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Feedback control of border collision bifurcations in continuous piecewise smooth

discrete-time systems is considered. These bifurcations occur when a fixed point or

a periodic orbit of a piecewise smooth system crosses or collides with the border be-

tween two regions of smooth operation as a system parameter is quasistatically varied.

The goal of the control effort in this work is to modify the bifurcation so that the bi-

furcated steady state is locally attracting and locally unique. In this way, the system’s

local behavior is ensured to remain stable and close to the original operating condi-

tion. Linear and piecewise linear feedbacks are used since the system linearization on

the two sides of the border generically determines the type and stability properties of

any border collision bifurcation.

A complete classification of possible border collision bifurcations is only available

for one-dimensional maps. These classifications are used in the design of stabilizing

feedback controls. For two dimensional piecewise smooth maps, sufficient conditions



for nonbifurcation with persistent stability are proved. The derived sufficient condi-

tions are then used as a basis for the design of feedback controls to eliminate border

collision bifurcations.

For higher dimensional piecewise smooth maps, only very general results on exis-

tence of certain types of border collision bifurcations are currently known. To address

these problems Lyapunov techniques are used to find conditions for nonbifurcation

with persistent local stability in general finite dimensional piecewise smooth discrete

time systems depending on a parameter. A sufficient condition for nonbifurcation

with persistent stability in PWS maps of any finite dimension is given in terms of lin-

ear matrix inequalities. This condition is then used as a basis for the design of feed-

back controls to eliminate border collision bifurcations in PWS maps and to produce

desirable behavior. The Lyapunov-based methodology is used to consider the design

of washout filter based controllers. These are dynamic feedback control laws that

are designed so as not to alter a system’s fixed points, even in the presence of model

uncertainty. In addition, the Lyapunov-based approach is extended to allow nonmono-

tonically decreasing Lyapunov functions. Several examples are given to demonstrate

the efficacy of the Lyapunov-based methods.

Finally, a two-dimensional example of using feedback to quench cardiac arrhyth-

mia is considered. The cardiac model consists of a nonlinear discrete-time piecewise

smooth system, and was previously used to show a link between cardiac alternans and

period doubling bifurcation. In this work, it is first shown that the alternans exhibited

by the model actually arise through a period doubling border collision bifurcation.

The results of the thesis on feedback control of border collision bifurcation are then

applied to the model, resulting in quenching of the bifurcation and hence in alternan

suppression.
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Chapter 1

Introduction

In this thesis, we develop stabilizing feedback control laws for piecewise smooth

discrete-time systems exhibiting border collision bifurcations. By piecewise smooth

systems we mean systems that are smooth everywhere except along borders separat-

ing regions of smooth behavior where the system is only continuous. Border collision

bifurcations are bifurcations that occur when a fixed point (or a periodic orbit) of a

piecewise smooth system crosses or collides with the border between two regions of

smooth operation. In this work, the goal of the control effort is to modify the bifurca-

tion so that the bifurcated steady state is locally unique and locally attracting. In this

way, the system’s local behavior is ensured to remain stable and close to the original

operating condition. This is in the same spirit as local bifurcation control results for

smooth systems, although the presence of a border complicates the bifurcation picture

considerably. Indeed, a full classification of border collision bifurcations isn’t avail-

able. So in this work, one of the main goals is to develop sufficient conditions for

desirable (from a dynamical behavior viewpoint) cases.

The term border collision bifurcation was coined by Nusse and Yorke [61]. Bor-

der collision bifurcation had been studied in the Russian literature under the name

1



C-bifurcations by Feigin [27, 28]. Di Bernardo, Feigin, Hogan and Homer [23] in-

troduced Feigin’s results to the Western literature. Bifurcations in one-dimensional

piecewise linear maps have been also studied by Hsu, Kreuzer and Kim [41]. Border

collision bifurcations include bifurcations that are reminiscent of the classical bifurca-

tions in smooth systems such as fold and period doubling bifurcations. Despite such

resemblances, the classification of border collision bifurcations (BCBs) is far from

complete, and certainly very preliminary in comparison to the results available in the

smooth case. In smooth maps, a bifurcation occurs from a one-parameter family of

fixed points when a real eigenvalue or a complex conjugate pair of eigenvalues crosses

the unit circle. In piecewise smooth (PWS) maps, on the other hand, a border collision

bifurcation can occur when a fixed point (or a periodic orbit) crosses or collides with

the border between two regions of smooth behavior. This involves a discontinuous

change in the eigenvalues of the Jacobian matrix evaluated at the fixed point (or at

a periodic point) when the fixed point hits the border. As a result, border collision

bifurcations for piecewise smooth systems in which the one-sided derivatives on the

border are finite are classified based on the linearizations of the system on both sides

of the border at criticality.

The classification of border collision bifurcations is complete only for one dimen-

sional discrete-time systems [62, 73, 10]. Concerning two-dimensional piecewise

smooth maps, Nusse and Yorke [61] and Nusse, Ott and Yorke [60] gave a general

criterion for the occurrence of BCBs based on index theory. This criterion gives a

sufficient condition for the occurrence of a border collision bifurcation. Moreover, a

normal form for BCBs in two-dimensional PWS maps was derived [61]. Yuan [73]

studied BCBs in dissipative PWS maps where it was assumed that the determinants

of the Jacobian matrices on both sides of the border are equal. Banerjee and Gre-
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bogi [9] proposed a classification for a class of two-dimensional (dissipative) maps

undergoing border collision bifurcations by exploiting a normal form. However, the

classification was largely based on heuristic arguments, and it will be shown in the

thesis that some aspects of the classification do not hold. It has also recently been

shown by Banerjee, Yorke and Grebogi [12] that the dynamics of two-dimensional

piecewise-smooth (PWS) maps may feature so-called robust chaotic dynamics with-

out parameter windows of periodic behavior. Dutta et al. [25] presented a novel anal-

ysis showing border collision bifurcations in which multiple coexisting attractors are

created simultaneously causing the intriguing phenomenon that in the presence of ar-

bitrarily small noise, the bifurcations lead to fundamentally unpredictable behavior

as a system parameter is varied slowly through its bifurcation value. For higher di-

mensional systems, currently the known results are limited to very general results on

existence of certain types of border collision bifurcations [60, 23].

Since the initial studies of border collision bifurcations, several researchers have

studied bifurcations in PWS systems [60, 63, 7, 8, 74, 9, 10, 11, 23, 45, 52, 77, 76,

51, 24, 66]. PWS systems occur as models for switched systems, such as power

electronic circuits (e.g., [74, 19, 45, 55, 66]) and impacting mechanical systems (e.g.,

[58, 33, 59, 18, 64, 52, 51]). They are usually modeled by piecewise smooth maps.

In this work, we only consider piecewise smooth discrete-time systems with Jacobian

matrices on both sides of the border having finite elements. This excludes piecewise

smooth systems that have a singularity on the border, as in impacting mechanical

systems.

Bifurcations in piecewise-smooth continuous-time systems were studied in [52].

Such bifurcations were called “discontinuous bifurcations.” It was demonstrated by

examples that PWS systems exhibit a variety of possible border collision bifurca-
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tions as equilibrium points or periodic orbits cross hypersurfaces separating regions

of smooth behavior as a system parameter is slowly varied through a critical value.

The discontinuous jump of the eigenvalues of the Jacobian matrix as a periodic or-

bit hits the border was conjectured to be a necessary condition for a bifurcation to

occur [52]. These bifurcations are similar to border collision bifurcations observed

in earlier work on PWS maps [61, 60, 62, 23]. Di Bernardo et al. [21] analyzed a

so-called corner-collision bifurcation (which is a type of border-collision bifurcation)

in piecewise-smooth systems of ordinary differential equations. Other examples of

border collision bifurcations in continuous time PWS systems appeared in [77, 76].

In [77], it was shown that BCBs occur in relay control systems with hysteresis and

dead zone nonlinearities.

Piecewise-smooth discrete time maps are used to model systems that are inher-

ently discrete. For example, it has been recently shown that simple computer networks

with Transmission Control Protocol (TCP) connections and implementing a Random

Early Detection (RED) algorithm at the router end can be modeled as one-dimensional

PWS maps [31]. Analysis of such models has revealed that various border collision

bifurcations leading to oscillations and chaos occur as a system parameter is quasistat-

ically varied [65]. Another example of a PWS discrete time computer network model

was analyzed in [70]. It was shown that various kinds of BCBs occur in such a model.

Other examples of PWS discrete time systems which have been shown to exhibit

BCBs can be found in economics (e.g., [40]), biology (e.g., [69]) and in controlled

linear discrete time systems with PWS nonlinearity (e.g., [7]). Piecewise smooth sys-

tems can of course exhibit classical smooth bifurcations, for example at a fixed point

in a neighborhood of which the system is smooth. What is of interest therefore is the

study of bifurcations in PWS systems that occur at the boundaries between regions of
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smooth behavior, or that involve motions that include more than one such region.

In this work, the goal is to obtain feedback control laws to ensure a less severe

form of border collision bifurcation than could otherwise occur. Since a full classifica-

tion of possible border collision bifurcations isn’t available, it is crucial that sufficient

conditions for the desirable border collision bifurcations be derived. In particular,

we are interested in obtaining sufficient conditions fornonbifurcation with persistent

stability. That is, conditions under which the PWS map possesses a locally asymptot-

ically stable fixed point which is also the locally unique attractor for all values ofµ in

a neighborhood of the critical value.

It should be emphasized that, while this work focuses on maps, the results have

implications for switched continuous-time systems as well. Maps provide a concise

representation that facilitates the investigation of system behavior and control design.

They are also the natural models for many applications, as mentioned above. Even

for a continuous-time piecewise smooth system, a control design derived using the

map representation can be translated to a continuous controller either analytically or

numerically.

There is little past work on control of BCBs [20, 22]. The control method of [20,

22] is based on the classification scheme of BCBs that was given by Feigin [23]. How-

ever, since Feigin didn’t give conditions for specific scenarios, the results of [20, 22]

do not address stabilization. Also, references [20, 22] use a trial and error approach

that doesn’t provide analytical conditions for existence of controllers. Moreover, the

work in [20, 22] does not take into account the fact that the classification scheme of

BCBs of Feigin, on which their control scheme is based, applies only to PWS maps

that are continuous. Thus, the control they introduce may lead to unpredictable bi-

furcations if the control action introduces discontinuities into the map. In the present
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work, a more careful analysis is performed to obtain sufficient conditions for desir-

able (from a dynamical behavior viewpoint) cases, which is then used in the design of

stabilizing feedback controls.

The dissertation proceeds as follows. In the next chapter, theoretical background

material employed in subsequent chapters is collected. The topics include bifurcations

in smooth maps, bifurcation control, washout filters, border collision bifurcations and

linear matrix inequalities.

In Chapter 3, a summary of possible border collision bifurcations in piecewise

smooth maps of dimension one is given as well as some new results. In particular, we

show that subcritical period doubling border collision can occur in one dimensional

piecewise smooth maps. We also determine stability of the fixed point at criticality for

all possible border collision bifurcations. The stability of the fixed point at criticality

is then related to the nature of the border collision bifurcation that occurs.

In Chapter 4, the classification of border collision bifurcations presented in Chap-

ter 3 is used in the design of stabilizing feedback control laws to modify the border

collision bifurcation to one that is less severe. Linear and piecewise linear feedback

control is used since the normal form for BCBs contains only linear terms. The feed-

back can either be applied on one side of the border and not the other, or on both sides

of the border. Both approaches are considered. To achieve robustness to uncertainties

in the location of the border,simultaneous control is considered— that is, controls

are sought that function in exactly the same way on both sides of the border, while

stabilizing the system’s behavior. Not surprisingly, the conditions for existence of

simultaneously stabilizing controls are more restrictive than for the existence of one

sided controls.

In Chapter 5, we present new results on border collision bifurcations in two di-
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mensional piecewise smooth maps. First, a new border collision bifurcation which

we call “dangerous border collision bifurcation” is presented. This bifurcation oc-

curs in two dimensional piecewise smooth maps in spite of the fact that the Jacobian

matrices on both sides of the border are Schur stable. We then present examples of

multiple attractor bifurcations that occur in two dimensional PWS maps even though

the Jacobian matrices of the PWS system on both sides of the border are Schur stable.

Sufficient conditions for nonbifurcation with persistent stability in two dimensional

PWS maps are stated and proved.

In Chapter 6, the nonbifurcation with persistent stability results of Chapter 5 are

used in the design of stabilizing feedback controls. Both Simultaneous control design

(same control acting on both sides of the border) and switched control design are

considered.

In Chapter 7, Lyapunov-based techniques are used in the analysis of finite dimen-

sional piecewise smooth discrete time systems that depend on a parameter. The use of

Lyapunov techniques facilitates the consideration ofn-dimensional systems wheren

is not restricted to be 1 or 2 as in previous chapters. A sufficient condition for nonbi-

furcation with persistent stability in PWS maps of any finite dimension is given in

terms of linear matrix inequalities. This condition is then used as a basis for the de-

sign of feedback controls to eliminate border collision bifurcations in PWS maps and

to produce desirable behavior. The Lyapunov-based methodology is used to consider

the design of washout filter based controllers. These are dynamic feedback control

laws that are designed so as not to alter a system’s fixed points, even in the presence

of model uncertainty. In addition, the Lyapunov-based approach is extended to al-

low nonmonotonically decreasing Lyapunov functions. Several examples are given to

demonstrate the efficacy of the Lyapunov-based methods.
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In Chapter 8, the quenching of alternans (cardiac arrhythmia) exhibited as solu-

tions of a cardiac conduction model is considered. The model consists of a nonlinear

discrete-time piecewise smooth system, and was previously used to show a link be-

tween cardiac alternans and period doubling bifurcation. In this chapter, it is first

shown that what actually occurs is a period doubling border collision bifurcation, and

that it is this bifurcation that leads to the alternans. The results of the dissertation on

feedback control of border collision bifurcation are then applied to the model, result-

ing in quenching of the bifurcation and hence in alternan suppression.

In Chapter 9, we collect concluding remarks and discuss possible directions for

future research. Some of the results reported in this thesis were published in various

journal and conference papers [37, 38, 36, 39].
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Chapter 2

Preliminary Material

In this chapter, we collect theoretical background material that will be employed in

the sequel. The topics we discuss include: bifurcations in smooth maps, bifurcation

control, washout filters, border collision bifurcations and linear matrix inequalities.

2.1 Background on Bifurcation and Bifurcation Con-

trol in Smooth Maps

A bifurcation is a qualitative change in steady state behavior of a dynamical system

resulting from small parameter changes. Thus, the number and/or type of steady state

behaviors change at a critical value of the parameter, referred to as the bifurcation

parameter. Bifurcation is closely tied to stability, since parameter changes that main-

tain asymptotic stability of an equilibrium point cannot lead to a bifurcation of the

equilibrium.

Next, a brief summary of possible bifurcations in smooth discrete time systems is

given. The purpose of presenting this summary here is that bifurcations in smooth dis-

crete time systems can be compared with those in piecewise smooth systems. Details
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on bifurcations in smooth discrete time systems and smooth continuous time systems

can be found, for example, in [35, 71, 47].

Consider the case of ann-dimensional smooth discrete time system

x(k +1) = f (x(k),µ) (2.1)

where f : R
n ×R → R

n, µ ∈ R is the bifurcation parameter andf is assumed smooth

in x andµ. For a discrete time dynamical system which depends on a single param-

eter, there are three types of local bifurcation from a fixed point. (Local bifurcations

involve qualitative changes occurring within a small neighborhood of a fixed point.)

The first case occurs when a single eigenvalue crosses the unit circle through the

point+1 (see Figure 2.1). This is called saddle-node bifurcation, tangent bifurcation

or fold bifurcation. The second case occurs when one eigenvalue crosses the unit

circle through the point−1 (see Figure 2.1). This case is called period doubling or

flip bifurcation. The third case occurs when a complex conjugate pair of eigenvalues

crosses the unit circle (see Figure 2.2). This is known as Neimark-Sacker bifurcation,

secondary Hopf bifurcation, or Hopf bifurcation for maps.

2.1.1 Bifurcation Control

The simplest type of control for systems exhibiting bifurcations is the use of linear

feedback to delay the onset of instability in a smooth control system. By delaying

the instability, any associated bifurcation is also delayed. However, other goals can be

pursued that are more closely tied to control of the nonlinear dynamic aspects of bifur-

cations. For example, using feedback to render supercritical an otherwise subcritical

bifurcation was studied by Abed and Fu [4, 1] under the name local bifurcation con-

trol. A review of this and subsequent work on bifurcation control is available in [3].
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In bifurcation control for smooth systems as discussed by Abed and Fu [4, 1], it

was natural to use nonlinear feedback to alter the bifurcation characteristics of the

system in the desired way. However, linear feedback plays the dominant role in con-

trol of border collision bifurcations because the map linearizations on both sides of

the border determine the nature of the BCBs.

In this work, bifurcation control goals are pursued for border collision bifurca-

tions in piecewise smooth maps. Because of the focus on piecewise smooth maps,

the previous results on bifurcation control of smooth systems are not applicable here.

However, the previous work provides useful motivation in the sense of stating appro-

priate control goals. In addition, some of the techniques found to be useful in control-

ling bifurcations in smooth systems are also employed here. In particular, washout

filter-aided feedback is used to ensure that system operating points aren’t moved by

the feedback control even in the presence of model uncertainty.

2.1.2 Washout Filter-Aided Feedback

A washout filter (also sometimes called a washout circuit) is a high pass filter that

washes out (rejects) steady state inputs, while passing transient inputs [13]. Washout

filter-aided controllers for continuous time systems are discussed by Lee and Abed [50],

Lee [49], and Wang and Abed [72]. A typical discrete-time washout filter is described

by

wk+1 = xk +(1−d)wk (2.2)

zk = xk −dwk (2.3)

wherexk is a state variable of a dynamical system (or map) to be controlled,wk is the

state of the corresponding washout filter,zk is the output of the washout filter, andd
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is the washout filter constant (0< d < 2 for a stable filter). In general, the number of

washout filters needed can be any number between 1 and the dimension of the system.

The control law is taken in the form of a static function of the washout filter output

zk, namelyuk = u(zk) with u(0) = 0. Note that since its by naturezk vanishes at steady

state, the fixed points of the map are not shifted by the control. Other advantages of

using washout filters include automatic following of equilibrium points even in the

presence of model uncertainty or parameter drift. For smooth maps, the functionu

often needs to include nonlinear terms to meet the control objectives. As mentioned

above, however, for BCBs the linear terms inu are essential to ensuring that the

bifurcation is of the desired type.

Washout filter-aided feedback was used in control design for smooth systems ex-

hibiting bifurcation in references [2, 53, 50, 72].

2.2 Border Collision Bifurcations

In this section, we collect some known results on border collision bifurcations. First,

the results of Nusse and Yorke [61] and Nusse, Ott and Yorke [60] on border collision

bifurcation are summarized followed by the results of Feigin [23].

2.2.1 Border Collision Bifurcation: The Work of Nusse, Yorke

and Ott

As discussed in the introduction, border collision bifurcations were named by Nusse

and Yorke [61, 60]. They gave a general criterion for the occurrence of border colli-

sion bifurcations in PWS maps based on index theory. Next, we recall some defini-

tions that are needed to state their border collision bifurcation theorem.
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Figure 2.1: Eigenvalues change continuously as a bifurcation parameter is changed

through a critical value in smooth maps. (a) Period-doubling bifurcation, (b) Saddle-

node bifurcation.
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Figure 2.2: Eigenvalues change continuously at a Neimark-Sacker bifurcation as a

bifurcation parameter is changed through a critical value in smooth maps.
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Figure 2.3: Eigenvalues undergoing a discontinuous jump as a bifurcation parameter

is changed through a critical value in piecewise smooth maps (a) Period-doubling

border collision bifurcation, (b) Saddle-node border collision bifurcation.
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Figure 2.4: Eigenvalues undergoing a discontinuous jump as a bifurcation parameter

is changed through a critical value in piecewise smooth maps. (a) Possible multiple

attractor border collision bifurcation, (b) Possible dangerous border collision bifurca-

tion.
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Consider a PWS map that involves two regions of smooth behavior:

f (x,µ) =




fA(x,µ), x ∈ RA

fB(x,µ), x ∈ RB

(2.4)

where f : R
n ×R → R

n is piecewise smooth inx, smooth everywhere except on the

border separatingRA andRB, where it is continuous,f is smooth in the bifurcation

parameterµ andRA, RB are two regions of smooth behavior separated by a smooth

surface.

Let x(µ) be a fixed point off and suppose that forµ = µb, x(µb) is on the border

separatingRA andRB. Assume without loss of generality thatµb = 0. Suppose also

thatx(µ) exists for−ε < µ < ε. The fixed pointx(µ) is called a border crossing fixed

point [61, 60] if it crosses the border betweenRA andRB asµ is varied through 0.

Definition 2.1 ([61, 60]) An orbit of period-p is typical if its Jacobian matrix exists

(i.e., the Jacobian matrix of thepth iterate of the map at a point of the orbit) and

neither+1 nor−1 is an eigenvalue of this Jacobian matrix.

The orbit index is a number associated with a periodic orbit, and this number is use-

ful in understanding patterns of bifurcations the orbit undergoes. For typical periodic

orbits, the orbit index is−1, 0, or+1. The orbit index is a bifurcation invariant in the

sense that if one examines the periodic orbits that collapse to the fixed pointx(µ) as

µ → 0, and adds the orbit indexes of the periodic orbits that exist just before a bifur-

cation, then that sum equals the corresponding sum just after that bifurcation [61].

Suppose a typical periodic orbit (PO) of a mapf has a (minimum) periodp. The

orbit index of that orbit depends on the eigenvalues of the Jacobian matrixA p of the

map f p (the pth iterate off ) at one of the points in PO.
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Definition 2.2 ([61, 60]) LetIPO be the orbit index of a PO. Letm be the number of

real eigenvalues ofAp smaller than−1, and letn be the number of real eigenvalues of

Ap greater than+1. The orbit index is defined by

IPO =




0, if m is odd,

−1, if m is even andn is odd,

+1, if both m andn are even.

(2.5)

Definition 2.3 ([61, 60]) A periodic orbit PO is anisolated border crossing orbit if

(1) PO includes a point that is a border crossing fixed point under some iterate of the

map, and (2) the orbit PO is isolated in phase space whenµ = 0. That is, in the plane

there exists a neighborhoodU of the orbit PO such that PO is the only periodic orbit

in U whenµ = 0.

Next, we recall the border collision bifurcation theorem of Nusse and Yorke [61].

Theorem 2.1 ([61]) Border Crossing Border Collision Bifurcation)

For each two-dimensional piecewise smooth map that depends smoothly on a param-

eter µ, if the index of an isolated border crossing orbit changes as µ crosses 0, then at

µ = 0 a bifurcation occurs at this point, a bifurcation involving at least one additional

periodic orbit.

The assertion of Theorem 2.1 apply to general piecewise smooth maps of dimension

n [60].

Theorem 2.1 says that additional fixed points or periodic orbits must bifurcate

from x(µ) at µ = 0 if the orbit index changes. These bifurcating orbits need not be

stable. As an example consider the supercritical period-doubling BCB. Suppose that

for µ < 0 there is a locally unique and locally attracting fixed point, the total index is
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+1. Suppose also that forµ > 0 there is a flip saddle (orbit index 0) and a period-2

attractor (orbit index+1). (Note that the two points of the period-2 orbit are collec-

tively assigned+1.) Hence, the sum of the orbit indexes before and after the BCB is

+1. In other words, a border collision bifurcation is a bifurcation at a fixed point (or

periodic point) on the border of two regions when the orbit index of the fixed point (or

periodic point) before the collision with the border is different from the orbit index of

the fixed point after the collision.

We remark that Theorem 2.1 gives a sufficient condition for the occurrence of

border collision bifurcation, and this condition is not necessary. One can easily find

examples where border crossing border collision bifurcation occurs while the index

of the crossing orbit does not change. For instance, if the eigenvalues of the Jacobian

matrices of a two dimensional PWS map on both sides of the border are complex with

absolute values less than one (i.e., the eigenvalue lie inside the unit circle), then the

orbit index is zero before and after the bifurcation. This does not imply that no border

collision bifurcation occurs. Indeed bifurcations of the form “fixed point attractor plus

period-p1 attractor to fixed point attractor plus period-p2 attractor” are possible, where

p1, p2 are positive integers greater than two (some examples of this type of BCB are

given in Chapter 5). Moreover, Theorem 2.1 does not consider the case when the

fixed pointx(µ) exists on one side of the border only. In such a situation, the fixed

point collides with the border (and possibly with other periodic orbits) and disappears.

This is the case in a border collision pair bifurcation (or saddle node border collision

bifurcation) where two fixed points on one side of the border merge at the border and

disappear.

Nusse and Yorke [61] showed that for two-dimensional piecewise smooth maps, a
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normal form for border collision bifurcation is given by


 xk+1

yk+1


 =





 τA 1

−δA 0





 xk

yk


+


 1

0


µ, xk ≤ 0


 τB 1

−δB 0





 xk

yk


+


 1

0


µ, xk > 0

(2.6)

whereτA andδA are the trace and the determinant of the limiting Jacobian matrix

in RA evaluated at a fixed point at the border. Similarly,τB and δB are the trace

and the determinant of the limiting Jacobian matrix inRB evaluated at a fixed point

on the border. If the limiting Jacobian matrices with limits taken on both sides of

the border have no eigenvalues on the unit circle, then border collision bifurcation

that occurs in the original system before transformation can be studied by using the

normal form [61, 9, 23]. Examples of various border collision bifurcations that can

occur in two dimensional PWS maps can be found in [61]. The normal form (2.6)

was used in [74, 9] to study BCBs in a class of two-dimensional PWS maps. It was

demonstrated that, depending on the eigenvalues of the Jacobian matrices on both

sides of the border, various possible BCBs occur [74, 9].

2.2.2 Border Collision Bifurcation (or C-bifurcation): The Work

of Feigin

Border collision bifurcations have been studied in the Russian literature under the

nameC-bifurcation [27, 28, 23]. The letterC is derived from the Russian wordshiv-

anije meaning sewing [23]. Di Bernardo, Feigin, Hogan and Homer [23] introduced

Feigin’s results to the Western literature.

Below, the main results of Feigin are summarized. Consider the one parameter
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family of piecewise smooth maps

f (x,µ) =




fA(x,µ), x ∈ RA

fB(x,µ), x ∈ RB

(2.7)

where f : R
n+1 → R

n is piecewise smooth inx; f is smooth inx everywhere except

on the border (hypersurfaceΓ) separatingRA andRB where it is only continuous,f

is smooth inµ andRA, RB are the two (nonintersecting) regions of smooth behavior.

In this work, we are interested in studying the dynamics off at a fixed point (or a

periodic orbit) near or at the borderΓ. If the fixed point (or periodic orbit) is inRA

(respectivelyRB) and is away from the border, then the dynamics is merely deter-

mined by the mapfA (respectivelyfB). If on the other hand, the fixed point is close

to the border, then jumps across the border can occur except in an extremely small

neighborhood of the fixed point. Therefore, for operation close to the border, bothfA

and fB are needed in the study of the possible behavior. For a fixed point at or near

the border, the dynamics is determined by the linearizations of the map on both sides

of the border.

Border collision bifurcations occurring in the map (2.7) can be studied using the

piecewise-linearized representation [23]

x(k +1) := Fµ(x(k)) =




Ax(k)+bµ, x1(k) ≤ 0

Bx(k)+bµ, x1(k) > 0
(2.8)

whereA is the linearization of the PWS mapf in RA at a fixed point on the border

approached from points inRA near the border andB is the linearization off at a fixed

point on the border approached from points inRB andb is the derivative of the map

f with respect toµ. The coordinate system is chosen such that the sign of the first

component of the vectorx determines whetherx is in RA or RB (a transformation to

the form (2.8) is given in Appendix 9). Ifx1 = 0, thenx is on the border separating
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RA andRB. The continuity ofFµ at the border implies thatA andB differ only in their

first columns.

The classification of border collision bifurcations (BCBs) depends on the eigen-

values ofA andB [23]. A complete classification of BCBs is only available for one

dimensional PWS maps. For two dimensional PWS maps, some results are available

that only address a class of 2-D PWS maps [61, 73, 9].

Although Feigin [23] studied generaln-dimensional PWS maps exhibiting border

collisions, only very general conditions for existence of a fixed point and period-2

solutions before and after the border were given. The classification scheme of [23]

does not give any information about stability or uniqueness of fixed points or period-2

orbits involved in the border collision bifurcation nor does it give information about

higher period periodic orbits or chaos that might be involved in a border collision

bifurcation.

Next, we recall the main results of [23]. Assume that 1/∈ σ(A), 1 /∈ σ(B) (i.e.,

both I −A, I −B are nonsingular). Formally solving for the fixed points of (2.8), we

obtainxA(µ) = (I−A)−1bµ andxB(µ) = (I−B)−1bµ. ForxA(µ) to actually occur, the

first component ofxA(µ) must be nonpositive, i.e.,(e1)T µ(I −A)−1b ≤ 0. Similarly,

for xB(µ) to actually occur, we need(e1)T µ(I −B)−1b > 0. If on the other hand, the

first component ofxA(µ) is positive (the first component ofxB(µ) is nonpositive), then

the fixed point is called a virtual fixed point. Virtual fixed points are important in

studying the dynamics of a PWS map near the border.

Let pA(λ) and pB(λ) be the characteristic polynomials ofA andB, respectively.

Then,pA(λ) = det(λI −A) andpB(λ) = det(λI −B).

Below, some definitions and notations are recalled from [23].
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Definition 2.4 ([23]) Let

σ−
A := number of real eigenvalues ofA which are less than−1,

σ−
B := number of real eigenvalues ofB which are less than−1,

σ+
A := number of real eigenvalues ofA which are greater than 1,

σ+
B := number of real eigenvalues ofB which are greater than 1,

σ+
AA := number of real eigenvalues ofA2 which are greater than 1,

σ+
AB := number of real eigenvalues ofAB which are greater than 1.

Three main events can take place asµ is increased (decreased) through zero [23]:

• A fixed point (periodic orbit) exists on one side of the border forµ < 0 is

smoothly changed into another fixed point (periodic orbit) on the other side

of the border forµ > 0 if

pA(1)pB(1) > 0 ⇐⇒ σ+
A +σ+

B is even (2.9)

• Two fixed points (periodic orbits) exist on one side of the border forµ < 0 (or

µ > 0) merge and annihilate each other asµ approaches zero if

pA(1)pB(1) < 0 ⇐⇒ σ+
A +σ+

B is odd (2.10)

• A new period-2 solution bifurcates atµ = 0 if

pA(−1)pB(−1) < 0 ⇐⇒ σ−
A +σ−

B is odd (2.11)

The condition (2.10) is analogous to saddle node bifurcation in smooth maps,

where two fixed points merge and disappear at the bifurcation.

From the summary on the theoretical results available to-date on border collision

bifurcations, it is clear that the theory is general in nature and not much is available

21



in the way of clear sufficient conditions for the various types of BCBs either in the

n-dimensional case or in the two-dimensional case. It is not our purpose in this work

to fill in all the gaps in the mathematical theory of BCBs. Rather, since our ultimate

goal in this thesis is the development of control techniques for BCBs, we are most

interested in conditions guaranteeing the less severe forms of BCBs. In later chapters,

we address the question of obtaining sufficient conditions fornonbifurcation with

persistent stability . That is, conditions under which local asymptotic stability of the

fixed point of a PWS map is maintained and no border collision bifurcation occurs as

the bifurcation parameter is varied through its critical value.

2.3 Linear Matrix Inequalities (LMIs)

Linear matrix inequalities (LMIs) have attracted a lot of attention in recent years.

They emerged as a powerful design tool in many areas including control engineer-

ing and structural design. The main reason that makes LMI techniques appealing is

the development of many efficient algorithms for solving convex optimization prob-

lems [14]. LMIs are particularly useful in situations where no analytical solution is

available. A large number of control problems have been recognized to be reducible

to LMI-based optimization problems, and efficient software tools for solving these

optimization problems exist (see [14, 34] and references therein).

A linear matrix inequality is any constraint of the form [14, 34]

A(x) := A0 + x1A1 + · · ·+ xmAm < 0 (2.12)

where

• x = (x1,x2, · · · ,xm) is a vector of unknown scalars usually called the decision or

optimization variables.

22



• The matricesA0,A1, · · · ,Am are given symmetric matrices.

• The inequality sign “<” stands for negative definite. That is,A(x) < 0 ⇐⇒
uT A(x)u < 0, ∀ u �= 0. Equivalently, the largest eigenvalue ofA(x) is negative.

The solution set of the LMI (2.12) given byS := {x ∈ R
m| A(x) < 0} is convex and

is called the feasible set (since (2.12) represents the constraints in an optimization

problem). To see thatS is convex, letu,v ∈ S andλ ∈ [0,1]. SinceA(x) is affine inx,

we have

A(λu+(1−λ)v) = λA(u)+(1−λ)A(v) < 0. (2.13)

Below, we collect some useful properties of LMIs.

Intersection: If G(x) < 0 andH(x) < 0 are LMIs, then so is
 G(x) 0

0 H(x)


 < 0. (2.14)

A point x ∈ R
n is feasible for the intersection of two LMIs if and only if it is feasible

for each of the original LMIs.

Scaling: For α > 0

G(x) < 0 ⇐⇒ αG(x) < 0 (2.15)

Similarity: SupposeG : R
m → R

n, andH ∈ R
n×p hasker(H) = {0}. Then

G(x) < 0 ⇐⇒ HT G(x)H < 0 (2.16)

Lemma 2.1 [14] (Schur Complement)

The following inequalities

R > 0 (2.17)

Q−SR−1ST > 0 (2.18)
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where Q = QT and R = RT are equivalent to
 Q S

ST R


 > 0 (2.19)

In other words, the set of nonlinear inequalities (2.17)-(2.18) can be represented as

the LMI (2.19).

Lemma 2.2 [57] (Schur Complement: Alternative Form)

Inequalities (2.17)-(2.18) and (2.19) are equivalent to

Q > 0 (2.20)

R−ST Q−1S > 0 (2.21)

and 
 R ST

S Q


 > 0 (2.22)

respectively.

Proof: Note that
 R ST

S Q


 =


 0 I

I 0





 Q S

ST R





 0 I

I 0


 (2.23)

The equivalence between (2.19) and (2.22) follows using the similarity property (2.16)

of LMIs. The LMIs (2.20)-(2.21) follow from an application of the Schur complement

to (2.22).
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Linear Inequalities as LMIs [48]:

Let x ∈ R
n, bi ∈ R andci ∈ R

n, i = 1, · · · ,m be column vectors. The linear constraints

cT
1 x < b1

cT
2 x < b2

...

cT
mx < bm

can be expressed as a diagonal LMI




cT
1 x−b1

cT
2 x−b2

...

cT
mx−bm




< 0. (2.24)
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Chapter 3

Border Collision Bifurcation in One

Dimensional Maps

The purpose of this chapter is to provide a summary of known results on border colli-

sion bifurcation for one-dimensional (1-D) piecewise smooth (PWS) maps and to give

several results on BCBs for 1-D maps that haven’t been reported previously. These

results will be used in Chapter 4 in designing stabilizing feedback controllers for 1-D

maps.

3.1 Mathematical Setting and Normal Form

The analysis of border collision bifurcations (BCBs) in 1-D PWS maps is straightfor-

ward. There are two main ingredients in the analysis: (i) an observation about normal

forms being affine (for fixed points on borders), and (ii) sketches that clarify how fixed

points and periodic points depend on the bifurcation parameter for the scenarios asso-

ciated with the various cases. For simplicity, a PWS map is considered that involves

only two regions of smooth behavior.
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Consider the 1-D PWS system

xk+1 = f (xk,µ) (3.1)

where the mapf (x,µ) takes the form

f (x,µ) =




fA(x,µ), x ≤ xb

fB(x,µ), x ≥ xb

(3.2)

and whereµ is the bifurcation parameter. Since the system is one-dimensional, the

border is just the pointxb. The mapf : R×R → R is assumed to be PWS:f depends

smoothly onx everywhere except atxb, where it is continuous inx. It is also assumed

that f depends smoothly onµ everywhere. Denote byRA andRB the two regions in

state space separated by the border:RA := {x : x ≤ xb} andRB := {x : x > xb}.

Let x(µ) be a path of fixed points off ; this path depends continuously onµ.

Suppose also that the fixed point hits the boundary at a critical parameter valueµb:

x(µb)= xb. Below, conditions are recalled for the occurrence of various types of BCBs

from xb for µ nearµb.

The normal form for the PWS map (3.1) at a fixed point on the border is a piece-

wise affine approximation of the map in the neighborhood of the border pointxb, in

scaled coordinates [62, 23, 10]. For completeness, a derivation of the 1-D normal

form is now recalled [10]. Letting ¯x = x− xb andµ̄ = µ−µb, Eq. (3.2) becomes

f̃ (x̄, µ̄) := f (x̄+ xb, µ̄+µb) =




fA(x̄+ xb, µ̄+µb), x̄ ≤ 0

fB(x̄+ xb, µ̄+µb), x̄ ≥ 0
(3.3)

In these variables, the border is at ¯x = 0, and the state space is divided into two halves,

R− = (−∞,0] andR+ = [0,∞). Also, the fixed point of (3.1) is at the border for the

parameter value ¯µ = 0.

Expandingf̃ to first order about(0,0) gives
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f̃ (x̄, µ̄) =




ax̄+ µ̄v+o(x̄, µ̄), x̄ ≤ 0

bx̄+ µ̄v+o(x̄, µ̄), x̄ ≥ 0
(3.4)

where

a = lim
x̄→0−

∂
∂x

f̃ (x̄,0), b = lim
x̄→0+

∂
∂x

f̃ (x̄,0), and v = lim
x̄→0

∂
∂µ

f̃ (x̄,0).

(The last limit doesn’t depend on the direction of approach of 0 byx, due to the

assumed smoothness off in µ.) Supposev �= 0, |a| �= 1 and|b| �= 1. The assumptions

|a| �= 1 and|b| �= 1 imply that the nonlinear terms are negligible close to the border.

The assumptionv �= 0 means that the fixed point crosses the border asµ is varied

through its critical value. The 1-D normal form is therefore obtained by defining a

new parameter̄̄µ = µ̄v and dropping the higher order terms [10]:

G1(x̄, ¯̄µ) =




ax̄+ ¯̄µ, x̄ ≤ 0

bx̄+ ¯̄µ, x̄ ≥ 0

The normal form mapG1(·, ·) can be used to study local bifurcations of the original

map f (·, ·) [62, 23, 10].

For simplicity of notation, below(x,µ) is used instead of(x̄, ¯̄µ). The normal form

is therefore

xk+1 = G1(xk,µ) =




axk +µ, xk ≤ 0

bxk +µ, xk ≥ 0
(3.5)

Denote byxB(µ) and xA(µ) the fixed points of the system near the border to

the right (x > xb) and left (x < xb) of the border, respectively. Then in the normal

form (3.5),xB(µ) = µ
1−b andxA(µ) = µ

1−a . For the fixed pointxB(µ) to actually occur,

we need µ
1−b ≥ 0 which is satisfied if and only if eitherµ ≥ 0 andb < 1 or µ ≤ 0 and
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b > 1. Similarly, forxA(µ) to actually occur, we needµ
1−a ≤ 0 which is satisfied if and

only if eitherµ ≤ 0 anda < 1 or µ ≥ 0 anda > 1.

Various combinations of the parametersa andb lead to different kinds of bifurca-

tion behavior asµ is varied. Since the mapG1 is invariant under the transformation

x →−x, µ →−µ, a � b, it suffices to consider only the casea ≥ b.

The possible bifurcation scenarios are recalled next. Some of the language used

below to describe the BCBs is introduced here to more easily convey the ideas. All

the results below pertain to system (3.5).

3.2 Persistent Fixed Point (Scenario A)

In this scenario, a fixed point forµ < 0 crosses the border and persists forµ > 0. Two

situations lead to this scenario. These are presented next.

Proposition 3.1 [73, 10] (Scenario A1: Persistence of Stable Fixed Point)

If −1 < b ≤ a < 1 (3.6)

then a stable fixed point for µ < 0 persists and remains stable for µ > 0.

Figure 3.1 illustrates the dependence of the mapG1 and its fixed points onµ near

the border. The system has a single eigenvalue at the fixed point, which changes

discontinuously at the border. The distinct eigenvalues are the slopes of the map on

the two sides of the vertical axis in Figure 3.1.

Proposition 3.2 [73, 10] (Scenario A2: Persistence of Unstable Fixed Point)

If i) 1 < b ≤ a (3.7)

or ii) b ≤ a < −1 (3.8)
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Figure 3.1: Dependence of first return map and its fixed point onµ for Scenario A1

(−1 < b < a < 1) is shown here. Intersections of the map with the linexk+1 = xk are

the fixed points.

then an unstable fixed point for µ < 0 persists and remains unstable for µ > 0.

Figure 3.2 shows typical bifurcation diagrams for Scenario A1 and Scenario A2.

3.3 Border Collision Pair Bifurcation (Scenario B)

For other values of the parametersa andb, there are two main kinds of border collision

bifurcation, namely,border collision pair bifurcation andborder crossing bifurcation.

Border collision pair bifurcation is similar to saddle node bifurcation in smooth sys-

tems, where two fixed points of the system collide and disappear at the bifurcation.

Border crossing bifurcation, on the other hand, has some similarities with period dou-

bling bifurcation in smooth maps as discussed below.
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Figure 3.2: Bifurcation diagrams for Scenarios A1 and A2. A solid line represents

a stable fixed point whereas a dashed line represents an unstable fixed point. (a) A

typical bifurcation diagram for Scenario A1. (b) A typical bifurcation diagram for

Scenario A2.

In border collision pair bifurcation, the map has two fixed points for positive (re-

spectively, negative) values ofµ, and no fixed points for negative (respectively, pos-

itive) values ofµ. For theµ range that two fixed points exist, one fixed point is on

one side of the border and the other fixed point is on the opposite side. The border

collision pair bifurcation occurs ifb < 1 < a. There are three situations that lead to

this scenario. These are summarized next (see also Figure 3.3).

Proposition 3.3 [73, 10] (Scenario B1: Merging and Annihilation of Stable and

Unstable Fixed Points)

If −1 < b < 1 < a (3.9)
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then there is a bifurcation from no fixed point to two period-1 fixed points. In this

case, there is no fixed point for µ < 0 while there are two fixed points xA(µ) (unstable)

and xB(µ) (stable) for µ ≥ 0.

A typical bifurcation diagram for Scenario B1 is depicted in Figure 3.3 (a). Scenario

B1 is analogous to saddle-node bifurcation (or tangent bifurcation) in smooth maps.

Proposition 3.4 [73, 10] (Scenario B2: Merging and Annihilation of Two Unsta-

ble Fixed Points, Plus Chaos)

If a > 1 and − a
a−1

< b < −1 (3.10)

then there is a bifurcation from no fixed point to two unstable fixed points plus a

growing chaotic attractor as µ is increased through zero.

A typical bifurcation diagram for Scenario B2 is depicted in Figure 3.3 (b). A proof

of this proposition is given in [73]. We point out that for the range ofa andb given

in (3.10), the normal form is basically a family of tent maps.

Proposition 3.5 [73, 10] (Scenario B3: Merging and Annihilation of Two Unsta-

ble Fixed Points)

If a > 1 and b < − a
a−1

(3.11)

then there is a bifurcation from no fixed point to two unstable fixed points as µ is

increased through zero (see Figure 3.3 (c)). Also an unstable chaotic orbit exists for

µ > 0. The system trajectory diverges for all initial conditions.

A typical bifurcation diagram for Scenario B3 is depicted in Figure 3.3 (c). A proof

of this proposition is given in [73].
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Growing chaotic attractor for 

0
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0

0

0
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(b)

(c)

µ
    

Figure 3.3: Bifurcation diagrams for Scenarios B1-B3. A solid line represents a stable

fixed point whereas a dashed line represents an unstable fixed point. (a) A typical

bifurcation diagram for Scenario B1. (b) A typical bifurcation diagram for Scenario

B2. (c) A typical bifurcation diagram for Scenario B3.

3.4 Border Crossing Bifurcations (Scenario C)

In border crossing bifurcation, the fixed point persists and crosses the border asµ is

varied through zero. Other attractors or repellers may appear or disappear as a result

of the bifurcation. Border crossing bifurcation occurs if−1 < a < 1 andb < −1.

There are three situations that lead to this scenario. These are summarized next.

Proposition 3.6 [73, 10] (Scenario C1: Supercritical Period Doubling Border

Collision Bifurcation)

If b < −1 < a < 1 and −1 < ab < 1 (3.12)
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then there is a bifurcation from a stable fixed point to an unstable fixed point plus a

stable period-2 orbit as µ is increased through zero.

A typical bifurcation diagram for Scenario C1 is depicted in Figure 3.4(a). This bi-

furcation is analogous to supercritical period doubling bifurcation in smooth maps.

It is important to point out that a signature of BCBs is that the fixed points meet

and form an acute angle (or a cusp) at the bifurcation point [73], which distinguishes

BCBs in PWS maps from those occurring in smooth maps. This can be used as a

signature of BCBs which may be useful in analysis of experimental data.

Proposition 3.7 (Scenario C2: Subcritical Period Doubling Border Collision Bi-

furcation)1

If b < −1 < a < 0 and ab > 1 (3.13)

then there is a bifurcation from a stable fixed point along with an unstable period-2

orbit to an unstable fixed point as µ is increased though zero.

A typical bifurcation diagram for Scenario C2 is depicted in Figure 3.4(b). This bi-

furcation is analogous to subcritical period doubling bifurcation in smooth maps.

To show the bifurcation of an unstable period-2 orbit forµ < 0, consider the first

and second return maps (forµ < 0), given by

xk+1 =




axk +µ, xk ≤ 0

bxk +µ, xk ≥ 0
(3.14)

xk+2 =




abxk +µ(1+b), xk ≤−µ
a

a2xk +µ(1+a), −µ
a ≤ xk ≤ 0

abxk +µ(1+a), xk ≥ 0

(3.15)

1In [73, 10], the terminologyPeriod-1 → No Attractor is used to describe this case, and the bifur-

cation of an unstable period-2 orbit is not mentioned.
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respectively. The first return map has a stable fixed point,xA(µ) = µ
1−a . The second

return map has three fixed points one of which coincides withxA(µ). The other two

fixed points are given byx∗1 = µ(1+b)
1−ab < 0 andx∗2 = µ(1+a)

1−ab > 0. The fixed pointsx∗1

andx∗2 are unstable (since the slope of the second return map at both fixed points is

ab > 1). Sincex∗1 andx∗2 form a period-2 orbit for the first return map, it is concluded

that the normal form has an unstable period-2 orbit in addition to the stable fixed point

before the border (see Figure 3.4(b)). It remains to show that there is no period-2 orbit

for µ > 0. To this end, suppose that there is a period-2 orbit forµ > 0 formed byx∗3 < 0

andx∗4 > 0. This means that if one starts atx∗3, the next iterate isx∗4. Applying the map

one more time givesx∗3 and so on. It is straightforward to show thatx∗3 = µ(1+a)
1−ab and

x∗4 = µ(1+b)
1−ab with µ > 0. Now we show that starting atx∗3 for example, and iterating the

map twice givesµ(a2b−ab2+b+1)
1−ab �= x∗3 and thus the map does not have a period-2 orbit

for µ > 0.

Proposition 3.8 [62] (Scenario C3: Emergence of Periodic or Chaotic Attractor

from Stable Fixed Point)

If 0 < a < 1, b < −1 and ab < −1 (3.16)

then there is a bifurcation from a stable fixed point to an unstable fixed point plus a

period-n attractor, n ≥ 2 or a chaotic attractor as µ is increased through zero.

The specific scenario, period-n attractor or chaotic attractor, depends on the pair (a,b)

as shown in Figure 3.5 (see [62] for details). The possible bifurcation scenarios for

system (3.5) are summarized in Fig. 3.6, which expands on a similar figure in [10].
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Figure 3.4: Typical bifurcation diagrams for Scenarios C1 and C2. A solid line repre-

sents a stable fixed point whereas a dashed line represents an unstable fixed point.

(a) Supercritical period doubling border collision (Scenario C1,b < −1 < a < 1

and−1 < ab < 1), (b) Subcritical period doubling border collision (Scenario C2,

b < −1 < a < 0 andab > 1).

3.5 Stability of the Fixed Point at Criticality in

Scenarios A-C

The following results give detailed statements relating stability of the fixed point at

criticality with the nature of the BCB that occurs. These results, though not difficult

to obtain, haven’t previously been stated.

Proposition 3.9 The origin of (3.5) at µ = 0 is asymptotically stable if and only if any

of (i)-(iii) below holds
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Figure 3.5: The bifurcation behavior describing Scenario C3 (0< a < 1 andb <−1).

Shaded regions indicate the existence of a chaotic attractor and aPn : n = 2,3, · · · ,7,

indicates the existence of a stable period-n attractor [62].

(i) −1 < a < 1 and −1 < b < 1

(ii) {0 < a < 1 and b < −1} or {0 < b < 1 and a < −1}
(iii) {−1 < a < 0, b < −1 and ab < 1} or {−1 < b < 0, a < −1 and ab < 1}.

The origin of (3.5) at µ = 0 is unstable iff any of (iv)-(vi) below holds

(iv) {−1 < a < 1 and b > 1} or {−1 < b < 1 and a > 1}
(v) {−1 < a < 0, b < −1 and ab > 1} or {−1 < b < 0, a < −1 and ab > 1}
(vi) |a| > 1 and |b| > 1.
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Proof (cases (i)-(iii)): Consider the piecewise quadratic Lyapunov function

V (xk) =




p1x2
k , xk ≤ 0

p2x2
k , xk > 0

(3.17)

where p1 > 0 and p2 > 0. Clearly,V (x) is positive definite. To show asymptotic

stability of the origin of (3.5) at criticality (µ = 0), we need to show that the for-

ward difference∆V (xk) := V (xk+1)−V (xk) is negative definite along the trajectories

of (3.5) for allxk �= 0. There are two cases:

Case 1:xk < 0

∆V (xk) =




p1(x2
k+1− x2

k), xk+1 < 0

p2x2
k+1− p1x2

k , xk+1 > 0

=




p1x2
k(a

2−1), xk+1 < 0

x2
k(p2a2− p1), xk+1 > 0

(3.18)

Case 2:xk > 0

∆V (xk) =




p2(x2
k+1− x2

k), xk+1 > 0

p1x2
k+1− p2x2

k , xk+1 < 0

=




p2x2
k(b

2−1), xk+1 > 0

x2
k(p1b2− p2), xk+1 < 0

(3.19)

It remains to show that∆V (xk) < 0 for all xk �= 0 in (i)-(iii).

(i) −1< a < 1 and−1< b < 1: Choosep1 = p2 =: p > 0. From (3.18), it follows that

∆V (xk) = px2
k(a

2−1) < 0 and from (3.19) it follows that∆V (xk) = px2
k(b

2−1) < 0.

Thus∆V (xk) < 0 ∀xk �= 0.

(ii) 0 < a < 1 andb < −1 (the proof for the symmetric case 0< b < 1 anda < −1

is similar and therefore omitted): Since 0< a < 1, if xk < 0 thenxk+1 = axk < 0.
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From (3.18),∆V (xk) = p1x2
k(a

2−1) < 0. Sinceb <−1, if xk > 0 thenxk+1 = bxk < 0.

From (3.19),∆V (xk) = x2
k(p1b2− p2)< 0 if and only if p2 > p1b2 > 0. Thus, choosing

p1 > 0 andp2 > p1b2 results in a positive definiteV and a negative definite∆V (x).

(iii) −1 < a < 0, b < −1 andab < 1 (the proof for the symmetric case−1 < b < 0,

a <−1 andab < 1 is similar and therefore omitted): Since−1 < a < 0, if xk < 0 then

xk+1 = axk > 0. From (3.18),∆V (xk) = x2
k(p2a2− p1) < 0 if and only if p1 > p2a2.

Sinceb <−1, if xk > 0 thenxk+1 = bxk < 0. From (3.19),∆V (xk) = x2
k(p1b2− p2) < 0

if and only if p1 < p2
b2 . Thus,p1 and p2 must be chosen such thatp2a2 < p1 < p2

b2 .

Clearly, anyp2 > 0 works. Forp1 > 0 to exist, we need1
b2 > a2 which is satisfied

sinceab < 1 by hypothesis.

Proof (cases (iv)-(vi)): It suffices to show that no matter how close the initial condi-

tion is to the origin, the trajectory of (3.5) diverges.

(iv) −1 < a < 1 andb > 1 (the proof for the symmetric case−1 < b < 1 anda > 1 is

similar and therefore omitted): Letx0 = ε > 0. Then,x1 = bε, x2 = b2ε andxk = bkε.

As k → ∞, xk → ∞ no matter how smallε is.

(v) −1< a < 0, b <−1 andab > 1 (the proof for the symmetric case−1< b < 0, a <

−1 andab > 1 is similar and therefore omitted): Letx0 = ε > 0. It is straightforward

to show thatx2k = (ab)kε. Sinceab > 1, x2k → ∞ ask → ∞, for any fixedε.

(vi) Similar to the other cases proved above.

The assertions of the next theorem follow from relating the stability of the fixed

point at criticality as given in Propositions 3.9 with the ensuing bifurcation for differ-

ent regions in the(a,b) parameter space as discussed at length in this chapter.

Theorem 3.1 1) If the fixed point of system (3.5) is asymptotically stable at criticality

(i.e., at µ = 0), then the border collision bifurcation is supercritical in the sense that
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no bifurcated orbits occur on the side of the border where the nominal fixed point is

stable and the bifurcated solution on the unstable side is attracting.

2) If the fixed point of system (3.5) is unstable at criticality, then the border collision

bifurcation is subcritical in the sense that there is no stable bifurcated orbit on one or

both sides of the border.
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Figure 3.6: Partitioning of the parameter space into regions with the same qualitative

phenomena. The labeling of regions refers to various bifurcation scenarios (associ-

ated parameter ranges are clear from the figure).Scenario A1: Persistence of stable

fixed points (nonbifurcation),Scenario A2: Persistence of unstable fixed points,Sce-

nario B1: Merging and annihilation of stable and unstable fixed points,Scenario B2:

Merging and annihilation of two unstable fixed points plus chaos,Scenario B3: Merg-

ing and annihilation of two unstable fixed points,Scenario C1: Supercritical border

collision period doubling,Scenario C2: Subcritical border collision period doubling,

Scenario C3: Emergence of periodic or chaotic attractor from stable fixed point.
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Chapter 4

Feedback Control of Border Collision

Bifurcation in 1-D Maps

In this chapter, control of BCBs in PWS maps of dimension one is discussed. The

goal of the control effort is to modify the bifurcation so that the bifurcated steady

state is locally attracting. In this way, the system’s local behavior is ensured to remain

close to the original operating condition. Since the type and stability properties of a

border collision bifurcation are determined (generically) by the system linearizations

on both sides of the border, we employ linear and piecewise linear feedback laws.

Consider a general 1-D PWS map of the form

f (x,µ) =




fA(x,µ), x ≤ xb

fB(x,µ), x ≥ xb

(4.1)

The sought linear or piecewise linear feedback can either be applied on one side of

the border and not the other, or on both sides of the border. Both approaches are

considered below. The issue of which approach to take and with what constraints is a

delicate one. There are practical advantages to applying a feedback on only one side of

the border, say the stable side. However, this requires knowledge of where the border

lies, which is not necessarily the case in practice. An approach considered here that
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doesn’t require knowledge of the border is what we callsimultaneous stabilization—

here controls are sought that function in exactly the same way on both sides of the

border. Not surprisingly, the conditions for existence of simultaneously stabilizing

controls are more restrictive than for one sided controls.

All the developed control laws are developed for application to system models

in normal form. To apply these control laws to a map not in normal form, inverse

transformations need to be performed, and this is straightforward for 1-D maps.

We should emphasize that transforming a system to normal form is not needed

when simultaneous feedback control is employed. All that is needed in this case is an

estimate of the slopes of the map on both sides of the border.

4.1 Control of BCB in 1-D Maps Using Static Feedback

Consider the one-dimensional normal form (3.5) for a BCB, repeated here for conve-

nience:

xk+1 =




axk +µ, xk ≤ 0

bxk +µ, xk ≥ 0
(4.2)

Below, the control schemes described above are considered for the system (4.2), with

a control signalu included in the dynamics as appropriate.

4.1.1 Control Applied on One Side of the Border

In the first control scheme, the feedback control is applied on one side of the border.

Suppose that the system is operating at a stable fixed point on one side of the border,

with the bifurcation parameter approaching its critical value. Without loss of general-

ity, assume this region of stable operation is{x : x < 0}— that is, assume−1< a < 1.
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Since the control is applied only on one side of the border, a linear feedback will be

applied either on the unstable side or the stable side of the border.

Linear feedback applied on unstable side of the border

Suppose that the fixed point is stable forx(µ) ∈ R− and unstable forx(µ) ∈ R+. Ap-

plying additive linear state feedback only forx ∈ R+ leads to the closed-loop system

xk+1 =




axk +µ, xk ≤ 0

bxk +µ+uk, xk ≥ 0
(4.3)

uk = γxk (4.4)

The following proposition asserts stabilizability of the border collision bifurcation

with this type of control policy.

Proposition 4.1 Suppose (4.2) has a stable fixed point in R− for µ < 0 (i.e., |a| < 1)

and that for µ > 0, either there is an unstable fixed point in R+ (i.e., b < −1) or there

is no fixed point (i.e., b > 1). Then there is a stabilizing linear feedback on the right

side of the border. That is, a linear feedback exists resulting in a stable fixed point to

the left and right of the border (i.e., achieving Scenario A1). Indeed, precisely those

linear feedbacks uk = γxk with gain γ satisfying

−1−b < γ< 1−b (4.5)

are stabilizing.

Proof: With uk = γxk, the closed loop system is

xk+1 =




axk +µ, xk ≤ 0

(b+γ)xk +µ, xk ≥ 0
(4.6)

For µ > 0, the fixed point is ˜x(µ) = µ
1−(b+γ) . The fixed point ˜x(µ) ∈ R+ if γ+b < 1.

The border collision bifurcation is eliminated if the eigenvalues of the closed loop
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system on both sides of the border are in(−1,1). This implies that the control gainγ

must be chosen such that|b+γ| < 1.

Rendering the bifurcation a supercritical period doubling BCB using linear feed-

back applied on the stable side of the border

For a linear feedback applied on the stable side of the border to be effective in ensuring

an acceptable bifurcation, it turns out that one must assume that the open-loop system

supports an unstable fixed point on the right side of the border. This is tantamount

to assumingb < −1. Of course, the assumption−1 < a < 1 is still in force. Now,

applying additive linear feedback in thex < 0 region yields the closed-loop system

xk+1 =




axk +µ+uk, xk ≤ 0

bxk +µ, xk ≥ 0
(4.7)

uk = γxk (4.8)

Note that such a control scheme does not stabilize the unstable fixed point on the right

side of the border. This is because the control has no direct effect on the system for

x > 0. All is not lost, however. The next proposition asserts that such a control scheme

may be used to stabilize the system to a period-2 solution after the border collision

event.

Proposition 4.2 Suppose that the fixed point of (4.2) is stable in R− for µ < 0 and

exists and is unstable in R+ for µ > 0 (i.e., |a|< 1 and b <−1). Then there is a linear

feedback that when applied to the left of the border (i) maintains a stable fixed point

to the left of the border for µ < 0, and (ii) produces a stable period-2 orbit for µ > 0

(i.e., the feedback achieves Scenario C1). Indeed, precisely those linear feedbacks
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uk = γxk with gain γ satisfying

1
b
−a < γ< −1

b
−a (4.9)

are stabilizing.

Proof: The closed-loop system is given by

xk+1 =




(a+γ)xk +µ, xk ≤ 0

bxk +µ, xk ≥ 0

The fixed point to the left of the border forµ < 0 remains stable if and only if

|a+γ| < 1 ⇐⇒ −1−a < γ< 1−a (4.10)

The fixed point to the right of the border forµ > 0 remains unstable since the control

is applied only in thex < 0 region. The closed-loop system bifurcates to a period-2

orbit asµ is increased through zero if and only if the fixed point of the second return

mapxk+2 for µ > 0, which form a period-2 orbit for the first return map, is stable.

That is, iff

|(a+γ)b| < 1 ⇐⇒ 1
b
−a < γ< −1

b
−a (4.11)

Combining conditions (4.10) and (4.11) yields

max

{
1
b
−a,−1−a

}
< γ< min

{
−1

b
−a,1−a

}
(4.12)

Sinceb < −1 < a, condition (4.12) is equivalent to1b − a < γ < −1
b − a. This com-

pletes the proof.
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4.1.2 Simultaneous Stabilization

In this method, the same linear feedback control is applied in both thex < 0 andx > 0

regions. This leads to the closed-loop system

xk+1 =




axk +µ+uk, xk ≤ 0

bxk +µ+uk, xk ≥ 0
(4.13)

uk = γxk (4.14)

The following proposition gives a necessary and sufficient condition for existence of

stabilizing simultaneous control.

Proposition 4.3 The fixed points of the closed-loop system (4.13)-(4.14) on both sides

of the border can be simultaneously stabilized using linear feedback control uk = γxk

if and only if

|a−b| < 2 (4.15)

Indeed, precisely those linear feedbacks uk = γxk with gain γ satisfying

−1−b < γ< 1−a (4.16)

are stabilizing.

Proof: The fixed points of the closed-loop system on both sides of the border are

stabilized by the feedback controluk = γxk if and only if

−1 < γ+a < 1 and −1 < γ+b < 1

⇐⇒ (−1−a, 1−a)∩ (−1−b, 1−b) �= /0

⇐⇒ |a−b| < 2.
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.

Clearly, this condition is not met by all values ofa andb. This condition might

or might not be met for all scenarios of BCBs discussed in Chapter 3 above, except

scenarios B2 and B3, in which it is definitely not met because|a−b| ≥ 2.

Next, the case in which|a− b| ≥ 2 is considered. Recall that, because of sym-

metry, a− b ≥ 2 can be assumed to hold. The next proposition asserts that in this

case a simultaneous linear feedback control exists that ensures the border collision

bifurcation is from a stable fixed point to a stable period-2 solution (i.e., the feedback

achieves Scenario C1, supercritical border collision period doubling).

Proposition 4.4 Suppose a− b ≥ 2. Then, there is a simultaneous control law that

renders the BCB in the system (4.13)-(4.14) a supercritical border collision period

doubling (Scenario C1). This is achieved precisely by the controls with control gain

satisfying

−1 < γ+a < 1 and −1 < (γ+a)(γ+b) < 1 (4.17)

One set of control gains satisfying (4.17) is γ= −a+ ε with ε sufficiently small.

Proof: The closed-loop system is given by

xk+1 =




(a+γ)xk +µ, xk ≤ 0

(b+γ)xk +µ, xk ≥ 0
(4.18)

The fixed point to the left of the border is stable if and only if

−1 < a+γ< 1 (4.19)

Suppose the control gainγ is chosen such that (4.19) is satisfied. The closed loop

system bifurcates to a period-2 orbit asµ is increased through zero if (i) the fixed
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point to the right of the border forµ > 0 is unstable, and (ii) the fixed points of the

second return mapxk+2 for µ > 0, which form a period-2 orbit for the first return map,

is stable. That is, if

|b+γ| > 1 (4.20)

and

−1 < (a+γ)(b+γ) < 1 (4.21)

Condition (4.20) is satisfied sincea−b ≥ 2 and−1< a+γ< 1. Thus, the closed-loop

system undergoes a bifurcation from a stable fixed point to a period-2 orbit atµ = 0 if

−1 < γ+a < 1 and −1 < (γ+a)(γ+b) < 1 (4.22)

Finally, if the control gainγ= −a+ ε, then

a+γ = ε, (4.23)

(a+γ)(b+γ) = ε(b−a+ ε) (4.24)

Thus, the stabilizability condition (4.22) is satisfied for a sufficiently smallε.

Note that if the system is known on the stable side but is uncertain on the unstable

side (withb <−1), the conclusion of Proposition 4.4 still applies. This has important

implications for robustly stabilizing the system. The next example illustrates the use

of Proposition 4.4.

Example 4.1 (Robust Simultaneous Control)

Consider the following simple example in normal form for border collision bifurcation

xk+1 =




0.5xk +µ, xk ≤ 0

bxk +µ, xk ≥ 0
(4.25)
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A BCB occurs asµ is increased through zero. The resulting BCB depends on the

value ofb [60]. For b = −4.15, there is a bifurcation from a period-1 fixed point

to a “six-piece ” [60] chaotic attractor. Forb = −4.44, there is a bifurcation from

a period-1 fixed point to a “three-piece ” chaotic attractor. Finally, forb = −5.5, a

period-1 fixed point produces a one-piece chaotic attractor.

Figure 4.1 shows the bifurcation diagrams for the values ofb above together with

those of the controlled map using a simultaneous control achieving stable period dou-

bling (with γ = −0.51 in all cases). Note that a persistent stable fixed point is not

achievable because for eachb values considered, 0.5−b > 2.
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Figure 4.1: Bifurcation diagrams for Example 4.1. (a)b = −4.15 (c)b = −4.44, (e)

b = −5.5, (b), (d) and (f) are bifurcation diagrams for the corresponding closed-loop

system using the same control gainγ= −0.51 in all cases.
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4.2 Discrete Control of a PWS Continuous-Time

System: An Example

The next example, which builds on an example from [23], illustrates use of the fore-

going theory to control BCB in a second order continuous-time PWS system. The

system is such that its Poincar´e map can be determined analytically.

Consider the second order PWS continuous time system

ẋ = y (4.26)

ẏ = −(1+ p2
k) x+2pk y+ v (4.27)

wherepk is the piecewise smooth function

pk =




1
2π

log

(
1+α(Yk −1)+µ

Yk

)
, for Yk < 1

1
2π

log

(
1+β(Yk −1)+µ

Yk

)
, for Yk > 1

(4.28)

Yk is they-coordinate of thek-th intersection of the phase-plane trajectory with the

positivey-axis (x = 0, y > 0), andv is a control to be designed. Next, a Poincar´e map

is used to obtain a discrete-time system for which the results of this chapter allow

design of a discrete-time controlu, and then a continuous-time feedback controlv is

obtained that agrees withu when sampled at the Poincar´e crossings.

To study the open-loop dynamics of the system, setv ≡ 0. Take the Poincar´e

section to be the positivey-axis. The corresponding Poincar´e map is evaluated in [23]

as follows:

Yk+1 = e2πpkYk (4.29)

which simplifies to yield

Yk+1 =




1+α(Yk −1)+µ, for Yk < 1

1+β(Yk −1)+µ, for Yk > 1
(4.30)
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Note that the Poincar´e map is one dimensional. LettingZk = Yk −1, this map can be

written as

Zk+1 =




αZk +µ, Zk < 0

βZk +µ, Zk > 0
(4.31)

which, fortuitously, is in the normal form for border collision bifurcations in 1D maps.

Clearly, (4.31) undergoes a border collision bifurcation atZ∗ = 0 (equivalently, at

Y ∗ = 1) asµ is increased through zero. The map (4.31) has a fixed pointZA(µ) = µ
1−α

that occurs forY < 1 and a fixed pointZB(µ) = µ
1−β that occurs forY > 1. The stability

of these fixed points is determined by the values ofα andβ, respectively. Also, the

BCB scenario depends on the pair(α,β) as discussed in detail in Chapter 3. For

illustration purposes, the parameter valuesα = 0.4 andβ =−8.0 are considered [23].

For these values of the parameters, the continuous time system undergoes a BCB from

a stable period-1 cycle to chaos asµ is increased through zero (see Figure 4.2). This

can also be seen by looking at the Poincar´e map in the normal form for BCB and

observing that these parameters lead to Scenario C3.

Next, the results of this chapter are used to design controllers for the BCB. The

three actuation modes (unstable side, stable side, and simultaneous) cannot all be

addressed with a common control objective, as discussed previously. Static feedback

will be designed for each of the static feedback design approaches of Section 4.1. The

transformation between the continuous time system and the Poincar´e map is used to

design a controller for the continuous time system.

4.2.1 Control Applied on the Unstable Side

Proposition 4.1 is now used to design a static feedback of the formuk = γZk = γ(Yk−1)

which will be applied only on the unstable side of the border. The fixed point of the

52



Poincaré map is stabilized for−1−β < γ< 1−β. From (4.28),pk involvesβ but not

α for Yk > 1, and it involvesα but notβ for Yk < 1. Since the feedback control affects

the value ofβ but not that ofα, it follows that the control affectspk only in the region

Yk > 1.

Consider the map obtained by applying a controluk on the unstable side of (4.31):

Zk+1 =




αZk +µ, Zk < 0

βZk +µ+uk, Zk > 0
(4.32)

Takinguk = γZk, the controlled map is

Zk+1 =




αZk +µ, Zk < 0

(β+γ)︸ ︷︷ ︸
β̃

Zk +µ, Zk > 0 (4.33)

For Yk > 1, p̃k =
1
2π

log

(
1+(β+γ)(Yk −1)+µ

Yk

)
where a tilde is used to denote

variables that pertain to the controlled system. It is straightforward to show that ˜pk =

pk +∆pk, where

∆pk =
1

2π
log

(
1+

γ(Yk −1)
1+β(Yk −1)+µ

)
(4.34)

Observe that∆pk = 0 if the control gainγ= 0. Also, p̃k = pk for Yk < 1. Thus ˜pk can

be written as ˜pk = pk +g1k∆pk, where

g1k =




0, Yk < 1

1, Yk > 1
(4.35)

andpk is given by (4.28).

To obtain a corresponding control that yields the same result when applied to the

original continuous time system, we seek a feedbackv that, when inserted in the

continuous-time model (4.26),(4.27), gives the open-loop version of the same model
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with pk replaced by ˜pk. Substituting the formula ˜pk = pk +g1k∆pk in place ofpk in

the open-loop version of (4.26),(4.27) gives

ẋ = y (4.36)

ẏ = −(1+ p2
k) x+2pk y+ v(x,y) (4.37)

where

v(x,y) = −(2g1k pk∆pk +g2
1k∆p2

k) x+2g1k∆pk y (4.38)

Verifying this is an easy computation.

To see how the feedback controlv(x,y) is evaluated and applied to the continuous

time model, note that the coefficients ofx, y (i.e., the control gains) indexed byk in

the equation ofv(x,y) (4.38) are evaluated at every intersection of the phase-plane

trajectory with the positivey-axis. The values of the coefficients evaluated at the

k-th intersection are used in the feedback controlv(x,y) until the k + 1 phase-plane

intersection with the positivey-axis, and so on.

Consider the parameter valuesα = 0.4 andβ = −8.0. The uncontrolled system

undergoes a BCB from a stable period-1 cycle to chaos (see Figure 4.2). As shown

above, a stabilizing control gainγ must satisfy−1−β < γ < 1−β, i.e., 7< γ < 9.

The phase plot for the controlled system withγ= 7.6 is depicted in Figure 4.3, which

shows that the system has a stable limit cycle after the border collision.

4.2.2 Control Applied on the Stable Side

In this control scheme, the control is applied on the stable side of the border only. It is

straightforward to show, using an argument analogous to that used for the case when

the control was applied on the unstable side, that a static feedback control applied to
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the stable side of the border of the Poincar´e map results in a control applied to the

original system as follows:

ẋ = y (4.39)

ẏ = −(1+ p2
k) x+2pk y+ v(x,y) (4.40)

where

v(x,y) = −(2g2k pk∆pk +g2
2k∆p2

k) x+2g2k∆pk y, (4.41)

∆pk =
1
2π

log

(
1+

γ(Yk −1)
1+α(Yk −1)+µ

)
(4.42)

and

g2k =




1, Yk < 1

0, Yk > 1
(4.43)

For concreteness, a controller is designed for the parameter values considered before

(α = 0.4,β=−8.0). Recall that a controller applied to the stable side of the border can

be used to render the BCB a supercritical period-doubling border collision bifurcation

(see Proposition 4.2). Figure 4.4 shows the phase plots of the controlled system (α =

0.4, β = −8.0) using this control method, exhibiting a stable period-2 orbit after the

border collision. Note that the period-1 orbit of the controlled system forµ < 0 is

slightly changed as a result of the control action (compare Fig. 4.4(a) with Fig. 4.2(a)).

4.2.3 Simultaneous Control

A simultaneous control applied to the Poincar´e map gives:

Zk+1 =




(α +γ)︸ ︷︷ ︸
α̃

Zk +µ, Zk < 0

(β+γ)︸ ︷︷ ︸
β̃

Zk +µ, Zk > 0
(4.44)
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Using similar analysis as in the case when the control is applied on the unstable side, it

is straightforward to show that the corresponding closed-loop continuous time system

is given by

ẋ = y (4.45)

ẏ = −(1+ p2
k) x+2pk y+ v(x,y) (4.46)

where

v(x,y) = −(2pk∆pk +∆p2
k) x+2pk∆pk y, (4.47)

∆pk =




1
2π

log

(
1+

γ(Yk −1)
1+α(Yk −1)+µ

)
, Yk < 1

1
2π

log

(
1+

γ(Yk −1)
1+β(Yk −1)+µ

)
, Yk > 1

(4.48)

Next, a controller is designed for the parameter values considered before (α = 0.4,

β = −8.0). Since|α −β| = 8.4 > 2, simultaneous control cannot be used to stabilize

a period-1 orbit after the border collision. However, simultaneous control can be used

to render the BCB a supercritical period-doubling border collision bifurcation (see

Proposition 4.4). Figure 4.5 shows the phase plots of the controlled system (α = 0.4,

β = −8.0) using this control method.

4.2.4 Discussion

Note that in order to apply the proposed BCB control methods to continuous time

systems one needs to relate the control action in continuous timev(x,y) with the pa-

rameters of the normal forma andb. In some cases (as in the example above), this

relationship may be derived analytically. In some situations, it may have to be deter-

mined numerically. A stable periodic orbit in continuous time is mapped to a stable
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fixed point of a Poincar´e section. By perturbing the initial condition away from the

stable fixed point, and by observing the evolution of the subsequent iterates (or inter-

sections with the Poincar´e section), one can obtain the slope of the map (on the stable

side) for any value of the control gain [67]. By repeating this procedure for various

control gains, it is possible to establish a relationship between the controller gain in

the continuous time system and the controller gain of the discrete time system. This

technique can, however, be applied only for the cases where the control is applied

on the stable side of the border or for simultaneous control. As demonstrated in the

example above, a control applied on the stable side of the border and a simultaneous

control stabilized the system behavior after the border to period-2 orbit. This is valu-

able in cases where the uncontrolled system has no local attractors after the border

collision.

For applying control on the unstable side, one needs to establish a relationship

between the slope of the map in the unstable side and the controller gain for the

continuous time system. This is feasible if the system has a chaotic attractor after

the border collision, but not feasible in cases where the system has no local attractors

after the border collision.
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Figure 4.2: Phase plots of Example (4.26)-(4.27), uncontrolled system,α = 0.4, β =

−8.0. (a) before BCB (µ < 0), (b) after BCB (µ > 0).
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Figure 4.3: Controlled system (4.26)-(4.27),α = 0.4, β = −8.0. Control applied in

unstable side with control gainγ= 7.6.
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Figure 4.4: Controlled system (4.26)-(4.27),α = 0.4, β = −8.0. Control applied in

stable side withγ= −0.41.
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Figure 4.5: Controlled system (4.26)-(4.27),α = 0.4,β =−8.0. Simultaneous control

with γ= −0.401.
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Chapter 5

Results on Border Collision Bifurcation in

Two-Dimensional PWS Maps

As was pointed out in the summary given in Chapter 2 on the theoretical results avail-

able to-date on border collision bifurcations, the theory is general in nature and not

much is available in the way of clear sufficient conditions for the various types of

BCBs either in then-dimensional case or in the two-dimensional case. It is not our

purpose in this work to fill in all the gaps in the mathematical theory of BCBs. Rather,

since our ultimate goal in this thesis is the development of control techniques for

BCBs, we are most interested in conditions guaranteeing the less severe forms of

BCBs. In this spirit, we undertake in the present chapter to address the question of

sufficient conditions fornonbifurcation with persistent stability (defined in Chapters 1

and 2) for two dimensional systems undergoing border collision bifurcation. To illus-

trate the difficulty of determining such sufficient conditions, we begin the chapter with

a discussion of an example of a new border collision phenomenon that we call “dan-

gerous border collision bifurcation.” We then present examples of multiple attractor

bifurcations that occur in two dimensional PWS maps even though the Jacobian matri-

ces of the PWS system on both sides of the border are Schur stable. Multiple attractor
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bifurcations have been observed before [73, 9]. Finally, we state and prove sufficient

conditions for nonbifurcation with persistent stability in two dimensional PWS maps.

These results are applied to feedback control design in the next chapter.

5.1 Dangerous Border Collision Bifurcation

At the outset, it is tempting to conjecture that if the fixed points on either side of the

border are asymptotically stable, then no BCB takes place and stability is maintained

in a robust way as the fixed point crosses the border. To show that this conjecture

is definitely false, we introduce a new border collision phenomenon in this section,

that we refer to as dangerous border collision bifurcation [39]. This BCB doesn’t

occur in one-dimensional maps with two regions of smooth behavior, but can occur in

piecewise smooth maps of dimension two and higher. In it, although the fixed points

on either side of the border are certainly locally asymptotically stable, the stability is

nonrobust as the border is crossed.

Consider the following two dimensional piecewise affine map:


 xk+1

yk+1


 =





 −0.3 1

−0.9 0




︸ ︷︷ ︸
A


 xk

yk


+


 1

0


µ, xk ≤ 0


 −1.6 1

−0.9 0




︸ ︷︷ ︸
B


 xk

yk


+


 1

0


µ, xk > 0

(5.1)

The map is written in normal form for border collision bifurcation, and as usualµ

represents the bifurcation parameter.

The eigenvalues ofA are λA1,2 = −0.15± i0.9367 and those ofB are λB1,2 =

−0.80± i0.5099. Although the matricesA andB are Schur stable, it turns out that
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the origin of the system withµ = 0 is unstable. To see how the dynamics depends

on µ, note that forµ < 0, the fixed point is(xA(µ),yA(µ)) = ( 1
2.2µ,−0.9

2.2µ), and that

it is locally asymptotically stable as noted above. However, its region of attraction

shrinks to the single point(0,0) atµ = 0. Forµ > 0, the fixed point is(xB(µ),yB(µ)) =

( 1
3.5µ,−0.9

3.5µ) and is also locally asymptotically stable. Its regions of attraction shrinks

to the single point(0,0) at µ = 0. Therefore, atµ = 0, the trajectory of the map (5.1)

diverges for any nonzero initial condition. A sample trajectory ofxk for µ = 0 is shown

in Figure 5.1 and a phase plot foryk versusxk for µ = 0 is shown in Figure 5.2.

In Chapter 6, feedback control laws are designed to stabilize border collision bi-

furcations and this example is revisited where we show that feedback control can

eliminate the bifurcation.

0 50 100 150
−600

−400

−200

0

200

400

600

k

x k

Figure 5.1: Time series forxk for the example of dangerous border collision bifurca-

tion given in (5.1) withµ = 0 and initial condition(x0,y0) = (−0.03,0.01).
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Figure 5.2: The phase plot foryk versusxk for the example of dangerous border colli-

sion bifurcation given in (5.1) withµ = 0 and initial condition(x0,y0) = (−0.03,0.01).
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5.2 Examples of Multiple Attractor BCB in 2-D

Systems

In this section, we present new examples of multiple attractor border collision bifur-

cations. These examples show bifurcations of multiple attractors on one side or both

sides of the border even though the fixed point is asymptotically stable on both sides

of the border. Other examples demonstrating similar BCBs have appeared in [73, 9].

It is of interest to note that recently multiple attractor BCBs were shown to be a source

of unpredictability in piecewise smooth systems [25]: the presence of arbitrarily small

noise may lead to fundamentally unpredictable behavior of orbits as a bifurcation pa-

rameter is slowly varied through a critical value.

Example 5.1 Stable fixed point plus period-4 attractor bifurcating to stable fixed

point plus period-3 attractor:

Consider the two-dimensional piecewise smooth map


 xk+1

yk+1


 =





 0.50 1

−0.90 0




︸ ︷︷ ︸
A


 xk

yk


+


 1

0


µ, xk ≤ 0


 −1.22 1

−0.36 0




︸ ︷︷ ︸
B


 xk

yk


+


 1

0


µ, xk > 0

(5.2)

This map undergoes a bifurcation in which a stable fixed point along with a period-4

attractor yield a stable fixed point and a period-3 attractor, asµ is increased through

zero (see Figure 5.3). The eigenvalues ofA areλA1,2 = 0.25±0.9152i and those ofB

areλB1 = −0.5, λB2 = −0.72.
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Figure 5.3: Bifurcation diagram for Example 5.1.

Example 5.2 Stable fixed point bifurcating to stable fixed point plus period-7

attractor:

Consider the two dimensional piecewise smooth map


 xk+1

yk+1


 =





 1.6 1

−0.8 0




︸ ︷︷ ︸
A


 xk

yk


+


 1

0


µ, xk ≤ 0


 −1.4 1

−0.6 0




︸ ︷︷ ︸
B


 xk

yk


+


 1

0


µ, xk > 0

(5.3)

This map undergoes a bifurcation in which a stable fixed point yields a stable fixed

point along with a period-7 attractor, asµ is increased through zero (see Figure 5.4).

The eigenvalues ofA areλA1,2 = 0.8±0.4i and those forB areλB1,2 =−0.7±0.3317i.
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Figure 5.4: Bifurcation diagram for Example 5.2.

5.3 Sufficient Conditions for Nonbifurcation with Per-

sistent Stability in Two-Dimensional PWS Maps

In this section, sufficient conditions for nonbifurcation with persistent stability in two

dimensional PWS maps are stated and proved. Although, as mentioned earlier and

illustrated by the foregoing examples, Schur stability of the Jacobian matrices on

both sides of the border is insufficient for guaranteeing nonbifurcation with persistent

stability, imposing a realness of eigenvalues condition along with Schur stability turns

out to be a starting point for obtaining actual sufficient conditions. We have proved

nonbifurcation with persistent stability results for some of the situations in which real

and stable eigenvalues occur on both sides of the border, and the results are developed

in detail below. The remaining cases left unproven at this time will be addressed in

future work. It is important to point out that if a matrix has real distinct eigenvalues,
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then a perturbed version of the matrix (with small perturbations) continues to have

real eigenvalues.

Consider the one-parameter family of piecewise affine (PWA) maps (in normal

form for BCB) Fµ : R
2 → R

2, where

Fµ(x,y) =





 τA 1

−δA 0





 x

y


+


 1

0


µ, x ≤ 0


 τB 1

−δB 0





 x

y


+


 1

0


µ, x > 0

(5.4)

Let A :=


 τA 1

−δA 0


 andB :=


 τB 1

−δB 0


. Denote the eigenvalues ofA by λ±

A

and the eigenvalues ofB by λ±
B . (For the case of real eigenvalues, the eigenvalue with

a plus sign will be taken to be the larger of the two eigenvalues.)

As discussed in Chapter 2, the normal form can be used to study bifurcations in

an original PWS map with nonlinear maps on either side of the border under generic

conditions. In fact there are two such conditions, not usually explicated in the liter-

ature: 1) neitherA nor B has eigenvalues on the unit circle; 2) the fixed point does

not move along the border after the border collision event, i.e., either the fixed point

crosses the border or it merges with another fixed point at the border collision and

both fixed points disappear.

Next, we state and prove sufficient conditions for nonbifurcation with persistent

stability. Each result is given in a separate subsection.
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5.3.1 Positive Eigenvalues on Both Sides of the Border

In this subsection, we consider system (5.4) under the assumption that the eigenvalues

of the matricesA andB lie in the open interval(0,1). We show that this is a sufficient

condition for nonbifurcation with persistent stability. We carry out the investigation of

the dynamics of system (5.4) in two stages. First we prove global asymptotic stability

for the system at criticality, i.e., for the system obtained upon settingµ = 0 in (5.4).

Then, we show a similar result for the system withµ < 0 and withµ > 0.

Proposition 5.1 (Global stability of fixed point attractor on border: positive eigen-

values)

Let the eigenvalues λ±
A of A and λ±

B of B satisfy 0< λ−
A < λ+

A < 1 and 0< λ−
B < λ+

B < 1.

Then for µ = 0, the map Fµ has a unique fixed point attractor (x(µ),y(µ)) = (0,0)

and this fixed point attractor is globally asymptotically stable. That is, for every ini-

tial condition (x0,y0), the resulting orbit converges to (0,0), so limn→∞ Fn
µ (x0,y0) =

(0,0).

Proof: Let the mapFµ satisfy the assumptions of Proposition 5.1. Note that the as-

sumptions imply that 0< δA < 1 and 0< δB < 1. Denote byΓ the border{(x,y)| x =

0} between the regionsRA := {(x,y) ∈ R
2| x ≤ 0} andRB := {(x,y) ∈ R

2| x ≥ 0}.

Denote byL(λ±
A ) the two half-lines determined by the eigenvectors ofA correspond-

ing to the eigenvaluesλ±
A , respectively, in regionRA, and byL(λ±

B ) the two half-lines

determined by the eigenvectors ofB corresponding to eigenvaluesλ±
B , respectively, in

regionRB. These half-lines are given explicitly as follows:

L(λ+
A ) = {(x,y) ∈ RA ∪Γ : y = −λ−

A x}, (5.5)

L(λ−
A ) = {(x,y) ∈ RA ∪Γ : y = −λ+

A x}, (5.6)

L(λ+
B ) = {(x,y) ∈ RB ∪Γ : y = −λ−

B x}, (5.7)
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Figure 5.5: Schematic diagram showing the half-lines generated by eigenvectors and

the regionsRA1, RA2, RA3, RB1, RB2 andRB3 used in the proof of Proposition 5.1.

L(λ−
B ) = {(x,y) ∈ RB ∪Γ : y = −λ+

B x}. (5.8)

Note that the slopes of all four lines are negative. (Refer to Figure 5.5.) The

half-linesL(λ+
A ) andL(λ−

A ) divide the regionRA into three subregions, denoted by

RA1, RA2 andRA3. Similarly, the half-linesL(λ+
B ) andL(λ−

B ) divide the regionRB

into three subregions, denoted byRB1, RB2 andRB3. The subregions ofRA are defined

as follows: RA1 is the region bordered byΓ andL(λ+
A ), RA2 is the region bordered

by L(λ+
A ) and L(λ−

A ) and RA3 is the region bordered byL(λ−
A ) and Γ. Similarly,

subregions ofRB are defined in the following way:RB1 is the region bordered byΓ

and L(λ+
B ), RB2 is the region bordered byL(λ+

B ) and L(λ−
B ) and RB3 is the region

bordered byL(λ−
B ) andΓ (see Figure 5.5). Note that the subregions are numbered in

a clockwise sense. Let(x0,y0) ∈ R
2 be a given initial condition. Then, the following
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facts are clear:

• If (x0,y0) ∈ L(λ+
A ), then limn→∞ Fn

µ (x0,y0) = limn→∞(λ+
A )n(x0,y0) = (0,0);

• If (x0,y0) ∈ L(λ−
A ), then limn→∞ Fn

µ (x0,y0) = limn→∞(λ−
A )n(x0,y0) = (0,0);

• If (x0,y0)∈ L(λ+
B ), then limn→∞ Fn

µ (x0,y0) = limn→∞(λ+
B )n(x0,y0) = (0,0); and

• If (x0,y0) ∈ L(λ−
B ), then limn→∞ Fn

µ (x0,y0) = limn→∞(λ−
B )n(x0,y0) = (0,0).

The following facts, which assert positive invariance of the subregionsRA1, RA2,

RB1 andRB2, follow from the expression for the solution of a general linear difference

equation and the assumption that the eigenvalues lie in(0,1):

• If (x0,y0) ∈ RA1, thenFn
µ (x0,y0) ∈ RA1 ∀ n and limn→∞ Fn

µ (x0,y0) = (0,0);

• If (x0,y0) ∈ RA2, thenFn
µ (x0,y0) ∈ RA2 ∀ n and limn→∞ Fn

µ (x0,y0) = (0,0);

• If (x0,y0) ∈ RB1, thenFn
µ (x0,y0) ∈ RB1 ∀ n and limn→∞ Fn

µ (x0,y0) = (0,0); and

• If (x0,y0) ∈ RB2, thenFn
µ (x0,y0) ∈ RB2 ∀ n and limn→∞ Fn

µ (x0,y0) = (0,0).

Hence, in the remainder of this proof, we assume that(x0,y0) /∈ RA1∪RA2 ∪RB1∪
RB2.

First, we consider the case(x0,y0) ∈ Γ. Denote byΓ+ the positivey-axis{(x,y) ∈
Γ : y > 0}, and byΓ− the negativey-axis{(x,y) ∈ Γ : y < 0}. If (x0,y0) ∈ Γ+, then

Fµ(x0,y0) = (y0,0) ∈ RB1 and the positive invariance ofRB1 implies thatFn
µ (x0,y0) ∈

RB1 ∀ n≥1 and limn→∞ Fn
µ (x0,y0) = (0,0). If (x0,y0)∈ Γ−, thenFµ(x0,y0) = (y0,0)∈

RA1 and the positive invariance ofRA1 implies thatFn
µ (x0,y0) ∈ RA1 ∀ n ≥ 1 and

limn→∞ Fn
µ (x0,y0) = (0,0). It remains to consider the cases: (a)(x0,y0) ∈ RA3 and (b)

(x0,y0) ∈ RB3.
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Case (a). Assume that(x0,y0) ∈ RA3. Define the mapGA : R
2 → R

2 to be the

affine extension of the left part of the mapFµ(x,y) to the whole plane:GA(x,y) =

(τAx + y,−δAx)T . Since 0< δA < 1, the mapGA is invertible, andG−1
A (x,y) =(

− y
δA

,x+ y τA
δA

)T
. Note that ify > 0, thenG−1

A (0,y) =
(
− y

δA
,y τA

δA

)T ∈ RA3. There-

fore, G−1
A (Γ+) is contained in the subregionRA3. By induction, one can show that

for everyn ∈ N, G−(n+1)
A (Γ+) is contained in the region bordered byG−n

A (Γ+) and

L(λ−
A ). Furthermore, it is straightforward to show that the setG−n

A (Γ+) asymptoti-

cally approaches the half-lineL(λ−
A ) asn → ∞. Hence, there is a positive integerm

such that either(x0,y0) ∈ G−m
A (Γ+) or (x0,y0) is contained in the region bordered by

G−(m−1)
A (Γ+) andG−m

A (Γ+). Hence,Fm+1
µ (x0,y0) ∈ RB1 and the positive invariance

of RB1 implies thatF n+m
µ (x0,y0) ∈ RB1 ∀ n ≥ 1 and limn→∞ Fn+m

µ (x0,y0) = (0,0).

Case (b). Assume that(x0,y0) ∈ RB3. Define the mapGB : R
2 → R

2 to be the

affine extension of the right part of the mapFµ(x,y) to the whole plane:GB(x,y) =

(τBx + y,−δBx)T . Since 0< δB < 1, the mapGB is invertible, andG−1
B (x,y) =(

− y
δB

,x+ y τB
δB

)T
. Note that ify < 0, thenG−1

B (0,y) =
(
− y

δB
,y τB

δB

)T ∈ RB3. There-

fore, G−1
B (Γ−) is contained in the subregionRB3. By induction, one can show that

for everyn ∈ N, G−(n+1)
B (Γ−) is contained in the region bordered byG−n

B (Γ−) and

L(λ−
B ). Furthermore, it is straightforward to show that the setG−n

B (Γ−) asymptoti-

cally approaches the half-lineL(λ−
B ) asn → ∞. Hence, there is a positive integerm

such that either(x0,y0) ∈ G−m
B (Γ−) or (x0,y0) is contained in the region bordered by

G−(m−1)
B (Γ−) andG−m

B (Γ−). Hence,Fm+1
µ (x0,y0) ∈ RA1 and the positive invariance

of RA1 implies thatF n+m
µ (x0,y0) ∈ RA1 ∀ n ≥ 1 and limn→∞ Fn+m

µ (x0,y0) = (0,0).

All the cases have been exhausted and we conclude: ifµ = 0, then the mapFµ

has a unique fixed point attractor at(x(µ),y(µ)) = (0,0) and that this fixed point is

globally asymptotically stable. This completes the proof of Proposition 5.1.
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The next proposition asserts that the map (5.4) possesses a unique fixed point

attractor for all values ofµ if the eigenvalues of bothA andB are in(0,1).

Proposition 5.2 (Global stability of fixed point attractor: positive eigenvalues)

Let for µ ∈ R, the map Fµ : R
2 → R

2 be defined by (5.4). Let the eigenvalues λ±
A of A

and λ±
B of B satisfy 0< λ−

A < λ+
A < 1 and 0< λ−

B < λ+
B < 1. Then for every µ ∈R, the

map Fµ has a unique fixed point attractor (x(µ),y(µ)) and this fixed point attractor is

globally asymptotically stable. That is, for every initial condition (x0,y0) ∈ R
2, the

resulting orbit converges to (x(µ),y(µ)), so limn→∞ Fn
µ (x0,y0) = (x(µ),y(µ)).

Proof: Let the mapFµ satisfy the assumptions of Proposition 5.2. Denote byΓ the

border{(x,y) ∈ R
2 : x = 0} between the regionsRA andRB. For µ ∈ R, define the

mapGµ,A : R
2 →R

2 to be the affine extension of the left part of the mapFµ(x,y) to the

whole plane:Gµ,A(x,y) = (τAx + y + µ,−δAx)T and define the mapGµ,B : R
2 → R

2

to be the affine extension of the right part of the mapFµ(x,y) to the whole plane:

Gµ,B(x,y) = (τBx+ y+µ,−δBx)T .

Denote byP̄A(µ) = (x̄A(µ), ȳA(µ)) the fixed point ofGµ,A, and byP̄B(µ) = (x̄B(µ), ȳB(µ))

the fixed point ofGµ,B. By the assumptions 0< δA < 1 and 0< δB < 1, the maps

Gµ,A andGµ,B are invertible. The inverse of the mapGµ,A is given byG−1
µ,A(x,y) =(

− y
δA

,x+ y τA
δA

−µ
)T

, and the inverse ofGµ,B is given byG−1
µ,B(x,y) =

(
− y

δB
,x+ y τB

δB
−µ

)T
.

The proof of this proposition is divided by considering the following three cases:

(1) µ = 0, (2)µ < 0 and (3)µ > 0.

Case (1): µ = 0. Follows from Proposition 5.1.

Case (2): µ < 0. The mapFµ has a unique fixed pointP∗
A(µ) = (xA(µ),yA(µ)), where

xA(µ) = µ
1−τA+δA

andyA(µ) = −δAxA(µ). Note that: (a) the fixed point̄PA(µ) of Gµ,A

is the fixed pointP∗
A(µ) = (xA(µ),yA(µ)) of Fµ, and (b) the fixed point̄PB(µ) of Gµ,B
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is the virtual fixed point ofFµ and this point is given by ¯xB(µ) = µ
1−τB+δB

andȳB(µ) =

−δBx̄B(µ).

The mapFµ has four invariant half-lines: two invariant half-linesLµ(λ+
A ) and

Lµ(λ−
A ) in RA corresponding to the fixed pointP∗

A(µ) and two invariant half-lines

Lµ(λ+
B ) andLµ(λ−

B ) in RB corresponding to the virtual fixed point̄PB(µ) (in RA). The

half-linesLµ(λ+
A ) andLµ(λ−

A ) are determined by the eigenvectors ofA corresponding

to eigenvaluesλ+
A andλ−

A , respectively, in the regionRA. Similarly, the half-lines

Lµ(λ+
B ) andLµ(λ−

B ) are determined by the eigenvectors ofB corresponding to eigen-

valuesλ+
B andλ−

B , respectively, in the regionRB. These half-lines are given explicitly

as follows:

Lµ(λ+
A ) = {(x,y) ∈ RA ∪Γ : y− yA(µ) = −λ−

A (x− xA(µ))}, (5.9)

Lµ(λ−
A ) = {(x,y) ∈ RA ∪Γ : y− yA(µ) = −λ+

A (x− xA(µ))}, (5.10)

Lµ(λ+
B ) = {(x,y) ∈ RB ∪Γ : y− ȳB(µ) = −λ−

B (x− x̄B(µ))}, (5.11)

Lµ(λ−
B ) = {(x,y) ∈ RB ∪Γ : y− ȳB(µ) = −λ+

B (x− x̄B(µ))}. (5.12)

Note that the slopes of all four half-lines are negative. (Refer to Figure 5.6.) The

two half-linesLµ(λ+
A ) andLµ(λ−

A ) divide the regionRA into four subregions denoted

by RA1, RA2, RA3 and RA4. Similarly, the half-linesLµ(λ+
B ) andLµ(λ−

B ) divide the

regionRB into three subregions.

In order to define the four subregions ofRA and the subregions ofRB, we need the

points of intersection of the four half-lines with the borderΓ. The half-linesLµ(λ+
A ),

Lµ(λ−
A ), Lµ(λ+

B ), andLµ(λ−
B ) intersect the borderΓ at

yµ(λ+
A ) = λ−

A (1−λ+
A )xA(µ) =

µλ−
A

1−λ−
A

, (5.13)

yµ(λ−
A ) = λ+

A (1−λ−
A )xA(µ) =

µλ+
A

1−λ+
A

, (5.14)
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Figure 5.6: Schematic diagram showing the half-lines generated by eigenvectors and

the regionsRA1, RA2, RA3, RA4, RB1, RB2, RB3 andRB4 used in the proof of Proposi-

tion 5.2 forµ < 0.

yµ(λ+
B ) = λ−

B (1−λ+
B )x̄B(µ) =

µλ−
B

1−λ−
B

, (5.15)

yµ(λ−
B ) = λ+

B (1−λ+
B )x̄B(µ) =

µλ+
B

1−λ+
B

. (5.16)

respectively. Furthermore, the half-linesLµ(λ+
A ) andLµ(λ−

A ) intersect thex-axis at

xµ(λ+
A ) =

µ

1−λ−
A

, (5.17)

xµ(λ−
A ) =

µ

1−λ+
A

. (5.18)

respectively. Note thatyµ(λ−
A ) < yµ(λ+

A ) < 0, yµ(λ−
B ) < yµ(λ+

B ) < 0 andxµ(λ−
A ) <

xµ(λ+
A ) < 0.

Denote byΓµ(λ+
A ) = (0,yµ(λ+

A )), Γµ(λ−
A ) = (0,yµ(λ−

A )), Γµ(λ+
B ) = (0,yµ(λ+

B )),

Γµ(λ−
B ) = (0,yµ(λ−

B )), Sµ(λ+
A ) = (xµ(λ+

A ),0), andSµ(λ−
A ) = (xµ(λ−

A ),0). It is straight-

forward to verify that,Fµ(Γµ(λ+
A )) = Sµ(λ+

A ) andFµ(Γµ(λ−
A )) = Sµ(λ−

A ).
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The subregions ofRA and RB are defined as follows (for illustration see Fig-

ure 5.7): RA1 is the region bordered byΓ (the part ofΓ below Γµ(λ−
A )), the seg-

ment [Γµ(λ−
A ),P∗

A(µ)] on Lµ(λ−
A ), and the half-lineLµ(λ+

A ) from which the segment

[P∗
A(µ),Γµ(λ+

A )] is deleted;RA2 is the region bordered by the half-linesLµ(λ+
A ) and

Lµ(λ−
A ) from which the segments[P∗

A(µ),Γµ(λ+
A )] and [P∗

A(µ),Γµ(λ−
A )], respectively,

are deleted;RA3 is the region bordered byLµ(λ−
A ) from which the segment[P∗

A(µ),Γµ(λ−
A )]

is deleted, the segment[P∗
A(µ),Γµ(λ+

A )] onLµ(λ+
A ) and the borderΓ (in fact, the part of

Γ aboveΓµ(λ+
A )); andRA4 is the region bordered by the segment[P∗

A(µ),Γµ(λ−
A )] on

Lµ(λ−
A ), the segment[P∗

A(µ),Γµ(λ+
A )] onLµ(λ+

A ) and the segment[Γµ(λ−
A ),Γµ(λ+

A )] on

the borderΓ. The regionRA4 is bounded and it is the only subregion that is bounded.

Similarly,RB1 is the region bordered byΓµ,1 = {(x,y)∈ Γ : y ≥ 0} and thex-axis;RB2

is the region bordered byLµ(λ+
B ), the segmentΓµ,2 on the border and thex-axis, where

Γµ,2 = {(x,y) ∈ Γ : yµ(λ+
B ) ≤ y ≤ 0}; RB3 is the region bordered byLµ(λ+

B ), Lµ(λ−
B )

and the segmentΓµ,3 on the border, whereΓµ,3 = {(x,y) ∈ Γ : yµ(λ−
B )≤ y ≤ yµ(λ+

B )};

andRB4 is the region bordered byLµ(λ−
B ) andΓµ,4 = {(x,y) ∈ Γ : y ≤ yµ(λ−

B )}.

Consider the regionDA3 ⊂ RA3 defined as being the convex hull of the three

pointsP∗
A(µ), Q(µ) = (0,−µ) andΓµ(λ+

A ) (i.e., the filled-in triangle of which these

three points are corner points, see Figure 5.7). The edges of this triangle are mapped

by Fµ as follows: Denote byO = (0,0) the origin. The segment[P∗
A(µ),Q(µ)] is

mapped onto the segment[P∗
A(µ),O] ⊂ DA3, the segment[P∗

A(µ),Γµ(λ+
A )] is mapped

onto the segment[P∗
A(µ),Sµ(λ+

A )] ⊂ DA3, and the segment[Q(µ),Γµ(λ+
A )] is mapped

onto the segment[Sµ(λ+
A ),O] ⊂ DA3. Since the mapFµ is continuous, it follows that

the subregionDA3 is mapped into itself byFµ, that is,DA3 is positively invariant:

Fµ(DA3) ⊂ DA3. From the theory of linear difference equations and the positive in-

variance ofDA3, it follows that if (x0,y0) ∈ DA3, then limn→∞ Fn
µ (x0,y0) = P∗

A(µ).
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Figure 5.7: Schematic diagram showing the half-lines generated by the eigenvectors

and the regionsRA1, RA2, RA3, RA4, RB1, RB2, RB3, RB4 andDA3 used in the proof of

Proposition 5.2 forµ < 0.

Denote byD∗
A3 the union of all pre-images ofDA3, that isD∗

A3 = ∪∞
n=0G−n

µ,A(DA3).

Hence,D∗
A3 = {(x,y) ∈ RA3 : Fn

µ (x,y) ∈ RA3 ∀n ∈ N and there exists an integerm ≥
0 such thatFm

µ (x,y) ∈ DA3}.

Let (x0,y0) ∈ R
2 be a given initial condition. Then, the following fact is clear:

• If (x0,y0) ∈ Lµ(λ+
A )∪Lµ(λ−

A ), then limn→∞ Fn
µ (x0,y0) = P∗

A(µ).

The following facts, which assert positive invariance of the subregionsRA1, RA2 and

RA4, follow from the expression for the solution of a general linear difference equation

and the assumption that the eigenvalues lie in(0,1):

• If (x0,y0) ∈ RA1, thenFn
µ (x0,y0) ∈ RA1 ∀n and limn→∞ Fn

µ (x0,y0) = P∗
A(µ);

• If (x0,y0) ∈ RA2, thenFn
µ (x0,y0) ∈ RA2 ∀n and limn→∞ Fn

µ (x0,y0) = P∗
A(µ);
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• If (x0,y0) ∈ RA4, thenFn
µ (x0,y0) ∈ RA4 ∀n and limn→∞ Fn

µ (x0,y0) = P∗
A(µ).

Denote byΓ+
µ = {(x,y) ∈ Γ : y ≥−µ}, Γ+

µ,A = G−1
µ,A(Γ+

µ ), Γ−
µ = {(x,y) ∈ Γ : y <

−µ} andΓ−
µ,B = G−1

µ,B(Γ−
µ ).

Consider initial conditions on the borderΓ. If (x0,y0) ∈ Γ, thenFµ(x0,y0) = (y0+

µ,0). It follows that if (x0,y0) ∈ Γ−
µ , thenFµ(x0,y0) = (y0+µ,0) ∈ DA3∪RA1∪RA2∪

RA4 and the positive invariance ofRA1, RA2, RA4 andDA3 implies thatFn+1
µ (x0,y0) ∈

DA3∪RA1∪RA2∪RA4∀n ∈ N and limn→∞ Fn
µ (x0,y0) = P∗

A(µ).

If (x0,y0) ∈ L(λ+
B ), then there exists a positive integerm such thatF m

µ (x0,y0) ∈
DA3∪RA1∪RA2∪RA4 and the positive invariance ofRA1, RA2, RA4 andDA3 implies that

Fn+m
µ (x0,y0) ∈ DA3∪RA1∪RA2∪RA4∀n ∈ N, and limn→∞ Fn

µ (x0,y0) = P∗
A(µ). Simi-

larly, if (x0,y0) ∈ L(λ−
B ), then there exists a positive integerm such thatF m

µ (x0,y0) ∈
DA3∪RA1∪RA2∪RA4 and the positive invariance ofRA1, RA2, RA4 andDA3 implies

thatFn+m
µ (x0,y0) ∈ DA3∪RA1∪RA2∪RA4∀n ∈ N, and limn→∞ Fn

µ (x0,y0) = P∗
A(µ).

Consider initial conditions(x0,y0)∈RB1. The next iterate(x1,y1) = Gµ,B(x0,y0) =

(τBx0 + y0 + µ,−δBx0)T . Sincey1 = −δBx0 < 0, it follows that either, i)(x1,y1) ∈
DA3∪RA1∪RA4 and the positive invariance ofRA1, RA4 andDA3 implies thatFn+1

µ (x0,y0)∈
DA3∪RA1∪RA4∀n ∈ N, and limn→∞ Fn

µ (x0,y0) = P∗
A(µ); or ii) (x1,y1) ∈ RB2.

Consider initial conditions inRB2. Let DB2 be the subregion ofRB2 bordered

by Lµ(λ+
B ), the borderΓ, the x-axis andΓ−

µ,B, as shown in Figure 5.8. The region

DB2 is a fundamental region forRB2: if (x0,y0) ∈ RB2 then there exists a nonnega-

tive integern such thatFn
µ (x0,y0) is in DB2 or on its border. In other words,RB2 =(

∪n≥0G−n
µ,B(Γµ,2∪DB2)

)
∩RB2. By construction, the subregionDB2 is mapped into

DA3∪RA1∪RA2∪RA4 in one iterate, that is,Fµ(DB2) ⊂ DA3∪RA1∪RA2∪RA4. The

positive invariance ofRA1, RA2, RA4 andDA3 implies thatFn+m
µ (x0,y0) ∈ DA3∪RA1∪

RA2∪RA4∀n ∈ N, and limn→∞ Fn
µ (x0,y0) = P∗

A(µ).
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Figure 5.8: Schematic diagram showing the regionsDB2, DB3 andDB4 used in the

proof of Proposition 5.2 forµ < 0.

Consider initial conditions(x0,y0) ∈ RB3. Let DB3 be the subregion ofRB3 bor-

dered byLµ(λ−
B ), the borderΓ, Lµ(λ+

B ) andΓ−
µ,B (see Figure 5.8). The regionDB3 is a

fundamental region forRB3: if (x0,y0) ∈ RB3 then there exists a nonnegative integern

such thatFn
µ (x0,y0) is in DB3 or on its border. In other words,RB3 = ∪n≥0G−n

µ,B(Γµ,3∪
DB3). By construction, the subregionDB3 is mapped intoDA3∪RA1∪RA2∪RA4 in

one iterate, that is,Fµ(DB3) ⊂ DA3 ∪RA1∪RA2 ∪RA4. Therefore, if(x0,y0) ∈ RB3,

then there exists a positive integerm such thatF m
µ (x0,y0) ∈ DA3∪RA1∪RA2∪RA4.

The positive invariance ofRA1, RA2, RA4 andDA3 implies thatFn+m
µ (x0,y0) ∈ DA3∪

RA1∪RA2∪RA4∀n ∈ N, and limn→∞ Fn
µ (x0,y0) = P∗

A(µ).

Consider initial conditions(x0,y0) ∈ RB4. Let DB4 be the subregion ofRB4 bor-

dered byLµ(λ−
B ), the borderΓ andΓ−

µ,B (see Figure 5.8). The regionDB4 is a funda-

mental region forRB4: if (x0,y0) ∈ RB4 then there exists a nonnegative integern such
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thatFn
µ (x0,y0) is in DB4 or on its border. In other words,RB4 =∪n≥0G−n

µ,B(Γµ,4∪DB4).

By construction, the subregionDB4 is mapped intoDA3 ∪RA1 ∪ RA2 ∪RA4, that is,

Fµ(DB3)⊂ DA4∪RA1∪RA2∪RA4. Therefore, if(x0,y0)∈ RB4, then there exists a pos-

itive integerm such thatFm
µ (x0,y0) ∈ DA3∪RA1∪RA2∪RA4. The positive invariance

of RA1, RA2, RA4 andDA3 implies thatF n+m
µ (x0,y0) ∈ DA3∪RA1∪RA2∪RA4∀n ∈ N,

and limn→∞ Fn
µ (x0,y0) = P∗

A(µ).

There is one case left, namely,(x0,y0) ∈ RA3 \D∗
A3. Let R∗

A3 = RA3 \D∗
A3. Let

UA3 be the subregion ofR∗
A3 borderedΓ andΓ+

µ,A. The regionU∗
A3 is a fundamental

region forR∗
A3: if (x0,y0) ∈ R∗

A3 then there exists a nonnegative integern such that

Fn
µ (x0,y0) is in UA3 or on its border. In other words,RA3 = ∪n≥0G−n

µ,B(Γ+
µ,A∪UA3). By

construction, the subregionUA3 is mapped intoRB1, that is,Fµ(UA3)⊂RB1. Therefore,

if (x0,y0)∈R∗
A3, then either there exists a positive integerm∈N such thatF m

µ (x0,y0)∈
Γ+

µ , or there existsm ∈ N such thatFn
µ (x0,y0) ∈ RB1. From the results above for the

case(x0,y0) ∈ RB1, it follows thatF n+m
µ (x0,y0) ∈ DA3∪RA1∪RA2∪RA4∀n ∈ N, and

limn→∞ Fn
µ (x0,y0) = P∗

A(µ).

All cases has been exhausted and we conclude: ifµ < 0, then the mapFµ has

a unique fixed point attractorP∗
A(µ) = (x(µ),y(µ)) which is globally asymptotically

stable.

Case (3): µ > 0. This case is similar to Case (2). They differ only in that the roles of

regionsRA andRB are interchanged.

We conclude that for everyµ ∈ R, the mapFµ has a unique fixed point attractor

(x(µ),y(µ)) and this fixed point attractor is globally asymptotically stable, that is, for

every initial condition(x0,y0) ∈ R
2, the resulting orbit converges to(x(µ),y(µ)), so

limn→∞ Fn
µ (x0,y0) = (x(µ),y(µ)). This completes the proof.
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5.3.2 Negative Determinants on Both Sides of the Border

In this subsection, we consider system (5.4) under the assumption that the eigenvalues

of the matricesA andB satisfy−1 < λ−
A < 0 < λ+

A < 1 and−1 < λ−
B < 0 < λ+

B <

1, respectively. We show that this is a sufficient condition for nonbifurcation with

persistent stability. Before we state the proposition, some notation that will be used

in the remainder of this section is given.

Definition 5.1 Let

• Γ = {(x,y) : x = 0}, denote the border separating RA and RB;

• Γ+
µ = {(x,y) : x = 0,y ≥−µ};

• Γ−
µ = {(x,y) : x = 0,y ≤−µ};

• Γ−
µ,A := {x ≤ 0,y = −τAx−µ}; and

• Γ−
µ,B := {x ≥ 0,y = −τBx−µ}.

Definition 5.2 Denote by Q1 the first quadrant of the plane, Q2 the second quadrant,

Q3 the third quadrant and Q4 the fourth quadrant.

Proposition 5.3 Let for µ ∈ R, the map Fµ : R
2 → R

2 be defined by (5.4). Let the

eigenvalues λ±
A of A and λ±

B of B satisfy −1 < λ−
A < 0 < λ+

A < 1 and −1 < λ−
B <

0 < λ+
B < 1. Then for every µ ∈ R, the map Fµ has a unique fixed point attractor

(x(µ),y(µ)) and this fixed point attractor is globally asymptotically stable. That is,

for every initial condition (x0,y0), the resulting orbit converges to (x(µ),y(µ)), so

limn→∞ Fn
µ (x0,y0) = (x(µ),y(µ)).
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Proof: Let the mapFµ satisfy the assumptions of Proposition 5.3. Note that the

assumptions imply that−1 < δA = λ−
A λ+

A < 0 and−1 < δB = λ−
B λ+

B < 0. Define the

mapGµ,A : R
2 → R

2 to be the affine extension of the left part of the mapFµ(x,y) to

the whole plane:Gµ,A(x,y) = (τAx+ y+µ,−δAx)T . Also define the mapGµ,B(x,y) =

(τBx + y + µ,−δBx)T to be the affine extension of the right part of the mapFµ(x,y)

to the whole plane. Denote bȳPA(µ) = (x̄A(µ), ȳA(µ)) the fixed point ofGµ,A, and

by P̄B(µ) = (x̄B(µ), ȳB(µ)) the fixed point ofGµ,B. By the assumptions−1 < δA < 0

and−1 < δB < 0, the mapsGµ,A and Gµ,B are invertible. The inverse of the map

Gµ,A is given byG−1
µ,A(x,y) =

(
− y

δA
,x+ y τA

δA
−µ

)T
, and the inverse ofGµ,B is given by

G−1
µ,B(x,y) =

(
− y

δB
,x+ y τB

δB
−µ

)T
.

The half-lines generated by the eigenvector ofA andB are defined in (5.9)-(5.12)

above. The traces ofA andB are given byτA = λ−
A +λ+

A andτB = λ−
B +λ+

B , respec-

tively. Depending on the signs ofτA andτB, there are four cases:

• Case 5.3.1: 0≤ τA < 1 and 0≤ τB < 1;

• Case 5.3.2: −1 < τA ≤ 0 and−1 < τB ≤ 0;

• Case 5.3.3: 0≤ τA < 1 and−1 < τB ≤ 0; and

• Case 5.3.4: −1 < τA ≤ 0 and 0≤ τB < 1.

We will prove this proposition by considering each of the cases 5.3.1-5.3.4 sepa-

rately. For each case, there are three scenarios: (i)µ = 0, (ii) µ < 0 and (iii) µ > 0.

Case 5.3.1: 0≤ τA < 1 and 0≤ τB < 1.

(i) µ = 0: The half-lineΓ−
µ,A dividesRA into two regionsRA1 andRA2 (refer to Fig-

ure 5.9.) The regionRA1 is bordered byΓ−
µ andΓ−

µ,A. The regionRA2 is bordered by

Γ+
µ andΓ−

µ,A. Similarly, the half-lineΓ−
µ,B dividesRB into two regionsRB1 andRB2.
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The regionRB1 is bordered byΓ+
µ andΓ−

µ,B. The regionRB2 is bordered byΓ−
µ and

Γ−
µ,B.

RA1

RB1

(      )L λ−B

A2R

(      )L
−λA

RB2

(      )L λ+B
Γµ,Α

−

µ,ΒΓ
−

Γ

x

y

(      )L λ+A

Figure 5.9: Schematic diagram showing the half-lines generated by the eigenvectors

and the regionsRA1, RA2, RB1 andRB2 used in the proof of Case 5.3.1 withµ = 0.

Let (x0,y0) ∈ R
2 be a given initial condition. If(x0,y0) ∈ RA1, thenGµ,A(x0,y0) =

(τAx0 + y0︸ ︷︷ ︸
≤0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q3 ⊂ RA1. Thus,RA1 is positively invariant. Since(0,0) ∈ RA1

andA is Schur stable, it follows that limn→∞ Fn
µ (x0,y0) = (0,0).

If (x0,y0) ∈ RB1, thenGµ,B(x0,y0) = (τBx0 + y0︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

) ∈ Q1 ⊂ RB1. Thus,RB1 is

positively invariant and it follows that limn→∞ Fn
µ (x0,y0) = (0,0).

If (x0,y0) ∈ RA2, thenGµ,A(x0,y0) = (τAx0 + y0︸ ︷︷ ︸
>0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q4 ⊂ RB1∪RB2.

If (x0,y0)∈RB2, thenGµ,A(x0,y0) = (τBx0 + y0︸ ︷︷ ︸
<0

,−δBx0︸ ︷︷ ︸
≥0

)∈Q2⊂RA1∪RA2. Clearly,

if (x0,y0) ∈ RA2 or (x0,y0) ∈ RB2, the trajectory starting at(x0,y0) may flip between

the two regions. There are two possibilities: 1) there exists a positive integerm
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such thatFm
µ (x0,y0) ∈ RA1∪RB1 and the positive invariance ofRA1, RB1 implies that

limn→∞ Fn+m
µ (x0,y0) = (0,0); or 2) the trajectory keeps flipping betweenRA2 andRB2

and eventually converges to(0,0) sinceAB (equivalentlyBA) is Schur stable, which

can be seen as follows:

AB =


 τA 1

−δA 0





 τB 1

−δB 0




=


 τAτB −δB τA

−δAτB −δA


 (5.19)

Let δAB := det(AB) = δAδB andτAB :=trace(AB) = τAτB −δA −δB. By the Jury test

for second order discrete-time systems [54],AB is Schur stable if and only if

−1 < δAB < 1

−1−δAB < τAB < 1+δAB

Equivalently,

−1 < δAδB < 1 (5.20)

−(1−δA)(1−δB) < τAτB < (1+δA)(1+δB) (5.21)

Inequality (5.20) is satisfied since−1< δA < 0 and−1< δB < 0. Since 0< τA < (1+

δA) and 0< τB < (1+δB) by hypothesis, it follows that 0< τAτB < (1+δA)(1+δB).

This shows that inequality (5.21) is also satisfied. Therefore,AB is Schur stable.

(ii) µ < 0:The mapFµ has a unique fixed pointP∗
A(µ)= (xA(µ),yA(µ)), wherexA(µ) =

µ
1−τA+δA

andyA(µ)=−δAxA(µ). Note that: (a) the fixed point̄PA(µ) of Gµ,A is the fixed

pointP∗
A(µ) = (xA(µ),yA(µ)) of Fµ, and (b) the fixed point̄PB(µ) of Gµ,B is the virtual

fixed point ofFµ and this point is given by ¯xB(µ) = µ
1−τB+δB

andȳB(µ) = −δBx̄B(µ).
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The mapFµ has four invariant half-lines generated by the eigenvectors ofA andB.

The equations for these half-lines are given in (5.9)-(5.12). These half-lines intersect

the y-axis at the points defined by (5.13)-(5.16). Furthermore, the half-lineLµ(λ+
A )

intersects thex-axis atxµ(λ+
A ) = µ

1−λ−A
, and the half-lineLµ(λ−

A ) intersects thex-axis

atxµ(λ−
A ) = µ

1−λ+
A

. Note thatyµ(λ−
A )< 0< yµ(λ+

A ), yµ(λ−
B ) < 0< yµ(λ+

B ) andxµ(λ−
A ) <

xµ(λ+
A ) < 0.

DefineRA1, RA2, RB1 andRB2 as in Figure 5.10 whereΓ−
µ,A dividesRA into two

regionsRA1, RA2 andΓ−
µ,B dividesRB into two regionsRB1, RB2.

Next we show that for every initial condition(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) →
P∗

A(µ).

If (x0,y0) ∈ RA1, thenGµ,A(x0,y0) = (τAx0 + y0+µ︸ ︷︷ ︸
≤0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q3 ⊂ RA1. Thus,

RA1 is positively invariant. SinceP∗
A(µ) ∈ RA1 and the matrixA is Schur stable, it

follows that limn→∞ Fn
µ (x0,y0) = P∗

A(µ).

If (x0,y0) ∈ RA2, thenGµ,A(x0,y0) = (τAx0+ y0 +µ︸ ︷︷ ︸
>0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q4 ⊂ RB1∪RB2.

If (x0,y0) ∈ RB1, thenGµ,B(x0,y0) = (τBx0 + y0 +µ︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

) ∈ Q1 ⊂ RB1∪RB2. Since

the fixed point ofGµ,B which is given byP̄B(µ) is in RA1 (is a virtual fixed point of

Fµ and is stable), the trajectory starting at(x0,y0) approaches̄PB(µ) along the eigen-

vectorLµ(λ+
B ) and eventually entersDB2 or RB2. That is, there existsm > 0 such that

Gm
µ,B(x0,y0) ∈ DB2 ⊂ RB2, or Gm

µ,B(x0,y0) ∈ RB2\DB2. The subregionDB2 is bordered

by Γ−
µ , Γ−

µ,B andG−1
µ,B(Γ−

µ,A) (see Figure 5.10). The linesΓ−
µ,B andG−1

µ,B(Γ−
µ,A) intersect

at the pointG−1
µ,B(0,−µ) = ( µ

δB
,−µ(1+ τB

δB
)). By construction, the subregionDB2 is

mapped intoRA1 in one step, i.e.,Gµ,B(DB2) ⊂ RA1.

If (x0,y0)∈RB2\DB2, thenGµ,B(x0,y0) = (τBx0 + y0+µ︸ ︷︷ ︸
<0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈RA2. Clearly,

if (x0,y0) ∈ RA2 or (x0,y0) ∈ RB2 \DB2, the trajectory starting at(x0,y0) may flip
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Figure 5.10: Schematic diagram showing the regionsRA1, RA2, RB1 andRB2 used in

the proof of Case 5.3.1 withµ < 0.

between the two regions but eventually entersRA1 and is trapped there. To show

that a trajectory starting at(x0,y0) ∈ RA2∪RB2 \DB2 has to enterRA1, we show that

Gµ,B◦Gµ,A has a stable fixed point inRA1. Thus, the trajectory cannot flip betweenRA2

andRB2 for ever, it will enterRA1 after a finite number of iterates. It is straightforward

to show that(xAB(µ),yAB(µ)) =
(

µ(1+δB+τB)
(1+δA)(1+δB)−τAτB

,
−δBτAxAB(µ)−δBµ

1+δB

)
∈ RA1 is a fixed

point of Gµ,B ◦Gµ,A and is stable sinceBA is Schur stable (see the proof for the case

µ = 0 above). We conclude that for every(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) = P∗
A(µ).

(iii) µ > 0: The proof for this case is similar to the symmetric caseµ < 0 discussed

above and is therefore omitted.

Case 5.3.2: −1 < τA ≤ 0 and−1 < τB ≤ 0.

(i) µ = 0: (Refer to Figure 5.11.) The half-lineΓ−
µ,A dividesRA into two regionsRA1
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Figure 5.11: Schematic diagram showing the regionsRA1, RA2, RB1 andRB2 used in

the proof of Case 5.3.2 withµ = 0.

andRA2. The regionRA1 is bordered byΓ−
µ andΓ−

µ,A. The regionRA2 is bordered by

Γ+
µ andΓ−

µ,A. Similarly, the half-lineΓ−
µ,B dividesRB into two regionsRB1 andRB2.

The regionRB1 is bordered byΓ+
µ andΓ−

µ,B. The regionRB2 is bordered byΓ−
µ and

Γ−
µ,B.

Let (x0,y0) ∈ R
2 be a given initial condition. If(x0,y0) ∈ RA1, thenGµ,A(x0,y0) =

(τAx0 + y0︸ ︷︷ ︸
≤0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q3 ⊂ RA1∪RA2. There are two possibilities: 1)Gn
µ,A(x0,y0) ∈

RA1 ∀n, thus limn→∞ Gn
µ,A(x0,y0) = (0,0), or 2) There exists a positive integerm such

thatGm
µ,A(x0,y0) ∈ RA2.

If (x0,y0) ∈ RA2, thenGµ,A(x0,y0) = (τAx0 + y0︸ ︷︷ ︸
>0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q4 ⊂ RB2.
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If (x0,y0)∈RB1, thenGµ,B(x0,y0) = (τBx0 + y0︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈Q1⊂RB1∪RB2. There-

fore, there are two possibilities: 1)Gn
µ,B(x0,y0) ∈ RB1 ∀n, thus limn→∞ Gn

µ,B(x0,y0) =

(0,0), or 2) There exists a positive integerm such thatGm
µ,B(x0,y0) ∈ RB2.

If (x0,y0) ∈ RB2, then Gµ,B(x0,y0) = (τBx0+ y0︸ ︷︷ ︸
<0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈ Q2 ⊂ RA2. Since

Gµ,B(RB2) ⊂ RA2 andGµ,A(RA2) ⊂ RB2, the trajectory starting at(x0,y0) ∈ RA2∪RB2

flips between the two regionsRA2 andRB2. SinceAB (equivalently,BA) is Schur sta-

ble, the trajectory starting at(x0,y0) ∈ RA2∪RB2 eventually converges to(0,0). This

shows that limn→∞ Fn
0 (x0,y0) = (0,0), ∀(x0,y0) ∈ R

2.

(ii) µ < 0:The mapFµ has a unique fixed pointP∗
A(µ)= (xA(µ),yA(µ)), wherexA(µ) =

µ
1−τA+δA

andyA(µ)=−δAxA(µ). Note that: (a) the fixed point̄PA(µ) of Gµ,A is the fixed

pointP∗
A(µ) = (xA(µ),yA(µ)) of Fµ, and (b) the fixed point̄PB(µ) of Gµ,B is the virtual

fixed point ofFµ and this point is given by ¯xB(µ) = µ
1−τB+δB

andȳB(µ) = −δBx̄B(µ).

Let RA1, RA2, RB1 andRB2 be defined as in Figure 5.12. Also, letDA1 ⊂ RA1 be

the triangle with corner points(0,−µ), (− µ
τA

,0) andGµ,A(− µ
τA

,0) = (0,µδA
τA

). The

regionDA1 is positively invariant. This follows from the continuity of the mapFµ

and the observation that the edges of theDA1 are mapped insideDA1 as follows: the

segment(− µ
τA

,0), (0,µδA
τA

) is mapped to the segment(0,µ δA
τA

), (µ(1+ δA
τA

),0) ⊂ DA1;

the segment(− µ
τA

,0), (0,−µ) is mapped to(0,0), (0,µ δA
τA

) ⊂ DA1; and the segment

(0,−µ), (0,µδA
τA

) is mapped to(0,0), (µ(1+ δA
τA

),0) ⊂ DA1.

Let DB2⊂RB2 be the triangle with corner points(0,−µ), (0,µ δA
τA

) andG−1
µ,B(0,−µ) =

( µ
δB

,−µ(1+ τB
δB

)) (see Figure 5.12). By construction,DB2 is mapped toDA1.

Let (x0,y0) ∈ R
2 be a given initial condition. If(x0,y0) ∈ RA1, thenGµ,A(x0,y0) ∈

Q3 ⊂ RA1 ∪ RA2. There are two possibilities: 1)Gn
µ,A(x0,y0) ∈ RA1, ∀n ∈ N, thus

limn→∞ Gn
µ,A(x0,y0) = P∗

A(µ); or 2) There exists a positive integerm such thatGm
µ,A(x0,y0)∈

87



A1

(      )L
−λA

RB1

Γ
−

λ+L A
(      )

A2R

µ,Α

AP (   )*

−µ
µ,Β
G(0,     )

−1

τA
−µ

µ,Α
G  (       ,0)

B2DDA1

(      )L λB

µ

µ,ΒΓ

−

(      )L λ+B

τA
−µ

RB2
R

−

Γ

x

y

−µ

Figure 5.12: Schematic diagram showing the half-lines generated by the eigenvectors

and the regionsRA1, RA2, RB1 andRB2 used in the proof of Case 5.3.2 withµ < 0.

RA2.

If (x0,y0) ∈ RA2, thenGµ,A(x0,y0) = (τAx0 + y0︸ ︷︷ ︸
>0

,−δAx0︸ ︷︷ ︸
≤0

) ∈ Q4 ⊂ RB2.

If (x0,y0) ∈ RB1, thenGµ,B(x0,y0) = (τBx0+ y0︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

) ∈ Q1 ⊂ RB1∪RB2. Since

P̄B(µ) ∈ RA1 is stable, there exists a positive integerm such thatGm
µ,B(x0,y0) ∈ RB2.

If (x0,y0) ∈ DB2, thenGµ,B(x0,y0) ∈ DA1 and the trajectory converges toP∗
A(µ). If

(x0,y0) ∈ RB2\DB2, thenGµ,B(x0,y0) ∈ RA2.

Clearly, if (x0,y0) ∈ RA2 or (x0,y0) ∈ RB2\DB2, the trajectory starting at(x0,y0)

may flip between the two regions but eventually entersRA1 and is trapped there. To

show that a trajectory starting at(x0,y0) ∈ RA2∪RB2\DB2 has to enterRA1, we show

thatGµ,B◦Gµ,A has a stable fixed point(xAB(µ),yAB(µ))∈ RA1 with − µ
τA

< xAB(µ) < 0.

Thus, the trajectory cannot flip betweenRA2 andRB2 for ever, it will enterDA1 after a
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finite number of iterates. The fixed point is given by

(xAB(µ),yAB(µ)) =
(

µ(1+δB + τB)
(1+δA)(1+δB)− τAτB

,
−δBτAxAB(µ)−δBµ

1+δB

)
∈ RA1

After simplification,yAB(µ) =−
>0︷︸︸︷

µδB

>0︷ ︸︸ ︷
(1+δA + τA)

(1+δA)(1+δB)− τAτB︸ ︷︷ ︸
>0

< 0. But, the expression for

yAB(µ) = − δB
1+δB

(τAxAB(µ)+µ) < 0, implies that(τAxAB(µ)+µ) < 0 (since− δB
1+δB

>

0), thus− µ
τA

< xAB(µ) < 0.

This shows that limn→∞ Fn
0 (x0,y0) = P∗

A(µ), ∀(x0,y0) ∈ R
2.

(iii) µ > 0: The proof for this case is similar to the symmetric caseµ < 0 above.

Case 5.3.3: 0≤ τA < 1 and−1 < τB ≤ 0.

(i) µ = 0: (Refer Figure 5.13.) The half-lineΓ−
µ,A dividesRA into two regionsRA1 and

RA2. The regionRA1 is bordered byΓ−
µ andΓ−

µ,A. The regionRA2 is bordered byΓ+
µ

andΓ−
µ,A. Similarly, the half-lineΓ−

µ,B dividesRB into two regionsRB1 andRB2. The

regionRB1 is bordered byΓ+
µ andΓ−

µ,B. The regionRB2 is bordered byΓ−
µ andΓ−

µ,B.

Let (x0,y0) ∈ R
2 be a given initial condition. If(x0,y0) ∈ RA1, thenGµ,A(x0,y0) =

(τAx0 + y0︸ ︷︷ ︸
≤0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈Q3⊂RA1. Thus,RA1 is positively invariant and limn→∞ Gn
µ,A(x0,y0) =

(0,0).

If (x0,y0) ∈ RA2, thenGµ,A(x0,y0) = (τAx0 + y0︸ ︷︷ ︸
>0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q4 ⊂ RB2.

If (x0,y0)∈RB1, thenGµ,B(x0,y0) = (τBx0 + y0︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈Q1⊂RB1∪RB2. There-

fore, there are two possibilities: 1) For alln∈N, Gn
µ,B(x0,y0)∈RB1, thus limn→∞ Gn

µ,B(x0,y0) =

(0,0), or 2) There exists a positive integerm such thatGm
µ,B(x0,y0) ∈ RB2.

Let DB2 ⊂ RB2 be the region bounded byG−1
µ,B(Γ−

µ,A) andΓ−
µ , whereG−1

µ,B(Γ−
µ,A) =

{(x,y) ∈ RB2 : y = (τB + δB
τA

)x} is the pre-image of the half-lineΓ−
µ,A (see Figure 5.13).

By construction, every point inDB2 is mapped intoRA1 in one step. If(x0,y0) ∈
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Figure 5.13: Schematic diagram showing the half-lines generated by the eigenvectors

and the regionsRA1, RA2, RB1 andRB2 used in the proof of Case 5.3.3 withµ = 0.

RB2 \DB2, thenGµ,B(x0,y0) = (τBx0 + y0︸ ︷︷ ︸
<0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈ RA2. Recall from above that

Gµ,A(RA2) ⊂ RB2. Thus, if (x0,y0) ∈ RA2 ∪ RB2 \DB2, the trajectory flips between

the two regionsRA2 andRB2 \DB2. Since the matrix productAB is Schur stable, the

trajectory must enterDB2 which is then mapped into the positively invariant region

RA1. This shows that limn→∞ Fn
0 (x0,y0) = (0,0), ∀(x0,y0) ∈ R

2.

(ii) µ < 0:The mapFµ has a unique fixed pointP∗
A(µ)= (xA(µ),yA(µ)), wherexA(µ) =

µ
1−τA+δA

andyA(µ)=−δAxA(µ). Note that: (a) the fixed point̄PA(µ) of Gµ,A is the fixed

pointP∗
A(µ) = (xA(µ),yA(µ)) of Fµ, and (b) the fixed point̄PB(µ) of Gµ,B is the virtual

fixed point ofFµ and this point is given by ¯xB(µ) = µ
1−τB+δB

andȳB(µ) = −δBx̄B(µ).

The mapFµ has four invariant half-lines as in Case 5.3.1 above. Define the sub-

regionsRA1, RA2, RB1 andRB2 as in Figure. 5.14. Next we will show that for every
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(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) → P∗
A(µ).

Let (x0,y0) ∈ R
2 be a given initial condition. If(x0,y0) ∈ RA1, thenGµ,A(x0,y0) =

(τAx0 + y0 +µ︸ ︷︷ ︸
≤0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q3 ⊂ RA1. Thus,RA1 is positively invariant. SinceP∗
A(µ) ∈

RA1 and the matrixA is Schur stable, it follows that limn→∞ Fn
µ (x0,y0) = P∗

A(µ).

If (x0,y0) ∈ RA2, thenGµ,A(x0,y0) = (τAx0 + y0 +µ︸ ︷︷ ︸
>0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ Q4 ⊂ RB2.

If (x0,y0) ∈ RB1, thenGµ,B(x0,y0) = (τBx0+ y0 +µ︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈ Q1 ⊂ RB1∪RB2.

Since the fixed point ofGµ,B which is given byP̄B(µ) is in RA1 (is a virtual fixed point

of Fµ) and is stable, the trajectory starting at(x0,y0)∈ RB1 approaches̄PB(µ) along the

eigenvectorLµ(λ+
B ) and eventually entersDB2 or RB2, i.e., there existsm > 0 such that

Gm
µ,B(x0,y0) ∈ RB2. The subregionDB2 is bordered byΓ−

µ , Γ−
µ,B andG−1

µ,B(Γ−
µ,A). The

lines Γ−
µ,B andG−1

µ,B(Γ−
µ,A) intersect at the pointG−1

µ,B(0,−µ) = ( µ
δB

,−µ(1+ τB
δB

)). By

construction, the subregionDB2 is mapped intoRA1 in one step, i.e.,Gµ,B(DB2)⊂ RA1.

If (x0,y0) ∈ RB2\DB2, thenGµ,B(x0,y0) = (τBx0+ y0 +µ︸ ︷︷ ︸
<0

,−δBx0︸ ︷︷ ︸
≥0

) ∈ RA2. Clearly,

if (x0,y0) ∈ RA2 or (x0,y0) ∈ RB2 \DB2, the trajectory starting at(x0,y0) may flip

between the two regions but eventually entersRA1 and is trapped there. To show that

a trajectory starting at(x0,y0) ∈ RA2∪RB2\DB2 eventually entersRA1, we show that

Gµ,B◦Gµ,A has a stable fixed point inRA1. Thus, the trajectory cannot flip betweenRA2

andRB2 for ever, it entersRA1 after a finite number of iterates. It is straightforward

to show that(xAB(µ),yAB(µ)) =
(

µ(1+δB+τB)
(1+δA)(1+δB)−τAτB

,
−δBτAxAB(µ)−δBµ

1+δB

)
∈ RA1 is a fixed

point for Gµ,B ◦Gµ,A and is stable sinceBA is Schur stable (see case 5.3.1 (ii) above).

We conclude that for every(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) = P∗
A(µ).

(iii) µ > 0:The mapFµ has a unique fixed pointP∗
B(µ) = (xB(µ),yB(µ)), wherexB(µ) =

µ
1−τB+δB

andyB(µ)=−δBxB(µ). Note that: (a) the fixed point̄PB(µ) of Gµ,B is the fixed

pointP∗
B(µ) = (xB(µ),yB(µ)) of Fµ, and (b) the fixed point̄PA(µ) of Gµ,A is the virtual
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Figure 5.14: Schematic diagram showing the half-lines generated by the eigenvectors

and the regionsRA1, RA2, RB1 andRB2 used in the proof of Case 5.3.3 withµ < 0.

fixed point ofFµ and this point is given by ¯xA(µ) = µ
1−τA+δA

andȳA(µ) = −δAx̄A(µ).

The subregionsRA1, RA2, RB1 andRB2 are defined as for the caseµ < 0 (see Fig-

ure 5.15). LetDA2 ⊂ RA2 be the triangle with corner points(0,−µ), G−1
µ,A(0,−µ)

and G−1
µ,A(− µ

τB
,0). Also let DB1 ⊂ RB1 be the triangle with corner points(0,−µ),

G−1
µ,A(− µ

τB
,0) and(− µ

τB
,0). Note that points inDA2 are mapped toDB1 in one step and

DB1 is invariant. The fixed pointP∗
B(µ)∈ DB2. (This is easily shown by noting that the

triangleDB2 contains the intersection of the half-lines with thex-axis and the y-axis,

i.e., all the four pointsyµ(λ+
B ), yµ(λ−

B ), xµ(λ+
B ), andxµ(λ−

B ) are insideDB2 andP∗
B(µ)

coincides with the intersection of the two half-lines inRB (see Figure 5.15)).

Let (x0,y0) ∈ R
2 be a given initial condition. If(x0,y0) ∈ DB1, the positive in-

variance ofDB1 implies thatF n
µ (x0,y0) = Gn

µ,B(x0,y0) ∈ DB1 and limn→∞ Fn
µ (x0,y0) =

P∗
B(µ).
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Figure 5.15: Schematic diagram showing the half-lines generated by the eigenvectors

and the regionsRA1, RA2, RB1 andRB2 used in the proof of Case 5.3.3 withµ > 0.

If (x0,y0) ∈ DA2, thenGµ,A(x0,y0) ∈ DB1 and thereafter the trajectory converges

to P∗
B(µ).

If (x0,y0)∈ RA1, thenGµ,A(x0,y0) = (τAx0+ y0 +µ︸ ︷︷ ︸
≤0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈Q3. SinceP̄A(µ)∈

RB1 and is a stable fixed point ofGµ,A, a trajectory starting inRA1 eventually enters

RA2. That is, there existsm > 0 such thatGm
µ,A(x0,y0) ∈ RA2. If Gm

µ,A(x0,y0) ∈ DA2,

thenG(m+1)
µ,A (x0,y0) ∈ DB1 and hence the trajectory converges toP∗

B(µ). Otherwise,

G(m+1)
µ,A (x0,y0) ∈ RB2.

If (x0,y0) ∈ RA2\DA2, thenGµ,A(x0,y0) = (τAx0+ y0 +µ︸ ︷︷ ︸
>0

,−δAx0︸ ︷︷ ︸
≤0

)T ∈ RB2.

If (x0,y0) ∈ RB1, thenGµ,B(x0,y0) = (τBx0 + y0 +µ︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈ Q1 ⊂ RB1∪RB2.
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Clearly, if (x0,y0) ∈ RB2 or (x0,y0) ∈ RA2\DA2, the trajectory starting at(x0,y0)

may flip between the two regions but eventually must enterDB1 and is trapped there.

To show that a trajectory starting at(x0,y0) ∈ RA2∪RB2 \DB2 has to enterDB1,

we show thatGµ,A ◦Gµ,B has a stable fixed point inRB1. Thus, the trajectory cannot

flip betweenRA2 andRB2 for ever, it entersRB1 after a finite number of iterates. It is

straightforward to show that(xBA(µ),yBA(µ)) =
(

µ(1+δA+τA)
(1+δA)(1+δB)−τAτB

,
−δAτBxBA(µ)−δAµ

1+δA

)
∈

RB1 is a fixed point ofGµ,B◦Gµ,A and is stable sinceAB is Schur stable (see above). By

a similar argument as in Case 5.3.3 (ii), it is straightforward to show that 0< xBA(µ) <

− µ
τB

andyBA(µ) > 0. We conclude that for every(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) =

P∗
B(µ).

Case 5.3.4: −1 < τA ≤ 0 and 0≤ τB < 1.

The proof for this case is similar to Case 5.3.3.

This completes the proof of Proposition 5.3.

5.3.3 Positive Eigenvalues on One Side and Negative Determinant

on Other Side of the Border

In this subsection, we consider system (5.4) under the assumption that the eigenvalues

of the matricesA andB are real and satisfy (5.22) or (5.23). We show that this is a

sufficient condition for nonbifurcation with persistent stability.

Proposition 5.4 Let for µ ∈ R, the map Fµ : R
2 → R

2 be defined by (5.4). Let the

eigenvalues λ±
A of A and λ±

B of B satisfy

0 < λ−
A < λ+

A < 1 and −1 < λ−
B < 0 < λ+

B < 1 with λ+
B +λ−

B > 0 (5.22)

or 0< λ−
B < λ+

B < 1 and−1 < λ−
A < 0 < λ+

A < 1 with λ+
A +λ−

A > 0 (5.23)
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Then for every µ ∈ R, the map Fµ has a unique fixed point attractor (x(µ),y(µ)) and

this fixed point attractor is globally asymptotically stable. That is, for every initial

condition (x0,y0), the resulting orbit converges to (x(µ),y(µ)), so limn→∞ Fn
µ (x0,y0) =

(x(µ),y(µ)).

Proof: Let the mapFµ satisfy the assumptions of Proposition 5.4. We will only prove

the proposition when (5.22) is satisfied. The proof for the symmetric case (5.23) is

similar. Assume (5.22) to hold. Note that assumption (5.22) implies that 0< δA =

λ−
A λ+

A < 1 and−1< δB = λ−
B λ+

B < 0. The traces ofA andB are given byτA = λ−
A +λ+

A

andτB = λ−
B +λ+

B , respectively and bothτA andτB are positive. There are three cases:

(i) µ = 0, (ii) µ < 0 and (iii)µ > 0.

(i) µ = 0: (Refer to Figure 5.16.) The half-linesL(λ+
A ) andL(λ+

A ) defined in (5.5)-

(5.6) divideRA into three regionsRA1, RA2 andRA3. The regionRA1 is bordered by

Γ−
µ andL(λ+

A ). The regionRA2 is bordered byL(λ+
A ) andL(λ−

A ). The regionRA3

is bordered byΓ+
µ andL(λ−

A ). The half-lineΓ−
µ,B := {(x,y) ∈ R

2| x ≥ 0,y = −τBx}
dividesRB into two regionsRB1 andRB2. The regionRB1 is bordered byΓ+

µ andΓ−
µ,B.

The regionRB2 is bordered byΓ−
µ andΓ−

µ,B.

The regionsRA1 andRA2 are positively invariant (see the proof of Proposition 5.1).

Thus, if (x0,y0) ∈ RA1 ∪ RA2, then limn→∞ Fn
µ (x0,y0) = (0,0). The regionRA3 is

mapped toQ1 in a finite number of iterates (see the proof of Proposition 5.1).

If (x0,y0)∈RB1, thenFµ(x0,y0) = Gµ,B(x0,y0) = (τBx0 + y0︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈Q1 ⊂RB1.

Thus,RB1 is positively invariant and limn→∞ Fn
µ (x0,y0) = (0,0).

If (x0,y0) ∈ RB2, thenFµ(x0,y0) = Gµ,B(x0,y0) = (τBx0 + y0︸ ︷︷ ︸
<0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈ Q2 ⊂ RA.

If Gµ,B(x0,y0) ∈ RA3, then the trajectory is mapped toRB1 after a finite number of

iterates. That is, there exists a positive integerm such thatGm
µ,A(x0,y0) ∈ RB1. The
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Figure 5.16: Schematic diagram the regionsRA1, RA2, RA3, RB1 andRB2 used in the

proof of Proposition 5.4 withµ = 0.

positive invariance ofRB1 implies that limn→∞ Fn+m
µ (x0,y0) = (0,0).

We conclude that,∀(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) = (0,0).

(ii) µ < 0:The mapFµ has a unique fixed pointP∗
A(µ)= (xA(µ),yA(µ)), wherexA(µ) =

µ
1−τA+δA

andyA(µ)=−δAxA(µ). Note that: (a) the fixed point̄PA(µ) of Gµ,A is the fixed

pointP∗
A(µ) = (xA(µ),yA(µ)) of Fµ, and (b) the fixed point̄PB(µ) of Gµ,B is the virtual

fixed point ofFµ and this point is given by ¯xB(µ) = µ
1−τB+δB

andȳB(µ) = −δBx̄B(µ).

DefineRA1, RA2, RA3, RA4, RB1 andRB2 as in Figure 5.17. Next we will show that

for every(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) → P∗
A(µ).

Let (x0,y0) ∈ R
2 be a given initial condition. The regionsRA1, RA2 andRA4 are

positively invariant (see the proof of Proposition 5.2). Thus, if(x0,y0) ∈ RA1∪RA2∪
RA4, then limn→∞ Fn

µ (x0,y0) = P∗
A(µ).
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Define DA3 ⊂ RA3 to be the area inside the triangle with corner points(0,−µ),

(0,yµ(λ+
A )) andP, whereP is any point on the half-lineLµ(λ−

A ) to the left ofP∗
A(µ).

The regionDA3 ⊂ RA3 is also positively invariant (easy to see, since all the edges are

mapped inside the region and the map is continuous).

If (x0,y0) ∈ RA3 \DA3, then there are two possibilities: 1) there exists anm > 0

such thatGm
µ,A(x0,y0) ∈ DA3 or 2) there exists anm > 0 such thatGm

µ,A(x0,y0) ∈ Q1 ⊂
RB1∪RB2 (see the proof of Proposition 5.2).

If (x0,y0) ∈ RB1, thenGµ,B(x0,y0) = (τBx0+ y0 +µ︸ ︷︷ ︸
≥0

,−δBx0︸ ︷︷ ︸
≥0

)T ∈ Q1 ⊂ RB1∪RB2.

Since the fixed point ofGµ,B which is given byP̄B(µ) is in RA1 (is a virtual fixed

point ofFµ) and is stable, the trajectory starting at(x0,y0) approaches̄PB(µ) along the

eigenvectorLµ(λ+
B ) and eventually entersDB2. The subregionDB2 is bordered byΓ−

µ ,

Γ−
µ,B andG−1

µ,B(LP). The linesΓ−
µ,B andG−1

µ,B(LP) intersect at the pointG−1
µ,B(0,−µ) =

( µ
δB

,−µ(1+ τB
δB

)). By construction, the subregionDB2 is mapped toRA1∪RA2∪RA4∪
DA3 in one step. If(x0,y0) ∈ RB2\DB2, thenGµ,B(x0,y0) = (τBx0+ y0 +µ︸ ︷︷ ︸

<0

,−δBx0︸ ︷︷ ︸
≥0

) ∈

Q2. Then, either 1)Gµ,B(x0,y0) ∈ RA1∪RA2∪RA4∪DA3, and limn→∞ Fn
µ (x0,y0) =

P∗
A(µ) or 2) Gµ,B(x0,y0) ∈ RA3. The possibility that the trajectory flips continuously

betweenRA3 \DA3 andRB2 \DB2 is ruled out since the matrix productAB is Schur

stable (see the proof of Proposition 5.3).

We conclude that for every(x0,y0) ∈ R
2, limn→∞ Fn

µ (x0,y0) = P∗
A(µ).

(iii) µ > 0: The proof is similar to the proof of Proposition 5.3, Case 5.3.1.

This completes the proof.
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Chapter 6

Feedback Control of Border Collision

Bifurcation in Two-Dimensional PWS maps

In this chapter, feedback control of border collision bifurcations is considered for two-

dimensional piecewise smooth discrete-time systems. As discussed before, these are

bifurcations that occur when a fixed point of a piecewise smooth system crosses or

collides with the border between two regions of smooth operation. The goal of the

control effort is to modify the bifurcation so that the bifurcated steady state is locally

unique and locally attracting. In this way, the system’s local behavior is ensured to

remain close to the original operating condition. The sufficient conditions for nonbi-

furcation with persistent stability in 2-D PWS maps derived in the previous chapter

are used as a basis for feedback control design. The analysis leads to sufficient con-

ditions that are in the form of systems of inequalities. These inequalities are either

linear or can be approximated as linear. The feasibility of the resulting inequalities

can be easily verified using available software packages such as MATLAB.
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6.1 Mathematical Setting and Change of Coordinates

In this section, a transformation that sets the border of a two-dimensional PWS map at

x = 0 is performed. This is an initial step that is performed prior to applying control.

Consider a general 2-D PWS map of the form

f̄ (x̄, ȳ,µ) =




f̄A(x̄, ȳ,µ), (x̄, ȳ) ∈ RA

f̄B(x̄, ȳ,µ), (x̄, ȳ) ∈ RB

(6.1)

whereµ is the bifurcation parameter andRA, RB are two regions of smooth behav-

ior separated by a smooth curve (the border)— ¯x = h(ȳ). The map f̄ (·, ·, ·) is as-

sumed to be PWS:̄fA(x̄, ȳ,µ) :=


 f̄A1(x̄, ȳ,µ)

f̄A2(x̄, ȳ,µ)


 is smooth onRA, f̄B(x̄, ȳ,µ) :=


 f̄B1(x̄, ȳ,µ)

f̄B2(x̄, ȳ,µ)


 is smooth onRB and f is continuous in(x̄, ȳ) and depends smoothly

on µ everywhere. Let(x̄(µ), ȳ(µ)) be a path of fixed points of̄f ; this path depends

continuously onµ. Suppose also that the fixed point hits the border at a critical pa-

rameter valueµb. Assume without loss of generality thatµb = 0. Suppose that the

coordinate system is chosen such that(x̄(0), ȳ(0)) = (0,0).

Next, we make a change of variable to set the border atx = 0 (i.e., they-axis).

Let x = x̄−h(ȳ) andy = ȳ. (The Jacobian of the transformation is


 1 −∂h/∂ȳ

0 1


,

which is invertible and therefore is a similarity transformation.)

In the new coordinates, the map is given by

f̄ (x+h(y),y,µ) =




f̄A(x+h(y),y,µ), x ≤ 0

f̄B(x+h(y),y,µ), x > 0
(6.2)
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Letting f (x,y,µ) := f̄ (x+h(y),y,µ), (6.2) can be written as

f (x,y,µ) =




fA(x,y,µ), x ≤ 0

fB(x,y,µ), x > 0
(6.3)

Expanding (6.3) in a Taylor series near the fixed point(0,0,0) gives

f (x,y,µ) =




A


 x

y


+


 b1

b2


µ+HOT, x ≤ 0

B


 x

y


+


 b1

b2


µ+HOT, x > 0

(6.4)

whereA andB are the limiting Jacobians off and(b1, b2)T is the derivative off with

respect toµ, and HOT denotes higher order terms. The quantities in (6.4) are thus:

A = lim
(x,y)→(0−,0)




∂ fA1(x,y,0)
∂x

∂ fA1(x,y,0)
∂y

∂ fA2(x,y)
∂x

∂ fA2(x,y,0)
∂y


 , (6.5)

B = lim
(x,y)→(0+,0)




∂ fB1(x,y,0)
∂x

∂ fB1(x,y,0)
∂y

∂ fB2(x,y)
∂x

∂ fB2(x,y,0)
∂y


 , (6.6)

and


 b1

b2


 = lim

(x,y)→(0,0)




∂ fA1(x,y,0)
∂µ

∂ fA2(x,y,0)
∂µ


 = lim

(x,y)→(0,0)




∂ fB1(x,y,0)
∂µ

∂ fB2(x,y,0)
∂µ


 . (6.7)

Note that the limit in (6.7) is independent of the direction of approach to the origin

since f is smooth inµ.
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6.2 Control Constraints for Maintaining BCB

The fact that the normal form for BCBs contains only linear terms in the state leads

one to seek linear feedback controllers to modify the system’s bifurcation character-

istics. The linear feedback can either be applied on only one side of the border or on

both sides of the border. However, one must keep in mind that, for our approach to ap-

ply, the control action should not introduce discontinuity in the map. This is because,

as summarized in Chapter 2, the definition of BCBs requires that the system map be

continuous at the border, and thus our results on nonbifurcation with persistent stabil-

ity also apply only under this condition. Therefore, to maintain continuity of the map

after control is applied, we assume that the input vectors on both sides of the border

are equal. In this work, the input vectors are taken to be equal tob (the derivative of

the map with respect to the bifurcation parameter.) Also some constraints are placed

on the control gains so as to maintain continuity of the map, as will be elaborated

below. We consider the following possibilities for applying the feedback control:

• Switched feedback, where different controls are applied on each side of the

border;

• Simultaneous feedback, where the same control is applied on both sides of the

border;

• One sided feedback, where the control is applied on one side of the border but

not the other.

The issue of which type of actuation to use is a delicate one. There are practical

advantages to applying a switched feedback (different feedback on each side of the

border) or one sided feedback. However, this requires knowledge of where the border
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lies, which is not necessarily available in practice. Simultaneous control is used to

ensure robustness with respect to uncertainty in knowledge of the border, as was done

for 1-D maps. Moreover, the use of simultaneous feedback control alleviates the

need to transform the system to the normal form. Not surprisingly, the conditions

for existence of simultaneously stabilizing controls are more restrictive than for the

existence of switched controls.

All the control laws are developed based on the map linearizations as the fixed

point is approached on both sides of the border. It is important to emphasize that

we do not assume the system to be in normal form (see Section 2.2). This alleviates

the need to include state transformations in the design of control laws except for the

transformation setting the border to lie on they-axis. Thus, in the remainder of this

chapter, we consider the following 2-D piecewise affine map

fµ(x,y) =





 a11 a12

a13 a14




︸ ︷︷ ︸
A


 x

y


+


 b1

b2


µ, x ≤ 0


 a21 a22

a23 a24




︸ ︷︷ ︸
B


 x

y


+


 b1

b2


µ, x > 0

(6.8)

whereµ is the bifurcation parameter andfµ is assumed continuous inR2 but nons-

mooth at the border. Since the mapfµ is not differentiable at the borderx = 0, A �= B.

The continuity of fµ at the border implies that the second column ofA equals the

second column ofB, i.e., a12 = a22 =: a2 anda14 = a24 =: a4. Let τA :=trace(A) =

a11+a4, δA :=det(A) = a11a4−a2a13, τB :=trace(B) = a21+a4 andδB :=det(B) =

a21a4−a2a23.
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Note that the map (6.8) in general represents the linearizations of a two-dimensional

PWS map near a fixed point on the border separating two regions of smooth behavior

RA andRB as shown above. System (6.8) undergoes a variety of border collision bi-

furcations depending on the values of the parametersτA, δA, τB andδB [61, 9, 23] as

discussed at length in Section 2.2.

The fixed points of the map (6.8) on both sides of the border are given by

(xA(µ),yA(µ)) =
(

(b1−b1a4+a2b2)µ
1− τA +δA

,
(a13b1+b2−b2a11)µ

1− τA +δA

)
,

(xB(µ),yB(µ)) =
(

(b1−b1a4+a2b2)µ
1− τB +δB

,
(a23b1+b2−b2a21)µ

1− τB +δB

)
.

Assume thatb1− b1a4 + a2b2 �= 0, so that the fixed point does not move along the

border asµ is varied through zero. Without loss of generality, assumeb1− b1a4 +

a2b2 > 0 (if b1−b1a4+a2b2 < 0, just replaceµ by −µ).

Below, the sufficient conditions for nonbifurcation with persistent stability derived

in Chapter 5 are used as a basis in synthesizing stabilizing feedback controls. We

begin with switched feedback control design, then we consider simultaneous feedback

control design and we end this chapter with one sided feedback control design. In all

the cases, we make sure that the feedback control does not introduce discontinuity

into the map.
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6.3 Switched Feedback Control Design

In this method, different controls are applied on each side of the border. This leads to

the closed-loop system


 xk+1

yk+1


 =





 a11 a2

a13 a4





 xk

yk


+


 b1

b2


µ+


 b1

b2


u1k , xk ≤ 0


 a21 a2

a23 a4





 xk

yk


+


 b1

b2


µ+


 b1

b2


u2k , xk > 0

(6.9)

u1k = (γ11 γ2)


 xk

yk


 = γ11xk +γ2yk (6.10)

u2k = (γ21 γ2)


 xk

yk


 = γ21xk +γ2yk (6.11)

whereγ11, γ2 andγ21 are the control gains. Note that the control gainγ2 multiplying

yk is the same in bothu1k andu2k in order to maintain continuity along the border

in the controlled system. Suppose that the fixed point to the left of the border for

µ < 0 is stable— that is, assume−(1+δA) < τA < (1+δA). Suppose also that asµ is

increased through zero, a BCB occurs.

The closed-loop system can be written as


 xk+1

yk+1


 =





 a11+b1γ11 a2+b1γ2

a13+b2γ11 a4+b2γ2





 xk

yk


+


 b1

b2


µ, xk ≤ 0


 a21+b1γ21 a2+b1γ2

a23+b2γ21 a4+b2γ2





 xk

yk


+


 b1

b2


µ, xk > 0

(6.12)

The characteristic polynomials of the closed loop system to the left and right of the
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border are given by

p̃A(λ) = λ2− (τA +b1γ11+b2γ2)︸ ︷︷ ︸
τ̃A

λ

+ δA +(b1a4−b2a2)γ11+(a11b2−a13b1)γ2︸ ︷︷ ︸
δ̃A

(6.13)

and

p̃B(λ) = λ2− (τB +b1γ21+b2γ2)︸ ︷︷ ︸
τ̃B

λ

+ δB +(b1a4−b2a2)γ21+(a21b2−a23b1)γ2︸ ︷︷ ︸
δ̃B

(6.14)

respectively, where a tilde is used to denote closed-loop quantities.

Next, the nonbifurcation results derived in Chapter 5 are used to find conditions

for stabilizing control laws.

Feedback Control Design Based on Proposition 5.3:

Using Proposition 5.3, the following conditions on the controlled system Jacobian

matrices are derived:

−1 < δ̃A < 0 (6.15)

1+ τ̃A + δ̃A > 0 (6.16)

1− τ̃A + δ̃A > 0 (6.17)

and

−1 < δ̃B < 0 (6.18)

1+ τ̃B + δ̃B > 0 (6.19)

1− τ̃B + δ̃B > 0 (6.20)
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Substituting the expressions forδ̃A, τ̃A, δ̃B andτ̃B in (6.15)-(6.20) yields

(b1a4−a2b2)γ11 < −(a11b2−a13b1)γ2−δA (6.21)

(b1a4−a2b2)γ11 > −(a11b2−a13b1)γ2−δA −1 (6.22)

(b1a4−a2b2+b1)γ11 > −(b2+a11b2−a13b1)γ2− (1+ τA +δA) (6.23)

(b1a4−a2b2−b1)γ11 > −(−b2 +a11b2−a13b1)γ2− (1− τA +δA) (6.24)

and

(b1a4−a2b2)γ21 < −(a21b2−a23b1)γ2−δB (6.25)

(b1a4−a2b2)γ21 > −(a21b2−a23b1)γ2−δB −1 (6.26)

(b1a4−a2b2+b1)γ21 > −(b2+a21b2−a23b1)γ2− (1+ τB +δB) (6.27)

(b1a4−a2b2−b1)γ21 > −(−b2 +a21b2−a23b1)γ2− (1− τB +δB) (6.28)

Stabilizing control laws exist if inequalities (6.21)-(6.28) are feasible which is easy to

check.

Feedback Control Design Based on Proposition 5.4:

Below, we seek control gains such that the eigenvalues of the controlled system (6.12)

satisfy Proposition 5.4:

0 < δ̃A < 1, (6.29)

2
√

δ̃A < τ̃A < (1+ δ̃A), (6.30)

and

−1 < δ̃B < 0, (6.31)

0 < τ̃B < 1+ δ̃B. (6.32)
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Inequalities (6.29)-(6.32) give a sufficient condition for nonbifurcation with persistent

stability in the controlled system. Letε ∈ (0,1) be a small parameter. Then, the

conditions 0< δ̃A < 1 and 2
√

δ̃A < τ̃A < (1+ δ̃A) are satisfied if

0 < δ̃A < ε, (6.33)

and 2
√

ε < τ̃A < (1+ δ̃A), 0 < ε < 1 (6.34)

Writing (6.29)-(6.32) explicitly together with (6.33)-(6.34) yields

(b1a4−a2b2)γ1 < −(a11b2−a13b1)γ2−δA + ε (6.35)

(b1a4−a2b2)γ1 > −(a11b2−a13b1)γ2−δA (6.36)

b1γ1 > −b2γ2 +2
√

ε− τA (6.37)

(b1a4−a2b2−b1)γ1 > −(−b2 +a11b2−a13b1)γ2− (1− τA +δA) (6.38)

and

(b1a4−a2b2)γ1 < −(a21b2−a23b1)γ2−δB (6.39)

(b1a4−a2b2)γ1 > −(a21b2−a23b1)γ2−δB −1 (6.40)

b1γ1 > −b2γ2− τB (6.41)

(b1a4−a2b2−b1)γ1 > −(−b2 +a21b2−a23b1)γ2− (1− τB +δB) (6.42)

Again, checking the feasibility of the linear inequalities (6.35)-(6.42) is an easy task.

Similar conditions can be obtained using Proposition 5.2.
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6.4 Simultaneous Stabilization

In this control method, the same feedback control is applied on both sides of the

border. This leads to the closed-loop system


 xk+1

yk+1


 =





 a11 a2

a13 a4





 xk

yk


+


 b1

b2


µ+


 b1

b2


uk, xk ≤ 0


 a21 a2

a23 a4





 xk

yk


+


 b1

b2


µ+


 b1

b2


uk, xk > 0

(6.43)

uk = (γ1 γ2)


 xk

yk


 = γ1xk +γ2yk (6.44)

whereγ1 andγ2 are the control gains.

The following proposition asserts stabilizability of the border collision bifurcation

with this type of control policy. The conditions are based on Proposition 5.3.

Proposition 6.1 If the following inequalities

(b1a4−a2b2)γ1 < −(a11b2−a13b1)γ2−δA (6.45)

(b1a4−a2b2)γ1 > −(a11b2−a13b1)γ2−δA −1 (6.46)

(b1a4−a2b2+b1)γ1 > −(b2 +a11b2−a13b1)γ2− (1+ τA +δA) (6.47)

(b1a4−a2b2−b1)γ1 > −(−b2 +a11b2−a13b1)γ2− (1− τA +δA) (6.48)

and

(b1a4−a2b2)γ1 < −(a21b2−a23b1)γ2−δB (6.49)

(b1a4−a2b2)γ1 > −(a21b2−a23b1)γ2−δB −1 (6.50)

(b1a4−a2b2+b1)γ1 > −(b2 +a21b2−a23b1)γ2− (1+ τB +δB) (6.51)

(b1a4−a2b2−b1)γ1 > −(−b2 +a21b2−a23b1)γ2− (1− τB +δB) (6.52)
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are feasible, then a stabilizing simultaneous feedback control exists. Any(γ1,γ2)

satisfying (6.45)-(6.52) are stabilizing.

Proof: Follows from (6.21)-(6.28) after settingγ11 = γ21 =: γ2.

The following proposition asserts stabilizability of the border collision bifurcation

using simultaneous feedback control based on Proposition 5.4.

Proposition 6.2 If inequalities (6.35)-(6.42) are feasible withγ11 = γ21 =: γ1, then a

stabilizing simultaneous feedback control exists. Any(γ1,γ2) satisfying (6.35)-(6.42)

are stabilizing.

Remark 6.1 It is important to point out that simultaneous control (same control ap-

plied on both sides of the border) is robust to uncertainty in location of border. More-

over transforming a system to normal form is not needed when simultaneous feedback

control is employed. All that is needed in this case is an estimate of the Jacobian ma-

trices of the map on both sides of the border.

6.5 One-Sided Feedback Control

In this control method, the feedback is applied on one side of the border only. We will

only consider applying the control on the unstable side of the border. Control applied

on the stable side of the border is not considered here, because sufficient conditions

for it to work are not currently available.

Assume thatA is Schur Stable with eigenvaluesλ±
A satisfying, either 0< λ−

A <

λ+
A < 1, or−1 < λ−

A < 0 < λ+
A . This implies that the system possesses an asymptoti-

cally stable fixed point in the left half plane forµ < 0. Assume that the system without

control undergoes a BCB asµ is increased through zero. Applying feedback control
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on the unstable side (the right half plane) yields the closed-loop system


 xk+1

yk+1


 =





 a11 a2

a13 a4





 xk

yk


+


 b1

b2


µ, xk ≤ 0


 a21 a2

a23 a4





 xk

yk


+


 b1

b2


µ+


 b1

b2


uk, xk > 0

(6.53)

uk = γ1xk (6.54)

whereγ1 is the control gain. Note that onlyxk is used in the feedback to maintain

continuity of the controlled map along the borderx = 0. One sided control is a special

case of switched feedback control considered in Section 6.3 after settingγ11 = γ12 =

γ22 = 0. Thus, a stabilizing one sided control as in (6.53),(6.54) exists if a switched

feedback exists withγ11 = γ12 = γ22 = 0.

6.6 Numerical Examples

In this section, numerical examples are given to illustrate how the developed control

laws above can be used to eliminate border collision bifurcation and produce desirable

behavior.

Example 6.1 Border collision pair bifurcation (saddle node bifurcation)

Consider the two-dimensional piecewise smooth map


 xk+1

yk+1


 =





 1 1

−0.5 0




︸ ︷︷ ︸
A


 xk

yk


+


 1

0


µ+


 1

0


uk, xk ≤ 0


 2.5 1

−0.7 0




︸ ︷︷ ︸
B


 xk

yk


+


 1

0


µ+


 1

0


uk, xk > 0

(6.55)

uk = γ1xk +γ2yk (6.56)
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This map withuk = 0 undergoes a border collision pair bifurcation (saddle node bi-

furcation), where a stable and an unstable fixed point merge and disappear asµ is

increased through zero (see Figure 6.1). This is an example of a “dangerous” bifurca-

tion because there are no local attractors for values ofµ beyond the critical value. For

this example,a11 = 1, a2 = 1, a13 = −0.5, a4 = 0, a21 = 2.5, a23 = −0.7, b1 = 1 and

b2 = 0. The eigenvalues ofA areλA1,2 = 0.5±0.5i and those ofB areλB1 = 2.1787

andλB2 = 0.3213.

Next, the control methods developed above are applied to control the BCB in (6.55)

so that the closed loop system possesses a locally unique and attracting fixed point on

both sides of the border.

Simultaneous control

For this example, it is straightforward to check that inequalities (6.45)-(6.52) are fea-

sible. Thus, a stabilizing simultaneous feedback control exists. A set of stabilizing

control gain pairs (γ1,γ2) is obtained from inequalities (6.45)-(6.52) and is depicted

in Figure 6.2. The bifurcation diagram of the controlled system withγ1 = −1.95 and

γ2 = −1.05 is shown in Figure 6.3.

Example 6.2 (Dangerous Border Collision Bifurcation, Example Revisited)

We revisit the example of Section 5.1, and show that the control methods presented

above can be used to eliminate the instability and produce a locally unique fixed point

attractor on both sides of the border. The map (5.1) is repeated here with control
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Figure 6.1: Bifurcation diagram for Example 6.1 without control. The solid line

represents a path of stable fixed points whereas the dashed line represents a path of

unstable fixed points.
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Figure 6.2: The interior of the triangle gives simultaneously stabilizing control gains

for Example 6.1.
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0.6
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Figure 6.3: Bifurcation diagram for Example 6.1 with simultaneous control using

γ1 = −1.95 andγ2 = −1.05 (A locally unique and stable fixed point exists on both

sides of the border).

signal included:


 xk+1

yk+1


 =





 −0.3 1

−0.9 0




︸ ︷︷ ︸
A


 xk

yk


+


 1

0


µ+


 1

0


uk, xk ≤ 0


 −1.6 1

−0.9 0




︸ ︷︷ ︸
B


 xk

yk


+


 1

0


µ+


 1

0


uk, xk > 0

uk = (γ1 γ2)︸ ︷︷ ︸
g


 xk

yk




A simple check shows that a simultaneous feedback control based on Proposition 6.1

exists. One stabilizing control gain vector is given byg = (1 −1.1). This yields the
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closed-loop matrices

Ac = A+bg

=


 0.7 −0.1

−0.9 0




and

Bc = B+bg

=


 −0.6 −0.1

−0.9 0




The eigenvalues ofAc andBc are given by{0.811,−0.111} and{−0.7243,0.1243},

respectively. The bifurcation diagram of the closed-loop system is similar to that

shown in Figure 6.3.
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Chapter 7

Lyapunov-Based Stability Analysis and

Feedback Control of Piecewise Smooth

Discrete-Time Systems

In this chapter, Lyapunov techniques are used in the analysis of finite dimensional

piecewise smooth discrete-time systems that depend on a parameter. The use of Lya-

punov techniques facilitates the consideration ofn-dimensional systems wheren is

not restricted to be 1 or 2 as in previous chapters. A sufficient condition for nonbifur-

cation with persistent stability in PWS maps of dimensionn is derived. The derived

condition is in terms of linear matrix inequalities (LMIs). This condition is then used

as a basis for the design of feedback controls to eliminate border collision bifurcations

in PWS maps and to produce desirable behavior. The Lyapunov-based methodology

is used to consider the design of washout filter based controllers. These are dynamic

feedback control laws that are designed so as not to alter a system’s fixed points, even

in the presence of model uncertainty. In addition, the Lyapunov-based approach is

extended to allow nonmonotonically decreasing Lyapunov functions.
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7.1 Introduction

Recently, many researchers have studied stability of a fixed point of switched discrete-

time linear systems (e.g., [44, 57, 30, 29, 46]) as well as continuous time switched

systems (e.g.,[43, 42]). In all the referenced studies, Lyapunov techniques were used

to obtain sufficient conditions for stability of the fixed point (or equilibrium point) of

a piecewise linear system. For instance, in [42, 57, 30], quadratic as well as piece-

wise quadratic Lyapunov functions were used in the analysis of stability of switched

systems and also in the synthesis of stabilizing controls. In [46], piecewise linear

Lyapunov functions were used to obtain stabilizing switching sequences. The author

is unaware of any previous study using Lyapunov methods to analyze the dynamics

of switched systems depending on a parameter. Here, we use quadratic Lyapunov

functions to study border collision bifurcations in PWS maps and to obtain sufficient

conditions for nonbifurcation with persistent stability in such maps.

7.2 Lyapunov-Based Analysis of PWS Maps

In this section, we consider Lyapunov-based stability and bifurcation analysis of

n-dimensional PWS maps. Consider the one-parameter family of piecewise affine

(PWA) mapsfµ : R
n → R

n in normal form for BCB given by

fµ(x(k)) =




Ax(k)+µb, if x1(k) ≤ 0

Bx(k)+µb, if x1(k) > 0

We start with scalar systems to illustrate the ideas and then we proceed to multi-

dimensional systems.
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7.2.1 Scalar Systems

For scalar systems, the normal form is given by

x(k +1) = fµ(x(k)) =




ax(k)+µ, if x(k) ≤ 0

bx(k)+µ, if x(k) > 0
(7.1)

The possible fixed points are given by:xB(µ) = µ
1−b andxA(µ) = µ

1−a . For the fixed

point xB(µ) to actually occur, we needµ
1−b ≥ 0 which is satisfied if and only ifµ ≥ 0

andb < 1 orµ ≤ 0 andb > 1. Similarly, forxA(µ) to actually occur, we needµ
1−a ≤ 0

which is satisfied if and only ifµ ≤ 0 anda < 1 or µ ≥ 0 anda > 1.

Case 1): µ ≤ 0 and a < 1, scalar systems. Here, the fixed point offµ is xA(µ) = µ
1−a .

Changing the state variable toz = x− xA(µ), we have

z(k +1) =




a(z(k)+ xA(µ))+µ− xA(µ), if z(k) ≤−xA(µ)

b(z(k)+ xA(µ))+µ− xA(µ), if z(k) > −xA(µ)

=




az(k), if z(k) ≤−xA(µ)

bz(k)+ b−a
1−aµ, if z(k) > −xA(µ)

(7.2)

In the new coordinates,z = 0 is a fixed point forµ ≤ 0. (Note that the border point

zborder = − µ
1−a varies as a function ofµ.)

Consider the quadratic Lyapunov function candidate

V (z) = pz2, wherep > 0 (7.3)

The forward difference ofV along the trajectories of (7.2) is∆V (z(k)) =V (z(k+1)−
V (z(k)). There are two cases:z(k) ≤−xA(µ) andz(k) > −xA(µ).

Case 1.1): z(k) ≤ −xA(µ). In this case, we use a subscriptL to indicate calculations

to the “left” of the border.

∆VL(z(k)) = V (z(k +1))−V(z(k))
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= p(az(k))2− pz2(k)

= p(a2−1)z2(k) (7.4)

Note that∆V (z(k)) in (7.4) is negative if and only if−1 < a < 1.

Case 1.2: z(k) >−xA(µ). In this case, we use a subscriptR to indicate calculations to

the “right” of the border.

∆VR(z(k)) = V (z(k +1))−V(z(k))

= p

(
bz(k)+

b−a
1−a

µ

)2

− pz2(k)

= p(b2−1)z2(k)+2pbµ
b−a
1−a

z(k)+ p

(
b−a
1−a

)2

µ2. (7.5)

Combining (7.4) and (7.5) yields

∆V (z(k)) =




p(a2−1)z2(k), z(k) ≤−xA(µ)

p(b2−1)z2(k)+2pbµb−a
1−az(k)+ p

(b−a
1−a

)2
µ2, z(k) > −xA(µ)

(7.6)

The next proposition asserts that∆V (z(k)) in (7.6) is negative definite if and only

if |a| < 1 and|b| < 1.

Proposition 7.1 The forward difference of V given in (7.6) is negative definite if and

only if |a| < 1 and |b| < 1.

Proof: The necessity part is clear from (7.4) and (7.5); if|a| ≥ 1 then∆V > 0 in (7.4),

similarly, if |b| ≥ 1 then∆V > 0 in (7.5) for largez.

To prove the sufficiency part, assume|a| < 1 and|b| < 1. Note that∆V (z(k))

is continuous∀z ∈ R. Continuity of ∆V follows from the continuity ofV and the

continuity of the map (7.2). Since∆V (z(k))< 0 for all z≤−xA(µ) (by (7.4)∆V (z)= 0

only if z = 0) and∆V is continuous∀z, it follows that ∆V (z) < 0 at the pointz =

−xA(µ). It remains to show that∆V (z) < 0 for all z >−xA(µ) (note that−xA(µ) > 0).
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To this end, we use (7.5) to show that∆V (z) is decreasing inz in the regionz >

−xA(µ):

d∆V
dz

= 2p(b2−1)z+2pb(b−a)xA(µ), z > −xA(µ) > 0 (7.7)

Sincez > −xA(µ), we can expressz as:z = −xA(µ)+w, wherew > 0. Then

d∆V
dz

= 2p(b2−1)(−xA(µ)+w)+2pb(b−a)xA(µ)

= 2p(b2−1)︸ ︷︷ ︸
<0

w+2pxA(µ)︸ ︷︷ ︸
≤0

(1−ab)︸ ︷︷ ︸
>0

< 0 (7.8)

Thus,∆V (z) < 0 for all z > −xA(µ). We conclude that∆V (z(k)) < 0 for all z(k) �= 0

and∆V (z(k)) = 0 for z(k) = 0.

Case 2): µ > 0 and b < 1, scalar systems. In this case, the fixed point offµ is xB(µ) =

µ
1−b . Changing the state variable toz = x− xB(µ), we have

z(k +1) =




a(z(k)+ xB(µ))+µ− xB(µ), if z(k) ≤−xB(µ)

b(z(k)+ xB(µ))+µ− xB(µ), if z(k) > −xB(µ)

=




az(k)+ a−b
1−bµ, if z(k) ≤−xB(µ)

bz(k), if z(k) > −xB(µ)
(7.9)

Consider the same quadratic Lyapunov function candidate as in (7.3) above:

V (z) = pz2, wherep > 0

The forward difference ofV along the trajectories of (7.9) is∆V (z(k)) =V (z(k+1)−
V (z(k)) and is given by

∆V (z(k)) =




p(a2−1)z2(k)+2paµa−b
1−bz(k)+ p

(
a−b
1−b

)2
µ2, z(k) ≤−xB(µ)

p(b2−1)z2(k), z(k) > −xB(µ)
(7.10)

The following proposition summarizes the result for this case. The derivation is

similar to that of Proposition 7.1 above.
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Proposition 7.2 The forward difference of V given in (7.10) is negative definite if and

only if |a| < 1 and |b| < 1.

Combining Propositions 7.1 and 7.2 yields that the map (7.1) has a globally asymp-

totically stable fixed point for allµ ∈ R if |a| < 1 and|b| < 1. The following proposi-

tion summarizes this result.

Proposition 7.3 (Nonbifurcation with Persistent Stability in 1-D PWS Maps)

The PWS map (7.1) has a globally asymptotically stable fixed point for allµ ∈ R if

|a| < 1 and|b| < 1.

This result is in agreement with the known results discussed in Chapter 3.

7.2.2 Multidimensional Systems

We now consider Lyapunov-based stability and bifurcation analysis forn-dimensional

PWS maps. Consider the one-parameter family of piecewise smooth maps

f (x,µ) =




fA(x,µ), x ∈ RA

fB(x,µ), x ∈ RB

(7.11)

where f : R
n+1 → R

n is piecewise smooth inx; f is smooth inx everywhere except

on the border (hypersurfaceΓ) separatingRA andRB where it is only continuous,f

is smooth inµ andRA, RB are the two (nonintersecting) regions of smooth behavior.

We are interested in studying the dynamics off at a fixed point (or a periodic orbit)

near or at the borderΓ. If the fixed point (or periodic orbit) is inRA (respectivelyRB)

and is away from the border, then the local dynamics is determined by the single map

fA (respectivelyfB). If, on the other hand, the fixed point is close to the border, then

jumps across the border can occur except in an extremely small neighborhood of the
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fixed point. Therefore, for operation close to the border, bothfA and fB are needed

in the study of the possible behavior. For a fixed point at or near the border, the

dynamics is determined by the linearizations of the map on both sides of the border,

as was discussed at length in Section 2.2.

Consider the piecewise-linearized representation of (7.11) [23]

x(k +1) = fµ(x(k)) =




Ax(k)+µb, if x1(k) ≤ 0

Bx(k)+µb, if x1(k) > 0
(7.12)

whereA is the linearization of the PWS mapf in RA at a fixed point on the border

approached from points inRA near the border;B is the linearization off at a fixed

point on the border approached from points inRB; andb is the derivative of the mapf

with respect toµ. The sign of the first component of the vectorx determines whether

x is in RA or in RB. If x1 = 0, thenx is on the border separatingRA andRB. Note that

the assumed continuity offµ at the border implies thatA andB differ only in their first

columns. That is,ai j = bi j, for j �= 1, whereA = [ai j] andB = [bi j].

Assume that 1/∈ σ(A) and 1/∈ σ(B) (i.e., bothI − A, I − B are nonsingular).

Formally solving for the fixed points of (7.12), we obtainxA(µ) = (I −A)−1bµ and

xB(µ) = (I−B)−1bµ. ForxA(µ) to actually occur as a fixed point, the first component

of xA(µ) must be nonpositive. That is,

xA1(µ) = (e1)T µ(I−A)−1b ≤ 0 (7.13)

where(e1)T = (1 0 · · · 0). Similarly, for xB(µ) to actually occur as a fixed point, we

need

xB1(µ) = (e1)T µ(I−B)−1b > 0 (7.14)

If, on the other hand, the first component ofxA(µ) is positive (the first component of
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xB(µ) is nonpositive), then the fixed point is called a virtual fixed point. Virtual fixed

points are important in studying the dynamics of a PWS map at or near the border.

Let pA(λ) and pB(λ) be the characteristic polynomials ofA andB, respectively.

ThenpA(λ) = det(λI −A) andpB(λ) = det(λI−B).

The fixed points can be written as

xA(µ) = (I −A)−1bµ

=
adj(I−A)bµ
det(I −A)

=
b̄A

pA(1)
µ, (7.15)

xB(µ) = (I −B)−1bµ

=
adj(I−B)bµ
det(I −B)

=
b̄B

pB(1)
µ. (7.16)

where b̄A =adj(I − A)b and b̄B =adj(I − B)b. It can be shown that̄bA1 = b̄B1 =:

b̄1 [23]. To see this, recall thatA andB differ only in their first columns and adj(I −
A) = (co f (I − A))T . Thus, the first row of adj(I − A) is equal to the first row of

adj(I −B), which implies that(e1)T ad j(I −A)b = (e1)T ad j(I − B)b =: b̄1. Thus,

the first component ofxA(µ) is xA1(µ) = b̄1
pA(1)µ and the first component ofxB(µ) is

xB1(µ) = b̄1
pB(1)µ. For the fixed pointxA(µ) to occur forµ ≤ 0, we needxA1(µ)≤ 0, i.e.,

b̄1
pA(1)µ ≤ 0, or, equivalently, b̄1

pA(1) > 0. Similarly, for the fixed pointxB(µ) to occur for

µ > 0, we needxB1(µ) > 0, i.e., b̄1
pB(1)µ > 0, or, equivalently, b̄1

pB(1) > 0. Therefore, a

necessary and sufficient condition to have a fixed point for allµ is pA(1)pB(1) > 0,

which is assumed to be in force in the remainder of the discussion.

As we did for scalar systems, we perform a change of variables to simplify the

analysis.
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Case 1): µ ≤ 0, n-dimensional systems. The fixed point offµ is xA(µ). Changing the

state vector toz = x− xA(µ), we have

z(k +1) =




A(z(k)+ xA(µ))+bµ− xA(µ), if z1(k) ≤−xA1(µ)

B(z(k)+ xA(µ))+bµ− xA(µ), if z1(k) > −xA1(µ)

=




Az(k), if z1(k) ≤−xA1(µ)

Bz(k)+(I− (I −B)(I −A)−1)bµ, if z1(k) > −xA1(µ)

=




Az(k), if z1(k) ≤−xA1(µ)

Bz(k)+(B−A)(I−A)−1)b︸ ︷︷ ︸
=:c

µ, if z1(k) > −xA1(µ)
(7.17)

In the new coordinates,z = 0 is a fixed point for allµ ≤ 0. (Note that the border

zborder = {z : z1 = −xA1(µ)}, varies as a function ofµ.) Note that sinceB andA differ

only in their first columns, all elements ofB−A are zero except for the first column.

Thus,cµ = (B−A)(I −A)−1bµ = (B−A)xA(µ) = xA1(µ)(B1−A1), whereA1 (resp.

B1) denotes the first column of the matrixA (resp.B).

Consider the quadratic Lyapunov function candidate

V (z) = zT Pz, whereP = PT > 0 (7.18)

The forward difference ofV along trajectories of (7.17) is∆V (z(k)) = V (z(k + 1)−
V (z(k)). There are two cases:z1(k) ≤−xA1(µ) andz1(k) > −xA1(µ).

Case 1.1): z1(k) ≤−xA1(µ)

∆VL(z(k)) = V (z(k +1))−V(z(k))

= (Az(k))T PAz(k)− z(k)T Pz(k)

= z(k)T (AT PA−P)z(k) (7.19)

Case 1.2): z1(k) > −xA1(µ)

∆VR(z(k)) = V (z(k +1))−V(z(k))
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= (Bz(k)+ cµ)T P(Bz(k)+ cµ)− z(k)TPz(k)

= z(k)T (BT PB−P)z(k)+2µcT PBz(k)+µ2cT Pc

= z(k)T (BT PB−P)z(k)+2xA1(µ)(B1−A1)T PBz(k)

+ x2
A1

(µ)(B1−A1)T P(B1−A1) (7.20)

Combining (7.19) and (7.20) yields

∆V (z(k)) =




∆VL(z(k)), if z1(k) ≤−xA1(µ)

∆VR(z(k)), if z1(k) > −xA1(µ)
(7.21)

From (7.19) and (7.20), a necessary condition for∆V (z(k)) to be negative definite

is that the following two matrix inequalities hold:

AT PA−P < 0 (7.22)

BT PB−P < 0 (7.23)

Moreover, we have the following claim, which asserts sufficiency of (7.22),(7.23)

for negative definiteness of∆V (z(k)).

Claim: (Sufficiency of LMIs (7.22)-(7.23) for a Decreasing Lyapunov Function)

If the matrix inequalities (7.22)-(7.23) are satisfied withP = PT > 0, then∆V (z(k))

given by (7.21) is negative definite.

Proof: Assume that there is aP = PT > 0 such that (7.22)-(7.23) are satisfied. Then

∆VL(z) = zT (AT PA − P)z < 0 ∀z �= 0. It remains to show that∆VR(z) < 0. Let

z = (z1,z2)T , wherez1 ∈ R and z2 ∈ R
n−1. Note that∆V (z) is continuous for all

z. Continuity of ∆V (z) follows from the continuity ofV (z) and continuity of the

map (7.17). Since∆VL(z) < 0 (∆VL(z) = 0 if and only if z = 0) and∆V (z) is con-

tinuous for allz, it follows that ∆VR(z) < 0 at the border{z1 = −xA1(µ)} (since
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lim(z1,z2)→(−x−A1(µ),z2) ∆VL = lim(z1,z2)→(−x+
A1(µ),z2) ∆VR). It remains to show that∆VR(z) <

0 for all z in the regionz1 >−xA1(µ) (note that−xA1(µ) > 0). Completing the squares

in (7.20) allows us to write∆VR(z) as follows:

∆VR(z) = zT (BT PB−P)z+2xA1(µ)(B1−A1)T PBz+ x2
A1

(µ)(B1−A1)T P(B1−A1)

= (z−α)T (BT PB−P)(z−α)−αT(BT PB−P)α

+ x2
A1

(µ)(B1−A1)T P(B1−A1) (7.24)

whereα = −xA1(µ)(BT PB−P)−1BT P(B1−A1). Let N ⊂ R
n such thatN is convex

and contains the origin (for example, a ball). Since the fixed pointxA(µ) is close to the

origin for smallµ, the hyperplanez1 =−xA1(µ) slices the neighborhoodN . Consider

∆VR(z) restricted toN . The second derivative of∆VR(z) with respect toz (i.e., its

Hessian matrix) is∇ 2∆VR = 2(BT PB−P) < 0. Thus,∆VR(z) is strictly concave onN ,

i.e., for everyz, y ∈N , andθ∈ (0,1), ∆VR(θz+(1−θ)y)> θ∆VR(z)+(1−θ)∆VR(y).

Note that∆VR(0) = x2
A1

(µ)(B1−A1)T P(B1−A1) > 0. Now, we show that∆VR < 0

∀z ∈ N with z1 > −xA1(µ). By way of contradiction, suppose there is ay ∈ N ,

with y1 > −xA1(µ), such that∆VR(y) > 0. Since∆VR(z) is strictly concave, it follows

that ∆VR(z) is positive along the line segment connecting 0 andy: ∆VR(θ ·0+(1−
θ)y) > θ∆VR(0)︸ ︷︷ ︸

>0

+(1− θ)∆VR(y)︸ ︷︷ ︸
>0

> 0, ∀θ ∈ (0,1). But, along the line connecting

z = 0 with z = y, there is a pointz∗ with z∗1 = −xA1(µ) where∆VR(z∗) < 0, which is a

contradiction. Thus,∆VR(z) < 0 for all z ∈ N with z1 > −xA1(µ) > 0.

Remark 7.1 If the piecewise smooth map is affine as in (7.12), then the result above

applies globally. That is, if the origin of a piecewise affine map is quadratically stable

(i.e., can be proved stable using a common quadratic Lyapunov function), then the

map has a globally asymptotically stable fixed point for all µ ≤ 0. This is easily seen
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in the proof above by using a global argument (the neighborhood N can be taken as

R
n).

The following proposition summarizes the results so far.

Proposition 7.4 The forward difference of V = zT Pz, with P = PT > 0, along tra-

jectories of (7.17) with µ ≤ 0 is negative definite (i.e., ∆V (z) < 0) if and only if the

following matrix inequalities hold:

AT PA−P < 0 (7.25)

BT PB−P < 0 (7.26)

Case 2): µ > 0, n-dimensional systems. The fixed point offµ is xB(µ). Changing the

state vector toz = x− xB(µ), we have

z(k +1) =




A(z(k)+ xB(µ))+bµ− xB(µ), if z1(k) ≤−xB1(µ)

B(z(k)+ xB(µ))+bµ− xB(µ), if z1(k) > −xB1(µ)

=




Az(k)+(I− (I −A)(I −B)−1)bµ, if z1(k) ≤−xB1(µ)

Bz(k), if z1(k) > −xB1(µ)

=




Az(k)+(A−B)(I−B)−1)b︸ ︷︷ ︸
=:c

µ, if z1(k) ≤−xB1(µ)

Bz(k), if z1(k) > −xB1(µ)

(7.27)

In the new coordinates,z = 0 is a fixed point for allµ > 0. (Note that the border

zborder = {z : z1 = −xB1(µ)}, varies as a function ofµ.) Note that sinceB andA differ

only in their first columns, all elements ofA−B are zero except for the first column.

Thus,cµ = (A−B)(I−B)−1bµ = (A−B)xB(µ) = xB1(µ)(A1−B1).
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Consider the same quadratic Lyapunov function candidate as in (7.18) above:

V (z) = zT Pz, whereP = PT > 0

The forward difference ofV along trajectories of (7.27) is∆V (z(k)) = V (z(k + 1)−
V (z(k)). There are two cases:z1(k) ≤ −xB1(µ) and z1(k) > −xB1(µ). (Note that

xB1(µ) > 0 from (7.14).)

Case 2.1): z1(k) ≤−xB1(µ)

∆VL(z(k)) = V (z(k +1))−V(z(k))

= (Az(k)+ cµ)T P(Az(k)+ cµ)− z(k)TPz(k)

= z(k)T (AT PA−P)z(k)+2µcT PAz(k)+µ2cT Pc

= z(k)T (AT PA−P)z(k)+2xB1(µ)(A1−B1)T PAz(k)

+ x2
B1

(µ)(A1−B1)T P(A1−B1) (7.28)

Case 2.2): z1(k) > −xB1(µ)

∆VR(z(k)) = V (z(k +1))−V(z(k))

= (Bz(k))T PBz(k)− z(k)T Pz(k)

= z(k)T (BT PB−P)z(k) (7.29)

Combining (7.28) and (7.29) yields

∆V (z(k)) =




∆VL(z(k)), if z(k) ≤−xB1(µ)

∆VR(z(k)), if z(k) > −xB1(µ)
(7.30)
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Proposition 7.5 (Necessary and Sufficient Conditions for a Decreasing Lyapunov

Function)

The forward difference of V = zT Pz, with P = PT > 0, along trajectories of (7.27)

with µ ≥ 0 is negative definite (i.e., ∆V (z) < 0) if and only if the following matrix

inequalities hold:

AT PA−P < 0 (7.31)

BT PB−P < 0 (7.32)

Proof: Necessity follows from (7.28) and (7.29), and the proof for sufficiency is

similar to that for the caseµ ≤ 0 above.

By combining Proposition 7.4 and Proposition 7.5, we obtain the main result of

this chapter.

Proposition 7.6 (Sufficient Condition for Nonbifurcation with Persistent Stabil-

ity in n-D PWS Maps)

Consider the system (7.12). If there is a P = PT > 0 such that

AT PA−P < 0,

BT PB−P < 0,

then system (7.12) has a globally asymptotically stable fixed point for all µ ∈ R.

Corollary 7.1 If at µ = 0 the origin of the map (7.12) is quadratically stable, i.e.,

using a quadratic Lyapunov function V = xT Px, with P > 0, then the fixed point de-

pending on µ on both sides of the border is attracting and no bifurcation occurs from

the origin as µ is varied through zero.
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Proposition 7.7 (Necessary Condition for Existence of a CQLF) [57]

A necessary condition for the existence of a common quadratic Lyapunov function

(CQLF) for the two systems in (7.12) is that the matrix product AB is Schur stable

(and, by symmetry, that BA is Schur stable).

Proof: Suppose that a CQLF exists forA andB. That is,

AT PA−P < 0,

BT PB−P < 0.

Equivalently,

P > AT PA, (7.33)

P > BT PB. (7.34)

Using the property thatX > Y =⇒CT XC ≥CTYC, we have

P > AT PA =⇒ BT PB ≥ BT AT PAB

Using (7.34), we get

P > BT AT PAB

Thus,AB must be Schur stable. Similarly,

P > BT PB =⇒ AT PA ≥ AT BT PBA

Using (7.33), we get

P > AT BT PBA

ThusBA must be Schur stable.
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Remark 7.2 A necessary and sufficient condition for existence of a CQLF that shows

Schur stability of a pair of second order discrete time systems with matrices A and B

was given by Akar and Narendra [6]. The condition is based on Schur stability of two

matrix pencils of A and B. Mason and Shorten [56] give other necessary conditions

for existence of a CQLF for two discrete-time systems of dimension n. The necessary

conditions are also defined in terms of invertibility of two matrix pencils of A and B.

7.2.3 Numerical Examples

In this subsection, we give numerical examples to demonstrate how the Lyapunov-

based techniques considered in the previous section can be used in the stability and

bifurcation analysis.

Example 7.1 Consider the two-dimensional piecewise affine (PWA) map

x(k +1) =





 0.10 1

0.72 0




︸ ︷︷ ︸
A

x(k)+


 1

0


µ, x1(k) ≤ 0


 1.6 1

−0.73 0




︸ ︷︷ ︸
B

x(k)+


 1

0


µ, x1(k) > 0

(7.35)

The eigenvalues ofA are λA1 = −0.8, λA2 = 0.9 and the eigenvalues ofB are

λB1,2 = 0.8± j 0.3. Although the eigenvalues ofA andB are inside the unit circle, we

cannot conclude that no bifurcation for (7.35) occurs atµ = 0.

A simple check shows thatAB is Schur stable (σ(AB) = {−0.6539,0.8039}), thus

the necessary condition for existence of a CQLF given in Proposition 7.7 is satisfied.

The next step is to check whether a CQLF exists for this example or not. A common

quadratic Lyapunov functionV = xT Px, with P = PT > 0 that satisfies the conditions
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of Proposition 7.6 exists for this example. To wit:

P =


 0.8556 0.8552

0.8552 1.1158




is obtained using the MATLAB LMI toolbox. Thus, the PWA map (7.35) has a unique

attracting fixed point for allµ. This is also validated by calculating the bifurcation

diagram, depicted in Figure 7.1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−15

−10

−5

0
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10

15

20

µ

x 1

Figure 7.1: Bifurcation diagram for Example 7.1. Each solid line represents a path of

stable fixed points.
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Example 7.2 Consider the two-dimensional PWA map

x(k +1) =





 −0.8 1

−0.17 0




︸ ︷︷ ︸
A

x(k)+


 1

0


µ, x1(k) ≤ 0


 0.4 1

−0.13 0




︸ ︷︷ ︸
B

x(k)+


 1

0


µ, x1(k) > 0

(7.36)

The eigenvalues ofA areλA1,2 =−0.4± j 0.1 and the eigenvalues ofB areλB1,2 =

0.2± j0.3. Although bothA andB are stable matrices, we cannot conclude that no

bifurcation for (7.36) occurs atµ = 0.

A common quadratic Lyapunov functionV = xT Px, with P = PT > 0 that satisfies

the conditions of Proposition 7.6 exists for this example, with:

P =


 0.5929 −0.1022

−0.1022 1.4391


 .

This matrix was found using the MATLAB LMI toolbox. Thus, the PWA map (7.36)

has a unique attracting fixed point for allµ. The bifurcation diagram is given in

Figure 7.2.

Example 7.3 Consider the three-dimensinal PWA map

x(k +1) =




Ax(k)+bµ, x1(k) ≤ 0

Bx(k)+bµ, x1(k) > 0
(7.37)

where

A =




0.4192 0.3514 0.3473

0.2840 −0.2733 −0.3107

0.1852 −0.2224 −0.3974


 ,
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Figure 7.2: Bifurcation diagram for Example 7.2. Each solid line represents a path of

stable fixed points.

B =




−0.60 0.3514 0.3473

0.56 −0.2733 −0.3107

−0.90 −0.2224 −0.3974


 andb =




1

0

0


 .

The eigenvalues ofA andB areσ(A) = {0.5653,−0.7413,−0.0755} andσ(B) =

{0.0395,−0.6551± j 0.4246}, respectively. Although bothA andB are Schur stable

matrices, we cannot conclude that no bifurcation for (7.37) occurs atµ = 0.

A common quadratic Lyapunov functionV = xT Px, with P = PT > 0 that satisfies

the conditions of Proposition 7.6 exists for this example. To wit:

P =




1.6304 0.1559 −0.1313

0.1559 1.3200 0.4436

−0.1313 0.4436 1.3266



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is found using the MATLAB LMI toolbox. Thus, the PWA map (7.37) has a unique

attracting fixed point for allµ. Figure 7.3 depicts the bifurcation diagram for the three

state variables of this system.

−0.1 0 0.1 0.2
−0.2

0

0.2

x 2

−0.1 0 0.1 0.2

−0.4

0

0.4
x 1

−0.2 −0.1 0 0.1 0.2
−0.2

0
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Figure 7.3: Bifurcation diagram for Example 7.3. Each solid line represents a path of

stable fixed points.

7.3 Lyapunov-Based Feedback Control Design

In this section, we use the results of Section 7.2 in the design of stabilizing feedback

control laws. We emphasize that (as was discussed in Chapter 6) for our approach

to apply, the control action should not introduce discontinuity in the map. This is

because, as summarized in Chapter 2, the definition of BCBs requires that the system

map be continuous at the border, and thus our results on nonbifurcation with persistent
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stability also apply only under this condition. Therefore, to maintain continuity of

the map after control is applied, we assume that the input vectors on both sides of

the border are equal. In this work, the input vectors are taken to be equal tob (the

derivative of the map with respect to the bifurcation parameter.)

Simultaneous feedback control is considered first, followed by switched feedback

control design.

7.3.1 Simultaneous Feedback Control Design

In this control method, the same control is applied on both sides of the border. The

purpose of pursuing stabilizing feedback acting on both sides of the border is to ensure

robustness with respect to modeling uncertainty. Moreover, transformation to the

normal form is not required when simultaneous control is used. All that is needed is

a good estimate of the Jacobian matrices on both sides of the border.

Consider the closed-loop system using static linear state feedback

x(k +1) =




Ax(k)+bµ+bu(k), if x1(k) ≤ 0

Bx(k)+bµ+bu(k), if x1(k) > 0
(7.38)

u(k) = gx(k) (7.39)

whereg is the control gain (row) vector.

The following proposition gives stabilizability condition for the border collision

bifurcation with this type of control policy.

Proposition 7.8 If there exist a P = PT > 0, and a feedback gain (row) vector g such

that

P− (A+bg)T P(A+bg) > 0 (7.40)

P− (B+bg)T P(B+bg) > 0 (7.41)
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then any border collision bifurcation that occurs in the open-loop system (u ≡ 0)

of (7.38) can be eliminated using simultaneous feedback (7.39) and persistent stability

is guaranteed using simultaneous feedback (7.39). Equivalently, if there exist a Q and

y such that 
 Q AQ+by

(AQ+by)T Q


 > 0, (7.42)


 Q BQ+by

(BQ+by)T Q


 > 0, (7.43)

then any border collision bifurcation that occurs in (7.38) can be eliminated using

simultaneous feedback (7.39). Here Q = P−1 and the feedback gain is given by g = yP.

Proof: The closed-loop system is given by

x(k +1) =




(A+bg)x(k)+µb, if x1(k) ≤ 0

(B+bg)x(k)+µb, if x1(k) > 0
(7.44)

Using Proposition 7.6, a sufficient condition to eliminate the BCB is the existence of

a P = PT > 0 such that

P− (A+bg)T P(A+bg) > 0 (7.45)

P− (B+bg)T P(B+bg) > 0 (7.46)

whereg is the control gain to be chosen.

Next, we show that (7.45)-(7.46) are equivalent to (7.42)-(7.43). Using Lemma 2.1

and Lemma 2.2, it is straightforward to show that

P− (A+bg)T P(A+bg) > 0 ⇐⇒ P−1− (A+bg)P−1(A+bg)T > 0,

P− (B+bg)T P(B+bg) > 0 ⇐⇒ P−1− (B+bg)P−1(B+bg)T > 0.
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The nonlinear matrix inequalities above are transformed into LMIs using Lemma 2.2:

P−1− (A+bg)P−1(A+bg)T = P−1− (A+bg)P−1PP−1(A+bg)T

= P−1− (AP−1+bgP−1)P(AP−1+bgP−1)T > 0

⇐⇒


 P−1 AP−1+by

(AP−1+by)T P−1


 > 0

Similarly,

P− (B+bg)T P(B+bg) > 0

⇐⇒


 P−1 BP−1 +by

(BP−1+by)T P−1


 > 0

by similar reasoning.

Below, we show that if a CQLF exists in one coordinate system, another CQLF

exists in a different coordinate system arrived at using a simultaneous similarity trans-

formation applied to bothA andB.

Proposition 7.9 (CQLF and Similarity Transformations)

Suppose V = xT Px (with P = PT > 0) is a common quadratic Lyapunov function for

both of the matrices A and B (i.e., AT PA−P < 0 and BT PB−P < 0). Then Ṽ = xT P̃x

with P̃ = (T−1)T PT−1 = P̃T > 0 is a common quadratic Lyapunov function for Ã =

TAT−1 and B̃ = T BT−1 (i.e. ÃT P̃Ã− P̃ < 0 and B̃T P̃B̃− P̃ < 0). In other words, if a

CQLF exists in one coordinate system, another CQLF exists if a simultaneous change

of coordinates is applied to both A and B.

Proof: SinceV = xT Px is a CQLF for bothA andB, we have

AT PA−P < 0, (7.47)

and BT PB−P < 0. (7.48)
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Pre-multiply (7.47) by(T−1)T and post-multiply byT −1 yields

(T−1)T AT PAT−1− (T−1)T PT−1 < 0

⇐⇒ (T−1)T AT T T︸ ︷︷ ︸
ÃT

(T−1)T PT−1︸ ︷︷ ︸
P̃

TAT−1︸ ︷︷ ︸
Ã

−(T−1)T PT−1︸ ︷︷ ︸
P̃

< 0, (7.49)

Similarly, pre-multiply (7.48) by(T −1)T and post-multiply byT −1 yields

(T−1)T BT PBT−1− (T−1)T PT−1 < 0

⇐⇒ (T−1)T BT T T︸ ︷︷ ︸
B̃T

(T−1)T PT−1︸ ︷︷ ︸
P̃

T BT−1︸ ︷︷ ︸
B̃

−(T−1)T PT−1︸ ︷︷ ︸
P̃

< 0. (7.50)

Thus,Ṽ = xT P̃x is a CQLF for bothÃ andB̃, which completes the proof.

Remark 7.3 The switched control design presented above does not depend on the

border separating the two regions of smooth behavior. Thus, transformation to the

normal form is not required before the control design.

7.3.2 Switched Feedback Control Design

Consider the closed-loop system using static piecewise linear state feedback

fµ(x(k)) =




Ax(k)+bµ+bu(k), if x1(k) ≤ 0

Bx(k)+bµ+bu(k), if x1(k) > 0
(7.51)

where

u(k) =




g1x(k), x1(k) ≤ 0

g2x(k), x1(k) > 0
(7.52)

with the restriction thatg1 andg2 may only differ in their first component, i.e.,g1i =

g2i, i = 2,3, · · · ,n. This condition is imposed to maintain continuity along the border

{x : x1 = 0}.
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Proposition 7.10 If there exist a P = PT > 0, and feedback gains g1 and g2 with

g1i = g2i, i = 2,3, · · · ,n such that

P− (A+bg1)T P(A+bg1) > 0 (7.53)

P− (B+bg2)T P(B+bg2) > 0 (7.54)

then any border collision bifurcation that occurs in the open-loop system (u ≡ 0)

of (7.51) can be eliminated using switched feedback (7.52). Equivalently, if there exist

a Q, y1 and α ∈ R such that 
 Q AQ+by1

(AQ+by1)T Q


 > 0, (7.55)


 Q BQ+by1

(BQ+by1)T Q


−α


 0 b(e1)T Q

Qe1bT 0


 > 0. (7.56)

then any border collision bifurcation that occurs in (7.51) can be eliminated using

switched feedback (7.52). Here, Q = P−1 and the feedback gains are given by g1 =

y1P and g2 = g1−α(e1)T .

Proof: The closed-loop system is given by

x(k +1) =




(A+bg1)x(k)+µb, if x1(k) ≤ 0

(B+bg2)x(k)+µb, if x1(k) > 0
(7.57)

Using Proposition 7.6, a sufficient condition to eliminate the BCB is the existence of

a P = PT > 0 such that

P− (A+bg1)T P(A+bg1) > 0 (7.58)

P− (B+bg2)T P(B+bg2) > 0 (7.59)
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whereg1, g2 are the control gains to be chosen. Inequalities (7.58),(7.59) are equiva-

lent to 
 Q AQ+by1

(AQ+by1)T Q


 > 0 (7.60)


 Q BQ+by2

(BQ+by2)T Q


 > 0 (7.61)

respectively, whereQ = P−1, g1 = y1P andg2 = y2P. This equivalence can be shown

using similar reasoning as that in the proof of Proposition 7.8.

But, g1i = g2i, i = 2,3, · · · ,n. This restriction ong1 andg2 can be written as

g2 = g1−α(e1)T (7.62)

whereα ∈ R. Therefore,

y1− y2 = g1Q−g2Q

= (g1−g2)Q

= α(e1)T Q (7.63)

Substitutingy2 = y1−α(e1)T Q in (7.61) yields (7.56). This completes the proof.

Note that ifα = 0 in (7.56), then the switched feedback control (7.52) becomes

simultaneous control.

Remark 7.4 We remark that switched control design (with no restriction on feedback

gains) was used in [57] for stabilization of the origin of discrete time switched sys-

tems. No bifurcation control was considered in the referenced work.
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7.3.3 Numerical Examples

In this subsection, we present numerical examples to demonstrate the feedback control

methods of the previous section.

Example 7.4 (Fixed point attractor bifurcating to instantaneous chaos)

Consider the three-dimensional PWA map

x(k +1) =




Ax(k)+bµ, x1(k) ≤ 0

Bx(k)+bµ, x1(k) > 0
(7.64)

where

A =




0.0334 1.7874 −0.1705

−0.4588 −0.4430 −0.8282

0.0474 −0.0416 0.8000


 ,

B =




0.8384 1.7874 −0.1705

−0.8180 −0.4430 −0.8282

0.6602 −0.0416 0.8000


 and b =




1

0

0


 .

The eigenvalues ofA andB areσ(A) = {0.766,−0.1878± j 0.8389} andσ(B) =

{−0.1157,0.6555± j 1.0987}, respectively. Note thatA is Schur stable, butB is

unstable. Simulation results show that (7.64) undergoes a border collision bifurcation

from a fixed point attractor to instantaneous chaos atµ = 0 (see Figure 7.4).

Feedback control design: Using the results of Proposition 7.8, a symmetric and posi-

tive definite matrixQ and a feedback control gain vectorg that satisfy the LMIs (7.42)-

(7.43) are sought. The following solution to (7.42)-(7.43) is obtained using the MAT-
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Figure 7.4: Bifurcation diagram for Example 7.4. The solid line represents a path

of stable fixed points and the shaded region represents a one piece chaotic attractor

growing out of the fixed point atµ = 0.

LAB LMI toolbox:

Q =




0.4753 −0.0428 −0.1694

−0.0428 0.8821 −0.1647

−0.1694 −0.1647 0.5041


 , (7.65)

y =
(

−0.1601 −1.4937 0.3356

)
, (7.66)

g = yQ−1

=
(

−0.5193 −1.7324 −0.0747

)
. (7.67)

The closed-loop matrices are given by

Ac = A+bg

=




−0.4859 0.0550 −0.2452

−0.4588 −0.4430 −0.8282

0.0474 −0.0416 0.8000


 ,
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Bc = B+bg

=




0.3191 0.0550 −0.2452

−0.8180 −0.4430 −0.8282

0.6602 −0.0416 0.8000


 .

Their eigenvalues are:

σ(Ac) = {0.8141,−0.4715± j 0.1409} andσ(Bc) = {−0.4507,0.5634± j 0.3498}.

The bifurcation diagram of the closed-loop system is depicted in Figure 7.5.
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Figure 7.5: Bifurcation diagram for Example 7.4 with simultaneous feedback control

u(k) = gx(k). The solid lines represent a path of stable fixed points.

Example 7.5 (Saddle-node border collision bifurcation)

Consider the three-dimensional PWA map

x(k +1) =




Ax(k)+bµ, x1(k) ≤ 0

Bx(k)+bµ, x1(k) > 0
(7.68)
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where

A =




0.0350 −0.2280 −0.9385

−0.3123 −0.0029 0.9191

−0.3825 −0.5107 0.5553


 ,

B =




3.3000 −0.2280 −0.9385

−0.6299 −0.0029 0.9191

0.3705 −0.5107 0.5553


 andb =




1

0

0


 .

The eigenvalues ofA andB areσ(A) = {−0.2921,0.4397± j 0.3470} andσ(B) =

{3.1739,0.3392± j 0.4756}, respectively. Note thatA is Schur stable, butB is un-

stable. Simulation results show that (7.68) undergoes a saddle node border collision

bifurcation where a stable and an unstable fixed point collide and disappear asµ is

increased through zero (see Figure 7.6).

Feedback control design: We note that a simultaneous stabilizing feedback con-

trol based on Proposition 7.8 does not exist for this example. Therefore, we seek a

stabilizing control using Proposition 7.10. Using the LMI toolbox in MATLAB, a

symmetric and positive definite matrixQ and a feedback control gain vectorsg1 and

g2 that satisfy the LMIs (7.55)-(7.56) are obtained:

α = 3.0972 (7.69)

Q =




25.3606 4.5507 7.9810

4.5507 43.0961 9.8713

7.9810 9.8713 30.8840


 , (7.70)

y1 =
(

5.7709 14.8260 34.4887

)
, (7.71)

g1 = y1Q−1
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Figure 7.6: Bifurcation diagram for Example 7.5 without control. The solid line

represents a path of stable fixed points and the dashed line represents a path of unstable

fixed points.
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=
(

−0.1436 0.1024 1.1211

)
, (7.72)

g2 = g1−α(e1)T

=
(

−3.2408 0.1024 1.1211

)
. (7.73)

The closed-loop matrices are given by

Ac = A+bg1

=




−0.1086 −0.1256 0.1826

−0.3123 −0.0029 0.9191

−0.3825 −0.5107 0.5553


 ,

Bc = B+bg2

=




0.0592 −0.1256 0.1826

−0.6299 −0.0029 0.9191

0.3705 −0.5107 0.5553


 .

Their eigenvalues are:

σ(Ac) = {0.0011,0.2213± j 0.6236} and σ(Bc) = {−0.0002,0.3059± j 0.5102}.

The bifurcation diagram of the closed-loop system is depicted in Figure 7.7.

7.3.4 Washout Filter-Aided Feedback Control Design

In this section, washout filter-aided feedback control is used. As discussed in Sec-

tion 2.1, washout filter-aided feedback has advantages over static feedback in that it

maintains the fixed points of the open loop system even in the presence of model un-

certainty. Moreover, it provides automatic following of the fixed point to be stabilized

which alleviates the need for providing an estimate of the unstable fixed point to the

controller. This is particularly useful in situations where the system model is uncertain

and/or cases where there is parameter drift.
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Figure 7.7: Bifurcation diagram for Example 7.5 with switched feedback controlu(k)

as in (7.52) . The solid line represents a path of stable fixed points.

Using simultaneous washout filter-aided feedback control applied to (7.12) leads

to the closed-loop system

x(k +1) =




Ax(k)+µb+bu(k), if x(k) ∈ RA

Bx(k)+µb+bu(k), if x(k) ∈ RB

(7.74)

w(k +1) = Dx(k)+(I−D)w(k) (7.75)

u(k) = g(x(k)−w(k)) (7.76)

whereD∈R
n×n is a nonsingular matrix such thatI−D is Schur stable,g∈R

1×n is the

control gain vector andw ∈ R
n×1 is the washout filters’ state vector. The closed-loop

system can be written as


 x(k +1)

w(k +1)


 =





 A+ bg −bg

D I −D





 x(k)

w(k)


+


 b

0


µ, if x(k) ∈ RA


 B+ bg −bg

D I −D





 x(k)

w(k)


+


 b

0


µ, if x(k) ∈ RB

(7.77)
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Now the question is: Are thereg andD such that the closed-loop system of (7.77)

is stabilized in the sense that a BCB that may occur in the open loop system is elimi-

nated and local persistent stability produced?

Let Ac =


 A+bg −bg

D I −D


 andBc =


 B+bg −bg

D I −D


. Consider the quadratic

Lyapunov function candidate

V = zT Pz, (7.78)

whereP ∈ R
2n×2n, with P = PT > 0.

Proposition 7.11 If there exist a P = PT > 0, g ∈ R
1×n and D ∈ R

n×n such that

AT
c PAc −P < 0 (7.79)

BT
c PBc −P < 0 (7.80)

then any border collision bifurcation that can occur in the open loop system (7.74)

(with u ≡ 0) can be eliminated. The matrix inequalities (7.79)-(7.80) are equivalent

to the bilinear matrix inequalities (BMIs)
 P AT

c P

PAc P


 > 0, (7.81)


 P BT

c P

PBc P


 > 0. (7.82)

Washout filter-aided feedback results in bilinear matrix inequalities. This is not sur-

prising since washout filter-aided feedback is a form of output feedback and in gen-

eral, Lyapunov-based output feedback control design results in matrix inequalities
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that are bilinear. In recent years, there has been a growing interest in developing

algorithms to solve BMIs (e.g., [68, 75])

The closed-loop system with washout filter-aided feedback can be written as an

output feedback problem as follows:


 x(k +1)

w(k +1)


 =





 A 0

D I −D





 x(k)

w(k)


+


 b

0


µ+


 b

0


u(k), x(k) ∈ RA


 B 0

D I −D





 x(k)

w(k)


+


 b

0


µ+


 b

0


u(k), x(k) ∈ RB

(7.83)

y(k) = (I − I)


 x(k)

w(k)


 (7.84)

u(k) = gy(k) (7.85)

Moreover, the closed-loop system can be also viewed as state feedback with gain

matrix having a special structure

x̃(k +1) =




Ãx̃(k)+ b̃µ+Buu(k), x(k) ∈ RA

B̃x̃(k)+ b̃µ+Buu(k), x(k) ∈ RB

(7.86)

u(k) = Gx̃(k) (7.87)

where

Ã =


 A 0

0 0


 , B̃ =


 B 0

0 0


 , b̃ =


 b

0


 , Bu =


 0 b

I 0


 and

G =


 D I −D

g −g


 .

The problem of finding quadratic stabilizing controllers (controllers based on a quadratic

Lyapunov function) has been recently addressed in [68], and some algorithms for

solving the resulting BMIs were proposed.
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As mentioned in Section 2.1, depending on the structure of the system to be con-

trolled, sometimes the number of washout filters needed is smaller than the dimension

of the system. In some cases, one or two washout filters suffice. In such a case, a sta-

bilizing controller can be found (if one exists) numerically by performing a search

over the control parameters (sayγ, d). For fixed values ofγ, d, the matrix inequalities

are linear, and can therefore be solved using standard LMI solvers (see Section 8.2.3

for an example).

In this work, we leave the study of more general problems related to use of

washout filter-aided feedback to future research.

7.4 Stability and Stabilization of Fixed Points at

Criticality

In this section, stability and stabilization of fixed points at criticality of a switched

discrete-time system are studied using Lyapunov-based techniques. We use results

from the literature on stabilization of fixed point of a switched system [57].

Below, piecewise quadratic Lyapunov functions are used to develop less conserva-

tive sufficient conditions for asymptotic stability of fixed points at criticality than the

ones developed in the previous sections using quadratic Lyapunov functions. How-

ever, the conditions derived in this section only consider the stability of the fixed point

at criticality. The results provide no information on the type of border collision bi-

furcation that can occur in the system. Nonetheless, these results may be useful in

situations where the sufficient condition for nonbifurcation with persistent stability

derived in the previous sections is not satisfied. In such a case, the least one can do

is to stabilize the fixed point at criticality. Numerical simulation can be used to study
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the dynamics of the system with a parameter. We point out that since only stability

and stabilization of fixed points at criticality are considered in this section, there is no

restriction on the control gains or the input vectors as in previous sections.

7.4.1 Analysis of Stability at Criticality Using Piecewise Quadratic

Lyapunov Functions

A piecewise smooth system at criticality can be approximated using a piecewise linear

system of the form

x(k +1) =




A1x(k), if x(k) ∈ R1

A2x(k), if x(k) ∈ R2

(7.88)

wherex ∈ R
n, Ai ∈ R

n×n, i = 1,2 andRi ⊂ R
n, i = 1,2. Here, without loss of general-

ity, we have considered only two regions in the state space. The results can be easily

extended to the case where the state space is divided intom regions, wherem > 2 and

finite.

Consider the piecewise quadratic (PWQ) Lyapunov function candidate

V (x) =




xT P1x, x ∈ R1

xT P2x, x ∈ R2

(7.89)

whereP1 = PT
1 > 0 andP2 = PT

2 > 0.

Proposition 7.12 [57] The origin of (7.88) is asymptotically stable if there exists a

PWQ Lyapunov function (7.89) such that the following matrix inequalities are satis-

fied:

Pi > 0, i = 1,2 (7.90)

AT
i PjAi −Pi < 0, (i, j) ∈ {(1,1),(1,2),(2,1),(2,2)} (7.91)
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Proof: Assumex(k) ∈ Ri andx(k +1) ∈ R j, i, j ∈ {1,2}. Then

∆V (x(k)) = x(k +1)T Pjx(k +1)− x(k)T Pix(k)

= x(k)T (AT
i PjAi −Pi)x(k) (7.92)

From (7.90) and (7.91) it follows thatV (x(k)) is positive definite and∆V is negative

definite along the trajectories of the system. Thus, the origin of (7.88) is asymptoti-

cally stable.

7.4.2 Feedback Control Design

The results of the previous subsection are now used to develop stabilizing switched

feedback controls. Using switched feedback control applied to (7.88) leads to the

closed-loop system

x(k +1) =




A1x(k)+B1u(k), if x(k) ∈ R1

A2x(k)+B2u(k), if x(k) ∈ R2

(7.93)

u(k) =




G1x(k), x(k) ∈ R1

G2x(k), x(k) ∈ R2

(7.94)

whereB1 andB2 are the input matrices (of appropriate dimensions) for the system in

R1 andR2, respectively andG1, G2 are the control gains. In general,B1 �= B2 and they

depend on the available means of actuation for a given system.

Proposition 7.13 [57] Suppose there exist Pi = PT
i > 0 and Gi, i = 1,2 such that

(A j +B jG j)T Pi(A j +B jG j)−Pj < 0, (i, j) ∈ {(1,1),(1,2),(2,1),(2,2)} (7.95)
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Then the origin of the closed-loop system (7.93)-(7.94) is asymptotically stable. Equiv-

alently, (7.93)-(7.94) is asymptotically stable, if there exist Qi = QT
i > 0 and Yi,

i = 1,2 such that
 Qi A jQ j +B jYj

(A jQ j +B jYj)T Q j


 > 0, (i, j) ∈ {(1,1),(1,2),(2,1),(2,2)} (7.96)

where Qi = P−1
i and Yi = GiP

−1
i , i = 1,2.

Proof: The proof of (7.95) follows from the proof of Proposition 7.12 by replacing

Ai with Ai + BiGi, i = 1,2. The equivalence between (7.95) and (7.96) follows by a

straightforward application of the Schur complement.

7.5 Stability Analysis Using Nonmonotonically

Decreasing Lyapunov Functions

Recently, Aeyels and Peuteman [5] reported a new sufficient condition for asymptotic

stability of finite dimensional ordinary differential equations and finite dimensional

difference equations. They showed that, unlike in the classical Lyapunov theory, a

stability condition can be stated in which the time derivative (forward difference) of a

Lyapunov function candidate along trajectories of the system may have positive and

negative values [5]. We will show that this weaker condition on the forward difference

of a Lyapunov function candidate can be used to derive less conservative sufficient

conditions for asymptotic stability of fixed points at criticality of PWS discrete-time

systems.

Consider the discrete-time system

x(k +1) = f (x(k)) (7.97)
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where f : W → R
n is locally Lipschitz, whereW ⊂ R

n is open. Letf (0) = 0 and

0∈ W . Below, we recall the theorem from [5] stated here for time invariant systems.

Theorem 7.1 [5] Consider a function V : U → R with U ⊂ W an open neighbor-

hood of the origin. Assume:

i) V (x) is positive definite.

ii) There exists a finite m ∈ Z, m > 0 and an open set U ′ ⊂ U that contains the origin

such that ∀x ∈ U ′ \ {0} and ∀k ∈ Z

V (x(k +m))−V (x(k)) < 0

Then the equilibrium point x = 0 of (7.97) is asymptotically stable.

Definition 7.1 Define themth step forward difference of a Lyapunov functionV along

trajectories of a discrete time system by

∆Vm = V (x(k +m))−V(x(k))

wherem is a positive integer.

Proposition 7.14 (Sufficient Conditions for Stability at Criticality Using Non-

monotonically Decreasing Common Quadratic Lyapunov Function)

Consider the switched system (7.12) with µ = 0 and a common quadratic Lyapunov

function V (x) = xT Px, with P > 0.

1) ∆V1(x) is negative definite iff

AT PA−P < 0 (7.98)

BT PB−P < 0 (7.99)
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2) ∆V2(x) is negative definite iff

(A2)T PA2−P < 0 (7.100)

AT BT PBA−P < 0 (7.101)

BT AT PAB−P < 0 (7.102)

(B2)T PB2−P < 0 (7.103)

3) ∆V3(x) is negative definite iff

(A3)T PA3−P < 0 (7.104)

(A2)T BT PBA2−P < 0 (7.105)

AT BT AT PABA−P < 0 (7.106)

AT (B2)T PB2A−P < 0 (7.107)

BT (A2)T PA2B−P < 0 (7.108)

BT AT BT PBAB−P < 0 (7.109)

(B2)T AT PAB2−P < 0 (7.110)

(B3)T PB3−P < 0 (7.111)

Moreover, the origin of (7.12) is asymptotically stable if ∆Vm < 0, for some m > 0.

Proof: Follows by a straightforward application of Theorem 7.1.

It is easy to see that∆Vm(x) < 0 =⇒ ∆Vq(x) < 0 for q > m, while the converse

does not hold.

The following example illustrates the use of Proposition 7.14.

Example 7.6 Consider the piecewise linear discrete-time system (7.12) withµ = 0
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and withA andB given by

A =


 0.5 1

−0.3 0


 , B =


 −1 1

−0.1 0




Note that the system is continuous at the borderx = 0 but not differentiable. The

eigenvalues ofA areλA1,2 = 0.2500± j 0.4873 and those ofB areλB1 =−0.8873 and

λB2 = −0.1127.

It can be checked (for example using the LMI package in MATLAB) that a com-

mon quadratic Lyapunov function that shows stability of the origin does not ex-

ist (i.e.,∆V1(x(k)) = V (x(k + 1))−V (x(k)) > 0 for some values ofk > 0). How-

ever, using Proposition 7.14 and the LMI solver in Matlab, it is shown that∆V2 =

V (x(k +2))− v(x(k)) < 0 ∀k > 0 with V (x) = xT Px and

P =


 1.1479 −0.3215

−0.3215 5.0917


 .

Numerical studies show that for this example no bifurcation occurs in (7.12) asµ is

varied through zero.

Proposition 7.15 (Sufficient Conditions for Stability at Criticality Using Non-

monotonically Decreasing Piecewise Quadratic Lyapunov Function)

Consider the switched system (7.12) with µ = 0 and the PWQ Lyapunov function can-

didate

V (x) =




xT P1x, x ∈ RA

xT P2x, x ∈ RB

with P1 > 0 and P2 > 0.

1) ∆V1(x) is negative definite iff

AT
1 P1A1−P1 < 0 (7.112)
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AT
1 P2A1−P1 < 0 (7.113)

AT
2 P1A2−P2 < 0 (7.114)

AT
2 P1A2−P2 < 0 (7.115)

2) ∆V2(x) is negative definite iff

(A2
1)

T P1A2
1−P1 < 0 (7.116)

(A2
1)

T P2A2
1−P1 < 0 (7.117)

(A2A1)T P1A2A1−P1 < 0 (7.118)

(A2A1)T P2A2A1−P1 < 0 (7.119)

(A2
2)

T P2A2
2−P2 < 0 (7.120)

(A2
2)

T P1A2
2−P2 < 0 (7.121)

(A1A2)T P2A1A2−P2 < 0 (7.122)

(A1A2)T P1A1A2−P2 < 0 (7.123)

Moreover, the origin of (7.12) is asymptotically stable if ∆Vm(x) < 0, for some m > 0.

The following example illustrates the use of Proposition 7.15.

Example 7.7 Consider the piecewise linear discrete-time system (7.12) with µ = 0

and with A and B given by

A =


 0.5 1

−0.3 0


 , B =


 −1 1

−0.27 0




The eigenvalues of A are λA1,2 = 0.2500± j 0.4873and those of B are λB1,2 =−0.5000±
j 0.1414.

It can be checked (for example using the LMI package in MATLAB) that a com-

mon quadratic Lyapunov function that shows stability of the origin does not exist
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based on Proposition 7.14. Moreover, a PWQ Lyapunov function with negative one

step forward difference does not exist. However, a PWQ Lyapunov function with

∆V2(x(k)) = V (x(k + 2))− v(x(k))) < 0 exists and can be calculated using the LMI

toolbox in MATLAB. A particular such Lyapunov function has

P1 =


 1.3467 1.0642

1.0642 4.0967


 , P2 =


 2.2299 −1.2542

−1.2542 2.7764


 .

Thus, using Proposition 7.15, we conclude that the origin of (7.12) is asymptotically

stable.
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Chapter 8

Quenching of Alternans in a Cardiac

Conduction Model

The quenching of alternans exhibited as solutions of a cardiac conduction model is

considered. The model consists of a nonlinear discrete-time piecewise smooth system,

and was previously used to show a link between cardiac alternans and period doubling

bifurcation. In this work, it is first shown that the model indeed admits a period

doubling border collision bifurcation, and that it is this bifurcation that leads to the

alternan solutions. No smooth period doubling bifurcation occurs in the parameter

region of interest. Next, the results of the previous chapters on feedback control of

border collision bifurcation are applied to the model, resulting in quenching of the

period doubling border collision bifurcation and hence in alternan suppression.

8.1 Introduction

In this chapter, we revisit the cardiac conduction model proposed by Sun, Amellal,

Glass and Billette [69] with two aims in mind. These aims relate first to a detailed

analysis of the model, and second to control of the bifurcation as will be elaborated
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below. The model is formulated as two dimensional piecewise smooth map. The

model incorporates physiological concepts of recovery, facilitation and fatigue. It

predicts a variety of experimentally observed complex rhythms of nodal conduction.

In particular, alternans, in which there is an alternation in conduction time from beat

to beat, were associated in [69] with a period-doubling bifurcation in the theoretical

model.

As mentioned above, our first aim in this chapter is to perform a more detailed

study of the instability or bifurcation mechanism that leads to alternan solutions.

Second, we are interested in applying the control laws developed in this thesis for

suppressing the alternans in the model. This work demonstrates that the instability

mechanism giving rise to cardiac alternans is in fact not a smooth period doubling bi-

furcation as earlier hypothesized, but rather its nonsmooth cousin, the period doubling

border collision bifurcation.

Several researchers studied the model of [69] and developed control techniques to

eliminate the period-2 rhythm and stabilize the underlying period-1 rhythm (e.g., [17,

15, 16]). With the exception of [16], all the studies of this model reported in the lit-

erature viewed the border collision period doubling bifurcation in this system as if it

were an ordinary period doubling bifurcation in a smooth dynamical system. In [16],

the bifurcation in the cardiac model was identified as a border collision bifurcation

based on numerical evidence. However, no analysis was given to prove this claim.

The authors of [16] also investigated the feedback control of the BCB detected in the

alternan model, but the feedback design was largely based on trial and error, and did

not involve a detailed consideration of the border collision bifurcation. In [15], the

authors propose the use of delayed linear feedback to suppress the period doubling

bifurcation. In [17], the authors apply a technique for control of chaos to suppress the
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alternation resulting from the period doubling bifurcation. In [26], a smooth one di-

mensional map was used as a model for cardiac conduction. A form of linear dynamic

feedback where the unstable fixed point corresponding to the unstable rhythm is es-

timated as the average value of two consecutive beats was used to achieve alternan

quenching [26]. The control gain was determined by trial and error.

In this work, the results on feedback control of border collision bifurcations devel-

oped in the previous chapters are used to quench the period doubling border collision

bifurcation which consequently suppresses the alternans. The feedback can be either

linear or piecewise linear. Both static and washout filter-aided feedbacks are consid-

ered. Washout filter-aided feedback has certain advantages over static feedback: it

maintains the fixed points of the open-loop system even in the presence of model un-

certainty, and it provides automatic following of the fixed point to be stabilized which

alleviates the need for providing an estimate of the unstable fixed point to the con-

troller. This is particularly useful in situations where the system model is uncertain

and/or cases where there is parameter drift.

It is important to realize that, since border collision bifurcations arise at the border

separating regions of smooth operation, a linear feedback that seems to “delay” a

border collision bifurcation to occur away from the border actually does no such thing.

If a BCB seems to have been delayed by feedback, what actually is happening is that

the feedback has changed the BCB to a type that replaces the nominal fixed point by

a new one (fixed point to fixed point BCB), and a new smooth bifurcation has been

created elsewhere (away from the border). Thus, concepts and methods developed

in the control of smooth bifurcations cannot be carried over in a direct way to the

nonsmooth case.
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8.2 The Cardiac Conduction Model

In this section, we consider a cardiac conduction model of [69]. The model incorpo-

rates physiological concepts of recovery, facilitation and fatigue. It is formulated as

a two-dimensional PWS map. Two factors determine the atrioventricular (AV) nodal

conduction time: the time interval from the atrial activation to the activation of the

Bundle of His and the history of activation of the node. The model predicts a vari-

ety of experimentally observed complex rhythms of nodal conduction. In particular,

alternans, in which there is an alternation in conduction time from beat to beat, are

associated with period-doubling bifurcation in the theoretical model.

The authors first define the atrial His interval,A, to be that between cardiac im-

pulse excitation of the lower interatrial septum and the Bundle of His. (See [69] for

definitions.) The model is
 An+1

Rn+1


 = f (An,Rn,Hn)

where

f (An,Rn,Hn) =





 Amin +Rn+1+(201−0.7An)e−Hn/τrec

Rne−(An+Hn)/τ f at +γe−Hn/τ f at


 , for An ≤ 130


 Amin +Rn+1+(500−3.0An)e−Hn/τrec

Rne−(An+Hn)/τ f at +γe−Hn/τ f at


 , for An > 130

(8.1)

with R0 = γexp(−H0/τ f at). HereH0 is the initialH interval and the parametersAmin,

τ f at , γ andτrec are positive constants. The variableHn represents the interval between

bundle of His activation and the subsequent activation (the AV nodal recovery time)

and is usually taken as the bifurcation parameter. The variableRn represents a drift in

the nodal conduction time, and is sometimes taken to be constant. In this work, we

163



considerRn as a variable as in [69]. Note that the mapf is piecewise smooth and is

continuous at the borderAb := 130ms.

8.2.1 Analysis of the Border Collision Bifurcation

Numerical simulations indicate that the map (8.1) undergoes (some type of) super-

critical period doubling bifurcation as the bifurcation parameterS := Hn is decreased

through a critical value (see Figures 8.1-8.2). We show that this bifurcation is in fact a

supercritical period doubling BCB which occurs when the fixed point of the map hits

the borderAb = 130.
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Figure 8.1: Joint bifurcation diagram forAn and forRn for (8.1) withS as bifurcation

parameter andτrec = 70ms,τ f at = 30000ms,Amin = 33ms andγ= 0.3ms.

Let the fixed points of the map (8.1) be given by(A∗−(S),R∗−(S)) for An < Ab and

(A∗
+(S),R∗

+(S)) for An > Ab. Under normal conditions, the fixed point(A∗−(S),R∗−(S))

is stable and it loses stability asS is decreased through a critical valueS = Sb where
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Figure 8.2: Iterations of map showing the alternation inAn as a result of period

doubling bifurcation. The parameter values are:τrec = 70ms, τ f at = 30000ms,

Amin = 33ms,γ= 0.3ms andS = 45ms.

A∗− = Ab. Denote byRb the value ofR∗− at criticality (S = Sb).

Next, we calculate the limiting Jacobian matrices on both sides of the border:

JL =


 −0.7e

−Sb
τrec − Rb

τ f at
e
−(130+Sb)

τ f at e
−(130+Sb)

τ f at

− Rb
τ f at

e
−(130+Sb)

τ f at e
−(130+Sb)

τ f at


 (8.2)

and

JR =


 −3.0e

−Sb
τrec − Rb

τ f at
e
−(130+Sb)

τ f at e
−(130+Sb)

τ f at

− Rb
τ f at

e
−(130+Sb)

τ f at e
−(130+Sb)

τ f at


 (8.3)

Also, the derivative off with respect toS at (Ab,Rb,Sb) is


 b1

b2


 =


 −110

τrec
e
−Sb
τrec − γ

τ f at
e
−Sb
τ f at − Rb

τ f at
e
−(130+Sb)

τ f at

− γ
τ f at

e
−Sb
τ f at − Rb

τ f at
e
−(130+Sb)

τ f at


 (8.4)
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Next, the following parameter values are assumed (borrowed from [69]):τrec =

70ms,τ f at = 30000ms,Amin = 33ms,γ = 0.3ms. For these parameter values,Sb =

56.9078ms,Rb = 48.2108ms and

JL =


 −0.31208 0.99379

−0.001597 0.99379


 , JR =


 −1.33223 0.99379

−0.001597 0.99379




and


 b1

b2


 =


 −0.69861

−0.001607


 .

The eigenvalues ofJL areλL1 =−0.3109,λL2 = 0.9926 (τL = 0.6817,δL =−0.3086)

and those ofJR areλR1 =−1.3315,λR2 = 0.9931 (τR =−0.3384 andδR =−1.3224).

Note that there is a discontinuous jump in the eigenvalues of the Jacobian matrix

when the fixed point hits the border at the critical parameter valuesS = Sb. The

occurrence of a border collision bifurcation atSb is now ascertained by applying The-

orem 2.1. The fixed point attractor forS < Sb becomes unstable forS > Sb and

a period-2 solution is born. The stability of the period-2 orbit with one point in

{(A,R)∈R
2 : A ≤ 130} and the other point in{(A,R)∈R

2 : A > 130} is determined

by looking at the eigenvalues ofJLR := JLJR. These eigenvalues areλLR1 = 0.4135

andλLR2 = 0.9867. This implies that a stable period-2 orbit is born after the border

collision. The supercritical period doubling BCB is shown in the bifurcation diagram

in Figure 8.1. In the figure, the bifurcated solution departs in a nonsmooth way from

the nominal fixed point branch.

8.2.2 Static Feedback Control of the Period Doubling BCB

In past studies of control of the cardiac conduction model considered here, the control

is usually applied as a perturbation to the bifurcation parameter (the nodal recovery
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time)S [17, 16]. The stateAn has been used in the feedback loop by other researchers

who developed control laws for this model (e.g., [15, 16]). We use the same measured

signal in our feedback design. Below, the control methods of Chapter 6 are used to

quench the period doubling bifurcation, replacing the period doubled orbit by a stable

fixed point. First, feedback applied on the unstable side is considered followed by

simultaneous control.

Feedback applied on unstable side

Applying linear state feedback on the unstable side only (An > 130) as a perturbation

to the bifurcation parameterS yields the closed loop system


 An+1

Rn+1


 =





 Amin +Rn+1 +(201−0.7An)e−S/τrec

Rne−(An+S)/τ f at +γe−S/τ f at


 , for An ≤ 130


 Amin +Rn+1 +(500−3.0An)e−(S+un)/τrec

Rne−(An+(S+un))/τ f at +γe−(S+un)/τ f at


 , for An > 130

(8.5)

un = (γ1 γ2)


 An −Ab

Rn −Rb


 = γ1(An −Ab)+γ2(Rn −Rb) (8.6)

For the assumed parameter values, the Jacobians of the closed loop system forAn ≤
130 andAn > 130 are

J̃L = JL =


 −0.31208 0.99379

−0.001597 0.99379


 ,

and

J̃R =


 −1.33223−0.69860γ1 0.99379−0.69860γ2

−0.001597−0.001607γ1 0.99379−0.001607γ2



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=


 −1.33223 0.99379

−0.001597 0.99379




︸ ︷︷ ︸
JR

+


 −0.69860

−0.001607




︸ ︷︷ ︸
b

(
γ1 γ2

)

respectively. Now, we seekγ1, γ2 ≡ 0 such that the eigenvalues of the linearizations

of the closed-loop system satisfy Proposition 5.3. It is straightforward to verify that

(γ1,γ2) = (−1,0) is stabilizing. Figure 8.3 shows the bifurcation diagram of the con-

trolled system with(γ1,γ2) = (−1,0). Note that by settingγ2 = 0, onlyAn is used in

the feedback. In practice, the conduction time of thenth beatAn, can be measured

and it has been used in the feedback loop by other researchers who developed control

laws for this model (e.g., [15, 16]).
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Figure 8.3: Bifurcation diagram of controlled system using linear state feedback ap-

plied on unstable region (An > 130) with control gains(γ1,γ2) = (−1,0).
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Simultaneous feedback control

Applying the same linear state feedback on both sides of the border as a perturbation

to the bifurcation parameter yields the closed loop system


 An+1

Rn+1


 =





 Amin +Rn+1 +(201−0.7An)e−(S+un)/τrec

Rne−(An+(S+un))/τ f at +γe−(S+un)/τ f at


 , for An ≤ 130


 Amin +Rn+1 +(500−3.0An)e−(S+un)/τrec

Rne−(An+(S+un))/τ f at +γe−(S+un)/τ f at


 , for An > 130

(8.7)

un = (γ1 γ2)


 An −Ab

Rn −Rb


 = γ1(An −Ab)+γ2(Rn −Rb) (8.8)

The Jacobians of the controlled system to the left and right of the border are given by

J̃L =


 −0.31208−0.69860γ1 0.99379−0.69860γ2

−0.001597−0.001607γ1 0.99379−0.001607γ2




=


 −0.31208 0.99379

−0.001597 0.99379




︸ ︷︷ ︸
JL

+


 −0.69860

−0.001607




︸ ︷︷ ︸
b

(
γ1 γ2

)

and

J̃R =


 −1.33223−0.69860γ1 0.99379−0.69860γ2

−0.001597−0.001607γ1 0.99379−0.001607γ2




=


 −1.33223 0.99379

−0.001597 0.99379




︸ ︷︷ ︸
JR

+


 −0.69860

−0.001607




(
γ1 γ2

)

respectively. Using the results of Section 6.4, stabilizing control gains(γ1,γ2) are

obtained by solving (6.45)-(6.52). Figure 8.4 shows all stabilizing gains(γ1,γ2) that
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satisfy (6.45)-(6.52), and Figure 8.5 shows the bifurcation diagram of the controlled

system with(γ1,γ2) = (−1,0). Figure 8.6 shows the effectiveness of the control in

quenching the period-2 orbit and simultaneously stabilizing the unstable fixed point.

The robustness of the control law with respect to noise is demonstrated in Figure 8.7.

−6 −4 −2 0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

γ
2

γ 1

Figure 8.4: Stabilizing control gain pairs based on Proposition 6.2 are within the

shaded region in the figure , with simultaneous linear state feedback control.

Lyapunov-based simultaneous feedback control design

The linearization of the cardiac model at a fixed point on the border is given by


 A(k +1)

R(k +1)


 =




JL


 A(k)

R(k)


+bµ+bu(k), if A(k) ≤ 130ms

JR


 A(k)

R(k)


+bµ+bu(k), if A(k) > 130ms

(8.9)
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Figure 8.5: Bifurcation diagram of the controlled system using simultaneous linear

state feedback with control gains(γ1,γ2) = (−1,0).
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Figure 8.6: Iterations of map. Simultaneous linear state feedback control applied at

beat numbern = 500. The control is switched off and on every 500 beats to show the

effectiveness of the controller (S = 48ms and(γ1,γ2) = (−1,0)).
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Figure 8.7: Iterations of map. Simultaneous linear state feedback control applied at

beat numbern = 500. The control is switched off and on every 500 beats to show

the effectiveness of the controller (S = 48ms and(γ1,γ2) = (−1,0)) when zero mean,

σ = 0.5ms white Gaussian noise added toS.

where

JL =


 −0.3121 0.9938

−0.0016 0.9938


 , JR =


 −1.3322 0.9938

−0.0016 0.9938


 andb =


 −0.69861

−0.00161


 .

Next, we use Proposition 7.8 to seek a simultaneous feedback control that elimi-

nates the period doubling BCB and achieve alternans quenching. The LMI package

in Matlab yields

Q =


 0.8499 −0.0011

−0.0011 0.4879


 , (8.10)

y =
(

−1.0018 0.6983

)
, (8.11)

g = yQ−1

=
(

−1.1768 1.4288

)
. (8.12)
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The limiting Jacobians of the closed-loop system are given by

JLc = JR +bg

=


 0.5100 −0.0043

0.0003 0.9915


 ,

JRc = JL +bg

=


 −0.5101 −0.0043

0.0003 0.9915


 .

The eigenvalues of the closed-loop Jacobians are:σ(JLc) = {0.51,0.9915}andσ(JRc) =

{−0.5101,0.9915}. The bifurcation diagram of the open-loop and closed loop system

is depicted in Figure 8.8.
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Figure 8.8: Bifurcation diagram for cardiac model (τrec = 70ms,τ f at = 30000ms,

Amin = 33ms andγ = 0.3ms). (a) Open-loop, (b) Closed-loop using simultaneous

feedback control.
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8.2.3 Washout Filter-Aided Feedback Control of the Period

Doubling BCB

In Section 8.2.2, control of period doubling border collision bifurcation using static

feedback was considered. Static linear feedback changes the operating conditions

(fixed points) of the open-loop system. This results in wasted control effort and may

also result in degrading system performance. Washout filter-aided linear feedback, on

the other hand, does not change the value of the fixed points of the open-loop system

since the control vanishes by nature at steady state. Adding a washout filter in the

feedback loop provides automatic tracking of the fixed point to be stabilized even

in the presence of model uncertainty or small parameter variations. This is valuable

in applications where the parameters may drift, which is particularly useful for the

cardiac arrhythmia model considered in this chapter. A brief summary on washout

filters and their use in control applications is given Section 2.1.

Consider the cardiac model with simultaneous washout filter-aided feedback


 An+1

Rn+1


 =





 Amin +Rn+1 +(201−0.7An)e−(S+un)/τrec

Rne−(An+(S+un))/τ f at +γe−(S+un)/τ f at


 , for An ≤ 130


 Amin +Rn+1 +(500−3.0An)e−(S+un)/τrec

Rne−(An+(S+un))/τ f at +γe−(S+un)/τ f at


 , for An > 130

(8.13)

wn+1 = An +(1−d)wn (8.14)

zn = An −dwn (8.15)

un = γ1zn (8.16)
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The Jacobians of the controlled system to the left and right of the border are given by

J̃L =




−0.31208−0.69860γ1 0.99379 0.69860γ1d

−0.001597−0.001607γ1 0.99379 0.001607γ1d

1 0 1−d




and

J̃R =




−1.33223−0.69860γ1 0.99379 0.69860γ1d

−0.001597−0.001607γ1 0.99379 0.001607γ1d

1 0 1−d




respectively. Note that only one washout filter was used in the feedback loop. In

general, the number of washout filters needed is between one and the the dimension

of the system. In some cases, such as the cardiac model considered here, one washout

filter suffices.

Stabilizing washout filter-aided feedback parameters are obtained using the result

of Proposition 7.10. Figure 8.9 shows the region of stabilizing control parametersγ1,

d, which was obtained using the LMI toolbox in Matlab.

Next, simultaneous static feedback and simultaneous washout filter-aided feed-

back are compared. Figure 8.10 shows the bifurcation diagram of the closed loop sys-

tem for both simultaneous static feedback and simultaneous washout filter-aided feed-

back. Note that the (stabilized) fixed point of the closed loop system using washout

filter-aided feedback coincides with the open loop (unstable) fixed point. However,

the (stabilized) fixed point of the closed loop system using static state feedback is dif-

ferent from the open loop (unstable) fixed point. This is also evident from Figure 8.11

and Figure 8.12 which show that the control effort becomes zero in steady state when

a washout filter is employed, whereas when static state feedback is used, the control

effort approaches a constant value different from zero.
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Figure 8.9: Stabilizing simultaneous washout filter-aided feedback control parameters

are within the shaded region.
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Figure 8.10: Bifurcation diagram of closed loop system, comparing static feedback

control (γ1 = −1, γ2 = 0) with washout filter-aided feedback control (γ1 = −1, d =

0.1). The (red) dotted lines represent the open loop bifurcation diagram.
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Figure 8.11: Time series of closed-loop system with static state feedback applied at

beat number 500 (γ1 = −1, γ2 = 0 andS = 48), (a) Conduction timeAn, (b) Control

inputun.
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Figure 8.12: Time series of closed-loop system with washout filter-aided feedback

applied at beat number 500 (γ1 = −1, d = 0.1 andS = 48), (a) Conduction timeAn,

(b) Control inputun.
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Chapter 9

Conclusions and Suggestions for Future Work

In this dissertation, feedback control of border collision bifurcation in piecewise smooth

discrete-time systems was studied. First, the available results on BCBs in one dimen-

sional PWS maps were summarized and used in the feedback control design. For

two dimensional PWS maps, we have derived sufficient conditions for nonbifurcation

with persistent stability. The derived conditions were then used to design stabilizing

feedback control laws.

Lyapunov-based techniques were used to derive a sufficient condition for nonbi-

furcation with persistent stability in PWS maps of dimensionn, wheren is finite. The

use of Lyapunov techniques facilitates the consideration ofn-dimensional systems

wheren is not restricted to be 1 or 2. The derived condition is in terms of linear

matrix inequalities (LMIs). This condition is then used as a basis for the design of

feedback controls to eliminate border collision bifurcations in PWS maps and to pro-

duce desirable behavior. Both simultaneous and switched feedback control design

were considered. We have shown that when simultaneous feedback control is used,

only the linearizations of the PWS map on both sides of the border are needed. This

alleviates the need for transformations to set the system in a normal form. Moreover,
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simultaneous feedback control is robust to uncertainties in the border. The conditions

on the control gains are in terms of linear matrix inequalities which can be efficiently

solved using LMI solvers.

Washout filter-aided feedback was used to ensure that the fixed points of the open-

loop system are not moved by the feedback action. Other advantages of washout fil-

ters include automatic fixed point following even in the presence of model uncertainty

and small parameter variations. The use of washout filters was shown to lead to suf-

ficient conditions of nonbifurcation that are in terms of bilinear matrix inequalities

(BMIs). However, depending on the structure of the system under study, sometimes

one washout filter is enough to stabilize the system. In such a case, the BMIs can be

reduced to LMIs and solved for the control parameters.

A two-dimensional example on quenching of cardiac arrhythmia was considered.

The cardiac model consists of a nonlinear discrete-time piecewise smooth system. We

have shown that a period doubling border collision bifurcation occurs in the model,

and that it is this bifurcation that leads to the alternan solutions. This is contrary to

what has been hypothesized that a smooth period-doubling bifurcation in the model

leads to the alternans. The results of the dissertation on feedback control of border

collision bifurcation were applied to the model, resulting in quenching of the period

doubling border collision bifurcation and hence in alternan suppression. It has been

shown that washout filter-aided feedback can be used to achieve alternan quenching.

The use of a washout filter facilitates stabilization of the exact value of the unstable

fixed point (which corresponds to the period-1 rhythm) to be stabilized.

In the remainder of this chapter, we outline some interesting problems for future

research.

It was pointed out that the basic theory of BCBs is incomplete and needs further
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development in order for control problems to be adequately addressed. Among the

many open problems of interest are the following:

• Detailed classification of BCBs: As was pointed out in this dissertation, the

theory of border collision bifurcation for nonscalar maps is incomplete and cer-

tainly very preliminary in comparison to the results available for smooth sys-

tems. Therefore, there are a lot of gaps that need to be filled.

• Order reduction principles for BCBs: It would be very useful both for analysis

and feedback control design to obtain order reduction principles for BCBs so

that the study of the dynamics of multidimensional systems can be reduced to

the study systems of lower dimension.

• Exchange of stability/stability of critical systems forn-dimensional PWS discrete-

time systems

• Relation of critical system dynamics to multiple bifurcating attractor phenomenon.

• Performance analysis using Lyapunov techniques.

• Detailed analysis of washout filter-aided feedback control of border collision

bifurcations.
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Transformation to Normal Form in

n-Dimensional PWS Maps

APPENDIX A

Consider the one parameter family of piecewise smooth maps

f (x,µ) =




fA(x,µ), x ∈ Rn
A

fB(x,µ), x ∈ Rn
B

(9.1)

where f : R
n+1 → R

n is piecewise smooth inx ( f is smooth everywhere except on the

border (hypersurface)Γ(x) separatingRn
A andRn

B where it is only continuous),f is

smooth inµ andRn
A, Rn

B are two regions of smooth behavior. Suppose that atµ = µb, a

fixed point of f is at the border separatingRA andRB, i.e.,Γ(x0(µ)) = 0. Assume with-

out loss of generality thatµb = 0 andx0(0) = 0. We also assume that the hypersurface

Γ(x) is smooth around 0. Suppose that∂Γ(0)
∂x1

�= 0, then using the implicit function theo-

rem (see for instance [32, p. 408]), one can solve forx1 in terms ofxi, i = 2, · · · ,n. That

is, there exists a neighborhoodN ⊂ R
n−1 containing the origin and a continuously

differentiable mappingG : N → R such thatΓ(G(x2,x3, · · · ,xn),x2,x3, · · · ,xn) = 0,

∀x ∈ N and wheneverx ∈ N andΓ(x) = 0, thenx1 = G(x2,x3, · · · ,xn).

Now consider the following state transformation:

v1 := x1−G(x2,x3, · · · ,xn) (9.2)

vi := xi, i = 2, · · · ,n. (9.3)
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This transformation is invertible. To see this, we calculate the Jacobian of the trans-

formation:




∂v1
∂x1

∂v1
∂x2

· · · ∂v1
∂xn

...
...

. . .
...

∂vn
∂x1

∂vn
∂x2

· · · ∂vn
∂xn


 =




1 ∂G
∂x2

· · · · · · ∂G
∂xn

0 1 0 · · · 0
... 0

... 1 0

0 0 · · · 0 1




. (9.4)

Thus, the transformation to the normal for is a similarity transformation, hence the

eigenvalues are preserved. In the new coordinates, the border is the hyperplanev1 = 0.

Thus, the normal form for BCBs inn-dimension follows

v(k +1) =




Av(k)+µb, if v1(k) ≤ 0

Bv(k)+µb, if v1(k) > 0
(9.5)

whereA andB are the linearizations of the PWS map after transformation on both

sides of the border, respectively andb is the derivative of the map with respect toµ.
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