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The assessment of existing bridge structures against earthquake threat has become 

a major issue lately, motivated by the maturity of seismic design of new structures, on 

one side, and by the recognition of the inadequate level of seismic protection, the aging 

and the constant need of maintenance of the existing ones, on the other. While nonlinear 

time history analysis (NL-THA) is the most rigorous procedure to compute seismic 

demands, many seismic-prone countries, such as United States, New Zealand, Japan and 

Italy, have recently released standards for the assessment of buildings, all of which 

include the use of the non-linear static analysis procedure (NSP), the so-called pushover. 

The nonlinear static analysis procedure has a relatively long history. It was first specified 

by (FEMA-273, 1997) and later updated by (FEMA-356, 2000) as an analytical 

procedure that can be used in systematic rehabilitation of structures. Also, (ATC-40, 

1996), developed by the Applied Technology Council, applied the NSP as a seismic 

assessment tool. These methods were applied only for buildings. Recently Chopra and 



Goel (2002) proposed the modal pushover analysis (MPA) procedure that considers the 

effect of higher modes on the behavior of buildings.  

This research investigation is intended to evaluate the accuracy of the modal 

pushover analysis (MPA) procedure in estimating seismic demands for curved bridges 

after proposing some modifications that would render the MPA procedure applicable for 

bridges. For verification purpose, the nonlinear time history analysis (NL-THA) is also 

performed in order to quantify the accuracy of MPA. Three bridges were analyzed using 

both the MPA and NL-THA in addition to the standard pushover analysis (SPA). 

Maximum Demand displacements, total base shear and plastic rotations obtained from 

SPA and MPA are compared with the corresponding values resulting from the NL-THA. 

Comparison shows a good agreement between MPA and NL-THA results and MPA is 

deemed to be accurate enough for practical use. Furthermore, to evaluate the applicability 

of the MPA method for a wide range of bridges, a parametric study using both the MPA 

and NL-THA is performed.  Results from the MPA for demand displacement and base 

shear are compared with results from the NL-THA. Also, the influence of different 

parameters on the behavior of curved bridges is studied. Parameters included the girder 

cross section (steel I vs. steel BOX), span length, number of spans, radius of curvature, 

and pier height. Pier height is found to have the most significant effect on bridge behavior 

as well as span length, while radius of curvature is found to have less influence on the 

behavior of curved bridges. 
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displacement is determined from the deformation of an equivalent single-degree-of-

freedom (SDOF) system. 

The nonlinear static analysis method has a relatively long history; its 

fundamentals were laid out in the work of (Freeman, Nicoletti, & Tyrell, 1975) and 

(Fajfar & Fischinger, 1989). Since then, extension of the standard pushover analysis 

(SPA) to consider higher modes effects has attracted attention, the effort being to match 

as closely as possible the results of the nonlinear time history analysis. In an early effort 

(Sasaki, Freeman, & Paret, 1998) used the multi-mode pushover procedure to identify the 

effects of higher modes in pushover analysis of buildings by appropriately extending the 

capacity spectrum method (CSM), which directly compares building capacity to 

earthquake demand; separate pushover curves were derived for each mode, without an 

attempt to combine modal responses. (Bracci, Kunnath, & Reinhorn, 1997), (Gupta & 

Kunnath, 2000), and (Antoniou, Rovithakis, & Pinho, 2002) developed a series of 

‘adaptive’ multi-mode pushover analysis methods, involving redefinition of the loading 

pattern, which is determined by modal combination rules (e.g. SRSS of modal loads) at 

each stage of the response during which the dynamic characteristics of the structure 

change (usually at each step when a new plastic hinge forms). While in the 

aforementioned adaptive methods modal superposition is carried out at the level of 

loading, in the modal pushover analysis (MPA) proposed by (Chopra & Goel, 2002), 

subsequently improved by the same authors (Chopra & Goel, 2004), pushover analyses 

are carried out separately for each significant mode, and the contributions from individual 
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modes to calculated response quantities (displacements, drifts, etc.) are combined using 

an appropriate combination rule (SRSS or CQC). Although the rule of superposition of 

modal responses does not apply in the inelastic range of the response (modes are not 

uncoupled anymore), (Chopra & Goel, 2004) have shown that the error, taking the results 

of nonlinear THA as the benchmark, is typically smaller than in the case that 

superposition is carried out at the level of loading (with fixed loading pattern), as 

recommended in the (FEMA-356, 2000) Guidelines; these guidelines adopt the nonlinear 

static procedure (NSP), i.e. pushover analysis, carried out with two different loading 

patterns, one based on first mode loading (‘triangular’ distribution) and one with ‘modal’ 

distribution (SRSS combination of elastic modal loads). 

In another recent development, (Aydinoglu, 2004) has proposed the so-called 

‘incremental response spectrum analysis (IRSA)’, wherein each time a new hinge forms 

in a structure, elastic modal spectrum analysis is performed, taking into account the 

changes in the dynamic properties of the structure. 

From the previously-mentioned studies attempting to account for higher modes in 

pushover analysis, only that of (Aydinoglu, 2004), which focuses mainly on buildings, 

includes an application to a bridge structure; the IRSA procedure is used, taking one or 

eight modes into account, without detailed discussion of the resulting differences. At the 

same time as (Aydinoglu, 2004), another study by (Kappos, Paraskeva, & Sextos, 2004) 

involving higher mode effects in pushover analysis of bridges appeared. It applies a 

multi-modal pushover procedure generally similar to that of (Chopra & Goel, 2002) to an 



5 

 

actual curved bridge considering its first three transverse modes, and compares the 

resulting displacements with those of single mode pushover and of time history analysis 

for spectrum-compatible records. Also, in the studies by (Fischinger, Beg, Isakovic, 

Tomazevic, & Zarnic, 2004) and (Isakovic & Fischinger, 2006) slightly different versions 

of these three methods, as well as IRSA, are used for the analysis of hypothetical 

irregular, torsionally sensitive bridges, and results are compared. 

Recently (Pinho, Antoniou, Casarotti, & Lopez, 2005) applied a number of 

existing pushover procedures (‘standard’ and adaptive), as well as a new version of 

adaptive pushover (called ‘displacement-based adaptive pushover’) to a number of 

idealized bridges (regular and irregular), and compared with results from incremental 

inelastic dynamic analysis. (Paraskeva, Kappos, & Sextos, 2006) extended the MPA 

procedure previously proposed by (Chopra & Goel, 2002), which was found to provide 

good results for buildings and can be implemented using standard software tools, to the 

case of bridges. They also quantified the relative accuracy of three inelastic analysis 

methods, i.e. SPA, MPA, and NL-THA, by focusing on the realistic case of a long and 

curved-in-plan, actual bridge, analyzed with the aid of a three-dimensional model. The 

study was subsequently improved by (Kappos & Paraskeva, 2008), and improved modal 

pushover analysis method was proposed which gave better results comparing to the THA 

results. 

This approach has been extensively developed and a large number of variants, of 

increasing accuracy but also of greater complexity, are available. While many studies are 
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available dealing with the application of pushover to building structures, the situation is 

quite different when bridges are considered. The number of studies are very limited, 

among those are Aydinoglu (2004), Kappos et al. (2004), Pinho et al. (2005), Paraskeva 

et al. (2006), Kappos and Paraskeva (2008) and, in addition, several issues have been 

raised that are still awaiting a satisfactory solution.  

Actually, the dynamic response of bridge structures is often contributed by several 

modes, which hinders conceptually the reduction of a multi-degrees-of-freedom (MDOF) 

structure into an equivalent single-degree-of-freedom (SDOF) oscillator. Furthermore, 

while buildings behave essentially as vertical cantilevers, bridges may vibrate according 

to complex patterns, which make more problematic the selection of the “reference DOF” 

representing the displacement of the equivalent SDOF oscillator.  

This study represents a further attempt to investigate the subject. Considering that 

computational burden and records availability, the main obstacles to dynamic analysis, 

have been largely overcome nowadays, a precondition for this study has been the choice 

of retaining what is considered the only other reason for favoring an approximate static 

approach, i.e. simplicity. Along this line, attention is focused on the modal pushover 

approach which was first introduced by Chopra and Goel (2002), which might be viewed 

as an upper-bound level of sophistication for a non-linear static analysis. The 

investigation is made on three reinforced concrete bridges of considerable length and 

importance which was built in the ’90. Due to one of the bridges’ highly irregular 

configuration, it may well represent an extreme case to test the applicability of the 
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Chapter 5 describes the parametric study to be performed for different bridge 

configurations. Results and findings of the parametric study are reviewed in chapter 6. 

Summary and conclusions are presented in chapter 7. Appendix A includes the 

calculations of different parameters needed to define plastic hinges as well as nonlinear 

link elements needed to perform modal pushover and nonlinear time history analyses 

using the SAP2000. Appendix B includes an investigation of the influence of the number 

of transverse mode shapes to be included in the analysis. A sample of input files for 

analyzing and designing different bridge configurations with steel I & BOX cross 

sections using DESCUS I&II are presented in Appendix C. Lastly, Appendix D includes 

a sample input data files needed to create one bridge model for analysis in SAP2000 

using both the MPA and NL-THA. 
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The effective earthquake forces can then be expressed as 

)()()(
11

, tustptp
N

n
gn

N

n
neffeff ∑∑

==

−== &&    (2.5) 

The contribution of the nth mode to s and to peff (t) is: 

nnn ms φΓ=  )()(, tustp gnneff &&−=          (2.6) 

The response of the MDOF system to peff,n (t) is entirely in the nth-mode, with no 

contributions from other modes. The equations governing the response of the system are 

)( tuskuucum gn &&&&& −=++     (2.7) 

By utilizing the orthogonality property of modes, it can be demonstrated that none of the 

modes other than the nth mode contribute to the response. Then the floor displacements 

are: 

)()( tqtu nnn φ=      (2.8) 

Where the modal coordinate qn(t) is governed by 

)(2 2 tuqqq gnnnnnnn &&&&& Γ−=++ ωωζ     (2.9) 

In which ωn is the natural vibration frequency and ζn is the damping ratio for the nth 

mode. The solution qn(t) can readily be obtained by comparing Eq. (2.9) to the equation 

of motion for the nth-mode elastic SDOF system, an SDOF system with vibration 
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properties-natural frequency ωn and damping ration ζn –of the nth-mode of the MDOF 

system, subjected to üg (t): 

)(2 2 tuDDD gnnnnnn &&&&& −=++ ωωζ    (2.10) 

Comparing Equations (2.9) and (2.10) gives 

)()( tDtq nnn Γ=      (2.11) 

And substituting in Eq. (2.8) gives the floor displacements 

)()( tDtu nnnn φΓ=     (2.12) 

Any response quantity r (t) –displacements, internal element forces, etc.- can be 

expressed by: 

)()( tArtr n
st

nn =      (2.13) 

Where st
nr denotes the modal static response, the static value of r due to external forces sn, 

and 

)()( 2 tDtA nnn ω=     (2.14) 

is the pseudo-acceleration response of the nth-mode SDOF system (Chopra, 2001; 

Section 12.1). The two analyses that lead to st
nr  and An (t) are shown schematically in 

Figure 2-1. 
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(Chopra, 2001; Sections 12.4 and 13.1.3), the modal expansion of the spatial distribution 

of the effective earthquake forces was used. 

2.2.2 Modal Response Spectrum Analysis (RSA) 

The peak value ro of the total response r(t) can be estimated directly from the 

response spectrum for the ground motion without carrying out the response history 

analysis (RHA) implied in Eqs. (2.9)-(2.16). In such a response spectrum analysis (RSA), 

the peak value rno of the nth-mode contribution rn(t) to response r(t) is determined from 

n
st

nno Arr =       (2.17) 

Where An is the ordinate A(Tn,ζn) of the pseudo-acceleration response (or design) 

spectrum for the nth-mode SDOF system, and Tn=2π/ωn is the natural vibration period of 

the nth-mode of the MDOF system. 

The peak modal responses are combined according to the Square-Root-of-Sum-

of-Squares (SRSS) or the Complete Quadratic Combination (CQC) rules. The SRSS rule, 

which is valid for structures with well-separated natural frequencies such as multistory 

buildings with symmetric plan, provides an estimate of the peak value of the total 

response: 

2/1

1

2 ⎟
⎠

⎞
⎜
⎝

⎛
≈ ∑

=

N

n
noo rr      (2.18) 
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2.2.3 Modal Pushover Analysis (MPA) 

To develop a pushover analysis procedure consistent with RSA, it is noted that 

static analysis of the structure subjected to lateral forces 

nnnno Amf φΓ=      (2.19) 

will provide the same value of rno, the peak nth-mode response as in Eq. (2.17) (Chopra, 

2001; Section 13.8.1). Alternatively, this response value can be obtained by static 

analysis of the structure subjected to lateral forces distributed over the building height 

according to 

nn ms φ=*       (2.20) 

and the structure is pushed to the roof displacement, urno, the peak value of the roof 

displacement due to the nth-mode, which from Eq. (2.12) is 

nrnnrno Du φΓ=      (2.21) 

where Dn = An/ωn
2. Obviously Dn and An are available from the response (or design) 

spectrum. 

The peak modal responses, rno , each determined by one pushover analysis, can be 

combined according to Eq. (2.18) to obtain an estimate of the peak value ro of the total 

response. This modal pushover analysis (MPA) for linearly elastic systems is equivalent 

to the well-known RSA procedure (Section 2.2.2).  
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Expanding the displacements of the inelastic system in terms of the natural vibration 

modes of the corresponding linear system gives 

∑
=

=
N

n
nn tqt

1

)()u( φ     (2.24) 

Substituting Eq. (2.24) in Eq. (2.23), premultiplying by φn
T, and using the mass and 

classical damping orthogonality property of modes gives 

Nntu
M
Fqq gn

n

sn
nnnn ,....2,1            )(2 =Γ−=++ &&&&& ωζ  (2.25) 

Where the only term that differs from Eq. (2.9) involves 

)usign(u,f),( s && T
nsnsn qsignqFF φ==     (2.26) 

This resisting force depends on all modal coordinates qn (t), contained in q, implying 

coupling of modal coordinates because of yielding of the structure.  

Equation (2.25) represents N equations in the modal coordinates qn. unlike        

Eq. (2.9) for linearly elastic systems; these equations are coupled for inelastic systems. 

Simultaneously solving these coupled equations and using Eq. (2.24) will, in principle, 

give the same results for u (t) as obtained directly from Eq. (2.23). However, Eq. (2.25) is 

rarely solved because it offers no particular advantage over Eq. (2.23). 
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2.3.2 Uncoupled Modal Response History Analysis (UMRHA) 

Neglecting the coupling of the N equations in modal coordinates [Eq. (2.25)] 

leads to the uncoupled modal response history analysis (UMRHA) procedure. This 

approximate RHA procedure is the preliminary step in developing a modal pushover 

analysis procedure for inelastic systems. 

The spatial distribution s of the effective earthquake forces is expanded into the 

modal contributions sn according to Eq. (2.3), where φn are now the modes of the 

corresponding linear system. The equations governing the response of the inelastic 

system to peff,n (t) given by Eq.(2.6b) are 

)( )usign(u,f tusucum gns &&&&&& −=++     (2.27) 

The solution of Eq. (2.27) for inelastic systems will no longer be described by Eq. 

(2.8) because qr(t) will generally be nonzero for “modes” other than the nth ”mode”, 

implying that other “modes” will also contribute to the solution. For linear elastic 

systems, however, qr (t)=0 for all modes other than the nth-mode; therefore, it is 

reasonable to expect that the nth “mode” should be dominant even for inelastic systems. 

Approximating the response of the structure to excitation peff,n (t) by Eq. (2.8), 

substituting Eq. (2.8) in Eq. (2.27) and premultiplying by φn
T gives Eq. (2.25), except for 

the important approximation that Fsn now depends only on one modal coordinate, qn : 

)sign,(f),( s nn
T
nnnsnsn qqqsignqFF && φ==    (2.28) 
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with this approximation, solution of Eq. (2.25) can be expressed by Eq. (2.11) where 

Dn(t) is governed by 

)(2 tu
L
FDD g

n

sn
nnnn &&&&& −=++ ωζ     (2.29) 

and  

)sign,(f),( s nn
T
nnnsnsn DDDsignDFF && φ==    (2.30) 

is related to ),( nnsn qsignqF & because of Eq. (2.11). 

Equation (2.29) may be interpreted as the governing equation for the nth-mode 

inelastic SDOF system, an SDOF system with (1) small amplitude vibration properties-

natural frequency ωn and damping ratio ζn – of the nth mode of the corresponding linear 

MDOF system; (2) unit mass; and (3) Fsn/Ln-Dn relation between resisting force Fsn/Ln 

and modal coordinate Dn defined by Eq. (2.30). Although Eq. (2.25) cab be solved in its 

original form, Eq. (2.29) can be solved conveniently by standard software because it is of 

the same form as the SDOF system excited by ground acceleration )(tug&& , and the peak 

value of Dn(t) can be estimated from the inelastic response (or design) spectrum (Chopra, 

2001; Sections 7.6 and 7.12.1). Introducing the nth-mode inelastic SDOF system also 

permitted extension of the well-established concepts for elastic systems to inelastic 

systems. Compare Eqs. (2.25) and (2.29) to Eqs. (2.9) and (2.10); note that Eq. (2.11) 

applies to both systems. 
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2.3.2.1 Properties of the nth-mode Inelastic SDOF System 

To determine the Fsn/Ln - Dn relation in Eq. (2.29), the relationship between lateral 

forces fs and Dn in Eq. (2.30) should be determined by nonlinear static analysis of the 

structure as the structure undergoes displacements u=Dnφn with increasing Dn. However, 

most commercially available software cannot implement such displacement controlled 

analysis. An alternative approach, which is an approximation, is to conduct a force 

controlled nonlinear static analysis of the structure subjected to lateral forces distribution 

over the building height according to Eq. (2.20). When implemented by commercially 

available software, such nonlinear static analysis provides the so-called pushover curve, 

which is a plot of base shear Vbn against roof displacement urn. A bilinear idealization of 

this pushover curve for the nth-mode is shown in Figure 2-3a. At the yield point, the base 

shear is Vbny and roof displacement is urny. 

To convert this Vbn – urn pushover curve to the Fsn/Ln – Dn relation, the two sets of 

forces and displacements are related as follows: 

rnn

rn
n

n

bn
sn

uDVF
φΓ

=
Γ

=                   (2.31) 

Equation (2.31) enables conversion of the pushover curve to the desired Fsn/Ln – Dn 

relation shown in Figure 2-3b, where the yield values of Fsn/Ln and Dn are 

rnn

rny
ny

n

bny

n

sny u
D

M
V

L
F

φΓ
==                *    (2.32) 
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This value of Tn , which may differ from the period of the corresponding linear system, 

should be used in Eq. (2.29). In contrast, the initial slope of the pushover curve in Figure 

2-3a is kn=ωn
2Ln, which is not meaningful quantity. 

2.3.2.2 Step-by-step UMRHA Procedure 

The inelastic response of an N-story building with plan symmetric about two 

orthogonal axes to earthquake ground motion along an axis of symmetry can be estimated 

as a function of time by the UMRHA procedure developed, which is summarized next as 

a sequence of steps; (Chopra & Goel, 2001): 

1. Compute the natural frequencies, ωn , and modes, φn , for linearly elastic vibration 

of the building. 

2. For the nth-mode, develop the base shear – roof-displacement (Vbn – urn) pushover 

curve for the force distribution sn
* [Eq. (2.20)]. 

3. Idealize the pushover curve as a bilinear curve with post-yield stiffness ration αn 

(Figure 2-3a). 

4. Convert the idealized pushover curve to the Fsn/Ln – Dn relation (Figure 2-3b) by 

utilizing Eq. (2.32). 

5. Compute the deformation history, Dn(t), and pseudo-acceleration history, An(t), of 

the nth mode inelastic SDOF system (Figure 2-2b) with force-deformation 

relation of Figure 2-3b. 
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6. Calculate histories of various responses by Eqs. (2.12) and (2.13). 

7. Repeat steps 2-6 for as many modes as required for sufficient accuracy. Typically, 

the first two or three modes will suffice. 

8. Combine the modal responses using Eqs. (2.15) and (2.16) to determine the total 

response. 

9. Calculate the peak value, ro , of the total response r(t) obtained in step 8. 

2.3.3 Modal Pushover Analysis (MPA) 

2.3.3.1 MPA Procedure A 

A pushover analysis procedure is presented next to estimate the peak response rno 

of the inelastic MDOF system to effective earthquake forces peff,n(t). Consider a 

nonlinear static analysis of the structure subjected to lateral forces distributed over the 

building height according to sn
* [Eq. (2.20)], with the structure is pushed to the roof 

displacement urno . This value of the roof displacement is given by Eq. (2.21) where Dn , 

the peak value of Dn (t) , is now determined by solving Eq. (2.29), as described in Section 

2.3.2; alternatively, it can be determined from the inelastic response (or design) spectrum. 

At this roof displacement, the pushover analysis provides an estimate of the peak value 

rno of any response rn(t): floor displacements, story drifts, joint rotations, plastic hinge 

rotations, etc. 

This pushover analysis, although somewhat intuitive for inelastic buildings, seems 

reasonable. It provides results for elastic buildings that are identical to the well-known 
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RSA procedure (section 2.2.2) because, as mentioned earlier, the lateral force distribution 

used possesses two properties: (1) it appears to be the most rational choice among all 

invariant distribution of forces; and (2) it provides the exact modal response for elastic 

systems. 

The response value rno is an estimate of the peak value of the response of the 

inelastic system to peff,n(t), governed by Eq. (2.27). As shown in sections 2.2.2 and 2.2.3, 

for elastic systems, rno also represents the exact peak value of the nth-mode contribution 

rn(t) to response r(t). Thus, we will refer to rno as the peak modal response even in the 

case of inelastic systems. 

The peak modal responses rno , each determined by one pushover analysis, are 

combined using an appropriate modal combination rule, e.g. Eq. (2.18), to obtain an 

estimate of the peak value ro of the total response. “This application of modal 

combination rules to inelastic systems obviously lacks a theoretical basis. However, it 

seems reasonable because it provides results for elastic buildings that are identical to the 

well-known RSA procedure”, (Chopra & Goel, 2002). 

Step-by-step MPA Procedure A 

The peak inelastic response of a building to earthquake excitation can be 

estimated by the MPA procedure just developed, which is summarized next as a sequence 

of steps: 
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1. Compute the natural frequencies, ωn , and modes, φn , for linearly elastic vibration 

of the building. 

2. For the nth-mode, develop the base shear – roof-displacement (Vbn – urn) pushover 

curve for the force distribution sn
* [Eq. (2.20)]. 

3. Idealize the pushover curve as a bilinear curve with post-yield stiffness ration αn 

(Figure 2-3a). 

4. Convert the idealized pushover curve to the Fsn/Ln – Dn relation (Figure 2-3b) by 

utilizing Eq. (2.32). 

5. Compute the peak deformation, Dn, of the nth-mode inelastic SDOF system 

(Figure 2-2b) with force-deformation relation of Figure 2-3b by solving Eq. 

(2.29), or from the inelastic response (or design) spectrum. 

6. Calculate the peak roof displacement urno associated with the nth-mode inelastic 

SDOF system from Eq. (2.21). 

7. At urno, extract from the pushover database values of other desired responses, rno . 

8. Repeat steps 3 to 7 for as many modes as required for sufficient accuracy. 

Typically, the first two or three modes will suffice. 
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9. Determine the total response by combining the peak modal responses using the 

SRSS combination rule of Eq. (2.18). From the total rotation of a plastic hinge, 

subtract the yield value of hinge rotation to determine the hinge plastic rotation. 

Procedure A mainly determines the peak deformations when the earthquake 

hazard is given in terms of ground motion records. In order to simplify the MPA 

procedure to facilitate its implementation in engineering practice – where the earthquake 

hazard is defined in term of a smooth design spectrum corresponding to a selected 

exceedence probability – procedures B and C will be summarized in the following 

sections. 

2.3.3.2 MPA Procedure B 

In the MPA Procedure A, the seismic demand due to each (say, ith) ground 

motion is determined by calculating (Dn)i ,(urno)i , (rno)i , and ( rMPA)i , and then the median 

of (rMPA)i (i=1, 2, 3…) gives MPAr̂ . The first simplification estimates the median value of 

“modal” seismic demands nor̂ directly from the deformation nD̂  of the nth mode inelastic 

SDOF system, which was determined from the median spectrum for the ensemble of 

ground motions.  

Step-by-step MPA Procedure B 

1. Compute the natural frequencies, ωn , and modes, φn , for linearly elastic vibration 

of the building. 
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2. For the nth-mode, develop the base shear – roof-displacement (Vbn – urn) pushover 

curve for the force distribution sn
* [Eq. (2.20)]. 

3. Idealize the pushover curve as a bilinear curve with post-yield stiffness ration αn 

(Figure 2-3a). 

4. Convert the idealized pushover curve to the Fsn/Ln – Dn relation (Figure 2-3b) by 

utilizing Eq. (2.32). 

5. Compute the peak deformation, Dn, of the nth-mode inelastic SDOF system 

(Figure 2-2b) with force-deformation relation of Figure 2-3b by solving Eq. 

(2.29), or from the inelastic response (or design) spectrum. 

6. Repeat step 5 for all excitations and obtain (Dn)i  for each excitation. 

7. Calculate nD̂ , the median value of (Dn)i  , by 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
∑

=

n

x
x

n

i
i

1
ln

expˆ     (2.35) 

8. Calculate the median peak roof displacement rnoû  associated with the nth mode 

inelastic SDOF system from 

nrnnrno Du ˆˆ φΓ=     (2.36) 
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9. Extract other desired responses, nor̂ , from the pushover database values at roof 

displacement rnoû . 

10. Repeat steps 3 to 9 for as many modes as required for sufficient accuracy; usually 

the first two or three modes will suffice. 

11. Determine the total response MPAr̂  by combining the peak modal responses nor̂  

using appropriate modal combination rule, e.g., the SRSS combination rule: 

2/1

1

2ˆˆ ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

J

n
noMPA rr     (2.37) 

2.3.3.3 MPA Procedure C 

Procedure B requires nonlinear RHA of the nth-mode inelastic SDOF system 

(step 5) for each ground motion. Procedure C avoids this computation by determining nD̂  

from the median deformation spectrum for inelastic SDOF systems for constant yield-

strength-reduction-factor Ry, (Chopra, 2001). Steps 5-7 in procedure B to determine nD̂  

are replaced by the following steps: 

5. Compute the yield strength reduction factor Ryn for the nth-mode inelastic SDOF 

system from 

ny

elasticn
yn D

D
R ,

ˆ
=      (2.38) 
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2.4.2 MPA procedure for Bridges 

Using the extended MPA procedure for the case of bridges includes additional 

considerations due to the fact that bridges are extending horizontally, contrary to the case 

of a building which extends vertically.  Paraskeva et al. (2006) followed by same authors; 

(Kappos & Paraskeva, 2008) suggested a set of additional assumptions and decisions 

regarding alternative procedures that can be used which are needed in order to apply the 

method in the case of bridges. A key issue is the selection of an appropriate point for 

monitoring the displacement demand (and also for drawing the pushover curve for each 

mode). Other issues include the way a pushover curve is bilinearized before being 

transformed into a capacity curve, the use of the ‘capacity spectrum’ for defining the 

earthquake demand for each mode and then combining modal responses, and the number 

of modes that should be considered in the case of bridges.  

2.4.2.1 Control Node 

Control node is the node used to monitor displacement of the structure. Its 

displacement versus the base-shear forms the capacity (pushover) curve of the structure. 

The control node should satisfy two conditions: 

• Its location is expected to have maximum displacement. 

• Its displacement should reflect the behavior of the structure. 

This means that the control node displacement should be affected by the yielding 

or inelastic behavior of any member that contributes to the stiffness of the structure in the 
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direction under consideration. The latter condition is an essential one that may cause 

significant error if it is not satisfied while the former condition seems to be more flexible. 

The selection of an appropriate monitoring point for bridges (in buildings it is typically 

the roof) is a critical issue for modal pushover analysis (MPA) of bridges. Natural 

choices for the monitoring point in a bridge are the deck mass center as proposed in 

(Eurocode 8, 2004), or the top of the nearest to it pier, if the displacement of the two is 

practically the same, i.e. for monolithic or hinged pier-to-deck connections, but not for 

sliding or flexible connections (e.g. through pot bearings or elastomeric bearings). By 

analogy to building structures in (Chopra, 2001), it can also be selected as the point of the 

deck that corresponds to the location ( ∗
nx ) along the longitudinal axis of the bridge of an 

equivalent SDOF system, defined by the location of the resultant of the modal load 

pattern applied to the bridge; which can be calculated from the properties of the MDOF 

system using the following relationship: 

∑

∑

=

== N

j
jnj

N

j
jnjj

n

m

mx
x

1

1*

φ

φ

      (2.39)  

in which, xj is the distance of the jth mass from a (selected) point of the MDOF system 

(in a bridge, the left abutment is a natural choice), and φjn is the value of φn at the jth 

mass; ∗
nx  is essentially independent of the way the mode is normalized. It is noted that 

whereas in buildings locating the SDOF system to a height above the ground defined by 
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equation (2.39) ensures that the overturning moment at its base is the same as that 

resulting in the MDOF structure from the application of the modal load pattern (see step 

2, section 2.4.3), in bridges it simply ensures that the moment at the abutments resulting 

from applying the base shear at a distance ∗
nx  is the same as that resulting from the modal 

loads applied on the actual (MDOF) bridge.  

Another proposal by Paraskeva et al. (2006) for the monitoring point of the bridge 

was also used in the present study is the top of the pier that exhibits the most critical 

plastic rotation (again, for identical pier and deck displacements), which does not have to 

be the same for all individual analyses (i.e. for all modes). An initial analysis of the 

structure for each mode is required in the last case, to define the most critical location 

that will be used for constructing the relevant pushover curve (Figure 2-4); even this extra 

effort is not always enough when multiple earthquake intensities are considered, since the 

location of the critical point might change as the bridge enters the inelastic range and the 

relative contribution of each mode possibly changes. In this study, effect of the selection 

of the monitoring point on the shape of the pushover curve will be studied considering 

the three different proposals of control node mentioned before. 

2.4.2.2 Pushover Curve 

The pushover analysis method is the process where the structure is subjected to 

monotonically increasing lateral forces with an invariant distribution until the structure 

reaches a predetermined target displacement or collapses. The distribution of lateral 

inertia forces varies continuously during earthquake response. Loading pattern is the most 
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important factor affecting the relative magnitudes of shears, moments, and deformations. 

If an invariant load pattern is used, the basic assumptions are that the distribution of 

inertia forces will be reasonably constant throughout the earthquake and that the 

maximum deformations obtained from this invariant load pattern will be comparable to 

those expected in the design earthquake. Different load patterns were implemented before 

to represent the distribution of lateral inertia forces on bridges. Patterns like the uniform 

load pattern, a modal load pattern corresponding to the fundamental mode or load pattern 

based on the modal forces combined were previously used. 

In this study, separate pushover analyses were carried out for force distributions;

nn ms φ=* , where m is the mass matrix of the structure, for each significant mode, φn, of 

the bridge as was explained in section 2.3.3. 

Also, a critical issue in MPA is the way that response quantities individually 

calculated for each mode are superimposed, in the sense that modal contributions should 

correspond to the same earthquake intensity. Most of the currently available procedures; 

(FEMA-356, 2000), (ATC-40, 1996), or (Eurocode 8, 2004), developed for SPA require 

that the pushover curve be idealized as a bilinear curve (Figure 2-4—left), so that a yield 

point and ductility factor can be defined and then be used to appropriately reduce the 

elastic response spectra representing the seismic action considered for assessment. 

Paraskeva et al. (2006) suggested doing this once using the full pushover curve. 
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μR
SS ae

a =        (2.40)  

aaeded STST
R

S
R

S 2

2

2

2

44 π
μ

π
μμ

μμ

===     (2.41)  

Where μ is the ductility factor defined as the ratio between the maximum displacement 

and the yield displacement, and Rμ is the reduction factor due to ductility, i.e. due to the 

hysteretic energy dissipation of ductile structures. Several proposals have been made for 

the reduction factor Rμ. In this study, the formula proposed by (Vidic, Fajfar, & 

Fischinger, 1994) was used. They provide reasonably accurate results, very simple and 

suited for the use in the capacity spectrum method format. 

o
o

TT
T
TR ≤+−=     ,1)1(μμ      (2.42)  

oTTR ≥=      , μμ       (2.43)  

cco TTT ≤=    65.0 3.0μ       (2.44)  

Tc is the characteristic period of the ground motion. It is typically defined as the transition 

period where the constant acceleration segment of the response spectrum passes to the 

constant velocity segment of the spectrum. 
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Starting from the typical elastic design spectrum (as will be discussed in section 3.5.1), 

and using equations (2.40) – (2.44), the demand spectra for the constant ductility factors 

μ in the Acceleration-Displacement Response Spectrum (ADRS) format can be obtained.  

This calculated displacement demand refers to SDOF system and should be 

correlated to those of the actual bridge. In order to convert the displacement demand of 

the nth mode inelastic SDOF system to the peak displacement of the monitoring point, 

equation 2.32b will be used. Then response quantities of interest corresponding to that 

displacement demand of the nth mode can be evaluated. 

2.4.2.4 Number of modes considered 

It is noted that in the case of bridges, the number of modes that have to be 

considered is significantly higher than in the case of buildings; where considered modes 

should contribute to 90% of the total mass (a criterion commonly used in seismic codes). 

In fact, in order to capture all modes whose masses contribute to at least 90% of the total 

mass of a complex bridge structure, it might need up to a few hundred modes. On the 

other hand, work carried out by Paraskeva et al. (2006) and results from current study for 

bridge no. 1 have shown that there is little merit in adding modes whose participation 

factor is very low (say less than 1%), and less rigid rules than the 90% one (calibrated 

only for buildings) could be adopted. 
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2.4.3 Step-by-step Extended MPA procedure for Bridges 

1. Compute the natural periods, Tn and modes φn, for linearly elastic vibration of the 

structure.  

2. Carry out separate pushover analyses for force distribution, nn ms φ=∗ , where m is 

the mass matrix of the structure, for each significant mode of the bridge, and 

construct the base shear vs displacement of the monitoring point (Vbn−urn) 

pushover curve for each mode. Gravity loads are applied before each MPA, and 

P-Δ effects are included, if significant (e.g. bridges with tall piers). It is noted that 

the value of the lateral deck displacement due to gravity loads, urg, is negligible 

for a bridge with nearly symmetrically distributed gravity loading. 

3. The pushover curve must be idealized as a bilinear curve so that a yield point and 

ductility factor can be defined and then used to appropriately reduce the elastic 

response spectra representing the seismic action considered for assessment. This 

idealization can be done in a number of ways, some more involved than others; it 

is suggested to do this once as recommended by Paraskeva et al. (2006) (as 

opposed, for instance, to the (ATC-40, 1996) procedure) using the full pushover 

curve (i.e. analysis up to ‘failure’ of the structure, defined by a drop in peak 

strength of about 20%) and the equal energy absorption rule (equal areas under 

the actual and the bilinear curve). Remaining steps of the MPA procedure can be 

applied even if a different method for producing a bilinear curve is used.   
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4. Converting the idealized pushover curve (Vbn – ucn) of the multi-degree-of-

freedom (MDOF) system (calculated in Step 3) to a capacity diagram, as shown in 

Figure 2-4—right. The base shear forces and the corresponding displacements in 

each pushover curve are converted to spectral accelerations (Sa) and spectral 

displacements (Sd), respectively, of an equivalent single-degree-of-freedom 

(SDOF) system, using the relationships [Chopra and Goel (2002),                  

ATC-40(1996)]: 

∗=
n

bn
a M

V
S       (2.45) 

cnn

cn
d

u
S

φΓ
=       (2.46) 

Wherein φcn is the value of the mode shape φn at the reference (or monitoring) 

point, nnn LM Γ⋅=∗  is the effective modal mass, 1⋅= mL T
nn φ , nnn ML /=Γ , and 

n
T
nn mM φφ= is the generalized mass, for the nth natural mode.  For inelastic 

behavior, the procedure used here for estimating the displacement demand at the 

monitoring point is based on the use of inelastic spectra previously explained in 

section 2.4.2.3 

5. Conversion of the displacement demand of the nth mode inelastic SDOF system 

to the peak displacement of the monitoring point, ucn of the bridge, using Equation 

(2.46). 
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6. If the structure remains elastic or close to the yield point, the procedure suggested 

in section  2.4.2.3 is used to estimate seismic demands for the bridge. For cases 

that significant inelasticity develops in the structure, a correction is made to the 

displacement of the monitoring point of the bridge, which was calculated at the 

previous step, to estimate the modified control point displacement cnu′  .  The 

response displacements of the structure are evaluated by extracting from the 

database of the individual pushover analyses the values of the desired responses at 

which the displacement at the control point is equal to ucn (see equation 2.46). 

These displacements are then applied to derive a new vector φn′, which is the 

deformed shape (affected by inelastic effects) of the bridge subjected to the given 

modal load pattern. The target displacement at the monitoring point for each 

pushover analysis is calculated again with the use of φn′, according to: 

dncnncn Su ⋅′⋅Γ′=′ φ       (2.47)  

Wherein Sdn is the displacement of the SDOF system and nΓ′  is Γn recalculated     

using nφ′ . 

7. The response quantities of interest (displacements, plastic hinge rotations, forces 

in the piers) are evaluated by extracting from the database of the individual 

pushover analyses the values of the desired responses rn, due to the combined 
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effects of gravity and lateral loads for the analysis step at which the displacement 

at the control point is equal to cnu′  (see equation 2.47). 

8. Steps 3 to 7 are repeated for as many modes as required for sufficient accuracy.  

9. The total value for any desired response quantity (and each level of earthquake 

intensity considered) can be determined by combining the peak ‘modal’ 

responses, rno using an appropriate modal combination rule, e.g. the SRSS 

combination rule, or the CQC rule. This simple procedure was used for 

displacements, total base shear and plastic hinge rotations in the present study, 

which were the main quantities used for assessing the bridges analyzed (whose 

response to service gravity loading was, of course, elastic).  
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In the longitudinal direction, the pinned intermediate pier columns (Pier numbers 

1, 2, and 3 in Unit 1, and pier numbers 6 and 7 in Unit 2) are assumed to resist the entire 

longitudinal seismic force. The seat type abutments and the expansion joint at pier No. 4 

will accommodate significant motion in the longitudinal direction and provide restraint in 

the transverse direction. The two units of the bridge are assumed to act independently for 

longitudinal motion. This behavior is illustrated in Figure 3-5. 

In the transverse direction, the structure is assumed to act as a two-rigid link 

system pivoting at the abutments with maximum transverse displacement at pier No. 4. 

All of the intermediate piers and abutments are assumed to participate in resisting the 

transverse seismic force. This behavior is illustrated in Figure 3-6. The intermediate pier 

foundations were modeled with equivalent linear spring stiffnesses for the pile group. 
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The superstructure area and moments of inertia include the concrete deck, the girder 

webs, and both flanges with steel transformed to concrete using a modular ratio, n=8. 

L= 1488 ft Overall length of bridge. 

L1= 620 ft Length of Unit 1. 

L2= 865 ft Length of Unit 2. 

Ad= 60 ft2 Cross section area of superstructure and deck. 

(Steel transformed to concrete with n=8) 

Izd= 518 ft4 Moment of inertia of superstructure about a horizontal axis. 

(Steel transformed to concrete with n=8) 

Iyd= 9003 ft4 Moment of inertia of superstructure about a vertical axis. 

(Steel transformed to concrete with n=8) 

fc
’= 4000 psi Compressive strength of concrete. 

Ec= 3600 ksi Young’s modulus of concrete. 

J= 5.906 ft4 Torsional constant of superstructure. 

The torsional constant of the superstructure is calculated using only the deck. The 

contribution to torsional resistance offered by warping of the steel sections has been 

ignored since it is too small. 

3.2.1.2 Substructure 

The intermediate piers are modeled with three-dimensional frame elements that 

represent the individual columns. Figure 3-8 shows the relationship between the actual 

pier and the stick model of the three-dimensional frame elements. Four elements were 
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used for the column between the top of the footing (node 3xx) and the bearing (node 

6xx). The first element from the bottom is the plastic hinge element which represents the 

inelastic behavior of the column. . Length of the plastic hinge was calculated using the 

following formula, (Priestly, Seible, & Calvi, 1996): 

blyeblyep dfdfLL 3.015.008.0 ≥+=      (3.1)  

Where:  

dbl is the diameter of the longitudinal reinforcement (ft). 

 fye is the effective yield strength of steel reinforcement (ksi). 

L is the distance from the critical section of the plastic hinge to the point of               

contra-flexure (ft). 

In this example, L = the clear height of the column since the column base is pinned. The 

second element is the actual column element. The third element represents the varying 

section between the column section and the column head, which is modeled by the fourth 

element. The moments of the inertia for the column and the plastic hinge elements are 

based on a cracked section calculated using the moment-curvature and moment-rotation 

curves as will be discussed in Appendix A. Foundation springs are connected to the node 

(2xx) at the base of the pile cap. There are no elements to model the abutments, only 

support nodes as shown in Figure 3-7. 
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In the actual structure, internal forces are transferred between the superstructure 

and the pier through the bearings. In the seismic model, the superstructure forces are 

transferred at the single point where the superstructure and pier intersect. At pinned piers, 

node (6xx) in Figure 3-8 transfers shears from the superstructure in all directions, and is 

released for moment in the longitudinal direction. At Piers Nos. 4, 5, and 8 which are free 

to move longitudinally, only transverse shears are transferred. 

Figure 3-9 shows modeling details for the connection at the top of Pier No. 4, 

which is the location of the expansion joint between Unit 1 and Unit 2.  

If the ends of the adjacent superstructure elements are connected directly to node 

(741) and these element ends are released for longitudinal translation and rotation, the 

node (741) is still attached to the top of the rigid link and will receive the tributary mass 

from each end of the attached superstructure. This will result in longitudinal shears being 

transmitted to Pier No. 4 though the super structure is free to move longitudinally there 

and should transfer no shear. 
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superstructure elements in the longitudinal direction, for which the superstructure is free 

to move. The three coincident elements are given the same displacements in the 

transverse direction. 

Piers Nos. 5 and 8 have sliding bearings to allow unrestrained longitudinal 

motion. Translational and rotational releases are provided at the top end of the rigid link 

element. The direction for the releases is in the local column coordinate system, and so is 

oriented tangential to the point of curvature at the center of the pier. 

At the sliding piers and the expansion locations, several types of bearings could 

be used to accommodate the expected displacements. Elastomeric bearings with 

provision for sliding between the bearing and the girder under large displacements would 

work. The transverse restraint would be provided by girder stops to transfer transverse 

seismic forces to Piers Nos. 4, 5, and 8 and the abutments. 

Foundation Stiffness 

The intermediate pier foundations were modeled with equivalent spring 

stiffnesses for the pile group. Details of the spring supports are shown in Figure 3-10. For 

this bridge, all the intermediate piers use the same foundation springs. The spring 

stiffnesses are developed for the local pier support coordinate geometry and are input into 

SAP2000 model with the same orientation as the local pier columns. The local axes for 

the spring support nodes are identified differently in Figure 3-10 from the local axis of 

the column elements. The pier foundation stiffnesses used in the model for producing 
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φy is the curvature at yield estimated by using a bilinear curve to represent the M-φ curve 

Mn is the nominal moment corresponding to φy   

Ec is the concrete modulus of elasticity Ie is the effective moment of inertia 

Using this equation, Ie can be calculated directly from the M-φ curve.  Also, from the M-φ 

curve, the moment rotation (M-θ) curve can be developed. The moment-rotation curve is 

generated in order to estimate the flexural stiffness of the nonlinear springs used to 

represent the plastic hinges. 

Calculations for different values needed to define the plastic hinge properties for 

the pushover analysis as well as springs stiffnesses for the time history analysis will be 

presented in Appendix A. 
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3.3.1.1 Superstructure 

The superstructure has been modeled with four elements per span and the work 

lines of the elements are located along the centroid of the superstructure. The total mass 

of the structure was lumped to the nodes of the superstructure (nodes 1-13 in Figure 

3-17). An additional load of 2.35 kips per linear foot of superstructure was considered to 

represent loads from traffic barriers and wearing surface overlay. The weight of the mid-

span diaphragms was lumped to the nodes of the mid-spans. Weight of the cap beams and 

half weight of the bents were lumped to nodes of the superstructure corresponding to 

bents (nodes 5 and 9 in Figure 3-17) since weight of the bent columns is not significant. 

The properties of the structure used in the seismic model (both superstructure and 

substructure) are shown in table 3-1. Determination of the moment of inertia and 

torsional stiffness of the superstructure are based on uncracked cross sectional properties 

because the superstructure is expected to respond linearly to seismic loadings. The 

presence of skew is accounted for only in the orientation of the substructure elements, 

and is not considered in determination of the superstructure properties. 
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Table 3-1 Bridge No. 2 – Section Properties for the Bridge Model 

Element Properties CIP Box 
Superstructure Bent Cap Beam Bent Column 

Area (ft2) 72.74 27.00 12.57 

Ix – Torsion (ft4) 1177 100000 (1) 25.13 

Iy – (ft4) 401 100000 (2) 9.00 

Iz – (ft4) 9697 100000 (3) 9.00 
Notes: 

1. This value has been increased for force distribution to bent columns. 
Actual value is Ix = 139 ft4 

2. This value has been increased for force distribution to bent columns. 
Actual value is Iy = 90 ft4 

3. This value has been increased for force distribution to bent columns. 
Actual value is Iz = 63 ft4 

3.3.1.2 Substructure 

The bents and abutments are skewed 30 degrees from the center line of the 

superstructure. Since the bent columns are circular, which gives the same properties at 

any angle; properties of the bent columns were input in the global coordinates in order to 

have compatible results for the MPA and the nonlinear time history analysis without 

recourse to transform from local coordinates to global coordinate. 

There are no elements to model the abutments; only support nodes are shown in 

Figure 3-17. The bents are modeled with three-dimensional frame elements that represent 

the cap beams and individual columns. Figure 3-18 shows the relationship between the 

actual bent and the stick model. Since columns are pinned to the column bases, two 

elements were used to model each column between the top of footing and the soffit of the 
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 Foundation springs are connected to the node (X00) at the base of the footing, 

Figure 3-19. The moments of inertia for columns were calculated based on the cracked 

section using M-φ curve. (Refer to Appendix A) 

Foundation Stiffness 

The intermediate bent foundations were modeled with equivalent spring 

stiffnesses for the spread footing. Details of the spring supports are shown in Figure 3-19. 

For this bridge, all of the intermediate bent footings use the same foundation springs. 

The stiffnesses are developed for the local bent supports and transformed to global 

support when input to SAP2000 program so as to have compatible results for the MPA 

analysis and the nonlinear time history analysis. Values of stiffnesses for foundation 

springs provided by (FHWA, 1996-a) are used in this study. 

The abutments have been modeled with a combination of full restraints (vertical 

translation and superstructure torsional rotation) and an equivalent spring stiffness 

(transverse translation), as shown in Figure 3-19. Other degrees of freedom are all 

released. 
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3.5.1 Design Response Spectrum 

In this section, design response spectrums generated, for each bridge model, using 

the USGS seismic parameters program will be discussed. 

3.5.1.1 Bridge No 1 

This bridge is to be built across a large river and flood plain in the inland pacific 

Northwest zone in a seismic zone with an acceleration coefficient of PGA = 0.15g 

according to (FHWA, 1996-b). It is assumed that the column size of the intermediate 

piers in not controlled by seismic loading because the bridge crosses the flood plain and 

main channel of a sizable river. Flow issues and ice loading have dictated the size 

requirements for the pier columns. Due to the issue previously discussed, the bridge is 

expected to respond linearly to seismic loading of PGA = 0.15g. In order to ensure that 

the bridge response is in the inelastic range, the bridge will be assessed for higher values 

of PGA. An acceleration coefficient (PGA) of 0.45g and 0.60g were used in this study. 

Figure 3-24 shows the design response spectra (5% damped) used for this bridge. 

3.5.1.2 Bridge No. 2 

The bridge is to be built in the western united states in a seismic zone with an 

acceleration coefficient of PGA = 0.3g according to (FHWA, 1996-a). The bridge will be 

assessed for two different spectra, the design response spectrum as well as 1.5 times the 

design response spectrum. Design response spectra (5% damped) for this bridge are 

shown in Figure 3-25. 
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3.5.1.3 Bridge No. 3 

As mentioned before, bridge no. 3 is the same as bridge no. 2 with some 

modifications. The same seismic response spectra of bridge no. 2 are used for both 

bridges. 

 

Figure 3-24 Bridge No. 1 – Damped Response Spectrum (5%-Damped) 
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Figure 3-25 Bridge No.2 – Damped Response Spectra (5% Damped) 
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3.5.2 Acceleration Time Histories 

In this study, nonlinear time history analysis (NL-THA) was performed to the 

three bridges in order to compare its results with the MPA analysis results. Three actual 

acceleration histories were implemented in this study; which were adjusted to match the 

design response spectrum for each analysis case. A uniform damping value of 3% was 

assumed for all analyses. Those actual acceleration time histories are: 

• El Centro 1940 

• Northridge 1994, Century City Lacc North. 

• Santa Monica 1994, City Hall Grounds. 

Acceleration time-histories used in this study were obtained from PEER NGA Database 

(PEER, 2005) and are shown below: 
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Figure 3-26 Acceleration Time-History of the El Centro Earthquake 

 

Figure 3-27 Acceleration Time-History of the Northridge-Century City Earthquake 
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Figure 3-28 Acceleration Time-History of the Santa Monica Earthquake 

‐0.4

‐0.3

‐0.2

‐0.1

0

0.1

0.2

0.3

0 10 20 30 40 50 60

A
cc

el
er

at
io

n 
(g

)

Time (Seconds)

Santa Monica Earthquake



 

fo

ev

T

an

th

m

st

ca

d

d

th

pr

ch

th

4. EVAL

 INTR4.1

The re

or the case o

valuated com

The bridges a

nalyzed for 

he accuracy 

Defin

maximum dis

tructure. Acc

ase of bridg

iscussed in t

Devel

iscussed in 

he structure.

rocedure for

hapter, maxi

he standard 

LUATIO

RODUCT

ecently deve

of bridges. B

mprehensive

analyzed in t

three differe

of the MPA 

ition of the 

splacement a

cording to th

ges. These l

this chapter a

loping push

sections 2.4

. The objec

r three differ

imum seism

pushover an

ON OF M

TION 

eloped MPA

Being an app

ely before pr

this chapter 

ent ground m

procedure in

control node

and (2) the n

his, three loc

locations wi

as first task w

over curve 

4.2.2, 2.4.2.3

ctive of this

rent real brid

mic demand d

nalysis (SPA

84 

MPA PRO

A procedure 

proximate m

ractical appl

were previo

motions. The

n estimating

e was discus

node which d

cations were 

ill be evalu

when analyz

and estimat

3 and 2.4.3 f

s chapter is 

dges and dif

displacemen

A), MPA (w

OCEDUR

has been te

method, how

lication to b

ously present

e objective 

g demands fo

ssed in secti

displacemen

 proposed fo

uated and re

zing bridge n

tion of the 

for either ela

to evaluate

fferent groun

nt of monito

without inela

RE FOR B

sted by only

wever, it sho

bridge evalua

t in chapter 

of this chap

or different r

ion 2.4.2.1 a

nt reflects th

or the monito

esults will b

no. 1 model.

demand di

astic or inel

e the accura

nd motion e

oring point is

astic behavi

BRIDGE

y few resear

ould obvious

ation and de

3. Each brid

pter is to eva

real bridges.

as (1) the no

he behavior o

oring point i

be illustrated

 

splacement 

lastic behavi

acy of the 

ensembles. In

s predicted u

ior correctio

ES 

rchers 

sly be 

esign. 

dge is 

aluate 

ode of 

of the 

in the 

d and 

were 

ior of 

MPA 

n this 

using 

on for 



 

d

d

n

gr

ac

d

to

fe

re

br

su

co

se

el

el

N

th

br

emand disp

isplacement

ode obtained

round accel

ccuracy in e

 RES4.2

4.2.1 Ef

In ord

emand displ

o be analyze

eet and cons

espectively).

ridge is cha

uperstructure

oncrete deck

ections wide

lements are 

lement mod

NL-THA for 

he analyses 

ridge, as it is

placement), 

cnu′ ) and the

d from the n

leration his

stimating de

SULTS FO

ffect of Co

der to evalu

lacement and

ed. As menti

ists of two s

. It crosses t

aracterized 

e is compos

k of a 42 ft w

ened at the 

oriented no

eling of the 

three accele

presented in

s well known

and the 

en compared

nonlinear tim

tories close

emands from

OR BRIDG

ntrol Node

uate the sel

d also for dr

ioned in sec

eparate unit

he flood pla

by a large 

sed of four 

wide. Piers 

pier top. Pie

rmal to the 

bridge. The

eration time 

n the follow

n that this is

85 

modified M

d with the av

me history (

ely matchin

m the MPA p

GE NO. 1

e 

lection of an

rawing the p

ction 3.2, it h

s (4 spans ta

ain and main

curvature i

steel plate 

are single-co

ers are supp

centerline o

e bridge is a

histories ma

wing, the foc

s the respons

MPA (usin

verage dema

(NL-THA) a

ng the desig

procedure is p

n appropria

ushover curv

has nine spa

angent, unit 

n channel of 

in plan (rad

girders wit

olumn cast-i

ported on st

of the bridge

assessed usin

atching the d

cus is on th

se most affec

ng modified

and displacem

analysis usin

gn response

presented an

ate point for

rve, bridge n

ans with tota

1, and 5 span

f a sizable riv

dius equal t

th a compos

in-place con

eel H-piles. 

e. Figure 4-1

ng SPA and

design respo

he transverse

cted by high

d control 

ment of the 

ng three diff

e spectrum.

nd analyzed.

r monitoring

no. 1 was sel

al length of 

ns curved, u

ver. Unit 2 o

to 1300 ft).

site cast-in-

ncrete rectan

All substru

1shows the 

d MPA as w

onse spectrum

e response o

er modes. 

point 

same 

ferent 

The 

 

g the 

lected 

1488 

unit 2, 

of the 

. The 

-place 

ngular 

ucture 

finite 

ell as 

m. In 

of the 



 

at

1

pr

bu

re

 

Seism

t the abutme

1° (clockwi

rogram. The

uilt-in plasti

espectively. 

 

mic load is ap

ents. The tran

ise) with the

e reference f

ic hinges) an

Figur

pplied perpen

nsverse seism

e global y-a

finite elemen

nd nonlinear

e 4-1 Finite

86 

ndicular to a

mic load is a

axis. Analys

nt model util

r links for s

 Element M

a straight lin

applied in a 

ses are carr

lizes approp

tatic and tim

Model of Bri

ne between th

direction ma

ried out usin

priate plastic 

me history in

idge No. 1 

he two end n

aking an ang

ng the SAP

hinges (soft

nelastic anal

nodes 

gle of 

P2000 

ftware 

lyses, 

 



 

w

il

an

co

(2

th

fa

M

 

 

 

4.2.1.1 D

The d

were determi

llustrate the 

nd 12) with 

ontrol nodes

2.39) and mo

he bridge. T

actors, and m

 

Mode 5: T5=1

Dynamic ch

dynamic cha

ined using 

first four fun

the correspo

s (mass cent

ost critical p

Tables 4.2-4

modal partici

1.028s 

Figure 4

haracterist

aracteristics 

standard eig

ndamental tr

onding natu

ter, equivale

pier for each 

.4 list the m

ipating mass

4-2 Deforme

87 

tics 

required wi

genvalue an

ransverse m

ral periods.

ent SDOF sy

of the four m

modal period

s ratios, resp

ed Shape of

ithin the con

nalysis. Figu

mode shapes 

Table 4-1 li

ystem locati

modes) for t

ds and frequ

ectively.  

f Mode 5 (Br

ntext of the

ure 4-2 thro

of the bridg

ists the loca

ion calculate

the main tran

quencies, mo

ridge No. 1)

 MPA appr

ough Figure

ge (modes 5,

ations of diff

ed from equ

nsverse mod

odal particip

) 

roach, 

e 4-4 

 7, 9, 

ferent 

uation 

des of 

pation 



 

 

M

 

M

 

 

Mode 7: T7=0

Mode 9: T9=0

0.86376s 

Figure 4

0.75944s 

Figure 4

4-3 Deforme

4-4 Deforme

88 

ed Shape of

ed Shape of

f Mode 7 (Br

f Mode 9 (Br

ridge No. 1)

ridge No. 1)

) 

) 



 

M

 

 

X

X

X
W

Mode 12: T12

Table 4-1 L

 

Xmass center/L 

XSDOF/L 

Xcritical pier/L 
Where: L = T

2=0.6756s 

Figure 4-

Locations of

 

(a) 

(b) 

(c) 
Total Length 

-5 Deforme

f different C

Mo

0

0.4

0.

89 

d Shape of M

Control Nod
the Bridg

de 5 M

.5 

413 

44 

 

 

 

 

 

 

 

 

Mode 12 (B

des for the M
ge 

Mode 7 

0.5 

0.4866 

0.44 

Bridge No. 1

Main Transv

Mode 9 

0.5 

0.5038 

0.9 

1) 

verse Mode

Mode

0.5

0.520

0.9

es of 

e12 

5 

05 

9 



90 

 

 

Table 4-2 Modal Periods and Frequencies (Bridge No. 1) 

OutputCase StepType StepNum 
Period Frequency CircFreq Eigenvalue 

Sec Cyc/sec rad/sec rad2/sec2 
MODAL Mode 1.000000 2.218319 4.5079E-01 2.8324E+00 8.0225E+00 
MODAL Mode 2.000000 1.767226 5.6586E-01 3.5554E+00 1.2641E+01 
MODAL Mode 3.000000 1.075853 9.2950E-01 5.8402E+00 3.4108E+01 
MODAL Mode 4.000000 1.075853 9.2950E-01 5.8402E+00 3.4108E+01 
MODAL Mode 5.000000 1.028028 9.7274E-01 6.1119E+00 3.7355E+01 
MODAL Mode 6.000000 0.954703 1.0474E+00 6.5813E+00 4.3313E+01 
MODAL Mode 7.000000 0.863764 1.1577E+00 7.2742E+00 5.2914E+01 
MODAL Mode 8.000000 0.820088 1.2194E+00 7.6616E+00 5.8700E+01 
MODAL Mode 9.000000 0.759435 1.3168E+00 8.2735E+00 6.8451E+01 
MODAL Mode 10.000000 0.757447 1.3202E+00 8.2952E+00 6.8811E+01 
MODAL Mode 11.000000 0.704497 1.4195E+00 8.9187E+00 7.9543E+01 
MODAL Mode 12.000000 0.675598 1.4802E+00 9.3002E+00 8.6493E+01 
MODAL Mode 13.000000 0.659078 1.5173E+00 9.5333E+00 9.0884E+01 
MODAL Mode 14.000000 0.642600 1.5562E+00 9.7778E+00 9.5604E+01 
MODAL Mode 15.000000 0.609872 1.6397E+00 1.0302E+01 1.0614E+02 
MODAL Mode 16.000000 0.595508 1.6792E+00 1.0551E+01 1.1132E+02 
MODAL Mode 17.000000 0.571567 1.7496E+00 1.0993E+01 1.2084E+02 
MODAL Mode 18.000000 0.540418 1.8504E+00 1.1627E+01 1.3518E+02 
MODAL Mode 19.000000 0.517591 1.9320E+00 1.2139E+01 1.4736E+02 
MODAL Mode 20.000000 0.504123 1.9836E+00 1.2464E+01 1.5534E+02 
MODAL Mode 21.000000 0.496003 2.0161E+00 1.2668E+01 1.6047E+02 
MODAL Mode 22.000000 0.440906 2.2681E+00 1.4251E+01 2.0308E+02 
MODAL Mode 23.000000 0.402141 2.4867E+00 1.5624E+01 2.4412E+02 
MODAL Mode 24.000000 0.380742 2.6264E+00 1.6502E+01 2.7233E+02 
MODAL Mode 25.000000 0.358059 2.7928E+00 1.7548E+01 3.0793E+02 
MODAL Mode 26.000000 0.343527 2.9110E+00 1.8290E+01 3.3453E+02 
MODAL Mode 27.000000 0.327286 3.0554E+00 1.9198E+01 3.6856E+02 
MODAL Mode 28.000000 0.318963 3.1352E+00 1.9699E+01 3.8804E+02 
MODAL Mode 29.000000 0.318927 3.1355E+00 1.9701E+01 3.8813E+02 
MODAL Mode 30.000000 0.310327 3.2224E+00 2.0247E+01 4.0994E+02 
MODAL Mode 31.000000 0.296041 3.3779E+00 2.1224E+01 4.5046E+02 
MODAL Mode 32.000000 0.281906 3.5473E+00 2.2288E+01 4.9677E+02 
MODAL Mode 33.000000 0.274613 3.6415E+00 2.2880E+01 5.2350E+02 
MODAL Mode 34.000000 0.270628 3.6951E+00 2.3217E+01 5.3903E+02 
MODAL Mode 35.000000 0.265566 3.7655E+00 2.3660E+01 5.5978E+02 
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Table 4-3 Modal Participation Factors (Bridge No. 1) 

OutputCase StepType StepNum 
Period UX UY UZ 

Sec Kip-s2 Kip-s2 Kip-s2 
MODAL Mode 1.000000 2.218319 16.286228 -5.372288 0.004721 
MODAL Mode 2.000000 1.767226 -16.445294 5.089E-07 0.040074 
MODAL Mode 3.000000 1.075853 -4.330441 0.765917 -1.699E-06 
MODAL Mode 4.000000 1.075853 7.151030 -0.184556 -6.905E-07 
MODAL Mode 5.000000 1.028028 1.955644 22.351909 -0.019497 
MODAL Mode 6.000000 0.954703 2.901254 -0.994532 0.034382 
MODAL Mode 7.000000 0.863764 3.238172 9.892469 0.129679 
MODAL Mode 8.000000 0.820088 0.205518 0.060828 -2.349733 
MODAL Mode 9.000000 0.759435 4.756829 6.231181 0.136658 
MODAL Mode 10.000000 0.757447 1.399897 1.544784 -0.361869 
MODAL Mode 11.000000 0.704497 0.165094 0.000361 4.706851 
MODAL Mode 12.000000 0.675598 -1.797084 -5.369813 -0.124753 
MODAL Mode 13.000000 0.659078 -0.039422 0.188224 -4.603131 
MODAL Mode 14.000000 0.642600 0.011032 -0.001256 -0.338536 
MODAL Mode 15.000000 0.609872 0.972471 -2.216504 -0.088038 
MODAL Mode 16.000000 0.595508 -5.002939 2.946858 -0.000015 
MODAL Mode 17.000000 0.571567 -0.145966 0.191084 0.242052 
MODAL Mode 18.000000 0.540418 -0.618305 -2.664868 0.064822 
MODAL Mode 19.000000 0.517591 -0.043632 -0.049828 12.455965 
MODAL Mode 20.000000 0.504123 0.198835 -3.004847 0.095216 
MODAL Mode 21.000000 0.496003 -0.068450 -0.000071 -8.943761 
MODAL Mode 22.000000 0.440906 0.337685 1.147661 0.001842 
MODAL Mode 23.000000 0.402141 0.040200 -3.124260 0.000302 
MODAL Mode 24.000000 0.380742 0.120389 -2.083737 -0.007920 
MODAL Mode 25.000000 0.358059 -0.217638 -1.410582 0.005131 
MODAL Mode 26.000000 0.343527 -0.008290 -0.204530 0.003092 
MODAL Mode 27.000000 0.327286 -0.305469 -2.866016 -0.003343 
MODAL Mode 28.000000 0.318963 0.039457 7.468300 -0.000825 
MODAL Mode 29.000000 0.318927 0.261722 -0.000097 -5.420651 
MODAL Mode 30.000000 0.310327 -2.397523 -6.721389 -0.002090 
MODAL Mode 31.000000 0.296041 -0.000101 3.484902 -6.676E-07 
MODAL Mode 32.000000 0.281906 -0.402962 0.000060 -0.990414 
MODAL Mode 33.000000 0.274613 0.749481 -0.226454 0.088614 
MODAL Mode 34.000000 0.270628 0.217984 -0.014398 -0.791710 
MODAL Mode 35.000000 0.265566 0.551684 -0.187383 0.044023 
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Table 4-4 Modal Participating Mass Ratios (Bridge No. 1) 

StepType StepNum 
Period 

UX UY UZ SumUX SumUY SumUZ 
Sec 

Mode 1.000000 2.218319 0.28367 0.03087 2.410E-08 0.28367 0.03087 2.410E-08 
Mode 2.000000 1.767226 0.28924 2.770E-16 1.736E-06 0.57291 0.03087 1.760E-06 
Mode 3.000000 1.075853 0.02006 0.00063 3.120E-15 0.59296 0.03149 1.760E-06 
Mode 4.000000 1.075853 0.05469 3.643E-05 5.155E-16 0.64765 0.03153 1.760E-06 
Mode 5.000000 1.028028 0.00409 0.53432 4.110E-07 0.65174 0.56585 2.171E-06 
Mode 6.000000 0.954703 0.00900 0.00106 1.278E-06 0.66075 0.56691 3.449E-06 
Mode 7.000000 0.863764 0.01121 0.10466 1.818E-05 0.67196 0.67157 2.163E-05 
Mode 8.000000 0.820088 4.517E-05 3.957E-06 0.00597 0.67200 0.67157 0.00599 
Mode 9.000000 0.759435 0.02420 0.04153 2.019E-05 0.69620 0.71310 0.00601 
Mode 10.000000 0.757447 0.00210 0.00255 0.00014 0.69830 0.71565 0.00615 
Mode 11.000000 0.704497 2.915E-05 1.394E-10 0.02395 0.69833 0.71565 0.03010 
Mode 12.000000 0.675598 0.00345 0.03084 1.683E-05 0.70178 0.74649 0.03012 
Mode 13.000000 0.659078 1.662E-06 3.789E-05 0.02291 0.70179 0.74653 0.05303 
Mode 14.000000 0.642600 1.302E-07 1.688E-09 0.00012 0.70179 0.74653 0.05315 
Mode 15.000000 0.609872 0.00101 0.00525 8.379E-06 0.70280 0.75178 0.05316 
Mode 16.000000 0.595508 0.02677 0.00929 2.328E-13 0.72956 0.76107 0.05316 
Mode 17.000000 0.571567 2.279E-05 3.905E-05 6.334E-05 0.72959 0.76111 0.05322 
Mode 18.000000 0.540418 0.00041 0.00759 4.543E-06 0.73000 0.76870 0.05323 
Mode 19.000000 0.517591 2.036E-06 2.655E-06 0.16773 0.73000 0.76870 0.22096 
Mode 20.000000 0.504123 4.228E-05 0.00966 9.801E-06 0.73004 0.77836 0.22097 
Mode 21.000000 0.496003 5.011E-06 5.453E-12 0.08648 0.73005 0.77836 0.30745 
Mode 22.000000 0.440906 0.00012 0.00141 3.667E-09 0.73017 0.77977 0.30745 
Mode 23.000000 0.402141 1.728E-06 0.01044 9.858E-11 0.73017 0.79021 0.30745 
Mode 24.000000 0.380742 1.550E-05 0.00464 6.782E-08 0.73019 0.79485 0.30745 
Mode 25.000000 0.358059 5.066E-05 0.00213 2.846E-08 0.73024 0.79698 0.30745 
Mode 26.000000 0.343527 7.350E-08 4.474E-05 1.034E-08 0.73024 0.79702 0.30745 
Mode 27.000000 0.327286 9.979E-05 0.00878 1.208E-08 0.73034 0.80581 0.30745 
Mode 28.000000 0.318963 1.665E-06 0.05965 7.361E-10 0.73034 0.86546 0.30745 
Mode 29.000000 0.318927 7.326E-05 1.003E-11 0.03177 0.73041 0.86546 0.33921 
Mode 30.000000 0.310327 0.00615 0.04832 4.723E-09 0.73656 0.91378 0.33921 
Mode 31.000000 0.296041 1.099E-11 0.01299 4.818E-16 0.73656 0.92676 0.33921 
Mode 32.000000 0.281906 0.00017 3.864E-12 0.00106 0.73673 0.92676 0.34027 
Mode 33.000000 0.274613 0.00060 5.484E-05 8.489E-06 0.73733 0.92682 0.34028 
Mode 34.000000 0.270628 5.082E-05 2.217E-07 0.00068 0.73738 0.92682 0.34096 
Mode 35.000000 0.265566 0.00033 3.755E-05 2.095E-06 0.73771 0.92686 0.34096 
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4.2.1.2 Pushover Curves 

Applying the modal load pattern of the 5th, 7th, 9th and 12th modes in the transverse 

direction of the bridge, the corresponding pushover curves were derived with respect to 

the deck displacement at the location of: (1) pier location nearest to deck mass center 

point; (2) the position of the corresponding equivalent SDOF system; (3) the most critical 

pier (in terms of maximum plastic rotation) for each individual modal load pattern. To 

identify the most critical pier in order to construct the pushover curve with respect to that 

location, a preliminary pushover analysis for each mode is needed. After carrying out 

these analyses, it was decided to draw the pushover curve of both the 5th and 7th modes 

(first & second fundamental transverse modes) in terms of the deck displacement at pier 

no. 4 (P4), see Figure 4-1 and that of the 9th and 12th modes (third & fourth fundamental 

transverse modes) in terms of the deck displacement at pier no. 8 (P8). The pushover 

curves were then idealized as bilinear curves. Bilinearization is carried out using equal 

energy absorption concept. The bilinearized pushover curves for the four transverse 

modes were converted to the capacity curves. Curves were drawn with respect to the 

mass center of the deck, position of equivalent SDOF system and critical pier locations as 

shown in Figure 4-6. 

It is noted that these curves are not necessarily representative of the actual 

response of all structural members of the bridge. For example, the capacity curves 

corresponding to modes 9 and 12 are rather linear (with respect to deck mass center and 

equivalent SDOF system), hence conveying the impression that the bridge does not enter 
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the inelastic range when subjected to the 9th or 12th modal load pattern. In reality, it is 

only the central pier region (pier no. 4) that responds elastically in that case, whereas the 

edge piers do enter the inelastic range; this is due to the form of those higher modal load 

patterns which are not critical for the central region of the bridge (see Figure 4-4 and 

Figure 4-5). 

 

Figure 4-6 Capacity curves derived with respect to the deck displacement: (a) at the 
location of the deck mass center; (b) at the location of the equivalent SDOF system; 

and (c) at the location of the most critical pier for each mode.  
(The elastic spectrum of the design earthquake is also shown) 

By comparing the capacity curves constructed with respect to the three different 

control node locations, it is clear that the capacity curves produced using the most critical 
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pier location are more representative of the actual behavior of the bridge, since they 

indicate that at some stage of the response one or more piers of the structure yield. In the 

studied bridge, the capacity curves of Figure 4-6 using the most critical pier  indicate that 

yielding of the structure will initiate from its response to the fundamental transverse 

mode (5th mode) followed by yielding due to the 7th mode then the 9th mode. 

4.2.2 Demand Displacement 

The inelastic spectra based version of CSM is used to define the displacement 

demand for a given earthquake intensity. To investigate the effect of the level of 

inelasticity on the calculated response, different levels of excitation were considered, i.e. 

peak ground acceleration PGA=0.45g and 0.60g. 

Figure 4-7 illustrate the deck displacements of bridge no. 1 derived from modal 

pushover analysis using modal load pattern of mode no. 5 (bridge responded inelastically 

to this load pattern), while Figure 4-8 illustrate the total deck displacements of bridge no. 

1 derived using modal pushover analysis (after combining modal displacements from all 

four modal load patterns), with respect to different control point locations for excitation 

of PGA=0.45g. Considering the first four transverse modes assures that these modes 

contribute to 75% of the total mass of the bridge structure. Adding more modes in order 

to capture all modes whose masses contribute to at least 90% of the total mass of the 

bridges (a criterion commonly used in seismic codes) was also studied (as shown in 

Appendix B) and based on the results, it was found that there was little merit in adding 
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modes whose participation factor is very low, say less than 1%, and less rigid rules than 

the 90% one (calibrated only for buildings) could be adopted. 

Inelasticity developed in the bridge behavior was not considered and the peak 

displacement of the monitoring point of the bridge, ucn, was calculated using equation 

(2.46) (no correction was made to control point displacement). It was found that deck 

displacements derived with respect to different control points are not identical, but rather 

the estimated deformed shape of the bridge depends on the monitoring point selected for 

drawing the pushover curve. This would also be explained due to the fact that ucn will 

differ because of the deviation of the elastic mode shape φn from the actual deformed 

shape of the structure, and also the spectral displacement Sd is dependent on the selection 

of monitoring point if the structure exhibits inelastic behavior. 

Same trends were also noticed for ground excitation of PGA = 0.60g as shown in 

Figure 4-9 and Figure 4-10. Deck displacements derived with respect to the control point 

of deck mass center are different from those displacements derived with respect to either 

control point of equivalent SDOF system or most critical pier which were found to be 

rather identical. 
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Figure 4-7 Modal deck displacements derived with respect to different control 
points – Mode 5 load (Ag=0.45) 

 

Figure 4-8 Modal deck displacements derived with respect to different control 
points – ucn (Ag=0.45) 
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Figure 4-9 Modal deck displacements derived with respect to different control 
points – Mode 5 load (Ag=0.60) 

 

Figure 4-10 Modal deck displacements derived with respect to different control 
points – ucn (Ag=0.60) 
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In order to take the inelastic behavior of the bridge into account and to apply the 

proposed modified MPA method where an improved target displacement of the 

monitoring point ( cnu ′ ) is calculated (from equation (2.40), the actual deformed shape of 

the structure ( nφ′ ) will be used. For example, the actual deformed shapes of the modal 

load pattern of mode 5 (as shown in Figure 4-7 and Figure 4-9 for ground excitation of 

PGA = 0.45g and 0.60g respectively) will be used as the new modal load nφ′ , and then the 

modified target displacement cnu ′ will be calculated. 

Figure 4-11 to Figure 4-14 illustrate the deck displacements of the studied bridge 

calculated from the modified MPA procedure using cnu ′ as a target displacement for 

different ground acceleration intensities. It is noted that deck displacements derived with 

respect to different control points are rather identical and differences are significantly 

reduced and results are deemed acceptable for all practical purposes. 

Based on the previous findings, the most critical pier location can be considered 

as the most practical choice for the monitoring point for either drawing the pushover 

curve or calculating the maximum demand displacement whether inelasticity was already 

developed in the bridge or it is still responding elastically to the seismic load. 
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Figure 4-11 Modal deck displacements derived with respect to different control 
points –mode 5 load only using u’cn  as target displacement according to the 

improved MPA procedure (Ag=0.45) 

 

Figure 4-12 Modal deck displacements derived with respect to different control 
points – using u’cn  as target displacement according to the improved MPA 

procedure (Ag=0.45) 
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Figure 4-13 Modal deck displacements derived with respect to different control 
points –mode 5 load only using u’cn  as target displacement according to the 

improved MPA procedure (Ag=0.60) 

 

Figure 4-14 Modal deck displacements derived with respect to different control 
points – using u’cn  as target displacement according to the improved MPA 

procedure (Ag=0.60) 
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Evaluation of different procedures 

Results of the standard and modal pushover approaches were evaluated by 

comparing them with those from the NL-THA, the latter is considered to be the most 

rigorous procedure to compute seismic demands. To this effect, a set of three real time 

acceleration records compatible with the design spectrum was used in the NL-THA 

analyses. The deck displacements determined from each of the SPA and MPA analyses 

with respect to the control point of the most critical pier were compared with those from 

NL-THA for increasing levels of earthquake excitation, as shown in Figure 4-15 and 

Figure 4-16 for PGA = 0.45g and 0.60g respectively. 

It is noted that the deck displacements shown in the figures as the THA case are 

the average of the peak displacements recorded in the structure during the three time-

history analyses. 

As shown in Figure 4-15, it is observed that the SPA procedure poorly predicts 

the transverse displacements at the end areas of the bridge and gave better estimates only 

in the area of the central piers; such area is dominated by the first fundamental transverse 

mode. MPA procedure which accounts for four transverse modes predicts well the deck 

displacements of the bridge. On the other hand, the modified MPA procedure that also 

accounts for four transverse modes with a correction made to the demand displacement is 

much closer to NL-THA and gave better predictions at the end areas of the bridge from 

that of the SPA. As the level of excitation increases and higher mode contributions 

become more significant (see Figure 4-16). 
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Figure 4-15 Deck displacements at pier locations for bridge no. 1 calculated from 
SPA, MPA, modified MPA and THA, for PGA = 0.45g 

 

Figure 4-16 Deck displacements at pier locations for bridge no. 1 calculated from 
SPA, MPA, modified MPA and THA, for PGA = 0.60g 
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The displacement profile derived by the modified MPA method tends to match that 

obtained by the NL-THA, whereas predictions from SPA become less accurate as the 

level of inelasticity increases. The consideration of higher modes and the correction made 

to the target displacement significantly improve the accuracy of the predicted deck 

displacements. 

Table 4-5 lists the deck displacement of bridge no. 1 for the case of earthquake 

intensity of PGA = 0.45g calculated using different pushover analyses as well as the NL-

THA as the benchmark to compare with others cases. As shown in the table, modified 

MPA procedure provided the best estimate of deck displacement. The difference between 

the maximum displacement calculated using the modified MPA (at pier no. 4) and that of 

the NL-THA is 8% and the modified MPA displacement profile is closely matching that 

profile derived from NL-THA with differences ranging from 13% at pier no. 6 to 21% at        

pier no. 2. Same observations were noted in the case of applying ground acceleration with 

increased intensity, PGA = 0.60g as shown in Table 4-6 where the structure enters deeper 

into the inelastic range. The difference between maximum demand displacements 

calculated using the modified MPA (at pier no. 4) and that of the NL-THA is 8% and the 

displacement profile derived using modified MPA is closely matching that profile 

derived from NL-THA with differences ranging from 3% at pier no. 3 to 14% at           

pier no. 7. 
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Table 4-5 Modal Deck Displacement for Bridge No. 1 for PGA = 0.45g 

Deck Location  A1  P1  P2  P3  P4  P5  P6  P7  P8  A2 

AVE. THA  Disp. (ft)  0.090 0.212 0.505 0.621 0.867 0.721 0.529 0.320 0.272 0.101 

SPA 
Disp. (ft)  0.013 0.067 0.291 0.499 0.791 0.646 0.390 0.129 0.051 0.012 
Diff. (%)  -86% -68% -42% -20% -9% -10% -26% -60% -81% -88% 

MPA 
Disp. (ft)  0.046 0.179 0.397 0.519 0.856 0.663 0.446 0.240 0.223 0.094 
Diff. (%)  -49% -15% -21% -16% -1% -8% -16% -25% -18% -6% 

Modified 
MPA 

Disp. (ft)  0.046 0.179 0.400 0.540 0.936 0.723 0.460 0.241 0.223 0.094 
Diff. (%)  -48% -15% -21% -13% 8% 0% -13% -25% -18% -6% 

Disp. = Deck Displacement in the transverse direction in feet. 
 

     
 - 

  (%)  .
THA

THAPO

δ
δδ

=Diff  

Where δPO is the deck displacement from pushover analysis, and δTHA is the deck displacement from time 
history analysis.  

 

Table 4-6 Modal Deck Displacement for Bridge No. 1 for PGA = 0.60g 

Deck Location  A1  P1  P2  P3  P4  P5  P6  P7  P8  A2 

AVE. THA  Disp. (ft)  0.111 0.246 0.520 0.680 1.240 0.910 0.609 0.354 0.326 0.126 

SPA 
Disp. (ft)  -0.017 0.067 0.307 0.574 1.073 0.844 0.441 0.136 0.052 -0.014 

Diff. (%)  -115% -73% -41% -16% -13% -7% -28% -62% -84% -111% 

MPA 
Disp. (ft)  0.061 0.232 0.477 0.603 1.161 0.867 0.528 0.303 0.290 0.123 
Diff. (%)  -45% -5% -8% -11% -6% -5% -13% -15% -11% -2% 

Modified 
MPA 

Disp. (ft)  0.065 0.237 0.492 0.698 1.336 0.974 0.548 0.304 0.290 0.124 
Diff. (%)  -41% -4% -5% 3% 7.7% 7% -10% -14% -11% -1.6%

  
Disp. = Deck Displacement in the transverse direction in feet. 
 

     
 - 

  (%)  .
THA

THAPO

δ
δδ

=Diff  

Where δPO is the deck displacement from pushover analysis, and δTHA is the deck displacement from time 
history analysis.   
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4.2.3 Total Base Shear and Plastic Rotations 

In order to further evaluate the results obtained from the MPA analysis, 

comparison is also performed for total base shear and plastic hinges’ rotations at the 

bottom of piers between results from the SPA and MPA with corresponding values from 

the NL-THA procedure for increasing levels of earthquake excitation. 

As for the base shear, both SPA and MPA underestimated the total base shear 

with regard to results from the NL-THA method for different earthquake intensities as 

listed in tables 4-7 and 4-8. 

For PGA=0.45g, SPA underestimates the base shear by about 33% while MPA 

gives a better results and underestimates the base shear by only 28%. On the other hand, 

for PGA=0.60g base shear is underestimated by 33% and 26% for SPA and MPA, 

respectively. 

Tables 4-7 and 4-8 list the plastic rotations at the bottom of the piers derived 

using the SPA and MPA for different excitation levels; 0.45g and 0.60g, respectively 

along with rotations derived from the NL-THA. It is observed that SPA poorly predicts 

plastic rotations for both cases considered while MPA provided better predictions with 

differences range between 8.8% to 25.7% and 3.5% to 31.9% for PGA=0.45g and 0.60g, 

respectively. Another significant advantage of the MPA method is that it is able to 

capture the plastic hinge development at P2 and P7 for PGA=0.60g, something the SPA 
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failed to do, hence, the overall degree of agreement between MPA and NL-THA is 

deemed quite satisfactory. 

Table 4-7 Total Base shear and Plastic rotations at bottom of piers for Bridge no. 1 
(PGA=0.45g) 

 Base 
Shear 

Plastic Rotation 

P1 P2 P3 P4 P5 P6 P7 P8 
THA 12069 0.000461 0.001694 0.002614 0.00469 0.00337 0.002511 0.000639 0.000593 
SPA 8107.41 0 0 0.000716 0.0042 0.00203 0 0 0 

Diff. (%) -32.8% - - -72% -10.5% -29.8% - - - 
MPA 8640 0 0.0013 0.002 0.00428 0.00255 0.001864 0 0 

Diff. (%) -28% - -23.3% -23.5% -8.8% -24% -25.7% - - 

 

 

Figure 4-17 Rotations of plastic hinges at bottom of piers of Bridge no. 1, 
PGA=0.45g 
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Table 4-8 Total Base shear and Plastic rotations at bottom of piers for Bridge no. 1 
(PGA=0.60g) 

 Base 
Shear 

Plastic Rotation 

P1 P2 P3 P4 P5 P6 P7 P8 
THA 12764 0.00067 0.00243 0.004882 0.00692 0.006054 0.00405 0.0011 0.0009 
SPA 8529.5 0 0 0.0012 0.005 0.00345 0.00082 0 0 

Diff. (%) -33.2% - - -72% -10.5% -43% -80% - - 
MPA 9355.32 0 0.0018 0.00375 0.0066 0.00585 0.0033 0.00075 0 

Diff. (%) -26% - -25% -23.2% -4.6% -3.5% -19.5% -31.9% - 

 

 

Figure 4-18 Rotations of plastic hinges at bottom of piers of Bridge no. 1, 
PGA=0.60g
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Mode 4: T4=0

OutputCase

Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 

0.12516s 

Figure 4-

Table 4-9 

e StepType 

Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 

-21 Deform

Modal Peri

StepNum

1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000

10.000000
11.000000
12.000000

111 

med Shape of

iods and Fr

Period 
Sec 

0 0.96600
0 0.52610
0 0.21087
0 0.12516
0 0.08153
0 0.06876
0 0.04848
0 0.03427
0 0.03067
0 0.02427
0 0.02204
0 0.01833

f Mode 4 (B

requencies (

Frequency
Cyc/sec

7 1.0352E+0
0 1.9008E+0
8 4.7421E+0
3 7.9896E+0
5 1.2265E+0
4 1.4543E+0
8 2.0624E+0
2 2.9178E+0
0 3.2605E+0
3 4.1198E+0
5 4.5361E+0
3 5.4547E+0

Bridge No. 2

(Bridge No. 

y CircFreq 
rad/sec 

00 6.5043E+0
00 1.1943E+0
00 2.9795E+0
00 5.0200E+0
01 7.7061E+0
01 9.1373E+0
01 1.2958E+0
01 1.8333E+0
01 2.0486E+0
01 2.5885E+0
01 2.8501E+0
01 3.4273E+0

2) 

2) 

Eigenvalue
rad2/sec2

00 4.2306E+0
01 1.4263E+0
01 8.8777E+0
01 2.5200E+0
01 5.9385E+0
01 8.3491E+0
02 1.6792E+0
02 3.3610E+0
02 4.1969E+0
02 6.7004E+0
02 8.1233E+0
02 1.1747E+0

e 
 

01 
02 
02 
03 
03 
03 
04 
04 
04 
04 
04 
05 
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Table 4-10 Modal Participation Factors (Bridge No. 2) 

OutputCase StepType StepNum 
Period UX UY UZ 

Sec Kip-s2 Kip-s2 Kip-s2 
Modal Mode 1.000000 0.966007 11.908197 0.254998 0.000000 
Modal Mode 2.000000 0.526100 0.273393 -11.131288 0.000000 
Modal Mode 3.000000 0.210878 -1.907E-12 -9.051E-14 0.000000 
Modal Mode 4.000000 0.125163 -0.001474 -4.179216 0.000000 
Modal Mode 5.000000 0.081535 1.396E-11 2.655E-13 0.000000 
Modal Mode 6.000000 0.068764 -3.028E-11 -8.692E-13 0.000000 
Modal Mode 7.000000 0.048488 0.000825 0.654170 0.000000 
Modal Mode 8.000000 0.034272 0.008127 -0.000365 0.000000 
Modal Mode 9.000000 0.030670 7.547E-11 1.627E-12 0.000000 
Modal Mode 10.000000 0.024273 5.445E-10 1.165E-11 0.000000 
Modal Mode 11.000000 0.022045 -0.000359 0.122636 0.000000 
Modal Mode 12.000000 0.018333 0.004605 -0.000223 0.000000 

 

Table 4-11 Modal Participating Mass Ratios (Bridge No. 2) 

OutputCase StepType StepNum 
Period 

UX UY UZ SumUX SumUY 
Sec 

Modal Mode 1.000000 0.966007 0.99947 0.00046 0.00000 0.99947 0.00046 
Modal Mode 2.000000 0.526100 0.00053 0.87331 0.00000 1.00000 0.87377 
Modal Mode 3.000000 0.210878 0.00000 0.00000 0.00000 1.00000 0.87377 
Modal Mode 4.000000 0.125163 1.531E-08 0.12310 0.00000 1.00000 0.99687 
Modal Mode 5.000000 0.081535 0.00000 0.00000 0.00000 1.00000 0.99687 
Modal Mode 6.000000 0.068764 0.00000 0.00000 0.00000 1.00000 0.99687 
Modal Mode 7.000000 0.048488 4.794E-09 0.00302 0.00000 1.00000 0.99989 
Modal Mode 8.000000 0.034272 4.655E-07 9.366E-10 0.00000 1.00000 0.99989 
Modal Mode 9.000000 0.030670 0.00000 0.00000 0.00000 1.00000 0.99989 
Modal Mode 10.000000 0.024273 0.00000 0.00000 0.00000 1.00000 0.99989 
Modal Mode 11.000000 0.022045 9.086E-10 0.00011 0.00000 1.00000 1.00000 
Modal Mode 12.000000 0.018333 1.494E-07 3.512E-10 0.00000 1.00000 1.00000 
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4.3.2 Evaluation of Different Response Quantities 

Displacement demands were derived for bridge no. 2 using the inelastic spectra. 

The demand spectrum was the design one or multiple of it. The bridge was subsequently 

assessed using NL-THA, for ground acceleration records matching the demand spectra. 

Peak ground accelerations of (PGA) 0.30g and 0.45g were considered. Comparison is 

performed for the maximum demand displacement in the transverse direction, total base 

shear and rotations of plastic hinges. 

Evaluation of different procedures 

Results of the standard and modal pushover approaches were evaluated by 

comparing them with those from the NL-THA, the latter is considered to be the most 

rigorous procedure to compute seismic demands. To this effect, a set of three real time 

acceleration records compatible with the design spectrum was used in the NL-THA 

analyses. The deck displacements determined from each of the SPA and MPA analyses 

with respect to the control point of the most critical pier were compared with those from 

NL-THA for increasing levels of earthquake excitation, as shown in Figure 4-22 and 

Figure 4-23 for PGA = 0.30g and 0.45g respectively. 

It is noted that the deck displacements shown in the figures as the THA case are 

the average of the peak displacements recorded in the structure during the three time-

history analyses. As shown in Figure 4-22, it is observed that the SPA procedure predicts 

well the transverse displacements of the bridge and slightly underestimated the maximum 

displacement demand at the mid-span point of the middle span by 5% (2.57 inches 
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compared to the 2.70 inches predicted by NL-THA); such area is dominated by the first 

fundamental transverse mode. Similarly, MPA procedure which accounts for two 

transverse modes predicts well the deck displacements (2.62 inches compared to the 2.70 

inches predicted by NL-THA) of the bridge with only 3% difference and slightly 

improved the displacement profile from that obtained from SPA with regards to results 

derived from the NL-THA. The reason for such close results obtained from the SPA and 

MPA analyses would be to the fact that the first fundamental transverse mode (mode 2) 

contributes to approximately 88% of the mass of the bridge (as shown in Table 4-11). 

As the level of excitation increases, the displacement profiles derived by the MPA 

as well as SPA methods tend to match that obtained by the NL-THA as shown in Figure 

4-23 for the case of earthquake intensity equals 1.5 times the design earthquake intensity. 

MPA slightly overestimated the maximum demand displacement by only 2% (4.1 inches, 

compared to the 3.936 inches predicted by NL-THA). 

Also shown in Figure 4-24 and Figure 4-25 are the plastic rotations at the top of 

the piers derived using the MPA for different excitation levels; 0.30g and 0.45g, 

respectively, along with those rotations predicted from the NL-THA. For the case of 

seismic intensity of PGA = 0.30g, MPA underestimates the plastic rotation by about 13% 

at pier 1 and by 28% at pier 2. On the other hand, as the level of seismic loading 

increases; PGA = 0.45g, MPA overestimates the plastic rotation by only 3% at pier 1 and 

by 4% at pier 2. 
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For the base shear, MPA predicts very well the total base shear of the bridge. For 

the first level of earthquake excitation (PGA=0.30g), a total base shear of 3059.06 kips 

was predicted compared to 2983.02 kips from the NL-THA case with a difference of only 

2.5%. On the other hand, for PGA=0.45g, a base shear value of 4124.8 kips was 

predicted compared to a value of 3877.23 kips from NL-THA with a difference of 6.4%.
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Figure 4-22 Deck displacements for bridge no. 2 calculated from SPA, MPA and 
THA, for PGA = 0.30g 

 

Figure 4-23 Deck displacements for bridge no. 2 calculated from SPA, MPA and 
THA, for PGA = 0.45g 

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13

u c
n

(ft
)

Modal deck displacements

SPA
MPA
 AVE THA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13

u c
n

(ft
)

Modal deck displacements
SPA
MPA
 AVE THA



117 

 

 

Figure 4-24 Plastic rotations at the top of the piers for bridge no. 2, for PGA = 0.30g 

 

Figure 4-25 Plastic rotations at the top of the piers for bridge no. 2, for PGA = 0.45g 
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Mode 4: T4=0

OutputCase

Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 
Modal 

0.12519s 

Figure 4-

Table 4-12

e StepType 

Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 
Mode 

-28 Deform

2 Modal Per

StepNum

1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000

10.000000
11.000000
12.000000

120 

med Shape of

riods and Fr

Period 
Sec 

0.968387
0.524058
0.210797
0.125188
0.081528
0.068767
0.048492
0.034272
0.030672
0.024274
0.022045
0.018333

f Mode 4 (B

requencies (

Frequency
Cyc/sec

1.0326E+00
1.9082E+00
4.7439E+00
7.9880E+00
1.2266E+01
1.4542E+01
2.0622E+01
2.9178E+01
3.2603E+01
4.1197E+01
4.5362E+01
5.4547E+01

Bridge No. 3

(Bridge No.

y CircFreq 
rad/sec 

0 6.4883E+00
0 1.1989E+0
0 2.9807E+0
0 5.0190E+0
1 7.7068E+0
1 9.1370E+0
1 1.2957E+02
1 1.8333E+02
1 2.0485E+02
1 2.5885E+02
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1 3.4273E+02

3) 
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Eigenvalue
rad2/sec2

0 4.2098E+0
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2 1.6789E+04
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Table 4-13 Modal Participation factors (Bridge No. 3) 

OutputCase StepType StepNum 
Period UX UY UZ 

Sec Kip-s2 Kip-s2 Kip-s2 
Modal Mode 1.000000 0.968387 11.911335 -1.556E-11 0.000000 
Modal Mode 2.000000 0.524058 -3.548E-12 -11.134043 0.000000 
Modal Mode 3.000000 0.210797 3.015E-12 1.392E-13 0.000000 
Modal Mode 4.000000 0.125188 3.765E-12 -4.179684 0.000000 
Modal Mode 5.000000 0.081528 1.358E-11 -3.930E-14 0.000000 
Modal Mode 6.000000 0.068767 -3.140E-11 -5.819E-14 0.000000 
Modal Mode 7.000000 0.048492 6.695E-11 0.653963 0.000000 
Modal Mode 8.000000 0.034272 0.008077 -3.169E-16 0.000000 
Modal Mode 9.000000 0.030672 -7.757E-11 -1.548E-15 0.000000 
Modal Mode 10.000000 0.024274 5.559E-10 -5.962E-14 0.000000 
Modal Mode 11.000000 0.022045 8.288E-10 0.122801 0.000000 
Modal Mode 12.000000 0.018333 0.004576 1.046E-13 0.000000 

 

Table 4-14 Modal Participating Mass Ratios (Bridge No. 3) 

OutputCase StepType StepNum 
Period 

UX UY UZ 
Sec 

Modal Mode 1.000000 0.968387 1.00000 0.00000 0.00000 
Modal Mode 2.000000 0.524058 0.00000 0.87374 0.00000 
Modal Mode 3.000000 0.210797 0.00000 0.00000 0.00000 
Modal Mode 4.000000 0.125188 0.00000 0.12313 0.00000 
Modal Mode 5.000000 0.081528 0.00000 0.00000 0.00000 
Modal Mode 6.000000 0.068767 0.00000 0.00000 0.00000 
Modal Mode 7.000000 0.048492 0.00000 0.00301 0.00000 
Modal Mode 8.000000 0.034272 4.598E-07 0.00000 0.00000 
Modal Mode 9.000000 0.030672 0.00000 0.00000 0.00000 
Modal Mode 10.000000 0.024274 0.00000 0.00000 0.00000 
Modal Mode 11.000000 0.022045 0.00000 0.00011 0.00000 
Modal Mode 12.000000 0.018333 1.476E-07 0.00000 0.00000 
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4.4.2 Evaluation of Different Response Quantities 

Displacement demands were derived for bridge no. 3 using the inelastic spectra. 

The demand spectra were the same as that used for bridge no. 2. The bridge was 

subsequently assessed using NL-THA, for ground acceleration records matching the 

demand spectra. Analyses were performed for two levels of seismic load intensity. Peak 

ground accelerations (PGA) of 0.30g and 0.45g were considered. Comparison is 

performed for the maximum demand displacement in the transverse direction, total base 

shear and rotations of plastic hinges. 

Evaluation of different procedures 

Results of the standard and modal pushover approaches were evaluated by 

comparing them with those from the NL-THA, the latter is considered to be the most 

rigorous procedure to compute seismic demands. A set of three real time acceleration 

records compatible with the design spectra was used in the NL-THA analyses. The deck 

displacements determined from each of the SPA and MPA analyses with respect to the 

control point of the most critical pier were compared with those from NL-THA for 

increasing levels of earthquake excitation, as shown in Figure 4-29 and Figure 4-30 for 

PGA = 0.30g and 0.45g respectively. 

It is noted that the deck displacements shown in the figures as the THA case are 

the average of the peak displacements recorded in the structure during the three time-

history analyses. 



123 

 

As shown in Figure 4-29, it is observed that the SPA procedure predicts well the 

transverse displacements of the bridge and slightly underestimated the maximum demand 

displacement by 6% as compared to the NL-THA results at the mid-span point of the 

middle span (2.33 inches compared to the 2.47 inches predicted by NL-THA); such area 

is dominated by the first fundamental transverse mode. Similarly, MPA procedure which 

accounts for two transverse modes predicts well the deck displacements, it 

underestimated the maximum demand displacement by only 3% difference as compared 

to the NL-THA results (2.39 inches compared to the 2.47 inches predicted by NL-THA).  

As noticed before, SPA results matched closely the results from MPA analyses 

and that would be referred to the fact that the first fundamental transverse mode (mode 2) 

contributed to approximately 87% of the total mass of the bridge (as shown in Table 

4-14). 

As the level of excitation increases, the displacement profiles derived by the MPA 

as well as SPA method tend to match that obtained from the NL-THA as shown in Figure 

4-30 for the case of earthquake intensity equals 1.5 times the design earthquake (PGA = 

0.45g). MPA slightly overestimated the maximum demand displacement by 4% as 

compared to the NL-THA results (4.05 inches, compared to the 3.888 inches predicted by 

NL-THA). 

Also shown in Figure 4-31 and Figure 4-32 are the plastic rotations at the top of 

the piers derived using the MPA for different excitation levels; 0.30g and 0.45g, 

respectively, along with those rotations predicted from the NL-THA. For the case of 
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seismic intensity of PGA = 0.30g, MPA underestimates the plastic rotation by about 24% 

at pier 1 and 21% at pier 2. On the other hand, as the level of seismic loading increases; 

PGA = 0.45g, MPA overestimates the plastic rotation by only 8% at pier 1 and 

underestimated it by 1% at pier 2. 

For the base shear, MPA also predicts very well the total base shear of the bridge 

as was noted in bridge no. 2. For the first level of earthquake excitation (PGA=0.30g), a 

total base shear of 2895.3 kips was predicted comparing to 2762.77 kips from the NL-

THA case with a difference of only 4.8%. On the other hand, for PGA=0.45g, a base 

shear value of 4011.89 kips was predicted compared to a value of 3864.66 kips from NL-

THA with a difference of 4.0%. 
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Figure 4-29 Deck displacements for bridge no. 3 calculated from SPA, MPA and 
THA, for PGA = 0.30g 

 

Figure 4-30 Deck displacements for bridge no. 3 calculated from SPA, MPA and 
THA, for PGA = 0.45g 
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Figure 4-31 Plastic rotations at the top of the piers for bridge no. 3, for PGA = 0.30g 

 

Figure 4-32 Plastic rotations at the top of the piers for bridge no. 3, for PGA = 0.45g 
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Table 4-15 Comparison of properties and transverse demands for bridge no. 2 and 
bridge no. 3 

  Bridge No. 2 Bridge No. 3 Ratio 

1st 
Fundamental 
Transverse 

Mode 

Natural 
Period 0.5621 0.52406 1.07258 

Participation 
Factor 11.1312 11.134 0.9997 

Mass 
Participation 

Factor 
87.331% 87.374% 0.9995 

2nd 
Fundamental 
Transverse 

Mode 

Natural 
Period 0.12516 0.1252 0.9996 

Participation 
Factor 4.1792 4.1796 0.9999 

Mass 
Participation 

Factor 
12.31% 12.313% 0.9997 

NL-THA 
(0.30g) 

Demand 
Displacement 

(ft) 

0.22536 0.20571 1.0955 

SPA 0.2144219 0.194233 1.1039 

MPA 0.218591 0.198826 1.099 

NL-THA 
(0.45g) 0.32822 0.32401 1.012 

SPA 0.33625 0.331968 1.012 

MPA 0.34181 0.33759 1.012 

NL-THA 
(0.30g) 

Base Shear 
(kips) 

2983.02 2762.776 1.080 

MPA 3159.06 2895.3 1.091 

NL-THA 
(0.45g) 3877.23 3864.66 1.005 

MPA 4124.8 4011.89 1.028 

3 no. Bridge

2 no. Bridge

ValueParameter 
 ValueParameter 

  Ratio =   
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For regular bridge like bridge no. 2 studied, both methods underestimate the 

demand displacement for lower level of earthquake excitation while for higher levels of 

earthquake excitation, they overestimate demand displacements. On the other hand, total 

base shear is always overestimated by both methods for different levels of earthquake 

load. 

Table 4-16 Comparison of results obtained using NL-THA, MPA, and DCM 
methods 

  
Displacement 

(Inch.) 
Rotation 

(rad) 
Base shear 

(Kips) 

Bridge 
No. 1 

THA (0.45g) 0.87 0.00469 12069 

MPA 0.9358 0.00428 8640 

Diff. (%) +6.3% -8.8% -28% 

DCM 0.83 0.00456 8467 

Diff. (%) -5.7% -3% -30% 

Bridge 
No. 2 

THA (0.30g) 0.225 0.00302 2983.02 

MPA 0.218 0.00262 3059.06 

Diff. (%) -3.2% -13% +2.5% 

DCM 0.215 0.00325 3076.33 

Diff. (%) -4.5% +8% +3.12% 

THA (0.45g) 0.3282 0.00643 3877.23 

MPA 0.3418 0.00663 4124.8 

Diff. (%) +4.1% +3% +6.4% 

DCM 0.335 0.00727 4134.33 

Diff. (%) +2.0% +14% +7% 
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configuration and length, bridge cross-section geometry, radius of curvature and pier 

height. 

Two bridge cross-section shapes were considered. 

• Steel-I girder cross section. 

• Steel Box girder cross section. 

For each cross-section type, six typical bridge models were considered: 

• Two span – 240, and 240 feet long; 

• Two span – 180, and 180 feet long; 

• Two span – 120, and 120 feet long; 

• Three span – 180, 240, and 180 feet long; 

• Three span – 140, 180, and 140 feet long; 

• Three span – 100, 120, and 100 feet long. 

Each of the typical bridge models was analyzed twice using different pier height. 

First, pier height was taken as 50 feet, and then changed to 20 feet in the second analysis. 

It was assumed that the pier and abutment foundations are stiff and fixed restraints were 

assumed in all bridge models. 
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Each of the above 24 bridges was configured as curved bridges with radii of 500, 

1000, and 1600 feet, resulting in 72 bridge configurations. These configurations need to 

be designed first according to the code and design standards and then evaluated using 

both the MPA and the NL-THA procedures. 

The bridge models’ cross sections were analyzed and designed using the software 

DESCUS I (Fu, DESCUS I, 2009) for curved I Girder and DESCUS II (Fu, DESCUS II, 

2009) for Box Girder Bridges, respectively. Descus input files for analyzing and 

designing bridge models are provided in Appendix C.  

The computer programs DESCUS I & II will perform the complete analysis of a 

horizontally curved bridge composed of flanged steel sections or steel box sections, 

respectively, which act either compositely or noncompositely with a concrete deck. The 

program can be run using either Working Stress Design (WSD) method, the Load Factor 

Design (LFD) method or the Load and Resistance Factor Design (LRFD) method. The 

bridge may be of arbitrary plan configuration and can be continuous and skewed over 

supports. The girders may have a high degree of curvature and may be nonconcentric. 

The program models the bridge structure as a two-dimensional grid in a stiffness 

format with three degrees-of-freedom at each nodal point (corresponding to torsion, 

shear, and bending moment). All nodal locations, member connectivity, and properties 

are generated internally from basic input. All dead load (DL) computations are performed 

automatically within the program to satisfy the construction conditions specified by 

AASHTO. Additional dead load (DL) and superimposed dead load (SDL) are allowed to 
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Table 5-1 Section properties for steel I cross sections for different span length 
bridge models (away from pier) 

 120/120 ft 
100/120/100 ft 

180/180 ft 
140/180/140 ft 

240/240 ft 
180/240/240 ft 

Area (ft2) 33.358 45.3845 56.2236 
J (ft4) 3.9203 5.6949 4.7058 

I33 (ft4) 108.7302 387.4543 697.5514 
I22 (ft4) 2705.6243 2991.0215 4531.5778 
Yc.g (ft) 3.7885 5.1537 6.0336 

Table 5-2 Section properties for steel I cross sections for different span length 
bridge models (at pier) 

 120/120 ft 
100/120/100 ft 

180/180 ft 
140/180/140 ft 

240/240 ft 
180/240/240 ft 

Area (ft2) 41.0393 73.99 65.6069 
J (ft4) 4.1582 9.1093 5.5169 

I33 (ft4) 156.883 761.92 871.4363 
I22 (ft4) 3400.2248 4897.3314 5287.266 
Yc.g (ft) 3.6977 4.7221 5.9864 

Table 5-3 Section properties for steel BOX cross sections for different span length 
bridge models (away from pier) 

 120/120 ft 
100/120/100 ft 

180/180 ft 
140/180/140 ft 

240/240 ft 
180/240/240 ft 

Area (ft2) 34.36167 39.82014 70.35483 
J (ft4) 4.312 5.2331 5.721 

I33 (ft4) 185.6136 273.3586 701.9582 
I22 (ft4) 2406.79 2948.364 8157.852 
Yc.g (ft) 4.87891 4.74347 4.4409 

Table 5-4 Section properties for steel BOX cross sections for different span length 
bridge models (at pier) 

 120/120 ft 
100/120/100 ft 

180/180 ft 
140/180/140 ft 

240/240 ft 
180/240/240 ft 

Area (ft2) 42.86167 45.2368 89.91733 
J (ft4) 5.332 5.4271 9.4762 

I33 (ft4) 317.1646 318.9432 865.6376 
I22 (ft4) 2935.909 3350.024 10514.86 
Yc.g (ft) 4.368176 4.469949 4.730373 
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Figure 5-14 Demand response spectrum (5%-Damped) used in the parametric study
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curvature (R=500 ft, 1000 ft, and 1600 ft) and different pier column heights (H=50 ft, and 

20 ft). 

The second group was for 2-span bridge models (with total spans ranged from 

240 ft to 480 ft) with different radii of curvature (R=500 ft, 1000 ft, and 1600 ft) and 

different pier column heights (H=50 ft, and 20 ft). Table 6-1 and Table 6-2 list the data 

used for creating 3-span and 2-span Bridge models with steel I cross sections, 

respectively. 

 

Table 6-1 3-span Bridge models with Steel I cross sections 

Main 
Span 

length (L) 

Bridge 
Configuration

Total 
Span 

Length 
(ft) 

Radius of 
Curvature 

R (ft) 

Curvature 
Angle θ 
(degree) 

Pier 
Column 
Height   
H (ft) 

120 100-120-100 320 
500 37 

50 1000 18 
1600 11 

180 140-180-140 460 
500 53 

50 1000 26 
1600 17 

240 180-240-180 600 
500 69 

50 1000 34 
1600 22 

120 100-120-100 320 
500 37 

20 1000 18 
1600 11 

180 140-180-140 460 
500 53 

20 1000 26 
1600 17 

240 180-240-180 600 
500 69 

20 1000 34 
1600 22 
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Table 6-2 2-span Bridge models with Steel I cross sections 

Main 
Span 

length (L) 

Bridge 
Configuration

Total 
Span 

Length 
(ft) 

Radius of 
Curvature 

R (ft) 

Curvature 
Angle θ 
(degree) 

Pier 
Column 
Height   
H (ft) 

120 120-120 240 
500 28 

50 1000 14 
1600 9 

180 180-180 360 
500 41 

50 1000 21 
1600 13 

240 240-240 480 
500 55 

50 1000 28 
1600 17 

120 120-120 240 
500 28 

20 1000 14 
1600 9 

180 180-180 360 
500 41 

20 1000 21 
1600 13 

240 240-240 480 
500 55 

20 1000 28 
1600 17 

 

Figure 6-1 through Figure 6-6 illustrate the deck displacement profiles obtained 

from 3-span Bridge configurations for different pier column heights using the MPA 

procedure and also comparing the results with those results obtained from the NL-THA 

runs. Furthermore, Figure 6-7 through Figure 6-12 depict deck displacements obtained 

from both the MPA and NL-THA procedures for 2-span Bridge configurations used in 

the current study.  
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Figure 6-1 Deck Displacements for 3-span Steel I Bridge Model L=100-120-100ft, Pier 
Height = 50ft 
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Figure 6-2 Deck Displacements for 3-span Steel I Bridge Model L=140-180-140ft, Pier 
Height = 50ft 
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Figure 6-3 Deck Displacements for 3-span Steel I Bridge Model L=180-240-180ft, Pier 
Height = 50ft 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13

u c
n

(ft
)

Modal deck displacements R=500ft, H=50ft

MPA

 AVE THA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13

u c
n

(ft
)

Modal deck displacements R=1000ft, H=50ft

MPA
 AVE THA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13

u c
n

(ft
)

Modal deck displacements R=1600ft, H=50ft

MPA

 AVE THA



151 

 

Figure 6-4 Deck Displacements for 3-span Steel I Bridge Model L=100-120-100ft, Pier 
Height = 20ft 
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Figure 6-5 Deck Displacements for 3-span Steel I Bridge Model L=140-180-140ft, Pier 
Height = 20ft 
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Figure 6-6 Deck Displacements for 3-span Steel I Bridge Model L=180-240-180ft, Pier 
Height = 20ft 
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Figure 6-7 Deck Displacements for 2-span Steel I Bridge Model L=120-120ft,                       
Pier Height = 50ft 
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Figure 6-8 Deck Displacements for 2-span Steel I Bridge Model L=180-180ft,                       
Pier Height = 50ft 
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Figure 6-9 Deck Displacements for 2-span Steel I Bridge Model L=240-240ft,                       
Pier Height = 50ft 
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Figure 6-10 Deck Displacements for 2-span Steel I Bridge Model L=120-120ft, Pier 
Height=20ft 
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Figure 6-11 Deck Displacements for 2-span Steel I Bridge Model L=180-180ft, Pier 
Height=20ft 
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Figure 6-12 Deck Displacements for 2-span Steel I Bridge Model L=240-240ft, Pier 
Height=20ft
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6.2.2 For Steel BOX Bridges 

The study was further extended to include bridge models with steel BOX cross 

sections. Analysis was performed for different configurations of bridges with the 

previously designed steel BOX cross sections. The first group was for 3-span bridge 

models (with total spans ranged from 320 ft to 600 ft) with different radii of curvature 

(R=500 ft, 1000 ft, and 1600 ft) and different pier column heights (H=50 ft, and 20 ft). 

The second group was for 2-span bridge models (with total spans ranged from 

240 ft to 480 ft) with different radii of curvature (R=500 ft, 1000 ft, and 1600 ft) and 

different pier column heights (H=50 ft, and 20 ft). Same data that was previously used (as 

listed in Table 6-1 and Table 6-2) in creating bridge models with steel I sections using 

SAP2000, was utilized again for creating 3-span and 2-span Bridge models with steel box 

cross sections, respectively. 

Figure 6-13 through Figure 6-18 illustrate the deck displacement profiles obtained 

from 3-span Bridge configurations for different pier column heights using the MPA 

procedure and also comparing the results with those results obtained from the NL-THA 

runs. Furthermore, Figure 6-19 through Figure 6-24 depict deck displacements obtained 

from both the MPA and NL-THA procedures for 2-span Bridge configurations used in 

the current study. 

 



161 

 

Figure 6-13 Deck Displacements for 3-span Steel BOX Bridge Model L=100-120-100ft, Pier 
Height = 50ft 
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Figure 6-14 Deck Displacements for 3-span Steel BOX Bridge Model L=140-180-140ft, Pier 
Height = 50ft 
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Figure 6-15 Deck Displacements for 3-span Steel BOX Bridge Model L=180-240-180ft, Pier 
Height = 50ft 
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Figure 6-16 Deck Displacements for 3-span Steel BOX Bridge Model L=100-120-100ft, Pier 
Height = 20ft 
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Figure 6-17 Deck Displacements for 3-span Steel BOX Bridge Model L=140-180-140ft, Pier 
Height = 20ft 
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Figure 6-18 Deck Displacements for 3-span Steel BOX Bridge Model L=180-240-180ft, Pier 
Height = 20ft 
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Figure 6-19 Deck Displacements for 2-span Steel BOX Bridge Model L=120-120ft, Pier 
Height = 50ft 
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Figure 6-20 Deck Displacements for 2-span Steel BOX Bridge Model L=180-180ft, Pier 
Height = 50ft 
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Figure 6-21 Deck Displacements for 2-span Steel BOX Bridge Model L=240-240ft, Pier 
Height = 50ft 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9

u c
n

(ft
)

Modal deck displacements R=500ft, H=50ft

MPA

 AVE THA

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9

u c
n

(ft
)

Modal deck displacements R=1000ft, H=50ft

MPA

 AVE THA

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9

u c
n

(ft
)

Modal deck displacements R=1600ft, H=50ft

MPA

 AVE THA



170 

 

Figure 6-22 Deck Displacements for 2-span Steel BOX Bridge Model L=120-120ft, Pier 
Height = 20ft 
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Figure 6-23 Deck Displacements for 2-span Steel BOX Bridge Model L=180-180ft, Pier 
Height = 20ft 
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Figure 6-24 Deck Displacements for 2-span Steel BOX Bridge Model L=240-240ft,                  
Pier Height = 20ft
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method for the previously mentioned cases. Difference (%) in the figures can be defined 

as: 

Difference = %100×
−

THA

THAMPA

δ
δδ       (6-1) 

 
Where δMPA is the maximum transverse displacement resulting from the MPA method 

and δTHA is the corresponding displacement resulting from the NL-THA method. 

As shown in Figure 6-25, for steel I bridges, the differences range between 6.1% 

for the case of short spans (100-120-100ft) with largest radius of curvature (1600ft) and 

23% for the case of long spans (180-240-180ft) with smallest radius of curvature (500ft). 

As the span length and curvature angle increases, the difference increases. While for the 

case of steel BOX bridges, the differences range between 11.8% and 13.4% for the same 

cases, respectively. 

Furthermore, for the cases of 3-span Bridge models with steel I and steel BOX 

sections and pier height of 20 ft (figures 6-4 to 6-6 & 6-16 to 6-18, respectively), MPA 

method still predicts well the maximum transverse displacements and displacement 

profiles derived tend to match those obtained from NL-THA with the only difference that 

maximum demand displacements derived using MPA for the cases of medium spans 

(140-180-140ft) are slightly overestimated which is also noticed for the cases of long 

spans while results for short spans are still slightly underestimated. This would be 

explained as in those cases (medium and long spans) the superstructure is more flexible 

compared to the short stiff pier columns. Figure 6-26 shows the differences between the 

maximum demands derived from MPA compared to demands obtained from NL-THA 

for the 3-span cases with pier height of 20 ft. For the steel I cross sections models, the 
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differences range between 5.7% and 15.3% (for short spans with R=1600ft and long 

spans with R=500ft, respectively), while for the cases with steel BOX cross sections, the 

differences range between 0.6% and 7% (for short spans with R=1600ft and long spans 

with R=500ft, respectively). 

For the cases of 2-span Bridge models with steel I and steel BOX cross sections 

and pier height of 50 ft (figures 6-7 to 6-9 & 6-19 to 6-21, respectively), deck 

displacement profiles are still very close to profiles obtained from NL-THA and results 

deemed to be very accurate. As previously noticed in the cases for 3-span bridge models, 

MPA results for 2-span bridge models for short and medium spans are slightly 

underestimated when comparing to NL-THA results while results for long spans models 

are slightly overestimated. Figure 6-27 shows a comparison of the differences in 

maximum demand displacements predicted for the left span of each bridge model for 

both cases of steel I and BOX cross sections with regard to NL-THA demands. The 

differences in the steel I cases range between 0.60% (for the case of short spans (120-

120ft) with radius of curvature = 1600ft) and 23.6% (for the case of large spans (240-

240ft) with radius of curvature = 500 ft). For models with steel BOX cross sections, the 

differences range between 0.10% and 18.90%, respectively. 

Lastly, for the cases of 2-span bridge models with steel I and steel BOX cross 

sections and pier height of 20 ft (figures 6-10 to 6-12 & 6-22 to 6-24, respectively), deck 

displacements results obtained from the MPA procedure are still in good agreement with 

those displacements obtained from the NL-THA except for the case of large spans (240-

240ft) of steel BOX model (with radius of curvature = 500 ft). This case shows the effect 
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of long span length when combined with short pier height (stiff column) and largest 

curvature angle. This bridge would be defined as highly irregular structure where stiff 

pier columns hinder free deformation of the superstructure in the transverse direction and 

therefore, MPA produces a displacement profile that has some discrepancies from those 

of NL-THA.  

MPA procedure for all cases of 2-span Bridge model (short, medium, and long 

spans) with pier height of 20 ft slightly overestimated maximum demand displacements 

when compared to NL-THA method. Figure 6-28 illustrates the differences between the 

maximum demand displacements obtained from MPA and NL-THA for 2-span models 

with steel I and steel BOX sections and pier column height of 20 ft. Models with steel I 

show good agreement with the NL-THA results with differences range between 6.50% 

and 14.90% (for short spans with R=1600ft and long spans with R=500ft, respectively). 

Furthermore, models with steel box cross sections show very good agreement with the 

results from NL-THA except for the case of long spans. MPA predicts well the demand 

displacements for all cases with a maximum difference of 4.0% for the case of short 

spans with R=500 ft, while for the case of long spans with radius of curvature of 500 ft 

the difference is 41%.  
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6.3.2 Total Base Shear 

Evaluation of the MPA procedure was further extended to compare the total base 

shear predicted for different bridge configurations with the results from the NL-THA 

procedure. Table 6-3 lists the total base shear for 3-span bridge models with both cross 

sections and different pier heights while Table 6-4 lists the total base shear for 2-span 

bridge models. It is noticed that for the wide range of bridge models used in the 

parametric study, MPA was slightly unconservative in estimating of the total bas shear. 

For the 3-span bridge models with steel I girders and pier height = 50ft, MPA 

underestimated the base shear with differences range between 16% and 25% (with an 

average of 18.5% and a standard deviation of 869 kips) while for models with pier height 

= 20ft, differences range between 14% and 25% (with an average of 18.3% and a 

standard deviation of 872 kips). 

For the 3-span bridge models with steel BOX girders, results tend to be more 

accurate and close from NL-THA results. For models with pier height = 50ft, MPA 

underestimated the base shear with differences range between 3.1% and 26.6% (with an 

average of 9.8% and a standard deviation of 1245 kips) while for models with pier height 

= 20ft, differences range between 5.3% and 23% (with an average of 15.5% and a 

standard deviation of 1612 kips). 

As for the 2-span bridge models with steel I girders and pier height = 50ft, MPA 

underestimated the base shear with differences range between 11.8% and 24% (with an 

average of 18.16% and a standard deviation of 576 kips) while for models with pier 
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height = 20ft, differences range between 7.5% and 21.9% (with an average of 14.3% and 

a standard deviation of 901 kips). 

Lastly, for the 2-span bridge models with steel BOX girders and pier height = 

50ft, MPA underestimated the base shear with differences range between 3.0% and 

21.3% (with an average of 15.34% and a standard deviation of 806 kips) while for 

models with pier height = 20ft, differences range between 14.8% and 23.2% (with an 

average of 19.2% and a standard deviation of 1249 kips). 

MPA predicts well total base shear and it underestimated results for all cases with 

an average of 16%. 
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Table 6-3 Total Base Shear for 3-span Bridge Models using NL-THA and MPA 

  
Base Shear for Steel I 3-Span Bridge Models (kips) 

Pier Height (H) = 50ft Pier Height (H) = 20ft 

Main 
Span (L) R (ft) THA MPA Diff. (%) THA MPA Diff. (%)

L=120ft 

500 4040.23 3342.3 -17.3% 2634 2098.3 -20.3% 

1000 4195.57 3500.7 -16.6% 3171 2670 -15.8% 

1600 4298.33 3604 -16.2% 3738 3221.5 -14.0% 

L=180ft 

500 5066 3772.6 -25% 4177 3357.14 -20.0% 

1000 5080 4111 -19% 4462 3625 -18.8% 

1600 5123 4304 -16% 4571 3787 -17.2% 

L=240ft 

500 6565 5073.6 -22.7% 5533 4150 -25.0% 

1000 6683 5497.8 -17.8% 5590 4677 -17.0% 

1600 6700 5585.98 -16.7% 5659.13 4724 -16.5% 

  
Base Shear for Steel BOX 3-Span Bridge Models (kips) 

Pier Height (H) = 50ft Pier Height (H) = 20ft 

Main 
Span (L) R (ft) THA MPA Diff. (%) THA MPA Diff. (%)

L=120ft 

500 3284.6 3077.45 -6.3% 2261 1806 -20.1% 

1000 3948.2 3707.34 -6.0% 2653 2207.5 -17.0% 

1600 4021.25 3897.6 -3.1% 2725.52 2404.7 -12.0% 

L=180ft 

500 4246.34 3871.41 -9.0% 3435.32 2645.2 -23.0% 

1000 4791.8 4503.6 -6.1% 3671.33 2886.025 -21.4% 

1600 5179.45 4848.13 -6.3% 4700 3741.27 -20.4% 

L=240ft 

500 6592.74 4837.16 -26.6% 6068 5340 -12.0% 

1000 7110.11 6070.25 -14.6% 6190 5653 -8.7% 

1600 7871.3 7051.22 -10.5% 6285 5952.13 -5.3% 
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Table 6-4 Total Base Shear for 2-span Bridge Models using NL-THA and MPA 

  
Base Shear for Steel I 2-Span Bridge Models (kips) 

Pier Height (H) = 50ft Pier Height (H) = 20ft 

Main 
Span (L) R (ft) THA MPA Diff. (%) THA MPA Diff. (%)

L=120ft 

500 3019.97 2432.5 -21.0% 1619.12 1263.95 -21.9% 

1000 3033.65 2408.95 -20.6% 1664.13 1341.46 -19.4% 

1600 3109.18 2471.8 -20.5% 1668.174 1387.77 -16.8% 

L=180ft 

500 4265.67 3237.35 -24.1% 2796.94 2257.76 -19.3% 

1000 4382 3560.02 -18.8% 2927.63 2706.52 -7.6% 

1600 4405.66 3580.62 -18.7% 3103.67 2871.51 -7.5% 

L=240ft 

500 4061 3429.6 -15.55% 3608.57 3108.68 -13.9% 

1000 4216.38 3689.1 -12.5% 3717 3214 -13.6% 

1600 4296.4 3791.25 -11.8% 3986.85 3654 -8.4% 

  
Base Shear for Steel BOX 2-Span Bridge Models (kips) 

Pier Height (H) = 50ft Pier Height (H) = 20ft 

Main 
Span (L) R (ft) THA MPA Diff. (%) THA MPA Diff. (%)

L=120ft 

500 2766.43 2192 -20.8% 1478.1 1135.68 -23.2% 

1000 2805 2247 -19.9% 1563.56 1233.56 -21.1% 

1600 2858.67 2299.7 -19.6% 1672 1323.88 -20.8% 

L=180ft 

500 3831.06 3015.8 -21.3% 2401 1900 -20.9% 

1000 3858 3152.04 -18.3% 2573.1 2072.38 -19.5% 

1600 3898 3198 -18.0% 2647 2144 -19.0% 

L=240ft 

500 4066.3 3662 -10.0% 4334.07 3529.25 -18.6% 

1000 4467 4118 -7.8% 4856.06 4127.39 -15.0% 

1600 4491.67 4385 -2.4% 5075.76 4319.59 -14.9% 
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Furthermore, results for steel BOX bridges are shown in Figure 6-30. Same trends 

as in the steel I cases are also noted. For 3-span steel box models with 50 ft pier heights, 

models with L= 120 ft have increased demand displacements by 53% than those of 2-

span models for all radii of curvature. For models with L=180 ft, demand displacements 

are increase by 44% for all radii of curvature used, while models with L=240 ft, 

maximum demand displacements are increased by 25%, 31%, and 31% for R= 500, 1000, 

1600 ft, respectively. For 3-span steel box models with 20 ft pier heights, demand 

displacements for models with L=120 ft are increased by 17%, 28%, and 37% for R=500, 

1000, and 1600 ft, respectively. For models with L=180 ft, demand displacements are 

increased by 9% for all radii of curvature, while for models with L=240 ft, displacements 

are increased by 1%, 10%, and 10% for R=500, 1000, 1600 ft, respectively. 

As for the total base shear, Figure 6-31 shows calculated base shear for different 

bridge models with steel I cross sections and Table 6-5 list the percentages of increase.  

3-span bridge models with pier column height = 20ft are more affected by increasing 

bridge length than other models with column height = 50ft. Short spans models (L=120ft) 

with H=20ft are the most affected and had increased base shear by 66%, 99%, and 132% 

for R=500, 1000, and 1600ft, respectively. 

Figure 6-32 and Table 6-6 list the total base shear for bridge models with steel 

box cross sections. Same trends are observed as in the case of steel I girders and also 

short spans models with pier column height = 20ft were the most affected sections by 

increasing bridge length. 
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3-span Bridge model with pier height = 50ft 3-span Bridge model with pier height = 20ft 

  

2-span Bridge model with pier height = 50ft 2-span Bridge model with pier height = 20ft 
 

Figure 6-29 Variation of maximum displacements with radius of curvature for bridge 
models with steel I girders 
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3-span Bridge model with pier height = 50ft 3-span Bridge model with pier height = 20ft 

  

2-span Bridge model with pier height = 50ft 2-span Bridge model with pier height = 20ft 
 

Figure 6-30 Variation of maximum displacements with radius of curvature for bridge 
models with steel BOX girders 
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3-span Bridge model with pier height = 50ft 3-span Bridge model with pier height = 20ft 

  

2-span Bridge model with pier height = 50ft 2-span Bridge model with pier height = 20ft 
 

Figure 6-31 Variation of total base shear with radius of curvature for bridge models with 
steel I girders 
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3-span Bridge model with pier height = 50ft 3-span Bridge model with pier height = 20ft 

  

2-span Bridge model with pier height = 50ft 2-span Bridge model with pier height = 20ft 
 

Figure 6-32 Variation of total base shear with radius of curvature for bridge models with 
steel BOX girders 
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Table 6-5 Total base shear increase (%) for 3-span bridge models with steel I 
sections 

3-span models with Steel I cross sections, H=50ft 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 37% 45% 46% 
L=180 ft 17% 15% 20% 
L= 240 ft 48% 49% 47% 

3-span models with Steel I cross sections, H=20ft 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 66% 99% 132% 
L=180 ft 49% 34% 32% 
L= 240 ft 33% 46% 29% 

 
Table 6-6 Total base shear increase (%) for 3-span bridge models with steel BOX 
sections 

3-span models with Steel BOX cross sections, H=50ft 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 40% 65% 69% 
L=180 ft 28% 43% 52% 
L= 240 ft 32% 47% 61% 

3-span models with Steel BOX cross sections, H=20ft 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 59% 79% 82% 
L=180 ft 39% 39% 74% 
L= 240 ft 51% 37% 38% 
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6.4.2 Influence of radius of curvature (R) 

The influence of radius of curvature on the maximum demand displacements is 

shown in Figure 6-29 and Figure 6-30 for steel I and steel BOX models, respectively. The 

effect is more noticeable for the 3-span models than in the 2-span models. For 3-span 

steel I models with pier height of 50 ft, the maximum demands displacements are 

increased with an average of 7% when the radius of curvature is increased from 500 ft to 

1600 ft, while for models with pier height of 20 ft, maximum displacements are increased 

with an average of 25%. For 3-span steel BOX models with pier height of 50 ft, 

maximum displacements are also increased with an average of 7% while for models with 

pier height of 20 ft, the average increase is 12%. For all cases of 2-span models with 

either steel I or steel BOX and pier height of 50 or 20 ft, maximum demand 

displacements are slightly increased within a range of 1% to 4%.  

Same trends were also noticed for the influence of radius of curvature on the total 

base shear. For 3-span models with steel I sections, base shear was increased by an 

average of 11% and 27% for models with H=50, 20ft respectively when increasing the 

radius of curvature from 500ft to 1600ft while for 2-span models, it was increased by 8% 

and 18%. 

For 3-span models with steel BOX, base shear was increased by an average of 

33% and 29% for models with H=50, 20ft respectively when increasing the radius of 

curvature from 500ft to 1600ft while for 2-span models, it was increased by 10% and 

17%. 
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6.4.3 Influence of Pier height (H) 

Two cases were considered in the study. Bridge models with pier column heights 

of 20 and 50 ft were studied. Maximum demand displacements are significantly 

influenced by pier column’s height. 3-span models are more affected by pier’s height 

than 2-span models for both cross sections considered. Demand displacements’ increases 

are listed as a percentage in Table 6-7and Table 6-8 for steel I and steel BOX models, 

respectively. The increase percentage was calculated as follow: 

Percentage = %100
20)(H 

20)(H 50)(H ×
−

=

==

j

ji

δ
δδ

 

 Where δi is the demand displacement for the case considered where pier height = 50 ft, 

and δj is the corresponding demand displacement value when pier height, H=20 ft. 

From the results shown, it is clear that demand displacements calculated from 3-

span Bridge models with steel I & BOX cross sections for short and medium spans (L) 

are significantly influenced by changing pier height from 20 ft to 50 ft and have the 

largest increase percentages. 

Table 6-9 and Table 6-10 list the percentages for total base shear increases for 

models with steel I and steel BOX, respectively after increasing the pier height from 20ft 

to 50ft. Changing pier height also has significant effect on base shear for 2-span models 

especially for those with short and medium spans. 



194 

 

Table 6-7 Demand displacements increase for Steel I models 
3-span models with Steel I cross sections 

 R=500 ft R=1000 ft R=1600 ft 
L=120 ft 170% 107% 92% 
L=180 ft 90% 66% 66% 
L= 240 ft 61.6% 45% 45% 

2-span models with Steel I cross sections 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 52% 45% 45% 
L=180 ft 40% 35% 34% 
L= 240 ft 14.4% 12.6% 9.7% 

Table 6-8 Demand displacements increase for Steel BOX models 

3-span models with Steel BOX cross sections 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 134% 126% 100% 
L=180 ft 81% 74% 74% 
L= 240 ft 28% 28% 27% 

2-span models with Steel BOX cross sections 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 79% 78% 78% 
L=180 ft 35% 34% 34% 
L= 240 ft 2% 6% 7% 

Table 6-9 Base shear differences for Steel I models 
3-span models with Steel I cross sections 

 R=500 ft R=1000 ft R=1600 ft 
L=120 ft 59.24% 31.11% 11.87% 
L=180 ft 12.38% 13.41% 13.65% 
L= 240 ft 22.26% 17.55% 18.25% 

2-span models with Steel I cross sections 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 92.45% 79.58% 78.11% 
L=180 ft 43.39% 31.53% 24.69% 
L= 240 ft 10.32% 14.78% 3.76% 

Table 6-10 Base shear differences for Steel BOX models 
3-span models with Steel BOX cross sections 

 R=500 ft R=1000 ft R=1600 ft 
L=120 ft 70.40% 67.94% 62.08% 
L=180 ft 46.36% 56.05% 29.59% 
L= 240 ft -9.42% 7.38% 18.47% 

2-span models with Steel BOX cross sections 
 R=500 ft R=1000 ft R=1600 ft 

L=120 ft 93.01% 82.16% 73.71% 
L=180 ft 58.73% 52.1% 49.16% 
L= 240 ft 3.76% -0.23% 1.51% 
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Case studies of three bridges were presented for MPA verification. Description of 

the finite element model for each bridge was presented along with the bridge properties. 

Calculations of different parameters needed to define plastic hinges as well as nonlinear 

link elements needed to perform modal pushover and nonlinear time history analyses 

using the SAP2000 were presented in Appendix A. Design response spectra needed for 

MPA as well as acceleration time histories for time history analyses were presented. 

For Bridge no. 1 of the case studies, comparisons of results obtained from the 

SPA and MPA procedures with the results of the NL-THA, which is considered the most 

reliable method for nonlinear analysis, were performed to validate the MPA procedure. 

Observations obtained from the comparison of results can be summarized as following: 

• Control node is the node used to monitor the displacement of the structure and to 

draw the pushover curve. Among the proposed locations; most critical pier location 

was deemed to give the most accurate results compared to NL-THA results. 

• There was a little merit from adding more modes whose mass participation factor is 

less than 1%, while calculating demand displacements and less rigid rule than the 

90% mass participation could be adopted. On the other hand, adding more modes 

slightly improved base shear prediction by 5%.  

•  As for the modal load pattern implemented to represent the distribution of inertia 

forces, it produced good results with regard to maximum demand displacement if the 

structure remains elastic or close to the yield point. 
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• For increasing levels of earthquake excitation, more inelasticity is developed in the 

structure. The correction proposed in section 2.4.3 to calculate an improved target 

displacement of the monitoring point (u’cn) was found to give accurate results 

compared to the NL-THA results and better displacement profiles are obtained. 

• SPA procedure poorly predicted the transverse displacement at the end areas of the 

bridge and gave better estimates only in the area of the central piers; such area is 

dominated by the first fundamental transverse mode. 

• MPA procedure which accounts for more transverse modes than SPA predicted well 

the deck displacements of the bridge with more enhancements to the end areas of the 

bridge. 

• Modified MPA procedure overestimated the maximum demand displacements by 

only 8% for both levels of earthquake excitation used in the analysis (PGA=0.45g and 

0.60g). 

• As for the total base shear, MPA procedure tends to underestimate the base shear 

results by 28% and 26% for both cases of earthquake levels (0.45g and 0.60g), 

respectively. 

• MPA predicted well the rotations of plastic hinges compared to rotations from NL-

THA. MPA underestimated rotations of most critical pier by only 8.8% and 4.6% for 

PGA=0.45g and 0.60g, respectively. 
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For bridges no. 2 & 3 of the case studies, results obtained from the MPA 

procedure were also compared with results from the NL-THA in order to verify the 

former procedure. Observations obtained from the comparison of results can be 

summarized as following: 

• Calculated demands using the SPA and MPA procedures are in very good agreement 

with those results from the NL-THA and results are deemed very accurate. 

• As for the demand displacement in the transverse direction; for PGA=0.30g, SPA and 

MPA slightly underestimated maximum demand displacements by 6.0% and 3.0%, 

respectively. As the level of excitations increases (PGA=0.45g), both methods 

slightly overestimated the maximum demand displacement by 4.0%  

• As for the plastic rotations at the top of the piers; for bridge no. 2, MPA 

underestimated the plastic rotations by an average of 21% for PGA=0.30g and 

overestimated it by 4% for PGA=0.45g. While for bridge no. 3, MPA underestimated 

the plastic rotations by 22% for PGA=0.30g and overestimated rotations by 8% for 

PGA=0.45g. 

• MPA predicted very well the total base shear for both bridges. It slightly 

underestimated the results with an average difference of 4% for all levels of 

earthquake considered. 

• By analyzing results from bridge no 2 and 3 where the only difference between the 

two models was a skew angle of 30 degrees in bridge no. 2, skewness was only found 



199 

 

to increase bridge responses by 10% and 2% for load cases of PGA=0.30g  and 0.45g, 

respectively. 

Also, results obtained from analyzing bridge no.1 and bridge no.2 using MPA 

procedure were compared with results from previous study (AlAyed, 2002) where the 

displacement coefficient method (DCM) was applied to assess the behavior of bridge 

structures. Comparison showed that: 

• For long curved-in-plan bridge model (bridge no. 1), MPA tends to slightly 

overestimate the maximum demand displacement by 6.3% while DCM is more 

unconservative and it slightly underestimated demand displacement by 5.7%. 

• For regular bridge model (bridge no. 2), MPA and DCM methods slightly 

underestimated demand displacements by 3.2% and 4.5%, respectively and results are 

found to be in good agreement with those results from the NL-THA. 

The current study was then extended to furthermore evaluate the applicability of 

the MPA method for a wide range of bridges and quantify its accuracy; a parametric 

study was performed in order to study the influence of different parameters on the 

behavior of horizontally curved bridges. Parameters included the girder cross section 

(steel I vs. steel BOX), span length, number of spans, radius of curvature, and pier 

column’s height. Nonlinear time history analysis was also performed as a benchmark in 

order to compare its results with results from the MPA. Observations obtained from the 

comparison of results can be summarized as following: 
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• For 3-span bridge model configurations adopted in the study with pier height of 50 ft, 

MPA tends to underestimate the maximum demand displacements for short (100-120-

100ft), and medium (140-180-140ft) spans while overestimate it for long (180-240-

180) spans with displacement differences range between 6.1 – 23% and 11.8 – 13.4% 

for models with steel I and steel BOX, respectively.  

• Same observations are noted for 2-span bridges with pier height of 50 ft with 

displacement differences range between 0.6 – 23.6% and 0.1 – 18.9% for models with 

steel I and steel BOX, respectively. 

• For 3-span bridge model configurations with pier height of 20 ft, MPA tends to 

underestimate the maximum demand displacements for short spans while 

overestimate displacements for both medium and long spans with displacement 

differences range between 5.7 – 15.3% and 0.6 – 7% for models with steel I and steel 

BOX, respectively. 

• For all 2-span bridge models adopted in the study with pier height of 20 ft, MPA 

tends to overestimate the maximum demand displacement for short, medium and long 

spans with displacement differences range between 6.5 – 14.9% and 1 – 4% for 

models with steel I and steel BOX, respectively. 

• MPA procedure tends to underestimate the predicted total base shear for all 

configurations considered in the study with an average difference of 16%. 
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• Span length is found to have a significant influence on the estimated maximum 

demand displacements. It is more noticeable in cases with short spans with taller pier 

height than in other medium or long spans. 

• Radius of curvature influences 3-span models more than 2-span models with regard to 

maximum demand displacements. Displacements are increased by 7% and 25% for 3-

span steel I models with pier height of 50 and 20 ft, respectively when radius of 

curvature is changed from 500 ft to 1600 ft. For steel BOX models, displacements are 

increased by 7% and 12 % for models with pier height of 50 ft and 20 ft, respectively 

when radius of curvature is changed from 500 ft to 1600 ft. For all cases of 2 span 

models with either steel I or steel BOX, displacements are slightly increased within a 

range of 1.0% to 4.0%. 

• Maximum demand displacements are significantly influenced by pier column’s 

height. 3-span models are more affected by pier’s height than 2-span models for both 

cross sections considered. 

• Total base shear is also significantly influenced by increasing bridge length and pier 

height while less influenced by radius of curvature. Cases of short spans and shorter 

pier height were the most affected with base shear increase of 99% and 70% for 

models with steel I and steel BOX, respectively. 

• For the wide range of curved bridges used in the parametric study, MPA is deemed to 

give accurate results reasonably matching the results of the more refined NL-THA 

method. 
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values of maximum demand displacements. Results also indicated that SPA generally 

works reasonably well when applied to bridges of regular configuration. 

5. On the basis of the results obtained, MPA seems to be a promising approach that 

yields more accurate results compared to the standard pushover, without requiring the 

higher modeling effort and computational cost, as well as the other complications 

involved in NL-THA (like the selection and scaling of natural records, or the 

generation of synthetic ones). 

6. Parametric study performed for the wide range of bridges showed that MPA predicts 

well demand displacements. MPA underestimated demand displacements for all 

models with pier height =50ft except for the case with long spans where 

displacements were  slightly overestimated while for all other cases with pier height = 

20ft, MPA overestimated the results except for 3-span models with short spans where 

demand displacements were underestimated. 

7. As for the base shear, MPA predicts well total base shear and it underestimated 

results for all cases with an average of 16%. 

8. Span length and pier height had significant effect on the maximum demand 

displacements with the effect is more pronounced for models with short spans 

(L=120ft) and pier height = 50ft. 

9. Also, span length and pier height significantly increased total base shear results. Steel 

I models with short spans and pier height = 20ft had the maximum base shear 

increase. 
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10. Radius of curvature had the least effect on demand displacements. Maximum demand 

displacements for 3-span bridge models with pier height = 50ft were increased by 7% 

when changing radius of curvature from 500ft to 1600ft, while for models with 

H=20ft displacements were increased by 25% and 12% for steel I and BOX sections, 

respectively. All 2-span bridge models showed less influence of radius of curvature 

where displacements were only increased by 4%. 

11. For the wide range of bridge configurations used in the parametric study, MPA 

provided accurate results for both demand displacements and base shear closely 

matching results from the NL-THA procedure and proved to be acceptable for 

practical use. 

More work is clearly required to further investigate the effectiveness of MPA by 

applying it to bridge structures with different configuration and study the effect of 

superstructure-pier stiffness ratio on the behavior of bridges since MPA is expected to be 

even more valuable for the assessment of the actual inelastic response of bridges with 

significant higher modes. 
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APPENDIX A 

This appendix includes calculations of different parameters needed to define plastic 

hinges as well as nonlinear link elements needed to perform modal pushover and 

nonlinear time history analyses using the SAP2000. First a moment-curvature analysis is 

required to obtain the moment-curvature curve for each column cross section. Then, the 

moment-rotation curve is generated. 

A.1 Bridge No. 1  

1. Weak axis of the column: 

From the M-φ curve, φy = 4.416*10-4 1/ft & Mn = 37443 k-ft 

Using Eq. 3.2, 4
4- ft 6.163

10*x4.416518400
37443

==eI  

Ie=163.6/407=0.402 Ig 

Using Eq. 3.1, Lp = 6.85 ft (for the 70 ft column) 

  Lp = 5.25 ft (for the 50 ft column) 

  Lp = 2.76 ft (for the 20 ft column) 

θy = φy * Lp = 3.025*10-3 (70 ft column) 

         = 2.318*10-3 (50 ft column) 
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        = 1.2188*10-3 (20 ft column) 

Flexural stiffness for nonlinear springs (70 ft column) 

Ke (stiffness before yielding) = Mn/θy=12380278 k-ft/rad 

Kp (stiffness after yielding) = αKe = ft/rad-k  287222=
−
−

yu

nu MM
θθ

 

Flexural stiffness for nonlinear springs (50 ft column) 

Ke (stiffness before yielding) = Mn/θy=16153316 k-ft/rad 

Kp (stiffness after yielding) = αKe = ft/rad-k  374750=
−
−

yu

nu MM
θθ

 

Flexural stiffness for nonlinear springs (20 ft column) 

Ke (stiffness before yielding) = Mn/θy=3.07*107 k-ft/rad 

Kp (stiffness after yielding) = αKe = ft/rad-k  712240=
−
−

yu

nu MM
θθ

 

Stiffness of the shear springs for nonlinear link elements: 

K2-2 = 12EIcr/L3 = 12*518400*163.6 / (6.85)3 = 3166342 k/ft (70 ft column) 

K2-2 = 12EIcr/L3 = 12*518400*163.6 / (5.25)3 = 7033178 k/ft (50 ft column) 
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K2-2 = 12EIcr/L3 = 12*518400*163.6 / (2.76)3 = 48406345.03 k/ft (20 ft column) 

2. Strong axis of the column: 

From the M-φ curve, φy = 1.4856*10-4 1/ft & Mn = 113268 k-ft 

Using Eq. 3.2, 4
4- ft 1471

10*x1.4856518400
113268

==eI  

Ie=1471/4167=0.353 Ig 

Using Eq. 3.1, Lp = 6.85 ft (for the 70 ft column) 

  Lp = 5.25 ft (for the 50 ft column) 

θy = φy * Lp = 1.017*10-3 (70 ft column) 

         = 7.80*10-4 (50 ft column) 

        = 4.1*10-4 (20 ft column) 

Flexural stiffness for nonlinear springs (70 ft column) 

Ke (stiffness before yielding) = Mn/θy=1.11*108 k-ft/rad 

Kp (stiffness after yielding) = αKe = ft/rad-k  957000=
−
−

yu

nu MM
θθ  
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Flexural stiffness for nonlinear springs (50 ft column) 

Ke (stiffness before yielding) = Mn/θy=1.45*108 k-ft/rad 

Kp (stiffness after yielding) = αKe = ft/rad-k  1261500=
−
−

yu

nu MM
θθ

 

Flexural stiffness for nonlinear springs (20 ft column) 

Ke (stiffness before yielding) = Mn/θy=2.76*108 k-ft/rad 

Kp (stiffness after yielding) = αKe = ft/rad-k  2401200=
−
−

yu

nu MM
θθ

 

Stiffness of the shear springs for nonlinear link elements: 

K3-3= 12EIcr/L3 = 12*518400*163.6 / (6.85)3 = 28470000 k/ft (70 ft column) 

K3-3 = 12EIcr/L3 = 12*518400*163.6 / (5.25)3 = 63238419 k/ft (50 ft column) 

K3-3 = 12EIcr/L3 = 12*518400*163.6 / (5.25)3 = 4.35*108 k/ft (20 ft column) 
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A.2 Bridge No. 2 & 3  

From the M-φ curve, φy = 1.008*10-3 1/ft & Mn = 4703 k-ft 

Using Eq. 3.2, 4
3- ft 0.9

10*x1.008518400
4703

==eI  

Ie=9.0/12.57=0.716 Ig 

Using Eq. 3.1, Lp = 4.97 ft (for the 50 ft column) 

  Lp = 2.57 ft (for the 20 ft column) 

θy = φy * Lp = 5.011*10-3 (50 ft column) 

        = 2.5915*10-3 (20 ft column) 

Flexural stiffness for nonlinear springs (50 ft column) 

Ke (stiffness before yielding) = Mn/θy=938535 k-ft/rad 

Kp (stiffness after yielding) = αKe = ft/rad-k  52426=
−
−

yu

nu MM
θθ

 

Flexural stiffness for nonlinear springs (20 ft column) 

Ke (stiffness before yielding) = Mn/θy=1815000 k-ft/rad 
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Kp (stiffness after yielding) = αKe = ft/rad-k  101386=
−
−

yu

nu MM
θθ

 

Stiffness of the shear springs for nonlinear link elements: 

K2-2 = 12EIcr/L3 = 12*518400*9.0 / (5.25)3 = 456057.5 k/ft (50 ft column) 

K2-2 = 12EIcr/L3 = 12*518400*9.0 / (2.57)3 = 3270700 k/ft (20 ft column) 
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APPENDIX B 

This appendix studies the influence of number of modes to be included in the 

MPA procedure in order to calculate the maximum demand displacement. 

Bridge No. 1 is considered for the analysis. Analyses were performed for different 

number of modes included for one level of earthquake excitation, PGA=0.45g. The first 

analysis considered the first four transverse modes to calculate the demand displacement. 

These modes contributed to 75% of the total mass of the bridge. The second analysis 

considered eight transverse modes to calculate the demand displacement. Such modes 

contributed to 87% of the total mass of the structure. Figures B.1 and B.2 illustrate modal 

deck displacements considering 4 and 8 transverse modes, respectively. Also, Table B.1 

lists the displacements with the difference ratios between the two cases. 

Results show that adding more modes, to capture all modes whose masses 

contribute to at least 90% of the total mass of the bridges (a criterion commonly used in 

seismic codes), has insignificant effect on the results of demand displacements and there 

is little merit in adding modes whose participation factor is very low, say less than 1%, 

and less rigid rules than the 90% one (calibrated only for buildings) could be adopted. 

While for total base shear, adding more modes slightly improved the prediction (from 

8640 kips to 9132 kips) and base shear was underestimated by 24%. 
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Figure B. 1 Modal deck displacements using 4 transverse modes 

 

Figure B. 2 Modal deck displacement using 8 transverse modes 
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Table B.1 Comparison between modal deck displacements for the two cases 
considered 

Displacement
Using 4 

Modes (ft) 

Displacement
Using 8 

Modes (ft) 
Difference 

(%) 
 D

ec
k 

N
od

es
 

A1 0.046387594 0.058375439 25.8428% 
702 0.085872068 0.097832925 13.9287% 
703 0.12457116 0.132908716 6.6930% 
704 0.156477017 0.160445699 2.5363% 
P1 0.179408836 0.180737564 0.7406% 
712 0.331128318 0.332395705 0.3827% 
713 0.423049044 0.42480451 0.4150% 
714 0.442268589 0.443327649 0.2395% 
P2 0.399933503 0.400689634 0.1891% 
722 0.47230418 0.475382731 0.6518% 
723 0.521237497 0.527419687 1.1861% 
724 0.542861742 0.544664452 0.3321% 
P3 0.539890842 0.540830965 0.1741% 
732 0.722222628 0.72293432 0.0985% 
733 0.856882939 0.858801876 0.2239% 
734 0.928421647 0.929140777 0.0775% 
P4 0.935893305 0.936039721 0.0156% 
742 0.991407935 0.991710423 0.0305% 
743 0.97658496 0.977082508 0.0509% 
744 0.883401823 0.883546775 0.0164% 
P5 0.722665248 0.722809163 0.0199% 
752 0.734618562 0.734897083 0.0379% 
753 0.693691692 0.693995869 0.0438% 
754 0.598500559 0.598543608 0.0072% 
P6 0.45958892 0.459828998 0.0522% 
762 0.465776422 0.46691403 0.2442% 
763 0.430794009 0.432760806 0.4566% 
764 0.351374794 0.351722142 0.0989% 
P7 0.241158535 0.243118364 0.8127% 
772 0.291387932 0.291900337 0.1758% 
773 0.314232501 0.317614018 1.0761% 
774 0.291719874 0.293500653 0.6104% 
P8 0.222642807 0.223135026 0.2211% 
782 0.256849392 0.257166709 0.1235% 
783 0.248573653 0.248883427 0.1246% 
784 0.195023498 0.196466746 0.7400% 
A2 0.094204384 0.096445225 2.3787% 
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APPENDIX C 

This appendix includes a sample of input files for analyzing and designing two bridge 

configurations with steel I & BOX cross sections using DESCUS I&II, respectively. 

Steel I 3-span Bridge (240-240ft) 
0101                                                                             
0101Two 230ft spans                                                              
0102I-73 Bridge 70B/72B                                                          
0103                                                                             
0103     1    0    10          2          1    10.             1          0 1    
0104                                                                             
0104   1     3  8.12      2     3  8.12      3     3  8.12      4     3  8.12    
0104   5     3  8.12                                                             
0105                                                                             
0105     2     1     1                                                           
0201                                                                             
02015 05      2     0         0         13.9                                     
02013 03      1    1.090417                                                      
02013 03      1    2.090417                                                      
02013 03      1    3.090417                                                      
02013 03      1    4.090417                                                      
02013 03      1    5.090417                                                      
0301                                                                             
0301   1    1    .000  1   2    1    2    .625  1   2    1    3    .625  1   2   
0301   1    4    .625  1   2    1    5    .125  1   2                            
0301   2    1    .375  1   2    2    2    .750  1   2    2    3    .625  1   2   
0301   2    4    .250  1   2    2    5    .000  1   2                            
0301   3    1    .000  1   2    3    2    .375  1   2    3    3    .750  1   2   
0301   3    4    .625  1   2    3    5    .250  1   2                            
0301   4    1    .000  1   2    4    2    .250  1   2    4    3    .625  1   2   
0301   4    4    .750  1   2    4    5    .375  1   2                            
0301   5    1    .000  1   2    5    2    .125  1   2    5    3    .625  1   2   
0301   5    4    .625  1   2    5    5    .625  1   2                            
0401                                                                             
0401      5    8.         .25        3.   26.  15.        1.15                   
0402                                                                             
04020       820.    36.     3.625  3.625  1.625  1.625  24. 8.  4.      150.     
0403                                                                             
0403  HL 93    1      2                                                          
0501                                                                             
0501  150.  PG          99.    .875  22.   1.25  24.   1.5 
0501  250.  PG          99.    .875  24.   1.75  20.   1.75 
0501  350.  PG          99.    .875  26.   2.    26.   2. 
0501  450.  TR                                               103.613.612.6892. 
0601                                                                             
0601  1    0.000  0.0000   1  65 125                                             
0601  2    0.000  8.0000   2  64 124                                             
0601  3    0.000  8.0000   3  63 123                                             
0601  4    0.000  8.0000   4  62 122                                             
0601  5    0.000  8.0000   5  61 121                                             
0701                                                                             
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0701   1      1   10  15.20270    1-1200.0000   10   15  20.27027    1-
1200.0000 
0701   1     15   20  20.27027    1-1200.0000   20   25  20.27027    1-
1200.0000 
0701   1     25   30  20.27027    1-1200.0000   30   35  20.27027    1-
1200.0000 
0701   1     35   40  20.27027    1-1200.0000   40   45  20.27027    1-
1200.0000 
0701   1     45   50  20.27027    1-1200.0000   50   55  20.27027    1-
1200.0000 
0701   1     55   60  20.27027    2-1200.0000   60   65  15.20270    3-
1200.0000 
0701   1     65   70  15.20270    3-1200.0000   70   75  20.27027    2-
1200.0000 
0701   1     75   80  20.27027    1-1200.0000   80   85  20.27027    1-
1200.0000 
0701   1     85   90  20.27027    1-1200.0000   90   95  20.27027    1-
1200.0000 
0701   1     95  100  20.27027    1-1200.0000  100  105  20.27027    1-
1200.0000 
0701   1    105  110  20.27027    1-1200.0000  110  115  20.27027    1-
1200.0000 
0701   1    115  120  20.27027    1-1200.0000  120  125  15.20270    1-
1200.0000 
0701   2      2    9  15.10135    1-1192.0000    9   14  20.13514    1-
1192.0000 
0701   2     14   19  20.13514    1-1192.0000   19   24  20.13514    1-
1192.0000 
0701   2     24   29  20.13514    1-1192.0000   29   34  20.13514    1-
1192.0000 
0701   2     34   39  20.13514    1-1192.0000   39   44  20.13514    1-
1192.0000 
0701   2     44   49  20.13514    1-1192.0000   49   54  20.13514    1-
1192.0000 
0701   2     54   59  20.13514    2-1192.0000   59   64  15.10135    3-
1192.0000 
0701   2     64   69  15.10135    3-1192.0000   69   74  20.13514    2-
1192.0000 
0701   2     74   79  20.13514    1-1192.0000   79   84  20.13514    1-
1192.0000 
0701   2     84   89  20.13514    1-1192.0000   89   94  20.13514    1-
1192.0000 
0701   2     94   99  20.13514    1-1192.0000   99  104  20.13514    1-
1192.0000 
0701   2    104  109  20.13514    1-1192.0000  109  114  20.13514    1-
1192.0000 
0701   2    114  119  20.13514    1-1192.0000  119  124  15.10135    1-
1192.0000 
0701   3      3    8  15.00000    1-1184.0000    8   13  20.00000    1-
1184.0000 
0701   3     13   18  20.00000    1-1184.0000   18   23  20.00000    1-
1184.0000 
0701   3     23   28  20.00000    1-1184.0000   28   33  20.00000    1-
1184.0000 
0701   3     33   38  20.00000    1-1184.0000   38   43  20.00000    1-
1184.0000 
0701   3     43   48  20.00000    1-1184.0000   48   53  20.00000    1-
1184.0000 
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0701   3     53   58  20.00000    2-1184.0000   58   63  15.00000    3-
1184.0000 
0701   3     63   68  15.00000    3-1184.0000   68   73  20.00000    2-
1184.0000 
0701   3     73   78  20.00000    1-1184.0000   78   83  20.00000    1-
1184.0000 
0701   3     83   88  20.00000    1-1184.0000   88   93  20.00000    1-
1184.0000 
0701   3     93   98  20.00000    1-1184.0000   98  103  20.00000    1-
1184.0000 
0701   3    103  108  20.00000    1-1184.0000  108  113  20.00000    1-
1184.0000 
0701   3    113  118  20.00000    1-1184.0000  118  123  15.00000    1-
1184.0000 
0701   4      4    7  14.89865    1-1176.0000    7   12  19.86486    1-
1176.0000 
0701   4     12   17  19.86486    1-1176.0000   17   22  19.86486    1-
1176.0000 
0701   4     22   27  19.86486    1-1176.0000   27   32  19.86486    1-
1176.0000 
0701   4     32   37  19.86486    1-1176.0000   37   42  19.86486    1-
1176.0000 
0701   4     42   47  19.86486    1-1176.0000   47   52  19.86486    1-
1176.0000 
0701   4     52   57  19.86486    2-1176.0000   57   62  14.89865    3-
1176.0000 
0701   4     62   67  14.89865    3-1176.0000   67   72  19.86486    2-
1176.0000 
0701   4     72   77  19.86486    1-1176.0000   77   82  19.86486    1-
1176.0000 
0701   4     82   87  19.86486    1-1176.0000   87   92  19.86486    1-
1176.0000 
0701   4     92   97  19.86486    1-1176.0000   97  102  19.86486    1-
1176.0000 
0701   4    102  107  19.86486    1-1176.0000  107  112  19.86486    1-
1176.0000 
0701   4    112  117  19.86486    1-1176.0000  117  122  14.89865    1-
1176.0000 
0701   5      5    6  14.79730    1-1168.0000    6   11  19.72973    1-
1168.0000 
0701   5     11   16  19.72973    1-1168.0000   16   21  19.72973    1-
1168.0000 
0701   5     21   26  19.72973    1-1168.0000   26   31  19.72973    1-
1168.0000 
0701   5     31   36  19.72973    1-1168.0000   36   41  19.72973    1-
1168.0000 
0701   5     41   46  19.72973    1-1168.0000   46   51  19.72973    1-
1168.0000 
0701   5     51   56  19.72973    2-1168.0000   56   61  14.79730    3-
1168.0000 
0701   5     61   66  14.79730    3-1168.0000   66   71  19.72973    2-
1168.0000 
0701   5     71   76  19.72973    1-1168.0000   76   81  19.72973    1-
1168.0000 
0701   5     81   86  19.72973    1-1168.0000   86   91  19.72973    1-
1168.0000 
0701   5     91   96  19.72973    1-1168.0000   96  101  19.72973    1-
1168.0000 
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0701   5    101  106  19.72973    1-1168.0000  106  111  19.72973    1-
1168.0000 
0701   5    111  116  19.72973    1-1168.0000  116  121  14.79730    1-
1168.0000 
0801                                                                             
0801   1  10   9  4   2   9   8  4   3   8   7  4   4   7   6  4   5  15  14   
4 
0801   6  14  13  4   7  13  12  4   8  12  11  4   9  20  19  4  10  19  18   
4 
0801  11  18  17  4  12  17  16  4  13  25  24  4  14  24  23  4  15  23  22   
4 
0801  16  22  21  4  17  30  29  4  18  29  28  4  19  28  27  4  20  27  26   
4 
0801  21  35  34  4  22  34  33  4  23  33  32  4  24  32  31  4  25  40  39   
4 
0801  26  39  38  4  27  38  37  4  28  37  36  4  29  45  44  4  30  44  43   
4 
0801  31  43  42  4  32  42  41  4  33  50  49  4  34  49  48  4  35  48  47   
4 
0801  36  47  46  4  37  55  54  4  38  54  53  4  39  53  52  4  40  52  51   
4 
0801  41  60  59  4  42  59  58  4  43  58  57  4  44  57  56  4  45  70  69   
4 
0801  46  69  68  4  47  68  67  4  48  67  66  4  49  75  74  4  50  74  73   
4 
0801  51  73  72  4  52  72  71  4  53  80  79  4  54  79  78  4  55  78  77   
4 
0801  56  77  76  4  57  85  84  4  58  84  83  4  59  83  82  4  60  82  81   
4 
0801  61  90  89  4  62  89  88  4  63  88  87  4  64  87  86  4  65  95  94   
4 
0801  66  94  93  4  67  93  92  4  68  92  91  4  69 100  99  4  70  99  98   
4 
0801  71  98  97  4  72  97  96  4  73 105 104  4  74 104 103  4  75 103 102   
4 
0801  76 102 101  4  77 110 109  4  78 109 108  4  79 108 107  4  80 107 106   
4 
0801  81 115 114  4  82 114 113  4  83 113 112  4  84 112 111  4  85 120 119   
4 
0801  86 119 118  4  87 118 117  4  88 117 116  4                                
 



218 

 

Steel BOX 3-span Bridge (240-240ft) 
0101TxDOT IH610/Katy Freeway Direct Connector 2-F                                
0102                                                                             
0103                                                                             
0103     2    0    20          2          0    3.              1          2      
0104                                                                             
0104   2     8  4.21      3     8  4.21                                          
0301                                                                             
0301   2    1 2.933    1   3    2    2 2.933    1   3    2    3 2.933    1   3   
0301   2    4 2.933    1   3                                                     
0301   3    1 2.933    1   3    3    2 2.933    1   3    3    3 2.933    1   3   
0301   3    4 2.933    1   3                                                     
0311                                                                             
0311  1  .158    .158    .158    .158    .158    .158      1  .158               
0311  2  .133    .133    .133    .133    .133    .133      2  .158               
0311  3  .158    .158    .158    .158    .158    .158      3  .158               
0311                                                       4  .158               
0313                                                                             
0313.09      .09      .09                                                        
0401                                                                             
0401      4    8.25       0          2.82 27.380          1.20       0           
0402                                                                             
04020       376.    36.     4.33   4.33   1.208331.2083324. 8.  4.      150.     
0403                                                                             
0403  HS 25    1      1                                                          
0501                                                                             
0501  1  1   5014.0476.   .687522.   1.37585.5  1.   .039  2.375                 
0501  2  1   5014.0476.   .687522.   1.37585.5  1.375.039  2.375                 
0501  3  1   5014.0476.   .687536.   1.37585.5  1.875.039  2.375                 
0501  4  1   5014.0476.   .687536.   2.12585.5  1.875.039  3.125                 
0501  5  1   5014.0476.   .687536.   3.25 85.5  2.5  .04   4.25                  
0501  6  1   5014.0476.   .687524.   1.37585.5  1.375.039  2.375                 
0501  7  1   5014.0476.   .687524.   1.87585.5  2.125.039  2.875                 
0501  8  0 1  00.   0.    0.   0.    0.   0.    0.   0.    0.                    
0502                                                                             
0502 10 501.  16.  1.  16.  1.  82.75                                            
0502 11 501.  20.  1.  16.  1.  79.                                              
0502 12 501.  16.  1.  16.  1.  44.38                                            
0502 14                                                       702.     2808.     
0502 13 50                           6.31 6.31 4.   65.38                        
0503                                                                             
0503  1228.     15.3    5.3125                                                   
0601                                                                             
0601  1 0.0     0.0      101 123 151 172                                         
0601  2 0.0     5.0      201 223 251 272                                         
0601  3 0.0     19.75    301 323 351 372                                         
0601  4 0.0     5.0      401 423 451 472                                         
0602                                                                             
060219.     24.     19.                                                          
0701                                                                             
0701   1    101  1021.784         8-898.35     102  10310.218        8-898.35    
0701   1    103  10410.218        8-898.35     104  1055.109         8-898.35    
0701   1    105  1065.109         8-898.35     106  10710.218        8-898.35    
0701   1    107  10810.218        8-898.35     108  10910.218        8-898.35    
0701   1    109  11010.218        8-898.35     110  11110.218        8-898.35    
0701   1    111  11210.218        8-898.35     112  11310.218        8-898.35    
0701   1    113  11410.218        8-898.35     114  11510.218        8-898.35    
0701   1    115  11610.218        8-898.35     116  1175.109         8-898.35    
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0701   1    117  1185.109         8-898.35     118  11910.218        8-898.35    
0701   1    119  12010.218        8-898.35     120  12110.218        8-898.35    
0701   1    121  12210.218        8-898.35     122  12310.218        8-898.35    
0701   1    123  12410.616        8-898.35     124  12510.616        8-898.35    
0701   1    125  12610.616        8-898.35     126  12710.616        8-898.35    
0701   1    127  12810.616        8-898.35     128  1295.308         8-898.35    
0701   1    129  1305.308         8-898.35     130  13110.616        8-898.35    
0701   1    131  1325.308         8-898.35     132  1335.308         8-898.35    
0701   1    133  13410.616        8-898.35     134  13510.616        8-898.35    
0701   1    135  13610.616        8-898.35     136  13710.616        8-898.35    
0701   1    137  13810.616        8-898.35     138  13910.616        8-898.35    
0701   1    139  14010.616        8-898.35     140  14110.616        8-898.35    
0701   1    141  1425.308         8-898.35     142  1435.308         8-898.35    
0701   1    143  14410.616        8-898.35     144  1455.308         8-898.35    
0701   1    145  1465.308         8-898.35     146  14710.616        8-898.35    
0701   1    147  14810.616        8-898.35     148  14910.616        8-898.35    
0701   1    149  15010.616        8-898.35     150  15110.616        8-898.35    
0701   1    151  15210.224        8-898.35     152  15310.224        8-898.35    
0701   1    153  15410.224        8-898.35     154  15510.224        8-898.35    
0701   1    155  15610.224        8-898.35     156  1575.112         8-898.35    
0701   1    157  1585.112         8-898.35     158  15910.224        8-898.35    
0701   1    159  16010.224        8-898.35     160  16110.224        8-898.35    
0701   1    161  16210.224        8-898.35     162  16310.224        8-898.35    
0701   1    163  16410.224        8-898.35     164  16510.224        8-898.35    
0701   1    165  16610.224        8-898.35     166  16710.224        8-898.35    
0701   1    167  16810.224        8-898.35     168  1695.112         8-898.35    
0701   1    169  1705.112         8-898.35     170  17110.224        8-898.35    
0701   1    171  17210.224        8-898.35                                       
0701   2    201  2021.774         1-893.35     202  20310.161        1-893.35    
0701   2    203  20410.161        1-893.35     204  2055.0805        1-893.35    
0701   2    205  2065.0805        2-893.35     206  20710.161        2-893.35    
0701   2    207  20810.161        2-893.35     208  20910.161        2-893.35    
0701   2    209  21010.161        2-893.35     210  21110.161        2-893.35    
0701   2    211  21210.161        2-893.35     212  21310.161        2-893.35    
0701   2    213  21410.161        2-893.35     214  21510.161        2-893.35    
0701   2    215  21610.161        2-893.35     216  2175.0805        2-893.35    
0701   2    217  2185.0805        3-893.35     218  21910.161        3-893.35    
0701   2    219  22010.161        4-893.35     220  22110.161        4-893.35    
0701   2    221  22210.161        5-893.35     222  22310.161        5-893.35    
0701   2    223  22410.557        5-893.35     224  22510.557        5-893.35    
0701   2    225  22610.557        4-893.35     226  22710.557        4-893.35    
0701   2    227  22810.557        3-893.35     228  2295.2785        3-893.35    
0701   2    229  2305.2785        6-893.35     230  23110.557        6-893.35    
0701   2    231  2325.2785        6-893.35     232  2335.2785        6-893.35    
0701   2    233  23410.557        7-893.35     234  23510.557        7-893.35    
0701   2    235  23610.557        7-893.35     236  23710.557        7-893.35    
0701   2    237  23810.557        7-893.35     238  23910.557        7-893.35    
0701   2    239  24010.557        7-893.35     240  24110.557        7-893.35    
0701   2    241  2425.2785        6-893.35     242  2435.2785        6-893.35    
0701   2    243  24410.557        6-893.35     244  2455.2785        6-893.35    
0701   2    245  2465.2785        3-893.35     246  24710.557        3-893.35    
0701   2    247  24810.557        4-893.35     248  24910.557        4-893.35    
0701   2    249  25010.557        5-893.35     250  25110.557        5-893.35    
0701   2    251  25210.167        5-893.35     252  25310.167        5-893.35    
0701   2    253  25410.167        4-893.35     254  25510.167        4-893.35    
0701   2    255  25610.167        3-893.35     256  2575.0835        3-893.35    
0701   2    257  2585.0835        2-893.35     258  25910.167        2-893.35    
0701   2    259  26010.167        2-893.35     260  26110.167        2-893.35    
0701   2    261  26210.167        2-893.35     262  26310.167        2-893.35    
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0701   2    263  26410.167        2-893.35     264  26510.167        2-893.35    
0701   2    265  26610.167        2-893.35     266  26710.167        2-893.35    
0701   2    267  26810.167        2-893.35     268  2695.0835        2-893.35    
0701   2    269  2705.0835        1-893.35     270  27110.167        1-893.35    
0701   2    271  27210.167        1-893.35                                       
0701   3    301  3021.735         1-873.6      302  3039.937         1-873.6     
0701   3    303  3049.937         1-873.6      304  3054.9685        1-873.6     
0701   3    305  3064.9685        2-873.6      306  3079.937         2-873.6     
0701   3    307  3089.937         2-873.6      308  3099.937         2-873.6     
0701   3    309  3109.937         2-873.6      310  3119.937         2-873.6     
0701   3    311  3129.937         2-873.6      312  3139.937         2-873.6     
0701   3    313  3149.937         2-873.6      314  3159.937         2-873.6     
0701   3    315  3169.937         2-873.6      316  3174.9685        2-873.6     
0701   3    317  3184.9685        3-873.6      318  3199.937         3-873.6     
0701   3    319  3209.937         4-873.6      320  3219.937         4-873.6     
0701   3    321  3229.937         5-873.6      322  3239.937         5-873.6     
0701   3    323  32410.324        5-873.6      324  32510.324        5-873.6     
0701   3    325  32610.324        4-873.6      326  32710.324        4-873.6     
0701   3    327  32810.324        3-873.6      328  3295.162         3-873.6     
0701   3    329  3305.162         6-873.6      330  33110.324        6-873.6     
0701   3    331  3325.162         6-873.6      332  3335.162         6-873.6     
0701   3    333  33410.324        6-873.6      334  33510.324        6-873.6     
0701   3    335  33610.324        6-873.6      336  33710.324        6-873.6     
0701   3    337  33810.324        6-873.6      338  33910.324        6-873.6     
0701   3    339  34010.324        6-873.6      340  34110.324        6-873.6     
0701   3    341  3425.162         6-873.6      342  3435.162         6-873.6     
0701   3    343  34410.324        6-873.6      344  3455.162         6-873.6     
0701   3    345  3465.162         3-873.6      346  34710.324        3-873.6     
0701   3    347  34810.324        4-873.6      348  34910.324        4-873.6     
0701   3    349  35010.324        5-873.6      350  35110.324        5-873.6     
0701   3    351  3529.943         5-873.6      352  3539.943         5-873.6     
0701   3    353  3549.943         4-873.6      354  3559.943         4-873.6     
0701   3    355  3569.943         3-873.6      356  3574.9715        3-873.6     
0701   3    357  3584.9715        2-873.6      358  3599.943         2-873.6     
0701   3    359  3609.943         2-873.6      360  3619.943         2-873.6     
0701   3    361  3629.943         2-873.6      362  3639.943         2-873.6     
0701   3    363  3649.943         2-873.6      364  3659.943         2-873.6     
0701   3    365  3669.943         2-873.6      366  3679.943         2-873.6     
0701   3    367  3689.943         2-873.6      368  3694.9715        2-873.6     
0701   3    369  3704.9715        1-873.6      370  3719.943         1-873.6     
0701   3    371  3729.943         1-873.6                                        
0701   4    401  4021.725         8-868.6      402  4039.880         8-868.6     
0701   4    403  4049.880         8-868.6      404  4054.940         8-868.6     
0701   4    405  4064.940         8-868.6      406  4079.880         8-868.6     
0701   4    407  4089.880         8-868.6      408  4099.880         8-868.6     
0701   4    409  4109.880         8-868.6      410  4119.880         8-868.6     
0701   4    411  4129.880         8-868.6      412  4139.880         8-868.6     
0701   4    413  4149.880         8-868.6      414  4159.880         8-868.6     
0701   4    415  4169.880         8-868.6      416  4174.940         8-868.6     
0701   4    417  4184.940         8-868.6      418  4199.880         8-868.6     
0701   4    419  4209.880         8-868.6      420  4219.880         8-868.6     
0701   4    421  4229.880         8-868.6      422  4239.880         8-868.6     
0701   4    423  42410.265        8-868.6      424  42510.265        8-868.6     
0701   4    425  42610.265        8-868.6      426  42710.265        8-868.6     
0701   4    427  42810.265        8-868.6      428  4295.1325        8-868.6     
0701   4    429  4305.1325        8-868.6      430  43110.265        8-868.6     
0701   4    431  4325.1325        8-868.6      432  4335.1325        8-868.6     
0701   4    433  43410.265        8-868.6      434  43510.265        8-868.6     
0701   4    435  43610.265        8-868.6      436  43710.265        8-868.6     



221 

 

0701   4    437  43810.265        8-868.6      438  43910.265        8-868.6     
0701   4    439  44010.265        8-868.6      440  44110.265        8-868.6     
0701   4    441  4425.1325        8-868.6      442  4435.1325        8-868.6     
0701   4    443  44410.265        8-868.6      444  4455.1325        8-868.6     
0701   4    445  4465.1325        8-868.6      446  44710.265        8-868.6     
0701   4    447  44810.265        8-868.6      448  44910.265        8-868.6     
0701   4    449  45010.265        8-868.6      450  45110.265        8-868.6     
0701   4    451  4529.886         8-868.6      452  4539.886         8-868.6     
0701   4    453  4549.886         8-868.6      454  4559.886         8-868.6     
0701   4    455  4569.886         8-868.6      456  4574.943         8-868.6     
0701   4    457  4584.943         8-868.6      458  4599.886         8-868.6     
0701   4    459  4609.886         8-868.6      460  4619.886         8-868.6     
0701   4    461  4629.886         8-868.6      462  4639.886         8-868.6     
0701   4    463  4649.886         8-868.6      464  4659.886         8-868.6     
0701   4    465  4669.886         8-868.6      466  4679.886         8-868.6     
0701   4    467  4689.886         8-868.6      468  4694.943         8-868.6     
0701   4    469  4704.943         8-868.6      470  4719.886         8-868.6     
0701   4    471  4729.886         8-868.6                                        
0801                                                                             
0801   1 101 201 14   2 102 202 14   3 103 203 14   4 104 204 14   5 105 205  
14 
0801   6 106 206 14   7 107 207 14   8 108 208 14   9 109 209 14  10 110 210  
14 
0801  11 111 211 14  12 112 212 14  13 113 213 14  14 114 214 14  15 115 215  
14 
0801  16 116 216 14  17 117 217 14  18 118 218 14  19 119 219 14  20 120 220  
14 
0801  21 121 221 14  22 122 222 14  23 123 223 14  24 124 224 14  25 125 225  
14 
0801  26 126 226 14  27 127 227 14  28 128 228 14  29 129 229 14  30 130 230  
14 
0801  31 131 231 14  32 132 232 14  33 133 233 14  34 134 234 14  35 135 235  
14 
0801  36 136 236 14  37 137 237 14  38 138 238 14  39 139 239 14  40 140 240  
14 
0801  41 141 241 14  42 142 242 14  43 143 243 14  44 144 244 14  45 145 245  
14 
0801  46 146 246 14  47 147 247 14  48 148 248 14  49 149 249 14  50 150 250  
14 
0801  51 151 251 14  52 152 252 14  53 153 253 14  54 154 254 14  55 155 255  
14 
0801  56 156 256 14  57 157 257 14  58 158 258 14  59 159 259 14  60 160 260  
14 
0801  61 161 261 14  62 162 262 14  63 163 263 14  64 164 264 14  65 165 265  
14 
0801  66 166 266 14  67 167 267 14  68 168 268 14  69 169 269 14  70 170 270  
14 
0801  71 171 271 14  72 172 272 14  73 201 301 14  74 202 302 14  75 203 303  
14 
0801  76 204 304 14  77 205 305 14  78 206 306 14  79 207 307 14  80 208 308  
14 
0801  81 209 309 14  82 210 310 14  83 211 311 14  84 212 312 14  85 213 313  
14 
0801  86 214 314 14  87 215 315 14  88 216 316 14  89 217 317 14  90 218 318  
14 
0801  91 219 319 14  92 220 320 14  93 221 321 14  94 222 322 14  95 223 323  
14 
0801  96 224 324 14  97 225 325 14  98 226 326 14  99 227 327 14 100 228 328  
14 
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0801 101 229 329 14 102 230 330 14 103 231 331 14 104 232 332 14 105 233 333  
14 
0801 106 234 334 14 107 235 335 14 108 236 336 14 109 237 337 14 110 238 338  
14 
0801 111 239 339 14 112 240 340 14 113 241 341 14 114 242 342 14 115 243 343  
14 
0801 116 244 344 14 117 245 345 14 118 246 346 14 119 247 347 14 120 248 348  
14 
0801 121 249 349 14 122 250 350 14 123 251 351 14 124 252 352 14 125 253 353  
14 
0801 126 254 354 14 127 255 355 14 128 256 356 14 129 257 357 14 130 258 358  
14 
0801 131 259 359 14 132 260 360 14 133 261 361 14 134 262 362 14 135 263 363  
14 
0801 136 264 364 14 137 265 365 14 138 266 366 14 139 267 367 14 140 268 368  
14 
0801 141 269 369 14 142 270 370 14 143 271 371 14 144 272 372 14 145 301 401  
14 
0801 146 302 402 14 147 303 403 14 148 304 404 14 149 305 405 14 150 306 406  
14 
0801 151 307 407 14 152 308 408 14 153 309 409 14 154 310 410 14 155 311 411  
14 
0801 156 312 412 14 157 313 413 14 158 314 414 14 159 315 415 14 160 316 416  
14 
0801 161 317 417 14 162 318 418 14 163 319 419 14 164 320 420 14 165 321 421  
14 
0801 166 322 422 14 167 323 423 14 168 324 424 14 169 325 425 14 170 326 426  
14 
0801 171 327 427 14 172 328 428 14 173 329 429 14 174 330 430 14 175 331 431  
14 
0801 176 332 432 14 177 333 433 14 178 334 434 14 179 335 435 14 180 336 436  
14 
0801 181 337 437 14 182 338 438 14 183 339 439 14 184 340 440 14 185 341 441  
14 
0801 186 342 442 14 187 343 443 14 188 344 444 14 189 345 445 14 190 346 446  
14 
0801 191 347 447 14 192 348 448 14 193 349 449 14 194 350 450 14 195 351 451  
14 
0801 196 352 452 14 197 353 453 14 198 354 454 14 199 355 455 14 200 356 456  
14 
0801 201 357 457 14 202 358 458 14 203 359 459 14 204 360 460 14 205 361 461  
14 
0801 206 362 462 14 207 363 463 14 208 364 464 14 209 365 465 14 210 366 466  
14 
0801 211 367 467 14 212 368 468 14 213 369 469 14 214 370 470 14 215 371 471  
14 
0801 216 372 472 14 217 201 301 11 218 206 306 13 219 209 309 13 220 212 312  
13 
0801 221 216 316 13 222 220 320 13 223 223 323 10 224 226 326 13 225 231 331  
13 
0801 226 235 335 13 227 237 337 13 228 239 339 13 229 243 343 13 230 248 348  
13 
0801 231 251 351 10 232 254 354 13 233 259 359 13 234 262 362 13 235 265 365  
13 
0801 236 268 368 13 237 272 372 12                                               
0910                                                                             
0910     1    2                                                                 
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Appendix D 

This appendix includes input files for analyzing a 3-span bridge model (140-180-140ft) 

with steel BOX cross section and pier height = 50ft using MPA and NL-THA, 

respectively  

D.1 SAP2000 INPUT DATA FILE FOR MPA 

File C:\Users\MAhmed\Documents\My Dropbox\Public\0714-Parametric-Steel BOX-L140-180-140-H50-R500.s2k 
was saved on 10/31/10 at 21:18:06 
  
TABLE:  "PROGRAM CONTROL" 
   ProgramName=SAP2000   Version=14.0.0   ProgLevel=Advanced   LicenseOS=Yes   LicenseSC=Yes   
LicenseBR=Yes   LicenseHT=No   CurrUnits="Kip, ft, F"   SteelCode=AISC-LRFD93   ConcCode="ACI 318-
05/IBC2003"   AlumCode="AA-ASD 2000" _ 
        ColdCode=AISI-ASD96   BridgeCode="AASHTO LRFD 2007"   RegenHinge=Yes 
  
TABLE:  "ACTIVE DEGREES OF FREEDOM" 
   UX=Yes   UY=Yes   UZ=Yes   RX=Yes   RY=Yes   RZ=Yes 
  
TABLE:  "ANALYSIS OPTIONS" 
   Solver=Advanced   SolverProc=Auto   Force32Bit=No   StiffCase=None   GeomMod=No 
  
TABLE:  "COORDINATE SYSTEMS" 
   Name=GLOBAL   Type=Cartesian   X=0   Y=0   Z=0   AboutZ=0   AboutY=0   AboutX=0 
  
TABLE:  "GRID LINES" 
   CoordSys=GLOBAL   AxisDir=X   GridID=A   XRYZCoord=0   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End   AllVisible=No   BubbleSize=9.25 
   CoordSys=GLOBAL   AxisDir=X   GridID=B   XRYZCoord=105   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Y   GridID=1   XRYZCoord=0   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=Start 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z8   XRYZCoord=-84.5   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z7   XRYZCoord=-78   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z6   XRYZCoord=-64.5   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z5   XRYZCoord=-58   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z4   XRYZCoord=-25   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z3   XRYZCoord=-15   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z2   XRYZCoord=-6.5   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z1   XRYZCoord=0   LineType=Primary   LineColor=Gray8Dark   
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Visible=Yes   BubbleLoc=End 
  
TABLE:  "MATERIAL PROPERTIES 01 - GENERAL" 
   Material=4000Psi   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Cyan   Notes="Normalweight 
f'c = 4 ksi added 4/23/2010 12:39:57 PM" 
   Material=A615Gr60   Type=Rebar   SymType=Uniaxial   TempDepend=No   Color=Cyan   Notes="ASTM A615 
Grade 60 added 4/23/2010 3:10:32 PM" 
   Material=A992Fy50   Type=Steel   SymType=Isotropic   TempDepend=No   Color=Green   Notes="ASTM A992 
Fy=50 ksi added 4/23/2010 12:39:57 PM" 
   Material=CONC   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight f'c 
= 4 ksi added 4/23/2010 3:04:41 PM" 
   Material=RIGID   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight f'c 
= 4 ksi added 4/23/2010 3:02:20 PM" 
   Material=SUB   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight f'c = 
4 ksi added 4/23/2010 3:02:20 PM" 
   Material=SUPER   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight 
f'c = 4 ksi added 4/23/2010 2:59:44 PM" 
  
TABLE:  "MATERIAL PROPERTIES 02 - BASIC MECHANICAL PROPERTIES" 
   Material=4000Psi   UnitWeight=0.15   UnitMass=4.66214231655636E-03   E1=519119.500693241   
G12=216299.791955517   U12=0.2   A1=0.0000055 
   Material=A615Gr60   UnitWeight=0.49   UnitMass=1.52296649007508E-02   E1=4176000   A1=0.0000065 
   Material=A992Fy50   UnitWeight=0.49   UnitMass=1.52296649007508E-02   E1=4176000   
G12=1606153.84615385   U12=0.3   A1=0.0000065 
   Material=CONC   UnitWeight=0   UnitMass=0   E1=518400   G12=216000   U12=0.2   A1=0.0000055 
   Material=RIGID   UnitWeight=0   UnitMass=0   E1=518400   G12=219661.016949153   U12=0.18   A1=0.000006 
   Material=SUB   UnitWeight=0.15   UnitMass=0.004658385   E1=518400   G12=219661.016949153   U12=0.18   
A1=0.000006 
   Material=SUPER   UnitWeight=0.152   UnitMass=0.00472049   E1=518400   G12=219661.016949153   U12=0.18   
A1=0.000006 
  
TABLE:  "MATERIAL PROPERTIES 03A - STEEL DATA" 
   Material=A992Fy50   Fy=7200   Fu=9360   EffFy=7920   EffFu=10296   SSCurveOpt=Simple   
SSHysType=Kinematic   SHard=0.015   SMax=0.11   SRup=0.17   FinalSlope=-0.1 
  
TABLE:  "MATERIAL PROPERTIES 03B - CONCRETE DATA" 
   Material=4000Psi   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Takeda   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=CONC   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=RIGID   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=SUB   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=SUPER   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
  
TABLE:  "MATERIAL PROPERTIES 03E - REBAR DATA" 
   Material=A615Gr60   Fy=8640   Fu=12960   EffFy=9504   EffFu=14256   SSCurveOpt=Simple   
SSHysType=Kinematic   SHard=0.01   SCap=0.09   FinalSlope=-0.1   UseCTDef=No 
  
TABLE:  "MATERIAL PROPERTIES 06 - DAMPING PARAMETERS" 
   Material=4000Psi   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=A615Gr60   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=A992Fy50   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=CONC   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=RIGID   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=SUB   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
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   Material=SUPER   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
  
TABLE:  "FRAME SECTION PROPERTIES 01 - GENERAL" 
   SectionName=BLINK   Material=SUB   Shape=Rectangular   t3=25   t2=25   Area=625   
TorsConst=55013.0208333333   I33=32552.0833333333   I22=32552.0833333333   AS2=520.833333333333   
AS3=520.833333333333   S33=2604.16666666667 _ 
        S22=2604.16666666667   Z33=3906.25   Z22=3906.25   R33=7.21687836487032   R22=7.21687836487032   
ConcCol=Yes   ConcBeam=No   Color=Gray8Dark   TotalWt=1218.75   TotalMass=37.849378125   FromFile=No   
AMod=1   A2Mod=0   A3Mod=0 _ 
        JMod=1   I2Mod=1   I3Mod=1   MMod=1   WMod=1   Notes="Added 4/23/2010 3:12:01 PM" 
   SectionName=COL   Material=SUB   Shape=Rectangular   t3=6.25   t2=20   Area=125   
TorsConst=1307.42425487066   I33=406.901041666667   I22=4166.66666666667   AS2=104.166666666667   
AS3=104.166666666667   S33=130.208333333333 _ 
        S22=416.666666666667   Z33=195.3125   Z22=625   R33=1.80421959121758   R22=5.77350269189626   
ConcCol=Yes   ConcBeam=No   Color=Yellow   TotalWt=1237.5   TotalMass=38.43167625   FromFile=No   
AMod=1   A2Mod=0   A3Mod=0   JMod=1 _ 
        I2Mod=0.353   I3Mod=0.402   MMod=1   WMod=1   Notes="Added 4/23/2010 3:11:18 PM" 
   SectionName=COLH   Material=SUB   Shape=Rectangular   t3=6.25   t2=40   Area=250   
TorsConst=2934.78967917811   I33=813.802083333333   I22=33333.3333333333   AS2=208.333333333333   
AS3=208.333333333333   S33=260.416666666667 _ 
        S22=1666.66666666667   Z33=390.625   Z22=2500   R33=1.80421959121758   R22=11.5470053837925   
ConcCol=Yes   ConcBeam=No   Color=Red   TotalWt=525   TotalMass=16.3043475   FromFile=No   AMod=1   
A2Mod=0   A3Mod=0   JMod=1   I2Mod=1 _ 
        I3Mod=1   MMod=1   WMod=1   Notes="Added 4/23/2010 3:10:32 PM" 
   SectionName=COLT   Shape=Nonprismatic   Color=Blue   Notes="Added 4/23/2010 3:12:36 PM" 
   SectionName=RIGID   Material=RIGID   Shape=General   t3=1.5   t2=0.8333   Area=2500   TorsConst=100000   
I33=100000   I22=100000   AS2=1   AS3=1   S33=1   S22=1   Z33=1   Z22=1   R33=1   R22=1   ConcCol=No   
ConcBeam=No   Color=Blue _ 
        TotalWt=0   TotalMass=0   FromFile=No   AMod=1   A2Mod=1   A3Mod=1   JMod=1   I2Mod=1   I3Mod=1   
MMod=1   WMod=1   Notes="Added 4/23/2010 3:09:53 PM" 
   SectionName=SUPER   Material=SUPER   Shape=General   t3=1.5   t2=0.8333   Area=39.8201   TorsConst=5.7   
I33=273.3586   I22=2948.364   AS2=1   AS3=1   S33=1   S22=1   Z33=1   Z22=1   R33=1   R22=1   ConcCol=No   
ConcBeam=No   Color=White _ 
        TotalWt=1815.63125119602   TotalMass=56.38598134841   FromFile=No   AMod=1   A2Mod=1   A3Mod=1   
JMod=1   I2Mod=1   I3Mod=1   MMod=1   WMod=1   Notes="Added 4/23/2010 3:08:54 PM" 
   SectionName=SUPER-PIER   Material=SUPER   Shape=General   t3=1.5   t2=0.8333   Area=45.2368   
TorsConst=9.1   I33=318.9432   I22=3350.024   AS2=1   AS3=1   S33=1   S22=1   Z33=1   Z22=1   R33=1   R22=1   
ConcCol=No   ConcBeam=No _ 
        Color=White   TotalWt=1099.989524661   TotalMass=34.1611154688618   FromFile=No   AMod=1   A2Mod=1   
A3Mod=1   JMod=1   I2Mod=1   I3Mod=1   MMod=1   WMod=1   Notes="Added 7/17/2010 11:41:37 PM" 
  
TABLE:  "FRAME SECTION PROPERTIES 02 - CONCRETE COLUMN" 
   SectionName=BLINK   RebarMatL=A615Gr60   RebarMatC=A615Gr60   ReinfConfig=Rectangular   LatReinf=Ties   
Cover=0.25   NumBars3Dir=26   NumBars2Dir=26   BarSizeL=#9   BarSizeC=#4   SpacingC=0.5   NumCBars2=3   
NumCBars3=3   ReinfType=Check 
   SectionName=COL   RebarMatL=A615Gr60   RebarMatC=A615Gr60   ReinfConfig=Rectangular   LatReinf=Ties   
Cover=0.33   NumBars3Dir=45   NumBars2Dir=12   BarSizeL=#11   BarSizeC=#7   SpacingC=1   NumCBars2=6   
NumCBars3=20   ReinfType=Design 
   SectionName=COLH   RebarMatL=A615Gr60   RebarMatC=A615Gr60   ReinfConfig=Rectangular   LatReinf=Ties   
Cover=0.33   NumBars3Dir=44   NumBars2Dir=15   BarSizeL=#11   BarSizeC=#7   SpacingC=0.5   NumCBars2=6   
NumCBars3=20   ReinfType=Check 
  
TABLE:  "FRAME SECTION PROPERTIES 05 - NONPRISMATIC" 
   SectionName=COLT   NumSegments=1   SegmentNum=1   StartSect=COLH   EndSect=COL   
LengthType=Absolute   AbsLength=10   EI33Var=Linear   EI22Var=Cubic 
  
TABLE:  "HINGES DEF 01 - OVERVIEW" 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   Behavior="Deformation Controlled" 
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TABLE:  "HINGES DEF 06 - INTERACTING - DEFORM CONTROL - GENERAL" 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   FDType=Moment-Rot   LengthType=Relative   
SSRelLen=0.1   SFType="User Defined"   UserSFRot=1   BeyondE="To Zero"   PMMorMMSym=Circular   
NumAxForce=1   NumAngle=1 
  
TABLE:  "HINGES DEF 07 - INTERACTING - DEFORM CONTROL - FS AND ANGS" 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   AxForce=0   Angle=0 
  
TABLE:  "HINGES DEF 08 - INTERACTING - DEFORM CONTROL - FORCE-DEFORM" 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   FDPoint=A   
MomRatio=0   RCRatio=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   FDPoint=B   
MomRatio=1   RCRatio=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   FDPoint=C   
MomRatio=1.2   RCRatio=0.02 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   FDPoint=D   
MomRatio=0.2   RCRatio=0.02 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   FDPoint=E   
MomRatio=0.2   RCRatio=0.03 
  
TABLE:  "HINGES DEF 09 - INTERACTING - DEFORM CONTROL - ACCEPTANCE" 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   ACPoint=IO   
AC=0.005 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   ACPoint=LS   
AC=0.01 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   AxForce=0   Angle=0   ACPoint=CP   
AC=0.02 
  
TABLE:  "HINGES DEF 11 - INTERACTING - INTERACTION SURFACE - GENERAL" 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   IntType=User   PCurve=Elastic-Plastic   
SymMMandPMM=Double   NumCurves=5   NumPoints=11   ScaleP=71262.65   ScaleM2=72161.39   
ScaleM3=72161.39 
  
TABLE:  "HINGES DEF 12 - INTERACTING - INTERACTION SURFACE - DATA" 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=1   P=-1   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=2   P=-0.851   M2=1.1841   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=3   P=-0.7516   M2=1.8246   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=4   P=-0.6452   M2=2.3201   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=5   P=-0.5362   M2=2.6631   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=6   P=-0.4099   M2=2.8372   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=7   P=-0.3189   M2=2.7895   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=8   P=-0.2282   M2=2.5685   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=9   P=-0.1374   M2=2.179   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=10   P=-0.0337   M2=1.5546   
M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=1   PointNum=11   P=0.1497   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=1   P=-1   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=2   P=-0.851   M2=1.1167   
M3=0.7045 
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   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=3   P=-0.7516   M2=1.7348   
M3=0.966 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=4   P=-0.6452   M2=2.2229   
M3=1.0959 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=5   P=-0.5362   M2=2.55   
M3=1.1944 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=6   P=-0.4099   M2=2.7021   
M3=1.2639 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=7   P=-0.3189   M2=2.6659   
M3=1.2517 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=8   P=-0.2282   M2=2.4335   
M3=1.2063 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=9   P=-0.1374   M2=2.083   
M3=1.1192 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=10   P=-0.0337   M2=1.4977   
M3=0.8903 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=2   PointNum=11   P=0.1497   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=1   P=-1   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=2   P=-0.859355003741443   
M2=0.873794599643073   M3=0.873794599643073 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=3   P=-0.762037630399016   
M2=1.31807221332363   M3=1.31807221332363 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=4   P=-0.65809587561594   
M2=1.63579322880561   M3=1.63579322880561 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=5   P=-0.55577543531639   
M2=1.85207851246629   M3=1.85207851246629 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=6   P=-0.410639738177721   
M2=1.9850404410749   M3=1.9850404410749 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=7   P=-0.294991131405852   
M2=1.94055216697559   M3=1.94055216697559 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=8   P=-0.207592564040144   
M2=1.79090799726159   M3=1.79090799726159 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=9   P=-0.112557757697182   
M2=1.528794056407   M3=1.528794056407 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=10   P=-2.16590406561296E-
02   M2=1.14281407088648   M3=1.14281407088648 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=3   PointNum=11   P=0.1497   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=1   P=-1   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=2   P=-0.851   M2=0.7045   
M3=1.1167 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=3   P=-0.7516   M2=0.966   
M3=1.7348 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=4   P=-0.6452   M2=1.0959   
M3=2.2229 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=5   P=-0.5362   M2=1.1944   
M3=2.55 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=6   P=-0.4099   M2=1.2639   
M3=2.7021 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=7   P=-0.3189   M2=1.2517   
M3=2.6659 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=8   P=-0.2282   M2=1.2063   
M3=2.4335 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=9   P=-0.1374   M2=1.1192   
M3=2.083 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=10   P=-0.0337   M2=0.8903   
M3=1.4977 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=4   PointNum=11   P=0.1497   M2=0   M3=0 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=1   P=-1   M2=0   M3=0 
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   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=2   P=-0.851   M2=0   
M3=1.1841 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=3   P=-0.7516   M2=0   
M3=1.8246 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=4   P=-0.6452   M2=0   
M3=2.3201 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=5   P=-0.5362   M2=0   
M3=2.6631 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=6   P=-0.4099   M2=0   
M3=2.8372 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=7   P=-0.3189   M2=0   
M3=2.7895 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=8   P=-0.2282   M2=0   
M3=2.5685 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=9   P=-0.1374   M2=0   
M3=2.179 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=10   P=-0.0337   M2=0   
M3=1.5546 
   HingeName=HINGE   DOFType="Interacting P-M2-M3"   CurveNum=5   PointNum=11   P=0.1497   M2=0   M3=0 
  
TABLE:  "LOAD PATTERN DEFINITIONS" 
   LoadPat=DEAD   DesignType=DEAD   SelfWtMult=1 
  
TABLE:  "LOAD CASE DEFINITIONS" 
   Case=DEAD   Type=LinStatic   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=DEAD   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=MODAL   Type=LinModal   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=OTHER   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=ModalRitz   Type=LinModal   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=OTHER   
AutoType=None   RunCase=No   CaseStatus="Not Run" 
   Case=RITZ   Type=LinModal   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=QUAKE   
AutoType=None   RunCase=No   CaseStatus="Not Run" 
   Case=GRAV   Type=NonStatic   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=DEAD   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=MODE4   Type=NonStatic   InitialCond=GRAV   ModalCase=MODAL   DesTypeOpt="Prog Det"   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=MODE6   Type=NonStatic   InitialCond=GRAV   ModalCase=MODAL   DesTypeOpt="Prog Det"   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=MODE7   Type=NonStatic   InitialCond=GRAV   ModalCase=MODAL   DesTypeOpt="Prog Det"   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=MODE12   Type=NonStatic   InitialCond=GRAV   ModalCase=MODAL   DesTypeOpt="Prog Det"   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
  
TABLE:  "CASE - STATIC 1 - LOAD ASSIGNMENTS" 
   Case=DEAD   LoadType="Load pattern"   LoadName=DEAD   LoadSF=1 
   Case=GRAV   LoadType="Load pattern"   LoadName=DEAD   LoadSF=1 
   Case=MODE4   LoadType=Mode   LoadName="Mode 4"   LoadSF=1 
   Case=MODE6   LoadType=Mode   LoadName="Mode 6"   LoadSF=1 
   Case=MODE7   LoadType=Mode   LoadName="Mode 7"   LoadSF=1 
   Case=MODE12   LoadType=Mode   LoadName="Mode 12"   LoadSF=1 
  
TABLE:  "CASE - STATIC 2 - NONLINEAR LOAD APPLICATION" 
   Case=GRAV   LoadApp="Full Load"   MonitorDOF=U1   MonitorJt=711 
   Case=MODE4   LoadApp="Displ Ctrl"   DisplType=Monitored   TargetDispl=1   MonitorDOF=U2   MonitorJt=711 
   Case=MODE6   LoadApp="Displ Ctrl"   DisplType=Conjugate   TargetDispl=1   MonitorDOF=U2   MonitorJt=711 
   Case=MODE7   LoadApp="Displ Ctrl"   DisplType=Conjugate   TargetDispl=1   MonitorDOF=U2   MonitorJt=711 
   Case=MODE12   LoadApp="Displ Ctrl"   DisplType=Monitored   TargetDispl=1   MonitorDOF=U2   
MonitorJt=711 
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 TABLE:  "CASE - STATIC 4 - NONLINEAR PARAMETERS" 
   Case=GRAV   Unloading="Unload Entire"   GeoNonLin=None   ResultsSave="Final State"   MaxTotal=200   
MaxNull=50   MaxIterCS=10   MaxIterNR=40   ItConvTol=0.0001   UseEvStep=Yes   EvLumpTol=0.01   
LSPerIter=20   LSTol=0.1 _ 
        LSStepFact=1.618   FrameTC=Yes   FrameHinge=Yes   CableTC=Yes   LinkTC=Yes   LinkOther=Yes   
TFMaxIter=10   TFTol=0.01   TFAccelFact=1   TFNoStop=No 
   Case=MODE4   Unloading="Unload Entire"   GeoNonLin=P-Delta   ResultsSave="Multiple States"   
MinNumState=20   MaxNumState=200   PosIncOnly=Yes   MaxTotal=200   MaxNull=50   MaxIterCS=10   
MaxIterNR=40   ItConvTol=0.0001   UseEvStep=Yes _ 
        EvLumpTol=0.01   LSPerIter=20   LSTol=0.1   LSStepFact=1.618   FrameTC=Yes   FrameHinge=Yes   
CableTC=Yes   LinkTC=Yes   LinkOther=Yes   TFMaxIter=10   TFTol=0.01   TFAccelFact=1   TFNoStop=No 
   Case=MODE6   Unloading="Unload Entire"   GeoNonLin=P-Delta   ResultsSave="Multiple States"   
MinNumState=20   MaxNumState=200   PosIncOnly=Yes   MaxTotal=200   MaxNull=50   MaxIterCS=10   
MaxIterNR=40   ItConvTol=0.0001   UseEvStep=Yes _ 
        EvLumpTol=0.01   LSPerIter=20   LSTol=0.1   LSStepFact=1.618   FrameTC=Yes   FrameHinge=Yes   
CableTC=Yes   LinkTC=Yes   LinkOther=Yes   TFMaxIter=10   TFTol=0.01   TFAccelFact=1   TFNoStop=No 
   Case=MODE7   Unloading="Unload Entire"   GeoNonLin=P-Delta   ResultsSave="Multiple States"   
MinNumState=20   MaxNumState=200   PosIncOnly=Yes   MaxTotal=200   MaxNull=50   MaxIterCS=10   
MaxIterNR=40   ItConvTol=0.0001   UseEvStep=Yes _ 
        EvLumpTol=0.01   LSPerIter=20   LSTol=0.1   LSStepFact=1.618   FrameTC=Yes   FrameHinge=Yes   
CableTC=Yes   LinkTC=Yes   LinkOther=Yes   TFMaxIter=10   TFTol=0.01   TFAccelFact=1   TFNoStop=No 
   Case=MODE12   Unloading="Unload Entire"   GeoNonLin=P-Delta   ResultsSave="Multiple States"   
MinNumState=20   MaxNumState=200   PosIncOnly=Yes   MaxTotal=200   MaxNull=50   MaxIterCS=10   
MaxIterNR=40   ItConvTol=0.0001   UseEvStep=Yes _ 
        EvLumpTol=0.01   LSPerIter=20   LSTol=0.1   LSStepFact=1.618   FrameTC=Yes   FrameHinge=Yes   
CableTC=Yes   LinkTC=Yes   LinkOther=Yes   TFMaxIter=10   TFTol=0.01   TFAccelFact=1   TFNoStop=No 
  
TABLE:  "CASE - MODAL 1 - GENERAL" 
   Case=MODAL   ModeType=Eigen   MaxNumModes=12   MinNumModes=1   EigenShift=0   EigenCutoff=0   
EigenTol=0.000000001   AutoShift=Yes 
   Case=ModalRitz   ModeType=Ritz   MaxNumModes=12   MinNumModes=1 
   Case=RITZ   ModeType=Ritz   MaxNumModes=12   MinNumModes=1 
  
TABLE:  "CASE - MODAL 3 - LOAD ASSIGNMENTS - RITZ" 
   Case=ModalRitz   LoadType="Load pattern"   LoadName=DEAD   MaxCycles=0   TargetPar=0 
   Case=ModalRitz   LoadType=Accel   LoadName="Accel UY"   MaxCycles=0   TargetPar=0 
   Case=ModalRitz   LoadType=Link   LoadName="All Links"   MaxCycles=0   TargetPar=0 
   Case=RITZ   LoadType=Accel   LoadName="Accel UY"   MaxCycles=0   TargetPar=0 
   Case=RITZ   LoadType=Link   LoadName="All Links"   MaxCycles=0   TargetPar=0 
  
TABLE:  "JOINT COORDINATES" 
   Joint=211   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-60.9757   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-60.9757 
   Joint=221   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-60.9757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-60.9757 
   Joint=311   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-54.4757   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-54.4757 
   Joint=315   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-49.2301154751892   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-49.2301154751892 
   Joint=321   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-54.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-54.4757 
   Joint=325   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-49.2301154751892   
SpecialJt=No   GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-49.2301154751892 
   Joint=411   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-21.4757   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-21.4757 
   Joint=421   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-21.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-21.4757 
   Joint=511   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-11.4757   
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SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-11.4757 
   Joint=521   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-11.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-11.4757 
   Joint=611   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-4.4757   SpecialJt=No   
GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-4.4757 
   Joint=621   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-4.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-4.4757 
   Joint=701   CoordSys=GLOBAL   CoordType=Cartesian   XorR=0   Y=0   Z=0   SpecialJt=No   GlobalX=0   
GlobalY=0   GlobalZ=0 
   Joint=702   CoordSys=GLOBAL   CoordType=Cartesian   XorR=34.9758   Y=-1.2248   Z=0   SpecialJt=No   
GlobalX=34.9758   GlobalY=-1.2248   GlobalZ=0 
   Joint=703   CoordSys=GLOBAL   CoordType=Cartesian   XorR=69.7802   Y=-4.8932   Z=0   SpecialJt=No   
GlobalX=69.7802   GlobalY=-4.8932   GlobalZ=0 
   Joint=704   CoordSys=GLOBAL   CoordType=Cartesian   XorR=104.2428   Y=-10.9873   Z=0   SpecialJt=No   
GlobalX=104.2428   GlobalY=-10.9873   GlobalZ=0 
   Joint=711   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=0   SpecialJt=No   
GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=0 
   Joint=712   CoordSys=GLOBAL   CoordType=Cartesian   XorR=180.8294   Y=-33.8447   Z=0   SpecialJt=No   
GlobalX=180.8294   GlobalY=-33.8447   GlobalZ=0 
   Joint=713   CoordSys=GLOBAL   CoordType=Cartesian   XorR=222   Y=-51.9866   Z=0   SpecialJt=No   
GlobalX=222   GlobalY=-51.9866   GlobalZ=0 
   Joint=714   CoordSys=GLOBAL   CoordType=Cartesian   XorR=261.3731   Y=-73.7558   Z=0   SpecialJt=No   
GlobalX=261.3731   GlobalY=-73.7558   GlobalZ=0 
   Joint=721   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=0   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=0 
   Joint=722   CoordSys=GLOBAL   CoordType=Cartesian   XorR=325.9507   Y=-120.848   Z=0   SpecialJt=No   
GlobalX=325.9507   GlobalY=-120.848   GlobalZ=0 
   Joint=723   CoordSys=GLOBAL   CoordType=Cartesian   XorR=351.6746   Y=-144.578   Z=0   SpecialJt=No   
GlobalX=351.6746   GlobalY=-144.578   GlobalZ=0 
   Joint=724   CoordSys=GLOBAL   CoordType=Cartesian   XorR=375.8239   Y=-170.049   Z=0   SpecialJt=No   
GlobalX=375.8239   GlobalY=-170.049   GlobalZ=0 
   Joint=731   CoordSys=GLOBAL   CoordType=Cartesian   XorR=397.8358   Y=-197.136   Z=0   SpecialJt=No   
GlobalX=397.8358   GlobalY=-197.136   GlobalZ=0 
  
TABLE:  "CONNECTIVITY - FRAME" 
   Frame=211   JointI=311   JointJ=211   IsCurved=No   Length=6.5   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-57.7257 
   Frame=221   JointI=321   JointJ=221   IsCurved=No   Length=6.5   CentroidX=298.63   CentroidY=-98.9762   
CentroidZ=-57.7257 
   Frame=311   JointI=315   JointJ=311   IsCurved=No   Length=5.24558452481077   CentroidX=138.1947   
CentroidY=-19.4771   CentroidZ=-51.8529077375946 
   Frame=315   JointI=411   JointJ=315   IsCurved=No   Length=27.7544154751892   CentroidX=138.1947   
CentroidY=-19.4771   CentroidZ=-35.3529077375946 
   Frame=321   JointI=325   JointJ=321   IsCurved=No   Length=5.24558452481077   CentroidX=298.63   CentroidY=-
98.9762   CentroidZ=-51.8529077375946 
   Frame=325   JointI=421   JointJ=325   IsCurved=No   Length=27.7544154751892   CentroidX=298.63   CentroidY=-
98.9762   CentroidZ=-35.3529077375946 
   Frame=411   JointI=511   JointJ=411   IsCurved=No   Length=10   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-16.4757 
   Frame=421   JointI=521   JointJ=421   IsCurved=No   Length=10   CentroidX=298.63   CentroidY=-98.9762   
CentroidZ=-16.4757 
   Frame=511   JointI=611   JointJ=511   IsCurved=No   Length=7   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-7.9757 
   Frame=521   JointI=621   JointJ=521   IsCurved=No   Length=7   CentroidX=298.63   CentroidY=-98.9762   
CentroidZ=-7.9757 
   Frame=611   JointI=711   JointJ=611   IsCurved=No   Length=4.4757   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-2.23785 
   Frame=621   JointI=721   JointJ=621   IsCurved=No   Length=4.4757   CentroidX=298.63   CentroidY=-98.9762   
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CentroidZ=-2.23785 
   Frame=701   JointI=701   JointJ=702   IsCurved=No   Length=34.9972387579363   CentroidX=17.4879   
CentroidY=-0.6124   CentroidZ=0 
   Frame=702   JointI=702   JointJ=703   IsCurved=No   Length=34.9971915718962   CentroidX=52.378   CentroidY=-
3.059   CentroidZ=0 
   Frame=703   JointI=703   JointJ=704   IsCurved=No   Length=34.9972692301842   CentroidX=87.0115   
CentroidY=-7.94025   CentroidZ=0 
   Frame=704   JointI=704   JointJ=711   IsCurved=No   Length=34.9972601449028   CentroidX=121.21875   
CentroidY=-15.2322   CentroidZ=0 
   Frame=711   JointI=711   JointJ=712   IsCurved=No   Length=44.9905053744676   CentroidX=159.51205   
CentroidY=-26.6609   CentroidZ=0 
   Frame=712   JointI=712   JointJ=713   IsCurved=No   Length=44.9905194454343   CentroidX=201.4147   
CentroidY=-42.91565   CentroidZ=0 
   Frame=713   JointI=713   JointJ=714   IsCurved=No   Length=44.9904331191644   CentroidX=241.68655   
CentroidY=-62.8712   CentroidZ=0 
   Frame=714   JointI=714   JointJ=721   IsCurved=No   Length=44.9905009281959   CentroidX=280.00155   
CentroidY=-86.366   CentroidZ=0 
   Frame=721   JointI=721   JointJ=722   IsCurved=No   Length=34.9970896465692   CentroidX=312.29035   
CentroidY=-109.9121   CentroidZ=0 
   Frame=722   JointI=722   JointJ=723   IsCurved=No   Length=34.997598934927   CentroidX=338.81265   
CentroidY=-132.713   CentroidZ=0 
   Frame=723   JointI=723   JointJ=724   IsCurved=No   Length=35.0992953132965   CentroidX=363.74925   
CentroidY=-157.3135   CentroidZ=0 
   Frame=724   JointI=724   JointJ=731   IsCurved=No   Length=34.9031418443956   CentroidX=386.82985   
CentroidY=-183.5925   CentroidZ=0 
  
TABLE:  "JOINT RESTRAINT ASSIGNMENTS" 
   Joint=211   U1=Yes   U2=Yes   U3=Yes   R1=Yes   R2=Yes   R3=Yes 
   Joint=221   U1=Yes   U2=Yes   U3=Yes   R1=Yes   R2=Yes   R3=Yes 
   Joint=701   U1=No   U2=Yes   U3=Yes   R1=Yes   R2=No   R3=No 
   Joint=731   U1=No   U2=Yes   U3=Yes   R1=Yes   R2=No   R3=No 
  
TABLE:  "JOINT LOCAL AXES ASSIGNMENTS 1 - TYPICAL" 
   Joint=211   AngleA=-16   AngleB=0   AngleC=0   AdvanceAxes=No 
   Joint=221   AngleA=-36   AngleB=0   AngleC=0   AdvanceAxes=No 
   Joint=731   AngleA=-52   AngleB=0   AngleC=0   AdvanceAxes=No 
  
TABLE:  "JOINT SPRING ASSIGNMENTS 1 - UNCOUPLED" 
   Joint=211   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
   Joint=701   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
   Joint=731   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
   Joint=221   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
  
TABLE:  "FRAME SECTION ASSIGNMENTS" 
   Frame=211   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=BLINK   DesignSect=BLINK   
MatProp=Default 
   Frame=221   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=BLINK   DesignSect=BLINK   
MatProp=Default 
   Frame=311   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COL   DesignSect=COL   MatProp=Default 
   Frame=315   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COL   DesignSect=COL   MatProp=Default 
   Frame=321   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COL   DesignSect=COL   MatProp=Default 
   Frame=325   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COL   DesignSect=COL   MatProp=Default 
   Frame=411   SectionType=Nonprismatic   AutoSelect=N.A.   AnalSect=COLT   DesignSect=COLT   
MatProp=Default   NPSectType=Default 
   Frame=421   SectionType=Nonprismatic   AutoSelect=N.A.   AnalSect=COLT   DesignSect=COLT   
MatProp=Default   NPSectType=Default 
   Frame=511   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COLH   DesignSect=COLH   
MatProp=Default 
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   Frame=521   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COLH   DesignSect=COLH   
MatProp=Default 
   Frame=611   SectionType=General   AutoSelect=N.A.   AnalSect=RIGID   DesignSect=N.A.   MatProp=Default 
   Frame=621   SectionType=General   AutoSelect=N.A.   AnalSect=RIGID   DesignSect=N.A.   MatProp=Default 
   Frame=701   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=702   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=703   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=704   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=711   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=712   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=713   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=714   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=721   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=722   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=723   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=724   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
  
TABLE:  "FRAME RELEASE ASSIGNMENTS 1 - GENERAL" 
   Frame=611   PI=No   V2I=No   V3I=No   TI=No   M2I=No   M3I=No   PJ=No   V2J=No   V3J=No   TJ=No   
M2J=No   M3J=Yes   PartialFix=No 
   Frame=621   PI=No   V2I=No   V3I=No   TI=No   M2I=No   M3I=No   PJ=No   V2J=No   V3J=No   TJ=No   
M2J=No   M3J=Yes   PartialFix=No 
  
TABLE:  "FRAME LOCAL AXES ASSIGNMENTS 1 - TYPICAL" 
   Frame=211   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=221   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=311   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=315   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=321   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=325   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=411   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=421   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=511   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=521   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=611   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=621   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
  
TABLE:  "FRAME OUTPUT STATION ASSIGNMENTS" 
   Frame=211   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=221   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=311   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=315   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=321   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=325   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=411   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=421   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=511   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=521   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=611   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=621   StationType=MinNumSta   MinNumSta=3   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=701   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=702   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=703   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=704   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
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   Frame=711   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=712   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=713   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=714   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=721   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=722   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=723   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
   Frame=724   StationType=MaxStaSpcg   MaxStaSpcg=2   AddAtElmInt=Yes   AddAtPtLoad=Yes 
  
TABLE:  "FRAME HINGE ASSIGNS 01 - OVERVIEW" 
   Frame=311   AssignType="Auto FEMA356 - P-M2-M3"   HingeTable="Table 6-8 (Concrete Columns - Flexure) 
Item i"   GenHinge=311H1   RelDist=1   AbsDist=5.24558452481077   ActualDist=5.24558452481077   
OverWrites=No 
   Frame=321   AssignType="Auto FEMA356 - P-M2-M3"   HingeTable="Table 6-8 (Concrete Columns - Flexure) 
Item i"   GenHinge=321H1   RelDist=1   AbsDist=5.24558452481077   ActualDist=5.24558452481077   
OverWrites=No 
  
TABLE:  "FRAME HINGE ASSIGNS 05 - AUTO FEMA 356 - CONCRETE COLUMN" 
   Frame=311   GenHinge=311H1   CompType=Primary   DOF=P-M2-M3   PandVFrom=Case   PandVCase=DEAD   
Conforming=Yes   BeyondE="To Zero"   DistType=RelDist   RelDist=1   AbsDist=5.24558452481077   
ActualDist=5.24558452481077 
   Frame=321   GenHinge=321H1   CompType=Primary   DOF=P-M2-M3   PandVFrom=Case   PandVCase=DEAD   
Conforming=Yes   BeyondE="To Zero"   DistType=RelDist   RelDist=1   AbsDist=5.24558452481077   
ActualDist=5.24558452481077 
  
TABLE:  "FRAME AUTO MESH ASSIGNMENTS" 
   Frame=211   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=221   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=311   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=315   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=321   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=325   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=411   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=421   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=511   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=521   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=611   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=621   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=701   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=702   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=703   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=704   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=711   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=712   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=713   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=714   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=721   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=722   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=723   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
   Frame=724   AutoMesh=Yes   AtJoints=Yes   AtFrames=No   NumSegments=0   MaxLength=0   MaxDegrees=0 
  
END TABLE DATA 
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D.2 SAP2000 INPUT DATA FILE FOR NL-THA 

File C:\Users\MAhmed\Documents\My Dropbox\Public\0714-Parametric-Steel BOX-L140-180-140-H50-R500-THA-
045g.s2k was saved on 10/31/10 at 21:27:57 
  
TABLE:  "PROGRAM CONTROL" 
   ProgramName=SAP2000   Version=14.0.0   ProgLevel=Advanced   LicenseOS=Yes   LicenseSC=Yes   
LicenseBR=Yes   LicenseHT=No   CurrUnits="Kip, ft, F"   SteelCode=AISC-LRFD93   ConcCode="ACI 318-
05/IBC2003"   AlumCode="AA-ASD 2000" _ 
        ColdCode=AISI-ASD96   BridgeCode="AASHTO LRFD 2007"   RegenHinge=Yes 
  
TABLE:  "ACTIVE DEGREES OF FREEDOM" 
   UX=Yes   UY=Yes   UZ=Yes   RX=Yes   RY=Yes   RZ=Yes 
  
TABLE:  "ANALYSIS OPTIONS" 
   Solver=Advanced   SolverProc=Auto   Force32Bit=No   StiffCase=None   GeomMod=No 
  
TABLE:  "COORDINATE SYSTEMS" 
   Name=GLOBAL   Type=Cartesian   X=0   Y=0   Z=0   AboutZ=0   AboutY=0   AboutX=0 
  
TABLE:  "GRID LINES" 
   CoordSys=GLOBAL   AxisDir=X   GridID=A   XRYZCoord=0   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End   AllVisible=No   BubbleSize=9.25 
   CoordSys=GLOBAL   AxisDir=X   GridID=B   XRYZCoord=105   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Y   GridID=1   XRYZCoord=0   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=Start 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z8   XRYZCoord=-84.5   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z7   XRYZCoord=-78   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z6   XRYZCoord=-64.5   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z5   XRYZCoord=-58   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z4   XRYZCoord=-25   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z3   XRYZCoord=-15   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z2   XRYZCoord=-6.5   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
   CoordSys=GLOBAL   AxisDir=Z   GridID=Z1   XRYZCoord=0   LineType=Primary   LineColor=Gray8Dark   
Visible=Yes   BubbleLoc=End 
  
TABLE:  "MATERIAL PROPERTIES 01 - GENERAL" 
   Material=4000Psi   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Cyan   Notes="Normalweight 
f'c = 4 ksi added 4/23/2010 12:39:57 PM" 
   Material=A615Gr60   Type=Rebar   SymType=Uniaxial   TempDepend=No   Color=Cyan   Notes="ASTM A615 
Grade 60 added 4/23/2010 3:10:32 PM" 
   Material=A992Fy50   Type=Steel   SymType=Isotropic   TempDepend=No   Color=Green   Notes="ASTM A992 
Fy=50 ksi added 4/23/2010 12:39:57 PM" 
   Material=CONC   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight f'c 
= 4 ksi added 4/23/2010 3:04:41 PM" 
   Material=RIGID   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight f'c 
= 4 ksi added 4/23/2010 3:02:20 PM" 
   Material=SUB   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight f'c = 
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4 ksi added 4/23/2010 3:02:20 PM" 
   Material=SUPER   Type=Concrete   SymType=Isotropic   TempDepend=No   Color=Blue   Notes="Normalweight 
f'c = 4 ksi added 4/23/2010 2:59:44 PM" 
  
TABLE:  "MATERIAL PROPERTIES 02 - BASIC MECHANICAL PROPERTIES" 
   Material=4000Psi   UnitWeight=0.15   UnitMass=4.66214231655636E-03   E1=519119.500693241   
G12=216299.791955517   U12=0.2   A1=0.0000055 
   Material=A615Gr60   UnitWeight=0.49   UnitMass=1.52296649007508E-02   E1=4176000   A1=0.0000065 
   Material=A992Fy50   UnitWeight=0.49   UnitMass=1.52296649007508E-02   E1=4176000   
G12=1606153.84615385   U12=0.3   A1=0.0000065 
   Material=CONC   UnitWeight=0   UnitMass=0   E1=518400   G12=216000   U12=0.2   A1=0.0000055 
   Material=RIGID   UnitWeight=0   UnitMass=0   E1=518400   G12=219661.016949153   U12=0.18   A1=0.000006 
   Material=SUB   UnitWeight=0.15   UnitMass=0.004658385   E1=518400   G12=219661.016949153   U12=0.18   
A1=0.000006 
   Material=SUPER   UnitWeight=0.152   UnitMass=0.00472049   E1=518400   G12=219661.016949153   U12=0.18   
A1=0.000006 
  
TABLE:  "MATERIAL PROPERTIES 03A - STEEL DATA" 
   Material=A992Fy50   Fy=7200   Fu=9360   EffFy=7920   EffFu=10296   SSCurveOpt=Simple   
SSHysType=Kinematic   SHard=0.015   SMax=0.11   SRup=0.17   FinalSlope=-0.1 
  
TABLE:  "MATERIAL PROPERTIES 03B - CONCRETE DATA" 
   Material=4000Psi   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Takeda   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=CONC   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=RIGID   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=SUB   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
   Material=SUPER   Fc=576   LtWtConc=No   SSCurveOpt=Mander   SSHysType=Kinematic   
SFc=2.21914221766202E-03   SCap=0.005   FinalSlope=-0.1   FAngle=0   DAngle=0 
  
TABLE:  "MATERIAL PROPERTIES 03E - REBAR DATA" 
   Material=A615Gr60   Fy=8640   Fu=12960   EffFy=9504   EffFu=14256   SSCurveOpt=Simple   
SSHysType=Kinematic   SHard=0.01   SCap=0.09   FinalSlope=-0.1   UseCTDef=No 
  
TABLE:  "MATERIAL PROPERTIES 06 - DAMPING PARAMETERS" 
   Material=4000Psi   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=A615Gr60   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=A992Fy50   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=CONC   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=RIGID   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=SUB   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
   Material=SUPER   ModalRatio=0   VisMass=0   VisStiff=0   HysMass=0   HysStiff=0 
  
TABLE:  "FRAME SECTION PROPERTIES 01 - GENERAL" 
   SectionName=BLINK   Material=SUB   Shape=Rectangular   t3=25   t2=25   Area=625   
TorsConst=55013.0208333333   I33=32552.0833333333   I22=32552.0833333333   AS2=520.833333333333   
AS3=520.833333333333   S33=2604.16666666667 _ 
        S22=2604.16666666667   Z33=3906.25   Z22=3906.25   R33=7.21687836487032   R22=7.21687836487032   
ConcCol=Yes   ConcBeam=No   Color=Gray8Dark   TotalWt=1218.75   TotalMass=37.849378125   FromFile=No   
AMod=1   A2Mod=0   A3Mod=0 _ 
        JMod=1   I2Mod=1   I3Mod=1   MMod=1   WMod=1   Notes="Added 4/23/2010 3:12:01 PM" 
   SectionName=COL   Material=SUB   Shape=Rectangular   t3=6.25   t2=20   Area=125   
TorsConst=1307.42425487066   I33=406.901041666667   I22=4166.66666666667   AS2=104.166666666667   
AS3=104.166666666667   S33=130.208333333333 _ 
        S22=416.666666666667   Z33=195.3125   Z22=625   R33=1.80421959121758   R22=5.77350269189626   
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ConcCol=Yes   ConcBeam=No   Color=Yellow   TotalWt=1040.7905803196   TotalMass=32.3226881833473   
FromFile=No   AMod=1   A2Mod=0   A3Mod=0 _ 
        JMod=1   I2Mod=0.353   I3Mod=0.402   MMod=1   WMod=1   Notes="Added 4/23/2010 3:11:18 PM" 
   SectionName=COLH   Material=SUB   Shape=Rectangular   t3=6.25   t2=40   Area=250   
TorsConst=2934.78967917811   I33=813.802083333333   I22=33333.3333333333   AS2=208.333333333333   
AS3=208.333333333333   S33=260.416666666667 _ 
        S22=1666.66666666667   Z33=390.625   Z22=2500   R33=1.80421959121758   R22=11.5470053837925   
ConcCol=Yes   ConcBeam=No   Color=Red   TotalWt=525   TotalMass=16.3043475   FromFile=No   AMod=1   
A2Mod=0   A3Mod=0   JMod=1   I2Mod=1 _ 
        I3Mod=1   MMod=1   WMod=1   Notes="Added 4/23/2010 3:10:32 PM" 
   SectionName=COLT   Shape=Nonprismatic   Color=Blue   Notes="Added 4/23/2010 3:12:36 PM" 
   SectionName=RIGID   Material=RIGID   Shape=General   t3=1.5   t2=0.8333   Area=2500   TorsConst=100000   
I33=100000   I22=100000   AS2=1   AS3=1   S33=1   S22=1   Z33=1   Z22=1   R33=1   R22=1   ConcCol=No   
ConcBeam=No   Color=Blue _ 
        TotalWt=0   TotalMass=0   FromFile=No   AMod=1   A2Mod=1   A3Mod=1   JMod=1   I2Mod=1   I3Mod=1   
MMod=1   WMod=1   Notes="Added 4/23/2010 3:09:53 PM" 
   SectionName=SUPER   Material=SUPER   Shape=General   t3=1.5   t2=0.8333   Area=39.8201   TorsConst=5.6949   
I33=273.3586   I22=2948.364   AS2=1   AS3=1   S33=1   S22=1   Z33=1   Z22=1   R33=1   R22=1   ConcCol=No   
ConcBeam=No _ 
        Color=White   TotalWt=1815.63125119602   TotalMass=56.38598134841   FromFile=No   AMod=1   A2Mod=1   
A3Mod=1   JMod=1   I2Mod=1   I3Mod=1   MMod=1   WMod=1   Notes="Added 4/23/2010 3:08:54 PM" 
   SectionName=SUPER-PIER   Material=SUPER   Shape=General   t3=1.5   t2=0.8333   Area=45.2368   
TorsConst=9.1093   I33=318.9432   I22=3350.024   AS2=1   AS3=1   S33=1   S22=1   Z33=1   Z22=1   R33=1   
R22=1   ConcCol=No   ConcBeam=No _ 
        Color=White   TotalWt=1099.989524661   TotalMass=34.1611154688618   FromFile=No   AMod=1   A2Mod=1   
A3Mod=1   JMod=1   I2Mod=1   I3Mod=1   MMod=1   WMod=1   Notes="Added 7/17/2010 11:41:37 PM" 
  
TABLE:  "FRAME SECTION PROPERTIES 02 - CONCRETE COLUMN" 
   SectionName=BLINK   RebarMatL=A615Gr60   RebarMatC=A615Gr60   ReinfConfig=Rectangular   LatReinf=Ties   
Cover=0.25   NumBars3Dir=26   NumBars2Dir=26   BarSizeL=#9   BarSizeC=#4   SpacingC=0.5   NumCBars2=3   
NumCBars3=3   ReinfType=Check 
   SectionName=COL   RebarMatL=A615Gr60   RebarMatC=A615Gr60   ReinfConfig=Rectangular   LatReinf=Ties   
Cover=0.33   NumBars3Dir=45   NumBars2Dir=12   BarSizeL=#11   BarSizeC=#7   SpacingC=1   NumCBars2=6   
NumCBars3=20   ReinfType=Design 
   SectionName=COLH   RebarMatL=A615Gr60   RebarMatC=A615Gr60   ReinfConfig=Rectangular   LatReinf=Ties   
Cover=0.33   NumBars3Dir=44   NumBars2Dir=15   BarSizeL=#11   BarSizeC=#7   SpacingC=0.5   NumCBars2=6   
NumCBars3=20   ReinfType=Check 
  
TABLE:  "FRAME SECTION PROPERTIES 05 - NONPRISMATIC" 
   SectionName=COLT   NumSegments=1   SegmentNum=1   StartSect=COLH   EndSect=COL   
LengthType=Absolute   AbsLength=10   EI33Var=Linear   EI22Var=Cubic 
  
TABLE:  "LINK PROPERTY DEFINITIONS 01 - GENERAL" 
   Link=PH1   LinkType="Plastic (Wen)"   Mass=0.001   Weight=0   RotInert1=0.1   RotInert2=0.1   RotInert3=0.1   
DefLength=1   DefArea=1   PDM2I=0   PDM2J=0   PDM3I=0   PDM3J=0   Color=Yellow   Notes="Added 7/19/2010 
4:13:36 PM" 
  
TABLE:  "LINK PROPERTY DEFINITIONS 10 - PLASTIC (WEN)" 
   Link=PH1   DOF=U1   Fixed=No   NonLinear=No   TransKE=12300000   TransCE=0 
   Link=PH1   DOF=U2   Fixed=No   NonLinear=No   TransKE=7033178   TransCE=0   DJ=2.625 
   Link=PH1   DOF=U3   Fixed=No   NonLinear=No   TransKE=63238419   TransCE=0   DJ=2.625 
   Link=PH1   DOF=R1   Fixed=No   NonLinear=No   RotKE=64200000   RotCE=0 
   Link=PH1   DOF=R2   Fixed=No   NonLinear=Yes   RotKE=145000000   RotCE=0   RotK=145000000   
RotYield=113268   Ratio=0.008   YieldExp=20 
   Link=PH1   DOF=R3   Fixed=No   NonLinear=Yes   RotKE=16153316   RotCE=0   RotK=16153316   
RotYield=37443   Ratio=0.0232   YieldExp=20 
  
TABLE:  "LOAD PATTERN DEFINITIONS" 
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   LoadPat=DEAD   DesignType=DEAD   SelfWtMult=1 
  
TABLE:  "FUNCTION - TIME HISTORY - FROM FILE" 
   Name=northcc   Time=0   Value=0.778   HeaderLines=2   PrefixChars=0   PtsPerLine=8   DataType="Equal 
Interval"   FormatType=Free   Interval=0.02   FileName="c:\program files\computers and structures\sap2000 14\time 
history functions\lacc_nor-1.th" 
   Name=northcc   Time=0.02   Value=-0.246 
   Name=northcc   Time=0.04   Value=0.164 
   ............. 
   Name=northcc   Time=59.94   Value=-5.557 
   Name=northcc   Time=59.96   Value=-4.9 
   Name=northcc   Time=59.98   Value=-3.523 
    
Name=Elcentro   Time=0   Value=0.0108   HeaderLines=0   PrefixChars=0   PtsPerLine=3   DataType="Time and 
Value"   FormatType=Free   FileName="c:\program files\computers and structures\sap2000 14\time history 
functions\elcentro" 
   Name=Elcentro   Time=0.042   Value=0.001 
   Name=Elcentro   Time=0.097   Value=0.0159 
   ............... 
   Name=Elcentro   Time=11.988   Value=0.1354 
   Name=Elcentro   Time=12.043   Value=0.0673 
   Name=Elcentro   Time=12.113   Value=0.0865 
 
TABLE:  "FUNCTION - TIME HISTORY - USER" 
   Name=Monica   Time=0   Value=1.245 
   Name=Monica   Time=0.02   Value=-0.441 
   Name=Monica   Time=0.04   Value=-0.93 
   Name=Monica   Time=0.06   Value=-2.185 
   Name=Monica   Time=0.08   Value=-2.94 
   ............... 
   Name=Monica   Time=59.96   Value=-1.588 
   Name=Monica   Time=59.98   Value=-0.819 
   Name=Monica   Time=59.96   Value=-1.588 
   Name=Monica   Time=59.98   Value=-0.819 
   Name=Monica 
  
TABLE:  "CONSTRAINT DEFINITIONS - EQUAL" 
   Name=EQUAL1   CoordSys=GLOBAL   UX=No   UY=Yes   UZ=Yes   RX=Yes   RY=No   RZ=No 
  
TABLE:  "LOAD CASE DEFINITIONS" 
   Case=DEAD   Type=LinStatic   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=DEAD   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=MODAL   Type=LinModal   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=OTHER   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=ModalRitz   Type=LinModal   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=OTHER   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=RITZ   Type=LinModal   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=QUAKE   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=GRAV   Type=NonStatic   InitialCond=Zero   DesTypeOpt="Prog Det"   DesignType=DEAD   
AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=Elcentro   Type=NonModHist   InitialCond=Zero   ModalCase=RITZ   DesTypeOpt="Prog Det"   
DesignType=QUAKE   AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=NorthCC   Type=NonModHist   InitialCond=Zero   ModalCase=RITZ   DesTypeOpt="Prog Det"   
DesignType=QUAKE   AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=NorthCC-1   Type=NonModHist   InitialCond=Zero   ModalCase=RITZ   DesTypeOpt="Prog Det"   
DesignType=QUAKE   AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
   Case=S.Monica   Type=NonModHist   InitialCond=Zero   ModalCase=ModalRitz   DesTypeOpt="Prog Det"   
DesignType=QUAKE   AutoType=None   RunCase=Yes   CaseStatus="Not Run" 
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 TABLE:  "CASE - STATIC 1 - LOAD ASSIGNMENTS" 
   Case=DEAD   LoadType="Load pattern"   LoadName=DEAD   LoadSF=1 
   Case=GRAV   LoadType="Load pattern"   LoadName=DEAD   LoadSF=1 
  
TABLE:  "CASE - STATIC 2 - NONLINEAR LOAD APPLICATION" 
   Case=GRAV   LoadApp="Full Load"   MonitorDOF=U1   MonitorJt=711 
  
TABLE:  "CASE - STATIC 4 - NONLINEAR PARAMETERS" 
   Case=GRAV   Unloading="Unload Entire"   GeoNonLin=None   ResultsSave="Final State"   MaxTotal=200   
MaxNull=50   MaxIterCS=10   MaxIterNR=40   ItConvTol=0.0001   UseEvStep=Yes   EvLumpTol=0.01   
LSPerIter=20   LSTol=0.1 _ 
        LSStepFact=1.618   FrameTC=Yes   FrameHinge=Yes   CableTC=Yes   LinkTC=Yes   LinkOther=Yes   
TFMaxIter=10   TFTol=0.01   TFAccelFact=1   TFNoStop=No 
  
TABLE:  "CASE - MODAL 1 - GENERAL" 
   Case=MODAL   ModeType=Eigen   MaxNumModes=12   MinNumModes=1   EigenShift=0   EigenCutoff=0   
EigenTol=0.000000001   AutoShift=Yes 
   Case=ModalRitz   ModeType=Ritz   MaxNumModes=12   MinNumModes=1 
   Case=RITZ   ModeType=Ritz   MaxNumModes=12   MinNumModes=1 
  
TABLE:  "CASE - MODAL 3 - LOAD ASSIGNMENTS - RITZ" 
   Case=ModalRitz   LoadType="Load pattern"   LoadName=DEAD   MaxCycles=0   TargetPar=0 
   Case=ModalRitz   LoadType=Accel   LoadName="Accel UY"   MaxCycles=0   TargetPar=0 
   Case=ModalRitz   LoadType=Link   LoadName="All Links"   MaxCycles=0   TargetPar=0 
   Case=RITZ   LoadType=Accel   LoadName="Accel UY"   MaxCycles=0   TargetPar=0 
   Case=RITZ   LoadType=Link   LoadName="All Links"   MaxCycles=0   TargetPar=0 
  
TABLE:  "JOINT COORDINATES" 
   Joint=211   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-60.9757   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-60.9757 
   Joint=221   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-60.9757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-60.9757 
   Joint=311   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-54.4757   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-54.4757 
   Joint=315   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-49.2301154751892   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-49.2301154751892 
   Joint=321   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-54.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-54.4757 
   Joint=325   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-49.2301154751892   
SpecialJt=No   GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-49.2301154751892 
   Joint=411   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-21.4757   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-21.4757 
   Joint=421   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-21.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-21.4757 
   Joint=511   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-11.4757   
SpecialJt=No   GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-11.4757 
   Joint=521   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-11.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-11.4757 
   Joint=611   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=-4.4757   SpecialJt=No   
GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=-4.4757 
   Joint=621   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=-4.4757   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=-4.4757 
   Joint=701   CoordSys=GLOBAL   CoordType=Cartesian   XorR=0   Y=0   Z=0   SpecialJt=No   GlobalX=0   
GlobalY=0   GlobalZ=0 
   Joint=702   CoordSys=GLOBAL   CoordType=Cartesian   XorR=34.9758   Y=-1.2248   Z=0   SpecialJt=No   
GlobalX=34.9758   GlobalY=-1.2248   GlobalZ=0 
   Joint=703   CoordSys=GLOBAL   CoordType=Cartesian   XorR=69.7802   Y=-4.8932   Z=0   SpecialJt=No   
GlobalX=69.7802   GlobalY=-4.8932   GlobalZ=0 
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   Joint=704   CoordSys=GLOBAL   CoordType=Cartesian   XorR=104.2428   Y=-10.9873   Z=0   SpecialJt=No   
GlobalX=104.2428   GlobalY=-10.9873   GlobalZ=0 
   Joint=711   CoordSys=GLOBAL   CoordType=Cartesian   XorR=138.1947   Y=-19.4771   Z=0   SpecialJt=No   
GlobalX=138.1947   GlobalY=-19.4771   GlobalZ=0 
   Joint=712   CoordSys=GLOBAL   CoordType=Cartesian   XorR=180.8294   Y=-33.8447   Z=0   SpecialJt=No   
GlobalX=180.8294   GlobalY=-33.8447   GlobalZ=0 
   Joint=713   CoordSys=GLOBAL   CoordType=Cartesian   XorR=222   Y=-51.9866   Z=0   SpecialJt=No   
GlobalX=222   GlobalY=-51.9866   GlobalZ=0 
   Joint=714   CoordSys=GLOBAL   CoordType=Cartesian   XorR=261.3731   Y=-73.7558   Z=0   SpecialJt=No   
GlobalX=261.3731   GlobalY=-73.7558   GlobalZ=0 
   Joint=721   CoordSys=GLOBAL   CoordType=Cartesian   XorR=298.63   Y=-98.9762   Z=0   SpecialJt=No   
GlobalX=298.63   GlobalY=-98.9762   GlobalZ=0 
   Joint=722   CoordSys=GLOBAL   CoordType=Cartesian   XorR=325.9507   Y=-120.848   Z=0   SpecialJt=No   
GlobalX=325.9507   GlobalY=-120.848   GlobalZ=0 
   Joint=723   CoordSys=GLOBAL   CoordType=Cartesian   XorR=351.6746   Y=-144.578   Z=0   SpecialJt=No   
GlobalX=351.6746   GlobalY=-144.578   GlobalZ=0 
   Joint=724   CoordSys=GLOBAL   CoordType=Cartesian   XorR=375.8239   Y=-170.049   Z=0   SpecialJt=No   
GlobalX=375.8239   GlobalY=-170.049   GlobalZ=0 
   Joint=731   CoordSys=GLOBAL   CoordType=Cartesian   XorR=397.8358   Y=-197.136   Z=0   SpecialJt=No   
GlobalX=397.8358   GlobalY=-197.136   GlobalZ=0 
  
TABLE:  "CONNECTIVITY - FRAME" 
   Frame=211   JointI=311   JointJ=211   IsCurved=No   Length=6.5   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-57.7257 
   Frame=221   JointI=321   JointJ=221   IsCurved=No   Length=6.5   CentroidX=298.63   CentroidY=-98.9762   
CentroidZ=-57.7257 
   Frame=315   JointI=411   JointJ=315   IsCurved=No   Length=27.7544154751892   CentroidX=138.1947   
CentroidY=-19.4771   CentroidZ=-35.3529077375946 
   Frame=325   JointI=421   JointJ=325   IsCurved=No   Length=27.7544154751892   CentroidX=298.63   CentroidY=-
98.9762   CentroidZ=-35.3529077375946 
   Frame=411   JointI=511   JointJ=411   IsCurved=No   Length=10   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-16.4757 
   Frame=421   JointI=521   JointJ=421   IsCurved=No   Length=10   CentroidX=298.63   CentroidY=-98.9762   
CentroidZ=-16.4757 
   Frame=511   JointI=611   JointJ=511   IsCurved=No   Length=7   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-7.9757 
   Frame=521   JointI=621   JointJ=521   IsCurved=No   Length=7   CentroidX=298.63   CentroidY=-98.9762   
CentroidZ=-7.9757 
   Frame=611   JointI=711   JointJ=611   IsCurved=No   Length=4.4757   CentroidX=138.1947   CentroidY=-19.4771   
CentroidZ=-2.23785 
   Frame=621   JointI=721   JointJ=621   IsCurved=No   Length=4.4757   CentroidX=298.63   CentroidY=-98.9762   
CentroidZ=-2.23785 
   Frame=701   JointI=701   JointJ=702   IsCurved=No   Length=34.9972387579363   CentroidX=17.4879   
CentroidY=-0.6124   CentroidZ=0 
   Frame=702   JointI=702   JointJ=703   IsCurved=No   Length=34.9971915718962   CentroidX=52.378   CentroidY=-
3.059   CentroidZ=0 
   Frame=703   JointI=703   JointJ=704   IsCurved=No   Length=34.9972692301842   CentroidX=87.0115   
CentroidY=-7.94025   CentroidZ=0 
   Frame=704   JointI=704   JointJ=711   IsCurved=No   Length=34.9972601449028   CentroidX=121.21875   
CentroidY=-15.2322   CentroidZ=0 
   Frame=711   JointI=711   JointJ=712   IsCurved=No   Length=44.9905053744676   CentroidX=159.51205   
CentroidY=-26.6609   CentroidZ=0 
   Frame=712   JointI=712   JointJ=713   IsCurved=No   Length=44.9905194454343   CentroidX=201.4147   
CentroidY=-42.91565   CentroidZ=0 
   Frame=713   JointI=713   JointJ=714   IsCurved=No   Length=44.9904331191644   CentroidX=241.68655   
CentroidY=-62.8712   CentroidZ=0 
   Frame=714   JointI=714   JointJ=721   IsCurved=No   Length=44.9905009281959   CentroidX=280.00155   
CentroidY=-86.366   CentroidZ=0 
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   Frame=721   JointI=721   JointJ=722   IsCurved=No   Length=34.9970896465692   CentroidX=312.29035   
CentroidY=-109.9121   CentroidZ=0 
   Frame=722   JointI=722   JointJ=723   IsCurved=No   Length=34.997598934927   CentroidX=338.81265   
CentroidY=-132.713   CentroidZ=0 
   Frame=723   JointI=723   JointJ=724   IsCurved=No   Length=35.0992953132965   CentroidX=363.74925   
CentroidY=-157.3135   CentroidZ=0 
   Frame=724   JointI=724   JointJ=731   IsCurved=No   Length=34.9031418443956   CentroidX=386.82985   
CentroidY=-183.5925   CentroidZ=0 
  
TABLE:  "JOINT RESTRAINT ASSIGNMENTS" 
   Joint=211   U1=Yes   U2=Yes   U3=Yes   R1=Yes   R2=Yes   R3=Yes 
   Joint=221   U1=Yes   U2=Yes   U3=Yes   R1=Yes   R2=Yes   R3=Yes 
   Joint=701   U1=No   U2=Yes   U3=Yes   R1=Yes   R2=No   R3=No 
   Joint=731   U1=No   U2=Yes   U3=Yes   R1=Yes   R2=No   R3=No 
  
TABLE:  "JOINT LOCAL AXES ASSIGNMENTS 1 - TYPICAL" 
   Joint=211   AngleA=-16   AngleB=0   AngleC=0   AdvanceAxes=No 
   Joint=221   AngleA=-36   AngleB=0   AngleC=0   AdvanceAxes=No 
   Joint=731   AngleA=-52   AngleB=0   AngleC=0   AdvanceAxes=No 
  
TABLE:  "JOINT SPRING ASSIGNMENTS 1 - UNCOUPLED" 
   Joint=211   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
   Joint=701   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
   Joint=731   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
   Joint=221   CoordSys=Local   U1=0   U2=0   U3=0   R1=0   R2=0   R3=0 
  
TABLE:  "FRAME SECTION ASSIGNMENTS" 
   Frame=211   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=BLINK   DesignSect=BLINK   
MatProp=Default 
   Frame=221   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=BLINK   DesignSect=BLINK   
MatProp=Default 
   Frame=315   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COL   DesignSect=COL   MatProp=Default 
   Frame=325   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COL   DesignSect=COL   MatProp=Default 
   Frame=411   SectionType=Nonprismatic   AutoSelect=N.A.   AnalSect=COLT   DesignSect=COLT   
MatProp=Default   NPSectType=Default 
   Frame=421   SectionType=Nonprismatic   AutoSelect=N.A.   AnalSect=COLT   DesignSect=COLT   
MatProp=Default   NPSectType=Default 
   Frame=511   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COLH   DesignSect=COLH   
MatProp=Default 
   Frame=521   SectionType=Rectangular   AutoSelect=N.A.   AnalSect=COLH   DesignSect=COLH   
MatProp=Default 
   Frame=611   SectionType=General   AutoSelect=N.A.   AnalSect=RIGID   DesignSect=N.A.   MatProp=Default 
   Frame=621   SectionType=General   AutoSelect=N.A.   AnalSect=RIGID   DesignSect=N.A.   MatProp=Default 
   Frame=701   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=702   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=703   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=704   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=711   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=712   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=713   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=714   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=721   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER-PIER   DesignSect=N.A.   
MatProp=Default 
   Frame=722   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
   Frame=723   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
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   Frame=724   SectionType=General   AutoSelect=N.A.   AnalSect=SUPER   DesignSect=N.A.   MatProp=Default 
  
TABLE:  "FRAME RELEASE ASSIGNMENTS 1 - GENERAL" 
   Frame=611   PI=No   V2I=No   V3I=No   TI=No   M2I=No   M3I=No   PJ=No   V2J=No   V3J=No   TJ=No   
M2J=No   M3J=Yes   PartialFix=No 
   Frame=621   PI=No   V2I=No   V3I=No   TI=No   M2I=No   M3I=No   PJ=No   V2J=No   V3J=No   TJ=No   
M2J=No   M3J=Yes   PartialFix=No 
  
TABLE:  "FRAME LOCAL AXES ASSIGNMENTS 1 - TYPICAL" 
   Frame=211   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=221   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=315   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=325   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=411   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=421   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=511   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=521   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=611   Angle=16   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
   Frame=621   Angle=36   MirrorAbt2=No   MirrorAbt3=No   AdvanceAxes=No 
  
TABLE:  "LINK PROPERTY ASSIGNMENTS" 
   Link=1   LinkType="Plastic (Wen)"   LinkJoints=TwoJoint   LinkProp=PH1   LinkFDProp=None 
   Link=2   LinkType="Plastic (Wen)"   LinkJoints=TwoJoint   LinkProp=PH1   LinkFDProp=None 
  
TABLE:  "LINK LOCAL AXES ASSIGNMENTS 1 - TYPICAL" 
   Link=1   Angle=-16   AdvanceAxes=No 
   Link=2   Angle=-36   AdvanceAxes=No 
  
END TABLE DATA 
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