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Abstract. We introduce a new robust approach for the computation of
the fundamental matrix taking into account the intrinsic errors (uncer-
tainty) involved in the discretization process. The problem is modeled
as an approximate equation system and reduced to a linear program-
ming form. This approach is able to compute the solution set instead of
trying to compute only a single vertex of the solution polyhedron as in
previous approaches. Therefore, our algorithm is a robust generalization
of the eight-point algorithm. The exact solution computation feasibility
is proved for some pure translation motions, depending only on the dis-
tribution of the discretization errors. However, a single exact solution
for the fundamental matrix is not feasible for pure rotation cases. The
feasibility of an exact solution is decided according to an error distance
between a nontrivial exact solution and the faces of the solution set.
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1 Introduction

Recovering a three-dimensional model from a sequence of images may require
the estimation of the fundamental matriz [2]. The fundamental matrix F' en-
capsulates the projective geometry between two images, depending only on the
internal parameters of the camera and on the relative pose. If a scene point P
is projected as p in one image and p’ in another, then the image points satisfy
the equation p'" Fp = 0, where F is a 3 x 3 matrix of rank 2.

A set of point correspondences between two images is given for computing
the fundamental matrix. Each point match gives rise to one linear equation in
the entries of F' known as the epipolar constraint [5]. Let p be the point (z,y,1)7
and p' be (z',y',1)7, the equation corresponding to a pair of points p and p' is

'xFyy +a'yFio + 2’ Fis + y'oFyy + y'yFas + y' Fas + xF31 + yFsy + F33 = 0.

The set of point matches corresponds to a homogeneous system of linear algebraic
equations. Given a sufficient number of matches, a solution for the system is
feasible and the unknown matrix F' is computed by the eight-point algorithm [4]
or a robust method such as RANSAC [8].

An image is a continuous two-dimensional function of brightness correspond-
ing to the projection of a three-dimensional scene onto a plane. For computer
vision applications, spatial discretization of the image is required to obtain a
finite number of picture cells (pixels). Each pizel is associated with the average
irradiance over a small sampling area in the image plane. This way, the image
is represented as a rectangular array of pixels.

Pixel coordinates of points in the epipolar constraint are not exact. The cor-
respondence problem or stereo matching is an ill-posed problem and difficulties
arise from noise in the image, the aperture problem in textureless regions, among
others. Even if the correspondence problem was solved exactly, the discretization
process intrinsically inserts some amount of error which sub-pixel precision com-
putation is not able to overcome completely. Since real models of computation
are finite, the discretization process is unavoidable and, consequently, there are
intrinsic errors embedded in image point coordinates.

If any of the coefficients and right-hand constants in a system of equations
is not known exactly, then the system is called approrimate. The study of the
effects of uncertainties in the coefficients and constants on the solution of an
approximate system is called approzimate equation analysis [6].

In this paper, we discuss the effects of discretization errors in the computa-
tion of the fundamental matrix. We investigate the exact solution computation
feasibility for some particular rigid motions. In some pure translation cases, the
exact computation is possible and depends on the distribution of the errors. On
the other hand, pure rotation cases have a solution set characterization such that
a single exact solution for the fundamental matrix is not feasible.

The feasibility of a nontrivial exact solution for the fundamental matrix is
decided according to an error distance A(f,I") from an exact solution f to
the faces I' of a polyhedron. This polyhedron represents the solution set of
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an approximate system modeling the epipolar constraints. This error distance
also describes the goodness of a particular epipolar constraint related to the
solution process. Hence, the distance A(f, ") is an attribute that characterizes
point matches with respect to its contribution in the solution of the approximate
system.

In this paper, we introduce a new robust approach for the computation of the
fundamental matrix taking into account the intrinsic errors involved in the image
acquisition process. The problem is modeled as an approximate equation system
and reduced to a linear programming form [1]. A linear programming module is
used in the algorithm that works as a search in solution space. The algorithm
computes nine intervals of uncertainty that contains admissible solutions for the
elements of the fundamental matrix. Therefore, this approach is able to compute
the polyhedron representing the solution set while previous approaches only tries
to compute a single vertex of this polyhedron. This vertex is at the center of a ball
with some positive radius intercepting the most number of faces corresponding
to point matches.

This paper is organized as follows. In Section 2, we discuss approximate equa-
tion analysis and the admissible solution conditions. In Section 3, a solution set
characterization is performed for some particular rigid motions showing the com-
putation feasibility of an exact fundamental matrix. We present an approximate
algorithm for the fundamental matrix computation in Section 4. Finally, Sec-
tion 5 highlights our results and future work.

2 Approximate Equation Analysis

An approximate system of n linear algebraic equations in m unknowns Af = b
is a system in which the coefficients A;; and the right-hand constants b; are
intervals. A vector f is an admissible solution of the approximate system of
equations if A*f = b* for some A* € A and some b* € b. The solution set S is
the union of all admissible solutions.

The minimum and maximum values of each solution component defines the
intervals of uncertainty U; = [min(f;), maz(f;)], for all f € S and j =1,...,m.
An admissible solution is not necessarily one whose components fall within the
intervals of uncertainty, since the solution set S is a subset of the set defined by
the intervals of uncertainty. Furthermore, specifying one component, of a solution
vector restricts the intervals in which the other components may lie.

set of conditions for a solution f to be an admissible solution of Af = b are

m

> (aijfi + €l fil) = Bi— € and Y (i f; — €ijl f]) < Bi + €

j=1 j=1

for i = 1,...,n. The uncertainties ¢;; and ¢; are nonnegative. The presence of
the terms involving |f;| (absolute value) in these conditions cause a nonlinear
behavior in the conditions. Therefore, the set of linear constraints is different for
each of the 2™ orthants of the solution space (see Fig. 1).
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Fig. 1. Region of admissible solutions.

Solution sets of approximate systems of equations are not necessarily convex
and possibly non-convex. A system of equations is critically ill-conditioned if
there exists a singular coefficient matrix within the limits of the uncertainties in
the coeflicients. The solution set of a non-critically ill-conditioned approximate
system of equations is bounded and not disjoint. A critically ill-conditioned sys-
tem has the interval of uncertainty for at least one unknown unbounded and
may be disjoint.

3 Solution Set Characterization

Since the discrete coordinates of points in an image are not exact, there is an
error associated with each spatial measurement. Due to the errors, the epipolar
constraint used to compute the fundamental matrix becomes an approximate
equation. The solution set for a homogeneous approximate system is a polyhe-
dron that contains the ray representing the exact solution, since the fundamental
matrix can be determined only up to a scale.

We analyze how this polyhedron approximates an exact solution. The analysis
consists in computing an error distance A(f, ") from a nontrivial exact funda-
mental matrix f to the faces I' of the polyhedron: A(f,I") = minper |h — f].
Let f be a vector in the solution space and h be a face (hyper-plane) defined by
av = 0 corresponding to an admissible solution condition. The distance |h — f|
from f to h is the inner product f e a. If the distance is zero, then h contains
the vector f.

A solution set characterization is found to be based on the errors associated
with each point match when the distance A(f,I") to the faces is minimum. The
characterization consists in either finding conditions on error distribution for an
exact solution computation (A(f,I") = 0) or proving that the computation of
a single exact solution for the fundamental matrix is not feasible (A(f, ") > 0)
due to discretization errors in the spatial measurements (see Fig. 2).

We consider a normalized projective camera model with an unit focal length.
The first camera is centered at the origin of the three-dimensional space. The
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(@) A(f,T)=0. (b) A(f,T) > 0.

Fig. 2. Exact solution computation feasibility.

principal axis is coincident with the z-axis facing the positive half-space Z > 0.
The second camera is related to the first one according to a rigid motion. Let P
be a three-dimensional point (X,Y, Z,1)7, the point P is projected onto points
p and p' with pixel coordinates (z,y,1)T = (%, %, 1)T in the first image and
(=',9',1)T in the second image, respectively.

The discretization process inserts errors into the coordinates of the points p
and p'. Hence, the discrete pixel coordinates of p and p' are defined as
(wo;yo; 1)T = (.CL' + €x,Y + €y, l)T and ('Z'iﬂyéa l)T = ('ZJ + eJt’ayl + €y, 1)T7
respectively, where e, ey, e;1, e, are independent spatial errors whose absolute
values are less than a constant uncertainty € > 0 (see Fig. 3). The continuous
case is defined by the special condition € = 0.

Fig. 3. Discretization process.

Once a point is projected onto an image, the exact coordinates can only be
defined as belonging to intervals centered at the pixels with radius equal to the
uncertainty €. Hence, the epipolar constraint corresponding to the pair of points
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p and p' is an approximate equation!

Efi1 + TG fra + T frz + Y for + YT far + U foz + Bfsr + Gfaz + faz = 0,

where 7 = [z — €,20 + €], § = [yo — 6,50 + €], 7 = [z, — €,2!, + €], and

Y =lye — &y + €. o
According to interval arithmetic [7], the product of two intervals ¢ = [4,1]
and j = [,] is an interval defined as k= [mind{ij,ij,ij,i5}, max{ij,ij,ij,i5}]-
However, if 4 > 0 and j > 0, the product interval ¥ becomes [ij,47]. Therefore,
making these nonnegative assumptions (z, > €, yo > €, ¥, > €, and 3, > €)
without loss of generality, the approximate epipolar constraint becomes

[(z — €)(ms —€), (T}, + €) (T + €)] fr1 +
+[(z — ) (yo — €), (7}, + €)(yo + €)] f12 +
+[zh — €, 7, + €] fiz+

+[(ys — €)(xo — €), (¥ + €) (o + €)] for +
+ (s — (Yo =€), (Yo + €) (Yo + €)] fa2 +
+[ye — € ys €l fos+

+ [z —€,26 + €] f31+

+ Yo — €40 + €] faz +

+ f33=0.

A fundamental matrix is represented by a ray c¢f in the solution space, where

cis ascalar and f is a vector (fi1, fi2, fi3, fo1, f22, f23, f31, f32, f33). The vector
f specifies an orthant according to the signs of f;; for ¢,j = 1,...,3. This orthant
contains a nontrivial (¢ # 0) exact solution f. The admissible solution conditions
for the approximate equation in an orthant have the form

(2hmo + €(), + 7o) + €) f11 + (Thyo £ (T, + yo) + €) fr2 + () £ €) fis +
+ (e £ e(yl + o) + €2) for + (Yhtto T €(yh + Yo) + €2) foo + (yh £ €) fos +
+(xo T €)fa1 + (Yo £ €)f32 + f33 >0

and

(2hzo F e(l, + To) + €) f11 + (Thyo F (@, + yo) + €) fr2 + (), F €) fis +
+(yhzo F €(yl + o) + €2) for + (Yhyo F €y + yo) + €2) for + (Y F €) foz +
+(zo F€)fa1 + (Yo F€)fs2+ f33 <0.

3.1 Pure Translation Cases

The first rigid motion considered is a pure translation ¢, parallel to the z-axis.

In this case, the point P is projected onto point (z',y’,1)T = (¥, ¥ 1)T in

! Note that the intervals corresponding to unknowns in the approximate equation are
not independent. However, the assumption that these intervals are independent just
implies in a solution set which contains the original set which considers dependent
intervals.
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the second image. This translation corresponds to a fundamental matrix repre-
sented by the vector fy, = (0,0,0,0,0, —t,,0,%;,0) in the solution space. Hence,
assuming without loss of generality that ¢, > 0, an orthant containing an exact
solution is defined by fo3 < 0 and f33 > 0. The error distance A;, from vector f;,
to the admissible solution conditions is (2¢+ (e, —e,))t, . Similarly, a translation
t, parallel to the y-axis results in the error distance Ay, = (2¢ + (e, — €a))ty.

When the error distance is zero, an approximate equation becomes a con-
straint that helps to find an exact solution for the fundamental matrix. If ¢, > 0,
the distance Ay, is zero when (e, = —¢, e,» = €) (see Fig. 4a). Similarly, if t, > 0,
the distance A;, = 0 when (e, = —¢, e,r =€) (see Fig. 4b).

(a) z-axis translation. (b) y-axis translation.

(c) z-axis. (d) z-axis and y-axis.
Fig. 4. Geometric interpretation of conditions for pure translation exact computation.

In the case where the translation ¢, is parallel to the z-axis, the point p' is
(', 9, )T = (%, %, 1)T. This translation corresponds to a fundamental
matrix represented by the vector f;, = (0,—t.,0,%,,0,0,0,0,0) in the solution
space and, assuming without loss of generality that ¢, > 0, an orthant containing
an exact solution is defined by fi2 < 0 and fs; > 0. Hence, the inner product
between f;, and the hyper-planes representing admissible solution conditions is
the error distance A, defined as ((e+ey )z +(e—ey)y+ (e—ey)a’ +(e+ez)y +
€leg +ey+ey +ey) +egey —eyey)t,. The necessary conditions for a zero error
distance in the translation parallel to the z-axis are (e, = —¢€, ey = €, ey =
€, ey = —¢€) (see Fig. 4c).

A translation with two components t, and ¢, corresponds to a fundamen-
tal matrix represented by the vector f;, = (0,0,t,,0,0,—t;, —ty,t;,0) in the
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solution space. Hence, the error distance A, between f;, and the vectors rep-
resenting admissible solution conditions is defined as (2e + (ey — €y))t; + (26 —
(ex +€z7))ty. Ilf t; > 0 and ¢, > 0, a zero error distance for this translation case
is achieved when (e, =€, e, = —¢, e,y = —¢, e, = €) (see Fig. 4d).

Considering a pure translation with three components ¢,,t,,t,, the point p/
is (z',y',1)T ()Z(j:f* , ;iiy ,1)T. This translation corresponds to a fundamental
matrix represented by the vector f;,,. = (0, —t.,1y,t.,0, —tz, —ty,t;,0) in the
solution space. Therefore, the error distance Ay, . is (0, X +0,Y 4+0.Z+06,. X Z+
8y YZ +06,22%)/(Z(Z + t.)), where

8e = (e + ey )t2
0y = (e —ex )
5. =(Be—ey )t t. + (3€ + ey )tyt, + 0t2,
0z: = (26 — ey +ey)t.,
Oy = (e + ez — ey )tz
0,2 = (2e + ey — ey )ty + (26 — ey + egr)ty + Ot,, and
0 = €ey + €ey + €ey + €6y +ezey — egiey.
Note that §; =0y = 0z, = 0y, =0 =0 when (e; = —€, ey =€, € =€, €y =
—e). On the other hand, §,2 = = 0 when (e; =€, e, = —¢, epr = —€, €,y = €).

Even assuming these conditions are not contradictory, §, # 0 and, consequently,
the absolute distance Ay, is greater than zero. The necessary conditions for
Agyz = 0 are the conditions for §,2 = 0 and ¢, = 0. Hence, the exact solution is
feasible in a two-component pure translation case only with ¢, and ¢, and not
possible with three components.

Eight independent approximate equations satisfying zero distance conditions
will give rise to a feasible linear system of equations with an exact solution for the
fundamental matrix. Therefore, the computation of an exact solution for pure
translation cases depends only on the distribution of the discretization errors.

3.2 Pure Rotation Cases

In the pure rotation cases, we show that the computation of an exact funda-
mental matrix is not possible considering the approximate equation system. We
prove that the error distance from an exact solution to any face of the polyhedron
representing the solution set is greater than zero. Hence, there exists a closed
ball with radius greater than zero contained in the solution set which contains a
nontrivial exact solution. This way, a nontrivial exact solution is an interior point
of the solution polyhedron and, consequently, can not be determined exactly by
the approximate equation system.

A rotation about the z-axis is through an angle 6,. In this case, the point
pis (2',y,1)T = (eX Y sXde¥ )T where s, = sinf, and ¢, = cosf,.
The fundamental matrix associated with this rotation corresponds to the vector
fo. = (8z,¢2,—1,—¢s,82,—1,¢, + 85,¢; — 55,0) in the solution space. In order
to specify an unique orthant, we assume without loss of generality 6, € (0, T].
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The cases where 6, > 7§ are similar. Hence, since s;, c;, c; — s, are nonnega-
tive, an orthant containing an exact solution is defined by fi3, f21, f23 < 0 and
fi1, fi2, fa2, f31, f32 > 0. Therefore, the error distance Ay, from fy_ to the ad-
missible solution conditions is defined as 6$§ + @% + 058, + d.c, + b9, , where

0z = s.(e+ep) +c.(e—ey)+ 2es.c, + €+ ey,
8y = s.(e+ey) + (e +ey) + 2ec,? — € — ey,
= ezey +eyey +e(ex + eyt ey +ey)+ep —ey+ 262,
dc = egrey — eyeg +€(eg + ey + exr +ey) + e, + €y + 2¢, and
0p, =2€— ez —ey.

(o]
n
|

Note that the minimum value of 8, is 2es.c., when (e, = —€,ey = €,ey =
—€). Analogously, the minimum value of d, is 2ec,?, when (e, = —€,e, =
—€,e; = €). On the other hand, 055, + dcc; + g, is zero when (e, = —¢€,ey =
—€,ey = €,ey = €). Therefore, even assuming these minimum conditions are

not contradictory, the minimum distance Ayg, is Zesch§ +2ecz2%. According to
the nonnegative assumptions about the approximate equation intervals, X > 2¢
and Y > 2e when 055, + d.c; + dg. = 0. Therefore, considering a rotation about
the z-axis, the distance from an exact solution to any face of the solution set is
greater than zero.

In the case where the rotation 6, is about the z-axis, the point p’ is
(@9, )7 = 5z 2v2Z,1)7, where s, = sinf, and ¢, = cosf,. In
order to simplify this analysis, we assume 6, = % and, consequently, this ro-
tation corresponds to a fundamental matrix represented by the vector fy, =
(0,-1,1,1,1,0,1,0,1) in the solution space. In this case, an orthant containing
an exact solution is defined by fi2 < 0 and fi3, fo1, fo2, f31, f33 > 0. Therefore,
the distance Ag, iS 0oy % + 052 % + 0y % — 62y Z + 0g,, where

(=7

Ty = E—Gy,

Tz — 6+6yl,

yz = 26— €g + ey,

0.y =2+ e, +ey, and

8, = (e +1)(ex + eq) + 2¢(ey + ey +1) + €2

@

S O

n

Note that d;, = 0 when (e, =€), d;- = 0 when (e,y = —e¢), . = 0 when
(exr = €,eyy = —e), and 6,y = 0 when (e, = —¢,e;, = —¢). The conditions
for 0,4y = 0 and 4., = 0 are contradictory with respect to e,. Therefore, even
assuming the conditions for dy, = 0 do not represent further contradictions, the
distance Ay, is either 26% or —26%. Therefore, considering a rotation about the
z-axis through 6, = 7, the absolute error distance from an exact solution to any
face of the solution set is greater than zero. A similar analysis apply to the case
of a pure rotation about the y-axis through an angle 6,,.

The error distance A(f, ") measures the contribution of a point match in
approximating the exact solution. Therefore, a point p in the first image rep-
resents a better approximation when the error distance is minimized. Although
each rigid motion corresponds to a different error distance and, consequently, a
different minimum global valley, this valley always passes through the point at
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the center of the image (see Fig. 5). Therefore, a heuristic for choosing a starting
point match in the computation of the fundamental matrix is to choose the pair
which p is closest to the center of the image.

el 400
(-

(a) 6, =0, =6, = 0.

-a00

(c) 6, = 0. (d) General motion.

Fig. 5. Minimum global valleys of the error distance.

4 An Approximate Algorithm for the Fundamental
Matrix

The true intervals of uncertainty of an approximate system can be found by using
the necessary and sufficient conditions for admissible solutions and applying
Linear Programming (LP) techniques. If one of the unknowns is specified then LP
can be used to find the restricted intervals in which the remaining unknowns lie.
In order to obtain the intervals of uncertainty in the unknowns of an approximate
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system of equations, the approximate equation problem is reduced to a standard
LP form [6].

In order to satisfy the non-negativity condition, the variables are changed
according to a particular orthant. The variables fJ'- >0, for j = 1,...,m are
introduced such that f; = f; if f; > 0 and f; = —f; otherwise.

The inequality conditions for admissible solutions are expressed in terms
of equations by introducing slack wvariables. A constraint E;"Zl aij f; < bi be-
comes » 7, (a;jfj) + flyr = b; and a constraint 37", a;; f; > b; becomes
E;.'lzl (aijfj) — finy1 = bi, where the slack variable f;, ., is nonnegative. This
way, 2n slack variables are introduced to convert the 2n inequalities to equali-
ties. The 2n equations are multiplied by —1 when b; < 0 to satisfy b; > 0, for
1=1,...,n.

Since solving the LP problem leads to the minimum value of the objective
function, the minimum and maximum values of the kth component of f’ is found
by taking the objective function as f; and — f}, respectively. Therefore, the m
intervals of uncertainty are obtained by solving 2m LP problems in each orthant.
For each orthant, the set of solutions to an LP problem is a closed convex set.
Hence, the solution set of an approximate system consist of the union of the
convex subsets in all 2™ orthants.

An admissible orthant contains at least one admissible solution and an empty
orthant contains no admissible solution. The solution set S is the union of the
solution subsets in the admissible orthants. The intervals of uncertainty can be
found in all 2™ orthants, but empty orthants should be avoided.

The orthant to be considered first is the one known to contain at least one
admissible solution z*. If £* has ¢ zero components, the search for a solution set
must start in the 29 orthants which z* lies. If all values found for the endpoints of
the orthant intervals of uncertainty are finite and none are zero, then an insular
subset of the solution set exists in the orthant concerned and this insular subset
is the entire solution set. If any of the endpoints are not bounded, then the
system is critically ill-conditioned.

However, if ¢ intervals of uncertainty in the orthant have endpoints equal to
zero or are unbounded, then the solution may extend into other 29 — 1 adjacent
orthants. An adjacent orthant corresponds to a sequence of ¢ components each
of which may be either positive or negative. The solution set in the adjacent
orthants have to be investigated. If endpoints are found to be zero in any of the
adjacent orthant intervals of uncertainty for components of f other than the ¢
components in the current orthant, then further orthants must be searched.

5 Conclusions and Future Work

We proved the exact solution computation feasibility for some pure translation
motions, depending only on the distribution of the discretization errors. How-
ever, a single exact solution for the fundamental matrix is not feasible for pure
rotation cases. The feasibility of an exact solution is decided according to the
error distance A(f, ).
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We introduce a new robust approach for the computation of the fundamental
matrix taking into account the intrinsic errors involved in the discretization
process. The problem is modeled as an approximate equation system and reduced
to a linear programming form. This approach is able to compute the solution set
instead of trying to compute only a single vertex of the solution polyhedron as
in previous approaches [4, 8].

Outliers are considered as sample point matches whose errors are much bigger
than the expected uncertainty e. Outlier analysis and experiments in synthetic
and real images are future work. This way, we will be able to compare results
obtained by our new approach with other robust techniques [3].

We intend to consider the discretization effects in other camera models, mul-
tiple view geometry (tensors), and further aspects of the model reconstruction
process. This way, the quest is for a computer vision system that is able to com-
pute the exact motion even considering the errors associated with discretization.
Error effects in the camera calibration is another issue that we may consider
using the same methodology developed in this paper.

The polyhedron associated with the solution set for fundamental matrices
may be used as a framework to measure the hardness involved in recovering a
particular rigid motion and scene. This framework may also be used as a tool in
the investigation of the relation between motion and the structure of a scene.
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