agreement was very high in the tangential direction, especially when λ > 1 as seen

in Figure 2.6. The radial velocity never differed by more than 10%, as observed

in other published and verified implementations of the BEM. The error between

the HR and BEM solutions is attributed to the problem dimension. The numerical

solution we derive is more akin to a translating infinite cylinder in three dimensions

than a translating sphere.

We verify convergence by solving a numerical problem using N and 2N pole

points and computing the difference between solutions. As N increases, the differ-

ence between the two numerical solutions decreases at the convergence rate. Figure

2.7 shows the convergence of our numerical algorithm and confirms the convergence

rate O (N−2.5) we expect for BEM with our interpolation scheme.
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Figure 2.6: The blue and red dots represent the radial and tangential components of the
velocity of a settling viscous drop obtained from solving BIE (2.37) with λ = 1, R = 3.75,
and a = 1 for 100 poles evenly distributed along the boundary. The blue and red lines
represent the radial and tangential components of the analytical velocity given by the
Hadamard-Rybczyñski solution. Both values are given with respect to the angle θ, which
represents the counterclockwise angle from the point to the negative y axis.
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Figure 2.7: The black line represents the relative error between the numerical solution
to the translating drop problem with N nodes and 2N nodes. The dashed red line is
O
(
N−2.5

)
. There is excellent agreement until the error drops below 10−9, which is to be

expected as the iterative solver stops refining when the residual in the solution is less than
10−9.
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2.5.2 Asymptotic scaling

Asymptotic scaling analysis is performed for the FMBEM matrix-vector multi-

plications using the Stokeslet and Stresslet matrices. For testing, we used a worksta-

tion powered by two Intel R©Xeon E5-2620 processors and 64 GB of memory. Each

Xeon package has six physical cores mapped to twelve virtual cores through the

Intel R©Hyper-Threading architecture (HT). A physical core has 256 KB of private

L2 cache and shares a 15 MB L3 cache with the five other processors on the package.

Scaling of the algorithm on 24 virtual cores for a varying number of pole

nodes is displayed in Figure 2.8 in Log-Log format. Overall, there is good agreement

between the time to perform a matrix-vector product and linear scaling. For smaller

matrices, i.e., less than 106 degrees of freedom (DOF), the agreement is not as tight

as it is for larger matrices where there is little deviation between the theoretical and

experimental scaling analysis.

Efficiency of the algorithm using c cores is given by

Ec =
T1
Tcc

, (2.70)

where T1 is the time to run on one core and Tc is the time to run on c cores.

Ideally, the efficiency is 1, indicating each additional processor contributes fully to

the problem.

We issue a thread for each virtual core, but use the physical core count when

measuring efficiency as it reflects the amount of computational units on the proces-
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Figure 2.8: Asymptotic scaling of the FMMmatrix-vector multiplication for the Stokeslet
(red) and Stresslet (blue) matrices. Explicit timing measurements are marked with a dot,
and the black dashed line represents linear scaling.

sor. Table 2.1 shows the efficiency of a matrix-vector multiplication for a problem

with 3.2×106 DOFs for 12 physical cores. The efficiency for the physical cores is near

the theoretical optimum with an efficiency of 96.0% for the Stokeslet computation

and 84.5% for the Stresslet computation.
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Multiplication T1 Tmax Ep

Stokeslet 316.5 27.5 96.0%
Stresslet 225.4 22.2 84.5%

Table 2.1: Parallel scaling analysis of the FMM matrix-vector multiplication for the
Stokeslet and Stresslet matrices. The time for a single thread measured in seconds is in
the T1 column. We set the number of threads Tmax = 24, the maximum number of threads
that can simultaneously issue through HT. The efficiency Ep measures the efficiency for
the number of physical cores for c = 12.
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Chapter 3: Development of Anisotropic Contiguity in Deforming Par-

tially Molten Aggregates I: Theory and Fast Multipole

Boundary Element Method

3.1 Introduction

The geometry of melt distribution in partially molten rocks strongly influ-

ences their effective physical properties such as elastic moduli, viscosity, electrical

conductivity, permeability, and mechanical absorption. In the microscopic scale,

contiguity, the fractional area of intergranular contact, determines the strength of

the load bearing network of grains in the aggregate. For a given volume fraction of

melt and a given melt-grain dihedral angle, the contiguity of the aggregate depends

on the state of deformation [Takei and Holtzman, 2009; Takei , 2005]. For example,

in an undeformed aggregate, a small volume fraction of melt can be distributed in

randomly oriented grain-edge tubules. Deformation of such an aggregate will redis-

tribute the same volume fraction of melt into grain boundary films [Hier-Majumder

and Kohlstedt , 2006; Zimmerman et al., 1999; Daines and Kohlstedt , 1997] or melt-

rich, disaggregated bands [Holtzman et al., 2003; Hustoft and Kohlstedt , 2006; King

et al., 2011]. The orientation of these newly created melt films and bands will be
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governed by the orientation of the principal stresses, transforming the contiguity

from a scalar to an anisotropic tensorial quantity. Since the elastic strength of the

network of grains is controlled by the contiguity of the aggregate, the development

of anisotropic contiguity will be reflected in a change of the elastic properties of the

aggregate.

Forces arising from plate tectonics can be agents of such textural transforma-

tion in the Earth’s interior. One especially interesting region is the Lithosphere-

Asthenosphere Boundary (LAB), characterized by a large reduction of the strength

of the asthenosphere underlying the rigid lithosphere. Besides the reduction in

strength, the LAB is marked by a sharp reduction [Fischer et al., 2010; Rychert

et al., 2010; Schmerr , 2012] and a global anisotropy [Nettles and Dziewoski , 2008]

in shear wave speed, anisotropic electrical conductivity [Naif et al., 2013; Evans

et al., 2005], and a small volume fraction of melt [Sifré et al., 2014]. The LAB

is also a dynamic environment as the motion between rigid plates and the flow in

the weak asthenosphere are coupled through this region. Deformation of the par-

tially molten matrix of the LAB will segregate the melt, rendering the contiguity

anisotropic. The coupling between deformation and anisotropic contiguity, there-

fore, provides an important set of constraints to explain the observed features of the

LAB. To quantify this coupling, laboratory experiments and theoretical models of

microstructures serve as powerful tools.

The role of deformation in melt redistribution has been studied extensively in

laboratory experiments [Daines and Kohlstedt , 1997; Holtzman et al., 2003; Hus-

toft and Kohlstedt , 2006; Hier-Majumder and Kohlstedt , 2006; Zimmerman et al.,

50



1999; Takei , 2005; King et al., 2011]. In these two step experiments, the first step

involved preparing undeformed, hot isostatically pressed aggregates. Next, these

aggregates were deformed in pure shear, simple shear, or torsion configurations. Af-

ter deformation, melt segregation was characterized by comparing microstructures

of undeformed and deformed samples. While the melt geometry before and after

deformation could be measured from these experiments, the experimental setup pre-

cluded the possibility of monitoring the evolution of contiguity during the course

of deformation. In addition, Takei [2005] studied the development of shear wave

anisotropy caused by the development of anisotropic contiguity during deforma-

tion experiments on analogue materials. While the results from these laboratory

experiments indicate a likely relation between them, a direct quantification linking

deformation, anisotropic contiguity, and anisotropic shear wave speed is still lacking.

Theoretical models of microstructure follow two different approaches. The

first approach uses grain-melt geometry based on an assumed steady state grain

shape [von Bargen and Waff , 1986; Wray , 1976; German, 1985; Takei , 1998]. The

work of Takei [1998] introduced the use of contiguity in the constitutive relations

of partially molten rocks. The contiguity in this work, however, was derived by

varying the size of intergranular contact patches on the surface of a spherical grain.

Since the description of contiguity is purely geometric, this group of formulations

fails to account for the role of deformation in the evolution of contiguity. To address

this issue, a second group of microgeodynamic models presented a formulation for

modeling equilibrium geometry of partially molten aggregates driven by surface

tension and small viscous deformation within the grains [Hier-Majumder , 2008,
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2011; Hier-Majumder and Abbott , 2010; Wimert and Hier-Majumder , 2012]. Using

the Boundary Element Method (BEM) and a semianalytical method, this group of

articles quantified the contiguity of a unit cell in a partially molten aggregate for

varying surface tensions in the steady state.

The BEM, while containing the equations necessary to describe the microstruc-

ture at large strains, suffered from a limitation. In the BEM, the governing PDEs of

mass and momentum conservation are converted to a Boundary Integral Equation

(BIE). When this BIE is discretized into a set of algebraic equations, the result-

ing system of algebraic equations is dense. As a result, calculations involving many

grains become prohibitively expensive. This issue limited the capacity of these mod-

els in addressing the role of deformation in the development of anisotropic contiguity.

It is crucial to incorporate a large number of grains in microstructural simulations

of deformation such that melt segregation over length scales larger than a unit cell

can be modeled. Thus, it is necessary to develop a numerical technique that can

address the crucial issues of measuring anisotropic contiguity during deformation

and yet remain computationally feasible.

This work bridges the gap by implementing the Fast Multiple Method (FMM)

to numerically accelerate the BEM. We employ the resulting Fast Multipole Bound-

ary Element Method (FMBEM) to study the development of anisotropic contiguity

in deforming partially molten rocks. This model tracks the evolution of anisotropic

contiguity and anisotropic shear wave speed as deformation progresses. To the best

of our knowledge, this is the first study that directly quantifies the link between de-

formation, development of anisotropic contiguity, and anisotropic shear wave speeds.
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This chapter outlines numerical methods and presents the simulated microstruc-

tures for pure and simple shear deformation. Chapter 4 presents the results for

anisotropic contiguity and anisotropic shear wave velocity and the implications for

the observed nature of the LAB [Hier-Majumder and Drombosky , 2014]. We intro-

duce the various aspects of our mathematical model in Section 3.2. We present the

governing Partial Differential Equations (PDEs) and the BIE in this section. The

section also includes a mathematical description of the problem geometry and com-

putation of differential shortening and the contiguity tensor. In Section 3.2.4, we

develop the numerical methods involving FMM numerical acceleration technique.

Section 3.3 presents the results of our numerical simulations. In Section 3.4, we

discuss the trade-offs involved in our selection of parameter space and provide a

qualitative comparison between our work and previous studies. Summary and con-

clusions of the microstructural model are provided in Section 3.5.

3.2 Model

The evolution of the melt geometry in a deforming, partially molten aggregate

is determined by a coupled viscous flow within the grains and melt. In this section,

we present the governing equations for the coupled flow, the setup for our numerical

experiments, and the methods of post-processing our numerical data.
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3.2.1 Governing equations

Consider a collection of viscous, contiguous grains with the interstitial space

filled with a less viscous melt. The grains and melt are treated as incompressible

fluids, such that the conservation of mass within each phase leads to

upi,i = 0, (3.1)

where the superscript p is different for each grain and the melt, upi is the i-th

component of the velocity vector, and (, i) represents the derivative with respect to

xi. Conservation of momentum within each grain and the melt requires that, in the

absence of a body force,

σp
ij,i = 0, (3.2)

where the stress tensor σp
ij for a phase with viscosity µp and dynamic pressure P p

is given by

σp
ij = −δijP p +

µp

2

(
upi,j + upj,i

)
, (3.3)

where δij is the Kronecker delta. The governing PDEs (3.1) and (3.2) within each

grain and the melt need to be supplemented with boundary conditions to solve for

the unknown velocity and dynamic pressure.

First, we impose the no-slip boundary condition at the surface of each grain
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[Pozrikidis , 2001; Leal , 1992; Kim and Karilla, 2005], such that

u
(−)
i |Γp

= u
(+)
i |Γp

, (3.4)

where u
(−)
i is the velocity just inside the grain surface, u

(+)
i is the velocity outside

the grain surface, and Γp is the surface of the p-th grain.

Next, we require that the difference in traction across the grain interface is

balanced by surface tension forces, leading to the vector boundary condition on Γp,

the surface of the p-th grain,

∆σp
ij n̂j + (δij − n̂in̂j) γ,j − γκn̂i = 0, (3.5)

where ∆σp
ij is the stress drop across the surface of the p-th grain, γ(x) is the interfa-

cial tension, and n̂i is the unit normal vector along Γp pointing into the melt [Leal ,

1992]. The first term in (3.5) arises from the difference in the traction across the

grain-melt interface. The second term, often described as the Marangoni condition,

arises due to the variation of surface tension along the interface of the grain. The

tensor operator, (δij − n̂in̂j), projects the vector gradient of surface tension on the

interface of the grain. As a result, this component of the boundary condition is tan-

gential to the boundary. The final term, often described as the Laplace condition,

arises from curvature driven surface tension force, where the principal curvature of

the interface is given by κ = n̂i,i [Leal , 1992; Pozrikidis , 2001; Kim and Karilla,

2005; Manga and Stone, 1993]. This term is directed along the unit normal. In
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the absence of deformation (∆σij = ∆Pδij, from equation (3.3)) and constant sur-

face tension (γ,j = 0), equation (3.5) reduces to the Young-Laplace equation [Kang ,

2005, eq. 2.19 ].

The Marangoni condition indicates that the variation of the interfacial tension

along the grain surface leads to an imbalance of shear stress and drives viscous

deformation within the grain. Variations in the tension on the grain surface arise

from the fact that the atomic scale structure of grain-grain contacts is different from

the grain-melt contacts. The dihedral angle at the grain-grain-melt triple junctions

is controlled by the Marangoni term. In the absence of motion (∆σp
ij = 0) and zero

curvature on flat contacts (κ = 0), equation (3.5) reduces to the commonly used

dihedral angle equation or the Young Duprée equation [Sutton and Balluffi , 1995,

eq 4.136]. In this work, we assume that the microstructure is equilibrated prior

to deformation, and consider the surface tension to be constant along the grain.

Laboratory experiments on a number of different grain-melt aggregates with varying

dihedral angles reveal that melt segregation during deformation is independent of the

dihedral angle [Hier-Majumder and Kohlstedt , 2006; Hustoft and Kohlstedt , 2006;

Zimmerman et al., 1999]. The assumption γ,j = 0, therefore, simplifies our governing

equations without introducing a substantial error in the results.

Finally, we need an additional equation to describe the change in grain shape

due to deformation. Let F p(x, t) = 0 be the level set that defines Γp at time t. To

ensure that the volume of each grain remains constant during deformation of the
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grain, we use the kinematic equation

F p
,t(x, t) + ui(x, t)F

p
,i(x, t) = 0. (3.6)

In the BEM, we eliminate the dynamic pressure, P p, by combining the PDEs

(3.1) and (3.2), subject to the boundary conditions for no-slip (3.4) and the continu-

ity of traction (3.5) [Hier-Majumder , 2008]. This results in an integral equation for

the unknown velocity. For an aggregate containing P grains embedded in a melt,

the velocity uj(x0) at point x0 on the surface of the q-th grain is given by:

uj(x0) =
2

1 + λq

[
u∞j (x0)−

1

4πµm

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+
P∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
x0 ∈ Γq, (3.7)

where x0 is the pole point and the point x on the surface of the p-th grain is the field

point [Pozrikidis , 2001]. The two integrals over the interface of the p-th grain, Γp,

are referred to as the single-layer and double-layer potential integrals, respectively.

The dimensionless parameter, λp = µp/µm, is the viscosity ratio between the p-

th grain and melt. The velocity u∞j (x0) represents an applied far-field velocity.

By prescribing different far-field velocities, we can simulate the effect of different

environments of deformation of the matrix. This issue is discussed in further detail

in the following section. The presence of the unknown ui in the integrand of the

double-layer integral renders equation (3.7) a Fredholm integral equation of the

second kind.
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Both integrands on the right hand side of equation (3.7) contain tensorial

kernel functions. These tensors, Uij(x,x0) and Tijk(x,x0), arise from the velocity

and stress components of the fundamental solution to the PDE governing Stokes flow

[Pozrikidis , 2001; Ladyzhenskaya, 1963; Kim and Karilla, 2005]. For the present

two-dimensional analysis, the second rank tensor Uij(x,x0), also referred to as the

Stokeslet, is given by

Uij(x,x0) = −δij ln r +
x̂ix̂j
r2

, (3.8)

where x̂ = x − x0 and r = |x̂|. The third rank tensor Tijk(x,x0) is known as the

Stresslet and is given by

Tijk(x,x0) = −4
x̂ix̂j x̂k
r4

. (3.9)

When x → x0, both Uij(x,x0) and Tijk(x,x0) diverge. In the context of (3.7),

the single-layer integral is weakly singular. That is, the integrand is singular, but

the integral remains finite. The double-layer integral is strongly singular and is only

finite in a Cauchy principal value sense [Pozrikidis , 2001; Ladyzhenskaya, 1963; Kim

and Karilla, 2005].

The interfacial tension ∆fi(x) in the single-layer integral arises from the

boundary condition balancing the stress drop across the grain-melt interface with

the Laplace and Marangoni conditions. Based on the discussion following equation
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(3.5), we drop the Marangoni term such that the interfacial tension becomes

∆fi(x) = γn̂j,jn̂i. (3.10)

We nondimensionalize the governing equations by the grain radius xc, veloci-

ties by a characteristic velocity scale uc, and the surface tension by γc. We rewrite

(3.7) in dimensionless form yielding

uj(x0) =
2

1 + λq

[
u∞j (x0)−

1

4πCa

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+

P∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
x0 ∈ Γq, (3.11)

where the dimensionless capillary number, Ca, represents the ratio between viscous

forces on a grain and the forces arising from surface tension at the grain-melt in-

terface. The capillary number can be expressed in terms of the melt viscosity µm,

characteristic velocity uc, and characteristic surface tension γc as

Ca =
µmuc
γc

. (3.12)

The viscosity ratio and the capillary number are the two parameters that control

the evolution of grain shapes for an imposed velocity u∞j (x0). At each time step,

we solve the BIE (3.11) numerically to obtain the velocities at the boundary nodes

of each grain. Next, we update the shape of each grain using equation (3.6). The

geometric parameters from the new grain shape are then used to solve the BIE for
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the next time step.

3.2.2 Setup for numerical experiments

To study the evolution of anisotropic contiguity by deformation, we carried

out two sets of numerical experiments. In each set of experiments, the undeformed

aggregate consists of a matrix packed with hexagonal grains surrounded by six

neighbors. The simulated microstructure in Figure 3.1(a) outlines the geometry

of a typical undeformed grain. Following Hier-Majumder [2008], the initial grain

shape F p(0,x) = 0 is prescribed by the parametric representation

x =




cos(θ)

sin(θ)


 (1− ǫ cos2(3θ)), (3.13)

where θ is the counterclockwise angle from the positive x axis and the constant

parameter ǫ = 0.05 represents deviation of an individual grain shape from a unit

circle [Hier-Majumder , 2008].

In the numerical experiments, we want to simulate the response of the par-

tially molten system under an applied, constant strain rate, Ė. This is achieved by

prescribing the far-field velocity u∞ = Ė ·x. For pure and simple shear experiments,

the strain rate tensors Ėpure and Ėsimple are defined as

Ėpure =



1 0

0 −1


 and Ėsimple =



0 1

0 0


 . (3.14)
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Capillary number (Ca) 1 0.7 0.5 0.3 0.1 0.05

Viscosity ratio (λ) 1 2.0 5.0 50.0

Pure shear Simple shear

Ėpure =

[
1 0
0 −1

]
Ėsimple =

[
0 1
0 0

]

Table 3.1: Parameter space for the simulations. The evolution of the grain-melt aggregate
is simulated for each type of shearing, six capillary numbers, and four viscosity ratios for
a total of 52 simulations.

We carried out these two sets of numerical experiments for four different values of the

viscosity ratio λ (1.0, 2.0, 5.0, 50.0) and six different values of the capillary number

Ca (1, 0.7, 0.5, 0.3, 0.1, 0.05). The parameter space explored in this chapter is sum-

marized in Table 3.1. While the geometry of the deformed aggregates is controlled

by the magnitude of strain, the viscosity ratio controls the time of deformation

[Hier-Majumder , 2008]. To produce a high strain numerical experiment within a

reasonable computation time, we employ viscosity ratios that are lower than natural

values. This implies that our strain rates are higher than typical natural values. The

resulting microstructure, however, is similar to what would be expected in natural

aggregates with much higher viscosity ratio. We discuss this issue further in Section

3.4.

3.2.3 Post-processing

The numerical solutions to the BIE (3.11) and the kinematic condition (3.6)

return the shape of each grain and the velocities at the boundary nodes of each

61



grain at each time step. We post-process the numerical data to calculate velocities

in the interior of the grains and the melt, the differential shortening of each grain,

and the contiguity tensor at each grain. In this section, we describe the method for

calculating each of these quantities.

To visualize the coupled flow in the grain interior and the melt, we need

to construct streamlines from the velocity vectors. Once the velocities along the

boundaries are known, the velocity at a point x0 located in the melt is computed

by

uj(x0) =u
∞
j (x0)−

1

4πCa

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+

P∑

p=1

1− λp
4π

∫

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp x0 ∈ Ωm. (3.15)

Notice that in contrast to the BIE (3.11), the velocity ui(x) in the integrand of

the double-layer integral at the boundary Γp is now known along with the other

terms on the right hand side. Thus, by choosing the location x0 at various points

within the melt and repeating the calculation in equation (3.15), we can generate

the representation of the flow field within the melt.

Similarly, the velocity at a point x0 within the q-th grain is given by

uj(x0) =
1

λq
u∞j (x0)−

1

4πλqCa

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+
P∑

p=1

1− λp
4πλq

∫

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp x0 ∈ Ωq. (3.16)
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Since all quantities on the right hand side of equation (3.16) are known, we can

calculate the velocity within each grain by repeating the calculation for different

locations in the interior of the grain. We continue the process for other grains to

compute the velocity field for a representative section of the aggregate. We generated

streamlines from the known velocity fields using the visualization software Paraview.

The undeformed aggregate consists of equant, closely packed, hexagonal grains

with an interstitial melt. During deformation, however, the grain shapes evolve in

a nonuniform manner, driven by the magnitude of the applied far-field velocity.

To observe such spatial and temporal variations of grain shape, we monitor the

differential shortening, D, of each grain at each time step. The differential shortening

is defined as a function of the lengths of major axis L and minor axis B of a grain,

D =
L−B

L+B
. (3.17)

Differential shortening is zero when the grain is equant and approaches the value of

one as the grain flattens to a line. Unlike aspect ratio, the differential shortening

measurement is bounded with 0 ≤ D < 1.

To evaluate contiguity of each grain, we first need to evaluate the contact func-

tion on the grain surface. The contact function χ is a step function, which assumes

the value of unity at the grain-grain contact and zero at the grain-melt contact

[Takei , 1998]. To evaluate the contact function, we first compute the minimum
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distance between a point, x, on the p-th grain and all other grains as

d(x) = min
q 6=p

dist(x,Γq), (3.18)

where dist(x,Γq) is the minimum Euclidean distance between a point x and an

interface Γq. The contact function, χ(x), is given by

χ(x) =





1 if d(x) < ǫ

0 otherwise

. (3.19)

If the distance is less than a prescribed threshold ǫ, we consider the p-th grain to be

in contact with another grain at the point x on the boundary.

Once the contact function is evaluated on the surface of each grain, we calculate

the contiguity tensor ψij as

ψij =
1

L

∫

Γp

χ(x)n̂i(x)n̂j(x) dΓp, (3.20)

where L is the length of Γp, and n̂i is the unit normal on the grain surface [Takei ,

1998]. The trace of the contiguity tensor, ψ, is also numerically evaluated at each

time step for each grain.

The anisotropy of the contiguity tensor is measured by ψ1/ψ2, where ψ1 and

ψ2 are the smallest and largest eigenvalues of ψij , respectively. By this definition,

ψ1/ψ2 = 1 when the tensor is isotropic and decreases as the anisotropy in the tensor

increases.
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3.2.4 Numerical methods

In this section, we briefly present the steps associated with the numerical

methods involved in the solution of the BIE. To reduce the BIE into a system of

algebraic equations, we discretize the BIE using the method of collocation. During

discretization, the singular integrals in the BIE need to be integrated using special

integration techniques. Finally, we use the fast multipole expansion to provide a fast

approximation of a matrix-vector multiplication for the dense system of algebraic

equations resulting from the BIE. The details of each of these steps are discussed

next.

We use the method of collocation to discretize the BIE in (3.11). For the p-th

interface, we place np pole nodes on the grain-melt boundary Γp. A segment between

two poles on the boundary is referred to as a boundary element. We approximate

the position within each boundary element by cubic spline interpolation [Press et al.,

1992]. The interfacial surface tension ∆fi(x) and unknown velocity ui(x) along the

boundary are interpolated piecewise linearly over each boundary element.

The resulting linear system is rewritten in matrix notation as

(
1 + λ

2
I− 1− λ

4π
T

)
u = u∞ − 1

4πCaU∆f , (3.21)

where I is the identity matrix, and the matrices U and T are generated from the

kernels of the single- and double-layer integrals, respectively.

The method of collocation divides the interface of the p-th grain into np ele-

65



ments for which each x0 resides on at most two boundary elements. Thus, all but

two of the boundary integrals on the p-th grain are regular for a given x0. Boundary

integrals on the other particles are regular as well since by definition x0 6∈ Γq for

q 6= p. These regular integrals are approximated using the eight point Gaussian

quadrature rule.

When x0 is on Γp,e, the e-th boundary element on the p-th interface, the

boundary integral becomes singular. For the single-layer integral, the singular-

ity is weak, meaning the integrand is still integrable despite it being unbounded.

The double-layer integral has a strong singularity and is only finite in the sense of

Cauchy principal value. Special care must be taken when numerically evaluating

the integrals in both cases. A variety of techniques have been developed to evaluate

singular integrals [Pozrikidis , 2001; Lean and Wexler , 1985; Guiggiani and Gigante,

1990; Lachat and Watson, 1987; Telles , 1987; Gao, 2006]. Following Hier-Majumder

[2008], we employ the radial integration method proposed by Gao [2006]. The ra-

dial integration method rewrites the integral in terms of the radial distance from

the singularity and approximates the integrand by a power series. The power series

form allows the regular and singular portions of the integrand to be separated at

which point the singular integral is analytically shown to go to zero.

The FMM uses series expansions to approximate the matrix-vector multipli-

cations in (3.21) [Appel , 1985; Barnes and Hut , 1986; Ambrosiano et al., 1988;

Carrier et al., 1988; Greengard and Gropp, 1990; Board and Schulten, 2000]. The

series expansions separate the pole and field points into two separate sets of equa-

tions. This removes the requirement for a unique evaluation for every combination
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of pole point and boundary element. The end result is an approximate matrix-

vector multiplication that takes O(N) time compared to O(N2) time required by

direct methods, where N is the total number of unknowns or the total degrees of

freedom of the system of equations. The accelerated multiplication allows the use

of iterative methods, such as the GMRES [Saad , 2003], to solve the linear system

in O(N) time. Liu [2009] presents a general discussion on FMM expansion for BIEs

arising from various physical problems. We present the FMM expansions for the

single- and double-layer integrals Section 2.4.

We solved the resulting system of sparse linear equations using the GMRES

method. We iterated the solver until the relative norm of the residual vector was less

than 10−8. As (3.11) is a Fredholm equation of the second type, the linear system

is well conditioned and no preconditions were used. The solver converged within a

maximum of 100 iterations for all geometries and values of λ and Ca presented in

this chapter. In our simulations, the number of GMRES iterations never reached

the preset maximum of 1000 iterations.

We use an adaptive fourth order Runge-Kutta (RK4) method to update grain

shapes from equation (3.6) using the velocities obtained from the BIE. In this adap-

tive scheme, the location of boundary nodes is updated using both one RK4 iteration

of step size ∆t and two RK4 iterations, each of step size ∆t/2. If the L1 norm of

the difference between the pole positions for every node is less than 10−2, then we

use the result as the more refined evolution of the next time step. Otherwise, the

process is repeated with ∆t/2. When the time stepping scheme is successful, the

next evolution attempts a time step of size 2∆t, as long as the new larger time step
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is not larger than the maximum allowed time step. Here, we choose our initial and

maximum time step size to be ∆t = 0.01.

The numerical solution was carried out using a Fortran 2008 library, using the

Intel R©Math Kernel Library (MKL) for linear algebra operations including the GM-

RES solver. The numerical results were validated against the Hadamard-Rybczyñski

relation for a steady state viscous drop settling in an infinite fluid [Kim and Karilla,

2005; Happel and Brenner , 1983].

3.3 Results

In this section, we present the results from our numerical experiments in pure

and simple shear. Our results from both pure and simple shear experiments demon-

strate that the contiguity tensor becomes strongly anisotropic with progressive de-

formation. We also observe that the magnitude of the differential shortening of

grains is strongly anticorrelated with the anisotropy in contiguity in time and space.

During pure shear deformation, melt is expelled from tubules wetting grain bound-

aries parallel to the principal compressive strain. During simple shear deformation,

such grain boundary wetting takes place along planes oriented in a sense antithetic

to the shear direction. We elaborate these key findings in the following subsections.

The results from our microstructural analysis contain the shape and contiguity of

each grain during each step of deformation, not obtainable by previous experimental

and numerical techniques.
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Figure 3.1: Setup for numerical experiments. (a) Initial geometry of a grain surrounded
by six other grains and interstitial melt in gray at three grain junctions. The unit normal to
the grain interface n̂k(x), the contact function χ, and the ψxx component of the contiguity
tensor are also shown in the diagram. Viscosity of the melt is µm, while that of the
grain is λµm. (b) The initial configuration of the entire aggregate prior to the pure
shear experiment. The aggregate consists of 1200 grains arranged in 40 rows and 30
columns. The red lines indicate the imposed external flow. (c) The initial configuration
for simple shear experiment. The aggregate consists of 900 grains arranged in 10 rows and
90 columns. The sense of applied shear, as depicted by the bold red arrows, is dextral.

3.3.1 Pure shear deformation

When deformed in pure shear, melt from tubules in three grain corners is ex-

pelled, wetting grain boundaries oriented parallel to the direction of principal com-

pressive strain. The synthetic micrographs in Figure 3.2 demonstrate the influence

of deformation on two different aggregates with different values of λ. In 3.2(a), we

compare the aggregates before and after deformation. In Figure 3.2(b), we display

an enlarged view of the synthetic microstructure containing a few grains. Com-
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parisons between the microstructure in 3.2(b) and the microstructure in Figure 3.1

reveal a few developments caused by deformation. The equal lengths of intergranular

contact in the undeformed aggregate transformed into substantially reduced length

of intergranular contact in the vertical direction in Figure 3.2(b), while the length

of intergranular contact in the subhorizontal direction has increased. The distance

between melt pockets along the vertical boundaries in Figure 3.2(b) is negligible,

resulting in grain boundary melt films oriented along the vertical direction, which

is also the direction of the principal compressive strain. This result is qualitatively

similar to the experimental observations of Daines and Kohlstedt [1997], where they

observed that initially equant melt pockets became strongly elongated along the

direction of the principal compressive stress. The synthetic micrographs in Figure

3.2(c) and (d) outline the evolution of the microstructure for a higher viscosity ratio

after the same amount of computational time. For the higher viscosity ratio aggre-

gate, deformation and microstructural development is much less pronounced for the

same length of computational time.

During deformation, the flow within the grains and the melt are strongly cou-

pled. The synthetic micrographs in Figure 3.3 compare the microstructure before

and after deformation for the cases discussed above. To demonstrate the nature of

the coupled flow, the synthetic micrographs are overlain with streamlines colored

by the magnitude of nondimensional velocity. The grain in the center of the micro-

graphs is also located in the center of the 1200 grain aggregate. In Figures 3.3(a)

and (b), streamlines continue from one grain to another and to the melt phase with-

out distortion both before and after deformation. In these micrographs, the grains
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Figure 3.2: (a) Comparison between the deformation of a low viscosity ratio, λ = 1.0,
grain-melt aggregate at the beginning and end of a simulation in a pure shear flow. The
aggregate is colored blue at the start of the evolution and red at the end. Bounding boxes
are added to emphasize the overall deformation of the aggregate. (b) A sample grain-
melt patch with low viscosity ratio, λ = 1.0, at the end of a simulation in a pure shear
flow. The gray areas between the grains represent the melt. (c) Comparison between the
deformation of a high viscosity ratio, λ = 50.0, grain-melt aggregate at the beginning and
end of a simulation in a pure shear flow. The aggregate is colored blue at the start of
the evolution and red at the end. Bounding boxes are added to emphasize the overall
deformation of the aggregate. (d) A sample grain-melt patch with low viscosity ratio,
λ = 50.0, at the end of a simulation in a pure shear flow. The gray areas between the
grains represent the melt.
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and the melt phase have the same viscosity and thus respond in a similar way to

the imposed flow. In contrast, the flow lines display remarkable contrast between

the grains and the melt phase in Figures 3.3(c) and (d). The warmer color of the

streamlines within the melt phase in Figure 3.3(d) suggests a stronger magnitude

of segregation between the melt and the matrix in this case.

Grain deformation and the development of anisotropy in contiguity are strongly

related. The synthetic micrographs in Figure 3.4 compare the differential shortening

and the ratio between the principal components of contiguity near the beginning and

the end of deformation. Comparisons between the maps of D and ψ1/ψ2 in both

undeformed and deformed states reveal that the least deformed grains, character-

ized by smaller values of D, are also most isotropic, characterized by higher values

of ψ1/ψ2. While the magnitude of these variations at a given state of strain are

rather small, as revealed by the small range on the color scale, the pattern remains

unchanged by deformation. We also notice that the average magnitude of the quan-

tities differs substantially between the top and the bottom panels, resulting from

deformation of the aggregates. The spatial pattern is caused by the gradient of the

imposed velocity which becomes zero at the center of the aggregate. Consequently,

the role of deformation is least pronounced at the center.

3.3.2 Simple shear deformation

In simple shear deformation, melt is expelled from the tubules to wet grain

boundaries that are oriented in an antithetic sense to the applied shear strain. The
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Figure 3.3: Streamlines indicating flow velocities within the grains and the melt pocket.
In the top panel, streamlines (a) at the onset and (b) at the end of the numerical exper-
iment are drawn for λ = 1 and Ca = 1. In the lower panel, streamlines (a) at the onset
of deformation and (b) at the end of deformation are drawn for λ = 50 and Ca = 1. The
streamlines are colored by the magnitude of dimensionless velocity.
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Figure 3.4: (a) and (b) Values of deformation and anisotropy in the contiguity tensor
at the start, t = 0.2, of a simulation. (c) and (d) Values of deformation and anisotropy
in the contiguity tensor at the end, t = 1.0, of a simulation. All subfigures are from a
pure shear simulation with Ca = 1.0 and λ = 1.0. A heat map is used to show the values
of grain properties for a selection of inner grains of the grain-melt aggregate. (a) and (c)
show the value of differential shortening, D = (L− B)/(L + B), for each grain, where L
is the length of the major axis and B is the length of the minor axis of the grain. (b)
and (d) show anisotropy of the contiguity tensor as measured by the ratio between the
normal components of the contiguity tensor, ψ1/ψ2. The gray patches between the grains
and gray area surrounding the aggregate represent the melt.
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Figure 3.5: (a) Comparison between the deformation of a low viscosity ratio, λ = 1.0,
grain-melt aggregate at the beginning and end of a simulation in a pure shear flow. The
aggregate is colored blue at the start of the evolution and red at the end. The top right
portion of (a) shows a sample grain-melt patch with low viscosity ratio, λ = 1.0, at the
end of a simulation in a pure shear flow. The gray areas between the grains represent
the melt. (c) Comparison between the deformation of a high viscosity ratio, λ = 50.0,
grain-melt aggregate at the beginning and end of a simulation in a pure shear flow. The
aggregate is colored blue at the start of the evolution and red at the end. The top right
portion of (b) shows a sample grain-melt patch with low viscosity ratio, λ = 50.0, at the
end of a simulation in a pure shear flow. The gray areas between the grains represent the
melt.
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synthetic micrographs in Figure 3.5 demonstrate the grain boundary wetting for two

different viscosity contrasts. The aggregate in Figure 3.5(a) is deformed by a dextral

shear, moving the top of the aggregate to the right. The enlarged microstructure

in the inset demonstrates that the grains are elongated along an axis oriented from

top right to bottom left of the window. We also notice that length of contact is

substantially decreased along grain boundaries oriented in a direction perpendicular

to the stretching of the grains. This observation is qualitatively similar to the

experimental observations of grain boundary wetting by simple shear and torsion

[Hier-Majumder and Kohlstedt , 2006; King et al., 2011; Zimmerman et al., 1999]. As

observed with the pure shear case, the aggregate with the higher viscosity contrast

deformed to a much smaller extent for the same length of computational time.

Similar to the pure shear case, flow within the grains and the melt are strongly

coupled. The flow lines in Figure 3.6 demonstrate the nature of such coupling in an

enlarged view of a few grains whose centers are aligned along the x axis. In all four

panels, the direction of the velocity changes from the top (flowing to the right) to

the bottom (flowing to the left) of the synthetic micrographs. The top two panels,

Figures 3.6(a) and (b) illustrate the development of sheared microstructure at the

beginning and the end of the deformation. The streamlines continue from one grain

to another and the melt without any significant bends, as all of these phases have

the same viscosity. The grains in the middle row in Figure 3.6(b) develop elliptical

closed loop circulation in the center in response to the reversal of the direction of the

flow velocity. We do not observe any appreciable deformation of the high viscosity

grains in Figure 3.6(c) and (d). The streamlines, however, display kinks as they
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Figure 3.6: Streamlines indicating flow velocities within the grains and the melt pocket.
In the top panel, streamlines (a) at the onset and (b) at the end of the numerical exper-
iment are drawn for λ = 1 and Ca = 1. In the lower panel, streamlines (c) at the onset
of deformation and (d) at the end of deformation are drawn for λ = 50 and Ca = 1. The
streamlines are colored by the magnitude of dimensionless velocity.
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Figure 3.7: (a) and (b) Values of deformation and anisotropy in the contiguity tensor
at the start, t = 0.2, of a simulation. (c) and (d) Values of deformation and anisotropy in
the contiguity tensor at the end, t = 1.0, of a simulation. All subfigures are from a simple
shear simulation with Ca = 1.0 and λ = 1.0. A heat map is used to show the values of
grain properties for a selection of inner grains of the grain-melt aggregate. (a) and (c)
show the value of differential shortening, D = (L− B)/(L + B), for each grain, where L
is the length of the major axis and B is the length of the minor axis of the grain. (b)
and (d) show anisotropy of the contiguity tensor as measured by the ratio between the
normal components of the contiguity tensor, ψ1/ψ2. The gray patches between the grains
and gray area surrounding the aggregate represent the melt.

move from the grains into the melt pockets. The kinks in the streamlines, similar

to the pure shear case, are caused by the contrast in viscosity.

The differential shortening and anisotropy increase with an increase in the

strain. The magnitude of both quantities is inversely related in space and time,

as revealed by the maps in Figure 3.7. The top panels display the differential

shortening, D (Figure 3.7(a)), and anisotropy of contiguity, ψ1/ψ2 (Figure 3.7(b)),

at the onset of deformation. In this state, D shows variation O(10−5) about a

mean value of 0.05. After deformation, however, the mean differential shortening

increases to 0.3 in Figure 3.7(c), with the higher values concentrated near the ends.

Although the O(10−3) spatial variation in the magnitude of D is small, the pattern

is anticorrelated with the same order of magnitude variations in the anisotropy of

contiguity in Figure 3.7(d). Notice also the sharp reduction in the average value
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Figure 3.8: (a) Best fit between the anisotropy of the contiguity tensor, ψ1/ψ2, and
differential shortening, D, for the pure shear simulations. The blue dots represent mea-
surements of grains from simulations where λ = 50.0 and Ca = 1.0. The red dots represent
measurements of grains from simulations where λ = 1.0 and Ca = 1.0. The relationship
is given by ψ1/ψ2 ∼ exp(−3.909D2 − 1.005D) with R2 = 0.998. (b) A zoomed in view of
the high viscosity data points from (a).

of ψ1/ψ2 from 0.9 before deformation (3.7 (b)) to a value of 0.3 after deformation.

Similar to the observation from pure shear experiments, these results depict the grain

scale correlation between deformation and generation of anisotropic contiguity.

The negative correlation between the magnitudes of anisotropy in contiguity

and differential shortening is revealed when these two quantities are continually

tracked during the course of a deformation experiment. The plots in Figure 3.8

display this pattern. In the plots in Figure 3.8(a), we compare the values of ψ1/ψ2

and D calculated from each grain at each level of shortening, from two different pure

shear experiments. The plot reveals that the nature of anticorrelation is strongly
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nonlinear. Also overlain on the plot is a fit to the data ψ1/ψ2 = e−3.909D2−1.005D.

The plot in Figure 3.8(b) displays the values for λ = 50 only. Although deformed

to smaller strains, the strong negative correlation is obvious from the plot. The fact

that data from both low and high viscosity contrast aggregates in Figure 3.8(a) follow

the same trend demonstrates that the geometric parameters such as differential

shortening and anisotropic contiguity are nearly insensitive to the viscosity ratio at

the same stage of deformation. We discuss this issue further in the next section.

3.4 Discussion

3.4.1 Trade-offs in selection of parameters

An important advantage of our microgeodynamic model lies in the ability to

track a large quantity of information for each grain during the course of deformation.

The implementation of FMBEM allows us to retrieve this information without unre-

alistic costs of computation. The range of viscosity ratio, λ, explored in this study is

substantially smaller than the values observed in nature. The smaller values of λ in

our simulations allow us to observe and quantify the development of anisotropy in a

reasonable computation time. Despite the short timescale, the final microstructural

parameters at a given stage of state were relatively insensitive to the viscosity ratio.

The plots in Figure 3.9 demonstrate the evolution of anisotropy and differential

shortening with increasing strain. The plots in Figure 3.9(a) illustrate that the ratio

ψ1/ψ2 decreases with the strain in a nonlinear fashion. The superposition of two

sets of data illustrates that for a comparable strain, the influence of the viscosity
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Figure 3.9: Development of anisotropic textures in pure shear experiments. (a) Plot of
anisotropy in contiguity ψ1/ψ2 as a function of bulk strain for viscosity ratios λ = 1 (red
squares) and λ = 50 (blue circles). (b) Plot of differential shortening as a function of bulk
strain for viscosity ratios λ = 1 (red squares) and λ = 50 (blue circles).

contrast on the anisotropic contiguity is insignificant. The plots in Figure 3.9(b)

demonstrate the differential shortening increases as the grains deform into elongated

shapes with an increase in strain. As in Figure 3.9(a), for a given strain the influence

of viscosity ratio on the differential shortening is minimal.

3.4.2 Comparison with previous results

The results from our work is in great qualitative agreement with a number

of previous works. In a set of laboratory experiments, Daines and Kohlstedt [1997]

deformed partially molten aggregates of olivine and basalt in pure shear. Studying

the microstructures of the deformed samples, they observed that the initially equant

melt pockets became more elongated with deformation. They also observed that

these films aligned themselves in a direction parallel to the direction of principal
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compressive stress. This observation is similar to our synthetic micrographs where

grain boundaries parallel to the principal shortening direction and perpendicular to

the x axis are preferentially wetted resulting in elongated film-like melt units. Since

the work of Daines and Kohlstedt [1997] did not report contiguity or differential

shortening from their microstructures, direct quantitative comparison between these

two works is difficult.

In a set of laboratory experiments with analogue materials, Takei [2005] ob-

served the development of shear wave anisotropy during deformation. The samples

were deformed in pure shear configuration while alternating between the principal

compressive and extensive stress. In this work, Takei [2005] reports average values

of contiguity ψ from the deformed aggregates. The scalar contiguity, the trace of

the contiguity tensor from our pure shear experiments, is similar to these reported

values. We present quantitative comparisons between these two works in Chapter

4. Qualitatively, the orientation of grain boundary films in relation to the principal

compressive stress in these experiments is also similar to our pure shear experiments.

3.5 Conclusion

The results from our numerical experiments demonstrate that melt is expelled

from grain edge tubules to grain boundary films during deformation. In pure shear

configuration, the orientation of these films is parallel to the direction of the princi-

pal compressive stress. In simple shear, these films are oriented in a sense antithetic

to the sense of applied shear. The results from our microgeodynamic model also
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demonstrate that the magnitudes of anisotropic contiguity and differential shorten-

ing display a strongly nonlinear negative correlation. Such a correlation is revealed

both in spatial distribution and temporal evolution of these quantities with progres-

sive deformation. We also demonstrate that the flow between the grains and the

interstitial melt phase are strongly coupled during deformation.

83



Chapter 4: Development of Anisotropic Contiguity in Deforming Par-

tially Molten Aggregates II: Implications for the Lithosphere-

Asthenosphere Boundary

4.1 Introduction

Deformation of partially molten aggregates plays an important role in grain

scale redistribution of melt. After deformation, the initially isotropic network of

grain edge tubules becomes anisotropic as the melt preferentially wets grain bound-

aries oriented parallel to the principal compressive stress [Daines and Kohlstedt ,

1997; Takei , 2005]. Such a transformation of the microstructure of the melt also

renders contiguity, the fractional area of intergranular contact, anisotropic. As the

elastic strength of the aggregate depends on the area of contact between adjacent,

load-bearing grains, development of anisotropy in contiguity renders the effective

elastic strength anisotropic, even if the solid matrix is isotropic.

Direct observation of the evolution of anisotropy of contiguity and shear wave

speed during the course of deformation was previously precluded by the setup of lab-

oratory experiments and prohibitive computational cost of numerical models. Here,

we present the results from a Fast Multipole Boundary Element Method (FMBEM)
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based model that addresses the shortcomings of previous numerical models. In this

work, we model the deformation of partially molten aggregates in pure and simple

shear while tracking the information on shape and contiguity of each grain during

each time step of the numerical experiment. In Chapter 3, we present the numerical

methods and synthetic microstructures. In this chapter, we focus on the implications

of our results on the Earth’s Lithosphere-Asthenosphere Boundary (LAB).

The LAB is an ideal place to study the coupling between deformation and

melt geometry. Results from experimental petrology indicate small amounts of

melt, possibly less than 1 vol%, can exist in conditions similar to the LAB [Sifré

et al., 2014]. Dynamic coupling between the motion of lithospheric plates and the

underlying asthenosphere will produce large amounts of deformation in the LAB,

inducing strong anisotropy in the geometry of this melt [Holtzman and Kendall ,

2010; Kawakatsu et al., 2009]. The physical properties of this deformed, anisotropic

aggregate should be able to explain the seismic and electric signature of the LAB.

A number of constraints can be placed on the nature of the LAB from its

seismic and electric signature. Multiple studies indicate that despite regional varia-

tions, the LAB is characterized by a relatively sharp reduction in shear wave speed

over a short depth range [Schmerr , 2012; Fischer et al., 2010; Rychert et al., 2010].

Another feature of the LAB is seismic anisotropy on global [Nettles and Dziewoski ,

2008] and regional scales [Holtzman and Kendall , 2010]. Magnetotelluric studies

reveal that the LAB is characterized by a nearly horizontal channel of elevated elec-

trical conductivity [Evans et al., 2005; Naif et al., 2013]. If partially molten, the

interaction between deformation and redistribution of the melt should be able to
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explain these observed signatures of the LAB.

We explore the nature of the LAB from a microstructural perspective. In

Chapter 3, we demonstrate that the anisotropy in contiguity displays a strongly

nonlinear increase as deformation progresses. In this chapter, we combine our results

of anisotropic melt geometry with a mineral physics database using an averaging

scheme to calculate the development of shear wave anisotropy during the course of

deformation. We also compare the seismic signature of melt distributed in tubules

with that of melt films created by grain boundary wetting.

This chapter is divided into the following sections. First, we present the meth-

ods for calculating the shear wave speeds and anisotropy from our numerical data.

Next, we discuss the evolution of the calculated seismic signature as a function of

deformation. Finally, we discuss the implications of our study on the nature of

seismic velocities and anisotropy in the LAB.

4.2 Methods

In this work, we use our numerical data to calculate the shear wave anisotropy.

To estimate the effect of deformation in shear wave speed reduction and anisotropy

generation, we also present predicted profiles of shear wave speed using the numerical

code MuMaP [Hier-Majumder et al., 2014]. In this section, we present a brief

description of the numerical methods from Chapter 3 that were used to calculate

the contiguity, followed by a derivation for calculating shear wave anisotropy from

numerical values of contiguity, and a short summary of the technique used to build
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profiles of shear wave speed using MuMaP.

4.2.1 Numerical model

In the microgeodynamic model of Chapter 3, we carry out two sets of numerical

experiments. In each set, the partially molten aggregate was modeled as a collection

of two dimensional, tightly packed hexagonal grains with an interstitial melt phase.

During the deformation of this aggregate under an applied, constant strain rate, the

grains and the melt deform in a viscous manner. We take the Partial Differential

Equations (PDEs) governing the conservation of mass and momentum within each

grain and convert these PDEs into a Boundary Integral Equation (BIE) for each

grain and melt phase. The vector BIE for the j-th component of the unknown

velocity uj(x0) at a point x0 on the boundary of the q-th grain is given by

uj(x0) =
2

1 + λq

[
u∞j (x0)−

1

4πCa

P∑

p=1

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+

P∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
x0 ∈ Γq, (4.1)

where λp is the ratio of viscosities between the p-th grain and the melt, u∞j is an

applied far-field velocity, ∆fi arises from tension at the surface of the grain, the

second rank Stokeslet tensor Uij arises from the response of the flow to surface

tension, the third rank Stresslet tensor Tijk arises from the contributions due to

deformation within the grains, and n̂i is the unit normal vector along the boundary

of the p-th grain pointing into the melt. The nondimensional capillary number Ca
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is the ratio between the forces of surface tension and deformation. In this analysis,

we present results for λ = 1 and Ca = 1.

The shape of the p-th grain responds to the applied deformation. To ensure

the volume of each grain is conserved, the shape function, F p, evolves following the

kinematic relation,

F p
,t(x, t) + ui(x, t)F

p
,i(x, t) = 0. (4.2)

As the shape of the grain evolves, so does the contiguity. The contiguity tensor

for the p-th grain at any time is given by

ψp
ij =

1

L

∫

Γp

χ(x)n̂i(x)n̂j(x) dΓp, (4.3)

where L is the length of Γp [Takei , 1998], and n̂i is the unit normal which is nu-

merically evaluated from F p at each time step. The quantity χ(x) is the contact

function [Takei , 1998], which assumes a value of unity at the grain-grain contact

and zero at the grain melt contact. The trace of the contiguity tensor, ψ, is also

numerically evaluated at each time step for each grain.

We carry out numerical experiments in a pure shear and simple shear setup.

For the pure shear experiments, the aggregate consists of 1200 grains arranged in

40 rows and 30 columns, while the simple shear experiments are conducted on an

aggregate of 900 grains arranged in 10 rows and 90 columns. The detailed numerical

methods are presented in Chapter 3. For the seismic analysis in this chapter, we use
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the values of the components of the contiguity tensor, the eigenvalues, and the trace

from the numerical experiment. We then average the values of these quantities over

all grains at any given time step. These averaged values are then used to calculate

the development of anisotropic contiguity and shear wave anisotropy as a function

of increasing strain.

4.2.2 Calculation of shear wave speed and anisotropy

In a deforming, partially molten aggregate, anisotropy is produced by (a) de-

formation of individual grains along dominant slip planes, and (b) by redistribution

of melt into an anisotropic geometry. Deformation of crystals along specific slip

planes and the resultant Lattice Preferred Orientation (LPO) can exert significant

influence in the anisotropy of the structure. While the general technique, outlined

below is able to address both sources of anisotropic texture, in this work we assume

that the viscosity of the grains remains constant, leading to a Newtonian rheology.

In crystals, such behavior is achieved by deformation in the diffusion creep regime.

In this regime, slip of dislocations and generation of an LPO is suppressed. Con-

sequently, in our analysis, following the works of Takei [1998] and Takei [2005], we

assume that the anisotropy is caused only by the anisotropic distribution of melt ge-

ometry. The work of Holtzman and Kendall [2010] outlines the competition between

these two effects.

Consider an initially isotropic partially molten aggregate in the x−y plane. As

this aggregate is deformed, the components of the contiguity tensor change, leading
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to a change in the shear wave speed based on the direction of polarization. For

example, the shear wave traveling in the z direction while vibrating along the i-th

direction in the x − y plane will experience a reduction in shear wave speed, δVSi,

given by

δVSi
V eq
Si

=
δψii

2ψ

Seq
zizi − Ss

zizi

Seq
zizi

i = x, y, (4.4)

where ψii is the component of the contiguity tensor on the face perpendicular to the

i axis, ψ is the trace of the contiguity tensor, V eq
Si is the shear wave speed in the

undeformed aggregate, and Sijkl is the elastic compliance tensor. Assuming both the

solid (superscript m = s) and the undeformed, partially molten matrix (superscript

m = eq) are isotropic, the compliance tensors are defined as [Takei , 1998]

Sm
ijkl =

1

9km
δijδkl +

1

4µm

[
δikδjl + δilδjk −

2

3
δijδkl

]
, (4.5)

where δij is the Kronecker delta, km is the bulk modulus, and µm is the shear

modulus. For the solid matrix, ks and µs simply represent the temperature, pressure,

and composition dependent bulk and shear moduli. For the partially molten matrix,

the effective compliance tensor, Seq
ijkl, is sensitive to the interconnection between the

load bearing grains through the contiguity in the undeformed state. Using this

definition of the compliance tensor, we can show that the last term on the right
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hand side of equation (4.4) becomes

Seq
zizi − Ss

zizi

Seq
zizi

= 1− µeq

µs

. (4.6)

Following the parameterization of Takei [2002], we can express the quantity on the

right hand side of equation (4.6) as

1− µeq

µs

= (1− ψ)n , (4.7)

where the exponent n is also a function of the trace of contiguity ψ.

Combining (4.4) through (4.7), we find the simplified relation for the variations

in the seismic wave speed as

δVSi = V eq
Si

[
δψii

2ψ

]
(1− ψ)n , (4.8)

where i = x, y. The quantity within square brackets on the right hand side of

equation (4.8) represents the contribution of anisotropic contiguity in shear wave

splitting. If the contiguity is the same as the undeformed or equilibrium stage,

δψii = 0, leading to δVSi = 0. In this analysis, we assume that V eq
zx = V eq

Si = V0(φ, ψ),

where φ is the melt volume fraction. This formulation directly relates anisotropy

in the microstructure, δψii, to the anisotropy in shear wave speed, δVSi. Using the

formulation of Takei [2002], we can calculate V0(φ, ψ) for a known melt fraction and

contiguity. In our numerical experiments, we calculated the scalar contiguity, ψ,

and four components of the contiguity tensor ψij , for all grains at each time step.
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In the absence of deformation, the shear wave speed through the partially molten

aggregate at a given depth is controlled by the elastic properties of the solid and

melt, the potential temperature, and the bulk solid composition. In the equilibrium

assemblage, the influence of melt on the shear wave speed is controlled by the melt

geometry and the volume fraction.

We use the numerical model MuMaP [Hier-Majumder et al., 2014] to create

vertical profiles of shear wave speed. The elastic properties of the reference mantle

were obtained from the work of Xu et al. [2008] for mantle potential temperatures of

1300 K and 1500 K and a basalt fraction of 0.2 in the bulk composition. We use the

equation of state for 5% carbonated peridotite from Ghosh et al. [2007] to obtain

the physical properties of the melt phase. Next, we insert an approximately 35 km

thick partially molten zone in the reference mantle. The top of the temperature

sensitive partially molten zone is set at depths of 45 km for a potential temperature

of 1500 K and 60 km for the potential temperature of 1300 K. We then calculate

the reduction in shear wave speed when the melt is distributed in tubules in an

undeformed state for melt volume fractions of 0.001 and 0.02, for dihedral angles of

5◦ and 25◦, respectively. The detailed method of these calculations has been outlined

in Hier-Majumder et al. [2014]. To test the role of deformation in the shear wave

reduction, we also calculate the relative reduction in shear wave speed caused by

melt films. Following the equations of Walsh [1969], we carry out these calculations

for a melt volume fraction of 0.001 and film aspect ratios of 0.002 and 0.005.
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Figure 4.1: Microstructure of a small section from the deforming aggregate. On the left,
the undeformed aggregate is shown. The ψxx component of the contiguity tensor is illus-
trated on a grain boundary of the undeformed aggregate. On the right, microstructures
resulting from pure shear (top) and simple shear (bottom) deformation are shown.

4.3 Development of anisotropy

In this section, we present the results for the development of anisotropy in

contiguity for both pure and simple shear deformation. We also present the results

for seismic anisotropy for the pure shear case.

4.3.1 Development of anisotropic contiguity

During the course of deformation in the numerical experiments, as the grain

shapes evolved, so did the anisotropy in the contiguity. The synthetic microstruc-
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tures in Figure 4.1 depict the change in the shape of grains during pure and simple

shear deformation. In the undeformed state, the melt is distributed evenly along

tubules in three grain junctions. After pure shear deformation, the intergranular

contact along the boundaries perpendicular to the x axis is substantially reduced,

as the pockets on each end nearly touch each other, effectively transitioning into a

film-like texture. An important consequence of this transformation is a significant

reduction of the ψxx component of contiguity. In the simple shear experiment, we

also see the development of such film-like structures along grain boundaries oriented

in a sense antithetic to the applied, dextral shear.

As the partially molten aggregate is deformed in pure shear, the ψxx component

of the contiguity tensor decreases while ψyy increases. The magnitude of contiguity,

ψ, remains nearly constant. Data in Figure 4.2(a) demonstrate this trend. In the

absence of deformation (zero strain), both diagonal components of contiguity are

equal. The sum of these two components is the same as the total contiguity, ψ,

which is the trace of the contiguity tensor. Each data point in the plot represents

an average made over 1200 grains in the aggregate. As the aggregate is compressed

parallel to the y axis, grain boundaries parallel to the direction of compression

open up. Consequently, ψxx, the component of contiguity on the face perpendicular

to the x axis, decreases. The opposite is observed for the faces normal to the y

axis, resulting in an increase in the value of the ψyy component. This behavior of

the aggregate is qualitatively similar to the change in microstructure observed in

fractured, porous rocks [Mavko et al., 2003]. The trace of the contiguity tensor,

ψ, remains nearly constant during deformation. The shaded region in the plot
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Figure 4.2: Development of anisotropic contiguity in pure shear. (a) Plot of the mag-
nitude of contiguity, ψ, and the components ψxx and ψyy as a function of shortening.
Each data point is averaged over 1200 grains in the numerical experiment. Width of the
shaded region represents the range of contiguity reported by Takei [2005] for compara-
ble melt volume fractions. (b) Ratio between the two principal components of contiguity
(ψ1/ψ2) and the ratio between the ψxx and ψyy components. The data sets are practically
indistinguishable and overlie each other.
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depicts the range of values of contiguity measured by Takei [2005] in her samples

deformed in pure shear. As the plot indicates, the trace of our contiguity matches

the experimental measurements well.

During pure shear deformation, the anisotropy becomes stronger but no ro-

tation of the contiguity tensor is observed. In Figure 4.2(b), the ratio between the

xx and yy components of the contiguity tensor are plotted with the ratio between

the two eigenvalues, ψ1 and ψ2. Both sets of data indicate a reduction in the ratio,

signaling a strengthening of the anisotropy, while the data sets become indistin-

guishable as strain increases. As the principal axes of the applied strain rate remain

stationary, this behavior of anisotropy development is physically reasonable. This

observation qualitatively matches well with the experimental observation of Takei

[2005] and Daines and Kohlstedt [1997].

During simple shear deformation, variations in the ψxx and ψyy components are

comparatively small. In Figure 4.3(a), initially the ψxx component is slightly larger

than the ψyy component. As deformation proceeds, however, the ψxx component is

modestly reduced in magnitude. Similar to the pure shear case, the contiguity ψ

remains nearly constant and consistent with the experimentally observed contiguity

of Takei [2005]. The difference in behavior between the two types of deformation

is explained by the data in Figure 4.3(b). Unlike the pure shear case, the ratio

between the principal components differs significantly from the ratio between the x

and y components. This difference arises from the rotational nature of the simple

shear flow. As the grains deform, they undergo rotational motion, leading to a rota-

tion of the contiguity tensor. As a result, the contiguity tensor is as anisotropic as
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Figure 4.3: Development of anisotropic contiguity during simple shear. Each data point
is averaged over 900 grains in the numerical experiment. (a) Plots of magnitude of con-
tiguity ψ, and the components ψxx and ψyy as a function of shear strain. Width of the
shaded region represents the range of contiguity reported by Takei [2005] for comparable
melt volume fractions. (b) Ratio of the two principal components of contiguity (ψ1/ψ2)
and the ratio between the ψxx and ψyy components.
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the pure shear case, but the principal axes of anisotropy differ from the coordinate

axes. It should be noted that the shear strains in our numerical experiments are rel-

atively modest in comparison with experimental measurements [King et al., 2011;

Hustoft and Kohlstedt , 2006; Hier-Majumder and Kohlstedt , 2006]. Whereas the

strain in the numerical pure shear experiments is substantially higher than experi-

mental measurements such as Daines and Kohlstedt [1997], the fact that the ratio of

the principal components of contiguity are comparable for both cases outlines that

simple shear is more effective in generating anisotropic texture.

4.3.2 Development of seismic anisotropy

In the two-dimensional aggregate, melt is confined in pockets along the junc-

tion of three grains only. Due to the hexagonal symmetry of the grains, all com-

ponents of contiguity are equal. Consequently, the speed of shear waves traveling

through this aggregate is independent of either the direction of propagation or the

directions of polarization. As deformation of the aggregate forces melt out of the

triple grain junctions and wets a larger fraction of two grain contacts or grain bound-

aries, however, the speed of shear waves varies based on the direction of propagation

and the direction of polarization. For the present two-dimensional case, we present

the results for a shear wave traveling out of the plane in the z direction.

During pure shear, δVSx/V0 decreases while δVSy/V0 increases, as depicted in

the plots in Figures 4.4(a) and (b). The rate of decrease of δVSx/V0 slows down

significantly, achieving a steady state around a finite strain of 0.4. At this strain,
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Figure 4.4: Development of shear wave anisotropy as a function of strain in pure shear.
Variations in the wave speed of a wave traveling out of the plane of deformation with
a polarization parallel to the (a) x axis, δVSx, and (b) y axis, δVSy, normalized by the
wave speed in the isotropic aggregate, Veq. The blue lines are polynomial fits to the data.
Parameters for the fit and the fitting function are reported in Table 4.1. (c) Total seismic
anisotropy, difference between the two polarizations of the shear wave, normalized by Veq.
The strain on the horizontal axis is shortening. Each data point represents an average of
the 1200 grains.
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Experiment Quantity p1 p2

Pure shear δVSy 0.054 -0.036
δVSx -0.050 0.041

Simple shear δVSy 0.002 0.008
δVSx -0.001 -0.006

Table 4.1: Parameters for fit to the reduction in shear wave speed δVSi(i = x, y) as
a function of strain in pure and simple shear experiments. The equation for the fit is
δVSi = p1ǫ+ p2ǫ

2, where ǫ is either the shortening or the shear strain.

the changes in the ratio δVSy/V0 also slow down sharply. This trend is explained by

the development of well-wetted vertical grain boundaries. Both changes reach ap-

proximately 1.5% by the steady state. In Figure 4.4(c), we plot the total anisotropy

(Vsx − VSy)/V0 as a function of strain. Following the trend of each component, the

total anisotropy also attains a nearly constant value of -0.03 at a shortening of 0.4.

We overlay the data with a polynomial fit in Figures 4.4(a) and (b). The fitting

function and coefficients are listed in Table 4.1.

During simple shear, however, reduction of the shear wave speeds with x po-

larization and increase of those with y polarization is less than the pure shear. Up to

a shear strain of 0.8, δVSx is reduced by 0.4%, while δVSy increases by 0.6%, leading

to a total anisotropy of approximately 1% as shown in Figures 4.5(a), (b), and (c).

Since the principal components of the anisotropy tensor rotate away from the x and

y plane, the shear wave anisotropy along the coordinate axes is weaker in this case.

Development of well-wetted grain boundaries is manifested in the seismic sig-

nature of the partially molten region. In the following section, we discuss the im-

plications for this textural change on the seismic signature of the LAB.
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Figure 4.5: Development of shear wave anisotropy as a function of strain in simple
shear. Variations in the wave speed of a wave traveling out of the plane of deformation
with a polarization parallel to the (a) x axis, δVSx, and (b) y axis, δVSy, normalized by
the wave speed in the isotropic aggregate, Veq. The blue lines are polynomial fits to the
data. Parameters for the fit and the fitting function are reported in Table 4.1. (c) Total
seismic anisotropy, difference between the two polarizations of the shear wave, normalized
by Veq. The strain on the horizontal axis is the shear strain. Each data point represents
an average of the 900 grains.
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Figure 4.6: (a) A cartoon identifying the components of anisotropy and stress in an
aggregate deformed by pure shear. Also shown are two waves, VSx and VSy, that travel out
of the plane of deformation and are polarized in the x and y directions, respectively. The
component of contiguity, ψxx, is reduced by predominant wetting of the grain boundaries
perpendicular to the x direction. (b) Two illustrative cases resulting from preferential
wetting of either horizontal or vertical grain boundaries. When the grain boundary melt
films are horizontal, VSH > VSV , while the picture is reversed for vertical melt films.

4.4 Implications for melting in the LAB

Mapping the numerical experiments to nature As deformation forces

melt to wet a greater fraction of grain boundaries, shear wave splitting will be-

come more prominent. The cartoons in Figures 4.6(a) and (b) demonstrate the way

seismic anisotropy from our numerical experiments can be mapped to the natural

conditions. In our numerical experiments, contiguity is reduced along planes perpen-

dicular to the x axis, rendering ψxx < ψyy. This situation is akin to the experimental

observations of increase in aspect ratio of melt pockets in the direction of maximum

compressive stress by Daines and Kohlstedt [1997]. Thus, we have VSy > VSx. If we

consider two simple end member cases as outlined in Figure 4.6(b), predominantly
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horizontal grain boundary wetting will lead to VSH > VSV . If the grain boundary

wetting is vertical, however, the opposite effect will take place. Although we do not

consider the role of LPO in the matrix, this picture is qualitatively similar to the

predictions by Holtzman and Kendall [2010]. It is important to note that neither

case demonstrates formation of large melt-rich bands. The shear wave anisotropy is

brought about by grain scale redistribution of melt.

Comparison between observations and predictions We use two con-

straints arising from seismic observations. First, Schmerr [2012] observes nearly

5% reduction in the shear wave speed underneath the Pacific. The second observa-

tion involves 4% anisotropy of globally averaged shear wave speed beneath the LAB

[Nettles and Dziewoski , 2008]. We test the influence of the melt volume fraction and

geometry on these seismic signatures.

We consider two shear wave speed profiles for a reference mantle at tempera-

tures of 1300 K and 1500 K, as depicted in Figures 4.7(a) and (b). The presence of a

partially molten zone will be marked with a reduction in the shear wave speed. We

consider a 35 km thick partially molten zone in this reference mantle. To account for

the differences in depth of melting due to different potential temperatures, we place

the top of the partially molten zone at a depth of 45 km for a potential temperature

of 1500 K and 60 km for the potential temperature of 1300 K. The seismic profiles

in Figure 4.7(a) compare the reduction of shear wave speed due to melt in tubules

of dihedral angles varying between 5◦ and 25◦. As the profiles indicate, reduction of

the dihedral angle, for the same volume fraction of melt, causes a sharp reduction

in the shear wave speed. Based on this profile, the observed 5% reduction in shear
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Figure 4.7: (a) Effect of melt geometry in shear wave speed reduction in the LAB.
The gray shaded region represents shear wave speed profiles varying between potential
temperatures of 1300 K and 1500 K, from Xu et al. [2008]. The temperature sensitive top
and bottom of the melting zones are marked by broken horizontal lines. The blue shaded
profiles represent shear wave speed reduction caused by 2 vol% melt in tubules for dihedral
angles of 5◦ and 25◦. (b) The thin blue curves correspond to reduction in the shear wave
speed of the reference mantle if the 0.1 vol% melt is distributed in grain boundary tubules.
The red regions represent reduction in the shear wave velocity if the same volume fraction
of melt is distributed in thin grain boundary films. The width of the region represents the
variations in the aspect ratio of the film. For the melt fraction of 0.1 vol%, the observed
5% reduction in shear wave velocity can be explained by melt films of aspect ratio 0.002,
created by deformation. (c) Profiles of seismic anisotropy resulting from the distribution
of melt in grain boundary films. If the films are oriented horizontally, the melting zone will
depict an anisotropy of +4%. The sign of anisotropy will reverse if the melt is organized
in vertical films.
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wave speed can be explained by 2 vol% melt in tubules with a dihedral angle of 5◦.

Although the shear wave speed reduction can be explained by 2 vol% melt

in tubules, several other factors need to be taken into consideration. The isotropic

distribution of melt in this case fails to explain the observed anisotropy in seismic

and magnetotelluric signatures of the LAB. If partially molten, it is not possible to

generate anisotropy by LPO of crystals by deformation while keeping the melt in

uniformly distributed tubules. In addition, the permeability of 2 vol% melt may be

sufficiently large to allow gravitational rise of the lighter melt rendering the source

region depleted in melt. It is illustrative, therefore, to predict the seismic signature

of a smaller volume fraction of melt distributed in films.

The profile in Figure 4.7(b) compares the reduction in shear wave speed caused

by 0.1 vol% melt in films and tubules. At such small volume fractions, variations in

the dihedral angle produce very small variations in the shear wave speed reductions,

as indicated by the width of the blue profiles in this figure. We also plot the shear

wave speed reduction by melt distributed along grain boundary films of aspect ratio

varying between 0.002 and 0.005 using the relations from Walsh [1969]. When the

melt is distributed in films of aspect ratio 0.002, the shear wave speed can be reduced

to 5% despite the small melt volume fraction. In the profile in Figure 4.7(c), we plot

the resultant seismic anisotropy for two different orientations of melt films. This

anisotropy corresponds to the steady state anisotropy from melt films in our simple

shear experiments.

Seismic anisotropy induced by small volume fraction of melt in horizontal

films agrees well with the suggestion of Kawakatsu et al. [2009]. The relatively large
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volume fraction of melt in tubules required to explain the seismic anisotropy poses

two problems. First, such a large volume fraction of melt will likely be gravitationally

unstable. The small volume fraction of melt in films is more likely to be retained at

the source region as the low permeability and high surface tension at such small melt

fractions will prevent efficient extraction of the melt [Hier-Majumder , 2011; Hier-

Majumder and Courtier , 2011; Hier-Majumder et al., 2006]. Second, the presence of

small amounts of carbon will lead to a small degree of incipient melting in the LAB

[Sifré et al., 2014]. While this observation may explain the global radial anisotropy

of shear wave, regional trends of VSH < VSV can be likely attributed to the regional

geodynamic setup [Holtzman and Kendall , 2010]. In addition, horizontal melt films

help explain the observed nearly horizontal region of elevated electrical conductivity.

4.5 Conclusion

In this chapter, we demonstrate that the anisotropy in contiguity increases in

a strongly nonlinear fashion with progressive pure and simple shear deformation.

During pure shear deformation, the anisotropy in shear wave speed also increases

in a strongly nonlinear fashion and achieves a steady state during our numerical

experiments. Our results demonstrate that the observed shear wave speed reduction

and seismic anisotropy in the LAB can be explained by as low as 0.1 vol% melt in

horizontal films.
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Chapter 5: Evolution of Anisotropy in Migrating Ultralow-Velocity

Zones

5.1 Introduction

Earth’s core-mantle boundary (CMB) marks a sharp transition in composition

and physical properties between the rocky mantle and the molten, metallic outer

core. The mantle side of this boundary is marked by a patchwork of physically dis-

tinct structures, termed Ultralow-Velocity Zones (ULVZs) [Williams and Garnero,

1996]. The ULVZs are typically 10% denser than the surrounding mantle [Williams

and Garnero, 1996; Rost and Revenaugh, 2003; Rost et al., 2005] and can span up

to several hundreds of kilometers in lateral extent [Cottaar and Romanowicz , 2012;

Thorne et al., 2013]. Within the ULVZ, the speed of traveling shear waves decreases

more dramatically (up to 30%) compared to compressional wave speed (up to 10%).

As shear wave speed is more sensitive to the presence of partial melt, such a dif-

ferential reduction likely implies the presence of 5-10 vol% melt within the ULVZ

[Hier-Majumder , 2008; Wimert and Hier-Majumder , 2012; Hier-Majumder , 2014],

although it has been argued that extremely iron-rich mineral phases can give rise

to such seismic signatures [Wicks et al., 2010; Mao et al., 2006]. Based on a scaling

107



relation between the topography and viscosity of the ULVZ and the degree of melt-

ing, the viscosity of the ULVZ can be up to two orders of magnitude lower than the

viscosity of the surrounding mantle [Hier-Majumder and Revenaugh, 2010].

The high density and low viscosity of the ULVZ plays an important role in

the spatial correlation with structures in the lower mantle. In a series of analogue

material experiments, Jellinek and Manga [2004] demonstrated that a thin, dense,

and low viscosity ULVZ layers can act as anchors to mantle plumes, stabilizing them

over geologic time scales. In addition, narrow, elongated ULVZs are detected along

the edges of the Large Low Shear Velocity Provinces (LLSVPs), two nearly antipodal

structures located beneath the Pacific and Africa, respectively [McNamara et al.,

2010]. Like mantle plumes, the LLSVPs are dynamic structures with active internal

convection [McNamara et al., 2010; Bower et al., 2011; Tan and Gurnis , 2007].

The location, topography, and geometry of the ULVZ, thus, must be a result of

the dynamic interaction between circulation within the ULVZ and the surrounding

mantle structures.

The structure and location of the ULVZ embedded in a dynamic mantle is

achieved by a balance between traction at the LLSVP-mantle interface and buoyancy

forces. Low viscosity patches embedded within a circulating, higher viscosity fluid

can be mixed and homogenized easily in geological time scales [Manga, 1996]. In

the absence of an entraining, circulation around the dense patch, gravity current

within the patch will spread it over the substrate into a thin, undetectable layer

[Koch and Koch, 1995]. The fact that ULVZs are spatially correlated with regions

of mantle flow and are structurally distinct from the surrounding mantle indicates
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their shapes are controlled by a balance between gravitational drainage through the

volume and traction at their interface caused by the entraining flow [Hier-Majumder

and Revenaugh, 2010]. The flow within the ULVZ, excited by the entraining flow will

also have important consequences for the internal structure of the ULVZ [Hernlund

and Jellinek , 2010; Hier-Majumder , 2014].

If partially molten, deformation of the ULVZ matrix will redistribute the melt

both in the large and small scale. In the large scale, compaction within the ULVZ

aided by a top-driven cavity flow [Hernlund and Jellinek , 2010] or a pulsating verti-

cal flow [Hier-Majumder , 2014], lead to the formation of a melt-rich layer near the

top of the ULVZ. In the scale of individual mineral grains, deformation of the ma-

trix will expel melt from tubules along triple grain junctions into films along grain

boundaries, rendering the physical properties anisotropic. Anisotropic texture of

the ULVZ matrix will likely leave its signature in the seismic wave speeds within the

ULVZ. If detectable, the nature of such seismic anisotropy will be highly dependent

on the nature of the flow within the ULVZ.

Previous studies have attempted to model the shapes of the ULVZs. Gar-

nero and McNamara [2008]; McNamara et al. [2010]; Bower et al. [2011] modeled

convection within the LLSVPs, but due to the nature of the model, they were not

able to resolve the stress and tractions at the interfaces between the ULVZ and

LLSVP. Hier-Majumder and Revenaugh [2010] studied the steady state shape of

the ULVZ in isolation, which did not take into account the continuous deforma-

tion of the ULVZ. These models were not able to prescribe the stress jump at the

LLSVP-mantle interface and track the exact shape of the ULVZ due to the imposed
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flow.

In this work, we study the evolution of the shape of ULVZs with an imposed

LLSVP flow. We combine the calculations for the flow field to model the likely

presence of anisotropy within the ULVZ. In Section 5.2, we describe the governing

equations that model the evolution of ULVZs within an LLSVP and the methods

used to obtain numerical solutions. In Section 5.3, we present three simulations

of ULVZ configuration of the numerical simulations. We present the results of the

simulation in Section 5.4. Section 5.5 discusses their applicability to understanding

the evolution of ULVZs within the LLSVP. We share closing thoughts and future

research directions in Section 5.6.

5.2 Model

The evolution of ULVZ geometry within a convecting LLSVP is governed by

a coupled viscous flow between ULVZ reservoirs and the LLSVP. In this section, we

present the governing equations for the coupled flow, the setup for our numerical

experiments, and the methods of post processing our numerical data.

Consider a collection of dense and low viscosity ULVZ patches embedded

within a viscous LLSVP. The ULVZs and LLSVP are treated as incompressible

fluids, such that the conservation of mass within each phase leads to

ui,i = 0, (5.1)

where ui is the i-th component of the velocity vector and (, i) represents the deriva-
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tive with respect to xi. Conservation of momentum within each ULVZ and the

LLSVP requires, in the presence of gravitational acceleration,

σij,i + ρgj = 0, (5.2)

where σij is the stress tensor of the fluid with density ρ. The vector gj represents

the force due to gravitational acceleration. The stress tensor is related to the fluid

velocity through the constitutive relation,

σij = −δijP + µ (ui,j + uj,i) , (5.3)

where P is the dynamic pressure of the fluid, µ is the fluid viscosity, and δij is

the Kronecker delta. Governing Partial Differential Equations (PDEs) (5.1) and

(5.2) within each ULVZ and the LLSVP need to be supplemented with boundary

conditions to solve for the unknown velocity and dynamic pressure.

First, we impose the no-slip boundary condition at the LLSVP-ULVZ inter-

faces [Pozrikidis , 2001; Leal , 1992; Kim and Karilla, 2005], such that

u
(−)
i |Γp

= u
(+)
i |Γp

, (5.4)

where u
(−)
i is the velocity inside the p-th ULVZ and u

(+)
i is the velocity in the LLSVP.

The interface between the p-th ULVZ and the LLSVP is denoted Γp.

We fix the geometry of the LLSVP within the larger mantle and prescribe

a driven-cavity flow-like condition on the tangential velocities along the LLSVP-
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mantle boundary. The no-slip boundary condition at the LLSVP-mantle is

ui |ΓL
=





ti x1 > 0

−ti x1 < 0

, (5.5)

where ti is the counterclockwise tangential vector along the LLSVP-mantle bound-

ary, ΓL. Boundary condition (5.5) maintains the shape of the LLSVP while driving

the convection seen in larger thermo-chemical mantle simulations [McNamara et al.,

2010].

Next, we require the difference in traction across the LLSVP-ULVZ interfaces

balance with buoyancy forces, leading to the stress jump condition

∆σijn̂j +∆ρxjgjn̂i = 0, (5.6)

where ∆σij is the stress drop across the surface of the ULVZ, ∆ρ is the density

contrast, and n̂i is the unit normal vector along the ULVZ-LLSVP interface, pointing

into the LLSVP [Leal , 1992]. The density contrast is defined as ∆ρ = ρL−ρU , where

ρL is the density of the LLSVP and ρU is the density of the ULVZ. Since we prescribe

the velocity at the LLSVP-mantle boundary, the tractions can be calculated from

the imposed velocity.

Finally, we need an additional equation to describe the change in ULVZ shape

due to deformation. Let F p(x, t) = 0 be the level set that defines Γp at time t. To

ensure the volume of each grain remains constant during deformation of the grain,
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we use the kinematic equation

F p
,t(x, t) + ui(x, t)F

p
,i(x, t) = 0. (5.7)

The Boundary Element Method (BEM) is used to solve the PDEs (5.1) and

(5.2) subject to the boundary condition for no-slip. The BEM uses Boundary Inte-

gral Equations (BIEs) first developed in Ladyzhenskaya [1963] and later described

by a number of works [Pozrikidis , 2001; Kim and Karilla, 2005; Happel and Bren-

ner , 1983; Rallison and Acrivos , 1978; Manga and Stone, 1993]. The BIE provides

an integral formulation of the PDEs where all integration is limited to the bound-

aries, which provides significant advantages over domain methods for our problem.

First, the discretization is limited to the boundary, reducing the dimension of the

problem by one. Second, for evolving the ULVZs in an LLSVP, boundary methods

only provide the solution along the boundary, which is exactly where the velocity

is required for the kinematic equations. Furthermore, if desired, the BIE provides a

method for computing the solution at arbitrary positions in the domain given once

the solution at the boundary is obtained [Pozrikidis , 2001].

We follow the method laid out in Manga and Stone [1993] and Pozrikidis

[2001] to describe the interaction between multiple deformable viscous drops. The

dimensionless BIE for P ULVZ patches embedded in an LLSVP relates the velocity
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ui(x) at point x0 on the surface of the q-th boundary by:

uj(x0) =
2

1 + λq

[
−

P+1∑

p=1

Rp

4π

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+
P+1∑

p=1

1− λp
4π

∫ PV

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp

]
, (5.8)

where x0 is on the q-th fluid interface and often called the pole point. The point

x on the p-th surface is called the field point [Pozrikidis , 2001]. To keep notation

compact, we define ΓP+1 ≡ ΓL with the normal vector pointing from the LLSVP

into the mantle. The two integrals over the interfaces are referred to as the single-

layer and double-layer integrals, respectively. When x0 is on the boundary between

a ULVZ and LLSVP, the dimensionless parameter, λp = µU/µL, is the viscosity

ratio between the ULVZ and LLSVP, otherwise λP+1 = 0.

Both integrands on the right hand side of equation (5.8) contain tensorial

kernel functions. The tensors Uij(x,x0) and Tijk(x,x0) correspond to the veloc-

ity and stress components of the fundamental solution to the Stokes flow PDE

[Pozrikidis , 2001; Ladyzhenskaya, 1963; Kim and Karilla, 2005]. For the present

two-dimensional analysis, the second rank Stokeslet tensor is given by

Uij(x,x0) = −δij ln r +
x̂ix̂j
r2

, (5.9)

where x̂ = x − x0 and r = |x̂|. The third rank tensor Tijk(x,x0) is known as the

Stresslet and is given by

Tijk(x,x0) = −4
x̂ix̂j x̂k
r4

. (5.10)
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The interfacial stress jump ∆fi(x) in the single-layer integral arises from the

boundary condition balancing the stress drop across the interface with forces due to

differences in fluid densities. Using (5.2), the interfacial stress jump is

∆fi(x) = ∆ρxj ĝjn̂i. (5.11)

The dimensionless compositional Rayleigh number, Rp, represents the ratio

between buoyancy and viscous forces at the LLSVP-ULVZ interface. The compo-

sitional Rayleigh number can be expressed in terms of the density difference ∆ρp,

gravitational acceleration g, characteristic length xc, characteristic velocity uc, and

viscosity µL as

Rp =
∆ρpgx

2
c

ucµL

. (5.12)

We set RP+1 = 0, eliminating the generation of forces along the LLSVP-mantle

boundary.

The viscosity ratios and compositional Rayleigh numbers are the parameters

that control the evolution of ULVZ shapes for the imposed velocity at the LLSVP-

mantle boundary. At each time step, we solve the BIE (5.8) numerically to obtain

the velocities at the boundary nodes of each grain. Next, we update the shape of

each grain using equation (5.7). The geometric parameters from the new ULVZ

shape are then used to solve the BIE for the next time step.

To visualize the coupled flow in the ULVZ interior and the LLSVP, we need
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to construct streamlines from the velocity vectors. Once the velocities along the

boundaries are known, the velocity at a point x0 located in the LLSVP is computed

by

uj(x0) =−
P+1∑

p=1

Rp

4π

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+

P+1∑

p=1

1− λp
4π

∫

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp. (5.13)

Notice that in contrast to the BIE (5.8), the velocity ui(x) and interfacial stress jump

∆fi(x) in the integrands over the boundaries are now known. Thus, by choosing

the location x0 at various points within the LLSVP and repeating the calculation

in equation (5.13), we can generate the representation of the flow field within the

LLSVP.

Similarly, the velocity at a point x0 within the q-th ULVZ is given by,

uj(x0) =−
P+1∑

p=1

Rp

4πλq

∫

Γp

∆fi(x)Uij(x,x0) dΓp

+
P+1∑

p=1

1− λp
4πλq

∫

Γp

ui(x)Tijk(x,x0)n̂k(x) dΓp. (5.14)

Since all quantities on the right hand side of equation (5.14) are known, we can

calculate the velocity within each ULVZ by repeating the calculation for different

locations x0 in the interior of the ULVZ. We continue the process for other ULVZs

to compute the velocity field for a representative section of the problem domain.

We visualize the velocity streamlines and derive strain tensors using the software
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Paraview.

The method of collocation is used to discretize the BIE in (5.8). For the p-th

interface, np pole nodes are placed on the boundary Γp. We adaptively space the

pole points according to δ ∝ κ
2

3 where δ is the space between pole points and κ

is the interface curvature [Dritschel , 1989]. The segments between two poles on

the boundary is referred to as a boundary element. We approximate the position

within each boundary element by cubic spline interpolation [Press et al., 1992]. The

stress jump ∆fi(x) and velocity ui(x) along the boundary are interpolated piecewise

linearly over each boundary element.

The resulting linear system is rewritten in matrix notation as

(
1 + λ

2
I− 1− λ

4π
T

)
u = −R

4π
U∆f , (5.15)

where I is the identity matrix, and U and T are the matrices generated from the

kernels of the single- and double-layer integrals, respectively. The vectors u and

∆f are the velocities and interfacial stress jumps along the boundary, respectively.

Velocities on the LLSVP-ULVZ boundary are unknown, as are the tractions along

the LLSVP-mantle boundary. The linear system is rearranged to solve for the

unknowns.

The system of linear algebraic equations arising from discretization of (5.8)

is dense and generally asymmetric, requiring direct matrix inversion to solve. Di-

rect methods require O(N3) time and O(N2) storage, where N is the number of

degrees of freedom. The Fast Multipole Method (FMM) uses series expansions to
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approximate the dense matrix-vector multiplications [Appel , 1985; Barnes and Hut ,

1986; Ambrosiano et al., 1988; Carrier et al., 1988; Guiggiani and Gigante, 1990;

Board and Schulten, 2000]. The series expansions separate the pole point from the

integrals over the field points, removing the requirement of a unique evaluation for

every combination of pole point and boundary element. The end result is an ap-

proximate matrix-vector multiplication that takes O(N) time and space compared

to O(N2) time and space required by direct BEM. The accelerated multiplication,

in conjunction with iterative methods such as the GMRES [Saad , 2003], solves the

linear system of equations in (5.15) in O(N) time.

5.3 Simulations

The geometry of the simulation is divided into two sets of interfaces: the

LLSVP-mantle interface and LLSVP-ULVZ interfaces. For each simulation, we fix

the LLSVP-mantle boundary as a trapezoid with rounded corners. The width,

height, interior angle, and radius of curvature for the corners are specified to create

the LLSVP geometry similar to structures observed in whole-mantle models. The

LLSVP is 1,000 km across and 100 km high. The lower acute corner of the trapezoid

has an angle of tan−1(1/3). Both the corners are rounded with a 10 km radius of

curvature. The density of the LLSVP is ρL = 3500 kg/m3, while the density of the

10% denser ULVZ, ρU , is 3850 kg/m3. The viscosity of the LLSVP is µL = 5× 1020

Pa s, and the viscosity of the ULVZ is two orders of magnitude less at µL = 5×1018

Pa s. Acceleration due to gravity is g = 9.8 m/s2. The imposed velocity along the
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LLSVP-mantle prescribed in (5.5) is given a magnitude of 1 cm/yr.

We simulate three stages of ULVZ evolution within the LLSVP. Each simu-

lation begins with ULVZs configured in a unique initial geometry. The first stage

simulates the evolution of ULVZ material distributed in the center of the LLSVP.

The second simulation begins with the ULVZ material distributed along the CMB.

The third and final simulation demonstrates the steady state behavior of the ULVZ

material in the corner of the LLSVP. We model the entire LLSVP for each stage

but, since the results are symmetric, we only present the left half of the domain.

Besides the three presented simulations, other geometry configurations we simulated

others varying the size, position, and number of ULVZs within the LLSVP. The se-

lected results are emblematic of the other simulations, displaying a representative

collection of the observed phenomena.

We set the characteristic length xc = 25 km and the characteristic velocity

uc = 1 cm/yr, resulting in a time scale of 2.5 Ma. Taken together with the physical

parameters for the density, gravitational acceleration, and viscosity of the LLSVP,

the dimensionless compositional Rayleigh number at the LLSVP-ULVZ boundary

is Rp = −13.5, where the negative sign indicates that the ULVZ is more dense than

the surrounding LLSVP. A summary of the parameters used in the simulations is

in Table 5.1.
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Figure 5.1: Evolution of circular ULVZ reservoirs placed in the LLSVP. The five snap-
shots show the evolution of the system between 0 and 12 Ma. The streamlines are colored
by the magnitude of the velocity with light blue corresponding to 1 cm/yr and dark red
to 3 cm/yr. The ULVZ patches are separated from the LLSVP by a black outline and
shaded in gray.
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Paramater Symbol Value

Characteristic length xc 25 km
Characteristic velocity uc 1 cm/yr

Gravitational acceleration g 9.8 m/s2

Viscosity of LLSVP µL 5× 1020 Pa s
Density of LLSVP ρL 3500 kg/m3

Density of ULVZ ρU 3850 kg/m3

Viscosity ratio λp 10−2

Compositional Rayleigh number Rp -13.5

Table 5.1: Summary of parameters used in simulations. At the LLSVP-mantle interface,
the viscosity ratio and compositional Rayleigh number are set to zero. The buoyancy
neutral simulations set Rp = 0 at the LLSVP-ULVZ interface. The boundary conditions
at the LLSVP-mantle interface are given by (5.5).

5.4 Results

The first stage of numerical simulations, seen in Figure 5.1, demonstrate sink-

ing, lateral spreading, and coalescence of two separated, initially circular ULVZ

patches, each with a radius of 25 km. The ULVZs are centered 200 km and 300

km horizontally off center in the LLSVP and 30 km above the CMB, respectively.

The dense ULVZs rapidly sink to the bottom of the LLSVP. Initially, the magnitude

of velocity in and around the ULVZs is ∼3 cm/yr, as depicted by the color of the

stream tubes. At 0.75 Ma, the initially circular ULVZs begin to flatten along the

CMB. The clockwise circulation within the left half of the LLSVP sweeps the ULVZs

to the left as they settle. By 2.5 Ma, the ULVZs are less than one half their original

height and nearly double in width, as they continue flattening and spreading toward

the corner of the LLSVP. The flattening reduces the buoyancy force of the ULVZs

with velocity slowing to a maximum of 2 cm/yr.
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The sunken ULVZ patches coalesce over the next 10 Ma. The velocities within

the ULVZs and LLSVP continue to slow over the next 3.75 Ma with further flatten-

ing. At this point, the circulation within the LLSVP is the dominant force, pushing

the ULVZs left toward the corner of the LLSVP. The ULVZs start approaching each

other as they continue to be swept towards the left corner of the LLSVP. The co-

alescence between the two initially isolated ULVZ patches is complete by 12 Ma.

The spreading edge of both ULVZs develop a “nose” structure, characteristic of well

developed gravity currents [Koch and Koch, 1995]. The trailing edge of the left

ULVZ wraps around and covers the leading edge of the ULVZ to the right. These

stages of development leading to the coalescence of the ULVZs are very charac-

teristic of coalescence of interacting, viscous drops [Manga and Stone, 1993]. The

overall velocities within the system continue to drop to just above 1 cm/yr as the

buoyancy force decreases and the system is driven almost completely by the LLSVP

convection. At the end of this stage, a thin, horizontal ULVZ ponds at the bottom

corner of the LLSVP. To avoid numerical singularities arising from sharp curvature,

we start the next stage of simulation with a thin horizontal layer.

Flow near the corner of the LLSVP sweeps an initially flat ULVZ patch into a

steady state pile near the corner over a relatively short period of time. The second

stage of simulation, depicted in Figure 5.2, starts with a flat ULVZ that would result

from the merger of two ULVZ patches from the previous simulation. In the simplified

geometry, the ULVZs have coalesced into a single rounded rectangle approximately

111 km long and 9 km high (conserving the volume of the two original ULVZs). The

stream tubes around the corner show the velocity field which will lift the ULVZ along
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Figure 5.2: Evolution of rectangular ULVZ reservoirs with rounded corners placed in
corners of the LLSVP. The five snapshots show the evolution of the system between 0 and
8.75 Ma. The streamlines are colored by the magnitude of the velocity with light blue
corresponding to 1 cm/yr and dark red to 2 cm/yr. The ULVZ patches are separated from
the LLSVP by a black outline and shaded in gray.
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Figure 5.3: Change in height of the ULVZ reservoir as it climbs the wall of the LLSVP
in Figure 5.2 is plotted by the solid line. The dashed line represents no change in height,
i.e., steady state. The derivative is passed through a triangle smoothing filter to reduce
noise in the measurement.

the wall of the LLSVP. The lifting is driven by the LLSVP clockwise convection of 1

cm/yr, which is impeded by the gravitational force from the dense ULVZ. At 1.5 Ma,

the corner edge of the ULVZ becomes thicker than the central edge, showing initial

signs of the lift. The continuous, wall-parallel streamlines indicate the circulation

within the ULVZ is still very similar to the circulation within the LLSVP and lifting

will continue. On the right edge of the ULVZ, the streamlines from the LLSVP bend

around the end of the ULVZ.

In the next 7.25 Ma, an equilibrium is established between the entraining flow

and the gravitational pull. The snapshots from 3 Ma and 5 Ma show an increase in

the height of the ULVZ near the corner. The streamlines on the right edge of the
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ULVZ now continue into the ULVZ instead of bending around it. Consequently, this

edge is pushed toward the left. This combination of the lifting flow at the corner

and the pushing flow on the trailing edge changes the shape of the initially flat

ULVZ into a pile. Finally, at 8.75 Ma we observe the sign of the establishment of

a steady state flow within the ULVZ. At this stage, a closed circulation, indicated

by concentric streamlines, is established at the ULVZ corner. The closed circulation

implies that while the flow is still active within the ULVZ, the shape is approaching

a steady state. The plot in Figure 5.3 shows the rate of change in height of the

ULVZ. The trend of the curve indicates a slowdown in growth approaching 8.75 Ma.

By the end of the simulation, the ULVZ has increased its height by over 210% to

19 km. At this stage, high curvature near the top of the trailing edge of the ULVZ

induces numerical instability to the ULVZ shape upon further deformation. To test

for the steady state structure, we transform the initial ULVZ geometry in the next

set of simulations.

The final simulation tracks the evolution of a ULVZ elevated beyond its steady

state height. The initial geometry resembles a triangular wedge of ULVZ material

placed into the corner of the LLSVP. Figure 5.4 shows the evolution of the triangular

ULVZ wedge over 5 Ma. In the beginning of the simulation, the velocity field

indicates the height of the ULVZ is unstable. At the corner, concentric stream

tubes depict the closed circulation that was observed in the steady state in Figure

5.2 at 8.75 Ma. The circulation on the LLSVP-ULVZ interface, however, is quite

distinct, as stream tubes enter and leave the ULVZ at the top and the bottom,

respectively. Notice the stream tubes are tightly bunched over a small fraction of
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Figure 5.4: Evolution of ULVZ reservoirs wedged into the corners of the LLSVP. The
five snapshots show the evolution of the system between 0 and 5 Ma. The streamlines are
colored by the magnitude of the velocity with light blue corresponding to 1 cm/yr and dark
red to 2 cm/yr. The ULVZ patches are separated from the LLSVP by the black outline
and shaded in gray. The last snapshot highlights the streamlines, in green and orange,
completely within the ULVZ indicating a steady state geometry has been achieved.
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Figure 5.5: Change in height of the ULVZ reservoir as it falls down the wall of the
LLSVP in Figure 5.4 is plotted in the solid line. The dashed line represents no change in
height, i.e., steady state. The derivative is passed through a triangle smoothing filter to
reduce noise in the measurement.
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the area of the LLSVP-ULVZ interface, indicating the flow takes place in narrow

regions. This counterclockwise flow, driven primarily by buoyancy forces, drains

ULVZ material by a gravity current flowing upstream with respect to the entraining

flow in the LLSVP. Over the next 2.5 Ma, the gravity current develops a nose-

like structure near the bottom, where the outward normal velocity is the highest,

indicated by the high angle subtended by the stream tubes to the interface. The

opposing flow within the LLSVP lifts the bottom of the right edge of the ULVZ by

a small amount, as the gravity current continues spreading upstream. By 5 Ma,

two closed circulations are established within the ULVZ. Both of these circulations

are highlighted in the figure. The stream tubes on the LLSVP-ULVZ interface are

now mostly tangential to the interface. As a result, the shape of the ULVZ remains

practically unchanged during subsequent iterations of the simulation. The steady

state behavior is reinforced by the reduction in the change in height over time seen

in Figure 5.5. The ULVZ has a height of 23.5 km and width of 67 km within the

corner of the LLSVP.

In summary, the series of simulations indicate that near the center of the

LLSVP, the ULVZ spreads out towards the edges as a gravity current. Over geologic

time scales, the ULVZ becomes a thin, horizontal layer near the center of the LLSVP.

The second and third stages of simulations indicate that in the steady state, the

ULVZ occupies the corner of the LLSVP with a trailing lobe to the right. The

balance between gravitational drainage and entrainment by the LLSVP is observed

by the establishment of two circulation cells within the ULVZ, one excited by the

entraining flow, the other excited by gravitational drainage.
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Figure 5.6: Evolution of buoyancy free, i.e., Rp = 0, ULVZ reservoirs. The streamlines
are colored by the magnitude of the velocity with light blue corresponding to 0 cm/yr
and dark red to 1 cm/yr. a) and b) initially started in the same condition as Figure 5.2
at 0 Ma after 8.75 Ma and 15 Ma, respectively. c) and d) initially started in the same
condition as Figure 5.4 at 0 Ma after 5 Ma and 10 Ma. The buoyancy neutral ULVZs are
completely lifted up the wall of the LLSVP.

5.5 Discussion

5.5.1 The role of buoyancy

The series of snapshots presented in the previous section depict the evolution

of the ULVZ shape, forced by the balance between entrainment and buoyancy. To

further demonstrate the role of buoyancy, we carried out a separate set of simula-

tions, spanning over 10 Ma. This series of simulations, depicted in Figure 5.6, starts
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with a configuration similar to the steady state shape of a dense ULVZ. In this

case, the trajectory of evolution of the ULVZ shape is remarkably different from the

previous case. As the simulation continues, the ULVZ is easily lifted and stretched

along the edge of the LLSVP. The flow pattern within the ULVZ, depicted by the

stream tubes, differs from the previous case in a number of ways. First, a closed

circulation loop is never established within the ULVZ. As the results in the previous

section indicate, establishment of closed circulation is a crucial indicator of steady

state. Second, the stream tubes entering and exiting the ULVZ at the bottom and

the top of the LLSVP-ULVZ interface respectively, are spread evenly over a larger

fraction of the interface. As a result, we do not observe the development of bulges

and lobes, instead the deformation is distributed through the entire length of the

ULVZ. This behavior is qualitatively similar to the behavior of neutrally buoyant,

low viscosity blobs embedded in a circulating mantle as reported by Manga [1996].

While our calculations stop at 10 Ma, when continued over longer time scales, the

ULVZ will be well mixed with the LLSVP matrix, undetectable by seismic waves.

The seismic observations of dense ULVZs occurring along the corner of LLSVPs

are therefore a clear indicator of the dynamic nature of the interaction between the

ULVZs and the surrounding LLSVP.

5.5.2 Strain and anisotropy within the ULVZ

Figure 5.7(a) shows the strain at the end of the first simulation where the

ULVZs started at the center of the LLSVP and then coalesced at the bottom of the
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Figure 5.7: Strain tensor throughout the LLSVP for a) the end of the first simulation
where the ULVZs were initially distributed in the center of the LLSVP and swept into the
corner and b) the end of the third simulation where the ULVZ was initially a triangle wedge
that settled into a steady state geometry. The strain is colored based on the magnitude
of the principal dimension of deformation. The black lines represents the angle of melt
channels forming within the ULVZs.

LLSVP (Figure 5.1). There is little strain throughout the LLSVP with the exception

of the two small regions of mild strain at the top and bottom of the cavity’s center.

When the ULVZ is stretched along the CMB, the principal elongation is parallel

to the θ = π/6 axis, corresponding to nearly horizontal stretching of the ULVZ

material. Buoyancy forces driving the ULVZ toward the CMB prevent the strain

from stretching perfectly horizontal, i.e., along θ = 0.

In Figure 5.7(b), we examine the steady state ULVZ geometry produced by

initially placing a wedge-shaped ULVZ into the corner of the LLSVP (Figure 5.4).

Again, there is little to no strain throughout the LLSVP. Here, the strain within the

ULVZ is colored blue and dark purple, corresponding to elongation in the direction

parallel to θ between π/3 and 2π/3. Now, we see in the steady state that 1) the

elongation is in the vertical direction, opposite the horizontal deformation in the
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LLSVP, and 2) the strain rate is significantly higher within the less viscous ULVZ.

The results from Chapter 4 relate the finite strain of a partially molten ag-

gregate to the changes in seismic velocities and can be qualitatively applied to our

results here. As the strain increases within the partially molten ULVZ, we expect

there to be a corresponding increase in the anisotropy in the contiguity tensor.

Specifically, we expect vertical melt channels to open up when the ULVZ is in a

steady state configuration at the corner of the LLSVP. The vertical melt channels

will then lead to a drop in the velocity of the horizontally polarized shear waves

compared to vertically polarized waves. The effect of melt channels, even with as

low as 5 to 10 vol% melt, has been shown to generate relatively large amounts

of anisotropy, which can lead to similar types of shear wave slowdowns that are

observed in ULVZs located at the corner of LLSVPs.

5.6 Conclusion

We have used high resolution boundary to simulate the evolution of dense

ULVZs within a convecting LLSVP. The results indicate a steady state geometry

for elevated ULVZ patches located in the corners of the LLSVP, with the final

geometry a result of a balance between weak convecting forces of the LLSVP and

the gravitational potential of the ULVZ. Further analysis indicates ULVZ reservoirs

in the process of being transported to the corners of the LLSVP exhibit nearly

horizontal deformation throughout. Once in steady state, the strain in the ULVZ is

primarily in the vertical direction, leading to the opening of vertical melt channels
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within the partially molten ULVZ. The channels, even with low vol% of melt, are

able to significantly affect shear wave velocities.
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Chapter 6: Conclusion

The Boundary Element (BEM) addresses the issue of dynamic interaction be-

tween adjacent particles, leading to their deformation, by converting the governing

Partial Differential Equations (PDEs) into a set of Boundary Integral Equations

(BIEs) on the interface of each fluid. By coupling the BIEs with level set equations

that govern the evolution of each fluid shape, we model the interaction between a

number of fluids and their resulting deformation. While the BIE reduces the dimen-

sion of the problem by moving the calculation from the domain to the boundary, the

calculations become computationally expensive as the number and resolution of the

fluids grows, increasing the DOFs of the discretized set of algebraic equations. The

computational expense of the BEM poses a challenge in carrying out simulations

with a large number of fluids. The work in this thesis resolves this issue by imple-

menting the Fast Multipole Boundary Element Method (FMBEM), which reduces

the computational cost of solving the dense system of linear equations resulting from

the discretization of the BIE by employing fast multipole expansion.

The results from our numerical experiments in Chapter 2 demonstrate that

melt is expelled from grain edge tubules to grain boundary films during deformation.

In pure shear configuration, the orientation of these films is parallel to the direction

134



of the principal compressive stress. In simple shear, these films are oriented in a

sense antithetic to the sense of applied shear. The results from our microgeodynamic

model also demonstrate that the magnitudes of anisotropic contiguity and differen-

tial shortening display a strongly nonlinear negative correlation. Such a correlation

is revealed both in spatial distribution and temporal evolution of these quantities

with progressive deformation. We also demonstrate that the flow between the grains

and the interstitial melt phase are strongly coupled during deformation.

In Chapter 4, we demonstrated that the anisotropy in contiguity increases in

a strongly nonlinear fashion with progressive pure and simple shear deformation.

During pure shear deformation, the anisotropy in shear wave speed also increases

in a strongly nonlinear fashion and achieves a steady state during our numerical

experiments. Our results demonstrate that the observed shear wave speed reduction

and seismic anisotropy in the Lithosphere-Asthenosphere Boundary (LAB) can be

explained by as low as 0.1 vol% melt in horizontal films.

In Chapter 5, we have used high resolution boundary to simulate the evo-

lution of dense UltraLow-Velocity Zones (ULVZs) within a convecting Large Low

Shear Velocity Provinces (LLSVP). The results indicate a steady state geometry for

elevated ULVZ patches located in the corners of the LLSVP, with the final geometry

a result of a balance between weak convecting forces of the LLSVP and the grav-

itational potential of the ULVZ. Further analysis indicates ULVZ reservoirs in the

process of being transported to the corners of the LLSVP exhibit nearly horizontal

deformation throughout. Once in steady state, the strain in the ULVZ is primarily

in the vertical direction, leading to the opening of vertical melt channels within
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the partially molten ULVZ. The channels, even with low vol% of melt, are able to

significantly affect shear wave velocities.
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Chapter A: Resolving the Stokes’ Paradox

In two dimensions, the Stokeslet is unbounded as the distance between the

pole point and field point grows, resulting in unbounded velocities at infinity when

modeling unbounded fluid domains as in Chapter 3. The fact that the velocity of

two-dimensional free-space Stokeslet is unbounded in the presence of a point force

is at the center of the Stokes’ Paradox.

Often, the Stokeslet in two dimensions is modified to contain an image term

that forces the velocity to converge to zero away from the point force. The image

kernel is given by

U IM
ij (x0,x) = Uij(x0,x)− Uij(x

IM
0 ,x), (A.1)

where Uij(x,x0) is the Stokeslet from (2.12) and xIM
0 is x0 reflected over a prescribed

axis. The corresponding Stresslet is given by

T IM
ijk (x0,x) = Tijk(x0,x)− Tijk(x

IM
0 ,x), (A.2)

where Tijk(x,x0) is the Stresslet from (2.12). While these new half-space kernels

eliminate the Stokes’ Paradox, they also impose an infinite wall with no-slip bound-
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ary at the prescribed axis.

The infinite wall is unnatural for the numerical simulations presented in Chap-

ter 3. An immediate option to reduce the wall’s effect on the evolution of the sim-

ulation is to move the aggregate away from the wall. As the distance between the

aggregate and the wall increases that the image Stokeslet evaluated at the fluid

interfaces becomes bounded by

cij − ǫ < Uij(x
IM
0 ,x) < cij + ǫ, (A.3)

where cij is a constant tensor and ǫ ∝ 1
δ
, where δ is the distance between the

aggregate and the wall. Thus if the aggregate is moved far enough from the wall,

the value of the image Stokeslet at any point along the fluid interfaces is

Uij(x
IM
0 ,x) ≈ cij, (A.4)

up to numerical error. Thus, when far away from the wall, (A.1) becomes the

standard Stokeslet (2.12). Since Tijk(x,x0) naturally tends to zero at infinity, (A.2)

becomes the standard Stokeslet (2.14) as well.

The paradox will only arise when evaluating the velocity away from the aggre-

gate, i.e., closer to infinity. If the velocity is only evaluated in the domain near the

fluid interfaces, as in the cases presented in this work, the results when using the

free-field or the modified half-space kernels will be numerically indistinguishable.
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Chapter B: Tabular data from figures

This appendix presents the data used to generate Figures 4.2, 4.3, 4.4, and

4.5.

Finite Strain ψ ψxx ψyy ψxx/ψyy ψ1/ψ2

0.000000 0.620927 0.310245 0.310682 0.998593 0.966951
0.048325 0.621979 0.286588 0.335391 0.854490 0.835497
0.093488 0.622407 0.263917 0.358490 0.736192 0.726803
0.135751 0.625135 0.241425 0.383710 0.629187 0.627301
0.175362 0.628907 0.222351 0.406556 0.546912 0.546661
0.212548 0.632036 0.201887 0.430149 0.469341 0.469149
0.247523 0.635761 0.183828 0.451933 0.406760 0.406605
0.280478 0.639700 0.167134 0.472566 0.353673 0.353541
0.311594 0.645012 0.150848 0.494163 0.305260 0.305139
0.341032 0.647684 0.132580 0.515105 0.257384 0.257259
0.368945 0.654157 0.119769 0.534388 0.224123 0.223997
0.395458 0.659043 0.105935 0.553108 0.191527 0.191387
0.420690 0.664084 0.093277 0.570806 0.163414 0.163254
0.444749 0.671871 0.082911 0.588960 0.140775 0.140591
0.467676 0.677987 0.071952 0.606035 0.118726 0.118505
0.489331 0.662567 0.038051 0.624516 0.060929 0.060605
0.510211 0.662255 0.021491 0.640765 0.033539 0.033192
0.529885 0.675585 0.019298 0.656287 0.029405 0.029009
0.548617 0.689176 0.017493 0.671683 0.026043 0.025595
0.566295 0.702221 0.015911 0.686310 0.023184 0.022671
0.582552 0.714737 0.014562 0.700175 0.020798 0.020206

Table B.1: Data from Figure 4.2
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Finite Strain ψ ψxx ψyy ψxx/ψyy ψ1/ψ2

0.000000 0.598137 0.307979 0.290158 1.061419 0.924972
0.049241 0.598444 0.308901 0.289543 1.066857 0.868868
0.097008 0.598397 0.307744 0.290653 1.058804 0.808945
0.143365 0.601125 0.307855 0.293270 1.049735 0.756770
0.188375 0.599726 0.305503 0.294222 1.038343 0.707682
0.232096 0.603205 0.304641 0.298564 1.020353 0.665948
0.274582 0.603168 0.302038 0.301130 1.003016 0.624302
0.315886 0.605833 0.300435 0.305398 0.983748 0.586899
0.356055 0.605694 0.297727 0.307967 0.966748 0.553239
0.395131 0.606762 0.295452 0.311310 0.949059 0.523327
0.433155 0.609322 0.292789 0.316532 0.924990 0.493535
0.470165 0.610367 0.290579 0.319788 0.908662 0.468299
0.506193 0.611911 0.287929 0.323983 0.888716 0.442941
0.541272 0.613396 0.285181 0.328216 0.868882 0.419349
0.575431 0.614058 0.281968 0.332090 0.849072 0.397059
0.608698 0.616051 0.279327 0.336725 0.829541 0.379119
0.641099 0.617915 0.276616 0.341299 0.810479 0.359970
0.672659 0.619421 0.273672 0.345749 0.791534 0.342132
0.703400 0.621092 0.270581 0.350510 0.771964 0.325530
0.733347 0.622397 0.267657 0.354740 0.754515 0.309380
0.762518 0.623453 0.264016 0.359438 0.734525 0.294141

Table B.2: Data from Figure 4.3
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Shortening δVSx/V0 δVSy/V0 (δVSx − VSy)/V0

0.000000 0.000000 0.000000 0.000000
0.048325 -0.002001 0.002090 -0.000997
0.093488 -0.003908 0.004033 -0.001935
0.135751 -0.005698 0.006046 -0.002859
0.175362 -0.007090 0.007734 -0.003604
0.212548 -0.008553 0.009430 -0.004368
0.247523 -0.009722 0.010863 -0.004995
0.280478 -0.010706 0.012110 -0.005530
0.311594 -0.011484 0.013220 -0.005978
0.341032 -0.012559 0.014451 -0.006531
0.368945 -0.012853 0.015095 -0.006746
0.395458 -0.013307 0.015789 -0.007014
0.420690 -0.013619 0.016328 -0.007209
0.444749 -0.013471 0.016490 -0.007198
0.467676 -0.013488 0.016718 -0.007245
0.489331 -0.017277 0.019920 -0.008958
0.510211 -0.018370 0.020999 -0.009482
0.529885 -0.016768 0.019918 -0.008805
0.548617 -0.015218 0.018765 -0.008129
0.566295 -0.013823 0.017641 -0.007503
0.582552 -0.012567 0.016554 -0.006926

Table B.3: Data from Figure 4.4
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Shear strain δVSx/V0 δVSy/V0 (δVSx − VSy)/V0

0.000000 0.000000 0.000000 0.000000
0.049241 0.000091 -0.000061 0.000037
0.097008 -0.000023 0.000049 -0.000018
0.143365 -0.000012 0.000303 -0.000077
0.188375 -0.000243 0.000399 -0.000158
0.232096 -0.000320 0.000807 -0.000276
0.274582 -0.000571 0.001054 -0.000398
0.315886 -0.000712 0.001438 -0.000526
0.356055 -0.000968 0.001682 -0.000649
0.395131 -0.001175 0.001983 -0.000773
0.433155 -0.001400 0.002431 -0.000937
0.470165 -0.001593 0.002712 -0.001053
0.506193 -0.001816 0.003064 -0.001193
0.541272 -0.002045 0.003413 -0.001333
0.575431 -0.002322 0.003744 -0.001482
0.608698 -0.002524 0.004102 -0.001617
0.641099 -0.002728 0.004448 -0.001751
0.672659 -0.002954 0.004786 -0.001887
0.703400 -0.003183 0.005137 -0.002028
0.733347 -0.003402 0.005448 -0.002156
0.762518 -0.003682 0.005802 -0.002310

Table B.4: Data from Figure 4.5
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