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Feedback control of border collision bifurcations in continuous piecewise smooth
discrete-time systems is considered. These bifurcations occur when a fixed point or
a periodic orbit of a piecewise smooth system crosses or collides with the border be-
tween two regions of smooth operation as a system parameter is quasistatically varied.
The goal of the control effort in this work is to modify the bifurcation so that the bi-
furcated steady state is locally attracting and locally unique. In this way, the system’s
local behavior is ensured to remain stable and close to the original operating condi-
tion. Linear and piecewise linear feedbacks are used since the system linearization on
the two sides of the border generically determines the type and stability properties of
any border collision bifurcation.

A complete classification of possible border collision bifurcations is only available
for one-dimensional maps. These classifications are used in the design of stabilizing

feedback controls. For two dimensional piecewise smooth maps, sufficient conditions



for nonbifurcation with persistent stability are proved. The derived sufficient condi-
tions are then used as a basis for the design of feedback controls to eliminate border
collision bifurcations.

For higher dimensional piecewise smooth maps, only very general results on exis-
tence of certain types of border collision bifurcations are currently known. To address
these problems Lyapunov techniques are used to find conditions for nonbifurcation
with persistent local stability in general finite dimensional piecewise smooth discrete
time systems depending on a parameter. A sufficient condition for nonbifurcation
with persistent stability in PWS maps of any finite dimension is given in terms of lin-
ear matrix inequalities. This condition is then used as a basis for the design of feed-
back controls to eliminate border collision bifurcations in PWS maps and to produce
desirable behavior. The Lyapunov-based methodology is used to consider the design
of washout filter based controllers. These are dynamic feedback control laws that
are designed so as not to alter a system’s fixed points, even in the presence of model
uncertainty. In addition, the Lyapunov-based approach is extended to allow nonmono-
tonically decreasing Lyapunov functions. Several examples are given to demonstrate
the efficacy of the Lyapunov-based methods.

Finally, a two-dimensional example of using feedback to quench cardiac arrhyth-
mia is considered. The cardiac model consists of a nonlinear discrete-time piecewise
smooth system, and was previously used to show a link between cardiac alternans and
period doubling bifurcation. In this work, it is first shown that the alternans exhibited
by the model actually arise through a period doubling border collision bifurcation.
The results of the thesis on feedback control of border collision bifurcation are then
applied to the model, resulting in quenching of the bifurcation and hence in alternan

suppression.
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Chapter 1

| ntroduction

In this thesis, we develop stabilizing feedback control laws for piecewise smooth
discrete-time systems exhibiting border collision bifurcations. By piecewise smooth
systems we mean systems that are smooth everywhere except along borders separat-
ing regions of smooth behavior where the system is only continuous. Border collision
bifurcations are bifurcations that occur when a fixed point (or a periodic orbit) of a
piecewise smooth system crosses or collides with the border between two regions of
smooth operation. In this work, the goal of the control effort is to modify the bifurca-
tion so that the bifurcated steady state is locally unique and locally attracting. In this
way, the system’s local behavior is ensured to remain stable and close to the original
operating condition. This is in the same spirit as local bifurcation control results for
smooth systems, although the presence of a border complicates the bifurcation picture
considerably. Indeed, a full classification of border collision bifurcations isn’t avail-
able. So in this work, one of the main goals is to develop sufficient conditions for
desirable (from a dynamical behavior viewpoint) cases.

The term border collision bifurcation was coined by Nusse and Yorke [61]. Bor-

der collision bhifurcation had been studied in the Russian literature under the name



C-bifurcations by Feigin [27, 28]. Di Bernardo, Feigin, Hogan and Homer [23] in-
troduced Feigin’s results to the Western literature. Bifurcations in one-dimensional
piecewise linear maps have been also studied by Hsu, Kreuzer and Kim [41]. Border
collision bifurcations include bifurcations that are reminiscent of the classical bifurca-
tions in smooth systems such as fold and period doubling bifurcations. Despite such
resemblances, the classification of border collision bifurcations (BCBSs) is far from
complete, and certainly very preliminary in comparison to the results available in the
smooth case. In smooth maps, a bifurcation occurs from a one-parameter family of
fixed points when a real eigenvalue or a complex conjugate pair of eigenvalues crosses
the unit circle. In piecewise smooth (PWS) maps, on the other hand, a border collision
bifurcation can occur when a fixed point (or a periodic orbit) crosses or collides with
the border between two regions of smooth behavior. This involves a discontinuous
change in the eigenvalues of the Jacobian matrix evaluated at the fixed point (or at
a periodic point) when the fixed point hits the border. As a result, border collision
bifurcations for piecewise smooth systems in which the one-sided derivatives on the
border are finite are classified based on the linearizations of the system on both sides
of the border at criticality.

The classification of border collision bifurcations is complete only for one dimen-
sional discrete-time systems [62, 73, 10]. Concerning two-dimensional piecewise
smooth maps, Nusse and Yorke [61] and Nusse, Ott and Yorke [60] gave a general
criterion for the occurrence of BCBs based on index theory. This criterion gives a
sufficient condition for the occurrence of a border collision bifurcation. Moreover, a
normal form for BCBs in two-dimensional PWS maps was derived [61]. Yuan [73]
studied BCBs in dissipative PWS maps where it was assumed that the determinants

of the Jacobian matrices on both sides of the border are equal. Banerjee and Gre-



bogi [9] proposed a classification for a class of two-dimensional (dissipative) maps
undergoing border collision bifurcations by exploiting a normal form. However, the
classification was largely based on heuristic arguments, and it will be shown in the
thesis that some aspects of the classification do not hold. It has also recently been
shown by Banerjee, Yorke and Grebogi [12] that the dynamics of two-dimensional
piecewise-smooth (PWS) maps may feature so-called robust chaotic dynamics with-
out parameter windows of periodic behavior. Dutta et al. [25] presented a novel anal-
ysis showing border collision bifurcations in which multiple coexisting attractors are
created simultaneously causing the intriguing phenomenon that in the presence of ar-
bitrarily small noise, the bifurcations lead to fundamentally unpredictable behavior
as a system parameter is varied slowly through its bifurcation value. For higher di-
mensional systems, currently the known results are limited to very general results on
existence of certain types of border collision bifurcations [60, 23].

Since the initial studies of border collision bifurcations, several researchers have
studied bifurcations in PWS systems [60, 63, 7, 8, 74, 9, 10, 11, 23, 45, 52, 77, 76,
51, 24, 66]. PWS systems occur as models for switched systems, such as power
electronic circuits (e.g., [74, 19, 45, 55, 66]) and impacting mechanical systems (e.g.,
[58, 33, 59, 18, 64, 52, 51]). They are usually modeled by piecewise smooth maps.
In this work, we only consider piecewise smooth discrete-time systems with Jacobian
matrices on both sides of the border having finite elements. This excludes piecewise
smooth systems that have a singularity on the border, as in impacting mechanical
systems.

Bifurcations in piecewise-smooth continuous-time systems were studied in [52].
Such bifurcations were called “discontinuous bifurcations.” It was demonstrated by

examples that PWS systems exhibit a variety of possible border collision bifurca-



tions as equilibrium points or periodic orbits cross hypersurfaces separating regions
of smooth behavior as a system parameter is slowly varied through a critical value.
The discontinuous jump of the eigenvalues of the Jacobian matrix as a periodic or-
bit hits the border was conjectured to be a necessary condition for a bifurcation to
occur [52]. These bifurcations are similar to border collision bifurcations observed
in earlier work on PWS maps [61, 60, 62, 23]. Di Bernardo et al. [21] analyzed a
so-called corner-collision bifurcation (which is a type of border-collision bifurcation)
in piecewise-smooth systems of ordinary differential equations. Other examples of
border collision bifurcations in continuous time PWS systems appeared in [77, 76].
In [77], it was shown that BCBs occur in relay control systems with hysteresis and
dead zone nonlinearities.

Piecewise-smooth discrete time maps are used to model systems that are inher-
ently discrete. For example, it has been recently shown that simple computer networks
with Transmission Control Protocol (TCP) connections and implementing a Random
Early Detection (RED) algorithm at the router end can be modeled as one-dimensional
PWS maps [31]. Analysis of such models has revealed that various border collision
bifurcations leading to oscillations and chaos occur as a system parameter is quasistat-
ically varied [65]. Another example of a PWS discrete time computer network model
was analyzed in [70]. It was shown that various kinds of BCBs occur in such a model.
Other examples of PWS discrete time systems which have been shown to exhibit
BCBs can be found in economics (e.g., [40]), biology (e.g., [69]) and in controlled
linear discrete time systems with PWS nonlinearity (e.g., [7]). Piecewise smooth sys-
tems can of course exhibit classical smooth bifurcations, for example at a fixed point
in a neighborhood of which the system is smooth. What is of interest therefore is the

study of bifurcations in PWS systems that occur at the boundaries between regions of



smooth behavior, or that involve motions that include more than one such region.

In this work, the goal is to obtain feedback control laws to ensure a less severe
form of border collision bifurcation than could otherwise occur. Since a full classifica-
tion of possible border collision bifurcations isn’t available, it is crucial that sufficient
conditions for the desirable border collision bifurcations be derived. In particular,
we are interested in obtaining sufficient conditionsronbifurcation with persistent
stability. That is, conditions under which the PWS map possesses a locally asymptot-
ically stable fixed point which is also the locally unique attractor for all valugsiof
a neighborhood of the critical value.

It should be emphasized that, while this work focuses on maps, the results have
implications for switched continuous-time systems as well. Maps provide a concise
representation that facilitates the investigation of system behavior and control design.
They are also the natural models for many applications, as mentioned above. Even
for a continuous-time piecewise smooth system, a control design derived using the
map representation can be translated to a continuous controller either analytically or
numerically.

There is little past work on control of BCBs [20, 22]. The control method of [20,
22]is based on the classification scheme of BCBs that was given by Feigin [23]. How-
ever, since Feigin didn't give conditions for specific scenarios, the results of [20, 22]
do not address stabilization. Also, references [20, 22] use a trial and error approach
that doesn’t provide analytical conditions for existence of controllers. Moreover, the
work in [20, 22] does not take into account the fact that the classification scheme of
BCBs of Feigin, on which their control scheme is based, applies only to PWS maps
that are continuous. Thus, the control they introduce may lead to unpredictable bi-

furcations if the control action introduces discontinuities into the map. In the present



work, a more careful analysis is performed to obtain sufficient conditions for desir-
able (from a dynamical behavior viewpoint) cases, which is then used in the design of
stabilizing feedback controls.

The dissertation proceeds as follows. In the next chapter, theoretical background
material employed in subsequent chapters is collected. The topics include bifurcations
in smooth maps, bifurcation control, washout filters, border collision bifurcations and
linear matrix inequalities.

In Chapter 3, a summary of possible border collision bifurcations in piecewise
smooth maps of dimension one is given as well as some new results. In particular, we
show that subcritical period doubling border collision can occur in one dimensional
piecewise smooth maps. We also determine stability of the fixed point at criticality for
all possible border collision bifurcations. The stability of the fixed point at criticality
is then related to the nature of the border collision bifurcation that occurs.

In Chapter 4, the classification of border collision bifurcations presented in Chap-
ter 3 is used in the design of stabilizing feedback control laws to modify the border
collision bifurcation to one that is less severe. Linear and piecewise linear feedback
control is used since the normal form for BCBs contains only linear terms. The feed-
back can either be applied on one side of the border and not the other, or on both sides
of the border. Both approaches are considered. To achieve robustness to uncertainties
in the location of the bordesimultaneous control is considered— that is, controls
are sought that function in exactly the same way on both sides of the border, while
stabilizing the system’s behavior. Not surprisingly, the conditions for existence of
simultaneously stabilizing controls are more restrictive than for the existence of one
sided controls.

In Chapter 5, we present new results on border collision bifurcations in two di-



mensional piecewise smooth maps. First, a new border collision bifurcation which
we call “dangerous border collision bifurcation” is presented. This bifurcation oc-
curs in two dimensional piecewise smooth maps in spite of the fact that the Jacobian
matrices on both sides of the border are Schur stable. We then present examples of
multiple attractor bifurcations that occur in two dimensional PWS maps even though
the Jacobian matrices of the PWS system on both sides of the border are Schur stable.
Sufficient conditions for nonbifurcation with persistent stability in two dimensional
PWS maps are stated and proved.

In Chapter 6, the nonbifurcation with persistent stability results of Chapter 5 are
used in the design of stabilizing feedback controls. Both Simultaneous control design
(same control acting on both sides of the border) and switched control design are
considered.

In Chapter 7, Lyapunov-based techniques are used in the analysis of finite dimen-
sional piecewise smooth discrete time systems that depend on a parameter. The use of
Lyapunov techniques facilitates the considerationm-dimensional systems whene
is not restricted to be 1 or 2 as in previous chapters. A sufficient condition for nonbi-
furcation with persistent stability in PWS maps of any finite dimension is given in
terms of linear matrix inequalities. This condition is then used as a basis for the de-
sign of feedback controls to eliminate border collision bifurcations in PWS maps and
to produce desirable behavior. The Lyapunov-based methodology is used to consider
the design of washout filter based controllers. These are dynamic feedback control
laws that are designed so as not to alter a system’s fixed points, even in the presence
of model uncertainty. In addition, the Lyapunov-based approach is extended to al-
low nonmonotonically decreasing Lyapunov functions. Several examples are given to

demonstrate the efficacy of the Lyapunov-based methods.



In Chapter 8, the quenching of alternans (cardiac arrhythmia) exhibited as solu-
tions of a cardiac conduction model is considered. The model consists of a nonlinear
discrete-time piecewise smooth system, and was previously used to show a link be-
tween cardiac alternans and period doubling bifurcation. In this chapter, it is first
shown that what actually occurs is a period doubling border collision bifurcation, and
that it is this bifurcation that leads to the alternans. The results of the dissertation on
feedback control of border collision bifurcation are then applied to the model, result-
ing in quenching of the bifurcation and hence in alternan suppression.

In Chapter 9, we collect concluding remarks and discuss possible directions for
future research. Some of the results reported in this thesis were published in various

journal and conference papers [37, 38, 36, 39].



Chapter 2

Preliminary Material

In this chapter, we collect theoretical background material that will be employed in
the sequel. The topics we discuss include: bifurcations in smooth maps, bifurcation

control, washout filters, border collision bifurcations and linear matrix inequalities.

2.1 Background on Bifurcation and Bifurcation Con-
trol in Smooth M aps

A bifurcation is a qualitative change in steady state behavior of a dynamical system
resulting from small parameter changes. Thus, the number and/or type of steady state
behaviors change at a critical value of the parameter, referred to as the bifurcation
parameter. Bifurcation is closely tied to stability, since parameter changes that main-
tain asymptotic stability of an equilibrium point cannot lead to a bifurcation of the
equilibrium.

Next, a brief summary of possible bifurcations in smooth discrete time systems is
given. The purpose of presenting this summary here is that bifurcations in smooth dis-

crete time systems can be compared with those in piecewise smooth systems. Details



on bifurcations in smooth discrete time systems and smooth continuous time systems
can be found, for example, in [35, 71, 47].

Consider the case of andimensional smooth discrete time system

x(k+1) = f(x(k),pw (2.1)

wheref : R"x R — R", pe R is the bifurcation parameter arfds assumed smooth

in x andp. For a discrete time dynamical system which depends on a single param-
eter, there are three types of local bifurcation from a fixed point. (Local bifurcations
involve qualitative changes occurring within a small neighborhood of a fixed point.)
The first case occurs when a single eigenvalue crosses the unit circle through the
point+1 (see Figure 2.1). This is called saddle-node bifurcation, tangent bifurcation
or fold bifurcation. The second case occurs when one eigenvalue crosses the unit
circle through the point-1 (see Figure 2.1). This case is called period doubling or
flip bifurcation. The third case occurs when a complex conjugate pair of eigenvalues
crosses the unit circle (see Figure 2.2). This is known as Neimark-Sacker bifurcation,

secondary Hopf bifurcation, or Hopf bifurcation for maps.

2.1.1 Bifurcation Control

The simplest type of control for systems exhibiting bifurcations is the use of linear
feedback to delay the onset of instability in a smooth control system. By delaying
the instability, any associated bifurcation is also delayed. However, other goals can be
pursued that are more closely tied to control of the nonlinear dynamic aspects of bifur-
cations. For example, using feedback to render supercritical an otherwise subcritical
bifurcation was studied by Abed and Fu [4, 1] under the name local bifurcation con-

trol. A review of this and subsequent work on bifurcation control is available in [3].
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In bifurcation control for smooth systems as discussed by Abed and Fu [4, 1], it
was natural to use nonlinear feedback to alter the bifurcation characteristics of the
system in the desired way. However, linear feedback plays the dominant role in con-
trol of border collision bifurcations because the map linearizations on both sides of
the border determine the nature of the BCBs.

In this work, bifurcation control goals are pursued for border collision bifurca-
tions in piecewise smooth maps. Because of the focus on piecewise smooth maps,
the previous results on bifurcation control of smooth systems are not applicable here.
However, the previous work provides useful motivation in the sense of stating appro-
priate control goals. In addition, some of the techniques found to be useful in control-
ling bifurcations in smooth systems are also employed here. In particular, washout
filter-aided feedback is used to ensure that system operating points aren’t moved by

the feedback control even in the presence of model uncertainty.

2.1.2 Washout Filter-Aided Feedback

A washout filter (also sometimes called a washout circuit) is a high pass filter that
washes out (rejects) steady state inputs, while passing transient inputs [13]. Washout
filter-aided controllers for continuous time systems are discussed by Lee and Abed [50],

Lee [49], and Wang and Abed [72]. A typical discrete-time washout filter is described
by

Wip1 = X+ (1—d)wg (2.2)

Zx = X¢— dwy (2.3)

wherex is a state variable of a dynamical system (or map) to be controlle, the

state of the corresponding washout filtgrjs the output of the washout filter, and
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is the washout filter constant €@ d < 2 for a stable filter). In general, the number of
washout filters needed can be any number between 1 and the dimension of the system.

The control law is taken in the form of a static function of the washout filter output
Z, namelyuy, = u(z) with u(0) = 0. Note that since its by natueg vanishes at steady
state, the fixed points of the map are not shifted by the control. Other advantages of
using washout filters include automatic following of equilibrium points even in the
presence of model uncertainty or parameter drift. For smooth maps, the function
often needs to include nonlinear terms to meet the control objectives. As mentioned
above, however, for BCBs the linear termsurare essential to ensuring that the
bifurcation is of the desired type.

Washout filter-aided feedback was used in control design for smooth systems ex-

hibiting bifurcation in references [2, 53, 50, 72].

2.2 Border Collision Bifurcations

In this section, we collect some known results on border collision bifurcations. First,
the results of Nusse and Yorke [61] and Nusse, Ott and Yorke [60] on border collision

bifurcation are summarized followed by the results of Feigin [23].

2.2.1 Border Collision Bifurcation: The Work of Nusse, Yorke

and Ott

As discussed in the introduction, border collision bifurcations were named by Nusse
and Yorke [61, 60]. They gave a general criterion for the occurrence of border colli-
sion bifurcations in PWS maps based on index theory. Next, we recall some defini-

tions that are needed to state their border collision bifurcation theorem.
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(a) (b)

Figure 2.1: Eigenvalues change continuously as a bifurcation parameter is changed
through a critical value in smooth maps. (a) Period-doubling bifurcation, (b) Saddle-

node bifurcation.

Re

Figure 2.2: Eigenvalues change continuously at a Neimark-Sacker bifurcation as a

bifurcation parameter is changed through a critical value in smooth maps.
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Figure 2.3: Eigenvalues undergoing a discontinuous jump as a bifurcation parameter
is changed through a critical value in piecewise smooth maps (a) Period-doubling

border collision bifurcation, (b) Saddle-node border collision bifurcation.

Im Im

Re

(a) (b)

Figure 2.4: Eigenvalues undergoing a discontinuous jump as a bifurcation parameter
is changed through a critical value in piecewise smooth maps. (a) Possible multiple

attractor border collision bifurcation, (b) Possible dangerous border collision bifurca-

tion.
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Consider a PWS map that involves two regions of smooth behavior:

f(X’ u) _ fA(X7 IJ)7 X € Ra (24)

fe(x,1), XE€Rs

wheref : R" x R — R" is piecewise smooth ir, smooth everywhere except on the
border separatin®a andRg, where it is continuousf is smooth in the bifurcation
parametei andRa, Rg are two regions of smooth behavior separated by a smooth
surface.

Let x(1) be a fixed point off and suppose that for= pp, X(p) is on the border
separatindgra andRg. Assume without loss of generality that = 0. Suppose also
thatx(p) exists for—€ < p < €. The fixed poin(|) is called a border crossing fixed

point [61, 60] if it crosses the border betwdenandRg aspis varied through 0.

Definition 2.1 ([61, 60]) An orbit of periodp is typical if its Jacobian matrix exists
(i.e., the Jacobian matrix of thgth iterate of the map at a point of the orbit) and

neither+1 nor—1 is an eigenvalue of this Jacobian matrix.

The orbit index is a number associated with a periodic orbit, and this number is use-

ful in understanding patterns of bifurcations the orbit undergoes. For typical periodic

orbits, the orbit index is-1, 0, or+1. The orbit index is a bifurcation invariant in the

sense that if one examines the periodic orbits that collapse to the fixedxpojrds

M — 0, and adds the orbit indexes of the periodic orbits that exist just before a bifur-

cation, then that sum equals the corresponding sum just after that bifurcation [61].
Suppose a typical periodic orbit (PO) of a mapas a (minimum) periog@. The

orbit index of that orbit depends on the eigenvalues of the Jacobian mgtok the

map f P (the pth iterate off) at one of the points in PO.
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Definition 2.2 ([61, 60]) Letlpo be the orbit index of a PO. Len be the number of
real eigenvalues okp smaller than-1, and letn be the number of real eigenvalues of

A, greater than-1. The orbit index is defined by

0, if mis odd
lpo = —1, if mis even andhis odd (2.5)

+1, if both mandnare even

Definition 2.3 ([61, 60]) A periodic orbit PO is aisolated border crossing orbit if

(1) PO includes a point that is a border crossing fixed point under some iterate of the
map, and (2) the orbit PO is isolated in phase space whke®. That is, in the plane
there exists a neighborhoddl of the orbit PO such that PO is the only periodic orbit

in U whenu=0.
Next, we recall the border collision bifurcation theorem of Nusse and Yorke [61].

Theorem 2.1 ([61]) Border Crossing Border Collision Bifurcation)

For each two-dimensional piecewise smooth map that depends smoothly on a param-
eter , if the index of an isolated border crossing orbit changes as p1 crosses 0, then at
p = 0 a bifurcation occurs at this point, a bifurcation involving at least one additional

periodic orbit.

The assertion of Theorem 2.1 apply to general piecewise smooth maps of dimension
n [60].

Theorem 2.1 says that additional fixed points or periodic orbits must bifurcate
from x(p) at p= 0 if the orbit index changes. These bifurcating orbits need not be
stable. As an example consider the supercritical period-doubling BCB. Suppose that

for p< O there is a locally unique and locally attracting fixed point, the total index is
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+1. Suppose also that far> 0 there is a flip saddle (orbit index 0) and a period-2
attractor (orbit indext+1). (Note that the two points of the period-2 orbit are collec-
tively assignedt1.) Hence, the sum of the orbit indexes before and after the BCB is
+1. In other words, a border collision bifurcation is a bifurcation at a fixed point (or
periodic point) on the border of two regions when the orbit index of the fixed point (or
periodic point) before the collision with the border is different from the orbit index of
the fixed point after the collision.

We remark that Theorem 2.1 gives a sufficient condition for the occurrence of
border collision bifurcation, and this condition is not necessary. One can easily find
examples where border crossing border collision bifurcation occurs while the index
of the crossing orbit does not change. For instance, if the eigenvalues of the Jacobian
matrices of a two dimensional PWS map on both sides of the border are complex with
absolute values less than one (i.e., the eigenvalue lie inside the unit circle), then the
orbitindex is zero before and after the bifurcation. This does not imply that no border
collision bifurcation occurs. Indeed bifurcations of the form “fixed point attractor plus
period+; attractor to fixed point attractor plus perigd-attractor” are possible, where
p1, P2 are positive integers greater than two (some examples of this type of BCB are
given in Chapter 5). Moreover, Theorem 2.1 does not consider the case when the
fixed pointx(p) exists on one side of the border only. In such a situation, the fixed
point collides with the border (and possibly with other periodic orbits) and disappears.
This is the case in a border collision pair bifurcation (or saddle node border collision
bifurcation) where two fixed points on one side of the border merge at the border and
disappear.

Nusse and Yorke [61] showed that for two-dimensional piecewise smooth maps, a
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normal formfor border collision bifurcation is given by

(
A 1 Xk 1
+ B X <0
X -0a O Yk 0
i (2.6)
Yik+1 8 1 Xk 1
+ M X¢>0
-0 O Yk 0
\

whereta anddp are the trace and the determinant of the limiting Jacobian matrix

in Ra evaluated at a fixed point at the border. Similany, and dg are the trace

and the determinant of the limiting Jacobian matrixRg evaluated at a fixed point

on the border. If the limiting Jacobian matrices with limits taken on both sides of
the border have no eigenvalues on the unit circle, then border collision bifurcation
that occurs in the original system before transformation can be studied by using the
normal form [61, 9, 23]. Examples of various border collision bifurcations that can
occur in two dimensional PWS maps can be found in [61]. The normal form (2.6)
was used in [74, 9] to study BCBs in a class of two-dimensional PWS maps. It was
demonstrated that, depending on the eigenvalues of the Jacobian matrices on both

sides of the border, various possible BCBs occur [74, 9].

2.2.2 Border Coallision Bifurcation (or C-bifurcation): The Work
of Feigin

Border collision bifurcations have been studied in the Russian literature under the
nameC-bifurcation [27, 28, 23]. The letteZ is derived from the Russian wostiv-

anije meaning sewing [23]. Di Bernardo, Feigin, Hogan and Homer [23] introduced
Feigin’s results to the Western literature.

Below, the main results of Feigin are summarized. Consider the one parameter
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family of piecewise smooth maps

f(X u) _ fA(X7 IJ)7 X€ Ra (2 7)
’ fB(X,U)7 X € Rg

wheref : R"1 — R" is piecewise smooth ix; f is smooth inx everywhere except
on the border (hypersurfadg separatingRa andRg where it is only continuousf
is smooth inp andRa, Rg are the two (nonintersecting) regions of smooth behavior.
In this work, we are interested in studying the dynamicd @it a fixed point (or a
periodic orbit) near or at the bord€r If the fixed point (or periodic orbit) is ifRa
(respectivelyRg) and is away from the border, then the dynamics is merely deter-
mined by the maffa (respectivelyfg). If on the other hand, the fixed point is close
to the border, then jumps across the border can occur except in an extremely small
neighborhood of the fixed point. Therefore, for operation close to the borderfkoth
and fg are needed in the study of the possible behavior. For a fixed point at or near
the border, the dynamics is determined by the linearizations of the map on both sides
of the border.

Border collision bifurcations occurring in the map (2.7) can be studied using the

piecewise-linearized representation [23]

Ax(K) + b, xy(K) <0
X(k+1) :=Fu(x(k)) = (2.8)
Bx(k) +bp, x3(k) >0
whereA is the linearization of the PWS malpin Rp at a fixed point on the border
approached from points iRp near the border an is the linearization of at a fixed
point on the border approached from point&gandb is the derivative of the map
f with respect tq.. The coordinate system is chosen such that the sign of the first

component of the vectotr determines whethetis in Ra or Rg (a transformation to

the form (2.8) is given in Appendix 9). K; = 0, thenx is on the border separating
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Ra andRg. The continuity ofF, at the border implies tha andB differ only in their
first columns.

The classification of border collision bifurcations (BCBs) depends on the eigen-
values ofA andB [23]. A complete classification of BCBs is only available for one
dimensional PWS maps. For two dimensional PWS maps, some results are available
that only address a class of 2-D PWS maps [61, 73, 9].

Although Feigin [23] studied generaldimensional PWS maps exhibiting border
collisions, only very general conditions for existence of a fixed point and period-2
solutions before and after the border were given. The classification scheme of [23]
does not give any information about stability or uniqueness of fixed points or period-2
orbits involved in the border collision bifurcation nor does it give information about
higher period periodic orbits or chaos that might be involved in a border collision
bifurcation.

Next, we recall the main results of [23]. Assume that &1(A), 1 ¢ o(B) (i.e.,
bothl — A, | — B are nonsingular). Formally solving for the fixed points of (2.8), we
obtainxa(p) = (1 — A)~tbuandxg (M) = (I — B)~*bu. Forxa(p) to actually occur, the
first component oka(l) must be nonpositive, i.e(e!)Tu(l — A)~tb < 0. Similarly,
for xg(W) to actually occur, we nee@!)"p(l — B)~tb > 0. If on the other hand, the
first component oka(|) is positive (the first component @g(|) is nonpositive), then
the fixed point is called a virtual fixed point. Virtual fixed points are important in
studying the dynamics of a PWS map near the border.

Let pa(A) and pg(A) be the characteristic polynomials AfandB, respectively.
Then,pa(A) = detAl —A) andpg(A) = detAl —B).

Below, some definitions and notations are recalled from [23].
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Definition 2.4 ([23]) Let
0, := number of real eigenvalues Afwhich are less than 1,
Og := humber of real eigenvalues Bfwhich are less than 1,
o, = number of real eigenvalues Afwhich are greater than 1,
og = number of real eigenvalues Bfwhich are greater than 1,
0, := number of real eigenvalues &Ff which are greater than 1,

0, = number of real eigenvalues &8 which are greater than 1.

Three main events can take placeias increased (decreased) through zero [23]:

e A fixed point (periodic orbit) exists on one side of the border fiot O is
smoothly changed into another fixed point (periodic orbit) on the other side

of the border fo > 0O if

pa(l)ps(l) >0 <= o4 +0g iseven (2.9)

e Two fixed points (periodic orbits) exist on one side of the bordefer0 (or

K> 0) merge and annihilate each othenespproaches zero if
pa(l)ps(l) <0 <= o4 +0g isodd (2.10)
e A new period-2 solution bifurcates pt= 0 if
pa(—1)pe(—1) <0 <= 0, +0g isodd (2.12)

The condition (2.10) is analogous to saddle node bifurcation in smooth maps,
where two fixed points merge and disappear at the bifurcation.
From the summary on the theoretical results available to-date on border collision

bifurcations, it is clear that the theory is general in nature and not much is available
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in the way of clear sufficient conditions for the various types of BCBs either in the
n-dimensional case or in the two-dimensional case. It is not our purpose in this work
to fill in all the gaps in the mathematical theory of BCBs. Rather, since our ultimate
goal in this thesis is the development of control techniques for BCBs, we are most
interested in conditions guaranteeing the less severe forms of BCBs. In later chapters,
we address the question of obtaining sufficient conditionsnémbifurcation with
persistent stability . That is, conditions under which local asymptotic stability of the
fixed point of a PWS map is maintained and no border collision bifurcation occurs as

the bifurcation parameter is varied through its critical value.

2.3 Linear Matrix Inequalities(LMIs)

Linear matrix inequalities (LMIs) have attracted a lot of attention in recent years.
They emerged as a powerful design tool in many areas including control engineer-
ing and structural design. The main reason that makes LMI techniques appealing is
the development of many efficient algorithms for solving convex optimization prob-
lems [14]. LMIs are particularly useful in situations where no analytical solution is
available. A large number of control problems have been recognized to be reducible
to LMI-based optimization problems, and efficient software tools for solving these
optimization problems exist (see [14, 34] and references therein).

A linear matrix inequality is any constraint of the form [14, 34]
AX) :=Ao+X1A1+ -+ XmAm < 0 (2.12)
where

e X=(X1,X2,---,Xm) iS @ vector of unknown scalars usually called the decision or

optimization variables.
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e The matriced\g, A1, - - -,Am are given symmetric matrices.
e The inequality sign &” stands for negative definite. That i&(x) < 0 <=
uTA(X)u < 0,V u# 0. Equivalently, the largest eigenvalueAi) is negative.

The solution set of the LMI (2.12) given y:= {x € R™| A(x) < 0} is convex and
is called the feasible set (since (2.12) represents the constraints in an optimization
problem). To see thais convex, leu,v € SandA € [0,1]. SinceA(x) is affine inx,

we have
AAU+ (1—=A)V) =AA(U) + (1—-A)A(v) < 0. (2.13)
Below, we collect some useful properties of LMIs.

Intersection: If G(x) < 0 andH(x) < 0 are LMls, then so is

G(x) 0
<0. (2.14)
0 H(x)

A pointx € R" is feasible for the intersection of two LMlIs if and only if it is feasible

for each of the original LMIs.

Scaling: Fora >0

G(x) <0 <= 0aG(x)<0 (2.15)

Similarity: Supposés : R™ — R", andH € R™P hasker(H) = {0}. Then
G(x) <0 <<= HTG(XH<O0 (2.16)

Lemma 2.1 [14] (Schur Complement)

The following inequalities
R>0 (2.17)

Q-SRI >0 (2.18)
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where Q = Q" and R= R are equivalent to

Q S
ST R

>0 (2.19)

In other words, the set of nonlinear inequalities (2.17)-(2.18) can be represented as

the LMI (2.19).

Lemma 2.2 [57] (Schur Complement: Alternative Form)

Inequalities (2.17)-(2.18) and (2.19) are equivalent to

Q>0 (2.20)
R-S'Q1s>0 (2.21)
and
R S
>0 (2.22)
S Q
respectively.
Proof: Note that
R S 0 1 Q S 0 I
= (2.23)
S Q ) ST R )

The equivalence between (2.19) and (2.22) follows using the similarity property (2.16)
of LMIs. The LMIs (2.20)-(2.21) follow from an application of the Schur complement
to (2.22). |
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Linear InequalitiesasLMIs[48]:

Letxe R", b € Randc € R",i=1,---,mbe column vectors. The linear constraints

cix < by

X < by

X < bm

can be expressed as a diagonal LMI

CIX—bl

)
c,X—Db
272 <0 (2.24)

Chx — b
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Chapter 3

Border Collison Bifurcation in One

Dimensional M aps

The purpose of this chapter is to provide a summary of known results on border colli-
sion bifurcation for one-dimensional (1-D) piecewise smooth (PWS) maps and to give
several results on BCBs for 1-D maps that haven't been reported previously. These
results will be used in Chapter 4 in designing stabilizing feedback controllers for 1-D

maps.

3.1 Mathematical Settingand Normal Form

The analysis of border collision bifurcations (BCBs) in 1-D PWS maps is straightfor-
ward. There are two main ingredients in the analysis: (i) an observation about normal
forms being affine (for fixed points on borders), and (ii) sketches that clarify how fixed
points and periodic points depend on the bifurcation parameter for the scenarios asso-
ciated with the various cases. For simplicity, a PWS map is considered that involves

only two regions of smooth behavior.
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Consider the 1-D PWS system

X1 = T (X W) (3.1)
where the mag (x, 1) takes the form

() = fa(X ), X< Xp (3.2)
fB(X M), X=X
and whereu is the bifurcation parameter. Since the system is one-dimensional, the
border is just the point,. The mapf : R x R — R is assumed to be PW$:depends
smoothly orx everywhere except at, where it is continuous ir. It is also assumed
that f depends smoothly op everywhere. Denote biga andRg the two regions in
state space separated by the borRar:= {x: x < xp} andRg := {X: X > Xp}.

Let x() be a path of fixed points of; this path depends continuously @n
Suppose also that the fixed point hits the boundary at a critical parameteralue
X(Hp) = Xp. Below, conditions are recalled for the occurrence of various types of BCBs
from x, for P nearp,.

The normal form for the PWS map (3.1) at a fixed point on the border is a piece-
wise affine approximation of the map in the neighborhood of the border pgiir

scaled coordinates [62, 23, 10]. For completeness, a derivation of the 1-D normal

form is now recalled [10]. Letting = Xx— xp andyu = p— Wy, EQ. (3.2) becomes

. fA(X+Xo, I+ Hp), X<

FGH) 1= f (K X, it Ho) = (33)

0
fB(X+Xo, U4 Hp), X>0
In these variables, the border isat 0, and the state space is divided into two halves,
R_ = (—,0] andR;. = [0, ). Also, the fixed point of (3.1) is at the border for the
parameter valug = 0.

Expandingf to first order about0,0) gives
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. axX—+ Ww+o(x, 1), x<0
fxw=y _ (3.4)
bx+ pv+o(X,p), x>0
where
a = lim 2f“(>?0) b= lim 3?(%0) and v=lim if“(>?0)
w0 ox 7 T xmorox Cxsoop

(The last limit doesn’t depend on the direction of approach of bglue to the
assumed smoothnessin |.) Suppose £ 0, |a] # 1 and|b| # 1. The assumptions
la| # 1 and|b| # 1 imply that the nonlinear terms are negligible close to the border.
The assumptiowv £ 0 means that the fixed point crosses the bordgu esvaried
through its critical value. The 1-D normal form is therefore obtained by defining a
new parameten = pv and dropping the higher order terms [10]:
_ ax+H, X<0
GixW=¢  _
bx+u x>0
The normal form mayss4(+,-) can be used to study local bifurcations of the original
mapf(-,-) [62, 23, 10].
For simplicity of notation, belowx, ) is used instead of; if). The normal form

is therefore
Xer1 = G1(X W) = Vet h X=0 (3.5)
bxk+H, x>0
Denote byxg(l) and xa(p) the fixed points of the system near the border to
the right & > xp) and left k < x,) of the border, respectively. Then in the normal
form (3.5),xg(M) = ﬁ) andxa(pW) = %i For the fixed poinkg() to actually occur,

we needﬁ > 0 which is satisfied if and only if eithgr>0andb < 1 orp<0 and

28



b > 1. Similarly, forxa() to actually occur, we neefl_ia < 0 which is satisfied if and
only if eitheru<0anda< 1 orp>0anda> 1.
Various combinations of the parametarandb lead to different kinds of bifurca-
tion behavior agu is varied. Since the ma@; is invariant under the transformation
X — —X, H— —W, a= b, it suffices to consider only the caae> b.
The possible bifurcation scenarios are recalled next. Some of the language used
below to describe the BCBs is introduced here to more easily convey the ideas. All

the results below pertain to system (3.5).

3.2 Persistent Fixed Point (Scenario A)

In this scenario, a fixed point for < O crosses the border and persistsifor 0. Two

situations lead to this scenario. These are presented next.
Proposition 3.1 [73, 10](Scenario Al: Persistence of Stable Fixed Point)
If —l<b<ax<l1 (3.6)
then a stable fixed point for p < O persists and remains stable for p > 0.
Figure 3.1 illustrates the dependence of the iBa@nd its fixed points op near
the border. The system has a single eigenvalue at the fixed point, which changes

discontinuously at the border. The distinct eigenvalues are the slopes of the map on

the two sides of the vertical axis in Figure 3.1.
Proposition 3.2 [73, 10](Scenario A2: Persistence of Unstable Fixed Point)

If i) l1<b<a (3.7)

or i) b<a< -1 (3.8)
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Figure 3.1: Dependence of first return map and its fixed point tor Scenario A1
(1< b<a<1)isshown here. Intersections of the map with the kpe, = X, are

the fixed points.
then an unstable fixed point for u < 0 persists and remains unstable for 1> 0.

Figure 3.2 shows typical bifurcation diagrams for Scenario A1 and Scenario A2.

3.3 Border Collision Pair Bifurcation (Scenario B)

For other values of the parametarandb, there are two main kinds of border collision
bifurcation, namelyborder collision pair bifurcation andborder crossing bifurcation.
Border collision pair bifurcation is similar to saddle node bifurcation in smooth sys-
tems, where two fixed points of the system collide and disappear at the bifurcation.
Border crossing bifurcation, on the other hand, has some similarities with period dou-

bling bifurcation in smooth maps as discussed below.
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Figure 3.2: Bifurcation diagrams for Scenarios A1 and A2. A solid line represents
a stable fixed point whereas a dashed line represents an unstable fixed point. (a) A
typical bifurcation diagram for Scenario Al. (b) A typical bifurcation diagram for

Scenario A2.

In border collision pair bifurcation, the map has two fixed points for positive (re-
spectively, negative) values gf and no fixed points for negative (respectively, pos-
itive) values ofy.. For thep range that two fixed points exist, one fixed point is on
one side of the border and the other fixed point is on the opposite side. The border
collision pair bifurcation occurs b < 1 < a. There are three situations that lead to

this scenario. These are summarized next (see also Figure 3.3).

Proposition 3.3 [73, 10] (Scenario B1: Merging and Annihilation of Stable and
Unstable Fixed Points)
If —1l<b<l<a (3.9)
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then there is a bifurcation from no fixed point to two period-1 fixed points. In this
case, there isno fixed point for 1 < 0 while there are two fixed points xa () (unstable)

and xg() (stable) for p> 0.

A typical bifurcation diagram for Scenario B1 is depicted in Figure 3.3 (a). Scenario

B1 is analogous to saddle-node bifurcation (or tangent bifurcation) in smooth maps.

Proposition 3.4 [73, 10](Scenario B2: Merging and Annihilation of Two Unsta-
ble Fixed Points, Plus Chaos)

If a>1 and —a%l<b<—1 (3.10)

then there is a bifurcation from no fixed point to two unstable fixed points plus a

growing chaotic attractor as L isincreased through zero.

A typical bifurcation diagram for Scenario B2 is depicted in Figure 3.3 (b). A proof
of this proposition is given in [73]. We point out that for the rangea@ndb given

in (3.10), the normal form is basically a family of tent maps.

Proposition 3.5 [73, 10](Scenario B3: Merging and Annihilation of Two Unsta-
ble Fixed Points)
a

If a>1 and b<_ﬁ (3.11)

then there is a bifurcation from no fixed point to two unstable fixed points as i is
increased through zero (see Figure 3.3 (¢)). Also an unstable chaotic orbit exists for

K> 0. The system trajectory diverges for all initial conditions.

A typical bifurcation diagram for Scenario B3 is depicted in Figure 3.3 (c). A proof

of this proposition is given in [73].
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Figure 3.3: Bifurcation diagrams for Scenarios B1-B3. A solid line represents a stable
fixed point whereas a dashed line represents an unstable fixed point. (a) A typical
bifurcation diagram for Scenario B1. (b) A typical bifurcation diagram for Scenario

B2. (c) A typical bifurcation diagram for Scenario B3.

3.4 Border Crossing Bifurcations (Scenario C)

In border crossing bifurcation, the fixed point persists and crosses the bondés as
varied through zero. Other attractors or repellers may appear or disappear as a result
of the bifurcation. Border crossing bifurcation occursHi < a < 1 andb < —1.

There are three situations that lead to this scenario. These are summarized next.

Proposition 3.6 [73, 10] (Scenario C1: Supercritical Period Doubling Border

Collision Bifurcation)

If b<—-1l<a<l and -—-1l<ab<l1 (3.12)
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then there is a bifurcation from a stable fixed point to an unstable fixed point plus a

stable period-2 orbit as L isincreased through zero.

A typical bifurcation diagram for Scenario C1 is depicted in Figure 3.4(a). This bi-
furcation is analogous to supercritical period doubling bifurcation in smooth maps.

It is important to point out that a signature of BCBs is that the fixed points meet
and form an acute angle (or a cusp) at the bifurcation point [73], which distinguishes
BCBs in PWS maps from those occurring in smooth maps. This can be used as a

signature of BCBs which may be useful in analysis of experimental data.

Proposition 3.7 (Scenario C2: Subcritical Period Doubling Border Collision Bi-
furcation)?!

If b<-1<a<0 and ab>1 (3.13)

then there is a bifurcation from a stable fixed point along with an unstable period-2

orbit to an unstable fixed point as pis increased though zero.

A typical bifurcation diagram for Scenario C2 is depicted in Figure 3.4(b). This bi-
furcation is analogous to subcritical period doubling bifurcation in smooth maps.
To show the bifurcation of an unstable period-2 orbitffiot. O, consider the first

and second return maps (fpx 0), given by

axc+H, X <0
X+l = (3.14)

bx+H, x>0

abxe+u(1+b), X< %

Xer2=1q aX+HU1l+a), —L<x<0 (3.15)

IN

abxc+ u(1+a), Xk >0

In [73, 10], the terminologyPeriod-1 — No Attractor is used to describe this case, and the bifur-

cation of an unstable period-2 orbit is not mentioned.
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respectively. The first return map has a stable fixed pagiit) = r“a The second

return map has three fixed points one of which coincides witln). The other two

fixed points are given by; = #12 < 0 andx; = W3 0. The fixed points¢

andx; are unstable (since the slope of the second return map at both fixed points is
ab > 1). Sincex] andx; form a period-2 orbit for the first return map, it is concluded
that the normal form has an unstable period-2 orbit in addition to the stable fixed point
before the border (see Figure 3.4(b)). It remains to show that there is no period-2 orbit
for u> 0. To this end, suppose that there is a period-2 orbiife0 formed byx; < 0

andx; > 0. This means that if one starts)dt the next iterate i%;. Applying the map

one more time givez; and so on. It is straightforward to show tht= %f—gﬁ) and

Xy = % with p> 0. Now we show that starting &% for example, and iterating the
map twice giveé% # X3 and thus the map does not have a period-2 orbit

for p> 0.

Proposition 3.8 [62] (Scenario C3: Emergence of Periodic or Chaotic Attractor

from Stable Fixed Point)
If O<a<l b<-1and ab< -1 (3.16)

then there is a bifurcation from a stable fixed point to an unstable fixed point plus a

period-n attractor, n > 2 or a chaotic attractor as pisincreased through zero.

The specific scenario, periadattractor or chaotic attractor, depends on the zal)(
as shown in Figure 3.5 (see [62] for details). The possible bifurcation scenarios for

system (3.5) are summarized in Fig. 3.6, which expands on a similar figure in [10].

35



Stable period—-2 orbit

@)

(b)

r Unstable period-2 orbit b

Figure 3.4: Typical bifurcation diagrams for Scenarios C1 and C2. A solid line repre-
sents a stable fixed point whereas a dashed line represents an unstable fixed point.
(a) Supercritical period doubling border collision (Scenario 6k -1 <a<1

and —1 < ab < 1), (b) Subcritical period doubling border collision (Scenario C2,

b< —-1<a<0andab>1).

3.5 Stability of the Fixed Point at Criticality in

Scenarios A-C

The following results give detailed statements relating stability of the fixed point at
criticality with the nature of the BCB that occurs. These results, though not difficult

to obtain, haven’t previously been stated.

Proposition 3.9 Theoriginof (3.5) at u= 0isasymptotically stableif and only if any
of (i)-(iii) below holds
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P, Py

Figure 3.5: The bifurcation behavior describing Scenario C3 €< 1 andb < —1).
Shaded regions indicate the existence of a chaotic attractorBpda=2,3,---,7,

indicates the existence of a stable perioattractor [62].

()-l<a<land—-1<b<1

(i){0<a<landb< —-1}or{O<b<landa< —1}
(iii{-1<a<0,b<—-landab< 1} or {-1<b<0,a< —1landab< 1}.
The origin of (3.5) at p= 0 isunstable iff any of (iv)-(vi) below holds
(ivi{-1l<a<landb>1}or{-1<b<landa>1}
W{-1<a<0b<—-landab>1}or{-1<b<0,a<—-landab> 1}
(vi) |a| >1and |b| > 1.

37



Proof (cases (i)-(iii)): Consider the piecewise quadratic Lyapunov function

X6, %<0
Vix)={ P (3.17)

pox2,  X>0

wherep; > 0 andpz > 0. Clearly,V(x) is positive definite. To show asymptotic
stability of the origin of (3.5) at criticality { = 0), we need to show that the for-
ward differencedV (x) :=V (% 1) —V (X) is negative definite along the trajectories

of (3.5) for allxx # 0. There are two cases:

Case 1x <0
(
AV (Xk) _ pl(X|%+1 - XI%)? X1 < 0
| P2E P, X1 >0
(
) (@ -1), X1 <0 3.18)
\ X2 (p2a® —p1), X1 >0
Case 2x¢ >0
)
AV (Xk) _ pZ(Xﬁ_H_ - Xl%)u Xk+1 > 0
\ PIXE, 1 — PG, X:1<O0
>
) X0 -1), X1 >0 3.19)
| XK(Pb?—p2), X1 <O

It remains to show thakV (xx) < 0 for all xi = 0 in (i)-(iii).

() —1<a<land-1<b<1: Choosgi = p2=: p>0. From (3.18), it follows that
AV (x) = px2(a® — 1) < 0 and from (3.19) it follows thadV (x) = px2(b? — 1) < 0.
ThusAV (xk) < 0 Vxg # 0.

(i) 0 <a< 1 andb < —1 (the proof for the symmetric case<Ob < 1 anda < —1

is similar and therefore omitted): Since<0a < 1, if xx < 0 thenxy,1 = axx < 0.
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From (3.18) AV (x«) = p1x&(a? — 1) < 0. Sinceb < —1, if X > 0 thenx;1 = bx < 0.
From (3.19) AV (x) = x2(p1b?— p2) < 0if and only if p, > p1b? > 0. Thus, choosing
p1 > 0 andp, > p1b? results in a positive definité and a negative definitV (x).

(i) —1<a<0,b< —1andab < 1 (the proof for the symmetric casel < b < 0,
a< —1 andab < 1is similar and therefore omitted): Sinedl < a < 0, if xx < 0 then
Xei1 = a% > 0. From (3.18) AV (x¢) = x2(ppa2 — p1) < 0 if and only if p; > ppaZ.
Sinceb < —1, if X > 0 themx, 1 = bxc < 0. From (3.19)AV (x) = X2(p1b? — p2) < 0
if and only if p; < £2. Thus, p; and p, must be chosen such thpga? < p; < £%.
Clearly, anyp, > 0 works. Forp; > 0 to exist, we nee% > a? which is satisfied

sinceab < 1 by hypothesis.

Proof (cases (iv)-(vi)): It suffices to show that no matter how close the initial condi-

tion is to the origin, the trajectory of (3.5) diverges.

(iv) —1<a< 1andb> 1 (the proof for the symmetric casel <b < landa> 1is
similar and therefore omitted): L&y =€ > 0. Thenxx; = be, xo = b%e andx, = bXe.

As kK — o0, X, — c0 N0 matter how smakh is.

(V) —1<a<0,b< —1andab > 1 (the proof for the symmetric casel <b < 0,a<
—1 andab > 1 is similar and therefore omitted): Lreg = € > 0. It is straightforward

to show thakoy = (ab)ka. Sinceab > 1, Xpx — o ask — oo, for any fixede.

(vi) Similar to the other cases proved above. |
The assertions of the next theorem follow from relating the stability of the fixed
point at criticality as given in Propositions 3.9 with the ensuing bifurcation for differ-

ent regions in théa, b) parameter space as discussed at length in this chapter.

Theorem 3.1 1) If the fixed point of system (3.5) isasymptotically stable at criticality

(i.e,, at p= 0), then the border collision bifurcation is supercritical in the sense that
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no bifurcated orbits occur on the side of the border where the nominal fixed point is
stable and the bifurcated solution on the unstable side is attracting.

2) If the fixed point of system (3.5) is unstable at criticality, then the border collision
bifurcation is subcritical in the sense that thereis no stable bifurcated orbit on one or

both sides of the border.
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Figure 3.6: Partitioning of the parameter space into regions with the same qualitative
phenomena. The labeling of regions refers to various bifurcation scenarios (associ-
ated parameter ranges are clear from the figugegnario Al: Persistence of stable
fixed points (nonbifurcation)§cenario A2: Persistence of unstable fixed poirtise-

nario B1: Merging and annihilation of stable and unstable fixed potstenario B2:
Merging and annihilation of two unstable fixed points plus ch&omario B3: Merg-

ing and annihilation of two unstable fixed poing&egenario C1: Supercritical border
collision period doublingScenario C2: Subcritical border collision period doubling,

Scenario C3: Emergence of periodic or chaotic attractor from stable fixed point.
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Chapter 4

Feedback Control of Border Collision

Bifurcation in 1-D Maps

In this chapter, control of BCBs in PWS maps of dimension one is discussed. The
goal of the control effort is to modify the bifurcation so that the bifurcated steady
state is locally attracting. In this way, the system'’s local behavior is ensured to remain
close to the original operating condition. Since the type and stability properties of a
border collision bifurcation are determined (generically) by the system linearizations
on both sides of the border, we employ linear and piecewise linear feedback laws.

Consider a general 1-D PWS map of the form

) = fal 1), X<Xp 4.1)
fa(X, 1), X=X
The sought linear or piecewise linear feedback can either be applied on one side of
the border and not the other, or on both sides of the border. Both approaches are
considered below. The issue of which approach to take and with what constraints is a
delicate one. There are practical advantages to applying a feedback on only one side of

the border, say the stable side. However, this requires knowledge of where the border

lies, which is not necessarily the case in practice. An approach considered here that

42



doesn't require knowledge of the border is what we siatlultaneous stabilization—

here controls are sought that function in exactly the same way on both sides of the
border. Not surprisingly, the conditions for existence of simultaneously stabilizing
controls are more restrictive than for one sided controls.

All the developed control laws are developed for application to system models
in normal form. To apply these control laws to a map not in normal form, inverse
transformations need to be performed, and this is straightforward for 1-D maps.

We should emphasize that transforming a system to normal form is not needed
when simultaneous feedback control is employed. All that is needed in this case is an

estimate of the slopes of the map on both sides of the border.

4.1 Control of BCBin 1-D MapsUsing Static Feedback

Consider the one-dimensional normal form (3.5) for a BCB, repeated here for conve-

nience:

axc+H, X<0
X1 = (4.2)
bx+ 1, X >0
Below, the control schemes described above are considered for the system (4.2), with

a control signat included in the dynamics as appropriate.

4.1.1 Control Applied on One Side of the Border

In the first control scheme, the feedback control is applied on one side of the border.
Suppose that the system is operating at a stable fixed point on one side of the border,
with the bifurcation parameter approaching its critical value. Without loss of general-

ity, assume this region of stable operatiofs x < 0}— that is, assume 1 < a< 1.
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Since the control is applied only on one side of the border, a linear feedback will be

applied either on the unstable side or the stable side of the border.

Linear feedback applied on unstable side of the border

Suppose that the fixed point is stable fgp) € R_ and unstable fox(y) € R. Ap-

plying additive linear state feedback only foe R, leads to the closed-loop system

Xk + K, Xk < 0
Xer1 = (4.3)
ka+ H+U, Xk = 0

U = YX (4.4)

The following proposition asserts stabilizability of the border collision bifurcation

with this type of control policy.

Proposition 4.1 Suppose (4.2) has a stable fixed point in R for p< 0 (i.e, |a] < 1)
and that for > 0, either thereis an unstablefixed point inRR ; (i.e., b < —1) or there
is no fixed point (i.e.,, b > 1). Then thereis a stabilizing linear feedback on the right
side of the border. That is, a linear feedback exists resulting in a stable fixed point to
the left and right of the border (i.e., achieving Scenario Al). Indeed, precisely those
linear feedbacks ux = yxx with gain y satisfying

—1-b<y<1-Db (4.5)
are stabilizing.
Proof: With u = yxk, the closed loop system is

Xy + M, X < 0
X1 = (4.6)
(b+Y)X+H, %=0
For i > 0, the fixed point isx(ju) = ﬁgw) The fixed poinx(l) € R, if y+b < 1.

The border collision bifurcation is eliminated if the eigenvalues of the closed loop
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system on both sides of the border aré-iriL, 1). This implies that the control gain

must be chosen such that+y| < 1. u

Rendering the bifurcation a supercritical period doubling BCB using linear feed-
back applied on the stable side of the border

For a linear feedback applied on the stable side of the border to be effective in ensuring

an acceptable bifurcation, it turns out that one must assume that the open-loop system
supports an unstable fixed point on the right side of the border. This is tantamount
to assuming < —1. Of course, the assumptienl < a < 1 is still in force. Now,

applying additive linear feedback in tixe< O region yields the closed-loop system

aX+H+U, X <0
bxic + 1, X« >0

U = YXk (4.8)

Note that such a control scheme does not stabilize the unstable fixed point on the right
side of the border. This is because the control has no direct effect on the system for
x> 0. Allis not lost, however. The next proposition asserts that such a control scheme
may be used to stabilize the system to a period-2 solution after the border collision

event.

Proposition 4.2 Suppose that the fixed point of (4.2) is stablein R_ for < 0 and
existsandisunstableinR; for u> 0(i.e, |a] < 1and b < —1). Then thereisalinear
feedback that when applied to the left of the border (i) maintains a stable fixed point
to the left of the border for < 0, and (ii) produces a stable period-2 orbit for p> 0
(i.e., the feedback achieves Scenario C1). Indeed, precisely those linear feedbacks
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Uk = Xk with gain y satisfying

——a<y<-——--—a (4.9)
are stabilizing.

Proof: The closed-loop system is given by

(@+y)X+H %<0
Xer1 =
ka+U7 Xg = 0

The fixed point to the left of the border fpr< 0 remains stable if and only if

la+y <1 = —l-a<y<l-a (4.10)

The fixed point to the right of the border far> 0 remains unstable since the control
is applied only in thex < O region. The closed-loop system bifurcates to a period-2
orbit asp is increased through zero if and only if the fixed point of the second return
map X2 for p> 0, which form a period-2 orbit for the first return map, is stable.

That is, iff

l(a+y)b <1 = %—a<y<—%—a (4.11)

Combining conditions (4.10) and (4.11) yields

max{k—l)—a,—l—a}<y< min{—k—l)—a,l—a} (4.12)

Sinceb < —1 < a, condition (4.12) is equivalent té— a<y< —% —a. This com-

pletes the proof. [ |
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4.1.2 Simultaneous Stabilization

In this method, the same linear feedback control is applied in both£h@ andx > O

regions. This leads to the closed-loop system

axXg+H+Uk, X<0
Xer1 = (4.13)

bxk + M+ Uk, X >0
U« = YX (4.14)

The following proposition gives a necessary and sufficient condition for existence of

stabilizing simultaneous control.

Proposition 4.3 Thefixed points of the closed-loop system (4.13)-(4.14) on both sides
of the border can be simultaneously stabilized using linear feedback control ux = yxk

if and only if
la—b| <2 (4.15)
Indeed, precisely those linear feedbacks ux = yxx with gain y satisfying
—l-b<y<l-a (4.16)
are stabilizing.

Proof: The fixed points of the closed-loop system on both sides of the border are

stabilized by the feedback contna| = yxk if and only if

—l<y+a<l1l and -—-1<y+b<l1
= (-1—-a,1—a)N(—1—b,1-b)#0
= la—b| < 2.
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H.

Clearly, this condition is not met by all values @fandb. This condition might
or might not be met for all scenarios of BCBs discussed in Chapter 3 above, except
scenarios B2 and B3, in which it is definitely not met becgaseb| > 2.

Next, the case in whicka—b| > 2 is considered. Recall that, because of sym-
metry,a— b > 2 can be assumed to hold. The next proposition asserts that in this
case a simultaneous linear feedback control exists that ensures the border collision
bifurcation is from a stable fixed point to a stable period-2 solution (i.e., the feedback

achieves Scenario C1, supercritical border collision period doubling).

Proposition 4.4 Suppose a—b > 2. Then, there is a ssmultaneous control law that
renders the BCB in the system (4.13)-(4.14) a supercritical border collision period

doubling (Scenario C1). Thisis achieved precisaly by the controls with control gain
satisfying
—l<y+a<l and —-1<(y+a)(y+b)<1 (4.17)

One set of control gains satisfying (4.17) isy = —a+ € with € sufficiently small.

Proof: The closed-loop system is given by

(@+y)X+H %<0
Xer1 = (4.18)
(b+y)Xc+H, X>0

The fixed point to the left of the border is stable if and only if
-l<a+y<l1 (4.19)

Suppose the control gais chosen such that (4.19) is satisfied. The closed loop

system bifurcates to a period-2 orbit p@ss increased through zero if (i) the fixed
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point to the right of the border fgu > 0 is unstable, and (ii) the fixed points of the
second return max, » for p> 0, which form a period-2 orbit for the first return map,

is stable. Thatis, if
lb+yl > 1 (4.20)
and
1< (a+y)(b+y < 1 (4.21)

Condition (4.20) is satisfied sinee-b > 2 and—1 < a+y< 1. Thus, the closed-loop

system undergoes a bifurcation from a stable fixed point to a period-2 ogbit atif
—1<y+a<l and —-1<(y+a)(y+b <1 (4.22)
Finally, if the control gairy = —a+ ¢, then

at+y = g, (4.23)

(a+y)(b+y) = gb—a+e) (4.24)

Thus, the stabilizability condition (4.22) is satisfied for a sufficiently small m

Note that if the system is known on the stable side but is uncertain on the unstable
side (withb < —1), the conclusion of Proposition 4.4 still applies. This has important
implications for robustly stabilizing the system. The next example illustrates the use

of Proposition 4.4.
Example 4.1 (Robust Simultaneous Control)
Consider the following simple example in normal form for border collision bifurcation

0.5%+H, X <0
X+l = (4.25)

bxk+1, X=>0
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A BCB occurs aqu is increased through zero. The resulting BCB depends on the
value ofb [60]. Forb = —4.15, there is a bifurcation from a period-1 fixed point
to a “six-piece ” [60] chaotic attractor. Fdr= —4.44, there is a bifurcation from
a period-1 fixed point to a “three-piece ” chaotic attractor. Finally,der —5.5, a
period-1 fixed point produces a one-piece chaotic attractor.

Figure 4.1 shows the bifurcation diagrams for the valudsalfove together with
those of the controlled map using a simultaneous control achieving stable period dou-
bling (with y= —0.51 in all cases). Note that a persistent stable fixed point is not

achievable because for eagkhalues considered,®—b > 2. [ ]
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Figure 4.1: Bifurcation diagrams for Example 4.1. by —4.15 (c)b = —4.44, (e)
b= -5.5, (b), (d) and (f) are bifurcation diagrams for the corresponding closed-loop

system using the same control ggis- —0.51 in all cases.
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4.2 Discrete Control of a PWS Continuous-Time
System: An Example

The next example, which builds on an example from [23], illustrates use of the fore-
going theory to control BCB in a second order continuous-time PWS system. The
system is such that its Poineamiap can be determined analytically.

Consider the second order PWS continuous time system
X =Yy (4.26)
y = —(1+p)x+2pcy+v (4.27)

wherepy is the piecewise smooth function

iIog 1+al—1)+u . for k<1
‘ iIo 1+BM—1) +u for Y >1 .

Yk is they-coordinate of thek-th intersection of the phase-plane trajectory with the
positivey-axis k= 0,y > 0), andv is a control to be designed. Next, a Poirecarap
is used to obtain a discrete-time system for which the results of this chapter allow
design of a discrete-time contra] and then a continuous-time feedback contr
obtained that agrees withwhen sampled at the Poineacfossings.

To study the open-loop dynamics of the system,set0. Take the Poincar’
section to be the positiweaxis. The corresponding Poineamap is evaluated in [23]

as follows:
Yir1 = €TPxY, (4.29)
which simplifies to yield

1+a(Yk—1)+p, for k<1
Yict1= (4.30)

1+B%—1)+p for Ye>1
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Note that the Poincarimap is one dimensional. LettiZy = Yx — 1, this map can be

written as

Zers— oZ+4, Z<0 (4.31)
BZ+1, Z>0

which, fortuitously, is in the normal form for border collision bifurcations in 1D maps.
Clearly, (4.31) undergoes a border collision bifurcatiorzat= 0 (equivalently, at
Y* =1) aspis increased through zero. The map (4.31) has a fixed gaiipt) = %
that occurs folf < 1 and a fixed poinZg(p) = 1Tul3 that occurs folf > 1. The stability
of these fixed points is determined by the valuest@ndf3, respectively. Also, the
BCB scenario depends on the pé&ir,[3) as discussed in detail in Chapter 3. For
illustration purposes, the parameter values 0.4 andf3 = —8.0 are considered [23].
For these values of the parameters, the continuous time system undergoes a BCB from
a stable period-1 cycle to chaos|as increased through zero (see Figure 4.2). This
can also be seen by looking at the Poircarap in the normal form for BCB and
observing that these parameters lead to Scenario C3.

Next, the results of this chapter are used to design controllers for the BCB. The
three actuation modes (unstable side, stable side, and simultaneous) cannot all be
addressed with a common control objective, as discussed previously. Static feedback
will be designed for each of the static feedback design approaches of Section 4.1. The

transformation between the continuous time system and the Peinm@gy’is used to

design a controller for the continuous time system.

4.2.1 Control Applied on the Unstable Side

Proposition 4.1 is now used to design a static feedback of thedpeayZy = y(Yx— 1)

which will be applied only on the unstable side of the border. The fixed point of the
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Poincag map is stabilized for1— 3 < y< 1— . From (4.28) px involvesf but not

a for Yk > 1, and it involvesx but notp for Yy < 1. Since the feedback control affects
the value of3 but not that ofa, it follows that the control affectpy only in the region
Yk > 1.

Consider the map obtained by applying a contiobn the unstable side of (4.31):

oZx+ W, <0
1= (4.32)

BZx+p+u, Zx>0

Takingux = yZ, the controlled map is

oz + W, <0
1= (By)Zetl  Ze>0 (4.33)
S‘/_/
B
ForYe > 1, Pk = %ng <1+(B+V¥Yk_ b +“) where a tilde is used to denote
k

variables that pertain to the controlled system. It is straightforward to showpithat ~

Pk +Apk, where

1 y(Yk—1)
Apyx = E{Iog <1+ 1+[3(Yk—1)+li) (4.34)

Observe thaf\pk = O if the control gainy = 0. Also, px = pk for Yk < 1. Thuspk can

be written aspg = pk + giApk, Where

0, <1
Ok = (4.35)
1, Y>1

andpg is given by (4.28).
To obtain a corresponding control that yields the same result when applied to the
original continuous time system, we seek a feedbatkat, when inserted in the

continuous-time model (4.26),(4.27), gives the open-loop version of the same model
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with py replaced bypk. Substituting the formulgy ™= pk + giApk in place ofpy in

the open-loop version of (4.26),(4.27) gives

X =y (4.36)
y = —(1+pd) x+2pc y+V(X,y) (4.37)

where
V(X,Y) = — (201 PkAPk + 9HAPE) X+ 201kApk Y (4.38)

Verifying this is an easy computation.

To see how the feedback contxgk, y) is evaluated and applied to the continuous
time model, note that the coefficientsxfy (i.e., the control gains) indexed Ikyin
the equation of/(x,y) (4.38) are evaluated at every intersection of the phase-plane
trajectory with the positive-axis. The values of the coefficients evaluated at the
k-th intersection are used in the feedback coni(aly) until the k+ 1 phase-plane
intersection with the positive-axis, and so on.

Consider the parameter values= 0.4 and3 = —8.0. The uncontrolled system
undergoes a BCB from a stable period-1 cycle to chaos (see Figure 4.2). As shown
above, a stabilizing control gajhnmust satisfy—-1-p<y<1—f, i.e, 7<y<09.

The phase plot for the controlled system wyth: 7.6 is depicted in Figure 4.3, which

shows that the system has a stable limit cycle after the border collision.

4.2.2 Control Applied on the Stable Side

In this control scheme, the control is applied on the stable side of the border only. Itis
straightforward to show, using an argument analogous to that used for the case when

the control was applied on the unstable side, that a static feedback control applied to
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the stable side of the border of the Poireeanap results in a control applied to the

original system as follows:

X =y
y = —(14pF) X+2pcy+V(Xy)
where
V(X,Y) = — (202 Pk Pk + G3APE) X+ 22kAPk Y,
1 y(Yk — 1)
Apc= 5109 (H 1ta(Y—1) +u>
and
1, <1
gk =
0, Y>1

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

For concreteness, a controller is designed for the parameter values considered before

(a =0.4,3=—-8.0). Recall that a controller applied to the stable side of the border can

be used to render the BCB a supercritical period-doubling border collision bifurcation

(see Proposition 4.2). Figure 4.4 shows the phase plots of the controlled sgstem (

0.4, B = —8.0) using this control method, exhibiting a stable period-2 orbit after the

border collision. Note that the period-1 orbit of the controlled systenmufarO is

slightly changed as a result of the control action (compare Fig. 4.4(a) with Fig. 4.2(a)).

4.2.3 Simultaneous Control

A simultaneous control applied to the Poineanap gives:
4

(0+y)Z+1, Z<O0

|

Zyi1=
B+Yy)Zk+1,  Z>0
RN/_/

,
™
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Using similar analysis as in the case when the control is applied on the unstable side, it

is straightforward to show that the corresponding closed-loop continuous time system

is given by
X =Yy (4.45)
y = —(1+pf) X+2pcy+Vv(Xy) (4.46)
where
V(X,Y) = —(2pclp +ApE) X+ 2pkAp Y, (4.47)
o1 Y1) ) Y <1
D= iIo 1+ Y(Y—1) ) Y >1 .
oY T+B—1)+u)

Next, a controller is designed for the parameter values considered beafer®.d,

B = —8.0). Since|la — B| = 8.4 > 2, simultaneous control cannot be used to stabilize

a period-1 orbit after the border collision. However, simultaneous control can be used
to render the BCB a supercritical period-doubling border collision bifurcation (see
Proposition 4.4). Figure 4.5 shows the phase plots of the controlled systend.d,

B = —8.0) using this control method.

4.2.4 Discussion

Note that in order to apply the proposed BCB control methods to continuous time
systems one needs to relate the control action in continuouss/tixng with the pa-
rameters of the normal forrm andb. In some cases (as in the example above), this
relationship may be derived analytically. In some situations, it may have to be deter-

mined numerically. A stable periodic orbit in continuous time is mapped to a stable
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fixed point of a Poinca ‘section. By perturbing the initial condition away from the
stable fixed point, and by observing the evolution of the subsequent iterates (or inter-
sections with the Poincarsection), one can obtain the slope of the map (on the stable
side) for any value of the control gain [67]. By repeating this procedure for various
control gains, it is possible to establish a relationship between the controller gain in
the continuous time system and the controller gain of the discrete time system. This
technique can, however, be applied only for the cases where the control is applied
on the stable side of the border or for simultaneous control. As demonstrated in the
example above, a control applied on the stable side of the border and a simultaneous
control stabilized the system behavior after the border to period-2 orbit. This is valu-
able in cases where the uncontrolled system has no local attractors after the border
collision.

For applying control on the unstable side, one needs to establish a relationship
between the slope of the map in the unstable side and the controller gain for the
continuous time system. This is feasible if the system has a chaotic attractor after
the border collision, but not feasible in cases where the system has no local attractors

after the border collision.
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Figure 4.2: Phase plots of Example (4.26)-(4.27), uncontrolled systea0).4, 3 =
—8.0. (a) before BCB|{ < 0), (b) after BCB [1 > 0).
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Figure 4.3: Controlled system (4.26)-(4.2@)= 0.4, = —8.0. Control applied in

unstable side with control gain= 7.6.
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Figure 4.4: Controlled system (4.26)-(4.2@)= 0.4, 3 = —8.0. Control applied in
stable side witty = —0.41.
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Figure 4.5: Controlled system (4.26)-(4.2d)= 0.4, 3 = —8.0. Simultaneous control
with y= —0.401.
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Chapter 5

Resultson Border Collision Bifurcation in

Two-Dimensional PWS M aps

As was pointed out in the summary given in Chapter 2 on the theoretical results avail-
able to-date on border collision bifurcations, the theory is general in nature and not
much is available in the way of clear sufficient conditions for the various types of
BCBs either in then-dimensional case or in the two-dimensional case. It is not our
purpose in this work to fill in all the gaps in the mathematical theory of BCBs. Rather,
since our ultimate goal in this thesis is the development of control techniques for
BCBs, we are most interested in conditions guaranteeing the less severe forms of
BCBs. In this spirit, we undertake in the present chapter to address the question of
sufficient conditions fononbifurcation with persistent stability (defined in Chapters 1

and 2) for two dimensional systems undergoing border collision bifurcation. To illus-
trate the difficulty of determining such sufficient conditions, we begin the chapter with
a discussion of an example of a new border collision phenomenon that we call “dan-
gerous border collision bifurcation.” We then present examples of multiple attractor
bifurcations that occur in two dimensional PWS maps even though the Jacobian matri-

ces of the PWS system on both sides of the border are Schur stable. Multiple attractor
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bifurcations have been observed before [73, 9]. Finally, we state and prove sufficient
conditions for nonbifurcation with persistent stability in two dimensional PWS maps.

These results are applied to feedback control design in the next chapter.

5.1 DangerousBorder Collision Bifurcation

At the outset, it is tempting to conjecture that if the fixed points on either side of the
border are asymptotically stable, then no BCB takes place and stability is maintained
in a robust way as the fixed point crosses the border. To show that this conjecture
is definitely false, we introduce a new border collision phenomenon in this section,
that we refer to as dangerous border collision bifurcation [39]. This BCB doesn’t
occur in one-dimensional maps with two regions of smooth behavior, but can occur in
piecewise smooth maps of dimension two and higher. In it, although the fixed points
on either side of the border are certainly locally asymptotically stable, the stability is
nonrobust as the border is crossed.

Consider the following two dimensional piecewise affine map:

p

-03 1 Xk 1
+ b X <O
-09 O Yk 0
Xk+1 _ x (5.1)
Yik+1 -16 1 Xic 1
+ L x>0
-09 O Yk 0
\ B

The map is written in normal form for border collision bifurcation, and as ugual
represents the bifurcation parameter.

The eigenvalues oA areAp,, = —0.15+10.9367 and those oB areAp,, =
—0.80+i0.5099. Although the matriceA andB are Schur stable, it turns out that
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the origin of the system witlu = 0 is unstable. To see how the dynamics depends
on , note that foru < 0, the fixed point iSXa(1), Ya(H)) = (551 —39H), and that
it is locally asymptotically stable as noted above. However, its region of attraction
shrinks to the single poir{0, 0) atp= 0. Forp > 0, the fixed point igxg (M), ys(1)) =
(?15“, —%u) and is also locally asymptotically stable. Its regions of attraction shrinks
to the single point0,0) atpu= 0. Therefore, aft = 0, the trajectory of the map (5.1)
diverges for any nonzero initial condition. A sample trajectoryddr p= 0 is shown
in Figure 5.1 and a phase plot fgy versusxy for p= 0 is shown in Figure 5.2.

In Chapter 6, feedback control laws are designed to stabilize border collision bi-
furcations and this example is revisited where we show that feedback control can

eliminate the bifurcation.

600

4001 a

200-

x il
-200f u
400 |

0]
~600 ‘ ‘
0 50 100 150

Figure 5.1: Time series foi for the example of dangerous border collision bifurca-

tion given in (5.1) withu = 0 and initial conditionxo, yo) = (—0.03,0.01).
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Figure 5.2: The phase plot fgk versusx for the example of dangerous border colli-

sion bifurcation givenin (5.1) with= 0 and initial conditior(xo, o) = (—0.03,0.01).
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5.2 Examplesof Multiple Attractor BCB in 2-D

Systems

In this section, we present new examples of multiple attractor border collision bifur-

cations. These examples show bifurcations of multiple attractors on one side or both
sides of the border even though the fixed point is asymptotically stable on both sides
of the border. Other examples demonstrating similar BCBs have appeared in [73, 9].
It is of interest to note that recently multiple attractor BCBs were shown to be a source
of unpredictability in piecewise smooth systems [25]: the presence of arbitrarily small

noise may lead to fundamentally unpredictable behavior of orbits as a bifurcation pa-

rameter is slowly varied through a critical value.

Example 5.1 Stablefixed point plusperiod-4 attractor bifurcating to stablefixed
point plus period-3 attractor:

Consider the two-dimensional piecewise smooth map

;

050 1 Xk 1
+ B X% <0
—-0.90 0 Yk 0
)(k N ~"~
il A (5.2)
Yk+1 -122 1 Xk 1
+ B x>0
—-0.36 0O Yk 0
\ B

This map undergoes a bifurcation in which a stable fixed point along with a period-4
attractor yield a stable fixed point and a period-3 attractop i@sncreased through
zero (see Figure 5.3). The eigenvalueg\a@lreAs, , = 0.25+ 0.9152i and those dB
arehg, = —0.5,Ag, = —0.72.
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Stable fixed point

_0.4 I I
-0.1 -0.05 0 0.05 0.1

Figure 5.3: Bifurcation diagram for Example 5.1.

Example 5.2 Stable fixed point bifurcating to stable fixed point plus period-7
attractor:

Consider the two dimensional piecewise smooth map

(
16 1 Xk 1
+ L X% <0
-08 0 Yk 0
Xe+1 _ x (5.3)
Yk+1 -14 1 Xk 1
+ L x>0
-06 O Yk 0
\ B

This map undergoes a bifurcation in which a stable fixed point yields a stable fixed
point along with a period-7 attractor, gss increased through zero (see Figure 5.4).

The eigenvalues dkarela, , = 0.8+ 0.4i and those foB areAg, , = —0.7+0.3317i.
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Figure 5.4: Bifurcation diagram for Example 5.2.

5.3 Sufficient Conditionsfor Nonbifurcation with Per-
sistent Stability in Two-Dimensional PWS M aps

In this section, sufficient conditions for nonbifurcation with persistent stability in two
dimensional PWS maps are stated and proved. Although, as mentioned earlier and
illustrated by the foregoing examples, Schur stability of the Jacobian matrices on
both sides of the border is insufficient for guaranteeing nonbifurcation with persistent
stability, imposing a realness of eigenvalues condition along with Schur stability turns
out to be a starting point for obtaining actual sufficient conditions. We have proved
nonbifurcation with persistent stability results for some of the situations in which real
and stable eigenvalues occur on both sides of the border, and the results are developed
in detail below. The remaining cases left unproven at this time will be addressed in

future work. It is important to point out that if a matrix has real distinct eigenvalues,
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then a perturbed version of the matrix (with small perturbations) continues to have
real eigenvalues.
Consider the one-parameter family of piecewise affine (PWA) maps (in normal

form for BCB) F, : R?2 — R?, where

(

A 1 X 1
+ B, X<O0
—oa O Yy 0
FU(X7 y) = (54)
s 1 X 1
+ M, x>0
-0 O Yy 0
A 1 5 1 . +
LetA:= andB := . Denote the eigenvalues &fby A,
—0a O -0 O

and the eigenvalues &by }\jBE. (For the case of real eigenvalues, the eigenvalue with
a plus sign will be taken to be the larger of the two eigenvalues.)

As discussed in Chapter 2, the normal form can be used to study bifurcations in
an original PWS map with nonlinear maps on either side of the border under generic
conditions. In fact there are two such conditions, not usually explicated in the liter-
ature: 1) neitheA nor B has eigenvalues on the unit circle; 2) the fixed point does
not move along the border after the border collision event, i.e., either the fixed point
crosses the border or it merges with another fixed point at the border collision and
both fixed points disappear.

Next, we state and prove sufficient conditions for nonbifurcation with persistent

stability. Each result is given in a separate subsection.
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5.3.1 Positive Eigenvalueson Both Sides of the Border

In this subsection, we consider system (5.4) under the assumption that the eigenvalues
of the matrices\ andB lie in the open interva(0, 1). We show that this is a sufficient
condition for nonbifurcation with persistent stability. We carry out the investigation of
the dynamics of system (5.4) in two stages. First we prove global asymptotic stability
for the system at criticality, i.e., for the system obtained upon segtiad in (5.4).

Then, we show a similar result for the system witk 0 and withp > 0.

Proposition 5.1 (Global stability of fixed point attractor on border: positive eigen-
values)

Let theeigenvaluesA; of Aand A3 of BsatisfyO< A, <Ax <land0<Ag <Aj <1.
Then for u= 0, the map F, has a unique fixed point attractor (x(p),y(H)) = (0,0)
and this fixed point attractor is globally asymptotically stable. That is, for every ini-
tial condition (xo,Yo), the resulting orbit converges to (0,0), S0 limp—.. Fj'(Xo,Yo) =

(0,0).

Proof: Let the mapF, satisfy the assumptions of Proposition 5.1. Note that the as-
sumptions imply that & da < 1 and 0< &g < 1. Denote by the bordeK (x,y)| x =

0} between the regiornBa := {(x,y) € R?| x < 0} andRg := {(x,y) € R?| x > 0}.
Denote byL()\:At) the two half-lines determined by the eigenvectoréarrespond-

ing to the eigenvalues;, respectively, in regioRa, and byL(A3) the two half-lines
determined by the eigenvectors®torresponding to eigenvalubé, respectively, in

regionRg. These half-lines are given explicitly as follows:

LAL) = {(xy) €eRaUl:y=—-A.x}, (5.5)
LAL) = {(xY) €RaUl: y=—Aix}, (5.6)
L) = {(xy) €RsUI: y=—Agx}, (5.7)
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Ras

B2
Rat

Figure 5.5: Schematic diagram showing the half-lines generated by eigenvectors and

the regiondRa1, Ra2, Ras, Re1, Re2 andRg3 used in the proof of Proposition 5.1.
LAg) = {(xy) €RsUI:y=—Agx}. (5.8)

Note that the slopes of all four lines are negative. (Refer to Figure 5.5.) The
half-linesL(A}) andL(A,) divide the regiorRa into three subregions, denoted by
Ra1, Ra2 andRa3. Similarly, the half-linesl_()\g) andL(Ag) divide the regiorRg
into three subregions, denoted Ry, Rs2 andRg3. The subregions dRp are defined
as follows: Raz is the region bordered bly and L()\X), Ra2 is the region bordered
by L(AL) andL(A,) and Raz is the region bordered bl(A,) andl". Similarly,
subregions oRg are defined in the following wayRRg; is the region bordered by
andL(A\{), Raz is the region bordered bly(Aj) andL(Ag) and Rgs is the region
bordered by (Ag) andl (see Figure 5.5). Note that the subregions are numbered in

a clockwise sense. Lékg,Yo) € R? be a given initial condition. Then, the following

69



facts are clear:
e If (x0,¥0) € L(A5), then limy_.c (X0, Yo) = limn (A4 )" (X0, Yo) = (0, 0);
o If (X0,Y0) € L(An), then limy . FI'(X0, Yo) = liMn_e(A4 )" (X0, Yo) = (0,0);
e If (Xo0,Y0) €L(A}), then limh e (X0, Yo) = limn—e(Ag)" (X0, Yo) = (0,0); and
e If (Xo0,Y0) € L(Ag), then lim_e Fu”(xo,yo) = limp—«(Ag)"(X0,Yo) = (0,0).

The following facts, which assert positive invariance of the subredfaasRa,
Rs1 andRgp, follow from the expression for the solution of a general linear difference

equation and the assumption that the eigenvalues (i@, b):
e If (X0,Y0) € Ra1, thenF](xo,Yo) € Ra1 ¥V nand limy_.. Fi'(xo0, Yo) = (0,0);
o If (%0,Y0) € Raz, thenF[(xo,Yo) € Raz ¥ nand lim .. F'(Xo,Yo) = (0,0);
e If (X0,Y0) € Re1, thenF(xo,Yo) € Re1 V nand limy_.. (X0, Yo) = (0,0); and
o If (%0,Y0) € Rez, thenF[(xo,Yo) € Rez ¥ nand lim—.. (X0, Yo) = (0,0).

Hence, in the remainder of this proof, we assume thatyo) ¢ Ra1 URa, URg1 U
Re2.

First, we consider the ca$ry, Yo) € I'. Denote byl * the positivey-axis{(x,y) €
[ : y> 0}, and byl ~ the negative-axis {(x,y) € I : y < 0}. If (Xo,y0) € [T, then
Fu(Xo,Yo0) = (Yo,0) € Re1 and the positive invariance &g implies thatF}'(xo, Yo) €
Re1 Vn>1and limy-. F'(X0,Y0) = (0,0). If (Xo,Yo) €T, thenF,(xo, Yo) = (¥0,0) €
Ra1 and the positive invariance da; implies thatFﬁ(m,yo) € Ra VN>1and

limn_. Fi'(X0,Y0) = (0,0). It remains to consider the cases: (®),Yo) € Raz and (b)

(X0,Y0) € Res.

70



Case (a). Assume that(xg,Yo) € Ras. Define the magGa : R? — R? to be the
affine extension of the left part of the m&p(x,y) to the whole planeGa(x,y) =
(rAx+y,—6Ax)T. Since 0< 0a < 1, the mapGa is invertible, andG;l(x,y) =
<—5—{\,x+yg—’:\>T. Note that ify > 0, thenG,1(0,y) = (—%,yé—ﬁ)T € Raz. There-
fore, G;l(FJF) is contained in the subregidRaz. By induction, one can show that
for everyn € N, G;(”H)(F*) is contained in the region bordered B£"(I'*) and
L(A5). Furthermore, it is straightforward to show that the Ggt'(I'*) asymptoti-
cally approaches the half-lingA, ) asn — . Hence, there is a positive integer
such that eithefxo, yo) € G,"(F") or (xo, o) is contained in the region bordered by
G;(m_l)(ﬁ) andG,M("' ). Hence,ﬁj“”(xo,yo) € Rg1 and the positive invariance

of Rg; implies that~"™(xo, Yo) € Re1 ¥ n> 1 and limh—.. K" ™(%o,Yo) = (0,0).

Case (b). Assume that(xo,Yo) € Rgs. Define the mapGg : R? — R? to be the
affine extension of the right part of the m&p(x,y) to the whole planeGg(x,y) =
(er+y,—6Bx)T. Since 0< &g < 1, the mapGg is invertible, anngl(x,y) =
<—5—3’B,x+yg—2>T. Note that ify < 0, thenGg*(0,y) = (—%,yé—@)T € Rg3. There-
fore, Ggl(F*) IS contained in the subregidRgs. By induction, one can show that
for everyn € N, Gg(””)(r*) is contained in the region bordered BZ"(I ) and
L(Ag). Furthermore, it is straightforward to show that the Ggt'(I" ~) asymptoti-
cally approaches the half-lingAg) asn — . Hence, there is a positive integer
such that eithefxo, o) € Gg™(F ) or (xo, o) is contained in the region bordered by
Gg(m‘l)(r—) andGg™(I' ™). Hence,ﬁj“”(my@ € Ra1 and the positive invariance
of Ra1 implies thaﬂ:lj”m(xo,yo) €Ra1VN>1andlinh e F&‘*m(xo,yo) = (0,0).

All the cases have been exhausted and we conclude:=iD, then the mag-,
has a unique fixed point attractor @), y(1)) = (0,0) and that this fixed point is

globally asymptotically stable. This completes the proof of Proposition 5.1. &
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The next proposition asserts that the map (5.4) possesses a unique fixed point

attractor for all values dffi if the eigenvalues of botA andB are in(0,1).

Proposition 5.2 (Global stability of fixed point attractor: positive eigenvalues)

Let for pe R, themap F : R? — R? be defined by (5.4). Let the eigenvalues )\:At of A
and A5 of Bsatisfy 0< Ay < A% <land0<Ag < Ag < 1. Thenfor every pc R, the
map F, has a unique fixed point attractor (x(p),y(u)) and thisfixed point attractor is
globally asymptotically stable. That is, for every initial condition (xo,Yo) € R?, the

resulting orbit convergesto (x(1), y(1)). S0 limn_e F(0.Yo) = (X(H), Y(W)).

Proof: Let the mapF, satisfy the assumptions of Proposition 5.2. Denoté lize
border{(x,y) € R?: x = 0} between the regionrRs andRg. Forp € R, define the
mapGy,a : R? — R? to be the affine extension of the left part of the nfafx, y) to the
whole plane:Gya(x,y) = (Tax+y -+, —8aX)T and define the ma@, g : R? — R2
to be the affine extension of the right part of the nigpx,y) to the whole plane:
Gua(X,Y) = (TeX+Yy+H, —3X)".

Denote byPa(1) = (Xa(W), Ya(1)) the fixed point ofG, a, and byPs(1) = (Xs (W), Ya(1)
the fixed point ofG, g. By the assumptions & da < 1 and 0< dg < 1, the maps
Gua andGyg are invertible. The inverse of the m&j, a is given byG@lA(x, y) =
(—5—{\,x+yg—f\ — u)T, and the inverse db,, g is given byG;é(x, y) = (—5—3;,x+yg—g — u)T.

The proof of this proposition is divided by considering the following three cases:

Q)p=0,2)p<0and (3)u> 0.
Case(1): p= 0. Follows from Proposition 5.1.

Case (2): p< 0. The magF, has a unique fixed poifi; (1) = (Xa(H),ya(H)), where
Xa(H) = 5 andya(k) = —3axa(k). Note that: (@) the fixed poirRa(k) of Gya
is the fixed pointP; (1) = (Xa(H),ya(H)) of Fy, and (b) the fixed poinBs (1) of GuB
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is the virtual fixed point off, and this point is given bya() = 1 . andys (k) =
—3BXg(M).

The mapF, has four invariant half-lines: two invariant half-linés,(A%) and
Lu(A4) in Ra corresponding to the fixed poif;(1) and two invariant half-lines
Lu(Ag) andLy(Ag) in Rg corresponding to the virtual fixed poiﬁ_g(u) (in Ra). The
half-linesLy(AX) andLy(Ay) are determined by the eigenvectorsfoforresponding
to eigenvalues\; andAj,, respectively, in the regioRa. Similarly, the half-lines
Lu(Ag) andL,(Ag) are determined by the eigenvectorsBoforresponding to eigen-

valueshi andAg, respectively, in the regioRg. These half-lines are given explicitly

as follows:

LuAL) = {(xy) ERAUT: y—Ya(H) = —Ax (X—Xa(1)}, (5.9)
LuAx) = {(xy) €RaUT 1 y—ya(l) = AL (x—xa(W)},  (5.10)
LuAg) = {(xy) € ReUT : y—yB(H) = —Ag (Xx—Xa(W))}, (5.11)

Lu(Ag) = {(xy) € RsUT : y—yB(H) = —Ag(Xx—xa(W))} (5.12)

Note that the slopes of all four half-lines are negative. (Refer to Figure 5.6.) The
two half-linesLy(A4) andLy(A,) divide the regiorRa into four subregions denoted
by Ra1, Ra2, Raz andRag4. Similarly, the half-linesl_u()\g) andLy(Ag) divide the
regionRg into three subregions.

In order to define the four subregionsky and the subregions &%z, we need the
points of intersection of the four half-lines with the bordlerThe half-linesL,(A}),

Lu(Ax), Lu(Ag), andL,(Ag) intersect the borddr at

W) = AL ALxalh) = A 513)
A
+

WOR) = MR- AR = 20, (519
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Lu(*a)
\Y &3 RBl
Rao -
R X
RM B2 Lu()‘B )
Ry Res
R

L)

Figure 5.6: Schematic diagram showing the half-lines generated by eigenvectors and

the regionRa1, Ra2, Ra3, Ra4, Re1, Re2, Rez andRg4 used in the proof of Proposi-

tion 5.2 forp < 0.

WG = Mgl AR = o (515)
— B
-\ — \Tf +\ye — W‘E
YuAg) = Ag(1-Ag)xe(W) = 1T (5.16)
B
respectively. Furthermore, the half-lineg(A4) andL,(A) intersect the-axis at
H
AN) = —— 5.17
Xll( A) 1_)\;7 ( )
- H
Ay = . 5.18

respectively. Note thag,(Ay) < Yu(AX) <0, Yu(Ag) < Yu(Ag) < 0 andxu(A,) <
xi(Aa) <0.

Denote by u(A%) = (0.Yu(A)), Tu(Ax) = (0.Yu(An)), Tu(Ag) = (O,Yu(Ag)),
Fuhg) = (0.9u(Ag)). SuAg) = (xu(A5).0), andSu(A,) = (4u(A5),0). Itis straight-
forward to verify thatF,(Tp(A4)) = Su(AZ) andFu(Tu(Ay)) = Su(Ay)-
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The subregions oRa and Rg are defined as follows (for illustration see Fig-
ure 5.7): Rap is the region bordered bl (the part ofl" below I'(Ay)), the seg-
ment[y(A5),Pi(W)] on Ly(Ay), and the half-lineL,(A%) from which the segment
[Px(1),Tu(A%)] is deleted;Ra2 is the region bordered by the half-lineg(A4) and
Lu(A4) from which the segment®; (1), Fu(A4)] and [Px (W), M u(Ay )], respectively,
are deletedRas is the region bordered by, (A, ) from which the segmeniP; (1), Fu(A4)]
is deleted, the segmejf; (1), Mu(A%)] onLu(Ax) and the bordeF (in fact, the part of
[ abovel ;(A})); andRaq is the region bordered by the segmé&P (1), u(A5)] on
Lu(A4), the segmen®; (1), Mu(A4)] onLy(A4) and the segmeni (A y ), Fu(AX)] on
the bordefl. The regiorRag is bounded and it is the only subregion that is bounded.
Similarly, Rg; is the region bordered Wy, 1 = {(x,y) € I : y > 0} and thex-axis; Rg
is the region bordered Hy,(Ag ), the segmerit, > on the border and theaxis, where
Fu2={(xy) €T : yu(A) <y <0}; Res is the region bordered by, (Ag), Lu(Ag)
and the segmeifity, 3 on the border, wherB, 3 = {(x,y) € I : yu(Ag) <y <yu(A§)};
andRgs is the region bordered dy,(Ag) andlMya = {(x,y) € I 1 y <yu(Ag)}.

Consider the regiomas C Raz defined as being the convex hull of the three
points Px (1), Q(W) = (0,—p) andMy(Az) (i-e., the filled-in triangle of which these
three points are corner points, see Figure 5.7). The edges of this triangle are mapped
by F, as follows: Denote byO = (0,0) the origin. The segmenP, (), Q(H)] is
mapped onto the segmeif; (1), O] C Daz, the segmeniPx (W), Mu(A%)] is mapped
onto the segmerPx (1), Su(A%)] C Das, and the segmer@Q(1),Mu(A4)] is mapped
onto the segmer§,(A}),0] C Das. Since the may, is continuous, it follows that
the subregiorDa3 is mapped into itself by, that is,Daz is positively invariant:
Fu(Da3) C Das. From the theory of linear difference equations and the positive in-

variance ofDag, it follows that if (Xo,Yo) € Das, then limy_.. F['(Xo0,Yo0) = PA(W).
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L)

Figure 5.7: Schematic diagram showing the half-lines generated by the eigenvectors

and the region®a1, Ra2, Ra3, Ra4, Re1, Re2, Re3, Res andDas used in the proof of
Proposition 5.2 fop < 0.

Denote byDj; the union of all pre-images dag, that isDj; = Uy_oG A(Dag).
Hence, D = {(X,y) € Ra3: FlP(X, y) € Raz Vn € N and there exists an integar>
0 such thaF"(x,y) € Das}.

Let (Xo,Yo0) € R? be a given initial condition. Then, the following fact is clear:

o If (x0,¥0) € Lu(Ax) ULp(AR), then limy . (X0, Y0) = PA(K).

The following facts, which assert positive invariance of the subredgiftpasRa2 and
Raa, follow from the expression for the solution of a general linear difference equation

and the assumption that the eigenvalues lig@ifd):
e If (X0,Y0) € Ra1, thenF(xo,Yo) € Rai Vnand limy ... B} (X0, Yo) = Px();

o If (X0,Y0) € Raz, thenF[(xo,Yo) € Raz Vnand lim_... (X0, Yo) = PA(W);
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e If (Xo0,Yo) € Raa, thenF[(xo,Y0) € Raa Ynand limy_., (X0, Yo) = PA(W).

Denote byl f ={(xy) T 1 y> —p}, T =G AN, Ty ={(xy) €T y<
—p} andr 5 =G g(My)-

Consider initial conditions on the border If (xo,Yo) € I', thenFu(xo, Yo) = (Yo +
W, 0). It follows that if (xo, yo) € Cos thenF,(Xo,Yo) = (Yo+ 1, 0) € DasURa1 URa2 U
Ra4 and the positive invariance &a1, Ra2, Raa andDaz implies thatFlj‘”(xo,yo) €
Da3URa1 URa2 URaVN € N and limy—. Fi' (X0, Yo) = PA()-

If (Xo0,Yo0) € L(Ag), then there exists a positive integarsuch thatF"(xo, Yo) €
DasURa1 URa2 URag and the positive invariance 81, Ra2, Rag andDas implies that
R ™(X0,Y0) € DazsURa1 URa2 URaVN € N, and limy .. F' (X0, Yo) = Px(1). Simi-
larly, if (xo,Yo) € L(Ag), then there exists a positive integaisuch thaF (o, Yo) €
Das URa1 URa2 URag and the positive invariance &a1, Ra2, Raga andDas implies
thatF{*™(xo, Yo) € DazURa1 URa2 URag¥N € N, and limy .« F'(%0, Yo) = PA().

Consider initial condition$xg, o) € Re1. The nextiteratéx,y1) = Gug(Xo, Yo) =
(TeXo + Yo+ I, —3gX)T. Sincey; = —dgxg < 0, it follows that either, )(X1,Y1) €
Da3sURa1 URag and the positive invariance 81, Rag andDaz implies thaﬂ:lj‘“(xo,yo) €
DasURA1 URMVN € N, and limy_o Fg‘(xo,yo) = Px(M); orii) (X1,y1) € Rez.

Consider initial conditions irRgy. Let Dgy be the subregion oRg, bordered
by Lu(Ag), the border, the x-axis andF@B, as shown in Figure 5.8. The region
Dgy is a fundamental region fdRgy: if (Xo,Yo0) € Re2 then there exists a nonnega-
tive integern such thalFJ‘(xo,yO) is in Dgy or on its border. In other wordfg, =
<Un20G@g(ru72U Daz)) N Rg2. By construction, the subregiddgy is mapped into
DazURa1 URa2 URag in one iterate, that isk,(Dg2) C DazURa1 URa2 URag. The

positive invariance oRa1, Ra2, Rag andDag implies thaﬂ:l[”fm(xo,yo) € DasURA1 U

Ra2 URaVN € N, and limh—. F1' (X0, Yo) = Pa()-
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Figure 5.8: Schematic diagram showing the regibgas, Dgz and Dg4 used in the

proof of Proposition 5.2 fop < 0.

Consider initial condition$xo,Yo) € Res. Let Dgg be the subregion dRrgz bor-
dered byLy(Ag), the bordei, Ly(Ag) andr"  (see Figure 5.8). The regiddgs is a
fundamental region foRg3: if (Xo,Yo0) € Res then there exists a nonnegative integer
such thaFd‘(xo,yo) is in Dg3 or on its border. In other wordRg3 = UnzoG;g(FMgU
Dg3). By construction, the subregiddgs is mapped intdasz U Ra1 URa2 URag in
one iterate, that isk,(Dg3) C DazURa1 URa2 URas. Therefore, if(Xo,Yo) € Res,
then there exists a positive integarsuch that="(xo,Yo) € Daz U Ra1 URa2 U Rag.
The positive invariance dRa1, Ra2, Rag andDaz implies thatFl[‘er(xo,yo) € DazU
Ra1 URa2 URagVN € N, and lim, .. R} (X0, Yo) = PA(K)-

Consider initial conditiongxp,Yo) € Rea. Let Dgsq be the subregion dRg4 bor-
dered byL,(Ag), the bordef™ andl 5 (see Figure 5.8). The regiddg, is a funda-

mental region foRgy: if (X0,Y0) € Rea then there exists a nonnegative integauch
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thatFL{‘(xo,yo) is in D4 Or on its border. In other wordRgs = unzoe‘;g(rmu Dga4).
By construction, the subregidbgs is mapped intdaz U Ra1 U Ra2 U Rag, that is,
Fu(Dg3) C DasURa1 URa2 URpg. Therefore, if(Xo, Yo) € Rea, then there exists a pos-
itive integerm such thaF[l"(xo,yo) € DazURa1 URa2 URag4. The positive invariance
of Ra1, Ra2, Rasg andDas implies thatFJ‘me(xo,yo) € DazURA1 URA2 URA4VN € N,
and limh—.. F'(Xo, Yo) = PA(H).

There is one case left, namelo,yo) € Raz\ Das. Let Ri; = Raz\ Djag. Let
Uaz be the subregion dR,,; bordered™ and FiA. The regionU,, is a fundamental
region forRa,: if (Xo,Yo0) € Ras then there exists a nonnegative integesuch that
FJ‘(xo,yo) is inUaz or on its border. In other wordRaz = UnzoG;g(FIAUUAg). By
construction, the subregitins is mapped intdRgy, that is,F,(Uas) C Re1. Therefore,
if (Xo,Y0) € Ras, then either there exists a positive integes N such thaFJ"(xo,yo) €
r;, or there existsn € N such thaFJ‘(xo,yo) € Rg1. From the results above for the
case(Xo,Yo) € Rai, it follows thatFJ‘er(xo,yo) € DasURA1 URa2 URMYN € N, and
limn—.e F'(X0,Yo) = Px(L)-

All cases has been exhausted and we concludg:<ifO, then the mag-, has
a unique fixed point attractd®x (1) = (X(1),y(1)) which is globally asymptotically

stable.

Case (3): p> 0. This case is similar to Case (2). They differ only in that the roles of
regionsRa andRg are interchanged.

We conclude that for every € R, the mapF, has a unique fixed point attractor
(x(W),y(n)) and this fixed point attractor is globally asymptotically stable, that is, for
every initial condition(xo,Yyo) € R?, the resulting orbit converges ta(u),y(u)), so

limp—e F1'(%0, Yo) = (X(W),Y(W)). This completes the proof. |
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5.3.2 Negative Determinants on Both Sides of the Border

In this subsection, we consider system (5.4) under the assumption that the eigenvalues
of the matricesA andB satisfy—1 <A, <0< Af <land—1<Agz <O0<Af <

1, respectively. We show that this is a sufficient condition for nonbifurcation with
persistent stability. Before we state the proposition, some notation that will be used

in the remainder of this section is given.

Definition 5.1 Let
e I ={(x,y): x= 0}, denote the border separating Ra and Rg;
o Mi={(xy) 1 x=0y>—p};

o My ={(xy) 1 x=0y<—p};

F;A ={x<0,y=—1ax—p}; and

F;B = {x>0,y=—1gX— U}.

Definition 5.2 Denote by Q; thefirst quadrant of the plane, Q> the second quadrant,

Q3 the third quadrant and Q4 the fourth quadrant.

Proposition 5.3 Let for p € R, the map F, : R?2 — R? be defined by (5.4). Let the
eigenvalues Ax of A and A of B satisfy —1 <A, <0< Ai <land —1<\g <
0 < Ag < 1. Then for every p € R, the map F, has a unique fixed point attractor
(x(M),y(n)) and this fixed point attractor is globally asymptotically stable. That is,

for every initial condition (xo,Yo), the resulting orbit converges to (x(W),y(H)), so

liMn .o F'(X0, Yo) = (X(M), Y(W)).
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Proof: Let the mapF, satisfy the assumptions of Proposition 5.3. Note that the
assumptions imply that1 < 3 = A, AL < 0 and—1 < 8g = AgAg < 0. Define the
mapGya : R? — R? to be the affine extension of the left part of the nigyx, y) to
the whole planeGa(X,Y) = (Tax+ Y+ 1, —3ax)T. Also define the ma@ys(x,y) =
(teX+Yy+ 1, —3X)" to be the affine extension of the right part of the nfafx,y)
to the whole plane. Denote Bja(l) = (Xa(l),Ya(M)) the fixed point ofGy A, and
by F%(u) = (xg(M),yB(H)) the fixed point ofG, g. By the assumptions1 < 65 <0
and -1 < dg < 0, the mapsG, o andG, g are invertible. The inverse of the map
Gpais given byG;,ﬁ(x, y) = (‘6_);7X+ Yy — p)T, and the inverse dBg is given by
Gubtey) = (~& x+vE —n)

The half-lines generated by the eigenvectoA@ndB are defined in (5.9)-(5.12)
above. The traces @ andB are given byta = A, + A4 andtg = Ag + g, respec-

tively. Depending on the signs oj andtg, there are four cases:
e Caeb3l.0<ta<land 15« 1;
e Casebhb.32 —1<1ta<0and-1<tg<0;
e Caseb33. 0<ta<land-1<1<0;and
e Casebhb34 —1<ta<O0and <1< 1.

We will prove this proposition by considering each of the cases 5.3.1-5.3.4 sepa-

rately. For each case, there are three scenariog =), (ii) p < 0 and (i) > 0.

Casebi3l:0<ta<land <1< 1.
(i) p=0:The half-lineF;A dividesRa into two regionskRa; andRaz (refer to Fig-
ure 5.9.) The regiofRa is bordered by, and F;A. The regionRaz is bordered by

Fj and I’;A. Similarly, the half-lineFlIB dividesRg into two regionsRg; andRgy.
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The regionRg; is bordered by‘j and F;B. The regionRg; is bordered by, and

L (R — f A\I_IJ,_B

Figure 5.9: Schematic diagram showing the half-lines generated by the eigenvectors

and the region&a1, Ra2, Re1 andRg; used in the proof of Case 5.3.1 with= 0.

Let (Xo,Yo0) € RR? be a given initial condition. ItXo, Yo) € Ra1, thenGya(Xo, Yo) =

TaXo + Yo, —0a%0) T € Q3 C Ra1. Thus,Ras is positively invariant. Sincé0,0) € R
(TaXo+Yo, —0a%g)' € Q3 C Ra1 AL IS P y €0,0) € R

<0 <0
andAis Schur stable, it follows that lig.« F' (X0, Yo) = (0,0).

If (X0,Y0) € Re1, thenG ,Yo) = (T , —O) € Q1 C Rg1. Thus,Rgs is
(X0, Yo) € Rex wB(X0,Yo) = (TBXo+ Yo, —O8Xg) € Q1 C Rg1 B1

>0 >0
positively invariant and it follows that lim... (X0, Yo) = (0,0).

If (X0,Yo0) € Raz, thenG Vo) = (T ,—0aX0)T € Q4 C Re1 URe).
(X0,¥0) € Raz wA(X0,Yo) = ( AxOO+yo <A(\)X0) Q4 C Re1URs2
> =

If (Xo0,Yo) € Re, thenGy, A(Xo, Yo) = (TeX0 + Yo, ) € Q2 C Ra1URa2. Clearly,
——

—dBXo
——
<0 >0

if (X0,Y0) € Raz2 Or (Xo,Yo0) € Re2, the trajectory starting &g, yo) may flip between

the two regions. There are two possibilities: 1) there exists a positive integer
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such thaﬁ{“(xo,yo) € Ra1 URg1 and the positive invariance &a1, Rg1 implies that
limn . R ™(X0,Yo) = (0,0); or 2) the trajectory keeps flipping betweBgy andRe;
and eventually converges {6, 0) sinceAB (equivalentlyBA) is Schur stable, which

can be seen as follows:

A 1 ;s 1
AB =

—op O -0 O

B TaATg—08 Ta (5.19)

—6ATB —6A

Let dap := det{ AB) = 0a0g andtag :=tracd AB) = TaTg — 04 — Og. By the Jury test

for second order discrete-time systems [#¥B,is Schur stable if and only if

—-1<opg < 1

—1-08<Tas < 1+0dns
Equivalently,

—1<dpd8 < 1 (5.20)

—(1-0a)(1-03g) <Tale < (1+0a)(1+dp) (5.21)

Inequality (5.20) is satisfied sineel < 55 < 0and—1 < &g < 0. Since 0< 1o < (14
0a) and 0< 1 < (1+ 8g) by hypothesis, it follows that & TaTg < (1+0a)(1+ 0g).
This shows that inequality (5.21) is also satisfied. TherefdBas Schur stable.

(ii) p < 0: The mag, has a unique fixed poii; (1) = (Xa(l),Ya(R)), wherexa(p) =
W“%A andya (1) = —3axa(k). Note that: (a) the fixed poifia () of Gy a is the fixed
pointPx (1) = (xa(K),ya(p)) of Fy, and (b) the fixed poirz (1) of Gy is the virtual

fixed point ofF, and this point is given byg(|) = THHSB andyg(l) = —3sXa(M).
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The mapF, has four invariant half-lines generated by the eigenvectofsasfdB.
The equations for these half-lines are given in (5.9)-(5.12). These half-lines intersect
the y-axis at the points defined by (5.13)-(5.16). Furthermore, the halftljjia )
intersects the-axis atxy(A{) = ﬁ and the half-lind,(A,) intersects the-axis

L. Note thatyu(Ay) < 0<yu(A4), YuAg) <O<Yu(Ag) andxu(A,) <

atxu(Ay) = 7

Xa(A%) <O.

DefineRa1, Ra2, Re1 andRgy as in Figure 5.10 wherE;A dividesRy into two
regionsRaz, Ra2 andF;B dividesRg into two regionsRg;, Rgp.

Next we show that for every initial conditioixo, yo) € R?, limp e Fl'(X0,Y0) —
PACK)-

If (Xo0,¥0) € Ra1, thenGya(xo,Yo) = (TAXo+yo+H7;5§§9)T € Q3 C Rat. Thus,

<0 <0
Ra1 is positively invariant. Sincé, (M) € Rar and the matrixA is Schur stable, it

follows that limh—.. F}'(Xo, Yo) = Pa(W).
If € Rao, thenG Vo) = ,—3p%0)T € Q4 C Rep URg).
(X0,Y0) € Raz wA(X0,Yo) = (TaXo+Yo+ W —0aXg)' € Qs C Re1URe2

>0 <0
If (Xo0,Y0) € Ra1, thenGyg(Xo, Yo) = (TeXo + Yo + 1, —8sXg) € Q1 C Re1URg2. Since

>0 >0
the fixed point ofG, g which is given byPg () is in Raz (is a virtual fixed point of

Fu and is stable), the trajectory starting(a, yo) approacheﬁ%(u) along the eigen-
vectorLu()\g) and eventually ente®g, or Rgy. That is, there exists > 0 such that
GEB(Xo,yo) € D2 C Rgp, Or GmB(m,yo) € Rg2\ Dg2. The subregiomlg; is bordered
by ', T ig andG, (T, o) (see Figure 5.10). The linds, g andG, (I ) intersect
at the pointG;é(Q—u) = (5—‘;,—u(1+ g—g)). By construction, the subregiddg; is
mapped intdRa; in one step, i.e G, g(De2) C Ras.

If Dgo, thenG Vo) = ,—0X0)" € Rap. Clearly,
(X0,Yo0) € Ra2\ Dg2, thenGy, g(X0, Yo) = (teXo + Yo+ 1, —O8X) ' € Raz y

<0 >0

if (X0,Yo0) € Ra2 or (Xo,Y0) € Re2 \ Dgp, the trajectory starting atxo,yo) may flip
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Figure 5.10: Schematic diagram showing the regi@rs Ra2, Rs1 andRg, used in
the proof of Case 5.3.1 with < O.

between the two regions but eventually entBgg and is trapped there. To show
that a trajectory starting &ko,Yo) € Ra2 URg2 \ D2 has to enteRa1, we show that
G,,8o Gy A has a stable fixed point Ra;. Thus, the trajectory cannot flip betwelegy
andRg> for ever, it will enterRa; after a finite number of iterates. It is straightforward

to show thatxag(W), yas(H)) = ((Hg(\)laisgg)mm, —6BTA>1</j_B6<;0—5B“> € Ra1 is a fixed

point of G g o Gy a and is stable sincBA is Schur stable (see the proof for the case

1= 0 above). We conclude that for evexy, yo) € R?, limp,_.o Fl'(%0, Yo) = Pa(W).

(iii) p> O: The proof for this case is similar to the symmetric case 0 discussed

above and is therefore omitted.

Caseb32 —1<ta<0and-1<1g<0.

(i) p=0: (Refer to Figure 5.11.) The haIf-Iiri'e;A dividesRp into two regionsRaz
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Raz -

Figure 5.11: Schematic diagram showing the regi@Rs Ra2, Rs1 andRg, used in
the proof of Case 5.3.2 with= 0.

andRa2. The regionRa; is bordered by‘g andF;A. The regionRay is bordered by
FH and r;A. Similarly, the half-liner;B dividesRg into two regionsRg; and Rg».

The regionRg; is bordered by‘j and F;B. The regionRg; is bordered by‘; and
F;B.

Let (Xo,Yo0) € RR? be a given initial condition. ItXo, Yo) € Ra1, thenGy a(Xo, Yo) =

(TaXo + Yo, —0a%0) T € Q3 C Rar URn2. There are two possibilities: I)&A(xo,yo) €

<0 <0
Raz VN, thus limh—.. G[} o (X0, Yo) = (0,0), or 2) There exists a positive integarsuch

thatGj's (X0, Yo) € Raz.

If € Ra, thenG .Yo) = ,—0aX0)" € Q4 C Rey.
(X0, Yo) € Raz wA(X0,Yo) = (TaXo ;L Yo <A(\)Xo) Qs C Re2
> =
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If (Xo,Yo) € Ray, thenG Vo) = (T ,—3BX0)" € Q1 C Re1URgy. There-
(Xo0,Yo0) € Re1 wB(X0,Yo) = (TBXo + Yo, —88Xg) ' € Q1 C Re1URR2

>0 >0

fore, there are two possibilities: G| g(Xo,Yo) € Re1 VN, thus lim—.. G| (X0, Yo) =
(0,0), or 2) There exists a positive integarsuch thaG[}jB(xo,yo) € Reo.

If (Xo,Yo) € Re, thenG Vo) = (T ,—08X0)" € Q2 C Rax. Since
(X0,Yo) € Ra wB(X0,Yo) = (tBXo+Y0,—OBXy)' € Q2 C Ra2

<0 >0

Gue(Re2) C Ra2 andGya(Ra2) C Rep, the trajectory starting do, o) € Ra2 URg2
flips between the two regioi®A2 andRgy. SinceAB (equivalentlyBA) is Schur sta-
ble, the trajectory starting &ko,Yo) € Ra2 U Rg2 eventually converges t®,0). This
shows that lim_.. FJ'(Xo, Yo) = (0,0), ¥(o,Yo) € R2.

(ii) p < 0: The mag, has a unique fixed poii; (1) = (Xa(l),Ya(R)), wherexa(p) =
Wu%;\ andya(1) = —3axa(k). Note that: (a) the fixed poifia () of Gy is the fixed
pointPx (1) = (xa(K),ya(H)) of Fy, and (b) the fixed poin®s (1) of Gy is the virtual
fixed point ofF, and this point is given byg(|) = THHSB andyg(l) = —3pXa(M).

Let Ra1, Ra2, Re1 andRg, be defined as in Figure 5.12. Also, Blx; C Ra1 be
the triangle with corner pointé, —), (—£,0) andGua(—£,0) = (0,u2). The
region Dy, is positively invariant. This follows from the continuity of the mép
and the observation that the edges of Ehg are mapped insidBa; as follows: the
segmeni(—£,0), (0,u2) is mapped to the segmef@, p2), (u(1+2),0) C Day;
the segmen(—%,O), (0,—p) is mapped tq0,0), (O, uf—ﬁ) C Da1; and the segment
(0,—), (0,u22) is mapped t¢0,0), (u(1+ 2),0) C Dar.

LetDg, C Rgy be the triangle with corner point®, —p), (O, uf—;\) andG;é(O, —W) =
(5%7 —H(1+g)) (see Figure 5.12). By constructidbg is mapped tdas.

Let (X0, Yo) € R? be a given initial condition. Ifxo,Yo) € Ra1, thenGy a(Xo, Yo) €
Q3 C Ra1 URa2. There are two possibilities: 1)3[}7A(Xo,yo) € Ra1, Vn € N, thus

liMn—. G} o(X0, Yo) = PA(W); or 2) There exists a positive integersuch thaG ' (%o, Yo) €
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Figure 5.12: Schematic diagram showing the half-lines generated by the eigenvectors

and the region®a1, Ra2, Re1 andRgy used in the proof of Case 5.3.2 with< 0.

Rao.
If (X0,Y0) € , thenG Vo) = (T ,—0 eQsC .
(X0,Y0) € Raz wA(X0,Yo) = ( AxO0+yo /ZXO) Q4 C Re2
> <
If (X0,Y0) € , thenG Vo) = (T ,—0 €eQ1C URg2. Since
(%0,Yo0) € Re1 wB(X0,Yo) = ( BXOZ'YO >IZXO) Q1 C Re1URe2
> >

Pa(l) € Ra1 is stable, there exists a positive integesuch thatG s (%o, Yo) € Re.
If (Xo0,Yo0) € Dp2, thenGyg(Xo,Yo) € Da1 and the trajectory converges R (). If
(X0,Y0) € R\ Dg2, thenGy (X0, Yo) € Raz.

Clearly, if (Xo,Y0) € Raz Or (X0,Yo) € Ra2\ D2, the trajectory starting &ixo, Yo)
may flip between the two regions but eventually enss and is trapped there. To
show that a trajectory starting @to, yo) € Ra2 URg2 \ Dg2 has to enteRas, we show
thatGy,go Gy 4 has a stable fixed poirikag (1), yas(H)) € Rar with —& < xag (1) < 0.

Thus, the trajectory cannot flip betweRg, andRg; for ever, it will enterDa; after a
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finite number of iterates. The fixed point is given by

M1+ 0 +18) —dTaXAB(H) — OpHt
(l—l—éA)(l—FéB)—TATB’ 1+ 0

e
pog (1+0a+Ta)

1+0a)(1+0g) — TATB

>0
yag (W) = — 125 (Taxas (M) +H) < O, implies that(Taxag () + 1) < O (since— ;2% >

(- ya(h) = ( ) eRa

After simplification,yag (M) = 1 < 0. But, the expression for

.

0), thus—% < xag(M) < 0.

This shows that lim_... FJ'(Xo, Yo) = Px (M), ¥(Xo, Yo) € R?.

(iif) > 0: The proof for this case is similar to the symmetric case0 above.

Caseb33: 0<tpa<land-1<1<0.

(i) p=0: (Refer Figure 5.13.) The half-lirfq;A dividesRa into two regionRa1 and

Ra2. The regionRa; is bordered by, and Moa The regionRay is bordered by‘;

and F;A. Similarly, the haIf-IineF;B dividesRg into two regionsRg; andRgy. The

regionRg; is bordered by‘j andF;B. The regiorRgy is bordered b)Fg andl‘;B.
Let (Xo,Yo0) € RR? be a given initial condition. ItXo, Yo) € Ra1, thenGya(Xo, Yo) =

(TaXo + Yo, —5Axo)T € Q3 C Ra1. Thus,Ra; is positively invariant and lim_.« GﬂvA(Xo,yo) =

<0 <0
(0,0).
If (%0,Yo0) € Raz, thenG Vo) = (T ,—0aX0)T € Q4 C Reo.
(X0,Y0) € Raz wA(X0,Yo) (AxOO+yo <A(\)X0) Q4 C Ra2
> =
If (Xo,Yo) € Ray, thenG Vo) = (T ,—3BX0)" € Q1 C Re1URgy. There-
(Xo0,Yo0) € Re1 1B(X0,Yo0) (BXOZ‘YO >|(3)Xo) Q1 C Re1URR2
> >

fore, there are two possibilities: 1) For ake N, G|} g(%o, Yo) € Rga, thus limh—. G} g(%0, Yo) =
(0,0), or 2) There exists a positive integarsuch thaG[}jB(xo,yo) € Reo.

Let Dg> C Rgp be the region bounded @;E(F;A) andr WhereG@é(F;A) =
{(X,y) €Rg2:y=(1g+ f—i)x} is the pre-image of the half-lifg , (see Figure 5.13).

By construction, every point iDgy is mapped intdRa1 in one step. If(xg,Yo) €
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Figure 5.13: Schematic diagram showing the half-lines generated by the eigenvectors

and the region®a1, Ra2, Re1 andRgy used in the proof of Case 5.3.3 with= 0.

Dgo, thenG Vo) = (T ,—OX)T € . Recall from above that
Rs2 \ De2 wB(X0,Y0) = (TBX0+ Y0, —88X0)' € Ra2

<0 >0
Gua(Ra2) C Reo. Thus, if (Xo,Yo0) € Ra2 URg2 \ Dgo, the trajectory flips between

the two regionRa> andRg; \ Dgy. Since the matrix produ@B is Schur stable, the
trajectory must enteDg, which is then mapped into the positively invariant region

Ra1. This shows that lim... FJ'(Xo, Yo) = (0,0), ¥(Xo,Yo) € R2.

(ii) p < 0: The map, has a unique fixed poif; (1) = (Xa(H),Ya(H)), wherexa(p) =
WHMA andya (1) = —3axa(L). Note that: (a) the fixed poia (i) of Gy is the fixed
point Px(K) = (Xa(M),ya(w)) of Fy, and (b) the fixed poiriz (1) of Gy is the virtual
fixed point ofF, and this point is given byg(p) = W‘Lés andyg (M) = —3pXa(L).

The mapF, has four invariant half-lines as in Case 5.3.1 above. Define the sub-

regionsRa1, Ra2, Rg1 andRg as in Figure. 5.14. Next we will show that for every
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(X0, Yo) € R?, limn_e F'(X0, o) — PA(W).
Let (Xo,Yo0) € RR? be a given initial condition. ItXo, Yo) € Ra1, thenGy a(Xo, Yo) =

(TaXo+ Yo+ 1 —8aX0) T € Q3 C Ra1. Thus,Ra; is positively invariant. Since;(u) €

<0 <0
Ra1 and the matriA is Schur stable, it follows that lig... ' (X0, Yo) = Pa(W)-

If (%0,Y0) € Ra, thenG .Yo) = ,—0a%0)" € Q4 C Rgo.
(Xo0,¥0) € Raz wA(X0,Yo) (TAXO+3/O+U <,2Xo) Q4 C Re
> =
If , thenG Yo) = ,—oXo) " U Rep.
(X0, Yo) € Re1, thenGy, (%o, Yo) (TBX0+3/o+u >sz0) € Q1 C Rs1URs
> >

Since the fixed point 0B, g which is given byPg () is in Ras (is a virtual fixed point
of Fy) and is stable, the trajectory starting’&$, o) € Ra1 approache§5(p) along the
eigenvectoLu()\g) and eventually enteiBg, or Rgp, i.e., there existen > 0 such that
Gls(X0,Yo) € Rez. The subregioDg; is bordered by, ', g andG;é(F;A). The
linesT, 5 andG, g(I" ;) intersect at the poin®, (0, —) = (£, W1+ §£)). By
construction, the subregidg; is mapped intda; in one step, i.eGyr(De2) C Ras.

If (X0,Y0) € Dpgy, thenG ,Yo) = (T ,—O € . Clearly,
(Xo0,¥0) € Ra2\ Dg2 1B (X0, Yo) = (TBXo +3/o+u >E;XO> Ra2 y
< =

if (X0,Y0) € Ra2 0Or (Xo,Y0) € Re2 \ Dgp, the trajectory starting atxo,yo) may flip
between the two regions but eventually entegs and is trapped there. To show that
a trajectory starting &txo, o) € Ra2 URg2 \ D2 eventually enter®a;, we show that
G0 Gy a has a stable fixed point Ra;. Thus, the trajectory cannot flip betwelgy
andRg for ever, it enterdRa; after a finite number of iterates. It is straightforward

to show that(xag (1), yas(M)) = ((1+g£)l(+1%638—)u\r3’ *5BTA)£T6(E)76|3“> € Ra1 is a fixed

point for G, g o G, o and is stable sincBA is Schur stable (see case 5.3.1 (ii) above).

We conclude that for everfxo, yo) € R?, limn_... (X0, Yo) = PA(W).

(iii) p> 0: The mapF, has a unique fixed poifs (1) = (Xs(1),ys(M)), wherexg(H) =
W‘Lés andyg(1) = —3pxa(L). Note that: (a) the fixed pois (L) of G g is the fixed
pointP5 (1) = (xg(K), ys(H)) of Fy, and (b) the fixed poin®a (1) of Gypa is the virtual
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Figure 5.14: Schematic diagram showing the half-lines generated by the eigenvectors

and the region&a1, Ra2, Reg1 andRg> used in the proof of Case 5.3.3 with 0.

fixed point ofF, and this point is given bya(}) = Wu%;\ andya(l) = —daxa(M).
The subregion®a1, Ra2, Re1 andRg; are defined as for the cape< 0 (see Fig-
ure 5.15). LetDap C Raz be the triangle with corner point®, —u), G;};(O,—p)
and G;lA(—%,O). Also let Dg; C Rgy be the triangle with corner point®, —p),
G;i(—%,O) and(—%,O). Note that points ifba» are mapped t®g; in one step and
Dgy is invariant. The fixed poirfes (1) € Dg». (This is easily shown by noting that the
triangleDg contains the intersection of the half-lines with thaxis and the y-axis,
i.e., all the four pointyu(Ag), Yu(Ag), Xu(Ag), andx,(Ag) are insideDgz and P (1)
coincides with the intersection of the two half-linesRp (see Figure 5.15)).

Let (Xo,Yo) € R? be a given initial condition. 1{xo,Yo) € Dg1, the positive in-

variance oDg; implies thatF'(Xo, Yo) = G|} g(X0, Yo) € De1 and limh—.. F1'(Xo, Yo) =
Pa(M).
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Figure 5.15: Schematic diagram showing the half-lines generated by the eigenvectors

and the region®a1, Ra2, Re1 andRgy used in the proof of Case 5.3.3 with> 0.

If (X0,Y0) € Da2, thenGy a(Xo,Yo) € Dg1 and thereafter the trajectory converges

to Py ().
If € Ra1, thenG Vo) = . —3aX0)T € Q3. SincePa(p) €
(X0,¥0) € Ra1 wA(X0,Yo) = (TaXo+Yo+ 1 —8axXg) " € Qs. SincePa(l)

<0 <0
Re1 and is a stable fixed point &, A, a trajectory starting ifka; eventually enters

Ra2. That is, there exists1 > 0 such thaG[}jA(xo,yo) € Ry, If GlTA(xo,yo) € Dao,
then GS}H) (X0,Yo) € Dg1 and hence the trajectory convergesPiip). Otherwise,
Gl (0. Y0) € Rez.

If (X0,Y0) € Raz\ Daz, thenGy a(Xo,Yo) = (TAxo+yo+u,;5/j§9)T € Rgp.

>0 <0
If (Xo,Yo) € Rg1, thenG Vo) = (T ,—0BX0)" € Q1 C Re1URsg>.
(X0, Yo) € Re1 wB(Xo0,Yo) (BX0+3/O—H1 IZXO) Q1 C Re1URg2
> >
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Clearly, if (xo,Y0) € Re2 or (Xo,Yo0) € Ra2 \ Da2, the trajectory starting &txo, yo)
may flip between the two regions but eventually must ebigrand is trapped there.

To show that a trajectory starting @to, yo) € Ra2 URs2 \ Dgp has to enteDgy,
we show thaG a0 Gy g has a stable fixed point iRg;. Thus, the trajectory cannot

flip betweenRa, andRg; for ever, it enterdg; after a finite number of iterates. It is

straightforward to show tha@kga (1), yea(H)) = ((1+§;(\)1(+1%6T355)TATB’ 76ATB)1(iA§E)76A“) €

Rg1 is a fixed point ofG, g o G, o and is stable sinc&B is Schur stable (see above). By
a similar argument as in Case 5.3.3 (i), it is straightforward to show thatgh (1) <

—% andyga (M) > 0. We conclude that for evertko, yo) € R?, limp_.c Fl'(%0,Yo) =
Pa(L).
Caseb.34 —1<tpa<O0and <13 < 1.

The proof for this case is similar to Case 5.3.3.

This completes the proof of Proposition 5.3. [ ]

5.3.3 Positive Eigenvalueson One Side and Negative Deter minant

on Other Side of the Border

In this subsection, we consider system (5.4) under the assumption that the eigenvalues
of the matricesA andB are real and satisfy (5.22) or (5.23). We show that this is a

sufficient condition for nonbifurcation with persistent stability.

Proposition 5.4 Let for pc R, the map F : R? — RR? be defined by (5.4). Let the

eigenvalues Ay of Aand A5 of B satisfy

O<M <Ai<land —1<Ag <O<Af<lwithAf+Ag>0 (5.22)

or  O0<Ag<Af <l and—1<A, <O<Ai<1lwithA{i+A, >0 (5.23)
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Then for every p € R, the map F, has a unique fixed point attractor (x(p),y(u)) and
this fixed point attractor is globally asymptotically stable. That is, for every initial

condition (Xo, Yo), theresulting orbit convergesto (X(L), Y(H)), S0 lim n—.« Fi'(X0, Yo) =

(X(H), Y(H).

Proof: Let the mag, satisfy the assumptions of Proposition 5.4. We will only prove
the proposition when (5.22) is satisfied. The proof for the symmetric case (5.23) is
similar. Assume (5.22) to hold. Note that assumption (5.22) implies thad@ =

MAL <land—1< 3 =AgA} <O0. The traces of andB are given byta =A, + A
andtg = Ag +A#, respectively and botty andtg are positive. There are three cases:

(i) u= 0, (ii) p < 0 and (i)t > O.

(i) p= 0: (Refer to Figure 5.16.) The half-linegA;) andL(Ay) defined in (5.5)-
(5.6) divideRa into three region®Ra1, Ra2 andRa3. The regionRaz is bordered by
M, andL(AL). The regionRa is bordered byL(AL) andL(A,). The regionRas
is bordered by™,| andL(\;). The half-linel 5 := {(x,y) € R?| x> 0,y = —Tax}
dividesRg into two regionRg; andRg,. The regionRg; is bordered by‘j andl‘;B.
The regionRg; is bordered by‘g andF;B.

The regionRa; andRa2 are positively invariant (see the proof of Proposition 5.1).
Thus, if (Xo,Y0) € Ra1URa2, then lim_.« Fl'(X0,Yo) = (0,0). The regionRaz is
mapped tdQ; in a finite number of iterates (see the proof of Proposition 5.1).

If (X0,Y0) € Re1, thenFy(Xo, Vo) = G Vo) = (T ,—0BX0)" € Q1 C Rgs.
(Xo,Y0) € Re1 u(Xo, Yo) = Gy (X0, Yo) (BXO:YO >|(3)Xo) Qi1 CRe1

> >

Thus,Rg; is positively invariant and lif_.« FJ‘(xo,yo) = (0,0).

If € Rap, thenF,(xo,Yo) = G .Yo) = ,—0BX0)T € Q2 C Ra.
(Xo0,Y0) € Re2 u(X0,Yo) = Gua(Xo0,Yo) = (tTBX0+ Y0, —OBXg) ' € Q2 C Ra

<0 >0
If Gg(X0,Y0) € Ras, then the trajectory is mappedRg; after a finite number of

iterates. That is, there exists a positive integesuch thatG[}jA(xo,yo) € Rg1. The
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Figure 5.16: Schematic diagram the regiétas, Ra2, Ra3, Rs1 andRg, used in the
proof of Proposition 5.4 witlu= 0.

positive invariance oRg; implies that lim,_.. £ ™(xo,Yo) = (0,0).

We conclude thaty(xo,Yo) € R?, limp_e F(x0,Yo) = (0,0).

(ii) p < 0: The mag, has a unique fixed poii; (1) = (Xa(l),Ya(R)), wherexa(p) =
W“%A andya(1) = —3axa(k). Note that: (a) the fixed poifia () of Gy a is the fixed
pointPx (1) = (xa(K),ya(H)) of Fy, and (b) the fixed poin®s (1) of Gy is the virtual
fixed point ofF, and this point is given byg(|) = THHSB andyg(l) = —3sXa(M).

DefineRa1, Ra2, Ra3, Ra4, Re1 andRgy as in Figure 5.17. Next we will show that
for every (xo,yo) € B2, limn_..o F{/(X0. o) — P(H).

Let (Xo,Yo0) € R? be a given initial condition. The regior®;, Ra> andRyy are
positively invariant (see the proof of Proposition 5.2). Thugxf,yo) € Ra1 URa2 U

Raa, then lim, .., F'(Xo, Yo) = PA(W)-
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Define Dasz C Ra3 to be the area inside the triangle with corner poiftts—p),
(0,yu(A4)) andP, whereP is any point on the half-liné(A,) to the left of Px(1).
The regionDas C Raz is also positively invariant (easy to see, since all the edges are
mapped inside the region and the map is continuous).

If (X0,Y0) € Rasz\ Das, then there are two possibilities: 1) there existsran 0
such thaGEA(m,yo) € Dag or 2) there exists am > 0 such thaGHjA(xo,yo) €Q1C
Rs1 U Rgy2 (see the proof of Proposition 5.2).

If (Xo0,Y0) € Ray1, thenG Vo) = (T ,—d8X0)" € Q1 C Re1 URg>.
(Xo0,Yo0) € Re1 wB(X0,Y0) = (TBXo +3/0+L1 >E;XO> Q1 C Re1URe?

>0 _ >
Since the fixed point oGy g which is given byPs() is in Raz (is a virtual fixed

point of ;) and is stable, the trajectory starting(&s, yo) approacheBs (1) along the
eigenvectoLu()\g) and eventually enteil83g,. The subregio®g; is bordered b)Fg,
M5 andG,g(Lp). The linesl, 5 andG z(Lp) intersect at the poin®,, (0, —4) =
(6%, —u(1+ g—g)). By construction, the subregi@g; is mapped tdra; URa» URag U

Daz in one step. If{Xg,Yo) € Dg2, thenG Vo) = (T ,—0 €
A3 p. If(Xo,¥0) € Rez2\ Dg2 1B(X0,Yo) = (TeXo + Yo+ M1, —X0)

<0 >0

Q2. Then, either 15, 8(X0,Yo) € Ra1 URa2 URa4UDaz, and limh_. Fu”(xo,yo) =
PA(l) or 2) Gyg(Xo0,Yo) € Raz. The possibility that the trajectory flips continuously
betweenRas \ Dasz andRg \ Dg> is ruled out since the matrix produdB is Schur
stable (see the proof of Proposition 5.3).

We conclude that for everfko,yo) € R?, limp e Fl'(%0,Yo) = Pa(W).
(iif) > 0O: The proof is similar to the proof of Proposition 5.3, Case 5.3.1.

This completes the proof. [ ]
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Figure 5.17: Schematic diagram showing the half-lines generated by the eigenvectors
and the region&a1, Ra2, Ra3, Ra4, Re1 andRgy used in the proof of Proposition 5.4

with p< 0.
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Chapter 6

Feedback Control of Border Collision

Bifurcation in Two-Dimensional PWS maps

In this chapter, feedback control of border collision bifurcations is considered for two-
dimensional piecewise smooth discrete-time systems. As discussed before, these are
bifurcations that occur when a fixed point of a piecewise smooth system crosses or
collides with the border between two regions of smooth operation. The goal of the
control effort is to modify the bifurcation so that the bifurcated steady state is locally
unique and locally attracting. In this way, the system’s local behavior is ensured to
remain close to the original operating condition. The sufficient conditions for nonbi-
furcation with persistent stability in 2-D PWS maps derived in the previous chapter
are used as a basis for feedback control design. The analysis leads to sufficient con-
ditions that are in the form of systems of inequalities. These inequalities are either
linear or can be approximated as linear. The feasibility of the resulting inequalities

can be easily verified using available software packages such as MATLAB.
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6.1 Mathematical Setting and Change of Coordinates

In this section, a transformation that sets the border of a two-dimensional PWS map at
x = 0 is performed. This is an initial step that is performed prior to applying control.

Consider a general 2-D PWS map of the form

(XYW = ff\()??m’ ()EWERA 6.1)
fa(X,y,1), (XY) €Rs

wherep is the bifurcation parameter arRh, Rg are two regions of smooth behav-

ior separated by a smooth curve (the bordey= h(y). The mapf(-,-,-) is as-

N B AW CaTAT I _
sumed to be PWSfa(x,y,) := | _~ is smooth onRa, f(X,Y,H) =
fAz(X7y7 Il)
fo, (VW) | N o
_ is smooth orRg andf is continuous inx,y) and depends smoothly
fBz(X7y7 U)

on p everywhere. Letx(p),y(p)) be a path of fixed points of; this path depends
continuously or. Suppose also that the fixed point hits the border at a critical pa-
rameter valuay,. Assume without loss of generality thag = 0. Suppose that the
coordinate system is chosen such th&®0),y(0)) = (0,0).

Next, we make a change of variable to set the border-at) (i.e., they-axis).

_ _ . [ 1 —ohjoy
Letx = x— h(y) andy =y. (The Jacobian of the transformationl|is :
0 1

which is invertible and therefore is a similarity transformation.)

In the new coordinates, the map is given by

_ fa(X+h 0
Tt hiy)yp) =4 AR YR, X 6.2)

fa(x+h(y),y,1), x>0
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Letting f(x,y, ) := f(X+h(y),y, 1), (6.2) can be written as

fA(X7 Ys I"l)u X< 0
f(xy, W) = (6.3)
fB(Xay; U)a x>0

Expanding (6.3) in a Taylor series near the fixed pé0, 0) gives

(

X b]_
A + H+HOT, x<O0
y 07)
f(X7 Ys p') = (64)
X b1
B + H+HOT, x>0
y 07)

\

whereA andB are the limiting Jacobians dfand(by, by)" is the derivative off with

respect tqy, and HOT denotes higher order terms. The quantities in (6.4) are thus:

0fa, (X,y,0) 0fa,(X,y,0)
i ()4 oy
A= | 6.5
w00 | 0fa(xy)  dfa(xy,0) |’ (6.5)
ox oy
0fg, (X,y,0) 0fg,(xY,0)
_ ; ox oy
B= Mol 0fs,(xy)  0fs,(xy0 | (6.6)
(o) oy
and
b M 6fBl(X7 Y, O)
! ' op : ol
= ) = | . (67
by (x,y)ILQO,O) 0fa, (X,Y,0) (x,y)ILrEO,O) dfg,(x,y,0) (6.7)
o ol

Note that the limit in (6.7) is independent of the direction of approach to the origin

sincef is smooth inu
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6.2 Control Constraintsfor Maintaining BCB

The fact that the normal form for BCBs contains only linear terms in the state leads
one to seek linear feedback controllers to modify the system’s bifurcation character-
istics. The linear feedback can either be applied on only one side of the border or on
both sides of the border. However, one must keep in mind that, for our approach to ap-
ply, the control action should not introduce discontinuity in the map. This is because,
as summarized in Chapter 2, the definition of BCBs requires that the system map be
continuous at the border, and thus our results on nonbifurcation with persistent stabil-
ity also apply only under this condition. Therefore, to maintain continuity of the map
after control is applied, we assume that the input vectors on both sides of the border
are equal. In this work, the input vectors are taken to be equa(ttee derivative of

the map with respect to the bifurcation parameter.) Also some constraints are placed
on the control gains so as to maintain continuity of the map, as will be elaborated

below. We consider the following possibilities for applying the feedback control:

e Switched feedback, where different controls are applied on each side of the

border;

e Simultaneous feedback, where the same control is applied on both sides of the

border;

¢ One sided feedback, where the control is applied on one side of the border but

not the other.

The issue of which type of actuation to use is a delicate one. There are practical
advantages to applying a switched feedback (different feedback on each side of the

border) or one sided feedback. However, this requires knowledge of where the border
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lies, which is not necessarily available in practice. Simultaneous control is used to
ensure robustness with respect to uncertainty in knowledge of the border, as was done
for 1-D maps. Moreover, the use of simultaneous feedback control alleviates the
need to transform the system to the normal form. Not surprisingly, the conditions
for existence of simultaneously stabilizing controls are more restrictive than for the
existence of switched controls.

All the control laws are developed based on the map linearizations as the fixed
point is approached on both sides of the border. It is important to emphasize that
we do not assume the system to be in normal form (see Section 2.2). This alleviates
the need to include state transformations in the design of control laws except for the
transformation setting the border to lie on §raxis. Thus, in the remainder of this

chapter, we consider the following 2-D piecewise affine map

a1 ai X by
+ M, X<O0
a3 as y b,
~— —
fl-l(xa y) = A (68)
a1 ax X by
+ B x>0
apz ap4 y b
~—— —
L B

where is the bifurcation parameter arfg is assumed continuous iR? but nons-
mooth at the border. Since the mfpis not differentiable at the bord&r= 0, A # B.
The continuity off, at the border implies that the second columnfoéquals the
second column 0B, i.e.,a12 = apy =: @y andajq = apq =: &4. Let1a :=tracdA) =
a1+ aa, 0a :=det(A) = ajja4 — apay3, g :=tracegB) = ay1 + a4 anddg :=detB) =

azia4 — Azaz3.
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Note that the map (6.8) in general represents the linearizations of a two-dimensional
PWS map near a fixed point on the border separating two regions of smooth behavior
Ra andRg as shown above. System (6.8) undergoes a variety of border collision bi-
furcations depending on the values of the parametgrda, tg anddg [61, 9, 23] as
discussed at length in Section 2.2.

The fixed points of the map (6.8) on both sides of the border are given by

(xa(l),ya(l) = ( (by —brag +aghp)p (agaby +hbo — bzall)u> |

1—1ao+0n ’ 1—1ao+0n
([ (bi—brag+ahp)y (apsby + by —brapy)u
(Xs(W),ys(M) = ( 1—Tg+0g ) 1-Tg+0g )

Assume thab; — biag + agby # 0, so that the fixed point does not move along the
border asu is varied through zero. Without loss of generality, assume byas +
aoby > 0 (if by — biag +azhy < 0, just replacei by —).

Below, the sufficient conditions for nonbifurcation with persistent stability derived
in Chapter 5 are used as a basis in synthesizing stabilizing feedback controls. We
begin with switched feedback control design, then we consider simultaneous feedback
control design and we end this chapter with one sided feedback control design. In all
the cases, we make sure that the feedback control does not introduce discontinuity

into the map.
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6.3 Switched Feedback Control Design

In this method, different controls are applied on each side of the border. This leads to

the closed-loop system

(

ail
Xi+-1 a3
Yk+1 az
a3

\
Uy, = (Y11Y2)
Uz, = (Ya1Y2)

a
ay
a
ay
Xk
Yk
Xk

Yk

Xk by
+ I
Yk b,
Xk by
+ I
Yk b
= Y11Xk + Y2Yk
= Y21Xk + YoYk

Uy, Xk <0
(6.9)

Uz, Xk > 0
(6.10)
(6.11)

whereyi1, Y2 andy»1 are the control gains. Note that the control ggimultiplying

Yk is the same in botluy, andup, in order to maintain continuity along the border

in the controlled system. Suppose that the fixed point to the left of the border for

M < Ois stable—that is, assumg1+0p) < Ta < (1+0a). Suppose also that @ss

increased through zero, a BCB occurs.

The closed-loop system can be written as

(

Xkt+1

Yk+1

\

ant+biyin axt+bhy: Xk
a13+boy1n as+boys Yk
a1+biy21 az+biyz X
a23+bayor as+bays Yic

by
07
by
07

M, X < 0
(6.12)

K X>0

The characteristic polynomials of the closed loop system to the left and right of the
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border are given by

Pa(d) = A2 — (Ta+bry11+ bayz) A
Ta
+ Oa+ (bras — bpap)yia + (arby —aisba)ye (6.13)

N

and

Pe(A) = N— (T +baya1+bayz) A
T
+ Og+ (b1as — boap)yz1 + (azibz — azsba)ye (6.14)

B

respectively, where a tilde is used to denote closed-loop quantities.
Next, the nonbifurcation results derived in Chapter 5 are used to find conditions

for stabilizing control laws.

Feedback Control Design Based on Proposition 5.3:

Using Proposition 5.3, the following conditions on the controlled system Jacobian

matrices are derived:

—1<d < O (6.15)
1+%a+0a > O (6.16)
1-%a+0n > O (6.17)
and
~1<d < O (6.18)
1+ig+0g > O (6.19)
1-%g+0g > O (6.20)

106



Substituting the expressions oK, T, O andig in (6.15)-(6.20) yields

(brag —aghbp)yin < —(az1bz —aigby)y2 —0a (6.21)
(biay —apbo)y1n > —(a11bp—aisbr)y2—0a—1 (6.22)
(biag—apbp+br)y1r > —(bp+agiby—aishy)yo— (1+14+04) (6.23)

(bjag —aphp —b1)y11 > —(—ba+agiby—aizbi)yo— (1 —1a+0a) (6.24)

and
(bray —agbp)y21 < —(@21P2 —ap3by1)y2 — s (6.25)
(b1a4 — azbz)y21 > —(a21b2 — angl)yz — 65 -1 (6.26)

(bjag —aphp+b1)y21r > —(ba+apiby—agsbi)yo— (1+18+08) (6.27)

(b1ag —apbp —b1)yo1r > —(—bo+apibp—agsb)yo— (1—15+08) (6.28)

Stabilizing control laws exist if inequalities (6.21)-(6.28) are feasible which is easy to

check.

Feedback Control Design Based on Proposition 5.4:

Below, we seek control gains such that the eigenvalues of the controlled system (6.12)

satisfy Proposition 5.4:

0<dn < 1, (6.29)
2\/a<Ta < (1+3p), (6.30)
and
~1<d < O, (6.31)
0<fg < 1+3g. (6.32)
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Inequalities (6.29)-(6.32) give a sufficient condition for nonbifurcation with persistent
stability in the controlled system. Lete (0,1) be a small parameter. Then, the

conditions 0< ESA <land 2\/8; <ITa<(1+ SA) are satisfied if

0<dn < & (6.33)

and 2/e<in < (143p), 0O<e<1 (6.34)

Writing (6.29)-(6.32) explicitly together with (6.33)-(6.34) yields

(bray —agbp)yr < —(aqabz —aishi)y2 —da+¢ (6.35)
(b1a4 — azbz)yl > —(a11b2 — a13b1)V2 — 6A (6.36)
biyi > —bpyo+2ve—1a (6.37)

(brag —aphp —b1)yr > —(—bz2+aybz —aisbr)y2— (1-1a+0a) (6.38)

and
(b1a4 — azbz)yl < —(a21b2 — a23b1)V2 — 65 (6.39)
(bragy —aphbp)yr > —(agibo —ag3bi)yo—dg—1 (6.40)
biyp > —boyo—1B (6.41)

(biag —agbp —br)yr > —(—bz2+axiby —ap3b1)y>— (1-18+3s) (6.42)

Again, checking the feasibility of the linear inequalities (6.35)-(6.42) is an easy task.

Similar conditions can be obtained using Proposition 5.2.
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6.4 Simultaneous Stabilization

In this control method, the same feedback control is applied on both sides of the

border. This leads to the closed-loop system

4
aln a Xk b1 b1
+ e+ U, X<0
Xk aiz ag Yk by b,
i (6.43)
Yk+1 ap1 a Xk b1 b1
+ VER U, X >0
\ a3 a4 Yk o7} b,
Xk
U = (YLYo) = Y1 Xk + YoYk (6.44)
Yk

wherey; andy; are the control gains.
The following proposition asserts stabilizability of the border collision bifurcation

with this type of control policy. The conditions are based on Proposition 5.3.

Proposition 6.1 If the following inequalities

(b1a4 — azbz)yl < —(a11b2 — a13b1)V2 — 6A (6.45)
(b1a4 — azbz)yl > —(a11b2 — a13b1)V2 — 6A -1 (6.46)
(bjay —apbp+b1)yr > —(ba+ajiby—aisbr)y2 — (1+1a+0a) (6.47)

(brag—aphp —b1)yr > —(—bz2+aybz —aisbr)y2— (1-1a+0a) (6.48)
and

(b1a4 — azbz)yl < —(a21b2 — a23b1)V2 — 65 (6.49)
(b1a4 — azbz)yl > —(a21b2 — a23b1)V2 — 65 -1 (6.50)
(bjagy —apbp+by)yr > —(bo+apibp—apsby)yo— (1+18+38) (6.51)

(brag—aphp —b1)yr > —(—bz2+axb2 —agsbi)y2— (1-18+38) (6.52)
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are feasible, then a stabilizing simultaneous feedback control exists. (YAn)

satisfying (6.45)-(6.52) are stabilizing.

Proof: Follows from (6.21)-(6.28) after settings = y21 =: yo.
The following proposition asserts stabilizability of the border collision bifurcation

using simultaneous feedback control based on Proposition 5.4.

Proposition 6.2 If inequalities (6.35)-(6.42) are feasible wiiy = y21 =: y1, then a
stabilizing simultaneous feedback control exists. Apy y»>) satisfying (6.35)-(6.42)

are stabilizing.

Remark 6.1 It isimportant to point out that simultaneous control (same control ap-
plied on both sides of the border) is robust to uncertainty in location of border. More-
over transforming a systemto normal formis not needed when simultaneous feedback
control isemployed. All that is needed in this case is an estimate of the Jacobian ma-

trices of the map on both sides of the border.

6.5 One-Sided Feedback Control

In this control method, the feedback is applied on one side of the border only. We will
only consider applying the control on the unstable side of the border. Control applied
on the stable side of the border is not considered here, because sufficient conditions
for it to work are not currently available.

Assume that is Schur Stable with eigenvalué% satisfying, either G< A, <
Ax <1,0or—1< A, <0< Ajx. This implies that the system possesses an asymptoti-
cally stable fixed point in the left half plane fp 0. Assume that the system without

control undergoes a BCB asis increased through zero. Applying feedback control
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on the unstable side (the right half plane) yields the closed-loop system

(

ai; ap Xk by
+ K, X <0
Xk a3 Yk o7}
I - (6.53)
Yk+1 ap1 a Xk b1 b1
+ M+ Ug, Xx>0
\ a3 Yk by b2
U = YiX (6.54)

wherey; is the control gain. Note that only is used in the feedback to maintain
continuity of the controlled map along the bordet 0. One sided control is a special
case of switched feedback control considered in Section 6.3 after settirgyi> =

y22 = 0. Thus, a stabilizing one sided control as in (6.53),(6.54) exists if a switched

feedback exists withiy1 = y12 = Y22 =0.

6.6 Numerical Examples

In this section, numerical examples are given to illustrate how the developed control
laws above can be used to eliminate border collision bifurcation and produce desirable

behavior.

Example 6.1 Border collision pair bifurcation (saddle node bifurcation)

Consider the two-dimensional piecewise smooth map

4
1 1) [ % 1 1
+ M+ U, X <0
05 0 ) | vy 0 0
Xk
Bl - A (6.55)
Yk+1 25 1 Xk 1 1
+ n-+ U, Xk>0
07 0 )\ vy 0 0
\ B
Uc = YiXe+YaYk (6.56)
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This map withuy = 0 undergoes a border collision pair bifurcation (saddle node bi-
furcation), where a stable and an unstable fixed point merge and disappe# as
increased through zero (see Figure 6.1). This is an example of a “dangerous” bifurca-
tion because there are no local attractors for valugshbafyond the critical value. For
thisexamplea;1=1,a=1,a13=—-0.5,a4 =0,a1 =25,a3=—-0.7,b; =1 and
b, = 0. The eigenvalues df areAa,, = 0.5+ 0.5 and those oB areAg, = 2.1787
andAg, = 0.3213.

Next, the control methods developed above are applied to control the BCB in (6.55)
so that the closed loop system possesses a locally unique and attracting fixed point on

both sides of the border.

Simultaneous control

For this example, it is straightforward to check that inequalities (6.45)-(6.52) are fea-
sible. Thus, a stabilizing simultaneous feedback control exists. A set of stabilizing
control gain pairsyf,y2) is obtained from inequalities (6.45)-(6.52) and is depicted
in Figure 6.2. The bifurcation diagram of the controlled system w4tk —1.95 and

y2 = —1.05 is shown in Figure 6.3.

Example 6.2 (Dangerous Border Collision Bifurcation, Example Revisited)
We revisit the example of Section 5.1, and show that the control methods presented
above can be used to eliminate the instability and produce a locally unique fixed point

attractor on both sides of the border. The map (5.1) is repeated here with control
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Figure 6.1: Bifurcation diagram for Example 6.1 without control. The solid line
represents a path of stable fixed points whereas the dashed line represents a path of

unstable fixed points.
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Figure 6.2: The interior of the triangle gives simultaneously stabilizing control gains

for Example 6.1.

113



0.61 i

-0.6 §

Figure 6.3: Bifurcation diagram for Example 6.1 with simultaneous control using
y1 = —1.95 andy, = —1.05 (A locally unique and stable fixed point exists on both

sides of the border).

signal included:

-03 1 Xk 1 1
+ M+ Uk, X <0
-09 0 Yk 0 0
Xk+1 _ x
Yk+1 -16 1 Xic 1 1
+ M+ Ug, Xk>0
-09 0 Yk 0 0
~—_——
( B
Xk
Uk = (Y1Y2)
g Yk

A simple check shows that a simultaneous feedback control based on Proposition 6.1

exists. One stabilizing control gain vector is givendy (1 —1.1). This yields the
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closed-loop matrices

Ac = A+Dbg
0.7 -01
-09 O
and
—-06 -01
-09 O

The eigenvalues ok andB. are given by{0.811 —0.111} and{—0.72430.1243},
respectively. The bifurcation diagram of the closed-loop system is similar to that

shown in Figure 6.3.
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Chapter 7

Lyapunov-Based Stability Analysisand
Feedback Control of Piecewise Smooth

Discrete-Time Systems

In this chapter, Lyapunov techniques are used in the analysis of finite dimensional
piecewise smooth discrete-time systems that depend on a parameter. The use of Lya-
punov techniques facilitates the consideratiomafimensional systems whereis

not restricted to be 1 or 2 as in previous chapters. A sufficient condition for nonbifur-
cation with persistent stability in PWS maps of dimensimas derived. The derived
condition is in terms of linear matrix inequalities (LMIs). This condition is then used

as a basis for the design of feedback controls to eliminate border collision bifurcations
in PWS maps and to produce desirable behavior. The Lyapunov-based methodology
is used to consider the design of washout filter based controllers. These are dynamic
feedback control laws that are designed so as not to alter a system’s fixed points, even
in the presence of model uncertainty. In addition, the Lyapunov-based approach is

extended to allow nonmonotonically decreasing Lyapunov functions.
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7.1 Introduction

Recently, many researchers have studied stability of a fixed point of switched discrete-
time linear systems (e.g., [44, 57, 30, 29, 46]) as well as continuous time switched
systems (e.qg.,[43, 42]). In all the referenced studies, Lyapunov techniques were used
to obtain sufficient conditions for stability of the fixed point (or equilibrium point) of

a piecewise linear system. For instance, in [42, 57, 30], quadratic as well as piece-
wise quadratic Lyapunov functions were used in the analysis of stability of switched
systems and also in the synthesis of stabilizing controls. In [46], piecewise linear
Lyapunov functions were used to obtain stabilizing switching sequences. The author
is unaware of any previous study using Lyapunov methods to analyze the dynamics
of switched systems depending on a parameter. Here, we use quadratic Lyapunov
functions to study border collision bifurcations in PWS maps and to obtain sufficient

conditions for nonbifurcation with persistent stability in such maps.

7.2 Lyapunov-Based Analysis of PWS M aps

In this section, we consider Lyapunov-based stability and bifurcation analysis of
n-dimensional PWS maps. Consider the one-parameter family of piecewise affine

(PWA) mapsf, : R" — R" in normal form for BCB given by

AX(K)+ b, if Xa(K) <O
Bx(k) + pb, if x3(k)>0

fu(x(k)) =

We start with scalar systems to illustrate the ideas and then we proceed to multi-

dimensional systems.
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7.2.1 Scalar Systems

For scalar systems, the normal form is given by

ax(k) +p, if x(k) <0
X(k+1) = fu(x(k)) = (7.1)
bx(k) +p, if x(k) >0
The possible fixed points are given by (1) = £ andxa(p) = 15. For the fixed
pointxg (L) to actually occur, we neegt; > 0 which is satisfied if and only jii > 0
andb < 1 orp<0andb> 1. Similarly, forxa(p) to actually occur, we ne<—:-g}al <0
which is satisfied if and only it < 0 anda< 1 orp> 0 anda > 1.

Casel): p<0Oanda< 1, scalar systems. Here, the fixed point of, is xa(l) = 7.

Changing the state variable ze= x — xa([), we have

(

a(z(K) +xa(W) +H—xa(H), if z(k) < —xa(H)
b(z(K) +Xa(H) +H—Xa(W), if z(k) > —Xxa(W)

2(k+1) =

EC it 2(k) < —xa(p) 72

\ bz(k) +2=2p, if z(k) > —xa(W)

In the new coordinateg,= 0 is a fixed point foqu < 0. (Note that the border point
Zorder = — 705 Varies as a function qf.)

Consider the quadratic Lyapunov function candidate
V(z) = pZ2, wherep>0 (7.3)

The forward difference df along the trajectories of (7.2)#8/(z(k)) =V (z(k+1) —

V(z(k)). There are two caseg(k) < —xa () andz(k) > —xa(L).

Case 1.1): z(k) < —xa(M). In this case, we use a subscripto indicate calculations

to the “left” of the border.

AVL(Z(K) = V(zk+1))=V(zk))
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= p(az(k))®— pZ (k)
= p(@®—1)7ZKk) (7.4)

Note thatAV (z(k)) in (7.4) is negative ifand only i1 < a < 1.

Case1.2: z(k) > —xa(). In this case, we use a subscHipto indicate calculations to

the “right” of the border.

AVR(Z(k)) = V(z(k+1)) =V (z(k))

~p (bz(k) + Bu)z - pZ(K)

l1-a

2
= p(bz—l)zz(k)+2pbukl)%22(k)+p(kl)%;il) w. (7.5

Combining (7.4) and (7.5) yields

p(a®—1)Z2(k), 7(k) < —xa(U
iy — | PE - DEK b » 0=l o
p(b? —1)Z*(k) +2pbp2=22(k) + p(3=3) "W, (k) > —xa(W)
The next proposition asserts th&f (z(k)) in (7.6) is negative definite if and only

if |a] <1and|b| <1.

Proposition 7.1 The forward difference of V given in (7.6) is negative definite if and

onlyif |aj < 1and |b| < 1.

Proof: The necessity partis clear from (7.4) and (7.5)ajf> 1 thenAV > 0 in (7.4),
similarly, if |b| > 1 thenAV > 0 in (7.5) for largez.

To prove the sufficiency part, assurf@ < 1 and|b| < 1. Note thatAV(z(k))
is continuousvz € R. Continuity of AV follows from the continuity oV and the
continuity of the map (7.2). Sina®/(z(k)) < Ofor allz< —xa(p) (by (7.4)AV(2) =0
only if z= 0) andAV is continuousvz, it follows thatAV(z) < 0 at the pointz =

—Xa(H). It remains to show thatV (z) < O for all z> —xa(p) (note that—xa(p) > 0).
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To this end, we use (7.5) to show thaV¥(z) is decreasing irz in the regionz >

—Xa(H):

dav

5 = 2p(b? — 1)z+2pb(b— a)xa(k), 2> —Xa(H) >0 (7.7)

Sincez > —xa (M), we can expressas:z= —Xa(H) +w, wherew > 0. Then

O~ 2p(B? 1) (xa(h) +w) + 200(b— axa(h)
= 2p(b?—1)w+ 2pxa(p) (1—ab) <0 (7.8)
<0 26-/ >0

Thus,AV (z) < 0 for all z> —xa(p). We conclude thatV (z(k)) < 0 for all z(k) # 0
andAV (z(k)) = 0 for z(k) = 0. |

Case?2): p>0andb < 1, scalar systems. In this case, the fixed point df, is X (1) =

ﬁ. Changing the state variableze= x— xg(l), we have

(

a(z(k) +xg(W) +H—xa(M), if z(k) < —xa(H)
b(z(k) +Xa(W)) +H—xa(M), if z(k) > —xa(H)

z2(k+1) =

o+ i 2k < e 79

bz(k), if z(k) > —xg(l)

\

Consider the same quadratic Lyapunov function candidate as in (7.3) above:
V(z) = pZ, wherep>0

The forward difference df along the trajectories of (7.9)#8/(z(k)) =V (z(k+ 1) —

V(z(k)) and is given by

a2 — 12 (K) + 2papd=Lz(k) + p (22)* 12, (k) < —x
AV (ZK)) = p(a® —1)Z°(k) +2papi=pz(k) + p (§p) "1, 2(k) < —xa(W) (7.10)
p(b*—1)Z*(k), z(k) > —xg(H)
The following proposition summarizes the result for this case. The derivation is

similar to that of Proposition 7.1 above.
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Proposition 7.2 Theforward difference of V givenin (7.10) is negative definite if and

onlyif |aj < 1and |b| < 1.

Combining Propositions 7.1 and 7.2 yields that the map (7.1) has a globally asymp-
totically stable fixed point for aji € R if |a] < 1 and|b| < 1. The following proposi-

tion summarizes this result.

Proposition 7.3 (Nonbifurcation with Persistent Stability in 1-D PWS M aps)
The PWS map (7.1) has a globally asymptotically stable fixed point fqr alR if

la] < 1and|b| < 1.

This result is in agreement with the known results discussed in Chapter 3.

7.2.2 Multidimensional Systems

We now consider Lyapunov-based stability and bifurcation analysis@mensional

PWS maps. Consider the one-parameter family of piecewise smooth maps

Fxp) = AW, x€Ra (7.11)

fB(Xv H), Xe RB

wheref : R"1 — R" is piecewise smooth ix; f is smooth inx everywhere except

on the border (hypersurfadg separatindgra andRg where it is only continuousf

is smooth inu andRa, Rg are the two (nonintersecting) regions of smooth behavior.
We are interested in studying the dynamicsf adt a fixed point (or a periodic orbit)
near or at the borddr. If the fixed point (or periodic orbit) is iRa (respectivelyRg)

and is away from the border, then the local dynamics is determined by the single map
fa (respectivelyfg). If, on the other hand, the fixed point is close to the border, then

jumps across the border can occur except in an extremely small neighborhood of the
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fixed point. Therefore, for operation close to the border, Hatland fg are needed

in the study of the possible behavior. For a fixed point at or near the border, the
dynamics is determined by the linearizations of the map on both sides of the border,
as was discussed at length in Section 2.2.

Consider the piecewise-linearized representation of (7.11) [23]

x(k+1) = fiu(x(k)) = A +ib, 1 (k) <0 (7.12)

Bx(k) +pb, if xi(k) >0

whereA is the linearization of the PWS malpin Ra at a fixed point on the border
approached from points iRy near the borderB is the linearization off at a fixed
point on the border approached from point&y) andb is the derivative of the map
with respect tqu. The sign of the first component of the veckaletermines whether
xisinRaorinRg. If X =0, thenx is on the border separatifi®y andRg. Note that
the assumed continuity df, at the border implies th#& andB differ only in their first
columns. That isgj = bjj, for j # 1, whereA = [a;j] andB = [byj].

Assume that ¥ o(A) and 1¢ o(B) (i.e., bothl — A, | — B are nonsingular).
Formally solving for the fixed points of (7.12), we obtaig(u) = (I — A)~bp and
xg(l) = (I —B)~tbu. Forxa(u) to actually occur as a fixed point, the first component

of xa(1) must be nonpositive. That is,
_ o\ T -1
X (W) = (e7) Ul —A)""b<0 (7.13)

where(e')T = (10 --- 0). Similarly, for xg(l) to actually occur as a fixed point, we

need
xg, (W = (e)Tu(l-B)'b>0 (7.14)

If, on the other hand, the first componentaf ) is positive (the first component of
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xg(l) is nonpositive), then the fixed point is called a virtual fixed point. Virtual fixed
points are important in studying the dynamics of a PWS map at or near the border.

Let pa(A) and pg(A) be the characteristic polynomials AfandB, respectively.
Thenpa(A) = detAl —A) andpg(A) = det(Al —B).

The fixed points can be written as

xa(l) = (1—A) by

 adjl —A)by

~ de(l -A)

— bA

= ? (7.13)

xa(l) = (1-B) by

_adj(l —B)bu
~ detl -B)
bs
= pB(l)p. (7.16)

where BA =adj(l — A)b and 55 =adj(l —B)b. It can be shown thalt_)A1 = t_)B1 =:
by [23]. To see this, recall that andB differ only in their first columns and adj—
A) = (cof (1 —A))T. Thus, the first row of adj — A) is equal to the first row of
adj(l — B), which implies that(e!)Tadj(I — A)b = (e")Tadj(I — B)b =: by. Thus,

by
B pa(l)
X, (M) = p:—(ll)u. For the fixed poinka () to occur forp < 0, we needp, (1) <0, i.e.,

the first component oa(M) is Xa, (K) = i and the first component o (L) is

p:;(ll)pg 0, or, equivalentlyp:;(ll) >_O. Similarly, for the fixed pioinxg(p) to occur for
p> 0, we needg, (1) >0, i.e., p%(ﬁ)“> 0, or, equivalently,p:ﬁ > 0. Therefore, a

necessary and sufficient condition to have a fixed point fop &l pa(1)ps(1) > O,
which is assumed to be in force in the remainder of the discussion.
As we did for scalar systems, we perform a change of variables to simplify the

analysis.
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Case 1): p< 0, n-dimensional systems. The fixed point off, is xa(H). Changing the

state vector ta = x— xa(l), we have
(

A(Z(K) +Xxa(W) +bu—xa(W), if z1(k) < —xa, (1)
B(z(k) +Xa(W) + b —xa(W), if z1(k) > —Xa; (W)

2(k+1) =

Az(K), itz (k) < —Xa; (M)
Bz(K) + (I — (I =B)(I1 =AYby, if z(K) > —xa, (1)

Az(k), if 21(K) < —xay (W)

= Bz(k) + (B— A)(l —A)fl)k}u, it z(K) > —xa, (1) (7.17)

.

g

\ =.C
In the new coordinateg = 0 is a fixed point for allu < 0. (Note that the border

Znorder = {Z: 21 = —xa, (W) }, varies as a function qf.) Note that sincd® andA differ
only in their first columns, all elements 8f— A are zero except for the first column.
Thus,cu= (B—A)(I —A)~lbu= (B—A)xa(l) = Xa, (W) (B — A), whereAl (resp.
B') denotes the first column of the matéix(resp.B).
Consider the quadratic Lyapunov function candidate

V(z)=2"Pz, whereP=P" >0 (7.18)
The forward difference 0¥ along trajectories of (7.17) &V (z(k)) =V (z(k+ 1) —
V(z(k)). There are two caseg;(k) < —xa, (1) andz (k) > —xa, (1).
Case 1.1): z1(k) < —xa, (1)

AVL(z(k)) = V(z(k+1))=V(z(K)
= (Az(k))"PAZ(K) — (k) "Pz(K)

= z(k)T(ATPA—P)z(K) (7.19)
Case 1.2): z1(k) > —xa, (1)

AVR(z(k)) = V(z(k+1)) =V(z(k)
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= (Bz(k) 4 cp) "P(Bz(K) + cp) — z(K) TPz(Kk)
= z(k)T(BTPB — P)z(k) 4 2uc" PBz(k) + p2cT Pc
= z(k)T(BTPB — P)z(k) 4 2xa, (W) (B — A1) TPBz(Kk)

+ x4, (W(B-AhTPB - Al (7.20)
Combining (7.19) and (7.20) yields

V(K — AV (z(k)), if zi(k) < —xa, (W) (7.21)

AVR(z(k)), if z1(k) > —xa, (W)

From (7.19) and (7.20), a necessary conditior¥d(z(k)) to be negative definite

is that the following two matrix inequalities hold:

ATPA-P < 0 (7.22)

B'PB—P < 0 (7.23)

Moreover, we have the following claim, which asserts sufficiency of (7.22),(7.23)

for negative definiteness &V (z(k)).

Claim: (Sufficiency of LM1s(7.22)-(7.23) for a Decreasing Lyapunov Function)
If the matrix inequalities (7.22)-(7.23) are satisfied with= PT > 0, thenAV (z(k))

given by (7.21) is negative definite.

Proof: Assume that there isR= PT > 0 such that (7.22)-(7.23) are satisfied. Then
AV (z2) = Z7(ATPA—P)z < 0 ¥z # 0. It remains to show thaAVgr(z) < 0. Let
z= (z1,22)", wherez; € R andz € R"1. Note thatAV(z) is continuous for all
z. Continuity of AV (z) follows from the continuity ofV (z) and continuity of the
map (7.17). SincéV, (z) < 0 (AVL(z) = 0 if and only if z= 0) andAV(z) is con-

tinuous for allz, it follows that AVRr(z) < O at the borde{z; = —xa, ()} (Since
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Iim( AV = Iim( £ (1) 2,) AVR). Itremains to show thaltVr(z) <

21’22)—’(_)(;1(“)722) Zlvzz)ﬂ(ixAl

0 for all zin the regiorz; > —xa, (1) (note that—xa, (1) > 0). Completing the squares

in (7.20) allows us to writé&\VR(z) as follows:

AVR(z) = Z'(BTPB—P)z+2xa, () (B'— A)TPBz+x3 (1) (B'—AN)TP(B! - Al
= (z—a)"(B"PB—P)(z—a)—a'(B"PB—P)a

+ x4, (WB-AHTPB - Al (7.24)

wherea = —xa, (1) (B"PB—P)~1BTP(B! — Al). LetN < R" such thalN is convex
and contains the origin (for example, a ball). Since the fixed pqjfy) is close to the
origin for smallp, the hyperplane; = —xa, (1) slices the neighborhodd . Consider
AVR(z) restricted toN . The second derivative dfVg(z) with respect taz (i.e., its
Hessian matrix) i§]2AVk = 2(BTPB—P) < 0. Thus AVg(2) is strictly concave oiN ,
i.e., foreveryz,ye N, andb € (0,1), AVr(6z+ (1—8)y) > 0AVR(Z) + (1— 6)AVR(Y).
Note thatAVR(0) = x5 (W)(B' — Al)TP(B* — Al) > 0. Now, we show thafVg < 0
vze N with zz > —xa,(M1). By way of contradiction, suppose there iyy& N,
with y; > —Xa1 (M), such thalVgr(y) > 0. SinceAVr(z) is strictly concave, it follows
that AVR(z) is positive along the line segment connecting 0 gnd&Vg(6-0+ (1 —
B)y) > 6AVR(0)+(1— B8)AVR(Y) > 0, V0 € (0,1). But, along the line connecting
~—— ~——

>0 >0
z= 0 withz=Yy, there is a point* with z; = —xa, (M) whereAVr(z") < 0, which is a

contradiction. ThusAVr(z) < 0 forallze N with z3 > —xa, (1) > 0. |

Remark 7.1 If the piecewise smooth map is affine asin (7.12), then the result above
appliesglobally. That is, if the origin of a piecewise affine map is quadratically stable
(i.e., can be proved stable using a common quadratic Lyapunov function), then the

map has a globally asymptotically stable fixed point for all g < 0. Thisiseasily seen
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in the proof above by using a global argument (the neighborhood N can be taken as

RM).
The following proposition summarizes the results so far.

Proposition 7.4 The forward difference of V = z"Pz, with P = PT > 0, along tra-
jectories of (7.17) with p < 0 is negative definite (i.e.,, AV (z) < 0) if and only if the

following matrix inequalities hold:

ATPA-P < 0 (7.25)

B'PB—P < 0 (7.26)

Case 2): p> 0, n-dimensional systems. The fixed point off, is xg(1). Changing the

state vector ta = x— xg([), we have

(

A(z(k) +x8(W) +bu—xa(W), if z1(k) < —xa, (1)
B(z(k) +xg(M)) + bpu—xg(p), if z1(k) > —xg,(K)

2(k+1) =

A2(K)+ (1 - (1 — AY(1 —B) )by, i 21(K) < —xey (W)

\ Bz(k), if z1(k) > —xg, (M)
[ A2(k)+ (A—B)(1 —B) by, i z1(K) < —xg, (W)
= ¢ (7.27)
Bz(k), if z1(k) > —xg, (W)

\
In the new coordinateg = 0 is a fixed point for allu > 0. (Note that the border
Znorder = {Z: 21 = —xg, (M) }, varies as a function qf.) Note that sincd® andA differ

only in their first columns, all elements 8f— B are zero except for the first column.

Thus,cu = (A—B)(1 — B)~*bu = (A— B)xg(1) = X, (1) (Al — BY).
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Consider the same quadratic Lyapunov function candidate as in (7.18) above:
V(z)=2"Pz, whereP=P" >0

The forward difference o¥ along trajectories of (7.27) &V (z(k)) =V (z(k+ 1) —
V(z(k)). There are two cases (k) < —xg, (M) andzi(k) > —xg,(M). (Note that
xg1(H) > 0 from (7.14).)

Case2.1): z1(K) < g, (1)

AVi(z(k)) = V(z(k+1))—-V(zKk))
= (Az(k) +c)TP(AZ(K) + cp) — (k) "Pz(K)
= z(k)T (ATPA—P)z(k) + 2ucT PAZ(k) + 12c Pc
= 2(k)T(ATPA—P)z(k) + 2xg, (1) (A* — BYTPAZ(K)
+ x§ (W(A'-BYHTP(Al —B) (7.28)
Case2.2): z1(k) > —xg, (1)
AVR(z(k)) = V(z(k+1)) -V (z(Kk))
= (Bz(k))"PBz(k) — z(k) TPz(k)
= z(k)T(B"PB—P)z(k) (7.29)
Combining (7.28) and (7.29) yields

i) — 4 AHEO), T 20 < e @) 7.30)
AVR(z(K)), if z(k) > —xg, (M)
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Proposition 7.5 (Necessary and Sufficient Conditionsfor a Decreasing Lyapunov
Function)

The forward difference of V = z" Pz, with P = PT > 0, along trajectories of (7.27)
with p > 0 is negative definite (i.e,, AV(z) < 0) if and only if the following matrix

inequalities hold:

ATPA-P < 0 (7.31)

B'PB—P < 0 (7.32)

Proof: Necessity follows from (7.28) and (7.29), and the proof for sufficiency is

similar to that for the casp < 0 above. [ |

By combining Proposition 7.4 and Proposition 7.5, we obtain the main result of

this chapter.

Proposition 7.6 (Sufficient Condition for Nonbifurcation with Persistent Stabil-
ity in n-D PWS Maps)
Consider the system (7.12). If thereisa P = PT > 0 such that

ATPA-P < 0,

B'PB—P < 0,
then system (7.12) has a globally asymptotically stable fixed point for all p € R.

Corollary 7.1 If at p= 0 the origin of the map (7.12) is quadratically stable, i.e.,
using a quadratic Lyapunov function V = x" Px, with P > 0, then the fixed point de-
pending on L on both sides of the border is attracting and no bifurcation occurs from

the origin as pis varied through zero.
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Proposition 7.7 (Necessary Condition for Existence of a CQLF) [57]

A necessary condition for the existence of a common quadratic Lyapunov function

(CQLF) for the two systems in (7.12) is that the matrix product AB is Schur stable

(and, by symmetry, that BA is Schur stable).
Proof: Suppose that a CQLF exists #foandB. That is,

ATPA—P <0,

B'"PB—P<0.
Equivalently,

P> ATPA,

P> B'PB.
Using the property thaX >Y = CTXC > CTYC, we have
P>ATPA— B"PB > B'TATPAB
Using (7.34), we get
P> BTATPAB
Thus,AB must be Schur stable. Similarly,
P>B'PB=— ATPA> ATBTPBA
Using (7.33), we get
P> ATBTPBA

ThusBA must be Schur stable.
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Remark 7.2 A necessary and sufficient condition for existence of a CQLF that shows
Schur stability of a pair of second order discrete time systems with matrices A and B
was given by Akar and Narendra [6]. The condition isbased on Schur stability of two
matrix pencils of A and B. Mason and Shorten [56] give other necessary conditions
for existence of a CQLF for two discrete-time systems of dimension n. The necessary

conditions are also defined in terms of invertibility of two matrix pencils of A and B.

7.2.3 Numerical Examples

In this subsection, we give numerical examples to demonstrate how the Lyapunov-
based techniques considered in the previous section can be used in the stability and

bifurcation analysis.

Example 7.1 Consider the two-dimensional piecewise affine (PWA) map

;

0.10 1 1
X(K) + no xa(k) <O
072 0 0
x(k+1) = A (7.35)
16 1 1
X(K) + M, Xx1(k) >0
-0.73 O 0
S-S

The eigenvalues of are Ay, = —0.8, Ap, = 0.9 and the eigenvalues & are
Ag,, = 0.8+ ] 0.3. Although the eigenvalues #fandB are inside the unit circle, we
cannot conclude that no bifurcation for (7.35) occurg at0.

A simple check shows tha@B is Schur stabled(AB) = {—0.6539 0.8039}), thus
the necessary condition for existence of a CQLF given in Proposition 7.7 is satisfied.
The next step is to check whether a CQLF exists for this example or not. A common

quadratic Lyapunov functiod = x' Px, with P = PT > 0 that satisfies the conditions
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of Proposition 7.6 exists for this example. To wit:

0.8556 08552
0.8552 11158

is obtained using the MATLAB LMI toolbox. Thus, the PWA map (7.35) has a unique
attracting fixed point for all. This is also validated by calculating the bifurcation

diagram, depicted in Figure 7.1.

201

Figure 7.1: Bifurcation diagram for Example 7.1. Each solid line represents a path of

stable fixed points.
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Example 7.2 Consider the two-dimensional PWA map

(

—08 1 1
X(k>+ H, Xl(k)go
~0.17 0 0
x(k+1) = A (7.36)
04 1 1
x(k) + K, x1(k) >0
~0.13 0 0
S

The eigenvalues dhareAp, , = —0.44 j 0.1 and the eigenvalues BfareAg, , =
0.2+ j0.3. Although bothA andB are stable matrices, we cannot conclude that no
bifurcation for (7.36) occurs at= 0.

A common quadratic Lyapunov functidh= x" Px, with P = PT > 0 that satisfies

the conditions of Proposition 7.6 exists for this example, with:

0.5929 -0.1022
—0.1022 14391

This matrix was found using the MATLAB LMI toolbox. Thus, the PWA map (7.36)
has a unique attracting fixed point for @il The bifurcation diagram is given in

Figure 7.2.

Example 7.3 Consider the three-dimensinal PWA map

kap) — J ATbI g <0 737
Bx(k) + by, xi(k) >0
where

0.4192 (03514 03473
A = 0.2840 —0.2733 —-0.3107 |,
0.1852 —0.2224 —-0.3974
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Figure 7.2: Bifurcation diagram for Example 7.2. Each solid line represents a path of

stable fixed points.

—0.60 03514 03473 1
B = 056 —0.2733 —0.3107 | andb=] 0
~0.90 —0.2224 —0.3974 0

The eigenvalues ok andB area(A) = {0.5653 —0.7413 —0.0755} ando(B) =
{0.0395 —0.6551+ j 0.4246}, respectively. Although botA andB are Schur stable
matrices, we cannot conclude that no bifurcation for (7.37) occyrs=ab.

A common quadratic Lyapunov functidh= x" Px, with P= PT > 0 that satisfies

the conditions of Proposition 7.6 exists for this example. To wit:

1.6304 01559 -0.1313
P= 0.1559 13200 04436
—0.1313 04436 13266
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is found using the MATLAB LMI toolbox. Thus, the PWA map (7.37) has a unique
attracting fixed point for all.. Figure 7.3 depicts the bifurcation diagram for the three

state variables of this system.

0.4r
« Or
x /
-0.4
-0.1 0 0.1 0.2
0.2r
Y 0 ’//
_02 | | | ]
-0.1 0 0.1 0.2
0.2r
<7 0r
-0.2 | | | ]
-0.2 -0.1 0 0.1 0.2

Figure 7.3: Bifurcation diagram for Example 7.3. Each solid line represents a path of

stable fixed points.

7.3 Lyapunov-Based Feedback Control Design

In this section, we use the results of Section 7.2 in the design of stabilizing feedback
control laws. We emphasize that (as was discussed in Chapter 6) for our approach
to apply, the control action should not introduce discontinuity in the map. This is
because, as summarized in Chapter 2, the definition of BCBs requires that the system

map be continuous at the border, and thus our results on nonbifurcation with persistent

135



stability also apply only under this condition. Therefore, to maintain continuity of
the map after control is applied, we assume that the input vectors on both sides of
the border are equal. In this work, the input vectors are taken to be eqgbdthe
derivative of the map with respect to the bifurcation parameter.)

Simultaneous feedback control is considered first, followed by switched feedback

control design.

7.3.1 Simultaneous Feedback Control Design

In this control method, the same control is applied on both sides of the border. The

purpose of pursuing stabilizing feedback acting on both sides of the border is to ensure
robustness with respect to modeling uncertainty. Moreover, transformation to the

normal form is not required when simultaneous control is used. All that is needed is

a good estimate of the Jacobian matrices on both sides of the border.

Consider the closed-loop system using static linear state feedback

(kil) - AX(K) + bu+bu(k), if xi(k) <0 7,39

Bx(k) + bu+bu(k), if xi(k) >0
ukk) = gx(k) (7.39)

whereg is the control gain (row) vector.
The following proposition gives stabilizability condition for the border collision

bifurcation with this type of control policy.

Proposition 7.8 If thereexista P = PT > 0, and a feedback gain (row) vector g such

that

P—(A+bg)TP(A+bg) > 0 (7.40)

P—(B+bg)"P(B4+bg) > 0O (7.41)
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then any border collision bifurcation that occurs in the open-loop system (u = 0)
of (7.38) can be eliminated using simultaneous feedback (7.39) and persistent stability

isguaranteed using simultaneous feedback (7.39). Equivalently, if there exist a Q and

y such that
AQ+b
Q Q+Dby > 0, (7.42)
(AQ+by)"  Q
BQ+b
< Q+by > 0, (7.43)
(BQ+by)"  Q

then any border collision bifurcation that occurs in (7.38) can be eliminated using

simultaneousfeedback (7.39). Here Q = P~1 and the feedback gainis given by g = yP.

Proof: The closed-loop system is given by

diad)_ | ATbOXKHD, i 3k <0 _
(B+bg)x(k) + pb, if x3(k) >0

Using Proposition 7.6, a sufficient condition to eliminate the BCB is the existence of

aP=P" > 0 such that

P—(A+bg)"P(A+bg) > 0 (7.45)

P—(B+bg)"P(B+bg) > 0 (7.46)

whereg is the control gain to be chosen.

Next, we show that (7.45)-(7.46) are equivalentto (7.42)-(7.43). UsingLemma 2.1

and Lemma 2.2, it is straightforward to show that

P—(A+bg)TP(A+bg) >0 <= P 1—(A+bg)P X(A+bg)T >0,

P—(B+bg)"P(B+bg) >0 <«= P 1—(B+bgP 1(B+bg)" >0.
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The nonlinear matrix inequalities above are transformed into LMIs using Lemma 2.2:

Pl (A+bg)Pt(A+bg)T = P 1-(A+bg)P PP 1(A+bg)T
= Pl-(AP14bgP HP(AP 14 bgP T >0
p-1 AP~ 1 by

— >0
(AP~ L+by)T Pl

Similarly,
P—(B+bg)"P(B+bg) > 0
p-1 BP~1+by
— > 0
(BP~L4by)T p-1
by similar reasoning. [ ]

Below, we show that if a CQLF exists in one coordinate system, another CQLF
exists in a different coordinate system arrived at using a simultaneous similarity trans-

formation applied to botiA andB.

Proposition 7.9 (CQLF and Similarity Transfor mations)

SupposeV = x"Px (with P = PT > 0) isa common quadratic Lyapunov function for
both of the matrices Aand B (i.e, ATPA—P < 0 and BTPB— P < 0). ThenV = x' Px
with P = (T-1)TPT-1 = BT > 0is a common quadratic Lyapunov function for A =
TAT landB=TBT ! (i.e. ATPA—P < 0and BTPB— P < 0). In other words, if a
CQLF existsin one coordinate system, another CQLF existsif a simultaneous change

of coordinatesis applied to both A and B.
Proof: SinceV = x"Px is a CQLF for bothA andB, we have

ATPA-P < 0 (7.47)

and B'PB—P < 0. (7.48)
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Pre-multiply (7.47) by(T~1)T and post-multiply byT ~* yields

(T HTATPAT (T HTPT! < 0

—I\NTATTT —1\T -1 -1 —1\T -1
— TOTATT A DTPTITAT - (T HTPT S < 0, (749)
AT p A p

Similarly, pre-multiply (7.48) by(T 1T and post-multiply byl —* yields

(T H™B™PBT - (T HTPT ! < 0

CLTRTTT (r-WTpr-l1pT-1_ (-1 Tpr-1
= BT ETRT IR (THTPTE < 0 (7.50)

" 5 : :
Thus,V = x" Px is a CQLF for bothA andB, which completes the proof. |

Remark 7.3 The switched control design presented above does not depend on the
border separating the two regions of smooth behavior. Thus, transformation to the

normal formis not required before the control design.

7.3.2 Switched Feedback Control Design

Consider the closed-loop system using static piecewise linear state feedback

i) — | A DR DK T () <0 751
" BX(K) +bu+bu(k), if (k) >0 '

where

(k) = gix(k), xi(k) <0 (7.52)
92X(k>, Xl(k>>0

with the restriction thag1 andge may only differ in their first component, i.ay; =
O2i, | = 2,3,---,n. This condition is imposed to maintain continuity along the border

{x: x¢ =0}.
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Proposition 7.10 If there exist a P = PT > 0, and feedback gains g; and g, with

01 = Oai, i = 2,3,---,n such that
P—(A+bg;)"P(A+bg;) > 0 (7.53)
P—(B+bgy)"P(B+bgy) > 0O (7.54)
then any border collision bifurcation that occurs in the open-loop system (u = 0)

of (7.51) can be eliminated using switched feedback (7.52). Equivalently, if there exist

aQ,y; and a € R such that

Q AQ+by1
(AQ+by1)T Q

>0, (7.55)

b 0 b(el)T
Q SRR SEAN BN (7.56)

(BQ+byy)T Q Qelb’ 0

then any border collision bifurcation that occurs in (7.51) can be eliminated using
switched feedback (7.52). Here, Q = P! and the feedback gains are given by g1 =
yiPandgy =g, —a(eh)’.

Proof: The closed-loop system is given by

X(k 1) = (A+bg1)x(k) +Hb, if x1(k) <0 (7.57)

(B+bgo)x(k) + b, if x3(k) >0

Using Proposition 7.6, a sufficient condition to eliminate the BCB is the existence of

aP=P" > 0 such that

P—(A+bgy)"P(A+bg;) > O (7.58)

P—(B+bgy)"P(B+bgy) > 0O (7.59)
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wheregs, g2 are the control gains to be chosen. Inequalities (7.58),(7.59) are equiva-

lent to
Q R (7.60)
(AQ+byy)T Q
° B (7.61)
(BQ+byz)T Q

respectively, wher® = P~1, g1 = y1P andg, = y»P. This equivalence can be shown
using similar reasoning as that in the proof of Proposition 7.8.

But, g1 = g2, 1 = 2,3,---,n. This restriction org; andg, can be written as
g2=g1—a(e)’ (7.62)
wherea € R. Therefore,

yi—y2 = 01Q—3Q

— a(e)TQ (7.63)

Substitutingy, = y; — a(e!)TQin (7.61) yields (7.56). This completes the prooi
Note that ifa = 0 in (7.56), then the switched feedback control (7.52) becomes

simultaneous control.

Remark 7.4 We remark that switched control design (with no restriction on feedback
gains) was used in [57] for stabilization of the origin of discrete time switched sys-

tems. No bifurcation control was considered in the referenced work.
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7.3.3 Numerical Examples

In this subsection, we present numerical examples to demonstrate the feedback control

methods of the previous section.

Example 7.4 (Fixed point attractor bifurcating to instantaneous chaos)

Consider the three-dimensional PWA map

x(kil) — AX(K) + b, x1(k) <0 (7.64)
Bx(k) + by, x1(k) >0

where

0.0334 17874 —-0.1705
A = —0.4588 —0.4430 —-0.8282 |,
0.0474 —-0.0416 Q8000

0.8384 17874 —0.1705 1
B = —0.8180 —0.4430 —-0.8282 | andb=] 0
0.6602 —0.0416 Q8000 0

The eigenvalues ok andB arec(A) = {0.766 —0.1878+ j 0.8389} ando(B) =
{-0.1157,0.6555+ j 1.0987}, respectively. Note thah is Schur stable, buB is
unstable. Simulation results show that (7.64) undergoes a border collision bifurcation

from a fixed point attractor to instantaneous chags-at0 (see Figure 7.4).
Feedback control design: Using the results of Proposition 7.8, a symmetric and posi-

tive definite matrixQ and a feedback control gain vectpthat satisfy the LMIs (7.42)-

(7.43) are sought. The following solution to (7.42)-(7.43) is obtained using the MAT-

142



Figure 7.4: Bifurcation diagram for Example 7.4. The solid line represents a path
of stable fixed points and the shaded region represents a one piece chaotic attractor

growing out of the fixed point gt = 0.

LAB LMI toolbox:

0.4753 —-0.0428 —-0.1694

Q = | —0.0428 08821 -0.1647 |, (7.65)
—0.1694 —0.1647 05041
y = <—O.160l —1.4937 03356), (7.66)
g = yQ+
= (—0.5193 —1.7324 —0.0747). (7.67)

The closed-loop matrices are given by

Ac = A+Dbg
—0.4859 Q0550 —0.2452
= —0.4588 —0.4430 —0.8282 |,
0.0474 —-0.0416 (08000
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Bc. = B+bg
0.3191 00550 —0.2452
= —0.8180 —0.4430 —0.8282
0.6602 —-0.0416 (08000

Their eigenvalues are:
0(Ac) = {0.8141 —0.4715+ j 0.1409} ando(B¢) = {—0.4507,0.5634+ j 0.3498;}.

The bifurcation diagram of the closed-loop system is depicted in Figure 7.5.

0.21

0.1

Figure 7.5: Bifurcation diagram for Example 7.4 with simultaneous feedback control

u(k) = gx(k). The solid lines represent a path of stable fixed points.

Example 7.5 (Saddle-node border collision bifurcation)

Consider the three-dimensional PWA map

wki) — o kb kg <0 (7.68)

Bx(k) + by, x1(k) >0
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where

0.0350 —-0.2280 —-0.9385
A = —0.3123 —-0.0029 09191 |,
—0.3825 —-0.5107 05553

3.3000 —0.2280 —0.9385 1
B = —0.6299 —0.0029 09191 | andb=] 0
0.3705 -0.5107 05553 0

The eigenvalues oA andB area(A) = {—0.2921 0.4397+ j 0.3470 ando(B) =
{3.17390.3392+ j 0.4756}, respectively. Note thak is Schur stable, bu is un-
stable. Simulation results show that (7.68) undergoes a saddle node border collision
bifurcation where a stable and an unstable fixed point collide and disappgas as

increased through zero (see Figure 7.6).

Feedback control design: We note that a simultaneous stabilizing feedback con-
trol based on Proposition 7.8 does not exist for this example. Therefore, we seek a
stabilizing control using Proposition 7.10. Using the LMI toolbox in MATLAB, a
symmetric and positive definite matr@xand a feedback control gain vectgrsand

go that satisfy the LMIs (7.55)-(7.56) are obtained:

a = 3.0972 (7.69)
253606 45507 79810

Q = 45507 430961 98713 |, (7.70)
7.9810 98713 308840

yi = (5.7709 148260 344887), (7.71)

= Q!
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0.4

0.2r

-0.4 :
. 0.1 0.2

=Oor

Figure 7.6: Bifurcation diagram for Example 7.5 without control. The solid line
represents a path of stable fixed points and the dashed line represents a path of unstable

fixed points.
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= (—0.1436 01024 11211), (7.72)
O = gl—G(el)T

= (—3.2408 01024 11211>. (7.73)

The closed-loop matrices are given by

Ac = A+bg
—0.1086 —0.1256 01826
= —0.3123 —-0.0029 09191 |,

—0.3825 —0.5107 05553

0.0592 -0.1256 01826
= —0.6299 —-0.0029 09191
0.3705 —0.5107 05553

Their eigenvalues are:
o(Ac) = {0.00110.2213+ j 0.6236} ando(B¢) = {—0.00020.3059+ j 0.5102}.

The bifurcation diagram of the closed-loop system is depicted in Figure 7.7.

7.3.4 Washout Filter-Aided Feedback Control Design

In this section, washout filter-aided feedback control is used. As discussed in Sec-
tion 2.1, washout filter-aided feedback has advantages over static feedback in that it
maintains the fixed points of the open loop system even in the presence of model un-
certainty. Moreover, it provides automatic following of the fixed point to be stabilized
which alleviates the need for providing an estimate of the unstable fixed point to the
controller. This is particularly useful in situations where the system model is uncertain

and/or cases where there is parameter drift.
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-0.2 -0.1 0 0.1 0.2

Figure 7.7: Bifurcation diagram for Example 7.5 with switched feedback coukl

asin (7.52) . The solid line represents a path of stable fixed points.

Using simultaneous washout filter-aided feedback control applied to (7.12) leads

to the closed-loop system

AX(K) + po+bu(k), if x(k) € Ra

x(k+1) = (7.74)
Bx(k) + ub+ bu(k), if x(k) € Rg

w(k+1) = Dx(k)+ (I —D)w(k) (7.75)

uk) = g(x(k) —w(k)) (7.76)

whereD € R™"is a nonsingular matrix such thiat- D is Schur stableg € R>"is the
control gain vector and € R™! is the washout filters’ state vector. The closed-loop

system can be written as

A+bg —bg x(k) b :
+ B if x(k) € Ra
X(k+1) B D |-D w(k) 0 7.77)
w(k+1 B+bg —b K b
(k+1) g by | (x| K CR
D |-D w(K) 0
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Now the question is: Are theggandD such that the closed-loop system of (7.77)
is stabilized in the sense that a BCB that may occur in the open loop system is elimi-

nated and local persistent stability produced?

A+bg —bg B+bg —bg : :
LetAc= andB. = . Consider the quadratic

D | -D D | -D
Lyapunov function candidate
V=2"Pz (7.78)
whereP € R?™21 with P=PT > 0.

Proposition 7.11 If thereexista P = PT > 0, g € R™" and D € R"*" such that

AlPA.-P < 0 (7.79)
BIPB.—P < 0 (7.80)
then any border collision bifurcation that can occur in the open loop system (7.74)

(with u= 0) can be eliminated. The matrix inequalities (7.79)-(7.80) are equivalent

to the bilinear matrix inequalities (BMIs)

P TP
A > 0, (7.81)

PA: P

P BIP
> 0. (7.82)

PB. P

Washout filter-aided feedback results in bilinear matrix inequalities. This is not sur-
prising since washout filter-aided feedback is a form of output feedback and in gen-

eral, Lyapunov-based output feedback control design results in matrix inequalities
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that are bilinear. In recent years, there has been a growing interest in developing
algorithms to solve BMs (e.g., [68, 75])
The closed-loop system with washout filter-aided feedback can be written as an

output feedback problem as follows:

A 0 x(K) b b

+ M+ u(k), x(k) € Ra
x(k+ 1) - D I-D w(k) 0 0 7.83)

w(k+1) B 0 x(K) N b . b W, x4 e R.B

1 uk), x
D I-D w(k) 0 0
yk) = (1 =1 x(k) (7.84)
w(k)

ukk) = ay(k) (7.85)

Moreover, the closed-loop system can be also viewed as state feedback with gain

matrix having a special structure

AX(K) + bu+Byu(k), x(K) € Ra

X(k+1) = 3 B (7.86)
BX(k) + bu+ Byu(k), x(k) € Rg
ukk) = GX(k) (7.87)
where
- A O - B O - b 0b
A — . B= . b= , Bu= and
0 OO0 0 I O
D I-D
G =
g —g

The problem of finding quadratic stabilizing controllers (controllers based on a quadratic
Lyapunov function) has been recently addressed in [68], and some algorithms for

solving the resulting BMIs were proposed.
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As mentioned in Section 2.1, depending on the structure of the system to be con-
trolled, sometimes the number of washout filters needed is smaller than the dimension
of the system. In some cases, one or two washout filters suffice. In such a case, a sta-
bilizing controller can be found (if one exists) numerically by performing a search
over the control parameters (sgyd). For fixed values of, d, the matrix inequalities
are linear, and can therefore be solved using standard LMI solvers (see Section 8.2.3
for an example).

In this work, we leave the study of more general problems related to use of

washout filter-aided feedback to future research.

7.4 Stability and Stabilization of Fixed Points at
Criticality

In this section, stability and stabilization of fixed points at criticality of a switched
discrete-time system are studied using Lyapunov-based techniques. We use results
from the literature on stabilization of fixed point of a switched system [57].

Below, piecewise quadratic Lyapunov functions are used to develop less conserva-
tive sufficient conditions for asymptotic stability of fixed points at criticality than the
ones developed in the previous sections using quadratic Lyapunov functions. How-
ever, the conditions derived in this section only consider the stability of the fixed point
at criticality. The results provide no information on the type of border collision bi-
furcation that can occur in the system. Nonetheless, these results may be useful in
situations where the sufficient condition for nonbifurcation with persistent stability
derived in the previous sections is not satisfied. In such a case, the least one can do

is to stabilize the fixed point at criticality. Numerical simulation can be used to study
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the dynamics of the system with a parameter. We point out that since only stability
and stabilization of fixed points at criticality are considered in this section, there is no

restriction on the control gains or the input vectors as in previous sections.

7.4.1 Analysisof Stability at Criticality Using Piecewise Quadratic

Lyapunov Functions

A piecewise smooth system at criticality can be approximated using a piecewise linear

system of the form

)((k+ 1) _ A]_X(k), if X(k) ceRy (7.88)
Ax(K), if x(K) € Ro '

wherex e R", Ai e R™" i =1,2 andR, c R", i = 1,2. Here, without loss of general-

ity, we have considered only two regions in the state space. The results can be easily
extended to the case where the state space is dividethirggions, wheren > 2 and

finite.

Consider the piecewise quadratic (PWQ) Lyapunov function candidate

x" Pix, Xe Ry
V(x) = (7.89)
XT P2X, XeRy

whereP, =P/ >0andP, =P] > 0.

Proposition 7.12 [57] The origin of (7.88) is asymptotically stable if there exists a
PWQ Lyapunov function (7.89) such that the following matrix inequalities are satis-
fied:

P >0 i=12 (7.90)

ATPA-R < 0, (i,j)€{(1,1),(12),(21),(22)} (7.91)
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Proof: Assumex(k) € R andx(k+1) e R;,i,j € {1,2}. Then

AV(x(K) = x(k+1)TPx(k+1) —x(k)TPx(k)

= x(K)T (AT PA —P)x(k) (7.92)

From (7.90) and (7.91) it follows that(x(k)) is positive definite andV is negative
definite along the trajectories of the system. Thus, the origin of (7.88) is asymptoti-

cally stable. ]

7.4.2 Feedback Control Design

The results of the previous subsection are now used to develop stabilizing switched
feedback controls. Using switched feedback control applied to (7.88) leads to the

closed-loop system

x(k+ 1) _ A]_X(k) + B]_U(k), if X(k) ceRy (7 93)
Aox(K) +Bou(k), if x(K) € Ry '

u(k) _ G]_X(k>, X(k) cRy (7.94)

GzX(k), X(k) cR

\

whereB; andB; are the input matrices (of appropriate dimensions) for the system in
R; andRy, respectively anéb1, G are the control gains. In generBl, # B, and they

depend on the available means of actuation for a given system.
Proposition 7.13 [57] Supposethereexist P, = PiT > 0and G;, i = 1,2 such that

(Aj+BjG))TR(Aj+B;Gj) —P; <0, (i,j) € {(1,1),(1,2),(21),(2.2)} (7.95)
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Then the origin of the closed-1oop system (7.93)-(7.94) isasymptotically stable. Equiv-
alently, (7.93)-(7.94) is asymptotically stable, if there exist Q; = QiT >0 and,,

i = 1,2 such that
Q AUEBY ) o ) e (11,12, (2.2, (2.2)} (7.96)
(AjQj+BjY)T Qj

whereQ =P tandY, =GPt i=12

Proof: The proof of (7.95) follows from the proof of Proposition 7.12 by replacing
A with A + B;iG;, i = 1,2. The equivalence between (7.95) and (7.96) follows by a

straightforward application of the Schur complement.

7.5 Stability Analysis Using Nonmonotonically
Decreasing Lyapunov Functions

Recently, Aeyels and Peuteman [5] reported a new sufficient condition for asymptotic
stability of finite dimensional ordinary differential equations and finite dimensional
difference equations. They showed that, unlike in the classical Lyapunov theory, a
stability condition can be stated in which the time derivative (forward difference) of a
Lyapunov function candidate along trajectories of the system may have positive and
negative values [5]. We will show that this weaker condition on the forward difference
of a Lyapunov function candidate can be used to derive less conservative sufficient
conditions for asymptotic stability of fixed points at criticality of PWS discrete-time
systems.

Consider the discrete-time system

x(k+1) = f(x(k)) (7.97)
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wheref : W — R" is locally Lipschitz, where/ C R" is open. Letf(0) =0 and

0 € W. Below, we recall the theorem from [5] stated here for time invariant systems.

Theorem 7.1 [5] Consider a functionV : U — R with U ¢ W an open neighbor-
hood of the origin. Assume:

i) V(X) is positive definite.

ii) There existsa finiteme Z, m> 0 and an open set U’ C U that containsthe origin

such that Vx € U’\ {0} and vk € Z
V(x(k+m))—V(x(k)) <0
Then the equilibrium point x = 0 of (7.97) is asymptotically stable.

Definition 7.1 Define themth step forward difference of a Lyapunov functidralong

trajectories of a discrete time system by
AV =V (X(k+m)) =V (x(k))
wheremis a positive integer.

Proposition 7.14 (Sufficient Conditions for Stability at Criticality Using Non-
monotonically Decreasing Common Quadratic Lyapunov Function)

Consider the switched system (7.12) with p= 0 and a common quadratic Lyapunov
function V (x) = xT Px, with P > 0.

1) AV4(X) is negative definite iff

ATPA-P < 0 (7.98)

B'PB—P < 0 (7.99)

155



2) AV (x) is negative definite iff

(ATPA2—P < 0 (7.100)
ATBTPBA-P < 0 (7.101)
BTATPAB—P < 0 (7.102)
(B)TPB?—P < 0 (7.103)

3) AV3(X) is negative definite iff

(ATPAS—P < 0 (7.104)
(A2TBTPBA2—P < 0 (7.105)
ATBTATPABA—P < 0 (7.106)
AT(B2)TPB’A—P < 0 (7.107)
BT(A2)TPAB—P < 0 (7.108)
BTATBTPBAB—P < 0 (7.109)
(BA)TATPAB?—P < 0 (7.110)

B)TPBE-P < 0 (7.111)

Moreover, the origin of (7.12) isasymptotically stable if AV, < O, for some m > 0.

Proof: Follows by a straightforward application of Theorem 7.1.
It is easy to see thalVim(x) < 0 = AV4(x) < 0 for g > m, while the converse
does not hold.

The following example illustrates the use of Proposition 7.14.

Example 7.6 Consider the piecewise linear discrete-time system (7.12) pvithO
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and withA andB given by

05 1 -1 1
A: s B:

-03 0 -01 0

Note that the system is continuous at the border O but not differentiable. The
eigenvalues oA areha, , = 0.2500+ j 0.4873 and those d areAg, = —0.8873 and
Ag, = —0.1127.

It can be checked (for example using the LMI package in MATLAB) that a com-
mon quadratic Lyapunov function that shows stability of the origin does not ex-
ist (i.e.AV1(x(k)) = V(x(k+ 1)) —V(x(k)) > O for some values ok > 0). How-
ever, using Proposition 7.14 and the LMI solver in Matlab, it is shown Mvat=
V (x(k+2)) — v(x(k)) < 0k > 0 with V (x) = x" Px and

11479 -0.3215
—0.3215 50917

Numerical studies show that for this example no bifurcation occurs in (7.12)sas

varied through zero.

Proposition 7.15 (Sufficient Conditions for Stability at Criticality Using Non-
monotonically Decreasing Piecewise Quadratic Lyapunov Function)
Consider the switched system (7.12) with p = 0 and the PWQ Lyapunov function can-

didate
XTPix, X€Ra
V(x) =
xX"Pox, x€Rg
with P, > 0and P, > 0.
1) AV4(Xx) is negative definite iff

AlPIAL—PL < O (7.112)
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AlPAL—PL < O (7.113)

APA—P, < 0 (7.114)
APA—P, < 0 (7.115)
2) AV(x) is negative definite iff
(ATPAZ-P < O (7.116)
(ANTPRA2 P < 0 (7.117)
(AAD)TPAAL —PL < O (7.118)
(AAD)TPAAL —PL < O (7.119)
(A)TPAZ-P, < O (7.120)
(ATPAS—P, < O (7.121)
(AIA2)TPRAA—P, < O (7.122)
(AMA2)TPIAIA—P, < O (7.123)

Moreover, the origin of (7.12) is asymptotically stable if AViy(x) < 0, for somem > 0.
The following example illustrates the use of Proposition 7.15.

Example 7.7 Consider the piecewise linear discrete-time system (7.12) with u= 10

and with A and B given by

05 1 -1 1
A: s B:

-03 0 -0.27 0O

Theeigenvaluesof AareAa, , = 0.2500+ j 0.4873and those of BareApg, , = —0.5000+
j 0.1414
It can be checked (for example using the LMI package in MATLAB) that a com-

mon quadratic Lyapunov function that shows stability of the origin does not exist
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based on Proposition 7.14. Moreover, a PWQ Lyapunov function with negative one
step forward difference does not exist. However, a PWQ Lyapunov function with

AV (X(K)) =V (Xx(k+2)) —v(x(k))) < 0 exists and can be calculated using the LMI

toolbox in MATLAB. A particular such Lyapunov function has

5 1.3467 10642 5 22299 —1.2542
1= ) 2=
1.0642 40967 —1.2542 27764

Thus, using Proposition 7.15, we conclude that the origin of (7.12) is asymptotically

stable.
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Chapter 8

Quenching of Alternansin a Cardiac

Conduction M odel

The quenching of alternans exhibited as solutions of a cardiac conduction model is
considered. The model consists of a nonlinear discrete-time piecewise smooth system,
and was previously used to show a link between cardiac alternans and period doubling
bifurcation. In this work, it is first shown that the model indeed admits a period
doubling border collision bifurcation, and that it is this bifurcation that leads to the
alternan solutions. No smooth period doubling bifurcation occurs in the parameter
region of interest. Next, the results of the previous chapters on feedback control of
border collision bifurcation are applied to the model, resulting in quenching of the

period doubling border collision bifurcation and hence in alternan suppression.

8.1 Introduction

In this chapter, we revisit the cardiac conduction model proposed by Sun, Amellal,
Glass and Billette [69] with two aims in mind. These aims relate first to a detailed

analysis of the model, and second to control of the bifurcation as will be elaborated
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below. The model is formulated as two dimensional piecewise smooth map. The
model incorporates physiological concepts of recovery, facilitation and fatigue. It
predicts a variety of experimentally observed complex rhythms of nodal conduction.
In particular, alternans, in which there is an alternation in conduction time from beat
to beat, were associated in [69] with a period-doubling bifurcation in the theoretical
model.

As mentioned above, our first aim in this chapter is to perform a more detailed
study of the instability or bifurcation mechanism that leads to alternan solutions.
Second, we are interested in applying the control laws developed in this thesis for
suppressing the alternans in the model. This work demonstrates that the instability
mechanism giving rise to cardiac alternans is in fact not a smooth period doubling bi-
furcation as earlier hypothesized, but rather its nonsmooth cousin, the period doubling
border collision bifurcation.

Several researchers studied the model of [69] and developed control techniques to
eliminate the period-2 rhythm and stabilize the underlying period-1 rhythm (e.g., [17,
15, 16]). With the exception of [16], all the studies of this model reported in the lit-
erature viewed the border collision period doubling bifurcation in this system as if it
were an ordinary period doubling bifurcation in a smooth dynamical system. In [16],
the bifurcation in the cardiac model was identified as a border collision bifurcation
based on numerical evidence. However, no analysis was given to prove this claim.
The authors of [16] also investigated the feedback control of the BCB detected in the
alternan model, but the feedback design was largely based on trial and error, and did
not involve a detailed consideration of the border collision bifurcation. In [15], the
authors propose the use of delayed linear feedback to suppress the period doubling

bifurcation. In [17], the authors apply a technique for control of chaos to suppress the
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alternation resulting from the period doubling bifurcation. In [26], a smooth one di-
mensional map was used as a model for cardiac conduction. A form of linear dynamic
feedback where the unstable fixed point corresponding to the unstable rhythm is es-
timated as the average value of two consecutive beats was used to achieve alternan
guenching [26]. The control gain was determined by trial and error.

In this work, the results on feedback control of border collision bifurcations devel-
oped in the previous chapters are used to quench the period doubling border collision
bifurcation which consequently suppresses the alternans. The feedback can be either
linear or piecewise linear. Both static and washout filter-aided feedbacks are consid-
ered. Washout filter-aided feedback has certain advantages over static feedback: it
maintains the fixed points of the open-loop system even in the presence of model un-
certainty, and it provides automatic following of the fixed point to be stabilized which
alleviates the need for providing an estimate of the unstable fixed point to the con-
troller. This is particularly useful in situations where the system model is uncertain
and/or cases where there is parameter drift.

It is important to realize that, since border collision bifurcations arise at the border
separating regions of smooth operation, a linear feedback that seems to “delay” a
border collision bifurcation to occur away from the border actually does no such thing.

If a BCB seems to have been delayed by feedback, what actually is happening is that
the feedback has changed the BCB to a type that replaces the nominal fixed point by
a new one (fixed point to fixed point BCB), and a new smooth bifurcation has been
created elsewhere (away from the border). Thus, concepts and methods developed
in the control of smooth bifurcations cannot be carried over in a direct way to the

nonsmooth case.
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8.2 TheCardiac Conduction M odel

In this section, we consider a cardiac conduction model of [69]. The model incorpo-
rates physiological concepts of recovery, facilitation and fatigue. It is formulated as
a two-dimensional PWS map. Two factors determine the atrioventricular (AV) nodal
conduction time: the time interval from the atrial activation to the activation of the
Bundle of His and the history of activation of the node. The model predicts a vari-
ety of experimentally observed complex rhythms of nodal conduction. In particular,
alternans, in which there is an alternation in conduction time from beat to beat, are
associated with period-doubling bifurcation in the theoretical model.
The authors first define the atrial His intervAl,to be that between cardiac im-

pulse excitation of the lower interatrial septum and the Bundle of His. (See [69] for

definitions.) The model is

Ani1
Rni1

= f(Am an Hn)

where

Arin+ Rny1 4 (201— 0.7Ap)e Hn/Trec

Rne*(AnJan)/Tfat + ye*Hn/Tfat
f(AmRnaHn) == y / (81)
Arin + Rqt1 + (500— 3.0A,)e Mn/Trec

Rt + ) . for Ay > 130

Rne*(AnJan)/Tfat + ye*Hn/Tfat

, for A, <130

\

with Ry = yexp(—Ho/T:a ). HereHg is the initialH interval and the parametefgn,

Tat, Y @NdTec are positive constants. The variablg represents the interval between
bundle of His activation and the subsequent activation (the AV nodal recovery time)
and is usually taken as the bifurcation parameter. The variplepresents a drift in

the nodal conduction time, and is sometimes taken to be constant. In this work, we
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considerR, as a variable as in [69]. Note that the mis piecewise smooth and is

continuous at the borddy, := 130ms.

8.2.1 Analysisof the Border Collision Bifurcation

Numerical simulations indicate that the map (8.1) undergoes (some type of) super-
critical period doubling bifurcation as the bifurcation param&et H, is decreased
through a critical value (see Figures 8.1-8.2). We show that this bifurcation is in fact a
supercritical period doubling BCB which occurs when the fixed point of the map hits

the borderd, = 130.

170

150

130
120

100

80 §

60 8 |

40 1 1 1 1 1
40 45 50 S 55 57 60 65

Figure 8.1: Joint bifurcation diagram fé, and forR, for (8.1) with Sas bifurcation

parameter anthec = 70mMs, T4 = 30000MsAnin = 33ms andy = 0.3ms.

Let the fixed points of the map (8.1) be given @y (S),R* (9)) for Ay < A, and
(AL(S),Ri(S)) for Ay > Ap. Under normal conditions, the fixed poii&* (S), R* (S))

is stable and it loses stability &is decreased through a critical val8e= S, where
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Figure 8.2: Iterations of map showing the alternationAinas a result of period
doubling bifurcation. The parameter values amgg. = 70ms, 154 = 30000ms,

Arin = 33ms,y = 0.3ms andS= 45ms.

A* = A,. Denote byRy, the value ofR* at criticality (S= S,).

Next, we calculate the limiting Jacobian matrices on both sides of the border:

s ~(130+S)  —(130+§,)
—O.7e@—%e Ta @ Ta
J = " (130§, —(130+) (8.2)
_ ™o Tfat Tfat
e e
and
s —(130+§)  —(130+S)
~30e7e — e T e T
R = —(130+5,) —(130+5,) (8.3)
_%e Tfat e Tfat

Also, the derivative off with respect tdSat (Ap, Ry, S) is

_ S —(130+S,)
bl —1—106% _ Letfat _ &e Trat
_ Trec Tfat Ttat 8.4
- —S ~(130+5) (8.4)
b2 _LeTfaI _ &e Trat
Ttat Ttat
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Next, the following parameter values are assumed (borrowed from [6Q})=
70ms, g = 30000MsAnin = 33ms,y = 0.3ms. For these parameter valugs—

56.9078msRy, = 48.2108ms and

] —0.31208 099379 ] —1.33223 (099379
L = , R=
—0.001597 099379 —0.001597 099379
by —0.69861
and —
bo —0.001607

The eigenvalues @l areA ;1 = —0.3109,A 2 =0.9926 . = 0.6817,5 = —0.3086)

and those ofig areAry = —1.3315Ar2 = 0.9931 (r = —0.3384 anddr = —1.3224).

Note that there is a discontinuous jump in the eigenvalues of the Jacobian matrix
when the fixed point hits the border at the critical parameter vafuesS,. The
occurrence of a border collision bifurcationSatis now ascertained by applying The-
orem 2.1. The fixed point attractor f& < S, becomes unstable f& > §, and

a period-2 solution is born. The stability of the period-2 orbit with one point in
{(A,R) € R?: A< 130} and the other pointifi(A,R) € R?: A > 130} is determined

by looking at the eigenvalues dfr := J . Jr. These eigenvalues aigr, = 0.4135
andALr, = 0.9867. This implies that a stable period-2 orbit is born after the border
collision. The supercritical period doubling BCB is shown in the bifurcation diagram
in Figure 8.1. In the figure, the bifurcated solution departs in a nonsmooth way from

the nominal fixed point branch.

8.2.2 Static Feedback Control of the Period Doubling BCB

In past studies of control of the cardiac conduction model considered here, the control

is usually applied as a perturbation to the bifurcation parameter (the nodal recovery
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time) S[17, 16]. The staté\, has been used in the feedback loop by other researchers
who developed control laws for this model (e.g., [15, 16]). We use the same measured
signal in our feedback design. Below, the control methods of Chapter 6 are used to
guench the period doubling bifurcation, replacing the period doubled orbit by a stable
fixed point. First, feedback applied on the unstable side is considered followed by

simultaneous control.

Feedback applied on unstable side

Applying linear state feedback on the unstable side oy~ 130) as a perturbation

to the bifurcation paramet&yields the closed loop system

p

i 201— 0.7A,)e S/Trec
Amin+Rnp1+( n) 7 for A, < 130
Ani1 Rne—(Aﬁ-S)/Tfar +ye—S/Tfa1
— (8.5)
Rn+1 in -+ Rn11+ (500— 3.0Ap)e (Stth)/Trec
* Amin + Ros1+( ) . for Ay> 130
Rne—(N'F(S‘FUn))/TfaI +ye—(5+un)/Tfa1
\
An—Ap
U = (V1Y2) = Y1(An— Ap) +Y2(Rn — Ry) (8.6)
Rn—Rp

For the assumed parameter values, the Jacobians of the closed loop systar for

130 andA, > 130 are

~ —0.31208 099379
J=J =

Y

—0.001597 099379

and

~ —1.33223-0.69860/1,  0.99379- 0.69860/2
—0.001597-0.00160%, 0.99379-0.00160%:-
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- -

—1.33223 099379 —0.69860 ( )
Y
—0.001597 099379 —0.001607

JR b

respectively. Now, we seek, y» = 0 such that the eigenvalues of the linearizations
of the closed-loop system satisfy Proposition 5.3. It is straightforward to verify that
(Y1,¥2) = (—1,0) is stabilizing. Figure 8.3 shows the bifurcation diagram of the con-
trolled system with(y1,y2) = (—1,0). Note that by setting, = 0, only A, is used in

the feedback. In practice, the conduction time of ke beatA,,, can be measured

and it has been used in the feedback loop by other researchers who developed control

laws for this model (e.qg., [15, 16]).

140

135

130

125

45 50 55 60 65

Figure 8.3: Bifurcation diagram of controlled system using linear state feedback ap-

plied on unstable regior; > 130) with control gaing/1,y2) = (—1,0).
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Simultaneous feedback control

Applying the same linear state feedback on both sides of the border as a perturbation

to the bifurcation parameter yields the closed loop system

p

in + + (201— 0.7An) e (StUn)/Trec
Amin+Ro1 +( ) . for Ay < 130
Rye~ (Ant(Sttn))/Trat | ye—(Sttn)/Tra
Anvt | _ (8.7)
Rni1 in-+ R 1+ (500— 3.0A,)e (Sttn)/Trec
" Amin+Ro1 +( ) . for Ay > 130
Rne—(N'F(S‘FUn))/TfaI +ye—(5+un)/Tfa1
\
An—Ap
Un = (Y1Ye) = Y1(An— Ap) +Y2(Ra — Ry) (8.8)
Rn—Ry

The Jacobians of the controlled system to the left and right of the border are given by

3 —0.31208- 0.69860y1 0.99379— 0.69860/»
L p—
—0.001597-0.00160%;, 0.99379—0.00160%:-
—0.31208 099379 —0.69860 (
- + Y2 )
—0.001597 099379 —0.001607
X b
and
P —1.33223-0.69860/; 0.99379- 0.69860/»
R p—

—0.001597-0.00160%1 0.99379-0.00160%-

- -
—0.001597 (099379 —0.001607

v~

JrR

—1.33223 099379 —0.69860 ( )
Y2

(.

respectively. Using the results of Section 6.4, stabilizing control gging-) are

obtained by solving (6.45)-(6.52). Figure 8.4 shows all stabilizing ggjing.) that
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satisfy (6.45)-(6.52), and Figure 8.5 shows the bifurcation diagram of the controlled
system with(y1,y2) = (—1,0). Figure 8.6 shows the effectiveness of the control in
guenching the period-2 orbit and simultaneously stabilizing the unstable fixed point.

The robustness of the control law with respect to noise is demonstrated in Figure 8.7.

Figure 8.4: Stabilizing control gain pairs based on Proposition 6.2 are within the

shaded region in the figure , with simultaneous linear state feedback control.

Lyapunov-based simultaneous feedback control design

The linearization of the cardiac model at a fixed point on the border is given by

N} Al +bu+bu(k), if A(k) <130ms
Ak+1) | R(K) ©.9)
R(k+1) A(k) _ |
Jr +bu+bu(k), if A(k) > 130ms
R(Kk)
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Figure 8.5: Bifurcation diagram of the controlled system using simultaneous linear

state feedback with control gaif¢,y2) = (—1,0).
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Figure 8.6: Iterations of map. Simultaneous linear state feedback control applied at
beat numben = 500. The control is switched off and on every 500 beats to show the

effectiveness of the controllei§= 48ms andy, y2) = (—1,0)).
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Figure 8.7: Iterations of map. Simultaneous linear state feedback control applied at
beat numben = 500. The control is switched off and on every 500 beats to show
the effectiveness of the controlleBE& 48ms andys, y2) = (—1,0)) when zero mean,

o = 0.5ms white Gaussian noise addedsto

where

—0.3121 09938 —1.3322 09938 —0.69861
J.= , Jr= andb =

—0.0016 09938 —0.0016 09938 —0.00161
Next, we use Proposition 7.8 to seek a simultaneous feedback control that elimi-
nates the period doubling BCB and achieve alternans quenching. The LMI package

in Matlab yields

0.8499 —0.0011
Q = ) (8.10)

—0.0011 04879

y = (—1.0018 06983), (8.11)
g = yQ!
= (—1.1768 14288)- (8.12)
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The limiting Jacobians of the closed-loop system are given by

J. = Jr+Dbg
0.5100 —0.0043

0.0003 09915
Jr. = JL+Dbg

—0.5101 -0.0043

0.0003 09915

The eigenvalues of the closed-loop Jacobians@(é:,) = {0.51,0.9915} ando(Jr,) =
{—0.51010.9915}. The bifurcation diagram of the open-loop and closed loop system

is depicted in Figure 8.8.
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Figure 8.8: Bifurcation diagram for cardiac modele = 70ms, T4 = 30000ms,
Anin = 33ms andy = 0.3ms). (a) Open-loop, (b) Closed-loop using simultaneous

feedback control.
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8.2.3 Washout Filter-Aided Feedback Control of the Period

Doubling BCB

In Section 8.2.2, control of period doubling border collision bifurcation using static
feedback was considered. Static linear feedback changes the operating conditions
(fixed points) of the open-loop system. This results in wasted control effort and may
also result in degrading system performance. Washout filter-aided linear feedback, on
the other hand, does not change the value of the fixed points of the open-loop system
since the control vanishes by nature at steady state. Adding a washout filter in the
feedback loop provides automatic tracking of the fixed point to be stabilized even
in the presence of model uncertainty or small parameter variations. This is valuable
in applications where the parameters may drift, which is particularly useful for the
cardiac arrhythmia model considered in this chapter. A brief summary on washout
filters and their use in control applications is given Section 2.1.

Consider the cardiac model with simultaneous washout filter-aided feedback

([ Auint Ross + (201 0.7A e (840 . for Ay < 130
Anir | |\ Ree (nrStn/tr g yer(Stn) (8.13)
Rota Anin+ Rat1+ (500— 3.0Aq)e (St , for Ay>130
Rye~ (Ant(Sttn)/Trat 4y (Sttn) /Tra
Wni1 = Aot (1—d)wy (8.14)
A (8.15)
Uh = Yi&n (6:46)
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The Jacobians of the controlled system to the left and right of the border are given by

—0.31208-0.69860/; 0.99379 069860/1d
J = —0.001597-0.00160%, 0.99379 000160%1d
1 0 1-d

and

—1.33223-0.69860/; 0.99379 069860/:d
R = —0.001597—-0.00160%; 0.99379 000160%:d
1 0 1-d
respectively. Note that only one washout filter was used in the feedback loop. In
general, the number of washout filters needed is between one and the the dimension
of the system. In some cases, such as the cardiac model considered here, one washout
filter suffices.

Stabilizing washout filter-aided feedback parameters are obtained using the result
of Proposition 7.10. Figure 8.9 shows the region of stabilizing control paramaters
d, which was obtained using the LMI toolbox in Matlab.

Next, simultaneous static feedback and simultaneous washout filter-aided feed-
back are compared. Figure 8.10 shows the bifurcation diagram of the closed loop sys-
tem for both simultaneous static feedback and simultaneous washout filter-aided feed-
back. Note that the (stabilized) fixed point of the closed loop system using washout
filter-aided feedback coincides with the open loop (unstable) fixed point. However,
the (stabilized) fixed point of the closed loop system using static state feedback is dif-
ferent from the open loop (unstable) fixed point. This is also evident from Figure 8.11
and Figure 8.12 which show that the control effort becomes zero in steady state when
a washout filter is employed, whereas when static state feedback is used, the control

effort approaches a constant value different from zero.
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Figure 8.9: Stabilizing simultaneous washout filter-aided feedback control parameters

are within the shaded region.
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Figure 8.10: Bifurcation diagram of closed loop system, comparing static feedback
control {1, = —1, y» = 0) with washout filter-aided feedback contrgl & —1,d =

0.1). The (red) dotted lines represent the open loop bifurcation diagram.
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Figure 8.11: Time series of closed-loop system with static state feedback applied at

beat number 500/{ = —1, y» = 0 andS= 48), (a) Conduction timé,, (b) Control
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Figure 8.12: Time series of closed-loop system with washout filter-aided feedback

applied at beat number 509;(= —1, d = 0.1 andS= 48), (a) Conduction timé,,

(b) Control inputup,.
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Chapter 9

Conclusions and Suggestions for Future Work

In this dissertation, feedback control of border collision bifurcation in piecewise smooth
discrete-time systems was studied. First, the available results on BCBs in one dimen-
sional PWS maps were summarized and used in the feedback control design. For
two dimensional PWS maps, we have derived sufficient conditions for nonbifurcation
with persistent stability. The derived conditions were then used to design stabilizing
feedback control laws.

Lyapunov-based techniques were used to derive a sufficient condition for nonbi-
furcation with persistent stability in PWS maps of dimensipwheren is finite. The
use of Lyapunov techniques facilitates the consideration-dimensional systems
wheren is not restricted to be 1 or 2. The derived condition is in terms of linear
matrix inequalities (LMIs). This condition is then used as a basis for the design of
feedback controls to eliminate border collision bifurcations in PWS maps and to pro-
duce desirable behavior. Both simultaneous and switched feedback control design
were considered. We have shown that when simultaneous feedback control is used,
only the linearizations of the PWS map on both sides of the border are needed. This

alleviates the need for transformations to set the system in a normal form. Moreover,
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simultaneous feedback control is robust to uncertainties in the border. The conditions
on the control gains are in terms of linear matrix inequalities which can be efficiently
solved using LMI solvers.

Washout filter-aided feedback was used to ensure that the fixed points of the open-
loop system are not moved by the feedback action. Other advantages of washout fil-
ters include automatic fixed point following even in the presence of model uncertainty
and small parameter variations. The use of washout filters was shown to lead to suf-
ficient conditions of nonbifurcation that are in terms of bilinear matrix inequalities
(BMIs). However, depending on the structure of the system under study, sometimes
one washout filter is enough to stabilize the system. In such a case, the BMIs can be
reduced to LMIs and solved for the control parameters.

A two-dimensional example on quenching of cardiac arrhythmia was considered.
The cardiac model consists of a nonlinear discrete-time piecewise smooth system. We
have shown that a period doubling border collision bifurcation occurs in the model,
and that it is this bifurcation that leads to the alternan solutions. This is contrary to
what has been hypothesized that a smooth period-doubling bifurcation in the model
leads to the alternans. The results of the dissertation on feedback control of border
collision bifurcation were applied to the model, resulting in quenching of the period
doubling border collision bifurcation and hence in alternan suppression. It has been
shown that washout filter-aided feedback can be used to achieve alternan quenching.
The use of a washout filter facilitates stabilization of the exact value of the unstable
fixed point (which corresponds to the period-1 rhythm) to be stabilized.

In the remainder of this chapter, we outline some interesting problems for future
research.

It was pointed out that the basic theory of BCBs is incomplete and needs further
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development in order for control problems to be adequately addressed. Among the

many open problems of interest are the following:

e Detailed classification of BCBs: As was pointed out in this dissertation, the
theory of border collision bifurcation for nonscalar maps is incomplete and cer-
tainly very preliminary in comparison to the results available for smooth sys-

tems. Therefore, there are a lot of gaps that need to be filled.

e Order reduction principles for BCBs: It would be very useful both for analysis
and feedback control design to obtain order reduction principles for BCBs so
that the study of the dynamics of multidimensional systems can be reduced to

the study systems of lower dimension.

e Exchange of stability/stability of critical systems fedimensional PWS discrete-

time systems
¢ Relation of critical system dynamics to multiple bifurcating attractor phenomenon.
e Performance analysis using Lyapunov techniques.

e Detailed analysis of washout filter-aided feedback control of border collision

bifurcations.
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APPENDIX A

Transfor mation to Normal Form in

n-Dimensional PWS M aps

Consider the one parameter family of piecewise smooth maps

foo = 4 AOH XERA 9.1)
fB(Xvu)a XGRB

wheref : R™1 — R"is piecewise smooth ir(f is smooth everywhere except on the
border (hypersurfacd)(x) separatingRy andRg where it is only continuous)f is
smooth inpandR}, R} are two regions of smooth behavior. Suppose thatapy, a
fixed point of f is at the border separatif) andRg, i.e.,l" (xo([)) = 0. Assume with-
out loss of generality that, = 0 andxo(0) = 0. We also assume that the hypersurface
I (x) is smooth around 0. Suppose tﬁ%ﬁf—) =0, then using the implicit function theo-
rem (see for instance [32, p. 408]), one can solvefan terms ofx;, i =2, ---,n. That

is, there exists a neighborho® c R"~1 containing the origin and a continuously
differentiable mappings : N — R such thatl (G(X2,X3, - *,Xn), X2, X3, +,X1) = 0,

vx e N and whenevex € N andr (x) =0, thenx; = G(x2,X3," -, Xn).

Now consider the following state transformation:

vi = X1—G(X2,X3, ", Xn) (9.2)

Vi = X,1=2,---,n. (9.3)
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This transformation is invertible. To see this, we calculate the Jacobian of the trans-

formation:
o vi . vy 0% 0%n
) 0Xn 0 1 o ... 0
- . (9.4)
0 .1 0
aXl ax2 0Xn O 0 O 1

Thus, the transformation to the normal for is a similarity transformation, hence the
eigenvalues are preserved. In the new coordinates, the border is the hypeptahe

Thus, the normal form for BCBs in-dimension follows

Wkt 1) = Av(K) + b, if vi(k) <O ©.5)
Bv(k) + ub, if vi(k) >0

whereA andB are the linearizations of the PWS map after transformation on both

sides of the border, respectively and the derivative of the map with respectito
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