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The occurrence frequency of failure events serve as critical indexes representing the 

safety status of dam-reservoir systems. Although overtopping is the most common 

failure mode with significant consequences, this type of event, in most cases, has a 

small probability. Estimation of such rare event risks for dam-reservoir systems with 

crude Monte Carlo (CMC) simulation techniques requires a prohibitively large 

number of trials, where significant computational resources are required to reach the 

satisfied estimation results. Otherwise, estimation of the disturbances would not be 

accurate enough. 

In order to reduce the computation expenses and improve the risk estimation 

efficiency, an importance sampling (IS) based simulation approach is proposed in this 

dissertation to address the overtopping risks of dam-reservoir systems. Deliverables 

of this study mainly include the following five aspects: 1) the reservoir inflow 

hydrograph model; 2) the dam-reservoir system operation model; 3) the CMC 



  

simulation framework; 4) the IS-based Monte Carlo (ISMC) simulation framework; 

and 5) the overtopping risk estimation comparison of both CMC and ISMC 

simulation. In a broader sense, this study meets the following three expectations: 1) to 

address the natural stochastic characteristics of the dam-reservoir system, such as the 

reservoir inflow rate; 2) to build up the fundamental CMC and ISMC simulation 

frameworks of the dam-reservoir system in order to estimate the overtopping risks; 

and 3) to compare the simulation results and the computational performance in order 

to demonstrate the ISMC simulation advantages. 

The estimation results of overtopping probability could be used to guide the 

future dam safety investigations and studies, and to supplement the conventional 

analyses in decision making on the dam-reservoir system improvements. At the same 

time, the proposed methodology of ISMC simulation is reasonably robust and proved 

to improve the overtopping risk estimation. The more accurate estimation, the smaller 

variance, and the reduced CPU time, expand the application of Monte Carlo (MC) 

technique on evaluating rare event risks for infrastructures. 
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Chapter 1: Introduction 

1.1 Research Motivation 

Dam-reservoir systems are a critical component of water infrastructure, providing 

services such as water, power, flood control, recreation, and many economic 

possibilities (Vedachalam and Riha 2014). The successful performance of a dam-

reservoir system depends on the aggregate satisfactory performance that prevents a 

failure and uncontrolled release of the reservoir. However, hundreds of dam failures 

have occurred throughout U.S. history that have caused immense property and 

environmental damage and have taken thousands of lives. Take the Lawn Lake Dam 

failure of 1982, for instance. The sudden release of 849,000 m3 of water resulted in a 

flash flood that killed three people and caused $31 million of damage. In 1996, the 

Meadow Pond Dam also failed with big loss. About 350,000 m3 of water was 

released, and resulted in one fatality, two injuries, and damage to multiple homes. In 

2006, the Ka Loko Dam burst, resulting in a flood that caused seven fatalities and 

destroyed several homes. According to the Association of State Dam Safety Officials 

(2015), 173 dam failures and 587 incidents were reported from January 2005 through 

June 2013 by the state dam safety programs. Dam failures are not particularly 

common, but continue to occur (Baecher et al., 2011). The number of dams identified 

as unsafe is also increasing at a faster rate than those being repaired, as dam age and 

population increase. In the future, the potential for deadly dam failures will continue 

to grow.  
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Potential failure modes for dam-reservoir systems were explored by 

researchers. Overtopping is one of the most common failure modes for the dam-

reservoir systems with significant consequences. According to national statistics, 

overtopping due to inadequate spillway design, debris blockage of spillways, or 

settlement of the dam crest accounts for approximately 34% of all U.S. dam failures 

(Association of State Dam Safety Officials 2015). Other causes include piping, 

seepage, internal erosion (Curt et al. 2010), and inadequate maintenance. A similar 

proportion has also been concluded by Kuo et al. (2008) and Zhang et al. (2009). In 

general, overtopping is the most common failure cause of dam-reservoir systems, 

particularly for the homogeneous earth-fill dams and zoned earth-fill dams. 

Spillways, foundations, and downstream slopes are the potential locations of the risks. 

Overtopping flows can erode down through an embankment dam, releasing the stored 

waters, potentially in a manner that can cause catastrophic flooding downstream as 

well as a total loss of the reservoir.  

Although overtopping results in significant consequences, in reality, such 

events have a very low probability of occurrence for a specific dam-reservoir system. 

Those events are defined as rare events. Estimation of the rare-event probabilities 

with crude Monte Carlo (CMC) simulation requires a prohibitively large number of 

trials, where significant computational resources are required to reach the satisfied 

estimation results. Otherwise, estimation of the disturbances would not be accurate 

enough.  

Accordingly, computational expense served as one of the prohibitive reasons 

that the simulation technique has not been widely applied to the reservoir operation. 
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In view of the very large number of options of configuration, capacity and operating 

policy, simulation without preliminary screening or adjustment would be very time 

consuming. Understanding the sources of simulation-based estimation errors and 

minimizing error rates at a reasonable cost are consequently important aspects of 

these practical problems. In order to fill in the research gap, the rare-event simulation 

technique is needed and plays a critical role in evaluating the overtopping risks of 

dam-reservoir systems. 

1.2 Research Objectives and Scope 

The overtopping frequencies of dam-reservoir systems serve as critical indexes 

representing dam safety statuses. In order to reduce the computation expenses and 

improve the risk estimation efficiency, an importance sampling (IS) based simulation 

approach is proposed in this study. The overtopping probability calculation process 

are addressed specifically for dam-reservoir systems. Deliverables of this study 

mainly include the following five aspects:  

 The reservoir inflow hydrograph model;  

 The dam-reservoir system operation model;  

 The CMC simulation framework; 

 The importance sampling based Monte Carlo (ISMC) simulation framework;  

 The overtopping risk estimation comparison of both the CMC and the ISMC 

simulation. 

These results that this study is intended to reach would explore a new supplement 

for the dam safety design. In a broader sense, this study would also meet the 

following three expectations: 
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 To address the natural stochastic characteristics of the dam-reservoir system, 

such as the reservoir inflow rate; 

 To build up the fundamental CMC and ISMC simulation frameworks of the 

dam-reservoir system in order to estimate the overtopping risks; and 

 To compare the simulation results and the computational performance, in 

order to demonstrate the advantage of ISMC simulation. 

Overall, there are two major contributions that this study would make. From one 

perspective, the estimation results of overtopping probability could be used to guide 

the future dam safety investigations and studies, and to supplement the conventional 

analyses in making decisions on the dam-reservoir system improvements. From the 

other perspective, the proposed methodology of ISMC simulation would improve the 

overtopping estimation results. The more accurate estimation of probability, the 

smaller variance of simulation results, and the significantly reduced CPU time, 

expand the application of MC technique on evaluating the overtopping risks of dam-

reservoir systems. 

1.3 Organization of Dissertation 

Based on the proposed research objectives and scope, this dissertation consists of six 

chapters. Details of Chapters 2-6 are summarized as follows: 

Chapter 2 sets up the fundamental dam-reservoir system model for simulation 

modeling and analysis. Both the inflow hydrograph model and the dam-reservoir 

system operation model are built in this chapter, which are also connected internally. 

Chapter 3 conducts detailed simulations to estimate the overtopping risks of the 

dam-reservoir system with the randomness. Both the CMC simulation and the ISMC 

simulation frameworks are developed with methodology and application comparison. 
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Chapter 4 applies the proposed simulation models to Little Long dam-reservoir 

system. The results from the inflow hydrograph model play as the prerequisites for 

future inflow simulation, and the simulated inflow results serve as the input variables 

for the reservoir operations model. Final outputs would be the reservoir water 

elevation through the specified time period. 

Chapter 5 starts with the introduction of simulation implementation, including 

two perspectives: 1) the simulation platform; and 2) the importance sampling density 

selection. The simulation results are presented including both the overtopping 

probability estimation and the computational performance measurement.  

Chapter 6 concludes the work. Contributions and limitations are summarized 

with future directions listed. 

The following Figure 1-1 demonstrates the structure in terms of the chapter 

contents, which displays the composition of dam-reservoir system overtopping risks.  

1.4 Overview of Research Outcome 

In general, the dissertation could be divided into two parts: theoretical bases and case 

study. In both parts, the performance modeling and simulation are discussed as a 

sequence. In order to show the general logic of the dissertation in a more organized 

way, Table 1-1 below presents the overviews and the outcomes with the 

corresponding sections. Discussions of each topic are involved throughout the 

dissertation.  
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Theoretical base

Chapter 2 

Modeling dam-reservoir system under uncertainty 

- Modeling inflow hydrograph

- Modeling operation process of dam-reservoir system

Chapter 3 

Simulating overtopping risks of dam-reservoir system 

- CMC simulation

- ISMC simulation

Case study

Chapter 4 

Case study of Little Long dam-reservoir system 

- Modeling inflow hydrograph of the Mattagami River

- Modeling operation process of Little Long dam-reservoir system

Chapter 5 

Overtopping risks evaluation of Little Long case 

- Simulation implementation

- Results comparison of CMC and ISMC simulations

Chapter 6  Conclusions and future work 

- Conclusion summary

- Recommendation of future work

Final conclusion

 

Figure 1-1 Dissertation structure in terms of chapter contents 
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Table 1-1 Research outcomes and relevant sections 

Research outcome Theoretical base Case study 

Modeling 
Modeling inflow hydrograph Section 2.3 Section 4.2 

Modeling operation of dam-reservoir system Section 2.4 Section 4.3 

Simulation 

CMC 
Simulation of inflow hydrograph 

Section 3.3 

Sections 5.2, 5.3 
Simulating dam-reservoir operation 

ISMC 
Simulation of inflow hydrograph 

Section 3.4 
Simulating dam-reservoir operation 
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Chapter 2: Modeling Performance of Dam-Reservoir System 

under Uncertainty 

2.1 Introduction 

In order to address the overtopping risks of dam-reservoir system effectively, a valid 

dam-reservoir model is needed to identify the system performance with sequential 

correlations. The goal of this chapter is to propose a theoretical model to address the 

dam-reservoir system dynamics, which also serves as the prerequisites for the 

simulation model in Chapter 3. Both the inflow hydrograph model and the general 

dam-reservoir system operation model are involved in this chapter, which are 

connected to each other internally. In the inflow hydrograph modeling part, 

transformation, statistical pattern testing, and seasonal time series modeling are 

applied. Uncertainties that play as one of the critical roles resulting in the system 

failure have also been taken into consideration. In the dam-reservoir system operation 

modeling part, the reservoir routing that incorporates the operation rules is also 

involved to evaluate the dam overtopping probability. Outflow controls are thus 

considered as the critical factors with both the outflow releasing rate and the 

corresponding reservoir water elevations as the outputs. 

2.2 Literature Review on Critical Factors Leading to Overtopping Risks 

Dam-reservoir system reliability is the ability of a dam-reservoir system to perform 

its required functions under the stated conditions for a specified period of time. In 

recent years, there has been a growing tendency to assess dam safety by statistical and 
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simulation methods in hydro-system engineering. In practice, Xu and Zhang (2009) 

analyzed the breaching parameters for earth and rockfill dams through a multi-

parameter nonlinear regression model, including breach depth, breach top width, 

average breach width, peak outflow rate, and failure time. The dam erodibility was 

found to be the most important influencing factor for the five parameters. A similar 

research has also been done by Gee (2009). Analytical techniques for the estimation 

of dam breach parameters were evaluated and compared. Relationships among the 

above key parameters were also fitted, such as water depth behind the dam and 

historic observations. Froehlich (2008) also analyzed the embankment dam breach 

parameters and their uncertainties. Predicted peak flows and water elevations 

downstream from breached embankment dams were estimated through statistical 

analysis and MC simulation. For works that are complex and unique, an expert’s 

elicitation is necessary when the data is imprecise or insufficient. To support expert 

diagnosis and risk analysis of dam performances, a method was thus proposed by 

Pevras et al. (2006). Tools were developed to the dam safety policy level to aid 

emergency managers and communities in appraising private dam safety. Analysis of 

the social and environmental costs and threats associated with dam safety issues were 

also provided (Pisaniello et al. 2011; Pisaniello and McKay 2007). 

In order to address the characteristics of dam-reservoir system performance 

effectively, this section reviews the past research on the critical factors leading to the 

overtopping risks. Uncertainties underlying in both the inflows and outflows have 

been taken into consideration. 
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2.2.1 Inflow Hydrograph and Time Integration 

Hydrologic risk analysis for the dam safety relies on a series of probabilistic analyses 

of rainfall-runoff and flow routing models. To the overtopping risks specifically, 

underlying uncertainties in the inflow variations serve as one of the major factors 

leading to the system failure. According to Kwon and Moon (2006), estimation of the 

overtopping risks applied to the Soyang Dam in South Korea illustrates that the 

traditional parametric approach can lead to potentially unrealistic estimates of dam 

safety. They proposed that the simulation-based approaches could provide rather 

reasonable estimates and an assessment of sensitivity to key parameters. Hsu et al. 

(2010) also developed a probability-based methodology to evaluate dam overtopping 

probability that accounts for uncertainties arising from wind speed and peak flood. A 

wind speed frequency model and flood frequency analysis including various 

distribution types and uncertainties were presented. The IS and Latin Hypercube 

sampling methods were also proposed to generate the samples of peak flow rate and 

wind speed especially for rare events. Similar research was also done by Sun et al. 

(2012). These works provide varied methodologies to analyze the peak inflow rates 

based on historical data, which set up the theoretical foundation for overtopping risk 

analysis. 

Due to the integration effect of reservoir, the peak inflow rates are not the 

unique factor within the inflow that decide the reservoir water elevation. Several past 

research studies also took the high inflow period and the total inflow volume into 

consideration. According to Poulin (2007), the bivariate return period and the 

conditional density of the volume given that the flow exceeds a given threshold were 
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computed. The results showed that out of the seven copula families tested, five 

overestimated the return periods of correlated extreme events. These results brought 

to the forefront the importance of the tail dependence in order to estimate the risk 

adequately. As a new risk assessment methodology for dam safety, copulas was also 

used in Klein et al. (2011)’s research. Characteristics of flood events including peak, 

volume and shape were taken into the multivariate probabilistic evaluation. Then, a 

methodology for flood risk assessment was presented which was applied in two case 

studies in Germany. Goodarzi et al. (2012) also presented the application of risk and 

uncertainty analysis to dam overtopping based on the univariate and bivariate flood 

frequency analyses. The overtopping risk of the Doroudzan Dam was evaluated for 

all six inflow hydrographs by considering quantile of flood peak discharge, initial 

depth of water in the reservoir, and discharge coefficient of spillway as uncertain 

variables and using two uncertainty analysis methods. 

The peak annual inflow rates and the high inflow period usually simplify the 

actual situations, which might result in underestimating the extreme risks. In order to 

involve more information from the inflow data, time series modeling is considered as 

an efficient statistical tool. Time-series modeling in hydrology has a long tradition. 

Assumptions have been made that it is possible to develop a general type of model 

capable of representing most relevant statistical characteristics of historic stream flow 

series. The origins of the concept can be traced back as far as Hazen (1914) and in 

more recent times to Lohani et al. (2012) and Valipour (2013). Seasonal patterns for 

both the general trend and uncertain fluctuation could be effectively addressed 

through the time series modeling. Beyond the seasonal cycle and mean trend, time 
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series approach was also used to generate synthetic hydrologic records, to forecast 

hydrologic events, to detect trends and shifts in hydrologic records, and to fill in 

missing data and extend records (Chiew et al. 1993; Kuo and Sun 1993). According 

to Box and Jenkins (1976), the Auto Regressive Integrated Moving Average 

(ARIMA) model or Box-Jenkins model became one of the general time series models 

used for hydrological forecasting. Valipour (2013) also resulted that the ARIMA 

model was an appropriate tool to forecast annual rainfall. Expanding to the nature of 

flood risks, related research could also be traced to Apel et al. (2006). In the study, a 

probabilistic modelling system for assessing flood risks was developed representing 

the relevant meteorological, hydrological, hydraulic, geo-technical, and socio-

economic processes. Kang et al. (2007) also conducted a sensitivity analysis of the 

flood safety of Yongdam Dam using a regional climate change simulation. The result 

indicated that the number of floods remained almost the same, but the magnitude of a 

single flood event and the recovery from it became worse. 

2.2.2 Outflow Controls and Disturbances 

Besides the inflow hydrograph and time integration, the outflow control is another 

critical factor that decides the dam-reservoir overtopping risks. In the classical 

method of reservoir system reliability analysis, the operation policy is used as a 

number of physical bounds on a reservoir system. From the outflow perspective, 

optimizing the dam-reservoir system operation has been a major area of study in 

water resources management. According to Li et al (2010), the field of data mining 

techniques was developed as an alternative approach for reservoir system 
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optimization. Data mining techniques such as genetic algorithms, neural networks, 

decision tree, and particle swarm optimization were described in detail. Karamouz et 

al (2005) also presented a decision support system for multipurpose reservoir 

operation. The key components of the system were four main modules: database 

management, inflow modeling and forecasting, operation management, and real-time 

operation. In the research of Ganji and Jowkarshorijeh (2011), inflow and reservoir 

storage were considered uncertain variables. The algorithm of advance first order 

second moment method (AFOSM) was implemented, in order to determine the 

monthly probability of failure in water allocation without the aid of simulation. The 

final results showed that the outputs from the AFOSM method were similar to those 

from the MC simulation method. Xu et al. (2014) also proposed rules for multistage 

optimal hedging operations that incorporate uncertain inflow predictions for large 

reservoirs with multiyear flow regulation capacities. Three specific rules for 

determining the optimal outflow releasing were derived, and a solution algorithm was 

then developed based on the optimality conditions and the three rules. 

Disturbance is another important factor affecting the dam-reservoir system 

safety. Without considering disturbances, overtopping risks would be potentially 

underestimated. According to Osti et al. (2011), the breach mechanism of the Tam 

Pokhari moraine dam failure in the Mt. Everest region had many reasons. The dam’s 

internal structure played a crucial role in forming a landslide that triggered the excess 

overflow and finally the breach of the dam. The rainfall and seismological activities 

of that particular day, which hit the record high, were also important in triggering the 

failure. A similar concept was also explained in the failure of Teton Dam, an earthen 
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dam on the Teton River in Idaho of United States. The failure occurred not because of 

some unforeseeable fatal combination, but because the many combinations of 

unfavorable circumstances inherent in the situation were not visualized, and because 

adequate defenses against these circumstances were not included in the design 

(Delatte 2008). 

To expand the research perspective, several studies were designed to add in 

the exterior disturbance factors that may lead to the overtopping risks. Incorporating 

the uncertainties of gate availability, Kuo et al. (2007) determined the optimal dam 

inspection interval under the consideration of overtopping risks. Considerations were 

also given to the inspection cost and the dam break cost. Following this research, Kuo 

et al. (2008) proposed an innovative concept to evaluate dam overtopping by taking 

into account spillway gate availability. The framework consisted of three parts: 1) 

evaluation of conditional overtopping risk for different numbers of malfunctioning 

spillway gates, 2) evaluation of spillway gate availability, and 3) dam inspection 

scheduling. Results showed that the overtopping risk considering the availability of 

the spillway gates was higher than the one without considering availability of the 

spillway gates. 

In order to incorporate all the critical factors discussed above which lead to 

the overtopping risks of dam-reservoir systems, the inflow hydrograph modeling and 

dam-reservoir system operation modeling are developed. Detailed information is 

presented in the following two sections. 
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2.3 Modeling Inflow Hydrograph under Uncertainty 

In order to address the characteristics of dam-reservoir system, the inflow hydrograph 

modeling plays as the first and most critical role connecting different modules with 

uncertainty. From the stochastic inflows perspective, the following four measures 

need to be conducted in order to identify the underlying patterns within the inflow 

hydrograph: 1) logarithmic transformation; 2) Fourier decomposition; 3) differencing 

and seasonal differencing; and 4) fitting to the ARIMA and seasonal ARIMA model. 

The final output from the inflow hydrograph model would be a white noise series, 

which could be generated independently through a standard Gaussian distribution. 

The model built in this chapter serves as the fundamental basis for the future inflow 

simulation. 

2.3.1 Logarithmic Transformation and Fourier Decomposition 

Inflow time series is usually considered as a combination of quasi-periodic signals 

contaminated by noise, so prediction accuracy can be improved by data 

preprocessing. The logarithmic transformation is a nonlinear transformation, which 

reduces positive skewness and compresses the upper end of the distribution, while 

stretching out the lower end. There are three common reasons why the logarithms are 

applied: 1) the following statistical techniques work best with data that are single-

peaked and symmetric (symmetry); 2) the following techniques work best when the 

variability is roughly the same (homoscedasticity); 3) it is easier to describe the 

relationship between variables when it's approximately linear (linearity). Tailoring to 
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the nature of reservoir inflow hydrograph, logarithmic transformation is adopted in 

order to organize the datasets and demonstrate the patterns more visible. 

 Seasonality is one of the major factors that affects the reservoir inflows. In 

general, reservoir inflows follow seasonal fluctuations, caused mainly by climate 

conditions. As a result, the Fourier decomposition could be conducted in order to 

discern seasonal components, following logarithmic transformation of reservoir 

inflow data series. The Fourier series is a sum of sine and cosine functions that 

describes a periodic signal. With different amplitudes and frequencies, the Fourier 

decomposition explains the series entirely as a composition of sinusoidal functions. 

The generic element of the inflow sample 1 2, ,..., nI I I  is expressed as the nth partial 

sum of the Fourier series showing in Equation (2-1).  

 
 0

1

( ) cos( ) sin( )
2

n

j j j j
j

a
I t a t b t 



   ,    {1, 2,..., }j n  and 

{0,1,..., }ptt n
 

(2-1) 

where I(t) stands for the stochastic inflow rate at time t, where t is discrete and 

{0,1,..., }ptt n ; n stands for the number of Fourier series frequencies; j  stands for 

the angular velocity that accomplish j cycles in the T periods spanned by the data; and 

ptn  stands for the length of series for time series modeling. 

Detailed calculation of j  is shown in Equation (2-2). ja , where 0,1,...,j n  

and jb , where 1,2,...,j n  stands for the Fourier coefficients with detailed calculation 

process shown in Equations (2-3), (2-4), and (2-5).  
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 2
j

j

T

   ,    {1,2,..., }j n
 

(2-2) 

where T stands for the total number of coefficients from data points. Assuming that 

2T n  is even, this sum comprises T functions at frequencies that are equally spaced 

points in the interval [0, π].  

In order to represent all the cyclic patterns in the time series, the sinusoidal 

components need to be fitted into the time series and leave the residuals as random. 

Parametric fitting involves finding coefficients for one or more models that fit to data.  
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(2-5) 

where ja , {0,1,..., }j n  and jb , {1,2,..., }j n  stands for the Fourier coefficients; T 

stands for the designed periods of data points; j  stands for the angular velocity that 

accomplish j cycles in the T periods spanned by the data; and I(t) stands for the 

stochastic inflow rate at time t. 

Based on the Fourier decomposition, the seasonal pattern existing in the 

logarithm of inflow hydrograph has been identified, which could be applied as a fixed 

cycle pattern in further simulation. Thus after Fourier decomposition, the seasonal 

trends have been removed from the original data series. 
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2.3.2 Pattern Testing for Time-Series Data 

There are five different tests (Augmented Dickey–Fuller Test, Kwiatkowski-Phillips-

Schmidt-Shin Test, Box-Pierce and Ljung-Box Test, autocorrelation function, and 

partial autocorrelation function) proposed in the inflow hydrograph model as a 

sequence, in order to check the stationarity and pattern existence of inflow time series 

data. The necessity of differencing and seasonal differencing is decided based on the 

test results. Detailed test information is explained one by one as follows.  

A unit root is a feature of processes that evolve through time that can cause 

problems in statistical inference involving time series models. In statistics and 

econometrics, an Augmented Dickey–Fuller test (ADF) is a test for a unit root in a 

time series sample. It is an augmented version of the Dickey-Fuller test for a larger 

and more complicated set of time series models. The ADF test for a unit root assesses 

the null hypothesis of a unit root using the model in Equation (2-6). 

 
1 1 1 2 2 ...t t t t p t p ty c t y y y y                   , 

{0,1,..., }ptt n            
 

(2-6) 

where ty  stands the tth item of tested time series { : 0,1,..., }t pty t n ; c stands for the 

drift coefficient;   stands for the deterministic trend coefficient; and   stands for 

the AR(1) coefficient.   is the differencing operator that 1t t ty y y    . The number 

of lagged difference term p , is user specified. t  stands for a mean zero innovation 

process; and ptn  stands for the length of time series for pattern testing. 
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The null hypothesis of a unit root, H0: 1  . And the alternative hypothesis, 

H1: 1  . Variants of the model allow for different growth characteristics. The 

model with 0   has no trend component, and the model with 0c   and 0   has 

no drift or trend. Ordinary least squares (OLS) regression is performed to estimate the 

coefficients in the alternative model. If the test statistic is less than the critical value, 

then the null hypothesis of 1   is rejected and no unit root is present. The test that 

fails to reject the null hypothesis, fails to reject the possibility of a unit root. 

In mathematics and statistics, a stationary process is a stochastic process 

whose joint probability distribution does not change when shifted in time. ARIMA 

and seasonal ARIMA models are only applied to the stationary time series. As a 

result, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is applied there, which is a 

stationarity test that is more straightforward of the null hypothesis of trend 

stationarity against the alternative of a unit root. The test uses the structural model 

showing in Equations (2-7) and (2-8). 

 
1t t ty c t u   ,    {0,1,..., }ptt n            

 
(2-7) 

 
1 2t t tc c u  ,    {0,1,..., }ptt n            

 
(2-8) 

where tc  stands for the random walk;   stands for the deterministic trend 

coefficient; t stands for the time index, where {0,1,..., }ptt n ; 1{ ; 0,1,..., }t ptu t n  

stands for a stationary process; 2tu  stands for an independent and identically 



 

20 

 

distributed process with mean 0 and variance 2 ; and ptn  stands for the length of 

time series for pattern testing. 

Accordingly, the null hypothesis of the KPSS test H0: 2 0  , which implies 

the random walk term, tc , is constant and acts as the model intercept. The alternative 

hypothesis H1: 2 0  , which introduces the unit root in the random walk. The test 

statistic is shown in Equation (2-9). 

 
2 2 2
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/ ( )
ptn

pt t pt
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


 

(2-9) 

where ptQ  stands for the test statistic; ptn  stands for the length of time series for 

pattern testing; 2s  is the Newey-West estimate of the long-run variance; tS  stands for 

the partial sum of residuals 2
1

ˆ
ptn

t t
t

S u


  based on the least squares estimation. KPSS 

test also performs a regression to find the OLS fits between the data and the null 

model.  

The Box-Pierce (BP) and Ljung-Box (LB) Tests compute the BP and LB test 

statistic for examining the null hypothesis of independence in a given time series. The 

LB test is a type of statistical test determining whether autocorrelations of a time 

series are different from zero. Instead of testing randomness at each distinct lag, it 

tests the overall randomness based on a number of lags. The LB test is also closely 

connected to the BP Test, which is a simplified version. 
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 The null hypothesis of H0: correlation coefficients 1 2 ... 0m       that 

the data are distributed independently. The alternative hypothesis is: H1: the data are 

not distributed independently. For the LB test, statistic is shown in Equation (2-10). 
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 
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(2-10) 

where m stands for the total number of lags being tested; ptQ  stands for the test 

statistic that follows a 2
m  distribution (the chi-squared distribution with m degrees of 

freedom); ptn  stands for the length of time series for pattern testing; and ˆ
h  stands 

for the sample autocorrelation at lag h. For the BP test, the test statistic is shown in 

Equation (2-11). 
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pt pt h
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Q n 
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(2-11) 

where m stands for the total number of lags being tested; ptQ  stands for the test 

statistic that follows a 2
m  distribution (the chi-squared distribution with m degrees of 

freedom); ptn  stands for the length of time series for pattern testing; and ˆ
h  stands 

for the sample autocorrelation at lag h. Simulation studies have shown that the LB 

statistic is suitable for all sample sizes, including the smaller ones. 

Followed by the previous tests, autocorrelation function (ACF) and partial 

autocorrelation function (PACF) also serve as a good supplement to build the 

ARIMA and seasonal ARIMA model. The ACF is a set of correlation coefficients 

between the series and lags of itself over time. And the PACF is the partial correlation 

coefficients between the series and lags of itself. Both the ACF and PACF plots help 
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to identify the numbers of autoregressive (AR) or moving average (MA) terms in an 

ARIMA model. 

2.3.3 Fitting ARIMA and Seasonal ARIMA Model 

Differencing and seasonal differencing have been widely used particularly by analysts 

who are fitting ARIMA models to time series data. In general, the residuals from 

Fourier decomposition might be autocorrelated at many lags. A model with no orders 

of differencing assumes that the original series is stationary. A model with one order 

of differencing assumes that the original series has a constant average trend. A model 

with two orders of total differencing assumes that the original series has a time-

varying trend. Based on the testing results, differencing and seasonal differencing 

would be conducted in order to remove the nonstationarity. As shown in Equation (2-

12), differencing a time series stands for computing the differences between adjacent 

values.  

 
1t t tY Y Y    ,     1, ..., ptt n

 
(2-12) 

where { : 0,1,..., }t ptY t n  stands for the residual time series; tY  stands for the 

difference of residual time series; and ptn  stands for the length of time series for 

pattern testing. Seasonal differencing of a time series computes the differences at 

certain seasonal time lags. Seasonal differencing removes seasonal trend and can also 

get rid of a seasonal random walk type of nonstationarity. As defined in Equation (2-

13), the seasonal difference of period s  for the series is shown below. 
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s t t t sY Y Y   ,      1, ..., ptt s n 

 
(2-13) 

where  : 0,1, ...,t ptY t n  stands for the residual time series; s stands for time span of 

repeating seasonal pattern, where pts n ; and s tY  stands for the seasonal difference 

of residual time series; and ptn  stands for the length of time series for pattern testing. 

The optimal order of differencing is often the order of differencing at which the 

standard deviation is lowest.  

After stationization by differencing, the next step is to fit the series into an 

ARIMA model.  The AR or MA terms are determined in order to correct 

autocorrelations that remain in the differenced series. The seasonal ARIMA model 

incorporates both non-seasonal and seasonal factors in a multiplicative model. One 

shorthand notation for the model is ARIMA (p,d,q) (P,D,Q)s, with (p,d,q) standing 

for the non-seasonal part, and (P,D,Q)s standing for the seasonal part. In more details, 

p stands for the non-seasonal AR order. d stands for the non-seasonal differencing. q 

stands for the non-seasonal MA order. P stands for seasonal AR order. D stands for 

the seasonal differencing. Q stands for the seasonal MA order, and s stands for the 

time span of repeating seasonal pattern. The model could be formally expressed as 

Equation (2-14) shown below. On the left side, the seasonal and non-seasonal AR 

components multiply each other, and on the right side, the seasonal and non-seasonal 

MA components multiply each other. 

 ( ) ( ) ( ) ( )s s
t tB B y B B e  

 
(2-14) 
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where B stands for the backward shift operator, as 1t tBy y  ; s stands for the time 

span of repeating seasonal pattern;   stands for the function of seasonal AR process; 

and   stands for the function of AR process. On the right hand side,   stands for 

the function of seasonal MA process;   stands for the function of MA process; and 

te  stands for the error term, which is an independent, identically distributed (i.i.d) 

variable sampled from a normal distribution with zero mean, named white noise.  

To be more in specific, the non-seasonal components selected are shown 

below. The AR process is shown in Equation (2-15), and the MA process is shown in 

Equation (2-16). 

 
1( ) 1 ... p

pB B B     
 

(2-15) 

 
1( ) 1 ... q

qB B B     
 

(2-16) 

where   stands for the function of AR process;   stands for the function of MA 

process; i , 1, 2,...,i p , stands for the parameters of the autoregressive part of the 

model; p stands for the non-seasonal AR order; i , 1, 2,...,i q , stands for the 

parameters of the moving average part; and q stands for the non-seasonal MA order. 

The seasonal components are also selected separately and are shown below. 

The seasonal AR process is shown in Equation (2-17), and the seasonal MA process 

is shown in Equation (2-18). 

 
1( ) 1 ...s Ps

PB B B    
 

(2-17) 
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1( ) 1 ...s s Qs

QB B B    
 

(2-18) 

where   stands for the function of seasonal AR process;   stands for the function 

of seasonal MA process; s stands for the time span of repeating seasonal pattern; i , 

1, 2,...,i P , stands for the parameters of the seasonal autoregressive part of the 

model; P stands for the seasonal AR order; i , 1, 2,...,i Q , stands for the 

parameters of the seasonal moving average part; and Q stands for the seasonal MA 

order. 

 Innovations of the ARIMA model are i.i.d. as the white noise. Since the 

density function is usually a bell-shaped curve symmetrically around the mean, the 

normal distribution and the student’s t distribution are selected as the two most 

common symmetric distributions used for innovation fitting. 

2.4 Modeling Operation Process of Dam-Reservoir System 

In functional terms, the purpose of the dam, reservoir and hydraulic structures 

together is to intercept uncontrolled stream flows and transform them into controlled 

outflows. According to Afzali et al. (2008), the objective of reservoir outflow 

releasing philosophy is to minimize the sum of reservoir releases, and in the 

meanwhile, maximize the sum of reservoir storages in each of the time periods, 

subject to a reliability constraint on the hydropower system’s energy yield. As a 

result, a tradeoff exists in the outflow control process. On the one hand, water 

releasing through the spillway is a loss of power generation potentials. Also, release 

from the system over and above the normal discharges through the system represents 
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a potentially dangerous and damaging disturbance in the downstream flows. On the 

other hand, the structure of the dam must be safe against unexpected changes in the 

reservoir water elevation. When the water elevation changes suddenly, the released 

outflow rates of the reservoir water must be arranged correspondingly. Otherwise, 

extreme water elevation would thus occur. 

This section intends to model the general operation process of dam-reservoir 

system, including the reservoir hydrologic routing and outflow control. Model inputs 

of this section are the inflow hydrograph derived from the previous Section 2.3, and 

the model outputs of this section are the outflow discharge and reservoir water 

elevation. Compared to the dam-reservoir system in the real world, the model 

proposed is a simplified version to show how functionally each of the system 

modules are arranged. Evaporation has not been taken into consideration at this 

moment. The model built in this chapter serves as the fundamental basis of future 

reservoir operation simulation, and overtopping risk estimation. 

2.4.1 Reservoir Hydrologic Routing 

In hydrology, routing is a technique used to predict the changes in shape of a 

hydrograph as water moves through a river channel or a reservoir. From the 

perspective of outflow control, hydrologic routing is the major logic describing the 

storage-discharge-stage relationships for the dam-reservoir system. Hydrologic 

methods are based on the concept that inflow, outflow, and storage must adhere to the 

conservation of mass principle. Reservoir hydrologic routing also involves the 

application of the continuity equation to a storage facility in which outflow is an 
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invertible function of the storage volume for a particular geometry. Simply speaking, 

the inflow to the river reach is equal to the outflow of the river reach plus the change 

of storage. Thus, the water storage in reservoir changes within a time interval that can 

be determined from the continuity equation, Equations (2-19) and (2-20). 

 ( )
= ( )- ( )

dS t
I t O t

dt
           

 
(2-19) 

 

0

( )= ( )- ( )S t I t O t dt


          
 

(2-20) 

where S(t) stands for the stochastic storage volume at time t; I(t) stands for the 

stochastic inflow rate at time t; and O(t) stands for the outflow rate at time t. In a 

discrete form, the simulation modeling is considered, a rough discrete approximation 

of Equation (2-19) is demonstrated as Equation (2-21) shown below.  

 
( + ) ( )

( )- ( )
S t t S t

I t O t
t

 



 
 

(2-21) 

where t  stands for the slight time increase from time t; S(t) stands for the stochastic 

storage volume at time t; ( )S t t  stands for the storage volume at time t t ; I(t) 

stands for the stochastic inflow rate at time t; and O(t) stands for the outflow rate at 

time t. If the time increase is set as 1t  , Equation (2-21) could be simplified as 

Equation (2-22). 

 ( +1) ( ) ( )- ( )S t S t I t O t  ,       {1, 2,..., }mdt T n 
 

(2-22) 

where t becomes an integer standing for certain time period t; S(t) stands for the 

stochastic storage volume at time t; I(t) stands for the stochastic inflow rate at time t; 
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O(t) stands for the outflow rate at time t; ; and mdn  stands for the length of time series 

for dam-reservoir system modeling. 

The depth of water and reservoir geometry combines to define the reservoir 

cross-sectional area. Thus when the reservoir geometry is known, the change in the 

reservoir water storage could be directly calculated from the change of water 

elevations, which is much easier to estimate in real practice. In a simplified situation, 

the following Equation (2-23) could demonstrate the relation. 

  ( +1) ( ) ( +1) ( )S t S t H t H t   ,       {1,2,..., }mdt T n           (2-23) 

where [ ]   stands for the function of estimating the reservoir water storage based on 

the change of water elevations; S(t) stands for the stochastic storage volume at time t; 

H(t) stands for the stochastic reservoir water elevation at time t; and mdn  stands for 

the length of time series for dam-reservoir system modeling.  

Spillway gates give the operator a greater control of the outflow rate. In most 

situations, the reservoir operators rely on the rule curves and other agreed upon 

operating rules, as well as their own judgment and experience in making reservoir 

release decisions. The water elevation is normally within the operating headwater 

level range. The limit of the headwater level is the absolute maximum operating level. 

The difference between the absolute maximum and maximum operating levels is the 

flood allowance, which is used to hold water in extreme conditions to reduce 

downstream flooding. The storage between the absolute minimum and minimum 

operating levels is used if a system energy emergency occurs. Under normal 
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operating conditions with equivalent discharges at each station, the full operating 

range would rarely be utilized. 

Overtopping failures occur when the pressure set on the body of the dam 

exceeds the stable state. When the reservoir storage has reached an appropriate limit, 

spillways are designed to pass the excess flood-waters, initially through a primary 

spillway. If large floods exceed the capacity of the primary spillway, emergency 

spillway would pass the extra water. However, when an extreme flood event occurs, 

the flows can exceed the combined spillway capacity, spilling over the top of the 

dam, causing overtopping. In mathematical expression, the overtopping would occur 

when the reservoir water elevation ( ) failureH t h  for any t  in the evaluation period. 

2.4.2 Markov Decision Process of Dam-Reservoir System Operation 

In probability theory and statistics, a Markov process, named after the Russian 

mathematician Andrey Markov, is a stochastic process that satisfies the Markov 

property, which can be thought as memoryless. One can make predictions for the 

future of the process based solely on its present state, which has no dependence on 

knowing the process's full history. Based on the Markov process, a Markov decision 

process (MDP) is a Markov reward process with decisions, in which all states are 

Markov. MDP has been used since the early fifties for the planning and operation of 

dam-reservoir systems (Feinberg and Shwartz 2012). The transition equations of mass 

conservation for the reservoir storages are akin to those found in inventory theory. 
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Interpreting Equations (2-22) and (2-23) from a different perspective, the 

following Equations (2-24) and (2-25) construct a rather simplified version to show 

how functional the dam-reservoir systems are arranged. 

 ( ) [ ( ), ( )]O t I t H t ,       {0,1,..., }mdt nÎ
 

(2-24) 

where [ ]   stands for the decision rule function of outflows based on the current 

inflow rate and the reservoir water elevation. O(t) stands for the outflow rate at time t; 

I(t) stands for the stochastic inflow rate at time t; and H(t) stands for the stochastic 

reservoir water elevation at time t; and mdn  stands for the length of time series for the 

dam-reservoir system modeling. 

This means the first relationship among the inflow rate I(t), water elevation 

H(t), and the outflow rate O(t) has successfully been built. Meanwhile, based on 

Equations (2-22) and (2-23), Equation (2-25) shown below, could also be derived as 

another relation among the inflow rate I(t), the water elevation H(t), and the outflow 

rate O(t).  

 1( 1) [ ( ) ( )] ( )

[ ( ), ( ), ( )]

H t I t O t H t

I t O t H t




   


,       {0,1,..., }mdt nÎ
 

(2-25) 

where [ ]   stands for the function of estimating the reservoir water storage based on 

the change of water elevations; [ ]   stands for the general function demonstrating the 

relations among the inflow rate, the water elevation, and the outflow rate; I(t) stands 

for the stochastic inflow rate at time t; O(t) stands for the outflow rate at time t; H(t) 

stands for the stochastic reservoir water elevation at time t; and mdn  stands for the 

length of time series for dam-reservoir system modeling.  
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Combining Equations (2-24) and (2-25), Equation (2-26) can be reached as 

below. For any time period t, the reservoir water elevation could be estimated tracing 

back to the initial reservoir water elevation, and the incoming historical inflows. 

 

0

( ) [ ( ), [ ( 1), ( 1)], ( 1)]

[ ( ), ( 1),..., (1), ]

H t I t f I t H t H t

I t I t I H




   
 

, 

{0,1,..., }mdt nÎ
 

(2-26) 

where [ ]   stands for the function of reservoir water elevation based on the initial 

elevation plus the inflows through certain time span; [ ]   stands for the general 

function demonstrating the relations among the inflow rate, the water elevation, and 

the outflow rate; H(t) stands for the stochastic reservoir water elevation at time t; I(t) 

stands for the stochastic inflow rate at time t; 0H  stands for the initial water elevation 

of the reservoir; and mdn  stands for the length of time series for dam-reservoir system 

modeling. For the time period t that {0,1,..., }mdt nÎ , overtopping would occur if 

max[ ( )] failureH t h . Here failureh  is the top of dam that could not be exceeded. 

The most basic type of MDP is the discrete time MDP, as a tuple of {States, 

Actions, Transition, Reward, Discount factor}. The state variable stands for the finite 

set of domain states, which could be observed at discrete time period {0,1,..., }mdt nÎ . 

The action variable stands for a finite set of actions. When the system is observed to 

be at certain state, an action from the action variable should be chosen. Then, two 

things will happen: 1) the system will receive a reward, and 2) the system will 

transfer to state at the next period with state transition probability. Thus, the transition 

stands for the state transition function, which is usually associated with a probability 
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matrix. The reward variable stands for a reward function, and the discount factor is a 

number between 0 and 1. Deeming the dam-reservoir system operation as a Markov 

decision process, Figure 2-1 demonstrates the inner relationship among inflows, 

outflows, and reservoir water elevations.  

 

Figure 2-1 Markov decision process of dam-reservoir system operation 

The state variables are the reservoir water elevation { ( ) : 0,1,..., }mdH t t n= , 

which represents the volume of water in storage in the reservoir at a certain time 

period t. The decision to be made in period t is the quantity of water to release 

through the turbines and the quantity of water to evacuate through the spillways. As a 

result, the decision variables are the outflow rates { ( ) : 0,1,..., }mdO t t n= . 

{ ( ) : 0,1,..., }mdF t t n=  stands for the reward functions which are used for deciding 

whether overtopping occurs at time period t. For the transition rate function, 

additional hydrologic state variables could be taken into consideration. Hydrologic 

variables in the state vector also allow consideration of the serial correlation of 

natural inflows. Differing from the traditional MDP problems, which are expected to 

find the optimal policy or control to give the optimal expected integrated reward, the 

reward variables in this situation specifically used for checking whether overtopping 
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occurs or not are shown as binary variables. In general, this process models the 

operation process of the dam-reservoir system. 

2.5 Summary 

In summary, this chapter sets up the fundamental dam-reservoir system model for 

further simulation modeling and analysis. Both the inflow hydrograph model and the 

dam-reservoir system operation model are built, which are also connected as a 

sequence internally. Literature reviews of the critical factors leading to dam-reservoir 

overtopping risks serves as the basis for the proposed model. Both the inflow 

hydrograph and the outflow controls are involved. Then, two major parts are included 

in modeling dam-reservoir system performance under uncertainty: 1) modeling 

inflow hydrograph; and 2) modeling operation process of the dam-reservoir system. 

Synchronizing these two parts together in this chapter, performance of the dam-

reservoir system is modeled with potential overtopping risks. Uncertainties within the 

inflow hydrograph and the system operation process are also taken into consideration.  
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Chapter 3: Simulating Overtopping Risks of Dam-Reservoir 

System 

3.1 Introduction 

Following by the model developed from Chapter 2, simulation of the reservoir inflow 

rate is needed, and could start with multiple independent and identical distributed 

random variables. The detailed simulation procedures have been presented in this 

chapter in order to estimate the overtopping risks of the dam-reservoir system under 

uncertainties. The literature review part firstly focuses on the rare event simulation 

applied in complex engineering systems. Definitions of the rare events, the 

advantages of rare event simulation, and the engineering-case applications are 

introduced within this part. Then, frameworks of both CMC and ISMC simulation are 

developed with methodology foundations and application comparison. This chapter 

also serves as the theoretical basis of Chapter 5. The CMC and ISMC simulation 

methods proposed in this chapter would also apply to the similar engineering cases. 

3.2 Literature Review on IS and Rare Event Simulation 

3.2.1 Rare Event Simulation and IS 

MC methods are a broad class of computational algorithms that rely on repeated 

random sampling to obtain numerical results (Kalos and Whitlock 2008; Liu 2008). 

The modern version of the MC method was invented in the late 1940s by Stanislaw 

Ulam on the nuclear weapons projects at the Los Alamos National Laboratory 

(Cooper et al. 1989). Immediately after Ulam's breakthrough, John von Neumann 
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understood its importance and programmed the Electronic Numerical Integrator And 

Computer (ENIAC) to carry out MC calculations (Neumann 2005). In engineering, 

MC methods are widely used for sensitivity analysis and quantitative probabilistic 

analysis in process design. The need of such application arises from the interactive, 

co-linear and non-linear behaviors of typical process simulations (Roebuck 2012). 

However, significant computational resources are usually required in the simulation 

to reach the satisfied results (Bucklew 2004). Otherwise, long wait times or buffer 

overflows might occur. For a discrete system of moderate complexity, there are a 

combinatorial large number of possible system states. As is often the case, estimation 

of the probability of failure and consequences of any given system state involves 

computationally expensive simulation. It is commonly infeasible to analyze all 

possible states due to the resources required (Dawson and Hall 2006).  

Rare event simulation and quantification come from the need to ensure that 

undesirable events will not appear. Typically, such an event is the failure of industrial 

critical systems, for which failure is regarded as a massive catastrophic situation. 

Usually the system is a “black box” whose output determines safety or failure 

domains (Walter and Defaux 2015). A great deal of attention has been focused on the 

development of MC techniques. Today, the rare event simulation applications range 

from lightwave and optical communication systems (Smith et al. 1997), to industrial 

routing problems (Chepuri and Homem-de-Mello 2005), and to financial asset pricing 

(Chan and Wong 2015). According to Bucklew (2004) and Rubino and Tuffin (2009), 

a rare event means an event that occurs infrequently with a very small probability, but 

important enough to justify their study. Rare event simulation is thus an umbrella 
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term for a group of computer simulation methods intended to selectively sample 

‘special’ regions of the dynamic space of systems that are unlikely to visit those 

special regions through brute-force simulation (Juneja and Shahabuddin 2002). Based 

on the hazard-rate twisting method, Huang and Shahabuddin (2004) discussed a 

general approach to estimate rare-event probabilities in static problems. 

IS has been extensively investigated by the simulation community in the last 

decade, which serves as one of the general approaches for speeding up simulations 

and to accelerate the occurrence of rare events. The basic ideas behind IS were 

outlined by Kahn and Marshall (1953). Certain values of the input random variables 

in a simulation have more impact on the parameter being estimated than on others. If 

these values are emphasized by sampling more frequently, then the estimator variance 

can be reduced to a better accepted level. Hence, the basic methodology in IS is to 

choose a distribution that encourages the important values, and to estimate the 

probability of interest via a corresponding likelihood ratio (LR) estimator. Illustration 

of ISMC simulation is shown in Figure 3-1. The simulation outputs are weighted to 

correct for the use of the biased distribution, and this ensures that the new IS 

estimator is unbiased. The weight is given by the likelihood ratio, that is, the Radon–

Nikodym derivative of the true underlying distribution with respect to the biased 

simulation distribution. 
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Figure 3-1 Graphical illustration of ISMC simulation 

A considerable amount of past research has been devoted to the study of IS 

techniques in simulation, in particular for rare-event simulation. Based on Glynn and 

Iglehart (1989)’s research, the IS idea was extended to the problems arising in the 

simulation of stochastic systems. Discrete-time Markov chains, continuous-time 

Markov chains, and generalized semi-Markov processes were covered. Shahabuddin 

(1995) also reviewed fast simulation techniques used for estimating probabilities of 

rare events and related quantities in different types of stochastic models. Based on the 

IS technique, multiple variance reduction tools for solving rare event problems could 

also be found in varied areas (Ding and Chen 2013; Jacquemart and Morio 2013; 

Morio et al. 2010, 2013). 

3.2.2 Applications in Engineering Related Fields 

Applications of rare event simulation and IS techniques could frequently be found in 

the reliability engineering field in the past research, in order to reduce simulation 

expenses and increase estimation accuracy. According to Alexopoulos and Shultes 
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(2001), IS in conjunction with regenerative simulation were presented as a promising 

method for estimating reliability measures in highly dependable Markov systems. 

L’Ecuyer and Tuffin (2009) and Dai et al. (2012) also considered the Markov chain 

models and simulation to represent the evolution of multicomponent systems in 

reliability settings. This is based on dynamic IS and the probability that a given set of 

nodes was connected in a graph where each link was failed with a given probability. 

According to Au and Beck (1999), an adaptive IS methodology was proposed to 

compute the multidimensional integrals encountered in reliability analysis. In the 

proposed methodology, samples were simulated as the states of a Markov chain and 

they were distributed asymptotically according to the optimal IS density. IS was also 

adopted in structural reliability analysis (Dawson and Hall 2006; Grooteman 2008). 

The case studies proposed demonstrated that the risk could be a complex function of 

loadings, the resistance and interactions of system components and the spatially 

variable damage associated with different modes of system failure.  

Severe blackouts due to cascading failures in the electric grid are rare but 

catastrophic. Consequently, the power system becomes another application focus that 

rare event simulation and IS concentrated on. Belmudes et al. (2008) proposed an 

approach for identifying rare events that may endanger power system integrity. The 

approach was also illustrated on the IEEE 30 bus test system when instability 

mechanisms related to static voltage security were considered. Wang et al. (2011) 

also presented an effective rare-event simulation technique to estimate the blackout 

probability. An IEEE-bus electric network was chosen as the application case, and the 

most vulnerable link in the electric grid was detected, which has the highest 
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probability of leading to a blackout event. Besides, power system security analysis is 

often strongly tied with contingency analysis. With variable generation sources such 

as wind power and due to fast changing loads, power system security analysis has to 

incorporate sudden changes in injected powers that are not due to generation outages. 

Perninge et al. (2012) used IS for injected-power simulation to estimate the 

probability of system failure, given a power system grid state. A comparison to 

standard CMC simulation was also performed in a numerical example and it indicated 

a major increase in simulation efficiency. 

MC techniques and rare event simulation are also widely used in many other 

fields. In financial engineering, the accurate measurement of credit risk is often a 

rare-event simulation problem because default probabilities are low for highly rated 

obligors and because risk management is particularly concerned with rare but 

significant losses resulting from a large number of defaults. To solve these problems, 

Bassamboo et al. (2008) derived sharp asymptotic for portfolio credit risk that 

illustrated the implications of extremal dependence among obligors. Importance-

sampling algorithms were then developed to efficiently compute portfolio credit risk 

via MC simulation. Glasserman and Li (2005) also provided an IS procedure for the 

widely used normal copula model of portfolio credit risk. The procedure had two 

parts: one that applies the IS conditional on a set of common factors affecting 

multiple obligors, and the other that applies IS to the factors themselves. The relative 

importance of the two parts of the procedure was determined by the strength of the 

dependence between obligors. Besides, in the queueing system, Blanchet and Lam 

(2014) developed rare-event simulation methodology for the analysis of loss events in 
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a many-server loss system under the quality-driven regime. Heidelberger (1995) also 

surveyed efficient techniques via simulation for estimating the probabilities of certain 

rare events. In operational systems, Bee (2009) used IS to estimate tail probabilities 

for a finite sum of lognormal distributions. And, in public health, Clemencon et al. 

(2013) focused, in the context of epidemic models, on rare events that might possibly 

correspond to crisis situations. In biochemical systems, Kuwahara and Mura (2008) 

proposed an efficient stochastic simulation method to analyze deviations from highly 

controlled normal behavior in biochemical systems. 

3.2.3 Research Gap on Rare Event Simulation Application in Dam-Reservoir System 

MC methods are widely used because of their flexibility and robustness. Analytical 

solutions or accurate approximations are only available for a very restricted class of 

simple systems. In most cases, engineering systems need to resort to simulation in 

order to conduct probabilistic estimation and sensitivity analysis. Due to the 

stochastic nature of a dam-reservoir system, the dynamics of system operations and 

corresponding overtopping risks could be modeled through MC simulation. 

According to Wang and Bowles (2006), a simulation-based model was developed on 

the breach process at multiple breach locations for a dam with an uneven crest under 

wind and wave action. Dewals et al. (2010) also applied the simulation of flows 

induced by several failure scenarios on a real complex of dams, involving collapse 

and breaching of dams in cascade. As an output, the simulation provided emergency 

planning and risk analysis, including the sequence of successive overtopping and 

failures of dams, the time evolution of the flow characteristics at all points of the 
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reservoirs, hazard maps in the downstream valley as well as hydrographs and 

limnigraphs at strategic locations in the valley. Besides, Tsakiris and Spiliotis (2012) 

also developed an approach that combined both the simulation and semi-analytical 

solution, in order to address the dam breach formation caused by overtopping and the 

resulting outflow hydrograph. Generalized reservoir system operation models include 

HEC-5, which is the most widely used reservoir operation simulation model, IRIS 

and IRAS, the SWD SUPER Modeling System, and the WRAP Modeling System. 

Although applications of MC methods range widely from estimating integrals, 

minimizing difficult functions, to simulating complex systems, they are generally 

expensive and are only applied to problems that are too difficult to handle by 

deterministic methods. The overtopping events, in most cases, have very small 

occurrence probabilities. The standard MC method is not always the most appropriate 

tool especially when we deal with those rare events. According to Rani and Moreira 

(2010), simulation without preliminary screening would be very time consuming, in 

view of the very large number of options of configuration, capacity and operating 

policy. Dawson and Hall (2006) also pointed out that the computational expense 

serves as one of the prohibitive reasons that the simulation technique has not been 

widely applied to reservoir operations. Minimizing simulation based estimation error 

rates at a reasonable cost is consequently an important aspect of these practical 

problems. In order to save the computational expenses and increase estimation 

accuracy, rare event simulation has been adopted for efficient estimation, especially 

on small probability events. As one of the most common rare event simulation 
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techniques, IS is involved in many engineering applications in order to achieve 

variance reduction.  

 As an extension of CMC simulation, the rare event simulation techniques have 

been adopted in the dam-reservoir system operation. These researches mostly focus 

on the critical factors such as peak inflow rate, that might lead to the overtopping 

events (Hsu et al. 2010; 2012). However, overtopping is a complete process. 

Generally speaking, the water surface elevation in a reservoir is directly tied to the 

whole storage volume, with either a linear or a nonlinear relationship based on the 

reservoir shape. As a result, the stochastic inflow rate integrated within a certain 

period of time would change the reservoir storage, assuming there is no outflow 

releasing to the system. Overtopping would potentially occur due to the continuous 

high inflow volumes, even when the annual peak inflow rate is not extreme. 

Modeling and simulating a whole system is thus beneficial to the final overtopping 

estimation. Positive correlations between the peak inflow rate and the inflow volume 

within a specified time period are proven to exist (Goodarzi et al. 2012; Poulin 2007). 

3.3 CMC Simulation of Overtopping Risks 

3.3.1 Framework of CMC 

For both the CMC and the ISMC simulations, the final objective is to assess the 

overtopping risk probability of the dam-reservoir system within a specified time 

scale, which is rather hard by analytical solutions in real practice. MC simulation is 

implemented to model the operation of the dynamic dam-reservoir systems. In order  
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to estimate the probability of overtopping events within a certain time scale, the following simulation framework is proposed in this 

section as a dynamic process shown in Figure 3-2.  

 
 

Figure 3-2 Framework of CMC simulation for overtopping risks estimation 

For the one-time simulation, a standard Gaussian random series is generated with the same length of given simulation period 

first. Each element within the series is generated i.i.d. Based on the initial white noise, a series of Gaussian random variables or a 

series of Student’s t random variables are generated with the adjustment parameters coming from existing inflow hydrograph model.  
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These variables serve as the simulated residuals for the constructed ARIMA and 

seasonal ARIMA models. The simulated future inflows are reconstructed by adding 

the seasonal cycle back, which are derived from Fourier decomposition and 

logarithmic transformation. Then, the reservoir water elevations are simulated based 

on the dam-reservoir operation model. According to the reservoir water elevation 

series, the overtopping occurrence would finally be counted as a binary variable. 

Thus, for multiple simulations, the frequencies of overtopping occurrence are counted 

and the probability is calculated as the final simulation outputs. 

3.3.2 CMC Based Overtopping Probability Estimation 

In more detail, two parts are addressed in this section: 1) the transformation of white 

noise to the ARIMA innovation (the arrow from “White Noise to Innovations” in 

Figure 3-1); and 2) the CMC simulation algorithm of overtopping probability 

estimation (the arrow from reservoir water elevation to probability of overtopping). 

3.3.2.1 Transformation from white noise to ARIMA innovation 

In discrete time, a white noise series is a discrete signal whose samples are regarded 

as a sequence of serially uncorrelated random variables with zero mean and finite 

variance. In other words, a single realization of white noise is a random shock, and 

i.i.d is the simplest representative of white noise. For instance, if each sample within a 

signal has a normal distribution with zero mean, the signal is said to be a Gaussian 

white noise. To the specific CMC simulation, transformations from the white noise to 

the ARIMA innovation are discussed.  Since the density function is usually a bell-

shaped curve that is symmetric around the mean, the normal distribution and the 
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Student’s t distribution are selected as the two most common symmetric distributions 

used for innovation fitting. The transformation from the normal distributed white 

noise to the normal random innovation does not change the distribution nature. The 

probability density function of the Gaussian distribution is shown in Equation (3-1).  

 2
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(3-1) 

where ( )f ⋅  stands for the probability density function of the original random 

variables; f  stands for the mean of the original random variables; and f  stands for 

the standard deviation of the original random variables. Accordingly, the 

transformation process is developed as shown in Equation (3-2) below.  

 

 ( ) ( )f fX t Z t   ,      {1, 2,..., }Ct n       
 

(3-2) 

where ( )X t  stands for the normal random innovation at time t; f  stands for the 

mean of the original random variables; f  stands for the standard deviation of the 

original random variables; ( )Z t  stands for the normal distributed white noise at time 

t; and Cn  stands for the length of time series for the CMC simulation. 

 To prove Equation (3-2), suppose 0f   and note that the cumulative 

distribution function (cdf) of the random variable X is given by the following 

Equation (3-3). Transformation could be performed from the normal distributed white 

noise Z  to the normal random innovation X. 
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(3-3) 

where ( )XF   stands for the cdf of the normal random innovation; Z  stands for the 

normal distributed white noise; f  stands for the mean of the original random 

variables; f  stands for the standard deviation of the original random variables; and 

cuta  stands for the cutoff value of rare event probability estimation. In the dam-

reservoir case, cuta  is the dam crust height that could not exceed. Otherwise, the 

overtopping would occur. 

 The following Equations (3-4) and (3-5) are thus developed correspondingly 

in order to demonstrate the transformation from the normal distributed white noise Z  

to the normal random innovation X. 
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(3-5) 

where ( )XF   stands for the cdf of the normal random innovation; ( )Xf   stands for the 

pdf of the normal random innovation; cuta  stands for the cutoff value of rare event 
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probability estimation; f  stands for the mean of the original random variables; and 

f  stands for the standard deviation of the original random variables. 

The transformation process from the normal distributed white noise to the 

Student’s t random innovation starts with the transformation from the normal random 

innovation to the Student’s t random innovation. As a sequence, the normal 

distributed white noise could be transferred to the normal random innovation, and 

then to the Student’s t random innovation. Given a generator of i.i.d. standard 

Gaussian random variates, kt  distributed random variates with any positive integer 

degree of freedom k could be generated by using the relation as Equation (3-6) shown 

below. 
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(3-6) 

where ( )stX t  stands for the Student’s t random innovation at time t ; ( )( )Z t  stands for 

the normal distributed white noise at time t; k stands for the degree of freedom for the 

student’s t distribution, which could be approximated by the Maximum Likelihood 

Estimation (MLE); and Cn  stands for the length of time series for CMC simulation. 

3.3.2.2 CMC simulation-based probability estimation 

Specifically for our case, estimating the probability of overtopping events serves as 

our main focus, which is also relatively small for most dam-reservoir systems. As 

showing below, Equation (3-7) represents the mathematical expression of 

overtopping probability. 
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(3-7) 

where l  stands for the overtopping probability of the dam-reservoir system; ( )P   

stands for the function of probability value; ( )H t  stands for the stochastic reservoir 

water elevation at time t; fh  stands for the top of dam that could not be exceeded; 

( )E   stands for the function of expectation value; ( )I   stands for the indicator function 

with binary values in [0, 1]; and Cn  stands for the length-of-time series for the CMC 

simulation.  

Comparing with the ISMC simulation, the algorithm for the CMC simulation 

is relatively simple and straightforward. The direct simulation method to estimate l 

would be to generate several sequences of simulated reservoir water elevation 

independently. Then, comparing the maximum value of reservoir water elevation in 

each sequence with the top of dam, a judgment on whether or not overtopping 

occurred could be reached. As shown below, Equation (3-8) is adopted as the 

mathematical expression for the CMC simulation. 
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(3-8) 

where ˆ
Cl  stands for the CMC simulation estimator of the overtopping probability for 

the dam-reservoir system; ( )H t  stands for the stochastic reservoir water elevation at 

time t; Cn  stands for the length of time series for CMC simulation; fh  stands for the 

top of the dam that could not exceed; ( )I   stands for the indicator function with binary 
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values in [0, 1]; and CN  stands for the iteration of CMC simulation. So, of CN  times 

simulations, {max[ ( )] }
1

C

f

N

j H t h
j

I 

  times overtopping would occur. 

3.3.3 Procedures for CMC Simulation Application 

The general procedures for the CMC simulation application in the dam-reservoir 

system performance modeling is shown in this section. As presented before, the 

normal distribution and the Student’s t distribution are selected as the two most 

common symmetric distributions used for time series innovation fitting. Thus, the 

simulation procedures based on the normal random innovation and the Student’s t 

random innovation are included in the discussion. Overlapping exists in multiple 

procedures and the major differences are the initial random variable generations.   

For the CMC simulation with normal distributed innovation, the following 

steps are listed as the major procedures:  

Step 1. Set tN  equal to 0; 

Step 2. Set 1t tN N= + , and CN  as the maximum simulation iterations. If t CN N³ , 

iteration stops and jump to Step 9; 

Step 3. Generate 1 2{ , ,..., }
CnZ Z Z , which are i.i.d. as the standard white noise from 

the distribution of (0,1)N  with the time length of Cn . Usually the time is tracking on 

a daily bases; 

Step 4. Transform from the standard white noise series to the normal distributed 

innovation 1 2{ , ,..., }
CnX X X , which are i.i.d. with the time scale length of Cn ; 
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Step 5. Transform from the normal distributed innovation 1 2{ , ,..., }
CnX X X  to the 

simulated inflow rate series { ( ) : 1, 2,..., }CI t t n=  with all identified patterns added in; 

Step 6. Transform from the simulated inflow rate series { ( ) : 1, 2,..., }CI t t n=  to the 

reservoir water elevation { ( ) : 1, 2,..., }CH t t n=  based on the developed dam-reservoir 

operation model; 

Step 7. Compare with the height of dam top and justify whether the overtopping 

occurs or not; 

Step 8. Return to Step 2; 

Step 9. Count the frequency of overtopping, and estimate the simulated overtopping 

probability.  

3.3.4 Challenges of CMC Simulation 

Consider the estimation of the tail probability  max[ ( )] fl P H t h   of stochastic 

random variable ( )H t  shown in previous Equation (3-4), for a large number fh . If l 

is very small, the event  max[ ( )] fH t h  could be called the rare event, and the 

probability  max[ ( )] fP H t h  could be called the rare-event probability. Estimation 

of l via MC simulation is usually followed by the algorithm shown in previous 

Equation (3-5). The estimator ˆ
Cl  is thus defined as the CMC simulation estimator. 

The accuracy measure for the estimator ˆ
Cl  converges to the relative error (RE) of ˆ

Cl , 

defined as Equation (3-9).  



 

51 

 

 
{max[ ( )] }ˆ ( ) /( )

ˆ( )

fH t h CC

C

Var I NVar l

lE l



  ,

 
(3-9) 

where   stands for the RE of ˆ
Cl ; ( )Var   stands for the variance function; ( )E   stands 

for the function of expectation value; l  stands for the overtopping probability for 

dam-reservoir system; Ĉl  stands for the CMC simulation estimator of overtopping 

probability for the dam-reservoir system; and CN  stands for the iteration of CMC 

simulation. 

 As a follow-up of Equation (3-6), the RE of CMC estimator Ĉl  is shown in 

Equation (3-10). Approximation is made due to the extreme small l  and large CN . 

 (1 ) / 1 1C

C C

l l N l

l N l N l


 
   ,

 
(3-10) 

where   stands for the RE of l̂ ; l  stands for the overtopping probability of the dam-

reservoir system; and CN  stands for the length of time series for CMC simulation. 

As a numerical example, suppose 610l   is the tail probability to be 

estimated through CMC simulation. In order to estimate l  accurately with the 

required RE, the sample size would be reached as Equation (3-11) shown below. 

 
2

1
CN

l
 ,

 
(3-11) 

where CN  stands for the iteration of CMC simulation;   stands for the RE of ˆ
Cl ; l  

stands for the overtopping probability of the dam-reservoir system. If the RE 
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0.01  , the sample size CN  would reach 1010 . As a result, we could reasonably 

conclude that when the probability l is very small, a very large simulation effort 

would be required to achieve the required accuracy. It is a big challenge to estimate 

the small probabilities via CMC simulation. Otherwise, the results would not be 

persuasive. 

3.4 ISMC Simulation of Overtopping Risks 

3.4.1 Framework of ISMC Simulation 

The main idea of IS is to make the occurrence of rare events more frequent by 

carrying out the simulation under a different probability distribution and to estimate 

the probability of interest via a corresponding likelihood ratio (LR) estimator. 

According to the proposed CMC simulation approach, the efficient ISMC simulation 

framework is proposed in this section. Detailed information and the improvement part 

are shown in Figure 3-3.  

It is the same as for the CMC simulation: a standard Gaussian random series is 

also generated with the same length of a given simulation period at the start of 

simulation for one time. Each element within the series is generated i.i.d. Then, a 

transformation has been performed to make the series follow the selected new 

probability density. Based on the updated random variables, the series of Gaussian 

random variables or Student’s t random variables are generated with the adjustment 

parameters from inflow hydrograph model. The simulated future inflows are 

reconstructed as a following with the seasonal cycle added back. Then, the reservoir 

water elevations are simulated based on the dam-reservoir operation model. 
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According to the reservoir water elevation series, the overtopping occurrence would 

finally be counted as a binary variable. The LR estimator is also calculated based on 

the proposed new variable density. Finally, the frequencies of overtopping occurrence 

are counted and the probabilities are reached as the simulation outputs. 
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Figure 3-3 Framework of ISMC simulation for overtopping risks estimation  
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3.4.2 ISMC Overtopping Probability Estimation 

In more detail, random series are drawn i.i.d. from the proposed new probability 

density as a random sample for the ith simulation. Equation (3-12) provides a 

different perspective for showing the stochastic maximum reservoir water elevation, 

which could be a critical indicator justifying whether overtopping occurs for the dam-

reservoir system. 

 ( ) max{ ( ) : 0,1,..., }

max{ (1),..., ( )}
i i IS

i i IS

S X H t t n

H H n

 


,      

 
(3-12) 

where iX  stands for the generated random series that follows the selected new 

probability density for the ith simulation, that { (1),.... ( )}i i i ISX X X n . ( )S   stands for 

the transformation function from the random series to the maximum reservoir water 

elevation; ( )iH t  stands for the stochastic reservoir water elevation at time t for the ith 

simulation; and ISn  stands for the length of time series for ISMC simulation.  

As a result, the mathematical expression of overtopping probability is updated 

as Equation (3-13) shown below. 

    max{ ( )} ( )f fl P H t h P S X h    ,   {0,1,..., }ISt n
 

(3-13) 

where l  stands for the overtopping probability of the dam-reservoir system; ( )P ⋅  

stands for the probability function; ( )H t  stands for the stochastic reservoir water 

elevation at time t; fh  stands for the top of the dam that could not be exceeded; ( )I   

stands for the indicator function with binary values in [0, 1]; and ISn  stands for the 

length of time series for ISMC simulation. 
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In order to estimate the overtopping probability of dam-reservoir system 

through the ISMC simulation, Equation (3-14) is adopted as shown below. Prior to 

the LR transformation, Equations (3-8) and (3-14) are in a very similar format.   

  { ( ) } { ( ) }
1

1ˆ
IS

f f

N

IS S X h j S X h
jIS

l E I I
N 



   ,      
 

(3-14) 

where ˆ
ISl  stands for the ISMC simulation estimator of the overtopping probability for 

dam-reservoir system; ( )E   stands for the function of expectation value; fh  stands 

for the top of dam that could not exceed; ( )I   stands for the indicator function with 

binary values in [0, 1]; i stands for the index of simulation iterations; and ISN  stands 

for the iteration of ISMC simulation.  

As discussed before, ISN  needs to be very large in order to achieve an 

estimation of l within the acceptable confidence intervals. Using IS is a better way to 

perform the MC simulation, which replaces the probability density function from 

( )f   to ( )g   as a new probability density. Detailed information is presented in 

Equations (3-15) and (3-16). 

 
{ ( ) }( ) ( ) 0

fS x hg x I f x  ,  
 

(3-15) 

where ( )g   stands for the probability density function of the replaced random 

variables; ( )I   stands for the indicator function with binary values in [0,1]; and ( )f   

stands for the probability density function of the original random variables. 

 ( )
( )

( )

f x
W x

g x
 ,  

 
(3-16) 
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where ( )W   stands for the LR function for IS; ( )f   stands for the probability density 

function of the original random variables; and ( )g   is the IS density, which stands for 

the probability density function of the replaced random variables.  

As a result, the original random variable { ( )}X t  with probability density 

function of ( )f   is replaced by the updated random variable { ( )}Y t  with a probability 

density function of ( )g  . Detailed information is shown in Equation (3-17) below.  

 
{ ( ) }

{ ( ) } { ( ) }

( )
( )

( )

( )
( )

( )

i f

f f

S X h

g S Y h g S Y h

f x
l I g x dx

g x

f y
E I E I W y

g y



 



        


 ,
 

(3-17) 

where l  stands for the overtopping probability for dam-reservoir system; ( )I   stands 

for the indicator function with binary values in [0,1]; ( )W   stands for the LR function 

for IS; ( )f   stands for the probability density function of the original random 

variables; ( )g   stands for the probability density function of the replaced random 

variables; and ( )gE   stands for the function of expectation value for ISMC 

estimation.  

Thus, an updated unbiased estimator of l is shown in Equation (3-18) below. 

 
{ ( ) } { ( ) }

1 1

1 ( ) 1ˆ ( )
( )

IS IS

f f

N N

IS j S Y h j S Y h
j jIS IS

f y
l I I W y

N g y N 
 

   ,
 

(3-18) 

where ÎSl  stands for the ISMC simulation estimator of the overtopping probability for 

the dam-reservoir system; ISN  stands for the iteration number of ISMC simulation; 

( )I   stands for the indicator function with binary values in [0,1];  ( )W   stands for the 
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LR function for IS; ( )f   stands for the probability density function of the original 

random variables; and ( )g   stands for the probability density function of the replaced 

random variables. 

3.4.3 Selection of IS Density 

The fundamental issue in implementing IS simulation is the choice of the biased 

distribution that encourages the important regions of the input variables. The rewards 

for a good IS distribution can be significant run-time savings. The penalty for a bad 

IS distribution can be longer running times than a CMC simulation without IS. As a 

result, this section intends to discuss the IS density selection specifically towards the 

overtopping risk estimation. In theory, there exists a change of measure that yields a 

zero-variance LR estimator. However, in practice such an optimal IS density is hard 

to be computed since it depends on the underlying variable quantity or quantities 

being estimated. Here, the detailed density selection process for both a single random 

variable and multiple random variables are presented.  

3.4.3.1 Density selection for single random variable 

The alternative IS probability density function (pdf) usually belongs to the same 

parametric family as the original distribution. According to Chapter 2, the final 

ARIMA innovations are fitted to the normal and the Student’s t distributions. Due to 

the transformation, the Student’s t distribution is also replaced by the normal 

distribution. Thus, the normal distribution is the targeted IS density that we are 

focusing on. The following two methods are most widely used in the applications of 

IS, scaling and shifting, especially for the normal distribution. 
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Scaling is one of the earliest biasing methods known and has been extensively 

used in IS practice. It is simple to implement and usually provides conservative 

simulation gains. Transforming the probability mass into the event region by positive 

scaling of the random variable with a number greater than unity has the effect of 

increasing the mean and the variance at the same time of the density function. This 

results in a heavier tail of the density, leading to an increase in the event probability. 

As shown in Equation (3-19) below, the simulation density is chosen as the density 

function of the scaled random variable sca x , where usually 1sca   for tail probability 

estimation. 

 1
( )

sc sc

x
g x f

a a

 
  

 
,      1sca   

 
(3-19) 

where ( )g   stands for the pdf of the replaced random variables; ( )f   stands for the 

pdf of the original random variables; and sca  stands for the scaling coefficient, where 

1sca  . The corresponding LR function is shown in Equation (3-20) below. 

 ( ) ( )
( )

( ) ( / )sc
sc

f x f x
W x a

g x f x a
  ,      1sca 

 
(3-20) 

where ( )W   stands for the LR function for IS; ( )f   stands for the pdf of the original 

random variables; ( )g   stands for the pdf of the replaced random variables; and sca  

stands for the scaling coefficient, where 1sca  . 

While scaling transfers probability mass into the desired event region, it also 

pushes mass into the complementary region, which is undesirable in most situations. 
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As a consequence, if X is a sum of n random variables, the spreading of mass takes 

place in an n dimension space. The consequence of this is a decreasing IS gain for 

increasing n, and is called the dimensionality effect of IS. 

Another simple and effective biasing technique employs the shifting of the 

density function and hence the random variable to place much of its probability mass 

in the rare event region. Shifting does not suffer from a dimensionality effect and has 

been successfully used in several applications relating to simulation of digital 

communication systems. It often provides better simulation gains than scaling. In 

biasing by shifting, the simulation density is given by the following Equation (3-21) 

below. 

 ( ) ( )shg x f x a  ,      0sha   
 

(3-21) 

where ( )g   stands for the probability density function of the replaced random 

variables; ( )f   stands for the probability density function of the original random 

variables; and sha  is the amount of shift to be chosen to minimize the variance of the 

IS estimator. The corresponding LR function is thus shown in Equation (3-22) below. 

 ( ) ( )
( )

( ) ( )sh

f x f x
W x

g x f x a
 


,      0sha 

 
(3-22) 

where ( )W   stands for the LR function for IS; ( )f   stands for the pdf of the original 

random variables; ( )g   stands for the pdf of the replaced random variables; and sha  

stands for the amount of shift for IS.  
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From another perspective of LR calculation, the following Equations (3-23) to 

(3-25) are listed below. The pdf of the original random variables is shown in Equation 

(3-23).  

 
  

2

2

( )1
( ) exp

22
f

ff

x
f x




  
  

  
,         x           (3-23) 

where ( )f   stands for the probability density function of the original random 

variables; f  stands for the mean of the original random variables; and f  stands for 

the standard deviation of the original random variables. 

The updated pdf of IS is shown in Equation (3-24). Since both ( )f x  and ( )g x  

are the normal pdf, the general formats are very similar in Equations (3-23) and (3-

24).  

 2

2

( )1
( ) exp

22
g

gg

x
g x




  
  

  
,         x            

 
(3-24) 

where ( )g   stands for the probability density function of the replaced random 

variables; g  stands for the mean of the replaced random variables; and g  stands 

for the standard deviation of the replaced random variables.  

Based on the Equations (3-23) and (3-24), the LR function is derived as 

shown in Equation (3-25) below. 

 2 2

2 2

( ) ( )( )
( ) exp

( ) 2 2
g g f

f g f

x xf x
W x

g x

  
  

  
   

  
,  

x              
 

(3-25) 
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where ( )W   stands for the LR function for IS; ( )f   stands for the pdf of the original 

random variables; ( )g   stands for the pdf of the replaced random variables; g  

stands for the standard deviation of the replaced random variables; f  stands for the 

standard deviation of the original random variables; g  stands for the mean of the 

replaced random variables; and f  stands for the mean of the original random 

variables. 

3.4.3.2 Density selection for multiple random variables 

Slightly different from the single random variable, the IS density selection for 

multiple random variables takes place at a joint pdf. In order to avoid the 

dimensionality effect of IS, both the scaling and shifting techniques are adopted as a 

combination. To be more specific, since 1 2, , ...,
ISnx x x  are independent variables from 

each other, the joint probability distribution of the original random variables is shown 

in Equation (3-26). 

 
1 2 1 1 2 2( , ,..., ) ( ) ( )... ( )

IS IS ISn n nf x x x f x f x f x , 

1 2, ,...,
ISnx x x 

 

(3-26) 

where ( )f   stands for the probability density function of the original random 

variables; ISn  stands for the length of time series for ISMC simulation; and ( )i if x  

stands for the individual probability density function of the original random variables 

where {1,2,..., }ISi nÎ . 
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Similarly, the joint probability distribution of the replaced random variables is 

shown in Equation (3-27). 1 2, , ...,
ISnx x x  are independent variables from each other. 

 
1 2 1 1 2 2( , ,..., ) ( ) ( )... ( )

IS IS ISn n ng x x x g x g x g x , 

1 2, ,...,
ISnx x x 

 

(3-27) 

where ( )g   stands for the probability density function of the replaced random 

variables; ISn  stands for the length of time series for ISMC simulation; and ( )i ig x  

stands for the individual probability density function of the replaced random variables 

where {1,2,..., }ISi nÎ . 

  Based on the Equations (3-26) and (3-27), the LR function is derived in 

Equation (3-28) shown below. 
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  (3-28)

where ( )W   stands for the LR function for IS; ( )f   stands for the pdf of the original 

random variables; ( )g   stands for the pdf of the replaced random variables; g  

stands for the standard deviation of the replaced random variables; f  stands for the 

standard deviation of the original random variables; g  stands for the mean of the 
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replaced random variables; f  stands for the mean of the original random variables; 

and ISn stands for the length of time series for ISMC simulation. 

3.4.4 Procedures for ISMC Simulation Application 

For the ISMC simulation with normal distributed innovation, the following steps are 

listed as the major procedures: 

Step 1. Set tN  equal to 0; 

Step 2. Set 1t tN N= + , and ISN  as the maximum simulation iterations. If t ISN N³ , 

iteration stops and jump to Step 10; 

Step 3. Generate 1 2{ , ,..., }
ISnZ Z Z , which are i.i.d. as the standard white noise from 

the distribution of (0,1)N  with the time scale length of ISn ; 

Step 4. Replace 1 2{ , ,..., }
ISnZ Z Z  with 1 2{ , ,..., }

ISnY Y Y , which are i.i.d. as the white 

noise from the replaced IS based distribution with the time scale length of ISn ; 

Step 5. Transform from the replaced white noise series to the normal distributed 

innovation 1 2{ , ,..., }
ISP P PnX X X , which are i.i.d. with the time scale length of ISn ; 

Step 6. Transform from the normal distributed innovation 1 2{ , ,..., }
ISP P PnX X X  to the 

simulated inflow rate series { ( ) : 1, 2,..., }P ISI t t n=  with all identified patterns added 

in; 

Step 7. Transform from the simulated inflow rate series { ( ) : 1, 2,..., }P ISI t t n=  to the 

reservoir water elevation { ( ) : 1, 2,..., }P ISH t t n=  based on the developed dam-

reservoir operation model; 
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Step 8. Compare with the height of dam top and justify whether the overtopping 

occurs or not; 

Step 9. Return to Step 2; 

Step 10. Estimate the estimator of overtopping using LR adjustment 

{ ( ) }
1

1
( )

IS

f

N

j S Y h
jIS

I W y
N 


 ; 

Step 11. Estimate the simulated overtopping probability. 

Slightly different from the above simulation process, the following steps are 

listed as the major procedures for the ISMC simulation starting with the student’s t 

distributed innovation: 

Step 1. Set tN  equal to 0; 

Step 2. Set 1t tN N= + , and ISN  as the maximum simulation iterations. If t ISN N³ , 

iteration stops and jump to Step 10; 

Step 3. Generate 1 2 *{ , ,..., }
ISn kZ Z Z , which are i.i.d. as the standard white noise from 

the distribution of (0,1)N  with the length of *ISn k , where k is the degree of freedom 

that is estimated through the MLE based on the existing observed residuals; 

Step 4. Replace 1 2 *{ , ,..., }
ISn kZ Z Z  with 1 2 *{ , ,..., }

ISn kY Y Y , which are i.i.d. as the white 

noise from the replaced IS based distribution with the time scale length of *ISn k ; 

Step 5. Transform from the replaced white noise series 1 2 *{ , ,..., }
ISn kY Y Y  to the 

student’s t distributed innovation { ( ), 1,2,..., }st ISX t t n , which are i.i.d. with the 

time scale length of ISn ; 
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Step 6. Transform from the student’s t distributed innovation { ( ), 1,2,..., }st ISX t t n  

to the simulated inflow rate series { ( ) : 1, 2,..., }P ISI t t n=  with all identified patterns 

added in; 

Step 7. Transform from the simulated inflow rate series { ( ) : 1, 2,..., }P ISI t t n=  to the 

reservoir water elevation { ( ) : 1, 2,..., }P ISH t t n=  based on the developed dam-

reservoir operation model; 

Step 8. Compare with the height of the dam top and justify whether the overtopping 

occurs or not; 

Step 9. Return to Step 2; 

Step 10. Estimate the estimator of overtopping using LR adjustment 

{ ( ) }
1

1
( )

IS

f

N

j S Y h
jIS

I W y
N 


 ; 

Step 11. Estimate the simulated overtopping probability. 

3.5 Summary 

In summary, this chapter presents the simulation methodology of evaluating the 

overtopping risks of a dam-reservoir system. It starts with the past research of rare-

event simulation and the corresponding engineering application. Then, the research 

gap is presented for the dam-reservoir system simulation. In order to fill the gap, 

detailed dam-reservoir system simulation is presented to estimate the probability of 

overtopping risks. Both the CMC simulation framework and the ISMC simulation 

framework are then proposed in a sequence. Comparisons of the CMC and the IS on 

the theoretical bases have also been conducted. Based on this chapter, we could have 
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a good understanding of why and how to estimate the overtopping risks of the dam-

reservoir system through simulations from the theoretical perspective. 
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Chapter 4: Case Study of Little Long Dam-Reservoir System 

4.1 Introduction 

This chapter proposes a case application of the Little Long dam-reservoir system. The 

goal of this chapter is to demonstrate that the proposed model in Chapter 2 could 

effectively address the characteristics of inflow hydrograph and reservoir operations 

based on historical information. The results from the inflow hydrograph model play 

as the prerequisites for future inflow simulation, and the simulated inflow results play 

as the input variables for the reservoir operations model. Final outputs would be the 

overtopping probabilities that the reservoir water elevation exceeds the dam top 

through a specified time scale. This chapter starts with the introduction of project 

background information, and then the inflow hydrograph modeling. Detailed 

transformation and statistical test results for the inflow modeling are presented. After 

that, the outflow control and releasing policies are introduced and modeled. Finally, 

verification and validation have been conducted for both the inflow and the reservoir 

operation model, which sets the foundation for both the CMC and rare event-based 

simulations. 

4.2 Project Background  

The proposed overtopping risk evaluation approach was applied to a dam-reservoir 

system operated by Ontario Power Generation (OPG) in northeastern Ontario. As an 

essential part of the Lower Mattagami River Hydroelectric Complex, the Little Long 

dam creates a forebay and reservoir upstream in the Mattagami River. The flows for 
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the Mattagami Complex are thus provided from the Adam Creek reservoir. The whole 

Lower Mattagami River System includes the Adam Creek reservoir and a cascade of 

four generation stations (Little Long, Smokey Falls, Harmon, and Kipling) along the 

Mattagami River. As shown in Figure 4-1 below, this study only focuses on the first 

part, including the reservoir and the Little Long Generating Station dam and 

sluiceway, and the Adam Creek Control Structure as a system. Since the number of 

riparian rights in the river flood plain is few and there is no commercial riverine 

navigation, system operation safety dominates the considerations. 

The selected Little Long dam-reservoir system is within a modified 

continental climatic zone. During the winter, cold polar air masses often produce dry, 

clear, cold weather, and in the summer months, successions of cyclonic storms sweep 

the area, and warm humid air masses from the south alternate with cooler drier air 

from the north. The average mean daily temperatures for January and July stay at 

approximately -19ºC and 17ºC, respectively. And the annual average mean daily 

temperature for the region is about 1ºC. On average, the area is frost free from mid-

May to early September. For precipitation, the average annual total precipitation is 

about 86 cm (water equivalent mean). Rainfall accounts for 63% of the total 

precipitation, with the maximum occurring in the summer months. Snow cover is 

present for about 160 days per year, reaching a maximum depth on the ground in 

February (average depth 61 cm). 
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Figure 4-1 Geographical location of Little Long dam-reservoir system 
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Hydro units are heavily dependent on precipitation and snow melting. As a 

consequence, strong seasonal patterns can be identified for the Adam Creek inflow 

data. Freeze-up usually occurs by late November or early December on the 

Mattagami River and reservoirs. The inflow volume into the reservoir reduces 

gradually. By mid-December, ice cover is complete except in the tailraces and rapids, 

which stay open all winter. The inflows stay small but positive. During peak winter 

operation, ice hinges form along the shoreline allowing the central ice sheet in each 

reservoir to move with the changing water elevations without breaking. In late winter, 

the central ice sheet subsides and, as the inshore ice settles to the substrate, the central 

floating ice sheet breaks from the inshore ice and can be pushed downstream. The ice 

breaks and the snow melts quickly during the spring freshet by mid-March. A 

corresponding large inflow volume usually occurs. Rainfall is heavier and more 

frequent during the summer as compared to the winter. The inflow rate is 

consequently larger during the summer.  

4.3 Modeling Inflow Rate under Uncertainty 

This section shows a specific case demonstrating the applicability of the inflow 

hydrograph model proposed in Section 2.3. In general, a 50-year time series data of 

average daily inflow rate for the Mattagami River is collected for analysis. There are 

18,394 records available in total ranging from 08/01/1963 to 12/09/2013. For analysis 

simplification, the daily data ranging from 01/01/1964 to 12/31/2013 is selected with 

18,250 values. Individual missing data is made up through the two-dimensional 

interpolation techniques. For each year, there are 365 days counted and the extra days 
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of leap year are not taken into consideration. This dataset serves as the foundation for 

modeling and simulating the stochastic reservoir inflow hydrograph. Detailed data 

information is plotted in Figure 4-2. 

As presented previously, strong seasonal patterns have been shown in the 

Adam Creek inflow hydrographs. Taking the most recent inflow data of 2011, 2012, 

and 2013 as examples, the hydrograph with obvious jumps and fluctuations at 

specific time through each year is shown in Figure 4-2. Here we subjectively divide 

the annual inflow data into three sections in order to address the characteristics of 

data in each section more specifically and accurately. As there are 365 days in a year, 

Section 1 ranges from Day 1 to Day 80, which is the frozen season with very low 

inflows and small fluctuations. Section 2 ranges from Day 81 to Day 340, which 

presents a big contrast with Section 1. The biggest jump on the inflows usually occur 

within this section, with large fluctuations and uncertainties. Section 3 ranges from 

Day 341 to Day 365, which connects to Section 1 of the next year. As a result, both 

the inflow values and fluctuated variations are within a certain range between Section 

1 and Section 2. 
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Figure 4-2 Inflow hydrograph of Little Long dam-reservoir system (1964-2013) 
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4.3.1 Preprocessing of Reservoir Inflow Data  

This section is intended to transform the available reservoir inflow time series into the 

stationary series, which would be fitted to the ARIMA or seasonal ARIMA models. 

Three steps need to be conducted as a sequence for preprocessing the reservoir inflow 

data: 1) obtaining the logarithm of data; 2) conducting the Fourier decomposition for 

the seasonal pattern identification; and 3) testing the inflows residuals and 

differencing if needed. 

In Step 1, the logarithmic transformation is a nonlinear transformation, which 

compresses the upper end of the distribution and stretches out the lower end. In order 

to reduce the positive skew of inflow data, the transformation is graphically shown in 

Figure 4-3 below.  

In Step 2, Fourier decomposition, an eight-term Fourier model was fitted to 

the logarithms of historical inflow data in order to find the annual seasonal cycle. 

Figure 4-4 below plots the fitting curve. The most recent data ranging from Year 

2011 to Year 2013 has been zoomed in. As we can see, two big waves are identified 

annually in the spring and autumn time, which aligns with the climate characteristics 

discussed before. 
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Figure 4-3 Inflow hydrograph and corresponding logarithm 
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Figure 4-4 Logarithm of inflow hydrograph and fitted eight-term Fourier model 
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Step 3 calculates the residuals of logarithm inflow minus the value of fitted 

Fourier decomposition model. A seasonal difference is the difference between an 

observation and the corresponding observation from the previous year. Time series 

with trends or seasonality would not be stationary, since the trend and seasonality will 

affect the value of the time series at different times. In general, a stationary time 

series will have no predictable patterns in the long-term. As a result, differencing and 

the seasonal differencing have been conducted to make the time series stationary. As 

shown in Figure 4-5 below, the differencing and seasonal differencing transformation 

has been conducted for the residual series as the outputs of Step 2. Lags are picked at 

1 and 365. 

4.3.2 Fitting ARIMA and Seasonal ARIMA Models 

After preprocessing the inflow time series, the original data has been transformed to 

the series of noise data with the mean values fluctuating around zero. Stationarity is 

another characteristic for the preprocessed data series. Variance for the dataset at 

certain time point is relatively balanced below and beyond zero. Simply speaking, the 

stationary time series looks the same going forward or backward in time. In this 

section, the ARIMA or seasonal ARIMA model is used to decompose the series into 

filtered series and noises. Three sections are divided in order to address the different 

characteristics of the preprocessed inflow series more specifically. Section 1 stands 

for the preprocessed series from Day 1 to Day 80. Section 2 stands for the 

preprocessed series from Day 81 to Day 340, and Section 3 stands for the 

preprocessed series from Day 341 to Day 365. 
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Figure 4-5 Residuals of fitted Fourier model and variance adjustment 

As shown in Table 4-1 below, the ADF tests show that no unit root exists in all section data. Since the p-values are smaller or 

equal than the specified 0.01, we need to reject the original hypothesis of nonstationary. The alternative hypothesis of stationary is 

confirmed for all section data. The KPSS tests also confirm the stationary nature of the checking time series for all section data. The p-

values are larger than the specified 0.01. The null hypothesis of stationary could not be rejected. The BP and LB tests compute the LB 
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test statistic for examining the null hypothesis of independence in a given time series. The actual p-values are very small, and the null 

hypothesis of independence has to be rejected. 

Table 4-1 Pattern testing results before fitting to ARIMA model 

Tests Section 1 data Section 2 data Section 3 data 

ADF Dickey-Fuller = -17.5098,  

Lag order = 15, 

p-value = 0.01 

Dickey-Fuller = -26.0397,  

Lag order = 23, 

p-value = 0.01 

Dickey-Fuller = -9.6848, 

Lag order = 10, 

p-value = 0.01 

KPSS KPSS Level = 0.1465,  

Truncation lag parameter = 14, 

 p-value = 0.1 

KPSS Level = 0.0352,  

Truncation lag parameter = 26,  

p-value = 0.1 

KPSS Level = 0.0824,  

Truncation lag parameter = 8,  

p-value = 0.1 

LB X-squared = 684.238, 

df = 1, 

p-value < 2.2e-16 

X-squared = 7370.652, 

df = 1, 

p-value < 2.2e-16 

X-squared = 227.9802, 

df = 1, 

p-value < 2.2e-16 

 

The next step in model fitting is to determine the order of ARIMA model parameters, including both the AR and MA terms. 

Auto Correlation Function (ACF) and Partial Auto Correlation Function (PACF) are adopted as the major tool for determination. 

Figures 4-6, 4-7, and 4-8 below are shown as the ACF and PACF of the residuals for different sections of data after preprocessing. 

Since the lag-1 autocorrelations for all section of data stay beyond zero, a higher order of differencing would be needed. This 

indication is aligned with the LB test results. An additional interesting part shows in the PACF of Figures 4-6, 4-7, and 4-8. A  
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periodical spike at every 7 lags with deterioration through the time. As a result, an 

additional differencing at lag-7 would need to be conducted. 
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Figure 4-6 ACF and PACF for preprocessed inflows from Day 1 to 80 
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Figure 4-7 ACF and PACF for preprocessed inflows from Day 81 to 340 
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Figure 4-8 ACF and PACF for preprocessed inflows from Day 341 to 365 
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AICc is Akaike’s Information Criterion (AIC) with a correction for finite 

sample sizes. To obtain an automatic ARIMA model, a variation of the Hyndman-

Khandakar algorithm has been used. The unit root tests, minimization of AICc and 

MLE are all involved. To be more specific, the ARIMA model starts with a first 

guess. The number of differences, d, for ARIMA (p,d,q) model are determined by 

using repeated KPSS tests. The values of p and q are then chosen by minimizing the 

AICc after differencing the data d times. Rather than considering every possible 

combination of p and q, the algorithm uses a stepwise search to traverse the model 

space based on the initial guess. Variations of p and q on the current model are 

considered by ±1. Finally, the best model with the smallest AICc is selected. If 0d = , 

then the constant c is included. If 1d ³ , then the constant c is set to be zero. 

In order to confirm the adequacy of the selected models, the ACF and PACF 

diagnostic correlograms as well as the LB test are adopted to verify that the 

independence of residuals. According to the searching results, ARIMA(2,0,3) model 

with two AR terms and three MA terms would be a best-fit choice for the Section 1 

data. Similarly, ARIMA(3,0,2) would be the best-fit model for both  Section 2 and 

Section 3 data. As shown in the following Tables 4-2, 4-3, and 4-4, the best-fit 

ARIMA models are presented below, where the estimated parameters providing all of 

the AR and MA terms that are statistically significant at the 10% level.  

Table 4-2 ARIMA(2,0,3) model fitting for Section 1 data 
Parameter Value Standard error T statistic 

Constant 0.0002923 0.01224 0.02389 

AR{1} 1.2114 0.02392 50.6506 

AR{2} -0.7244 0.02135 -33.9255 

MA{1} -0.8754 0.02512 -34.8404 
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MA{2} 0.4412 0.02074 21.2773 

MA{3} 0.3146 0.01465 21.4767 

Variance 0.7726 0.01193 64.7738 

Note: AIC=10332; BIC=10370; AICc=10332 

Table 4-3 ARIMA(3,0,2) model fitting for Section 2 data 
Parameter Value Standard error T statistic 

Constant -0.0001977 0.003978 -0.04971 

AR{1} 1.8462 0.007657 241.125 

AR{2} -1.5618 0.01231 -126.844 

AR{3} 0.5497 0.007458 73.7128 

MA{1} -1.2222 0.004858 -251.602 

MA{2} 0.9344 0.004641 201.353 

Variance 0.3927 0.003009 130.516 

Note: AIC=24813; BIC=24857; AICc=24813 

Table 4-4 ARIMA(3,0,2) model fitting for Section 3 data 
Parameter Value Standard error T statistic 

Constant -0.003942 0.08410 -0.04687 

AR{1} -1.1133 0.05795 -19.2123 

AR{2} -0.03731 0.04299 -0.8679 

AR{3} 0.2143 0.03409 6.2876 

MA{1} 1.6121 0.04989 32.3157 

MA{2} 0.7665 0.04804 15.9543 

Variance 0.7503 0.02279 32.9231 

Note: AIC=3201; BIC=3232; AICc=3201 

4.3.3 Fitting Innovations of ARIMA and Seasonal ARIMA Models 

After fitting to the ARIMA and seasonal ARIMA models, statistical patterns have 

been released for checking the innovations. The following Table 4-5 shows the 

updated results of the time series stationary and pattern tests. The ADF tests show 

that no unit-root exists in all section data and the original hypothesis of nonstationary 

would be rejected. The actual p-values are smaller than the printed p-values. The 

alternative hypothesis of stationary is confirmed for all section data. The KPSS tests 
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also confirm the stationary nature of the checking time series for all section data. The 

actual p-values are greater than the printed p-values. The null hypothesis of stationary 

could not be rejected. Different from previous tests, the residual series pass the LB 

test with a p-value greater than specified. The null hypothesis of independence could 

not be rejected. 
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Table 4-5 Pattern testing results after fitting to ARIMA model 

Tests Section 1 data Section 2 data Section 3 data 

ADF Dickey-Fuller = -17.5068, 

Lag order = 15, 

p-value = 0.01 

Dickey-Fuller = -29.571, 

Lag order = 23, 

p-value = 0.01 

Dickey-Fuller = -10.3517, 

Lag order = 10, 

p-value = 0.01 

KPSS KPSS Level = 0.1379, 

Truncation lag parameter = 14, 

p-value = 0.1 

KPSS Level = 0.0283, 

Truncation lag parameter = 26, 

p-value = 0.1 

KPSS Level = 0.076, 

Truncation lag parameter = 8, 

p-value = 0.1 

LB X-squared = 1.9156, 

df = 1, 

p-value = 0.1663 

X-squared = 0.032, 

df = 1, 

p-value = 0.8581 

X-squared = 0.1259, 

df = 1, 

p-value = 0.7227 

 

To confirm the independence of ARIMA model innovations, ACF and PACF are adopted again, as shown in Figures 4-9, 4-10, 

and 4-11 below. All the trends and periodic components have been removed by fitting to the ARIMA models. Except for the negative 

spike at lag 7, all sample autocorrelations and partial autocorrelations stayed within a controlled range. Based on the results, we could 

reasonably deem that the innovations are displayed as the random processes. The proposed ARIMA models have described the major 

behavior of previous datasets. This also set the foundation for the future simulation practice. 
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Figure 4-9 ACF and PACF for ARIMA residuals from Day 1 to 80 
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Figure 4-10 ACF and PACF for ARIMA residuals from Day 81 to 340 
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Figure 4-11 ACF and PACF for ARIMA residuals from Day 341 to 365 

In order to simulate the ARIMA innovations for a future certain time period, 

one step has to be taken further so that a well-known distribution needs to be fitted 

into the simulation model. The histogram and QQ plot have been selected as the tool 

for doing this fitness. The QQ plot is used for comparing two probability 

distributions by plotting their quantiles against each other, providing a graphical view 

of how properties, such as location, scale, and skewness, are similar or different in the 

two distributions. Histograms and QQ plots have thus been presented in the following 

Figures 4-12 to 4-17 to check the characteristics of the proposed ARIMA innovations. 

Among them, Figures 4-12, 4-13, and 4-14 are used for checking the normality, while 

Figures 4-15, 4-16, and 4-17 are used for checking with the Student’s t distribution. 

As shown below, Figures 4-12, 4-13, and 4-14 are derived from the assumption that 
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the innovations from the ARIMA time series modeling follow the Gaussian 

distributions. The curved pattern suggests that the data points follow an approximate 

linear pattern, although some outliers are shown in the upper right and lower left 

corners. It represents that more points concentrate on the tails in reality than the 

proposed normal distributed model. From the conservative thinking of overtopping 

simulation, the Gaussian distribution could be considered as a simulation model 

choice. The mean of the points is very close to zero, and the standard deviation is 

about 0.88.  

Similarly, we also use the histograms and QQ plots to check the innovations 

with the Student’s t distributions. Figures 4-15, 4-16, and 4-17 below indicate the 

departures. The linearity pattern of points suggests that the data could be deemed as 

the Student’s t distribution as well. Outliers are visible in the upper right and lower 

left corner. Different from the previous fitted Gaussian distribution, fewer points 

concentrate on the tails in reality than the proposed normal distributed model. There 

would be the larger annual peak inflows through the simulation than the reality. 

Therefore, the real innovation distribution could be deemed within the range between 

the normal distribution fitted results and the Student’s t distribution fitted results. 

Thus in the following discussion, both the normal and Student’s t distributed 

innovations are included. 
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Figure 4-12 Normal histogram fitting of ARIMA residuals and QQ plot from Day 1 to 80 
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Figure 4-13 Normal histogram fitting of ARIMA residuals and QQ plot from Day 81 to 340 
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Figure 4-14 Normal histogram fitting of ARIMA residuals and QQ plot from Day 341 to 365 
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Figure 4-15 Student’s t histogram fitting of ARIMA residuals and QQ plot from Day 1 to 80 
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Figure 4-16 Student’s t histogram fitting of ARIMA residuals and QQ plot from Day 81 to 340 
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Figure 4-17 Student’s t histogram fitting of ARIMA residuals and QQ plot from Day 341 to 360  

4.3.4 Model Verification and Validation 

Based on the transformed series model, simulations for the innovation can be performed within a specified time scale. Then, the 

simulated inflow rates can be reconstructed using the reversed transformations conducted in the modeling process. Sample paths from 
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the CMC simulation with both the innovations of normal distributions and Student’s t 

distributions are displayed in Figures 4-18 and 4-19. In order to show a balanced 

comparison, the simulated inflows are also presented at the 50 year time scale, the 

same as the historical inflows on record. As we could observe, the simulated inflows 

with the Student’s t distributed innovations have higher annual peak inflows than the 

inflows from the normal distributed innovations. As a consequence, the overtopping 

probability estimation based on the two different distributions would be varied. 

Overtopping risks of the simulated inflows with the Student’s t distributed 

innovations would be higher than the inflows from the normal distributed 

innovations. 

In order to validate the simulated inflows, two indicators have been selected 

for the verification comparison: 1) the maximum annual inflow rates, and 2) the time 

points of the maximum annual inflow rates. Both the results from the normal 

distributed and the Student’s t distributed innovations are presented respectively. To 

be more specific, Figures 4-20 and 4-21 below demonstrate the results that derived 

from the simulation with the normal distributed model and the actual data. The 

linearity patterns in both Figures 4-20 and 4-21 demonstrated a reasonable simulation 

match. There are three outliers in Figure 4-21 on the upper right corner. The reason 

might be either the spring peak inflows that did not occur or some omitting occurred 

in the inflow recording. Thus, these three abnormal points could not be taken into 

consideration. 
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Figure 4-18 Sample paths of historical and simulated inflow hydrograph based on normal innovation 
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Figure 4-19 Sample paths of historical and simulated inflow hydrograph based on Student’s t innovation 
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Figure 4-20 Comparison of historical and simulated annual max inflow based on nomal innovation 
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Figure 4-21 Comparison of historical and simulated annual max inflow timelines based on nomal innovation 
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Similar to the previous normal distribution, Figures 4-22 and 4-23 below 

demonstrate the results derived from the Student’s t distributed innovations. The 

linearity patterns in Figures 4-22 and 4-23 demonstrated a reasonable simulation good 

match. There are three outliers in Figure 4-22, the same as Figure 4-20. The reason 

could be either the regular annual peak inflows did not occur or some omitting 

occurred in the inflow recording process. Thus, these three abnormal points were not 

taken into consideration. 
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Figure 4-22 Comparison of historical and simulated annual max inflow based on student’s t innovation 
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Figure 4-23 Comparison of historical and simulated annual max inflow timelines based on student’s t innovation 
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4.4 Modeling Operation Process of Dam-Reservoir System  

4.4.1 Outflows Control and Releasing Policy 

The Adam Creek Diversion bypasses the Mattagami River plants from above Little 

Long Generation Station to below Kipling Generation Station and is the primary 

floodwater route. Dam safety response water levels have been established in 

accordance with the requirements of Dam Safety Emergency Preparedness and 

Response Plan standards to guide operators in case of hydraulic emergency. Water 

elevations in the Little Long reservoir vary slightly from season to season, usually 

with the maximum water elevations in the spring and fall, and the minimum in the 

summer and late winter. During daily peaking operations the water elevation in Little 

Long reservoir fluctuates within the range of 0.15 m. In most situations, the water 

elevation is within the operating headwater level, ranging from 195.10m to 198.12m. 

Shown as the green area in Figure 4-24, no additional operation is needed for the 

dam-reservoir system. The yellow area of energy reserve, ranging from 194.77m to 

195.10m, is only used if a system energy emergency occurs. In common cases, all 

discharge flows are stopped before this 195.10m limit approaches. Another yellow 

area of potential failure developing from 198.12m to 199.00m stands for the flood 

allowance, which is only used to hold water in extreme conditions to reduce 

downstream flooding. At that time, the sluice gates open and start to release extra 

water beyond the capacity of water elevation 198.12m. The orange area, ranging from 

199.00m to 199.30m, stands for the final buffer before overtopping events occur. All 

of the sluice gates open and the maximum water releasing capacity has been reached. 
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The dangerous headwater level is the imminent dam failure range (>199.30m) shown 

as the red area. We think that overtopping would definitely occur if the water 

elevation exceeds 199.30m. 

 

Figure 4-24 Water elevation boundaries for Little Long dam-reservoir system 

The storage capacity of a reservoir is the most important characteristic. The 

available storage capacity of a reservoir depends upon the topography of the site and 

the height of dam. To determine the available storage capacity of the Little Long 

Dam-reservoir system, engineering surveys have been conducted to represent the 

physical characteristics, such as storage volume, surface area, outlet capacity, and 

elevation tables. The volume of storage to be allocated to each of the reservoir storage 

levels must also be specified. For accurate determination of the capacity, a 

topographic survey of the reservoir area is usually conducted, and a contour map of 
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the area is prepared. The storage capacity and the water spread area at different 

elevations can be determined from the contour map. In the Little Long case, the basic 

physical relationship of elevation-storage for the reservoir is displayed in Figure 4-25. 

The curve indicates that the elevation-storage relation is not linear. For the normal 

water elevation ranging from 195.10m to 198.12m, the storage capacity is reached in 

1,874 m3/s-days. For energy reserves ranging from 194.77m to 195.10m, the storage 

capacity is 142 m3/s-days. Thus for the absolute operational water elevation ranging 

from 194.77m to 198.12m, the storage capacity is 2,016 m3/s-days. 
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Figure 4-25 Elevation-storage curve for Little Long dam-reservoir system 

 

The spillway flows, controlled by the sluice gates, provide adequate discharge 

capacity in case of the extreme inflow events occurring. In this specific system, both 

the Little Long Generating Station and the Adam Creek Control Structure have the 

reservoir water discharge capabilities. For the Little Long Generating Station, there 

are 2 units of the turbine which play the role of major resources producing power, and 

2 sluice gates that help release extra water. Water is drawn from the Little Long 

forebay to the generating station via a submerged intake. For the Adam Creek Control 
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Structure, there are 8 sluice gates that all hold the same discharge capacity as the two 

in Little Long Generating Station. As a result, there are a total of ten sluices with 

gates. Six sluices are remotely controlled, and four sluices are locally controlled by 

the operator agents at the gate. Two to four hours may be required for the operators to 

reach the site. 

At the maximum operating elevation of 198.12m, the discharge rate of one 

sluice gate could reach 608.80m3/s. Consequently, the two sluices open into the 

Lower Mattagami River system with maximum capacity of 1217.60m3/s, and the 

eight sluices open into the Adam Creek Bypass with a maximum capacity of 

4870.40m3/s. The maximum sluices outflow could reach 6,088.00 m3/s at a reservoir 

water elevation of 198.12m. There are also two turbine outflows totaling 584.10m3/s 

at reservoir water elevation of 198.12m. At the start of freshet, the Little Long 

forebay should be filled to an elevation not exceeding 198.12m. After achieving that 

elevation, any inflow greater than the amount of water required for two-unit operation 

(583 m3/s) should be spilled down to Adams Creek. Thus, the maximum total 

discharge capacity could reach 6,672.10m3/s for the whole dam-reservoir system. 

According to Figure 4-26, both the best and maximum outflow values vary based on 

different water head levels.  
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Figure 4-26 Elevation-discharge capacity curve for Little Long control structure 

 

4.4.2 Modeling Dam-Reservoir Operation Process  

The problem facing the overtopping risks analysis is to conceptualize a system model 

for the operation of the dams, generating stations, spillways, and other components, 

and then to employ the model through stochastic simulation to investigate protocols 

for  safe system operation. Both the inflow rate and water elevation are important to 

govern the tradeoff between the discharge control and the water conservation. In 

order to represent the outflow control process in a mathematical way, two important 

values are presented in Equations (4-1) and (4-2). 

 ( ) ( ) [ ( ) ]A uS t I t H t h  
  

(4-1) 

 ( ) ( ) [ ( ) ],B lS t I t H t h  
 

(4-2) 

where ( )AS t  and ( )BS t  stand for two stochastic water storage values used for 

outflows control; I(t) stands for the inflow rate at time t;   is the reservoir shape 

coefficient, which reflects the water storage capacity of the reservoir; uh   198.12m 
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standing for the upper limit of water elevation for the normal reservoir operation; and 

lh   195.10m standing for the lower limit of water elevation for the normal reservoir 

operation. Because u lh h , we could reasonably conclude that ( ) ( )A BS t S t . 

Here we simplified the outflow discharge control process and make it easier to 

quantify. Based on Equations (4-1) and (4-2), the mathematical expression of outflow 

discharge control process is shown in Equations (4-3) and (4-4).  

 
max( ) max(min(max(min( ( ), ), ), ( )),0)A best BO t S t O O S t (4-3) 

 
max( ) ((( ( ) ) ) ( )) 0A best BO t S t O O S t     , (4-4) 

where ( )AS t  and ( )BS t  stand for two stochastic water storage values used for 

outflows control;   stands for the maximum function among values; and   stands 

for the minimum function among values. 529bestO  m3/s and max 6671O   m3/s. Thus 

6142bestO   m3/s maxO . 

In more details, the discharge rate ( )O t  based on different values of inflow 

rate ( )I t  and water elevation ( )H t  have several possibilities, including: 1) no 

discharge, where ( ) 0O t  ; 2) ( ) ( )BO t S t  as shown in Eq.(4-2); 3) best efficient 

turbine flows, ( ) bestO t O ; 4) ( ) ( )AO t S t  as shown in Eq.(4-1); and 5) maximum 

turbine flows plus 10 sluice capacity, where max( )O t O . As Table 4-6 shown below, 

the two critical water storage values ( )AS t  and ( )BS t  decide the releasing volume of 

outflows. The simplified operation process of Little Long dam-reservoir is 

deterministic. But there is still space that the potential stochastic modeling could be 

incorporated in. 
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Table 4-6 Outflow releasing controls under different scenarios 
Scenarios  Description Outflow O(t) 

max0 ( ) ( )best A BO O S t S t     
Extreme large water volume and 
inflow that excess maximum 
reservoir discharge capacity 

      maxO  

max0 ( ) ( )best A BO S t O S t     
Large water volume and inflow but 
within maximum reservoir discharge 
capacity 

      ( )AS t  

max0 ( ) ( )best A BO S t S t O     
Large water volume and inflow but 
within maximum reservoir discharge 
capacity 

      ( )AS t  

max0 ( ) ( )A best BS t O S t O     Medium water storage and inflow       bestO  

max( ) 0 ( )A best BS t O S t O     Medium water storage and inflow       bestO  

max( ) 0 ( )A B bestS t S t O O     Small water storage and inflow       ( )BS t  

max( ) ( ) 0A B bestS t S t O O     
Extreme small water storage or none 
inflow       0  

 

Including all the above logical information, a Simulink model has been built 

in order to demonstrate the general dam-reservoir system operation process in Figure 

4-27. Under the normal conditions, outflows from the Little Long reservoir go 

through the generating stations. The best efficiency flow capacity, which generates 

the highest electrical output per unit of water, for the appropriate number of hours 

matches daily average outflow to inflow and storage. When the inflows are less than 

the capacities of generating stations, there is no spill to Adam Creek and the local 

inflows and water elevations in the Mattagami River are low. During periods of high 

inflow, such as the spring runoff, the spillway at Adam Creek will be operated in 

conjunction with the Little Long generating station to pass the full Mattagami River 

flow. The duration and magnitude of the spill down Adam Creek will be less than the 

existing capacity. 
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Figure 4-27 Simulink framework of Little Long dam-reservoir system operation
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4.4.3 Model Validation 

In order to validate the proposed dam-reservoir system operation model, the 

calculated outflow rates and water elevations are compared with the historical 

records. Setting the historical inflow rates of the past 50 years (1964-2013) as inputs 

to the Matlab/Simulink model, the corresponding outflow rates and reservoir water 

elevation are presented in Figure 4-28 below. The timeline unit is a day. As we 

observe, the maximum of daily average inflow rates never exceed 6000 m3/s in 

historical record. Thus, the assumed extreme precipitation has never been reached and 

the overtopping events have never occurred. The Little Long dam-reservoir system 

stays safe, which is aligned with the reality of actual operation practice. Therefore, 

the dam-reservoir system operation model is demonstrated to be valid. 
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Figure 4-28 Historical inflows and corresponding outflows and water elevation 
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4.4.4 Model Testing  

In order to test the extreme situations, four pseudo inflows are set as the testing inputs 

for the proposed Simulink model. The inflow rate, and the corresponding outflows 

and water elevations are demonstrated in Figures 4-29 and 4-30 below. All of the four 

inflow inputs share the same daily peak inflow rate at 7000m3/s, and daily lowest 

inflow rate at 6000m3/s. Only the variation frequencies differentiate.  

 Based on the above water elevations presented, we could reasonably conclude 

that different variations of the inflow inputs would result in the different overtopping 

risks, even when the peak inflow rates stay the same. It would be incomplete to 

consider only the peak inflows or inflow volume within a certain period of time to 

address the overtopping risks of dam-reservoir system. In order to evaluate the 

overtopping risks of the dam-reservoir system accurately, the whole inflow modeling 

and reservoir operation process needs to be taken into consideration, rather than a 

certain time period or a specific part of the system. 
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Figure 4-29 Pseudo inflow testing with corresponding outflows and reservoir water elevation (no overtopping) 
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Figure 4-30 Pseudo inflow testing with corresponding outflows and reservoir water elevation (overtopping) 
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4.5 Summary 

In summary, this chapter demonstrates the whole modeling and simulation process 

using the specific case of Little Long dam-reservoir system in northeastern Ontario, 

Canada. It starts with the project background introduction. Since the selected Little 

Long dam-reservoir system is within a modified continental climatic zone, strong 

seasonal patterns have been shown in the inflow data. As a consequence, the seasonal 

ARIMA model has been constructed and used for inflow simulation with uncertainty. 

Sample paths of the simulated inflows have also been tested in order to validate the 

model. After that, operation of the dam-reservoir system has been modeled as a 

sequence. The final model testing indicates that different variations of the inflow 

inputs would result in the different thresholds of overtopping risks, even when the 

peak and bottom values staying the same. In order to evaluate the overtopping risks of 

dam-reservoir system accurately, the whole inflow modeling and reservoir operation 

process needs to be considered. 
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Chapter 5: Overtopping Risks Evaluation of Little Long Dam-

Reservoir  

5.1 Introduction 

This chapter serves as the case application of Chapter 3 and follows Chapter 4 as the 

demonstration of the simulation results. Based on the theoretical model developed, 

estimation of the overtopping risks for the Little Long dam-reservoir system has been 

conducted and the corresponding computational performance has been tracked. This 

chapter starts with the introduction of simulation implementation, including two 

perspectives: 1) the simulation platform; and 2) the probability density selection for 

importance sampling. Then, the simulation results are presented including the 

overtopping probability estimation by both the normal distributed innovations and the 

student’s t distributed innovations. Results for both the CMC simulation and ISMC 

simulation are presented with comparison, and the computational performance 

measurement are tracked in the meanwhile. 

5.2 Simulation Implementation  

5.2.1 Simulation Platform 

MC simulation has been performed in order to yield the overtopping probabilities of 

the discrete-time reservoir operation model. Due to computational resource 

limitations, the simulation is implemented on a personal ThinkPad X1 laptop, which 

might take longer to reach the results as compared with running the same program on 

a server of higher capacity. Taking advantages of the longer time intervals, priorities 



 

118 

 

of the importance sampling based simulation could be shown more obviously. 

Detailed system configuration information is displayed in Table 5-1. 

Table 5-1 System configuration for simulation implemention 

Configuration Setting 

Operation system Windows 8.1 

Processor Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz  2.30GHz 

Installed memory (RAM) 8.00 GB (7.90 GB usable) 

System type 64-bit Operating System, x64-based processor 

 

R and Matlab/Simulink are major programming languages that are being 

adopted for simulation in this research. R is a programming language and software 

environment for statistical computing and graphics, which is widely used among 

statisticians and data miners for developing statistical software and data analysis. 

Here R programming is mainly used for modeling and simulating the inflow 

hydrographs under uncertainty. The version of R is 3.1.2 (2014-10-31), named 

"Pumpkin Helmet". Besides the base packages of R, packages of "forecast", "tseries", 

and "R.matlab" are also adopted. Matlab (matrix laboratory) is a multi-paradigm 

numerical computing environment and fourth-generation programming language, 

which allows matrix manipulations, plotting of functions and data, implementation of 

algorithms, and creation of user interfaces. Simulink, developed by MathWorks, is a 

graphical programming environment for modeling, simulating and analyzing multi-

domain dynamic systems. It offers tight integration with the rest of the Matlab 

environment and can either drive Matlab or be scripted from it. Here Matlab/Simulink 

is used for modeling and simulating operation process of the dam-reservoir system. 

Due to the repetitive process, parallel computing is applied to both CMC simulation 
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and rare event-based MC simulation. The version of Matlab is 8.5.0.197613 

(R2015a). 

5.2.2 Likelihood Ratios Based on Different Conditions 

The fundamental issue in implementing IS simulation is the choice of the biased 

distribution that encourages the important regions of the input variables. Here we take 

both the normal distributed and the Student’s t distributed residuals into 

consideration. As presented before, the Student’s t distributed residuals are finally 

transformed into normal distributed variables. In order to find the optimal pdf for IS, 

a detailed analysis on the mean, the standard variation, and the corresponding LR are 

discussed below. 

The nature of normal distribution depends on two factors - the mean and the 

standard deviations. The mean of the distribution determines the location of the center 

for the distribution, and the standard deviation determines the height and width for the 

distribution. Thus, the aim of finding appropriate probability density function has 

been transferred to find proper values for the mean and the standard deviations. In 

order to demonstrate the different influences of mean and standard deviation on the 

likelihood ratio function, Figures 5-1 to 5-9 are shown below. The seed values for 

random generators are controlled to make sure of the replication possibility of the 

simulation process. Initial seeds 1, 6 and 1000 are chosen as three separate streams of 

random variates in the following discussion as well as the simulation results. The seed 

numbers 1, 6, and 1000 are selected randomly. 
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Figure 5-1 Likelihood ratio distributions for normal distributed innovation  
(Seed = 1, time period = 5 years, iteration = 1000 times) 

 



 

121 

 

Taking seed = 1, simulation period = 5 years, and iteration = 1000 times as an 

example, Figure 5-1 above presents the LR values derived from different means and 

standard deviations for each quantile respectively. According to Figure 5-1, the LR 

values stay as non-zero only within a certain range approaching mean = 0 and 

standard deviation = 1. The maximum quantile of LR values spread more widely with 

peak deviated from the center, while the minimum quantile of LR values concentrate 

in the center as symmetric to both the mean and the standard deviation. In order to 

demonstrate the presented observations, simulation iterations have been increased 

from 1000 to 10,000. As shown in Figure 5-2 below, status of seed =1 and time 

period = 5 years stays the same as Figure 5-1. The observations on the quantiles of 

LR values stay similar as Figure 5-1. 

Remaining seed = 1 and iteration = 1000 times, the values of LR function for 

time period = 100 years are presented in Figure 5-3.  As shown below, the range of 

LR values as non-zero becomes narrower as compared to Figures 5-1 and 5-2. This 

means that there is less choice on the mean and standard deviations for the 

importance sampling density selection.  

Different simulation seeds provide slightly different likelihood ratios on the 

same mean and standard deviation values. In order to show the differences in a more 

obvious way, the 2D graphs in Figures 5-4 to 5-6, instead of 3D graphs, are adopted. 

For the maximum values of the likelihood ratio shown below, two peaks are 

presented for both the fixed mean and standard deviation values, slightly departed 

from the center point of mean = 0 and standard deviation = 1. 
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Figure 5-2 Likelihood ratio distributions for normal distributed innovation  
(Seed = 1, time period = 5 years, iteration = 10000 times) 
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Figure 5-3 Likelihood ratio distributions for normal distributed innovation  

(Seed = 1, time period = 100 years, iteration = 1000 times) 
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Figure 5-4 Likelihood ratio distributions for normal distributed innovation 
(Seed = 1, time period = 5 years, iteration = 1000 times) 
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Figure 5-5 Likelihood ratio distributions for normal distributed innovation 

(Seed = 6, time period = 5 years, iteration = 1000 times) 
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Figure 5-6 Likelihood ratio distributions for normal distributed innovation 
(Seed = 1000, time period = 5 years, iteration = 1000 times) 

The LRs based on the student’s t distributed innovations are presented in Figures 5-7 to 5-9 with the same length of time but 

different simulation seeds of 1, 6, and 1000 respectively. The ranges of LR values as non-zero show to be narrower as compared with 

the LR values based on the normal distributed innovations. Similar logic has also been demonstrated in Figure 5-2, which is mainly 
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due to the more random variables involved. In this case, we transfer the student’s t distributed random variables into multiple normal 

distributed random variables within the simulation process. 

 
 

 Figure 5-7 Likelihood ratio distributions for student’s t distribution innovation  
(Seed = 1, time period = 5 years, iteration = 1000 times) 
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Figure 5-8 Likelihood ratio distributions for student’s t distribution innovation  
(Seed = 6, time period = 5 years, iteration = 1000 times) 
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Figure 5-9 Likelihood ratio distributions for student’s t distribution innovation  
(Seed = 1000, time period = 5 years, iteration = 1000 times) 
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5.2.3 Importance Sampling Density Selection 

Appropriate importance sampling density could not only significantly save 

computational resources, but also provide a more accurate simulation-based 

estimation at the same time. As we identified in the previous section, the LR values 

stay as non-zero only within a certain range centered at mean = 0 and standard 

deviation = 1. In order to find the appropriate density for the ISMC simulation, 

discrete points spread in the grid are selected within the domain, and an enumeration 

method is adopted in this search. Since the intention is to sample extreme regions of 

the dynamic systems which are unlikely to visit through CMC simulation, scaling and 

shifting would both be considered to the positive direction in order to minimize the 

dimensionality effect of IS. As a consequence, the following map is shown in Figure 

5-10 below. Searching starts from the inner circle and expanding to the outer one. 

Each points in Figure 5-10 represents a new pdf choice for ISMC. The proposed 

approach does not necessarily lead to the optimal zero-variance estimator, but yields 

significant variance reduction. 
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Figure 5-10 Selection of importance sampling density parameters 

Here t  stands for a small change in the values of mean and standard 

deviation that could be defined based on the simulation accuracy. Since the new 

density is intended to sample “special” regions of the dynamic space of systems 

selectively, which are unlikely to visit through CMC simulation, we could reasonably 

believe that either the mean or the standard deviation value needs to move to the 

positive direction. As shown in Figure 5-10, the search starts from the inner circle, 

where 7 points exist, and then continues to the outer circle, where 13 points exist. The 

length of t  is chosen as varied on the simulation time scales. For instance, t  for 

the 5 year time scale estimation is bigger than t  for the 100 year time scale 

estimation. Final simulation results in the following section demonstrate that 



 

132 

 

appropriate t  could effectively help to find the appropriate IS density to increase the 

simulation accuracy.  

5.3 Simulation Results of Overtopping Risks 

Simulation results with comparison are shown for the innovation fittings, normal and 

student’s t distributions, which are reasonably assumed as the lower and upper 

bounds of the overtopping probabilities estimation. In order to present this in a more 

organized way, Table 5-2 below is adopted as an index table to group the results. The 

estimated probabilities based on the normal random innovations, are very small. As a 

consequence, the variances for both the CMC and the ISMC simulation are 

approaching zero. Due to the limited 1,000 times simulation, there are no significant 

differences to demonstrate the computational priority of the ISMC simulation. As a 

result, no tables are displayed in the variance estimation grid in Table 5-2. To the 

contrary, since there are many overtopping occurrences through the ISMC simulation, 

it is hard to show and compare the simulated occasions of overtopping in the limited 

table spaces. Thus, there is no table displayed in the grid of “Simulated occasions of 

overtopping” in Table 5-2 to show the simulated occasions of overtopping. 

Table 5-2 Table index of CMC and ISMC simulation results 

Assessing variables Normal random innovation Student’s t random innovation 

Overtopping probability Tables 5-3, 5-5, 5-7 Tables 5-9, 5-11, 5-13 

Variance estimation - Tables 5-10, 5-12, 5-14 

Simulated occasions of 
overtopping  

Tables 5-4, 5-6, 5-8 - 
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5.3.1 Risk Estimation Based on Normal Distributed Innovation 

The same initial seeds, 1, 6, and 1000, are adopted as three separate random variate 

streams to make the comparison of the results. Both the overtopping probability 

estimation and the corresponding simulation occasions of overtopping are presented 

respectively for each seed. Taking seed = 1 for example, Tables 5-3 and 5-4 are 

shown below with both the CMC and the ISMC simulation results for the 5, 10, 20, 

50, and 100 year time scales. Since the simulation has only been run 1,000 times, 

probabilities for the CMC simulation are cut to three decimal places. As the results 

below show, the ISMC simulation provides a very close probability estimation as the 

CMC simulation shows. 

Table 5-3 Overtopping probability estimation based on normal innovation (seed = 1) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC 0 0 0.0020 0.0030 0.0070 

ISMC 0 0  0.0015  0.0046 0.0067 

Note: Normal random innovation; seed = 1; simulation iteration = 1,000 times; 0.005t    
 

The ISMC simulations are based on the adjusted random variables through the 

same process as the CMC simulation. Then, the final results are derived through the 

outputs multiplying the LRs. If there is no overtopping occasion in the ISMC 

simulation, the probability value for the ISMC simulation would equal to zero. Each 

number shown in Table 5-4 below stands for an index of an independent simulation. 

In total, 1,000 times simulation having been conducted.  

As we could see, there is no overtopping occurrence in the 5 year and 10 year 

time scales, thus the overtopping probabilities for the ISMC simulation in the 5 and 

10 year scales are zero. For stream seed = 1, there is no difference in the simulation 
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occasions for the CMC and ISMC simulations. The same situation is also found when 

the seed = 1000. The major reason is due to the small shift and scaling adjusted on the 

new IS random variables. 

Table 5-4 Simulated overtopping occasions based on normal innovation (seed = 1) 

Time scale CMC  ISMC 

5 year None None 

10 year None None 

20 year 58, 761 58, 761 

50 year 138, 774, 954 138, 774, 954 

100 year 89, 306, 541, 589, 668, 986, 987 89, 306, 541, 589, 668, 986, 987 

Note: Normal random innovation; seed = 1; simulation iteration = 1,000 times; 0.005t   
 

For seed = 6, similar outputs are shown in Tables 5-5 and 5-6 below. Two 

specialties are shown in the seed = 6 stream. In Table 5-5, the overtopping probability 

for the CMC simulation in the 10 year time scale is larger than the 20 year time scale. 

The reason is mainly due to the adopted random generator. Different random 

innovation series are generated without overlapping for the 10 and 20 year time scale. 

Thus two overtopping occasions occur in the 10 year time scale and only one 

overtopping occasion occurs in the 20 year time scales. The reversed probability 

values also prove the inaccuracy of the CMC simulation.  

Table 5-5 Overtopping probability estimation based on normal innovation (seed = 6) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC 0 0.0020 0.0010 0.0040 0.0060 

ISMC 0 0.0015  0.0016  0.0033 0.0088 

Note: Normal random innovation; seed = 6; simulation iteration = 1,000 times; 0.005t   

The other difference comparing to the innovation series based on the stream of 

seed =1 is that there are more overtopping occurrences in the ISMC simulation. In the 

section of 50-year time length, Occasion 123 is newly added for ISMC. In the section 
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of 100-year time length, Occasions 172, 267, and 699 are newly added for ISMC. 

Detailed information is shown in Table 5-6. Consequently, the IS random series result 

in more effective values within the cutoff region. 

Table 5-6  Simulated overtopping occasions based on normal innovation (seed = 6) 

Time scale CMC ISMC 

5 year None None 

10 year 79, 446  79, 446  

20 year 223 223 

50 year 585, 749, 759, 842 123, 585, 749, 759, 842 

100 year 96, 385, 471, 498, 500, 798 96, 172, 267, 385, 471, 498, 500, 699, 798 

Note: Normal random innovation; seed = 6; simulation iteration = 1,000 times; 0.005t   

Tables 5-7 and 5-8 below demonstrate the simulation results of seed = 1000. 

Similar to the results of seed = 1, there is no difference on the simulation occasions 

for the CMC and ISMC simulations. 

Table 5-7 Overtopping probability estimation based on normal innovation (seed = 1000) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC 0 0.0020 0 0.0030 0.0060 

ISMC 0 0.0017  0 0.0047 0.0089 

Note: Normal random innovation; seed = 1000; simulation iteration = 1,000 times; 
0.005t   

 
Table 5-8  Simulated overtopping occasions based on normal innovation (seed = 1000) 

Time scale CMC ISMC 

5 year None None 

10 year 280, 970 280, 970 

20 year None None 

50 year 32, 90, 899 32, 90, 899 

100 year 183, 311, 369, 394, 786, 909 183, 311, 369, 394, 786, 909 

Note: Normal random innovation; seed = 1000; simulation iteration = 1,000 times; 
0.005t   
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5.3.2 Risk Estimation Based on Student’s t Distributed Innovation 

Graphically for the same symmetric dataset, the fitted student’s t distribution has a 

heavier tail than the fitted normal distribution. It means that there are more data 

points with both the extreme large and the extreme small points for the student’s t 

distribution than the normal distribution. As a result, the innovation series based on 

the student’s distribution provides a much bigger value of the overtopping 

probability. Compared to the previous section, Tables 5-9 to 5-14 in this section 

demonstrate the results. Tables 5-9, 5-11, and 5-13 present the overtopping 

probability estimation for both the CMC and the ISMC simulation, while Tables 5-10, 

5-12, and 5-14 present the corresponding standard deviation of the estimated 

overtopping probabilities. 

Table 5-9 Overtopping probability estimation based on student’s t innovation (seed = 1) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC 0.1630 0.2940 0.5210 0.8100 0.9690 

ISMC 0.1608 0.2882 0.5222 0.7950 0.9637 

Note: Student’s t random innovation; seed = 1; simulation iteration = 1,000 times; 

5 0.005t   standing for t  in 5 year time scale; 10 0.005t  , 20 0.004t  , 

50 0.002t  ; and 100 0.001t   

 
According to Table 5-9, the final estimation of the overtopping probability 

from both the CMC and ISMC simulation are similar. Since only the 1000 times 

simulation has been run, the probability estimations for the CMC simulation are cut to 

three decimal places. Compared to the estimation from the previous Table 5-3, the 

estimation in Table 5-9 is much larger due to the tail characteristic of the Student’s t 

distribution. The probability estimation for the 100 year time scale is approaching to 

1, which demonstrates as the upper-bound probability of a risky situation. 
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Table 5-10 Standard deviation of overtopping probability estimation based on 
student’s t innovation (seed = 1) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC 0.5519 1.2176 1.1782 1.2049 0.8632 

ISMC 0.3696 0.4558 0.4998 0.3925 0.1734 

Note: Student’s t random innovation; seed = 1; simulation iteration = 1,000 times; 

5 0.005t   standing for t  in 5 year time scale; 10 0.005t  , 20 0.004t  , 

50 0.002t  ; and 100 0.001t   

 
Although the estimation of overtopping probability from both the CMC and 

ISMC simulation are proved to be similar, a significant decrease on the standard 

deviation of the overtopping probability estimation has been shown for the ISMC 

simulation according to Table 5-10. This effect is more obvious than the results 

derived from the normal distributed innovation. The reason is because the Student’s t 

distributed residuals have much fatter tail distributions which directly lead to more 

frequent high inflow occurrences. Correspondly, the effect is more obvious than the 

results derived from the normal distributed residuals. Compared to the results in 

Table 5-10, the role that IS played to improve the accuracy of risk estimation has 

been demonstrated. 

Besides the results from the simulation stream seed = 1, the results derived 

from the other two streams, seed = 6 or 1000, are close to each other as well, as 

shown in the following Tables 5-11 to 5-14. Therefore, we could reasonably conclude 

that the ISMC simulation would help to reduce the variance and, at the same time, 

give a more accurate estimation. 
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Table 5-11 Overtopping probability estimation based on Student’s t innovation (seed = 6) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC 0.1590 0.2760 0.5010 0.8210 0.9690 

ISMC 0.1536 0.2659 0.4870 0.8368 0.9509 

Note: Student’s t random innovation; seed = 6; simulation iteration = 1,000 times; 

5 0.005t   standing for t  in 5 year time scale; 10 0.005t  , 20 0.004t  , 

50 0.002t  ; and 100 0.001t   

 

Table 5-12 Standard deviation of overtopping probability estimation based on 
Student’s t innovation (seed = 6) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC 0.5017 1.1526 1.0515 1.1226 0.8718 

ISMC 0.3659 0.4472 0.5002 0.3835 0.1734 

Note: Student’s t random innovation; seed = 6; simulation iteration = 1,000 times; 

5 0.005t   standing for t  in 5 year time scale; 10 0.005t  , 20 0.004t  , 

50 0.002t  ; and 100 0.001t   

 

Table 5-13 Overtopping probability estimation based on Student’s t innovation (seed = 1000) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC  0.1620 0.2820 0.5070 0.8350 0.9710 

ISMC 0.1620 0.2756 0.4705 0.8132 0.9712 

Note: Student’s t random innovation; seed = 1000; simulation iteration = 1,000 times; 

5 0.005t   standing for t  in 5 year time scale; 10 0.005t  , 20 0.004t  , 

50 0.002t  ; and 100 0.001t   

 

Table 5-14 Standard deviation of overtopping probability estimation based on 
Student’s t innovation (seed = 1000) 

Simulation 5 year 10 year 20 year 50 year 100 year 

CMC  0.4244 0.8259 0.9466 1.1518 0.4615 

ISMC 0.3686 0.4502 0.5002 0.3714 0.1679 

Note: Student’s t random innovation; seed = 1000; simulation iteration = 1,000 times; 

5 0.005t   standing for t  in 5 year time scale; 10 0.005t  , 20 0.004t  , 

50 0.002t  ; and 100 0.001t   
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5.3.3 Convergence Comparison and Discussion 

In mathematics, convergence means the process of some functions and sequences 

approaching a limit under certain conditions. In probability theory, the average of 

results obtained from a large number of trials should be close to the expected value, 

and will tend to become closer as more trials are performed. This conclusion is 

known as the law of large numbers. Due to the law of large numbers, stable long-term 

results for the averages of some random events are guaranteed. Tailored to the Little 

Long dam-reservoir system, the overtopping probability estimation through 

simulation displays the convergence feature as the iterations increase. Due to the 

limitation of computational resources, the 5 year time scale is selected as the scope to 

show the convergence results. Figure 5-11 below shows the final results for both the 

normal and the student’s t distributed innovations. Simulation seeds are selected 

randomly, and the simulation iterations are selected from 500 to 8000 with 100 as the 

interval. For each curve with fluctuation, 76 points are plotted as shown below. 

 According to Figure 5-11, the convergence diagrams of different simulation 

realizations are presented above. There are two obvious indications which could be 

concluded there. The first one is that high fluctuations are displayed when the 

simulation realizations stay small, and then gradually converge to a certain value as 

the realizations increase. The other one is that the ISMC simulation holds less 

fluctuation ranges all through the different simulation realizations. The final 

probability estimation result for the overtopping event based on the normal 

distributed innovation converges to 30.6 10-´ , and the final result based on the 

student’s t distributed innovation converges to 0.165  or so.  
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Figure 5-11 Convergence comparison of sampling strategies (time period = 5 years) 
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5.4 Performance Measurement of Simulation Program 

Computer performance is a measure of how long it takes to perform a task, or how 

many tasks can be performed in a given time period. In order to demonstrate the 

performance improvement of the ISMC simulation, further quantitative measurement 

is conducted in this section. There are two measures that are commonly used to 

evaluate the goodness of importance sampling scheme. The first one is the ratio of 

variance obtained by CMC and ISMC simulation, 
2 2/C IS  . Since the estimator 

variances are not analytically possible when their mean is intractable, this has to be 

computed empirically. The second one is the ratio of the number of realizations 

required by each scheme, given the same output variance, /C ISN N . This indicator 

could be interpreted as the speed-up factor by which the importance sampling 

estimator achieves the same precision as the MC estimator. 

5.4.1 Ratio of Variance by CMC and ISMC Simulation 

The ratio of variance for the overtopping probability estimation are listed respectively 

for the three simulation streams, seeds = 1, 6, and 1000. For the 1,000 times 

simulation without fixing the seed, Tables 5-15 and 5-16 below present the results for 

both normal random innovation and the student’s t random innovation. For Table 5-

15, the results 
2 2/C IS   are within the range of [0.63, 1.48]. The value of NaN exists 

mainly because there is no overtopping occurrence within the 1,000 times simulation 

for both the CMC and the ISMC simulations. Due to the limited occurrence of 
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overtopping, advantages of the ISMC simulation is not obvious for the normal 

distributed innovation. Only about a half situations show that 2
C   is larger than 

2
IS . 

Table 5-15 Ratio of variance for CMC and ISMC simulation based on normal innovation 

Simulation stream 5 year 10 year 20 year 50 year 100 year 

Seed = 1 NaN NaN 1.2882 0.8982 0.9698 

Seed = 6 NaN 1.2994 0.6307 1.4766 0.8764 

Seed = 1000 NaN 1.1316 NaN 0.9271 0.8637 

Note: Normal random variable; simulation iteration = 1,000 times, ratio is derived by 
CMC/ISMC 
 

 For Table 5-16, the results 
2 2/C IS    of 1,000 times simulation are within the 

range of [1.15, 5.03]. Compared to the results presented in Table 5-15, the results 

2 2/C IS    from the student’s t distributed innovation in Table 5-16 demonstrated the 

advantages of the ISMC simulation in variance reduction. Also as the simulation time 

scale expanded, the ratio 
2 2/C IS    increases and the effect of variance reduction 

becomes more obvious.  

Table 5-16 Ratio of variance for CMC and ISMC simulation based on Student’s t innovation 

Simulation stream 5 year 10 year 20 year 50 year 100 year 

Seed = 1 1.4932 2.6713 2.3573 3.0698 4.9781 

Seed = 6 1.3711 2.5774 2.1021 2.9272 5.0277 

Seed = 1000 1.1514 1.8345 1.8924 3.1012 2.7487 

Note: Student’s t random variable; simulation iteration = 1,000 times; ratio is derived by 
CMC/ISMC 
 

5.4.2 Ratio of Realization Times by CMC and ISMC Simulation 

In order to enhance the ISMC simulation advantages, the ratios of realization times 

that achieves the same precision, /C ISN N , are presented in Table 5-17 below. 
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Beyond the previous indicator 
2 2/C IS   , this one could be interpreted as a speed-up 

factor by which the IS-based estimator achieves the similar variance as the CMC 

estimator does. The results showing below ranges in [1.27, 3.67], which demonstrates 

a prominent improvement that ISMC simulations achieve on computational times 

saving. As we could see, the ratio of realization times gives the most significant 

difference of performance at the length of 20-year time period, with an increase 

before and a decrease thereafter. Trade-offs between the time lengths and the 

convergence rate might be the reason for the explanation. 

Table 5-17 Ratio of realization times for CMC and ISMC simulation 

Simulation stream 5 year 10 year 20 year 50 year 100 year 

Normal 1.91 2.30 3.67 1.92 1.27 

Student’s t 1.89 2.36 3.33 1.78 1.50 

Note: Ratio is derived by CMC/ISMC 
 

5.4.3 Elapsed Time Measurement  

Followed by the ratio of realization times, it is also useful to measure the total elapsed 

time savings due to the use of the ISMC simulation approach. In order to demonstrate 

the significant computational time reduction that ISMC simulation achieves, the 

following Tables 5-18 and 5-19 present the total elapsed time cost below. As in the 

previous performance measurement, the time measurements here are based on the 

non-fixing seed simulation. The elapsed time cost of normal distributed innovation is 

shown in Table 5-18. Taking the 20 year time length as an example, the ISMC 

simulation could reduce to 10+ minutes from the CMC simulation of 30+ minutes.  
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An average savings of 21% is achieved in the total elapsed time for the normal 

distributed innovation. 

Table 5-18 Total elapsed time of simulation based on normal innovation  

Simulation  5 year 10 year 20 year 50 year 100 year 

CMC 765.77 916.88 1897.06 1491.29 1108.11 

ISMC 585.45 892.95 665.50 1368.36 1047.35 

Note: Unit is represented by second; ratio is derived by CMC/ISMC 

 As with the results in Table 5-18, an average savings of 18.3% is achieved in 

the total elapsed time based on the student’s t distributed innovation. Detailed 

information is shown in Table 5-19 below.  

Table 5-19 Total elapsed time of simulation based on Student’s t innovation  

Simulation  5 year 10 year 20 year 50 year 100 year 

CMC 1082.38 1174.13 1130.20 1227.51 929.55 

ISMC 742.09 1129.35 1011.55 1044.67 641.49 

Note: Unit is represented by second; ratio is derived by CMC/ISMC 

5.5 Summary 

In summary, this chapter serves as a case application of Chapter 3 and follows 

Chapter 4 as the demonstration of the simulation results. Based on the theoretical 

model developed, an estimation of the overtopping risks for the Little Long dam-

reservoir system has been conducted. This chapter starts with the introduction of 

simulation implementation, including two perspectives: 1) the simulation platform; 

and 2) the optimal importance sampling density selection. Then, the results are 

presented including both the CMC simulation and the ISMC simulation with 

comparison. Also, the results are separately discussed by the normal distributed 

innovations and the student’s t distributed innovations. The corresponding 
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computational performance measurement is also tracked in order to demonstrate the 

priority of ISMC simulation. The results show that the ISMC simulation could 

effectively provide a better estimation of accuracy and, at the same time reduce the 

computational resources.  
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Chapter 6: Conclusions and Future Work 

6.1 Summary 

Although overtopping could result in significant consequences, such events are 

observed very rare in reality. Estimation of those small probabilities using 

conventional simulation requires huge computational resources, both time and space, 

to the reach satisfied results. Otherwise, the estimation would not converge to an 

acceptable range. Computational expense has served as one of the prohibitive reasons 

that the simulation technique has not been widely applied to dam-reservoir system 

operation. In order to expedite computation speed, save simulation cost, and increase 

the estimation accuracy, this study has presented an efficient importance sampling-

based simulation approach to estimate the overtopping risks of dam-reservoir 

systems. 

The study starts with the dam-reservoir system performance model. Literature 

reviews on the critical factors leading to overtopping risks of dam-reservoir systems 

have been conducted. Natural inflow uncertainties and outflow control disturbances 

serve as the direct causes. Thus, the reservoir inflow hydrograph model and the dam-

reservoir system operation model are proposed as a sequence. Based on the model, 

simulation could be run in order to predict the potential overtopping probabilities 

within a certain time period. Then, the importance sampling based rare event 

simulation is presented. In more details, both the CMC simulation framework and the 

ISMC simulation framework are proposed with comparison. In order to prove the 

theoretical model, the Little Long dam-reservoir case is presented as a follow up. 
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Results of the overtopping risk estimation for both the CMC and ISMC simulations 

are shown in the case results chapter. The proposed ISMC approach could not only 

improve the estimation accuracy in order to reach the satisfied estimation results, but 

also save the computational resources at the same time. 

6.1.1 Contributions 

This research addresses the natural stochastic characteristics of the dam-reservoir 

system, such as the reservoir inflow rate and the system operation process. Two major 

contributions could be concluded from this study: 1) the industrial contribution to the 

dam-reservoir system, and 2) the theoretical contribution to the rare event simulation 

on infrastructure systems. 

From the industrial perspective, the final estimation results of overtopping 

probability would be used as importance indexes to guide the future dam safety 

investigations and studies. Based on the existing dam-reservoir system design, 

knowing the corresponding overtopping probability would not only inform the 

decision maker potential loss risks, but also supplement their knowledge and 

judgement on necessity of renovation and improvements. The proposed modeling and 

simulation procedures are also compatible if changing the precipitation settings or the 

operation rules 

From the theoretical perspective, the proposed methodology of ISMC 

simulation is reasonably robust and proved to improve the overtopping risk 

estimation. The smaller variance of simulation results and the less computational 
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elapsed time, expand the application of the Monte Carlo technique on evaluating rare 

event risks for infrastructures. 

6.1.2 Limitations 

Overtopping failures of dams, for most cases, are not from a singular causation but 

through some uncommon combinations of mishaps that are usually difficult or 

impossible to identify accurately during the design. As a result, limitations of this 

study could also be sourced from two aspects: 1) the methodology limitation, and 2) 

the application limitation.  

For the methodology limitation, fragility risks are commonly aroused by a 

chain of component malfunctions plus exterior factors, since the dam-reservoir 

systems are complicated. The current model proposed in Chapters 2 and 3 might not 

reflect all the correlations and interactions among the varied factors of the dam-

reservoir system with uncertainty. This limitation might constrain the accuracy of the 

overtopping risk estimation. The actual risks would potentially be higher than the 

current estimation. 

For the application limitation, the computational resource is limited and only 

1,000 iterations have been conducted in the ISMC simulation. Results would become 

more persuasive if the iterations increase to 10,000+ times. The features of 

convergence would be more obvious, and the variance of the overtopping probability 

estimation would be reduced more significantly. 
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6.2 Recommendation of Future Work 

Based on the discussions of study contributions and limitations, future efforts could 

be made through the following two aspects: 1) methodology and 2) computational 

environment. 

From the methodology perspective, broader concerns could be taken into 

analysis. The reliable performance of dams and their appurtenant systems depends on 

the interactions of a large number of natural, engineering, and human systems. More 

information with available data resources, such as temperature, rainfall and snowfall, 

could be involved, as well as their inner correlations. At the same time, more failure 

modes of the dam-reservoir system, such as piping, erosion, or cracking, would also 

be taken into consideration, and be analyzed through the ISMC simulations; 

From the computational environmental perspective, computers of higher 

computational capacity could be taken into consideration in order to increase the 

simulation iterations. This consideration goes along with the methodology 

improvements as mutual dependences. High performance computing generally refers 

to the practice of aggregating computing power in a way that delivers much higher 

performance than one could get out of a typical desktop computer or workstation. It 

has been widely applied to solve large problems in science, engineering, or business. 

There are multiple high performance computing resources available for use by 

campus researchers, such as supercomputers, at University of Maryland system, or 

other universities and national labs. Parallel coding and applications are required 

especially for the repetitive iterations. Future work can be done in order to take use of 
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those available computation resources and improve the parallel computation 

algorithms.  
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 Glossary 

ACF Autocorrelation function 

ADF Augmented Dickey–Fuller test 

AIC Akaike’s Information Criterion 

AICc Akaike’s Information Criterion with correction 

AR Autoregression 

ARIMA Autoregressive integrated moving average 

BP The Box-Pierce test 

cdf Cumulative density function 

CMC Crude Monte Carlo 

i.i.d independent, identically distributed 

IS Importance sampling 

ISMC Importance sampling based Monte Carlo 

KPSS The Kwiatkowski-Phillips-Schmidt-Shin test 

LB The Ljung-Box test 

LR Likelihood ratio 

MA Moving average 

MDP Markov decision process 

MLE Maximum likelihood estimation 

OLS Ordinary Least Squares 

PACF Partial autocorrelation function 

pdf Probability density function 

RE Relative error 
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